

PHP 6
FAST & EASY WEB

DEVELOPMENT
Julie Meloni | Matt Telles

Course Technology PTR
A part of Cengage Learning

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

© 2008 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support Center, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Microsoft, Windows, and Internet Explorer are either registered
trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Netscape is a registered trademark of Netscape
Communications Corporation in the U.S. and other countries. PHP is
copyrighted by The PHP Group, and is released under the PHP License.
MySQL is copyrighted by MySQL AB and is released under the GNU
General Public License. All other trademarks are the property of their
respective owners.

Library of Congress Control Number: 2007938248

ISBN-13: 978-1-59863-471-6

ISBN-10: 1-59863-471-2

Course Technology
25 Thomson Place
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

PHP 6 Fast & Easy Web Development
Julie Meloni, Matt Telles

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing: Sarah Panella

Manager of Editorial Services: Heather Talbot

Marketing Manager: Mark Hughes

Acquisitions Editor: Mitzi Koontz

Project and Copy Editor: Marta Justak

Technical Reviewer: Jaelle Scheuerman

PTR Editorial Services Coordinator: Erin
Johnson

Interior Layout Tech: Bill Hartman

Cover Designer: Mike Tanamachi

Indexer: Larry Sweazy

Proofreader: Gene Redding

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09 08

eISBN-10: 1-59863-669-3

AcknowledgmentsAcknowledgments

Thanks as always to the PHP Group, Zend Technologies, the Apache Software
Foundation, and MySQL AB for creating and maintaining such wonderful and
accessible products for all users.

Thanks to every single PHP user and developer, because without you I wouldn’t have
anything to write about.

Great thanks to the all the editors who worked with me on all the editions of this
book!

Enormous thanks to everyone at i2i Interactive, for their never-ending support and
encouragement.

Matt would like to thank his wonderful editor, Marta, and phenomenal other half,
Teresa, for getting him through this book.

This page intentionally left blank

Julie Meloni is the technical director for i2i Interactive, a multimedia company
located in Los Altos, CA. She’s been developing Web-based applications since the
Web first saw the light of day and remembers the excitement surrounding the first
GUI Web browser. She is the author of several books and articles on Web-based
programming languages and database topics, and you can find translations of her
work in several languages, including Chinese, Italian, Portuguese, Polish, and even
Serbian.

Matt Telles is a senior consultant working in the software development world. He
lives, breathes, and works with anything anyone pays him to while pining away for
his beloved DEC-1091.

About the AuthorsAbout the Authors

This page intentionally left blank

ContentsContents

Introduction . xix

PART I
GETTING STARTED . 1

Chapter 1 Installing and Configuring MySQL. 3
Various MySQL Distributions . 4

Installing MySQL on Windows . 5

Testing Your MySQL Installation . 12

Installing MySQL for Linux . 17

Testing Your MySQL Installation . 20

Chapter 2 Installing Apache . 25
Installing Apache for Windows . 26

Configuring Apache on Windows. 29

Starting and Connecting to Apache . 31

Installing Apache for Linux/UNIX . 32

Configuring Apache on Linux/UNIX . 34

Starting and Connecting to Apache . 36

Chapter 3 Installing PHP. 39
Installing PHP for Windows. 40

Configuring Apache to Use PHP. 41

Testing the PHP Installation . 43

Installing PHP for Linux/UNIX . 45

Configuring Apache to Use PHP. 46

Testing the PHP Installation . 47

PART II
THE ABSOLUTE BASICS OF CODING IN PHP 49

Chapter 4 Mixing PHP and HTML. 51
How PHP Is Parsed . 52

PHP Start and End Tags . 53

Code Cohabitation . 55

The Importance of the Instruction Terminator 57

Escaping Your Code . 60

Commenting Your Code . 62

Chapter 5 Introducing Variables and Operators 65
What’s a Variable? . 66

Naming Your Variables . 66

PHP Variable and Value Types. 67

What’s an Operator? . 73

Assignment Operators . 74

Arithmetic Operators . 76

Comparison Operators . 79

Logical Operators . 82

viii CONTENTS

Chapter 6 Using PHP Variables . 85
Getting Variables from Forms . 86

Creating a Calculation Form . 86

Creating the Calculation Script. 89

Submitting Your Form and Getting Results 91

HTTP Environment Variables. 92

Retrieving and Using REMOTE_ADDR . 93

Retrieving and Using HTTP_USER_AGENT 95

PART III
START WITH THE SIMPLE STUFF 97

Chapter 7 Displaying Dynamic Content 99
Displaying Browser-Specific HTML . 100

Displaying Platform-Specific HTML. 103

Working with String Functions . 107

Creating an Input Form. 107

Creating a Script to Display Form Values 109

Submitting Your Form and Getting Results 111

Redirecting to a New Location . 113

Creating a Redirection Form. 113

Creating the Redirection Script and Testing It 115

Chapter 8 Sending E-Mail . 117
Using an SMTP Server . 118

SMTP-Related Changes in php.ini . 119

A Simple Feedback Form . 120

Creating the Feedback Form . 120

Creating a Script to Mail Your Form . 122

Submitting Your Form and Getting Results 125

ixCONTENTS

A Feedback Form with Custom Error Messages 127

Creating the Initial Script . 127

Adding Error Checking to the Script . 129

Submitting Your Form and Getting Results 134

Saving the Values if You Make an Error 136

Chapter 9 Using Your File System . 139
File Paths and Permissions . 140

Displaying Directory Contents . 140

Working with fopen() and fclose() . 143

Creating a New File . 144

Appending Data to a File . 150

Reading Data from a File . 152

Sending File Contents via E-Mail . 155

File System Housekeeping . 157

Copying Files. 157

Renaming Files . 160

Deleting Files . 162

Chapter 10 Uploading Files to Your Web Site 165
Checking Your php.ini File. 166

Understanding the Process . 167

Creating the Form . 168

Creating the Upload Script . 170

Uploading a File Using Your Form and Script 172

x CONTENTS

PART IV
GETTING TO KNOW YOUR MYSQL
DATABASE . 175

Chapter 11 Establishing a Connection and Poking Around 177
Working with User Privileges in MySQL . 178

Creating a New User. 178

Connecting to MySQL. 179

Breaking Your Connection Script . 182

Listing Databases on a Server. 183

Listing Tables in a Database . 187

Creating a New Database . 191

Deleting a Database . 194

Chapter 12 Creating a Database Table. 197
Planning for Your Tables . 198

Basic MySQL Data Types . 198

Defining Your Fields . 198

The Importance of Unique Fields . 201

A Two-Step Form Sequence . 202

Step 1: Number of Fields . 202

Step 2: Defining Your Fields . 203

Starting the Table Creation Process . 208

Creating the Table-Creation Script . 210

Create That Table! . 214

Chapter 13 Inserting Data into the Table 217
Creating the Record Addition Form . 218

Creating the Record Addition Script. 222

Populating Your Table . 228

xiCONTENTS

Chapter 14 Selecting and Displaying Data 231
Planning and Creating Your Administrative Menu 232

Selecting Data from the my_music Table 233

Displaying Records Ordered by ID . 234

Displaying Records Ordered by Date Acquired 237

Displaying Records Ordered by Title . 238

Displaying Records Ordered by Artist 240

Displaying Records Ordered by Multiple Criteria 243

PART V
USER AUTHENTICATION AND TRACKING 245

Chapter 15 Database-Driven User Authentication 247
Why Authenticate Anyone?. 248

Creating the User Table. 248

Adding Users to Your Table. 249

Creating the User Addition Form and Script 250

Adding Some Users . 255

Creating the Login Form. 257

Creating the Authentication Script . 258

Trying to Authenticate Yourself. 261

Chapter 16 Using Cookies . 263
What Are Cookies? . 264

Setting Cookies . 264

Counting Time. 266

Setting a Test Cookie . 266

Using Cookie Variables . 269

Using Cookies with Authentication . 269

xii CONTENTS

Chapter 17 Session Basics . 277
Before You Begin…Checking php.ini . 278

What’s a Session? . 278

Understanding Session Variables . 279

Starting a Session . 280

Registering and Modifying Session Variables. 282

Managing User Preferences with Sessions 284

Starting a Session and Registering Defaults. 284

Making Preference Changes. 288

Displaying Changes. 292

PART VI
CREATING YOUR OWN CONTACT
MANAGEMENT SYSTEM 293

Chapter 18 Planning Your System . 295
Planning and Creating the Administration Menu 296

Logging In to the Administration Menu 301

Defining the my_contacts Table . 303

Modifying the Table-Creation Scripts . 304

Creating the my_contacts Table . 309

Chapter 19 Adding Contacts . 313
Creating the Record-Addition Form . 314

Creating the Record-Addition Script . 319

Populating Your Table . 324

Chapter 20 Modifying Contacts . 327
Creating the Record-Selection Form . 328

Creating the Record-Modification Form. 333

Creating the Record-Modification Script 338

Modifying Contacts . 342

xiiiCONTENTS

Chapter 21 Deleting Contacts . 345
Using the Record-Selection Form . 346

Creating the Record-Deletion Form . 351

Creating the Record-Deletion Script. 355

Deleting Contacts . 358

Chapter 22 Working with Contacts . 361
Modifying Your Administrative Menu . 362

Showing the Number of Contacts . 362

Displaying Today’s Date . 370

Showing the Birthdays in the Current Month. 372

Selecting Data from the my_contacts Table 379

Displaying the Record List . 379

Displaying Read-Only Records . 383

PART VII
ADDITIONAL PROJECT EXAMPLES 391

Chapter 23 Managing a Simple Mailing List 393
A Brief Word About Mailing List Software 394

Developing a Subscription Mechanism. 394

Creating the subscribers Table . 394

Creating the Subscription Form . 396

Testing the Subscription Form . 403

Developing the Mailing Mechanism . 406

Creating the Newsletter Form . 406

Creating the Script to Mail Your Newsletter 407

Testing Your Mailing List Mechanism . 410

Troubleshooting Your Mailing List Mechanism 411

xiv CONTENTS

Chapter 24 Creating Custom Logs and Reports. 413
A Note About Apache Log Files . 414

Simple Access Counting with MySQL. 415

Creating the Database Table . 415

Creating the Code Snippet. 416

Displaying the Count . 420

Creating Your Personal Access Report 422

Chapter 25 Working with XML. 433
What Is XML?. 434

Basic XML Document Structure . 434

Preparing to Use XML with PHP . 437

Parsing XML with PHP. 438

Parse and Display Content from XML Files 439

PART VIII
APPENDIXES . 443

Appendix A Additional Configuration Options 445
Windows Extensions . 446

Linux Configuration Options. 448

Appendix B Basic PHP Language Reference 451
PHP Start and End Tags . 452

Variables . 452

Floats. 453

Integers . 453

Strings . 453

Variables from HTML Forms . 454

Variables from Cookies . 454

Environment Variables . 454

Arrays . 455

xvCONTENTS

Operators . 456

Arithmetic Operators . 456

Assignment Operators . 456

Comparison Operators . 456

Increment/Decrement Operators . 457

Logical Operators . 457

Control Structures . 458

if...else if...else. 459

while . 460

for . 460

foreach. 461

Built-In Functions. 461

Array Functions . 461

Database Connectivity Functions for MySQL. 465

Date and Time Functions . 466

File System Functions . 468

HTTP Functions . 472

mail() Function. 473

Mathematical Functions . 474

Miscellaneous Functions . 476

Program Execution Functions. 478

Regular Expression Functions. 479

Session-Handling Functions . 480

String Functions . 481

Variable Functions . 485

Other Changes for PHP 6.0 . 486

xvi CONTENTS

Appendix C Writing Your Own Functions 487
The Structure of Functions . 488

Returning Values from Functions . 488

Using Functions in Your Code . 491

Using include() and require() . 492

Appendix D Writing Your Own Classes and Objects 495
Working with Objects . 496

Creating an Object . 497

Object Inheritance . 501

Namespaces . 502

Appendix E Database Normalization and SQL Reference. 505
Understanding Database Normalization. 506

Applying the Normal Forms . 506

Normalizing the my_contacts Table . 510

Other Normal Forms. 513

Basic MySQL Reference . 513

Creating or Dropping a Database . 514

Creating or Dropping a Table . 514

Altering a Table . 515

Inserting, Updating, or Replacing Within a Table. 515

Deleting from a Table . 517

Selecting from a Table. 517

Grouping, Ordering, and Selecting Unique Values 520

Using the SHOW Command . 521

Appendix F Using SQLite . 523
Examples of SQLite in Action . 524

Creating a Table and Storing Data with SQLite 525

Retrieving Items with SQLite . 526

Performing Other Tasks with SQLite . 528

xviiCONTENTS

Appendix G Getting Help . 535
PHP Resources. 536

Web Sites . 536

Mailing Lists. 538

User Groups . 538

MySQL Resources . 538

Apache Resources . 539

Index . 541

xviii CONTENTS

If you would have told me four years ago that this little book would be so popular
as to warrant another edition, I would have laughed at you. But the style of this
book, and its contents, has proven to be quite suitable for the beginning PHP
programmer. The Fast & Easy Web Development style is a step-by-step, learn-by-
example path to learning a new programming language—with pictures included!
Unlike the verbose text-only chapters found in most programming books, the Fast
& Easy Web Development style appeals to users who are new to PHP, and
especially to programming in general.

This edition takes into account feedback received from the other editions, but
holds true to the original content structure and path to learning. In addition, all of
the changes encompassed in the fifth and sixth releases of PHP are included. For
example, the first three chapters are dedicated to getting Apache, MySQL, and
PHP up and running on your Windows or Linux machine. You might be surprised at
how simple it is, and how quickly you’ll be up and running—which is good because
you need all three technologies to be working in order to continue with the lessons.

In this edition, some chapters have been added to provide additional projects for
practicing your new skills, and also to account for new elements present in version
6 of PHP. After completing this book, you will have a strong foundation in the basics
of Web-based technologies and application design, and will be prepared to learn
more advanced topics and programming methodologies. However, before jumping
into all that, take a moment to familiarize yourself with PHP and why it is such a
wonderful language to learn and use.

IntroductionIntroduction

What Is PHP?
Its official name is PHP: Hypertext Preprocessor, and it is a server-side
scripting language. When your Web browser accesses a URL, it is making a
request to a Web server. When you request a PHP page, something like
http://www.yourcompany.com/home.php, the Web server wakes up the PHP
parsing engine and says, “Hey! You’ve got to do something before I send a result
back to this person’s Web browser.” Then the PHP parsing engine runs through the
PHP code found in home.php, and returns the resulting output. This output is
passed back to the Web server as part of the HTML code in the document, which in
turn is passed on to your browser, which displays it to you.

A Brief History of PHP
In 1994, an incredibly forward-thinking man named Rasmus Lerdorf developed a set
of tools that used a parsing engine to interpret a few macros here and there. They
were not extravagant: a guest book, a counter, and some other “home page”
elements that were cool when the Web was in its infancy. He eventually combined
these tools with a form interpretation (FI) package he had written, added some
database support, and released what was known as PHP/FI.

Then, in the spirit of open source software development, developers all over the
world began contributing to PHP/FI. By 1997, more than 50,000 Web sites were
using PHP/FI to accomplish different tasks—connecting to a database, displaying
dynamic content, and so on.

At that point, the development process really started becoming a team effort. With
primary assistance from developers Zeev Suraski and Andi Gutmans, the version
3.0 parser was created. The final release of PHP 3.0 occurred in June of 1998, when
it was upgraded to include support for multiple platforms (it’s not just for Linux
anymore!) and Web servers, numerous databases, and SNMP (Simple Network
Management Protocol) and IMAP (Internet Message Access Protocol). Then the
birth of PHP 4.0 occurred. No small version change, PHP 4.0 marked a complete
rethinking of the PHP core and a rewrite of the internals of the scripting language
itself. The PHP development team and Zend Technologies produced a remarkable
product with nearly a fifty-fold performance improvement over version 3.0, with a

xx INTRODUCTION

http://www.yourcompany.com/home.php

long list of new and useful features. When PHP 5.0 was released, it marked a rather
radical change for the language, including new concepts of object-oriented
development and database work.

As if that weren’t enough, PHP 6 has been in the works almost since PHP 5 was
released, culminating in what we have today: an even faster, feature-rich
programming language suitable for procedural or object-oriented scripts, which
warrants a place in the enterprise.

What Does PHP Do?
PHP does anything you want, except sit on its head and spin. Actually, with a little
on-the-fly image manipulation and dynamic HTML, it could probably do that, too.

According to the PHP manual, “The goal of the language is to allow Web
developers to write dynamically generated pages quickly.”

Here are some common uses of PHP, all of which are a part of what you’ll learn in
this book:

• Perform system functions: create, open, read from, write to, and close files on
your system; execute system commands; create directories; and modify
permissions.

• Gather data from forms: save the data to a file, send data via e-mail, and return
manipulated data to the user.

• Access databases and generate content on the fly, or create a Web interface for
adding, deleting, and modifying elements within your database.

• Set cookies and access cookie variables.

• Start sessions and use session variables and objects.

• Restrict access to sections of your Web site.

• Create images on the fly.

• Encrypt data.

xxiINTRODUCTION

These are just basic, everyday uses. PHP also includes support for integrating with
Java servlets, XML, and myriad other higher-level functions. The possibilities
literally are endless.

Why PHP 6?
It’s natural that languages continue to develop, and PHP 6 has done just that—its
changes represent the next step in the growth and development of the language.
There was nothing fundamentally wrong with PHP 4 or 5, and, in fact, the vast
majority of this book can be used on servers running PHP 4 or PHP 5. The changes
in PHP 6 revolve around high-level aspects of the language, namely the object
model, as well as cleaning up some long-neglected aspects of the language.

If you are coming to PHP from another programming language, especially a highly
structured, specifically object-oriented language, the crossover to a flexible,
procedural language that just happens to handle object-oriented programming can
be frustrating. But the ease of use and robustness is one of the reasons new
programmers are drawn to PHP in the first place—the learning curve isn’t steep,
and it gets the job done.

However, this also presents a marketing problem for PHP users working in an
enterprise setting. Some “powers that be” might not think PHP is suitable for
enterprise-level application development, because it is not a time-tested,
structured, object-oriented programming language such as C or even Java. There
might not be the time or opportunity for a developer to convince her managers
otherwise by showing examples of PHP and C or Java performing the same tasks—
if you even can, with the same level of structure, security, reusability, and
exception-handling.

From these and other problems came the development path for PHP 6, the main
purpose of which was to improve the object model, instill a sense of programming
discipline, and specifically design a version of PHP that meets the needs of object-
oriented developers and allows them to interface with Java, .NET, and other

xxii INTRODUCTION

enterprise-level application frameworks. Finally, PHP 6.0 gives us a true Unicode-
based language for the first time in the history of scripting languages for the Net.

But beginning users—likely the primary audience of this book—will not face
objects, classes, .NET, or XML-integration their first day on the job. These users
simply want a fast, flexible language they can use to create basic, dynamic Web
sites, and PHP 6 still meets that need. Although PHP 6 contains an enhanced
internal scripting engine and a vastly improved object-oriented framework, the PHP
Group and Zend Technologies recognize and appreciate the roots of PHP and the
core group of users who have made it so pervasive. As with PHP 5, PHP 6 does not
force you to use the elements of the language you don’t need.

Overview of Changes in PHP 6
PHP 6.0 is, in many ways, a “cleanup” release for the language. In addition to
cleaning up the object model and fixing many bugs, PHP 6.0 adds full Unicode
support from the ground up. It introduces large integers (64-bit) and better SQL
Lite functionality, and includes all of the changes from PHP 5.1 through the final
releases of the 5.0 line, as well as everything new in 6.0.

This book is not a be-all and end-all of the ins and outs of PHP, rather it is a way to
learn the language and get up to speed quickly. For a complete discussion of the
changes to the language in every detail, check the php.net site. While we will cover
all of the new features in this book, you may need to see more detail than is
presented here for your particular situation. As always, your mileage may vary.

Backward Compatibility with PHP 5
The changelog and PHP manual always indicate when a new implementation will
cause problems in previous versions, so at least read the changelog thoroughly if
not the manual entries for your favorite functions. However, the vast majority of
PHP 6 focuses on additional functionality rather than completely replacing existing
elements. If you have learned PHP using PHP 4 or PHP 5, you might find that none
of your scripts require a rewrite.

xxiiiINTRODUCTION

Requiring a rewrite and rewriting scripts for the sake of utilizing new functionality
are completely different—you might want to rewrite to take advantage of new
object-oriented functionality, but you might not have to. If your code is primarily
procedural (as with the scripts in this book), there’s a better than 95 percent chance
that no rewrites will be necessary.

Similarly, if you cannot install PHP on your own machine for development or
product purposes, as outlined in Chapter 3, “Installing PHP,” and must use PHP 5,
do not fret. Anything taught in this book that doesn’t work in PHP 5 is indicated as
such.

Is PHP Right for You?
Only you can decide if PHP should be your language of choice, whether you’re
developing sites for personal or commercial use on a small or large scale. I can only
tell you that in the commercial realm, I’ve worked with all the popular server-side
scripting languages—Active Server Pages (ASP), ColdFusion, Java Server Pages
(JSP), Perl, and PHP—on numerous platforms and various Web servers, with varying
degrees of success. PHP is the right choice for me: It’s flexible, fast, and simple in
its requirements, yet powerful in its output.

Before deciding whether to use PHP in a large-scale or commercial environment,
consider your answers to these questions:

• Can you say with absolute certainty that you will always use the same Web
server hardware and software? If not, look for something cross-platform that is
available for all types of Web servers—use PHP.

• Will you always have the exact same development team comprised entirely of
ASP (or Java Server Pages or ColdFusion) developers? Or will you use whoever is
available, thus necessitating a language that is easy to learn and syntactically
similar to C and Perl? If you have reason to believe that your ASP or JSP or
ColdFusion developers might drop off the face of the earth, don’t use those
tools—use PHP.

• Are memory and server loads an issue? If so, don’t use bloated third-party
software that leaks precious memory—use PHP.

xxiv INTRODUCTION

Here’s the bottom line: PHP is simple, so just try it! If you like it, continue using it.

It’s open source, so help improve it. Join a mailing list and help others. If you don’t
like it, you’re only out the money for this book, and the software can be uninstalled
without rendering your machine completely inoperable.

Who Should Read This Book?
This book is designed for individuals who possess a general understanding of the
concepts of working in a Web-based development environment, be it Linux/UNIX
or Windows. Installation and configuration related chapters assume that you have
familiarity with your operating system and the basic methods of building (on
Linux/UNIX systems) or installing (on Windows systems) software.

Chapters discussing how to program with PHP, which make up the bulk of the
book, assume no previous knowledge of the language. However, if you have
experience with other programming languages such as C or Perl, you will find these
lessons to be quite simple. Similarly, if you have worked with other databases, such
as Oracle or Microsoft SQL Server, you will have a good foundation for working
through the MySQL-related chapters.

The only real requirement before reading this book is that you understand static
Web content creation with HTML. If you are just starting out in the world of Web
development, you will still be able to use this book, but you should consider
working through an HTML tutorial first. If you are comfortable creating basic
documents and uploading them to your Web server, you will be fine.

xxvINTRODUCTION

How This Book Is Organized
This book is divided into eight parts, corresponding to particular topic groups. The
chapters within each part build on the information found in those before it:

• Part I, “Getting Started,” walks you through the installation and configuration
of MySQL, Apache, and PHP. You’ll need to complete the lessons in Part I before
moving on, unless you already have access to a working installation of these
technologies.

• Part II, “The Absolute Basics of Coding in PHP,” teaches you the basics of the
PHP language, starting with variables and the core structure of the language.
The numerous hands-on examples will get you in the habit of writing code,
uploading it, and testing the results.

• Part III, “Start with the Simple Stuff,” builds on the basics learned in the
previous chapters, and helps you to create multi-part scripts and display dynamic
content, among other things.

• Part IV, “Getting to Know Your MySQL Database,” introduces you to the
concept of working with databases in general and MySQL in particular, and
shows you how to create PHP scripts to communicate with MySQL and perform
various tasks.

• Part V, “User Authentication and Tracking,” shows you how to use PHP to
restrict access to your applications and how to set cookies and work with user
sessions, including the storage of user preferences.

• Part VI, “Creating Your Own Contact Management System,” contains several
chapters which walk you through the design and creation of a specific type of
application, in this case a contact management system, also known as a Web-
based address book.

• Part VII, “Additional Project Examples,” contains chapters devoted to other
popular types of projects, such as managing a mailing list, creating custom
reports, and working with XML.

• Part VIII, “Appendixes,” contains several handy references for the PHP and SQL
languages, as well as other information including how to use SQLite and where
to go to find help and additional tutorials.

xxvi INTRODUCTION

Conventions Used in This Book
This book uses different typefaces to differentiate between code and plain English,
and also to help you identify important concepts. Throughout the lessons, code,
commands, and text you type or see on-screen appear in a monospaced typeface.

More Stuff
Any errata and additional information for this book can be found at courseptr.com/.
At this site, you can download all the code samples in this book, and will be alerted
to any printing errors.

xxviiINTRODUCTION

This page intentionally left blank

Getting StartedGetting Started

P A R T I

Chapter 1
Installing and Configuring MySQL..............3

Chapter 2
Installing Apache25

Chapter 3
Installing PHP..39

This page intentionally left blank

Installing and
Configuring MySQL

MySQL is the database of choice for a vast majority of Web
developers who use PHP, because of its efficiency and ease of
use. Plus, MySQL is free and runs on multiple platforms, and its
documentation is superb. When using MySQL with PHP, it’s
easiest to install MySQL first, because during the PHP
installation and configuration process, you must tell the PHP
configuration script that you plan to use MySQL, in order to
activate the MySQL-specific functions. As such, it’s best to
make sure that MySQL is at least present on your system, in
case there are any library mismatch issues that would cause
PHP to fail in its compilation. In this chapter, you learn how to:

Install MySQL on Windows or Linux.

Create a sample database.

Create a sample table.

1
Installing and
Configuring MySQL

1

Various MySQL Distributions
The most popular distribution of MySQL is the open source version, from MySQL
AB. However, there are also commercial versions of MySQL, as well as distributions
of MySQL bundled with application server software. No matter which option you
choose, a solution is available for you on all platforms—any operating system, as
well as on Windows 95/98/NT/2000/XP/2003. This chapter assumes that you’re
using the MySQL installation files from the MySQL Web site (or the CD that
accompanies this book).

If you are using MySQL as part of a Web-hosting package through an Internet
service provider, you don’t have to worry about downloading and installing the
application in this chapter. Instead, you just need to work with your ISP to get your
username and password. In almost all cases, your ISP will be running the MySQL
distribution from MySQL AB. There’s no harm in setting up MySQL on a
development machine, if you have one available (your own workstation fits that
bill), just to better understand the process. To that end, if you have a Linux
workstation or server, MySQL was likely included on your OS distribution CDs as an
installation option, and perhaps you even installed it already. In this case, you
should check the MySQL Web site to compare the version numbers and download
a newer version if one is available.

The installation instructions in this chapter are based on MySQL version 5.0.x,
distributed by MySQL AB.

4 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

MYSQL 4.0.X
If you are using MySQL at your ISP and it is still using a 4.0.x version, don’t
worry—you will be able to use all of the database-related examples in this
book.

5INSTALLING MYSQL ON WINDOWS

Installing MySQL on Windows
The MySQL installation process on Windows 95/98/NT/2000/XP/2003 is based on
an executable setup program provided by MySQL AB. Once you download the zip
file, all you have to do is extract its contents into a temporary directory and run the
setup.exe application. After the setup.exe application installs the MySQL server and
client programs, you’re ready to start the MySQL server.

1. Visit the MySQL 5.0.x download page at http://dev.mysql.com/downloads/
mysql/5.0.html and find the Windows section on the page. Click the button
below the text that says MySQL Community Server. This will take you to a list of
operating systems. Select Windows and then select the Windows Zip/Setup.exe
link.

2. Clicking the “mirror” link will take you to a page of mirror sites. Select the
mirror site closest to you and click either the HTTP or FTP link to download the
file. Using the HTTP method is usually quicker. Note that you will be presented
first with a login screen; you can bypass this via a link at the bottom of the page
that says “No thanks, just take me to the downloads.”

Figure 1.1 Installation Wizard Step 1. 3. After the zip file
(mysql-5.0.45-win32.zip) is
on your hard drive, extract
its contents to a temporary
directory.

4. From the temporary
directory, find the setup.exe
file and double-click it to
start the installation. You will
see the first screen of the
Installation Wizard, as shown
in the following figure.
Click Next to continue
(see Figure 1.1).

http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html

6 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

Figure 1.2 Installation Wizard Step 2. 5. The second screen in the
installation process, shown
in Figure 1.2, asks you which
type of installation you want
to use. For our purposes, a
Typical installation is fine.
The other types of
installation allow you to
customize what will be
installed and what features
you will be using. For the
majority of users, the Typical
setup is fine. If you want to
be sure you have everything
you need, select the
Complete install. The
Custom install is really just
for advanced users who are
setting up production
systems that are very
specific. Note that if you
want to change the
installation location, you will
need to customize it using
the Custom option. If you
select that option, you will
see the screen shown in
Figure 1.3.

Figure 1.3 Installation Wizard Custom option.

7INSTALLING MYSQL ON WINDOWS

Figure 1.4 MySQL installation summary. 6. The third screen in the
installation process contains
valuable information
regarding the installation
location. The information on
this screen is also important
for Windows NT users who
want to start MySQL as a
service. Read the
information and note
anything relevant to your
situation; then click Next to
continue (see Figure 1.4).

Figure 1.5 Installation screen for MySQL. 7. At this point, you are ready
to do the installation
process. Click the Install
button on the screen to
begin the installation
process. You should see the
display shown in Figure 1.5.

8 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

Figure 1.6 MySQL installer. 8. Once the installation
process is complete, you will
see an advertisement for the
MySQL Enterprise edition.
You can ignore this process.
The series of screens begins
with the one shown in Figure
1.6 and continues for two or
three screens, depending on
the version you installed.

Figure 1.7 MySQL installer confirmation. 9. The installation process now
takes over and installs files
in their proper locations.
When the process is
finished, you will see a
confirmation of completion.
Click Finish to complete
the setup process (see
Figure 1.7).

9INSTALLING MYSQL ON WINDOWS

Figure 1.8 Configuration Wizard completion screen. 10. The final step in the
process, once the
installation is done, is to
handle the configuration
of the system. The final
screen contains a check
box that will allow you to
do this configuration.
Leave the check box
checked and click the
Finish button. You
should now see the
Configuration Wizard as
shown in Figure 1.8.
Clicking Next will bring
you to the Server Instance
screen, shown in
Figure 1.9.Figure 1.9 MySQL Server screen.

10 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

Figure 1.10 MySQL main options screen. 11. Select the Standard
configuration for your
machine, since we are
working with a system
that has never been
installed and doesn’t need
to be used by others for
now. Clicking Next will
bring up the main options
screen for MySQL, as
shown in Figure 1.10.
Leave the Windows
Service box checked, as
this is the best way to run
MySQL under Windows.
We aren’t going to be
using the command line
tools much, so we’ll leave
the Bin Directory box
unchecked. Click Next
when you are finished.

12. The screen shown in
Figure 1.11 is extremely
important. You will need
to create a password for
your root (administrator)
user. The next button will
not be enabled until the
passwords in the New
Root Password and
Confirm boxes are
entered and match.

Figure 1.11 MySQL administration password screen.

11INSTALLING MYSQL ON WINDOWS

MySQL is now installed on your system. Unlike previous versions of MySQL, the
administration programs are a separate download. You can find them on the
MySQL.com site at the URL http://dev.mysql.com/downloads/gui-tools/5.0.html.
The installation process is quite simple and can be placed in the same location as
the MySQL binaries (the default location is c:\Program Files\MySQL, with the
database engine in MySQL Server 5.0.

Figure 1.12 MySQL final installation screen. 13. Finally, you will see the
screen shown in Figure
1.12. This screen does all
the setup of your MySQL
system. Click the Execute
button to finish the
installation process.

USERNAMES AND PASSWORDS
You must use the same username (root) and password that you entered in
the Configuration Wizard to enter the Administrator.

WinMySQLadmin will automatically interpret environment information, such as IP
address, machine name, and so on. The tabs along the left side allow you to view
system information and also edit MySQL configuration options. To shut down the
MySQL server or the WinMySQLadmin tool, right-click again on the stoplight icon
in your task bar and select the appropriate choice. As long as the MySQL server is
running, you can run additional applications through a console window, such as the
MySQL Monitor.

http://dev.mysql.com/downloads/gui-tools/5.0.html

In the next section, you will learn how to start MySQL manually and perform a few
actions to familiarize yourself with the system.

Testing Your MySQL Installation
In this section, you work with the MySQL utilities via the command line in a console
window. When using MySQL with PHP, you’ll issue the same types of commands,
only within the context of the PHP code. Use the information in this section to
familiarize yourself with the types of commands and responses you’ll be working
with later in the book.

Starting MySQL

To start MySQL manually (without using the GUI described previously), go to the
Windows Start menu, choose Run, type c:\Program Files\MySQL\MySQL Server
5.0\bin\mysqld-nt.exe, and press Enter.

12 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

MYSQL ADMINISTRATOR
Current versions of MySQL use the Administrator application, which ships
with MySQL. The screens are more or less the same, and the process to
access them is the same, but you need to select MySQL, MySQL
Administrator from the Windows Start button to access it instead.

LOCATION OF MYSQL
If you installed MySQL in a different directory, substitute that directory name
in the previous command.

The MySQL process will now be running in the background. You can now connect
to MySQL and create databases and tables.

13INSTALLING MYSQL ON WINDOWS

Creating a Test Database

Before going any further, you should know the following:

• A database is a collection of tables.

• A table contains a set of records, also referred to as rows.

• All records have the same number of fields.

• Each field categorizes a piece of a data.

In this section, you’ll conquer the first element and create a database. The utility to
use is the mysqladmin program, which allows you to administer MySQL from the
command line.

Go to the Windows Start menu, choose Run, and type c:\Program Files\MySQL\
MySQL server 5.0\mysqladmin" –u root –p create testDB; then press Enter. You will
be prompted for a password; enter the one you created in the initial configuration
setup.

The window will briefly flash and then close when the command has been
processed. Next, you’ll add a table to the testDB database.

Creating a Test Table
In this section, you create a table within the database you created in the preceding
section. The utility to use is the mysql program, which allows you to work within the
MySQL database system from the command line.

Figure 1.13 The MySQL command prompt. 1. Go to the Windows Start
menu, choose Run, type
mysql –u root -p, and press
Enter. The program will then
prompt you for the
password you used in the
previous step. Enter it and
you should see the MySQL
prompt as shown in Figure
1.13.

When the MySQL Monitor starts, it provides its own prompt. At this prompt
(mysql>), you type commands used to create tables, explain tables, insert data,
select data, and so on. Get used to ending your commands with a semicolon (;)
because it’s a common instruction terminator that is used in PHP as well.

Now that you’ve connected to the MySQL Monitor, you need to tell it which
database to use.

14 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

Figure 1.14 Using a database in MySQL. 2. At the prompt, type use
testDB; and press Enter (see
Figure 1.14).

The MySQL Monitor will
respond with Database
changed if the database
exists and you have
permission to access it.

It’s time to create a test
table. This table will have a
column for an ID number
and a column for some text.

DATABASE NORMALIZATION
For more information about the specifics of creating tables, see Appendix E,
“Database Normalization and SQL Reference.”

3. At the prompt, type create table test_table (test_id int, test_note text);
and press Enter. This statement creates a table called test_table. Within the
table, it creates a column called test_id of type int (integer). It also creates a
column called test_note of type text.

The MySQL Monitor will respond with Query OK. It will also tell you how many
rows were affected and how long it took to complete the task.

15INSTALLING MYSQL ON WINDOWS

Figure 1.15 Viewing available tables in MySQL. 4. Verify the table creation by
typing show tables; and
pressing Enter (see Figure
1.15).

The MySQL Monitor will
respond with a list of all the
tables in the current
database.

5. To verify the field names and
types in a specific table, use
the explain command. In
this case, type explain
test_table; and press Enter
(see Figure 1.16).

The MySQL Monitor will
respond with a list of all the
fields and their types in the
selected table. This is a very
handy command to use to
keep track of your table
design.

It’s time to insert a few rows
of data in your table,
because this is getting
pretty boring. The first row
will have an ID of 1, and the
note will be “This is a note.”

6. To insert this row, type
insert into test_table

values('1', 'This is a

note.'); and press Enter
(see Figure 1.17).

Figure 1.16 Looking at a table schema in MySQL.

Figure 1.17 Inserting data into a table in MySQL.

The MySQL Monitor will respond with Query OK. It will also tell you how many
rows were affected and how long it took to complete the task.

7. Insert another row by typing insert into test_table values('99', 'Look!
Another note.'); and pressing Enter.

16 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

INSERTION REFERENCE
For more information about the specifics of inserting data into tables, see
Appendix E.

Now that you have some data in your table, even if it is only two rows, it’s time to
get familiar with selecting data. Keep the MySQL Monitor open, because you’ll be
using it in the next section as well.

Selecting Data from Your Test Table

The SELECT command is very powerful and will likely be the command you use most
often when working with PHP and MySQL. You can find more information about the
SELECT command in Appendix E, but for now, let’s do some simple data selections.

Figure 1.18 Viewing data in a table in MySQL. 1. At the prompt, type select
* from test_table; and
press Enter (see Figure
1.18).

This command simply selects
all fields from all rows (that’s
what the * does) in the table
called test_table and
returns the data to the
screen in a nicely formatted
table. The MySQL Monitor
tells you how many rows
were returned and how long
it took the query to run.

17INSTALLING MYSQL FOR LINUX

The result now shows the row with a test_id of 99 as the first row in the table. The
desc in the command stands for descending. There is another option, asc, which
stands for ascending. Ascending order is the default order.

The next section is for the installation of MySQL on Linux, so assuming you don’t
have two machines, skip ahead to Chapter 2, “Installing Apache,” to install the
Apache Web server.

Installing MySQL for Linux
This section takes you through the installation process of MySQL 5.0.x (community)
on Linux, using the distribution from MySQL AB. If you’re using another flavor of
UNIX, download the appropriate files and follow the instructions included with the
distribution.

The recommended installation method for MySQL is with RPMs. There are several
RPMs that make up a full distribution, but for a minimal installation you need the
following:

• MySQL-server-VERSION.i386.rpm—The MySQL server.

• MySQL-client-VERSION.i386.rpm—The standard MySQL client programs.

Figure 1.19 Ordering data in a select statement. Add a little order to the
results. Try to get the results
ordered by ID number—
largest number first.

2. At the prompt, type select
* from test_table order by

test_id desc; and press
Enter (see Figure 1.19).

To download these files, visit the MySQL 5.0.x download page at
http://dev.mysql.com/downloads/mysql/5.0.html and find the “Linux x86 RPM
downloads” section on the page (or IA64 or AMD64, depending on your
architecture). When you click the download link for one of the packages, you will be
taken to a page of mirror sites. Select the mirror site closest to you and download
the files.

When the files are downloaded to your system, perform the minimal installation by
typing the following at your prompt, replacing VERSION with the appropriate version
number of your downloaded files:

#prompt> rpm -i MySQL-server-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

If the RPM method doesn’t work for you, you can also install MySQL from a binary
distribution, which requires gunzip and tar to uncompress and unpack the
distribution and also requires the capability to create groups and users on the
system.

In the first series of commands, you will add a group and a user and then unpack
the distribution, as follows:

1. At the prompt, type groupadd mysql.

2. At the prompt, type useradd -g mysql mysql.

3. At the prompt, type cd /usr/local.

18 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

INSTALLING MYSQL
You can install MySQL in any directory. If you do not use /usr/local/ as in
this example, be sure to modify subsequent commands appropriately.

4. At the prompt, type gunzip < /path/to/mysql-standard-VERSION-OS.tar.gz |
tar xvf -.

5. To create a link with a shorter name, type ln -s mysql-VERSION-OS mysql.

6. Change directories by typing cd mysql.

http://dev.mysql.com/downloads/mysql/5.0.html

19INSTALLING MYSQL FOR LINUX

Once the distribution is unpacked, the README and INSTALL files will walk you
through the remainder of the installation process for the version of MySQL you’ve
chosen. In general, the next series of commands will be used:

1. Type scripts/mysql_install_db to run the MySQL install script.

2. Type chown -R root /usr/local/mysql to change ownership of the mysql
directory.

3. Type chown -R mysql /usr/local/mysql/data to change ownership of the
mysql/data directory.

4. Type chgrp -R mysql /usr/local/mysql to change the group of the mysql
directory.

5. Type chown -R root /usr/local/mysql/bin to change ownership of the
mysql/bin directory.

If you have any problems during the installation of MySQL, the first place you
should look is the “Problems and Common Errors” chapter of the MySQL manual,
which is located at http://www.mysql.com/doc/P/r/Problems.html. Some common
problems include:

• Incorrect permissions do not allow you to start the MySQL daemon. If this is the
case, be sure you have changed owners and groups to match those indicated in
the installation instructions.

• If you see the message Access denied when connecting to MySQL, be sure you
are using the correct username and password.

• If you see the message Can't connect to server, make sure the MySQL daemon
is running.

In the next section, you will learn how to start MySQL and perform a few actions to
familiarize yourself with the system.

http://www.mysql.com/doc/P/r/Problems.html

Testing Your MySQL Installation
In this section, you work with the MySQL utilities via the command line, in a console
window. When using MySQL with PHP, you’ll issue the same types of commands,
only within the context of the PHP code. Use the information in this section to
familiarize yourself with the types of commands and responses you’ll be working
with later in the book.

Starting MySQL

The MySQL distribution comes with a start-up script, called safe_mysqld, found in
the bin subdirectory of the MySQL installation directory. Follow these steps to start
this script:

1. If you’re not already there, enter the MySQL parent directory by typing
cd /usr/local/mysql at the prompt and pressing Enter.

2. Start the MySQL process by typing ./bin/safe_mysqld & and pressing Enter.

The MySQL process will now be running in the background, and you can connect to
MySQL and create databases and tables.

Creating a Test Database

Before going any further, you should know the following:

• A database is a collection of tables.

• A table contains a set of records, also referred to as rows.

• All records have the same number of fields.

• Each field categorizes a piece of a data.

In this section, you’ll conquer the first element and create a database. The utility to
use is the mysqladmin program, which allows you to administer MySQL from the
command line.

20 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

21INSTALLING MYSQL FOR LINUX

At the prompt, type ./bin/mysqladmin create testDB and press Enter. You will be
returned to the prompt if the database called testDB has been successfully created.
Next, you’ll add a table to that database.

Creating a Test Table

In this section, you’ll create a table within the database you created in the
preceding section. The utility to use is the mysql program, which allows you to work
within the MySQL database system from the command line.

Figure 1.20 MySQL installation on UNIX. 1. At the prompt, type
./bin/mysql and press Enter
(see Figure 1.20).

The MySQL monitor will
start. The MySQL Monitor
provides its own prompt. At
this prompt (mysql>) you will
type commands used to
create tables, explain tables,
insert data, select data, and
so on. Get used to ending
your commands with a
semicolon (;) because it’s a
common instruction
terminator that is used in
PHP as well.

Now that you’ve connected to the MySQL Monitor, you need to tell it which
database to use.

2. At the prompt, type use testDB; and press Enter.

The MySQL Monitor will respond with Database changed if the database exists
and you have permission to access it.

It’s time to create a test table. This table will have a column for an ID number
and a column for some text.

3. At the prompt, type create table test_table (test_id int, test_note text);
and press Enter. This statement creates a table called test_table. Within the
table, it creates a column called test_id of type int (integer). It also creates a
column called test_note of type text.

The MySQL Monitor will respond with Query OK. It will also tell you how many
rows were affected and how long it took to complete the task.

4. Verify the table creation by typing show tables; and pressing Enter.

The MySQL Monitor will respond with a list of all tables in the current database.

22 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

CREATING TABLES
For more information about the specifics of creating tables, see Appendix E.

Figure 1.21 Viewing the schema of a table in MySQL. 5. To verify the field names and
types in a specific table, use
the explain command. In
this case, type explain
test_table; and press Enter
(see Figure 1.21).

The MySQL Monitor will
respond with a list of all the
fields and their types in the
selected table. This is a very
handy command to use to
keep track of your table
design.

It’s time to insert a few rows
of data in your table
because this is getting
pretty boring. The first row
will have an ID of 1, and the
note will be “This is a note.”

23INSTALLING MYSQL FOR LINUX

Now that you have some data in your table, even if it is only two rows, it’s time to
get familiar with selecting data. Keep the MySQL Monitor open, because you’ll be
using it in the next section as well.

Selecting Data from Your Test Table

The SELECT command is very powerful and will likely be the command you use most
often when working with PHP and MySQL. You can find more information about
SELECT in Appendix E, but for now, let’s do some simple data selections.

Figure 1.22 Inserting data into a table. 6. To insert this row, type
insert into test_table

values('1', 'This is a

note.'); and press Enter
(see Figure 1.22).

The MySQL Monitor will
respond with Query OK. It will
also tell you how many rows
were affected and how long
it took to complete the task.

7. Insert another row by typing
insert into test_table

values('99', 'Look! Another

note.'); and pressing Enter.

DATABASE NORMALIZATION
For more information about the specifics of inserting data into tables, see
Appendix E.

24 CHAPTER 1: INSTALLING AND CONFIGURING MYSQL

Figure 1.23 Selecting data from a table. 1. At the prompt, type select
* from test_table; and
press Enter (see Figure
1.23).

This command simply selects
all fields from all rows in the
table called test_table and
returns the data to the
screen in a nicely formatted
table. The MySQL Monitor
tells you how many rows
were returned and how long
it took the query to run.

Add a little order to the
results. Try to get the results
ordered by ID number—
largest number first.

2. At the prompt, type select
* from test_table order by

test_id desc; and press
Enter (see Figure 1.24).

The result now shows the row
with a test_id of 99 as the first
row in the table. The desc in the
command stands for
descending. There is another
option, asc, which stands for
ascending. Ascending order is
the default order.

In the next chapter, you’ll install
the Apache Web server and be
one step closer to developing
dynamic, database-driven Web
sites!

Figure 1.24 Controlling the order of data in a selection.

Installing Apache

Because it’s the most popular Web server in use, you might
think that Apache is a complicated piece of software, but it’s
not difficult at all. In this chapter, you learn how to:

Install Apache on Windows or Linux.

Connect to your new Web server.

2
Installing Apache
2

Installing Apache for Windows
Installing Apache for Windows is a simple task, due in great part to the Installation
Wizard distributed by the Apache Group. Whether you’re using Windows 95, 98,
Me, 2000, XP, or NT, the installation process of the precompiled binaries is
definitely the way to go, and the same installation file is used for all flavors of
Windows.

Being able to use Apache on consumer-oriented operating systems such as
Windows 95/98/Me/XP doesn’t mean that you should use it, at least not in a
production environment. Simply put, running any Web server on a Windows
operating system is not as fast, stable, or secure as running a Web server on a
Linux/UNIX machine. However, installing and configuring a development Web
server on a Windows-based operating system is perfectly acceptable and is how
most users get their start.

26 CHAPTER 2: INSTALLING APACHE

APACHE GROUP
The Apache Group also distributes the source code for Apache on Windows,
should you have a need to compile the code yourself. However, that process
is well beyond the scope of this book!

To download the Apache distribution for Windows, start at the Apache Server Web
site, http://httpd.apache.org/, and follow the link to Download. Before going any
further, be sure to follow the link in the sentence, “If you are downloading the
Win32 distribution, please read these important notes.” (The actual link depends
on the mirror you are using.)

When you’ve determined your system is stable enough to continue, look for the
bulleted item on the page for Win32 Binary (MSI Installer), followed by a link to the
software.

Distribution files follow a naming convention, with apache followed by the
version number and then -win32-x86-no_ssl.msi. As of this writing, the current
version is 2.2.4, so the file used as an example throughout this section is
apache_2.2.4-win32-x86-no_ssl.msi.

http://httpd.apache.org/

27INSTALLING APACHE FOR WINDOWS

Once you have downloaded the installation file to your hard drive, the following
steps will take you through the Installation Wizard:

Figure 2.1 Apache Installation Wizard. 1. Double-click the file called
apache_2.2.4-win32-x86-

no_ssl.msi. The installer will
start, and the Installation
Wizard will begin. Click Next
to continue (see Figure 2.1).

2. Read the licensing
information on the screen,
choose the I Accept radio
button, and then click Next.

Figure 2.2 Apache information screen. 3. Read the general Apache
information on the screen
and then click Next.

4. The next screen requires you
to fill in some details about
your server: the network
domain, server name, and
the administrator’s e-mail
address (see Figure 2.2).

5. Choose the Run as Service for All Users radio button and click Next.

6. Choose the Typical setup type and click Next.

7. Accept the default destination folder and then click Next.

28 CHAPTER 2: INSTALLING APACHE

NETWORK DOMAIN INFORMATION
If you do not know the network domain or server name at this point, enter
some dummy information so that the installation moves forward. You will
learn how to edit this information post-installation, so no matter what you
enter in this step, you will soon be able to fix it. If you do know your domain
and server name, go ahead and enter it.

DESTINATION FOLDERS
If you elect to change the destination folder for the Apache installation files,
please adjust the instructions and paths accordingly throughout this book.

Figure 2.3 Apache installation confirmation screen. 8. Choose Install on the next
screen, and the final
installation sequence will
begin. When the sequence is
finished, you will see the
confirmation screen. Click
Finish to complete the
installation and close the
installer (see Figure 2.3).

29INSTALLING APACHE FOR WINDOWS

If you have any errors at this point, rerun the installation program. In the next
section, you’ll make some minor changes to the Apache configuration file before
you start Apache for the first time.

Configuring Apache on Windows
To run a basic installation of Apache, the only changes you need to make are to the
server name, which you might already have done during the Installation Wizard.
However, if you entered dummy information for the server name or want to modify
any other part of the basic configuration, now is the time to do so.

The master configuration file for Apache is called httpd.conf, and it lives in the
conf directory, within the Apache installation directory. So if your installation
directory is C:\Program Files\Apache Group\Apache2\, the httpd.conf file will be in
C:\Program Files\Apache Group\Apache2\conf\.

Figure 2.4 Apache console window. At this point, all of the
necessary Apache files are
installed, as well as a group of
handy shortcuts in your
Windows Start menu, called
Apache HTTP Server 2.2.4. To
run a basic test before moving
forward into configuring your
server, choose Program Files,
Apache HTTP Server 2.2.4,
Configure Apache Server, Test
Configuration from the
Windows Start menu. This will
launch a console window
showing a successful installation
(see Figure 2.4).

Again with the handy shortcut, you can quickly access this file by selecting Program
Files, Apache HTTP Server 2.2.4, Configure Apache Server, Edit the Apache
httpd.conf Configuration File from the Windows Start menu. This shortcut is the
same as opening a text editor and navigating to the file location. To modify the
basic configuration, primarily the server name, look for a heading called Main
Server Configuration. You will find two important sections of text (see Figure 2.5).
We are going to change these values so that Apache knows where to direct traffic
from and to.

30 CHAPTER 2: INSTALLING APACHE

Figure 2.5 Apache configuration file. 1. Change the value of
ServerAdmin to your e-mail
address, if it isn’t already
accurate.

2. Change the value of
ServerName to something
accurate, if it’s isn’t already.

3. Save the file.

The ServerName modification is the most important change you’ll make to your
Apache configuration file because if the ServerName isn’t correct, you won’t be able
to connect to Apache. As it states in the configuration file itself, “You cannot just
invent host names and hope they work.” If you do not know your full machine
name, you can use an IP number. If you have a static IP number (that is, one that
does not change), use it as your ServerName. If you have a dial-up connection that
does not assign a static IP (that is, your IP number changes each time you connect
to your Internet service provider), you will have to change the IP number in
httpd.conf each time you dial up.

31INSTALLING APACHE FOR WINDOWS

Once the appropriate modifications are made to the httpd.conf file, Apache is
ready to run on your machine. In the next section, you start and connect to Apache.

Starting and Connecting to Apache
To first start the Apache server, select Program Files, Apache HTTP Server 2.2.4,
Control Apache Server, Start from the Windows Start menu. This will launch a
console window, which will then close. Apache will be running in the background.

With your Web server running, you can connect to the server via your Web browser
of choice. The URL will be whatever you used as ServerName—an actual name or IP,
localhost, or 127.0.0.1.

SERVER NAME
The ServerName changes described here are relevant only if you want people
from the outside world to be able to connect to your new Web server. If you
are the only person who will be accessing the server, you can use the IP
number 127.0.0.1, which is recognized by machines as the local loop-back
address, also known as localhost. You can use either the word localhost or
the IP number 127.0.0.1 as ServerName in httpd.conf. The IP number will
probably work out better because some Windows machines do not
automatically know that localhost equals 127.0.0.1.

A NOTE ABOUT localhost
Remember, you can only connect to your Web server using 127.0.0.1 or the
name localhost. This book assumes that you’ll be using 127.0.0.1 as the
ServerName, so if you are not, just substitute your machine name for 127.0.0.1
in the examples.

eventually be filling the htdocs directory with your own files and subdirectories, so
you might want to delete them now for the sake of good housekeeping.

Move ahead to the next chapter, where you install PHP and make a few more minor
changes to your Apache configuration files before you’re ready for some action.

Installing Apache for Linux/UNIX
To download the Apache distribution for Linux, start at the Apache Server Web
site, http://httpd.apache.org/, and follow the link to Download. This is the proper
place for Linux/UNIX distribution files and announcements.

Distribution files follow a naming convention, with httpd followed by the version
number, and then the compression type (.tar.gz, .tar.Z, and .zip). As of this
writing, the current version is 2.2.4, and I prefer *.tar.gz files, so the file used as an
example throughout this section is httpd_2.2.4.tar.gz.

32 CHAPTER 2: INSTALLING APACHE

Figure 2.6 Default Apache Web page. To test your installation, open
your Web browser, type
http://127.0.0.1/ in the
Location bar, and press Enter.
You should see a default Web
page (see Figure 2.6).

This default Start page comes
from the htdocs directory within
your Apache installation
directory. You can go into that
directory and delete all the
default files if you want to, or
you can leave them. They’re not
hurting anything, but you’ll

CHECKING FOR PROPER DISTRIBUTIONS
The source code distribution should work for most flavors of UNIX, but if you
have any concerns, read through the Apache documentation at the Apache
Web site to find a better set of files for your specific operating system.

http://httpd.apache.org/

33INSTALLING APACHE FOR LINUX/UNIX

After you have downloaded the file of choice to your hard drive, the following
steps help you build a basic version of Apache.

1. Type cp httpd_2.2.4.tar.gz /usr/local/ and press Enter to copy the Apache
installation file to the /usr/local/src/ directory.

APACHE LOCATION
You can put Apache anywhere you want on your file system, such as
/usr/local/bin/ or /opt/. Just be sure to substitute your path for the path
indicated in these directions.

2. Go to /usr/local/src/ by typing cd /usr/local/src/ and pressing Enter.

3. Unzip the Apache installation file by typing gunzip httpd_2.2.4.tar.gz and
pressing Enter.

4. Extract the files by typing tar -xvf httpd_2.2.4.tar and pressing Enter. A
directory structure will be created, and you’ll be back at the prompt. The parent
directory will be /usr/local/src/httpd_2.0.49/.

5. Enter the parent directory by typing cd httpd_2.2.4 and pressing Enter.

6. Type the following and press Enter to prepare to build Apache:

./configure --prefix=/usr/local/apache2 --enable-module=so

The configuration script will run through its process of checking your
configuration and creating makefiles, and then it will put you back at the
prompt.

MAKEFILES
A makefile lists the files, dependencies, and rules required to build an
executable application.

If your installation process produces any errors up to this point, go through the
process again or check the Apache Web site for any system-specific notes. In the
next section, you’ll make some minor changes to the Apache configuration file
before you start Apache for the first time.

Configuring Apache on Linux/UNIX
To run a basic installation of Apache, the only changes you need to make are to the
server name, which resides in the master configuration file called httpd.conf. This
file lives in the conf directory, within the Apache installation directory. So if your
installation directory is /usr/local/apache2/, the configuration files will be in
/usr/local/apache2/conf/.

34 CHAPTER 2: INSTALLING APACHE

Figure 2.7 Apache build example. 7. Type make and press Enter.
This second step of the
installation process will
produce many lines of
output on your screen.
When it is finished, you will
be back at the prompt.

8. Type make install and press
Enter. This final step of the
installation process will
again produce many lines of
output on your screen.
When it is finished, you will
be back at the prompt (see
Figure 2.7).

35INSTALLING APACHE FOR LINUX/UNIX

We are going to change the values in the configuration file so that Apache knows
where to find things and who to send complaints to. The ServerAdmin, which is you,
is simply the e-mail address that people can send mail to in reference to your site.
The ServerName is what Apache uses to route incoming requests properly.

1. Change the value of ServerAdmin to your e-mail address.

2. Change the value of ServerName to something accurate and remove the
preceding # so that the entry looks like this:

ServerName somehost.somedomain.com

You do not want it to look like this:

#ServerName somehost.somedomain.com

3. Save the file.

The ServerName modification is the most important change you’ll make to your
Apache configuration file because, if the ServerName isn’t accurate, you won’t be
able to connect to Apache on your machine. As it states in the configuration file
itself, “You cannot just invent host names and hope they work.” If you do not know

Figure 2.8 Apache configuration file. To modify the basic
configuration, most importantly
the server name, open the
httpd.conf file with a text editor
and look for a heading called
Main server configuration.
You will find two important
sections of text (see Figure 2.8).

your full machine name, you can use an IP number. If you have a static IP number
(that is, one that does not change), use it as your ServerName. If you have a dial-up
connection that does not assign a static IP (that is, your IP number changes each
time you connect to your Internet service provider), you will have to change the IP
number in httpd.conf each time you dial up.

36 CHAPTER 2: INSTALLING APACHE

SERVER NAME
The ServerName changes described here are relevant only if you want people
from the outside world to be able to connect to your new Web server. If you
are the only person who will be accessing the server, you can use the IP
number 127.0.0.1, which is recognized by machines as the local loop-back
address, also known as localhost. You can use either the word localhost or
the IP number 127.0.0.1 as ServerName in httpd.conf.

Once the appropriate modifications are made to the httpd.conf file, Apache is
ready to run on your machine. In the next section, you’ll start and connect to
Apache.

Starting and Connecting to Apache
There’s a handy utility in the bin directory within your Apache installation directory
called apachectl. It allows you to issue start, stop, and restart commands. Use this
utility to start Apache for the first time.

1. To get to the Apache installation directory, type cd /usr/local/apache2 and
press Enter.

2. Type ./bin/apachectl start and press Enter.

You should see a message: httpd started. If you do not see this message, you have
an error somewhere in your configuration file, and the error message will tell you
where to look.

To stop Apache, you can type ./bin/apachectl stop and press Enter. For now, keep
it running, as the next step is to connect to the server via a Web browser, and this
would not be a good time to shut it down.

37INSTALLING APACHE FOR LINUX/UNIX

With Apache running, you can connect to the server via your Web browser of
choice. The URL will be whatever you used as ServerName—an actual name or IP, or
the localhost name or IP.

A NOTE ON localhost
Remember, only you can connect to your Web server using 127.0.0.1 or the
name localhost. This book assumes that you’ll be using 127.0.0.1 as the
ServerName, so if you are not, just substitute your machine name for 127.0.0.1
in the examples.

and subdirectories, so you might want to delete them for the sake of good
housekeeping.

Move ahead to the next chapter, where you’ll install PHP and make a few more
minor changes to your Apache configuration files before you’re ready for some
action.

Figure 2.9 Default Apache Web page under Linux/UNIX. To finally test your installation,
open your Web browser, type
http://127.0.0.1/ in the
Location bar, and press Enter.
You should see a default Web
page (see Figure 2.9).

This default Start page comes
from the htdocs directory within
your Apache installation
directory. You can go into that
directory and delete all the
default files if you want to, or
you can leave them. They’re not
hurting anything, but you’ll
eventually be filling the htdocs
directory with your own files

This page intentionally left blank

Installing PHP

This is it—the final piece of the puzzle that will get you started
in the world of creating dynamic, database-driven Web sites. In
this chapter, you learn how to:

Install PHP on Windows or Linux.

Make final modifications to Apache.

Use the phpinfo() function to retrieve system information.

3
Installing PHP
3

Installing PHP for Windows
Installing PHP for Windows doesn’t occur through a wizard interface. Basically, you
just unzip some files and move them around. No big deal. Just follow along very
closely because this is the area where most people miss an instruction, and if you
do that, it won’t work.

40 CHAPTER 3: INSTALLING PHP

USING DIFFERENT WEB SERVERS
Okay, so there is a Windows installer for PHP, if you’re going to use PHP with
Microsoft IIS, Microsoft PWS, or the Xitami Web server. This book is based
on a recommendation of using Apache as the Web server and performing the
manual installation of PHP. If you choose to install PHP with a different Web
server or are using a different method, please read the installation
instructions contained within the software you choose.

To download the PHP binary distribution for Windows, visit the Downloads page at
the PHP Web site: http://www.php.net/downloads.php.

PRE-PRODUCTION BINARIES
As of the writing of this book, the PHP 6.0 binaries had not yet been released
as a general product. Instead, the binaries and source were available on the
snapshot page (http://snaps.php.net/) for PHP. This may or may not be true
at the time of the book’s release, but the binaries should be available shortly.

1. From the Windows Binaries section, follow the link for PHP6.0-win32-dev.zip
package, where x.x refers to the version. Currently, the version for Windows is
6.0, and all subsequent installation instructions will be based on this version.
Future versions will follow the same installation procedure; just substitute the
new version name as appropriate.

2. Once downloaded to your system, double-click the file called
ph6.0-win32-dev.zip. Your zipping program of choice, such as WinZip
or PKZip, will open this file.

3. Extract the files to the top level of your hard drive, into a directory called php.

http://www.php.net/downloads.php
http://snaps.php.net/

41INSTALLING PHP FOR WINDOWS

You now have all the basic PHP distribution files; you just need to move a few of
them around.

CHANGING INSTALLATION LOCATION
If you change the installation directory name, be sure to substitute your new
directory name in the remaining instructions in this chapter.

1. Using Windows Explorer (or whatever method you prefer for moving through
your file system), go to the C:\php directory.

2. Rename the php.ini-dist file to php.ini and move this file to C:\WINDOWS\,
C:\WINNT\, or wherever you usually put your *.ini files.

3. Move php6ts.dll to C:\WINDOWS\SYSTEM\, C:\WINDOWS\SYSTEM32\, or wherever you
usually put your *.dll files.

To get a basic version of PHP working with Apache, you’ll need to make a few
minor modifications to the Apache configuration file.

Configuring Apache to Use PHP
You can install PHP as a CGI binary or as an Apache module. The current
recommendation by the PHP Group (and me) is to use the module version, because
it offers greater performance and some additional functionality. However, you
might encounter some conflicts with advanced functionality when using the
module, depending on your particular operating system. Additionally, using the
CGI version instead of the module version will allow you to create virtual hosts,
each with its own PHP CGI executable, therefore allowing PHP to run as a named
user instead of the default Apache process owner.

If you would like to install the CGI version, please read the installation information
in the PHP manual at www.php.net/manual/. In the next section, you’ll learn to
install the module version of PHP for the Apache 2 server.

www.php.net/manual/

The Apache Module Version of PHP

To configure Apache to use the module version, you have to move one piece of
PHP and also make a few modifications to the Apache configuration file, the
httpd.conf file located in the conf directory within the Apache installation directory.

42 CHAPTER 3: INSTALLING PHP

Figure 3.1 Apache configuration file. 1. Choose Program Files,
Apache HTTP Server 2.2.4,
Configure Apache Server,
Edit the Apache httpd.conf
Configuration File from the
Windows Start menu.

2. Look for a section of text
like the one shown in
Figure 3.1.

3. Add the following code to
the end of that section:

LoadModule php6_module

c:/php//php6apache2.dll

Next, you have to add a
directive to the httpd.conf
file to define the file
extensions used by PHP
files. Common extensions
are .php and .phtml, but you
can use whatever you want.

4. Look for a section of text
like the one shown in
Figure 3.2.

Figure 3.2 Type handlers in configuration files.

43INSTALLING PHP FOR WINDOWS

5. Add the following line:

AddType application/x-httpd-php .phtml .php

6. Save and close the httpd.conf file.

This final modification tells Apache that any time a file with an extension of .php or
.phtml is requested, Apache should utilize the module version of the PHP parser
before sending any output to the Web browser.

Testing the PHP Installation
Now that all of your modifications have been made to the httpd.conf file—no
matter the configuration method—you can restart Apache using the method you
learned in Chapter 2. To test that Apache and PHP are playing nice together, you’ll
create a simple PHP script to test your installation. PHP scripts and other files
(HTML, images, and so on) should be placed in the document root of your Web
server. For Apache, the document root is the htdocs directory within your Apache
installation directory.

1. Open a new file in your text editor and type the following:

<? phpinfo(); ?>

2. Save the file with the name phpinfo.php and place this file in the document root
of your Web server.

FILE EXTENSIONS
Be absolutely sure that your file extension is .php or .phtml (or another
extension you configured for PHP). It is very common for Windows-based
text editors to add a hidden file extension of .txt to the end of the filename.
If that happens to you, your script will not parse as PHP, only text. So keep
an eye on your extension!

The output of the phpinfo.php script should be a long page full of system and
environment information. This information is very helpful when you’re trying to
figure out what’s available to you. If you browse through the results, you’ll see that
the following extensions are preinstalled (along with many others):

• Perl-compatible regular expression support

• ODBC support

• Session support

• XML support

• MySQL support

Having these items preinstalled means that no additional .dll files are necessary
for these functions to be available to you. For more information on obtaining .dll
files for additional PHP functionality, see Appendix A, “Additional Configuration
Options.”

You’re now ready to move on to Part II, “The Absolute Basics of Coding in PHP,”
and learn the fundamentals of the PHP language.

44 CHAPTER 3: INSTALLING PHP

Figure 3.3 The phpinfo script. 3. Open your Web browser
and type http://127.0.0.1/
phpinfo.php. See Figure 3.3.

SERVER NAMES
If you used a different
server name when you
installed Apache, substi-
tute it here and through-
out the book.

45INSTALLING PHP FOR LINUX/UNIX

Installing PHP for Linux/UNIX
This section shows you how to install PHP on Linux/UNIX as a dynamic module for
Apache. By building a dynamic rather than a static module, you can upgrade or
recompile PHP without having to recompile Apache as well. For example, all you’ll
be doing in this section is configuring PHP for MySQL support. If you decide that
you want additional options later in the game, such as image-creation functions or
additional encryption functions, you’ll only have to change the configuration
command for PHP, recompile the module, and restart Apache. No additional
changes will be needed for the Apache installation, because one PHP module file
just replaces another.

To download the PHP source distribution, visit the Downloads page at the PHP
Web site: www.php.net/downloads.php. If you want to use the very latest builds
rather than the released stable versions, you can find them at snaps.php.net. These
builds, done nightly or more often, are not considered to be of production quality.

1. From the “Complete Source Code” section, follow the link for PHP 6.x.x where
x.x refers to the version. The current source code version is 6.0.0, and that
version number will be used in the following steps. Although your version
number (and therefore filename) might vary in the future, the procedure will
remain the same, substituting the new name as appropriate.

2. Once downloaded to your system, type cp php-6.0-dev.tar.gz /usr/local/src/
and press Enter to copy the PHP source distribution to the /usr/local/src/
directory.

INSTALLATION LOCATION
You can put PHP anywhere you want on your file system, such as
/usr/local/bin/ or /opt/ or wherever you want to put the file. Just be sure
to substitute your path for the path indicated in these directions.

3. Go to /usr/local/src/ by typing cd /usr/local/src/ and pressing Enter.

4. Unzip the source file by typing gunzip php-6.0-dev.tar.gz and pressing Enter.

www.php.net/downloads.php

5. Extract the files by typing tar -xvf php-6.0-dev.tar and pressing Enter. This
will create a directory structure and then put you back at the prompt. The
parent directory will be /usr/local/src/php-6.0.0/.

6. Enter the parent directory by typing cd php-6.0-dev and pressing Enter.

7. Type the following and press Enter to prepare to build PHP:

./configure --prefix=/usr/local/php5 --with-mysql=/usr/local/mysql/

--with-apxs2=/usr/local/apache2/bin/apxs

46 CHAPTER 3: INSTALLING PHP

PHP AND APACHE PATHS
In configuration directives, use your own paths to the MySQL and Apache
directories, should they reside elsewhere on your file system.

