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Prologue

POTENTIAL

I grew up reading and being deeply influenced by the popular science
books of George Gamow on physics and mathematics. This book is
my attempt at explaining a few important and exciting advances in
computer science and artificial intelligence (AI) in amanner accessible
to all. The incredible growth of the internet in recent years, along with
the vast volumes of ‘big data’ it holds, has also resulted in a rather
significant confluence of ideas from diverse fields of computing and
AI. This new ‘science of web intelligence’, arising from the marriage of
manyAI techniques applied togetheron ‘bigdata’, is the stageonwhich
Ihope to entertain andelucidate, in the spirit ofGamow, and to thebest
of my abilities.

* * *
The computer science community around the world recently cele-
brated the centenary of the birth of the British scientist Alan Turing,
widely regarded as the father of computer science. During his rather
brief life Turing made fundamental contributions in mathematics as
well as some in biology, alongside crucial practical feats such as break-
ing secret German codes during the SecondWorldWar.
Turing was the first to examine very closely the meaning of what

it means to ‘compute’, and thereby lay the foundations of computer
science. Additionally, he was also the first to ask whether the capacity
of intelligent thought could, inprinciple, be achievedbyamachine that
‘computed’. Thus, he is also regardedas the fatherof thefieldof enquiry
now known as ‘artificial intelligence’.
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In fact, Turing begins his classic 1950 article1 with, ‘I propose to con-
sider the question, “Canmachines think?” ’ He then goes on to describe
the famous ‘Turing Test’, which he referred to as the ‘imitation game’,
as a way to think about the problem of machines thinking. According
to the Turing Test, if a computer can converse with any of us humans
in so convincing a manner as to fool us into believing that it, too, is a
human, then we should consider that machine to be ‘intelligent’ and
able to ‘think’.
Recently, in February 2011, IBM’sWatson computermanaged tobeat

champion human players in the popular TV show Jeopardy!. Watson
was able to answer fairly complex queries such as ‘Which New Yorker
who fought at the Battle of Gettysburgwas once considered the inven-
tor of baseball?’. Figuring out that the answer is actually Abner Dou-
bleday, and not Alexander Cartwright who actually wrote the rules of
the game, certainly requires non-trivial natural language processing
as well as probabilistic reasoning;Watson got it right, as well as many
similar fairly difficult questions.
During this widely viewed Jeopardy! contest, Watson’s place on stage

was occupied by a computer panel while the human participants were
visible in flesh and blood. However, imagine if instead the human par-
ticipants were also hidden behind similar panels, and communicated
via the same mechanized voice as Watson. Would we be able to tell
them apart from the machine? Has the Turing Test then been ‘passed’,
at least in this particular case?
There are more recent examples of apparently ‘successful’ dis-

plays of artificial intelligence: in 2007 Takeo Kanade, the well-known
Japanese expert in computer vision, spoke about his early research in
face recognition, another task normally associated with humans and
at best a fewhigher-animals: ‘itwaswithpride that I tested theprogram
on 1000 faces, a rare case at the time when testing with 10 images
was considereda “large-scale experiment”.’2 Today, bothFacebookand
Google’s Picasa regularly recognize faces fromamong the hundreds of
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millions contained amongst the billions of images uploaded by users
around the world.
Language is another arena where similar progress is visible for all to

see and experience. In 1965 a committee of the US National Academy
of Sciences concluded its review of the progress in automated transla-
tion between humannatural languageswith, ‘there is no immediate or
predicable prospect of useful machine translation’.2 Today, web users
around theworld useGoogle’s translation technology on a daily basis;
even if the results are far from perfect, they are certainly good enough
to be very useful.
Progress in spoken language, i.e., the ability to recognize speech, is

also not far behind: Apple’s Siri feature on the iPhone 4S brings usable
and fairly powerful speech recognition to millions of cellphone users
worldwide.
As succinctly put by one of the stalwarts of AI, PatrickWinston: ‘AI

is becoming more important while it becomes more inconspicuous’,
as ‘AI technologies are becoming an integral part of mainstream com-
puting’.3

* * *
What, if anything, has changed in the past decade that might have
contributed to such significant progress in many traditionally ‘hard’
problems of artificial intelligence, be they machine translation, face
recognition, natural language understanding, or speech recognition,
all of which have been the focus of researchers for decades?
As I would like to convince you during the remainder of this book,

many of the recent successes in each of these arenas have come
through the deployment of many known but disparate techniques
working together, and most importantly their deployment at scale,
on large volumes of ‘big data’; all of which has been made possi-
ble, and indeed driven, by the internet and the world wide web. In
other words, rather than ‘traditional’ artificial intelligence, the suc-
cesseswe arewitnessing are better described as those of ‘web intelligence’
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arising from ‘big data’. Let us first considerwhatmakesbig data so ‘big’,
i.e., its scale.

* * *
The web is believed to have well over a trillion web pages, of which
at least 50 billion have been catalogued and indexed by search engines
such asGoogle,making them searchable by all of us. Thismassiveweb
content spans well over 100 million domains (i.e., locations where we
point our browsers, such as<http://www.wikipedia.org>). These are
themselves growing at a rate of more than 20,000 net domain addi-
tions daily. Facebook and Twitter each have over 900 million users,
who between themgenerate over 300million posts a day (roughly 250
million tweets and over 60 million Facebook updates). Added to this
are the over 10,000 credit-card payments made per second,∗ the well-
over 30 billion point-of-sale transactions per year (via dial-up POS
devices†), and finally the over 6 billionmobile phones, ofwhich almost
1 billion are smartphones, many of which are GPS-enabled, andwhich
access the internet for e-commerce, tweets, and post updates on Face-
book.‡ Finally, and last but not least, there are the images and videos
onYouTube and other sites, which by themselves outstrip all these put
together in terms of the sheer volume of data they represent.
This deluge of data, along with emerging techniques and technolo-

gies used to handle it, is commonly referred to today as ‘big data’.
Such big data is both valuable and challenging, because of its sheer
volume. So much so that the volume of data being created in the cur-
rent five years from 2010 to 2015 will far exceed all the data generated
in human history (which was estimated to be under 300 exabytes as
of 2007§). The web, where all this data is being produced and resides,
consists of millions of servers, with data storage soon to be measured
in zetabytes.¶

∗ <http://www.creditcards.com>.
† <http://www.gaoresearch.com/POS/pos.php>.
‡ <http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats>.
§ <http://www.bbc.co.uk/news/technology-12419672>.
¶ petabyte = 1,000 GB, exabyte = 1,000 petabytes, and a zetabyte = 1,000 petabytes.
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On the other hand, let us consider the volume of data an average
human being is exposed to in a lifetime. Our sense of vision provides
the most voluminous input, perhaps the equivalent of half a million
hours of video or so, assuming a fairly a long lifespan. In sharp con-
trast, YouTube alonewitnesses 15million hours of fresh video uploaded
every year.
Clearly, the volumeof data available to themillions ofmachines that

power the web far exceeds that available to any human. Further, as we
shall argue later on, the millions of servers that power the web at least
match if not exceed the raw computing capacity of the 100 billion or
so neurons in a single human brain. Moreover, each of these servers
are certainly muchmuch faster at computing than neurons, which by
comparison are really quite slow.
Lastly, the advancement of computing technology remains relent-

less: the well-knownMoore’s Law documents the fact that computing
power per dollar appears to double every 18months; the lesser known
but equally important Kryder’s Law states that storage capacity per
dollar is growing even faster. So, for the first time in history, we have
available to us both the computing power as well as the raw data that
matches and shall very soon far exceed that available to the average
human.
Thus, we have the potential to address Turing’s question ‘Can

machines think?’, at least from the perspective of raw computational
power and data of the same order as that available to the human brain.
How far have we come, why, and where are we headed? One of the
contributing factors might be that, only recently after many years,
does ‘artificial intelligence’ appear to be regaining a semblance of its
initial ambition and unity.

* * *
In the early days of artificial intelligence research following Turing’s
seminal article, the diverse capabilities that might be construed to
comprise intelligent behaviour, such as vision, language, or logical
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reasoning, were often discussed, debated, and shared at common
forums. The goals exposed by the now famous Dartmouth confer-
ence of 1956, considered to be a landmark event in the history of AI,
exemplifiedboth aunified approach to all problems related tomachine
intelligence as well as a marked overconfidence:

Wepropose that a 2month, 10man studyof artificial intelligence be carried
out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is toproceedon thebasis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it. An attempt
will be made to find how to make machines use language, form abstrac-
tions and concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be made in
one or more of these problems if a carefully selected group of scientists
work on it together for a summer.4

These were clearly heady times, and such gatherings continued for
some years. Soon the realization began to dawn that the ‘problem
of AI’ had been grossly underestimated. Many sub-fields began to
develop, both in reaction to the growing number of researchers try-
ing their hand at these difficult challenges, and because of conflicting
goals. The original aim of actually answering the question posed by
Turing was soon found to be too challenging a task to tackle all at
once, or, for that matter, attempt at all. The proponents of ‘strong AI’,
i.e., those who felt that true ‘thinking machines’ were actually possi-
ble, with their pursuit being a worthy goal, began to dwindle. Instead,
the practical applications of AI techniques, first developed as possible
answers to the strong-AIpuzzle, began to lead thediscourse, and itwas
this ‘weak AI’ that eventually came to dominate the field.
Simultaneously, the field split into many sub-fields: image

processing, computer vision, natural language processing, speech
recognition, machine learning, data mining, computational
reasoning, planning, etc. Each became a large area of research
in its own right. And rightly so, as the practical applications of
specific techniques necessarily appeared to lie within disparate
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areas: recognizing faces versus translating between two languages;
answering questions in natural language versus recognizing spoken
words; discovering knowledge from volumes of documents versus
logical reasoning; and the list goes on. Each of these were so clearly
separate application domains that it made eminent sense to study
them separately and solve such obviously different practical problems
in purpose-specific ways.
Over the years the AI research community became increasingly

fragmented. Along the way, as Pat Winston recalled, one would hear
comments such as ‘what are all these vision people doing here’3 at
a conference dedicated to say, ‘reasoning’. No one would say, ‘well,
because we think with our eyes’,3 i.e., our perceptual systems are inti-
mately involved in thought. And so fewer and fewer opportunities
came along to discuss and debate the ‘big picture’.

* * *
Then the web began to change everything. Suddenly, the practical
problem faced by the web companies became larger and more holis-
tic: initially there were the search engines such as Google, and later
came the social-networking platforms such as Facebook. The prob-
lem, however, remained the same: how to make more money from
advertising?
The answer turned out to be surprisingly similar to the Turing Test:

Insteadofmerely foolingus intobelieving itwashuman, the ‘machine’,
i.e., the millions of servers powering the web, needed to learn about
each of us, individually, just as we all learn about each other in casual
conversation. Why? Just so that better, i.e., more closely targeted,
advertisements could be shown to us, thereby leading to better ‘bang
for the buck’ of every advertising dollar. This then became the holy
grail: not intelligence per se, just doing better andbetter at this ‘reverse’
Turing Test, where instead of us being observer and ‘judge’, it is the
machines in theweb that observe and seek to ‘understand’ us better for
their own selfish needs, if only to ‘judge’ whether or not we are likely
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buyers of some of the goods they are paid to advertise. As we shall see
soon, even these more pedestrian goals required weak-AI techniques
that could mimic many of capabilities required for intelligent thought.
Of course, it is also important to realize that none of these efforts

madeany strong-AI claims.Themanner inwhich seemingly intelligent
capabilities are computationally realized in the web does not, for the
most part, even attempt tomirror themechanisms nature has evolved
to bring intelligence to life in real brains. Even so, the results are quite
surprising indeed, as we shall see throughout the remainder of this
book.
At the same time, this new holy grail could not be grasped with

disparate weak-AI techniques operating in isolation: our queries as we
searched thewebor conversedwithour friendswerewords; our actions
as we surfed and navigated the webwere clicks. Naturally wewanted to
speak to our phones rather than type, and the videos that we uploaded
and shared so freely were, well, videos.
Harnessing the vast trails of data that we leave behind during our

web existences was essential, which required expertise from different
fieldsofAI, be they languageprocessing, learning, reasoning, or vision,
to come together and connect the dots so as to even come close to
understanding us.
First and foremost the web gave us a different way to look for infor-

mation, i.e., web search. At the same time, the web itself would listen

in, and learn, not only about us, but also fromour collective knowledge
that we have so well digitized andmade available to all. As our actions
areobserved, theweb-intelligenceprogramschargedwithpinpointing
advertisements for us would need to connect all the dots and predict

exactly which ones we should be most interested in.
Strangely, but perhaps not surprisingly, the very synthesis of tech-

niques that the web-intelligence programs needed in order to connect
the dots in their practical enterprise of online advertising appears, in
many respects, similar to how we ourselves integrate our different
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perceptual and cognitive abilities. We consciously look around us to
gather information aboutour environment aswell as listen to the ambi-
ent sea of information continuously bombarding us all. Miraculously,
we learn from our experiences, and reason in order to connect the dots
andmake sense of the world. All this so as to predictwhat ismost likely
to happen next, be it in the next instant, or eventually in the course
of our lives. Finally, we correct our actions so as to better achieve our
goals.

* * *
I hope to show how the cumulative use of artificial intelligence tech-
niques at web scale, on hundreds of thousands or even millions of
computers, can result in behaviour that exhibits a very basic feature
of human intelligence, i.e., to colloquially speaking ‘put two and two
together’ or ‘connect the dots’. It is this ability that allows us to make
sense of the world around us, make intelligent guesses about what is
most likely to happen in the future, and plan our own actions accord-
ingly.
Applying web-scale computing power on the vast volume of ‘big

data’ now available because of the internet, offers the potential to cre-
ate far more intelligent systems than ever before: this defines the new
science of web intelligence, and forms the subject of this book.
At the same time, this remains primarily a book about weak AI:

however powerful this web-based synthesis of multiple AI techniques
might appear to be, we do not tread too deeply in the philosophical
waters of strong-AI, i.e., whether or not machines can ever be ‘truly
intelligent’, whether consciousness, thought, self, or even ‘soul’ have
reductionist roots, or not. We shall neither speculate much on these
matters nor attempt to describe the diverse philosophical debates and
arguments on this subject. For those interested in a comprehensive
history of the confluence of philosophy, psychology, neurology, and
artificial intelligence often referred to as ‘cognitive science’, Margaret

xix



THE INTELLIGENT WEB

Boden’s recent volumeMind as Machine: A History of Cognitive Science5 is
an excellent reference.
Equally important are Turing’s own views as elaborately explained

in his seminal paper1 describing the ‘Turing test’. Even as he clearly
makeshis ownphilosophical position clear, heprefaceshis ownbeliefs
and arguments for them by first clarifying that ‘the original ques-
tion, “Canmachines think?” I believe to be toomeaningless to deserve
discussion’.1 He then rephrases his ‘imitation game’, i.e., the Turing
Test that we are all familiar with, by a statistical variant: ‘in about fifty
years’ time it will be possible to program computers . . . so well that
an average interrogator will not have more than 70 per cent chance
of making the right identification after five minutes of questioning’.1

Most modern-day machine-learning researchers might find this for-
mulation quite familiar indeed. Turing goes on to speculate that ‘at
the end of the century the use of words and general educated opinion
will have altered so much that one will be able to speak of machines
thinkingwithout expecting tobe contradicted’.1 It is thepremiseof this
book that such a time has perhaps arrived.
As to the ‘machines’ forwhom itmight be colloquially acceptable to

use the word ‘thinking’, we look to the web-based engines developed
for entirely commercial pecuniary purposes, be they search, advertis-
ing, or social networking. We explore how the computer programs
underlying these engines sift through and make sense of the vast vol-
umes of ‘big data’ that we continuously produce during our online
lives—our collective ‘data exhaust’, so to speak.
In this book we shall quite often use Google as an example and

examine its innards in greater detail than others. However, when we
speak of Google we are also using it as a metaphor: other search
engines, such as Yahoo! and Bing, or even the social networkingworld
of Facebook and Twitter, all share many of the same processes and
purposes.
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The purpose of all these web-intelligence programs is simple: ‘all
the better to understand us’, paraphrasing Red Riding Hood’s wolf in
grandmother’s clothing. Nevertheless, as we delve deeper into what
these vast syntheses of weak-AI techniquesmanage to achieve in prac-
tice, we do find ourselves wondering whether these web-intelligence
systems might end up serving us a dinner far closer to strong AI than
we have ever imagined for decades.
That hope is, at least, one of the reasons for this book.

* * *
In the chapters that follow we dissect the ability to connect the dots,
be it in the context of web-intelligence programs trying to understand
us, or our own ability to understand and make sense of the world. In
doing so we shall find some surprising parallels, even though the two
contexts andpurposes are so very different. It is these connections that
offer the potential for increasingly capableweb-intelligence systems in
the future, as well as possibly deeper understanding and appreciation
of our own remarkable abilities.
Connecting the dots requires us to look at and experience the world

around us; similarly, a web-intelligence program looks at the data
stored in or streaming across the internet. In each case information
needs to be stored, as well as retrieved, be it in the form of memories
and their recollection in the former, or our daily experience of web
search in the latter.
Next comes the ability to listen, to focus on the important and dis-

card the irrelevant. To recognize the familiar, discern between alter-
natives or identify similar things. Listening is also about ‘sensing’ a
momentary experience, be it a personal feeling, individual decision,
or the collective sentiment expressed by the online masses. Listening
is followed eventually by deeper understanding: the ability to learn

about the structure of the world, in terms of facts, rules, and rela-
tionships. Just as we learn common-sense knowledge about the world
around us, web-intelligence systems learn about our preferences and
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behaviour. In each case the essential underlyingprocesses appear quite
similar: detecting the regularities and patterns that emerge from large
volumesof data,whether derived fromourpersonal experienceswhile
growing up, or via the vast data trails left by our collective online
activities.
Having learned something about the structure of the world, real or

its online rendition, we are able to connect different facts and derive
new conclusions giving rise to reasoning, logic, and the ability to deal
with uncertainty. Reasoning is what we normally regard as unique
to our species, distinguishing us from animals. Similar reasoning by
machines, achieved through smart engineering aswell as by crunching
vast volumes of data, gives rise to surprising engineering successes
such asWatson’s victory at Jeopardy!.
Putting everything together leads to the ability to make predictions

about the future, albeit tempered with different degrees of belief. Just
as we predict and speculate on the course of our lives, both immediate
and long-term, machines are able to predict as well—be it the sup-
ply and demand for products, or the possibility of crime in particular
neighbourhoods. Of course, predictions are then put to good use for
correcting and controlling our own actions, for supporting our own
decisions inmarketingor lawenforcement, aswell as controlling com-
plex, autonomous web-intelligence systems such as self-driving cars.
In the process of describing each of the elements: looking, listening,

learning, connecting, predicting, and correcting, I hope to lead you through
the computer science of semantic search, natural language under-
standing, text mining, machine learning, reasoning and the semantic
web, AI planning, and even swarm computing, among others. In each
casewe shall go through theprinciples involvedvirtually fromscratch,
and in the process cover rather vast tracts of computer science even if
at a very basic level.
Along the way, we shall also take a closer look at many examples of

web intelligence at work: AI-driven online advertising for sure, as well
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as many other applications such as tracking terrorists, detecting dis-
ease outbreaks, and self-driving cars. The promise of self-driving cars,
as illustrated in Chapter 6, points to a future where the web will not
only provide us with information and serve as a communication plat-
form, but where the computers that power the web could also help us
control our world through complex web-intelligence systems; another
example of which promises to be the energy-efficient ‘smart grid’.

* * *
By the end of our journey we shall begin to suspect that what began
with the simple goal of optimizing advertising might soon evolve to
serve other purposes, such as safe driving or clean energy. Therefore
the book concludes with a note on purpose, speculating on the nature
and evolution of large-scale web-intelligence systems in the future. By
asking where goals come from, we are led to a conclusion that sur-
prisingly runs contrary to the strong-AI thesis: insteadof evermimick-
ing human intelligence, I shall argue that web-intelligence systems are
more likely to evolve synergistically with our own evolving collective
social intelligence, driven in turn by our use of the web itself.
In summary, this book is at one level an elucidation of artificial

intelligence and related areas of computing, targeted for the lay but
patient and diligent reader. At the same time, there remains a constant
and not so hidden agenda: we shall mostly concern ourselves with
exploring how today’s web-intelligence applications are able tomimic
some aspects of intelligent behaviour. Additionally however, we shall
also compare and contrast these immense engineering feats to the
wondrous complexities that thehumanbrain is able to graspwith such
surprising ease, enabling each of us to so effortlessly ‘connect the dots’
and make sense of the world every single day.
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1

LOOK

In ‘A Scandal in Bohemia’6 the legendary fictional detective Sherlock
Holmes deduces that his companion Watson had got very wet

lately, as well as that he had ‘a most clumsy and careless servant girl’.
WhenWatson, in amazement, asks how Holmes knows this, Holmes
answers:

‘It is simplicity itself . . .My eyes tell me that on the inside of your left shoe,
just where the firelight strikes it, the leather is scored by six almost parallel
cuts.Obviously they have been caused by someonewhohas very carelessly
scraped round the edges of the sole in order to remove crustedmud from it.
Hence, you see,my double deduction that you had been out in vileweather,
and that you had a particularly malignant boot-slitting specimen of the
London slavery.’

Most of us do not share the inductive prowess of the legendary detec-
tive. Nevertheless, we all continuously look at the the world around us
and, in our small way, draw inferences so as to make sense of what is
going on. Even the simplest of observations, such aswhetherWatson’s
shoe is in fact dirty, requires us to first look at his shoe. Our skill and
intent drive what we look at, and look for. Those of us that may share
some of Holmes’s skill look for far greater detail than the rest of us.
Further, more information is better: ‘Data! Data! Data! I can’t make
bricks without clay’, says Holmes in another episode.7 No inference is

1
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possible in the absence of input data, and, more importantly, the right
data for the task at hand.
How does Holmes connect the observation of ‘leather . . . scored by

six almost parallel cuts’ to the cause of ‘someone . . . very carelessly
scraped round the edges of the sole in order to remove crusted mud
from it’? Perhaps, somewhere deep in theHolmesian brain lies amem-
ory of a similar boot having been so damaged by another ‘specimen of
the London slavery’? Or, more likely, many different ‘facts’, such as the
potential causes of damage to boots, including clumsy scraping; that
scraping is often prompted by boots having been dirtied by mud; that
cleaning boots is usually the job of a servant; as well as the knowledge
that bad weather results in mud.
In later chapterswe shall delvedeeper into theprocess bywhich such

‘logical inferences’ might be automatically conducted bymachines, as
well as how such knowledge might be learned from experience. For
now we focus on the fact that, in order to make his logical inferences,
Holmesnot only needs to look atdata from theworldwithout, but also
needs to look up ‘facts’ learned from his past experiences. Each of us
perform a myriad of such ‘lookups’ in our everyday lives, enabling us
to recognize our friends, recall a name, or discern a car from a horse.
Further, as some researchers have argued, our ability to converse, and
the very foundations of all human language, are but an extension of
the ability to correctly look up and classify past experiences from
memory. ‘Looking at’ theworld aroundus, relegatingour experiences to
memory, so as to later ‘look themup’ so effortlessly, aremost certainly
essential and fundamental elements of our ability to connect the dots
andmake sense of our surroundings.

The MEMEX Reloaded

Way back in 1945 Vannevar Bush, then the director of the US Office of
ScientificResearchandDevelopment (OSRD), suggested that scientific
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effort should be directed towards emulating and augmenting human
memory. He imagined the possibility of creating a ‘MEMEX’: a device

which is a sort of mechanised private file and library . . . in which an indi-
vidual stores all his books, records, and communications, and which is
mechanised so that itmaybeconsultedwith exceeding speedandflexibility.
It is an enlarged intimate supplement to his memory.8

A remarkably prescient thought indeed, considering the world wide
web of today. In fact, Bush imagined that the MEMEX would be mod-
elled on humanmemory, which

operates by association.With one item in its grasp, it snaps instantly to the
next that is suggested by the association of thoughts, in accordance with
some intricate web of trails carried by the cells of the brain. It has other
characteristics, of course; trails that arenot frequently followedareprone to
fade, items are not fully permanent, memory is transitory. Yet the speed of
action, the intricacy of trails, the detail of mental pictures, is awe-inspiring
beyond all else in nature.8

At the same time, Bush was equally aware that the wonders of human
memory were far from easy to mimic: ‘One cannot hope thus to
equal the speed and flexibility with which the mind follows an asso-
ciative trail, but it should be possible to beat the mind decisively in
regard to the permanence and clarity of the items resurrected from
storage.’8

Today’s world wide web certainly does ‘beat the mind’ in at least
these latter respects. As already recounted in the Prologue, the vol-
ume of information stored in the internet is vast indeed, leading to the
coining of the phrase ‘big data’ to describe it. The seemingly intelli-
gent ‘web-intelligence’ applications that form the subject of this book
all exploit this big data, just as our own thought processes, including
Holmes’s inductive prowess, are reliant on the ‘speed and flexibility’ of
humanmemory.
How is this big data stored in the web, so as to be so easily accessi-

ble to all of us as we surf the web every day? To what extent does it
resemble, as well as differ from, how our own memories are stored
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and recalled? And last but not least, what does it portend as far as
augmenting our own abilities, much as Vannevar Bush imagined over
50 years ago? These are the questions we now focus on as we examine
what it means to remember and recall, i.e., to ‘look up things’, on the
web, or in our minds.

* * *
Whenwas the last time youwere tomeet someone you had nevermet
before in person, even though the two of youmay have corresponded
earlier on email? How often have you been surprised that the person
you saw looked different than what you had expected, perhaps older,
younger, or built differently? This experience is becoming rarer by the
day. Today you can Google persons you are about tomeet and usually
find half a dozen photos of them, in addition to much more, such as
their Facebook page, publications or speaking appearances, and snip-
pets of their employment history. In a certain sense, it appears that we
can simply ‘look up’ the global, collective memory-bank of mankind,
as collated andmanaged byGoogle,much aswe internally look upour
own personal memories as associated with a person’s name.
Very recently Google introduced Google Glass, looking through

which you merely need to look at a popular landmark, such as the
Eiffel Tower in Paris, and instantly retrieve information about it, just as
if you had typed in the query ‘Eiffel Tower’ in the Google search box.
You can do this with books, restaurant frontages, and even paintings.
In the latter case, you may not even know the name of the painting;
still Glass will ‘look it up’, using the image itself to drive its search. We
know for a fact that Google (and others, such as Facebook) are able
to perform the same kind of ‘image-based’ lookup on human faces
as well as images of inanimate objects. They too can ‘recognize’ peo-
ple from their faces. Clearly, there is a scary side to such a capability
being available in such tools: for example, it could be easily misused
by stalkers, identity thieves, or extortionists. Google has deliberately
not yet released a face recognition feature in Glass, andmaintains that
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‘we will not add facial recognition to Glass unless we have strong
privacy protections in place’.9 Nevertheless, the ability to recognize
faces is nowwithin the power of technology, and we can experience it
every day: for example, Facebook automatically matches similar faces
in your photo album and attempts to name the people using what-
ever information it finds in its own copious memory-bank, while also
tapping Google’s when needed. The fact is that technology has now
progressed to the point wherewe can, in principle, ‘look up’ the global
collective memory of mankind, to recognize a face or a name, much
as we recognize faces and names every day from our own personal
memories.

* * *
Google handles over 4 billion search queries a day. How did I get that
number? By issuing a few searches myself, of course; by the time you
read this book the numberwould have gone up, and you can look it up
yourself. Everybody who has access to the internet uses search, from
office workers to college students to the youngest of children. If you
haveever introducedacomputernovice (albeit a rare commodity these
days) to the internet, youmight have witnessed the ‘aha’ experience: it
appears that every piece of information known tomankind is at one’s
fingertips. It is truly difficult to remember theworld before search, and
realize that this was the world of merely a decade ago.
Ubiquitous search is, some believe, more than merely a useful tool.

Itmay be changing thewaywe connect the dots andmake sense of our
world in fundamentalways.MostofususeGoogle search several times
a day; after all, the entire collective memory-bank of mankind is just
a click away. Thus, sometimes we no longer even bother to remember
facts, such as when Napoleon was defeated at Waterloo, or when the
East India Company established its reign in the Indian subcontinent.
Even if we do remember our history lessons, our brains often com-
partmentalize the two events differently as both of them pertain to
different geographies; so ask us which preceded the other, and we are
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usually stumped. Google comes to the rescue immediately, though,
and we quickly learn that India was well under foreign rule when
Napoleon met his nemesis in 1815, since the East India Company had
been in charge since the Battle of Plassey in 1757. Connecting disparate
facts so as to, in this instance, put them in chronological sequence,
needs extra details that our brains donot automatically connect across
compartments, such as European vs Indian history; however, within
any one such context we are usually able to arrange events in histori-
cal sequence much more easily. In such cases the ubiquity of Google
search provides instant satisfaction and serves to augment our cogni-
tive abilities, even as it also reduces our need to memorize facts.
Recently some studies, as recounted in Nicholas Carr’s The Shallows:

What the internet is Doing to Our Brains,10 have argued that the inter-
net is ‘changing the way we think’ and, in particular, diminishing our
capacity to read deeply and absorb content. The instant availability of
hyperlinks on the web seduces us into ‘a form of skimming activity,
hopping fromone source toanother and rarely returning toany source
we might have already visited’.11 Consequently, it is argued, our moti-
vation as well as ability to stay focused and absorb the thoughts of an
author are gradually getting curtailed.
Be that as it may, I also suspect that there is perhaps another

complementary capability that is probablybeingenhanced rather than
diminished.We are, of course, talking about the ability to connect the
dots andmake sense of our world. Think about our individual memo-
ries: each of these is, as compared to the actual event, rather sparse in
detail, at least at first glance.Weusually rememberonly certain aspects
of each experience. Nevertheless, when we need to connect the dots,
such as recall where and when we might have met a stranger in the
past, we seemingly need only ‘skim through’ our memories without
delving into each in detail, so as to correlate some of them and use
these tomake deeper inferences. Inmuch the samemanner, searching
and surfing the web while trying to connect the dots is probably a
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boon rather than a bane, at least for the purpose of correlating dis-
parate pieces of information. TheMEMEX imaginedbyVannevar Bush
is now with us, in the form of web search. Perhaps, more often than
not, we regularly discover previously unknown connections between
people, ideas, and events every time we indulge in the same ‘skim-
ming activity’ of surfing that Carr argues is harmful in some ways.
We have, in many ways, already created Vannevar Bush’s MEMEX-
powered world where

the lawyer has at his touch the associated opinions and decisions of his
whole experience, and of the experience of friends and authorities. The
patent attorney has on call the millions of issued patents, with familiar
trails to every point of his client’s interest. The physician, puzzled by its
patient’s reactions, strikes the trail established in studying an earlier similar
case, and runs rapidly through analogous case histories, with side refer-
ences to the classics for the pertinent anatomy and histology. The chemist,
strugglingwith the synthesis of an organic compound, has all the chemical
literature before him in his laboratory, with trails following the analogies
of compounds, and side trails to their physical and chemical behaviour.
The historian, with a vast chronological account of a people, parallels it
with a skip trail which stops only at the salient items, and can follow at any
time contemporary trails which lead him all over civilisation at a particular
epoch. There is a new profession of trail blazers, those who find delight
in the task of establishing useful trails through the enormous mass of the
common record. The inheritance from the master becomes, not only his
additions to the world’s record, but for his disciples the entire scaffolding
by which they were erected.8

In many ways therefore, web search is in fact able to augment our
own powers of recall in highly synergistic ways. Yes, along the waywe
do forget many things we earlier used to remember. But perhaps the
things we forget are in fact irrelevant, given that we now have access
to search? Taking this further, our brains are poor at indexing, so we
search the web instead. Less often are we called upon to traverse our
memory-to-memory links just to recall facts. We use those links only
when making connections or correlations that augment mere search,
such as while inferring patterns, making predictions, or hypothesiz-
ing conjectures, and we shall return to all these elements later in the
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book. So, even if by repeatedly choosing to use search engines over
our own powers of recall, it is indeed the case that certain connec-
tions in our brains are in fact getting weaker, as submitted by Nicholas
Carr.11 At the same time, it might also be the case that many other
connections, such as those used for deeper reasoning, may be getting
strengthened.
Apart from being a tremendously useful tool, web search also

appears to be important in a very fundamental sense. As related
by Carr, the Google founder Larry Page is said to have remarked
that ‘The ultimate search engine is something as smart as people,
or smarter . . .working on search is a way to work on artificial
intelligence.’11 In a 2004 interview with Newsweek, his co-founder
Sergey Brin remarks, ‘Certainly if you had all the world’s information
directly attached to your brain, or an artificial brain that was smarter
than your brain, you would be better off.’
In particular, as I have already argued above, our ability to connect

the dots may be significantly enhanced using web search. Even more
interestingly, what happens when search and the collective memories
of mankind are automatically tapped by computers, such as the mil-
lions that power Google? Could these computers themselves acquire
the ability to ‘connect the dots’, like us, but at a far grander scale
and infinitely faster? We shall return to this thought later and, indeed,
throughout this book as we explore how today’s machines are able to
‘learn’ millions of facts from even larger volumes of big data, as well
as how such facts are already being used for automated ‘reasoning’.
For the moment, however, let us turn our attention to the computer
science of web search, from the inside.

Inside a Search Engine

‘Any sufficiently advanced technology is indistinguishable from
magic’; this often-quoted ‘law’ penned byArthurC. Clarke also applies
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to internet search. Powering the innocent ‘Google search box’ lies a
vast network of over a million servers. By contrast, the largest banks
in the world have at most 50,000 servers each, and often less. It is
interesting to reflect on the fact that it is within the computers of these
banks that yourmoney, and for thatmattermost of theworld’s wealth,
lies encoded as bits of ones and zeros. Themagical Google-like search
is made possible by a computing behemoth two orders of magnitude
more powerful than the largest of banks. So, how does it all work?
Searching for data is probably the most fundamental exercise in

computer science; the first data processing machines did exactly this,
i.e., store data that could be searched and retrieved in the future. The
basic idea is fairly simple: think about how you might want to search
for a word, say the name ‘Brin’, in this very book. Naturally youwould
turn to the index pages towards the end of the book. The index entries
are sorted in alphabetical order, so you know that ‘Brin’ should appear
near the beginning of the index. In particular, searching the index for
the word ‘Brin’ is clearly much easier than trawling through the entire
book to figure outwhere theword ‘Brin’ appears. This simple observa-
tion forms the basis of the computer science of ‘indexing’, usingwhich
all computers, including themillions powering Google, perform their
magical searches.
Google’s million servers continuously crawl and index over 50 bil-

lion web pages, which is the estimated size of the indexed∗ world wide
web as of January 2011. Just as in the index of this book, against
each word or phrase in the massive web index is recorded the web
address (orURL†) of all thewebpages that contain thatwordor phrase.
For common words, such as ‘the’, this would probably be the entire
English-language web. Just try it; searching for ‘the’ in Google yields

∗ Only a small fraction of theweb is indexed by search engines such as Google; as we see
later, the complete web is actually far larger.

† ‘Universal record locater’, or URL for short, is the technical term for a web address,
such as <http://www.google.com>.
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over 25 billion results, as of this writing. Assuming that about half of
the 50 billion web pages are in English, the 50 billion estimate for the
size of the indexedweb certainly appears reasonable.
Each web page is regularly scanned by Google’s millions of servers,

and added as an entry in a huge web index. This web index is truly
massive as compared to the few index pages of this book. Just imagine
how big this web index is: it contains every word ever mentioned in
any of the billions of web pages, in any possible language. The English
language itself contains just over a million words. Other languages
are smaller, as well as less prevalent on the web, but not by much.
Additionally there are proper nouns, naming everything from people,
both real (such as ‘Brin’) or imaginary (‘Sherlock Holmes’), to places,
companies, rivers,mountains, oceans, aswell as everynameever given
to a product, film, or book. Clearly there are many millions of words
in the web index. Going further, common phrases and names, such as
‘White House’ or ‘Sergey Brin’ are also included as separate entries, so
as to improve search results. An early (1998) paper12 by Brin and Page,
the now famous founders of Google, on the inner workings of their
search engine, reported using a dictionary of 14million uniquewords.
Since then Google has expanded to cover many languages, as well as
index commonphrases in addition to individualwords. Further, as the
size of thewebhas grown, so have the number of unique proper nouns
it contains. What is important to remember, therefore, is that today’s
web index probably contains hundreds of millions of entries, each a
word, phrase, or proper noun, using which it indexesmany billions of
web pages.
What is involved in searching for a word, say ‘Brin’, in an index as

large as themassiveweb index? In computer science terms, we need to
explicitly define the steps required to ‘search a sorted index’, regardless
of whether it is a small index for a book or the index of the entire
web.Oncewe have such a prescription, which computer scientists call
an ‘algorithm’, we can program an adequately powerful computer to
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search any index, even the web index. A very simple program might
proceed by checking each word in the index one by one, starting from
the beginning of the index and continuing to its end. Computers are
fast, and itmight seem that a reasonablypowerful computer couldper-
form such a procedure quickly enough.However, size is a funny thing;
as soon as one starts adding a lot of zeros numbers can get very big
very fast. Recall that unlike a book index, which may contain at most
a few thousand words, the web index contains millions of words and
hundreds of millions of phrases. So even a reasonably fast computer
that might perform amillion checks per second would still takemany
hours to search for just one word in this index. If our query had a few
morewords,wewouldneed to let theprogramwork formonthsbefore
getting an answer.
Clearly this is not how web search works. If one thinks about it,

neither is it how we ourselves search a book index. For starters, our
very simple program completely ignores that fact that index words
were already sorted in alphabetical order. Let’s try to imagine how a
smarter algorithm might search a sorted index faster than the naive
one just described. We still have to assume that our computer itself is
rather dumb, and, unlike us, it does not understand that since ‘B’ is the
second letter in the alphabet, the entry for ‘Brin’ would lie roughly in
the first tenth of all the index pages (there are 26 letters, so ‘A’ and ‘B’
together constitute just under a tenth of all letters). It is probably good
to assume that our computer is ignorant about such things, because
in case we need to search the web index, we have no idea how many
unique letters the index entries begin with, or how they are ordered,
since all languages are included, even words with Chinese and Indian
characters.
Nevertheless, we do know that there is some ordering of letters that

includes all languages, usingwhich the index itself has been sorted. So,
ignorant of anything but the size of the complete index, our smarter
search program begins, not at the beginning, but at the very middle
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of the index. It checks, from left to right, letter by letter, whether the
word listed there is alphabetically larger or smaller than the search
query ‘Brin’. (For example ‘cat’ is larger than ‘Brin’,whereas both ‘atom’
and ‘bright’ are smaller.) If the middle entry is larger than the query,
our program forgets about the second half of the index and repeats
the same procedure on the remaining first half. On the other hand, if
the query word is larger, the program concentrates on the second half
while discarding thefirst.Whichever half is selected, theprogramonce
more turns its attention to the middle entry of this half. Our program
continues this process of repeated halving and checking until it finally
finds the query word ‘Brin’, and fails only if the index does not contain
this word.
Computer science is all about coming up with faster procedures,

or algorithms, such as the smarter and supposedly faster one just
described. It is also concerned with figuring out why, and by how
much, one algorithm might be faster than another. For example, we
saw that our very simple computer program, which checked each
index entry sequentially from the beginning of the index, would need
to perform a million checks if the index contained a million entries.
In other words, the number of steps taken by this naive algorithm is
exactly proportional to the size of the input; if the input size quadru-
ples, so does the time taken by the computer. Computer scientists refer
to such behaviour as linear, and often describe such an algorithm as
being a linear one.
Let us now examine whether our smarter algorithm is indeed faster

than the naive linear approach. Beginning with the first check it per-
forms at the middle of the index, our smarter algorithm manages to
discard half of the entries, leaving only the remaining half for it to deal
with. With each subsequent check, the number of entries is further
halved, until the procedure ends by either finding the query word or
failing to do so. Suppose we used this smarter algorithm to search a
small book index that had but a thousand entries. How many times
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could one possibly halve the number 1,000? Roughly ten, it turns
out, because 2 × 2 × 2 . . . × 2, ten times, i.e., 210, is exactly 1,024. If
we now think about how our smarter algorithm works on a much
larger index of, say, a million entries, we can see that it can take at
most 20 steps. This is because a million, or 1,000,000, is just under
1,024 × 1,024.Writing each 1,024 as theproduct of ten 2’s,we see that a
million is just under 2 × 2 × . . . 2, 20 times, or 220. It is easy to see that
even if the web index becomes much bigger, say a billion entries, our
smarter algorithmwould slowdownonly slightly, now taking 30 steps
instead of 20. Computer scientists strive to come up with algorithms
that exhibit such behaviour, where the number of steps taken by an
algorithm growsmuchmuch slower than the size of the input, so that
extremely largeproblems canbe tackled almost as easily as small ones.
Our smarter search algorithm, also known as ‘binary search’, is said
to be a logarithmic-time algorithm, since the number of steps it takes,
i.e., ten, 20, or 30, is proportional to the ‘logarithm’∗ of the input size,
namely 1,000, 1,000,000, or 1,000,000,000.
Whenever we type a search query, such as ‘Obama, India’, in the

Google search box, one of Google’s servers responsible for handling
our query looks up the web index entries for ‘Obama’ and ‘India’, and
returns the list of addresses of thosewebpages contained in both these
entries. Looking up the sorted web index of about 3 billion entries
takes no more than a few dozen or at most a hundred steps. We have
seen how fast logarithmic-time algorithms work on even large inputs,
so it is no problem at all for any one of Google’s millions of servers to
perform our search in a small fraction of a second. Of course, Google
needs to handle billions of queries a second, so millions of servers are
employed to handle this load. Further, many copies of the web index
are kept on each of these servers to speed up processing. As a result,

∗ Log n, the ‘base two logarithm’ of n, merely means that 2 × 2 × 2 . . . × 2, log n times,
works out to n.
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our search results often begin to appear even before we have finished
typing our query.
We have seen how easy and fast the sortedweb index can be searched

using our smart ‘binary-search’ technique. But how does the huge
index of ‘all words and phrases’ get sorted in the first place? Unlike
looking up a sorted book index, few of us are faced with the task of
having to sort a large list in everyday life. Whenever we are, though,
we quickly find this taskmuch harder. For example, it would be rather
tedious to create an index for this book by hand; thankfully there are
word-processing tools to assist in this task.
Actually there is muchmore involved in creating a book index than

a web index; while the latter can be computed quite easily as will be
shown, a book index needs to be more selective in which words to
include, whereas the web index just includes all words. Moreover,
a book index is hierarchical, where many entries have further sub-
entries. Deciding how to do this involves ‘meaning’ rather than mere
brute force; we shall return to how machines might possibly deal
with the ‘semantics’ of language in later chapters. Even so, accurate,
fully-automatic back-of-the-book indexing still remains an unsolved
problem.25

For now, however, we focus on sorting a large list of words; let us
see if our earlier trick of breaking the list of words into two halves
works wonders again, as we found in the case of searching. Suppose
we magically sort each half or our list. We then merge the two sorted
half-lists by looking at words from each of the two lists, starting at
the top, and inserting these one by one into the final sorted list. Each
word, from either list, needs to be checked once during this merging
procedure. Now, recall that each of the halves had to be sorted before
we could merge, and so on. Just as in the case of binary search, there
will be a logarithmic number of such halving steps. However, unlike
earlier, wheneverwe combine pairs of halves at each step, wewill need
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to check allwords in the list during the merging exercises. As a result,
sorting, unlike searching, is not that fast. For example, sorting a mil-
lion words takes about 20 million steps, and sorting a billion words
30 billion steps. The algorithm slows down for larger inputs, and this
slowdown is a shade worse than by howmuch the input grows. Thus,
this time our algorithm behaves worse than linearly. But the nice part
is that the amount bywhich the slowdown isworse than the growth in
the input is nothing but the logarithm thatwe saw earlier (hence the 20
and 30 in the20millionand30million steps). The sumandsubstance is
that sorting a list twice as large takes very very slightlymore than twice
the time. In computer science terms, such behaviour is termed super-

linear; a linear algorithm, on the other hand, would become exactly
twice as slow on twice the amount of data.
So, now that we have understood sorting and searching, it looks

like these techniques are just basic computer science, and one might
rightly ask where exactly is the magic that makes web search so intu-
itively useful today? Many years ago I was speaking with a friend who
works at Google. He said, ‘almost everythingwe do here is pretty basic
computer science; only the sizeof theproblemswe tacklehave threeor
four extra zeros tagged on at the end, and then seemingly easy things
become really hard’. It is important to realize that the web index is
huge. For one, as we have seen, it includes hundreds of millions of
entries, maybe even billions, each corresponding to a distinct word
or phrase. But what does each entry contain? Just as an entry in a
book index lists the pages where a particular word or phrase occurs,
the web index entry for each word contains a list of all web addresses
that contain that word. Now, a book index usually contains only the
important words in the book. However, the web index contains all
words and phrases found on the web. This includes commonly occur-
ring words, such as ‘the’, which are contained in virtually all 25 billion
English-language web pages. As a result, the index entry for ‘the’ will
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need to list almost half the entire collection of indexed web addresses.
For other words fewer pages will need to be listed. Nevertheless many
entries will need to list millions of web addresses. The sheer size of the
web index is huge, and the storage taken by a complete (and uncom-
pressed) web index runs into petabytes: a petabyte is approximately 1
with 15 zeros; equivalent to a thousand terabytes, and a million giga-
bytes. Most PCs, by comparison, have disk storage of a few hundred
gigabytes.
Further, while many web pages are static, many others change all

the time (think of news sites, or blogs). Additionally, new web pages
are being created and crawled every second. Therefore, this large web
index needs to be continuously updated. However, unlike looking up
the index, computing the content of index entries themselves is in fact
like sorting a very large list of words, and requires significant com-
puting horsepower. How to do that efficiently is the subject of the
more recent ofGoogle’smajor innovations, called ‘map-reduce’, a new
paradigm for using millions of computers together, in what is called
‘parallel computing’. Google’s millions of servers certainly do a lot of
number crunching, and it is important to appreciate the amount of
computing power coming to bear on each simple search query.
In fact themany such innovations in parallel computingon ‘big data’

by Google as well as other web companies, such as Yahoo!, Facebook,
andTwitter in particular, have spawned a burgeoning revolution in the
hitherto rather staid world of ‘data management’ technologies. Today
many large organizations such as banks, retail stores, and even gov-
ernments are rethinking the way they store and manage data, even
though their data needs are but a small fraction in size as compared
to the massive volumes of real ‘big data’ managed by web companies.
However, all that is a separate subject in itself, i.e., ‘big-data’ technolo-
gies and how they are impacting traditional enterprise computing.We
shall not stray further into data management technology, which while
interesting and topical is nevertheless tangential to our main topic
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of web-intelligence applications that use big data to exhibit seemingly
intelligent behaviour.