The configuration script will run through its process of checking your
configuration and creating makefiles and then will put you back at the prompt.

8. Type make and press Enter. This second step of the installation process will
produce many lines of output on your screen. When it is finished, you will be
back at the prompt.

9. Type make install and press Enter. This final step of the installation process will
produce many lines of output on your screen. When it is finished, you will be
back at the prompt.

Now, to get a basic version of PHP working with Apache, all you need to do is to
make a few modifications to the httpd.conf file.

Configuring Apache to Use PHP
The installation process will have placed a module in the proper place within the
Apache directory structure. Now you must make some modifications to the
httpd.conf file before starting up Apache with PHP enabled.

1. Open the httpd.conf file in your text editor of choice.

47INSTALLING PHP FOR LINUX/UNIX

2. Look for the following line, which will have been inserted into the file by the
installation process:

LoadModule php6_module modules/libphp6.so

You want this line to be uncommented, so ensure that it is (as shown).

3. Look for the following lines:

AddType allows you to add to or override the MIME configuration

file mime.types for specific file types.

#AddType application/x-tar .tgz

4. Add to these lines the following:

AddType application/x-httpd-php .phtml .php

5. Save and close the httpd.conf file.

This modification tells Apache that anytime a file with an extension of .php or
.phtml is requested, Apache should first run that file through the PHP parser before
sending any output to the Web browser.

After these changes have been made to httpd.conf, you’re ready to start Apache
and test your PHP installation.

Testing the PHP Installation
Now that all of your modifications have been made to the httpd.conf file, you can
restart Apache using the method you learned in Chapter 2. To test that Apache and
PHP are playing nice together, you’ll create a simple PHP script to test your
installation. PHP scripts and other files (HTML, images, and so on) should be
located in the document root of your Web server. For Apache, the document root
is the htdocs directory within your Apache installation directory.

1. Open a new file in your text editor and type the following:

<? phpinfo(); ?>

2. Save the file with the name phpinfo.php.

The output of the phpinfo.php script should be a long page full of system and
environment information. This information is very helpful when you’re trying to
figure out what’s available to you.

For more information on configuring and building additional functionality into your
PHP installation, see Appendix A.

You’re now ready to move on to Part II and learn the fundamentals of the PHP
language.

48 CHAPTER 3: INSTALLING PHP

Figure 3.4 The phpinfo script. 3. Place this file in the
document root of your
Web server.

4. Open your Web browser,
type http://127.0.0.1/

phpinfo.php, and then press
Enter (see Figure 3.4).

The Absolute
Basics of Coding
in PHP

The Absolute
Basics of Coding
in PHP

P A R T I I

Chapter 4
Mixing PHP and HTML..............................51

Chapter 5
Introducing Variables and Operators65

Chapter 6
Using PHP Variables85

This page intentionally left blank

Mixing PHP
and HTML

Now that you have a working development environment with
PHP, Apache, and MySQL happily running on your machine, it’s
time to delve into the PHP language. In this chapter, you’ll learn
how to do the following:

Recognize and use the different kinds of PHP start and end
tags.

Mingle PHP and HTML within your source code.

Escape special characters in your scripts to produce valid
output.

4
Mixing PHP
and HTML

4

How PHP Is Parsed
So you have a file, and in that file you have some HTML and some PHP code. This is
how it all works, assuming a PHP document with an extension of .php.

52 CHAPTER 4: MIXING PHP AND HTML

FILE EXTENSIONS
The file extension does not have to be .php, but it does have to be an
extension that Apache understands should be parsed as PHP, which you
learned in Chapter 2, “Installing Apache.”

1. The Web browser requests a document with a .php extension.

2. The Web server says, “Hey! Someone wants a PHP file, which means this is a file
that needs to be parsed,” and sends the request on to the PHP parser.

3. The PHP parser finds the requested file and scans it for PHP code.

4. When the PHP parser finds PHP code, it executes that code and places the
resulting output (if any) into the place in the file formerly occupied by the code.

5. This new output file is sent back to the Web server.

6. The Web server sends it along to the Web browser.

7. The Web browser displays the output.

Because the PHP code is parsed on the server, this method of code execution is
called server-side code. When code is executed in a browser, such as JavaScript, it
is called client-side code.

To combine PHP code with HTML, the PHP code must be set apart from the HTML.
In the next section, you’ll learn how this is done, using PHP start and end tags.

53PHP START AND END TAGS

PHP Start and End Tags
The PHP parser recognizes a few types of PHP start and end tags. It will attempt to
execute anything between these tags, so it had better be valid code!

Study Table 4.1 to learn the three main sets of start and end tags recognized by the
PHP parser.

Table 4.1 Basic PHP Start and End Tags

Opening Tag Closing Tag

<?php ?>

<? ?>

<script language="php"> </script>

Next, you’ll use all three sets of tags in a script, which I promise will execute
without errors.

TEXT EDITORS
For PHP files, you may use any text editor that produces plain text. In the
Windows™ world, for example, we will use Notepad (an application that
ships with Windows) to produce the files. Using something like Microsoft
Word can be problematic because of the special characters it embeds in your
text files.

1. Open a new file in your text editor.

2. Type the following code, which uses the first tag type:

<?php

echo "<P>This is a test using the first tag type.</P>";

?>

3. Type the following code, which uses the second tag type:

<?

echo "<P>This is a test using the second tag type.</P>";

?>

54 CHAPTER 4: MIXING PHP AND HTML

Figure 4.1 Your first PHP script. 4. Type the following code, which
uses the third tag type:

<script language="php">

echo "<P>This is a test using

the third tag type.</P>";

</script>

You should see a listing like the
one shown in Figure 4.1.

5. Save the file with the name
phptags.php.

6. Place this file in the document
root of your Web server.

7. Open your Web browser and type
http://127.0.0.1/phptags.php.

DOMAIN NAMES
While executing the examples in this book, if you are using PHP on an
external Web server, substitute that server’s domain name for the 127.0.0.1
address in the URL.

55CODE COHABITATION

Code Cohabitation
In the previous section, your file consisted of three chunks of PHP code, each of
which printed some HTML text. In this section, you’ll create a script that has PHP
code stuck in the middle of your HTML, and you’ll learn how these two types of
code can peacefully coexist.

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>My First PHP Script</TITLE>

</HEAD>

<BODY>

3. Type the following PHP code:

<?

echo "<P>Hello World! I'm using PHP!</P>";

?>

Figure 4.2 The phptags script running. In your Web browser, you
should see the results of your
script (see Figure 4.2).

In the next section, you’ll learn
that putting PHP blocks inside
HTML is not a scary thing.

4. Add some more HTML so that the document is valid:

</BODY>

</HTML>

56 CHAPTER 4: MIXING PHP AND HTML

Figure 4.3 The firstscript.php script running. 5. Save the file with the name
firstscript.php.

6. Place this file in the
document root of your Web
server.

7. Open your Web browser
and type http://127.0.0.1/
firstscript.php. In your
Web browser, you should
see the results of your script
(see Figure 4.3).

Figure 4.4 The HTML source for firstscript.php. 8. In your Web browser, view
the source of this document
(see Figure 4.4).

Notice that the HTML source
contains only HTML code, which
is correct because this block of
PHP was executed:

<?

echo "<P>Hello World! I'm

using PHP!</P>";

?>

57CODE COHABITATION

This block contains three elements: the command (echo), the string (<P>Hello
World! I'm using PHP!</P>), and the instruction terminator (;).

Familiarize yourself now with echo, because it will likely be your most often-used
command. The echo statement is used to output information—in this case, to print
this HTML output:

<P>Hello World! I'm using PHP!</P>

The next section discusses a common error, with the hope that you’ll be able to
avoid it.

The Importance of the Instruction Terminator
The instruction terminator, also known as the semicolon (;), is absolutely required at
the end of commands. The instruction terminator tells the PHP parser, “I’m done
with this command, try the next one.”

If you do not end commands with a semicolon, the PHP parser will become
confused, and your code will display errors. These next steps show you how these
errors come about and, more importantly, how to fix them.

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Making an Error</TITLE>

</HEAD>

<BODY>

3. Type the following PHP code:

<?

echo "<P>I am trying to produce an error</P>"

echo "<P>Was I successful?</P>";

?>

4. Add some more HTML so that the document is valid:

</BODY>

</HTML>

58 CHAPTER 4: MIXING PHP AND HTML

Figure 4.5 The errorscript. 5. Save the file with the name
errorscript.php.

6. Place this file in the
document root of your Web
server.

7. Open your Web browser
and type http://127.0.0.1/
errorscript.php. See
Figure 4.5.

What a nasty error! The error message says that the error is on line 8. Take a look at
lines 7 and 8 of the script:

echo "<P>I am trying to produce an error</P>"

echo "<P>Was I successful?</P>";

Line 7 does not have an instruction terminator, and line 8 starts a new command.
The PHP parser doesn’t like this, and it tells you so by producing the parse error.

This error is easy enough to fix:

1. Open the errorscript.php file.

59CODE COHABITATION

Figure 4.6 The updated errorscript.php file. 2. On line 7, add the instruction
terminator (;) to the end of the
line (see Figure 4.6):

echo "<P>I am trying to produce

an error</P>";

3. Save the file.

4. Place this file in the document
root of your Web server.

Figure 4.7 The updated errorscript running. 5. Open your Web browser
and type http://127.0.0.1//
errorscript.php. See
Figure 4.7.

After you fix line 7, the PHP
parser can deal with the file, and
the rest of the output is
successful. Avoid this and other
errors by paying close attention
to things such as semicolons
and, as you’ll learn in the next
section, quotation marks!

Escaping Your Code
Right up there with remembering to terminate your commands with semicolons is
remembering to escape characters such as quotation marks. When you use
quotation marks inside other quotation marks, the inner pairs must be delineated
from the outside pair using the escape (\) character (also known as a backslash).

The following steps show you what happens when your code isn’t escaped and how
to fix it.

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Trying For Another Error</TITLE>

</HEAD>

<BODY>

3. Type the following PHP code:

<?

echo "<P>I think this is really "cool"!</P>";

?>

4. Add some more HTML so that the document is valid:

</BODY>

</HTML>

5. Save the file with the name errorscript2.php.

6. Place this file in the document root of your Web server.

60 CHAPTER 4: MIXING PHP AND HTML

61ESCAPING YOUR CODE

Another parse error! Take a look at the PHP code:

echo "<P>I think this is really "cool"!</P>";

Because you have a set of quotation marks within another set of quotation marks,
that inner set has to be escaped.

This error also has a simple fix:

1. Open the errorscript2.php file.

2. On line 9, escape the inner quotation marks by placing a backslash before each
one:

echo "<P>I think this is really \"cool\"!</P>";

3. Save the file.

4. Place this file in the document root of your Web server.

Figure 4.8 The errorscript2 script running. 7. Open your Web browser
and type http://127.0.0.1/
errorscript2.php. See
Figure 4.8.

Commenting Your Code
Commenting your code is a good habit to have. Entering comments in HTML
documents helps you (and others who might have to edit your document later)
keep track of what’s going on in large documents. Comments also allow you to
write notes to yourself during the development process or comment out parts of
code when you are testing your scripts, so the code is not executed.

HTML comments are ignored by the browser and are contained within <!-- and -->

tags. For example, the following comment reminds you that the next bit of HTML
code contains a logo graphic:

<!-- logo graphic goes here -->

PHP uses comments, too, which are ignored by the PHP parser. PHP comments are
usually preceded by double slashes, like this:

// this is a comment in PHP code

62 CHAPTER 4: MIXING PHP AND HTML

Figure 4.9 Fixed errorscript2 script running. 5. Open your Web browser
and type http://127.0.0.1/
errorscript2.php. See
Figure 4.9.

Now that the inner quotation
marks are escaped, the PHP
parser will skip right over them,
knowing that these characters
should just be printed and have
no other meaning. In the next
section, you’ll learn a good
programming practice:
commenting your code so other
people know what the heck is
going on in it, should they have
to edit it.

63COMMENTING YOUR CODE

But you can use other types of comments, such as

This is shell-style style comment

and

/* This begins a C-style comment that runs

onto two lines */

Create a script full of comments so that you can see how they’re ignored. Yes, I’m
telling you to write a script that does absolutely nothing!

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Code Comments</TITLE>

</HEAD>

<BODY>

<!-- This is an HTML comment. -->

3. Type the following PHP code:

<?

// This is a simple PHP comment.

/* This is a C-style, multiline comment. You can make this as

long as you'd like. */

Used to shells? Use this kind of comment.

?>

4. Add some more HTML so that the document is valid:

</BODY>

</HTML>

5. Save the file with the name comments.php.

6. Place this file in the document root of your Web server.

You should see absolutely nothing in your Web browser, because all you did was
print an HTML comment (which is ignored by the browser). Because the PHP parser
ignores comments and the PHP block didn’t contain any actual commands, there
was no other output to display. If you view the source of this document in your
Web browser, you will notice that only the HTML comment is visible. Although the
PHP code was all comments, it was still parsed and therefore is not visible to the
users.

HTML and PHP comments are used extensively throughout this book to explain
blocks of code. Get used to reading comments, and try to pick up the habit of
using them. Writing clean, bug-free code that also contains comments and plenty
of white space for easy reading will make you popular among your developer peers
because they won’t have to work extra hard to figure out what your code is trying
to do. In the next chapter, you’ll learn all about variables, or as I like to call them,
“those things with the dollar signs.”

64 CHAPTER 4: MIXING PHP AND HTML

Figure 4.10 The comments script. 7. Open your Web browser
and type http://127.0.0.1/
comments.php. See Figure
4.10.

Introducing
Variables and
Operators

In the last chapter, you were introduced to the process of
parsing PHP code and how the code output is displayed in your
Web browser. In the next few chapters, you’ll learn a bit about
the inner workings of the PHP language—all the bits and pieces
that, when you put them together, actually produce a working
script! In this chapter, you’ll learn how to do the following:

Recognize and use variables.

Recognize and use operators.

5
Introducing
Variables and
Operators

5

What’s a Variable?
A variable is a representation of a particular value, such as blue or 19349377. By
assigning a value to a variable, you can reference the variable in other places in
your script, and that value will always remain the same (unless you change it, which
you’ll learn about later).

To create a variable, do the following (in your head):

1. Think of a good name! For instance, if I want to create a variable to hold a
username, I name my variable:

username

2. Put a dollar sign ($) in front of that name:

$username

3. Use the equals sign after the name (=) to assign a literal value to that variable.
Put the value in quotation marks:

$username = "joe"

4. Assigning a value to a variable is an instruction and as such should be
terminated with a semicolon:

$username = "joe";

There you have it—a variable called username with a value of joe. Later in this
chapter, you’ll do some exciting things (such as math) with your variables.

Naming Your Variables
As you’ve seen, variables begin with a dollar sign ($) and are followed by a
meaningful name. The variable name cannot begin with a numeric character, but it
can contain numbers and the underscore character (_). Additionally, variable names
are case sensitive, meaning that $YOURVAR and $yourvar are two different variables.

66 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

67PHP VARIABLE AND VALUE TYPES

Creating meaningful variable names is another way to lessen headaches while
coding. For example, if your script deals with name and password values, don’t
create a variable called $n for the name and $p for the password—those are not
meaningful names. If you pick up that script weeks later, you might think that $n is
the variable for “number” rather than “name” and that $p stands for “page” rather
than “password.”

PHP Variable and Value Types
You will create two main types of variables in your PHP code: scalar and array.
Scalar variables contain only one value at a time, and arrays contain a list of values
or even another array.

The example at the beginning of this chapter created a scalar variable, and the
code in this book deals primarily with scalar variables. You can find information on
arrays in Appendix B, “Basic PHP Language Reference.”

When you assign a value to a variable, you usually assign a value of one of the
following types:

• Integers. Whole numbers (numbers without decimals). Examples are 1, 345, and
9922786. You can also use octal and hexadecimal notation: The octal 0123 is
decimal 83 and the hexadecimal 0x12 is decimal 18.

NEW! 64-BIT INTEGERS
Note that PHP 6.0 introduces the idea of a 64-bit integer, for those of you
who are using really, really big numbers.

• Floating-point numbers (“floats” or “doubles”). Numbers with decimals.
Examples are 1.5, 87.3446, and 0.88889992.

• Strings. Text or numeric information, specified within double quotes (" ") or
single quotes (' ').

As you begin your PHP script, plan your variables and variable names carefully, and
use comments in your code to remind yourself of the assignments you have made.

68 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

NEW! UNICODE STRINGS
A change from previous versions of PHP is that starting with version 6.0, all
strings are now in Unicode format by default. You can change this in the
php.ini file by finding the unicode.semantics variable and setting it to false.

Figure 5.1 A simple variable script. Create a simple script that assigns
values to different variables and then
simply prints the values to the screen
(see Figure 5.1).

1. Open a new file in your text editor
and type the following HTML:

<HTML>

<HEAD>

<TITLE>Printing

Variables</TITLE>

</HEAD>

<BODY>

2. Add a PHP block and create a
variable that holds an integer:

<?

$intVar = "955421";

3. Create a variable that holds a floating-point number:

$floatVar = "1542.2232235";

4. Create a variable that holds a string:

$stringVar = "This is a string.";

69PHP VARIABLE AND VALUE TYPES

5. Add an echo statement for each variable:

echo "<P>integer: $intVar</P>";

echo "<P>float: $floatVar</P>";

echo "<P>string: $stringVar</P>";

6. Close your PHP block and add some more HTML so that the document is valid:

?>

</BODY>

</HTML>

Figure 5.2 The printvarscript running. 7. Save the file with the name
printvarscript.php and
place this file in the
document root of your Web
server.

8. Open your Web browser
and type http://127.0.0.1/
printvarscript.php. See
Figure 5.2.

You can see by this output that the values you assigned to the variables $intVar,
$floatVar, $bigintVar, and $stringVar were the values printed to the screen. In the
next section, you’ll learn how to use operators to change the values of your
variables.

Local and Global Variables

Variables can be local or global, the difference having to do with their definition
and use by the programmer and where they appear in the context of the scripts
you are creating. The variables described in the previous section, and for the
majority of this book, are local variables.

When you write PHP scripts that use variables, those variables can be used only by
the script in which they live. Scripts cannot magically reach inside other scripts and
use the variables created and defined there—unless you say they can and you
purposefully link them together. When you do just that, such as when you create
your own functions (blocks of reusable code that perform a particular task), you will
define the shared variables as global. That is, you will define them as able to be
accessed by other scripts and functions, as needed.

You can learn about creating your own functions, and using global as well as local
variables, in Appendix C, “Writing Your Own Functions.” For now, just understand
that there are two variable scopes—local and global—that come into play as you
write more advanced scripts.

Predefined Variables

In all PHP scripts, a set of predefined variables is available to you. You might have
seen some of these variables in the output of the phpinfo() function, if you scrolled
and read through the entire results page. Some of these predefined variables are
called superglobals, meaning that they are always present and available to all of
your scripts, without any intervention by you, the programmer.

Please study the following list of superglobals, because they will be used
extensively throughout this book. Each of these superglobals is actually an array of
other variables. Don’t worry about fully understanding this concept now, because it
will be explained as you move along through the book.

• $_GET contains any variables provided to a script through the GET method.

• $_POST contains any variables provided to a script through the POST method.

• $_COOKIE contains any variables provided to a script through a cookie.

• $_FILES contains any variables provided to a script through file uploads.

• $_ENV contains any variables provided to a script as part of the server
environment.

• $_SESSION contains any variables that are registered in a session.

70 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

71PHP VARIABLE AND VALUE TYPES

Using Constants

A constant is an identifier for a value that cannot change during the course of a
script. Once a constant has a value, it remains through its execution lifetime.
Constants can be user defined, or you can use some of the predefined constants
that PHP always has available. Unlike simple variables, constants do not have a
dollar sign before their name, and they are usually uppercase to show their
difference from a scalar variable. Next, you’ll test the user-defined type.

1. Open a new file in your text editor and open a PHP block:

<?

2. The function used to define a constant is called define(), and it requires the
name of the constant and the value you want to give it. Here you define a
constant called MYCONSTANT with a value of "This is a test of defining
constants.".

define("MYCONSTANT", "This is a test of defining constants.");

3. Print the value of the constant and then close the PHP block:

echo MYCONSTANT;

?>

Figure 5.3 The constants script running. 4. Save the file with the name
constants.php and place this
file in the document root of
your Web server.

5. Open your Web browser
and type http://127.0.0.1/
constants.php. See Figure
5.3.

Some predefined constants include:

• __FILE__ The name of the script file being parsed.

• __LINE__ The number of the line in the script being parsed.

• PHP_VERSION The version of PHP in use.

• PHP_OS The operating system using PHP.

Let’s test these constants:

1. Open a new file in your text editor and open a PHP block:

<?

2. Use the echo statement to display an introductory string, and concatenate the
__FILE__ constant to the end of it:

echo "
This file is ".__FILE__;

72 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

3. Use the echo statement to display an introductory string and concatenate the
__LINE__ constant to the end of it:

echo "
This is line number ".__LINE__;

4. Use the echo statement to display an introductory string and concatenate the
PHP_VERSION constant to the end of it:

echo "
I am using ".PHP_VERSION;

5. Use the echo statement to display an introductory string and concatenate the
PHP_OS constant to the end of it. Also, close up the PHP block:

echo "
This test is being run on ".PHP_OS;

?>

CONCATENATION
Concatenate means to add one string to the end of another, making a new
string.

73WHAT’S AN OPERATOR?

What’s an Operator?
In the previous section, you used an assignment operator (=) to assign values to
your variables. There are other types of assignment operators, as well as other
types of operators in general. The basic function of an operator is to do something
with the value of a variable. That “something” can be to assign a value, change a
value, or compare two or more values.

Here are the main types of PHP operators:

• Assignment operators. Assign values to variables. Can also add to or subtract
from a variable’s current value.

• Arithmetic operators. Addition, subtraction, division, and multiplication occur
when these operators are used.

• Comparison operators. Compare two values and return either true or false. You
can then perform actions based on the returned value.

• Logical operators. Determine the status of conditions.

The rest of this chapter is devoted to discussing some of the main operators used
in PHP. You’ll be writing example scripts for each, so hang on to your hat!

Figure 5.4 The constants2 script running. 6. Save the file with the name
constants2.php and place
this file in the document
root of your Web server.

7. Open your Web browser
and type http://127.0.0.1/
constants2.php. See Figure
5.4.

You should see the strings you
typed, plus the values of the
constants. Your values will likely
differ from those you see here.

Assignment Operators
You’ve already seen an assignment operator at work: The equals sign is the basic
assignment operator. Burn this into your brain: = does not mean “equal to”!
Instead, == (two equals signs) means “equal to,” and the single = means “is
assigned to.” In fact, you’ve also seen the concatenation operator in this chapter,
as it is used to put strings together.

Take a look at the assignment operators in Table 5.1 and prepare to write a new
script.

74 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

Table 5.1 Assignment Operators

Operator Example Action

+= $a += 3; Changes the value of a variable to the current value
plus the value on the right side.

-= $a -= 3; Changes the value of a variable to the current value
minus the value on the right side.

.= $a .= "string"; Concatenates (adds on to) the value on the right side
with the current value.

Create a simple script to show how all of these assignment operators work. This
script will assign an original value to one variable and then change that value as the
script executes, all the while printing the result to the screen.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Using Assignment Operators</TITLE>

</HEAD>

<BODY>

75WHAT’S AN OPERATOR?

2. Start a PHP block. Create a variable with a value of 100 and then print it:

<?

$origVar = 100;

echo "<P>Original value is $origVar</P>";

3. Add to that value and then print it:

$origVar += 25;

echo "<P>Added a value, now it's $origVar</P>";

4. Subtract from that value and then print it:

$origVar -= 12;

echo "<P>Subtracted a value, now it's $origVar</P>";

5. Concatenate a string and then print it:

$origVar .= " chickens";

echo "<P>Final answer: $origVar</P>";

Figure 5.5 The assignment script source code. 6. Close your PHP block and
add some more HTML so
that the document is valid:

?>

</BODY>

</HTML>

It should now look something
like the script shown in
Figure 5.5.

7. Save the file with the name
assignscript.php and place
this file in the document root
of your Web server.

Arithmetic Operators
Arithmetic operators simply perform basic mathematical tasks. Take a look at Table
5.2, be sure you remember your basic math, and start creating the test script for
this section.

76 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

Figure 5.6 The assignment script running. 8. Open your Web browser
and type http://127.0.0.1/
assignscript.php. See
Figure 5.6.

The results of your calculations
will be printed to the screen.
The next section moves to
arithmetic operators, none of
which should be strange to you
as long as you made it through
your first few years of school.

Table 5.2 Arithmetic Operators

Operator Example Action

+ $b = $a + 3; Adds values

- $b = $a - 3; Subtracts values

* $b = $a * 3; Multiplies values

/ $b = $a / 3; Divides values

% $b = $a % 3; Returns the modulus, or remainder

77WHAT’S AN OPERATOR?

2. Start a PHP block, create two variables with values, and print the values:

<?

$a = 85;

$b = 24;

echo "<P>Original value of \$a is $a and \$b is $b</P>";

Figure 5.7 An example of operators in a script. Create a simple script to show how all of
these arithmetic operators work. This
script assigns original values to two
variables, performs mathematical
operations, and prints the results to the
screen (see Figure 5.7).

1. Open a new file in your text editor and
type the following HTML:

<HTML>

<HEAD>

<TITLE>Using Arithmetic

Operators</TITLE>

</HEAD>

<BODY>

ESCAPING THE DOLLAR SIGN
If you escape the dollar sign (\$), it will print literally instead of being
interpreted as a variable.

3. Add the two values and print the result:

$c = $a + $b;

echo "<P>Added \$a and \$b and got $c</P>";

4. Subtract the two values and print the result:

$c = $a - $b;

echo "<P>Subtracted \$b from \$a and got $c</P>";

5. Multiply the two values and print the result:

$c = $a * $b;

echo "<P>Multiplied \$a and \$b and got $c</P>";

6. Divide the two values and print the result:

$c = $a / $b;

echo "<P>Divided \$a by \$b and got $c</P>";

7. Check the modulus of the two values and print the result:

$c = $a % $b;

echo "<P>The modulus of \$a and \$b is $c</P>";

8. Close your PHP block and add some more HTML so that the document is valid:

?>

</BODY>

</HTML>

9. Save the file with the name arithmeticscript.php and place this file in the
document root of your Web server.

78 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

Figure 5.8 The arithmetic script running. 10. Open your Web browser
and type http://
127.0.0.1/

arithmeticscript.php.
See Figure 5.8.

Your original values, as well as
the results of the various
calculations, are printed to the
screen.

79WHAT’S AN OPERATOR?

Next, you move to comparison operators, which are crucial in coding but not nearly
as much fun as arithmetic operators.

Comparison Operators
It should come as no surprise to you that comparison operators compare two
values. As with the arithmetic operators, you have probably already seen most of
the comparison operators, but you might not know what they are called. Take a
look at Table 5.3, and then you can start creating the test script for this section.

Table 5.3 Comparison Operators

Operator Definition

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The result of any of these comparisons is either true or false. This isn’t much fun,
but you can act on the result using control statements, such as if...else and while

to perform a specific task.

Create a simple script to show the result of some comparisons, using the if...else
control statements to print a result to the screen.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Using Comparison Operators</TITLE>

</HEAD>

<BODY>

2. Start a PHP block, create two variables with values, and print the values:

<?

$a = 21;

$b = 15;

echo "<P>Original value of \$a is $a and \$b is $b</P>";

3. Within an if...else statement, test whether $a is equal to $b. Depending on
the answer (true or false), one of the echo statements will print:

if ($a == $b) {

echo "<P>TEST 1: \$a equals \$b</P>";

} else {

echo "<P>TEST 1: \$a is not equal to \$b</P>";

}

80 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

A NOTE ON CONDITIONAL EXPRESSIONS
Conditional expressions are enclosed in parentheses, such as:

if ($a == $b)

and not:

if $a == $b

4. Within an if...else statement, test whether $a is not equal to $b. Depending
on the answer (true or false), one of the echo statements will print:

if ($a != $b) {

echo "<P>TEST 2: \$a is not equal to \$b</P>";

} else {

echo "<P>TEST 2: \$a is equal to \$b</P>";

}

CURLY BRACES AND BLOCKS
The curly braces { and } separate the blocks of statements within a control
structure.

81WHAT’S AN OPERATOR?

5. Within an if...else statement, test whether $a is greater than $b. Depending
on the answer (true or false), one of the echo statements will print:

if ($a > $b) {

echo "<P>TEST 3: \$a is greater than \$b</P>";

} else {

echo "<P>TEST 3: \$a is not greater than \$b</P>";

}

6. Within an if...else statement, test whether $a is less than $b. Depending on
the answer (true or false), one of the echo statements will print:

if ($a < $b) {

echo "<P>TEST 4: \$a is less than \$b</P>";

} else {

echo "<P>TEST 4: \$a is not less than \$b</P>";

}

7. Within an if...else statement, test whether $a is greater than or equal to $b.
Depending on the answer (true or false), one of the echo statements will print:

if ($a >= $b) {

echo "<P>TEST 5: \$a is greater than or equal to \$b</P>";

} else {

echo "<P>TEST 5: \$a is not greater than or equal to \$b</P>";

}

8. Within an if...else statement, test whether $a is less than or equal to $b.
Depending on the answer (true or false), one of the echo statements will print:

if ($a <= $b) {

echo "<P>TEST 6: \$a is less than or equal to \$b</P>";

} else {

echo "<P>TEST 6: \$a is not less than or equal to \$b</P>";

}

9. Close your PHP block and add some more HTML so that the document is valid:

?>

</BODY>

</HTML>

The original values, as well as the results of the various comparisons, are printed to
the screen. The last group of operators you’ll tackle are logical operators, which are
also used frequently inside blocks of code.

Logical Operators
Logical operators allow your script to determine the status of conditions (such as
the comparisons in the preceding section). In the context of if...else or while
statements, logical operators execute certain code based on which conditions are
true and which are false.

For now, focus on the && (and) and || (or) operators to determine the validity of a
few comparisons.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Using Logical Operators</TITLE>

</HEAD>

<BODY>

82 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

Figure 5.9 The comparison script running. 10. Save the file with
the name
comparisonscript.php

and place this file in the
document root of your
Web server.

11. Open your Web browser
and type
http://127.0.0.1/

comparisonscript.php.
See Figure 5.9.

83WHAT’S AN OPERATOR?

2. Start a PHP block and create two variables with values. The comparisons in this
script are based on these two variables:

<?

$degrees = "95";

$hot = "yes";

3. Within an if...else statement, test whether $degrees is greater than 100 or if
the value of $hot is yes. Depending on the result of the two comparisons, one
of the echo statements will print:

if (($degrees > 100) || ($hot == "yes")) {

echo "<P>TEST 1: It's really hot!</P>";

} else {

echo "<P>TEST 1: It's bearable.</P>";

}

A NOTE ON PARENTHESES
Because this conditional expression is actually made up of two smaller
conditional expressions, an extra set of parentheses surrounds it.

4. Repeat the same if...else statement as in Step 3, but change the operator
from the || operator to the && operator:

if (($degrees > 100) && ($hot == "yes")) {

echo "<P>TEST 2: It's really hot!</P>";

} else {

echo "<P> TEST 2: It's bearable.</P>";

}

5. Close your PHP block and add some more HTML so that the document is valid:

?>

</BODY>

</HTML>

The text message associated with each comparison result is printed to the screen.
In the first test, only one expression has to be true, and that is satisfied by $hot
having a value of yes. In the second test, both expressions have to be true, and
they are not; $degrees has a value of 95, which is not greater than 100, even though
$hot has a value of yes. In this case, the second message is displayed.

Numerous other types of operators are used in PHP. They are explained as they
appear throughout the book. The operators listed in this chapter give you a solid
foundation in the basics of using variables and operators. In the next chapter, you’ll
use your newly acquired knowledge of variables and operators to build scripts that
perform more intriguing actions than those explained so far.

84 CHAPTER 5: INTRODUCING VARIABLES AND OPERATORS

Figure 5.10 The logical script running. 6. Save the file with the name
logicalscript.php and place
this file in the document
root of your Web server.

7. Open your Web browser
and type http://127.0.0.1/
logicalscript.php.
See Figure 5.10.

Using PHP
Variables

Now that you know a little bit about variables in general, it’s
time to take that knowledge one step further and do more
interesting things with variables. In this chapter, you’ll learn how
to do the following:

Use HTML forms to send variables to your scripts.

Use environment variables.

6
Using PHP
Variables

6

Getting Variables from Forms
HTML forms contain at least the following elements:

• A method

• An action

• A submit button

In your HTML code, the first line of a form looks something like this:

<FORM METHOD="post" ACTION="yourscript.php">

When you click a submission button in an HTML form, variables are sent to the
script specified by the action via the specified method. The method can be either
POST or GET. Variables passed from a form to a PHP script are placed in the
superglobal called $_POST or $_GET, depending on the form method. In the next
section, you’ll see how this works by creating an HTML form and accompanying
PHP script that performs calculations, depending on the form input.

Creating a Calculation Form
In this section, you’ll create the front end to a calculation script. This form will
contain two input fields and a radio button to select the calculation type. We are
going to create a new form in HTML and use the POST method to send data to the
back-end processing script. Let’s look at how easy it is to do:

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Calculation Form</TITLE>

</HEAD>

<BODY>

86 CHAPTER 6: USING PHP VARIABLES

87GETTING VARIABLES FROM FORMS

3. Begin your form. Assume that the method is POST and the action is a script
called calculate.php:

<FORM METHOD="post" ACTION="calculate.php">

4. Create an input field for the first value with a text label:

<P>Value 1: <INPUT TYPE="text" NAME="val1" SIZE=10></P>

5. Create an input field for the second value with a text label:

<P>Value 2: <INPUT TYPE="text" NAME="val2" SIZE=10></P>

6. Add a submit button:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Calculate"></P>

7. Close your form and add more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

8. Save the file with the name calculate_form.html and place this file in the
document root of your Web server.

Figure 6.1 Calculate form. 9. Open your Web browser
and type http://127.0.0.1/
calculate_form.html. See
Figure 6.1.

You will see a form containing
the Value 1 and Value 2 fields,
along with a Calculate button.
Take a moment to examine the
HTML form, to understand just
how variables will get their
names.

When submitted, this form will send two variables to your script, $_POST[val1] and
$_POST[val2], because those are the NAMEs used in each text field. The values for
those variables are the values typed in the form fields by the user.

There’s one more item to add: a series of radio buttons to determine the type of
calculation to perform on the two values.

1. Open calculate_form.html in your text editor.

2. Add this block before the submit button:

<P>Calculation:

<INPUT TYPE="radio" NAME="calc" VALUE="add"> add

<INPUT TYPE="radio" NAME="calc" VALUE="subtract"> subtract

<INPUT TYPE="radio" NAME="calc" VALUE="multiply"> multiply

<INPUT TYPE="radio" NAME="calc" VALUE="divide"> divide</P>

3. Save the file and place it in the document root of your Web server.

88 CHAPTER 6: USING PHP VARIABLES

Figure 6.2 Updated calculate form. 4. Open your Web browser
and type http://127.0.0.1/
calculate_form.html. See
Figure 6.2.

Your form will now contain the Value 1 and Value 2 fields, a set of radio buttons,
and a Calculate button. Now, in addition to the two values ($_POST[val1] and
$_POST[val2]), a variable called $_POST[calc] will be sent to your script. Move on to
the next section and create the calculation script.

89GETTING VARIABLES FROM FORMS

Creating the Calculation Script
According to the form action in calculate_form.html, you need a script called
calculate.php. The goal of this script is to accept the two values ($_POST[val1] and
$_POST[val2]) and perform a calculation according to the value of $_POST[calc].

1. Open a new file in your text editor.

2. Start a PHP block and prepare an if statement that checks for the presence of
the three values:

<?

if (($_POST[val1] == "") || ($_POST[val2] == "") || ($_POST[calc] =="")) {

// more code goes here

}

This statement says “If any of these three variables do not have a value, do
something else.”

Figure 6.3 The initial calculation script. 3. Replace “more code goes
here” with the following two
lines:

header("Location:

calculate_form.html");

exit;

The entire list of changes is
shown in Figure 6.3.

The first of these two lines
outputs a header
statement—in this case, one
that sends the browser back
to the calculation form. The
second line causes the script
to exit. So if any of the three
required variables do not
have a value, this action will
occur.

4. Begin an if...else statement to perform the correct calculation, based on the
value of $_POST[calc], starting with a value of add:

if ($_POST[calc] == "add") {

$result = $_POST[val1] + $_POST[val2];

5. Continue the statement for the remaining three calculation types and then
close your PHP block:

} else if ($_POST[calc] == "subtract") {

$result = $_POST[val1] - $_POST[val2];

} else if ($_POST[calc] == "multiply") {

$result = $_POST[val1] * $_POST[val2];

} else if ($_POST[calc] == "divide") {

$result = $_POST[val1] / $_POST[val2];

}

?>

6. Start the HTML output:

<HTML>

<HEAD>

<TITLE>Calculation Result</TITLE>

</HEAD>

<BODY>

7. Using HTML mingled with PHP code, display the value of $result:

<P>The result of the calculation is: <? echo "$result"; ?></P>

90 CHAPTER 6: USING PHP VARIABLES

WARNING: WHITE SPACE!
Be sure that there are no line breaks, spaces, or any other text before your
PHP block starts. You cannot use the header() function if output has already
been sent to the browser.

91GETTING VARIABLES FROM FORMS

8. Add some more HTML so that the document is valid:

</BODY>

</HTML>

9. Save the file with the name calculate.php, and place this file in the document
root of your Web server.

In the next section, you’ll submit the form and even try to break it, which is just a
bit of good, healthy debugging.

Submitting Your Form and Getting Results
Now that you’ve created both the front end (form) and the back end (script), it’s
time to hold your breath and test it.

1. To access the calculation form, open your Web browser and type
http://127.0.0.1/calculate_form.html.

2. Click the Calculate button without typing anything in the form fields. Your Web
browser will reload the page because you didn’t enter any values for the three
required fields.

3. Enter a value for Value 1, but not for Value 2, and do not select a calculation
option. After you click Calculate, the page should reload.

4. Enter a value for Value 2, but not for Value 1, and do not select a calculation
option. After you click Calculate, the page should reload.

5. Enter a value for Value 1 and for Value 2, but do not select a calculation option.
After you click Calculate, the page should reload.

6. Select a calculation option, but do not enter any values for Value 1 or Value 2.
After you click Calculate, the page should reload.

Now that you’ve debugged the script by attempting to bypass your validation
routine, try some calculations, such as:

92 CHAPTER 6: USING PHP VARIABLES

Figure 6.4 The addition result for the calculation script. 1. Enter 9732 for Value 1 and 27
for Value 2.

2. Select add and click the
Calculate button (see
Figure 6.4).

The result of the addition
calculation is printed on the
screen.

Knock yourself out by trying all
sorts of number calculations to
prove that it works.

HTTP Environment Variables
When a Web browser makes a request of a Web server, it sends along with the
request a list of extra variables. These are called environment variables, and they
can be very useful for displaying dynamic content or authorizing users.

The phpinfo() function displays a wealth of information about your Web server
software and the version of PHP you are running, in addition to the basic HTTP
environment. Let’s see what you have.

1. Open a new file in your text editor.

2. Type the following line of PHP code:

<? phpinfo(); ?>

3. Save the file with the name phpinfo.php and place this file in the document root
of your Web server.

93HTTP ENVIRONMENT VARIABLES

As you scroll down, look for a section titled Apache Environment. In the next
sections, you’ll learn how to use two environment variables found here: REMOTE_ADDR
and HTTP_USER_AGENT. For an explanation of some of the other HTTP environment
variables shown in the phpinfo() output, visit http://hoohoo.ncsa.uiuc.edu/cgi/
env.html.

Retrieving and Using REMOTE_ADDR
By default, environment variables are available to PHP scripts as $VAR_NAME. For
example, the REMOTE_ADDR environment variable is already contained as
$REMOTE_ADDR. However, to be absolutely sure that you’re reading the correct value,
you can use the getenv() function to assign a value to a variable of your choice.

Figure 6.5 The phpinfo script results. 4. Open your Web browser
and type http://127.0.0.1/
phpinfo.php. See Figure 6.5.

You should see a very long
page full of interesting
information.

DIFFERENT LOOK ON YOUR BROWSER?
This information will differ, not only from machine to machine, but also from
platform to platform and version to version. Your results will vary, but the
overall template is the same.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://hoohoo.ncsa.uiuc.edu/cgi/env.html

The REMOTE_ADDR environment variable contains the IP address of the machine
making the request. Let’s get the value of your REMOTE_ADDR.

1. Open a new file in your text editor.

2. Open a PHP block, and then use getenv() to place the value of REMOTE_ADDR in a
variable called $address:

<?

$address = getenv("REMOTE_ADDR");

3. Print the value of $address to the screen and close your PHP block:

echo "Your IP address is $address.";

?>

94 CHAPTER 6: USING PHP VARIABLES

Figure 6.6 The remote address script. 4. Save the file with the name
remoteaddress.php, and then
place this file in the
document root of your Web
server.

5. Open your Web browser
and type http://127.0.0.1/
remoteaddress.php. See
Figure 6.6.

Your current IP address is
printed to the screen.

IP ADDRESS DIFFERENT?
Your IP address will differ from that shown here, which is my own IP at the
moment I ran this script.

95HTTP ENVIRONMENT VARIABLES

In the next section, you’ll get the value of another handy environment variable,
HTTP_USER_AGENT, which is the environment variable that holds the identifying string
of the Web browser being used.

Retrieving and Using HTTP_USER_AGENT
The HTTP_USER_AGENT variable contains the browser type, browser version, language
encoding, and platform. For example, the following value string refers to the
Netscape browser, version 7.1, in English, on the Windows platform:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.4)

Gecko/20030624 Netscape/7.1 (ax).

Here is another common HTTP_USER_AGENT value:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

This value refers to Microsoft Internet Explorer (MSIE) version 6.0 on Windows.
Sometimes, you will see MSIE return an HTTP_USER_AGENT value that looks like a
Netscape value, such as this one, which begins with Mozilla, until you notice that
the value says it’s compatible and is actually MSIE 6.0.

Finally, don’t count out the text-only browsers! A Lynx HTTP_USER_AGENT value looks
something like this:

Lynx/2.8rel.3 libwww-FM/2.14

Let’s find your HTTP_USER_AGENT.

1. Open a new file in your text editor.

2. Open a PHP block, and then use getenv() to place the value of HTTP_USER_AGENT
in a variable called $agent:

<?

$agent = getenv("HTTP_USER_AGENT");

3. Print the value of $agent to the screen and then close your PHP block:

echo " You are using $agent.";

?>

In this chapter, you’ve used several types of variables, including variables from
forms. Variables are absolutely essential bits of your scripts, so becoming intimately
familiar with them is a good thing. In the next chapter, you’ll learn many of the
basic tasks for Web developers, including displaying dynamic content, sending
e-mail, and working with your file system—all of which build on the use of variables.

96 CHAPTER 6: USING PHP VARIABLES

Figure 6.7 The useragent script. 4. Save the file with the name
useragent.php and place this
file in the document root of
your Web server.

5. Open your Web browser
and type http://127.0.0.1/
useragent.php. See
Figure 6.7.

Your current HTTP_USER_AGENT
value is printed to the
screen.

USER AGENT DIFFERENT?
Your user agent string might be different than the one shown, because each
browser, version, and platform creates its own identification string.

NEW VERSION ALERT!
One final note for those of you that have used PHP 5.0 and previous
versions: The HTTP_*_VARS variables, such as HTTP_SERVER_VARS or
HTTP_POST_VARS, are no longer supported as of release 6.0.

Start with the
Simple Stuff
Start with the
Simple Stuff

P A R T I I I

Chapter 7
Displaying Dynamic Content.....................99

Chapter 8
Sending E-Mail ..117

Chapter 9
Using Your File System139

Chapter 10
Uploading Files to Your Web Site165

This page intentionally left blank

Displaying
Dynamic Content

The Web is a dynamic environment, so why not use your
programming skills to display dynamic content? Dynamic
content can be as simple or as complex as you want it to be. In
this chapter, you’ll learn how to do the following:

Display browser-specific HTML.

Display platform-specific HTML.

Use PHP string functions on HTML form input.

Create a redirection menu using an HTML form and the
header() function.

7
Displaying
Dynamic Content

7

Displaying Browser-Specific HTML
In the previous chapter, you learned to retrieve and print the HTTP_USER_AGENT
environment variable to the screen. In this chapter, you’ll do something a bit more
interesting with the value of HTTP_USER_AGENT, and that’s to print browser-specific
HTML.

However, having seen some of the possible values of HTTP_USER_AGENT in the last
chapter, you can imagine that there are hundreds of slightly different values. So it’s
time to learn some basic pattern matching.

You’ll use the preg_match() function to perform this task. This function needs two
arguments: what you’re looking for, and where you’re looking:

preg_match("/[what you're looking for]/", "[where you're looking]");

This function returns a value of true or false, which you can use in an if...else
block to do whatever you want. The goal of the first script is to determine whether
a Web browser is Microsoft Internet Explorer, Netscape, or something else.

Within the value of HTTP_USER_AGENT, Netscape always uses the string Mozilla to
identify itself. Unfortunately, the value of HTTP_USER_AGENT for Microsoft Internet
Explorer also uses Mozilla to show that it’s compatible. Luckily, it also uses the
string MSIE, so you can search for that. If the value of HTTP_USER_AGENT doesn’t
contain either Firefox or MSIE, chances are very good that it’s not one of those Web
browsers.

1. Open a new file in your text editor and start a PHP block, and then use getenv()
to place the value of HTTP_USER_AGENT in a variable called $agent:

<?

$agent = getenv("HTTP_USER_AGENT");

2. Start an if...else statement to find which of the preg_match() functions is true,
starting with the search for MSIE:

if (preg_match("/MSIE/i", "$agent")) {

$result = "You are using Microsoft Internet Explorer.";

}

100 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

101DISPLAYING BROWSER-SPECIFIC HTML

3. Continue the statement, testing for Mozilla:

else if (preg_match("/Mozilla/i", "$agent")) {

$result = "You are using Firefox.";

}

4. Finish the statement by defining a default:

else {

$result = "You are using $agent";

}

5. Close your PHP block and add some HTML to begin the display:

?>

<HTML>

<HEAD>

<TITLE>Browser Match Results</TITLE>

</HEAD>

<BODY>

6. Type the following PHP code to print the result of the if...else statement:

<? echo "<P>$result</P>"; ?>

7. Add some more HTML so that the document is valid:

</BODY>

</HTML>

8. Save the file with the name browsermatch.php and place this file in the document
root of your Web server.

9. Open your Web browser and type http://127.0.0.1/browsermatch.php.

CASE SENSITIVITY
The i in the preg_match() function performs a case-insensitive search.

Various flavors of Microsoft Internet Explorer (MSIE) account for approximately
78% of Web browsers in use, whereas versions of Mozilla (NS) take up about 15%.
Throw in the die-hard Lynx, Opera, Konquerer, and other users to reach 100%.

Although an 80/20 split might seem like a majority, if 500 million people have
access to the Internet, 100 million non-MSIE users is a huge number of users to
consider when developing a good Web site. HotWired maintains a browser

102 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

Figure 7.1 The Browser Match script for Netscape. Depending on the Web browser
you use, you might see a result
such as Figure 7.1…

Figure 7.2 The Browser Match script for Internet Explorer. …or Figure 7.2.

If you’re using neither Mozilla
nor Microsoft Internet Explorer,
the actual value of
HTTP_USER_AGENT will be printed.

103DISPLAYING PLATFORM-SPECIFIC HTML

reference at http://hotwired.lycos.com/webmonkey/reference/browser_chart/,
which shows you some of the differences between the major browsers. In the next
section, you’ll take into consideration how not all platforms are created equal and,
in fact, might not display HTML similarly either.

Displaying Platform-Specific HTML
There are differences not only between browsers, but also between platforms. This
difference is most clear with regard to fonts and font sizes. In the Windows world,
you have fonts such as Times New Roman and Courier New. Slight variations of
these fonts appear on the Macintosh and Linux/UNIX platforms; they are called
Times and Courier. It doesn’t end there—the font sizes all display differently. A 10-
point font on Macintosh or Linux is sometimes barely legible, but if you bump it up
to 11 or 12 point, you’re in business. If that same 12-point font is viewed on
Windows, however, it might look like your text is trying to take over the world.

So what to do? Use your new pattern-matching skills to extract the platform from
the HTTP_USER_AGENT string, and then display platform-specific HTML. As with
matching on a keyword—which you did in the previous section—to nail down the
platform, you also need to know what you’re looking for. In the next script, you’ll
check for the keywords Win and Linux and print an appropriate style sheet block in
your HTML result page.

1. Open a new file in your text editor, start a PHP block, and use getenv() to place
the value of HTTP_USER_AGENT in a variable called $agent:

<?

$agent = getenv("HTTP_USER_AGENT");

2. Start an if...else statement to find which of the preg_match() functions is true,
starting with the search for Win:

if (preg_match("/Win/i", "$agent")) {

$style = "win";

}

http://hotwired.lycos.com/webmonkey/reference/browser_chart/

3. Continue the statement, testing for Linux:

else if (preg_match("/Linux/i", "$agent")) {

$style = "linux";

}

4. Create a basic style sheet block for Windows users:

$win_style = "<style type=\"text/css\">p, ul, ol, li

{font-family:Arial;font-size:10pt;font-weight:normal;}

h1 {font-family:Arial;font-size:16pt;font-weight:bold;}

h2 {font-family:Arial;font-size:14pt;font-weight:bold;}

strong {font-family:Arial;font-size:10pt;font-weight:bold;}

em {font-family:Arial;font-size:10pt;font-style:italic;}

</style>";

104 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

USING QUOTATION MARKS IN PHP
When you use quotation marks inside other quotation marks, the inner pair
must be delineated from the outside pair using the escape (\) character (also
known as a backslash).

5. Create a basic style sheet block for Linux users:

$linux_style = "<style type=\"text/css\">

p, ul, ol, li {font-family:Times;font-size:12pt;font-weight:normal;}

h1 {font-family:Times;font-size:18pt;font-weight:bold;}

h2 {font-family:Times;font-size:16pt;font-weight:bold;}

strong {font-family:Times;font-size:12pt;font-weight:bold;}

em {font-family:Times;font-size:12pt;font-style:italic;}

</style>";

105DISPLAYING PLATFORM-SPECIFIC HTML

6. Close your PHP block and add the following HTML:

?>

<HTML>

<HEAD>

<TITLE>Platform Matching</TITLE>

7. Type the following PHP code, creating an if...else statement used to print the
correct style sheet block:

<?

if ($style == "win") {

echo "$win_style";

} else if ($style == "linux") {

echo "$linux_style";

}

?>

8. Close the top section of your HTML and start the body:

</HEAD>

<BODY>

9. Type the following HTML to show the use of your style sheet:

<h1 align=center>This is a level 1 heading</h1>

<h2 align=center>Look! A level 2 heading</h2>

<P align=center>This is a simple paragraph with some

bold and emphasized text.</P>

10. Add some more HTML so that the document is valid:

</BODY>

</HTML>

11. Save the file with the name platformmatch.php and place it in the document
root of your Web server.

12. Open your Web browser and type http://127.0.0.1/
platformmatch.php.

106 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

Figure 7.3 The Platform Match Style using Netscape. Depending on the Web browser
you use, you might see a result
such as this shown in Figure
7.3…

Figure 7.4 The Platform Match Style using Internet
Explorer. …or Figure 7.4.

You can see that the proper
style sheet block was printed,
based on the result of the
platform match. In the next
section, you’ll move away from
pattern matching and work with
some of the string functions in
PHP to modify form input
before displaying it back to the
browser.

107WORKING WITH STRING FUNCTIONS

Working with String Functions
Numerous string functions are built into PHP, all of which are designed to make
your life easier. Suppose that you have to normalize strings for news headlines or
product ID numbers, or calculate the length of a string before trying to stuff it into
a database field. Those are just a few of the string functions you’ll learn about in
the next section. For more string functions, take a look at the PHP manual at
http://www.php.net/strings. The function list grows daily as more people
contribute to the language.

Creating an Input Form
In this section, you’ll create the front end to a string modification script. This form
will contain one text area and several radio buttons. The radio buttons will
determine the string function to use.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Generic Input Form</TITLE>

</HEAD>

<BODY>

2. Begin your form. Assume that the method is POST, and the action is a script
called display_input.php:

<FORM METHOD="post" ACTION="display_input.php">

3. Create a text area with a text label:

<P>Text Field:

<TEXTAREA NAME="text1" COLS=45 ROWS=5 WRAP=virtual></TEXTAREA></P>

4. Add this block of radio buttons:

<P>String Function:

<INPUT TYPE="radio" NAME="func" VALUE="md5"> get md5

<INPUT TYPE="radio" NAME="func" VALUE="strlen"> get length of string

<INPUT TYPE="radio" NAME="func" VALUE="strrev"> reverse the string

http://www.php.net/strings

<INPUT TYPE="radio" NAME="func" VALUE="strtoupper"> make string

uppercase

<INPUT TYPE="radio" NAME="func" VALUE="strtolower"> make string

lowercase

<INPUT TYPE="radio" NAME="func" VALUE="ucwords"> make first letter of all

words uppercase</P>

108 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

PHP RADIO BUTTON NAMING
The value for each radio button is its exact PHP function name. This will make
the back-end script very simple to create, as you’ll see in the next section.

5. Add a submit button:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Do Something With the

String"></P>

6. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

Figure 7.5 A generic form in PHP. 7. Save the file with the name
generic_form.html and place
this file in the document
root of your Web server (see
Figure 7.5).

8. Open your Web browser
and type http://127.0.0.1/
generic_form.html.

109WORKING WITH STRING FUNCTIONS

You’ll see a form with a text area and several radio buttons, along with a Do
Something with the String form submission button. In the next section, you’ll create
the back-end script. That script will expect two variables: $_POST[text1] and
$_POST[func].

Creating a Script to Display Form Values
According to the form action in generic_form.html, you need a script called
display_input.php. The goal of this script is to accept the text in $_POST[text1] and
use a particular string function (the value of $_POST[func]) to get a new result
($result).

1. Open a new file in your text editor and type the following PHP code. This will
ensure that the user is sent back to the form if no value is entered in the text
area and no function is selected from the list of radio buttons:

<?

if (($_POST[text1] == "") || ($_POST[func] == "")) {

header("Location: generic_form.html");

exit;

}

2. Type the next bit of PHP, which assigns the value of the function output to a
variable called $result, and then close the PHP block:

$result = $_POST[func]($_POST[text1]);

?>

3. Start the HTML output:

<HTML>

<HEAD>

<TITLE>Generic Input Results</TITLE>

</HEAD>

<BODY>

4. Display the value of $result:

<? echo "$result"; ?>

5. Add a link back to the form:

<P>Go again!</P>

6. Add some more HTML so that the document is valid:

</BODY>

</HTML>

7. Save the file with the name display_input.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

if (($_POST[func] == "") || ($_POST[text1] == "")) {

header("Location: generic_form.html");

exit;

}

$result = $_POST[func]($_POST[text1]);

?>

<HTML>

<HEAD>

<TITLE>Generic Input Results</TITLE>

</HEAD>

<BODY>

<? echo "$result"; ?>

<p>Go again!</p>

</BODY>

</HTML>

In the next section, you’ll submit the form and see all these different types of string
functions at work.

110 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

111WORKING WITH STRING FUNCTIONS

Submitting Your Form and Getting Results
Now that you’ve created both a front-end form and a back-end script, it’s time to
try them out.

1. Open your Web browser and type http://127.0.0.1/generic_form.html.

2. Type the following text in the text area:

I think PHP is just the coolest server-side scripting language around!

Who knew it would be this simple?

A NOTE ON TEXT ENTRY
You might want to copy that chunk of text to the clipboard, because it will be
used in all of the following examples.

Figure 7.6 The generic form filled out. 3. Select the get md5 radio
button and click the Do
Something with the String
button, as shown in Figure
7.6.

You should see a hash of the string, along with a link back to the form. Return to
the form and enter the same text, only this time select the button that will use the
strlen() function to find the length of the string, including white space and all
characters.

112 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

Figure 7.7 The MD5 checksum calculation script display.
MD5 HASHES

The md5() function gets a
hash of the string. A hash
is like a digital summary
of the string. It can be
used to compare versions
of strings (or files) to
determine whether the
versions differ (see Figure
7.7).

Figure 7.8 The ucwords script display. Continue testing each of the
remaining functions. When you
select the button to use the
strrev() function, you will see
your original string has been
completely reversed. The
strtoupper() function returns
the string with all letters in
uppercase, whereas the
strtolower() function returns
the string with all letters in
lowercase. Finally, use the
ucwords() function to return the
string with the first letter of
each word in uppercase (see
Figure 7.8).

113REDIRECTING TO A NEW LOCATION

Redirecting to a New Location
Redirecting a user to a new location means that your script has sent an HTTP
header to the browser, indicating a new location. HTTP headers of any kind
(authentication, redirection, cookies, and so on) must be sent to the browser before
anything else, including white space, line breaks, and any characters.

Although you’ve already used the header() function to redirect the user in the case
of an incomplete form, in the next section, you’ll create a specific redirection menu;
the goal is to have the users select a new location from a drop-down menu and
then have the script automatically send them there.

Creating a Redirection Form
In this section, you’ll create the front end to a redirection script. This form will
contain a drop-down list of the names of various Web sites. The value for each
option is the Web site’s URL.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE> Redirection Menu</TITLE>

</HEAD>

<BODY>

2. Begin your form. Assume that the method is POST and the action is a script
called do_redirect.php:

<FORM METHOD="post" ACTION="do_redirect.php">

3. Add this drop-down list:

<P>Send me to:

<SELECT name="location">

<OPTION value="">-- Select One --</OPTION>

<OPTION value="http://www.thickbook.com/">thickbook.com</OPTION>

<OPTION value="http://www.i2ii.com/">i2i Interactive</OPTION>

<OPTION value="http://www.php.net/">PHP.net</OPTION>

<OPTION value="http://www.zend.com/">Zend Technologies</OPTION>

</SELECT>

114 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

LIST BOXES AND PHP
Note that the “value” of a list box item is the string you will get back when
the user makes a selection in that list box.

4. Add a submit button:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Go!"></P>

5. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

Figure 7.9 Redirection with PHP. 6. Save the file with the name
redirect_form.html and
place this file in the
document root of your Web
server (see Figure 7.9).

7. Open your Web browser
and type http://127.0.0.1/
redirect_form.html.

In the next section, you’ll create
the back-end script. That script
will expect one variable:
$_POST[location].

115REDIRECTING TO A NEW LOCATION

Creating the Redirection Script and Testing It
According to the form action in redirect_form.html, you need a script called
do_redirect.php. The goal of this script is to accept the value of $_POST[location]
and print that value within the header() function so that the user is redirected to
the chosen location.

1. Open a new file in your text editor and type the following PHP to create the
proper redirection header, including a check to ensure that something was
selected:

<?

if ($_POST[location] == ""){

header("Location: redirect_form.html");

exit;

} else {

header("Location: $_POST[location]");

exit;

}

?>

2. Save the file with the name do_redirect.php and place this file in the document
root of your Web server.

3. Open your Web browser and type http://127.0.0.1/redirect_form.html.

Figure 7.10 The result of the redirection script. 4. Select PHP.net from the
drop-down list and click the
Go! button (see Figure 7.10).

Users are now redirected to the
PHP Web site. Try some of the
other selections, or add your
own, for practice.

In this chapter, you learned some of the different types of dynamic content that can
be used in a Web site and some other things you can do, such as redirect users
based on a drop-down menu. In the next chapter, you’ll learn how to utilize one of
the more popular Web tools—sending e-mail.

116 CHAPTER 7: DISPLAYING DYNAMIC CONTENT

Sending E-Mail

Using PHP to send the contents of a form to a specified e-mail
address is so easy that you’ll wonder why more people don’t do
it every day. In this chapter, you’ll learn how to do the
following:

Modify the PHP configuration file so you can send mail.

Create and send a simple feedback form.

Use the $PHP_SELF variable to create a feedback form with
custom error messages.

8
Sending E-Mail
8

Using an SMTP Server
SMTP is an acronym for Simple Mail Transfer Protocol, and an SMTP server is a
machine that transports mail, just like a Web server is a machine that displays Web
pages when requested. An SMTP server is sometimes referred to as an outgoing
mail server, which brings me to the point—you need one in order to complete the
exercises in this chapter. On Linux/UNIX, Sendmail and Qmail are popular
packages. On Windows, the SMTP service in the Windows NT Service Pack, or the
service built into the Windows 2000 operating system, is often used.

However, if you have installed Apache, PHP, and MySQL as part of a development
environment on your personal machine, you probably do not have SMTP running
locally. If that’s the case, you can access an outgoing mail server that might already
be available to you.

118 CHAPTER 8: SENDING E-MAIL

EXPECTED INSTALLS
If you skipped the first three chapters of this book and are using PHP as part
of an Internet service provider’s virtual hosting package, the SMTP server
should already be installed on that machine, and PHP should be properly
configured to access it.

If your machine is connected to the Internet via a dial-up connection, DSL, cable, or
other type of access, you can use your Internet service provider’s outgoing mail
server. For example, if your development machine is a Windows box with a DSL
connection to the Internet, you can use something like mail.yourprovider.com as
your outgoing mail server. The rule of thumb is that whatever you have configured
within your e-mail client (Eudora, Outlook, Netscape Mail, and so on) as your
outgoing mail server will also function within your PHP code as your SMTP server.
The trick is making PHP aware of this little fact, which you’ll learn about next.

119USING AN SMTP SERVER

SMTP-Related Changes in php.ini
In the php.ini master configuration file, there are a few directives that need to be
set up so that the mail() function works properly. Open php.ini with a text editor
and look for these lines:

[mail function]

; For Win32 only.

SMTP = localhost

; For Win32 only.

sendmail_from = me@localhost.com

; For Unix only. You may supply arguments as well (default: 'sendmail -t -i').

;sendmail_path =

If you are using Windows, you’ll need to modify the first two directives, SMTP and
sendmail_from. If you plan to use the outgoing mail server of your ISP (in this
example, suppose it’s called DSLProvider.net), the entry in php.ini would look like
this:

SMTP = mail.dslprovider.net

The second configuration directive is sendmail_from, and this is the e-mail address
used in the From header of the outgoing e-mail. It can be overwritten in the mail
script itself but normally operates as the default value. For example:

sendmail_from = youraddress@yourdomain.com

Of course, replace youraddress@yourdomain.com with your own address.

If you’re on Linux or a UNIX variant, sendmail_path is all you need to worry about,
and it should look something like this:

sendmail_path = /usr/sbin/sendmail

Or, if you’re using Qmail:

sendmail_path = /var/qmail/bin/sendmail

In the sendmail_path directive, you can also set configuration flags to specify
queuing options or to explicitly set the Return-Path header, such as:

sendmail_path = /usr/sbin/sendmail -t -fyou@yourdomain.com

After making changes to the php.ini file, restart the Web server and use the
phpinfo() function to verify that the changes have been made. When that’s done,
you’re ready to send some e-mail using PHP.

A Simple Feedback Form
A simple feedback form usually contains fields for the respondent’s name and e-
mail address and a text area for some sort of message. In this section, you’ll create
two files: one for the feedback form, and one for the PHP script to process the
form, send the mail, and return a response to the browser.

Creating the Feedback Form
In this section, you’ll create the first half of the form/script combo—the feedback
form itself, often referred to as the front-end form.

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Simple Feedback Form</TITLE>

</HEAD>

<BODY>

3. Begin your form. Assume that the method is POST and the action is a script
called send_simpleform.php:

<FORM METHOD="POST" ACTION="send_simpleform.php">

120 CHAPTER 8: SENDING E-MAIL

121A SIMPLE FEEDBACK FORM

4. Create an input field for the user’s name with a text label:

<P>Your Name:

<INPUT type="text" NAME="sender_name" SIZE=30></P>

5. Create an input field for the user’s e-mail address with a text label:

<P>Your E-Mail Address:

<INPUT type="text" NAME="sender_email" SIZE=30></P>

6. Create a text area to hold the message with a text label:

<P>Message:

<TEXTAREA NAME="message" COLS=30 ROWS=5 WRAP=virtual></TEXTAREA></P>

7. Add a submit button:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Send This Form"></P>

8. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

9. Save the file with the name simple_form.html, and place this file in the
document root of your Web server.

Figure 8.1 A simple form for mailing. 10. Open your Web
browser and type
http://127.0.0.1/

simple_form.html. See
Figure 8.1.

You should see a form
containing a text field for the
person’s name, a text field for
the person’s e-mail address, a
text area for the message, and a
button that says Send This
Form.

In the next section, you’ll create the back-end script. That script will expect three
variables: $_POST[sender_name], $_POST[sender_email], and $_POST[message].

Creating a Script to Mail Your Form
According to the form action in simple_form.html, you need a script called
send_simpleform.php. The goal of this script is to accept the text in
$_POST[sender_name], $_POST[sender_email], and $_POST[message] format, send an e-
mail, and display a confirmation to the Web browser.

1. Open a new file in your text editor.

2. Begin a PHP block and then add some error-checking code into the mix:

<?

if (($_POST[sender_name] == "") ||

($_POST[sender_email] == "") ||

($_POST[message] == "")) {

header("Location: simple_form.html");

exit;

}

3. Start building a message string, which will contain the content for the e-mail
itself:

$msg = "E-MAIL SENT FROM WWW SITE\n";

4. Continue building the message string by adding an entry for the sender’s name:

$msg .= "Sender's Name:\t$_POST[sender_name]\n";

122 CHAPTER 8: SENDING E-MAIL

NEWLINES
The use of the newline (\n) character ensures that your code will print on
multiple lines. This is helpful when you are viewing your HTML source.

123A SIMPLE FEEDBACK FORM

5. Continue building the message string by adding an entry for the sender’s e-mail
address:

$msg .= "Sender's E-Mail:\t$_POST[sender_email]\n";

6. Continue building the message string by adding an entry for the message:

$msg .= "Message:\t$_POST[message]\n";

7. Create a variable to hold the recipient’s e-mail address (substitute your own):

$to = "you@youremail.com";

8. Create a variable to hold the subject of the e-mail:

$subject = "Web Site Feedback";

9. Create a variable to hold additional mail headers:

$mailheaders = "From: My Web Site <genericaddress@yourdomain.com>\n";

BUILDING A MESSAGE STRING
The next few steps will continue building the message string by
concatenating smaller strings to form one long message string.

MAIL HEADERS
Mail headers are the strings at the beginning of mail messages that
formulate their structure and essentially make them valid mail messages.

10. Add the following to the $mailheaders variable:

$mailheaders .= "Reply-To: $_POST[sender_email]\n";

11. Add the mail() function:

mail($to, $subject, $msg, $mailheaders);

13. Start the HTML output:

<HTML>

<HEAD>

<TITLE>Simple Feedback Form Sent</TITLE>

</HEAD>

<BODY>

14. Add some information to tell the user what has happened:

<H1>The following e-mail has been sent:</H1>

15. Add the text label for the Your Name field and display the user’s input, and
do the same for the other fields:

<P>Your Name:

<? echo "$_POST[sender_name]"; ?>

<P>Your E-Mail Address:

<? echo "$_POST[sender_email]"; ?>

<P>Message:

<? echo "$_POST[message]"; ?>

124 CHAPTER 8: SENDING E-MAIL

Figure 8.2 The mail script. 12. Close your PHP block (see
Figure 8.2):

?>

Although this code will send
the mail, you should return
something to the user’s
screen so that he knows the
form has been sent.
Otherwise, he might sit there
and continually click the Send
This Form button.

125A SIMPLE FEEDBACK FORM

Figure 8.3 A simple mail sending script. 16. Add some more HTML so
that the document is valid:

</BODY>

</HTML>

17. Save the file with the name
send_simpleform.php and
place this file in the
document root of your Web
server. Your code should look
something like Figure 8.3.

In the next section, you’ll submit the form and see all these different types of string
functions at work.

Submitting Your Form and Getting Results
Now that you’ve created both a front-end form and a back-end script, it’s time to
try them out.