* * *
Impressive as its advances in parallel computing might be, Google’s
real secret sauces, at least with respect to search, lie elsewhere. Some
of youmight remember theworld of search beforeGoogle. Yes, search
engines such as Alta Vista and Lycos did indeed return results match-
ing one’s query; however, too many web pages usually contained all
the words in one’s query, and these were not the ones youwanted. For
example, the query ‘Obama, India’ (or ‘Clinton, India’ at that time)may
have returned a shop named Clinton that sold books on India as the
topmost result, because the words ‘Clinton’ and ‘India’ were repeated
very frequently inside this page. But you reallywere looking for reports
on Bill Clinton’s visit to India. Sometime in 1998, I, like many others,
chanced upon the Google search box, and suddenly found that this
engine would indeed return the desired news report amongst the top
results. Why? What was Google’s secret? The secret was revealed in
a now classic research paper12 by the Google founders Brin and Page,
then still graduate students at Stanford.
Google’s secret was ‘PageRank’, a method of calculating the relative

importance of every web page on the internet, called its ‘page rank’. As
a result of being able to calculate the importance of each page in some
fashion, in addition to matching the queried words, Google’s results
were also ordered by their relative importance, according to their page
ranks, so that the most important pages showed up first. This appears
a rather simple observation, thoughmany things seem simplewith the
benefit of 20/20 hindsight. However, the consequent improvement in
users’ experience with Google search was dramatic, and led rapidly to
Google’s dominance in search, which continues to date.
The insight behind the PageRank algorithm is surprisingly simple,

considering its eventual huge impact. In the early days of the web, the
term ‘surfing’ the web began being used as people visited page after
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page, being led from one to the next by clicking on hyperlinks. In fact
hyperlinks, which were invented by Tim Berners Lee in 1992,13 came
to define the web itself.
Usually people decide which links to follow depending on whether

they expect them to containmaterial of interest. Brin and Page figured
that the importance of aweb page should be determined by howoften
it is likely to be visited during such surfing activity. Unfortunately, it
was not possible to track who was clicking on which link, at least
not at the time. So they imagined a dumb surfer, akin to the popu-
lar ‘monkey on a typewriter’ idiom, who would click links at random,
and continue doing this forever. They reasoned that if a web page
was visited more often, on the average, by such an imaginary random
surfer, it should be considered more important than other, less visited
pages.
Now, at first glance itmay appear that the page rank of a page should

be easy to determine by merely looking at the number of links that
point to a page: one might expect such pages to be visited more often
than others by Brin and Page’s dumb surfer. Unfortunately, the story
is not that simple. As is often the case in computer science, we need to
think through things a littlemore carefully. Let us seewhy: our random
surfer might leave a page only to return to it by following a sequence
of links that cycle back to his starting point, thereby increasing the
importance of the starting page indirectly, i.e., independently of the
number of links coming into the page. On the other hand, there may
be no such cycles if he chooses a different sequence of links.
Another way to think about this is that any particular web page

is more important if other important pages point to it, as opposed
to any other pages. Thus the importance of one page depends in
turn on the importance of those pages that point to it, which in
turn depend on the importance of pages many steps removed, and
so on. As a result, the ‘link structure’ of other, unrelated pages indi-
rectly affects the importance of each page, and needs to be taken
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into account while computing the page rank of each page. Since page
rank is itself supposed to measure importance, this becomes a cyclic
definition.
But that is not all; there are even further complications. For example,

if some page contains thousands of outgoing links, such as a ‘direc-
tory’ of some kind, the chance of our dumb surfer choosing any one
particular link from such a page is far less than if the page contained
only a few links. Thus, the number of outgoing links also affects the
importance of the pages that any page points to. If one thinks about
it a bit, the page rank of each page appears to depends on the overall
structure of the entireweb, and cannot be determined simply by look-
ing at the incoming or outgoing links to a single page in isolation. The
PageRank calculation is therefore a ‘global’ rather than ‘local’ task, and
requires a more sophisticated algorithm than merely counting links.
Fortunately, as discovered by Brin and Page, computing the page rank
of each and every page in the web, all together, turns out to be a fairly
straightforward, albeit time-consuming, task.
Recall that each entry in the large web index contains a long list of

web pages, which can often run into millions for each entry. Perhaps
it may have occurred to you to ask in what order the page addresses
are kept in these lists? By now the answer should be obvious: pages
should be listed in order of their page ranks. This way the results of
each search query will naturally show up with the most important
pages first. As new pages get added to the web and existing ones get
updated, possibly with new links, the link structure of the web is
continuously changing, so Google’s millions of servers continuously
recalculate the page rank of each and every web page as fast as they
possibly can manage. The sooner a page’s importance is updated, the
more likely it is that search results will be ordered better, and users
will find what they want from their visit to Google. Page ranks also
help Google store and search its huge search index faster. Since entries
in the web index are stored in order of their page ranks, only a small
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number of these will usually be returned amongst the first few pages
of any search result.Andhowoftendoyouor I ever gobeyondeven the
first page of results? SoGoogle is able to get away by searching amuch
smaller index for the overwhelmingmajority of queries. By replicating
copies of this index many times across its millions of servers, Google
search becomes incredibly fast, almost instant, with results starting to
appear even as a user is still typing her query.

Google and the Mind

Wecannowappreciate thatGoogle does a lot ofmassive computing to
maintain its huge index, and evenmore so to ensure that the page rank
of each page is always accurate, which is the secret behind the quality
of its search results. What does all this have to do with connecting
the dots, making sense of the world, and intelligence? There are 50
billion or so indexed web pages, each possibly representing aspects of
some human enterprise, person, or event. Almost anything one can
think of is likely to have some presence on the web, in some form
at least, however sparse or detailed. In many ways we can think of
these 50billionwebpages as representing, in some sense, the collective
experiences of a significant fraction ofmankind—a globalmemory of
sorts. Google’s PageRank appears, magically, to be able to attach an
importance to each page in amanner thatwe humans are able to relate
to. The fact is that people find what they want faster because what-
ever PageRank throws up first often turns out to be what they were
looking for.When it comes to ‘looking up’ our global collective mem-
ory as represented by the web, PageRank seems to work well for us,
almost as well as if we were looking up the sought-after information
from our ownmemories. So much so, as we have already mentioned,
that we are gradually ceding the need to remember things in our own
memories and instead relying on searching the global memory using
web search.
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So it makes sense to ask if the PageRank algorithm tells us anything
about how we humans ‘look up’ our own internal memories. Does
the way the web is structured, as pages linked to each other, have
anything to do with how our brains store our own personal experi-
ences? A particular formof scientific inquiry into the nature of human
intelligence is that of seeking ‘rational models’. A rational model of
human cognition seeks to understand some aspect of howwehumans
think by comparing it to a computational technique, such as Page-
Rank. We then try to see if the computational technique performs as
well as humans do in actual experiments, such as those conducted
by psychologists. Just such a study was performed a few years ago at
BrownUniversity to evaluatewhether PageRankhas anything to teach
us about how humanmemory works.14

We don’t, at least as of today, have any single scientificmodel of how
human memory works. Nevertheless, it is clear enough that we don’t
store web pages like those that are on the internet. So we need some
model of memory on which to try out the PageRank algorithm. Psy-
chologists and cognitive scientists have usedwhat is called a ‘semantic
model’ where pairs of words are associated with each other in some
way, such as being synonyms of each other, or one a generalization
of the other. Some word associations arise out of experiments where
human associates are presented with one word, and asked to name
the first word that comes to mind. Words that are more frequently
paired in such experiments also contribute to word associations in
the semantic model. Just as the world wide web consists of web pages
linked to each other by hyperlinks, such a semantic model consists of
words linked to each other by word associations. Since word asso-
ciations in a semantic model are backed by statistics on how peo-
ple actually associate words, scientists consider such a model to be
a reasonable ‘working model’ of some aspects of how humans store
memories, even though it is very far frombeing anywhere near a com-
plete or accurate model. However, such a model is at least suitable

21



THE INTELLIGENT WEB

for testing other hypotheses, such as whether PageRank as a com-
putational model might teach us something more about how human
memory works.
PageRank is merely a computational technique for deciding the rel-

ative importance of a web page. Presumably we humans also assign
importance to our own memories, and in particular to certain words
over others. In the Brown University study,14 a subject was presented
with a letter, and each time asked to recall the first word that came to
mind beginning with that letter. The aggregate results did indeed find
that somewords, such as ‘apple’ or ‘dog’, were chosen bymost people.
Next the researchers used a previously constructed semantic model
of about 5,000 common words, i.e., a network of word-association
pairs. They ran the PageRank algorithm, using the network of word
associations in the semantic model rather than the network of web
pages and hyperlinks, thereby producing a ranking of all the words by
importance. Interestingly, the responses given by amajority of people
(i.e., at least 50%) fell in the top 8% of the ranking given by PageRank.
In other words, half the human responses fell in the top 40 words as
ranked by PageRank, out of the total 5,000 words. They concluded
that a PageRank-based ordering of ‘words starting with the letter—’
closely corresponds to the responses most often chosen by humans
whenpresentedwith a letter andasked to state thefirstword it triggers.
Note that web pages link to other pages, while words in the seman-

tic network link to other words; these two networks are completely
unrelated to each other. What is being compared is the PageRank
algorithm’s ability to uncover a hidden property, rather close to what
we understand as ‘importance’, for each node in two very differ-
ent networks. Therefore, in this fairly limited sense it is reasonable
to say that the PageRank algorithm, acting on a semantic word-
association network, serves as a well-performing rational model of
some aspects of human memory: PageRank gives us some insight
into how a capability for ranking that possiblymimics howmemories

22



LOOK

are assigned importancemight be computationally implemented even
in other situations, wherever rankings that mimic human memory
are desirable.
Do our brains use PageRank? We have no idea. All we can say is

that in the light of experiments such as the study at Brown University,
PageRank has possibly given us some additional insight into how our
brains work or, more aptly, how some of their abilities might be mim-
icked by a machine. More importantly, and this is the point I wish to
emphasize, the success of PageRank in predicting human responses
in the Brown University experiment gives greater reason to consider
Google search as an example of a web-intelligence application that
mimics some aspect of human abilities, while complementing the
well-known evidence that we find Google’s top search results to be
highly relevant. Suppose, for argument’s sake, human brains were to
order web pages by importance; there is now even more reason to
believe that such a human ordering, however impractical to actually
perform, would closely match PageRank’s.
Before we conclude this train of thought on Google and the Mind,

should we not ask whether, just as the success of PageRank-based
search seemingly impacts our minds, our own behaviour impacts.
PageRank’s effectiveness in any way? It seems rather far fetched, but
it does. Google search is so good that we ‘look up’ things there instead
of remembering them. Similarly, why follow hyperlinks onweb pages
when you can get more, and often better, information (in the sense
of being more ‘important’, as per PageRank) by typing a short query
into the Google search box atop one’s browser window? In fact more
andmore people don’t follow links. As a result, newer web pages have
fewer links.Whybother to include linkswhen the referencedpages can
just as easily be searched for inGoogle?But PageRank is basedon links,
and relies on the fact that there are many links for its effectiveness. As
fewer and new pages have as many links as earlier ones, PageRank’s
effectiveness decreases.
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PageRank is so good that it is changing the way we navigate the web
from surfing to searching, weakening the premise on which it itself is
based. Of course, Google has many more tricks up its sleeve. For one,
it can monitor your browsing history and use the links you actually
click on to augment its decisions onwhich pages are important. Addi-
tionally, the terms that are more often queried by users may also be
indirectly affecting the importance of web pages, with those dealing
with more sought-after topics becoming more important over time.
As the web, our use of it, and even our ownmemories evolve, so does
search technology itself, each affecting the other far more closely than
apparent at first glance.

* * *
It is important to note and remember that, in spite of the small insights
that we may gain from experiments such as the one at Brown Univer-
sity,we really don’t knowhowour brains ‘lookup’ things.What causes
Sherlock Holmes to link the visual image of scruffs onWatson’s boot
to their probable cause? Certainly more than a simple ‘lookup’. What
memory does the image trigger? How do our brains then crawl our
internal memories during our reasoning process? Dowe proceed link
by link, following memories linked to each other by common words,
concepts, or ideas, sort of like Serge and Brin’s hypothetical random
surfer hops frompage topage?Ordowealsouse somekindof efficient
indexing technique, like a search engine, so as to immediately recall all
memories that share some features of a triggering thought or image?
Many similar experiments have been conducted to study such mat-
ters, including those involving other rational models where, as before,
computational techniques are compared with human behaviour. In
the end, as of today we really don’t have any deep understanding of
how humanmemory works.
The brain’s look up mechanisms are certainly more complex than

the fairly simple look up that a search engine uses. For example, some
people (including myself ) report that they often fail to recognize a
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colleague from work when seeing them at, say, a wedding recep-
tion. The brain’s face recognition process, for such people at least,
appears to be context-dependent; a face that is instantly recogniz-
able in the ‘work’ context is not at the top of the list in another,
more ‘social’ context. Similarly, it is often easier to recall the name
of a person when it is placed in a context, such as ‘so-and-so whom
you met at my last birthday party’. Another dimension that our
memories seemingly encode is time. We find it easy to remember
the first thing we did in the morning, a random incident from our
first job, or a memory from a childhood birthday party. Along with
each we may also recall other events from the same hour, year, or
decade. So the window of time within which associatedmemories are
retrieved depends on how far back we are searching. Other studies
have shown that memories further back in time are more likely to be
viewed in third-person, i.e., where one sees oneself. Much more has
been studied about human memory; the book Searching for Memory:

The Brain, the Mind, and the Past,15 by Daniel Schacter is an excellent
introduction.
The acts of remembering, knowing, and making connections are

all intimately related. For now we are concerned with ‘looking up’,
or remembering, and it seems clear from a lot of scientific as well
as anecdotal evidence that not only are our memories more com-
plex than looking up a huge index, but that we actually don’t have
any single huge index to look up. That is why we find it difficult to
connect events from different mental compartments, such as the Bat-
tle of Plassey and Napoleon’s defeat at Waterloo. At the same time,
our memories, or experiences in fact, make us better at making con-
nections between effects and causes: Holmes’s memory of his boots
being similarly damaged in the past leads him to the probable cause of
Watson’s similar fate.
Vannevar Bush also clearly recognized the differences between a

mechanical index-based lookup that is ‘able to key one sheet of a
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million before an operator in a second or two’8 as ‘might even be of
use in libraries’,8 versus how humanmemory operates:

The humanmind does not work that way. It operates by association. With
one item in its grasp, it snaps instantly to the next that is suggested by the
association of thoughts, in accordance with some intricate web of trails
carried by the cells of the brain. It has other characteristics, of course; trails
that are not frequently followed are prone to fade, items are not fully per-
manent,memory is transitory. Yet the speedof action, the intricacyof trails,
the detail of mental pictures, is awe-inspiring beyond all else in nature.8

Sowhat, if anything, ismissing from today’sweb-search engineswhen
compared to human memory? First, the way documents are ‘linked’
to one another in the web, i.e., the hyperlinks that we might traverse
while surfing the web, which are pretty much built in by the author of
a web page. The connections between our experiences and concepts,
our ‘association of thoughts’, are based far more on the similarities
between different memories, and are built up over time rather than
hard-wired like hyperlinks in a web page. (Even so, as we have hinted,
Google already needs to exploit dynamic information such as brows-
ing histories, in addition to hyperlinks, to compensate for fewer and
fewer hyperlinks in new web pages.)
‘Associative memories’ are one class of computational models that

attempt to mimic human memory’s ability to dynamically form link-
ages based on similarities between experiences. We shall cover one
such associative-memory model, called ‘Sparse Distributed Memory’
(SDM16), in Chapter 5, ‘Predict’. Unlike web search that takes a query
consisting of a few words as input, the SDM model assumes that
the query is itself fairly large, i.e, a complete ‘experience’, with many
details. This is like giving an entire document to a search engine as
a query, rather than just a few words. Another possible difference
between the way web search works has to do with how we perceive
the results of a memory ‘lookup’. Web search returns many, often
thousands of, results, albeit ordered rather intuitively by PageRank.
On the other hand, our own memory recall more often than not
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returns just one or at worst a small set of closely related concepts,
ideas, or experiences, or even a curious mixture of these. Similarly,
what an associative SDM recalls is in fact a combination of previously
‘stored’ experiences, rather than a list of search results—but more
about SDM later in Chapter 5, ‘Predict’.
In a similar vein, the web-search model is rather poor at handling

duplicates, and especially near-duplicates. For example, every time
we see an apple we certainly do not relegate this image to memory.
However, when we interact with a new person, we do form some
memory of their face, which gets strengthened further over subse-
quentmeetings. On the other hand, a search engine’s indexer tirelessly
crawls every new document it can find on theweb, largely oblivious of
whether anearly exactly similar document already exists.Andbecause
every document is so carefully indexed, it inexorably forms a part of
the long list of search results for every query that includes any of the
words it happens to contain; never mind that it is featured alongside
hundreds of other nearly identical ones.
The most glaring instance of this particular aspect of web search

can be experienced if one uses a ‘desktop version’ of web search,
such as Google’s freely downloadable desktop search tool that can
be used to search for files on one’s personal computer. In doing
so one quickly learns two things. First, desktop search results are
no longer ‘intuitively’ ordered with the most ‘useful’ ones magically
appearing first. The secret-sauce of PageRank appears missing; but
how could it not be? Since documents on one’s PC rarely have hyper-
links to each other, there is no network on which PageRank might
work. In fact, the desktop search tool does not even attempt to
rank documents. Instead, search results are ordered merely by how
closely they match one’s query, much like the search engines of the
pre-Google era.
The second important thing one notices with desktop search is that

there are many near-duplicates in each list of search results. If you are
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a typical PC user, you would often keep multiple versions of every
document you receive, edit, send out, receive further updates on, etc.
Multiple versions of the ‘same’ document, differing from each other
but still largely similar, are inevitable. And vanilla web-search cannot
detect such near-duplicates. Apart from being annoying, this is also
certainly quite different from how memory works. One sees one’s
own home every single day, and of course each time we experience it
slightly differently: from different angles for sure, sometimes new fur-
niture enters our lives, a new coat of paint, and so on. Yet thememory
of ‘our home’ is a farmore constant recollection, rather than a long list
of search results.
How might a web-search engine also recognize and filter out near-

duplicates? As we have seen, there are many billions of documents on
the web. Even on one’s personal desktop, we are likely to find many
thousands of documents. How difficult would it be for computers,
even the millions that power the web, to compare each pair of items
to check whether or not they are so similar as to be potential ‘near-
duplicates’? Tofigure this outweneed toknowhowmany pairsof items
can be formed, out of a few thousand, or, in the case of the web, many
billions of individual items. Well, for n items there are exactly n×(n−1)

2

pairs of items. If the number of items doubles, the number of pairs
quadruples. A thousand items will have half a million pairs; a billion,
well, half a billion trillion pairs. Such behaviour is called quadratic, and
grows rapidly with n as compared to the more staid linear and mildly
super-linear behaviours we have seen earlier. Clearly, finding all near-
duplicates by brute force is unfeasible, at least for web documents.
Even on a desktop with only tens of thousands of documents it could
take many hours.
Quite surprisingly though, a new way to find near-duplicates in

large collections without examining all pairs was invented as recently
as the mid-1990s. This technique, called ‘locality sensitive hashing’ or
(LSH17) has now found its way into different arenas of computing,
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including search andassociativememories, aswell asmanyotherweb-
intelligence applications.
A simple way to understand the idea behind LSH is to imagine hav-

ing to decide whether two books in your hand (i.e., physical volumes)
are actually copies of the same book. Suppose you turned to a random
page, saypage 100, in eachof the copies.With aquick glance youverify
that theywere the same; thiswouldboost your confidence that the two
were copies of the samebook.Repeating this check for a fewmore ran-
dompage choiceswould reinforce your confidence further. Youwould
not need to verify whether each pair of pages were the same before
being reasonably satisfied that the two volumes were indeed copies of
the samebook. LSHworks in a similarmanner, butonanycollectionof
objects, not just documents, as we shall describe in Chapter 3, ‘Learn’.
Towards the end of our journey, in Chapter 5, ‘Predict’, we shall also

find that ideas such as LSHare not onlymakingweb-intelligence appli-
cations more efficient, but also underly the convergence of multiple
disparate threads of AI research towards a better understanding of
how computingmachinesmight eventuallymimic some of the brain’s
more surprising abilities, including memory.