1. Open your Web browser and type http://127.0.0.1/simple_form.html.

2. Type your name in the Your Name field.

A NOTE ON ERRORS
Don’t worry if you get the error displayed here, indicating that the e-mail
address is invalid. This will occur if you are working behind a firewall and use
an internal e-mail account. Your own server should not display this error.

126 CHAPTER 8: SENDING E-MAIL

Figure 8.4 The mail form in action. 3. Type your e-mail address in
the Your E-Mail Address
field.

4. Type the following message
in the Message field:

PHP is so cool!

5. Click the Send This Form
button (see Figure 8.4).

Figure 8.5 Mail alert. The information you entered,
along with a confirmation that
your e-mail has been sent, will
appear.

Now check your e-mail and see
if a message is waiting for you
(see Figure 8.5).

An e-mail sent through this form will look something like this. If it drives you crazy
that the tabbed text doesn’t line up properly, you can insert as much white space
as you’d like in the message string.

1. Open send_simpleform.php in your text editor.

2. Modify the string containing Sender's Name by replacing the tab character (\t)
with two spaces:

$msg .= "Sender's Name: $_POST[sender_name}\n";

127A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

3. Modify the string containing Sender's E-Mail by replacing the tab character (\t)
with four spaces:

$msg .= "Sender's E-Mail: $_POST[sender_email]\n";

4. Modify the string containing Message by replacing the tab character (\t) with 10
spaces:

$msg .= "Message: $_POST[message]\n";

5. Save the file and upload it to your server.

Submit the form again. When you receive the e-mail, this time it should all line up.

In the next section, you’ll create custom error messages for when fields are blank,
and you’ll streamline the two-step process of sending mail into one cohesive script.

A Feedback Form with Custom Error
Messages
In the previous section, you created two separate files. One file contained the front
end (form), and the other contained the back end (script). In this section, you’ll
learn how to use the $_SERVER[PHP_SELF] variable in a form action to create a single
file that holds both form and script, and how to create custom error messages
when required fields are not completed.

Creating the Initial Script
As you did earlier in this chapter, the first step in creating a form/script pair is to
create the front-end form. However, in this all-in-one form, the front-end form is
simply the first half of the script and not a separate file.

1. Open a new file in your text editor.

2. Type the following HTML:

<HTML>

<HEAD>

<TITLE>All-In-One Feedback Form</TITLE>

</HEAD>

<BODY>

3. Start a PHP block and then create a variable called $form_block, which will hold
the entire form. Start with the form action and assume that the method is POST
and the action is $_SERVER[PHP_SELF]:

<?

$form_block = "

<FORM METHOD=\"POST\" ACTION=\"$_SERVER[PHP_SELF]\">

128 CHAPTER 8: SENDING E-MAIL

REMEMBER TO ESCAPE!
Because you’re putting a long string inside a variable, chances are good that
you’ll have a quotation mark or two. Remember to escape all your quotation
marks with a backslash!

4. Create an input field for the user’s name with a text label:

<P>Your Name:

<INPUT type=\"text\" NAME=\"sender_name\" SIZE=30></P>

5. Create an input field for the user’s e-mail address with a text label:

<P>Your E-Mail Address:

<INPUT type=\"text\" NAME=\"sender_email\" SIZE=30></P>

6. Create a text area to hold the message with a text label:

<P>Message:

<TEXTAREA NAME=\"message\" COLS=30 ROWS=5 WRAP=virtual></TEXTAREA></P>

7. Add a submit button:

<P><INPUT TYPE=\"submit\" NAME=\"submit\" VALUE=\"Send This Form\"></P>

8. Close the form and then add the ending quotation marks and instruction
terminator (semicolon):

</FORM>";

129A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

If you looked at this code in your Web browser, you’d only see a title in the title bar.
The burning question should be, “Why do we need all that HTML in a variable
called $form_block?” In the next section, you’ll add to the script so that it displays
particular chunks of code based on certain actions. The string in $form_block is one
of those chunks.

Adding Error Checking to the Script
The plan is to use the global variable $_SERVER[PHP_SELF], which has a value of the
script’s current name. So really, $_SERVER[PHP_SELF] will have a value of
allinone_form.php in this instance. When you use $_SERVER[PHP_SELF] as a form
action, you’re saying, “When the submit button is clicked, reload this script and do
something,” instead of “When the submit button is clicked, go find another script
and do something.”

Figure 8.6 The all-in-one form. 9. Close the PHP block and then
add some more HTML so that
the document is valid:

?>

</BODY>

</HTML>

10. Save the file with the name
allinone_form.php. See
Figure 8.6.

Now that you have a shell of a script, think about what this all-in-one script must do:

• Display the form.

• Submit the form.

• Check for errors.

• Print error messages without sending the form.

• Send the form if no errors are found.

Make a few modifications to the script to help it determine which actions it should
take. Inside the $form_block variable, before the HTML code for the submit button,
add this line:

<INPUT type=\"hidden\" name=\"op\" value=\"ds\">

This line creates a hidden variable called $_POST[op], which has a value of ds. The op
stands for “operation,” and ds stands for “do something.” I made these names up;
they have nothing to do with any programming language. You can call them
whatever you want, as long as you understand what they do (which you’ll soon see).

130 CHAPTER 8: SENDING E-MAIL

Figure 8.7 The all-in-one script. The $_POST[op] variable is present
only if the form has been
submitted. So if the value of
$_POST[op] is not ds, the user hasn’t
seen the form. If the user hasn’t
seen the form, you need to show it,
so add the following if...else
statement before the end of the
PHP block:

if ($_POST[op] != "ds") {

// they need to see the form

echo "$form_block";

}

You’re not done yet, but your code
should now look something like
Figure 8.7.

131A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

You’ll make a few more modifications in the next step to add your error messages.
If the form is submitted, the value of $_POST[op] will be ds, and now you must
account for that. Assume that all the form fields are required; after checking for the
value of $_POST[op], you’ll check for a value in all the fields.

1. Continue the if...else statement:

else if ($_POST[op] == "ds") {

2. Add an if statement within the parent statement to check for values. Start with
$_POST[sender_name]:

if ($_POST[sender_name] == "") {

3. Create an error message for $_POST[sender_name] called $name_err:

$name_err = "Please enter your name!
";

4. Set the value of $send to "no":

$send = "no";

5. Create a similar if statement for $_POST[sender_email]:

if ($_POST[sender_email] == "") {

$email_err = "Please enter your e-mail

address!
";

$send = "no";

}

6. Create a similar if statement for $_POST[message]:

if ($_POST[message] == "") {

$message_err = "Please enter a message!
";

$send = "no";

}

7. Start an if...else statement to handle the value of $send:

if ($send != "no") {

// it's ok to send!

8. Create a variable to hold the recipient’s e-mail address (substitute your own):

$to = "you@youremail.com";

9. Create a variable to hold the subject of the e-mail:

$subject = "All-in-One Web Site Feedback";

10. Create a variable to hold additional mail headers:

$mailheaders = "From: My Web Site <genericaddress@yourdomain.com> \n";

11. Add to the $mailheaders variable:

$mailheaders .= "Reply-To: $_POST[sender_email]\n";

12. Build the message string:

$msg = "E-MAIL SENT FROM WWW SITE\n";

$msg .= "Sender's Name: $_POST[sender_name]\n";

$msg .= "Sender's E-Mail: $_POST[sender_email]\n";

$msg .= "Message: $_POST[message]\n\n";

13. Add the mail() function:

mail($to, $subject, $msg, $mailheaders);

14. Add a simple statement to let the user know the mail has been sent and
close the if statement:

echo "<P>Mail has been sent!</p>";

}

15. Continue the if...else statement to deal with a value of no for $send:

else if ($send == "no") {

16. Print the error messages:

echo "$name_err";

echo "$email_err";

echo "$message_err";

132 CHAPTER 8: SENDING E-MAIL

133A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

17. Print the form again:

echo "$form_block";

18. Close the current if...else block and the parent if...else block:

}

}

19. Save the file.

The entire code should look something like this:

<HTML>

<HEAD>

<TITLE>All-In-One Feedback Form</TITLE>

</HEAD>

<BODY>

<?

$form_block = "

<FORM METHOD=\"POST\" ACTION=\"$PHP_SELF\">

<P>Your Name:

<INPUT type=\"text\" NAME=\"sender_name\" SIZE=30></P>

<P>Your E-Mail Address:

<INPUT type=\"text\" NAME=\"sender_email\" SIZE=30></P>

<P>Message:

<TEXTAREA NAME=\"message\" COLS=30 ROWS=5 WRAP=virtual></TEXTAREA></P>

<INPUT type=\"hidden\" name=\"op\" value=\"ds\">

<P><INPUT TYPE=\"submit\" NAME=\"submit\" VALUE=\"Send This Form\"></p>

</FORM>";

if ($_POST[op] != "ds") {

// they need to see the form

echo "$form_block";

} else if ($_POST[op] == "ds") {

// check value of $_POST[sender_name]

if ($_POST[sender_name] == "") {

$name_err = "Please enter your name!
";

$send = "no";

}

// check value of $_POST[sender_email]

if ($_POST[sender_email] == "") {

$email_err = "Please enter your

e-mail address!
";

$send = "no";

}

// check value of $_POST[message]

if ($_POST[message]== "") {

$message_err = "Please enter a message!
";

$send = "no";

}

if ($send != "no") {

// it's ok to send, so build the mail

$msg = "E-MAIL SENT FROM WWW SITE\n";

$msg .= "Sender's Name: $_POST[sender_name]\n";

$msg .= "Sender's E-Mail: $_POST[sender_email]\n";

$msg .= "Message: $_POST[message]\n\n";

$to = "you@yourdomain.com";

$subject = "All-in-One Web Site Feedback";

$mailheaders = "From: My Web Site

<genericaddress@yourdomain.com>\n";

$mailheaders .= "Reply-To: $_POST[sender_email]\n";

//send the mail

mail($to, $subject, $msg, $mailheaders);

//display confirmation to user

echo "<P>Mail has been sent!</p>";

} else if ($send == "no") {

//print error messages

echo "$name_err";

echo "$email_err";

echo "$message_err";

echo "$form_block";

}

}

?>

Submitting Your Form and Getting Results
Now that you’ve created both a front-end form and a back-end script, it’s time to
try them out.

134 CHAPTER 8: SENDING E-MAIL

Figure 8.8 The all-in-one form displayed. 1. Open your Web browser
and type http://127.0.0.1/
allinone_form.php. See
Figure 8.8.

You will see a form
containing a text field for
the person’s name, a text
field for the person’s e-mail
address, a text area for the
message, and a button that
says Send This Form.

135A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

Figure 8.9 A blank entry. 2. Submit the form without
typing anything in any of the
fields (see Figure 8.9).

The form, with all three error
messages at the top, will
appear in your browser
window.

Figure 8.10 An unfinished entry. 3. Type your name in the Your
Name field and then submit
the form (see Figure 8.10).

The form will reappear, this
time without the Name error
message.

5. Type your name in the Your Name field, your e-mail address in the Your E-Mail
Address field, and the following message:

This all-in-one thing is pretty cool!

6. Submit the form.

Check your e-mail and see if a message is waiting for you.

Saving the Values if You Make an Error
One thing you probably noticed in the original script is that if you made an error,
the form was reset, and you lost the values you had entered. A simple modification
to the original $form_block will take care of that problem. Just add a VALUE attribute
to the form field to hold any previous value for the given variable.

1. Open allinone_form.php in your text editor.

2. Inside the $form_block variable and modify the input field for Your Name:

<INPUT type=\"text\" NAME=\"sender_name\"

VALUE=\"$_POST[sender_name]\" SIZE=30></P>

136 CHAPTER 8: SENDING E-MAIL

Figure 8.11 An almost finished entry. 4. Type your name in the Your
Name field, your e-mail
address in the Your E-Mail
Address field, and then
submit the form (see Figure
8.11).

The form will reappear
again, this time with only the
Message error.

137A FEEDBACK FORM WITH CUSTOM ERROR MESSAGES

3. Modify the input field for Your E-Mail Address:

<INPUT type=\"text\" NAME=\"sender_email\"

VALUE=\"$_POST[sender_email]\" SIZE=30></P>

4. Modify the text area for Message:

<TEXTAREA NAME=\"message\" COLS=30 ROWS=5

WRAP=virtual>$_POST[message]</TEXTAREA></P>

TEXTAREA TYPES
There’s no VALUE attribute for TEXTAREA. Instead, the value goes between the
start and end tags.

Figure 8.12 Saving values after errors. 5. Save the file and then open
your Web browser and type
http://127.0.0.1/

allinone_form.php.

6. Type your name in the Your
Name field and then submit
the form (see Figure 8.12).

The form, complete with error
messages, will appear. This time,
though, your name has been
saved!

Repeat the process for the other fields in the form to verify that the values were
saved. You’ve just mastered another aspect of dynamic content, this time in relation
to displaying error messages when users don’t perform the proper tasks, such as
completing all of the fields in a form. This chapter was all about forms and sending
mail, and the next chapter is all about working with elements of your file system,
such as files and directories.

This page intentionally left blank

Using Your
File System

Using simple PHP scripts, you can do anything with your file
system—it’s yours, after all! In this chapter, you’ll learn how to
do the following:

Display the contents of a directory.

Create a new file.

Open an existing file and append data to it.

Copy, rename, and delete files.

9
Using Your
File System

9

File Paths and Permissions
The scripts used in these chapters can be executed on both Windows and
Linux/UNIX operating systems. If you are using Windows, you can use both the
forward slash (/) and the backslash (\) in file paths, whereas other operating systems
use only the forward slash. The scripts in this chapter use the forward slash method
in all instances. This method works even if you don’t specify a drive letter. For
example:

$path = "/Program Files/Apache Group/Apache/htdocs";

This path, on Windows, is assumed to be on the current drive (in my case, C:/). If
you need to specific a drive letter, go for it:

$path = "K:/Program Files/Apache Group/Apache/htdocs/";

You’ll have to modify file paths to fit your own directory structure, but you
shouldn’t have to do anything more than that.

140 CHAPTER 9: USING YOUR FILE SYSTEM

PERMISSIONS
For each directory specified in this chapter, you must have the proper
permissions to create, modify, and delete files within it. This is an especially
important note for non-Windows users, whose operating system is multi-user
by nature. If you are unsure how to assign or modify permissions on your
system, please contact your system administrator.

Displaying Directory Contents
Believe it or not, this script will be the most complicated in this chapter, and it has
only 32 lines! The goal is to open a directory, find the names of all the files in the
directory, and print the results in a bulleted list.

1. Open a new file in your text editor and start a PHP block:

<?

141DISPLAYING DIRECTORY CONTENTS

2. Create a variable to hold the full path name of a directory:

$dir_name = "c:/";

DIRECTORY PATHS
We are using the root of the C drive for simplicity. Substitute your own
directory name so that this works for you.

HANDLES
The term handle is used to refer to the just-opened directory.

3. Create a handle and use the opendir() function to open the directory specified
in Step 2.

$dir = opendir($dir_name);

4. You’ll eventually place the results in a bulleted list inside a string called
$file_list. Start that bulleted list now:

$file_list = "";

5. Start a while loop that uses the readdir() function to determine when to stop
and start the loop. The readdir() function returns the name of the next file in
the directory and, in this case, assigns the value to a variable called $file_name:

while ($file_name = readdir($dir)) {

6. Get rid of those . and .. filenames using an if statement:

if (($file_name != ".") && ($file_name != "..")) {

7. If $file_name is neither of the “dot” filenames, add it to $file_list using the
concatenation assignment operator:

$file_list .= "$file_name";

8. Close the if statement and the while loop:

}

}

9. Add the closing tag to the bulleted list:

$file_list .= "";

10. Close the open directory:

closedir($dir);

11. Close your PHP block and then add some HTML to begin the display:

?>

<HTML>

<HEAD>

<TITLE>Directory Listing</TITLE>

</HEAD>

<BODY>

12. Mingle some HTML and PHP to print the name of the directory you just read:

<P>Files in: <? echo "$dir_name"; ?></P>

142 CHAPTER 9: USING YOUR FILE SYSTEM

Figure 9.1 The listfiles script. 13. Print the file list and then
close your HTML tags so the
document is valid:

<? echo "$file_list"; ?>

</BODY>

</HTML>

14. Save the file with the name
listfiles.php.

Your code should look something
like Figure 9.1:

143WORKING WITH FOPEN() AND FCLOSE()

Assuming that this worked, try it for other directories on your system. If a directory
doesn’t exist, the script won’t return an error—it just won’t have any results. One
thing you should know is that if you do not have warnings turned off in the php
configuration file, you will see a list of warnings displayed on the screen. You can
avoid this by turning them off in the configuration file or by using the @ symbol in
front of the function call, as we shall see in just a bit.

In the next section, you’ll work with the fopen() and fclose() functions to open and
close specific files.

Working with fopen() and fclose()

Before you jump headfirst into working with files, you need to learn a bit about the
fopen() function, which is used to open files. This function requires a filename and
mode, and it returns a file pointer. A file pointer provides information about the file
and is used as a reference.

The filename is the full path to the file you want to create or open, and the mode
can be any of the modes listed in Table 9.1.

Figure 9.2 The listfiles script output. To test it, place the file in the
document root of your Web
server and then open
your Web browser and type
http://127.0.0.1/

listfiles.php. See Figure 9.2.

Creating a New File
Compared to the first section of this chapter, this next task is a piece of cake. The
goal is simply to create a new, empty file in a specified location.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to a file:

$filename = "c:/newfile.txt";

144 CHAPTER 9: USING YOUR FILE SYSTEM

Table 9.1 Modes Used with fopen()

Mode Usage

r Opens an existing file and reads data from it. The file pointer is placed at
the beginning of the file.

r+ Opens an existing file for reading or writing. The file pointer is placed at
the beginning of the file.

w Opens a file for writing. If a file with that name does not exist, the
function creates a new file. If the file exists, the function deletes all
existing content and places the file pointer at the beginning of the file.

w+ Opens a file for reading and writing. If a file with that name does not exist,
the function creates a new file. If the file exists, the function deletes all
existing content and places the file pointer at the beginning of the file.

a Opens a file for writing. If a file with that name does not exist, the
function creates a new file. If the file exists, the function places the file
pointer at the end of the file.

a+ Opens a file for reading and writing. If a file with that name does not exist,
the function attempts to create a new file. If the file exists, the function
places the file pointer at the end of the file.

145WORKING WITH FOPEN() AND FCLOSE()

3. Create a file pointer and use the fopen() function to open the file specified in
Step 3 for reading and writing. The die() function will cause the script to end
and a message to display if the file doesn’t open properly.

$newfile = fopen($filename, "w+") or die("Couldn't create file.");

FILE NAMING
This file is one that exists on my own machine. Substitute your own directory
name so that this works for you!

4. Close the file pointer:

fclose($newfile);

5. Create a message to print upon success and then close your PHP block:

$msg = "<P>File created!</P>";

?>

6. Add this HTML:

<HTML>

<HEAD>

<TITLE>Creating a New File</TITLE>

</HEAD>

<BODY>

7. Print the message:

<? echo "$msg"; ?>

FILE POINTERS
The term file pointer is used to refer to the just-opened file.

8. Add some more HTML so that the document is valid:

</BODY>

</HTML>

9. Save the file with the name newfile.php and place this file in the document root
of your Web server.

10. Open your Web browser and type http://127.0.0.1/newfile.php.

146 CHAPTER 9: USING YOUR FILE SYSTEM

DIRECTORY NAMING
Of course, this assumes that you have no directory called bozo on your
current drive. If you happen to have such a thing, just change the name to a
directory name that doesn’t exist.

Figure 9.3 Creating a new file successfully. If the file creation was
successful, you should see the
success message in Figure 9.3.

However, if your file creation
failed, you will see a nasty parse
error. You can force an error by
using an invalid value for
$filename, such as this:

$filename =

"/bozo/mydata.txt";

147WORKING WITH FOPEN() AND FCLOSE()

In your script, change this line:

$newfile = fopen($filename, "w+") or die("Couldn't create file.");

to this:

$newfile = @fopen($filename, "w+") or die("Couldn't create file.");

Figure 9.4 The Bozo script. When you run your script, you’ll
see something like Figure 9.4.

Although the die() function will
do its job by printing the
specified error message, PHP
will issue its own warnings
based on the failure of the
function to do its job. You can
suppress errors and warnings
from PHP by using the @ sign in
front of functions.

Figure 9.5 The Bozo script without warnings. Save the file and access the
script via your Web browser.
You’ll now see just the message
from the die() function and no
other warnings (see Figure 9.5).

Checking if a File Already Exists

To avoid any possible housekeeping errors when running around your file system,
you can use the file_exists() function to check if a file already exists before you
create it. This next script will do just that and will print a message one way or the
other.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to a file (use your own file path):

$filename = "c:/mydata.txt";

148 CHAPTER 9: USING YOUR FILE SYSTEM

PREVIOUS FILE WARNING
Yes, this is the same file you probably created in the previous section. That’s
fine because it can trip the error checking!

3. Start an if...else statement that checks for a true/false result to the
file_exists() function:

if (file_exists($filename)) {

4. Create a variable to hold a message regarding the file’s existence:

$msg = "<P>File already exists.</P>";

5. Continue the else statement to do something if the file doesn’t exist:

} else {

6. Create a file pointer and use the fopen() function to open the file specified in
Step 2 for reading and writing. The die() function will cause the script to end
and a message to display if the file doesn’t open properly.

$newfile = @fopen($filename, "w+") or die("Couldn't create file.");

7. Create a variable to hold a success message:

$msg = "<P>File created!</P>";

149WORKING WITH FOPEN() AND FCLOSE()

8. Close the file pointer, the if...else statement, and your PHP block:

fclose($newfile);

}

?>

9. Add this HTML:

<HTML>

<HEAD>

<TITLE>Creating a New File</TITLE>

</HEAD>

<BODY>

10. Print the message:

<? echo "$msg"; ?>

11. Add some more HTML so that the document is valid:

</BODY>

</HTML>

12. Save the file with the name newfile-checkfirst.php and place this file in the
document root of your Web server.

Figure 9.6 Failure message for creating a new file. 13. Open your Web
browser and type
http://127.0.0.1/

newfile-checkfirst.php.

Assuming that you used the
filename of a previously created
file, you should see the failure
message, as shown in Figure
9.6.

If you change the value of $filename to a file that doesn’t exist and then access the
script again, you’ll see the success message. Because just creating a file is boring, in
the next section you’ll learn to write data to the file.

Appending Data to a File
The goal of the next script is to append data to a file. If the file exists, the script will
just write data into it. If the file doesn’t exist, it will be created before data is
written to it.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to a file (use your own file path):

$filename = "c:/textfile.txt";

3. Create a variable called $newstring to hold the string you want to write to the
file. Populate that string with this very exciting message:

$newstring = "

Check it out!\n

I've created a new file and stuck all this text into it!";

150 CHAPTER 9: USING YOUR FILE SYSTEM

NEW LINES AND FILES
The use of the newline character causes a line break to occur at that point in
the text.

4. Create a file pointer and use the fopen() function to open the file specified in
Step 2 for reading and writing. The die() function will cause the script to end
and a message to display if the file doesn’t open properly.

$myfile = @fopen($filename, "w+") or die("Couldn't open file.");

151WORKING WITH FOPEN() AND FCLOSE()

5. Use the fwrite() function to place the text ($newstring) inside the file ($myfile).
The die() function will cause the script to end and a message to display if the
fwrite() function fails.

@fwrite($myfile, $newstring) or die("Couldn't write to file.");

6. Create a variable to hold a success message:

$msg = "<P>File has data in it now...</p>";

7. Close the file pointer and the PHP block:

fclose($myfile);

?>

8. Add this HTML:

<HTML>

<HEAD>

<TITLE>Adding Data to a File</TITLE>

</HEAD>

<BODY>

9. Print the message:

<? echo "$msg"; ?>

10. Add some more HTML so that the document is valid:

</BODY>

</HTML>

11. Save the file with the name writedata.php and place this file in the document
root of your Web server.

Reading Data from a File
You’ll now create a script to read the data from the file you created in the previous
section. You could just open that file in a text editor, but where’s the fun in that?
PHP has a handy function called fread() that does the job for you.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to the file you created in the
previous section (use your own path):

$filename = "c:/textfile.txt";

3. Create a file pointer and use the fopen() function to open the file specified in
Step 2 for reading only. The die() function will cause the script to end and a
message to display if the file doesn’t open properly.

$whattoread = @fopen($filename, "r") or die("Couldn't open file");

152 CHAPTER 9: USING YOUR FILE SYSTEM

Figure 9.7 The file writing script in action. 12. Open your Web browser
and type
http://127.0.0.1/

writedata.php. See
Figure 9.7.

In the next section, you’ll read
the data from the text file
created by this script.

153WORKING WITH FOPEN() AND FCLOSE()

4. Create a variable called $file_contents, and use the fread() function to read all
the lines from the open file pointer ($whattoread) for as long as there are lines in
the file:

$file_contents = fread($whattoread, filesize($filename));

FILE SIZES
Using the filesize() function on an existing file lets PHP do the work for
you. The second argument of the fread() function is for the length of the
file. If you don’t know the length, but you know you want all of it, you can
use filesize($filename) to get that length.

5. Create a variable to print a message, including the contents of the file:

$msg = "The file contains:
$file_contents";

6. Close the file pointer and your PHP block:

fclose($whattoread);

?>

7. Add this HTML:

<HTML>

<HEAD>

<TITLE>Reading Data From a File</TITLE>

</HEAD>

<BODY>

8. Print the message:

<? echo "$msg"; ?>

9. Add some more HTML so that the document is valid:

</BODY>

</HTML>

That’s definitely the string written to the file, but what happened to that line break?
The newline character means nothing to a Web browser, which renders only HTML.
Luckily, the PHP development team had great forethought and created the nl2br()
function (newline-to-break; get it?). Make some slight adjustments to the
readdata.php script:

1. Add this line after the line containing the fread() function:

$new_file_contents = nl2br($file_contents);

154 CHAPTER 9: USING YOUR FILE SYSTEM

Figure 9.8 The file reading script in action. 10. Save the file with the
name readdata.php and
place this file in the
document root of your
Web server.

11. Open your Web browser
and type
http://127.0.0.1/

readdata.php.
See Figure 9.8.

Figure 9.9 The amended file reading script in action. 2. Modify the $msg string so
that it looks like this:

$msg = "The file

contains:

$new_file_contents";

3. Save the file.

Now open this file in your Web
browser and notice the line
break (see Figure 9.9).

155WORKING WITH FOPEN() AND FCLOSE()

In the next section, you’ll read the same message, but instead of printing it on the
screen, you’ll send it via e-mail.

Sending File Contents via E-Mail
If you’re saving the results of HTML forms to a plain text file that you want to read
only at specific times, you can write a little script that mails the contents of the file
to you on demand.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to the file containing the data (use
your own path):

$filename = "c:/textfile.txt";

3. Create a file pointer and use the fopen() function to open the file specified in
Step 2 for reading only. The die() function will cause the script to end and a
message to display if the file doesn’t open properly.

$whattoread = @fopen($filename, "r") or die("Couldn't open file");

4. Create a variable called $file_contents, and use the fread() function to read all
the lines from the open file pointer ($whattoread) for as long as there are lines in
the file:

$file_contents = fread($whattoread, filesize($filename));

5. Create a variable to hold your e-mail address:

$to = "you@yourdomain.com";

6. Create a variable for the subject of the e-mail:

$subject = "File Contents";

7. Create a variable for additional mail headers:

$mailheaders = "From: <genericaddress@yourdomain.com> \n";

8. Populate the mail() function using the $file_contents string as the third
argument (the message):

mail($to, $subject, $file_contents, $mailheaders);

9. Create a variable to print a message to the screen:

$msg = "<P>Check your mail!</P>";

10. Close the file pointer and your PHP block:

fclose($whattoread);

?>

11. Add this HTML:

<HTML>

<HEAD>

<TITLE>Mailing Data From a File</TITLE>

</HEAD>

<BODY>

12. Print the message:

<? echo "$msg"; ?>

13. Add some more HTML so that the document is valid:

</BODY>

</HTML>

14. Save the file with the name mailcontents.php and place this file in the
document root of your Web server.

15. Open your Web browser and type http://127.0.0.1/mailcontents.php.

156 CHAPTER 9: USING YOUR FILE SYSTEM

157FILE SYSTEM HOUSEKEEPING

File System Housekeeping
The next series of scripts will help you perform very basic file system tasks, such as
copying, renaming, and deleting files. Remember that you can perform file system
functions only if the proper permissions are in place for the PHP user.

Copying Files
The copy() function is very simple: It needs to know the original filename and a new
filename, and that’s all there is to it.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to the original file (use your own
path):

$orig_filename = "c:/textfile.txt";

3. Create a variable to hold the full path name to the new file (use your own path):

$new_filename = "c:/textfile.bak";

Figure 9.10 E-mail with file attachment. Like the message says, go check
your mail! You should have an e-
mail waiting for you, with the
contents of the file printed in it
(see Figure 9.10).

Unlike the previous script, you
didn’t need to use the nl2br()
function, because you weren’t
displaying text in a Web
browser window. The plain-text
e-mail will keep the original line
break.

4. Create a variable to hold the true/false result of the function. Suppress
warnings by using the @ in front of the function and use die() to print a
message if the function fails:

$success = @copy($orig_filename, $new_filename) or die("Couldn't copy

file.");

5. Start an if...else statement to print the proper message based on the
outcome of the function:

if ($success) {

6. The message string, if successful, should print a confirmation of the copy:

$msg = "Copied $orig_filename to $new_filename";

7. Continue the statement for a failure and then close the PHP block:

} else {

$msg = "Could not copy file.";

}

?>

158 CHAPTER 9: USING YOUR FILE SYSTEM

ERROR HANDLING
Using the else statement in this case is actually unnecessary, but it’s good
practice for providing a default result. If the copy() function fails, the die()
function will exit the script and print the error before even getting to the
if...else part of the script.

8. Add this HTML:

<HTML>

<HEAD>

<TITLE>Copy a File</TITLE>

</HEAD>

<BODY>

159FILE SYSTEM HOUSEKEEPING

9. Print the message:

<? echo "$msg"; ?>

10. Add some more HTML so that the document is valid:

</BODY>

</HTML>

Figure 9.11 The copy file script in action. 11. Save the file with the
name copyfile.php and
place this file in the
document root of your
Web server.

12. Open your Web
browser and type
http://127.0.0.1/

copyfile.php.
See Figure 9.11.

See if your error handling works by changing the value of $new_filename to
something that doesn’t exist:

$new_filename = "/bozo/textfile.bak";

Access the script via your Web browser, and you should see the appropriate
message.

Next, let’s move on to renaming files. The script is remarkably similar!

Renaming Files
Like the copy() function, the rename() function just needs to know the original
filename and a new filename. In this case, you’re just renaming the original, not
copying it.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to the original file (use your own
path):

$orig_filename = "c:/textfile.bak";

3. Create a variable to hold the full path name to the new file (use your own path):

$new_filename = "c:/textfile.old";

4. Create a variable to hold the true/false result of the function. Suppress
warnings by using the @ in front of the function and use die() to print a
message if the function fails:

$success = @rename($orig_filename, $new_filename)

or die("Couldn't rename file.");

5. Start an if...else statement to print the proper message based on the
outcome of the function:

if ($success) {

6. The message string, if successful, should print a confirmation of the renaming
function:

$msg = "Renamed $orig_filename to $new_filename";

7. Continue the statement for a failure and then close your PHP block:

} else {

$msg = "Could not rename file.";

}

?>

160 CHAPTER 9: USING YOUR FILE SYSTEM

161FILE SYSTEM HOUSEKEEPING

8. Add this HTML:

<HTML>

<HEAD>

<TITLE>Rename a File</TITLE>

</HEAD>

<BODY>

9. Print the message:

<? echo "$msg"; ?>

10. Add some more HTML so that the document is valid:

</BODY>

</HTML>

11. Save the file with the name renamefile.php and place this file in the
document root of your Web server.

ERROR HANDLING REDUX
As in the previous script, the else statement in this case is unnecessary, but
good practice for providing a default result.

Figure 9.12 The rename script in action. 12. Open your Web
browser and type
http://127.0.0.1/

renamefile.php.
See Figure 9.12.

See if your error handling works
by changing the value of
$new_filename to something that
doesn’t exist:

$new_filename =

"/bozo/textfile.bak";

There’s one more housekeeping function in the next section: deleting files.

Deleting Files
Be very careful when using the unlink() function because once you’ve deleted a
file, it’s gone for good.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the full path name to the file you want to delete (use
your own path):

$filename = "c:/ textfile.old";

3. Create a variable to hold the true/false result of the function. Suppress
warnings by using the @ in front of the function and use die() to print a
message if the function fails:

$success = @unlink($filename) or die("Couldn't delete file.");

4. Start an if...else statement to print the proper message based on the
outcome of the function:

if ($success) {

5. The message string, if successful, should print a confirmation of the deletion:

$msg = "Deleted $filename";

6. Continue the statement for a failure and then close your PHP block:

} else {

$msg = "Could not delete file.";

}

?>

162 CHAPTER 9: USING YOUR FILE SYSTEM

ERROR HANDLING AGAIN
As in the previous scripts, using the else statement in this case is
unnecessary, but good practice for providing a default result.

163FILE SYSTEM HOUSEKEEPING

7. Add this HTML:

<HTML>

<HEAD>

<TITLE>Delete a File</TITLE>

</HEAD>

<BODY>

8. Print the message:

<? echo "$msg"; ?>

9. Add some more HTML so that the document is valid:

</BODY>

</HTML>

Figure 9.13 The delete file script in action. 10. Save the file with the
name deletefile.php and
place this file in the
document root of your
Web server.

11. Open your Web
browser and type
http://127.0.0.1/

deletefile.php.
See Figure 9.13.

See if your error handling works by changing the value of $filename to something
that doesn’t exist:

$filename = "/bozo/textfile.old";

164 CHAPTER 9: USING YOUR FILE SYSTEM

Figure 9.14 The delete file script with an error displayed. Access the script via your Web
browser, and you should see an
example like Figure 9.14.

In the next chapter, you’ll create
a two-step process (front-end
form and back-end script) to
initiate file uploads from a Web
browser to your file system.

Uploading Files to
Your Web Site

If you need a quick interface for uploading files to your Web
site from a remote location, you can create a two-step form and
script interface with PHP. In this chapter, you learn how to:

Create an HTML form for file uploads.

Create a PHP script to handle file uploads.

10
Uploading Files to
Your Web Site

10

Checking Your php.ini File
Before you start uploading files, check a few values in your php.ini file. Look for
this section of text:

;;;;;;;;;;;;;;;;

; File Uploads ;

;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.

File_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not

; specified).

;upload_tmp_dir =

; Maximum allowed size for uploaded files.

Upload_max_filesize = 2M

To ensure the file upload process will work smoothly, make the following
modifications:

1. Uncomment the upload_tmp_dir line by deleting the initial semicolon.

2. Enter a directory name after the = for upload_tmp_dir.

3. If you want to allow larger uploads, change the number of bytes for
upload_max_filesize.

For example, on a Windows system, this section of the php.ini file might look like
this:

;;;;;;;;;;;;;;;;

; File Uploads ;

;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.

file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not

; specified).

upload_tmp_dir = /temp

; Maximum allowed size for uploaded files.

ipload_max_filesize = 2M

166 CHAPTER 10: UPLOADING FILES TO YOUR WEB SITE

167UNDERSTANDING THE PROCESS

If you are not using Windows, you don’t have to modify the value for
upload_tmp_dir, as long as you want files to be placed in /tmp (the default).

Understanding the Process
The process of uploading a file to a Web server through an HTML form interface
puzzles a lot of people. Take a moment to understand the process you’ll create in
the following sections.

To start and finish this process, you need the following:

• An HTML form

• A file to upload

• A place to put the file

• A script to put it there

The process itself goes something like this:

1. The user accesses the HTML form and sees a text field and the Browse button
in his Web browser.

2. The user browses his hard drive for the file to upload and then selects a file.

3. The full file path and filename appear in the text field.

4. The user clicks the submit button.

5. The selected file goes out and lands at the Web server and sits around in a
temporary directory.

6. The PHP script used in the form action checks that a file was sent and executes
a copy command on the temporary file to move it to a real directory on the
Web server.

7. The PHP script confirms the action for the user.

Start with simply creating the HTML form interface in the next section.

Creating the Form
Start out by creating a one-field form. You can create a form to upload as many files
as you like after you get this sequence to work with one file.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Upload a File</TITLE>

</HEAD>

<BODY>

<H1>Upload a File</H1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_upload.php. Because you’ll be sending more than just text, use the
ENCTYPE attribute.

<FORM METHOD="POST" ACTION=" do_upload.php" ENCTYPE="multipart/form-data">

3. Create an input field for the file with a text label. Assume that you’ll be
uploading an image file, and name the input field img1:

<p>File to Upload:

<INPUT TYPE="file" NAME="img1" SIZE="30"></P>

168 CHAPTER 10: UPLOADING FILES TO YOUR WEB SITE

PERMISSIONS
The PHP user (the user under which PHP runs, such as nobody or www or joe)
must have write permissions in the temporary directory as well as the target
directory for the file. If you have difficulty with permissions, contact your
system administrator.

169CREATING THE FORM

4. Add a submit button and then close your form and add some more HTML so
that the document is valid:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Upload File"></P>

</FORM>

</BODY>

</HTML>

INPUT FIELDS AND HTML
The TYPE="file" attribute in the form field will display an input field with a
Browse button. The Browse button launches a file manager through which
you select the file to upload.

Figure 10.1 The upload form. 5. Save the file with the name
upload_form.html and place
this file in the document
root of your Web server.

6. Open your Web browser
and type http://127.0.0.1/
upload_form.html. See
Figure 10.1.

In the next section, you’ll create
the script that handles the file
upload.

Creating the Upload Script
Take a moment to commit the following list to memory—it contains the variables
that are automatically placed in the $_FILES superglobal after a successful file
upload. The base of img1 comes from the name of the input field in the original
form.

• $_FILES[img1][tmp_name]. The value refers to the temporary file on the Web
server.

• $_FILES[img1][name]. The value is the actual name of the file that was uploaded.
For example, if the name of the file was me.jpg, the value of $_FILES[img1][name]
is me.jpg.

• $_FILES[img1][size]. The size of the uploaded file in bytes.

• $_FILES[img1][type]. The MIME type of the uploaded file, such as image/jpg.

170 CHAPTER 10: UPLOADING FILES TO YOUR WEB SITE

MIME TYPES
A MIME (Multipurpose Internet Mail Extensions) type indicates the type of
the content being transmitted. For instance, the MIME type of a JPEG file is
image/jpg, and the MIME type of a Microsoft Word document is
application/msword.

The goal of this script is to take the uploaded file and copy it to the document root
of the Web server and return a confirmation to the user containing values for all the
variables in the preceding list.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create an if...else statement that checks for a value in $_FILES[img1].

if ($_FILES[img1] != "") {

171CREATING THE UPLOAD SCRIPT

3. If $_FILES[img1] is not empty, execute the copy function. Use @ before the
function name to suppress warnings and use the die() function to cause the
script to end and a message to display if the copy() function fails.

@copy($_FILES[img1][tmp_name],

"/usr/local/apache2/htdocs/".$_FILES[img1][name])

or die("Couldn't copy the file.");

DIRECTORIES
If the document root of your Web server is not /usr/local/apache2/htdocs/,
as shown in Step 3, change the path to match your own system. For example,
a Windows user might use /Program Files/Apache Group/Apache/htdocs/.
Also, please note that we are suppressing all internal PHP errors (using the @
sign in front of the copy function), so we display the error in a die() function
call.

4. Continue the else statement to handle the lack of a file for upload:

} else {

die("No input file specified");

5. Close the if...else statement and then close your PHP block:

}

?>

6. Add this HTML:

<HTML>

<HEAD>

<TITLE>Successful File Upload</TITLE>

</HEAD>

<BODY>

<H1>Success!</H1>

7. Mingle HTML and PHP, printing a line that displays values for the various
elements of the uploaded file (name, size, and type):

<P>You sent: <? echo $_FILES[img1][name]; ?>,

a <? echo $_FILES[img1][size]; ?> byte file with

a mime type of <? echo $_FILES[img1][type]; ?>.</P>

172 CHAPTER 10: UPLOADING FILES TO YOUR WEB SITE

Figure 10.2 The upload script. 8. Add some more HTML so that
the document is valid:

</BODY>

</HTML>

9. Save the file with the name
do_upload.php.

The code should look something
like this (see Figure 10.2).

In the next section, you finally get
to upload a file!

Uploading a File Using Your Form
and Script
This is the moment of truth, where you hold your breath and test the script.

1. Open your Web browser and type http://127.0.0.1/upload_form.html.

2. Use the Browse button to locate a file you want to upload.

173UPLOADING A FILE USING YOUR FORM AND SCRIPT

FILENAMES
This example uses a file on my own machine, so the figures won’t look quite
the same as your results.

Figure 10.3 Form filled in with full path. The full path to the file
should appear in the form
field (see Figure 10.3).

3. Click the Upload File button.

The results screen should
appear, providing information
about the file you just uploaded.

Figure 10.4 File type checking.
A WARNING ON
FILE UPLOADS

Allow your file upload
script to be used only by
yourself or other trusted
sources, unless you limit
the types of files you want
to upload by checking the
file type before copying
to the system (see Figure
10.4).

If something went wrong, verify that the output path exists (for example, that you
have a valid /usr/local/apache2/htdocs/ directory, and that it does not already
contain a file of that name.

There’s nothing to it! You’re now a file system wizard. In the next chapter, you’ll
become a database wizard as well.

174 CHAPTER 10: UPLOADING FILES TO YOUR WEB SITE

Getting to Know
Your MySQL
Database

Getting to Know
Your MySQL
Database

P A R T I V

Chapter 11
Establishing a Connection and
Poking Around..177

Chapter 12
Creating a Database Table......................197

Chapter 13
Inserting Data into the Table217

Chapter 14
Selecting and Displaying Data231

This page intentionally left blank

Establishing a
Connection and
Poking Around

During the process of installing and testing MySQL in Chapter
1, “Installing and Configuring MySQL,” you should have
created a sample database as well as a sample table and even
inserted and selected some data. The next several chapters
focus on making the same types of connections and queries
and using PHP scripts for the front end. In this chapter, you
learn how to do the following:

Connect to MySQL.

List all databases on localhost.

List all tables in a database.

Create a database.

Drop (delete) a database.

11
Establishing a
Connection and
Poking Around

11

Working with User Privileges in MySQL
When you installed the MySQL database in Chapter 1, you were working as the
anonymous or root user. Before you begin working regularly with databases, you
should create a real user with a real password. To do this, you need to understand a
bit about the MySQL privilege system.

178 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

MYSQL USERS
If you are accessing MySQL through an Internet service provider, you
probably have only one user and one database available to you. By default,
that one user has access to all tables in the database and is allowed to
perform all commands. If this is the case, you can skip the information in this
section and proceed to the script-creation sections. In all instances where a
username and password are used, use the one given to you by your ISP.

Creating a New User
If you have proper permissions for adding a user, the simplest method for
performing this task is the GRANT command. The basic syntax of the GRANT command
follows, where [privilege list] is a placeholder for the privileges you want to give
to the new user.

GRANT [privilege list] ON databasename.tablename TO

username@host IDENTIFIED BY "password";

You can grant many types of privileges, and for more information, please visit the
MySQL Manual topic at http://dev.mysql.com/doc/refman/5.0/en/grant.html. For
now, you will just grant all privileges to your new user on all tables in the database.

UNIX COMPATIBILITY
The following commands are exactly the same for MySQL on Windows and
Linux/UNIX platforms.

http://dev.mysql.com/doc/refman/5.0/en/grant.html

179CONNECTING TO MYSQL

1. Start the MySQL Monitor from the command line, using the path to the mysql
executable file that is relevant to your file system.

2. Select the database called mysql by typing the following at the mysql> prompt:

use mysql;

3. Type the following SQL statement, substituting your own username (replacing
spike@localhost) and password (replacing '9sj7En4') if you want. The wildcard
(*) grants permissions on all databases and tables:

GRANT ALL ON *.* TO spike@localhost IDENTIFIED BY "9sj7En4";

4. Exit the MySQL Monitor by typing the following at the mysql> prompt:

exit

5. Issue the command to reload the grant tables using the mysqladmin program:

mysqladmin reload

The new user (spike) will now have access to all databases and tables when using
the password 9sj7En4. This user will be the sample user in all database connectivity
scripts from this point forward. Please substitute your own username and password
where appropriate.

Connecting to MySQL
The goal of this script is simply to connect to MySQL, running on your machine
(localhost).

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the result of the mysql_connect() function:

$connection = mysql_connect("localhost", "spike", "9sj7En4")

3. Add a die() function to the mysql_connect() line to cause the script to end and
a message to display if the connection fails. Within the die() function, use the
mysql_error() function. The message that is printed upon error is the exact
error as sent by MySQL. The new line should read as follows:

$connection = mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

4. Test the value of $connection. If it’s true, the connection to MySQL was made,
and a variable is created to hold a message:

if ($connection) {

$msg = "success!";

}

180 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

WORKING WITH THE MYSQL_CONNECT() FUNCTION
The mysql_connect() function requires a hostname, username, and password
(in that order).

ERROR HANDLING
If a connection cannot be made, the script will end with the die() function.

5. Close your PHP block and then add HTML:

?>

<HTML>

<HEAD>

<TITLE>MySQL Connection</TITLE>

</HEAD>

<BODY>

6. Print the message string:

<? echo "$msg"; ?>

181CONNECTING TO MYSQL

7. Add some more HTML so that the document is valid:

</BODY>

</HTML>

Figure 11.1 The database connect script in action. 8. Save the file with the name
db_connect.php and place
this file in the document
root of your Web server.

9. Open your Web browser
and type http://127.0.0.1/
db_connect.php.
See Figure 11.1.

If you entered the correct
username and password, you
should have a successful result.

NEW FUNCTIONALITY WARNING!
With PHP 6.0, MySQL support is not enabled by default. If you want to use
MySQL with version 6.0, you will need to edit the php.ini file and
uncomment the line that includes the MySQL DLL:

extension=php_mysql.dll

Make sure there is no semi-colon (;) in front of the line. You may also need to
configure the extensions directory setting:

; Directory in which the loadable extensions (modules) reside.

extension_dir = "c:\php6\ext\"

to be wherever your PHP install is done on your system. In my case, it is
c:\php. Note that the trailing backslash (or forward slash on Linux) is
extremely important. If you do not do these two things, you may see an error
such as Fatal Error: Call to undefined function mysql_connect. If this
happens, check the above settings.

Breaking Your Connection Script
Anytime you work with databases, you will have errors. It’s inevitable. That’s why I
want to show you some common errors and how to handle them fairly gracefully.

You’ll make a modification to the db_connect.php script that causes it to fail on
connection, simply by changing the username.

1. Change the username to buffy (unless buffy is a real user!) so that the
connection line reads as follows:

$connection = mysql_connect("localhost", "buffy", "9sj7En4")

or die(mysql_error());

182 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

Figure 11.2 The connection script with an error. 2. Save the file and then open
your Web browser to
http://127.0.01/

db_connect.php.
See Figure 11.2.

That is some kind of nasty response! At least it tells you exactly what is wrong and
several times over: User buffy couldn’t connect to MySQL. You can suppress one of
the ugly warnings and just go with the message from the die() function by placing
a @ before the mysql_connect() function name. Try it.

1. Add a @ before the mysql_connect() function, keeping the bad username:

$connection = @mysql_connect("localhost", "buffy", "9sj7En4")

or die(mysql_error());

183LISTING DATABASES ON A SERVER

If you can keep nasty errors and warnings to a minimum, it will make the overall
user experience much more pleasant if your database decides to render itself
unavailable during peak Web-surfing hours.

Listing Databases on a Server
Now that you’ve successfully used PHP to make a connection to MySQL, it’s time to
familiarize yourself with some of the built-in MySQL-related functions. In this
section, you use the following functions:

• mysql_list_dbs()—Used to list the databases on a MySQL server.

• mysql_num_rows()—Returns the number of rows in a result set.

• mysql_tablename()—Despite its name, can extract the name of a table or a
database from a result.

The goal of this script is to list all the databases on the local MySQL server.

1. Open a new file in your text editor and start a PHP block:

<?

Figure 11.3 Suppressing error messages. 2. Save the file, and then open
your Web browser to
http://127.0.0.1/

db_connect.php. See
Figure 11.3.

With this change, the warning is
suppressed, and only the
message from the die()
function is displayed, which is a
meaningful error message
output from the mysql_error()
function.

2. Create a variable to hold the result of the mysql_connect() function. Include the
@ to suppress warnings, as well as the die() function to cause the script to end
and a message to display if the connection fails:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

3. Create a variable to hold the result of the mysql_list_dbs() function. Include
the @ to suppress warnings, as well as the die() function to cause the script to
end and a message to display if the script can’t get the list:

$dbs = @mysql_list_dbs($connection) or die(mysql_error());

184 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

THE MYSQL_LIST_DBS() FUNCTION
The only argument necessary for the mysql_list_dbs() function is the link
identifier for the current connection.

4. You’ll be looping through a result and dynamically populating a bulleted list.
Start that bulleted list outside the loop:

$db_list = "";

5. Start a counter. You’ll need it for your loop:

$i = 0;

6. Begin a while loop. This loop will continue for as long as the value of $i is less
than the number of rows in the $dbs result value:

while ($i < mysql_num_rows($dbs)) {

7. Once you’re within the while loop, get the name of the database reflected in
the current row of the result:

$db_names[$i] = mysql_tablename($dbs, $i);

185LISTING DATABASES ON A SERVER

8. Add the current database name to the bulleted list:

$db_list .= "$db_names[$i]";

9. Increment your count before you close the while loop:

$i++;

10. Close the while loop, the bulleted list, and your PHP block:

}

$db_list .= "";

?>

11. Add this HTML:

<HTML>

<HEAD>

<TITLE>MySQL Databases</TITLE>

</HEAD>

<BODY>

<P>Databases on localhost:</P>

12. Print the message string:

<? echo "$db_list"; ?>

13. Add some more HTML so that the document is valid:

</BODY>

</HTML>

14. Save the file with the name db_listdb.php.

VARIABLE SUBSTITUTION IN PHP
The variable $i is replaced by its value, so during the first loop, this line
would be something like $db_names[0] = mysql_tablename($dbs, 0);

Counting starts at 0, not 1, so this would reflect the first row in the result. As
the counter increments, so does the row number.

All together, your code should look like this:

<?

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$dbs = @mysql_list_dbs($connection)or die(mysql_error());

$db_list ="";

$i =0;

while ($i < mysql_num_rows($dbs)){

$db_names[$i] = mysql_tablename($dbs,$i);

$db_list .= "$db_names[$i]";

$i++;

}

$db_list .="";

?>

<HTML>

<HEAD>

<TITLE>MySQL Databases</TITLE>

</HEAD>

<BODY>

<P>Databases on localhost:</P>

<? echo "$db_list"; ?>

</BODY>

</HTML>

186 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

Figure 11.4 The database list script in action. Place this file in the document
root of your Web server; then
open your Web browser and
type http://127.0.0.1/

db_listdb.php. See Figure 11.4.

Your list might vary, depending
on how much you played around
with things in the first chapter,
but you should at least see the
MySQL system database (mysql)
and the database created in
Chapter 1 (testDB). Next, you
add another loop to this script
to print the tables within each
database.

187LISTING TABLES IN A DATABASE

Listing Tables in a Database
A few additions to the db_listdb.php script are all you need to list the tables in the
databases as well. The only new function you’ll see is mysql_list_tables(), which is
used to list tables within a MySQL database.

The goal of this script is to list all of the databases, including the tables within
those databases, on the local MySQL server.

1. Open a new file in your text editor and start a PHP block:

<?

2. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

3. Create a variable to hold the result of the mysql_list_dbs() function. Include
the @ to suppress warnings, as well as the die() function to cause the script to
end and a message to display if the script can’t get the list:

$dbs = @mysql_list_dbs($connection) or die(mysql_error());

4. You’ll be looping through a result and dynamically populating a bulleted list.
Start that bulleted list outside the loop:

$db_list = "";

5. Start a counter. You’ll need it for your loop:

$db_num = 0;

NOTES ON PERMISSIONS AND USERS
If the user you use to log in to the database does not have permission to see
a given database, it will not be listed.

6. Begin a while loop. This loop will continue for as long as the value of $db_num is
less than the number of rows in the $dbs result value:

while ($db_num < mysql_num_rows($dbs)) {

7. Once you’re within the while loop, get the name of the database reflected in
the current row of the result:

$db_names[$db_num] = mysql_tablename($dbs, $db_num);

8. Add the current database name to the bulleted list:

$db_list .= "$db_names[$db_num]";

9. Create a variable to hold the result of the mysql_list_tables() function. Include
the @ to suppress warnings, as well as the die() function to cause the script to
end and a message to display if the script can’t get the list:

$tables = @mysql_list_tables($db_names[$db_num]) or die(mysql_error());

188 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

WATCH YOUR COUNTERS
Use $db_num instead of $i as the counter because at one point in this script,
you’ll have two counters going at the same time.

USING THE MYSQL_LIST_TABLES() FUNCTION
The only argument necessary for the mysql_list_tables() function is the
name of the current database.

10. You’ll be looping through a result and dynamically populating a bulleted list.
Start that bulleted list outside the loop:

$table_list = "";

11. Start a counter. You’ll need it for your second loop:

$table_num = 0;

189LISTING TABLES IN A DATABASE

12. Begin a while loop. This loop will continue for as long as the value of
$table_num is less than the number of rows in the $tables result value.

while ($table_num < mysql_num_rows($tables)) {

13. Once you’re within the while loop, get the name of the table reflected in the
current row of the result:

$table_names[$table_num] = mysql_tablename($tables, $table_num);

14. Add the current table name to the bulleted list:

$table_list .= "$table_names[$table_num]";

15. Increment your count before you close the while loop:

$table_num++;

16. Close the inner while loop and the bulleted list of tables:

}

$table_list .= "";

17. Add the value of $table_list to $db_list, and then increment your count
before you close the outer while loop:

$db_list .= "$table_list";

$db_num++;

}

18. Close the bulleted list of databases and then close your PHP block:

$db_list .= "";

?>

19. Add this HTML:

<HTML>

<HEAD>

<TITLE>MySQL Tables</TITLE>

</HEAD>

<BODY>

<P>Databases and tables on localhost:</P>

20. Print the message string:

<? echo "$db_list"; ?>

21. Add some more HTML so that the document is valid:

</BODY>

</HTML>

22. Save the file with the name db_listtables.php.

Your code should look something like this:

<?

//connection code

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

//get database list

$dbs = @mysql_list_dbs($connection) or die(mysql_error());

//start first bullet list

$db_list = "";

$db_num = 0;

//loop through results of function

while ($db_num < mysql_num_rows($dbs)) {

//get database names and make each a bullet point

$db_names[$db_num] = mysql_tablename($dbs, $db_num);

$db_list .= "$db_names[$db_num]";

//get table names and start another bullet list

$tables = @mysql_list_tables($db_names[$db_num]) or die(mysql_error());

$table_list = "";

$table_num = 0;

//loop through results of function

while ($table_num < mysql_num_rows($tables)) {

//get table names and make each a bullet point

$table_names[$table_num] = mysql_tablename($tables, $table_num);

$table_list .= "$table_names[$table_num]";

$table_num++;

}

//close inner bullet list and increment number to continue loop

$table_list .= "";

$db_list .= "$table_list";

$db_num++;

}

190 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

191CREATING A NEW DATABASE

//close outer bullet list

$db_list .= "";

?>

<HTML>

<HEAD>

<TITLE>MySQL Tables</TITLE>

</HEAD>

<BODY>

<P>Databases and tables on localhost:</P>

<? echo "$db_list"; ?>

</BODY>

</HTML>

Figure 11.5 The table list script in action. It’s time to see if this script
lists the databases on your
server, including their tables,
so place this file in the
document root of your Web
server and open your Web
browser to http://127.0.0.1/
db_listtables.php. See
Figure 11.5.

Because all privileges on all tables were granted to the test user, you should see a
list of all tables and databases, including those reserved by the system. Your
mileage might vary, depending on your server setup and your databases and
tables.

In the next section, you’ll attempt to create new databases on your server.

Creating a New Database
The complex elements of the previous scripts are nowhere to be found in this next
script. The goal of this script is to create a new database on the MySQL server.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the query to issue, which will create the new
database:

$sql = "CREATE database testDB2";

3. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

4. Issue the query, using the mysql_query() function. Include the @ to suppress
warnings, as well as the die() function to cause the script to end and a message
to display if the query fails:

$result = @mysqlquery($sql, $connection) or die(mysql_error());

5. Test the value of $result. If it’s true, the query was successful, and a variable is
created to hold a message:

if ($result) {

$msg = "<P>Database has been created!</P>";

}

6. Close your PHP block, and then add HTML:

?>

<HTML>

<HEAD>

<TITLE>Create a MySQL Database</TITLE>

</HEAD>

<BODY>

7. Print the message string:

<? echo "$msg"; ?>

192 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

193CREATING A NEW DATABASE

8. Add some more HTML so that the document is valid:

</BODY>

</HTML>

9. Save the file with the name db_createdb.php and place this file in the document
root of your Web server.

10. Open your Web browser and type http://127.0.0.1/db_createdb.php.

Figure 11.6 The database creation script in action. If the database creation was
successful, you’ll see this
message, as in Figure 11.6.

If the database creation failed,
you may not see any message at
all. This is due to the fact that
we suppressed all errors from
the connection and query
functions. If you see nothing at
all, remove the @ sign from the
functions above to see what is
going on.

Figure 11.7 The updated database list. Verify that the new database is
present by opening your Web
browser to http://127.0.01/
db_listdb.php. You should see
your new database in the list, as
shown in Figure 11.7.

In the next section, you’ll drop (delete) the database you just created.

Deleting a Database
The goal of this script is to delete a database on the MySQL server. To do so, you
simply have to modify the query used in the previous script.

1. Open db_createdb.php in your text editor.

2. Change the value of the $sql variable to:

$sql = "DROP DATABASE testDB2";

3. Change the error message and the HTML title to reflect that you want to delete
a database and not create one.

Your code should look something like this:

<?

$sql = "DROP DATABASE testDB2";

$connection = @mysql_connect("localhost","spike","9sj7En4")

or die(mysql_error());

$result = @mysql_query($sql,$connection) or die(mysql_error());

if ($result) {

$msg ="<P>Database has been deleted!</P>";

}

?>

194 CHAPTER 11: ESTABLISHING A CONNECTION AND POKING AROUND

WARNING
If you happen to have pages cached in the browser, you may not see the new
database listed. If this happens, press the Refresh button (or hit Ctrl+R on
most browsers) to re-run the script. The database should then appear.

195DELETING A DATABASE

<HTML>

<HEAD>

<TITLE>Delete a MySQL Database</TITLE>

</HEAD>

<BODY>

<? echo "$msg"; ?>

</BODY>

</HTML>

4. Save the file with the new name db_dropdb.php and place this file in the
document root of your Web server.

Figure 11.8 Deleting a database. 5. Open your Web browser
and type http://127.0.0.1/
db_dropdb.php. See
Figure 11.8.

If the database deletion was
successful, you’ll see the
message in Figure 11.8.

Once again, you can verify this
by running the db_listdb.php
script to see if your database
has been successfully removed.

In the next chapter, you’ll create a database table for keeps, and you’ll eventually
populate that table with some data.

This page intentionally left blank

Creating a
Database Table

You have this great database server and only a table called
test_table sitting in a database called testDB. Where’s the fun?
In this chapter, you’ll learn how to do the following:

Plan for a database table.

Recognize the pitfalls of certain data types.

Recognize the importance of unique fields.

Follow a two-step process for table creation.

Create a table to hold your personal music catalog.

12
Creating a
Database Table

12

Planning for Your Tables
Creating a table is easy—it’s the planning that takes some brainpower. To create a
simple table, you only need to give it a name. But that would make for a boring
table, because it wouldn’t contain any columns (fields) and couldn’t hold any data.
So besides the name, you should know the number of fields and the types of fields
you want to have in your table.

Basic MySQL Data Types
All fields in a table are given a particular data type definition. The data type defines
the type of data that’s allowed in the field. With some data type definitions, you
must also define the maximum length you want to allow in the field, but others are
assumed to have one specific length for its particular type.

It’s very important to define fields appropriately. For example, if you have a field to
hold the name of a recording, and it’s a 50-character varchar field, yet you try to
stuff a 100-character string into the field, your string will truncate at 50 characters.

Not only is it important to define the fields correctly so that the data fits inside the
fields, but if you define a field with an incorrect SQL syntax, the table won’t be
created, period. For example, if you want to use the text data type for a field, you
cannot specify a length: It’s automatically assumed to have a particular length.

Table 12.1 shows some of the more common types you will use. For a complete list,
please read the MySQL manual.

Defining Your Fields
The overall goal of this chapter is to create a table to hold data from your own
personal music collection. Take a moment to think about the kinds of things you’d
want to know: the title and artist, obviously, and maybe the record label, the date it
was acquired, and your own personal notes regarding the recording. I thought
about what I wanted for my own table, which I’ve decided to call my_music, as
shown in Table 12.2.

198 CHAPTER 12: CREATING A DATABASE TABLE

199PLANNING FOR YOUR TABLES

Table 12.1 Some MySQL Data Types

Data Type Definition

TINYINT A very small integer that can be signed or unsigned. If signed, the
allowable range is from –128 to 127. If unsigned, the allowable range
is from 0 to 255.

SMALLINT A small integer that can be signed or unsigned. If signed, the
allowable range is from –32768 to 32767. If unsigned, the allowable
range is from 0 to 65535.

BOOL A Boolean true or false value. This value type is an alias for TINYINT.

MEDIUMINT A medium-sized integer that can be signed or unsigned. If signed, the
allowable range is from –8388608 to 8388607. If unsigned, the
allowable range is from 0 to 16777215.

INT A normal-size integer that can be signed or unsigned. If signed, the
allowable range is from –2147483648 to 2147483647. If unsigned, the
allowable range is from 0 to 4294967295.

BIGINT A large integer that can be signed or unsigned. If signed, the
allowable range is from –9223372036854775808 to
9223372036854775808. If unsigned, the allowable range is from 0 to
18446744073709551615.

FLOAT A floating-point number that cannot be unsigned. You can define the
display length (M) and the number of decimals (D). This is not required
and will default to 10,2, where 2 is the number of decimals. Decimal
precision can go to 24 places for a FLOAT.

DOUBLE A normal-size (double-precision) floating-point number. Allowable
values are –1.7976931348623157E+308 to –2.2250738585072014E-
308, 0, and 2.2250738585072014E-308 to
1.7976931348623157E+308.

DATE A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31.
For example, December 30, 1973, would be stored as 1973-12-30.

DATETIME A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31,
plus hour and minute information in HH:MM:SS format. For example,
12:01 AM on December 30, 1973, would be stored as 1973-12-30
00:01:00.

200 CHAPTER 12: CREATING A DATABASE TABLE

Table 12.1 Some MySQL Data Types (continued)

Data Type Definition

TIMESTAMP A timestamp between midnight, January 1, 1970, and sometime in
2037. You can define multiple lengths to the TIMESTAMP field, which
directly correlate to what is stored in it. The default length for
TIMESTAMP is 14, which stores YYYYMMDDHHMMSS. This looks like
the DATETIME format, only without the hyphens between numbers;
3:30 in the afternoon on December 30, 1973, would be stored as
19731230153000. Other definitions of TIMESTAMP are 12
(YYMMDDHHMMSS), 8 (YYYYMMDD), and 6 (YYMMDD).

CHAR A fixed-length string between 1 and 255 characters in length, right-
padded with spaces to the specified length when stored. Defining a
length is not required, but the default is 1.

BINARY The BINARY type is pretty much the same as the CHAR type, except that
you can store binary values in it, rather than plain character values.

VARBINARY This type is the same as the VARCHAR type, except that it stores binary
values rather than character strings.

VARCHAR A variable-length string between 1 and 255 characters in length. You
must define a length when creating a VARCHAR field.

BLOB or TEXT A field with a maximum length of 65,535 characters. BLOBs are “Binary
Large Objects” and are used to store large amounts of binary data,
such as images or other types of files. Fields defined as TEXT also hold
large amounts of data; the difference between the two is that sorts
and comparisons on stored data are case sensitive in BLOBs and case
insensitive in TEXT fields. You do not specify a length with BLOB or
TEXT.

ENUM An enumeration (list). When defining an ENUM, you are creating a list of
items from which the value must be selected (or it can be NULL). For
example, if you wanted your field to contain either “A” or “B” or “C”,
you would define your ENUM as ENUM ('A', 'B', 'C'), and only those
values (or NULL) could ever populate that field. ENUMs can have 65,535
different values.

201PLANNING FOR YOUR TABLES

In the next section, you’ll create a sequence of forms that will take your table
information and send it to your MySQL database. In the first step, you’ll submit the
name of the table and the number of fields you want to include. The second step
will display additional form fields so that you can define the properties of your
table columns. A third step will send the request to MySQL, verify that the table
was created, and display a “Success!” message.

The Importance of Unique Fields
Using unique ID numbers not only helps you keep track of your data, but also down
the road, helps you attempt to establish relationships between multiple tables. In
the my_music table, there will be an ID field. Using this field as the unique field
instead of the title field will allow you to have two recordings in your table that
have the same name. For example, if you own the album Strange Fire by Indigo
Girls, you could have two entries in your table: one for the version released in 1987
and one for the version re-released in 1989 (just trust me on that one).

Without using a unique identifier, you would have to pick only one version to put in
your table, and your table wouldn’t be very accurate. I hope this simple example
conveys the importance of having a unique identifier in each record in your table.
The usage of the unique identifier will become more apparent throughout the
remainder of this book as you create more database-driven elements.

Table 12.2 Fields for my_music

Field Name Description

id Creates a unique ID number for the entry

format Is it a CD, cassette, or even an LP?

title The title of the recording

artist_fn The artist’s first name

artist_ln The artist’s last name or the name of the group

rec_label The record label

my_notes My own thoughts about the recording

date_acq Date acquired

A Two-Step Form Sequence
A two-step form sequence for creating a database table might seem like overkill.
After all, you saw a basic table-creation SQL statement in Chapter 1, “Installing and
Configuring MySQL,”when you created test_table:

create table test_table (test_id int, test_note text);

When using a PHP script to create a table, all you’re doing is sending the exact
same query to MySQL. However, you can tie a pretty ribbon around the process
(creating a form-based interface) and call it an administrative interface!

In the process of creating the administrative interface, you’ll start with an HTML
form and then create a PHP script that takes information from that form and
dynamically creates another form. Finally, you’ll create a script that sends the actual
SQL query.

Step 1: Number of Fields
This HTML form will contain two input fields: one for the name of the table and one
for the number of fields you want your table to contain.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 1</TITLE>

</HEAD>

<BODY>

<H1>Step 1: Name and Number</H1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_showfielddef.php:

<FORM METHOD="POST" ACTION="do_showfielddef.php">

3. Create an input field for the table name with a text label:

<P>Table Name:

<INPUT TYPE="text" NAME="table_name" SIZE=30></P>

202 CHAPTER 12: CREATING A DATABASE TABLE

203A TWO-STEP FORM SEQUENCE

4. Create an input field for the number of fields in the table with a text label:

<P>Number of Fields:

<INPUT TYPE="text" NAME="num_fields" SIZE=5></P>

5. Add a submit button, and then close your form and add some more HTML so
that the document is valid:

<P><INPUT TYPE="submit" NAME="submit" VALUE="Go to Step 2"></P>

</FORM>

</BODY>

</HTML>

Figure 12.1 The table creation form. 6. Save the file with the name
show_createtable.html and
place this file in the
document root of your Web
server.

7. Open your Web browser
and type http://127.0.0.1/
show_createtable.html.
See Figure 12.1.

In the next section, you’ll follow Step 2 of the process and create the script that
dynamically creates another form based on the values of $_POST[table_name] and
$_POST[num_fields].

Step 2: Defining Your Fields
In Step 1, you created variables to hold the name of the table ($_POST[table_name])
and the number of fields you want to place in the table ($_POST[num_fields]). In this
step, you’ll create a PHP script to display additional form elements needed for
further definition of the fields: name, type, and length.

1. Open a new file in your text editor and start a PHP block:

<?

2. Check that values were actually entered for $_POST[table_name] and
$_POST[num_fields]. If they weren’t, direct the user back to the form and exit
the script:

if ((!$_POST[table_name]) || (!$_POST[num_fields])) {

header("Location: show_createtable.html");

exit;

}

3. Start building a string called $form_block, starting with the form action and
method. Assume that the method is POST and the action is a script called
do_createtable.php. Remember to escape your quotation marks!

$form_block = "

<FORM METHOD=\"POST\" ACTION=\"do_createtable.php\">

204 CHAPTER 12: CREATING A DATABASE TABLE

STRING CREATION
Because the script is creating the next form on-the-fly (dynamically), build
one big string so that you can echo just the string after the complicated
parsing has taken place. This way you won’t be stuck with a half-built page
that won’t display if an error occurs.

4. Add a hidden field to hold the value of $_POST[table_name], which you’ll use at
the end of the sequence just to show the user that the proper table has been
created:

<INPUT TYPE=\"hidden\" NAME=\"table_name\" VALUE=\"$_POST[table_name]\">

5. Display your form in an HTML table so that fields line up nicely. Start with a row
of column headings and close the $form_block string for now:

<TABLE CELLSPACING=5 CELLPADDING=5>

<TR>

<TH>FIELD NAME</TH><TH>FIELD TYPE</TH><TH>FIELD LENGTH</TH></TR>";

205A TWO-STEP FORM SEQUENCE

6. Start a for loop to handle the creation of the form fields. Like a while loop, a
for loop continues as long as a condition is true. In this case, the for loop starts
out with the variable $i having a value of 0, and it continues for as long as $i is
less than the value of $_POST[num_fields]. After each loop, $i is incremented
by 1:

for ($i = 0; $i <$_POST[num_fields]; $i++) {

7. Within the for loop, you’ll add to the original $form_block. You’ll add one row
for each field you want to have in your database table. Start with the table row
tag and a table data cell containing an input type for the field name:

$form_block .= "

<TR>

<TD ALIGN=CENTER><INPUT TYPE=\"text\" NAME=\"field_name[]\"

SIZE=\"30\"></TD>

BRACKETS IN PHP
The use of brackets (the []) after field_name in your input field indicates an
array. For each field you define in this form, you’ll be adding a value to the
$_POST[field_name] array.

An array holds many variables in numbered slots, beginning with 0. Slots are
added automatically as the array grows. For example, if you are creating a
database table with six fields, the $_POST[field_name] array will be made up
of six field name variables: $_POST[field_name][0], $_POST[field_name][1],
$_POST[field_name][2], $_POST[field_name][3], $_POST[field_name][4], and
$_POST[field_name][5].

8. In the next table data cell, create a drop-down list containing some common
field types:

<TD ALIGN=CENTER>

<SELECT NAME=\"field_type[]\">

<OPTION VALUE=\"char\">char</OPTION>

<OPTION VALUE=\"date\">date</OPTION>

<OPTION VALUE=\"float\">float</OPTION>

<OPTION VALUE=\"int\">int</OPTION>

<OPTION VALUE=\"text\">text</OPTION>

<OPTION VALUE=\"varchar\">varchar</OPTION>

</SELECT>

</TD>

9. In the final table data cell, create a text field for the length of the field and
close your table row. Also close the $form_block string because you’re done
with it for now:

<TD ALIGN=CENTER><INPUT TYPE=\"text\" NAME=\"field_length[]\"

SIZE=\"5\"></TD>

</TR>";

10. Close the for loop:

}

11. Add the final chunk of HTML to the $form_block string. You’ll add one row
that holds the submit button and then close your table and form:

$form_block .= "

<TR>

<TD ALIGN=CENTER COLSPAN=3><INPUT TYPE=\"submit\" VALUE=\"Create

Table\"></TD>

</TR>

</TABLE>

</FORM>";

12. Close the PHP block and type the following HTML:

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 2</TITLE>

</HEAD>

<BODY>

13. Add a nice heading so that the users know what they are viewing. Mingle
HTML and PHP to include the value of the $_POST[table_name] variable:

<H1>Define fields for <? echo "$_POST[table_name]"; ?></H1>

206 CHAPTER 12: CREATING A DATABASE TABLE

207A TWO-STEP FORM SEQUENCE

14. Display the contents of $form_block:

<? echo "$form_block"; ?>

15. Add some more HTML so that the document is valid:

</BODY>

</HTML>

16. Save the file with the name do_showfielddef.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//validate important input

if ((!$_POST[table_name]) || (!$_POST[num_fields])) {

header("Location: show_createtable.html");

exit;

}

//begin creating form for display

$form_block = "

<FORM METHOD=\"POST\" ACTION=\"do_createtable.php\">

<INPUT TYPE=\"hidden\" NAME=\"table_name\" VALUE=\"$_POST[table_name]\">

<TABLE CELLSPACING=5 CELLPADDING=5>

<TR>

<TH>FIELD NAME</TH><TH>FIELD TYPE</TH><TH>FIELD LENGTH</TH></TR>";

//count from 0 until you reach the number of fields

for ($i = 0; $i <$_POST[num_fields]; $i++) {

//add to the form, one row for each field

$form_block .= "

<TR>

<TD ALIGN=CENTER>

<INPUT TYPE=\"text\" NAME=\"field_name[]\" SIZE=\"30\"></TD>

<TD ALIGN=CENTER>

<SELECT NAME=\"field_type[]\">

<OPTION VALUE=\"char\">char</OPTION>

<OPTION VALUE=\"date\">date</OPTION>

<OPTION VALUE=\"float\">float</OPTION>

<OPTION VALUE=\"int\">int</OPTION>

<OPTION VALUE=\"text\">text</OPTION>

<OPTION VALUE=\"varchar\">varchar</OPTION>

</SELECT>

</TD>

<TD ALIGN=CENTER>

<INPUT TYPE=\"text\" NAME=\"field_length[]\" SIZE=\"5\"></TD>

</TR>";

}

//finish up the form

$form_block .= "

<TR>

<TD ALIGN=CENTER COLSPAN=3><INPUT TYPE=\"submit\" VALUE=\"Create Table\"></TD>

</TR>

</TABLE>

</FORM>";

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 2</TITLE>

</HEAD>

<BODY>

<H1>Define fields for <? echo "$_POST[table_name]"; ?></H1>

<? echo "$form_block"; ?>

</BODY>

</HTML>

In the next section, you’ll go from Step 1 to Step 2, preparing to create the table.

Starting the Table Creation Process
You should be able to go from Step 1 (naming the table and providing the number
of fields) to Step 2 (defining the fields) without any problems. Let’s try it out.

1. Open your Web browser to http://127.0.0.1/show_createtable.html.

2. In the Table Name field, type my_music.

208 CHAPTER 12: CREATING A DATABASE TABLE

Figure 12.2 Create database form Step 2. 3. In the Number of Fields
field, type 8.

4. Click the Go to Step 2
button. You should see the
form in Figure 12.2.

209A TWO-STEP FORM SEQUENCE

There are eight rows, corresponding to the eight fields you want to create in the
my_music table. Populate those fields, but hold off on pressing the Create Table
button, because you haven’t created the script yet!

1. In the first row, type id for the Field Name, select int from the Field Type drop-
down menu, and specify a Field Length of 5.

2. In the second row, type format for the Field Name, select char from the Field
Type drop-down menu, and specify a Field Length of 2.

3. In the third row, type title for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 150.

4. In the fourth row, type artist_fn for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100.

5. In the fifth row, type artist_ln for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100.

6. In the sixth row, type rec_label for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 50.

7. In the seventh row, type my_notes for the Field Name and select text from the
Field Type drop-down menu.

8. In the eighth row, type date_acq for the Field Name and select date from the
Field Type drop-down menu.

TEXT FIELDS AND LENGTH IN MYSQL
No field length is specified for the my_notes field because it is a text field,
and thus no length is used in its definition, as you learned. Similarly, no
length is specified for the date_acq field because data in these fields is stored
in the specific 0000-00-00 format.

Creating the Table-Creation Script
This script will build a SQL statement and then send it to MySQL to create the
my_music table.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the name of the database on which the table should
reside:

$db_name = "testDB";

3. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

4. Create a variable to hold the result of the mysql_select_db() function. Include
the @ to suppress warnings, as well as the die() function to cause the script to
end and a message to display if the selection of the database fails:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

210 CHAPTER 12: CREATING A DATABASE TABLE

Figure 12.3 The completed database schema form. The completed form should look
like Figure 12.3.

In the next section, you’ll create
the back-end script for this form
so that you can click that button
and create the table.

211CREATING THE TABLE-CREATION SCRIPT

5. Start building the query by placing the initial syntax in a variable called $sql:

$sql = "CREATE TABLE $_POST[table_name] (";

6. Create a for loop to create the remainder of the SQL statement. The loop
should repeat for the number of fields contained as elements in the
$_POST[field_name] array:

for ($i = 0; $i < count($_POST[field_name]); $i++) {

THE MYSQL_SELECT_DB() FUNCTION
The mysql_select_db() function requires a database name and the link
identifier for the current connection.

ARRAY COUNT
The count() function counts the number of elements in an array.

7. For each new field, you’ll need to add the field name and type to the SQL
statement:

$sql .= $_POST[field_name][$i]." ".$__POST[field_type][$i];

8. Because some field definitions will have a specific length and others will not,
start an if...else block to handle this aspect. If a length is present, it must go
inside parentheses, followed by a comma to start the next field definition:

if ($_POST[field_length][$i] != "") {

$sql .= " (".$_POST[field_length][$i]."),";

9. If no length is present, just print the comma to separate the field definitions.
Then close the if...else block:

} else {

$sql .= ",";

}

10. Close the for loop:

}

11. The SQL statement held in $sql still needs some help. It should have an
extraneous comma at the end of it, and the parentheses must be closed. Use
the substr() function to return the entire string, with the exception of the
last character:

$sql = substr($sql, 0, -1);

212 CHAPTER 12: CREATING A DATABASE TABLE

LOOPING THROUGH CHARACTERS IN A STRING
The 0 in the substr() argument list tells the function to begin at the first
character, and the –1 tells the function to stop at the next-to-last character.

12. Close the parentheses:

$sql .= ")";

13. Create a variable to hold the result of the mysql_query() function. Include the
@ to suppress warnings, as well as the die() function to cause the script to
end and a message to display if the query fails:

$result = mysql_query($sql,$connection) or die(mysql_error());

14. Test the value of $result. If it’s true, the query was successful, and a variable
is created to hold a message:

if ($result) {

$msg = "<P>".$_POST[table_name]." has been created!</P>";

}

15. Close your PHP block and add HTML:

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 3</TITLE>

</HEAD>

<BODY>

213CREATING THE TABLE-CREATION SCRIPT

16. Add a nice heading so that the users know what they are viewing. Mingle
HTML and PHP to include the value of the $_POST[db_name] variable:

<h1>Adding table to <? echo "$db_name"; ?>...</h1>

17. Print the message string:

<? echo "$msg"; ?>

18. Add some more HTML so that the document is valid:

</BODY>

</HTML>

19. Save the file with the name do_createtable.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//indicate the database you want to use

$db_name = "testDB";

//connect to database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//start creating the SQL statement

$sql = "CREATE TABLE $_POST[table_name] (";

//continue the SQL statement for each new field

for ($i = 0; $i < count($_POST[field_name]); $i++) {

$sql .= $_POST[field_name][$i]." ".$_POST[field_type][$i];

if ($_POST[field_length][$i] != "") {

$sql .= " (".$_POST[field_length][$i]."),";

} else {

$sql .= ",";

}

}

//clean up the end of the string

$sql = substr($sql, 0, -1);

$sql .= ")";

//execute the query

$result = mysql_query($sql,$connection) or die(mysql_error());

//get a good message for display upon success

if ($result) {

$msg = "<P>".$_POST[table_name]." has been created!</P>";

}

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 3</TITLE>

</HEAD>

<BODY>

<h1>Adding table to <? echo "$db_name"; ?>...</h1>

<? echo "$msg"; ?>

</BODY>

</HTML>

Go on to the next step, where you get to click a button and create a table.

Create That Table!

214 CHAPTER 12: CREATING A DATABASE TABLE

Figure 12.4 Successful table creation. You should still have your Web
browser opened to the field
definition form, with the fields
complete and ready for
submission. Go ahead and click
the Create Table button. If
everything goes smoothly, you’ll
see the response shown in
Figure 12.4.

215CREATE THAT TABLE!

In the next chapter, you’ll create an HTML form interface to a script that adds
entries to the my_music table.

Figure 12.5 The updated table list. To prove that the my_music table
has really been created in the
testDB database, access the
db_listtables.php script you
created in the previous chapter.
You should see the my_music
table in the list (see Figure 12.5).

This page intentionally left blank

Inserting Data
into the Table

The my_music database table is just sitting there, waiting for
you to add information about your music collection. In this
chapter, you’ll learn how to do the following:

Create an administrative interface for adding a record.

Create a script to insert the record into your table.

13
Inserting Data
into the Table

13

Creating the Record Addition Form
The HTML form will contain an input field for each column in the my_music database
table. In the previous chapter, you created eight fields, which correspond to eight
columns. Your record addition interface should have a space for each of these
fields.

218 CHAPTER 13: INSERTING DATA INTO THE TABLE

DATABASE FIELD NAMES
Use the database field names as the value of the NAME attribute in the HTML
form fields. Also, where appropriate, use the size of the database field as the
value of the MAXLENGTH attribute in the HTML form fields.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Add a Record</TITLE>

</HEAD>

<BODY>

<H1>Adding a Record to my_music</H1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_addrecord.php:

<FORM METHOD="POST" ACTION="do_addrecord.php">

3. Begin an HTML table to assist in layout. Start a new table row and table data
cell, and then create an input field for the ID, with a text label:

<TABLE CELLSPACING=3 CELLPADDING=3>

<TR>

<TD VALIGN=TOP>

<P>ID:

<INPUT TYPE="text" NAME="id" SIZE=5 MAXLENGTH=5></P>

219CREATING THE RECORD ADDITION FORM

4. Create an input field for the date acquired with a text label. Close the table
data cell after the input field:

<P>Date Acquired (YYYY-MM-DD):

<INPUT TYPE="text" NAME="date_acq" SIZE=10 MAXLENGTH=10></P>

</TD>

MONTH, DATE, YEAR FORMAT
The date type used in MySQL uses the YYYY-MM-DD format. An example of
a date using this format is 2004-03-02 (March 2, 2004).

5. In a new table data cell, create a set of radio buttons to select the format of the
recording. Close the table data cell and the table row after the set of radio
buttons:

<TD VALIGN=TOP>

<P>Format:

<INPUT TYPE="radio" NAME="format" VALUE="CD" checked> CD

<INPUT TYPE="radio" NAME="format" VALUE="CS"> cassette

<INPUT TYPE="radio" NAME="format" VALUE="LP"> LP

</P>

</TD>

</TR>

6. Start a new table row and table data cell, and then create an input field for the
title with a text label. Close the table data cell after the input field:

<TR>

<TD VALIGN=TOP>

<P>Title:

<INPUT TYPE="text" NAME="title" SIZE=35 MAXLENGTH=150></P>

</TD>

7. In a new table data cell, create an input field for the record label information
with a text label. Close the table data cell and the table row after the input
field:

<TD VALIGN=TOP>

<P>Record Label:

<INPUT TYPE="text" NAME="rec_label" SIZE=35 MAXLENGTH=50></P>

</TD>

</TR>

8. Start a new table row and table data cell, and then create an input field for the
artist’s first name with a text label. Close the table data cell after the input field:

<TR>

<TD VALIGN=TOP>

<P>Artist's First Name:

<INPUT TYPE="text" NAME="artist_fn" SIZE=35 MAXLENGTH=100></P>

</TD>

9. In a new table data cell, create an input field for the artist’s last name (or group
name) with a text label. Close the table data cell and the table row after the
input field:

<TD VALIGN=TOP>

<P>Artist's Last Name (or Group Name):

<INPUT TYPE="text" NAME="artist_ln" SIZE=35 MAXLENGTH=100></P>

</TD>

</TR>

10. Start a new table row and a table data cell that spans two columns. Create a
TEXTAREA field with a text label to hold your notes regarding the recording:

<TR>

<TD VALIGN=TOP COLSPAN=2 ALIGN=CENTER>

<P>My Notes:

<TEXTAREA NAME="my_notes" COLS=35 ROWS=5 WRAP=virtual></TEXTAREA></P>

220 CHAPTER 13: INSERTING DATA INTO THE TABLE

221CREATING THE RECORD ADDITION FORM

11. Add a submit button, and then close the table data cell, the table row, and
the table itself:

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Add Record"></P>

</TD>

</TR>

</TABLE>

12. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

Figure 13.1 The Add Record form. 13. Save the file with the
name show_addrecord.html

and place this file in the
document root of your
Web server.

14. Open your Web
browser and type
http://127.0.0.1/

show_addrecord.html.
See Figure 13.1.

In the next section, you’ll create the script that takes the form input, creates a SQL
statement, and adds the record to the database table.

Creating the Record Addition Script
The script you’ll create for a record addition is a lot simpler than the script for table
creation!

1. Open a new file in your text editor and start a PHP block:

<?

2. Check that values were actually entered for $_POST[id], $_POST[format], and
$_POST[title]. If they weren’t, direct the user back to the form and exit the
script:

if ((!$_POST[id]) || (!$_POST[format]) || (!$_POST[title])) {

header("Location: /show_addrecord.html");

exit;

}

222 CHAPTER 13: INSERTING DATA INTO THE TABLE

REQUIRED FIELDS
You can have as many (or as few) required fields as you want.

3. Create a variable to hold the name of the database on which the table resides:

$db_name = "testDB";

4. Create a variable to hold the name of the table you’re populating with this
script:

$table_name = "my_music";

5. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

223CREATING THE RECORD ADDITION SCRIPT

7. Create the SQL statement. The first parenthetical statement gives the names of
the fields to populate (in order), and the second parenthetical statement sends
the actual strings:

$sql = "INSERT INTO $table_name

(id, format, title, artist_fn, artist_ln, rec_label,

my_notes, date_acq) VALUES

('$_POST[id]', '$_POST[format]', '$_POST[title]',

'$_POST[artist_fn]', '$_POST[artist_ln]', '$_POST[rec_label]',

'$_POST[my_notes]','$_POST[date_acq]')";

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. Close your PHP block and add HTML:

?>

<HTML>

<HEAD>

<TITLE>Add a Record</TITLE>

</HEAD>

<BODY>

10. Add a nice heading so that the users know what they are viewing. Mingle
HTML and PHP to include the value of the $table_name variable:

<H1>Adding a Record to <? echo "$table_name"; ?></H1>

11. Next, you’ll re-create the layout used in show_addrecord.html, only it won’t
contain form fields. Instead, you’ll mingle HTML and PHP to show the values
that were entered. Start a new table row and table data cell, and then display
a text label and value for ID:

<TABLE CELLSPACING=3 CELLPADDING=3>

<TR>

<TD VALIGN=TOP>

<P>ID:

<? echo "$_POST[id]"; ?></P>

12. Display a text label and value for the date acquired, and then close the table
data cell:

<P>Date Acquired (YYYY-MM-DD):

<? echo "$_POST[date_acq]"; ?></P>

</TD>

13. Display a text label and the format of the recording, and then close the table
data cell and table row:

<TD VALIGN=TOP>

<P>Format:

<? echo "$_POST[format]"; ?>

</P>

</TD>

</TR>

14. Start a new table row and table data cell, display a text label and value for
the title, and close the table data cell:

<TR>

<TD VALIGN=TOP>

<P>Title:

<? echo "$_POST[title]"; ?></P>

</TD>

15. In a new table data cell, display a text label and value for the record label
information, and then close the table data cell and table row:

<TD VALIGN=TOP>

<P>Record Label:

<? echo "$_POST[rec_label]"; ?></P>

</TD>

</TR>

224 CHAPTER 13: INSERTING DATA INTO THE TABLE

225CREATING THE RECORD ADDITION SCRIPT

16. Start a new table row and table data cell, and then create an input field for
the artist’s first name with a text label. Close the table data cell after the
input field:

<TR>

<TD VALIGN=TOP>

<P>Artist's First Name:

<? echo "$_POST[artist_fn]"; ?></P>

</TD>

17. In a new table data cell, display a text label and value for the artist’s last
name (or group name), and then close the table data cell and table row:

<TD VALIGN=TOP>

<P>Artist's Last Name (or Group Name):

<? echo "$_POST[artist_ln]"; ?></P>

</TD>

</TR>

18. Start a new table row and a table data cell that spans two columns. Display a
text label and value for your notes regarding the recording:

<TR>

<TD VALIGN=TOP COLSPAN=2 ALIGN=CENTER>

<P>My Notes:

<? echo stripslashes($_POST[my_notes]); ?></P>

STRIPPING EXTRANEOUS CHARACTERS
The stripslashes() function will remove any slashes automatically added to
your form data, which is turned on by default in PHP. It will add slashes where
necessary to escape special characters such as single quotes and double
quotes. You can turn it off by modifying your php.ini file, but if you leave it
on, it’s one less thing you have to worry about.

19. Add a link back to the original form and then close the table data cell, the
table row, and the table itself:

<P>Add Another</P>

</TD>

</TR>

</TABLE>

20. Add some more HTML so that the document is valid:

</BODY>

</HTML>

21. Save the file with the name do_addrecord.php and place it in the document
root of your Web server.

Your code should look something like this:

<?

//check for required fields

if ((!$_POST[id]) || (!$_POST[format]) || (!$_POST[title])) {

header("Location: /show_addrecord.html");

exit;

}

//set up database and table names

$db_name = "testDB";

$table_name = "my_music";

//connect to MySQL and select database to use

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//create SQL statement and issue query

$sql = "INSERT INTO $table_name

(id, format, title, artist_fn, artist_ln, rec_label,

my_notes, date_acq) VALUES

('$_POST[id]', '$_POST[format]', '$_POST[title]',

'$_POST[artist_fn]', '$_POST[artist_ln]', '$_POST[rec_label]',

'$_POST[my_notes]','$_POST[date_acq]')";

226 CHAPTER 13: INSERTING DATA INTO THE TABLE

227CREATING THE RECORD ADDITION SCRIPT

$result = @mysql_query($sql,$connection) or die(mysql_error());

?>

<HTML>

<HEAD>

<TITLE>Add a Record</TITLE>

</HEAD>

<BODY>

<H1>Adding a Record to <? echo "$table_name"; ?></H1>

<TABLE CELLSPACING=3 CELLPADDING=3>

<TR>

<TD VALIGN=TOP>

<P>ID:

<? echo "$_POST[id]"; ?></P>

<P>Date Acquired (YYYY-MM-DD):

<? echo "$_POST[date_acq]"; ?></P>

</TD>

<TD VALIGN=TOP>

<P>Format:

<? echo "$_POST[format]"; ?>

</P>

</TD>

</TR>

<TR>

<TD VALIGN=TOP>

<P>Title:

<? echo "$_POST[title]"; ?></P>

</TD>

<TD VALIGN=TOP>

<P>Record Label:

<? echo "$_POST[rec_label]"; ?></P>

</TD>

</TR>

<TR>

<TD VALIGN=TOP>

<P>Artist's First Name:

<? echo "$_POST[artist_fn]"; ?></P>

</TD>

<TD VALIGN=TOP>

<P>Artist's Last Name (or Group Name):

<? echo "$_POST[artist_ln]"; ?></P>

</TD>

</TR>

<TR>

<TD VALIGN=TOP COLSPAN=2 ALIGN=CENTER>

<P>My Notes:

<? echo stripslashes($_POST[my_notes]); ?></P>

<P>Add Another</P>

</TD>

</TR>

</TABLE>

</BODY>

</HTML>

Go on to the next step where you get to click a button and add a record.

228 CHAPTER 13: INSERTING DATA INTO THE TABLE

A PROBLEM WITH DATA
Here’s a potential problem with the script. If you enter a string such as “He’s
the best!” to the comment field, you will get an error when you try to insert
the record into the database. Why? Because SQL does not allow a string with
a single quotation mark in the middle of the string. You must escape the
string. This is accomplished with the mysql_escape_string() function. You will
need to escape each of the SQL parameters:

//create SQL statement and issue query

$id = mysql_escape_string($_POST[id]);

$format = mysql_escape_string($_POST[format]);

$title = mysql_escape_string($_POST[title]);

$artist_fn=mysql_escape_string($_POST[artist_fn]);

$artist_ln=mysql_escape_string($_POST[artist_ln]);

$rec_label=mysql_escape_string($_POST[rec_label]);

$my_notes=mysql_escape_string($_POST[my_notes]);

$date_acq=mysql_escape_string($_POST[date_acq]);

$sql = "INSERT INTO $table_name

(id, format, title, artist_fn, artist_ln, rec_label,

my_notes, date_acq) VALUES

('$id', '$format', '$title', '$artist_fn', '$artist_ln',

'$rec_label', '$my_notes',

'$date_acq')";

$result = @mysql_query($sql,$connection) or die(mysql_error());

This will fix your problem.

Populating Your Table
Now the fun begins! If you didn’t close your Web browser after the first part of this
chapter, show_addrecord.html should still be visible in your browser window. If it’s
not, open http://127.0.0.1/show_addrecord.html now.

229POPULATING YOUR TABLE

Figure 13.2 A sample album entry. Complete the addition form for
an album you have lying around.
Here’s an example from my
collection (see Figure 13.2).

Figure 13.3 The album record added. Click the Add Record button,
and you should see a
confirmation screen, as
shown in Figure 13.3.

Add several of your own
recordings to the database
table. Unless you changed the
script on your own, the only
required fields are ID, format,
and title.

AUTO-INCREMENTING FIELDS
In later chapters, you’ll learn to make modifications to your table so that the
ID field really is unique and increments automatically so that you don’t have
to keep entering a number and hoping it works.

This page intentionally left blank

Selecting and
Displaying Data

By now, you’ve happily and repeatedly populated the my_music
table with all the items in your music collection—or at least a
few. In this chapter, you will learn how to do the following:

Select records from a table using the SQL ORDER BY clause.

Format and display records from a database table.

14
Selecting and
Displaying Data

14

Planning and Creating Your
Administrative Menu
You could just write one script that says “Select all my data; I don’t care about the
order,” but that would be boring. In this chapter, you’ll see four ways to select
records from the my_music table. To facilitate easy navigation, create an
administration menu—fancy words for “a list of links to scripts.”

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>My Menu</TITLE>

</HEAD>

<BODY>

<H1>My Menu</H1>

<P>My Music</P>

2. Start a bulleted list and create the first link to a script called sel_byid.php. This
script will display the records ordered by ID number:

ordered by ID

3. Add a link to a script called sel_bydateacq.php. This script will display the
records ordered by date acquired. The most recently acquired item is listed
first:

ordered by date acquired

(most recent first)

4. Add a link to a script called sel_bytitle.php. This script will display the records
ordered by title:

ordered by title

5. Add a link to a script called sel_byartist.php. This script will display the records
ordered by artist:

ordered by artist

232 CHAPTER 14: SELECTING AND DISPLAYING DATA

233SELECTING DATA FROM THE MY_MUSIC TABLE

6. Close the bulleted list, and then add some HTML so that the document is valid:

</BODY>

</HTML>

Figure 14.1 The menu Web page. 7. Save the file with the name
my_menu.html and place this
file in the document root of
your Web server.

8. Open your Web browser
and type http://127.0.0.1/
my_menu.html. You should
see the display shown in
Figure 14.1.

In the next sections, you’ll create the scripts that do all the aforementioned
selecting.

Selecting Data from the my_music Table
The next four sections contain scripts that are variations on a theme: selecting and
displaying data. A large portion of the scripts is exactly the same, but repetition
makes perfection, I was always told.

The only new function in these scripts is the mysql_fetch_array() function. This
function takes the result of a SQL query and places the rows in array format. Using
a simple while loop, you can extract and display these elements.

Hang on to your hat, and start with the first script, which just returns the results
ordered by their ID number.

Displaying Records Ordered by ID
One of the required fields in the record addition script is ID. In this script, you’ll
select all the records in the my_music table, ordered by the ID number. The default
value of the ORDER BY clause is ASC (ascending), so the records are returned with ID
#1 first, followed by #2, #3, and so on.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the name of the database on which the table resides:

$db_name = "testDB";

3. Create a variable to hold the name of the table you’re selecting from, using this
script:

$table_name = "my_music";

4. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

5. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

6. Create the SQL statement:

$sql = "SELECT id, format, title, artist_fn, artist_ln, rec_label,

my_notes, date_acq FROM $table_name ORDER BY id";

234 CHAPTER 14: SELECTING AND DISPLAYING DATA

SELECTING ALL FIELDS IN A SQL STATEMENT
Because you’re selecting all the fields, you could use a * in the SQL
statement instead of naming all the fields. In this case, the line would look
like this:

$sql = "SELECT * FROM $table_name ORDER BY id";

235SELECTING DATA FROM THE MY_MUSIC TABLE

7. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

8. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

9. Get the individual elements of the record and give them good names. Add the
stripslashes() function around any free text field that might have had slashes
added to it:

$id = $row['id'];

$format = $row['format'];

$title = stripslashes($row['title']);

$artist_fn = stripslashes($row['artist_fn']);

$artist_ln = stripslashes($row['artist_ln']);

$rec_label = stripslashes($row['rec_label']);

$my_notes = stripslashes($row['my_notes']);

$date_acq = $row['date_acq'];

10. Do a little formatting with the artists’ names. Because some artists have only
a first name, some artists use both first and last names, and group names are
thrown into the artist_ln field, start an if...else block to deal with this.
Start by looking for groups:

if ($artist_fn != "") {

11. Create a variable called $artist_fullname, which will contain a string with
$artist_fn, followed by a space, followed by $artist_ln, all within the trim()
function:

$artist_fullname = trim("$artist_fn $artist_ln");

THE TRIM() FUNCTION IN PHP
The trim() function gets rid of extraneous space at the beginning and end of
a string.

12. Continue the block, assigning the trimmed value of $artist_ln to
$artist_fullname:

} else {

$artist_fullname = trim("$artist_ln");

}

13. Do a little more formatting. If you didn’t enter a date in the date_acq field,
MySQL will enter a default value of 0000-00-00. Create an if block that looks
for this value and then replaces it with something more friendly:

if ($date_acq == "0000-00-00") {

$date_acq = "[unknown]";

}

14. Create a variable called $display_block to hold all the formatted records. The
formatting in this block places the title of the recording in bold, followed by
the name of the record label and the artist. Next comes a line break, and
then your notes, and then an emphasized parenthetical statement that holds
the date acquired and format:

$display_block .= "<P>$title on $rec_label,

by $artist_fullname

$my_notes (acquired:$date_acq, format:$format)</P>";

15. Close the while loop and then your PHP block:

}

?>

16. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Music (Ordered by ID)</TITLE>

</HEAD>

<BODY>

<H1>My Music: Ordered by ID</H1>

17. Display the results:

<? echo "$display_block"; ?>

236 CHAPTER 14: SELECTING AND DISPLAYING DATA

237SELECTING DATA FROM THE MY_MUSIC TABLE

18. Add a link back to the main menu and then add some more HTML to make a
valid document:

<P>Return to Menu</P>

</BODY>

</HTML>

19. Save the file with the name sel_byid.php and place this file in the document
root of your Web server.

20. Open your Web browser and type http://127.0.0.1/my_menu.html.

21. Click the link called Ordered by ID.

Figure 14.2 The List script in action. Your records will be different
from mine, but you should see a
screen like Figure 14.2, where
the records are ordered by
internal ID number.

In the next section, you will
create the script that displays
results ordered by date
acquired.

Displaying Records Ordered by Date Acquired
Although it isn’t a required field, the record addition script has a space for the date
the recording made its way into your music collection. In this script, you’ll select all
the records in the my_music table, ordered by this date, with the most recent
acquisition appearing first in the list.

1. Open the sel_byID.php file and change the SQL statement to:

$sql = "SELECT * FROM $table_name ORDER BY date_acq DESC";

2. Change the HTML title and heading to reflect the new ordering method:

<HTML>

<HEAD>

<TITLE>My Music (Ordered by Date Acquired)</TITLE>

</HEAD>

<BODY>

<H1>My Music: Ordered by Date Acquired</H1>

3. Save the file with the name sel_bydateacq.php and place this file in the
document root of your Web server.

4. Open your Web browser and type http://127.0.0.1/my_menu.html.

5. Click the link called Ordered by Date Acquired.

238 CHAPTER 14: SELECTING AND DISPLAYING DATA

Figure 14.3 The ordered by date script running. Your records will be different
from mine, but you should see a
screen similar to Figure 14.3,
where the records are ordered
by the date the recordings were
acquired. Those without dates
would appear at the end of the
list.

In the next section, you’ll create
the script that displays results
ordered by title.

Displaying Records Ordered by Title
As you might imagine, the recording title is a required field in the record addition
script. In this script, you’ll select all the records in the my_music table, ordered
alphabetically by title.

1. Open the sel_bydateacq.php file and change the SQL statement to:

$sql = "SELECT * FROM $table_name ORDER BY title";

239SELECTING DATA FROM THE MY_MUSIC TABLE

2. Change the HTML title and heading to reflect the new ordering method:

<HTML>

<HEAD>

<TITLE>My Music (Ordered by Title)</TITLE>

</HEAD>

<BODY>

<H1>My Music: Ordered by Title</H1>

3. Display the results:

<? echo "$display_block"; ?>

4. Add a link back to the main menu and then add some more HTML to make a
valid document:

<P>Return to Menu</P>

</BODY>

</HTML>

5. Save the file with the name sel_bytitle.php and place this file in the document
root of your Web server.

6. Open your Web browser and type http://127.0.0.1/my_menu.html.

Figure 14.4 The ordered by title script running. 7. Click the link called Ordered
by Title.

Your records will be different
from mine, but you should see a
screen similar to Figure 14.4,
where the records are ordered
by title of the recording.

In the final section, you’ll create
the script that displays results
ordered by artist name.

Displaying Records Ordered by Artist
This script is a bit trickier because you have to take into consideration issues
associated with artist names: Some have only a first name, some have first and last
names, and group names are thrown into the artist_ln field as well. In this script,
you’ll select all the records in the my_music table, ordered alphabetically by the full
name of the artist.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create a variable to hold the name of the database in which the table resides:

$db_name = "testDB";

3. Create a variable to hold the name of the table you’re selecting from, using this
script:

$table_name = "my_music";

4. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

5. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

6. Create the SQL statement. Go back to the method that names all the fields in
the SELECT statement:

$sql = "SELECT id, format, title, trim(concat(artist_fn,' ',artist_ln)) as

artist_fullname, rec_label, my_notes, date_acq FROM $table_name

ORDER BY artist_fullname";

240 CHAPTER 14: SELECTING AND DISPLAYING DATA

241SELECTING DATA FROM THE MY_MUSIC TABLE

7. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

8. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

9. Get the individual elements of the record and give them good names.
Remember, you have a new field called artist_fullname. Add the
stripslashes() function around any free text field that might have had slashes
added to it:

$id = $row['id'];

$format = $row['format'];

$title = stripslashes($row['title']);

$artist_fullname = stripslashes($row['artist_fullname']);

$rec_label = stripslashes($row['rec_label']);

$my_notes = stripslashes($row['my_notes']);

$date_acq = $row['date_acq'];

USING THE CONCAT() FUNCTION IN MYSQL
Within this SQL statement, you’re essentially creating a new field from two
fields that already exist, using the concat() function (a MySQL string
function) to combine artist_fn and artist_ln, with a space in between.
Using as artist_fullname assigns this new value to a field called
artist_fullname. For example, suppose you own the album “White Ladder”
by David Gray. The artist’s first name (David) and last name (Gray) would go in
their respective areas of the form but would be output as one string (David
Gray).

The trim() function still strips the white space. The phrase
trim(concat(artist_fn,' ',artist_ln)) as artist_fullname replaces the
if...else block usually seen within the while loop in previous scripts.

10. If you didn’t enter a date in the date_acq field, MySQL will enter a default
value of 0000-00-00. Create an if block that looks for this value and then
replaces it with something more friendly:

if ($date_acq == "0000-00-00") {

$date_acq = "[unknown]";

}

11. Create a variable called $display_block to hold all the formatted records. The
formatting in this block places the title of the recording in bold, followed by
the artist’s name in parentheses. Next comes a line break, and then your
notes, and then an emphasized parenthetical statement that holds the date
acquired and format:

$display_block .= "

<P>$title ($artist_fullname)

$my_notes (acquired: $date_acq, format: $format)</P>";

12. Close the while loop and then your PHP block:

}

?>

13. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Music (Ordered by Artist)</TITLE>

</HEAD>

<BODY>

<H1>My Music: Ordered by Artist</H1>

14. Display the results:

<? echo "$display_block"; ?>

15. Add a link back to the main menu and then add some more HTML to make a
valid document:

<P>Return to Menu</P>

</BODY>

</HTML>

242 CHAPTER 14: SELECTING AND DISPLAYING DATA

243SELECTING DATA FROM THE MY_MUSIC TABLE

16. Save the file with the name sel_byartist.php and place this file in the
document root of your Web server.

Figure 14.5 The ordered by artist script in action. 17. Open your Web
browser and type
http://127.0.0.1/

my_menu.html.

18. Click the link called
Ordered by Artist.

Your records will be different
from mine, but you should see a
screen like Figure 14.5, where
the records are ordered by the
name of the artist.

Displaying Records Ordered by Multiple Criteria
You might wonder how you can order things by multiple columns. For example, you
might have several albums by the same artist and want to display them in order by
artist name and then within artist name by the date the album was acquired. SQL
provides a method for doing just this. You can modify the existing SQL statement in
the selection script as follows:

1. Open the sel_byartist.php file and change the SQL statement to:

$sql = "SELECT id, format, title, trim(concat(artist_fn,' ',artist_ln)) as

artist_fullname, rec_label, my_notes, date_acq FROM $table_name

ORDER BY artist_fullname, date_acq";

2. Change the HTML title and heading to reflect the new ordering method:

<HTML>

<HEAD>

<TITLE>My Music (Ordered by Title and Acquisition Date)</TITLE>

</HEAD>

<BODY>

<H1>My Music: Ordered by Title and Acquisition Date</H1>

3. Display the results:

<? echo "$display_block"; ?>

4. Add a link back to the main menu and then add some more HTML to make a
valid document:

<P>Return to Menu</P>

</BODY>

</HTML>

5. Save the file with the name sel_bytitle.php and place this file in the document
root of your Web server.

6. Open your Web browser and type http://127.0.0.1/my_menu.html.

7. Click the link called Ordered by Title.

244 CHAPTER 14: SELECTING AND DISPLAYING DATA

Figure 14.6 The select by title script in action. Your records will be different
from mine, but you should see a
screen like Figure 14.6, where
the records are ordered by title
of the recording.

The next chapters give you a break from database work, as you will learn a bit
about user authentication, cookies, and sessions.

User
Authentication
and Tracking

User
Authentication
and Tracking

P A R T V

Chapter 15
Database-Driven User Authentication247

Chapter 16
Using Cookies ...263

Chapter 17
Session Basics ...277

This page intentionally left blank

Database-
Driven User
Authentication

Everyone has secrets they don’t want to share with the entire
world. But some secrets can be shared—with certain people. In
this chapter, you will learn how to do the following:

Create a database table for authorized users.

Create a login form and script sequence that authenticate
users before displaying any secrets.

15
Database-
Driven User
Authentication

15

Why Authenticate Anyone?
When initially developing a Web site, you might want to restrict access to certain
members of your development team. If your corporate Web site contains sensitive
financial data, you might want to restrict your financial statements to a particular
list of investors. Or maybe you just don’t want people poking around in your
personal things.

A common type of user authentication is database-driven, in which usernames and
passwords are kept in a database table and accessed via a login form and script. In
the next section, you’ll create this database table and add some users to it.

Creating the User Table
In Chapter 12, “Creating a Database Table,” you followed a two-step table-creation
process. You can use that same process to create the authorized users table.

1. Open your Web browser to http://127.0.0.1/show_createtable.html.

2. In the Table Name field, type auth_users.

3. In the Number of Fields field, type 4.

4. Click the Go to Step 2 button. You should see a form with four rows,
corresponding to the four fields that will be in the auth_users table.

5. In the first row, type f_name for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 50. This field will hold the
user’s first name.

6. In the second row, type l_name for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 50. This field will hold the
user’s last name.

7. In the third row, type username for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 25. This field will hold the
user’s username.

248 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

249ADDING USERS TO YOUR TABLE

8. In the fourth row, type password for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100. This field will
hold a hash of the password.

HASHES AND STRINGS
If you recall from Chapter 7, “Displaying Dynamic Content,” a hash is like a
digital summary of the string. It can be used to compare versions of strings
(or files) to determine whether the versions differ.

Adding Users to Your Table
An empty auth_users table does you no good. In this section, you’ll create a simple
record addition form and script, similar to those you created in Chapter 13,
“Inserting Data into the Table.”

Figure 15.1 Creating the authorization table. The completed form should look
like Figure 15.1.

Click the Create Table button.
You should see a confirmation
screen stating that your table
has been created. In the next
section, you’ll create a record
addition form and script and
add users to the auth_users
table.

Creating the User Addition Form and Script
The HTML form will contain an input field for each column in the auth_users table.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Add a User</TITLE>

</HEAD>

<BODY>

<H1>Adding a Record to auth_users</H1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_adduser.php:

<FORM METHOD="POST" ACTION="do_adduser.php">

3. Create an input field for the user’s first name with a text label:

<P>First Name:

<INPUT TYPE="text" NAME="f_name" SIZE=25 MAXLENGTH=50></p>

4. Create an input field for the user’s last name with a text label:

<P>Last Name:

<INPUT TYPE="text" NAME="l_name" SIZE=25 MAXLENGTH=50></p>

5. Create an input field for the username with a text label:

<P>Username:

<INPUT TYPE="text" NAME="username" SIZE=25 MAXLENGTH=25></p>

6. Create an input field for the password with a text label:

<P>Password:

<INPUT TYPE="text" NAME="password" SIZE=25 MAXLENGTH=25></p>

250 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

251ADDING USERS TO YOUR TABLE

7. Add a submit button and then close your form and add some more HTML so
that the document is valid:

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Add User"></P>

</FORM>

</BODY>

</HTML>

SETTING MAXIMUM INPUT LENGTH FOR A FIELD IN HTML
The MAXLENGTH of the password form field is 25, whereas the database field
maximum length is 100. This discrepancy in length takes into consideration
the encryption that will occur. A 25-character plain-text password, such as
that entered in this form field, will probably be longer than 25 characters
when encrypted. Because only the encrypted password is stored in the
database, the greater maximum length will handle the extra data.

Figure 15.2 The add user form. 8. Save the file with the name
show_adduser.html and place
this file in the document
root of your Web server.

9. Open your Web browser
and type http://127.0.0.1/
show_adduser.html. (See
Figure 15.2.)

You will see a form for adding a user, with four fields for name and password
information, as well as a submit button. Next, you will create the back-end script
for the record-addition form.

1. Open a new file in your text editor and start a PHP block:

<?

2. Check that values were actually entered for all four fields. If they weren’t, direct
the user back to the form and exit the script:

if ((!$_POST[f_name]) || (!$_POST[l_name]) ||

(!$_POST[username]) || (!$_POST[password])) {

header("Location: show_adduser.html");

exit;

}

3. Create a variable to hold the name of the database on which the table resides:

$db_name = "testDB";

4. Create a variable to hold the name of the table you’re populating with this
script:

$table_name = "auth_users";

5. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

7. Create the SQL statement. The first parenthetical statement gives the names of
the fields to populate (in order), and the second parenthetical statement sends
the actual strings:

$sql = "INSERT INTO $table_name (f_name, l_name, username, password)

VALUES ('$_POST[f_name]', '$_POST[l_name]', '$_POST[username]',

password('$_POST[password]'))";

252 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

253ADDING USERS TO YOUR TABLE

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. Close your PHP block and then add HTML:

?>

<HTML>

<HEAD>

<TITLE>Add a User</TITLE>

</HEAD>

<BODY>

<H1>Added to auth_users:</H1>

10. Mingle HTML and PHP to show the values entered for each field, starting
with the first name field:

<P>First Name:

<? echo "$_POST[f_name]"; ?></p>

<P>Last Name:

<? echo "$_POST[l_name]"; ?></p>

<P>Username:

<? echo "$_POST[username]"; ?></p>

<P>Password:

<? echo "$_POST[password]"; ?></p>

11. Add a link back to the original form:

<P>Add Another</p>

THE PASSWORD() FUNCTION IN PHP
The PASSWORD() function inserts a hash of the password, not the password
itself. This alleviates the security risk of having plain-text passwords sitting in
your database, because all the script needs to do is match the two hashes.

12. Add some more HTML so that the document is valid:

</BODY>

</HTML>

13. Save the file with the name do_adduser.php and place this file in the
document root of your Web server.

Your code should look like this:

<?

//check for required fields

if ((!$_POST[f_name]) || (!$_POST[l_name]) || (!$_POST[username]) ||

(!$_POST[password])) {

header("Location: show_adduser.html");

exit;

}

//set up the names of the database and table

$db_name = "testDB";

$table_name = "auth_users";

//connect to the server and select the database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//create and issue query

$sql = "INSERT INTO $table_name (f_name, l_name, username, password)

VALUES ('$_POST[f_name]', '$_POST[l_name]', '$_POST[username]',

password('$_POST[password]'))";

$result = @mysql_query($sql,$connection) or die(mysql_error());

?>

<HTML>

<HEAD>

<TITLE>Add a User</TITLE>

</HEAD>

<BODY>

<H1>Added to auth_users:</H1>

<P>First Name:

<? echo "$_POST[f_name]"; ?></p>

<P>Last Name:

<? echo "$_POST[l_name]"; ?></p>

<P>Username:

<? echo "$_POST[username]"; ?></p>

254 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

255ADDING USERS TO YOUR TABLE

<P>Password:

<? echo "$_POST[password]"; ?></p>

<P>Add Another</p>

</BODY>

</HTML>

Next, you’ll test this code by adding some sample users to your table.

Adding Some Users
The next examples are based on fake users on my server. Your results will vary,
depending on what you enter in your table. To get to the user addition form, open
your Web browser and type http://127.0.0.1/show_adduser.html.

Figure 15.3 The completed add user form. In my user addition form, I
typed information for a user
named Joe Webby, with a
username of joe and a password
of ilikecheese. The completed
form looks like Figure 15.3.

256 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

Figure 15.4 The add user confirmation screen. After I clicked the Add User
button, the confirmation screen
was displayed (see Figure 15.4).

Figure 15.5 MySQL Monitor showing table entry. To see an example of how the
password hash is stored, use the
command-line interface to the
MySQL Monitor to view your
record. You would see that
the password entry says
127493710101bb5a (Figure 15.5),
not ilikecheese. Note that your
entry may be slightly different
based on your machine and
settings or the time you
created it.

Continue adding some users on your own, until you have a nice family of users.

257CREATING THE LOGIN FORM

Creating the Login Form
The HTML form will contain just two fields: username and password. Both are
required.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Login</TITLE>

</HEAD>

<BODY>

<H1>Login to Secret Area</H1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_authuser.php:

<FORM METHOD="POST" ACTION="do_authuser.php">

3. Create an input field for the username with a text label:

<P>Username:

<INPUT TYPE="text" NAME="username" SIZE=25 MAXLENGTH=25></p>

4. Create an input field for the password with a text label:

<P>Password:

<INPUT TYPE="password" NAME="password" SIZE=25 MAXLENGTH=25></p>

5. Add a submit button and then close your form and add some more HTML so
that the document is valid:

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Login"></P>

</FORM>

</BODY>

</HTML>

6. Save the file with the name show_login.html and place this file in the document
root of your Web server.

7. Open your Web browser and type http://127.0.0.1/show_login.html.

Creating the Authentication Script
The goal of this script is to match the username and password entered in the form
with a username and password (in the same record) in the auth_users table.

1. Open a new file in your text editor and start a PHP block:

<?

2. Check that values were actually entered for both. If they weren’t, direct the
user back to the form and exit the script:

if ((!$_POST[username]) || (!$_POST[password])) {

header("Location: show_login.html");

exit;

}

3. Create a variable to hold the name of the database in which the table resides:

$db_name = "testDB";

4. Create a variable to hold the name of the table you’re populating with this
script:

$table_name = "auth_users";

258 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

Figure 15.6 The login form. You will see the login form, with
text fields for the username and
password as well as a submit
button (see Figure 15.6).

Next, you create the back-end
script for the login form.

259CREATING THE AUTHENTICATION SCRIPT

5. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

7. Create the SQL statement. The statement is looking for all fields in a record
where the username in the table matches the username entered in the form,
and the password hash in the table matches a hash of the password entered in
the form:

$sql = "SELECT * FROM $table_name WHERE username = '$_POST[username]'

AND password = password('$_POST[password]')";

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. Check for any results from the query by counting the number of rows returned
in the result set:

$num = mysql_num_rows($result);

10. Start an if...else block to deal with your result. If the number of returned
rows is more than 1, a match is found. Create a variable to hold an
appropriate message:

if ($num != 0) {

$msg = "<P>Congratulations, you're authorized!</p>";

11. If the number of returned rows is 0, no matches are found. In that case, direct
the user back to the login form and then close the if...else block:

} else {

header("Location: show_login.html");

exit;

}

12. Close your PHP block and add HTML:

?>

<HTML>

<HEAD>

<TITLE>Secret Area</TITLE>

</HEAD>

<BODY>

13. Display the message:

<? echo "$msg"; ?>

14. Add some more HTML so that the document is valid:

</BODY>

</HTML>

15. Save the file with the name do_authuser.php and place this file in the
document root of your Web server.

Your code should look like this:

<?

//check for required fields

if ((!$_POST[username]) || (!$_POST[password])) {

header("Location: show_login.html");

exit;

}

//set up names of database and table to use

$db_name = "testDB";

$table_name = "auth_users";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue the query

$sql = "SELECT * FROM $table_name WHERE username = '$_POST[username]'

AND password = password('$_POST[password]')";

$result = @mysql_query($sql,$connection) or die(mysql_error());

260 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

261TRYING TO AUTHENTICATE YOURSELF

//get the number of rows in the result set

$num = mysql_num_rows($result);

//print a message or redirect elsewhere, based on result

if ($num != 0) {

$msg = "<P>Congratulations, you're authorized!</p>";

} else {

header("Location: show_login.html");

exit;

}

?>

<HTML>

<HEAD>

<TITLE>Secret Area</TITLE>

</HEAD>

<BODY>

<? echo "$msg"; ?>

</BODY>

</HTML>

Next, you get to test the login form.

Trying to Authenticate Yourself
In this section, you’ll attempt to log in as one of the users you added to the
auth_users table. Your results will vary, depending on the usernames and passwords
you’re using. To get to the login form, open your Web browser and type
http://127.0.0.1/show_login.html.

Figure 15.7 An invalid attempt to log in. I first tried to break the
authentication routine by
entering a bad username and a
bad password (see Figure 15.7).

After I clicked on the Login
button, I was directed back to
the login page, because both
the username and password
were invalid.

In the next chapter, you’ll be introduced to cookies, and you’ll see how to use them
in an authentication scheme or just for general user tracking.

262 CHAPTER 15: DATABASE-DRIVEN USER AUTHENTICATION

SECURITY NOTE
Any combination of bad username and bad password will cause the
authentication to fail. You should never tell someone exactly what he did that
was wrong, as it helps hackers to break into a system.

Figure 15.8 Successful login! Then I entered correct values in
the Username and Password
fields, and after I clicked the
Login button, I saw the success
message (Figure 15.8).

Using Cookies

Cookies are great little tools, but they get a bad rap in the
press when nasty people misuse them. These little bits of text
can make your development life much easier if you use them
properly. In this chapter, you will learn how to do the following:

Set a cookie.

Extract data from a cookie.

Amend your user authentication routines to use a cookie.

16
Using Cookies
16

What Are Cookies?
Cookies are pieces of text that are sent to a user’s Web browser. Cookies can help
you create shopping carts, user communities, and personalized sites. It’s not
recommended that you store sensitive data in a cookie, but you can store a unique
identification string that will match a user with data held securely in a database.

Take the shopping example. Suppose that you assign an identification variable to a
user so that you can track what he does when he visits your site. First, the user logs
in, and you send a cookie with variables designed to say, “This is Joe, and Joe is
allowed to be here.” While Joe is surfing around your site, you can say, “Hello,
Joe!” on each and every page. If Joe clicks through your catalog and chooses 14
items to buy, you can keep track of these items and display them all in a bunch
when Joe goes to the checkout area.

Setting Cookies
Before you start setting cookies, determine how you will use them and at what
point you will set them. Whatever cookies you decide to set, remember that you
absolutely must set a cookie before sending any other content to the browser
because a cookie is actually part of the header information.

The setcookie() function is the one we will be using to create cookies. For
example, we might create a cookie for a simple test if we had an HTML file that
looked like this:

<HTML>

<HEAD>

<TITLE>I'm a Cookie</TITLE>

</HEAD>

<BODY>

<?

setcookie("test", "ok", "", "/", "localhost", 0);

?>

<H1>I'm a Cookie</H1>

</BODY>

</HTML>

264 CHAPTER 16: USING COOKIES

265SETTING COOKIES

The setcookie() function, used to set one cookie at a time, expects six arguments:

• Name. Holds the name of the variable that is kept in the global $_COOKIE and is
accessible in subsequent scripts.

• Value. The value of the variable passed in the name parameter.

• Expiration. Sets a specific time at which the cookie value is no longer accessible.
Cookies without a specific expiration time expire when the Web browser closes.

• Path. Determines for which directories the cookie is valid. If a single slash is in
the path parameter, the cookie is valid for all files and directories on the Web
server. If a specific directory is named, this cookie is valid only for pages within
that directory.

• Domain. Cookies are valid only for the host and domain that set them. If no
domain is specified, the default value is the hostname of the server that
generated the cookie. The domain parameter must have at least two periods in
the string in order to be valid.

• Security. If the security parameter is 1, the cookie will only be transmitted via
HTTPS, which is to say, over a secure Web server.

Figure 16.1 The cookie script in action. Loading that HTML file into a
browser produces the display
shown in Figure 16.1.

Obviously, we aren’t doing
much with the cookie, but we
will get there.

This next line is an example of a cookie called id with a value of 55sds809892jjsj2.
This particular cookie expires in four hours (the current time plus 14,400 seconds),
and it is valid for any page below the document root on the domain
yourdomain.com.

setcookie("id", "55sds809892jjsj2", time()+14400, "/" ,".yourdomain.com",0);

In the next section, I’ll give you a cheat sheet for common values of time. Then
you’ll move into using cookie variables.

Counting Time
If you want to specify an expiration date or time, the easiest way to do that is to
tell PHP to count forward for you and then place a value in the expiration slot
within the setcookie() function. This value should be a UNIX time integer (the
number of seconds since January 1, 1970), which you can get using the time()
function with additional seconds added to it.

Setting an expiration date on your cookies builds in some extra assurances of the
validity of your users. If you set your cookie without a time limit, it will automatically
expire when users close their browsers. This is useful when users are sharing
computers; you don’t want the next user to have all the access afforded by the
previous user’s cookie. Similarly, you might want to set a cookie for only 15
minutes, if you are building an online store that allows you to receive a discount on
everything purchased in the first 15 minutes of your users’ visits.

Table 16.1 shows some common uses of time()+n within the setcookie() function.

Setting a Test Cookie
The goal of this little script is just to set a test cookie and then print a message to
the screen. Before you start, ensure that you do not have any personal firewall
settings blocking incoming cookies. Also, modify your Web browser preferences to
prompt you before setting cookies.

266 CHAPTER 16: USING COOKIES

267SETTING COOKIES

This is the only way to watch a cookie as the server attempts to send it to your
browser.

1. Open a new file in your text editor and start a PHP block; then create a set of
variables called $cookie_name, $cookie_value, $cookie_expire, and
$cookie_domain and give them the following values:

<?

$cookie_name = "test_cookie";

$cookie_value = "test string!";

$cookie_expire = time()+86400;

$cookie_domain = "127.0.0.1";

Table 16.1 Common Times

Value Definition

time()+60 One minute from the current time

time()+900 15 minutes from the current time

time()+1800 30 minutes from the current time

time()+3600 One hour from the current time

time()+14400 Four hours from the current time

time()+43200 12 hours from the current time

time()+86400 24 hours from the current time

time()+259200 Three days from the current time

time()+604800 One week from the current time

time()+2592000 30 days from the current time

USING COOKIE DOMAINS
Substitute your own domain name for the value of $cookie_domain, if you are
not using 127.0.0.1 (localhost) as your domain.

2. Use the setcookie() function to set this test cookie and then close the PHP
block:

setcookie($cookie_name, $cookie_value, $cookie_expire, "/" ,

$cookie_domain, 0);

?>

3. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Set Test Cookie</TITLE>

</HEAD>

<BODY>

<h1>Mmmmmmmm...cookie!</h1>

</BODY>

</HTML>

4. Save the file with the name setcookie.php and place this file in the document
root of your Web server.

268 CHAPTER 16: USING COOKIES

Figure 16.2 The setcookie script in action. 5. Open your Web browser
and type http://127.0.0.1/
setcookie.php. You should
see the display shown in
Figure 16.2.

You may see a dialog box
prompting you to accept the
cookie, depending on your
security settings. The actual
dialog box will differ from
browser to browser, as will the
action buttons. If so, click Allow
to accept the cookie. You should
see the HTML text.

269USING COOKIE VARIABLES

Using Cookie Variables
There’s an element to using cookies that most people forget about until they spend
a few hours trying to debug something that isn’t even wrong (I’ve done this). When
a Web browser accepts a cookie, you can’t extract its value until the next HTTP
request is made.

In other words, if you set a cookie called name with a value of Julie on page 1, you
can’t extract that value until the user reaches page 2 (or page 5 or page 28—just
some other page that isn’t the page on which the cookie is initially set).

Using Cookies with Authentication
In the authentication script in the previous chapter, you had a login form and a
results page. However, the authentication was valid only for the results page
because it dynamically displayed the secret content (in this case, a Congratulations!
message). If you want to require authentication for a series of static pages, you
have to make some minor adjustments.

1. Open do_authuser.php in your text editor.

2. Scroll down to the if...else block that deals with the result of the
authentication. Add a block that sets a cookie:

if ($num != 0) {

$cookie_name = "auth";

$cookie_value = "ok";

$cookie_expire = "0";

$cookie_domain = "127.0.0.1";

setcookie($cookie_name, $cookie_value, $cookie_expire,

"/" , $cookie_domain, 0);

COOKIES AND EXPIRATION DATES
The setcookie() function will send a cookie called auth with a value of ok. It
will expire at the end of the browser session and will be valid for all
directories on 127.0.0.1. Use your own domain name if appropriate.

3. Delete this line:

$msg = "<P>Congratulations, you're authorized!</p>";

4. Add this string:

$display_block = "

<p>Secret Menu:</p>

secret page A

secret page B

";

270 CHAPTER 16: USING COOKIES

COMPLETING THE MENU
Don’t worry; you’ll create the pages in this menu soon enough.

5. Scroll until you see the following code:

<? echo "$msg"; ?>

6. Replace it with this:

<? echo "$display_block"; ?>

7. Save the file.

Your new code should look like this:

<?

//check for required fields

if ((!$_POST[username]) || (!$_POST[password])) {

header("Location: /show_login.html");

exit;

}

//setup names of database and table to use

$db_name = "testDB";

$table_name = "auth_users";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

271USING COOKIE VARIABLES

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT * FROM $table_name WHERE

username = \"$_POST[username]\" AND

password = password(\"$_POST[password]\")";

$result = @mysql_query($sql) or die (mysql_error());

//get the number of rows in the result set

$num = mysql_numrows($result);

//print a message and set a cookie if authorized,

//or redirect elsewhere if unauthorized

if ($num != 0) {

$cookie_name = "auth";

$cookie_value = "ok";

$cookie_expire = "0";

$cookie_domain = "127.0.0.1";

setcookie($cookie_name, $cookie_value, $cookie_expire,

"/" , $cookie_domain, 0);

$display_block = "

<p>Secret Menu:</p>

secret page A

secret page B

";

} else {

header("Location: /show_login.html");

exit;

}

?>

<HTML>

<HEAD>

<TITLE>Secret Area</TITLE>

</HEAD>

<BODY>

<? echo "$display_block"; ?>

</BODY>

</HTML>

Open your Web browser and type http://127.0.0.1/show_login.html to get to the
login form, and then enter a valid username and password. If you still have your
preferences set to warn before accepting cookies, you’ll see a dialog box with
cookie information in it.

Checking for the Authentication Cookie

The secret menu contains links to two files: secretA.php and secretB.php. By adding
a snippet of code to the beginning of these pages, you can check for an authorized
user.

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block to check the value of $_COOKIE[auth]. The value must
be ok for the user to be an authorized user:

if ($_COOKIE[auth] == "ok") {

3. Create a value to hold a success message:

$msg = "<P>Welcome to secret page A, authorized user!</p>";

4. Continue the if...else statement to account for an unauthorized visitor. An
unauthorized user will be redirected to the login form:

} else {

header("Location: /show_login.html");

exit;

}

272 CHAPTER 16: USING COOKIES

Figure 16.3 The new menu form. After you click Yes (or OK,
depending on the dialog box),
the new menu will display, as
shown in Figure 16.3.

273USING COOKIE VARIABLES

5. Close the PHP block and type the following HTML:

?>

<HTML>

<HEAD>

<TITLE>Secret Page A</TITLE>

</HEAD>

<BODY>

6. Display the message:

<? echo "$msg"; ?>

7. Add some more HTML so that the document is valid:

</BODY>

</HTML>

8. Save the file with the name secretA.php and place this file in the document root
of your Web server.

The contents of secretB.php should be nearly identical to secretA.php, so create
another file just like secretA.php, only change “A” to “B” in the messaging.

It’s time for some tests. Unless your browser crashed, you should still be logged in
(the auth cookie hasn’t expired), and you should have the secret menu in front of
you.

UNAUTHORIZED USERS
An unauthorized visitor is one who attempts to access secretA.php directly
without going through the authentication process.

Now exit completely out of your Web browser. This includes closing all browser
windows and your mail client (if it’s integrated). The auth cookie should now have
expired. (There’s nothing to see; it just goes away.)

1. Reopen your Web browser and attempt to directly access secretB.php by
typing http://127.0.0.1/secretB.php.

274 CHAPTER 16: USING COOKIES

Figure 6.4 The success message for secret page A. Click the link for secret page A.
You should see the success
message (see Figure 6.4).

Figure 6.5 The success message for secret page B. 2. Because you are not an
authorized user anymore,
you should be redirected to
the login screen. Go ahead
and log back in as an
authorized user and accept
the cookie.

3. Click the link for secret
page B.

You should see the success
message now (see Figure 6.5).

275USING COOKIE VARIABLES

Thus concludes a brief yet useful introduction to user authentication and cookies.

EXPIRATIONS AND AUTHORIZATIONS
If you had remained in the browser and returned to the menu page, you
would have been able to go directly to the secret B page. This is because our
session cookie would not have expired and would have “thought” you were
still logged in.

This page intentionally left blank

Session Basics

Sessions are like cookies on steroids. Using sessions, you can
maintain user-specific information without setting multiple
cookies or even using a database. In this chapter, you’ll learn
how to do the following:

Start a session.

Add a variable to the $_SESSION superglobal.

Enable a per-user access count.

Maintain user preferences throughout multiple pages.

17
Session Basics
17

Before You Begin…Checking php.ini
Before you start working with sessions, check a value in your php.ini file. Look for
this section of text and read it carefully:

; Argument passed to save_handler. In the case of files, this is the path

; where data files are stored. Note: Windows users have to change this

; variable in order to use PHP's session functions.

[much more explanatory text skipped]

session.save_path = /tmp

What the text in the php.ini file says is, essentially, that you must modify the value
of session.save_path so that the file can be written to a directory that exists. This
change primarily affects Windows users, and the modification is simple.

Enter a directory name after the = for session.save_path. For example, my php.ini
file on Windows contains this:

session.save_path = c:\temp

After making the change, restart Apache so that the changes take effect. If you are
using Linux/UNIX, /tmp is a standard directory, and you can leave this alone unless
you want to change it for some compelling reason.

What’s a Session?
In terms of time, a session is the amount of time during which a user visits a site. In
the programming world, a session is kind of like a big blob that can hold all sorts of
variables and values.

• This blob has an identification string, such as 940f8b05a40d5119c030c9c7745aead9.

• This identification string is automatically sent to the user when a session is
initiated, in a cookie called PHPSESSID (accessible via $_COOKIE[PHPSESSID]).

• On the server side, a matching temporary file is created with the same name
(940f8b05a40d5119c030c9c7745aead9).

278 CHAPTER 17: SESSION BASICS

279UNDERSTANDING SESSION VARIABLES

Understanding Session Variables
In the temporary session file on the Web server, session variables (and their values)
are stored. Because these values and variables are not kept in a database, no
additional system resources are required to connect to and extract information
from database tables. You can access session variables through the $_SESSION
superglobal.

For example, a temporary session file might contain the following:

count|s:7:"76";

valid|s:7:"yes";

In this example, count and valid are the names of the session variables, and 76 and
yes are their respective values. However, to use the variable in the session, you
must first explicitly add it to the $_SESSION superglobal. Once it is added, you can
extract the value (using $_SESSION[count] or $_SESSION[valid] in this example).

When you attempt to retrieve a session variable, the sequence goes something like
this (say you’re trying to get the value of $_SESSION[count]):

1. The PHP parser gets the value of $_COOKIE[PHPSESSID] from the user cookie.

2. The PHP parser finds a matching temporary session file.

3. Inside the session file, the PHP parser looks for count and then finds its value
(say, 76).

4. $_SESSION[count] is equal to 76.

Next, you start your own per-user counter script using a session.

Starting a Session
Starting a session is a snap. You just call the session_start() function, and PHP
takes care of the rest, sending the cookie and creating the temporary file.

1. Open a new file in your text editor and start a PHP block, and then call the
session_start() function:

<?

session_start();

280 CHAPTER 17: SESSION BASICS

THE SESSION_START() FUNCTION
The session_start() function actually performs several important tasks. First,
it determines whether a session has been started for the current user, and it
starts one if necessary. It also alerts the PHP engine that session variables
and other session-related functions will be used within the specific script.

Because of the dual purpose of session_start(), use it at the beginning of all
session-related scripts.

2. Create a string to hold a message and then close the PHP block:

$msg = "started a session....";

?>

3. Type the following HTML:

<HTML>

<HEAD>

<TITLE>Start a Session</TITLE>

</HEAD>

<BODY>

4. Display the message string:

<? echo "$msg"; ?>

281UNDERSTANDING SESSION VARIABLES

5. Add some more HTML so that the document is valid:

</BODY>

</HTML>

6. Save the file with the name session.php and place this file in the document root
of your Web server.

7. Open your Web browser and type http://127.0.0.1/session.php.

Figure 17.1 Cookie warning dialog. If you still have your preferences set to warn
before accepting cookies, you’ll see a dialog
box, as shown in Figure 17.1 (or one
appropriate to your browser).

Figure 17.2 Here’s a screen showing a session starting.
How inspiring is that? After you click Allow, the

message will display the screen
shown in Figure 17.2.

In the next section, you’ll
register an actual value and
watch it change during the
course of your session.

Registering and Modifying Session Variables
The goal of this script is to register a variable and change its value during the
course of a user session.

1. Open a new file in your text editor, start a PHP block, and call the
session_start() function:

<?

session_start();

282 CHAPTER 17: SESSION BASICS

UPDATE NOTE!
In PHP systems before version 6.0, you needed to call a function called
session_register(). Starting with version 5, this function was discouraged,
and as of version 6.0, it has been removed entirely. If you are still relying on
code that uses this function, simply remove it. It is no longer necessary.

2. We are going to be using a variable called count that will be stored in the
SESSION array of variables.

3. Increment the value of $_SESSION[count] to account for the current access:

$_SESSION[count]++;

4. Create a string to hold a message, including the value of $_SESSION[count]:

$msg = "<P>You've been here $_SESSION[count] times. Thanks!</p>";

5. Close the PHP block and type the following HTML:

?>

<HTML>

<HEAD>

<TITLE>Count Me!</TITLE>

</HEAD>

<BODY>

283UNDERSTANDING SESSION VARIABLES

6. Display the message string:

<? echo "$msg"; ?>

7. Add some more HTML so that the document is valid:

</BODY>

</HTML>

8. Save the file with the name countme.php and place this file in the document root
of your Web server.

Figure 17.3 The session counting script in action! 9. Open your Web browser
and type http://127.0.0.1/
countme.php.