Deeper and Darker

Stepping back a bit now, it may seem from our discussion so far that
Google truly gives us instant access to ‘all the world’s information’.
Clearly this is not the case. For one, as recounted earlier, our personal
desktops are perhaps more difficult warehouses to search than the
entire indexed web. But there is much more than the indexed web: for
example,Google doesnot, as of now (thankfully), let anyone accessmy
bank account number or, God forbid, my bank balance. Neither does
it provide general access to my cellphone number or email address,
and certainly not the contents of my emails—at least not yet. (Unfor-
tunately, many people do make personal information public, often
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inadvertently, in which case Google’s incessant crawlers do index that
data and make it available to anyone who wants to look for it, and
even others who happen to stumble upon it in passing.) All of this
data is ‘on the web’ in the sense that users with the right privileges can
access the data using, say, a password. Other information might well
be public, such as the air fares published by different airlines between
Chicago and New York, but is not available to Google’s crawlers: such
data needs specific input, such as the source, destination, and dates of
travel, before it can be computed. Further, the ability to compute such
data is spread acrossmanydifferentweb-basedbooking services, from
airlines to travel sites.
The information ‘available’ on the web that is actually indexed by

search engines such as Google is called the ‘surface web’, and actu-
ally forms quite a small fraction of all the information on the web.
In contrast, the ‘deep web’ consists of data hidden behind web-based
services,within sites that allowusers to lookup travel prices, used cars,
store locations, patents, recipes, andmanymore formsof information.
The volume of data within the deep web is in theory huge, exponen-
tially large in computer science terms. For example, we can imagine
an unlimited number of combinations of many cities and travel fare
enquiries for each. In practice of course, really useful information hid-
den in the deep web is most certainly finite, but still extremely large,
and almost impossible to accurately estimate. It is certainly far larger
than the indexed surface web of 50 billion or so web pages.
Each form can give rise to thousands, sometimes hundreds of thou-

sands, of results, each of which qualify as a deep web page. Similarly,
every Facebook or Twitter post, or every Facebook user’s ‘wall’ might
be considered a deep web page. Finally, if one considers all possible
pages of search results, then the size of the deepweb is potentially infi-
nite.On theotherhand, even ifweomit suchdefinitions that obviously
bloat our estimates, we are still led to a fairly large figure: experiments
published in 200718 reported that roughly 2.5% of a random sample
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of web pages were forms that should be considered part of the deep
web. Even if we assume each form to produce at most a thousand
possible results, we get a size of at least a trillion for the size of such a
deepweb.∗ If we increase our estimate of the number of distinct results
the average form can potentially return, we get tens of trillions or even
higher as an estimate for the size of the deep web. The point is that
the Deeb web is huge, far larger than the the indexed web of 50 billion
pages.
Search engines, including Google, are trying to index and search

at least some of the more useful parts of the deep web. Google’s
approach19 has been to automatically try out many possible inputs
and input combinations for a deep web page and figure out those that
appear to give the most results. These results are stored internally by
Google and added to the Google index, thereby making them a part
of the surface web. There have been other approaches as well, such as
Kosmix,20 whichwasacquiredbyWalmart in2010.Kosmix’s approach
was to classify and categorize the most important and popular web-
based services, using a combination of automated as well as human-
assisted processes. In response to a specific query, Kosmix’s engine
would figure out a small number of themost promising web-services,
issue queries to them on the fly, and then collate the results before
presenting them back to the user. Searching the deep web is one of
the more active areas of current research and innovation in search
technology, and it is quite likely that many more promising start-ups
would have emerged by the time this book goes to press.

* * *
Thewebhas a lot of data for sure, but so doother databases that are not
connected to the web, at least not too strongly, and in many cases for
good reason. All the world’s wealth resides in the computer systems
of thousands of banks spread across hundreds of countries. Every day

∗ Twoand ahalf per cent of 50billion indexedweb-pages times a thousand is 1.25 trillion.
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billions of cellphones call eachother, and records of ‘who calledwhom
when’ are kept, albeit temporarily, in the systems of telecommuni-
cations companies. Every parking ticket, arrest, and arraignment is
recorded in some computer or the other withinmost police or judicial
systems. Each driving licence, passport, credit card, or identity card of
any form is also stored in computers somewhere. Purchased travel of
any kind, plane, rail, ship, or even rental car, is electronically recorded.
And we can go on and on; our lives are being digitally recorded to
an amazing degree, all the time. The question is, of course, who is
looking?
Recently a Massachusetts resident got a letter informing him that

his driving licence had been revoked. He could hardly recall the last
time he had been cited for any traffic violations, so of course this
was an unpleasant surprise.21 It turned out that his licence was sus-
pected of being fraudulent by a fraud detection tool developed by the
Department of Homeland Security to check fraud and also assist in
counter-terrorism. His only fault was that his face looked so simi-
lar to another driver that the software flagged the pair as a potential
fraud. Clearly this is an example of a system failure; at some point
human investigation should have taken place before taking the dras-
tic action of licence cancellation. But the point is that someone, or
some computer software, is looking at all our personal data, all the
time, at least nowadays, and especially in some countries such as the
US. Such intense surveillance by government agencies in the US is a
recent phenomenon that has evolved after the 9/11 attacks. It is inter-
esting to note that the success of Google and other web-intelligence
applications has happenedmore or less in parallel with this evolution.
At the same time, the ease with which disparate data from multiple
sources can be accessed by such agencies, such as for correlating driv-
ing licence, phone, bank, and passport records, still has a long way to
go, even though the situation is very different fromwhere it was prior
to 9/11.
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Khalid Almihdhar was one of the nineteen terrorists involved in
the 9/11 attacks. On 31 August 2001, Almihdhar was put on a national
terrorist watchlist, based on the CIA’s long-running investigation of
himandother al-Qaeda terrorists thathad thrownupenoughevidence
that he was in the US, and ‘armed and dangerous’. That he should
probably have been placed on the watchlist much earlier, as post-9/11
investigations have concluded, is another story. Nevertheless, the FBI
began investigatingAlmihdhar’swhereabouts and activities a fewdays
later. Robert Fuller, the FBI investigator assigned to this task, claims
to have searched a commercial database, called ChoicePoint, that even
thenmaintainedpersonal informationonUS residents, including their
phone numbers and addresses. However, the ChoicePoint database
did not reveal credit card transactions. As journalist Bob Woodward
would later conclude, ‘If the FBI had done a simple credit card check
on the two 9/11 hijackers who had been identified in the United States
before 9/11, Nawaf Alhazmi and Khalid Almihdhar, they would have
found that the twomenhad bought 10 tickets for earlymorning flights
for groups of other Middle Eastern men for September 11, 2001. That
was knowledge that might conceivably have stopped the attacks’.21

Whether or not such a search would have revealed this information
in an obvious-enough way, or whether enough action would have
ensued to actually stop the attacks, remains a matter of speculation.
However, the point to note is that Robert Fuller could not just ‘Google’
Almihdhar in some manner. That was not because Google had yet to
attain prominence, but because different databases, such as Choice-
Point, credit card transaction records, andotherswere not crawled and
indexed together in the manner that Google today crawls and indexes
the entire web. Presumably, the situation is slightly different now, and
law enforcement investigators have greater abilities to searchmultiple
databases in a ‘Google-like’ fashion. We don’t know the exact state of
affairs in this regard in the US; the true picture is, for obvious reasons,
closely guarded.
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What we do know is that in 2002, immediately in the wake of 9/11,
the US initiated a ‘Total Information Awareness’ (TIA) program that
wouldmake lapses such as that of Fuller a thingof the past. In addition,
however, it would also be used to unearth suspicious behaviour using
data frommultiple databases, such as a person obtaining a passport in
one name and a driving licence in another. The TIA programwas shut
downby theUSCongress in2003, afterwidespreadmediaprotests that
it would lead to Orwellian mass surveillance of innocent citizens. At
the same time, we also know that hundreds of terror attacks on the
US and its allies have since been successfully thwarted.22 The dismem-
bering of a plot to bomb nine US airliners taking off from London in
August 2006 could not have taken place without the use of advanced
technology, including the ability to search disparate databases with at
least some ease.
Whatever may be the state of affairs in the US, the situation

elsewhere remains visibly lacking for sure. In the early hours of 27
November 2008, as the terrorist attacks on Mumbai were under way,
neither Google or any other computer system was of any help. At
that time no one realized that the terrorists holed up in the Taj Mahal
and Trident hotels were in constant touch with their handlers in Pak-
istan. More importantly, no one knew if Mumbai was the only tar-
get: was another group planning to attack Delhi or another city the
next day? The terrorists were not using some sophisticated satellite
phones, but merely high-end mobile handsets, albeit routing their
voice calls over the internet using VOIP.∗ Could intelligence agencies
have come to know this somehow? Could they have used this knowl-
edge to jam their communications? Could tracing their phones have
helped guard against any accompanying imminent attacks in other
cities? Could some formof very advanced ‘Google-like’ search actually

∗ ‘Voice-over IP’, a technique also used by the popular Skype program for internet tele-
phony.
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play a role even in such real-time, high-pressure counter-terrorism
operations?
Every time a mobile phone makes a call, or, for that matter, a data

connection, this fact is immediately registered in themobile operator’s
information systems: a ‘call data record’, or CDR, is created. The CDR
contains, amongother things, the time of the call, themobile numbers
of the caller, and the person who was called, as well as the cellphone
tower to which each mobile was connected at the time of the call.
Even if, as in the case of the 26/11 terrorists, calls are made using VOIP,
this information is noted in the CDR entries. The cellphone operator
uses such CDRs inmanyways, for example, to compute yourmonthly
mobile bill.
While each mobile phone is connected to the nearest cellphone

tower of the chosen network operator, its radio signal is also contin-
uously received at nearby towers, including those of other operators.
In normal circumstances these other towers largely ignore the signal;
however, they domonitor it to a certain extent; when a cellphone user
is travelling in a car, for example, the ‘nearest’ tower keeps changing, so
the call is ‘handedoff’ to thenext tower as the locationof the cell phone
changes. In exceptional, emergency situations, it is possible to use the
intensity of a cell phone’s radio signal as measured at three nearby
towers to accurately pin point the physical location of any particular
cell phone. Police and other law-enforcement agencies sometimes call
upon the cellular operators to collectively provide such ‘triangulation-
based’ location information: naturally, such information is usually
provided only in response to court orders. Similar regulations con-
trol the circumstances under which, and to whom, CDR data can be
provided.
Nevertheless, for amoment let us considerwhat couldhavebeenpos-

sible if instant access to CDRs as well as triangulation-based location
information could be searched, in a ‘Google-like’ fashion, by counter-
terrorism forces battling the 26/11 terrorists in pitched gun-battles in
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the corridors of five-star hotels in Mumbai, India’s financial capital,
for over three days.
The CDR data, by itself, would provide cellphone details for all

active instruments within and in the vicinity of the targeted hotels;
this would probably have been many thousands—perhaps even hun-
dreds of thousands—of cellphones. Triangulation would reveal the
locations of each device, and those instruments operating only within
the hotels would become apparent. Now, remember that no one knew
that the terrorists were using data connections to make VOIP calls.
However, having zeroed in on the phones operating inside the hotel,
finding that a small number of devices were using data connections
continually would have probably alerted the counter-terrorism forces
to what was going on. After all, it is highly unlikely that a hostage or
innocent guest hiding for their life in their roomswould be surfing the
internet on theirmobile phone.Going further, once the terrorists’ cell-
phones were identified, they could have been tracked as they moved
inside thehotel; alternatively, a tactical decisionmight havebeen taken
to disconnect those phones to confuse the terrorists.
While this scenario may seem like a scene from the popular 2002

filmMinority Report, its technological basis is sound. Consider, for the
moment, what your reaction would have been to someone describing
Google search, which we are all now used to, a mere fifteen or twenty
years ago: perhaps it too would have appeared equally unbelievable.
In such a futuristic scenario, Google-like search of CDR data could, in
theory, be immensely valuable and provide in real-time information
that could be of direct use to forces fighting on the ground.
Accepting that such a system may be a long way off, especially in

India, even a rudimentary system such as one that could have helped
Robert Fuller stumble uponAlmihdhar’s credit card purchases, would
be of immense value in possibly preventing future terror attacks in
the country. An investigator tracing a suspicious cellphone would
greatly benefit from being able to instantly retrieve the most recent
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international calls made with the phone number, any bank accounts
linked to it, any airline tickets booked using the number as reference
along with the credit cards used in such transactions. All this without
running around from pillar to post, as is the situation today, at least in
most countries. Leave aside being able to search telecommunications
and banking data together, as of today even CDR data from the same
operator usually lies in isolated silos based on regions. Our web expe-
rience drives our expectations of technology in other domains, just as
do films such as Minority Report. In the case of the web, however, we
know that it really works, and ask why everything else can’t be just
as easy.

* * *
It is now known that the 26/11 Mumbai attacks were planned and
executed by the Lashkar-e-Taiba, a terrorist group operating out of
Pakistan. A recent book23 by V. S. Subrahmanian and others from
the University of Maryland, Computational Analysis of Terrorist Groups:
Lashkar-e-Taiba, shows that many actions of such groups can possibly
even be predicted, at least to a certain extent. All that is required is
beingable to collect, store, andanalyse vast volumesofdatausing tech-
niques similar to those we shall describe in later chapters. The shelved
TIA program of the US had similar goals, and was perhaps merely
ahead of its time in that the potential of big-data analytics was then
relativelyunknownanduntested.After all, itwasonly in the remainder
of the decade that the success of the web companies in harnessing the
value of vast volumes of ‘big data’ became apparent for all to see.
In the days and months that followed the 26/11 attacks, a concerted

nationwide exercise was initiated in India to develop a National Intelli-
gence Grid, now called NATGRID,24 that would connect many public
databases in the country, with the aim of assisting intelligence and law
enforcement activities in their counter-terrorism efforts. Informally,
the expectation was and remains that of ‘Google-like’ searches across
a variety of sources, be they well-structured data such as CDRs or
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bank transactions, or even unstructured public sources such as news,
blogs, and social media.
Would theNATGRIDsystembe required to replicate and store every

piece of data in the country?We know fromour deep dive intoGoogle
search that it would not; only the index would be required. But how
much computing power would be needed? Would it need millions of
servers like Google? An even bigger challenge was that data resides in
disparate computer systems that are not, unlike web pages, all linked
by the internet. Further, information is buried deep within disparate
and largely disconnected software applications, rather thanweb pages
using a common format. The situation is verymuch like the deepweb,
only deeper. Nevertheless, all these technical problems were found to
be solvable, at least in principle. Cooperation across different orga-
nizations was more of a hurdle than technology. Additionally, there
have been concerns about privacy, legality, and the dangers of mis-
use.25 Would NATGRID be doomed to fail from the start, based on
the sobering experience of the US with TIA? The jury is still open,
but the program, which was initiated in mid-2009, has yet to begin
implementation of any kind. As with TIA, there have been debates in
the government andmedia, aswell as turfwars between agencies, very
similar to the situation in the US prior to the 9/11 attacks.84

* * *
‘Looking’ at things, and looking up facts, are part of our everyday
thoughts and experience. In the past decade, we have also come to
rely on Google search of our collective experiences as recorded in the
massive volumes of ‘big data’ stored in theweb’smillions of servers. So
much so that ourdependenceon search is alsobeginning to change the
way we think; maybe for the worse in some respects, perhaps for
the better in others. We have found that the same algorithms used on
the web for determining importance, i.e., PageRank, can also closely
predict the most important memories retrieved by humans, at least
in some controlled experiments. Such observations lend credence to
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the suspicion that what we, in the guise of the smart engineers at
Google and other search companies, are building into the web, is able
to mimic, albeit in the weak-AI sense, some small element of our own
intelligent abilities.
Aside from raising many philosophical and normative questions,

web search is changing many other aspects of lives and society. Our
experiences of instant gratification fromweb search are driving expec-
tations in all quarters, including for access to our personal data by law
enforcement agencies. It therefore seems inevitable that Google-like
search of our personal data, however unpleasant, will only increase
over time. As such systems get deployed, they will also appear to
behave in increasingly intelligent ways, and often bordering on the
spooky, such as the unfortunate driver whose licence was revoked out
of the blue.Whether all thiswill lead to a saferworld, ormerely amore
intrusive one, is yet to be seen.
We are all, it seems, looking at our world through new lenses; at the

same time the lenses themselves are, in turn, looking back at us, and
‘listening in’, which is what we proceed to explore next.
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Asthe scandal over Rupert Murdoch’s News Corporation’s illegal
phone hacking activities broke to television audiences around

theworld, I could not help but wonderwhy?’ And I am suremany oth-
ers asked themselves the same question. What prompted Murdoch’s
executives to condone illegal activities aimed at listening into private
conversations? Obvious, you might say: getting the latest scoop on
a murder investigation, or the most salacious titbit about the royal
family. But let us delve deeper and ask again, as a childmight, why? So
that more readers would read the News of the World, of course! Stupid
question? What drove so many people, estimated at over 4 million, a
significant fraction of Britain’s population, to follow the tabloid press
so avidly? The daily newspaper remains a primary source of news for
the vast majority of the world’s population. Of course, most people
also read more serious papers than the News of the World. Still, what
is it that drives some news items to become headlines rather than be
relegated to the corner of an inside page?

Shannon and Advertising

The scientific answer is Information; capitalized here because there
is more to the term than as understood in its colloquial usage. You
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may call it voyeurism in the case of News of the World, or the hunger to
knowwhat is happening around the world for, say, theNew York Times.
Both forms of enquiry suffer from the need to filter the vast numbers
of everyday events that take place every second, so as to determine
those that would most likely be of interest to readers. The concept
of Information is best illustrated by comparing the possible headlines
‘Dog BitesMan’ and ‘ManBitesDog’. Clearly the latter, being a far rarer
event, is more likely to prompt you to read the story than the former,
more commonplace occurrence.
In 1948, Claude E. Shannon published a now classic paper entitled

‘A Mathematical Theory of Communication’.26 By then the telegraph,
telephone, and radio had spawned a whole new communications
industry with the AT&T company at its locus. Shannon, working
at AT&T Bell Laboratories, was concerned with how fast one could
communicate meaning, or information in its colloquial sense, over
wires or even the wireless. In defining a new theory with which to
solve such practical problems, he also arrived at a precise mathemat-
ical definition of Information. Shannon’s Information measured the
information (colloquial) content of a message in terms of the extent
to which its being successfully transmitted reduced some degree of
uncertaintyon thepart of the receiver. Thus,whether a telegraphoper-
ator transmitted ‘the price of AT&T stock just rose by five cents’, or
‘ATT + 5c’, the information content being transmitted was the same,
at least to two equally intelligent receivers. Shannon quantified the
amount of information in terms of the chance, or probability, of the
event whose occurrences were being communicated. Thus, if it was
quite normal for AT&T’s stock to rise by 5 cents, the information con-
tent was lower than for a rarer event, say the stock suddenly falling
by 5 dollars. Similarly, the story ‘Man Bites Dog’, being a rather rare
event, has a far greater information content than ‘Dog Bites Man’.
The rarer the news, the more likely it is to catch our interest, and it
therefore makes the headlines. Why? The paper wants you to buy a
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copy and read the story. In passing, you glance at the advertisements
placed strategically close by, which is what an advertiser has paid
goodmoney for.
True, but what if some of us only read the sports pages?
Think of yourself at a party where you hear snippets of many con-

versations simultaneously, even as you focus on and participate in one
particular interaction. Often you may pick up cues that divert your
attention, nudging you to politely shift to another conversation circle.
Interest is piqued by the promise both of an unlikely or original tale
and one that is closely aligned with your own predilections, be they
permanent or temporary. We all ‘listen for’ the unexpected, and even
more so for some subjects as compared to the rest. The same thing
is going on when we read a newspaper, or, for that matter, search,
surf, or scan stories on the web. We usually know, at least instinc-
tively or subconsciously, what should surprise or interest us. But the
newspaper does not. Its only measure of success is circulation, which
is also what advertisers have to rely on to decide how much space to
book with the particular paper. Apart from this the only additional
thing an advertiser can do is discover, ex post facto, whether or not their
money was well spent. Did Christmas sales actually go up or not? If
the latter, well, the damage has already been done. Moreover, which
paper should they pull their ads from for the next season? No clue. In
Shannon’s language, the indirectmessage conveyed by a paper’s circu-
lation, or for that matter ex post facto aggregate sales, contains precious
little Information, in terms of doing little to reduce the uncertainty of
whichpagesweare actually readingand therebywhichadvertisements
should be catching our eye.
Of course, it iswell known thatGoogle and the internet-based adver-

tising industry it engendered have changed the rules of the game, as
we shall describe in some detail very shortly. But it is interesting to
view what they have actually achieved from the perspective of Shan-
non’s information theory, which was itself concerned more with the

42



LISTEN

transmission of signals over wires and the ether. In our case we should
look instead at other kinds of signals, such a paper’s circulation, or
an advertiser’s end-of-season sales figures. Think of these as being at
the receiving end, again speaking in termsmore familiar to Shannon’s
world. And then there is the actual signal that is transmitted by you
andme, i.e., the storieswe seekout and actually read. The transmission
loss along this communication path, from actual reader behaviour to
the ‘lag’ measures of circulation or sales, is huge, both in information
content as well as delay. If such a loss were suffered in a telegraph
network, it would be like getting the message ‘AT&T goes out of busi-
ness’, a year after the transmission of the original signal, which might
have reported a sudden dip in share price. No stock trader would go
anywhere near such a medium!
Shannon was concerned both with precisely measuring the infor-

mation content of a signal and with how efficiently and effectively
information could be transmitted along a channel, such as a telephone
wire. He defined the information content of any particular value of a
signal as the probability of its occurrence. Thus, if the signal in ques-
tion was the toss of a fair coin, then the information content of the
signal ‘heads’ would be defined in terms of the probability of this value
showing up, which is exactly 1/2. Provided of course that the coin was
fair. A conman’s coin that had two heads would of course yield no
information when it inevitably landed on its head, with probability 1.
Recall our discussion of logarithmic-time algorithms in Chapter 1,
such as binary search. As it turns out, Shannon information is defined,
surprising as itmay seem, in terms of the logarithm of the inverse prob-
ability. Thus the information content conveyed by the fair coin toss is

log 2, which is exactly 1, and that for the conman’s coin is log 1, which,
as expected, turns out to be 0.∗ Similarly, the roll of a fair six-sided dice

∗ Recall that we are using base-two logarithms; thus log 2 = 1 because 21 = 2; similarly
20, or 2 multiplied by itself zero times, is 1, so log 1 = 0.
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has an information content of log 6, which is about 2.58, and for the
unusual case of an eight-sided dice, log 8 is exactly 3.
It turns out, as you might have suspected, that the logarithm crept

into the formal definition of information for good reason. Recall once
more how we searched for a word in a list using binary search in a
logarithmic number of steps: by asking, at each step, which half of
the list to look at; as if being guided through a maze, ‘go left’, then
‘go right’. Now, once we are done, how should we convey our newly
discovered knowledge, i.e., the place where our word actually occurs
in the list? We might remember the sequence of decisions we made
along the way and record the steps we took to navigate to our word of
interest; these are, of course, logarithmic in number. So, recording the
steps needed to reach one specific position out of n total possibilities
requiresus to recordatmost log n ‘lefts’ or ‘rights’, or equivalently, log n
zeros and ones.
Say the discoveredpositionwas the eighthone, i.e., the last in our list

of eight. To arrive at this position we would have had tomake a ‘right-
wards’ choice each timewe split the list; we could record this sequence
of decisions as 111. Other sequences of decisions would similarly have
their rendition in terms of exactly three symbols, each one or zero: for
example, 010 indicates that starting from the ‘middle’ of the list, say
position 4,∗ we look leftward once to the middle of the first half of the
list, which ends up being position 2.
Shannon, and earlier Hartley, called these zero–one symbols ‘bits’,

heralding the information age of ‘bits and bytes’ (where a byte is
just a sequence of eight bits). Three bits can be arranged in exactly
eight distinct sequences, since 2 × 2 × 2 = 8, which is why log 8 is 3.
Anotherwayof saying this is that because these three bits are sufficient
to represent the reduction in uncertainty about which of the eight