Unless you closed your Web
browser between the last script
and now, your old session will
still be active, and you won’t see
the cookie approval dialog box.
You should just see the message
displayed in Figure 17.3.

Figure 17.4 Reloading the page counting script. Reload the page several times,
and watch how the counter
increments by one after each
reload. For example, I reloaded
the page seven times and finally
saw the information displayed in
Figure 17.4.

In the next section, you’ll handle
more than just an access
count—you’ll set and display
user preferences during a user
session.

Managing User Preferences with Sessions
Moving beyond the simple access counter, you can use sessions to manage your
users’ preferences when they visit your site. In this three-step example, you’ll start
a session, ask a user for her font family and base font size preferences, display
those preferences on subsequent pages, and allow the user to change her mind
and reset the values.

Starting a Session and Registering Defaults
In this script, you’ll start a session and register the font_family and font_size

variables. The displayed HTML will be a form that allows you to change your
preferences.

1. Open a new file in your text editor, start a PHP block, and call the
session_start() function:

<?

session_start();

2. Start an [if...else] block to check for any previous values for font_family and
font_size. If values are not present in the current session, assign default values
and add them:

if ((!$_SESSION[font_family]) || (!$_SESSION[font_size])) {

$font_family = "sans-serif";

$font_size = "10";

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

3. If previous values do exist, extract the values from the $_SESSION superglobal:

} else {

$font_family = $_SESSION[font_family];

$font_size = $_SESSION[font_size];

}

284 CHAPTER 17: SESSION BASICS

285MANAGING USER PREFERENCES WITH SESSIONS

4. Close the PHP block and type the following HTML:

?>

<HTML>

<HEAD>

<TITLE>My Display Preferences</TITLE>

5. Create a style sheet block, starting with the opening <STYLE> tag:

<STYLE type="text/css">

6. Add a style sheet entry for the BODY, P, and A tags. Mingle HTML and PHP to
display the current values of $font_family and $font_size:

BODY, P, A {font-family:<? echo "$font_family"; ?>;

font-size:<? echo "$font_size"; ?>pt;font-weight:normal;}

7. Add a style sheet entry for the H1 tag. Mingle HTML and PHP to display the
value of $font_family and a modified value of $font_size (base value plus 4):

H1 {font-family:<? echo "$font_family"; ?>;

font-size:<? echo $font_size + 4; ?>pt;font-weight:bold;}

8. Close the </STYLE> tag and continue with the HTML, adding a heading and
beginning a form. Assume that the form method is POST and the action is
session02.php:

</STYLE>

</HEAD>

<BODY>

<H1>Set Your Display Preferences</H1>

<FORM METHOD="POST" ACTION="session02.php">

SAVING DATA IN SESSION VARIABLES
Because the user will come back to this script to reset her display
preferences, you have to take into account the fact that the values of the
variables must always be extracted from the session itself.

If you simply added the variables to a session without checking for previous
values, each time the page were loaded, the value of these variables would
be overwritten as an empty string.

9. Create a set of radio buttons from which the user can choose a new font family:

<P>Pick a Font Family:

<input type="radio" name="sel_font_family" value="serif"> serif

<input type="radio" name="sel_font_family" value="sans-serif"

checked> sans-serif

<input type="radio" name="sel_font_family" value="Courier"> Courier

<input type="radio" name="sel_font_family" value="Wingdings"> Wingdings

</p>

10. Create a set of radio buttons from which the user can choose a new base
font size:

<P>Pick a Base Font Size:

<input type="radio" name="sel_font_size" value="8"> 8pt

<input type="radio" name="sel_font_size" value="10" checked> 10pt

<input type="radio" name="sel_font_size" value="12"> 12pt

<input type="radio" name="sel_font_size" value="14"> 14pt

</p>

11. Add a submit button and close the form:

<P><input type="submit" name="submit" value="Set Display

Preferences"></p>

</FORM>

12. Add some more HTML so that the document is valid:

</BODY>

</HTML>

13. Save the file with the name session01.php and place this file in the document
root of your Web server.

286 CHAPTER 17: SESSION BASICS

287MANAGING USER PREFERENCES WITH SESSIONS

Your entire code should look like this:

<?

//start a session

session_start();

//check for stored values and register defaults

if ((!$_SESSION[font_family]) || (!$_SESSION[font_size])) {

$font_family = "sans-serif";

$font_size = "10";

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

} else {

//extract from $_SESSION superglobal if exist

$font_family = $_SESSION[font_family];

$font_size = $_SESSION[font_size];

}

?>

<HTML>

<HEAD>

<TITLE>My Display Preferences</TITLE>

<STYLE type="text/css">

BODY, P, A {font-family:<? echo "$font_family"; ?>;

font-size:<? echo "$font_size"; ?>pt;font-weight:normal;}

H1 {font-family:<? echo "$font_family"; ?>;

font-size:<? echo $font_size + 4; ?>pt;font-weight:bold;}

</STYLE>

</HEAD>

<BODY>

<H1>Set Your Display Preferences</H1>

<FORM METHOD="POST" ACTION="session02.php">

<P>Pick a Font Family:

<input type="radio" name="sel_font_family" value="serif"> serif

<input type="radio" name="sel_font_family" value="sans-serif"

checked> sans-serif

<input type="radio" name="sel_font_family" value="Courier"> Courier

<input type="radio" name="sel_font_family" value="Wingdings"> Wingdings

</p>

<P>Pick a Base Font Size:

<input type="radio" name="sel_font_size" value="8"> 8pt

<input type="radio" name="sel_font_size" value="10" checked> 10pt

<input type="radio" name="sel_font_size" value="12"> 12pt

<input type="radio" name="sel_font_size" value="14"> 14pt

</p>

<P><input type="submit" name="submit" value="Set Display Preferences"></p>

</FORM>

</BODY>

</HTML>

Now open your Web browser and type http://127.0.0.1/session01.php.

Making Preference Changes
In this script, you’ll assign the new values for font_family and font_size and display
a confirmation that the changes have been made.

1. Open a new file in your text editor, start a PHP block, and call the
session_start() function:

<?

session_start();

2. Start an if...else block to check for the posted valued for font_family and
font_size. If values are present, add them in the session.

if (($_POST[sel_font_family]) && ($_POST[sel_font_size])) {

$font_family = $_POST[sel_font_family];

$font_size = $_POST[sel_font_size];

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

288 CHAPTER 17: SESSION BASICS

Figure 17.5 The login screen based on session variables. Unless you closed your Web
browser between the last script
and now, your old session will
still be active, and you won’t see
the cookie approval dialog box.
You should just see the display
shown in Figure 17.5.

In the next section, you’ll create
the script that handles the
preference changes.

289MANAGING USER PREFERENCES WITH SESSIONS

3. Continue the block to check for previously stored values for font_family and
font_size, but only if the posted values are not present.

} else if (((!$_POST[sel_font_family]) && (!$_POST[sel_font_size]))

&& ($_SESSION[font_family]) && ($_SESSION[font_size])) {

$font_family = $_SESSION[font_family];

$font_size = $_SESSION[font_size];

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

4. Finally, if values are not present from the form or from a previous session,
define and add some defaults:

} else {

$font_family = "sans-serif";

$font_size = "10";

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

}

5. Close the PHP block and type the following HTML:

?>

<HTML>

<HEAD>

<TITLE>My Display Preferences</TITLE>

6. Create a style sheet block, starting with the opening <STYLE> tag:

<STYLE type="text/css">

7. Add a style sheet entry for the BODY, P, and A tags. Mingle HTML and PHP to
display the current value of $font_family and $font_size:

BODY, P, A {font-family:<? echo "$font_family"; ?>;

font-size:<? echo "$font_size"; ?>pt;font-weight:normal;}

8. Add a style sheet entry for the H1 tag. Mingle HTML and PHP to display the
value of $font_family and a modified value of $font_size (base value plus 4):

H1 {font-family:<? echo "$font_family"; ?>;

font-size:<? echo $font_size + 4; ?>pt;font-weight:bold;}

9. Close the </STYLE> tag and continue with the HTML, displaying the values of
the two registered session variables:

</STYLE>

</HEAD>

<BODY>

<H1>Your Preferences Have Been Set</H1>

<P>As you can see, your selected font family is now

<? echo "$font_family"; ?>, with a base size

of <? echo "$font_size" ?> pt.</p>

10. Provide a link back to session01.php in case the user wants to change
preferences again, and then add some more HTML so that the document is
valid:

<P>Please feel free to change your

preferences again.</p>

</BODY>

</HTML>

11. Save the file with the name session02.php and place this file in the document
root of your Web server.

Your entire code should look like this:

<?

//start a session

session_start();

//check for posted values and register defaults

if (($_POST[sel_font_family]) && ($_POST[sel_font_size])) {

$font_family = $_POST[sel_font_family];

$font_size = $_POST[sel_font_size];

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

//check for stored values, extract from $_SESSION superglobal and register

} else if (((!$_POST[sel_font_family]) && (!$_POST[sel_font_size]))

&& ($_SESSION[font_family]) && ($_SESSION[font_size])) {

$font_family = $_SESSION[font_family];

$font_size = $_SESSION[font_size];

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

290 CHAPTER 17: SESSION BASICS

291MANAGING USER PREFERENCES WITH SESSIONS

//register defaults

} else {

$font_family = "sans-serif";

$font_size = "10";

$_SESSION[font_family] = $font_family;

$_SESSION[font_size] = $font_size;

}

?>

<HTML>

<HEAD>

<TITLE>My Display Preferences</TITLE>

<STYLE type="text/css">

BODY, P, A {font-family:<? echo "$font_family"; ?>;

font-size:<? echo "$font_size"; ?>pt;font-weight:normal;}

H1 {font-family:<? echo "$font_family"; ?>;

font-size:<? echo $font_size + 4; ?>pt;font-weight:bold;}

</STYLE>

</HEAD>

<BODY>

<H1>Your Preferences Have Been Set</H1>

<P>As you can see, your selected font family is now <? echo "$font_family";

?>, with a base size of <? echo "$font_size" ?> pt.</p>

<P>Please feel free to change your preferences

again.</p>

</BODY>

</HTML>

Unless you closed your Web browser between the last script and now, you should
still be staring at the font family and font size selection form.

Figure 17.6 The preferences confirmation page. 1. Select sans-serif for the font
family.

2. Select 14pt for the base font
size.

3. Click the Set Display
Preferences button.

The page is displayed using
your selected font family and
base font size, and the changes
are confirmed. You can see the
result of this in Figure 17.6.

Displaying Changes
This is getting fun! With your Web browser still open to the confirmation screen for
the initial preference changes, click the Change Your Preferences link.

The selection form is also displayed using your new font family and base font size.
Then follow these steps:

1. Select Courier for the font family.

2. Select 8pt for the base font size.

292 CHAPTER 17: SESSION BASICS

Figure 17.7 Confirmation screen showing selected font.

Figure 17.8 Confirmation screen with different font.

3. Click the Set Display
Preferences button (see
Figure 17.7).

The page is displayed using
your selected font family and
base font size, and
accompanying text also
indicates the changes have been
made.

Again, click on the Change Your
Preferences link to see that the
selection form is displayed using
your new font family and base
font size, as shown in Figure
17.8.

Continue changing the font family and sizes, and you’ll quickly discover which
preferences you like and which are simply annoying! Play around with the script,
changing the fonts to others available on your system, or even add other font
attributes to your form and accompanying style sheet, such as italic, bold,
underline, and so forth. Although the purpose of this script is to get a feel for how
user-specific elements can be stored in session variables, you can also take the
opportunity to explore more about the dynamic display of content.

Creating Your
Own Contact
Management
System

Creating Your
Own Contact
Management
System

P A R T V I

Chapter 18
Planning Your System295

Chapter 19
Adding Contacts313

Chapter 20
Modifying Contacts327

Chapter 21
Deleting Contacts345

Chapter 22
Working with Contacts361

This page intentionally left blank

Planning Your
System

The first step in good application design is having a plan.
Although improvisation along the way is sometimes a good
thing, it’s best to start with a solid foundation and a series of
goals. The next several chapters will help you create a simple
contact-management system—basically, an online address
book. In this chapter, you will learn how to:

Define administrative tasks and create a menu.

Modify the table-creation script sequence to account for
primary keys and auto-incrementing fields.

Define and create the my_contacts table.

18
Planning Your
System

18

Planning and Creating the
Administration Menu
Not only will you be able to view data within your system, but you’ll also be able to
add, modify, and delete contacts. A menu would be a good idea—one that
provides links to all your action scripts and adds some authentication to the mix so
that only you can see the data. Now create all that in one script!

1. Open a new file in your text editor and start a PHP block. Then start a session
or continue a session if a session currently exists:

<?

session_start();

2. Start an if...else block that checks for the value of the $_POST[op] variable,
which will be a hidden variable in the login form you’ll soon create:

if ($_POST[op] == "ds") {

3. If the value of $_POST[op] is ds, the user has completed the form. Start another
if...else block that checks the validity of the username and password entered
by the user:

if (($_POST[username] != "admin") || ($_POST[password] != "abc123")) {

296 CHAPTER 18: PLANNING YOUR SYSTEM

USERNAMES AND PASSWORDS
You can use any username and password you want. This script is hard coded
to check that the username is admin and the password is abc123.

4. If either the username or password is incorrect, create a variable called $msg to
hold an error message:

$msg = "<P>Bad Login -

Try Again</P>";

5. Create a variable called $show_form and give it a value of yes. This value will be
checked later in the script to determine what to display:

$show_form = "yes";

297PLANNING AND CREATING THE ADMINISTRATION MENU

6. Continue the if...else statement:

} else {

7. If the user makes it this far, the username and password are correct. So store a
value of yes in the session variable called $_SESSION[valid]:

$_SESSION[valid] = "yes";

8. Create a variable called $show_menu and give it a value of yes. This value will be
checked later in the script to determine what to display:

$show_menu = "yes";

9. Close the inner if...else block:

}

10. Continue the outer if...else block:

} else {

11. If the user is within this section of the outer if...else block, he has reached
this script without going through the form. Check for the value of
$_SESSION[valid] and determine what to show—menu or form:

if ($_SESSION[valid] == "yes") {

$show_menu = "yes";

} else {

$show_form = "yes";

}

12. Close the outer if...else block:

}

13. Create the form block, which will be shown if the user has not logged in or if
the login is incorrect. Start by creating the variable and printing a header:

$form_block = "<h1>Login</h1>

14. Start the form. In this case, the method is POST, and the action is a variable
called $_SERVER[PHP_SELF]:

<form method=POST action=\"$_SERVER[PHP_SELF]\">

298 CHAPTER 18: PLANNING YOUR SYSTEM

WORKING WITH SERVER VARIABLES
$_SERVER[PHP_SELF] is a global variable whose value is equal to the name of
the current script. By using $_SERVER[PHP_SELF] as a form action, you’re
essentially saying, “When the submit button is clicked, reload me!”

UNSET VARIABLES IN PHP
If the login is incorrect, $msg will contain a value, and that value will be
printed in this space. If $msg was not created or a value was not given,
nothing will print, so it doesn’t hurt anything by being present all the time.

15. Print the value of $msg:

$msg

16. Create input fields for the username and password with text labels:

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

17. Add the hidden field for op:

<input type=\"hidden\" name=\"op\" value=\"ds\">

18. Add the submit button and close the form and string:

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

19. Create the menu block, which will be shown if a user has logged in and is
valid. Start by creating the variable and printing a header:

$menu_block = "<h1>My Contact Administration System</h1>

299PLANNING AND CREATING THE ADMINISTRATION MENU

20. Add several menu items and then close the string:

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by

Name

";

21. Use an if...else block to perform a final check to see which should be
displayed—$form_block or $menu_block. Whichever should be displayed
should be the value of a new variable called $display_block:

if ($show_form == "yes") {

$display_block = $form_block;

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

22. Close your PHP block and add HTML:

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System</TITLE>

</HEAD>

<BODY>

23. Display the results:

<? echo "$display_block"; ?>

24. Add some more HTML to make a valid document:

</BODY>

</HTML>

25. Save the file with the name contact_menu.php and place this file in the
document root of your Web server.

You just created a heck of a lot of code. It should look something like this:

<?

//start a session

session_start();

//check if user is coming from a form

if ($_POST[op] == "ds") {

//check username and password

if (($_POST[username] != "admin") || ($_POST[password] != "abc123")) {

//handle bad login

$msg = "<P>Bad Login -

Try Again</P>";

$show_form = "yes";

} else {

//handle good login

$_SESSION[valid] = "yes";

$show_menu = "yes";

}

} else {

//determine what to show

if ($valid == "yes") {

$show_menu = "yes";

} else {

$show_form = "yes";

}

}

//build form block

$form_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

//build menu block

$menu_block = "<h1>My Contact Administration System</h1>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

300 CHAPTER 18: PLANNING YOUR SYSTEM

301PLANNING AND CREATING THE ADMINISTRATION MENU

<P>View Records

Show Contacts, Ordered by Name

";

//assign the block to show to the $display_block variable

if ($show_form == "yes") {

$display_block = $form_block;

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System</TITLE>

</HEAD>

<BODY>

<? echo "$display_block"; ?>

</BODY>

</HTML>

Logging In to the Administration Menu
Now try to log in to the Administration menu, using the hard-coded username and
password from the script.

Figure 18.1 The contact login screen. 1. Open your Web browser
and type http://127.0.0.1/
contact_menu.php. See
Figure 18.1.

You will see the login form
with text fields for the
username and password as
well as a submit button.

302 CHAPTER 18: PLANNING YOUR SYSTEM

Figure 18.2 Bad login display. 2. Type a bad username or a
bad password in the
appropriate fields and then
click the Login button (see
Figure 18.2).

You will see the login form
again with a red error
message displayed.

Figure 18.3 The main menu screen. 3. Type the correct username
(admin) and the correct
password (abc123); then click
the Login button (see Figure
18.3).

You will see the Administration
menu for your contact
management system.

In the next section, you’ll take a
step back and create the
my_contacts table so that you
can perform all the tasks listed
in this fancy Administration
menu!

303DEFINING THE MY_CONTACTS TABLE

Defining the my_contacts Table
Take a moment to think about the kinds of things you’d want in a contact
management system: names, addresses, telephone numbers of all sorts, e-mail
addresses, and maybe even the person’s birthday.

I thought about what I wanted for my own table, which I’ve decided to call
my_contacts. This information appears in Table 18.1.

Table 18.1 Fields for my_contacts

Field Name Description

id Creates a unique ID number for the entry

f_name The person’s first name

l_name The person’s last name

address1 First line of the address

address2 Second line of the address

address3 Third line of the address

postcode ZIP or postal code

country Country in which the person resides

prim_tel Primary telephone number

sec_tel Secondary telephone number

email E-mail address

birthday The person’s birthday

In the next section, you’ll modify the table-creation scripts from Chapter 12,
“Creating a Database Table.” You’ll add the capability to name primary keys and
auto-incrementing fields.

Modifying the Table-Creation Scripts
With a few minor modifications to two of the three scripts in the table-creation
sequence from Chapter 12, you can add check boxes to the form to handle primary
keys and auto-incrementing fields. These types of fields are incredibly useful for ID
fields.

1. Open do_showfielddef.php in your text editor and find the section of
$form_block that prints table headings, and add the following before the end of
the row:

<TH>PRIMARY KEY?</TH><TH>AUTO-INCREMENT?</TH>

2. In the $form_block within the for loop, the next-to-last line prints a text field
with a name of field_length[]. After that line, and before the end of the table
row, add these two lines:

<TD ALIGN=CENTER><INPUT TYPE=\"checkbox\" NAME=\"primary[]\"

VALUE=\"Y\"></TD>

<TD ALIGN=CENTER><INPUT TYPE=\"checkbox\" NAME=\"auto_increment[]\"

VALUE=\"Y\"></TD>

3. Save this file.

Your modified code for this script should look something like this:

<?

//validate important input

if ((!$_POST[table_name]) || (!$_POST[num_fields])) {

header("Location: http://127.0.0.1/show_createtable.html");

exit;

}

//begin creating form for display

$form_block = "

<FORM METHOD=\"POST\" ACTION=\"do_createtable.php\">

<INPUT TYPE=\"hidden\" NAME=\"table_name\" VALUE=\"$_POST[table_name]\">

<TABLE CELLSPACING=5 CELLPADDING=5>

<TR>

<TH>FIELD NAME</TH><TH>FIELD TYPE</TH><TH>FIELD LENGTH</TH>

<TH>PRIMARY KEY?</TH><TH>AUTO-INCREMENT?</TH></TR>";

304 CHAPTER 18: PLANNING YOUR SYSTEM

305DEFINING THE MY_CONTACTS TABLE

//count from 0 until you reach the number of fields

for ($i = 0; $i <$_POST[num_fields]; $i++) {

//add to the form, one row for each field

$form_block .= "<TR>

<TD ALIGN=CENTER><INPUT TYPE=\"text\"

NAME=\"field_name[]\" SIZE=\"30\"></TD>

<TD ALIGN=CENTER>

<SELECT NAME=\"field_type[]\">

<OPTION VALUE=\"char\">char</OPTION>

<OPTION VALUE=\"date\">date</OPTION>

<OPTION VALUE=\"float\">float</OPTION>

<OPTION VALUE=\"int\">int</OPTION>

<OPTION VALUE=\"text\">text</OPTION>

<OPTION VALUE=\"varchar\">varchar</OPTION>

</SELECT>

</TD>

<TD ALIGN=CENTER><INPUT TYPE=\"text\"

NAME=\"field_length[]\" SIZE=\"5\"></TD>

<TD ALIGN=CENTER><INPUT TYPE=\"checkbox\"

NAME=\"primary[]\" VALUE=\"Y\"></TD>

<TD ALIGN=CENTER><INPUT TYPE=\"checkbox\"

NAME=\"auto_increment[]\" VALUE=\"Y\"></TD>

</TR>";

}

//finish up the form

$form_block .= "<TR>

<TD ALIGN=CENTER COLSPAN=3><INPUT TYPE=\"submit\" VALUE=\"Create Table\"></TD>

</TR>

</TABLE>

</FORM>";

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 2</TITLE>

</HEAD>

<BODY>

<H1>Define fields for <? echo "$_POST[table_name]"; ?></H1>

<? echo "$form_block"; ?>

</BODY>

</HTML>

Next, you will modify the final part of the table-creation script.

1. Open do_createtable.php in your text editor.

2. Within the for loop, the first line appends text to the $sql variable, which holds
the SQL statement for table creation. Because you’ve added two check boxes
for additional elements of the SQL statement, you need to check for them.

Start by creating an if...else block that checks whether the auto_increment
check box has been checked:

if ($_POST[auto_increment][$i] == "Y") {

3. If the auto_increment check box has been checked, create a variable to hold
additional SQL options:

$additional = "NOT NULL auto_increment";

306 CHAPTER 18: PLANNING YOUR SYSTEM

4. If the auto_increment check box hasn’t been checked, create the variable but do
not place any text in it, and then close the block. This will assist in resetting the
value of the string to an empty value as the looping continues:

} else {

$additional = "";

}

5. Create an if...else block that checks whether the primary key check box has
been checked:

if ($_POST[primary][$i] == "Y") {

6. If the primary key check box has been checked, append the primary key syntax
to the $additional variable:

$additional .= ", primary key (".$_POST[field_name][$i].")";

AUTO-INCREMENT
When you define a field as auto_increment, it must also be defined as NOT
NULL.

PRIMARY KEY NAMING
The syntax for naming a field as a primary key is separated by a comma
from the initial field definition. It looks something like this: primary key
(field_name).

307DEFINING THE MY_CONTACTS TABLE

7. If the primary key check box hasn’t been checked, append an empty value to
the $additional value, and then close the block:

} else {

$additional = "";

}

8. The last change is to the preexisting loop that checks for field length and
creates part of the SQL statement. Find the line that looks like this:

$sql .= " (".$_POST[field_length][$i]."),";

9. Change the line so that it looks like the following. This ensures that the
$additional string is placed in the proper section of the SQL statement:

$sql .= " (".$_POST[field_length][$i].") $additional ,";

10. Similarly, find a line that looks like this:

$sql .= ",";

11. Change the line so that it looks like the following:

$sql .= " $additional ,";

12. Save the file.

Your modified code for this script should look something like this:

<?

//indicate the database you want to use

$db_name = "testDB";

//connect to database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//start creating the SQL statement

$sql = "CREATE TABLE $_POST[table_name] (";

//continue the SQL statement for each new field

for ($i = 0; $i < count($_POST[field_name]); $i++) {

$sql .= $_POST[field_name][$i]." ".$_POST[field_type][$i];

if ($_POST[auto_increment][$i] == "Y") {

$additional = "NOT NULL auto_increment";

} else {

$additional = "";

}

if ($_POST[primary][$i] == "Y") {

$additional .= ", primary key (".$_POST[field_name][$i].")";

} else {

$additional = "";

}

if ($_POST[field_length][$i] != "") {

$sql .= " (".$_POST[field_length][$i].") $additional ,";

} else {

$sql .= " $additional ,";

}

}

//clean up the end of the string

$sql = substr($sql, 0, -1);

$sql .= ")";

//execute the query

$result = mysql_query($sql,$connection) or die(mysql_error());

//get a good message for display upon success

if ($result) {

$msg = "<P>".$_POST[table_name]." has been created!</P>";

}

?>

<HTML>

<HEAD>

<TITLE>Create a Database Table: Step 3</TITLE>

</HEAD>

<BODY>

<h1>Adding table to <? echo "$db_name"; ?>...</h1>

<? echo "$msg"; ?>

</BODY>

</HTML>

In the next section, you will use these new scripts to create the my_contacts table.

308 CHAPTER 18: PLANNING YOUR SYSTEM

309DEFINING THE MY_CONTACTS TABLE

Creating the my_contacts Table
It’s time to create the my_contacts table, complete with one primary key and auto-
incrementing field.

1. Open your Web browser and type http://127.0.0.1/show_createtable.html.

Figure 18.4 The create table form. 2. In the Table Name field,
type my_contacts.

3. In the Number of Fields
field, type 12.

4. Click the Go to Step 2 link
(see Figure 18.4).

You will see a form with 12 rows, corresponding to the 12 fields you want to create
in the my_contacts table. Populate the fields in these next steps:

1. In the first row, type id for the Field Name, select int from the Field Type drop-
down menu, check the check box for Primary Key, and check the check box for
Auto-Increment.

2. In the second row, type f_name for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 75.

3. In the third row, type l_name for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 75.

4. In the fourth row, type address1 for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100.

5. In the fifth row, type address2 for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 100.

6. In the sixth row, type address3 for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 100.

7. In the seventh row, type postcode for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 25.

8. In the eighth row, type country for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100.

9. In the ninth row, type prim_tel for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 35.

10. In the tenth row, type sec_tel for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 35.

11. In the eleventh row, type email for the Field Name, select varchar from the
Field Type drop-down menu, and specify a Field Length of 100.

310 CHAPTER 18: PLANNING YOUR SYSTEM

Figure 18.5 The completed create table form. 12. In the twelfth row, type
birthday for the Field
Name and select date
from the Field Type drop-
down menu.

The completed form should
look like Figure 18.5.

311DEFINING THE MY_CONTACTS TABLE

Congratulations! The table has been created. In the next chapter, you will create
the record addition interface for this table. You are well on your way to creating a
contact management system.

Figure 18.6 The contacts table created! Click the Create Table button to
create the my_contacts table
(see Figure 18.6).

SCHEMAS
This is a very generic schema for an address book, and obviously you can see
where it could be tightened up and made more specific. For example, if you
knew your address book were United States-only, you could change the
address fields to be two address fields: a two-character state field and a 10-
character ZIP code field. The more you know about the data you want to
hold in your table, the more precisely you can define it. In this case, the goal
is simply to learn the process in general, and in general this is an adequate—
if not a little loose—table structure. After mastering it, branch out on your
own.

This page intentionally left blank

Adding
Contacts

You’ve made it one step down the development path—you
have the my_contacts table all created, waiting for contacts to
be added. In this chapter, you’ll learn how to:

Create an administrative interface for adding a record.

Create a script to insert the record into your table.

Require session-based authentication before the script can
be viewed or the record can be added.

19
Adding
Contacts

19

Creating the Record-Addition Form
The HTML form will contain an input field for each column in the my_contacts table.
In the previous chapter, you created 12 fields, which correspond to 12 columns.
Your record-addition interface should have a space for each of these fields except
the ID field, which can be left blank.

314 CHAPTER 19: ADDING CONTACTS

A NOTE ON AUTO-INCREMENTING
Because the ID field is an auto-incrementing field, if you add a record and
leave the field blank, MySQL will place the next-highest available number in
that field.

1. Open a new file in your text editor and start a PHP block; then start a session or
continue a session if a session currently exists:

<?

session_start();

2. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

3. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

4. Close your PHP block and then type this HTML to start building the record-
addition form:

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Add a Contact</TITLE>

</HEAD>

315CREATING THE RECORD-ADDITION FORM

<BODY>

<h1>My Contact Management System</h1>

<h2>Add a Contact</h2>

5. Begin your form. Assume that the method is POST and the action is a script
called do_addcontact.php:

<FORM METHOD="POST" ACTION="do_addcontact.php">

6. Begin an HTML table to assist in layout. Start a new table row, add two column
headings, and then close that row:

<table cellspacing=3 cellpadding=5>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

7. Start a new table row and table data cell, and then create an input field for the
person’s first name with a text label:

<tr>

<td valign=top>

<P>First Name:

<INPUT TYPE="text" NAME="f_name" SIZE=35 MAXLENGTH=75></P>

8. In the same table data cell, create an input field for the person’s last name with
a text label:

<P>Last Name:

<INPUT TYPE="text" NAME="l_name" SIZE=35 MAXLENGTH=75></P>

9. In the same table data cell, create an input field for the person’s address (first
line) with a text label:

<P>Address Line 1:

<INPUT TYPE="text" NAME="address1" SIZE=35 MAXLENGTH=100></P>

10. In the same table data cell, create an input field for the person’s address
(second line) with a text label:

<P>Address Line 2:

<INPUT TYPE="text" NAME="address2" SIZE=35 MAXLENGTH=100></P>

11. In the same table data cell, create an input field for the person’s address
(third line) with a text label:

<P>Address Line 3:

<INPUT TYPE="text" NAME="address3" SIZE=35 MAXLENGTH=100></P>

12. In the same table data cell, create an input field for the person’s ZIP/postal
code with a text label:

<P>Zip/Postal Code:

<INPUT TYPE="text" NAME="postcode" SIZE=35 MAXLENGTH=25></P>

13. In the same table data cell, create an input field for the person’s country with
a text label. Close the table data cell after this input field:

<P>Country:

<INPUT TYPE="text" NAME="country" SIZE=35 MAXLENGTH=100></P>

</td>

14. In a new table data cell, create an input field for the person’s primary
telephone number with a text label:

<td valign=top>

<P>Primary Telephone Number:

<INPUT TYPE="text" NAME="prim_tel" SIZE=35 MAXLENGTH=35></P>

15. In the same table data cell, create an input field for the person’s secondary
telephone number with a text label:

<P>Secondary Telephone Number:

<INPUT TYPE="text" NAME="sec_tel" SIZE=35 MAXLENGTH=35></P>

16. In the same table data cell, create an input field for the person’s e-mail
address with a text label:

<P>E-mail Address:

<INPUT TYPE="text" NAME="email" SIZE=35 MAXLENGTH=100></P>

316 CHAPTER 19: ADDING CONTACTS

317CREATING THE RECORD-ADDITION FORM

17. In the same table data cell, create an input field for the person’s birthday
with a text label. Close the table data cell and the table row after this input
field:

<P>Birthday (YYYY-MM-DD):

<INPUT TYPE="text" NAME="birthday" SIZE=10 MAXLENGTH=10></P>

</td>

</tr>

DATE TYPES IN MYSQL
The date type used in MySQL uses the YYYY-MM-DD format. An example of
a date using this format is 2004-03-20 (March 20, 2004). In this example
application, your date-related form fields are designed for you to enter the
dates manually in this format. In Appendix C, “Writing Your Own Functions,”
you’ll learn how to create code snippets that enable you to create dynamic
lists for things like months, days, and years.

18. Start a new table row and table data cell that spans two columns. Inside, add
a submit button as well as a link back to the main menu. Close the table data
cell, the table row, and the table itself:

<tr>

<td align=center colspan=2>

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Add Contact to System"></P>

<p>Return to Main Menu</p>

</TD>

</TR>

</TABLE>

19. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

20. Save the file with the name show_addcontact.php, and then place this file in
the document root of your Web server.

Your code should look something like this:

<?

//start a session

session_start();

//validate user to see if they are allowed to be here

if ($_SESSION[valid] != "yes") {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Add a Contact</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Add a Contact</h2>

<FORM METHOD="post" ACTION="do_addcontact.php">

<table cellspacing=2 cellpadding=1>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

<tr>

<td valign=top>

<P>First Name:

<INPUT TYPE="text" NAME="f_name" SIZE=35 MAXLENGTH=75></P>

<P>Last Name:

<INPUT TYPE="text" NAME="l_name" SIZE=35 MAXLENGTH=75></P>

<P>Address Line 1:

<INPUT TYPE="text" NAME="address1" SIZE=35 MAXLENGTH=100></P>

<P>Address Line 2:

<INPUT TYPE="text" NAME="address2" SIZE=35 MAXLENGTH=100></P>

<P>Address Line 3:

<INPUT TYPE="text" NAME="address3" SIZE=35 MAXLENGTH=100></P>

<P>Zip/Postal Code:

<INPUT TYPE="text" NAME="postcode" SIZE=35 MAXLENGTH=25></P>

<P>Country:

<INPUT TYPE="text" NAME="country" SIZE=35 MAXLENGTH=100></P>

</td>

<td valign=top>

<P>Primary Telephone Number:

<INPUT TYPE="text" NAME="prim_tel" SIZE=35 MAXLENGTH=35></P>

<P>Secondary Telephone Number:

<INPUT TYPE="text" NAME="sec_tel" SIZE=35 MAXLENGTH=35></P>

<P>E-mail Address:

<INPUT TYPE="text" NAME="email" SIZE=35 MAXLENGTH=100></P>

<P>Birthday (YYYY-MM-DD):

<INPUT TYPE="text" NAME="birthday" SIZE=10 MAXLENGTH=10></P>

</td>

318 CHAPTER 19: ADDING CONTACTS

319CREATING THE RECORD-ADDITION SCRIPT

</tr>

<tr>

<td align=center colspan=2>

<INPUT TYPE="SUBMIT" NAME="submit" VALUE="Add Contact to System">

<p>Return to Main Menu</p>

</TD>

</TR>

</TABLE>

</FORM>

</BODY>

</HTML>

In the next section, you’ll create the script that takes the form input, creates a SQL
statement, and adds the record to the database table.

Creating the Record-Addition Script
This script will add your record to the my_contacts table, taking into consideration
the auto-incrementing ID field.

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for values in $_POST[f_name] and
$_POST[l_name]. If they don’t have values, direct the user back to the form and
exit the script:

if ((!$_POST[f_name]) || (!$_POST[l_name])) {

header("Location: http://127.0.0.1/show_addcontact.php");

exit;

REQUIRED FIELDS
You can have as many (or as few) required fields as you want; in this instance,
you’re only checking for the first and last names.

3. If the required fields have values, start a session, or continue a session if one
currently exists. Then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create a variable to hold the name of the database in which the table resides:

$db_name = "testDB";

7. Create a variable to hold the name of the table you’re populating with this
script:

$table_name = "my_contacts";

8. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

9. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

320 CHAPTER 19: ADDING CONTACTS

321CREATING THE RECORD-ADDITION SCRIPT

10. Create the SQL statement. The first parenthetical statement gives the names
of the fields to populate (in order), and the second parenthetical statement
sends the actual strings:

$sql = "INSERT INTO $table_name

(id, f_name, l_name, address1, address2, address3, postcode, country,

prim_tel, sec_tel, email, birthday) VALUES

('', '$_POST[f_name]', '$_POST[l_name]', '$_POST[address1]',

'$_POST[address2]', '$_POST[address3]', '$_POST[postcode]',

'$_POST[country]', '$_POST[prim_tel]', '$_POST[sec_tel]',

'$_POST[email]', '$_POST[birthday]')";

SETTING AUTO-INCREMENT FIELDS
Leaving a blank slot for the ID field will ensure that the field auto-increments
on its own.

11. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

12. Close your PHP block and add this HTML:

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contact Added</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Add a Contact - Contact Added</h2>

13. Add a confirmation statement. Mingle HTML and PHP to include the value of
the $table_name variable:

<P>The following information was successfully added to

<? echo "$table_name"; ?></P>

14. Next, you’ll re-create the layout used in show_addcontact.php, only it won’t
contain form fields. Instead, you’ll mingle HTML and PHP to show the values
that were entered.

<table cellspacing=2 cellpadding=1>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

<tr>

<td valign=top>

<P>First Name:

<? echo "$_POST[f_name]"; ?></P>

<P>Last Name:

<? echo "$_POST[l_name]"; ?></P>

<P>Address Line 1:

<? echo "$_POST[address1]"; ?></P>

<P>Address Line 2:

<? echo "$_POST[address2]"; ?></P>

<P>Address Line 3:

<? echo "$_POST[address3]"; ?></P>

<P>Zip/Postal Code:

<? echo "$_POST[postcode]"; ?></P>

322 CHAPTER 19: ADDING CONTACTS

323CREATING THE RECORD-ADDITION SCRIPT

<P>Country:

<? echo "$_POST[country]"; ?></P>

</td>

<td valign=top>

<P>Primary Telephone Number:

<? echo "$_POST[prim_tel]"; ?></P>

<P>Secondary Telephone Number:

<? echo "$_POST[sec_tel]"; ?></P>

<P>E-mail Address:

<? echo "$_POST[email]"; ?></P>

<P>Birthday (YYYY-MM-DD):

<? echo "$_POST[birthday]"; ?></P>

</td>

</tr>

15. Start a new table row and table data cell that spans two columns. Inside, add
a link back to the main menu. Close the table data cell, the table row, and the
table itself:

<tr>

<td align=center colspan=2>

Return to Main Menu

</TD>

</TR>

</TABLE>

16. Add some more HTML so that the document is valid:

</BODY>

</HTML>

17. Save the file with the name do_addcontact.php and place this file in the
document root of your Web server.

Go on to the next step and start adding contacts!

Populating Your Table
To start populating the my_contacts table, open http://127.0.0.1/
contact_menu.php. If you’ve already logged in, you’ll see your Administration menu.
Otherwise, log in using the username (admin) and password (abc123).

324 CHAPTER 19: ADDING CONTACTS

Figure 19.1 The add a contact form. 1. Select the Add a Contact
menu item (see Figure 19.1).

You will see a blank form
with numerous fields for
adding contact information
as well as a submit button
and a link back to the main
menu.

Figure 19.2 A sample contact. 2. Now complete the form!
Only two fields are required
(unless you changed that on
your own): the first name
and last name. Here’s a
sample contact shown in
Figure 19.2.

325POPULATING YOUR TABLE

Add several of your own contacts to the system. Feel free to make some mistakes
because in the next chapter, you create a set of record-modification scripts.

Figure 19.3 Contact added confirmation. 3. Click the Add Contact to
System button. You should
see a confirmation screen, as
shown in Figure 19.3.

This page intentionally left blank

Modifying
Contacts

Now that you have at least a few contacts in your database
table, you need a simple way to modify information. People
move, change e-mail accounts—you’ll need to update your
records sometimes. In this chapter, you’ll learn how to:

Create an administrative interface for modifying a record.

Create a script to update the record in your table.

Require session-based authentication before the script can
be viewed or the record can be modified.

20
Modifying
Contacts

20

Creating the Record-Selection Form
You have a number of entries in the my_contacts table, so you’ll need a quick way to
select a single record for modification. The next script will create a drop-down
menu of all the people in your database, from which you can select one record to
modify.

1. Open a new file in your text editor and start a PHP block, and then start a
session, or continue a session if one currently exists:

<?

session_start();

2. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

3. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

4. Create variables to hold the name of the database on which the table resides,
as well as the name of the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

5. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

7. Create the SQL statement. You want to select just the ID number, first name,
and last name of each record in the table:

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

328 CHAPTER 20: MODIFYING CONTACTS

329CREATING THE RECORD-SELECTION FORM

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. Check for results using the mysql_num_rows() function:

c$num = @mysql_num_rows($result);

10. Check the value returned by the mysql_num_rows() function and create a
variable called $display_block to hold an error message if the number is less
than 1 (in other words, if there are no rows returned and therefore no records
in the table).

if ($num < 1) {

$display_block = "<P>Sorry! No results.</p>";

11. Continue the if...else block, so the script continues if the count of rows is 1
or more:

} else {

12. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

13. Get the individual elements of the record and give them good names:

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

14. Create a variable called $option_block, which will contain the individual
elements in the drop-down menu:

$option_block .= "<option value=\"$id\">$l_name, $f_name</option>";

15. Close the while loop:

}

16. Create a variable called $display_block, which will hold the form. Although
this same variable was used to hold an error message in Step 10, it will not
be used at that point unless there is an error. If there is an error, the script
will never get to this step, so you have no worries about overwriting variables
and can begin your form. For the form, assume that the method is POST and
the action is a script called show_modcontact.php:

$display_block = "<FORM METHOD=\"POST\" ACTION=\"show_modcontact.php\">

17. Create a text label for the drop-down menu:

<P>Contact:

18. Start the drop-down menu:

<select name=\"id\">

19. Place the $option_block string inside the <select> </select> tag pair. It
should contain at least one <option> element:

$option_block

20. Finish the drop-down menu:

</select>

21. Add a submit button. Then close your form, the string, the if...else block,
and the PHP block:

<INPUT TYPE=\"SUBMIT\" NAME=\"submit\" VALUE=\"Select this

Contact\"></P>

</form>";

}

?>

22. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Modify a Contact</TITLE>

</HEAD>

330 CHAPTER 20: MODIFYING CONTACTS

331CREATING THE RECORD-SELECTION FORM

<BODY>

<h1>My Contact Management System</h1>

<h2>Modify a Contact - Select from List</h2>

<P>Select a contact from the list below, to modify the contact's

record.</P>

23. Display the contents of $display_block:

<? echo "$display_block"; ?>

24. Add a link back to the main menu:

<p>Return to Main Menu</p>

25. Add some more HTML so that the document is valid:

</BODY>

</HTML>

26. Save the file with the name pick_modcontact.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//start a session

session_start();

//check validity of user

if ($_SESSION[valid] != "yes") {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

//check the number of results

$num = @mysql_num_rows($result);

if ($num < 1) {

//if there are no results, display message

$display_block = "<P>Sorry! No results.</p>";

} else {

//if results are found, loop through them

//and make a form selection block

while ($row = mysql_fetch_array($result)) {

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$option_block .= "<option value=\"$id\">$l_name, $f_name</option>";

}

//create the entire form block

$display_block = "

<FORM METHOD=\"POST\" ACTION=\"show_modcontact.php\">

<P>Contact:

<select name=\"id\">

$option_block

</select>

<INPUT TYPE=\"SUBMIT\" NAME=\"submit\" VALUE=\"Select this Contact\"></P>

</form>";

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Modify a Contact</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Modify a Contact - Select from List</h2>

<P>Select a contact from the list below, to modify the contact's record.</P>

<? echo "$display_block"; ?>

<p>Return to Main Menu</p>

</BODY>

</HTML>

In the next section, you will create the record-modification form, which looks
strikingly similar to the record-addition form.

332 CHAPTER 20: MODIFYING CONTACTS

333CREATING THE RECORD-MODIFICATION FORM

Creating the Record-Modification Form
The record-modification form is based on the record-addition form created in the
previous chapter. The difference lies in the pre-population of values in the form
fields. In other words, if there’s already data in a record, you can see what you have
before you change it.

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for a value for $_POST[id], the one variable
sent from the record-selection form. If a value doesn’t exist, the block directs
the user back to the selection form and exits the script:

if (!$_POST[id]) {

header("Location: http://127.0.0.1/pick_modcontact.php");

exit;

3. If the required field has a value, you start a session or continue a session if one
currently exists. Then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

7. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

8. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

9. Create the SQL statement. You want to select all the fields in the database
except ID for the record with an ID equal to the value of $_POST[id]:

$sql = "SELECT f_name, l_name, address1, address2, address3,

postcode, country, prim_tel, sec_tel, email, birthday

FROM $table_name WHERE id = '$_POST[id]'";

334 CHAPTER 20: MODIFYING CONTACTS

ALTERNATE SQL APPROACHES
You could just as easily have written SELECT * FROM $table_name WHERE id =
'$_POST[id]'; and simply not have done anything with the resulting value
from the ID field in the database.

10. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

11. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

335CREATING THE RECORD-MODIFICATION FORM

12. Get the individual elements of the record, and give them good names:

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$address1 = $row['address1'];

$address2 = $row['address2'];

$address3 = $row['address3'];

$postcode = $row['postcode'];

$country = $row['country'];

$prim_tel = $row['prim_tel'];

$sec_tel = $row['sec_tel'];

$email = $row['email'];

$birthday = $row['birthday'];

13. Close the while loop and then close your PHP block:

}

?>

14. Type this HTML to start building the record-modification form:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Modify a Contact</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Modify a Contact</h2>

15. Begin your form. Assume that the method is POST and the action is a script
called do_modcontact.php:

<FORM METHOD="POST" ACTION="do_modcontact.php">

USING RECORD VALUES
Now that you have the current values for the selected record, you will use
them later in the script to populate the form fields.

16. Add a hidden field to hold the value of $_POST[id] so it will be passed along
to the script:

<INPUT TYPE="hidden" name="id" value="<? echo "$_POST[id]"; ?>">

17. Begin an HTML table to assist in layout. Start a new table row, add two
column headings, and then close that row:

<table cellspacing=3 cellpadding=5>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

18. Create rows and cells to hold input fields for all the items in the record. Use
the value attribute in each input field and mingle HTML and PHP to echo the
actual value:

<tr>

<td valign=top>

<P>First Name:

<INPUT TYPE="text" NAME="f_name" VALUE="<? echo "$f_name"; ?>"

SIZE=35 MAXLENGTH=75></P>

<P>Last Name:

<INPUT TYPE="text" NAME="l_name" VALUE="<? echo "$l_name"; ?>"

SIZE=35 MAXLENGTH=75></P>

<P>Address Line 1:

<INPUT TYPE="text" NAME="address1" VALUE="<? echo "$address1"; ?>"

SIZE=35 MAXLENGTH=100></P>

<P>Address Line 2:

<INPUT TYPE="text" NAME="address2" VALUE="<? echo "$address2"; ?>"

SIZE=35 MAXLENGTH=100></P>

<P>Address Line 3:

<INPUT TYPE="text" NAME="address3" VALUE="<? echo "$address3"; ?>"

SIZE=35 MAXLENGTH=100></P>

<P>Zip/Postal Code:

<INPUT TYPE="text" NAME="postcode" VALUE="<? echo "$postcode"; ?>"

SIZE=35 MAXLENGTH=25></P>

<P>Country:

336 CHAPTER 20: MODIFYING CONTACTS

337CREATING THE RECORD-MODIFICATION FORM

<INPUT TYPE="text" NAME="country" VALUE="<? echo "$country"; ?>"

SIZE=35 MAXLENGTH=100></P>

</td>

<td valign=top>

<P>Primary Telephone Number:

<INPUT TYPE="text" NAME="prim_tel" VALUE="<? echo "$prim_tel"; ?>"

SIZE=35 MAXLENGTH=35></P>

<P>Secondary Telephone Number:

<INPUT TYPE="text" NAME="sec_tel" VALUE="<? echo "$sec_tel"; ?>"

SIZE=35 MAXLENGTH=35></P>

<P>E-mail Address:

<INPUT TYPE="text" NAME="email" VALUE="<? echo "$email"; ?>"

SIZE=35 MAXLENGTH=100></P>

<P>Birthday (YYYY-MM-DD):

<INPUT TYPE="text" NAME="birthday" VALUE="<? echo "$birthday"; ?>"

SIZE=10 MAXLENGTH=10></P>

</td>

</tr>

19. Start a new table row and table data cell that spans two columns. Inside, add
a submit button as well as a link back to the main menu. Close the table data
cell, the table row, and the table itself:

<tr>

<td align=center colspan=2>

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Update Contact Record"></P>

<p>Return to Main Menu</p>

</TD>

</TR>

</TABLE>

20. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

21. Save the file with the name show_modcontact.php and place this file in the
document root of your Web server.

In the next section, you’ll create the script that takes the form input, creates a SQL
statement, and updates the record in the database table.

Creating the Record-Modification Script
This script will update the record in the my_contacts table, using the value of
$_POST[id] as the primary key (which it is).

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for values in $_POST[f_name] and
$_POST[l_name]. If they don’t have values, direct the user back to the selection
form and exit the script:

if ((!$_POST[f_name]) || (!$_POST[l_name])) {

header("Location: http://127.0.0.1/pick_modcontact.php");

exit;

338 CHAPTER 20: MODIFYING CONTACTS

REQUIRED FIELDS
You can have as many (or as few) required fields as you want, but the
requirements should match the required fields from the record-addition form.

3. If the required fields have values, start a session or continue a session if one
currently exists. Then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

339CREATING THE RECORD-MODIFICATION SCRIPT

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create variables to hold the name of the database on which the table resides,
as well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

7. Add the connection information as you have been:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

8. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

9. Create the SQL statement. This statement uses UPDATE to set fields to specific
values:

$sql = "UPDATE $table_name SET

f_name = '$_POST[f_name]',

l_name = '$_POST[l_name]',

address1 = '$_POST[address1]',

address2 = '$_POST[address2]',

address3 = '$_POST[address3]',

postcode = '$_POST[postcode]',

country = '$_POST[country]',

prim_tel = '$_POST[prim_tel]',

sec_tel = '$_POST[sec_tel]',

email = '$_POST[email]',

birthday = '$_POST[birthday]'

WHERE id = '$_POST[id]'";

10. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

11. Close your PHP block and add this HTML:

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contact Updated</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Modify a Contact - Contact Updated</h2>

12. Add a confirmation statement. Mingle HTML and PHP to include the value of
the $table_name variable:

<P>The following information was successfully updated in

<? echo "$table_name"; ?></P>

13. Next, you re-create the layout used in show_modcontact.php, only it won’t
contain form fields. Instead, you’ll mingle HTML and PHP to show the values
that were entered. Start a new table row, add two column headings, and
then close that row:

<table cellspacing=3 cellpadding=5>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

14. Start a new table row and table data cell, and then display a text label and
value for each field:

<tr>

<td valign=top>

<P>First Name:

<? echo "$_POST[f_name]"; ?></P>

<P>Last Name:

<? echo "$_POST[l_name]"; ?></P>

<P>Address Line 1:

<? echo "$_POST[address1]"; ?></P>

<P>Address Line 2:

340 CHAPTER 20: MODIFYING CONTACTS

341CREATING THE RECORD-MODIFICATION SCRIPT

<? echo "$_POST[address2]"; ?></P>

<P>Address Line 3:

<? echo "$_POST[address3]"; ?></P>

<P>Zip/Postal Code:

<? echo "$_POST[postcode]"; ?></P>

<P>Country:

<? echo "$_POST[country]"; ?></P>

</td>

<td valign=top>

<P>Primary Telephone Number:

<? echo "$_POST[prim_tel]"; ?></P>

<P>Secondary Telephone Number:

<? echo "$_POST[sec_tel]"; ?></P>

<P>E-mail Address:

<? echo "$_POST[email]"; ?></P>

<P>Birthday (YYYY-MM-DD):

<? echo "$_POST[birthday]"; ?></P>

</td>

</tr>

15. Start a new table row and table data cell that spans two columns. Inside, add
a link back to the main menu. Close the table data cell, the table row, and the
table itself:

<tr>

<td align=center colspan=2>

<p>Return to Main Menu</p>

</TD>

</TR>

</TABLE>

16. Add some more HTML so that the document is valid:

</BODY>

</HTML>

17. Save the file with the name do_modcontact.php and place this file in the
document root of your Web server.

You can now go on to the next step—modifying some of the contacts in your table.

Modifying Contacts
To start modifying contacts in the my_contacts table, open http://127.0.0.1/
contact_menu.php. If you’ve already logged in, you’ll see your Administration
menu. Otherwise, log in using the username (admin) and password (abc123).

342 CHAPTER 20: MODIFYING CONTACTS

Figure 20.1 The contact selection form. 1. Select the Modify a Contact
menu item (see Figure 20.1).

You will see a drop-down
menu of the contacts in the
system, ordered by last
name, as well as a submit
button and a link back to the
main menu.

Figure 20.2 The modify contact form. 2. Select a contact from the list
and click the Select This
Contact button. I selected a
sample from my own list. It
is not complete, needing us
to fill in some information
(see Figure 20.2).

343MODIFYING CONTACTS

Figure 20.4 The contact modification confirmation screen. 3. Change something in the
record. In my sample, I
changed the Address 1 and
Address 2 fields to “1313
Mockingbird Lane” and
“Suite 92-A.” I also changed
the primary telephone
number to 555-444-1111.
Click the Update Contact
Record button. You should
see a confirmation screen,
shown in Figure 20.4.

Figure 20.3 The contact modification form. You will see the contact
modification form, with
fields pre-populated with
existing values (see Figure
20.3).

Modify the records of some of your own contacts. In the next chapter, you will
create the administrative scripts used to delete some records.

344 CHAPTER 20: MODIFYING CONTACTS

Figure 20.5 The updated record. 4. Return to the selection form
and select your contact
again to see that the value
has really changed, as shown
in Figure 20.5.

Deleting
Contacts

There are plenty of times when I want to delete people from
my address book for one reason or another. You should be able
to delete people from your online contact management system,
too! In this chapter, you’ll learn how to:

Create an administrative interface for deleting a record.

Create a script to delete the record from your table.

Require session-based authentication before the script can
be viewed or the record can be deleted.

21
Deleting
Contacts

21

Using the Record-Selection Form
The script that creates a selection form for record deletion is virtually identical to
the script used to select a record for modification. This section will be very easy for
you to skim through. Repetition makes for perfection!

1. Open a new file in your text editor and start a PHP block. Then start a session
or continue a session if one currently exists:

<?

session_start();

2. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

3. Send the user back to the login form, and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

4. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

5. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

7. Create the SQL statement. You want to select just the ID number, first name,
and last name of each record in the table:

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

346 CHAPTER 21: DELETING CONTACTS

347USING THE RECORD-SELECTION FORM

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. Check for results using the mysql_num_rows() function:

$num = @mysql_num_rows($result);

10. Check the value returned by the mysql_num_rows() function and create a
variable called $display_block to hold an error message if the number is less
than 1 (in other words, if there are no rows returned and therefore no records
in the table).

if ($num < 1) {

$display_block = "<P>Sorry! No results.</p>";

11. Continue the if...else block, so the script continues if the count of rows is 1
or more:

} else {

12. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

13. Get the individual elements of the record and give them good names:

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

14. Create a variable called $option_block, which will contain the individual
elements in the drop-down menu:

$option_block .= "<option value=\"$id\">$l_name, $f_name</option>";

15. Close the while loop:

}

16. Create a variable called $display_block, which will hold the form. Although
this same variable was used to hold an error message in Step 10, it will not
be used at that point unless there is an error. If there is an error, the script
will never get to this step, so you have no worries about overwriting variables
and can begin your form. For the form, assume that the method is POST and
the action is a script called show_delcontact.php:

$display_block = "<FORM METHOD=\"POST\" ACTION=\"show_delcontact.php\">

17. Create a text label for the drop-down menu:

<P>Contact:

18. Start the drop-down menu:

<select name=\"id\">

19. Place the $option_block string inside the <select> </select> tag pair. It
should contain at least one <option> element:

$option_block

20. Finish the drop-down menu:

</select>

21. Add a submit button:

<INPUT TYPE=\"SUBMIT\" NAME=\"submit\" VALUE=\"Select this

Contact\"></P>

22. Close your form, the string, the if...else block, and the PHP block:

</form>";

}

?>

23. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Delete a Contact</TITLE>

</HEAD>

348 CHAPTER 21: DELETING CONTACTS

349USING THE RECORD-SELECTION FORM

<BODY>

<h1>My Contact Management System</h1>

<h2>Delete a Contact - Select from List</h2>

<P>Select a contact from the list below, to delete the contact's

record.</P>

24. Display the contents of $display_block:

<? echo "$display_block"; ?>

25. Add a link back to the main menu:

<p>Return to Main Menu</p>

26. Add some more HTML so that the document is valid:

</BODY>

</HTML>

27. Save the file with the name pick_delcontact.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//start a session

session_start();

//check validity of user

if ($_SESSION[valid] != "yes") {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

//check the number of results

$num = @mysql_num_rows($result);

if ($num < 1) {

//if there are no results, display message

$display_block = "<P>Sorry! No results.</p>";

} else {

//if results are found, loop through them

//and make a form selection block

while ($row = mysql_fetch_array($result)) {

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$option_block .= "<option value=\"$id\">$l_name, $f_name</option>";

}

//create the entire form block

$display_block = "

<FORM METHOD=\"POST\" ACTION=\"show_delcontact.php\">

<P>Contact:

<select name=\"id\">

$option_block

</select>

<INPUT TYPE=\"SUBMIT\" NAME=\"submit\" VALUE=\"Select this Contact\"></P>

</form>";

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Delete a Contact</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Delete a Contact - Select from List</h2>

<P>Select a contact from the list below, to delete the contact's record.</P>

<? echo "$display_block"; ?>

<p>Return to Main Menu</p>

</BODY>

</HTML>

In the next section, you will create a pre-deletion confirmation screen that shows all
the current values of the selected record.

350 CHAPTER 21: DELETING CONTACTS

351CREATING THE RECORD-DELETION FORM

Creating the Record-Deletion Form
The record-deletion form isn’t a form in the usual sense of the word—you aren’t
typing anything into a form field. Instead, this screen will display the existing record
in read-only format and include hidden form fields and a submit button. By viewing
the record before deleting it, you’re certain to delete the correct record.

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for a value for $_POST[id], the one variable
sent from the record-selection form. If a value doesn’t exist, direct the user
back to the selection form and exit the script:

if (!$_POST[id]) {

header("Location: http://127.0.0.1/pick_delcontact.php");

exit;

3. If the required field has a value, start a session or continue a session if one
currently exists. Then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create variables to hold the name of the database on which the table resides,
as well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

7. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

8. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

9. Create the SQL statement. You want to select all the fields in the database
except ID, for the record with an ID equal to the value of $_POST[id]:

$sql = "SELECT f_name, l_name, address1, address2, address3,

postcode, country, prim_tel, sec_tel, email, birthday

FROM $table_name WHERE id = '$_POST[id]'";

10. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

11. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

12. Get the individual elements of the record and give them good names:

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$address1 = $row['address1'];

$address2 = $row['address2'];

$address3 = $row['address3'];

$postcode = $row['postcode'];

$country = $row['country'];

$prim_tel = $row['prim_tel'];

$sec_tel = $row['sec_tel'];

$email = $row['email'];

$birthday = $row['birthday'];

352 CHAPTER 21: DELETING CONTACTS

353CREATING THE RECORD-DELETION FORM

13. Close the while loop and then close your PHP block:

}

?>

14. Type this HTML to start building the record-confirmation screen:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Delete a Contact</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<h2>Delete a Contact</h2>

15. Begin your form. Assume that the method is POST and the action is a script
called do_delcontact.php:

<FORM METHOD="POST" ACTION="do_delcontact.php">

16. Add a hidden field to hold the value of $_POST[id]:

<INPUT TYPE="hidden" name="id" value="<? echo "$_POST[id]"; ?>">

17. Add two more hidden fields to hold the value of $f_name and $l_name. You’ll
use these fields for display purposes in the final confirmation screen, after
the deletion has occurred:

<INPUT TYPE="hidden" name="f_name" value="<? echo "$f_name"; ?>">

<INPUT TYPE="hidden" name="l_name" value="<? echo "$l_name"; ?>">

18. Next, you’ll re-create the layout used in the record-addition and -modification
forms, mingling HTML and PHP to show the values for the selected record.
Start a new table row, add two column headings, and then close that row:

<table cellspacing=3 cellpadding=5>

<tr>

<th>NAME & ADDRESS INFORMATION</th>

<th>OTHER CONTACT/PERSONAL INFORMATION</th>

</tr>

19. Start a new table row and table data cell, and then display a text label and
value for the fields in the record:

<tr>

<td valign=top>

<P>First Name:

<? echo "$f_name"; ?></P>

<P>Last Name:

<? echo "$l_name"; ?></P>

<P>Address Line 1:

<? echo "$address1"; ?></P>

<P>Address Line 2:

<? echo "$address2"; ?></P>

<P>Address Line 3:

<? echo "$address3"; ?></P>

<P>Zip/Postal Code:

<? echo "$postcode"; ?></P>

<P>Country:

<? echo "$country"; ?></P>

</td>

<td valign=top>

<P>Primary Telephone Number:

<? echo "$prim_tel"; ?></P>

<P>Secondary Telephone Number:

<? echo "$sec_tel"; ?></P>

<P>E-mail Address:

<? echo "$email"; ?></P>

<P>Birthday (YYYY-MM-DD):

<? echo "$birthday"; ?></P>

</td>

</tr>

20. Start a new table row and table data cell that spans two columns. Inside, add
a submit button and a link back to the main menu. Close the table data cell,
the table row, and the table itself:

<tr>

<td align=center colspan=2>

<P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Delete this Contact"></P>

354 CHAPTER 21: DELETING CONTACTS

355CREATING THE RECORD-DELETION SCRIPT

<p>Return to Main Menu</p>

</TD>

</TR>

</TABLE>

21. Close the form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

22. Save the file with the name show_delcontact.php and place this file in the
document root of your Web server.

In the next section, you will create the script that takes the value of $_POST[id]
(currently held in a hidden form field) and deletes the corresponding record from
the database table.

Creating the Record-Deletion Script
This script will delete the record in the my_contacts table, using the value of
$_POST[id] as the primary key.

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for a value for $_POST[id]. If no value is
present, direct the user back to the selection form and exit the script:

if (!$_POST[id]) {

header("Location: http://127.0.0.1/pick_delcontact.php");

exit;

3. If the required field has a value, start a session or continue a session if one
currently exists. Then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

7. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

8. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

9. Create the SQL statement to delete the record:

$sql = "DELETE FROM $table_name WHERE id = '$_POST[id]'";

10. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

11. Close your PHP block and add this HTML:

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contact Deleted</TITLE>

</HEAD>

356 CHAPTER 21: DELETING CONTACTS

357CREATING THE RECORD-DELETION SCRIPT

<BODY>

<h1>My Contact Management System</h1>

<h2>Delete a Contact - Contact Deleted</h2>

12. Add a confirmation statement. Mingle HTML and PHP to include the values
of the $_POST[f_name], $_POST[l_name], and $table_name variables:

<P><? echo "$_POST[f_name] $_POST[l_name]"; ?> has been deleted

from <? echo "$table_name"; ?></p>

13. Add a link back to the main menu and then add some more HTML so that the
document is valid:

<p>Return to Main Menu</p>

</BODY>

</HTML>

14. Save the file with the name do_delcontact.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//check for required form variables

if ((!$_POST[f_name]) || (!$_POST[l_name])) {

header("Location: http://127.0.0.1/pick_delcontact.php");

exit;

} else {

//if form variables are present, start a session

session_start();

}

//check for validity of user

if ($_SESSION[valid] != "yes") {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "DELETE FROM $table_name WHERE id = '$_POST[id]'";

$result = @mysql_query($sql,$connection) or die(mysql_error());

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contact Deleted</TITLE>

</HEAD>

<BODY>

<h2>Delete a Contact - Contact Deleted</h2>

<P><? echo "$_POST[f_name] $_POST[l_name]"; ?> has been deleted

from <? echo "$table_name"; ?></p>

<p>Return to Main Menu</p>

</BODY>

</HTML>

Go on to the next step and delete some of the contacts in your database table.

Deleting Contacts
To start deleting contacts from the my_contacts table, open http://127.0.0.1/
contact_menu.php. If you’ve already logged in, you’ll see your Administration
menu. Otherwise, log in using the username (admin) and password (abc123).

358 CHAPTER 21: DELETING CONTACTS

Figure 21.1 The delete contact screen. 1. Select the Delete a Contact
menu item (see Figure 21.1).

You will see a drop-down
menu of the contacts in the
system, as well as a submit
button and a link back to the
main menu.

359DELETING CONTACTS

Figure 21.2 The contact selection screen. 2. Select a contact from the list
and click the Select This
Contact button. I selected a
sample from my own list
(see Figure 21.2).

Figure 21.3 Delete contact confirmation. 3. Click the Delete This
Contact button. You should
see a confirmation screen, as
shown in Figure 21.3.

4. Return to the selection form
and select your contact
again to see that the record
no longer exists in the drop-
down menu.

DEFAULT DATES
If no birthday is entered in
the record, the display will
show 0000-00-00. MySQL
uses a default date for
date fields. Numeric fields
should default to zero,
while string fields will
default to empty displays.

Delete a record or two and then move on to the next chapter, where you’ll create
the read-only contact information screens.

This page intentionally left blank

Working with
Contacts

You have all this information in a table, but I haven’t shown
you how to create any scripts for selecting and displaying read-
only data. It’s time to remedy that! In this chapter, you learn
how to:

Count and display the number of contacts in your system.

Display the current date.

Check for birthdays in the current month and display special
text.

Display read-only contact details.

Require session-based authentication before the script can
be viewed or the record is deleted.

22
Working with
Contacts

22

Modifying Your Administrative Menu
The next few sections show some modifications you can make to the original
contact_menu.php to display elements such as the current date, the number of
contacts in the database, and other pieces of information that make your system
more customized.

Showing the Number of Contacts
The following modifications should be made to the contact_menu.php script so that
it displays the current number of contacts in the my_contacts table.

1. Open contact_menu.php in your text editor.

2. Find this block of code, highlight it, and cut it out of the file (prepare to paste):

//build form block

$form_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

3. Find the if[...]else block that looks like the following:

if ($show_form == "yes") {

$display_block = $form_block;

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

4. Replace the following line with the section you cut in Step 2:

$display_block = $form_block;

362 CHAPTER 22: WORKING WITH CONTACTS

363MODIFYING YOUR ADMINISTRATIVE MENU

The if...else block should now look like this:

if ($show_form == "yes") {

$form_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

5. Change the name of the variable from $form_block to $display_block.

6. The if...else block should look like this:

if ($show_form == "yes") {

//build form block

$display_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

7. Find the following block of code, highlight it, and cut it out of the file (prepare
to paste):

$menu_block = "<h1>My Contact Management System</h1>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by Name

";

8. Find the if[...]else block that contains the following:

} else if ($show_menu == "yes") {

$display_block = $menu_block;

}

9. Replace the following line with the section you cut in Step 7:

$display_block = $menu_block;

The if...else block should now look like this:

if ($show_form == "yes") {

$display_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

364 CHAPTER 22: WORKING WITH CONTACTS

365MODIFYING YOUR ADMINISTRATIVE MENU

} else if ($show_menu == "yes") {

$menu_block = "<h1>My Contact Administration System</h1>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by

Name

";

}

10. Change the name of the variable from $menu_block to $display_block.

11. The complete if...else block should look like this:

if ($show_form == "yes") {

$display_block = " <h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15

maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

} else if ($show_menu == "yes") {

$display_block = "<h1>My Contact Administration System</h1>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by

Name

";

}

12. Save your changes before going any further.

None of those changes modified the display in any way. They simply organized your
code a little bit better in preparation for the next changes.

These next changes will all take place within the second part of the if...else block
you just modified.

1. Find this line, because the rest of the changes go right after it:

} else if ($show_menu == "yes") {

2. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

3. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

4. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

5. Create a SQL statement counts the number of entries in the ID field:

$sql = "SELECT count(id) FROM $table_name";

366 CHAPTER 22: WORKING WITH CONTACTS

367MODIFYING YOUR ADMINISTRATIVE MENU

6. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

7. Create a variable to hold the specific value within the result:

$count = @mysql_result($result,0,"count(id)") or die(mysql_error());

THE MYSQL_RESULT FUNCTION VERSUS FETCHING ROWS
If you’re working with a one-field result, the mysql_result() function is
simpler than fetching an entire row. This function requires the result of a valid
query, a row (starting at 0), and the field name.

8. The next modification is primarily aesthetic. Take the string within
$display_block and replace it with the following HTML, creating a two-column
table for menu options:

$display_block = "<h1>My Contact Management System</h1>

<table cellspacing=3 cellpadding=3>

<tr>

<td valign=top>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by Name

</td>

<td valign=top>

<P>Miscellaneous</P>

</td>

</tr>

</table>";

9. In the new $display_block string, find the section for Miscellaneous. Start a
bulleted list and then print a list item with a text label and a bold representation
of the value of $count. After that list item, close the list itself:

Contacts in system: $count

10. Save your changes.

Your new code should look like this:

<?

//start a session

session_start();

//check if user is coming from a form

if ($_POST[op] == "ds") {

//check username and password

if (($_POST[username] != "admin") || ($_POST[password] != "abc123")) {

//handle bad login

$msg = "<P>

Bad Login - Try Again

</P>";

$show_form = "yes";

} else {

//handle good login

$_SESSION[valid] = "yes";

$show_menu = "yes";

}

} else {

//determine what to show

if ($_SESSION[valid] == "yes") {

$show_menu = "yes";

} else {

$show_form = "yes";

}

}

368 CHAPTER 22: WORKING WITH CONTACTS

369MODIFYING YOUR ADMINISTRATIVE MENU

//assign the block to show to the $display_block variable

if ($show_form == "yes") {

//build form block

$display_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

} else if ($show_menu == "yes") {

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT count(id) FROM $table_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

$count = @mysql_result($result,0,"count(id)") or die(mysql_error());

//build menu block

$display_block = "<h1>My Contact Management System</h1>

<table cellspacing=3 cellpadding=3>

<tr>

<td valign=top>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by Name

</td>

<td valign=top>

<P>Miscellaneous</P>

Contacts in system: $count

</td>

</tr>

</table>";

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System</TITLE>

</HEAD>

<BODY>

<? echo "$display_block"; ?>

</BODY>

</HTML>

370 CHAPTER 22: WORKING WITH CONTACTS

Figure 22.1 New contact menu with number of contacts. Open http://127.0.0.1/
contact_menu.php. If you’ve
already logged in, you’ll see
your Administrative menu.
Otherwise, log in using the
username (admin) and password
(abc123). You should now see a
new layout for the menu, as well
as the number of contacts in the
table, in the appropriate places
(see Figure 22.1).

In the next section, you’ll display the current date on your menu.

Displaying Today’s Date
Compared to the previous section, the changes needed to display the current date
are a snap! The date() function is highly customizable once you know all the
options.

371MODIFYING YOUR ADMINISTRATIVE MENU

1. Open contact_menu.php in your text editor.

2. Find this line because the rest of the changes go in this block:

} else if ($show_menu == "yes") {

3. After the line that assigns a value to the $count variable, add this line to create
a variable called $today, containing a formatted date string:

$today = @date("l, F jS, Y");

4. Find this line in the $display_block string:

<h1>My Contact Management System</h1>

5. After it, add the following to print the date string:

<p>Today is $today</p>

6. Save your file.

The date format options are interpreted, as shown in Table 22.1.

DATE FUNCTION OPTIONS
You can find a list of date() function options in Appendix B, “Basic PHP
Language Reference.”

Table 22.1 Date Formatting Example

Format Option Description

l, Long name of day (literal comma)

F Long name of month

j Day of month (2-digit)

S Ordinal suffix

Y Year (4-digit)

In the next section, you’ll do some neat SQL to find the number of contacts whose
birthdays occur during the current month, and you’ll print their names in a list. This
is helpful for people like me, who can’t remember their mother’s birthday, let alone
anyone else’s!

Showing the Birthdays in the Current Month
One of the fields in your database is a field for the person’s birthday. It’s not
required, but if you take the time to enter someone’s birthday, chances are good
that you actually want to remember it. This next section will print the number of
contacts who have birthdays in the current month, as well as the person’s name and
birthday and a link to his or her contact details. Nifty!

1. Open contact_menu.php in your text editor.

2. Find this line because the rest of the changes go in this block:

} else if ($show_menu == "yes") {

3. Now find the line that assigns a value to the $today variable because you’ll start
typing things after this line:

$today = date("l, F jS Y");

372 CHAPTER 22: WORKING WITH CONTACTS

Figure 22.2 Menu showing current date. Open http://127.0.0.1/
contact_menu.php. If you’ve
already logged in, you’ll see
your Administrative menu.
Otherwise, log in using the
username (admin) and password
(abc123). You should now see a
line of text that says “Today is
[your date here].” See Figure
22.2.

373MODIFYING YOUR ADMINISTRATIVE MENU

4. Create a SQL statement that gets the number of people who have birthdays in
the current month:

$get_birthday_count = "SELECT count(id) FROM $table_name

WHERE MONTH(birthday) = MONTH(NOW())";

MYSQL DATE FUNCTIONS
MONTH() and NOW()are MySQL functions used to get the month out of a date
string (in this case, the value of the Birthday field) and the current date,
respectively. You can learn more about MySQL functions in Appendix E,
“Database Normalization and SQL Reference.”

5. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$birthday_count_res = @mysql_query($get_birthday_count,$connection)

or die(mysql_error());

6. Create a variable to hold the specific value within the result:

$birthday_count = mysql_result($birthday_count_res, 0, "count(id)");

Next, you’ll have more fun with SQL. If the number of contacts who have birthdays
in the current month is one or more, you’ll create a string that includes the person’s
name and birthday and a link to his or her contact details.

1. Find the line in contact_menu.php that assigns a value to the $birthday_count
variable, and after it create an if statement that will be executed if the value is
true. In this case, it’s looking for a positive value for $birthday_count:

if ($birthday_count > 0) {

2. You’ll create a bulleted list within a while block in a moment. Start the bulleted
list outside the while block:

$bd_string = "";

3. Create a SQL statement that selects the ID, first name, last name, month of the
birthday, and day of the birthday. This SQL statement also orders the result set
by birthday:

$get_contacts_bd = "SELECT id, f_name, l_name,

MONTH(birthday) as month, DAYOFMONTH(birthday) as date

FROM $table_name WHERE

MONTH(birthday) = MONTH(NOW())ORDER BY birthday";

374 CHAPTER 22: WORKING WITH CONTACTS

RENAMING FIELDS IN SQL
You can select fields or parts of fields and assign a new name to them using
as [new name] within your SQL statement. In the previous statement, you’re
extracting the month of a birthday and giving it a name of month, and you’re
extracting the day of a birthday and giving it a name of date.

4. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$contacts_bd_res = @mysql_query($get_contacts_bd, $connection)

or die(mysql_error());

5. Start the while loop. The while loop will create an array called $contacts_bd for
each record in the result set ($contacts_bd_res):

while ($contacts_bd = mysql_fetch_array($contacts_bd_res)) {

6. Get the individual elements of the record and give them good names:

$contact_id = $contacts_bd['id'];

$contact_fname = $contacts_bd['f_name'];

$contact_lname = $contacts_bd['l_name'];

$contact_bd_month = $contacts_bd['month'];

$contact_bd_date = $contacts_bd['date'];

375MODIFYING YOUR ADMINISTRATIVE MENU

7. Append a list item to $bd_string that contains the person’s name and birthday.
Create a link to a script called show_contact.php, which you’ll create in the next
section:

$bd_string .= "$contact_fname

$contact_lname ($contact_bd_month"."-"."$contact_bd_date)";

8. Close the while loop, then the bulleted list, and finally the if statement:

}

$bd_string .= "";

}

9. Inside $display_block, within the bulleted list under the Miscellaneous heading
and under a Birthdays This Month list item, add the following:

$bd_string

10. Save your file.

The final contact_menu.php script should look like this, with all modifications so far in
this chapter:

<?

//start a session

session_start();

//check if user is coming from a form

if ($_POST[op] == "ds") {

//check username and password

if (($_POST[username] != "admin") || ($_POST[password] != "abc123")) {

//handle bad login

$msg = "<P>

Bad Login - Try Again

</P>";

$show_form = "yes";

} else {

//handle good login

$_SESSION[valid] = "yes";

$show_menu = "yes";

}

} else {

//determine what to show

if ($_SESSION[valid] == "yes") {

$show_menu = "yes";

} else {

$show_form = "yes";

}

}

//assign the block to show to the $display_block variable

if ($show_form == "yes") {

//build form block

$display_block = "<h1>Login</h1>

<form method=POST action=\"$_SERVER[PHP_SELF]\">

$msg

<P>username:

<input type=\"text\" name=\"username\" size=15 maxlength=25></P>

<P>password:

<input type=\"password\" name=\"password\" size=15 maxlength=25></P>

<input type=\"hidden\" name=\"op\" value=\"ds\">

<P><input type=\"submit\" name=\"submit\" value=\"login\"></P>

</FORM>";

} else if ($show_menu == "yes") {

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT count(id) FROM $table_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

$count = @mysql_result($result,0,"count(id)") or die(mysql_error());

//get current date

$today = date("l, F jS, Y");

//get birthday count

$get_birthday_count = "SELECT count(id) FROM $table_name

WHERE MONTH(birthday) = MONTH(NOW())";

$birthday_count_res = @mysql_query($get_birthday_count,$connection)

or die(mysql_error());

$birthday_count = mysql_result($birthday_count_res, 0, "count(id)");

376 CHAPTER 22: WORKING WITH CONTACTS

377MODIFYING YOUR ADMINISTRATIVE MENU

//create a list, based on a positive result

if ($birthday_count > 0) {

$bd_string = "";

$get_contacts_bd = "SELECT id, f_name, l_name,

MONTH(birthday) as month, DAYOFMONTH(birthday) as date

FROM $table_name

WHERE MONTH(birthday) = MONTH(NOW())ORDER BY birthday";

$contacts_bd_res = @mysql_query($get_contacts_bd, $connection)

or die(mysql_error());

while ($contacts_bd = mysql_fetch_array($contacts_bd_res)) {

$contact_id = $contacts_bd['id'];

$contact_fname = $contacts_bd['f_name'];

$contact_lname = $contacts_bd['l_name'];

$contact_bd_month = $contacts_bd['month'];

$contact_bd_date = $contacts_bd['date'];

$bd_string .= "

$contact_fname $contact_lname

($contact_bd_month"."-"."$contact_bd_date)";

}

$bd_string .= "";

}

//build menu block

$display_block = "<h1>My Contact Management System</h1>

<p>Today is $today</p>

<table cellspacing=3 cellpadding=3>

<tr>

<td valign=top>

<P>Administration

Add a Contact

Modify a Contact

Delete a Contact

<P>View Records

Show Contacts, Ordered by Name

</td>

<td valign=top>

<P>Miscellaneous</P>

Contacts in system: $count

Birthdays this month: $birthday_count

$bd_string

</td>

</tr>

</table>";

}

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System</TITLE>

</HEAD>

<BODY>

<? echo "$display_block"; ?>

</BODY>

</HTML>

378 CHAPTER 22: WORKING WITH CONTACTS

Figure 22.3 Contact menu showing birthdays. Open http://127.0.0.1/
contact_menu.php. If you’ve
already logged in, you’ll see
your Administrative menu.
Otherwise, log in using the
username (admin) and password
(abc123). If you have any
contacts in your database table
whose birthdays are in the
current month, you should see
their names and birthdays listed
(see Figure 22.3).

In the next section, you’ll create the contact details script to display all the contact
information you’ve been putting in the my_contacts table.

379SELECTING DATA FROM THE MY_CONTACTS TABLE

Selecting Data from the
my_contacts Table
Now that all the difficult scripting is out of the way, it’s time to do some simple SQL
selects to display the data in the my_contacts table. You’ll start by listing the
contacts, and then you’ll show the contact details.

Displaying the Record List
The goal of this script is to display a bulleted list of the contacts in your database
table, complete with a link to the show_contact.php script.

1. Open a new file in your text editor and start a PHP block. Then start a session
or continue a session if one currently exists:

<?

session_start();

2. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

3. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

4. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

5. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

6. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

7. Create the SQL statement. You want to select just the ID number, first name,
and last name of each record in the table:

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

8. Create a variable to hold the result of the mysql_query() function, as you have
learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

9. You’ll create a bulleted list within a while block in a moment. Start the bulleted
list outside the while block:

$contact_list = "";

10. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

11. Get the individual elements of the record and give them good names:

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

12. Append a list item to $contact_list that contains the person’s name within a
link to a script called show_contact.php:

$contact_list .= "$l_name,

$f_name";

13. Close the while loop, the bulleted list, and the PHP block:

}

$contact_list .= "";

?>

380 CHAPTER 22: WORKING WITH CONTACTS

381SELECTING DATA FROM THE MY_CONTACTS TABLE

14. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contacts Listed by Name</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<P>Select a contact from the list below, to view the contact's

record.</P>

15. Display the contents of $contact_list:

<? echo "$contact_list"; ?>

16. Add a link back to the main menu:

<p>Return to Main Menu</p>

17. Add some more HTML so that the document is valid:

</BODY>

</HTML>

18. Save the file with the name show_contactsbyname.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//start a session

session_start();

//check for validity of user

if ($_SESSION[valid] != "yes") {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

//set up table and database names

$db_name = "testDB";

$table_name = "my_contacts";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "SELECT id, f_name, l_name FROM $table_name ORDER BY l_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

//create list block of results

$contact_list = "";

while ($row = mysql_fetch_array($result)) {

$id = $row['id'];

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$contact_list .= "

$l_name, $f_name";

}

$contact_list .= "";

?>

<HTML>

<HEAD>

<TITLE>My Contact Management System: Contacts Listed by Name</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

<P>Select a contact from the list below, to view the contact's record.</P>

<? echo "$contact_list"; ?>

<p>Return to Main Menu</p>

</BODY>

</HTML>

382 CHAPTER 22: WORKING WITH CONTACTS

Figure 22.4 Contacts ordered by name. Open http://127.0.0.1/
contact_menu.php. When you
log in, you'll see the
Administrative menu. On that
menu is a link called Contacts,
Ordered by Name. If you click
that, you'll see the display
shown in Figure 22.4 (or
something close to it anyway,
depending on your data).

383SELECTING DATA FROM THE MY_CONTACTS TABLE

In the next section, you’ll create the contact display page, show_contact.php.

Displaying Read-Only Records
It’s the moment of truth: displaying your contacts!

1. Open a new file in your text editor and start a PHP block:

<?

2. Start an if...else block that checks for a value for $_GET[id], the one variable
sent in the link’s query string. If a value doesn’t exist, direct the user back to the
menu and exit the script:

if (!$_GET[id]) {

header("Location: http://127.0.0.1/contact_menu.php");

exit;

3. If the required field has a value, start a session or continue a session if one
currently exists, and then close the block:

} else {

session_start();

}

4. Start an if...else block that checks the value of $_SESSION[valid] and
performs a particular action based on the result. If the value is not yes, the user
didn’t go through the proper authentication channels:

if ($_SESSION[valid] != "yes") {

5. Send the user back to the login form and exit this script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

}

6. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "my_contacts";

7. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

8. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

9. Perform some validation on the value of $_GET[id]. You want to make sure that
the number really exists in the system before you run SQL queries using a bad
key.

$chk_id = "SELECT id FROM $table_name WHERE id = '$_GET[id]'";

10. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$chk_id_res = @mysql_query($chk_id,$connection) or die(mysql_error());

11. Create a variable to count the number of rows within the result. There should
be one row:

$chk_id_num = mysql_num_rows($chk_id_res);

12. Start an if...else block to deal with the results of the validation. The first
section checks the row count. You want there to be one and only one row:

if ($chk_id_num != 1) {

13. If the row count is anything other than 1, the id was invalid. Redirect the user
to the menu and exit the script:

header("Location: http://127.0.0.1/contact_menu.php");

exit;

14. Continue the if...else statement, now preparing to act on a valid result:

} else {

384 CHAPTER 22: WORKING WITH CONTACTS

385SELECTING DATA FROM THE MY_CONTACTS TABLE

15. Create the SQL statement. You want to select all the fields in the database
except ID for the record that has an ID equal to the value of $_GET[id]:

$sql = "SELECT f_name, l_name, address1, address2, address3, postcode,

country, prim_tel, sec_tel, email, birthday

FROM $table_name WHERE id = '$_GET[id]'";

16. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

17. Start the while loop. The while loop will create an array called $row for each
record in the result set ($result):

while ($row = mysql_fetch_array($result)) {

18. Get the individual elements of the record and give them good names:

$f_name = $row['f_name'];

$l_name = $row['l_name'];

$address1 = $row['address1'];

$address2 = $row['address2'];

$address3 = $row['address3'];

$postcode = $row['postcode'];

$country = $row['country'];

$prim_tel = $row['prim_tel'];

$sec_tel = $row['sec_tel'];

$email = $row['email'];

$birthday = $row['birthday'];

19. Close the while loop, the if...else loop, and the PHP block:

}

}

?>

20. Type this HTML to start building the record details screen:

<HTML>

<HEAD>

<TITLE>My Contact Management System: Read-Only Contact Details</TITLE>

</HEAD>

<BODY>

<h1>My Contact Management System</h1>

21. Mingle HTML and PHP to show a nice title with the contact’s full name:

<h2>Contact Details for <? echo "$f_name $l_name"; ?></h2>

22. Start a paragraph with a text label:

<P>Name & Address:

23. Display all the individual elements for name and address:

<? echo "$f_name $l_name"; ?>

<? echo "$address1"; ?>

<? echo "$address2"; ?>

<? echo "$address3"; ?>

<? echo "$postcode"; ?>

<? echo "$country"; ?></P>

24. Start a paragraph and print text labels and results for the telephone and e-
mail fields:

<P>Tel 1: <? echo "$prim_tel"; ?>

Tel 2: <? echo "$sec_tel"; ?>

E-Mail: <? echo "$email";

?></P>

25. Start a paragraph and print a text label and result for the birthday:

<P>Birthday: <? echo "$birthday"; ?></P>

386 CHAPTER 22: WORKING WITH CONTACTS

387SELECTING DATA FROM THE MY_CONTACTS TABLE

26. Add a link back to the main menu and then add some more HTML so that the
document is valid:

<p>Return to Main Menu</p>

</BODY>

</HTML>

27. Save the file with the name show_contact.php and place this file in the
document root of your Web server.

Figure 22.5 Contact form. Open http://127.0.0.1/
contact_menu.php. If you’ve
already logged in, you’ll see
your Administrative menu.
Otherwise, log in using the
username (admin) and password
(abc123). Select the Show
Contacts, Ordered by Name
link, and then select one of your
contacts from the list (see
Figure 22.5).

Figure 22.6 Incomplete contact form. Looks good! This is a contact in
my database table that’s
complete. But here’s what
happens when the contact isn’t
complete (see Figure 22.6).

Pretty ugly! Now you can make some modifications to show_contact.php to take
into account the fact that only two fields (first name and last name) are required.

1. Open show_contact.php.

2. Scroll down to the Name & Address section.

3. Delete this section:

<? echo "$address1"; ?>

<? echo "$address2"; ?>

<? echo "$address3"; ?>

<? echo "$postcode"; ?>

<? echo "$country"; ?></P>

<P>Tel 1: <? echo "$prim_tel"; ?>

Tel 2: <? echo "$sec_tel"; ?>

E-Mail: <? echo "$email";

?></P>

<P>Birthday: <? echo "$birthday"; ?></P>

4. Type the following series of if statements, which look for a value of the specific
variable and print the line only if a value is present:

<?

if ($address1 != "") {

echo "$address1
";

}

if ($address2 != "") {

echo "$address2
";

}

if ($address3 != "") {

echo "$address3
";

}

if ($postcode != "") {

echo "$postcode
";

}

if ($country != "") {

echo "$country
";

}

?>

</P>

388 CHAPTER 22: WORKING WITH CONTACTS

389SELECTING DATA FROM THE MY_CONTACTS TABLE

<P>

<?

if ($prim_tel != "") {

echo "Tel 1: $prim_tel
";

}

if ($sec_tel != "") {

echo "Tel 2: $sec_tel
";

}

if ($email != "") {

echo "E-Mail:

$email
";

}

?>

</P>

<?

if ($birthday != "0000-00-00") {

echo "<P>Birthday: $birthday </P>";

}

?>

5. Save this file.

Figure 22.7 Incomplete contact form updated. Now when you view an
incomplete record, you don’t
see all that white space, as
shown in Figure 22.7.

So there you have it—a complete online contact-management system utilizing
sessions and user authentication. There are plenty of areas for modification and
additional validation checks, so take some time and play with these scripts until you
are comfortable with the concepts. For example, you might want a different set of
fields to be required, or you might want to add more fields to your table (and thus
your forms and display scripts). These simple concepts will help you to understand
and build larger applications.

390 CHAPTER 22: WORKING WITH CONTACTS

BROWSER SECURITY
One note concerning the Internet Explorer Web browser and this application:
Under certain scenarios, you may need to set your security level to low,
rather than medium or better, or you will not get your variables passed along
properly.

Additional
Project Examples
Additional
Project Examples

P A R T V I I

Chapter 23
Managing a Simple Mailing List393

Chapter 24
Creating Custom Logs and Reports........413

Chapter 25
Working with XML..................................433

This page intentionally left blank

Managing a
Simple Mailing List

Eventually, your Web site will have visitors, and someday you
might even want to send a newsletter to them. You can create a
very simple subscription and publication mechanism using PHP
and MySQL. In this chapter, you’ll learn how to:

Create a subscribe/unsubscribe script.

Create a front end to sending a newsletter.

Create a script that mails your newsletter to all recipients in
your database.

23
Managing a
Simple Mailing List

23

A Brief Word About Mailing List Software
Several very good mailing list applications are available to send mail to large
numbers of e-mail addresses. The type of system you’ll build in this chapter should
be used only for small lists of less than a few hundred e-mail addresses.

The system described in this chapter was born from my own laziness one day when
I didn’t want to download and install any third-party software. I just made some
very simple files that performed a task. That’s the beauty of PHP: It’s such a simple
language that sometimes it’s easier to write a few scripts than to download or
install something. However, when your mailing list grows large enough, please
move to a more robust mailing list application that’s a bit easier on your outgoing
mail server, and also on you, the administrator.

Developing a Subscription Mechanism
Before you can start sending mail to a mailing list, you need to build up that
subscriber base. A simple subscribe/unsubscribe script will take care of that. All this
script does is add or delete records in a MySQL database table, called subscribers,
which you’ll create in the next section.

Creating the subscribers Table
My subscribers table has three fields, as shown in Table 23.1. You can have as many
or as few fields as you want.

394 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

Table 23.1 Fields for the subscribers Table

Field Name Description

id A primary key that holds the subscriber’s auto-
incrementing ID number

email_addr Holds the subscriber’s e-mail address

date_added The date the user subscribed

395DEVELOPING A SUBSCRIPTION MECHANISM

Next, you’ll actually create this table, using the table-creation scripts you’re familiar
with at this point.

1. Open your Web browser and type http://127.0.0.1/show_createtable.html.

Figure 23.1 The subscribers list table building. 2. In the Table Name field,
type subscribers.

3. In the Number of Fields
field, type 3.

4. Click the Go to Step 2
button, where you will see
three rows, corresponding
to the three fields you want
to create in the subscribers
table (see Figure 23.1).

Populate the fields in these next steps:

1. In the first row, type id for Field Name, select int from the Field Type drop-
down menu, check the check box for Primary Key, and check the check box for
Auto-Increment.

Figure 23.2 Completed subscribers list table form. 2. In the second row, type
email_addr for Field Name,
select varchar from the Field
Type drop-down menu, and
specify a Field Length of
100.

3. In the third row, type
date_added for Field Name
and select date from the
Field Type drop-down menu.

The completed form should
look like Figure 23.2.

In the next section, you will create the subscribe/unsubscribe form mechanism.

Creating the Subscription Form
Like the “all-in-one” mail form in Chapter 8, “Sending E-Mail,” the subscription
form will be used for subscribing, unsubscribing, and error checking.

1. Open a new file in your text editor and start a PHP block:

<?

2. Create variables to hold the name of the database on which the table resides,
as well as the table itself:

$db_name = "testDB";

$table_name = "subscribers";

Next, you’ll check for a variable you haven’t yet created. When you create the
actual HTML form, you’ll add a hidden field called op with a value of ds. The
$_POST[op] variable will be present only if the form has been submitted.

3. Start an if...else block and first check if the value of $_POST[op] is ds:

if ($_POST[op] != "ds") {

396 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

Figure 23.3 Confirmation of table creation. 4. Click the Create Table
button to create the
subscribers table.

You will see a confirmation of
the table creation as in Figure
23.3.

397DEVELOPING A SUBSCRIPTION MECHANISM

4. If the value of $_POST[op] is not ds, the user hasn’t seen the form. If the user
hasn’t seen the form, you need to show it. Create a variable called $text_block
that will hold the entire form. Start with the form action and assume that the
method is POST and the action is $_SERVER[PHP_SELF]:

$text_block = "

<form method=POST action=\"$_SERVER[PHP_SELF]\">

5. Add the hidden field:

<input type=hidden name=op value=ds>

6. Create an input field for the user’s e-mail address with a text label:

<p>Your E-Mail Address:

<input type=text name=\"email_addr\" size=25 maxlength=100></p>

7. Create a set of radio buttons so that the user can select an action of subscribe
or unsubscribe. The default should be the subscribe radio button:

<p>Action:

<input type=radio name=\"action\" value=\"sub\" checked> subscribe

<input type=radio name=\"action\" value=\"unsub\"> unsubscribe</p>

8. Add a submit button and then close the form and string:

<p><input type=submit name=\"submit\" value=\"Submit Form\"></p>

</form>";

9. Continue the if...else block to check for a value of ds for $_POST[op], as well
as a value of sub for the $_POST[action] variable. This means that the user is
attempting to subscribe:

} else if (($_POST[op] == "ds") && ($_POST[action] == "sub")) {

10. But what if someone clicks on the button and doesn’t enter an e-mail
address? Add an if block that checks for a value in $_POST[email_addr]. If a
value is not found, redirect the user to the original form:

if ($_POST[email_addr] == "") {

header("Location: http://127.0.0.1/manage.php");

exit;

}

11. You’ll need to check that the user isn’t already subscribed, so open a
database connection as you have learned:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

12. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

13. Create a SQL statement that looks for records matching the user’s e-mail
address:

$check = "select email_addr from $table_name where

email_addr = '$_POST[email_addr]'";

14. Create a variable to hold the result of the mysql_query() function, as you
have learned:

$check_result = @mysql_query($check,$connection) or die(mysql_error());

15. Create a variable to count the number of rows in the result set:

$check_num = mysql_num_rows($check_result);

16. Create an inner if...else block that performs an action based on the value
of $check_num. If $check_num is less than 1, no entries in the subscribers table
have the user’s e-mail address, so it’s safe to insert one:

if ($check_num < 1) {

17. Create a SQL statement to insert the e-mail address and the MySQL function
now(), which inserts the current date (leave a blank entry for the auto-
incrementing id):

$sql = "insert into $table_name values('', '$_POST[email_addr]',

now())";

18. Execute the query, as you have learned:

$result = @mysql_query($sql,$connection) or die(mysql_error());

398 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

399DEVELOPING A SUBSCRIPTION MECHANISM

19. Create a message string so that the user knows the result:

$text_block = "<P>Thanks for signing up!</P>";

20. Finish the if...else block by creating a message string that tells the user he
has already signed up. Then close the inner if...else block:

} else {

$text_block = "<P>You're already subscribed!</P>";

}

21. Continue the outer if...else block to check for a value of ds for $_POST[op]
as well as a value of unsub for the $_POST[action] variable. This means that
the user is attempting to unsubscribe.

} else if (($_POST[op] == "ds") && ($_POST[action] == "unsub")) {

22. Again, add the validation that checks for a value in $_POST[email]_addr. If a
value is not found, redirect the user to the original form:

if ($_POST[email_addr] == "") {

header("Location: http://127.0.0.1/manage.php");

exit;

}

23. You’ll need to check that the user is in fact subscribed, so open a database
connection and select the database:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

24. Create a SQL statement that looks for records matching the user’s e-mail
address. Also select the ID field, because you’ll use it to unsubscribe if you
find a match:

$check = "select id, email_addr from $table_name where

email_addr = '$_POST[email_addr]'";

25. Execute the query:

$check_result = @mysql_query($check, $connection) or die(mysql_error());

26. Create a variable to count the number of rows in the result set:

$check_num = mysql_num_rows($check_result);

27. Create an inner if...else block that performs an action based on the value
of $check_num. If $check_num is less than 1, no entries in the subscribers table
have the user’s e-mail address, so you can’t unsubscribe the user.

if ($check_num < 1) {

28. Create a message string so that the user knows the result:

$text_block = "<P>Couldn't find your e-mail on the list!</P>

<P>You haven't been unsubscribed, because the e-mail you entered

is not in the database.</P>";

29. Continue the inner if...else block:

} else {

30. Create a variable to hold the specific value of id from the previous result set:

$id = @mysql_result($check_result, 0, "id");

31. Create a SQL statement that deletes the user’s e-mail address from the
subscribers table:

$sql = "delete from $table_name where id = '$_POST[id]'";

32. Execute the query:

$result = @mysql_query($sql,$connection) or die(mysql_error());

33. Create a message string so that the user knows the result:

$text_block = "<P>You're unsubscribed!</p>";

34. Close the inner if...else block, the outer if...else block, and the PHP
block:

}

}

?>

400 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

401DEVELOPING A SUBSCRIPTION MECHANISM

35. Add the following HTML:

<HTML>

<HEAD>

<TITLE>Subscribe/Unsubscribe</TITLE>

</HEAD>

<BODY>

<h1>Subscribe/Unsubscribe</h1>

36. Display the contents of $text_block:

<?php echo "$text_block"; ?>

37. Add some more HTML so that the document is valid:

</BODY>

</HTML>

38. Save the file with the name manage.php and place this file in the document
root of your Web server.

Your entire code should look something like this:

<?

//set up table and database names

$db_name = "testDB";

$table_name = "subscribers";

//determine if they need to see the form or not

if ($_POST[op] != "ds") {

//create form block

$text_block = "

<form method=POST action=\"$_SERVER[PHP_SELF]\">

<input type=hidden name=op value=ds>

<p>Your E-Mail Address:

<input type=text name=\"email_addr\" size=25 maxlength=100></p>

<p>Action:

<input type=radio name=\"action\" value=\"sub\" checked> subscribe

<input type=radio name=\"action\" value=\"unsub\"> unsubscribe</p>

<p><input type=submit name=\"submit\" value=\"Submit Form\"></p>

</form>";

} else if (($_POST[op] == "ds") && ($_POST[action] == "sub")) {

//trying to subscribe; validate email address

if ($_POST[email_addr] == "") {

header("Location: http://127.0.0.1/manage.php");

exit;

}

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//check that email is not already in list

$check = "select email_addr from $table_name

where email_addr = '$_POST[email_addr]'";

$check_result = @mysql_query($check,$connection) or die(mysql_error());

$check_num = mysql_num_rows($check_result);

//get number of results and do action

if ($check_num < 1) {

//add record

$sql = "insert into $table_name

values('', '$_POST[email_addr]', now())";

$result = @mysql_query($sql,$connection) or die(mysql_error());

$text_block = "<P>Thanks for signing up!</P>";

} else {

//print failure message

$text_block = "<P>You're already subscribed!</P>";

}

} else if (($_POST[op] == "ds") && ($_POST[action] == "unsub")) {

//trying to unsubscribe; validate email address

if ($_POST[email_addr] == "") {

header("Location: http://127.0.0.1/manage.php");

exit;

}

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//check that email is in list

$check = "select id, email_addr from $table_name

where email_addr = '$_POST[email_addr]'";

$check_result = @mysql_query($check, $connection) or die(mysql_error());

$check_num = mysql_num_rows($check_result);

//get number of results and do action

if ($check_num < 1) {

//print failure message

$text_block = "<P>Couldn't find your e-mail on the list!</P>

<P>You haven't been unsubscribed, because the e-mail

you entered is not in the database.</P>";

402 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

403DEVELOPING A SUBSCRIPTION MECHANISM

} else {

//unsubscribe the address

$id = @mysql_result($check_result, 0, "id");

$sql = "delete from $table_name where id = '$id'";

$result = @mysql_query($sql,$connection) or die(mysql_error());

$text_block = "<P>You're unsubscribed!</p>";

}

}

?>

<HTML>

<HEAD>

<TITLE>Subscribe/Unsubscribe</TITLE>

</HEAD>

<BODY>

<h1>Subscribe/Unsubscribe</h1>

<?php echo "$text_block"; ?>

</BODY>

</HTML>

In the next section, you’ll subscribe and unsubscribe sample users and see how all
the address validation works out.

Testing the Subscription Form
Now that you’ve made it through all those steps in creating the subscription form,
it’s time to test it!

Figure 23.4 The e-mail management form. 1. Open your Web browser
and type http://127.0.0.1/
manage.php. See Figure 23.4.

You will see a form
containing a text field
for the person’s e-mail
address, two radio buttons
for either subscribing or
unsubscribing, and a button
that says Submit Form.

404 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

Figure 23.5 E-mail addition confirmation. 2. Type your e-mail address in
the Your E-Mail Address
field, select the Subscribe
radio button, and then
submit the form (see Figure
23.5).

You will see a confirmation
that your subscription was
successful.

Figure 23.6 Notice of previous subscription. 3. Return to the form using
your Web browser’s Back
button and type the same
e-mail address in the Your
E-Mail Address field.

4. Select the Subscribe radio
button (again) and then
submit the form (see Figure
23.6).

You will see a message
indicating that you’ve
already subscribed.

405DEVELOPING A SUBSCRIPTION MECHANISM

Continue adding a few of your own e-mail addresses because in the next section
you’ll create the form and script to send a newsletter to a list of people, and it
would be great to have a real list of people.

Figure 23.7 Notice of removal of subscription. 5. Return to the form using
your Web browser’s Back
button and type the same e-
mail address in the Your E-
Mail Address field. This time,
select the Unsubscribe radio
button and submit the form
(see Figure 23.7).

You will see a confirmation
that you have unsubscribed.

Figure 23.8 Error in unsubscribing. 6. Return to the form using
your Web browser’s Back
button and attempt to
unsubscribe the same e-mail
address (see Figure 23.8).

You will see a confirmation
that your e-mail address
wasn’t in the database, so
you haven’t been
unsubscribed.

Developing the Mailing Mechanism
Now that you have the subscribe/unsubscribe mechanism in place, you can create a
very basic form interface to a mailing script. This mailing mechanism will take the
contents of your form and send them to every address in your subscribers table.

Creating the Newsletter Form
I wasn’t kidding when I said you’d create a “simple” form. I just use a text field for
the subject of the newsletter and a text area for the newsletter body. You can use
as many form fields as you like, as long as you modify the form and script
appropriately.

1. Open a new file in your text editor and type the following HTML:

<HTML>

<HEAD>

<TITLE>Send a Newsletter</TITLE>

</HEAD>

<BODY>

<h1>Send a Newsletter</h1>

2. Begin your form. Assume that the method is POST and the action is a script
called do_send_newsletter.php:

<FORM METHOD="POST" ACTION="do_send_newsletter.php">

3. Create an input field for the newsletter subject with a text label:

<P>Give it a subject:

<input type="text" name="subject" size=30></p>

4. Create a text area for the newsletter body with a text label:

<P>Newsletter body:

<textarea name="newsletter" cols=50 rows=10 wrap=virtual></textarea>

5. Add a submit button:

<p><input type="submit" name="submit" value="Send Newsletter"></p>

406 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

407DEVELOPING THE MAILING MECHANISM

6. Close your form and add some more HTML so that the document is valid:

</FORM>

</BODY>

</HTML>

Figure 23.9 The send_newsletter page. 7. Save the file with the name
send_newsletter.html and
place this file in the
document root of your Web
server.

8. Open your Web browser
and type http://127.0.0.1/
send_newsletter.html. See
Figure 23.9.

You will see a form containing a text field for the newsletter subject, a text area for
the message, and a button that says Send Newsletter.

In the next section, you’ll create the back-end script. That script will expect two
variables: $_POST[subject] and $_POST[newsletter].

Creating the Script to Mail Your Newsletter
According to the form action in send_newsletter.html, you need a script called
do_send_newsletter.php. The goal of this script is to accept the text in
$_POST[subject] and $_POST[newsletter] and then send it off in the form of an e-
mail to everyone listed in your subscribers table.

1. Open a new file in your text editor and begin a PHP block:

<?

2. Start an if...else block and check that a value has been entered for
$_POST[subject] and $_POST[newsletter]. If either variable is empty, direct the
user back to the form:

if (($_POST[subject] =="") || ($_POST[newsletter] == "")) {

header("Location: http://127.0.0.1/send_newsletter.html");

exit;

3. Continue the if...else block:

} else {

4. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "subscribers";

5. Connect to the database server and select the database, as you have learned:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

6. Create a SQL statement that selects all the e-mail addresses in your subscribers
table:

$sql = "select email_addr from $table_name";

7. Execute the query:

$result = @mysql_query($sql,$connection) or die(mysql_error());

8. Create a variable to hold a From: mail header.

$headers = "From: Your Mailing List <you@yourdomain.com>\n";

9. Start the while loop. The while loop will send an e-mail message to each record
in the table and then print a confirmation that the mail was sent:

while ($row = mysql_fetch_array($result)) {

408 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

409DEVELOPING THE MAILING MECHANISM

10. Get the e-mail address for the record:

$email_addr = $row['email_addr'];

11. Format the call to the mail() function. Use the stripslashes() function on
the value of the $_POST[subject] and $_POST[newsletter] variables. This will
remove any slashes automatically entered in your text by PHP to escape
special characters:

mail("$email_addr", stripslashes($_POST[subject]),

stripslashes($_POST[newsletter]), $headers);

12. Print a confirmation:

echo "newsletter sent to: $email_addr
";

13. Close the while loop, the if...else block, and the PHP block:

}

}

?>

14. Save the file with the name do_send_newsletter.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//check for required fields

if (($_POST[subject] =="") || ($_POST[newsletter] == "")) {

header("Location: http://127.0.0.1/send_newsletter.html");

exit;

} else {

//set up table and database names

$db_name = "testDB";

$table_name = "subscribers";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "select email_addr from $table_name";

$result = @mysql_query($sql,$connection) or die(mysql_error());

//create a From: mailheaders

$headers = "From: Your Mailing List <you@yourdomain.com>\n";

//loop through results and send mail

while ($row = mysql_fetch_array($result)) {

$email_addr = $row['email_addr'];

mail("$email_addr", stripslashes($_POST[subject]),

stripslashes($_POST[newsletter]), $headers);

echo "newsletter sent to: $email_addr
";

}

}

?>

In the next section, you’ll create and send a sample newsletter to your subscribers.

Testing Your Mailing List Mechanism
In this section, you put your script to the test and send a newsletter to all of your
subscribers. Be sure your own e-mail address is in the list; otherwise you won’t be
absolutely sure that the system worked.

410 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

Figure 23.10 Send a newsletter form. 1. With your Web browser
already open to the form for
sending the newsletter, type
a subject in the subject field
and a chunk of text in the
text area to represent the
newsletter. See Figure
23.10.

YOUR MILEAGE MAY VARY
The figures show sample text that I typed and e-mail addresses on my
sample subscriber list. Your results will differ, although the sequence of
events remains the same.

411DEVELOPING THE MAILING MECHANISM

You should have a nicely formatted newsletter in your mailbox.

Troubleshooting Your Mailing List Mechanism
If you receive an error such as “Warning: Can’t connect,” you must make sure you
modified the value of SMTP in your php.ini file. This topic is covered in Chapter 8
and is a simple fix.

Another common problem when using this type of mailing list mechanism is that
the script will eventually time out if your list is long enough. This is one of the
reasons not to use this type of mechanism for sending newsletters to large lists of
recipients. Because all this script does is execute the mail() function numerous
times, it does not take into account the queuing factors in real mailing list software,
which are designed to ease the burden on your outgoing mail server.

To get around a problem with the script timing out, you can reset the timer within
the execution of the script. Essentially, by inserting the following line within your
while loop, you are setting the timer to 0 before each call to the mail() function:

set_time_limit(0);

Figure 23.11 Confirmation of newsletter being sent. 2. Submit the form by pressing
the Send Newsletter button
(see Figure 23.11).

You will see a confirmation
of the e-mail addresses to
which your newsletter was
sent.

3. Check your e-mail if your
address is in the subscribers
table.

Your while loop would now look like this:

while ($row = mysql_fetch_array($result)) {

set_time_limit(0);

$email_addr = $row['email_addr'];

mail("$email_addr", stripslashes($_POST[$subject]),

stripslashes($_POST[newsletter]), $headers);

echo "newsletter sent to: $email_addr
";

}

Remember, this does not ease the burden on your outgoing mail server, it just
allows the script to continue to run, when it might have timed out before.

In the next chapter, you’ll tackle another project. When you create a Web site, you
will want to know some numbers regarding visitors—who, what, where, and how.
Your next project will be to build a custom reporting mechanism for these sorts of
metrics.

412 CHAPTER 23: MANAGING A SIMPLE MAILING LIST

Creating Custom
Logs and Reports

If you’re building a Web site for public use, chances are good
that you’ll want to know which part of your site is most popular,
least popular, what types of Web browsers are used, and so on.
Although Apache keeps a generic log file of accesses and
errors, you can create a few code snippets to store specific
information in your MySQL database. In this chapter, you’ll
learn how to:

Create a simple access-counting mechanism with MySQL.

Display the access counts on a page and in a report.

Track form submissions.

Create a synopsis report of the form submissions.

24
Creating Custom
Logs and Reports

24

A Note About Apache Log Files
The Apache Web server automatically logs specific information regarding user
accesses and errors. These log files are found in the logs directory. A file called
access.log handles the accesses, and the error.log file handles errors.

The default display for the access log looks something like the following (this was
taken from my own access log):

127.0.0.1 [22/Feb/2004:05:27:10] "GET /show_createtable.html HTTP/1.1" 304 -

127.0.0.1 [22/Feb/2004:05:27:46] "POST /do_showfielddef.php HTTP/1.1" 200 2402

127.0.0.1 [22/Feb/2004:05:28:49] "POST /do_createtable.php HTTP/1.1" 200 185

127.0.0.1 [22/Feb/2004:05:43:33] "GET /manage.php HTTP/1.1" 200 562

This looks rather cryptic, I know. You can set the format in your httpd.conf file like
so:

LogFormat "%h %l %u %t \"%r\" %s %b"

In this case, the format maps to the descriptions listed in Table 24.1.

414 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

Table 24.1 Apache Log File Settings

Symbol Description

%h Remote host name of the machine making the request,
or IP if HostnameLookup = off

%l Remote log name (usually empty)

%u URL path requested by the user

%t Time of access

"%r" First line of request, inside quotation marks

%s Status of the request

%b Number of bytes sent, excluding headers

415SIMPLE ACCESS COUNTING WITH MYSQL

Although many log analysis packages are available to purchase or download, the
all-encompassing Apache access log might be overkill for simple tasks. This chapter
shows you some methods of tracking specific accesses and actions, which have
more relevance to you than “all access, all information, all the time.”

Simple Access Counting with MySQL
To capture access information for specific subsections of your Web site, or even just
the main page, you can create a simple database table and accompanying PHP
code snippet to do just that.

Using the now-familiar process of table creation, first you’ll create a simple
database table to hold all your access records.

Creating the Database Table
In this example, you will log four elements: page name, page description, user
agent, and date accessed. First, create the database table.

1. Open your Web browser and type http://127.0.0.1/show_createtable.html.

2. In the Table Name field, type page_track.

3. In the Number of Fields field, type 5.

4. Click the Go to Step 2 button. You should see a form with five rows,
corresponding to the five fields you want to create in the page_track table.

LOGGING USER AGENT
You can also log elements such as the user agent (Web browser) within the
Apache access log.

Populate the fields in these next steps:

1. In the first row, type id for the Field Name, select int from the Field Type drop-
down menu, and check the Primary Key and Auto-Increment boxes.

2. In the first row, type page_name for the Field Name, select varchar from the Field
Type drop-down menu, and specify a Field Length of 50.

3. In the second row, type page_desc for the Field Name and select text from the
Field Type drop-down menu.

4. In the third row, type user_agent for the Field Name and select text from the
Field Type drop-down menu.

416 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

Figure 24.1 The completed database creation form. 5. In the fourth row, type
date_added for the Field
Name and select date from
the Field Type drop-down
menu.

The completed form should
look like Figure 24.1.

6. Click the Create Table
button to create the
page_track table.

In the next section, you’ll create a code snippet that writes tracking information to
the page_track table.

Creating the Code Snippet
“Code snippet” is a highly technical term that means “a little bit of code.” I’m
kidding about the “highly technical” part, but a code snippet is usually something
that doesn’t qualify as a long script. Rather, it just serves a simple purpose. In this
case, your code snippet will write some basic information to the page_track table
and then merrily finish displaying some rather boring HTML.

417SIMPLE ACCESS COUNTING WITH MYSQL

1. Open a new file in your text editor and start a PHP block:

<?

2. Create four variables, corresponding to the four non-ID fields in the page_track
table, and give them some values:

$page_name = "sample 1";

$page_desc = "This is a sample page of no use.";

$user_agent = getenv("HTTP_USER_AGENT");

$date_added = date("Y-m-d");

3. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "page_track";

4. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

5. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

6. Create a SQL statement that inserts the values into four fields in the page_track
table, leaving the ID field blank so that it automatically increments:

$sql = "insert into $table_name values

('', '$page_name', '$page_desc', '$user_agent', '$date_added')";

7. Execute the query and then close the PHP block:

$result = @mysql_query($sql,$connection) or die(mysql_error());

?>

You’ve just created the code snippet, which should look something like this:

<?

//set up static variables

$page_name = "sample 1";

$page_desc = "This is a sample page of no use.";

$user_agent = getenv("HTTP_USER_AGENT");

$date_added = date("Y-m-d");

//set up table and database names

$db_name = "testDB";

$table_name = "page_track";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "insert into $table_name values

('', '$page_name', '$page_desc', '$user_agent', '$date_added')";

$result = @mysql_query($sql,$connection) or die(mysql_error());

?>

Now create a bit of filler HTML, directly after the code snippet:

<HTML>

<HEAD>

<TITLE>Sample Page #1</TITLE>

</HEAD>

<BODY>

<h1>Useless Sample Page #1</h1>

<P>This sample page serves no real purpose!</p>

</BODY>

</HTML>

Save the file with the name sample_page1.php and place this file in the document
root of your Web server. To make things a little more interesting in your reports,
make another one of these sample files so that you’ve got something more to
count than just this one file. Copy sample_page1.php to sample_page2.php and
change the first two variables in sample_page2.php to the following:

$page_name = "sample 2";

$page_desc = "Another useless sample page.";

418 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

419SIMPLE ACCESS COUNTING WITH MYSQL

Replace the HTML block in sample_page2.php with this:

<HTML>

<HEAD>

<TITLE>Sample Page #2</TITLE>

</HEAD>

<BODY>

<h1>Useless Sample Page #2</h1>

<P>I can't believe how useless this page is!</p>

</BODY>

</HTML>

Figure 24.2 Sample page with heading and text. Now save this file and place it in
the document root of your Web
server as well.

Next, you’ll access these pages
a few times to get the internal
counting going.

1. Open your Web browser
and type http://127.0.0.1/
sample_page1.php. See
Figure 24.2.

You will see the HTML page,
with a heading and some
text.

2. Open your Web browser
and type http://127.0.0.1/
sample_page2.php. See
Figure 24.3.

You will see the HTML page
with a heading and some
text.

Keep reloading these pages a
few times and then move on to
the next section where the
count will be displayed.

Figure 24.3 Second sample page with heading and text.

Displaying the Count
Displaying the count on each of these pages is a snap. You just add three lines to
your code snippet and one line inside your HTML block.

1. Open sample_page1.php in your text editor.

2. Directly before the end of the PHP block, create a SQL statement that gets the
number of accesses for this particular page:

$count_sql = "select count(page_name) from $table_name

where page_name = '$page_name'";

420 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

ORDER OF COUNTING CODE
Place the counting code after the insertion code to be sure that you’re
counting the current access as well.

3. Execute the query:

$count_res = @mysql_query($count_sql,$connection) or die(mysql_error());

4. Create a variable to hold the specific count within the context of the current
result set:

$count = @mysql_result($count_res, 0, "count(page_name)");

5. In your HTML block, mingle HTML with PHP to print the value of $count:

<P>Accesses: <? echo "$count"; ?></p>

Your new sample_page1.php script should look like this:

<?

//set up static variables

$page_name = "sample 1";

$page_desc = "This is a sample page of no use.";

$user_agent = getenv("HTTP_USER_AGENT");

$date_added = date("Y-m-d");

//set up table and database names

$db_name = "testDB";

$table_name = "page_track";

421SIMPLE ACCESS COUNTING WITH MYSQL

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//build and issue query

$sql = "insert into $table_name values

('', '$page_name', '$page_desc', '$user_agent', '$date_added')";

$result = @mysql_query($sql,$connection) or die(mysql_error());

//get count

$count_sql = "select count(page_name) from $table_name

where page_name = '$page_name'";

$count_res = @mysql_query($count_sql,$connection) or die(mysql_error());

$count = @mysql_result($count_res, 0, "count(page_name)");

?>

<HTML>

<HEAD>

<TITLE>Sample Page #1</TITLE>

</HEAD>

<BODY>

<h1>Useless Sample Page #1</h1>

<P>This sample page serves no real purpose!</p>

<P>Accesses: <? echo "$count"; ?></p>

</BODY>

</HTML>

Make the same types of changes to sample_page2.php and make sure you save both
files.

Figure 24.4 Updated sample page 1. Next, you access these pages
again and see the count display
on the page.

1. Open your Web browser
and type http://127.0.0.1/
sample_page1.php, as shown
in Figure 24.4.

You will see the HTML page,
with a heading and some
text, followed by the access
count you’ve reached. In this
example, I’ve accessed this
sample page five times.

In the next section, you’ll create an access report page, which you can use to check
the status of the pages you’re tracking in the page_track table.

Creating Your Personal Access Report
You have all this great data in your page_track table, so now it’s time to create a
simple page that counts it all up for you. There’s no need to weed through cryptic
Apache access logs or install additional software packages to display statistics for
you when it’s this simple.

Start by creating a simple count of the total hits to your tracked pages (all-
inclusive).

1. Open a new file in your text editor and start a PHP block:

<?

2. Create variables to hold the name of the database in which the table resides, as
well as the table itself:

$db_name = "testDB";

$table_name = "page_track";

422 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

Figure 24.5 Updated sample page 2. 2. Open your Web browser
and type http://127.0.0.1/
sample_page2.php.

You will see the HTML page,
with a heading and some
text, followed by the access
count you’ve reached. In
Figure 24.5, I’ve accessed
this sample page two times.

423SIMPLE ACCESS COUNTING WITH MYSQL

3. Add the connection information as you have been doing:

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

4. Select the database as you have learned:

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

5. Create a SQL statement that counts all the entries in the page_track table:

$count_sql = "select count(page_name) from $table_name";

6. Execute the query:

$count_res = @mysql_query($count_sql, $connection) or die(mysql_error());

7. Create a variable to hold the specific count within the context of the current
result set and then close the PHP block:

$all_count = @mysql_result($count_res, 0, "count(page_name)");

?>

8. Add this HTML:

<HTML>

<HEAD>

<TITLE>My Access Report</TITLE>

</HEAD>

<BODY>

<h1>My Access Report</h1>

9. Mingle HTML and PHP to print the name of the table as well as the number of
accesses tracked in the table:

<P>Total Accesses Tracked in

<? echo "$table_name"; ?>: <? echo "$all_count"; ?></p>

10. Add some more HTML so that the document is valid:

</BODY>

</HTML>

11. Save the file with the name access_report.php and place this file in the
document root of your Web server.

Your code should look something like this:

<?

//set up table and database names

$db_name = "testDB";

$table_name = "page_track";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//issue query and select results

$count_sql = "select count(page_name) from $table_name";

$count_res = @mysql_query($count_sql, $connection) or die(mysql_error());

$all_count = @mysql_result($count_res, 0, "count(page_name)");

?>

<HTML>

<HEAD>

<TITLE>My Access Report</TITLE>

</HEAD>

<BODY>

<h1>My Access Report</h1>

<P>Total Accesses Tracked in <? echo "$table_name";

?>: <? echo "$all_count"; ?></p>

</BODY>

</HTML>

424 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

Figure 24.6 Access report. Next, test it! Open your Web
browser and type
http://127.0.0.1/

access_report.php.
See Figure 24.6.

You will see the HTML page with
a heading and some text,
followed by the access count
you’ve reached for all pages. In
this example, I’ve accessed the
two sample pages a total of four
times.

425SIMPLE ACCESS COUNTING WITH MYSQL

Displaying the User Agents

In this section, you’ll make some minor additions to the access_report.php script to
display and count the different Web browsers used by those accessing your pages.

1. Open access_report.php in your text editor.

2. Before the closing PHP tag, create a SQL statement that finds all distinct
entries in the user_agent field of the page_track table, counts these entries, and
returns the results in descending order:

$user_agent_sql = "select distinct user_agent, count(user_agent) as count

from $table_name group by user_agent order by count desc";

3. Execute the query:

$user_agent_res = @mysql_query($user_agent_sql, $connection)

or die(mysql_error());

4. You’ll create a bulleted list within a while block in a moment. Start the bulleted
list outside the while block:

$user_agent_block = "";

5. Start the while loop. The while loop will create an array called $row_ua for each
record in the result set ($user_agent_res):

while ($row_ua = mysql_fetch_array($user_agent_res)) {

6. Get the individual elements of the record and give them good names:

$user_agent = $row_ua['user_agent'];

$user_agent_count = $row_ua['count'];

7. Add to $user_agent_block by creating one bulleted item and an additional
bulleted list. The bulleted item will show the name of the user agent. Then the
second bulleted list will show the number of accesses by that particular user
agent. After adding to $user_agent_block, close the while loop:

$user_agent_block .= "

$user_agent

accesses per browser: $user_agent_count

";

}

8. Close the bulleted list you created in $user_agent_block:

$user_agent_block .= "";

9. In the HTML section, add the following and then save the file:

<P>Web Browsers Used:

<? echo "$user_agent_block"; ?>

Your new code should look something like this:

<?

//set up table and database names

$db_name = "testDB";

$table_name = "page_track";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//issue query and select results for counts

$count_sql = "select count(page_name) from $table_name";

$count_res = @mysql_query($count_sql, $connection) or die(mysql_error());

$all_count = @mysql_result($count_res, 0, "count(page_name)");

//issue query and select results for user agents

$user_agent_sql = "select distinct user_agent, count(user_agent) as count

from $table_name group by user_agent order by count desc";

$user_agent_res = @mysql_query($user_agent_sql, $connection)

or die(mysql_error());

426 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

427SIMPLE ACCESS COUNTING WITH MYSQL

//start user agent display block

$user_agent_block = "";

//loop through results

while ($row_ua = mysql_fetch_array($user_agent_res)) {

$user_agent = $row_ua['user_agent'];

$user_agent_count = $row_ua['count'];

$user_agent_block .= "

$user_agent

accesses per browser: $user_agent_count

";

}

//finish up the user agent block

$user_agent_block .= "";

?>

<HTML>

<HEAD>

<TITLE>My Access Report</TITLE>

</HEAD>

<BODY>

<h1>My Access Report</h1>

<P>Total Accesses Tracked in

<? echo "$table_name"; ?>: <? echo "$all_count"; ?></p>

<P>Web Browsers Used:

<? echo "$user_agent_block"; ?>

</BODY>

</HTML>

Figure 24.7 Access report with user agents. Let’s see what user agents have
been accessing your pages.
Open your Web browser and
type http://127.0.0.1/

access_report.php. See Figure
24.7.

You will see the HTML page,
with a heading and some text,
followed by the access count
you’ve reached for all pages.
You will also see a list of user
agents and the total accesses
for each type. In this example,

I’ve accessed the two sample pages a total of four times with a single unique Web
browser. Try it with a few different browsers, to see the differences.

In the next section, you’ll make the final modifications to the access_report.php
script, displaying the individual page breakdowns.

Displaying Specific Page Breakdowns

In this section, you’ll make some minor additions to the access_report.php script to
provide a breakdown of the specific pages that you’re tracking in the page_track
table.

1. Open access_report.php in your text editor.

2. Before the closing PHP tag, create a SQL statement that finds all distinct
entries in the page_name field of the page_track table, counts these entries, and
returns the results in descending order:

$page_name_sql = "select distinct page_name, page_desc,

count(page_name) as count from $table_name

group by page_name order by count desc";

3. Execute the query:

$page_name_res = @mysql_query($page_name_sql, $connection)

or die(mysql_error());

4. You’ll create a bulleted list within a while block in a moment. Start the bulleted
list outside the while block:

$page_name_block = "";

5. Start the while loop. The while loop will create an array called $row_pn for each
record in the result set ($page_name_res):

while ($row_pn = mysql_fetch_array($page_name_res)) {

6. Get the individual elements of the record and give them good names:

$page_name = $row_pn['page_name'];

$page_desc = $row_pn['page_desc'];

$page_count = $row_pn['count'];

428 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

429SIMPLE ACCESS COUNTING WITH MYSQL

7. Add to $page_name_block by creating one bulleted item and an additional
bulleted list. The bulleted item will show the name of the page accessed. Then
the second bulleted list will show the number of accesses to that page. After
adding to $page_name_block, close the while loop with this code:

$page_name_block .= "

$page_name (\"$page_desc\")

accesses per page: $page_count

";

}

8. Close the bulleted list you created in $page_name_block:

$page_name_block .= "";

9. In the HTML section, add the following code and then save the file:

<P>Individual Pages:

<? echo "$page_name_block"; ?>

Your new code should look something like this:

<?

//set up table and database names

$db_name = "testDB";

$table_name = "page_track";

//connect to server and select database

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection) or die(mysql_error());

//issue query and select results for counts

$count_sql = "select count(page_name) from $table_name";

$count_res = @mysql_query($count_sql, $connection) or die(mysql_error());

$all_count = @mysql_result($count_res, 0, "count(page_name)");

//issue query and select results for user agents

$user_agent_sql = "select distinct user_agent, count(user_agent) as count

from $table_name group by user_agent order by count desc";

$user_agent_res = @mysql_query($user_agent_sql, $connection)

or die(mysql_error());

//start user agent display block

$user_agent_block = "";

//loop through results

while ($row_ua = mysql_fetch_array($user_agent_res)) {

$user_agent = $row_ua['user_agent'];

$user_agent_count = $row_ua['count'];

$user_agent_block .= "

$user_agent

accesses per browser: $user_agent_count

";

}

//finish up the user agent block

$user_agent_block .= "";

//issue query and select results for pages

$page_name_sql = "select distinct page_name, page_desc,

count(page_name) as count from $table_name

group by page_name order by count desc";

$page_name_res = @mysql_query($page_name_sql, $connection)

or die(mysql_error());

//start page name display block

$page_name_block = "";

//loop through results

while ($row_pn = mysql_fetch_array($page_name_res)) {

$page_name = $row_pn['page_name'];

$page_desc = $row_pn['page_desc'];

$page_count = $row_pn['count'];

$page_name_block .= "

$page_name (\"$page_desc\")

accesses per page: $page_count

";

}

//finish up the page name block

$page_name_block .= "";

?>

<HTML>

<HEAD>

<TITLE>My Access Report</TITLE>

</HEAD>

<BODY>

<h1>My Access Report</h1>

<P>Total Accesses Tracked in

<? echo "$table_name"; ?>: <? echo "$all_count"; ?></p>

430 CHAPTER 24: CREATING CUSTOM LOGS AND REPORTS

431SIMPLE ACCESS COUNTING WITH MYSQL

<P>Web Browsers Used:

<? echo "$user_agent_block"; ?>

<P>Individual Pages:

<? echo "$page_name_block"; ?>

</BODY>

</HTML>

Figure 24.8 The final access report. It’s time to check the final
results. Open your Web browser
and type http://127.0.0.1/
access_report.php (see Figure
24.8).

You will see the HTML page with
a heading and some text,
followed by the access count
you’ve reached for all pages.
You will also see a list of user
agents and the total accesses
for each type. Finally, you’ll see
a list of all pages accessed, as
well as the short description and
individual access count for each.

That’s a lot easier than wading through Apache access logs, but I wouldn’t
recommend completely replacing your access logs with a database-driven system.
That’s a bit too much database-connection overhead, even if MySQL is particularly
nice on your system. Instead, target your page tracking to something particularly
important to you.

In the next chapter, you’ll tackle another project. You are introduced to the
wonderful world of XML and how to use XML and PHP together for storage and
display of data.

This page intentionally left blank

Working with
XML

This chapter will give you a hands-on introduction to using
XML and PHP, but in no way should this be considered a
definitive guide on the subject. Use this chapter as a primer for
a subject you might decide to explore further on your own. In
PHP 6, all things XML-related have been completely rewritten,
so that the functionality, efficiency, and overall integration are
much more reliable and full featured. In this chapter, you will
learn how to:

Create a basic XML document structure.

Use XML with PHP.

Parse and display content from XML files.

25
Working with
XML

25

What Is XML?
The name XML comes from the full name of the language, Extensible Markup
Language. Although “markup” is in its name, do not think of XML as you do HTML,
because aside from the fact that both languages are based on tag pairs, there are
no similarities. XML is a method of data exchange, in that it holds well-defined
content within its boundaries. HTML, on the other hand, couldn’t care less what is
contained in the content or how it is structured—its only purpose is to display the
content to the browser. XML is used to define and carry the content, whereas
HTML is used to make it “pretty.”

This is not to say that XML data cannot be made pretty, or that you cannot display
XML data in your Web browser. In fact, this is exactly what you do using Extensible
Style Language (XSL) and Cascading Style Sheets (CSS) to render your content into
a format that your Web browser can understand, while still preserving the content
categorization. For example, say you have an area on your Web site reserved for
recent system messages, and those items each contain the following:

• Title

• Message

• Author

• Date of message

You might want to display the title in bold, the message as a paragraph, the
author’s name in italics, and the date in a small font. For this, you would use HTML.
XML, on the other hand, only cares that there are four distinct content elements. By
separating the data and its structure from the presentation elements, you can use
the content however you want and are not limited to the particular marked-up style
that static HTML has forced on you.

Basic XML Document Structure
Before moving forward into working with XML documents, you need to know
exactly how to create them. XML documents contain two major elements: the
prolog and the body. The prolog contains the XML declaration statement (much
like an HTML document type definition statement) and any processing instructions
and comments you want to add.

434 CHAPTER 25: WORKING WITH XML

435WHAT IS XML?

Using the system message example from the previous section, open a text editor
and create a file called messages.xml. Type the following:

<?xml version="1.0" ?>

<!-- Sample XML document -->

Next, the fun begins in the body area of the document, where the content
structure is contained. XML is hierarchical, like a book—books have titles and
chapters, each of which contains paragraphs, and so forth. There is only one root
element in an XML document—using the book example, the element might be
called Book, and the tags <Book></Book> surround all other information.

But I am using the system messages example here, so call the root element
SystemMessage and add an open tag to your messages.xml document:

<SystemMessage>

Next, add any subsequent elements—called children—to your document. Using the
system messages example, you need title, body, author, and date information. Call
the children elements MessageTitle, MessageBody, MessageAuthor, and MessageDate.
But what if you want both the name and an e-mail address for the author? Not a
problem—you just create another set of child elements within your parent element
(which just also happens to be a child element of the root element). For example,
just the <MessageAuthor> element could look like this:

<MessageAuthor>

<MessageAuthorName>Joe SystemGod</MessageAuthorName>

<MessageAuthorEmail>systemgod@someserver.com</MessageAuthorEmail>

</MessageAuthor>

XML SPECIFICATION
For a complete definition of XML documents, read the XML specification at
http://www.w3.org/TR/REC-xml (last updated in September 2006).

http://www.w3.org/TR/REC-xml

All together, your sample messages.xml document could look something like this:

<?xml version="1.0" ?>

<!--Sample XML document -->

<SystemMessage>

<MessageTitle>System Down for Maintenance</MessageTitle>

<MessageBody>Going down for maintenance soon!</MessageBody>

<MessageAuthor>

<MessageAuthorName>Joe SystemGod</MessageAuthorName>

<MessageAuthorEmail>systemgod@someserver.com</MessageAuthorEmail>

</MessageAuthor>

<MessageDate>March 4, 2004</MessageDate>

</SystemMessage>

Here are two very important rules to keep in mind for creating valid XML
documents:

• XML is case sensitive, so <Book> and <book> are different elements.

• All XML tags must be properly closed, XML tags must be properly nested, and
no overlapping tags are allowed.

436 CHAPTER 25: WORKING WITH XML

Figure 25.1 View of messages.xml with all elements open. Put the messages.xml file (or one
like it) in the document root of
your Web server for use in later
examples. As a side note,
current versions of some
browsers, such as Microsoft
Internet Explorer and Netscape,
allow you to view your XML
document in a tree-like format,
using their own internal style
sheets. Figure 25.1 shows the
original view of the messages.xml

437PREPARING TO USE XML WITH PHP

Preparing to Use XML with PHP
XML functionality in PHP is based on the libxml2 library and is enabled by default
at the time of PHP configuration and installation—on both Linux/UNIX and
Windows platforms.

Figure 25.2 View of XML file with collapsed tree. file with all elements opened,
whereas Figure 25.2 shows the
messages.xml file with the
SystemMessage element
collapsed.

Figure 25.3 XML entries in PHP. You can determine whether XML
support is enabled in your
installation of PHP by looking at
the output of the phpinfo()
function. Figure 25.3 shows
some of the XML-related entries
you will see in an XML-enabled
installation.

After you have confirmed that XML support is enabled within PHP, you can move
on to parsing, transforming, and even generating XML on your system. All of the
examples used in this chapter are very basic, and again I recommend reading
additional books or entries in the PHP manual (http://www.php.net/manual/) if
you’re interested in working with XML to any great extent.

Parsing XML with PHP
In this section, you’ll see a few examples of how PHP can parse a valid XML
document using the messages.xml file created earlier in this chapter. These basic
scripts show you the stepwise methods used to parse XML files with PHP; as with
everything in this book, it’s all about gaining a foundation for learning.

The first example script will simply load the messages.xml file into the XML parser
and then have the parser display back the distinct elements it finds.

1. Open a new file in your text editor and start a PHP block:

<?

2. Use the simplexml_load_file() function to load contents of the messages.xml
file into an object called $xml:

$xml = simplexml_load_file('messages.xml');

438 CHAPTER 25: WORKING WITH XML

A NOTE ON ORDER
You won’t see these items listed in this order in your phpinfo() output, as
there will be several entries in between in the alphabetical display of enabled
elements.

WRITING YOUR OWN OBJECTS
Objects are introduced in Appendix C, “Writing Your Own Functions,” but
for now think of an object as a big container, go with the flow, and grasp the
overall concept of what’s occurring.

http://www.php.net/manual/

439PARSING XML WITH PHP

3. Use the var_dump() function to print all the element names in the object and
their values, and then close the PHP block:

var_dump($xml);

?>

4. Save the file as xmlload.php and place it in the document root of your Web
server with the messages.xml file.

Figure 25.4 The XML object dumped to the screen. When you access this file with
your browser, you will see
something like Figure 25.4.

This rather unattractive output
shows that the XML parser read
the file, identified elements such
as MessageTitle and so forth,
and read the values of these
elements. In the next section,
you’ll see how to map XML
elements to specific types of
HTML markup, eventually
displaying the information in
presentation form.

Parse and Display Content from XML Files
In this section, you’ll create a script that will map HTML markup to XML elements,
eventually displaying what you’d normally see in a Web browser. This example uses
an XML file called books.xml, which stores a list of books and publication
information. In this example, the list is of three of my books, and the elements are
the following:

• BookStore • BookPublisher

• Book • BookISBN

• BookTitle • BookPrice

• BookAuthor

Before you move on to the coding aspect, create a books.xml file and put the
following into it (or any books of your choice; just follow the same structure):

<?xml version="1.0" ?>

<BookStore>

<Book>

<BookTitle>PHP5 Fast & Easy Web Development </BookTitle>

<BookAuthor>Julie Meloni</BookAuthor>

<BookPublisher>Premier Press</BookPublisher>

<BookISBN>1592004733</BookISBN>

<BookPrice>29.99</BookPrice>

</Book>

<Book>

<BookTitle>PHP Essentials, 2nd edition</BookTitle>

<BookAuthor>Julie Meloni</BookAuthor>

<BookPublisher>Premier Press</BookPublisher>

<BookISBN>1931841349</BookISBN>

<BookPrice>39.99</BookPrice>

</Book>

<Book>

<BookTitle>PHP Fast & Easy Web Development, 2nd edition</BookTitle>

<BookAuthor>Julie Meloni</BookAuthor>

<BookPublisher>Premier Press</BookPublisher>

<BookISBN>193184187X</BookISBN>

<BookPrice>29.99</BookPrice>

</Book>

</BookStore>

The goal of the XML parsing script is to display each XML element in a consistent
HTML markup. During the process by which you loop through the elements, you
will wrap HTML around their values—much like you do when looping through a
MySQL result set from a database query.