∗ Since the list has an even number of items, we can choose to define ‘middle’ as either
the 4th or 5th position; we choose the smaller option, consistently.
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words is being chosen, so the information content in themessage con-
veying the word position is 3. Rather long-winded? Why not merely
convey the symbol ‘8’? Would this not be easier? Or were bits more
efficient?
It makes no difference. The amount of information is the same

whether conveyed by three bits or by one symbol chosen from eight
possibilities. This was first shown by Shannon’s senior at Bell Labs,
Hartley, way back in 1928 well before Shannon’s arrival there. What
Shannon did was take this definition of information and use it to
define, in precise mathematical terms, the capacity of any channel for
communicating information. For Shannon, channels were wired or
wireless means of communication, using the technologies of tele-
graph, telephone, and later radio. Today, Shannon’s theory is used
to model data communication on computer networks, including of
course, the internet. But as we have suggested, the notion of a chan-
nel can be quite general, and his information theory has since been
applied in areas as diverse as physics to linguistics, and of course web
technology.
If the information content of a precise message was the degree to

which it reduced uncertainty upon arrival, it was important, in order
to define channel capacity, to know what the uncertainty was before
the signal’s valuewas known.Aswehave seen earlier, exactly onebit of
information is received by either of the messages, ‘heads’ or ‘tails’, sig-
nalling the outcome of a fair coin toss.We have also seen that no infor-
mation is conveyed for a two-headed coin, since it can only show one
result. Butwhat about a peculiar coin that shows up heads a third of the time
and tails otherwise? The information conveyed by each signal, ‘heads’ or
‘tails’, is nowdifferent: each ‘head’, which turns up 1/3 of the time, con-
veys log 3 bits of information, while ‘tails’ shows upwith a probability
2/3 conveying log 3

2 bits. Shannon defined the term entropy tomeasure
the average information conveyed over a large number of outcomes,
which could be calculated precisely as the information conveyed by
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each outcome, weighted by the probability of that outcome. So the
entropy of the fair coin signal is 1/2 × 1 + 1/2 × 1 = 1, since each pos-
sible outcome conveys one bit, and moreover each outcome occurs
half the time, on the average. Similarly, a sequence of tosses of the
two-headed coin has zero entropy. However, for the loaded coin, the
entropy becomes 1

3 log 3 + 2
3 log 3

2 , which works out to just under 0.7;
a shade less than that of the fair coin.
Shannon was interested in a theory describing the transmission

of information over any channel whatsoever. So he needed to figure
out the relationship between the uncertainties in the two signals at
each endof a communications channel,moreprecisely their entropies.
He defined the idea of mutual information between the signal sent
down a channel versus the one actually received. If the two signals
corresponded closely to each other, with only occasional discrepan-
cies, then the mutual information between them was high, other-
wise it was lower. A simple way to understand mutual information
is to imagine that you are the receiver of a signal, continuously get-
ting messages over a communication channel such as a telegraph or
radio. But you have no idea how closely the received messages match
those that were sent. Now suppose you somehow got independent
reports of what messages were actually sent, say by magic, or by
a messenger on horseback who arrived days later. You could work
out how often the channel misled you. The amount by which these
reports would surprise you, such as how often there were transmis-
sion errors, would allow you to measure how good or bad the ear-
lier transmissions were. As earlier with our coin tosses, the degree
of surprise, on average, should be nothing but the entropy of these
special reports, which Shannon called conditional entropy. If the condi-
tional entropy was high, i.e., the reports often surprised you by point-
ing out errors in transmission, then the mutual information between
the sent and received signals should be low. If the reports did not
surprise you much, behaving almost like a loaded coin that always
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gave the same result as your observation of the received signal, then
the conditional entropy was low and the mutual information high.
Shannon defined the mutual information as the difference between
the entropy of whatever was actually being transmitted and the
conditional entropy.
For example, suppose that you are communicating the results of a

fair coin toss over a communication channel that makes errors 1/3 of
the time. The conditional entropy, measuring your surprise at these
errors, is the same as for the loaded coin described earlier, i.e., close
to 0.7.∗ The entropy of the transmitted signal, being a fair coin, is 1; it,
and the mutual information, is the difference, or 0.3, indicating that
the channel transmission does somewhat decrease your uncertainty
about the source signal.On theother hand, if asmany as half the trans-
missions were erroneous, then the conditional entropy would equal
that of the fair coin, i.e., exactly 1,making themutual information zero.
In this case the channel transmission fails to convey anything about
the coin tosses at the source.
Next Shannon defined the capacity of any communication channel

as the maximummutual information it could possibly exhibit as long
as an appropriate signal was transmitted. Moreover, he showed how
to actually calculate the capacity of a communication channel, with-
out necessarily having to show which kind of signal had to be used
to achieve this maximum value. This was a giant leap of progress,
for it provided engineers with the precise knowledge of how much
information they could actually transmit over a particular communi-
cation technology, such as a telegraph wire over a certain distance or
a radio signal of a particular strength, and with what accuracy. At the
same time it left them with the remaining task of actually trying to

∗ The calculations are actually more complicated, such as when the chances of error
differ depending on what was transmitted, i.e., a head or a tail.
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achieve that capacity in practice, by, for example, carefully encoding
the messages to be transmitted.
Now, let us return to the world of advertising and the more abstract

idea of treating paper circulation or sales figures as a signal about our
own behaviour of seeking and reading. In terms of Shannon’s infor-
mation theory, themutual information between reader behaviour and
measures such as circulationor sales is quite low. Little canbe achieved
to link these since the channel itself, i.e., the connection between the
act of buying a newspaper and aggregate circulation or product sales,
is a very tenuous one.

The Penny Clicks

Enter online advertising on the internet. Early internet ‘banner’ adver-
tisements, which continue to this day, merely translated the experi-
ence of traditional print advertising onto aweb page. Themore people
viewed a page, the more one had to pay for advertising space. Instead
of circulation, measurements of the total number of ‘eyeballs’ viewing
a page could easily be derived frompage hits and other network-traffic
statistics. But themutual information between eyeballs and outcomes
remained as weak as for print media. Howweak became evident from
the dot.com bust of 2001. Internet companies had fuelled the preced-
ing bubble by grossly overestimating the value of the eyeballs they
were attracting. No one stopped to questionwhether the newmedium
was anything more than just that, i.e., a new way of selling traditional
advertising. True, a new avenue for publishing justified some kind of
valuation, but howmuchwas never questioned.With 20/20 hindsight
it is easy to say that someone shouldhavequestioned the fundamentals
better. But hindsight always appears crystal clear. At the same time,
history never fails to repeat itself.
As of this writing, a new bubble is looming in the world of social

networking. Just possibly, a deeper analysis, based perhaps on the
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concept of mutual information, might reveal some new insight. Is the
current enthusiasm for the potential profitability of ‘new age’ social
networking sites justified?Only timewill tell. In themeanwhile, recent
events such as the relative lukewarm response to Facebook’s initial
public offering inmid-2012 dogive us reason topause andponder. Per-
haps some deeper analyses using mutual information might come in
handy. To see how, let us first look atwhat theGoogle and other search
engines did to change the mutual information equation between con-
sumers and advertisers, thereby changing the fundamentals of online
advertising and, for that matter, the entire media industry.
An ideal scenario from the point of view of an advertiser would be

to have to pay only when a consumer actually buys their product. In
such a model the mutual information between advertising and out-
come would be very high indeed. Making such a connection is next
to impossible in the print world. However, in the world of web pages
and clicks, in principle this can be done by charging the advertiser
only when an online purchase is made. Thus, instead of being merely
a medium for attracting customer attention, such a website would
instead become a sales channel for merchants. In fact Groupon∗ uses
exactly such a model: Groupon sells discount coupons to intelligently
selected prospects, while charging themerchants a commission if and
only if its coupons are used for actual purchases.
In the case of a search engine, such as Yahoo! or Google, however,

consumers may choose to browse a product but end up not buying it
because the product is poor, for no fault of the search engine provided.
Sowhy shouldGoogle or Yahoo!waste their advertising space on such
ads?Todayonline advertisers use amodel called ‘pay-per-click’, or PPC,
which is somewhere in between, where an advertiser pays only if a
potential customer clicks their ad, regardless of whether that click gets
converted to a sale. At the same time, the advertiser does not pay if a

∗ <http://www.groupon.com>.
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customer merely looks at the ad, without clicking it. The PPC model
was first invented by Bill Gross who started GoTo.com in 1998. But it
was Google that made PPC really work by figuring out the best way
to charge for ads in this model. In the PPC model, the mutual informa-
tion between the potential buyer and the outcome is lower than for,
say, a sales channel such as Groupon. More importantly, however, the
mutual information is highly dependent on which ad the consumer
sees. If the ad is close to the consumer’s intent at the time she views
it, there is a higher likelihood that she will click, thereby generating
revenue for the search engine and a possible sale for the advertiser.
What better way to reduce uncertainty and increase the mutual

information between a potential buyer’s intent and an advertisement,
than to allow advertisers to exploit the keywords being searched on?
However, someone searching on ‘dog’ may be interested in dog food.
On the other hand, they may be looking to adopt a puppy. The solu-
tion was to get out of the way and let the advertisers figure it out.
Advertisers bid for keywords, and the highest bidder’s ad gets placed
first, followed by the next highest and so on. The ‘keyword auction’,
called AdWords by Google, is a continuous global event, where all
kinds of advertisers, from large companies to individuals, can bid for
placements against the search results of billions of web users. This
‘keyword auction’ rivals the largest stock markets in volume, and is
open to anyone who has a credit card with which to pay for ads!
Once more, as in the case of PPC, one should point out that the

concept of a keyword auction was not actually Google’s invention.
GoTo.com, later acquired by Overture and then by Yahoo!, actually
introduced keyword auctions. But there was a problem with their
model. The PPC-auctionmodel allowed advertisers to offer to pay only
for those keywords that would, in their view, best increase the mutual
information between a buyer’s intent and the possible outcome of
their viewing an ad. Still, themodelwouldwork only if the ads actually
got displayed often enough. The problemwas competition.OnceNike
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knew that Adidas ads were appearing first against some keywords,
say ‘running shoes’, they would up their bid in an effort to displace
their rival. Since the auction took place online and virtually instan-
taneously, Nike could easily figure out exactly what Adidas’s bid was
(and vice versa), and quickly learn that by bidding a mere cent higher
theywould achieve first placement. Since the cost of outplacing a rival
was so low, i.e., a very small increment to one’s current bid, Adidas
would respond in turn, leading to a spiralling of costs. While this may
have resulted in short-term gains for the search engine, in the long run
advertisers did not take to this model due to its inherent instability.
Google first figured out how to improve the situation: instead of

charging an advertiser the price they bid, Google charges a tiny incre-
ment over the next-highest bidder. Thus, Nike might bid 40 cents for
‘running shoes’, and Adidas 60 cents. But Adidas gets charged only 41
cents per click. Nike needs to increase its bid significantly in order to
displace Adidas for the top placement, and Adidas can increase this
gap without having to pay extra. The same reasoning works for each
slot, not just the first one. As a result, the prices bid end up settling
down into a stable configuration based on each bidder’s comfort with
the slot they get, versus the price they pay. Excessive competition is
avoided by this ‘second price’ auction, and the result is a predictable
and usable system. It wasn’t too long before other search engines
including Yahoo! also switched to this second-price auction model to
ensure more ‘stability’ in the ad-market.
What does the second-price auction give an advertiser from the per-

spective of mutual information? By bidding on keywords, merchants
can place their ads more intelligently, using keywords to gauge the
intent of the searcher they want to target. Further, they pay for ads
only when someone clicks on one. Both these factors, i.e., targeting
ads to keywords and linking payment to clicks, increase the mutual
information between each advertising dollar spent and an actual sale.
In fact, the correlation between the advertising expense and hits on a
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merchant’s website is perfect, i.e., the mutual information is exactly 1,
since themerchantpaysonly if auser actually visits themerchant’s site.
The remaining uncertainty of whether such a visit actually translates
to a sale is out of the hands of the search engine, and instead depends
on how good a site and product the merchant can manage. Another
way of looking at PPC is that the advertiser is paying to increase ‘cir-
culation’ figures for his site, ensuring that eyeballs read thematerial he
wants people to read, rather thanmerely hoping that they glance at his
ad while searching for something else.

Statistics of Text

However effective search-engine advertising might be, nevertheless a
bidder on Google’s AdWords (or Yahoo!’s ‘sponsored-search’ equiva-
lent) can only place advertisements on a search-results page, target-
ing only searchers who are looking for something. What about those
reading material on the web after they have found what they wanted
through search, or otherwise? Theymight be reading a travel site, blog,
or magazine. Howmight such readers also be presented with ads sold
through a keyword auction? Google’s solution, called AdSense, did
precisely this. Suppose you or I have published a web page on the
internet. If we sign up for AdSense, Google allows us to include a few
lines of computer code within our web page that displays contextually
relevant ads right there, on our web page, just as if it were Google’s
own page. Google then shares the revenue it gets from clicks on these
adswith us, the authors of theweb page. A truly novel businessmodel:
suddenly large numbers of independent web-page publishers became
Google’s partners through whom it could syndicate ads sold through
AdWords auctions.
Of course, as before in the case of the ‘second-price auction’ idea,

other search engines including Yahoo! quickly followed Google’s lead
and developed AdSense clones. At the same time, they struggled to
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matchGoogle’s success in this business: Yahoo! shut down itsAdSense
clone called ‘Publisher Network’ in 2010, only to restart it again very
recently in 2012, this time in partnership with Media.net, a com-
pany that now powers contextual search for both Yahoo! as well as
Microsoft’s Bing search engine.
So how does AdSense work? The AdWords ads are sold by keyword

auction, so if Google could somehow figure out the most important
keywords fromwithin the contents of our web page, it could use these
to position ads submitted to theAdWords auction in the samemanner
as done alongsideGoogle search results. Now,wemay think that since
Google is really good at search, i.e., finding the right documents to
match a set of keywords, it should be easy to perform the reverse,
i.e., determine the best keywords for a particular document. Sounds
simple, givenGoogle’s prowess in producing such great search results.
But not quite. Remember that the high quality of Google search was
due to PageRank, which orders web pages by importance, not words. It
is quite likely that, as per PageRank, ourweb page is not highly ranked.
Yet, because of our loyal readers, we do manage to get a reasonable
number of visitors to our page, enough to be a worthwhile audience
for advertisers: at least we think so, which is why we might sign up
for AdSense. ‘Inverting’ search sounds easy, but actually needs much
more work.
The keywords chosen for a particular web page should really repre-

sent the content of the page. In the language of information theory, the
technique for choosing keywords should make sure that the mutual
information between web pages and the keywords chosen for them
should be as high as possible. As it turns out, there is such a technique,
invented as long ago as 1972,27called TF-IDF, which stands for ‘term
frequency times inversedocument frequency’. The core ideahere is the
concept of inverse document frequency, or IDF, of a word (also called
‘term’). The idea behind IDF is that a word that occurs in many docu-
ments, such as theword ‘the’, is far less useful for searching for content
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than one that is rare, such as ‘intelligence’. All of us intuitively use this
concept while searching for documents on the web; rarely do we use
very commonwords. Rather, we try our best to choose words that are
likely tobehighly selective, occurringmoreoften in thedocumentswe
seek, and thereby give us better results. The IDF of a word is computed
from a ratio—the total number of web pages divided by the number
of pages that contain a particular word. In fact the IDF that seemed to
work best in practice was, interestingly enough, the logarithm of this
ratio.∗ Rare words have a high IDF, and are therefore better choices as
keywords.
The term frequency, or TF, on the other hand, is merely the number

of times the word occurs in some document. Multiplying TF and IDF
therefore favours generally rarewords that nevertheless occur often in
our web page. Thus, out of two equally rare words, if one occursmore
often in our web page, we would consider that a better candidate to be
a keyword, representative of our content.
TF-IDF was invented as a heuristic, based only on intuition, and

without any reference to information theory. Nevertheless, youmight
well suspect such a relationship. The presence of a rare word might
be viewed as conveyingmore information than that ofmore common
ones, just as does amessage informing us that some unexpected event
has nevertheless occurred. Similarly the use of the logarithm, intro-
duced in the TF-IDF formula due to its practical utility, points to a
connection with Shannon’s theory that also uses logarithms to define
information content. Our intuition is not too far off; recent research
has indeed shown that the TF-IDF formulation appears quite naturally
when calculating the mutual information between ‘all words’ and ‘all
pages’. More precisely, it has been shown that the mutual information
betweenwords andpages is proportional to the sum, over allwords, of

∗ The IDF of awordw is defined to be log N
Nw

; N being the total number of pages, ofwhich
Nw contain the word w.
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the TF-IDFs of each word taken in isolation.28 Thus, it appears that by
choosing, as keywords, those words in the page that have the highest
TF-IDF, we are also increasing the mutual information and thereby
reducing the uncertainty regarding the intent of the reader.
Is keyword guessing enough? What if an article mentions words

such as ‘race’, ‘marathon’, and ‘trophy’, but omits a mention of ‘run-
ning’ or ‘shoes’. Should an AdWords bidder, such as Nike or Adidas,
be forced to imagine all possible search words against which their ads
might be profitably placed? Is it even wise to do so? Perhaps so, if
the article in question was indeed about running marathon races. On
the other hand, an article with exactly these keywords might instead
be discussing a national election, using the words ‘race’, ‘marathon’,
and ‘trophy’ in a totally different context. How could any keyword-
guessing algorithm based on TF-IDF possibly distinguish between
these situations? Surely it is asking too much for a computer algo-
rithm to understand themeaning of the article in order to place it in the
appropriate context. Surprisingly though, it turns out that even such
seemingly intelligent tasks can be tackled using information-theoretic
ideas like TF-IDF.
Just as TF-IDF measures the relative frequency of a word in a page

weighted by its relative rarity overall, we can also consider pairs of
words occurring together. For example, the words ‘marathon’ and the
terms ‘42 kilometres’ or ‘26 miles’ are likely to occur together in at
least some articles dealing with actual running. On the other hand,
words such as ‘election’, ‘voters’, or ‘ballot’ are likely to occur together
in news about campaigning and politics. Can a computer algorithm
figure out such relationships by itself, without actually ‘understanding’
the content,whatever thatmeans? The frequencywithwhich eachpair
of words occur together, averaged over all pages, can certainly be cal-
culated. Essentiallywe need to count co-occurrences ofwords, i.e., the
number of times words occur together. But, just as in the case of indi-
vidual words, it is also a good idea to weight each such co-occurrence
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by the IDF of both words in the pair. By doing this, the co-occurrence
of awordwith a very commonword, such as ‘the’, is not counted, since
its IDFwill be almost zero.∗ In otherwordswe take a pair of words and
multiply their TF-IDF scores in every document, and then add up all
these products. The result is a measure of the correlation of the two
words as inferred from their co-occurrences in whatever very large
set of documents is available, such as all web pages. Of course, this is
done for every possible pair ofwords aswell. NowonderGoogle needs
millions of servers.
Exploiting such word–word correlations based on co-occurrences

ofwords indocuments is thebasis of ‘Latent SemanticAnalysis’,which
involves significantly more complex mathematics than the procedure
just outlined.29 Surprisingly, it turns out that Latent SemanticAnalysis
(or LSA) can perform tasks that appear to involve ‘real understand-
ing’, such as resolving ambiguities due to the phenomenon of polysemy,
where the sameword, such as ‘run’, has differentmeanings in different
contexts. LSA-based algorithms can also figure out themanymillions
of different topics that are discussed, in billions of pages, such as ‘having
to dowith elections’ versus ‘having to dowith running’, and also auto-
matically determine which topic, or topics, each page is most likely
about.
Sounds incredible? Maybe a simple example can throw some light

on how such topic analysis takes place. For the computer, a topic is
merely a bunch of words; computer scientists call this the ‘bag of
words’ model. For good measure, each word in a topic also has its
TF-IDF score, measuring its importance in the topic weighted by its
overall rarity across all topics. A bag of words, such as ‘election’, ‘run-
ning’, and ‘campaign’, could form a topic associated with documents
having to dowith elections. At the same time, aword such as ‘running’

∗ ‘The’ occurs in almost all documents, so the ratio N
Nw

is close to 1, and log 1 is 0.
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might find a place inmany topics, whereas one such as ‘election’might
span fewer topics.
Such topics can form the basis for disambiguating a web page on

running marathons from a political one. All that is needed is a sim-
ilarity score, again using TF-IDF values, between the page and each
topic: for each word we multiply its TF-IDF in the page in question
with the TF-IDF of the same word in a particular topic, and sum up
all these products. In this manner we obtain scores that measure the
relative contribution of a particular topic to the content of the page.
Thus, using such a procedure, Google’s computers can determine that
an article we may be reading is 90% about running marathons and
thereforeplaceNike’s advertisement forus to see,while correctlyomit-
ting this ad when we read a page regarding elections. So, not only
does Google watch what we read, it also tries to ‘understand’ the con-
tent, albeit ‘merely’ by using number crunching and statistics such as
TF-IDF.
It is important to note that while the computer might place many

words such as ‘election’, ‘running’, and ‘campaign’, in a topic that we
easily recognize as ‘dealing with elections’, it usually cannot come
up with a meaningful title for this topic. For it, a topic is a bag of
words, and just that, without any other ‘meaning’. The problem of
finding ‘good’ labels for such automatically detected topics remains
difficult for computers to do. Topic labelling is also closely related
to the problem of automatically creating a ‘back of the book’ index,
which was briefly mentioned in Chapter 1. As in the case of topic
titles, entries in a back-of-the-book index need to be succinct and
informative, summarizing the most important concepts being dis-
cussed. Bags of words will not do. Accurate automatic back-of-the-
book indexing is still an open problem, as discussed in a recent paper
by András Csomai and Rada Mihalcea: ‘Although there is a certain
degree of computer assistance, consisting of tools that help the pro-
fessional indexer to organize and edit the index, there are however

57



THE INTELLIGENT WEB

no methods that would allow for a complete or nearly-complete
automation’.30

* * *
It seems that Google is always listening to us: what we search for, what
we read, even what we write in our emails. Increasingly sophisticated
techniques are used, such as TF-IDF, LSA, and topic analysis, to bring
this process of listening closer and closer to ‘understanding’—at least
enough to place ads intelligently so as to make more profits.
Therein lies the rub. Is Google really understanding what we say?

Howharddoes it need to try?AreTF-IDF-based techniques enough, or
is more needed? Very early on after Google launched AdSense, people
tried, not surprisingly, to fool the system. They would publish web
pages full of terms such as ‘running shoes’, ‘buying’, and ‘price’, with-
out any coherent order. The goal was to ensure that their pages were
returned in response to genuine search queries.When visitors opened
such a page theywould realize that it contained junk. But it was hoped
that even such visitors might, just maybe, click on an advertisement
placed there by AdSense, thereby making money for the publisher of
the junk page. Google needed to do more than rely only on the bag-
of-words model. It needed to extract deeper understanding to com-
bat such scams, as well as much more. Thus, inadvertently driven by
the motive of profitable online advertising, web companies such as
Google quite naturally strayed into areas of research having to deal
with language, meaning, and understanding. The pressure of business
was high. They also had the innocence of not necessarily wanting
to solve the ‘real’ problem of language or understanding—just good
enough would do—and so they also made a lot of progress.