1. Open a new file in your text editor and start a PHP block:

<?

2. Use the simplexml_load_file() function to load contents of the books.xml file
into an object called $xml:

$xml = simplexml_load_file('books.xml');

3. Begin a for loop that looks for each Book element in the just-parsed XML file
and allows it to be accessible via $Book:

foreach($xml->Book as $Book) {

440 CHAPTER 25: WORKING WITH XML

441PARSING XML WITH PHP

4. Start to echo the output from the for loop:

echo "

5. Output the book’s title, wrapping it in HTML:

<p>".$Book->BookTitle."

6. Output the book’s author information, wrapping it in HTML:

by ".$Book->BookAuthor."

7. Output the book’s publisher information, wrapping it in HTML:

(Published by ".$Book->BookPublisher.",

8. Output the book’s ISBN, wrapping it in HTML:

ISBN: ".$Book->BookISBN.")

9. Output the book’s price, wrapping it in HTML:

price: \$".$Book->BookPrice."</p>

10. Finish the for loop by adding a separator and closing the braces and then
the PHP block:

<hr noshade>";

}

?>

Save this file as xmlparse.php and place it in the document root of your Web server.
The entire script should look something like this:

<?

$xml = simplexml_load_file("books.xml");

foreach($xml->Book as $Book) {

echo "

<p>".$Book->BookTitle."

by ".$Book->BookAuthor."

(Published by ".$Book->BookPublisher.",

ISBN: ".$Book->BookISBN.")

price: \$".$Book->BookPrice."</p>

<hr noshade>";

}

?>

The xmlparse.php script provides a basic example of reading an XML document and
working with its content. To take this concept further, have a look at the examples
in the PHP manual:

• DOM XML functions are documented at http://www.php.net/domxml.

• SimpleXML functions are documented at http://www.php.net/simplexml.

Although this chapter ends the lessons and projects, this book also has six
appendixes full of useful information. General PHP reference items can be found in
the first two appendixes, and a lesson on functions is in Appendix C. Appendix D
contains a wealth of information about new features in PHP 6.0, including writing
your own classes and objects. Database normalization and a basic SQL reference
can be found in Appendix E, “Database Normalization and SQL Reference,” and a
new element in PHP6—SQLite—is covered in Appendix F, “Using SQLite.” These
appendixes wrap up with Appendix G, “Getting Help,” which points you in the
right direction for additional resources and tutorials.

442 CHAPTER 25: WORKING WITH XML

Figure 25.5 Formatted XML display. When you access this file with
your browser, you will see
something like Figure 25.5.

http://www.php.net/domxml
http://www.php.net/simplexml

AppendixesAppendixes

P A R T V I I I

Appendix A
Additional Configuration Options............445

Appendix B
Basic PHP Language Reference................451

Appendix C
Writing Your Own Functions487

Appendix D
Writing Your Own Classes and Objects....495

Appendix E
Database Normalization and SQL
Reference ...505

Appendix F
Using SQLite ..523

Appendix G
Getting Help ..535

This page intentionally left blank

Additional
Configuration
Options

The installation instructions at the beginning of this book
detailed a simple configuration of PHP. If you feel like venturing
out on your own by adding additional extensions (on Windows)
or recompiling PHP (on Linux), this appendix gives you a brief
rundown of some of your options. PHP can be as powerful or as
streamlined as you want it to be, but a general rule of thumb is
only to add functionality that you really need. For example, if
you have no plans for connecting to an Oracle database, you do
not need to enable support for the Oracle functions. But PHP is
very extendable, meaning you do have the capability to add
functionality whenever you want—such as if your company
decides to buy an Oracle license!

A
Additional
Configuration
Options

A

Windows Extensions
Basic functionality is already built into PHP binary distributions for Windows,
including:

• Regular expression support

• Dynamic library support

• Internal sendmail support

• Perl-compatible regular expression support

• ODBC support

• Session support

• XML support

• MySQL support

and much more!

To get additional functionality, you must use additional extensions (.dll files), over
40 of which are included with the distribution. Some of the more popular
extensions are listed in Table A.1.

To turn an extension “on,” you must modify your php.ini file.

1. Open php.ini in a text editor and find the following lines:

; Directory in which the loadable extensions (modules) reside.

extension_dir = ./

2. Change the second line so that it points to the directory containing your
extensions, such as:

extension_dir = /php/extensions

446 APPENDIX A: ADDITIONAL CONFIGURATION OPTIONS

447WINDOWS EXTENSIONS

Table A.1 Windows Extensions

Filename Description

php_bz2.dll Enables BZIP functions

php_cpdf.dll Enables ClibPDF functions

php_curl.dll Enables CURL-related functions

php_dba.dll Enables Database Abstraction Layer functions

php_dbase.dll Enables database functions

php_fdf.dll Enables Forms Data Format functions

php_gd2.dll Enables GD library image functions

php_gettext.dll Enables GetText functions

php_ifx.dll Enables Informix functions

php_imap.dll Enables IMAP, POP3, and NNTP functionality.

php_interbase.dll Enables Interbase (Borland database) functionality

php_ldap.dll Enables LDAP functions

php_mcrypt.dll Enables Mcrypt Encryption functions

php_mhash.dll Enables mhash functions

php_mime_magic.dll Enables MIME functions.

php_ming.dll Enables Ming-related Macromedia Flash functions

php_msql.dll Enables MSQL functionality

php_mssql.dll Enables Microsoft SQLServer functions

php_mysql.dll Enables MySQL functions

php_oci8.dll Enables Oracle 8+ functions

php_openssl.dll Enables OpenSSL functions

php_pgsql.dll Enables PostgreSQL functions

php_sybase_ct.dll Enables Sybase functions

php_xsl.dll Enables XSL functionality

3. Next, find a section that starts like this:

; Windows Extensions

; Note that ODBC support is built in, so no dll is needed for it.

; Note that many DLL files are located in the extensions/ (PHP 4) ext/

(PHP 5)

; extension folders as well as the separate PECL DLL download (PHP 5).

; Be sure to appropriately set the extension_dir directive.

4. For each extension you want to use, take away the semicolon before the name
if the file is in the list.

5. If the file is not in the list, add it:

extension=[your_extension_name].dll

6. After changing anything in the php.ini file, restart the Web server and then
check the output of phpinfo() to verify your changes.

For more information on the Windows configuration options in PHP, please see the
PHP manual’s section on installation and configuration.

Linux Configuration Options
Here is the configuration line used in Chapter 3 to build PHP:

./configure --with-mysql/

--with-apxs2=/usr/local/apache2/bin/apxs

This line tells PHP to include support for MySQL and to build as a dynamic module.
Many other extensions and other configurations are available to you, many of which
you’ll never use (I know I don’t). Table A.2 lists some more popular extensions in
case you want to fiddle with your installation. However, for a complete list of
extensions and configuration options, you can use the following command at your
shell prompt when in the PHP source directory:

./configure --help

448 APPENDIX A: ADDITIONAL CONFIGURATION OPTIONS

449LINUX CONFIGURATION OPTIONS

This will list all available configuration options.

Remember, because PHP is an Apache dynamic module, you don’t have to
recompile Apache when making changes to PHP.

For more information on Linux/UNIX configuration options in PHP, please see the
PHP manual’s section on installation and configuration.

Table A.2 Some Available Extensions

Extension Description

--disable-all Disable all extensions enabled by default.

--disable-libxml Disable new LIBXML support.

--with-openssl[=DIR] Include OpenSSL support (requires OpenSSL >= 0.9.6).

--with-zlib[=DIR] Include ZLIB support (requires zlib >= 1.0.9).

--enable-bcmath Enable bc style precision math functions.

--with-curl[=DIR] Include CURL support.

--enable-dbase Enable the bundled dbase library.

--disable-dom Disable new DOM support.

--enable-ftp Enable FTP support.

--with-gd[=DIR] Include GD support where DIR is GD install prefix.

--with-jpeg-dir[=DIR] GD: Set the path to libjpeg install prefix.

--with-png-dir[=DIR] GD: Set the path to libpng install prefix.

--with-zlib-dir[=DIR] GD: Set the path to libz install prefix.

--with-xpm-dir[=DIR] GD: Set the path to libXpm install prefix.

--with-ttf[=DIR] GD: Include FreeType 1.x support.

--with-freetype-dir[=DIR] GD: Set the path to FreeType 2 install prefix.

--with-informix[=DIR] Include Informix support.

--with-ldap[=DIR] Include LDAP support.

--enable-mbstring Enable multibyte string support.

450 APPENDIX A: ADDITIONAL CONFIGURATION OPTIONS

Table A.2 Some Available Extensions (continued)

Extension Description

--with-mcrypt[=DIR] Include mcrypt support.

--with-mhash[=DIR] Include mhash support.

--with-mssql[=DIR] Include MSSQL-DB support. DIR is the FreeTDS home
directory.

--with-mysql[=DIR] Include MySQL support. DIR is the MySQL base
directory.

--with-oci8[=DIR] Include Oracle-oci8 support. Default DIR is ORACLE_HOME.

--with-ibm-db2[=DIR] Include IBM DB2 support. DIR is the DB2 base.

--with-custom-odbc[=DIR] Include a user-defined ODBC support. DIR is the ODBC
base directory.

--with-iodbc[=DIR] Include iODBC support. DIR is the iODBC base
directory.

--disable-posix Disable POSIX-like functions.

--disable-session Disable session support.

--without-sqlite Do not include SQLite support.

--with-sybase[=DIR] Include Sybase-DB support. DIR is the Sybase home
directory.

Basic PHP
Language
Reference
This appendix is nowhere near as comprehensive as the PHP
manual (found at http://www.php.net/manual/index.php), which
contains descriptions of every PHP function that exists, plus
user-submitted comments and code samples. Instead, this
appendix serves as a basic, or “essential” reference—it contains
the elements of PHP that (in my opinion) you can’t live without.
The PHP development team and all of the documentation
contributors have done a wonderful job with the entire PHP
manual, and there’s no need to reinvent the wheel. However,
because this appendix touches on only a small percentage of all
there is to know about PHP, check the PHP manual before
asking a question on one of the PHP mailing lists.

B
Basic PHP
Language
Reference

B

PLACEHOLDERS
In all of these examples, when something like string or int appears in
a function, it is a placeholder for your own string or integer.

http://www.php.net/manual/index.php

PHP Start and End Tags
To combine PHP code with HTML, the PHP code must be escaped, or set apart,
from the HTML. The PHP engine will consider anything within the tag pairs shown
in Table B.1 as PHP code.

452 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Table B.1 Basic PHP Start and End Tags

Opening Tag Closing Tag

<?php ?>

<? ?>

<script language="php"> </script>

Variables
You create variables to represent data. For instance, the following variable holds a
value for sales tax:

$sales_tax = 0.0875;

This variable holds a SQL statement:

$sql = "SELECT * FROM MY_TABLE";

You can refer to the value of other variables when determining the value of a new
variable:

$tax_total = $sales_tax * $sub_total;

The following are true of variable names:

• They begin with a dollar sign ($).

• They cannot begin with a numeric character.

• They can contain numbers and the underscore character (_).

• They are case sensitive.

453VARIABLES

Here are some common variable types:

• floats

• integers

• strings

These types are determined by PHP, based on the context in which they appear.

Floats
Each of the following variables is a float, or floating-point number. Floats are also
known as “numbers with decimal points.”

$a = 1.552;

$b = 0.964;

$sales_tax = 0.875;

Integers
Integers are positive or negative whole numbers, zero, or “numbers without
decimal points.” Each of the following variables is an integer:

$a = 15;

$b = -521;

Strings
A series of characters grouped within double quotation marks is considered a
string:

$a = "I am a string.";

$b = "<P>This book is cool!";

You can also reference other variables within your string, which will be replaced
when your script is executed. For example:

$num = 57; // an integer

$my_string = "I read this book $num times!"; // a string

When you run the script, $my_string becomes “I read this book 57 times!”

A note for PHP 6.0 users: If you are accustomed to using the old-style string
indexing format using the { and } characters, you will need to stop. The old style
has been deprecated, and you will now need to use the [and] characters, bringing
PHP more into line with other modern programming languages.

Variables from HTML Forms
Depending on the method of your HTML form (GET or POST), the variables will be
part of the $_POST or $ _GET superglobal associative array. The name of the input
field will become the name of the variable. For example, when a form is sent using
the POST method, the following input field produces the variable
$_POST[first_name]:

<input type="text" name="first_name" size="20">

If the method of this form were GET, this variable would be $_GET[first_name].

Variables from Cookies
Like variables from forms, variables from cookies are kept in a superglobal
associative array called $_COOKIE. If you set a cookie called user with a value of Joe
Smith, like so:

SetCookie ("user", "Joe Smith", time()+3600);

a variable called user is placed in $_COOKIE, with a value of Joe Smith. You then refer
to $_COOKIE[user] to get that value.

Environment Variables
When a Web browser makes a request of a Web server, it sends along with the
request a list of extra variables called environment variables. They can be very
useful for displaying dynamic content or authorizing users.

454 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

455VARIABLES

By default, environment variables are available to PHP scripts as $VAR_NAME.
However, to be absolutely sure that you’re reading the correct value, you can use
the getenv() function to assign a value to a variable of your choice. The following
are some common environment variables.

REMOTE_ADDR gets the IP address of the machine making the request. For example:

$remote_address = getenv("REMOTE_ADDR");

echo "Your IP address is $remote_address.";

HTTP_USER_AGENT gets the browser type, browser version, language encoding, and
platform. For example:

$browser_type = getenv("HTTP_USER_AGENT");

echo "You are using $browser_type.";

For a list of HTTP environment variables and their descriptions, visit
http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

A note for PHP 6.0 users: The HTTP_*_VARS set of variables, which was once used to
get information from the browser cookies, is no longer available as of this version.
This set of variables had been deprecated for some time and finally has been
removed.

Arrays
Simply put, arrays are sets of variables that are contained as a group. In the
following example, $fave_colors is an array that contains strings representing array
elements. In this case, the array elements (0 to 3) are names of colors.

$fave_colors[0] = "red";

$fave_colors[1] = "blue";

$fave_colors[2] = "black";

$fave_colors[3] = "white";

Array elements are counted with 0 as the first position in the numerical index.

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Operators
An operator is a symbol that represents a specific action. For example, the +
arithmetic operator adds two values, and the = assignment operator assigns a
value to a variable.

Arithmetic Operators
Arithmetic operators bear a striking resemblance to simple math, as shown in Table
B.2.

456 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Table B.2 Arithmetic Operators

Operator Example Action

+ $b = $a + 3; Adds values together

- $b = $a - 3; Subtracts values

* $b = $a * 3; Multiplies values

/ $b = $a / 3; Divides values

% $b = $a % 3; Returns the modulus, or remainder

Assignment Operators
The = is the basic assignment operator:

$a = 124; // the value of $a is 124

Other assignment operators are shown in Table B.3.

Comparison Operators
It should come as no surprise that comparison operators compare two values. A
value of true or false is returned by the comparison. The comparison operators are
shown in Table B.4.

457OPERATORS

Increment/Decrement Operators
The increment/decrement operators do just what their name implies: add or
subtract from a variable (see Table B.5).

Logical Operators
Logical operators allow your script to determine the status of conditions and, in the
context of your if...else or while statements, execute certain code based on
which conditions are true and which are false (see Table B.6).

Table B.3 Assignment Operators

Operator Example Action

+= $a += 3; Changes the value of a variable to the current value
plus the value on the right side

-= $a -= 3 Changes the value of the variable to the current
value minus the value on the right side

.= $a .= "string"; Concatenates (adds on to) the value on the right side
with the current value

Table B.4 Comparison Operators

Operator Definition

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Control Structures
Programs are essentially a series of statements. Control structures, as their name
implies, control how those statements are executed. Control structures are usually
built around a series of conditions, such as “If the sky is blue, go outside and play.”
In this example, the condition is “If the sky is blue” and the statement is “go
outside and play.”

Control structures utilize curly braces ({}) to separate the groups of statements
from the remainder of the program. Examples of common control structures follow;
memorizing these will make your life much easier.

458 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Table B.5 Increment/Decrement Operators

Operator Usage Definition

++$a Pre-increment Increments by 1 and returns $a

$a++ Post-increment Returns $a and then increments $a by 1

--$a Pre-decrement Decrements by 1 and returns $a

$a-- Post-decrement Returns $a and then decrements $a by 1

Table B.6 Logical Operators

Operator Example Result

! !$a TRUE if $a is not true

&& $a && $b TRUE if both $a and $b are true

|| $a || $b TRUE if either $a or $b is true

459CONTROL STRUCTURES

if...else if...else

The if...else if...else construct executes a statement based on the value of the
expression being tested. In the following sample if statement, the expression
being tested is “$a is equal to 10.”

if ($a == "10") {

// execute some code

}

After $a is evaluated, if it is found to have a value of 10 (that is, if the condition is
true), the code inside the curly braces will execute. If $a is found to be something
other than 10 (if the condition is false), the code will be ignored, and the program
will continue.

To offer an alternative series of statements, should $a not have a value of 10, add
an else statement to the structure to execute a section of code when the condition
is false:

if ($a == "10") {

echo "a equals 10";

} else {

echo "a does not equal 10";

}

The else if (or one word: elseif) statement can be added to the structure to
evaluate an alternative expression before heading to the final else statement. For
example, the following structure first evaluates whether $a is equal to 10. If that
condition is false, the else if statement is evaluated. If it is found to be true, the
code within its curly braces executes. Otherwise, the program continues to the final
else statement:

if ($a == "10") {

echo "a equals 10";

} else if ($b == "8") {

echo "b equals 8";

} else {

echo "a does not equal 10 and b does not equal 8.";

}

You can use if statements alone or as part of an if...else or if...else if...else
statement. Whichever you choose, you will find this structure to be an invaluable
element in your programs!

while

Unlike the if...else if...else structure, in which each expression is evaluated
once and an action is performed based on its value of true or false, the while
statement continues to loop until an expression is false. In other words, the while
loop continues while the expression is true.

For example, in the following while loop, the value of $a is printed on the screen
and is incremented by 1 as long as the value of $a is less than or equal to 3:

$a = 0 // set a starting point

while ($a <= "3") {

echo "a equals $a
";

$a++;

}

for

Like while loops, for loops evaluate the set of conditional expressions at the
beginning of each loop. Here is the syntax of the for loop:

for (expr1; expr2; expr3) {

// code to execute

}

At the beginning of each loop, the first expression is evaluated, followed by the
second expression. If the second expression is true, the loop continues by
executing the code and then evaluating the third expression. If the second
expression is false, the loop does not continue, and the third expression is never
evaluated.

Take the counting example used in the while loop and rewrite it using a for loop:

for ($a = 0; $a <= "3"; $a++) {

echo "a equals $a
";

}

460 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

461BUILT-IN FUNCTIONS

foreach

Like the for loop, foreach loops permit you to iterate over an array, processing
each element in the array. Here is the syntax of the foreach loop:

foreach (array as variable) {

// code to execute

}

Each element in the array is processed within the statements in the “code to
execute” block. For example, to print out all elements of a block in your Web page,
you might do something like this:

arr = array("one", "two", "three");

foreach ($arr as $v)

{

echo "Value: $v\n";

}

In addition to variables, you can also iterate over objects (that is, classes). Each
element of the class will be printed out as a variable. You can see an example of
this when we talk about classes.

Built-In Functions
All of the following functions are part of the numerous functions that make up the
PHP language. These really are just a small number of the PHP functions; they are
the ones I use on a regular basis. Depending on the types of things you’ll be doing
with PHP, you might not need more functions, but please visit the PHP manual at
http://www.php.net/manual/ and familiarize yourself with what is available.

Array Functions
Numerous PHP functions are available for use with arrays. Only a few are noted
here—those that I find absolutely essential, and those that form a foundation of
knowledge for working with arrays.

http://www.php.net/manual/

array()

The array() function allows you to manually assign values to an array. Here is the
syntax of the array() function:

$array_name = array("val1", "val2", "val3", ...);

array_push()

The array_push() function allows you to add one or more elements to the end of an
existing array. Its syntax is this:

array_push($array_name, "element 1", "element 2", ...);

array_pop()

The array_pop() function allows you to take (pop) off the last element of an existing
array. Its syntax is this:

array_pop($array_name);

array_unshift()

The array_unshift() function allows you to add elements to the beginning of an
existing array. Its syntax is this:

array_unshift($array_name, "element 1", "element 2", ...);

array_shift()

The array_shift() function allows you to take (pop) off the first element of an
existing array. Its syntax is this:

array_shift($array_name);

462 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

463BUILT-IN FUNCTIONS

array_merge()

The array_merge() function allows you to combine two or more existing arrays. Its
syntax is this:

array_merge($array1, $array2, ...);

array_keys()

The array_keys() function returns an array of all the key names in an existing array.
Its syntax is this:

array_keys($array_name);

array_values()

The array_values() function returns an array of all the values in an existing array. Its
syntax is this:

array_values($array_name);

count()

The count() function counts the number of elements in a variable. It’s normally used
to count the number of elements in an array because any variable that is not an
array has only one element—itself.

In the following example, $a is assigned a value equal to the number of elements in
the $colors array:

$a = count($colors);

If $colors contains the values blue, black, red, and green, $a will be assigned a value
of 4.

each() and list()

The each() and list() functions usually appear together in the context of stepping
through an array and returning its keys and values. Here is the syntax for these
functions:

each(arrayname);

list(val1, val2, val3, ...);

For example, when you submit an HTML form via the GET method, each key/value
pair is placed in the global variable $_GET. If your form input fields are named
first_name and last_name and the user enters values of Joe and Smith, the key/value
pairs are first_name/Joe and last_name/Smith. In the $_GET array, these variables are
represented as the following:

$_GET["first_name"] // value is "Joe"

$_GET["last_name"] // value is "Smith"

You can use the each() and list() functions to step through the array in this
fashion, printing the key and value for each element in the array:

while (list($key, $val) = each($_GET)) {

echo "$key has a value of $val
";

}

reset()

The reset() function rewinds the pointer to the beginning of the array. Its syntax is
this:

reset($array_name);

shuffle()

The shuffle() function randomizes the elements of a given array. Its syntax is this:

shuffle($array_name);

464 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

465BUILT-IN FUNCTIONS

sizeof()

The sizeof() function counts the number of elements in an array. In the following
example, $a is assigned a value equal to the number of elements in the $colors
array:

$a = sizeof($colors);

If $colors contains the values blue, black, red, and green, $a is assigned a value of 4.

Database Connectivity Functions for MySQL
Numerous PHP functions exist for connecting to and querying a MySQL server.
Following are some basic functions and their syntax. See the PHP manual at
http://www.php.net/manual/ for a complete listing of MySQL functions—there are
plenty!

mysql_connect()

This function opens a connection to MySQL. It requires a server name, username,
and password.

$connection = mysql_connect("servername","username","password");

mysql_select_db()

This function selects a database on the MySQL server for use by subsequent
queries. It requires a valid established connection.

$db = mysql_select_db("myDB", $connection);

mysql_query()

This function issues the SQL statement. It requires an open connection to the
database.

$sql_result = mysql_query("SELECT * FROM SOMETABLE",$connection);

http://www.php.net/manual/

mysql_error()

This function returns a meaningful error message when something goes wrong with
your connection or query. It’s normally used in the context of the die() function,
like this:

$sql_result = mysql_query("SELECT * FROM SOMETABLE",$connection)

or die(mysql_error());

mysql_fetch_array()

This function automatically places the SQL statement result row into an array.

$row = mysql_fetch_array($sql_result);

mysql_num_rows()

This function returns the number of rows in a result set.

$num = mysql_num_rows($sql_result);

Date and Time Functions
The basic PHP date and time functions let you easily format timestamps for use in
database queries and calendar functions, as well as for simply printing the date on
an order form receipt.

date()

The date() function returns the current server timestamp, formatted according to a
given set of parameters. Its syntax is this:

date(format, [timestamp]);

If the timestamp parameter is not provided, the current timestamp is assumed.
Table B.7 shows the available formats.

466 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

467BUILT-IN FUNCTIONS

Table B.7 date() Function Formats

Character Meaning

a Prints “am” or “pm”

A Prints “AM” or “PM”

h Hour in 12-hour format (01 to 12)

H Hour in 24-hour format (00 to 23)

g Hour in 12-hour format without a leading zero (1 to 12)

G Hour in 24-hour format without a leading zero (0 to 23)

i Minutes (00 to 59)

s Seconds (00 to 59)

Z Time zone offset in seconds (–43200 to 43200)

U Seconds since the Epoch (January 1, 1970 00:00:00 GMT)

d Day of the month in two digits (01 to 31)

j Day of the month in two digits without a leading zero (1 to 31)

D Day of the week in text (Mon to Sun)

l Day of the week in long text (Monday to Sunday)

w Day of the week in numeric, Sunday to Saturday (0 to 6)

F Month in long text (January to December)

m Month in two digits (01 to 12)

n Month in two digits without a leading zero (1 to 12)

M Month in three-letter text (Jan to Dec)

Y Year in four digits (2000)

y Year in two digits (00)

z Day of the year (0 to 365)

t Number of days in the given month (28 to 31)

S English ordinal suffix (th, nd, st)

checkdate()

The checkdate() function validates a given date. Successful validation means that
the year is between 0 and 32767, the month is between 1 and 12, and the proper
number of days is in each month (leap years are accounted for). Its syntax is this:

checkdate(month, day, year);

mktime()

The mktime() function returns the UNIX timestamp as a long integer (in the format
of seconds since the Epoch, or January 1, 1970) for a given date. Thus, the primary
use of mktime() is to format dates in preparation for mathematical functions and
date validation. Its syntax is this:

mktime(hour, minute, second, month, day, year);

time() and microtime()

The time() function returns the current system time, measured in seconds since the
Epoch. The syntax of time() is simply this:

time();

You could get a result such as 958950466.

Using microtime() adds a count of microseconds, so instead of just receiving a
result like 958950466, you would get a result like 0.93121600 958950466, at the
exact moment you asked for the time since the Epoch (this includes both seconds
and microseconds).

File System Functions
The built-in file system functions can be very powerful tools—or weapons, if used
incorrectly. Be very careful when using file system functions, especially if you have
PHP configured to run as root or some other system-wide user. For example, using
a PHP script to issue an rm -R command while at the root level of your directory
structure would be a very bad thing.

468 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

469BUILT-IN FUNCTIONS

chmod(), chgrp(), and chown()

Like the shell commands of the same name, the chmod(), chgrp(), and chown()
functions modify the permissions, group, and owner of a directory or file. Here is
the syntax of these functions:

chmod("filename", mode);

chmgrp("filename", newgroup);

chown("filename", newowner);

In order to change permissions, groups, and owners, the PHP user must be the
owner of the file, or the permissions must already be set to allow such changes by
that user.

copy()

The copy() function works much like the cp shell command: It needs a filename and
a destination in order to copy a file. The syntax of copy() is this:

copy("source filename", "destination");

The PHP user must have permission to write into the destination directory, or the
copy() function will fail.

fopen()

The fopen() function opens a specified file or URL for reading or writing. The syntax
of fopen() is this:

fopen("filename", "mode")

To open a URL, use http:// or ftp:// at the beginning of the filename string. You
can open URLs only for reading, not writing.

If the filename begins with anything else, the file is opened from the file system,
and a file pointer to the opened file is returned. Otherwise, the file is assumed to
reside on the local file system.

The specified mode determines whether the file is opened for reading, writing, or
both. Table B.8 lists the valid modes.

470 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Table B.8 fopen() Function Modes

Mode Description

r Read-only. The file pointer is at the beginning of the file.

r+ Reading and writing. The file pointer is at the beginning of the file.

w Write-only. The file pointer is at the beginning of the file, and the file is
truncated to zero length. If the file does not exist, attempt to create it.

w+ Reading and writing. The file pointer is at the beginning of the file, and the
file is truncated to zero length. If the file does not exist, attempt to create it.

a Write-only. The file pointer is at the end of the file (it appends content to
the file). If the file does not exist, attempt to create it.

a+ Reading and writing. The file pointer is at the end of the file (it appends
content to the file). If the file does not exist, attempt to create it.

x Create and open a file for writing only. The file pointer is at the beginning of
the file. Will fail if the file already exists.

x+ Create and open a file for reading and writing. The file pointer is at the
beginning of the file. Will fail if the file already exists.

fread()

Use the fread() function to read a specified number of bytes from an open file
pointer. Its syntax is this:

fread(filepointer, length);

fputs()

The fputs() function writes to an open file pointer. Its syntax is this:

fputs(filepointer, content, [length]);

471BUILT-IN FUNCTIONS

The file pointer must be open in order to write to the file. The length parameter is
optional. If it isn’t specified, all specified content is written to the file.

fclose()

Use the fclose() function to close an open file pointer. Its syntax is this:

fclose(filepointer);

mkdir()

Like the mkdir shell command, the mkdir() function creates a new directory in the
file system. Its syntax is this:

mkdir("pathname", mode);

The PHP user must have write permission in the specified directory.

rename()

As its name suggests, the rename() function attempts to give a new name to an
existing file. Its syntax is this:

rename("oldname", "newname");

The PHP user must have permission to modify the file.

rmdir()

Like the rmdir shell command, the rmdir() function removes a directory from the
file system. Its syntax is this:

rmdir("pathname");

The PHP user must have write permission in the specified directory.

symlink()

The symlink() function creates a symbolic link from an existing file or directory on
the file system to a specified link name. Its syntax is this:

symlink("targetname", "linkname");

The PHP user must have write permission in the specified directory.

unlink()

The unlink() function deletes a file from the file system. Its syntax is this:

unlink("filename");

The PHP user must have write permission for this file.

HTTP Functions
The built-in functions for sending specific HTTP headers and cookie data are crucial
aspects of developing large Web-based applications in PHP. Luckily, the syntax for
these functions is quite easy to understand and implement.

header()

The header() function outputs an HTTP header string, such as a location
redirection. This output must occur before any other data is sent to the browser,
including HTML tags.

472 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

HEADERS
This information bears repeating: Do not attempt to send information of any
sort to the browser before sending a header(). You can perform any sort of
database manipulations or other calculations before the header(), but you
cannot print anything to the screen—not even a newline character.

473BUILT-IN FUNCTIONS

For example, to use the header() function to redirect a user to a new location, use
this code:

header("Location: http://www.newlocation.com");

exit;

HEADERS AND EXITS
Follow a header() statement with the exit command. This ensures that the
code does not continue to execute.

setcookie()

The setcookie() function sends a cookie to the user. Cookies must be sent before
any other header information is sent to the Web browser. The syntax for
setcookie() is this:

setcookie("name", "value", "expire", "path", "domain", "secure");

For example, you would use the following code to send a cookie called username
with a value of joe that is valid for one hour within all directories on the
testcompany.com domain:

setcookie("username","joe", time()+3600, "/", ".testcompany.com");

mail() Function
The PHP mail function makes the interface between your HTML forms and your
server’s outgoing mail program a snap!

If your server has access to sendmail or an external SMTP server, the mail()
function sends mail to a specified recipient. Its syntax is this:

mail("recipient", "subject", "message", "mail headers");

For example, the following code sends mail to julie@thickbook.com, with a subject
of “I’m sending mail!” and a message body saying “PHP is cool!” The From line is
part of the additional mail headers.

mail("julie@thickbook.com", "I'm sending mail!",

"PHP is cool!", "From: youremail@yourdomain.com\n");

Mathematical Functions
Because I have very little aptitude for mathematics, I find PHP’s built-in
mathematical functions to be of the utmost importance. In addition to all the
functions, the value of pi (3.14159265358979323846) is already defined as a
constant in PHP (M_PI).

ceil()

The ceil() function rounds a fraction up to the next higher integer. Its syntax is
this:

ceil(number);

decbin() and bindec()

The decbin() and bindec() functions convert decimal numbers to binary numbers
and binary numbers to decimal numbers, respectively. The syntax of these functions
is this:

decbin(number);

bindec(number);

dechex() and hexdec()

The dechex() and hexdec() functions convert decimal numbers to hexadecimal
numbers and hexadecimal numbers to decimal numbers, respectively. The syntax of
these functions is this:

dechex(number);

hexdec(number);

474 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

475BUILT-IN FUNCTIONS

decoct() and octdec()

The decoct() and octdec() functions convert decimal numbers to octal numbers
and octal numbers to decimal numbers, respectively. The syntax of these
functions is this:

decoct(number);

octdec(number);

floor()

The floor() function rounds a fraction down to the next lower integer. Its syntax is
this:

floor(number);

number_format()

The number_format() function returns the formatted version of a specified number.
Its syntax is this:

number_format("number", "decimals", "dec_point", "thousands_sep");

For example, to return a formatted version of the number 12156688 with two
decimal places and a comma separating each group of thousands, use this:

echo number_format("12156688","2",".",",");

The result is 12,156,688.00.

If only a number is provided, the default formatting does not use a decimal point
and puts a comma between every group of thousands.

pow()

The pow() function returns the value of a given number raised to the power of a
given exponent. Its syntax is this:

pow(number, exponent);

rand()

The rand() function generates a random value from a specific range of numbers. Its
syntax is this:

rand(min, max);

round()

The round() function rounds a fraction to the next higher or next lower integer. Its
syntax is this:

round(number);

sqrt()

The sqrt() function returns the square root of a given number. Its syntax is this:

sqrt(number);

srand()

The srand() function provides the random number generator with a set of possible
values. Its syntax is this:

srand(seed);

A common practice is to seed the random number generator by using a number of
microseconds:

srand((double)microtime()*1000000);

Miscellaneous Functions
The die() and exit functions provide useful control over the execution of your
script, offering an “escape route” for programming errors. Other functions have
found their way into this “miscellaneous” category.

476 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

477BUILT-IN FUNCTIONS

die()

The die() function outputs a given message and terminates the script when a
returned value is false. Its syntax is this:

die("message");

For example, you would use the following code to print a message and stop the
execution of your script upon failure to connect to your database:

$connection = mysql_connect("servername", "username", "password")

or die ("Can't connect to database.");

exit

The exit statement terminates the execution of the current script at the point
where the exit statement is made.

sleep() and usleep()

The sleep() and usleep() functions put a pause, or a delay, at a given point in the
execution of your PHP code. The syntax of these functions is this:

sleep(seconds);

usleep(microseconds);

The only difference between sleep() and usleep() is that the given wait period for
sleep() is in seconds, and the wait period for usleep() is in microseconds.

uniqid()

The uniqid() function generates a unique identifier with a prefix if you want one. Its
syntax is this:

uniqid("prefix");

That’s boring, though. Suppose you want a unique ID with a prefix of phpuser. You
would use this:

$id = uniqid("phpuser");

echo "$id";

and you would get something like phpuser38b320a6b5482.

But if you use something really cool like this:

$id = md5(uniqid(rand()));

echo "$id";

you would get an ID like 999d8971461bedfc7caadcab33e65866.

Program Execution Functions
You can use PHP’s built-in program execution functions to use programs residing on
your system, such as encryption programs, third-party image manipulation
programs, and so forth. For all program execution functions, the PHP user must
have permission to execute the given program.

exec()

The exec() function executes an external program. Its syntax is this:

exec(command, [array], [return_var]);

If an array is specified, the output of the exec() function will append to the array. If
return_var is specified, it will be assigned a value of the program’s return status.

For example, you would use the following code to ping a server five times and print
the output:

$command = "ping -c5 www.thickbook.com";

exec($command, $result, $rval);

for ($i = 0; $i < sizeof($result); $i++) {

echo "$result[$i]
";

}

478 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

479BUILT-IN FUNCTIONS

passthru()

Like the exec() function, the passthru() function executes an external program.
The difference between the two is that passthru() returns the raw output of the
action. The syntax of passthru() is this:

passthru(command, return_var);

If return_var is specified, it will be assigned a value of the program’s return status.

system()

The system() function executes an external program and displays output as the
command is being executed. Its syntax is this:

system(command, [return_var]);

If return_var is specified, it will be assigned a value of the program’s return status.

For example, you would use the following code to ping a server five times and print
the raw output:

$command = "ping -c5 www.thickbook.com";

system($command);

Regular Expression Functions
Regular expressions are ways in which you can do “pattern matching” on text. For
example, you might want to find out whether a string is made up of all numbers or
all letters or contains punctuation marks. PHP contains a rich set of regular
expression tools for doing just this.

ereg_replace() and eregi_replace()

The ereg_replace() and eregi_replace() functions replace instances of a pattern
within a string and return the new string. The ereg_replace() function performs a
case-sensitive match, and eregi_replace() performs a case-insensitive match. Here
is the syntax for both functions:

ereg_replace(pattern, replacement, string);

eregi_replace(pattern, replacement, string);

For example, you would use the following code to replace ASP with PHP in the string
I really love programming in ASP!

$old_string = "I really love programming in ASP!";

$new_string = ereg_replace("ASP", "PHP", $old_string);

echo "$new_string";

If ASP is mixed case, such as aSp, use the eregi_replace() function:

$old_string = "I really love programming in aSp!";

$new_string = eregi_replace("ASP", "PHP", $old_string);

echo "$new_string";

split()

The split() function splits a string into an array using a certain separator (comma,
colon, semicolon, and so on). Its syntax is this:

split(pattern, string, [limit]);

The limit is optional. If a limit is specified, the split() function stops at the named
position—for example, at the tenth value in a comma-delimited list.

Session-Handling Functions
Session handling is a way of holding on to data as a user navigates your Web site.
Data can be variables or entire objects. These simple functions are just a few of the
session-related functions in PHP; see the PHP manual at
http://www.php.net/manual/ for more.

session_start()

The session_start() function starts a session if one has not already been started,
or it resumes a session if the session ID is present for the user. This function takes
no arguments and is called simply by placing the following at the beginning of your
code:

session_start();

480 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

http://www.php.net/manual/

481BUILT-IN FUNCTIONS

session_destroy()

The session_destroy() function effectively destroys all the variables and values
registered for the current session. This function takes no arguments and is called
simply by placing the following in your code:

session_destroy();

String Functions
This section only scratches the surface of PHP’s built-in string manipulation
functions, but if you understand these common functions, your programming life
will be quite a bit easier!

addslashes() and stripslashes()

The addslashes() and stripslashes() functions are very important when inserting
and retrieving data from a database. Often, text inserted into a database will
contain special characters (single quotes, double quotes, backslashes, NULL) that
must be escaped before being inserted. The addslashes() function does just that,
using this syntax:

addslashes(string);

Similarly, the stripslashes() function returns a string with the slashes taken away,
using this syntax:

stripslashes(string);

chop(), ltrim(), and trim()

All three of these functions remove errant white space from a string. The chop()
function removes white space from the end of a string, and ltrim() removes white
space from the beginning of a string. The trim() function removes both leading
and trailing white space from a string. Here is the syntax of these functions:

chop(string);

ltrim(string);

trim(string);

echo()

The echo() function returns output. The syntax of echo() is this:

echo (parameter1, parameter 2, ...)

For example:

echo "I'm using PHP!"; // output is: I'm using PHP!

echo 2+6; // output is: 8

The parentheses are not required when using echo.

explode() and implode()

The explode() function splits a string using a given separator and returns the values
in an array. The syntax of explode() is this:

explode("separator", "string");

For example, the following code takes a string called $color_list, containing a
comma-separated list of colors, and places each color into an array called
$my_colors:

$color_list = "blue,black,red,green,yellow,orange";

$mycolors = explode(",", $color_list);

Conversely, the implode() function takes an array and makes it into a string, using a
given separator. The syntax of implode() is this:

implode("separator", "string");

For example, the following code takes an array called $color_list and then creates
a string called $mycolors, containing the values of the $color_list array, separated
by commas:

$mycolors = implode(",", $color_list);

482 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

483BUILT-IN FUNCTIONS

htmlspecialchars() and htmlentities()

The htmlspecialchars() and htmlentities() functions convert special characters
and HTML entities within strings into their acceptable entity representations. The
htmlspecialchars() function converts only the less-than sign (< becomes <),
greater-than sign (> becomes >), double quotes ("" becomes "), and the
ampersand (& becomes &).

The htmlentities() function converts the characters in the ISO-8859-1 character set
to the proper HTML entity. Here is the syntax of these functions:

htmlspecialchars(string);

htmlentities(string);

nl2br()

The nl2br() function replaces all ASCII newlines with the HTML line break (
).
The syntax of the nl2br() function is this:

nl2br(string);

sprintf()

The sprintf() function returns a string that has been formatted according to a set
of directives, as listed in Table B.9. The syntax of sprintf() is this:

sprintf(directives, string);

For example, to turn the number 5 into $5.00 (five dollars), use:

$newnumber = sprintf("%0.02f", 5);

strlen()

The strlen() function returns the length of a given string. Its syntax is this:

strlen(string);

strtolower()

The strtolower() function returns a given string with all alphabetic characters in
lowercase. Its syntax is this:

strtolower(str);

strtoupper()

The strtoupper() function returns a given string with all alphabetic characters in
uppercase. Its syntax is this:

strtoupper (str);

substr()

The substr() function returns a portion of a string, given a starting position and
optional ultimate length. Its syntax is this:

substr(string, start, [length]);

484 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Table B.9 sprintf() Function Formatting Directives

Directive Result

% Adds a percent sign

b Considers the string an integer and formats it as a binary number

c Considers the string an integer and formats it with that ASCII value

d Considers the string an integer and formats it as a decimal number

f Considers the string a double and formats it as a floating-point number

o Considers the string an integer and formats it as an octal number

s Considers and formats the string as a string

x Considers the string an integer and formats it as a hexadecimal number
(lowercase letters)

X Considers the string an integer and formats it as a hexadecimal number
(uppercase letters)

485BUILT-IN FUNCTIONS

If the start position is a positive number, the starting position is counted from the
beginning of the string. If the start position is negative, the starting position is
counted from the end of the string.

Similarly, if the optional length parameter is used and is a positive number, the
length is counted from the beginning of the string. If the length parameter is used
and is a negative number, the length is counted from the end of the string.

For example:

$new_string = substr("PHP is great!", 1); // returns "HP is great!"

$new_string = substr("PHP is great!", 0, 7); // returns "PHP is "

$new_string = substr("PHP is great!", -1); // returns "!"

$new_string = substr("PHP is great!", -6, 5); // returns "great"

ucfirst()

The ucfirst() function changes the first alphabetic character in a string to an
uppercase character. Its syntax is this:

ucfirst(string);

ucwords()

The ucwords() function changes the first letter of each word in a string to
uppercase. Its syntax is this:

ucwords(string);

Variable Functions
The two basic variable functions, isset() and unset(), help you manage your
variables within the scope of an application.

The isset() function determines whether a variable exists. The unset() function
explicitly destroys the named variable. Here is the syntax of each:

isset(var);

unset(var);

The isset() function returns true if the variable exists and false if it does not.

Other Changes for PHP 6.0
As a final note, there have been a few additional changes for PHP version 6.0 that
do not fit in anywhere else in this book, so they are listed here.

Addition of 64-Bit Integers

PHP 6.0 now supports 64-bit integers on platforms that have the capability for such
things. They look just like normal integers but will permit 64-bit math.

register_global and safe_mode Option Removed

In previous versions of PHP, global variables were automatically added to your
scripts by the interpreter. This capability was defaulted to “off” in PHP 4.2 and has
been removed entirely in 6.0.

The safe_mode option, which disabled all sorts of functions in the environment, was
also defaulted to “off” and has been removed in this version.

Dynamic Functions No Longer Callable with
Static Syntax

In previous versions of PHP, you could call a dynamic function using either dynamic
syntax or using standard, static syntax. As of version 6.0, it will no longer be
possible to call them other than using dynamic syntax. This will cut down on errors
in programming by users who are unsure of what type of function they are calling.

486 APPENDIX B: BASIC PHP LANGUAGE REFERENCE

Writing Your
Own Functions

As you become more comfortable with writing code, you
might realize that many times you will write the same bits of
code over and over again. A prime example of this is the
database connection code used throughout this book. How
many times did you think to yourself, “This is really repetitive!”
Quite often, I’m sure. This is where writing your own functions
comes in to play.

When you program in PHP, you will use predefined functions to
achieve certain results. For example, the mail() function is a
predefined function that sends mail. The mysql_connect()
function is a predefined function that connects to a MySQL
database. The code that makes up these functions is built into
the PHP scripting engine, so you never see it. However, you can
write your own functions and use them in your scripts, even
storing your own functions in external files for use only when
you need them.

C
Writing Your
Own Functions

C

The Structure of Functions
Functions have a very specific structure, as you can see in the following code,
where [function name] and [arguments] should be replaced with your own function
name and any arguments you might want to use.

function [function_name] ([arguments]) {

// code

}

When you create a function, you precede the name of the function with the
keyword function. After that and the name of your function comes the list of
arguments inside a set of parentheses. The arguments—which are optional because
you don’t have to pass any arguments to a function if you don’t want to—are
separated by commas and hold values that your function needs in order to
complete its task or tasks. Essentially, an argument allows you to create a
“template” in your function, to be used with all sorts of different kinds of data.

After the arguments, you open a set of curly braces, type all of your code, and
finally close the set of braces. For example, the following function (called
multiplier) takes an argument called $num and multiplies the value by 5.

function multiplier ($num) {

$answer = $num * 5;

}

Say you have already determined that $num equals 8, and that’s what you’re passing
to the multiplier function. Using your own math skills, you know that $answer will
equal 40. To get that number back to your script, outside of the function, you must
return the value.

Returning Values from Functions
The basic method for returning values from your functions is to use the return
statement. Usually, this statement comes at the end of the function, like so:

function multiplier ($num) {

$answer = $num * 5;

return $answer;

}

488 APPENDIX C: WRITING YOUR OWN FUNCTIONS

489THE STRUCTURE OF FUNCTIONS

When you use a return statement, you can then call the function in your code like
so:

echo multiplier(8);

This use would result in the following on your screen:

40

Because you are passing 8 as the $num argument to the multiplier() function,
$answer becomes 40. Because $answer is being returned as the result of the
function’s actions, and you are using echo followed by the function call, you’re
telling PHP to print the result of the code within the function. In this case, that
result is the number 40.

RETURN STATEMENTS IN PHP
A return statement can be anywhere in a function, but when used, it ends
the execution of the function. This means that the code that is executed is
the line of your script from which the return statement was called.

RETURNING MULTIPLE VALUES
You can also use the return statement to get multiple values, but only if they
are part of an array or an object.

Using a return statement to pass results from your functions to your main script is a
simple and safe method and one of the most common. If you do not use a return
statement, you must declare as global any variables you want to pass back to your
main script. For example:

function multiplier($num) {

global $answer;

$answer = $num * 5;

}

In this case, you call the multiplier() function and then use the name of the
variable in the echo statement, because it’s not returned directly from your function.
For example, using the modified function, the following code will print the number
40 to your screen:

multiplier(5);

echo $answer;

If you had not declared $answer as a global variable, the result would have been a
blank screen.

490 APPENDIX C: WRITING YOUR OWN FUNCTIONS

GLOBAL VARIABLES
Use some thought to determine which variables you really want to become
globally available to your scripts. Each time you declare something as global,
you must employ additional programming constraints in order to maintain
the integrity of the data. In other words, you have to be careful and watch
what you do. If you have declared a variable as global but use a variable of
the same name in another part of your script, you will overwrite one or the
other. A good rule of thumb is to keep a handle on your global variables and
keep them local to the procedures that directly use them.

One of the most useful points about functions is that they can return data that you
can use in your own applications. Suppose, for example, that you wanted to write a
function that computed the square of a number that was passed in. The square of a
number, of course, is simply the number multiplied by itself. You might write such a
function like this:

function square($num) {

return $num * $num;

}

Notice that the function multiplies the $num parameter by itself and returns the
value all in one line. There is no need in PHP to use intermediate variables to hold
values if you don’t want to. However, once we have the value, we can then return it
to the user. This value might be stored in a variable in the calling program, like this:

$sq_num = square(5);

491USING FUNCTIONS IN YOUR CODE

This line of code passes the constant value 5 to the function, and stores the result
(25) in the variable $sq_num.

Using Functions in Your Code
So far, you’ve learned the basic structure of a user-defined function but not how it
fits within your own scripts. In the case of the multiplier() function, it does seem
awfully time consuming to create a script like the following, just to print a number
on the screen:

<?

function multiplier($num) {

$answer = $num * 5;

return $answer;

}

echo multiplier(5);

?>

Instead, imagine a function called db_connect(), which contains your database
connection and selection code:

function db_connect() {

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection)

or die(mysql_error());

}

Instead of typing those two lines over and over in every script, imagine simply
typing:

db_connect();

If your host name, username, password, or database name changes, you have to
change this information in only one place—the db_connect() function code. Now
the only trick is where to put this function. Obviously, if you are creating a function
in order to reuse the code within it, you don’t want the function to be part of the
script. Instead, you place the function in a file of its own (or a file containing other
functions) and use include() or require() to pull the information into your script as
appropriate.

Using include() and require()

The include() and require() functions do essentially the same thing: When called,
the code in the included file becomes part of the script calling it. From that point
forward, anything in the included file can be used in the script calling it.

The difference between include() and require() pops up when the file to be
included cannot be opened. This can occur because of incorrect permissions, or
perhaps the file isn’t in the location specified. When a failure occurs using
include(), you get a warning, but the code continues to execute as best it can,
which is to say not very well if it needs a function that’s in some other file! When
require() cannot find or open the file, you will get a fatal error, and PHP will stop
processing the code all together.

492 APPENDIX C: WRITING YOUR OWN FUNCTIONS

DESIGNING FUNCTIONS FOR REUSE
Obviously, it makes very little sense to write a function like this and not have
it accept arguments that would be used to connect to the database. If you
were really writing a function called db_connect, you would likely write it like
this:

function db_connect($machine, $user, $pwd) {

$connection = @mysql_connect($machine, $user, $pwd)

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection)

or die(mysql_error());

return $db;

}

This would allow you to reuse the function anywhere in a script that needed
access to a MySQL database.

493USING FUNCTIONS IN YOUR CODE

Included files look just like any other PHP files, starting with an opening PHP tag
and ending with a closing PHP tag. For example, suppose that you have a file called
myfunctions.php, containing the following code:

<?

/* The multiplier() function multiplies a number by 5 and returns it */

function multiplier($num) {

$answer = $num * 5;

return $answer;

}

/* The db_connect() function connects to my database. */

function db_connect() {

$connection = @mysql_connect("localhost", "spike", "9sj7En4")

or die(mysql_error());

$db = @mysql_select_db($db_name, $connection)

or die(mysql_error());

}

?>

Then, in your actual PHP script, which needs to connect to a database, you would
have the following:

<?

//include the file that has the function you need

include("/path/to/myfunctions.php");

//call a function

db_connect();

//now you can do things like issue queries and get results

?>

Obviously, this is a very simple example of using included files as function libraries,
but you probably can already see the benefits. Anywhere you have repetitive code,
think about using your own function to replace it. You can have multiple files full of
function libraries named appropriately for their tasks. You can easily optimize your
code when you go through the exercise of determining where functions can be
used. Try it yourself—there is plenty of repetitive code used in this book that you
can quickly turn into your own tightly wound application!

This page intentionally left blank

Writing Your
Own Classes
and Objects

Once you have worked with functions for a while, you may
notice that you tend to have sets of them that fall within a
specific grouping. For example, you might have a set of
functions that work with a database. Quite often, you will find
yourself passing the same bits of data (say, the database
“handle”) to each of the functions. Wouldn’t it be nice to be
able to just create the handle once and have the functions
remember it? This sort of thing is accomplished in PHP with
classes and objects.

D
Writing Your
Own Classes
and Objects

D

Working with Objects
Occasionally in this book, I’ve mentioned “object-oriented programming” in
reference to a more complex type of programming, beyond the procedural scripts
on which this book is based. An object is sort of a theoretical box of things—
variables, functions, and so forth—that exists in a templated structure called a
class. Although it’s easy to visualize a simple variable, such as $color, with a value
of red, or an array called $rainbow with three or four elements inside it, some
people have a difficult time visualizing objects.

For now, try to think of an object like a little box, with inputs and outputs on either
side. The input mechanisms are called methods, and methods have properties.
Throughout this section, you’ll take a look at how classes, methods, and properties
all work together to produce various outputs. This will give you a good picture of
what object-oriented programming is all about, should you want to go that route
when building your applications. To learn plenty more on the topic, check the PHP
manual chapter called “Classes and Objects” at http://www.php.net/manual/en/
language.oop.php.

An object has a structure, called a class. In a class, a set of characteristics is defined.
For example, say that you have created a house class. In the house class, you might
have architectural type, square footage, and color characteristics. Each house object
uses all of the characteristics, but they are initialized to different values, such as
ranch, 1500, and white aluminum siding, or condominium, 786, and tan stucco.

You can think of a class as a very small script of its own that you can call from the
outside world. For example, you might have a script that deals with a specific
database and a specific table within that database. You could “encapsulate” (an
object-oriented programming term) the functionality of dealing with that table in a
single class in PHP.

Because classes are so tightly structured but yet self-contained and independent of
one another, they can be reused from one application to another. For example,
suppose that you write some text-formatting classes on one project and decide you
can use that class in another project. Because a class is just a set of characteristics,
you can pick up the code and use it in the second project, reaching into it with
methods specific to the second application but using the inner workings of the
existing code to achieve new results.

496 APPENDIX D: WRITING YOUR OWN CLASSES AND OBJECTS

http://www.php.net/manual/en/language.oop.php
http://www.php.net/manual/en/language.oop.php

497WORKING WITH OBJECTS

Creating an Object
Creating an object is quite simple; you simply declare it to be in existence:

class myClass {

//code will go here

}

Now that you have a class, you can create a new instance of an object:

$object1 = new myClass();

The following code snippet shows you that your object exists:

<?php

class myClass {

//code will go here

}

$object1 = new myClass();

echo "\$object1 is an ".gettype($object1);

?>

If you save this code as objtest.php, place it in your document root, and access it
with your Web browser, you will see the following on your screen:

$object1 is an object

Next, you will learn about object properties and methods.

Properties of Objects

The variables declared inside an object are called properties. It is standard practice
to declare your variables at the top of the class. These properties can be values,
arrays, or even other objects. The following snippet uses simple scalar variables
inside the class, prefaced with the var keyword:

class myHouse {

var $type = "condo";

var $sqfootage = "786";

var $color = "tan stucco";

}

Now, when you create a myHouse object, it will always have these three properties,
which you can reference. The following shows how this works:

<?

class myHouse {

var $type = "condo";

var $sqfootage = "786";

var $color = "tan stucco";

}

$house = new myHouse();

echo "I live in a ".$house -> color." ".$house -> sqfootage."

square foot ".$house -> type;

?>

If you save this code as myHouse.php, place it in your document root, and access it
with your Web browser, you will see the following on your screen:

I live in a tan stucco 786 square foot condo

Object Methods

Methods add functionality to your objects; instead of simply containing properties,
the objects will actually do something useful. For example, the following class
outputs a string:

<?

class anotherClass {

function sayHello() {

echo "HELLO!";

}

}

$object1 = new anotherClass();

$object1 -> sayHello();

?>

If you save a file containing this code in your document root and access it with your
Web browser, you will see the following on your screen:

HELLO!

So a method looks and acts like a normal function but is defined within the
framework of a class. The -> operator is used to call the object method in the
context of your script. Had there been any variables stored in the object, the

498 APPENDIX D: WRITING YOUR OWN CLASSES AND OBJECTS

499WORKING WITH OBJECTS

method would have been capable of accessing them for its own purposes. For
example:

<?

class anotherClass {

var $name = "Joe";

function sayHello() {

echo "HELLO! My name is ".$this->name;

}

}

$object1 = new anotherClass();

$object1 -> sayHello();

?>

If you save this code and place it in your document root and then access it with
your Web browser, you will see the following on your screen:

HELLO! My name is Joe

The special variable $this is used to refer to the currently instantiated object.
Anytime an object refers to itself, you must use the $this variable. Using the $this
variable in conjunction with the -> operator enables you to access any property or
method in a class, within the class itself.

Constructors

A constructor is simply a function that lives within a class and, given the same name
as the class, is automatically called when a new instance of the class is created
using new classname. Using constructors enables you to provide arguments to your
class, to be processed immediately when it is first called. As of PHP 5.0 and
beyond, constructors can be written by the developer, using the _construct
keyword:

class MyClass {

function __construct() {

print "Creating MyClassn";

}

}

$my_obj = new MyClass();

If you run the above bit of code in your own script, you will see the print statement
executed, even though it doesn’t look like the my_obj object ever explicitly called
the _construct method. This is because the interpreter looks for a method called
_construct in the class definition and calls it automatically if it is found.

Destructors

A destructor is a function that lives within a class and, when an object of that class
goes out of scope, is automatically called as the last thing done in the object. Using
destructors in your class allows you to keep track of when objects come into and
go out of scope and clean up any kinds of things that need to be done when the
object terminates. For example, you might want to write a log file that keeps track
of when an object comes into and goes out of existence. This would be done by
overriding the constructor and destructor for the class:

class MyClass {

function __construct() {

print "Creating MyClassn";

$this->name = "My Class";

}

function __destruct() {

print "Destroying " . $this->name . "\n";

}

}

In this code, the initial construction prints out a message and then prints out a
second message when the object goes out of scope. Try it in your own script, and
you will see two messages when you create an object.

Class Constants

Sometimes it is nice to be able to define constants by name in your class, so that
others can refer to them without using magic numbers or magic strings. For
example, suppose that you wanted to create a class that modeled a traffic light.
You might create constants for the colors of the lights, since they could vary by
jurisdiction. Then you could refer to those constants, either internally or externally:

class TrafficLight {

const red = "Red";

const green = "Green";

const amber = "Yellow";

500 APPENDIX D: WRITING YOUR OWN CLASSES AND OBJECTS

501WORKING WITH OBJECTS

function __construct() {

print "Creating MyClassn";

$this->name = "My Class";

}

function __destruct() {

print "Destroying " . $this->name . "\n";

}

function Stop() {

echo "setting status to";

echo self::red;

}

}

$my_obj = new TrafficLight();

$my_obj->Stop()

Object Inheritance
Having learned the very basics of objects, properties, and methods, you can start
to look at object inheritance. Inheritance with regard to classes is just what it
sounds like: One class inherits the functionality from its parent class. An example is
shown here:

<?

class myClass {

var $name = "Joe";

function myClass($n) {

$this->name = $n;

}

function sayHello() {

echo "HELLO! My name is ".$this->name;

}

}

class childClass extends myClass {

//code goes here

}

$object1 = new childClass("Child of Joe");

$object1 -> sayHello();

?>

If you save this code, place it in your document root, and access it with your Web
browser, you will see the following on your screen:

HELLO! My name is Child of Joe

These lines make up the constructor:

function myClass($n) {

$this->name = $n;

}

This function is named the same as the class in which it is contained: myClass. You
then see that the childClass is defined but contains no code. In this example, it’s
meant to demonstrate only inheritance from the parent class. The inheritance
occurs through the use of the extends clause, as in:

class childClass extends myClass {

The second class inherits the elements of the first class because this clause is used.
Like most elements of object-oriented programming, inheritance is useful when
attempting to make your code flexible. Suppose that you created a text-formatting
class that organized and stored data, formatted it in HTML, and output the result
to a browser—your own personal masterpiece. Now suppose you had a client who
wanted to use that concept, but instead of formatting the content into HTML and
sending it to a browser, he wanted to format it for plain text and save it to a text
file. No problem—you just add a few methods and properties, and away you go.
Finally, the client comes back and says that he really wants the data to be
formatted and sent as an e-mail—and then, what the heck, why not create XML-
formatted files as well?

If you separate the compilation and storage classes from the formatting classes—
one for each of the various delivery methods (HTML, text, e-mail, and XML)—you
essentially have a parent-child relationship. Consider the parent class the one that
holds the compilation and storage methods. The formatting classes are the
children—they inherit the information from the parent, and they output the result
based on their own functionality.

Namespaces
With PHP 6.0, the language finally supports something that other languages have
had for some time, the idea of namespaces. The basic idea behind a namespace is
simple: Lots of people name their functions and classes the same thing. After all,

502 APPENDIX D: WRITING YOUR OWN CLASSES AND OBJECTS

503WORKING WITH OBJECTS

you might have a table class that models a real-world table, or a database table, or
simply a row and column table in a spreadsheet. Each of the classes might be called
table. If I now create my own script and try to do this:

$my_table = new table();

which one of the table objects is the PHP interpreter going to create? Since you
can’t tell, the interpreter can’t tell, either. For this reason, the designers of PHP 6.0
added the ability to “qualify” a class by enclosing it in a namespace. Think of a
namespace as the file in which the class exists, if that makes it easier. The basic
syntax of a namespace is this:

namespace <name> {

class foo {

// Code goes here

} // End of class foo

} End of namespace <name>

In this example, you will see that the namespace wraps around our class. Let’s say
that the namespace in this example (the <name> parameter) is meloni. Then the
entire block would look like this:

namespace meloni {

class foo {

// Code goes here

} // End of class foo

} End of namespace meloni

If you wanted to create a class of the name foo in our script, you would need to
“qualify” the name using the full namespace and class names:

$my_foo = new meloni::foo();

In no way do these brief pages cover all the aspects of object-oriented
programming—universities teach entire series of courses devoted to this topic.
However, you did learn how to create classes and instantiate objects from them,
how to create and access the properties and methods of a class, how to build new
classes, and how to inherit features from parent classes. You should now be able to
pick up a book on object-oriented programming and not feel completely lost.

This page intentionally left blank

Database
Normalization
and SQL
Reference

The database tables used in this book were designed for
simplicity’s sake to help you understand the basic interaction
between PHP and MySQL. These are not “normalized”
databases. “Normalization” is a word you’ll hear a lot when you
begin to create detailed database-driven applications, and it
requires a different type of thought process—thinking in
relational terms before seeing the relationships in front of you.
In this appendix, you’ll learn the basics of database
normalization, along with some key elements of the SQL
language.

E
Database
Normalization
and SQL
Reference

E

Understanding Database Normalization
Database normalization is essentially a set of rules that allows you to organize your
database in such a way that your tables are related where appropriate, and they are
flexible for future growth and relationships. The sets of rules used in normalization
are called normal forms. If your database design follows the first set of rules, it’s
considered in the first normal form. If the first three sets of rules of normalization are
followed, your database is said to be in the third normal form. This appendix goes
through the normal forms using the concept of students and courses in a school and
shows you how to normalize the my_contacts table used previously in the book.

Applying the Normal Forms
Before explaining the first normal form, let’s start with something that needs to be
normalized. In the case of a database, a flat table is a prime example of something
needing to be normalized. A flat table is like a spreadsheet with many columns of
data. In a flat table, there are no relationships between multiple tables, as all the
data you could possibly want is right there in that single flat table. This scenario is
not the most efficient design and will consume more physical space on your hard
drive than a set of normalized database tables.

Suppose that you have a table that holds student and course information for a
school. You might have the following fields in your flat table, as shown in Table E.1.

506 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

Table E.1 The Student and Courses Table

Field Name Description

StudentName Name of the student

CourseID1 ID of the first course taken by the student

CourseDescription1 Description of the first course taken by the student

CourseInstructor1 Instructor of the first course taken by the student

CourseID2 ID of the second course taken by the student

CourseDescription2 Description of the second course taken by the student

CourseInstructor2 Instructor of the second course taken by the student

507UNDERSTANDING DATABASE NORMALIZATION

You might then repeat CourseID, CourseDescription, and CourseInstructor columns
many more times to account for all the classes a student can take during his
academic career. Although redundant, this is the method used when creating a
single flat table to store information. Eliminating this redundancy is the first step in
database normalization, so next you’ll take this flat table to first normal form. If
your table remained in its flat format, you could have a lot of unclaimed space and
a lot of space being used unnecessarily—not an efficient table design!

Taking a Table to First Normal Form

The main rules for the first normal form are as follows:

• To eliminate repeating information.

• To create separate tables for related data.

Looking at the flat table design, with its many repeated sets of fields for students
and courses, you can identify students and courses as its two distinct topics. Taking
your student and courses flat table to the first normal form would mean that you
would create two tables: one for students (call it students) and one for students
plus courses (call it students_courses). You can see the new table designs in Tables
E.2 and E.3.

Your two new tables now represent a one-to-many relationship of one student to
many courses. Students can take as many courses as they want and are not limited
to the number of CourseID/CourseDescription/CourseInstructor groupings that
exist in the flat table. This is a definite improvement, of course, since students
could easily want to take multiple courses. However, there is a bit of extra data
there. After all, why are we duplicating all of the course information for each
student in the class?

Table E.2 The students Table

Field Name Description

StudentID A unique ID for the student. This new field is now a primary key.

StudentName Name of the student.

You still have some work to do, and the next step is to put these tables into second
normal form.

Taking Tables to Second Normal Form

The basic rule for the second normal form is this:

• No non-key attributes depend on a portion of the primary key.

In plain English, this means that if fields in your table are not entirely related to a
primary key, you have to keep working on them. In the students and courses
example, it means breaking out the courses into their own table so that the original
flat table is now just a table full of unique students.

CourseID, CourseDesc, and CourseInstructor can become a table called courses with
a primary key of CourseID. The students_courses table should then just contain two
fields: StudentID and CourseID. You can see the new table designs in Tables E.4 and
E.5.

508 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

Table E.3 The students_courses Table

Field Name Description

StudentID Unique ID of the student, matching an entry in the students table.

CourseID ID of the course being taken by the student.

CourseDescription Description of the course taken by the student.

CourseInstructor Instructor of the course taken by the student.

Table E.4 The courses Table

Field Name Description

CourseID Unique ID of a course

CourseDescription Description of the course

CourseInstructor Instructor of the course

509UNDERSTANDING DATABASE NORMALIZATION

This, obviously, is a vast improvement. Now, we can meddle with a course
description, for example, without having to change every student record in the
database. This, of course, is the reason that you are trying to put the database into
more “normal” forms, not only to save space, but to limit the impact of changes
across the database. The more you can spread out the data, the fewer number of
records you need to change to affect one area of the data.

Believe it or not, you can go even further with this example, to the third normal
form.

Taking Tables to Third Normal Form

The rule for the third normal form is:

• No attributes depend on other non-key attributes.

This rule simply means that you need to look at your tables and determine whether
more fields exist that can be broken down further and that aren’t dependent on a
key. Think about removing repeated data, and you’ll find your answer—instructors.
Usually, an instructor will teach more than one class. However, the CourseInstructor
field in the courses table is not a key of any sort. So if you break out this
information and create a separate table purely for the sake of efficiency and
maintenance, that’s the third normal form. Take a look at the new courses table and
the instructors table in Tables E.6 and E.7.

The third normal form is usually adequate for removing redundancy and allowing
for flexibility and growth. Next, you will normalize the my_contacts table, used
previously in this book.

Table E.5 The New students_courses Table

Field Name Description

StudentID Unique ID of the student, matching an entry in the students
table.

CourseID Unique ID of the course being taken, matching an entry in
the courses table.

Normalizing the my_contacts Table
In the original my_contacts table, there’s not a lot of repeating information, but
there easily could be if you expanded it to be an actual address book. In an address
book, people usually have contact information for home and work, or multiple
phone methods (land line, cell phone, and so on), and even multiple e-mail
addresses. It would make much more sense to break all of those elements into
separate tables and attach the information to people through a primary key. Table
E.8 shows the original my_contacts table as reference.

Now identify the different areas for which different tables will exist: Address,
phone, and e-mail are adequate for this example. Tables E.9, E.10, and E.11 show
the fields for these new tables.

These new tables all contain the contact_id key, which corresponds to an entry in
the new master contact table. The basic my_contacts table, used as the master
contact table, should now look something like Table E.12.

510 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

Table E.6 The courses Table

Field Name Description

CourseID Unique ID of a course

CourseDescription Description of the course

CourseInstructorID ID of the instructor, matching an entry in the
instructors table

Table E.7 The instructors Table

Field Name Description

InstructorID Unique ID of an instructor

InstructorName Name of the instructor

InstructorNotes Any notes regarding the instructor

511UNDERSTANDING DATABASE NORMALIZATION

Table E.8 The Original my_contacts Table

Field Name Description

id Creates a unique ID number for the entry

f_name The person’s first name

l_name The person’s last name

address1 First line of the address

address2 Second line of the address

address3 Third line of the address

postcode ZIP or postal code

country Country in which the person resides

prim_tel Primary telephone number

sec_tel Secondary telephone number

email E-mail address

birthday The person’s birthday

Table E.9 Fields for the address Table

Field Name Description

id Creates a unique ID number for the address entry

contact_id ID corresponding to a person in the master contact
table

address1 First line of the address

address2 Second line of the address

address3 Third line of the address

postcode ZIP or postal code

address_type Type of address, such as home, work, or other

512 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

Table E.10 Fields for the phone Table

Field Name Description

id Creates a unique ID number for the phone entry

contact_id ID corresponding to a person in the master contact table

phone_number Phone number

phone_type Type of phone number, such as home, work, cell, or fax

Table E.11 Fields for the email Table

Field Name Description

id Creates a unique ID number for the e-mail entry

contact_id ID corresponding to a person in the master contact table

country Country in which the person resides

email E-mail address

email_type Type of e-mail address, such as home or work

Table E.12 The New my_contacts Table

Field Name Description

id Creates a unique ID number for the entry

f_name Person’s first name

l_name Person’s last name

birthday Person’s birthday

513BASIC MYSQL REFERENCE

With these new tables in place, you will have a much more flexible (and
normalized!) set of tables for maintaining contact information.

Other Normal Forms
In addition to the basic three normal forms, there are quite a few others that you
might hear about when discussing database normalization. This doesn’t mean you
really need to know how to apply them, but it can be useful to understand the
terminology that DBA folks might throw at you when you are in a meeting.

A table is in Boyce-Codd normal form (BCNF) if and only if, for every one of its non-
trivial functional dependencies X _ Y, X is a superkey—that is, X is either a
candidate key or a superset thereof.

Basically, Boyce-Codd says that no attribute that determines a key can be anything
other than a candidate key or made of candidate keys. BCNF form is not normally
used in database development.

There are also fourth normal, fifth normal, sixth normal, and domain/key normal
forms. For more information about these, you can consult either a good database
design book or look on the Web.

Basic MySQL Reference
In this section, you’ll take a very brief glance at the Structured Query Language
(SQL), as well as some basic functions you can use with MySQL to make
development a lot easier. See the MySQL manual at http://www.mysql.com/ for a
comprehensive list of MySQL functions and language elements, or for a good
introduction to using MySQL, pick up my book Teach Yourself MySQL in 24 Hours.

PLACEHOLDERS
Throughout this appendix, anything inside brackets should be considered
placeholder text. For example, you would replace [yourDBName] with your
actual database name in the command.

http://www.mysql.com/

In the sections addressing MySQL-related functions, realize these are specific to
MySQL and are not available in other databases such as Oracle, Microsoft SQL
Servers, or even SQLite (which you’ll learn about in Appendix F). However, the
basic elements of SQL are common to such SQL-aware databases.

Creating or Dropping a Database
Starting with something simple, you can use the SQL CREATE command to create a
new database. The syntax is this:

CREATE DATABASE [yourDBName];

When you create a database with this command, you’re really just creating a
directory to hold the files that make up the tables in the database.

To delete an entire database from the system, use the DROP command:

DROP DATABASE [yourDBName];

Be extremely careful when using the DROP command, because once you delete the
database, all of the tables are removed as well!

Creating or Dropping a Table
You can also use the SQL CREATE command to create a table within the current
database. The syntax is this:

CREATE TABLE [yourTableName] ([fieldName1] [type],

[fieldName2] [type], ...) [options]

To delete a table from the current database, use the DROP command:

DROP TABLE [yourTableName];

Be extremely careful when using the DROP command, because once you drop the
tables, they’re gone!

514 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

515BASIC MYSQL REFERENCE

Altering a Table
The SQL ALTER command gives you the opportunity to modify elements of a
particular table, such as renaming columns, changing the type of a column, adding
columns, deleting columns, and so on. Following are some common uses:

• To add a column to a table, use this:

ALTER TABLE [yourTableName] ADD [newColumn] [fieldDefinition];

• To delete a column from a table, use this:

ALTER TABLE [yourTableName] DROP [columnName];

• To change a column from one type to another, use this:

ALTER TABLE [yourTableName] CHANGE [columnName] [newfieldDefinition];

• To make a unique column in your table, use this:

ALTER TABLE [yourTableName] ADD UNIQUE [columnName] ([columnName]);

• To index a column in your table, use this:

ALTER TABLE [yourTableName] ADD INDEX [columnName] ([columnName]);

Using the ALTER command alleviates the need to delete an entire table and re-
create it just because you spelled a field name incorrectly or made other minor
mistakes.

Inserting, Updating, or Replacing Within a Table
The SQL INSERT and REPLACE commands populate your tables one record at a time.
The syntax of INSERT is this:

INSERT INTO [yourTableName] ([fieldName1], [fieldName2], ...)

VALUES ('[value of fieldName1]', '[value of fieldName2]'...);

When inserting records, be sure to separate your strings with single quotes or
double quotes. If you use single quotes around your strings and the data you are
adding contains apostrophes, avoid errors by escaping the apostrophe (\') within

the INSERT statement. Similarly, if you use double quotes around your strings and
you want to include double quotes as part of the data, escape them (\") within your
INSERT statement.

Here is an example of a string where escaping is necessary:

O'Grady said "Wow"

If you enclose your strings in double quotes, the INSERT statement would look like
this:

INSERT INTO table_name (column_name) VALUES ("O'Grady said \"Wow\"");

If you enclose your strings in single quotes instead, the INSERT statement would
look like this:

INSERT INTO table_name (column_name) VALUES ('O\'Grady said "Wow"');

The REPLACE statement has the same syntax and requirements as the INSERT
statement. The only difference is that you use REPLACE to overwrite a record in a
table when the replacement is based on a unique value:

REPLACE INTO [yourTableName] ([fieldName1], [fieldName2], ...)

VALUES ('[value of fieldName1]', '[value of fieldName2]'...);

The UPDATE command modifies parts of a record without replacing the entire record.
To update an entire column in a table with the same new value, use this:

UPDATE [yourTableName] SET [fieldName] = '[new value]';

If you want to update only specific rows, use a WHERE clause:

UPDATE [yourTableName] SET [fieldName] = '[new value]' WHERE [some

expression];

UPDATE can be a very powerful SQL command. For example, you can perform string
functions and mathematical functions on existing records and use the UPDATE
command to modify their values.

516 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

517BASIC MYSQL REFERENCE

Deleting from a Table
Like the SQL DROP command, using DELETE without paying attention to what you’re
doing can have horrible consequences in a production environment. Once you drop
a table or delete a record, it’s gone forever. Don’t be afraid—just be careful. To
delete all the contents of a table, use the following:

DELETE FROM [yourTableName];

If you want to delete only specific rows, use a WHERE clause:

DELETE FROM [yourTableName] WHERE [some expression];

If you’re going to start deleting records, be sure you have a backup, just in case
something goes wrong. Everyone screws up once—and hopefully never again.

Selecting from a Table
When creating database-driven Web sites, the SQL SELECT command will likely be
the most often-used command in your arsenal. The SELECT command causes certain
records in your table to be chosen, based on criteria that you define. Here is the
basic syntax of SELECT:

SELECT [field names] FROM [table name]

WHERE [some expression]

ORDER BY [field names];

To select all the records in a table, use this:

SELECT * FROM [yourTableName];

To select just the entries in a given column of a table, use this:

SELECT [columnName] FROM [yourTableName];

To select all the records in a table and have them returned in a particular order, use
an expression for ORDER BY. For example, if you have a date field for record entries
and you want to see all the record entries ordered by newest to oldest, use this:

SELECT * FROM [yourTableName] ORDER BY [dateField] DESC;

DESC stands for “descending.” To view from oldest to newest, use ASC for
“ascending.” ASC is the default order.

You can also perform mathematical and string functions within SQL statements
(specific to your database), thereby using SELECT to do more than just echo existing
data. Some examples follow.

A Few MySQL-Specific String Functions

This list contains only a few of the many string-related functions listed in the
MySQL manual. Visit http://www.mysql.com/doc/ and check out the entire manual
for more information.

• You can concatenate values using the CONCAT() function. The syntax is this:

SELECT CONCAT([field1],[field2],...) AS [newName] FROM [yourTableName];

• Convert your results to lowercase using the LOWER() function. The syntax is this:

SELECT LOWER([field1],[field2],...) FROM [yourTableName];

• Convert your results to uppercase using the UPPER() function. The syntax is this:

SELECT UPPER([field1],[field2],...) FROM [yourTableName];

A Few MySQL-Specific Date and Time Functions

This list contains only a few of the many date- and time-related functions listed in
the MySQL manual. Visit http://www.mysql.com/doc/ and check out the entire
manual for more information.

• Get the day of the week (1 = Sunday, 2 = Monday, ...) from a date field using the
DAYOFWEEK() function. The syntax is this:

SELECT DAYOFWEEK([date]) FROM [yourTableName];

• Get the weekday (0 = Monday, 1 = Tuesday, ...) from a date field using the
WEEKDAY() function. The syntax is this:

SELECT WEEKDAY([date]) FROM [yourTableName];

518 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

http://www.mysql.com/doc/
http://www.mysql.com/doc/

519BASIC MYSQL REFERENCE

• Get the day of the month (1 through 31) from a date field using the DAYOFMONTH()
function. The syntax is this:

SELECT DAYOFMONTH([date]) FROM [yourTableName];

• Get the day of the year (1 through 366) from a date field using the DAYOFYEAR()
function. The syntax is this:

SELECT DAYOFYEAR([date]) FROM [yourTableName];

• Get the month (1 through 12) from a date field using the MONTH() function. The
syntax is this:

SELECT MONTH([date]) FROM [yourTableName];

• Get the month name (January, February, ...) from a date field using the
MONTHNAME() function. The syntax is this:

SELECT MONTHNAME([date]) FROM [yourTableName];

• Get the day name (Monday, Tuesday, ...) from a date field using the DAYNAME()
function. The syntax is this:

SELECT DAYNAME([date]) FROM [yourTableName];

• Get the week (0 through 53) from a date field using the WEEK() function. Start the
week with Sunday (0) or Monday (1). The syntax is this:

SELECT WEEK([date], [0 or 1]) FROM [yourTableName];

• Get the year (1000 through 9999) from a date field using the YEAR() function.
The syntax is this:

SELECT YEAR([date]) FROM [yourTableName];

DAYS OF THE WEEK
The difference between the DAYOFWEEK() and WEEKDAY() functions is the
starting point of the week. When getting the day of the week, the week
starts at Day 1, which is Sunday. When getting the week day (or “work
week”), the week starts at Day 0, which is Monday.

Grouping, Ordering, and Selecting Unique Values
You can group the data you get back from a SELECT statement using the GROUP BY
syntax:

SELECT FIELD1, FIELD2, FIELD3

FROM Table

GROUP BY GroupField

When you use the GROUP BY command, all records that match a given key value (in
our case, the GroupField value) will be grouped together. You would normally use
some sort of a calculation field, such as AVG (average) with a grouping command to
determine average data for a given group. For example, if you had a list of
salespeople and their commissions in a table called Sales, you could get back an
average commission for each of them over the year by using:

SELECT SalesName, AVG(Commission)

FROM Sales

GROUP BY SalesName

This statement would return one record for each salesperson, along with the
average of all of their commissions over the period of time stored in the table.

Likewise, you can order data in a selection statement using the ORDER BY clause of
the SELECT SQL function:

SELECT * from Sales

ORDER BY SalesName

In this example, we get back all of the salespeople from the sales table, sorting
them by the name of the salesperson.

Finally, you can select only unique values within a table in the database using the
DISTINCT statement. Imagine, for example, that you want to know the names of all
of the salespeople in the Sales table, but you want their names only once. You
could use the following statement:

SELECT DISTINCT SalesName

FROM Sales

520 APPENDIX E: DATABASE NORMALIZATION AND SQL REFERENCE

521BASIC MYSQL REFERENCE

This would return a unique list of salespeople names, with no duplicates, regardless
of how many commission entries they might have.

Using the SHOW Command
There are several types of SHOW commands that will produce output to help you
administer your MySQL database. The usual method for executing these
commands is through the MySQL Monitor, the command-line interface to MySQL,
which you used in Chapter 1, “Installing and Configuring MySQL.”

The basic SHOW commands are SHOW DATABASES and SHOW TABLES, which simply display
the names of the databases and tables on your server. If you use the SHOW CREATE
TABLE command, it shows you the exact SQL statement used to create the specified
table.

If you need to know the structure of the table but don’t necessarily need the SQL
command to create it, you can use the SHOW COLUMNS command (see Figure E.1):

mysql> SHOW COLUMNS FROM [testTable];

Figure E.1 The SHOW COLUMNS command.

For administrative purposes, the SHOW STATUS and SHOW VARIABLES commands
quickly provide important information about your database server. For more
information on the numerous rows of output from these commands, please read
the relevant sections of the MySQL manual, found at http://www.mysql.com/doc/.

http://www.mysql.com/doc/

This page intentionally left blank

Using SQLite
In Appendix E, “Database Normalization and SQL Reference,”
you learned about the importance of a normalized database
and potential problems with the flat file. However, there are
many instances in which your PHP applications might need only
a single database table, and there’s nothing wrong with that.
For instance, suppose that you’re just archiving the content of
simple contact forms sent through your Web site, as a backup
in case the e-mailed version never arrives. This simple table
might have fields for name, e-mail address, comments, and date
sent—no real need to normalize that!

If you find yourself in a development situation without a
database and some mandate that you must not install one, PHP
6 contains another option—the capability to utilize SQLite,
which is a flat file database with a SQL-based interface.

F
Using SQLite
F

VERSION CHANGE!
SQLite is enabled by default in PHP 6. For detailed information beyond
what’s covered in this appendix, please visit the SQLite Web site at
http://www.sqlite.org/ or search the PHP manual section for SQLite at
http://www.php.net/sqlite/.

http://www.sqlite.org/
http://www.php.net/sqlite/

To use SQLite, you must still have a fundamental understanding of how databases,
tables, and fields all work together and SQL syntax itself. Everything you have
learned in this book is still viable with regards to the process of connecting to a
database, issuing queries, and obtaining results—except that you learned to use
the MySQL-specific functions for sending the commands to the MySQL server.
SQLite has its own set of functions that you use to perform the same types of
tasks.

Examples of SQLite in Action
This section steps through some of the basic tasks in working with databases, using
the SQLite version of things. Before doing anything, you must create a database:

1. Open a new file in your text editor and start a PHP block:

<?php

2. Use the PDO() function to open a database called test.db one level up from the
document root—do not worry that it has not been created yet, because this
function will create the file if it does not already exist.

$dbh = new @PDO('sqlite:foo.db');

524 APPENDIX F: USING SQLITE

USING USERNAMES AND PASSWORDS
You might notice that no username or password is used to create or open a
SQLite database. This is true because the SQLite database is technically just
a plain file, with no requirements for access other than the capability to read
and write to the directory in which you are placing the file.

3. Close the PHP block.

?>

525EXAMPLES OF SQLITE IN ACTION

Now that you have a working SQLite database, you can move on to creating tables
and issuing queries.

Creating a Table and Storing Data with SQLite
When you created tables using MySQL, and in fact when you create a table in any
relational database system, you specifically defined the field types and field
lengths. For example, you might have had a field called name that was a 25-
character varchar field, or a field called start_date that was a datetime field. SQLite
is loosely typed, meaning the contents of all fields, regardless of what type they
actually are, are stored as strings. Thus, SQLite does not require you to define your
fields when you create a table, and if you do, they will be ignored.

In the next example, you will create a table that just holds first names, last names,
and e-mail addresses and populate the table with a few records:

1. Open a new file in your text editor and start a PHP block:

<?

2. Use the sqlite_open() function to open the database previously created:

$db = sqlite_open("../test.db") or die(sql_error_string());

3. Use the sqlite_query() function to issue a table-creation command:

sqlite_query($db, "CREATE TABLE my_friends (first_name, last_name,

email)");

NO MESSAGES?
There will be no output if this script is successful. You will see a message only
if the script fails to perform.

Save this file as sqlite1.php and place it in the document root of your Web
browser. Access the script at http://127.0.0.1/sqlite1.php to create the database.

4. Use the sqlite_query() function to add a few entries using the SQL INSERT
command:

sqlite_query($db, "INSERT INTO my_friends

VALUES ('John', 'Smith', 'john@smith.com')");

sqlite_query($db, "INSERT INTO my_friends

VALUES ('Jane', 'Doe', 'jane@doe.com')");

sqlite_query($db, "INSERT INTO my_friends

VALUES ('Julie', 'Meloni', 'julie@thickbook.com')");

5. Close the PHP block:

?>

The complete script should look like this:

<?

$db = sqlite_open("../test.db") or die(sql_error_string());

sqlite_query($db, "CREATE TABLE my_friends (first_name, last_name, email)");

sqlite_query($db, "INSERT INTO my_friends

VALUES ('John', 'Smith', 'john@smith.com')");

sqlite_query($db, "INSERT INTO my_friends

VALUES ('Jane', 'Doe', 'jane@doe.com')");

sqlite_query($db, "INSERT INTO my_friends

VALUES ('Julie', 'Meloni', 'julie@thickbook.com')");

?>

Save this file as sqlite2.php and place it in the document root of your Web
browser. Access the script at http://127.0.0.1/sqlite2.php to issue these SQLite
commands. Again, there will be no output if this script is successful. You will see a
message only if the script fails to perform one or more of the commands.

In the next section, you will retrieve items from your table.

Retrieving Items with SQLite
Now that you have records in your SQLite table, you can retrieve them. Again, the
process is quite similar to retrieving data from a MySQL table.

1. Open a new file in your text editor and start a PHP block:

<?

526 APPENDIX F: USING SQLITE

527EXAMPLES OF SQLITE IN ACTION

2. Use the sqlite_open() function to open the database previously created:

$dbh = new PDO('sqlite:foo.db');

3. Use query() function to issue a SELECT command, intended to retrieve records in
ascending order by last name:

foreach ($dbh->query

('

SELECT * FROM my_friends ORDER BY last_name ASC

',

PDO::FETCH_ASSOC) as $row)

{

echo $row[first_name];

echo " ";

echo $row[last_name];

echo "
";

}

4. Close the PHP code block:

?>

Your entire code should look like this:

<?php

$dbh = new PDO('sqlite:foo.db');

foreach ($dbh->query

('

SELECT * FROM my_friends ORDER BY last_name ASC

',

PDO::FETCH_ASSOC) as $row)

{

echo $row[first_name];

echo " ";

echo $row[last_name];

echo "
";

}

?>

Now that you’ve seen that the process for working with SQLite is procedurally
similar to working with other databases, you can glance through the next section to
pick up some other tidbits of information.

Performing Other Tasks with SQLite
In the previous sections, you’ve seen how to create SQLite databases and tables
and insert and select elements into these tables. It’s safe to make the leap that you
can issue DELETE and DROP commands similarly to remove records and tables, and
you can also use UPDATE to change fields within a record—all of these actions are
simply variations on the SQL query that is issued using the sqlite_query() function.

As to the tasks you can perform with SQLite, they’re the same tasks that you can
perform with MySQL; all of the MySQL-based code in this book can be rewritten to
use SQLite. However, there are two things the code relied on when using MySQL
that haven’t been covered in this appendix: auto-incrementing fields and date-
stamping.

528 APPENDIX F: USING SQLITE

Figure F.1 SQLite script in action. Save this file as sqlite3.php
and place it in the document
root of your Web browser.
Access the script at
http://127.0.0.1/sqlite3.php
to issue these SQLite
commands and display the
output (see Figure F.1).

529EXAMPLES OF SQLITE IN ACTION

To implement the use of auto-incrementing fields, you simply have to make some
changes to the sqlite2.php script:

1. Open sqlite2.php in your text editor.

2. Change the table-creation command to:

$dbh = new PDO('sqlite:foo.db');

$dbh->exec

("

CREATE TABLE my_friends2 (id INTEGER

PRIMARY KEY, first_name, last_name, email)

");

3. Change the record-insertion commands to:

$dbh->exec

("

INSERT INTO my_friends2

VALUES (0, 'John', 'Smith', 'john@smith.com');

");

$dbh->exec

("

INSERT INTO my_friends2

VALUES (1, 'Jane', 'Doe', 'jane@doe.com');

");

$dbh->exec

("

INSERT INTO my_friends2

VALUES (2, 'Julie', 'Meloni', 'julie@thickbook.com');

");

Save this file as sqlite4.php and place it in the document root of your Web
browser. Access the script at http://127.0.0.1/sqlite4.php to issue these SQLite
commands. Again, there will be no output if this script is successful. You will see a
message only if the script fails to perform one or more of the commands.

To see if this script did the trick, modify the sqlite3.php script to retrieve and print
the ID field:

1. Open sqlite3.php in your text editor.

2. Change the name of the table in the loop and query:

foreach ($dbh->query

('

SELECT * FROM my_friends2 ORDER BY last_name ASC

',

PDO::FETCH_ASSOC) as $row)

{

echo $row[id];

echo " ";

echo $row[first_name];

echo " ";

echo $row[last_name];

echo "
";

}

530 APPENDIX F: USING SQLITE

Figure F.2 Fetching rows in SQLite. Save this file as sqlite5.php
and place it in the document
root of your Web browser.
Access the script at
http://127.0.0.1/sqlite5.php to
issue these SQLite commands
and display the output, as
shown in Figure F.2.

531EXAMPLES OF SQLITE IN ACTION

Just like in MySQL, the ID fields automatically incremented upon record insertion.

Next, let’s take a look at how to handle date-stamping of records, because there’s
no now() function as there is in MySQL, nor are there particular methods for
formatting date-related fields. The solution is simply to store an integer, the output
of the PHP time() function. You can then format this stored value any way you want
using PHP when you retrieve it for display.

The next steps will work again with the same tables and records used in this
appendix, just building on the previous steps.

1. Open sqlite4.php in your text editor.

2. Change the table-creation command to:

sqlite_query($db, "CREATE TABLE my_friends3

(id INTEGER PRIMARY KEY, first_name, last_name, email,

date_added)");

3. Change the record-insertion commands to:

sqlite_query($db, "INSERT INTO my_friends3

(first_name, last_name, email, date_added) VALUES

('John', 'Smith', 'john@smith.com', '".time()."')");

sqlite_query($db, "INSERT INTO my_friends3

(first_name, last_name, email, date_added) VALUES

('Jane', 'Doe', 'jane@doe.com', '".time()."')");

sqlite_query($db, "INSERT INTO my_friends3

(first_name, last_name, email, date_added) VALUES

('Julie', 'Meloni', 'julie@thickbook.com', '".time()."')");

Save this file as sqlite6.php and place it in the document root of your Web
browser. Access the script at http://127.0.0.1/sqlite6.php to issue these SQLite
commands. Again, there will be no output if this script is successful. You will see a
message only if the script fails to perform one or more of the commands.

To see if this script did the trick, modify the sqlite5.php script to retrieve, format,
and print the values in the date_added field:

1. Open sqlite5.php in your text editor.

2. Change the name of the table in the query and order the records by ID:

$r = sqlite_query($db, "SELECT * FROM my_friends3 ORDER BY id ASC");

3. Add the following inside the while loop after the line that defines the value of
$email:

$date_added = date("l, M d Y, h:i:s A", $record[date_added]);

4. Change the echo statement inside the while loop to:

echo "record ID# $id: $last_name, $first_name ($email)

added on $date_added
";

The complete code should look something like this:

<?php

$dbh = new PDO('sqlite:foo.db');

foreach ($dbh->query

('

SELECT * FROM my_friends2 ORDER BY last_name ASC

',

PDO::FETCH_ASSOC) as $row)

{

$date_added = @date("l, M d Y, h:i:s A", $r[date_added]);

echo "ID# ";

echo $row[id];

echo ": ";

532 APPENDIX F: USING SQLITE

DATES AND SQLITE
In this example, the date() function formats the value of the data stored in
the date_added field. You can learn more about the numerous formatting
options for the date() function in Appendix B, “Basic PHP Language
Reference,” and in the PHP manual at http://www.php.net/date.

http://www.php.net/date

533EXAMPLES OF SQLITE IN ACTION

Figure F.3 The output of the date script. Save this file as sqlite7.php
and place it in the document
root of your Web browser.
Access the script at
http://127.0.0.1/sqlite7.php
to issue these SQLite
commands and display the
output. You should see
something like Figure F.3,
including the formatted
version of the date-stamp
stored in the SQLite table.

echo $row[first_name];

echo " ";

echo $row[last_name];

echo "($row[email])";

echo "added on: ";

echo $date_added;

echo "
";

}

?>

As you can see, virtually anything you can do with MySQL, you can do (with a little
elbow grease in some instances) with SQLite. Should you find yourself without a
database server, nothing should keep you from utilizing this new feature of PHP 6.

This page intentionally left blank

Getting Help

One of the greatest aspects of the open source community is
that people are eager to help you learn as much as you can, so
that you can become an advocate as well. However, you
probably should attempt to find answers to your questions
before posing them to the community at large. Doing so
includes reading available manuals and FAQs, searching
through mailing list archives, and visiting Web sites. Chances
are good that someone else has had the same question you
have.

The source code for this book can be found at
www.courseptr.com/downloads.

G
Getting Help
G

www.courseptr.com/downloads

PHP Resources
PHP-related Web sites, newsgroups, and mailing lists are abundant, and the ones
listed here are just a smattering of what’s available.

Web Sites
The majority of these sites are maintained by normal people on their own time, so if
you use any of their resources, try to give back to the community by helping others
with their questions when you can, contributing code snippets to code repositories,
and so forth.

www.php.net

The home of PHP is http://www.php.net. The annotated online manual is here, as
well as the PHP FAQs, bug reports, links to ISPs that offer access to PHP, news
articles, and much more.

snaps.php.net

The newest releases of PHP can be found at snaps.php.net. This site has the
developer snapshots of the current builds of the software. This is not production
code, but it can be useful if you want to see what is coming out next.

www.zend.com

Zend Technologies, the folks behind the Zend engine of PHP, have created a portal
site for PHP developers. This personalized site not only showcases how you can
build a high-traffic, dynamic site using PHP, but it also provides pointers, resources,
and lessons on how to maximize the potential of PHP in all your online applications.

DevShed (www.devshed.com)

This site contains many user-submitted tutorials, news articles, interviews, and
competitive analyses of server-side programming languages. It covers PHP as well
as many other topics of interest to developers, such as servers and databases.

536 APPENDIX G: GETTING HELP

www.php.net
http://www.php.net
www.zend.com
www.devshed.com

537PHP RESOURCES

PHPBuilder (www.phpbuilder.com)

This is a very good tutorial site for intermediate and advanced PHP developers. It
contains How To columns for real-world applications, such as “Building Dynamic
Pages with Search Engines in Mind,” “Generating Pronounceable Passwords,” and
tons more. Recommended!

WeberDev (www.weberdev.com)

A longtime favorite of PHP developers, this site contains development tricks and
tips for many programming languages (just to be fair), as well as a content-
management system for people to add their own code snippets, tutorials, and
more. It has a great weekly newsletter and high traffic. Go contribute!

px.sklar.com

This is a bare-bones code repository, but who needs graphics when all you’re
looking for is code snippets? Borrowing from the “take a penny, leave a penny”
mentality, you grab a code snippet to start with and then add your own when you
feel confident in sharing.

Webmonkey (hotwired.lycos.com/webmonkey/)

The company that brings us Wired magazine also brings us HotWired, which
spawned Webmonkey, a developer’s resource site with a section devoted to PHP.
Don’t limit yourself to the PHP section of Webmonkey, for there’s much information
to be had in other sections as well.

PHP KnowledgeBase (php.faqts.com)

The PHP KnowledgeBase contains questions and answers posed on PHP mailing
lists. Anyone can answer questions at the Web site or ask new ones.

www.phpbuilder.com
www.weberdev.com

Mailing Lists
Several high-traffic mailing lists are available for PHP discussion in English as well as
other languages. Please remember your netiquette when asking a question: Be
polite, offer as many examples as you can (if you’re describing a problem), provide
your system information (if looking for a solution), and did I mention to say please
and thank you?

You can find mailing list subscription information at http://www.php.net/mailing-
lists.php. The English PHP mailing lists are archived and available for searching at
http://marc.theaimsgroup.com/. Just look for the PHP-related lists under the www
heading.

User Groups
Sometimes, knowing other developers in real life can prove helpful. You can find a
list of PHP user groups at http://www.phpusergroups.org/.

MySQL Resources
Many of the PHP-related Web sites listed earlier also contain information on
development with MySQL, but the MySQL Web site at http://www.mysql.com/ is
the place to start for comprehensive MySQL information.

The online MySQL manual is immense, but it’s so well written and useful that its
size should not scare you. You can find the manual at http://www.mysql.com/doc/.
If you’re looking for a quick introduction to MySQL, I’ve (Julie Meloni) written a
book called Teach Yourself MySQL in 24 Hours, available in bookstores worldwide.
Other recommended books on MySQL include anything written by Paul DuBois
(and in fact, he is responsible for a majority of the MySQL manual itself!).

As with PHP, several high-traffic mailing lists are available for MySQL discussion, in
English as well as other languages. You can find mailing list subscription information
at http://www.mysql.com/documentation/lists.html, and the MySQL mailing lists
are archived and available for searching at http://marc.theaimsgroup.com/ as well.

538 APPENDIX G: GETTING HELP

http://www.php.net/mailinglists.php
http://www.php.net/mailinglists.php
http://marc.theaimsgroup.com/
http://www.phpusergroups.org/
http://www.mysql.com/
http://www.mysql.com/doc/
http://www.mysql.com/documentation/lists.html
http://marc.theaimsgroup.com/

539APACHE RESOURCES

Apache Resources
Start at the Apache Foundation Web site, http://www.apache.org/, for server
documentation and a list of FAQs. Many of the developer-oriented Web sites listed
above, such as DevShed, offer Apache-specific tutorials—you just have to hunt
them down.

The ApacheWeek Web site (http://www.apacheweek.com/) is full of Apache-related
tips, articles, reviews, and much more. Content is published weekly (hence the
name), and an archive of past issues is available.

http://www.apache.org/
http://www.apacheweek.com/

This page intentionally left blank

IndexIndex

SYMBOLS
!= (not equal to) operator, 79, 457
" (quotation marks)

errors in, 61
escaping, 128
PHP, applying in, 104

$_COOKIE variable, 70
$ (dollar sign), 66
$_ENV variable, 70
$_FILES variable, 70
$_GET variable, 70
$_POST[op] variable, 130
$_POST variable, 70
$_SERVER[PHP_SELF] global variable, 129
$_SESSION variable, 70
% operator, 76, 456
&& (and) operator, 82, 458
& (dollar sign), escaping, 77
() (parentheses), 83
* operator, 76, 456
+ operator, 76, 456
+= operator, 74, 456
- operator, 76, 456
-= operator, 74, 456
.= operator, 74, 456
/ operator, 76, 456

; (semicolon), 57–59
< (less than) operator, 79, 457
<= (less than or equal to) operator, 79, 457
== (equal to) operator, 79, 456
> (greater than) operator, 79, 457
>= (greater than or equal to) operator, 79,

457
[] (brackets) in PHP, 205
\ (backslash), 60–62
\n (newline), 122, 150
_ (underscore), 66
{} (curly braces) and blocks, 80
|| (or) operator, 82, 458

A
access.log file, 414
access records, creating, 415–431
Add a Contact form, 324
adding

blocks, 68
comments, 62–64
contacts, 313

populating tables, 324–325
record-addition scripts, 319–323

directives, 42
echo statements, 69

e-mail addresses, 404
error checking, 129–134
groups, 18
users, 18, 178–179, 249–256

addition form, creating, 250–255
Add Record form, 221
addresses

e-mail, 121, 404
IP (Internet Protocol), 94

address1 field, 303
address2 field, 303
address3 field, 303
Add User form, 251
administration passwords, 10, 11
administrative menu

creating, 232–233
login, 301–302
modifying, 362–378
planning, 296–302

Administrator application (MySQL), 12
agents, user

displaying, 425–428
logs, 415

alerts
e-mail, 126
previous file warning, 148
versions, 96

all-in-one form, 129
allinone_form.php file, 129
a mode, fopen() function, 144
a+ mode, fopen() function, 144
and (&&) operator, 82
Apache

Apache Group, 26
configuring

on Linux/UNIX, 34–36
log file settings, 414
for PHP, 41–43, 46–47
on Windows, 29–31

console windows, 29
installing

for Linux/UNIX, 32–37
for Windows, 26–29

locations, 33
logs, 414–415
resources, 539
starting

on Linux/UNIX, 36–37
on Windows, 31–32

appending files, 150–152
applications

Administrator (MySQL), 12
makefiles, 33, 46
setup.exe, 5

applying
constants, 71–73
contacts, 361

administrative menus, modifying, 362–378
my_contacts table, selecting data from,

379–390
cookie variables, 269–275
functions in code, 490–493
HTTP_USER_AGENT environment variables,

95
objects, 496–503
privileges, 178–179
records

record-selection form, 346–350
values, 335

SMTP servers, 118–120
SQLite, 524–533
string functions, 107–112
variables, servers, 298
XML (Extensible Markup Language) with

PHP, 437–438
arguments, setcookie() function, 265
arithmetic operators, 76–79, 456
arithmetic scripts, 78

542 INDEX

birthdays, displaying months, 372–378
BLOB data type, 200
blocks

adding, 68
curly braces () and, 80
inserting, 55–57

BOOL data type, 199
Bozo script, 147
brackets ([]) in PHP, 205
breakdowns, displaying page, 428–431
breaking connection scripts, 182–183
Browser Match script, 102
browser security, 390
browser-specific HTML, 100–103
built-in functions, 461–486
buttons, Execute, 11

C
calculation forms, creating, 86–88
calculation scripts, creating, 89–91
Cascading Style Sheets (CSSs), 434
case sensitivity, 101
ceil() function, 474
Change Your Preferences link, 292
characters

extraneous, stripping, 225
strings, looping, 212

CHAR data type, 200
checkdate() function, 468
checking for authentication cookies, 272–275
checksums, MD5, 112
chgrp() function, 469
chmod() function, 469
chop() function, 481
chown() function, 469
classes, constants, 500–501
client-side code, 52

array() function, 462
array_keys() function, 463
array_merge() function, 463
array_pop() function, 462
array_push() function, 462
arrays, 205, 455, 461–465
array_shift() function, 462
array_unshift() function, 462
array_values() function, 463
artist_fn field, 201
artist_ln field, 201
artists, ordering records by, 240–243
assigning values to variables, 67
assignment operators, 74–76
attachments, sending, 155–157
authentication, 248

login forms, creating, 257–258
scripts, 258–261
troubleshooting, 261–262
users

adding, 249–256
creating tables, 248–249

authorization
expiration dates, 275
users, 273

Authorization Table, creating, 249
auto_increment, 306
auto-incrementing fields, 229, 314, 321

B
back-end scripts, testing, 134–136
backslash (\), 60–62
BIGINT data type, 199
binaries, pre-production, 40
BINARY data type, 200
bindec() function, 474
birthday field, 303

543INDEX

code
assignment scripts, 75
cohabitation, 55–57
comments, adding, 62–64
counting, displaying, 420–422
escaping, 60–62
functions, applying in, 490–493
parsing, 52
snippets, creating, 416–419

cohabitation, code, 55–57
combining HTML and PHP code, 52
Command Prompt (MySQL), 13
commands

instruction terminators, 57–59
SHOW, 521

comments, adding to code, 62–64
comparison operators, 79–82
comparison scripts, 82
compatibility, UNIX, 178
concatenation, strings, 72
concat() function, 241
conditional expressions, 80
Configuration Wizard, 9
configuring

Apache
on Linux/UNIX, 34–36
log file settings, 414
for PHP, 41–43, 46–47
on Windows, 29–31

auto-increment fields, 321
cookies, 264–268
field length, 251
Linux extensions, 448–450
makefiles, 46
MySQL options, 10
scripts, subscription, 394–405
Windows extensions, 446–448

confirmation of installation, 8
connecting. See also starting

Apache
on Linux/UNIX, 36–37
on Windows, 31–32

database functions, 465–466
MySQL, 179–183

applying privileges, 178–179
creating databases, 191–194
deleting databases, 194–195
listing databases on servers, 183–187
listing tables in databases, 187–191

scripts, breaking, 182–183
SMTP servers, sending e-mail, 118–120
troubleshooting, 180, 182

console windows (Apache), 29
constants

applying, 71–73
classes, 500–501

constants2 script, 73
constructors, 499–500
Contact form, 387
Contact login screen, 301
Contact Modification form, 343
contacts

adding, 313
populating tables, 324–325
record-addition scripts, 319–323

applying, 361
administrative menus, 362–378
my_contacts table, 379–390

deleting, 345, 358–359
record-deletion form, 351–355
record-deletion scripts, 355–358
record-selection form, 346–350

displaying, 362–370
menus, 378

544 INDEX

D
Database connect script, 181
databases, 4. See also MySQL

authentication. See authentication
creating, 191–194, 514
deleting, 194–195
dropping, 514
fields, naming, 218
functions, connecting, 465–466
listing

on servers, 183–187
tables in, 187–191

normalization, 14, 23, 506–513
refreshing, 194
tables, creating, 415–416
testing, 13
updating, 193

data types
MySQL, 198
in MySQL, 317

date_acq field, 201
DATE data type, 199
date() function, 371, 466
dates

defaults, 359
displaying, 370–372
expiration, cookies and, 269
formatting, 219, 371
functions, 466–468
MySQL, 373, 518–519
records, ordering by, 237–238
SQLite, 532

DATETIME data type, 199
DAYOFWEEK() function, 519
decbin() function, 474
dechex() function, 474
decoct() function, 475

modifying, 327, 342–344
record-modification forms, 333–338
record-modification scripts, 338–342
record-selection forms, 328–332
updating records, 344

Contact Selection form, 342, 359
control structures, 458–461
conventions, naming, 26
cookies

configuring, 264–268
domains, 267
and expiration dates, 269
overview of, 264
testing, 266–268
variables, 269–275, 454

copyfile.php file, 159
copy() function, 157, 469
copying files, 157–159
counters, 188
count() function, 211, 463
counting

code, displaying, 420–422
sessions, 283
time, 266

country field, 303
creating. See configuring; formatting
CSSs (Cascading Style Sheets), 434
curly braces () and blocks, 80
customizing

error messages, 126–137
installations, 6

Custom option, 6

545INDEX

defaults
dates, 359
registering, 284–288

defining
fields, 198–201, 203–208
my_contacts table, 303–311

Delete Contact screen, 358
deletefile.php file, 163
deleting

contacts, 345, 358–359
record-deletion form, 351–355
record-deletion scripts, 355–358
record-selection form, 346–350

databases, 194–195
files, 162–164
from tables, 517

destination folders, 28
destructors, 500
developing mailing mechanisms, 406–412
die() function, 147, 477
directives

adding, 42
sendmail_path, 120

directories
displaying, 140–143
MySQL, 12
naming, 146
paths, 141
scripts, creating upload, 171
temporary, 5

displaying
birthdays in current month, 372–378
browser-specific HTML, 100–103
contacts, 362–370
content from XML files, 439–442
counting code, 420–422

dates, 370–372
directories, 140–143
form values, 109–110
platform-specific HTML, 103–106
read-only records, 383–390
records

lists, 379–383
read-only, 383–390

specific page breakdowns, 428–431
user agents, 425–428

display_input.php script, 109
distributions

Apache, 26
MySQL, 4
unpacking, 18

documents
text. See text
XML. See XML

dollar sign ($), 66, 77
Domain argument, 265
domains

cookies, 267
naming, 54
networks, 28

DOUBLE data type, 199
dropping

databases, 514
tables, 514

dynamic content
browser-specific HTML, 100–103
forms, submitting, 111–112
locations, redirecting to, 113–116
platform-specific HTML, 103–106
string functions, applying, 107–112

dynamic functions, 486

546 INDEX

messages
customizing, 126–137
suppressing, 183

parsing, 61
values, saving, 136–137

errorscript.php file, 58
errorscript2.php file, 61
escaping

code, 60–62
dollar signs ($), 77
quotation marks ("), 128

exec() function, 478
Execute button, 11
exit() function, 477
Expiration argument, 265
expiration dates

authorizations, 275
cookies and, 269

explode() function, 482
expressions, conditional, 80
Extensible Markup Language. See XML
Extensible Style Language. See XSL
extensions

files, 43, 52
Linux, 448–450
MIME (Multipurpose Internet Mail

Extensions), 170
Windows, 446–448

extraneous characters, stripping, 225

F
fclose() function, 143–157, 471
feedback forms

e-mail, customizing, 126–137
sending e-mail, creating, 120–127

fetching rows, 530

E
each() function, 464
echo() function, 482
echo statements, adding, 69
editors, text, 53
else statements, 158
e-mail

addresses, adding, 404
alerts, 126
errors, 125
feedback forms, 126–137
files, sending, 155–157
headers, 123
mail functions, 473–474
managing, 403
MIME (Multipurpose Internet Mail

Extensions), 170
SMTP servers, applying, 118–120

e-mail field, 303
end tags, PHP, 53–55, 452
entering

text, 111
XML (Extensible Markup Language), 437

ENUM data type, 200
environment variables, 92–96, 454–455

HTTP_USER_AGENT, 95–96, 100
REMOTE_ADDR, 93–95

eregi_replace() function, 479
ereg_replace() function, 479
errors. See also troubleshooting

checking, adding, 129–134
e-mail, 125
files

copying, 158
deleting, 162
renaming, 161

instruction terminators, 57–59

547INDEX

fields
auto-incrementing, 229, 314, 321
databases, naming, 218
defining, 198–201, 203–208
input, 169
length, configuring, 251
Message, 126
number of, determining, 202–203
required, 222, 319, 338
SQL statement, renaming, 374
subscriber table, 394
text, 121, 209
unique, 201
Your E-Mail Address, 126

files. See also file systems
access.log, 414
allinone_form.php, 129
Apache

configuring, 30, 35, 42
logs, 414–415

appending, 150–152
checking previous existence of, 148–150
copyfile.php, 159
copying, 157–159
creating, 144–150
deletefile.php, 163
deleting, 162–164
e-mail, sending, 155–157
errorscript.php, 58
errorscript2.php, 61
extensions, 43, 52
INSTALL, 19
makefiles, 33, 46
naming, 145, 173
php.ini, 119

sessions, 278
uploading files, 166–167

pointers, 143, 145
readdata.php, 154
reading, 152–155
README, 19
renaming, 160–162
send_simpleform.php, 125
sizing, 153
troubleshooting, 149
XML. See XML

file systems
directories, 140–143
fclose() function, 143–157
fopen() function, 143–157
functions, 468–472
maintenance, 157–164
paths, 140
permissions, 140

firstscript.php script, 56
FLOAT data type, 199
floating-point numbers, 67, 453
floor() function, 475
f_name field, 303
folders, destination, 28
fopen() function, 143–157, 469–470
foreach loops, 461
for loops, 460
format field, 201
formatting

administrative menu, 232–233, 296–302
calculation

forms, 86–88
scripts, 89–91

code snippets, 416–419
databases, 13, 191–194, 514
dates, 219, 371
files, 144–150

548 INDEX

Unicode strings, 68
variables, 66
XML (Extensible Markup Language), 439–442
years, 219

forms
Add a Contact, 324
addition, formatting, 250–255
Add Record, 221
Add User, 251
all-in-one, 129
calculation, creating, 86–88
Contact, 387
Contact Modification, 343
Contact Selection, 342
feedback

customizing error messages, 126–137
sending e-mail, 120–127

formatting
login, 257–258
newsletter, 406–407
record-deletion, 351–355
record-modification, 333–338
record-selection, 328–332
subscription, 396–403

front-end, testing, 134–136
HTML (Hypertext Markup Language)

uploading, 167–168
variables from, 454

input, creating, 107–109
Modify Contact, 342
normalization, 506–513
PHP, 108
record-selection, applying, 346–350
redirection, creating, 113–114
scripts, creating, 126–129
submitting, 91–92, 111–112

forms
addition, 250–255
feedback, 120–127
input, 107–109
login, 257–258
newsletter, 406–407
record addition forms, 218–221
record-deletion, 351–355
record-modification, 333–338
record-selection, 328–332
scripts, 126–129
subscription, 396–403
uploading files, 168–169

makefiles, 46
months, 219
objects, 497–501
records, access, 415–431
redirection

forms, 113–114
scripts, 115–116

reports, personal access, 422–424
scripts

authentication, 258–261
record-deletion, 355–358
record-modification, 338–342
uploading files, 170–172

strings, 203
tables, 22, 514

my_contacts, 309–311
MySQL access records, 415–416
planning, 198–201
in SQLite, 525–526
starting, 208–210
subscribers, 394–396
Table_Creation script, 210–214
testing, 13–16
users, 248–249

549INDEX

tables
creating record addition forms, 218–221
sequences, 202–210

testing, subscription, 403–405
uploading, 168–169, 172–174
values, displaying, 109–110
variables, retrieving from, 86–92

fputs() function, 470–471
fread() function, 470
front-end forms, testing, 134–136
functionality (MySQL), 181
functions

array(), 462
array_keys(), 463
array_merge(), 463
array_pop(), 462
array_push(), 462
arrays, 461–465
array_shift(), 462
array_unshift(), 462
array_values(), 463
bindec(), 474
built-in, 461–486
ceil(), 474
checkdate(), 468
chgrp(), 469
chmod(), 469
chop(), 481
chown(), 469
concat(), 241
copy(), 157, 469
count(), 211, 463
databases connectivity, 465–466
date(), 371, 466
dates, 466–468

MySQL, 518–519
DAYOFWEEK(), 519
decbin(), 474

dechex(), 474
decoct(), 475
die(), 147, 477
dynamic, 486
each(), 464
echo(), 482
eregi_replace(), 479
ereg_replace(), 479
exec(), 478
exit(), 477
explode(), 482
fclose(), 143–157, 471
file systems, 468–472
floor(), 475
fopen(), 143–157, 469–470
fputs(), 470–471
fread(), 470
header(), 90, 472–473
hexdec(), 474
htmlentities(), 483
htmlspecialchairs(), 483
HTTP (Hypertext Transfer Protocol), 472–473
implode(), 482
include(), 492–493
list(), 464
ltrim(), 481
mail, 473–474
mail(), 119, 411
mathematical, 474–476
md5(), 112
microtime(), 468
miscellaneous, 476–478
mkdir(), 471
mktime(), 468
mysql_connect(), 180, 465
mysql_error(), 466
mysql_fetch_array(), 233, 466
mysql_list_dbs(), 184

550 INDEX

strlen(), 483
strtolower(), 484
strtoupper(), 484
substr(), 484–485
symlink(), 472
system(), 479
time, 466–468, 518–519
time(), 468
trim(), 235, 481
ucfirst(), 485
ucwords(), 485
uniqid(), 477–478
unlink(), 162, 472
usleep(), 477
variables, 485
WEEKDAY(), 519
writing

applying in code, 490–493
returning values, 488–491
structure of, 488

G
global variables, 69–70, 490

$_SERVER[PHP_SELF], 129
groups

adding, 18
Apache Group, 26
PHP Group, 41
users, troubleshooting, 538
values, 520–521

H
handlers, type, 42
handles, 141
hashes

MD5, 112
strings, 249

mysql_list_tables(), 188
mysql_num_rows(), 466
mysql_query(), 465
mysql_result(), 367
mysql_select_db(), 211, 465
n12br(), 483
number_format(), 475
octdec(), 475
passthru(), 479
PASSWORD(), 253
phpinfo(), 70
pow(), 475
preg_match(), 100
program execution, 478–479
rand(), 476
regular expressions, 479–480
rename(), 160, 471
require(), 492–493
reset(), 464
reusing, 492
rmdir(), 471
round(), 476
session_destroy(), 481
session_register(), 282
sessions, 480–481
session_start(), 280, 480
setcookie(), 264, 473
shuffle(), 464
sizeof(), 465
sleep(), 477
split(), 480
sprintf(), 483
sqrt(), 476
srand(), 476
strings, 481–485

applying, 107–112
MySQL, 518

551INDEX

header() function, 90, 472–473
headers, e-mail, 123
headings, text, 419
Hello World!, 56, 57
help

Apache, 539
mailing lists, 538
MySQL, 538
PHP, 536–538
user groups, 538

hexdec() function, 474
HotWired, 102
htmlentities() function, 483
HTML (Hypertext Markup Language)

browser-specific, 100–103
fields, configuring length, 251
forms

creating, 86–88
uploading, 167–168
variables from, 454

input fields and, 169
PHP

adding comments, 62–64
escaping code, 60–62
inserting blocks, 55–57
instruction terminators, 57–59
parsing, 52
start and end tags, 53–55

platform-specific, displaying, 103–106
htmlspecialchairs() function, 483
HTTP (Hypertext Transfer Protocol)

environment variables, 92–96
functions, 472–473

HTTP_USER_AGENT environment variable,
95–96, 100

Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
ID, ordering records by, 234–237
id field, 201, 303
if...else statement, 131
if...else statements, 459
implode() function, 482
include() function, 492–493
inheritance, objects, 501–502
input

fields and HTML, 169
forms, creating, 107–109
length, configuring fields, 251

inserting. See also adding
blocks, 55–57
data into tables, 15
tables, 515–516

Installation Wizard
Apache, 27
Windows, 5

INSTALL file, 19
installing

Apache
for Linux/UNIX, 32–37
for Windows, 26–29

MySQL
for Linux, 17–24
testing, 12–17
troubleshooting, 19
on Windows, 5–12

PHP
for Linux/UNIX, 45–48
testing, 43–44, 47–48
for Windows, 40–41

SMTP servers, 118
instruction terminators, 57–59
INT data type, 199
integers, 67, 453

64-bit, 67

552 INDEX

logical operators, 82–84
logical scripts, 84
login. See also starting

administrative menu, 301–302
Contact login screen, 301
forms, creating, 257–258
troubleshooting, 302

logs
Apache, 414–415
user agents, 415

loops
for, 460
characters in strings, 212
foreach, 461

ltrim() function, 481

M
mail. See e-mail
mail() function, 119, 411
mail functions, 473–474
mailing lists

help, 538
managing, 393

configuring subscription scripts, 394–405
developing mailing mechanisms, 406–412
software overview, 394
testing, 410–412

unsubscribing
troubleshooting, 405

mailing mechanisms, developing, 406–412
mail sending script, 125
maintenance, file systems, 157–164. See also

troubleshooting
makefiles, 33, 46

Internet Explorer
Browser Match script, 102
Platform Match Style, 106
security, 390

Internet Protocol. See IP
Internet Service Provider. See ISP
IP (Internet Protocol) addresses, 94
ISP (Internet Service Provider), 4

L
length of fields, 209, 251
Linux

Apache
configuring, 34–36
installing, 32–37
starting, 36–37

extensions, 448–450
MySQL, installing, 17–24
PHP, installing, 45–48

list boxes (PHP), 114
listfiles script, 142
list() function, 464
listing databases

on servers, 183–187
tables in, 187–191

lists, displaying records, 379–383
List script, 237
l_name field, 303
localhost, 37
local variables, 69–70
locations

Apache, 33
of MySQL, 12
PHP

installations, 45
modifying, 41

redirecting to, 113–116

553INDEX

managing
data in statements, 17
e-mail, 403
mailing lists, 393

configuring subscription scripts, 394–405
developing mailing mechanisms, 406–412
software overview, 394
testing, 410–412

records, ordering, 234–244
user preferences, 284–292

matching passwords and usernames, 258–261
mathematical functions, 474–476
md5() function, 112
MEDIUMINT data type, 199
menus

administrative
creating, 232–233
login, 301–302
modifying, 362–378
planning, 296–302

contacts, 378
Message field, 126
messages

errors
customizing, 126–137
suppressing, 183

strings, 123
success, 274
viewing, 436

methods
objects, 498–499
POST, 86

microtime() function, 468
MIME (Multipurpose Internet Mail

Extensions), 170

miscellaneous functions, 476–478
mkdir() function, 471
mktime() function, 468
modes, fopen() function, 144, 470
Modify Contact form, 342
modifying

administrative menus, 362–378
Change Your Preferences link, 292
contacts, 327, 342–344

record-modification forms, 333–338
record-modification scripts, 338–342
record-selection forms, 328–332
updating records, 344

preferences, 288
session variables, 282–283
Table_Creation scripts, 304–308
tables, 515

modules, configuring Apache version of PHP,
42–43

months
birthdays, displaying, 372–378
formatting, 219

multiple criteria, ordering records by,
243–244

multiple values, returning, 489
Multipurpose Internet Mail Extensions. See

MIME
my_contacts table

normalization, 510–513
selecting data from, 379–390

my_contacts table, defining, 303–311
my_music table, 233–244
my_notes field, 201

554 INDEX

N
Name argument, 265
namespaces, objects, 502–503
naming

conventions, 26
directories, 146
domains, 54
fields in databases, 218
files, 145, 160–162, 173
network domains, 28
primary keys, 306
radio buttons, 108
ServerName, 30, 31, 35, 36
servers, 44
users in SQLite, 524
variables, 66–67, 68

n12br() function, 483
Netscape

Browser Match script, 102
Platform Match Style, 106

networks domains, naming, 28
newline (\n), 122, 150
newsletter forms

creating, 406–407
scripts, creating to mail, 407–410

normalization
databases, 14, 23, 506–513
my_contacts table, 510–513

number_format() function, 475
numbers. See also dates

floating-point, 67, 453
formatting, 371

MySQL
access records, creating, 415–431
Administrator application, 12
Command Prompt, 13
configuration options, 10
connecting, 179–183

applying privileges, 178–179
creating databases, 191–194
deleting databases, 194–195
listing databases on servers, 183–187
listing tables in databases, 187–191

data types, 198, 317
date and time functions, 518–519
dates, 373
distributions, 4
functionality, 181
installing

for Linux, 17–24
troubleshooting, 19
on Windows, 5–12

length of fields, 209
reference overview, 513–521
resources, 538
starting, 12, 20
string functions, 518
testing

Linux installations, 20–24
Windows installations, 12–17

mysql_connect() function, 180, 465
mysql_error() function, 466
mysql_fetch_array() function, 233, 466
mysql_list_dbs() function, 184
mysql_list_tables() function, 188
mysql_num_rows() function, 466
mysql_query() function, 465
mysql_result() function, 367
mysql_select_db() function, 211, 465

555INDEX

O
objects

class constants, 500–501
constructors, 499–500
creating, 497–501
destructors, 500
inheritance, 501–502
methods, 498–499
namespaces, 502–503
properties of, 497–498
writing, 438, 496–503

octdec() function, 475
one-field forms, creating, 168–169
operating systems, 4
operators, 456–458

arithmetic, 76–79, 456
assignment, 74–76, 456
comparison, 79–82, 456–457
logical, 82–84, 457–458
overview of, 73–84

options
Custom, 6
date() function, 371
MySQL, configuring, 10

ordering
counting code, 420
records, 234–244
values, 520–521
XML (Extensible Markup Language), 438

ordering data, 17
or (||) operator, 82

P
page breakdowns, displaying, 428–431
page counting script, 283
parentheses (), 83

parsing
errors, 61
PHP, 52
XML with PHP, 438–442

passthru() function, 479
PASSWORD() function, 253
passwords

administrative menu, 296
matching, 258–261
MySQL, 10, 11
in SQLite, 524

Path argument, 265
paths

Apache and PHP, 46
directories, 141
file systems, 140

permissions
file systems, 140
users, 168, 187

personal access reports, creating, 422–424
PHP

Apache, configuring, 41–43, 46–47
brackets ([]) in, 205
forms, 108
HTML (Hypertext Markup Language)

adding comments, 62–64
escaping code, 60–62
inserting blocks, 55–57
instruction terminators, 57–59
parsing, 52
start and end tags, 53–55

installing
for Linux/UNIX, 45–48
testing, 43–44, 47–48
for Windows, 40–41

list boxes, 114
quotation marks ("), applying in, 104
radio buttons, naming, 108

556 INDEX

predefined constants, 72
predefined variables, 70
preferences

Change Your Preferences link, 292
modifying, 288
users, managing, 284–292

preg_match() function, 100
pre-production binaries, 40
previous file warning, 148
previous subscriptions, notice of, 404
primary keys, naming, 306
prim_tel field, 303
privileges, applying, 178–179
program execution functions, 478–479
properties of objects, 497–498

Q
quotation marks (")

errors, 61
escaping, 128
PHP, applying in, 104

R
radio buttons

naming, 108
string functions, applying, 107

rand() function, 476
readdata.php file, 154
reading files, 152–155
README file, 19
read-only records, displaying, 383–390
rec_label field, 201
record-addition

forms, creating, 218–221, 314–319
scripts, creating, 319–323

resources, 536–538
scripts, 54
trim() function, 235
unset variables in, 298
values, 67–73
variables, 67–73, 452–455

constants, 71–73
global and local, 69–70
predefined, 70
retrieving from forms, 86–92
substituting, 185

XML (Extensible Markup Language)
applying with, 437–438
parsing, 438–442

PHP Group, 41
phpinfo() function, 70
phpinfo script, 43, 44, 48
php.ini file, 119

sessions, 278
uploading files, checking, 166–167

phptags script, 55
placeholders, 452, 513
planning

administrative menu, 296–302
administrative menus, 232–233
my_contacts table, defining, 303–311
system, 295
tables, 198–201
variables, 68

Platform Match Style, 106
platforms, 4
platform-specific HTML, displaying, 103–106
pointers, 143, 145
populating tables, 228–229, 324–325
postcode field, 303
POST method, 86
pow() function, 475

557INDEX

record-deletion
forms, creating, 351–355
scripts, creating, 355–358

record-modification
forms, creating, 333–338
scripts, creating, 338–342

records
access, creating, 415–431
Add Record form, 221
contacts. See contacts
deleting, 359
lists, displaying, 379–383
ordering, 234–244
selecting

creating administrative menus, 232–233
from my_music table, 233–244

updating, 344
values, applying, 335

record-selection forms
applying, 346–350
creating, 328–332

redirection
forms, creating, 113–114
scripts, creating, 115–116

refreshing databases, 194
registering

defaults, 284–288
session variables, 282–283

regular expression functions, 479–480
REMOTE_ADDR environment variable, 93–95
removal of subscriptions, notice of, 405
rename() function, 160, 471
renaming

fields, SQL statement, 374
files, 160–162

replacing within tables, 515–516
reports, formatting, 422–424
required fields, 222, 319, 338

require() function, 492–493
reset() function, 464
resources

Apache, 539
MySQL, 538
PHP, 536–538

results. See also testing
feedback forms, 125–127
redirection scripts, 115–116

results, submitting forms, 111–112
retrieving

HTTP_USER_AGENT environment variables,
95

items with SQLite, 526–528
returning values, 488–491
return statements, 489
reusing functions, 492
rmdir() function, 471
r mode, fopen() function, 144
r+ mode, fopen() function, 144
round() function, 476
rows, fetching, 530

S
saving

data in session variables, 285
values, errors, 136–137

schemas, 15, 22, 311
scripts

arithmetic, 78
assignment, 75, 76
authentication, 258–261
back-end, testing, 134–136
Bozo, 147
Browser Match, 102
calculation, creating, 89–91
comments, 64
comparison, 82

558 INDEX

sec_tel field, 303
security

authentication. See authentication
browsers, 390
files, uploading, 173

Security argument, 265
select by title script, 244
selecting

data
from my_contacts table, 379–390
from test tables, 16–17, 23–24

fields in SQL statements, 234
records

creating administrative menus, 232–233
from my_music table, 233–244

from tables, 517–519
values, 520–521

semicolon (;), 57–59
sending e-mail

feedback forms
creating, 120–127
customizing error messages, 126–137

file contents, 155–157
newsletter forms, 410
SMTP servers, applying, 118–120

sendmail_path directive, 120
send_newsletter page, 407
send_simpleform.php file, 125
Send This Form button, 124
sequences, creating tables, 202–210
ServerName, 30, 31, 35, 36
servers

databases, listing, 183–187
MySQL, 5. See also MySQL
naming, 44
SMTP (Simple Mail Transfer Protocol),

118–120
variables, applying, 298
Web (PHP), 40

connections, breaking, 182–183
constants, 71
constants2, 73
cookies, 265
Database connect, 181
display_input.php, 109
e-mail, creating feedback forms, 122
error checking, adding, 129–134
files, uploading, 170–172, 172–174
firstscript.php, 56
formatting

addition, 250–255
record-deletion, 355–358
record-modification, 338–342

forms
creating, 126–129
displaying values, 109–110

List, 237
listfiles, 142
logical, 84
mail, 124
mail sending, 125
newsletter forms, creating to mail, 407–410
page counting, 283
PHP, 54
phpinfo, 43, 44, 48
phptags, 55
redirection, creating, 115–116
select by title, 244
setcookie, 268
SQLite, 528
subscription, configuring, 394–405
Table_Creation, 210–214, 304–308
tables, creating record addition scripts,

222–228
ucwords, 112
useragent, 96
variables, 68. See also variables

559INDEX

server-side code, 52
session_destroy() function, 481
session_register() function, 282
sessions

counting, 283
functions, 480–481
overview of, 278
php.ini file, 278
starting, 280–281, 284–288
user preferences, 284–292
variables, 279–283

modifying, 282–283
registering, 282–283
saving data in, 285

session_start() function, 280, 480
setcookie() function, 264, 473
setup.exe application, 5
SHOW commands, 521
shuffle() function, 464
Simple Mail Transfer Protocol. See SMTP
sizeof() function, 465
sizing files, 153
sleep() function, 477
SMTP (Simple Mail Transfer Protocol), 118

sending e-mail, 118–120
specifications (XML), 435
split() function, 480
sprintf() function, 483
SQLite, applying, 524–533
SQL statement fields

renaming, 374
selecting, 234

sqrt() function, 476
srand() function, 476

starting
Apache

on Linux/UNIX, 36–37
on Windows, 31–32

MySQL, 12, 20
sessions, 280–281, 284–288
table creation process, 208–210

start tags, PHP, 53–55, 452
statements

echo, adding, 69
else, 158
if...else, 131, 459
return, 489
SQL

renaming fields, 374
selecting fields, 234

while, 460
storing data in SQLite, 525–526
strings, 67, 453–454

characters, looping, 212
concatenation, 72
creating, 203
functions, 481–485

applying, 107–112
MySQL, 518

hashes, 249
messages, 123
Unicode, 68

stripping extraneous characters, 225
strlen() function, 483
strtolower() function, 484
strtoupper() function, 484
submitting

feedback forms, 125–127
forms, 91–92, 111–112

subscribers table, creating, 394–396

560 INDEX

my_music, 233–244
normal forms, taking to, 507–510
planning, 198–201
populating, 228–229, 324–325
replacing within, 515–516
scripts, 222–228
selecting from, 517–519
Table_Creation script, 210–214, 304–308
testing, 13–16
updating, 215, 515–516
users

adding, 249–256
creating, 248–249

viewing, 15, 22, 256
tags, start and end (PHP), 53–55, 452
temporary directory, 5
terminators, instruction, 57–59
testing

Apache, Windows installations, 32
back-end scripts, 134–136
constants, 72
cookies, 266–268
databases, 13
forms, subscription, 403–405
front-end forms, 134–136
mailing lists, 410–412
MySQL

Linux installations, 20–24
Windows installations, 12–17

PHP installations, 43–44, 47–48
redirection scripts, 115–116
tables, 13–16, 23–24

text
entering, 111
fields, 121, 209
headings, 419
string functions, applying, 107

subscription forms
creating, 396–403
testing, 403–405

subscription scripts, 394–405
substituting variables in PHP, 185
substr() function, 484–485
success messages, 274
summaries of installation, 7
superglobals, 70
suppressing error messages, 183
symlink() function, 472
system, planning, 295. See also planning
system() function, 479

T
tables. See also databases

creating, 22, 514
in SQLite, 525–526

data
inserting, 15
selecting from, 16–17

databases, creating, 415–416
deleting from, 517
dropping, 514
formatting

my_contacts, 309–311
starting, 208–210
subscribers, 394–396

forms
creating record addition forms, 218–221
sequences, 202–210

inserting, 515–516
listing, 187–191
modifying, 515
my_contacts

defining, 303–311
normalization, 510–513
selecting data from, 379–390

561INDEX

TEXTAREA, 137
TEXT data type, 200
text editors, 53
time

common, 267
counting, 266
functions, 466–468, 518–519

time() function, 468
TIMESTAMP data type, 200
TINYINT data type, 199
title field, 201
titles, ordering records by, 238–239
tools, WinMySQLadmin, 11
trim() function, 235, 481
troubleshooting

Apache, 539
authentication, 261–262
connecting, 180, 182
files, 149
instruction terminators, 57–59
login, 302
mailing lists, 411–412, 538

unsubscribing, 405
MySQL, 19, 538
PHP, 536–538
record addition scripts, 228
user groups, 538

type handlers, 42
types

data
MySQL, 198
in MySQL, 317

of operators, 73–84

U
ucfirst() function, 485
ucwords() function, 485
ucwords script, 112
underscore (_), 66
Unicode strings, 68
uniqid() function, 477–478
unique fields, 201
UNIX

Apache
configuring, 34–36
installing, 32–37
starting, 36–37

compatibility, 178
PHP, installing, 45–48

unlink() function, 162, 472
unpacking distributions, 18
unset variables in PHP, 298
unsubscribing from mailing lists, 405
updating

databases, 193
records, 344
tables, 215, 515–516

uploading files, 166
forms, 172–174

creating, 168–169
overview of, 167–168
php.ini files, checking, 166–167
scripts, creating, 170–172

useragent script, 96
usernames, 11

administrative menu, 296
matching, 258–261

562 INDEX

environment, 92–96, 454–455
HTTP_USER_AGENT, 95–96, 100
REMOTE_ADDR, 93–95

formatting, 66
functions, 485
global, 490

$_SERVER[PHP_SELF], 129
HTML (Hypertext Markup Language), 454
naming, 66–67
overview of, 66–67
PHP, 67–73, 452–455

constants, 71–73
global and local, 69–70
predefined, 70
retrieving from forms, 86–92
substituting, 185

planning, 68
$_POST[op], 130
servers, applying, 298
sessions, 279–283

modifying, 282–283
registering, 282–283
saving data in, 285

unset in PHP, 298
versions

alerts, 96
Apache, configuring PHP, 42–43
Linux, 17
MySQL, 4

viewing. See also displaying
Change Your Preferences link, 292
messages, 436
records, 237–238. See also records
tables, 15, 16, 22, 256
XML files, 437

users
adding, 18, 178–179
agents

displaying, 425–428
logs, 415

authentication. See authentication
authorization, 273
groups, troubleshooting, 538
names in SQLite, 524
permissions, 168, 187
preferences

Change Your Preferences link, 292
managing, 284–292
modifying, 288

tables
adding, 249–256
creating, 248–249

usleep() function, 477

V
values

errors, saving, 136–137
forms, displaying, 109–110
grouping, 520–521
ordering, 520–521
PHP, 67–73
records, applying, 335
returning, 488–491
selecting, 520–521

VARBINARY data type, 200
VARCHAR data type, 200
variables

arrays, 205
cookies, 454
cookies, applying, 269–275

563INDEX

W
warnings, previous file, 148
Web servers (PHP), 40
Web sites

PHP resources, 536–537
uploading. See uploading files

WEEKDAY() function, 519
while statements, 460
white space, 90
Windows

Apache
configuring, 29–31
installing, 26–29
starting, 31–32

extensions, 446–448
MySQL, installing, 5–12
PHP, installing, 40–41

windows console (Apache), 29
WinMySQLadmin tool, 11
wizards

Configuration Wizard, 9
Installation Wizard, 5, 27

w mode, fopen() function, 144
w+ mode, fopen() function, 144

writing
functions

applying in code, 490–493
returning values, 488–491
structure of, 488

to new files, 150–152
objects, 438, 496–503

X
XML (Extensible Markup Language)

displaying, 439–442
document structure, 434–437
overview of, 434
PHP

applying with, 437–438
parsing, 438–442

specification, 435
XSL (Extensible Style Language), 434

Y
years, formatting, 219
Your E-Mail Address field, 126

564 INDEX