Turing in Reverse

Let us now return to the ‘Turing Test’, with which we began this book.
You may recall that the Turing Test was proposed in 1950 by Alan
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Turing1 as a way to evaluate progress towards the emulation of intelli-
gent behaviour by a computer. The ‘standard’ Turing Test ismost often
stated as follows: there are two players, a computer A and a human B,
each of whom communicate with a human interrogator C. The job of
C is to determine which of the two players is a computer, and which is
human. If a computer could be so designed as to fool the interrogator
often enough, it may as well, as Turing argued, be considered ‘intelli-
gent’. Turing was after the core essence of intelligence, in an abstract
form, divorced of the obvious physical aspects of being human, such
as having a body or a voice. Therefore, he suggested, ‘In order that
tones of voice may not help the interrogator the answers should be
written, or better still, typewritten. The ideal arrangement is to have a
teleprinter communicating between the two rooms’. In other words,
the interrogator could only listen to his subjects via text, much as,
for example, Google or Facebook do with our emails, queries, posts,
friend-requests, and other web writings or activities. Only in this case
Google and Facebook are machines.
Over the years, many variations of the Turing Test have been pro-

posed, each for a different purpose. The term ‘reverse Turing Test’ is
most often used for the casewhere the interrogator is also a computer,
such as a website’s software, whose purpose is to determine whether
it is communicating with a human or another computer. The use of
image-based ‘CAPTCHAs’,∗ where alphabets are rendered in the form
of distorted images that need to be identified, is a practical application
that can be viewed as a reverse Turing Test: CAPTCHAs are used to
prevent automated attacks on e-commerce sites. Here the interrogator
is the website software that uses the CAPTCHA image to ensure that
only genuine humans access the site’s services.
(As an aside, youmaywell wonder how correct answers for somany

different CAPTCHA problems are generated in the first place: services

∗ CompletelyAutomated Public Turing Test to TellComputers andHumansApart.
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such as recaptcha.net automate this step as well, usingmachine learning
techniques, as we shall describe in Chapter 3. Moreover, these services
provide an interesting side-benefit: contributing to efforts to digitize
printed as well as handwritten text.)
As described in Turing’s original article, he derived his test from an

imaginary ‘imitation game’, in which the participants are all human.
Player A is a man and player B a woman. Player A tries to fool player C
that he is in fact a woman, whereas the woman attempts to convey the
truth. Player C wins if he successfully guesses who is who. In Turing’s
Test, player C is a human, whereas in ‘reverse’ variations of the Turing
Test C is a computer, such as a server providing the CAPTCHA service,
or even a collection of millions of servers such as those powering
Google or Facebook.
Aswehave seen earlier, allweb-based services that dependononline

advertising revenue need to extract deeper understanding about con-
sumers visiting the web, so as to better target ads to them. Mutual
information needs to be maximized to attract advertisers. I would
argue that there is yet another variation of the reverse Turing Test
at play here, closer, in fact, to Turing’s initial imitation game. Play-
ers A and B are merely humans conversing with each other on the
web, say via email, or publishing and reading content on websites or
blogs. The interrogators are Google, Yahoo!, or Bing in the guise of
AdSense or any of its clones, as well as other web services such as
Facebook, Twitter, and their ilk. Their goal is to determine as much
as possible about A and B, and all others using the web. This could
just as well include whether A or B is male or female. They are also
interested in figuring out who is old or young, happy or sad, affluent
or poor . . . , a list that can go on forever. This ‘generalized reverse
Turing Test’ is the lifeblood of online advertising. The better Google
and others are at guessing our attributes, the more targeted their ads
can be, and the higher the likelihood that we will click such ads. As
a result the mutual information between what advertisers spend and
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what they receive is increased. ‘Intelligent’ behaviour is merely a side
effect required to achieve this aim. Perhaps that is why web compa-
nies have been somewhat successful, bothered as they are only with
very practical results, rather than with more lofty goals such as truly
understanding intelligence.
Can the ‘web-intelligence engines’ built by Google, Facebook, and

others really guess who is male or female, old or young, happy or
angry? Or whether a web page is targeted at the very affluent or not,
to a wide section of society or a niche? Most important from their
perspective is to determine the intent of the web user: is she inter-
ested in buying something or not? Evenmore simply, does a web page
convey any meaning to a human reader, or is it merely junk being
used to spam a contextual engine such as AdSense? What we might
well suspect is that in order to answer such questions with any hope
of success, the techniques used need to go beyond the bag-of-words
model described earlier.After all, if someonewrites ‘mynew . . . phone
is not terribly bad, compared to my old one . . . ’, are they making a
positive or negative comment? The bag-of-words model would see a
bunch of negative words and wrongly conclude that the comment is
negative. Just perhaps, some deeper analysis is required. Maybe our
usage of language needs to be deconstructed? It certainly appears that
themachineneeds to listen tousmuchmore carefully, at least for some
purposes.

Language and Statistics

Theweb is largely about text, or the writtenword. Search, surfing, and
advertising are all based on the premise that users of the web read.
Of course, there is also ample video and music content available on
the web today. Still, even though some new services such as Google
Glass allowus to searchusing images, for themost part our interaction
with even video and audio material remains largely through words:
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we search for, write about, and share videos andmusic through social
networks, blogs, and email—all based on text. Today there is a lot
of speculation about the so-far-elusive ‘spoken web’, using which we
might searchusingvoice, and listen towebcontent, using technologies
for speech recognition and speech-to-text conversion.31 Even if this
comes about, the ‘word’ and its usage via human language remains
central.
Language is, as far as we know, a uniquely humanmechanism. Even

thoughmany animals communicate with each other, and somemight
even use a form of code that could be construed as language, the
sophistication anddepthof human language is certainlymissing in the
wider natural world. The study of language is vast, even bordering on
the philosophical in many instances. We shall not endeavour to delve
too deep in these waters, at least for now. Instead we shall focus only
on a few ideas that are relevant for the purpose at hand, namely, how
might Google, or ‘the web’ in general, get better at our ‘generalized’
reverse Turing Test described earlier.
If there are just two important attributes about human language

that a machine facing the reverse Turing Test would need to deal with,
these are probably redundancy on the one hand, and ambiguity on the
other. Human language is highly redundant. (Even the previous few
paragraphs might convince you of this.) In order to convey an idea
with clarity, we often repeat the samemessage in different ways. From
the perspective of Shannon’s information theory, the redundancy of
language might well be understood as an elaborate coding scheme so
construed as to compensate for any ‘loss of information’ during ‘trans-
mission’ from one person’s mind to another. In fact, Shannon studied
the inherent redundancy of the English language in detail, but from a
purely information-theoretic viewpoint. As per Shannnon’s estimate,
English is 75% redundant, by which he meant that of all the possible
sentences that could be formed using a fixed number of letters and
spaces, only 25% of these convey new information. Shannon tested
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this hypothesis by asking a human subject, his wife in fact, to guess
the next letter in some text chosen at random.32 In the beginning, she
obviously guessedwrong; but asmore andmore text was revealed, for
example ‘the lampwas on the d——’, she was accurately able to guess
the next three letters. Often even more could be guessed accurately,
by taking into account relationships across sentences and the story
as a whole. Clearly, Shannon’s wife was using her experience to guess
the word ‘desk’ as being more likely than, say, ‘drape’. Similarly, given
only the partial sentence ‘the lamp was on——’, she might well have
guessed ‘the’ to be the next word. After all, what else could it be, if the
sentence did not end at that point?
What constitutes the ‘experience’ thatwebring to bear in a task such

as ‘predicting the next letter’?Many things: our experience of the usage
of language, as well as ‘common-sense knowledge’ about the world,
and much more. Each of these forms of experience has been studied
closely by linguists and philosophers as well as computer scientists.
Might this simple task be worthy of a rational model, as we have seen
earlier in the case of memory, which could shed some light on how
we convey and understand meaning through language? One way of
modelling ‘experience’ is mere statistics. A machine that has access
to vast amounts of written text should be able to calculate, merely by
brute force counting, thatmost of the time, across all the text available
to it, ‘the’ follows ‘the lampwason——’, or that ‘desk’ is themost likely
completion for ‘the lampwas on the d——’. Google certainly has such
a vast corpus, namely, the entireweb. Such a statistical approachmight
not seemvery ‘intelligent’, butmight it perhaps be effective enough for
a limited-purpose reverse Turing Test?
But the web is public, and its pages are available to us all. Let us

for the moment imagine that we use the statistics of language as
inferred by brute force using the entire web, to generate letters and
spaceswith the same frequencies. Using such a procedure,most of the
time we would produce valid words in the language. By further using
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statistics togenerate themost likelypairs ofwords, one after another in
sequence, what kind of text would result? In fact Shannon did exactly
this, using a far smaller corpus of English text of course. Even using
statistics from such a small base, he was able to generate text such as
‘THEHEADAND IN FRONTALATTACKONAN ENGLISHWRITER
THAT THE CHARACTER OF THIS POINT’.32 Clearly gibberish, con-
veying no meaning. Now suppose we used exactly such a procedure
to produce junk web pages appropriately peppered, in statistically
likely places, with selected words so as to attract contextual online
ads. Statistically speaking, a contextual ad-placement engine such as
Google’s AdSense would be unable to distinguish our junk from real
text, even though our text would be immediately flagged as meaning-
less by a human reader. Thus, at least the particular reverse Turing Test
of disambiguating junk pages frommeaningful ones does not appear
to have a purely statistical solution. Does the statistical approach to
language have inherent limitations?What more is required?
Imagine another limited reverse Turing Test, this time to judge the

intent of a human posting a query on Twitter, Facebook, or just email:
the post ‘looking to use an American flight to London next week’
should probably be accompanied by an airline advertisement. But is it
better to choose a discount offer to Londonbeing offered byAmerican
Airlines, or should AdSense find the highest bid amongst advertise-
ments across all carriers of US origin that fly to London, rather than
only the airline named ‘American’? Would the answer differ if it was
known that the author was writing from Paris rather than somewhere
in the US? (American Airlines presumably does not fly across the
English channel.)What if the sentence was ‘got into London onAmer-
ican, loved their service,what’s happening here?’ Clearly the latter post
does not indicate any imminent travel planning; instead the person
has already arrived in London, appears to be on holiday, and might
be more interested in ads from restaurants or theatres than airlines.
Further, it is quite likely that she already has a return flight on the
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same airline whose service she was already happy with; why waste an
airline ad on her?
You may well be thinking that this new reverse Turing Test is too

challenging for a machine. Humans, on the other hand, would often
make the right decision. What is the problem? Human language is,
unfortunately for the machine, quite full of ambiguities. Ambiguity
lends efficiency in the sense thatwe canuse the sameword, ‘American’,
in a variety of contexts. However, only our shared experience with
other humans, together with knowledge grounded in the real world,
such as the location of the author, and what routes American Airlines
services, allows us to disambiguate such sentenceswith high accuracy.
It is also precisely because of the ambiguity of language that we so lib-
erally employ redundancy in its usage.
Recent research has revealed deep connections between redun-

dancy in language, or rather our use of language, and the ambiguities
inherent in the medium itself as well as the world it seeks to describe.
For example, it has been shown through experiments that when we
speak we also tend to introduce redundancy in exactly those portions
that convey larger amounts of information (in the Shannon sense of
theword). Spoken language appears to exhibit a ‘uniform information
density’.33 It is precisely when we are making a specific point, con-
veying a remarkable insight, or describing an unusual event, that we
somehow increase the redundancy in our usage ofwords, say the same
thing in different ways, and, while speaking at least, ‘hum and haw’ a
bit, introducing pauses in speech filled with utterances such as ‘um’,
‘uh’, and ‘you know’.
It has also been recently argued that ambiguity, or more precisely

vagueness, is often used purposefully. Not deliberately to confuse, but
rather to conveymoremeaning, and not less.34 ‘I am looking for a large
car’, might mean different things tome, whomight be used to driving
a compact car, versus someone who regularly drives a minivan. Yet,
the speaker may not be unwilling to consider the latest discounted
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rental price for an SUV. Vagueness has purpose, and precisely because
our use of language is often more than, or in fact not even, to convey
a message as clearly as possible. We expect a reply; communication
is a two-way street. The sum and substance is that language is not
easy to ‘process’. It’s awonder howwe allmanage nevertheless, almost
intuitively.

Language and Meaning

Probably the most fundamental advance in the study of language, at
least from the perspective of computer-based processing of natural
languages, is due to Noam Chomsky. Chomsky’s now famous 1957
treatise Syntactic Structures35 was the first to introduce the idea of a
formal grammar. We all know language is governed by grammatical
rules; some sentences are obviously ‘wrong’, not because they convey
anuntruth, butbecause theydon’t follow the rulesof the language. The
example used by Chomsky to demonstrate this distinction between
syntactic correctness and meaning, or semantics, is also now well
known: the sentence ‘Colourless green ideas sleep furiously’, follows
the rules of language but means nothing, since ideas cannot be green.
Chomsky invented the theory of ‘phrase structure grammars’ to pre-
cisely define what it meant for a sentence to be grammatically correct.
A phrase-structure ‘parse’ of a sentence would group words together;
for example [[Colourless [green [ideas]]][sleep [furiously]]]. The parse
indicates that ‘Colourless’ and ‘green’ are adjectives in a compound
noun phrase, and eachmodify the noun ‘ideas’. The adverb ‘furiously’
modifies theverb ‘sleep’ in the secondgrouping,which is a verbphrase.
The sentence as awhole follows a ‘subject-verb’ pattern, with the iden-
tifiednounphrase andverbphraseplaying the rolesof subject andverb
respectively.
According to Chomsky’s theory, sentences that can be successfully

‘parsed’ are syntactically correct. Syntax certainly provides a clue to
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meaning, if it is there, but by itself does not reveal or indicate mean-
ing. Syntactical analysis of a sentence can be at many levels. In simple
‘part-of-speech tagging’, we merely identify which words are nouns,
verbs, adjectives, etc. More careful analysis yields what is called shal-
low parsing, where words are grouped together into phrases, such as
noun phrases and verb phrases. The next level is to produce a parse
tree, or nested grouping of phrases, such as depicted in the previ-
ous paragraph. The parse tree throws some light on the relationship
between the constituent phrases of the sentence. However, deeper
analysis is required to accurately establish the semantic, i.e., mean-
ingful, roles played by each word. A statement such as ‘the reporter
attacked the senator’ might be parsed as [[the [reporter]][attacked
[the [senator]]]]. Here the parse-tree appears to clearly identify who
attacked whom. On the other hand, a slightly modified statement,
‘the reporter who the senator attacked’ would be syntactically parsed
as [[the [reporter]][who [[the [senator]] attacked]]]. Now the sce-
nario being talked about is not as clearly visible as earlier. ‘Depen-
dency parsers’ and ‘semantic role labelling’ techniques seek to bring
more clarity to such situations and clearly identify what is happen-
ing, e.g., who is playing the role of an attacker, and who is the vic-
tim attacked. Humans perform such semantic role labelling with ease.
Machines find it much harder. Nevertheless, much progress has been
made in the processing of natural language by machines. Generating
parse trees is now easily automated. Dependencies and semantic roles
have also been tackled, to a certain extent, but only recently in the
past decade.
Most surprisingly though, most of the recent advances in natu-

ral language processing (NLP) have been made using statistical tech-
niques,which, as youmay recall, wehad earlier thoughtwere not good
enough for such purposes. On the contrary, Chomsky’s philosophy of
languagewas founded on a deep distrust of statistical explanations for
human language. Chomsky himself elucidated his position explicitly
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in his 1957 paper by comparing the two sentences (1) ‘colourless green
ideas sleep furiously’ and (2) ‘furiously sleep ideas green colourless’. To
quote Chomsky

It is fair to assume that neither the sentence (1) nor (2) (nor indeed any part
of these sentences) has ever occurred in English discourse. Hence, in any
statistical model for grammaticalness, these sentences will be ruled out on
identical grounds as equally ‘remote’ from English. Yet (1), though nonsen-
sical, is grammatical, while (2) is not.35

Chomsky used this and similar examples to argue that the human
ability for communicating via language is inborn and innate, built into
our brains, rather than something thatwe learn from experience aswe
grow up.
We shall not dwell on such philosophical matters here. The fact is

that it is through statistical models, similar in spirit to Shannon’s cal-
culations ofword-pair frequencies, that computer scientists have been
able to build highly accurate algorithms for shallow parsing, comput-
ing parse trees, aswell as unearthing dependencies and semantic roles.
NLP remains a vibrant area of research where progress is being made
every day. At the same time, it is important to realize that the statisti-
cal approach relies heavily on the availability of large corpora of text.
Unlike Shannon’s task of computing pair-wise frequencies, statistical
NLP techniques need far richer data. The corpus needs to have been
‘marked up’, to indicate the parts of speech a word can take, its group-
ing with other words in a phrase, the relative structure of phrases in a
parse tree, dependencies of words and their semantic roles.
As one might imagine, producing such a corpus of marked-up text

requires tedious manual labelling of large volumes of text. Many such
corporahavebeencreated, at least inEnglish anda fewother languages
(such asGerman and French). In comparison there is amarked paucity
of labelled corpora formany other languages. The availability of large,
accurately labelled corpora is the single limiting factordetermining the
rate of progress in statistical NLP research in any language.
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So while earlier approaches to NLP that used human-defined lin-
guistic rules have come nowhere close to the success achieved using
purely statistical tools, manually coded rules are still used for lan-
guages where large labelled corpora aremissing. Nevertheless, we can
safely say that statistics has won, at least in practice: Google’s web-
based machine-translation service uses statistical NLP, and is surpris-
ingly effective, at least when dealing with some of the more popular
languages.

* * *
How are NLP techniques used by search engines and other web ser-
vices for their own selfish purposes? A few years ago in 2006–7, a
start-up company called Powerset set out to improve basic web search
using deep NLP. Powerset wanted to be able to answer pointed queries
with accurate results, rather than a list of results as thrown up by
most search engines, including Google. Yes, Powerset attempted to
take onGoogle, usingNLP. Thus, in response to a query such as ‘which
American flight leaves Chicago for Paris late Sunday night?’, Powerset
would attempt to find the exact flights. Surely, it would need to resolve
ambiguities such as those we have already discussed, i.e., whether
‘American’ is the airline or the nationality of the carrier. Deep NLP
technology was supposed to be the answer, which, by the way, Pow-
erset had licensed from Xerox’s R&D labs. Did it work? Unfortunately
we don’t quite know yet. Powerset was acquired by Microsoft in mid-
2008. Natural language search has yet to appear onMicrosoft’s search
engine Bing. So the jury is still out on the merits of ‘natural language
search’ versus the ‘plain old’ keyword-based approach.
What seems to be the problem? Should we not be running to use a

service that allows us to type our queries in natural language, rather
than dream up a likely combination of keywords that represents our
intent, and to which a search enginemight best respond? Recently The
Atlantic conducted a survey on how people used web search, i.e., what
theywould type into a search box in order to answer a set of questions
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posed by themagazine.36 For example, one of the questions posedwas
‘Youwant to knowhowmanypeople have fast internet connections in
Brazil, where you’re going to study abroad for a year’. The responses
ranged from the simple ‘Brazil internet stats’ to the more sophisti-
cated ‘UN data + Brazil + internet connections’. Not a single answer
was posed in grammatically correct language, such as ‘How many
people have fast internet connections in Brazil?’. Over 600 responses
were collected, for this and four other similar questions. Again, none
of the responseswere in ‘natural language’. Now, this behaviourmight
merelybe a reflectionof the fact that people knowthat search responds
to keywords, and not natural language queries. At the same time, the
fact that we have got so used to keyword searches might itself work
against the case for natural language search. Unless the results are
dramatically better, we won’t switch (moreover, keywords queries are
faster to type).
Just as Google’s PageRank-based search demonstrated a marked

improvement over the early search engines, natural language search
now needs to cross a much higher bar than perhaps a decade ago. If
a Powerset-like engine had come out in the year 2000, rather than in
2007, who knows what course search technology might have taken?
Natural language queries, suitably ‘understood’ through automati-
cally derived semantics, would certainly have given search engines a
far greater handle on the intent of the searcher. The quest for high
mutual information between the searcher’s intent and an advertiser’s
ads might have been somewhat easier.

* * *
But evenmore hurdles face the use of NLP in the web. In the early days
mostwebcontent consistedof fairly structured, grammatically correct
prose, much like print media. In recent years however, the democ-
ratization of web-based publishing through wikis, blogs, and most
recently Facebook and Twitter, is beginning to change this balance.
Themajority of Twitter posts are certainly not grammatically correct.
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A sizeable fraction of Facebook posts and blogs also display incorrect
grammar, at least partially.Notonly is grammara casualty, the sanctity
of words themselves no longer hold true. The use of abbreviations,
such as ‘gr8’ for ‘great’, and ‘BTW’ for ‘by the way’, are commonplace
even on the web, even though these have emerged from the world
of mobile-phone text messages. Nevertheless, we certainly manage to
conveymeaning effectively in spite of our lack of respect for grammar
and spelling.
In fact, the study of howwe read and derivemeaning from the writ-

ten word has itself become a rich area of research: ‘Aoccdrnig to a
rscheearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr
the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist
and lsat ltteer be at the rghit pclae’. Such popularly shared examples
(not actually studied at Cambridge University, in fact) have demon-
strated that often, though certainly not always, ‘it doesn’t matter in
what order the letters in a word are, the only important thing is that
the first and last letter be at the right place’.37 So, where does meaning
reside in language? If the information being transmitted is so poorly
related to grammar and even spelling, what does this mean for the
NLP approach to understanding how we use language? What exactly
is the role of grammar and how does it relate to meaning? And finally,
what does this say about the utility of NLP in efforts to understand us,
via the generalized reverse Turing Test. Can any of our deeper inten-
tions, opinions, or predilections be derived from our conversations
on the web?
Recall that for Chomsky, grammarwas central to the understanding

of language.Humanbeings could converse because of an innate gram-
matical ability, using which they could express themselves and under-
stand others. Imagine a machine that could determine with accuracy
whether or not a given sentencewas grammatically correct or not, and
if so what its constituent parts and their relationships were. From the
Chomskian viewpoint, such a machine would be a perfectly adequate
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rational model, shedding adequate light on what it means to ‘under-
stand language’. Any meaning beyond this was not of great concern
to Chomsky. If you had grammar, meaning would come, somehow.
Richard Montague, a contemporary of Chomsky in the mid-20th

century, thought differently. For him,meaningwas central. Montague
imagined another machine, quite different from a Chomskian one.
Montague’s machine would be able to distinguish ‘true’ statements
from ‘false’, rather than merely opine on grammatical correctness.34

Montague imagined that a sentence’s ‘meaning’ could be computed,
in some manner, from the meanings of its constituent parts. Gram-
mar, which would serve to decompose a sentence into parts, was thus
merely a means to the end goal.
Montague’s grand vision of being able to automatically ‘discern

truth from falsehood’ is probably too simplistic. After all, the well-
known paradoxical statement ‘this sentence is false’ highlights the
dangers that lurk in the world of truth and falsehood. As we shall see
in Chapter 4, even the very logical and precise world of mathemat-
ical formulae has been shown to inevitably contain statements that
are provably neither true nor false. Nevertheless, Montague’s imaginary
machine is perhaps closer to the quest for solutions to our ‘general-
ized reverse Turing Test’, aimed at deciphering some ‘truths’ about the
authors of web pages, emails, blogs, or posts.
The sentences ‘I only eat Kellogg cornflakes’ and ‘Only I eat Kellogg

cornflakes’ are both grammatically correct, but certainly convey dif-
ferent meanings. The amount of information each of these sentences
convey about the author’s family is also very different. The latter sen-
tence pretty much brands her family members as people who avoid
Kellogg cornflakes, whereas the first sentence says nothing about any-
one but the author. From the perspective of a tool such as AdSense,
this could mean the difference between deciding to present an ad for
Kellogg or for another cereal. Such distinctions might appear need-
lessly petty and microcosmic. But they are the lifeblood of online
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advertising, which in turn, powers the free economy of the web that
we all take for granted.
So can NLP help to target ads better? The jury is still out on this.

Web companies are all working on technologies for ‘reading’ our
posts, emails, and blogs with every greater sophistication. NLP tech-
niques still continue tooffer hope, especially as inother arenas—albeit
slightly removed from online advertising, for example, mining sen-
timent and intent—such techniques have already shown remarkable
progress.

Sentiment and Intent

In mid-2011, one man, a relatively unknown activist called Anna Haz-
are, began a small anti-corruption movement in India that rapidly
caught the imaginationof themiddle class, fuelled inno smallmeasure
by social media, i.e., Facebook and Twitter. Mr Hazare’s initial rallies
drew million-strong crowds in some cities, and ever since then Mr
Hazare and his associates have been in the news on an almost daily
basis.
A similar and probably more well-known phenomenon has been

the ‘ArabSpring’: the spateof social unrest beginningwithEgypt,mov-
ingon toLibya, and thenSyria.Dictators havebeenoverthrown, put in
jail, or even executed, transforming the polities of entire nations. Here
too, themobilization of large numbers of citizens via social media has
played a crucial role.
In times of social unease, or even unrest, everyone wants to know

‘what is the country thinking, really?’ The news media cover some
views; but the volume they can cover is limited by time and space.
The crowds are there for everyone to see on TV. But what are other
people thinking, those that do not have the time or courage to come
out on the streets, either out of fear in some instances, or only because
of thehot andhumidweather duringother, gentlermovements? Social
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media, in particular Twitter, comes to the rescue, as ameans for people
both to air their views as well as get a feel for what others are thinking,
and engage in animated debate. Still, how many tweets can one read?
Couldwe instead get an aggregate viewofhowpeople are feeling about
a social movement, at least on Twitter—positive, negative, or neutral?
In the midst of the initial excitement over Mr Hazare’s rallies, I

turned to Feeltiptop,38 a start-up company based far away in Sili-
con Valley. Feeltiptop analyses the global sentiment about any topic of
your choice, in the aggregate. I entered ‘Anna Hazare’ into Feeltiptop’s
search box. A few moments later a pie chart came up—28% positive,
28% negative, and the rest neutral, based on 80 recent tweets. A few
days later, the ratios changed to 54% positive. I could also look at the
tweets automatically classified by Feeltiptop as positive or negative.
The obvious ones ‘I support Anna Hazare’, or ‘Anna Hazare is wrong’
were classified correctly. But so were more difficult ones: ‘the whole
country and all patriotic Indians are with him’, is identified as posi-
tive, whereas ‘Anna Hazare: the divisive face of a new India’, comes
up in the negative column. At the same time, there are many errors
as well: ‘Support Anna Hazare against corruption’ is misclassified as
negative, and ‘all the talk about no corruption is just talk’ as positive.
Nevertheless, in the aggregate, a quick browse convinces me that the
noise is probably 10%or so, and evenly distributed. I began trusting the
figures, and monitored them periodically. In fact, I found that it was
also possible to view the variation of sentiment over time as it swung
from one side to the other.
Suddenly it appears that one can, in fact, ‘listen’ to the ‘voice of the

country’, in the aggregate, or at least its vocal minority who use Twit-
ter. Citizens have another channel to tune to, in addition to established
media. Consider the potential of such a tool: for example, which politi-
cian would not benefit from such information? Similarly, businesses
can listen to the ‘voice of their customers’, gauge reactions to their
advertising campaigns, andmonitorhowwell their products orbrands
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are faring vis-à-vis their competition. Feeltiptop also allows you to
filter sentiments by city. So, for example, I could see at a glance that the
numbers in support of Mr Hazare’s movement were more volatile in
Delhi than in, say, Mumbai or Calcutta. This made me wonder why—
something I would not have even thought about otherwise. It also
makes one wonder how Feeltiptop manages to ‘listen’ to sentiments,
‘mined’, so to speak, from the vast stream of hundreds of millions of
tweets a day.
Sentiment mining seeks to extract opinions from human-generated

text, such as tweets on Twitter, articles in the media, blogs, emails, or
posts on Facebook. In recent years sentiment mining has become one
of the most talked-about topics in the NLP and text-mining research
communities. But extracting sentiment from ‘noisy’ text, such as
tweets, with any degree of accuracy is not easy. First of all, tweets
are far from being grammatically correct. It is virtually impossible to
determine a complete phrase-tree parse frommost tweets. A shallow
parse, revealing only the parts of speech with at most nearby words
grouped into phrases, is all that one can expect using basic NLP.
Now, certain words are known to be ‘opinion’ words, such as ‘like’

or ‘hate’. Others might be qualifying words that contribute towards
positivity or otherwise; e.g., ‘good’, ‘bad’, ‘nice’, ‘poor’. Negations, at
least within the same phrase, can change the polarity: so, ‘don’t like’,
or ‘not good’, are obviously negative rather than positive. Next, we
tabulate features of each sentence, such as how close other words are
to each other, and to opinion words and qualifiers. All this is done
for a reasonably large number of actual samples of text culled from
Twitter, or whatever medium is being investigated. Such samples are
thenmanually tagged as being positive or negative. Then, just as in the
case of NLP parsing itself, statistics is applied once more to determine
the chance of a sentence being positive or negative, based on its con-
stituent ‘features’. This, and the use of statistics for NLP, are examples
of machine learning, a topic which we shall return to in more detail in
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Chapter 3. Such statistical methods are, naturally, error-prone. At the
same time, they get better and better with the amount of manually
tagged text one uses to ‘train’ the system. Further, depending on the
appropriateness of the features that one can extract and the accuracy
of manual tagging, the machine can even surprise us: thus, the tweet
‘I am beginning to look fat because somany people are fasting’ is clas-
sified as negative. So, have we somehow taught the machine to under-
stand sarcasm? (Probably not, but it certainly makes one wonder.)

* * *
Feeltiptop and other similar sentiment-mining engines are getting
quite good at figuring out what ‘we’ feel about virtually any topic,
brand, product, or person—at least as represented by some of us who
use social media. But, what are the topics we are all most concerned
about? Feeltiptop’s home page presents us with something close: a
list of keywords that are, at that moment, the most frequent amongst
recent tweets. But topics are not keywords themselves, but groups of
words, as we have noted earlier, and we can do better. Using topic
analysis it is possible todiscover, automatically,whichgroupsofwords
occur together,most often. Further, topics evolveover time; seemingly
different topicsmerge andothers split intonewgroupings. Completely
new topics emerge. Topic analysis of discussions on social media,
across Twitter, Facebook, blogs, as well as in good old news, is a bur-
geoning area of current research. As we all increasingly share our
thoughts on the web, we too are able to tap the resulting global ‘col-
lective stream of consciousness’, and figure out what we are ‘all’ talk-
ing about. Some topics resonate around the world, such as the Arab
Spring. Some emerge suddenly in specific countries, such as Anna
Hazare’s protests in India, but also find prominence in other parts of
the world, such as the US and the UK, due to the large Indian diaspora
settled there.
What about topics that have not yet reached the stage of discourse

and discussion in social media, or for that matter any media? ‘That’s
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impossible’, you might well say. Not quite. Let us step back a bit to
where we began, search. Our searches reveal our intentions, which
is why Google and others are so interested in understanding them.
Search keywords, viewed in the aggregate, reveal our collective curios-
ity at anypoint in time.GoogleTrends is a freely available service using
whichwe can seewhat keywords are being searched for themost; right
now, or at any point of time in the past. Truly a ‘database of intentions’,
the phrasewithwhich JohnBattelle begins his book aboutGoogle, ‘The
Search’.39 Using query trends, we can see at a glance exactlywhen inter-
est in Anna Hazare’s movement suddenly increased, not surprisingly
coinciding with his illegal arrest and subsequent release on 16 August
2011.We also can look back in time at another geography to ‘recollect’,
in the aggregate, what topics the British populace was worried about
during the week of the London riots in mid-2011. Further, we might
also come to notice that, at exactly the same time, the US was more
worried about its looming debt crisis, so ‘federal reserve’ was themost
popular search term, globally, rather than ‘riot’.
It is not only our intentions that are being filed away in the data

stores of the search engines of today. Other entities, mostly unheard-
of bymost of us, are tracking our actions as well. We have come across
ChoicePoint earlier in Chapter 1: ChoicePoint was used by the FBI
agent Robert Fuller while following up on the soon-to-be 9/11 ter-
rorist Khalid Almihdhar. Database aggregators such as ChoicePoint
and its competitor Acxiom track a large fraction of our credit-card
purchases, motor-vehicle records, property transactions, births, mar-
riages, divorces, and deaths. Axciommaintains information on nearly
every household in the United States. Both ChoicePoint and Axciom
are giants, not as large or as well known as Google, but certainly as
powerful when it comes to the information they have. As in the case
ofGoogle, each data item they keep track of is public, at least in theory,
and therefore legal for them to store. However, such data becomes
especially powerful when fused together to ‘connect the dots’, as we
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shall examinemore closely in later chapters. For the moment we need
only be aware that many others apart from the web companies such
as Google and Facebook are listening to us, tracking not only our
thoughts, but also our actions.
It is as if we are at a global party, able to hear all the conversations

that are taking place across the world. Some are louder than others;
some are hotly debated while we seem to have similar feelings about
others. And we can Listen to all of these, in the aggregate. We can also
look over each other’s ‘collective shoulders’ at the topics we together
search for and consume. Our collective past intentions are also avail-
able to browse and reflect on, again in the aggregate as measured by
ourmost frequent searches. Finally,we also cannot leave theparty: our
lives are embedded here; our every digital action is also being noticed
and filed away, at least by somemachine somewhere.

* * *
We live in a sea of ambient information, from the conversations in
our daily lives to the newspapers we read, and, increasingly, the web
content thatwe search for and surf. Eachof us needs to ‘listen’ carefully
enough to notmisswhat is important, while also avoiding being inun-
dated. At the same time, theweb-based tools thatwe havewrought are
listening to us.While listeningwe seek to extractwhat is relevant from
all that we hear,maximizing the Informationwe receive: from the per-
spective of Shannon’s information theory, optimal communication
increases mutual information, be it between sender and receiver, or
even speakers and an eavesdropper.
And the web is indeed an eavesdropper, listening to our intentions,

conversations, and reading habits, as well as many of our increasingly
digital actions. Just as Alan Turing’s ‘test for intelligence’ defines how
a machine might seek to imitate a human, our ‘generalized reverse
Turing Test’ models a machine eavesdropper, seeking to extract infor-
mation as it listens in. The eavesdropper’s purpose is far more pro-
saic than Turing’s lofty goal of imitating human intelligence: online
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advertising, the lifeblood of the ‘free internet economy’, is what moti-
vates and drives it. Our intentions are laid bare from our searches, the
subjects of our thoughts from the topics we read, and our sentiments
from how we react to content, events, and each other. To reach its
mundane goals, the web harnesses the power of information theory,
statistical inference, and natural language processing. In doing so, has
it succeeded in at least pretending to understand, if not actually under-
standing, us? At the very least, the web serves as a powerful rational
model that has furthered our own understanding of language, its rela-
tionship to information and entropy, aswell as the still elusive concept
of ‘meaning’.
Many years ago, as far back as 1965 and long before the internet, the

Canadian philosopher Marshall McLuhan wrote:

we have extended our central nervous systems in a global embrace, abol-
ishing both space and time as far as our planet is concerned. Rapidly we
approach the final phase of the extensions ofman—the technological sim-
ulation of consciousness, when the creative process of knowing will be
collectively and corporately extended to the whole of human society.40

McLuhanwas talking about the onset of the age of global communica-
tion, with the telephone, radio, and television being his focus. But his
insight appears remarkably prescient today. It certainly appears that
we can indeed ‘listen to the world’. Moreover, the machines which we
have built, for purely ‘corporate’ purposes, to aid us in this task, are
the ones listening. So far, at least, they only serve as our intermedi-
aries. For how long? Listening is the precursor to learning, after all. How
much can themachine learn from this vast storehouse of information?
Knowledge about us,muchof it newknowledge,muchof it thatwe are
ourselves unaware of. A brave new world, for sure.
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InFebruary 2011, IBM’sWatson computer entered the championship
round of the popular TV quiz show Jeopardy!, going on to beat Brad

Rutter andKen Jennings, each long-time championsof the game. Four-
teen years earlier, in 1997, IBM’s Deep Blue computer had beatenworld
chess champion Garry Kasparov. At that time no one ascribed any
aspects of human ‘intelligence’ to Deep Blue, even though playing
chesswell is often considered an indicator of human intelligence.Deep
Blue’s feat, while remarkable, relied on using vast amounts of comput-
ing power to look ahead and search throughmanymillions of possible
move sequences. ‘Brute force, not “intelligence”,’ we all said. Watson’s
success certainly appeared similar. Looking atWatsonone sawdozens
of servers andmany terabytes of memory, packed into ‘the equivalent
of eight refrigerators’, to quoteDave Ferrucci, the architect ofWatson.∗

Why shouldWatson be a surprise?
Consider one of the easier questions that Watson answered during

Jeopardy!: ‘Which New Yorker who fought at the Battle of Gettysburg
was once considered the inventor of baseball?’ A quick Google search

∗ Watson had 90 IBM Power 750 servers comprised of a total of 2,880 ‘cores’ and 15 ter-
abytes ofmemory, as related in a TED talk, and documented in a paper.41
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might reveal that Alexander Cartwright wrote the rules of the game;
further, he also lived in Manhattan. But what about having fought
at Gettysburg? Adding ‘civil war’ or even ‘Gettysburg’ to the query
brings us to a Wikipedia page for Abner Doubleday where we find
that he ‘is often mistakenly credited with having invented baseball’.
‘Abner Doubleday ’ is indeed the right answer, whichWatson guessed
correctly. However, if Watson was following these sequence of steps,
just as you or I might, how advanced would its abilities to understand
natural language have to be? Notice that it would have had to parse
the sentence ‘is often mistakenly credited with . . .’ and ‘understand’ it
to a sufficient degree and recognize it as providing sufficient evidence
to conclude that Abner Doubleday was ‘once considered the inventor
of baseball’. Of course, the questions can be tougher: ‘B.I.D. means
you take and Rx this many times a day’—what’s your guess? How is
Watson supposed to ‘know’ that ‘B.I.D.’ stands for the Latin bis in die,
meaning twice a day, and not for ‘B.I.D. Canada Ltd.’, a manufacturer
and installer of bulk handling equipment, or even BidRx, an internet
website? Howdoes it decide that Rx is also amedical abbreviation? If it
had to figure all this out fromWikipedia and other public resources it
would certainly need farmore sophisticated techniques for processing
language than we have seen in Chapter 2.
Does Watson actually do all this? Perhaps it finds the right answer

more directly, not by reading publicly availablematerial, but bymerely
looking up a massive table of facts that its inventors have somehow
created. Jeopardy! questions can come from any subject whatsoever,
such as ‘17th-century artists’ or ‘TV shows by character’. However,
often the characterizations of the topic are themselves vague as
in ‘around the world’, which could mean, well . . .what? To manu-
ally extract all possible facts covering the breadth of human expe-
rience and knowledge is certainly impossible. But IBM has many
computers, surely, and could have used thousands or even mil-
lions to pre-compute such a table automatically. But from what
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sources? The web, Wikipedia, the Encyclopaedia Brittanica? More
importantly, how?
Suppose the following sentence occurs somewhere in a book or

letter: ‘One day, fromamonghis city views ofÜlm,Otto chose awater-
colour to send toAlbert Einstein as a remembrance of Einstein’s birth-
place.’ We might correctly infer from this statement that Einstein was
born in Ülm. But could a computer? It would need to figure out that
the proper noun Ülm was a city, while Einstein referred to a person;
that the sentence referred to Ülm as the ‘birthplace of Einstein’, and
that persons are ‘born’ at their ‘birthplace’, which could be country,
province, or, as in this case, a city: quite a lot of work for a machine!
Nowsuppose the sentence instead read ‘. . . a remembranceofhisbirth-
place’, i.e., slightly ambiguous, as much usage of language tends to be.
Shouldn’t the machine be less confident about Einstein’s birthplace
from this sentence as compared to the former? Even more work for
the poor machine.
The fact is that in building Watson, the computer, or rather a very

large number of computers, did indeed processmanymillions of such
documents to ‘learn’ many hundreds of thousands of ‘facts’, each with
an appropriate level of ‘confidence’. Even so, all these were still not
enough, and had to be augmented and combined, on the fly as the
machine played, by searching and processing an even larger corpus of
pages extracted from theweb.∗ So,whicheverway one looks at it,Wat-
son’s feat certainly indicates a significant advance in natural language
understanding by computers, be they those inside Watson’s cabinets,
or those used topopulateWatson’s copiousmemorybanks.Moreover,
Watson (and here we include the machines used to program it) not
only ‘processed’ language surprisingly well, but was also able to learn
in the process, and managed to convert raw text into knowledge that
could be reused far more easily. Further,Watsonwas able use this vast

∗ Watson had all the information it needed in its memory, both pre-learned facts as well
as a large volume of raw text; i.e., it did not access the web directly during play.
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and, as in the example of Einstein’s birthplace, imprecise knowledge
base, to reason as it explored alternative possibilities to answer a ques-
tion correctly. But we are getting ahead of ourselves; we shall come to
reasoning in Chapter 4. For now, let us take a step back to see what it
means to ‘learn’, and in particular what it might mean for a computer
to learn.

Learning to Label

Our learning begins from birth, when a baby learns to recognize its
mother. The first acts of learning are primarily to recognize. Many
experiences of, say, seeing a cat or a dog, along with an adult voicing
their names, i.e., ‘cat’ and ‘dog’, eventually result in a toddler learning
to accurately label cats and dogs, and distinguish between them. How
does the child’s mind learn to name the objects it perceives? Presum-
ably via some distinguishing features, such as their size, shape, and
sounds. Other features of cats and dogs, such as the fact that they both
have four legs, are less useful to distinguish between them. Neverthe-
less such features are also important, since they differentiate cats and
dogs from, say, humans and birds.
Of course, the curious reader might spot a potentially infinite

regress: how are the features themselves recognized as such, even if
not explicitly labelled? How does the child classify the size, shape, and
sound of an animal, or identify features such as legs and their number?
No one is explicitly explaining these features and giving them names.
At least not in the preschooling, early stage of the child’s life. Yet the
features must be recognized, at least unconsciously, if indeed they are
used to learn the explicit labels ‘cat’ and ‘dog’. Further, once the child
has somehow learned to recognize and label cats, we might also say
that the child has learned the rudimentary concept of a cat.
In the language of machine learning, or the computer science of

learning, the first case is one of supervised learning, where the child is
trained to recognize concepts, by being provided with labels for each
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experienced instance of the two concepts cat and dog. Learning the
features themselves, however, is an example of unsupervised learning,
in which lower-level features are automatically grouped, or ‘clustered’,
based on how similar they are across many observed instances. For
example, the lowest-level visual features are the sensory perceptions
recorded by our retinas. In computing terms, we would call these
images, i.e., collections of pixels. As a child seesmanymany images of
dogs or, say, cats, those pixels that form legs are automatically grouped
or clustered together. We could then say that the child has learned the
concept of a ‘leg’, without explicit supervision, even if it does not know
the actual name ‘leg’. Next, the ‘leg’ concept becomes a feature at the
next, higher level of learning, i.e., labelling cats and dogs. It is impor-
tant to note that exactly how the process of going from perception to
features takes place in humans is not known. For instance, ‘leg’ ismost
likely also to be a higher-level concept, learned from yet other lower-
level features.
Note though that the perception problem, i.e., learning features

automatically from sensory inputs, is thankfully absent at least in the
case ofmachines learning from textual examples. The lowest-level fea-
tures that a computer needs to deal with are characters, which we fur-
ther explicitly group intowords. Inotherwords, themachine’s sensory
input is ‘hard-coded’, and there is no perception ‘problem’ to explain
or resolve. We almost always resort to at least some form of hard-
coding for extracting the lowest-level featureswhendealingwithother
kinds of input, such as images or a video stream from a camera, or for
thatmatter, voice input for the purposes of speech recognition. This is
but natural, when the purpose is a particular application, rather than
mimicking human perception and cognition. Towards the end of this
chapter we shall revisit the ‘problemof perception’ oncemore, and see
how it has been philosophically debated, as well as computationally
modelled, if only partially.

84



LEARN

Theories of learning in humans abound, spanning philosophy,
psychology, and cognitive science. Many of these have also influenced
certain sub-areas of computer science such as vision and image pro-
cessing, and rightly so. Nevertheless, we quickly find that learning, at
least in humans, is a deep and troublesome subject about whichmuch
has been studied but little is known for sure. So we shall concentrate
instead on asking what it means for a machine to learn.
Wehave already seenmany instancesof learning inChapter 2: learn-

ing how to parse sentences, learning to recognize whether a tweet is
positive or negative, learning the topic a particular web page is talking
about, or discovering the topics that are being discussed in a corpus of
text. Inmost cases, themachine needs to be trained using data labelled
by humans, such as for parsing or sentiment mining; these are thus
examples of supervised learning. On the other hand, ‘topic discovery’
is an example of unsupervised learning, where there is no pre-existing
knowledge being provided by outside human intervention.

* * *
Let us try to see how we might program a computer to learn the dif-
ference between two concepts, say ‘cat’ and ‘dog’. The computer has
available to it many ‘instances’ of highly idealized ‘cats’ and ‘dogs’.
Each such instance is merely a list of features, such as size, head
shape, sound, and, for good measure, number of legs. Thus one
instancemight be [size:large, head shape:long, sound:bark, legs:4, ani-
mal:dog], and another [size:medium, head shape:round, sound:meow,
legs:4, animal:cat]. Many combinations are possible, including, for
example [size:small, head shape:square, sound:squeak, legs:3, ani-
mal:cat], which might well occur, as well as some that are highly
unlikely to occur, such as [size:large, head shape:long, sound:meow,
legs:4, animal:dog]. There may also be some such as [size:large,
head shape:square, sound:roar, legs:4, animal:lion], which are perhaps
slightly more problematic; but we shall ignore such complications for
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the moment, i.e., the distinction between the animal ‘cat’ and the ani-
mal family by the same name.
Our computer observes a number of such instances, say a thousand

or so. Its task is to learn the concepts ‘dog’ and ‘cat’ from this training
set, so as to be able to recognize future instances that are not already
labelled with their animal name. Hopefully the machine will learn
these concepts well enough to correctly distinguish between dogs and
cats. Even though this might appear to be a rather unrealistic example
from the perspective of intelligent web applications, or even Watson,
we shall soon see that we can just as easily replace the features ‘size’,
‘shape’, etc., with words that occur in sentences. Instead of ‘dog’ and
‘cat, we could label sentences as ‘positive’ or ‘negative’, and we would
have replicated the sentiment-mining scenario addressed by services
such as Feeltiptop.∗ Further, focusing on the cat-versus-dog classifica-
tion problem might just reveal a useful rational model that aids our
understanding of human learning, if only a little.
A simplistic computer program for the cat-dog example might

choose to store all the observed instances, much as Google stores
web pages, perhaps even creating an index of features just as Google
indexes documents using the words they contain. Then when pre-
sented with a new instance, our program merely looks up its past
experience very fast, using binary search as we saw Chapter 1. In case
an exactmatch is found, the new observation is given the same animal
label as the old one it matches with. If not, we might use the closest
match, in terms of the number of features that match exactly, or use
a small number of close matches and choose the label that occurs
most often amongst these. This rather simple algorithm is called a
k-nearest-neighbour (or KNN) ‘classifier’ (since it classifies the instances
given to it), and is often actually used in practice.

∗ See Chapter 2.

86



LEARN

However, the simple KNN approach does pose some problems. For
one, in case the number of past observations is very large, the clas-
sification process can be slow, especially if it needs to be done con-
tinuously.We are all constantly observing objects and subconsciously
labelling them based on our past experience. Similarly, sites such as
Feeltiptop are continuously assigning sentiment labels to hundreds of
millions of tweets arriving each day. The KNN classifier is like doing
arithmetic by counting on one’s fingers. It gets tedious to do repeat-
edly, so better means are needed; the computer needs to ‘learn its
multiplication tables’.
The easy case just discussedwaswherewe could find an exactmatch

from our past experience. However, what if we found many exact
matches, and they did not all have the same animal label? Chihuahuas
could be a reason why; after all, apart from being small and having
rounder heads than other dogs, many of them do come fairly close to
meowing. Well, we might decide to choose the majority label again,
just as in the case of KNN.What we are doing here, albeit indirectly, is
calculating the probability of a cat given a particular set of features, by
looking at the fraction of instances having a particular combination of
features that are cats, as opposed to dogs.
Perhaps we could compute such ‘posterior’ probabilities in advance

for every combination of features? After all, howmany combinations
are there? Even if each of the four features, ‘size’, ‘head shape’, ‘sound’,
and ‘legs’ can take, say, five possible values, the number of possible
combinations is only 54, or 625. Once more there are problems. As
before, it may well turn out that in spite of having observed hundreds
of animals, we still might not have observed every possible combi-
nation: suppose we had never seen a ‘very large’ dog that also had a
‘rectangular’ head shape, such as a Great Dane, ever. How would we
ascribe probabilities to such combinations?

* * *
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Coming to our aid is a rather famous observation made by the 18th-
centurymathematician and pastor Thomas Bayes. ‘Bayes’ Rule’ is now
included in advanced high-school and college mathematics. It turns
out that this simple rule can be used by a machine to ‘learn’.
Just as we attempted to compute the ‘posterior’ probabilities, i.e.,

the probability that a particular, newly observed, set of features rep-
resents a dog (or a cat), we could alternatively choose to compute the
‘likelihood’ that a dog has some particular feature, such as being ‘very
large’. It is reasonable to hope that we would find at least some of our
past observations that were ‘very large’, even if their head shapes were
not ‘rectangular’, such as a St Bernard, mastiff, and many others. For
example, suppose out of our thousand past observations, there are
600 dogs, but only 90 are ‘very large’ dogs. The likelihood of a dog
being very large is simply 90

600 . Likelihoods are about individual fea-
tures,whereas posterior probabilities are about the classes or concepts
the machine is trying to learn.
Likelihoods are far more easy to compute using past data, since

all we ask is that each possible value of a feature has been observed
earlier. This is muchmore reasonable than the more stringent need of
‘posterior’ calculations, i.e., of having witnessed each combination of
feature values. Further, computing likelihoods is also computationally
easier. For instance we only need 2 × 5 × 4, or 40 likelihoods, i.e., two
for each of the five values of each of the four features. For example,
for the feature ‘size’, we would compute the likelihoods of ‘very large’,
‘large’, ‘medium’, ‘small’, and ‘tiny’, using only ‘dog’ instances from
past data, and four similar likelihoods for ‘cat’ instances.Wewould do
this for each of the four features, resulting in a total of 40 likelihood
numbers.
Continuing with our example now, we focus only on very large

dogs. Of our 1,000 past observations, suppose we find that 100 are
‘very large’ animals, of which 90 are very large dogs. The fraction of
observations that are very large dogs is 90

1000 ; which is also an estimate
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of the ‘true probability’ of observing a very large dog. Now comes the
crucial trick that leads to Bayes’ Rule. We write this fraction as:

90
1000

= 90
100

× 100
1000

Notice that all we have done ismultiply and divide by the number 100,
writing 90

1000 as the product of two other fractions. Now we observe
that the first term 90

100 is nothing but the posterior probability of a dog,
for all instances that are very large. The second term, 100

1000 is just the
probability of the feature itself, i.e., the fraction of instances that are
very large.
Bayes’ very simple observation was that we could just as well write

the same fraction of very large dogs, i.e., 90
1000 as a different product,

this time multiplying and dividing by 600 instead of 100:

90
1000

= 90
600

× 600
1000

This time, the first term 90
600 is the likelihood of a dog being very large,

and the second term 600
1000 is just the overall probability of dogs in the

observed population. Bayes’ Rule ismerely a consequence of this obvi-
ous arithmetic, and is obtained by equating the two different ways of
expanding the fraction 90

1000 of very large dogs:

90
100

× 100
1000

= 90
600

× 600
1000

Replacing each fraction by its interpretationwe get Bayes’ Rule for our
example of very large dogs: the posterior probability of a large animal
being a dog ( 90100 ), times the probability of ‘very largeness’ ( 100

1000 ), equals
the likelihood of a dog being large ( 90

600 ) times the probability of dogs
in general ( 6001000 ):

P(dog|very large) × P(very large) = P(very large|dog) × P(dog)
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Bayes’ Rule is often stated as ‘the posterior probability P(dog|
very large), is proportional to the likelihood of a feature, P(very large)
times the “prior”, P(dog)’. The the ratio of proportionality is just

1
P(very large) , theprobabilityof the ‘evidence’, i.e., the chanceofobserving
any ‘very large’ animal.
Quite surprisingly, this simple and, as we have seen, easily derived

rule has historically been the subject of much heated debate in the
world of statistics. The source of the controversy is actually rather
subtle and philosophical, having to dowith different definitions of the
concept of ‘probability’ itself and how the results of applying Bayes’
Rule should be interpreted. The battle between Bayesian versus ‘fre-
quentist’ statistics over the years has been entertainingly described in
a recent book by Sharon McGrayne entitled The Theory That Would Not

Die.42 Be that as it may, the field of modern machine learning relies
heavily on Bayesian reasoning, so this philosophical debate is now
largely ignored by computing practitioners.

* * *
What Bayes’ Rule does is tell us how to arrive at the required ‘posterior’
probabilities from the ‘likelihoods’. In our calculation we used only
one feature, ‘size’. In realitywewouldobserve all five features together.
The next step is a simple but important assumption, i.e., that all the
features are conditionally independent.What thismeans is that the chance
of adog (or for thatmatter, a cat) beingvery large is independentof, say,
its head shape, as well as all other features. Most importantly, it turns
out that independence implies that the fraction of dogs with a feature
combination ‘very large’ and ‘square head’, i.e., the likelihood of such
a combination, can be obtained by multiplying the fraction of very
large dogs (i.e., the likelihood of ‘very large’ dogs) with the likelihood
of square-headed ones. While such an assumption seems reasonable
at first glance, a closer look might lead us to suspect that size and
soundmaynot be that independent after all; howmanyvery large dogs
meow? However, we ignore such subtleties and go ahead assuming all
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features are conditionally independent. The caveat ‘conditionally’ is used
because the likelihoods in the statements made earlier were for all the
dogswe had observed, rather than for all animals. A similar statement
could be made using the condition that only cats be considered while
computing likelihoods.
Given a new observation with a particular combination of fea-

ture values, we use Bayes’ Rule to conclude that ‘the posterior prob-
ability of a dog is proportional to the likelihood of that particular
combination, amongst all dogs’. But because of independence, the
likelihood of the combination of features is just the product of the
individual likelihoods. In other words, Bayes’ Rule for conditionally
independent features tells us how to compute the posterior prob-
ability that an animal is a dog based on any number of features
(say n) that we might observe about it. The exact formula, assuming
we observe a very large, long animal with a square head that barks,
becomes:

P(dog | the observed features) = P(very large|for all dogs)
× P(long shape|for all dogs)
× P(square head|for all dogs)
× P(four legs|for all dogs)
× P(barks|for all dogs)

× P(an animal being a dog)
P(the observed features)

The terms like P(very large|for all dogs) are merely the likelihoods
we computed earlier, i.e., the fraction of all dogs with a par-
ticular feature. The last term has two pieces—the numerator,
P(an animal being a dog), is the just ‘prior’ probability of all dogs, i.e.,
the ratioof dogs in all ourobservations. Thedenominator, on theother
hand, is the likelihood of this particular combination of features being
observed indogs.Aswealready saw, thenumberof suchcombinations
can be large; luckily however, as we shall see soon, we actually do not
need to ever calculate these denominators in practice.
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So once we have computed all our 40 likelihoods and 2 priors
(i.e., the fraction of dogs and cats respectively among all our observa-
tions), we can forget about our past experiences. Facedwith a new ani-
mal, we observe the values that each of its features take, and multiply
the respective likelihoods of these values, once using the likelihoods
given a ‘dog’, andoncemoreusing likelihoods given a ‘cat’; in each case
also multiplying by the ‘prior’ probability of a dog or cat respectively.
The posterior probabilities, i.e., the chances of a particular instance
being a dog, or a cat, respectively, are, due to Bayes’ Rule, proportional
to these twocomputed ‘productsof likelihood’ (andprior). Further, the
ratio of proportionality, i.e., the probability of the observed ‘evidence’,
is the same in each case, so we just choose the label for which the
computed product of likelihoods and prior is larger.
This well-known technique for programming a computer to learn

using Bayes’ Rule is called the ‘naive Bayes classifier’ (NBC).What is so
‘naive’ about it, one may well ask. The word ‘naive’ is used because we
have ignored any dependencies between features—a subtle but often
important point.
In what way, one might well ask, has NBC ‘learned’ anything about

the concept ‘dog’ or ‘cat’? Well, instead of having to search all one’s
memories of past experience, in the form of stored observations, the
computer is able to classify new instances as dogs or cats by merely
using the 42 ratios (40 likelihoods and 2 prior probabilities) that it
computes from past data, once.
Further, as new observations arrive, and if its decisions are checked

and corrected by some appropriate ‘trainer’, the computer can quite
easily recompute these ratios from time to time, and in the process get
better at the task of classifying. In this sense, the machine has learned
from past data, and can continue to learn in the future. Apart from
NBC, there are many many more complex classifiers, such as ‘neural
networks’ and ‘support vectormachines’. Using anyof these it is possi-
ble for amachine to be trained and to learn from labelled observations.

92



LEARN

At the same time, it is important to observe that the learned con-
cepts, ‘dog’ and ‘cat’ in our example, are merely, and nothing but, the
trained classifiers themselves. In the case of NBC, these are comprised
of 42 ratios for our example, which constitute the sum and substance
of the machine’s ‘understanding’ of the concepts ‘dog’ and ‘cat’. Not
very satisfying, perhaps, as far as understanding what it ‘means to
learn’; but quite useful in practice, as we shall soon see.

* * *
Google, Feeltiptop, andmany other web-intelligence applications reg-
ularly use classifiers, often NBC itself, to filter spam, learn user pref-
erences for particular topics, or classify tweets as positive or negative.
Machine learning using classifiers is also at the heart of natural lan-
guage processing, wherein the computer is trained to parse sentences
from large corpora of human-parsed text, as we mentioned in Chap-
ter 2.Automated translationbetweendifferent languages, to the extent
achievable today in tools such as Google Translate, also makes heavy
use of machine learning. In such scenarios the labelling is complex, as
are the features, andmany classifiers are used to learn different aspects
of parsing or translation. I will refrain from going into the gory details
of how features are defined for complex machine-learning tasks such
as parsing or translation. Instead, let us see how wemight use NBC to
train a machine to ‘understand’ sentiment, as Feeltiptop appears to.
Inourprevious examplewewereobserving animals; nowourobser-

vations are sentences. The goal is to determinewhether a new sentence
is expressing positive or negative opinion, and to learn how to do so
from past observations of sentences that have somehow been labelled
correctly (by a human). Instead of size and sound, nowour features are
the occurrences of words in sentences. The sentence ‘I love this phone,
it’s really great’ has the features ‘phone’, ‘love’, ‘really’, ‘great’. Note
that ‘stopwords’, such as prepositions and articles, have been omitted,
which is easily done by looking up a dictionary.Wemight, for the pur-
pose of sentiment alone, havewished to removenouns aswell, but that
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would have required more work. So we leave them be. Thus there are
millions of features, even though only a very small fraction occur in
each sentence. To handle negation of positive words, such as ‘this film
wasnot great’, we groupnegationwords, such as ‘not’, with the nearest
followingword; thus the features for ‘this filmwas not great’ would be
‘film’, ‘was’, and ‘not great’.
Nowwe can see the power of Bayes’ Rule: it would have been impos-

sible to calculate the posterior probability of a positive opinion for
every possible combination of words. In theory, there are infinite such
combinations, or at least a very very large number: allowing sentences
of at most ten words, and conservatively assuming there are 10 mil-
lion possible words,∗ there would be 1010,000,000 combinations; infi-
nite enough, for all practical purposes (in comparison, the number of
atoms in the observable universe is a mere 1080).
However, using Bayes’ Rule, we can get away with computing the

likelihood of a sentence being positive or negative for each of the 10
millionwords. For example, supposewehave 3,000 labelled sentences,
of which 1,000 are labelled positive, and the rest negative. Of the 1,000
positive sentences, say 110 contain theword ‘good’,whileonly40of the
negative sentences have ‘good’ in them. Then the likelihood of a posi-
tive sentence containing ‘good’ is 110

1000 . Similarly, the likelihoodof find-
ing ‘good’ amongst the 2,000negative sentences is simply 40

2000 .Wecan
do similar calculations for every word that we find. Of course, there
will always be words that are missing from our training set; for these
we have no likelihoods, so they are simply ignored.† NBC does what it
canwithwhat it has. Surprising as itmay seematfirst glance,NBCdoes
quitewell indeed at classifying simple sentences basedmerely onword
occurrence. Of course, it goes terribly wrong in the face of sarcasm,
such as ‘what a lovely experience, waiting for two hours to get a table!’

∗ In Chapter 2 we hadmentioned Google’s estimate as being 14 million.
† In practice, a technique called Laplacian smoothing is used to avoid zero likelihoods: a

word is assumed to occur at least once.
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When Google records the web pages we view, scans the queries we
use to search, or even ‘reads’ our emails, it does so with the intent
to somehow label us. It might choose to discover if we are, at that
point of time, interested in buying something or not. This is clearly an
important thing for Google to accurately guess, so that it can avoid
placing online ads alongside its results when not required. Machine
learningmightwell be used for this purpose, very similar to the binary
classification of tweets into those espousing positive versus negative
sentiments. All Google would need is a moderately large corpus of
pages and emails, hand-labelled as ‘buying-oriented’ or not. There is
reasonable evidence that Google actually does this: try searching for
‘wedding bouquet’; at least I don’t see any ads. Now change your query
to ‘cheapwedding bouquet’, and a host of ads appear to the right of the
screen. Thus Google might well be using machine learning to learn a
classifier, such as NBC, to distinguish between buyers and browsers.
So, machines can be trained and thereby learn, which is merely to

say that givenenough labelled examples,machines can learn todiscern
between these labels. The web-based systems we have built, as well
as projects such as Watson, use such machine learning all the time to
label what they observe about us or the world. Thereafter these labels
are used for their own purposes, such as answering quiz questions in
Watson’s case.Of course, in the case ofmostweb-based services, these
purposes eventually boil down to somehow inducing us to buy more
products through advertising. The success of the online advertising
business certainly seems to indicate that these machines are ‘learning
about us’, and doing rather well.

Limits of Labelling

Still, it seems reasonable to ask, what kinds of things can machines
learn? An important negative conclusion was discovered by Mark
Gold in 1967.43 He showed that it was virtually impossible to learn
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most concepts from positive examples alone. For example, it is not
at all possible to learn to distinguish grammatically correct sentences
from incorrect ones if one never sees an incorrect sentence. Gold’s
result was used by many to argue for the Chomskian view that gram-
mar was innate to humans. Be that as it may, the scientific conclusion
to be drawn from Gold’s analysis is that both positive and negative
examples are required to learn a concept. Thus, Gold’s result in a sense
also vindicates the model of learning from labelled examples, such as
we described earlier with dogs and cats, or buyers and browsers.
Machine learning using a classifier is concerned with making

distinctions between different classes; animals being dogs or cats,
sentences being positive or negative. Similarly, the core idea of infor-
mation, the ‘bit’, which essentially makes a binary distinction, one
from zero, good and bad, ‘yin and yang’. Perhaps, therefore, it makes
sense to look a bit more closely at whether we can couch the scenario
ofmachine learning in Shannon’s language?Wemightwell expect that
machine learning can be viewed in terms of information theory.
Recall that Shannon’s original focus was on communication of sig-

nals via a noisy channel, such as a telephone. Mutual information
measured the accuracy of such a communication. Shannon was con-
cerned with how best to encode signals so as to maximize the mutual
information between signals at two ends of a noisy communication
channel. It turns out that we can viewmachine learning in Shannon’s
language, merely by changing our interpretation of communication,
a channel, and signals. The source signal, instead of a voice at one
end of a telephone connection, becomes our intent, i.e., whether or
not to buy, for the earlier example of Google, or whether an animal
is a dog or a cat, in our recent illustration. Instead of telephone wires,
the channel is the lens through which Google views us, i.e., the fea-
tures it uses for learning, such as queries in the earlier scenario. In
the dog-cat problem, the features we observe about animals, i.e., size,
shape, etc., are the channel. The classifier that we attempt to learn is
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the equivalent of a coding scheme used to reproduce the signal, along
with any pre-processing of features, such as the grouping of negations
with nearby words as in the case of learning tweet sentiments. Finally,
the accuracy of transmission is exactly the mutual information between
the reproduced signal, or guessed labels, and the source signal, i.e.,
our actual intent, whether dog or cat, positive or negative. So, in the
languageof information theory,whenGoogle classifies browsers from
buyers, it is trying to maximize the mutual information between what
it can observe about us, e.g., our queries, and our intent, of which it is
otherwise oblivious.
You might also recall Shannon’s famous notion of ‘channel capac-

ity’, which indicated exactly how good communication across some
channel could ever be. Armed with the previous analogy, we are ready
to ask whether there is an analogue of Shannon’s channel capacity in
the world of machine learning? Can we say with certainty how well
something canbe learned, nowallowing for bothpositive andnegative
examples?
It is easy to conclude using our previous analogy that the best accu-

racy one can achieve with any learning system is exactly the mutual
information between the concept to be learned and the features from
which we seek to learn it. In recent years researchers have unearthed
even deeper relationships between mutual information and learning
accuracy:44 it turns out that we can theoretically guarantee that under
reasonable conditions simple Bayesian classifiers will eventually learn
a concept with an accuracy closely related to the mutual information
between the concept and the chosen features. This is quite a strong
statement, since it says that any concept, however complex, can be
learned by a machine with a high degree of accuracy. All we need to
ensure is that the featureswe choose are close enough, i.e., have a high-
enough level of mutual information to the concept itself.
From a computer science perspective, however, these results con-

necting machine learning and mutual information are far from
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satisfactory. First,whateverwehave said earlier depends heavily on the
features thatwe choose. Ifwe choose better features, thenwe can learn
better. Suppose one of the features we choose is exactly the concept
itself. In the case of our animals example, this would be as if each dog
or cat camewith a label identifyingwhat itwas; clearly there is nothing
left to learn.
More disturbing is that we don’t have any idea how long it takes to

learn a concept. Consider our dog-cat example itself; as we have cal-
culated earlier, with four features each taking atmost five values, there
are atmost 54, or 625, combinations.Once amachine observes enough
examples that cover the 625 combinations, it has learned everything
that there is to learn about this example.Withmore features, the num-
ber of combinations grows rapidly; e.g., 10 features leads tomore than
9.7million combinations. Large, but certainly not infinite.Oncemore,
having observed sufficient examples of each of these combinations,
the machine will certainly have learned to distinguish concepts with
100% accuracy. There must be something more to it, surely? Would it
not be better to ask whether a concept can be learned ‘fast’, without
requiring training on toomany examples?

* * *
Every year the computer science community confers the prestigious
Turing Award for outstanding contributions to the field. The Turing
Award is the equivalent of the Nobel Prize for computing. In 2011,
Leslie Valiant won the Turing Award for, among other achievements,
developing a ‘theory of the learnable’. Valiant’s theory, called ‘probably
approximately correct learning’, or PAC learning, is to learning what
Shannon’s channel capacity is to communications.45

Valiant’s PAC learningmodel defines what it means for a concept to
be learned ‘fast’. A concept that requires a training set that is almost as
large as the total number of possible examples, such as 5n for a class
with n five-valued features, is definitely not fast. On the other hand,
suppose we could learn with just n examples, or even n2; this would
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certainly bemuch better. In the language of computer science, the fact
that 5n grows very rapidly as n becomes large is referred to by saying
that it grows exponentiallywith n. On the other hand, something like n2,
or n3, which growsmuch slower as n grows, is said to grow polynomially

with n.
Additionally, since learning from a small number of examples can-

not be perfect, the accuracywithwhich a concept is learned also needs
to be considered. Accuracy is usually measured in terms of the proba-
bility of the learned classifier making a mistake; the larger the chance
of a mistake, the lower the accuracy. The inverse of the mistake prob-
ability can be used as ameasure of accuracy. Valiant defined a concept
to be ‘properly’ PAC-learnable if the number of examples required to
learn a classifier for that concept grows only polynomially with the
number of features involved, as well as with the accuracy. The actual
mathematical definition is a shademore complicated, but we need not
delve into that here. It suffices to note that PAC learnability defines the
limits of learning from a practical perspective. Subsequent to Valiant’s
work, a rich theory has developed to delineate what kinds of concepts
are PAC-learnable ‘properly’, i.e., with only a polynomial number of
examples. At the same time, PAC learnability, like Shannon’s channel
capacity, serves only to define what is possible and what is not, rather
than tell us how to actually develop the required fast classifiers.
Whatever be the limits of learning as defined by theoretical models

such as PAC learning, in practice it is certainly true that machines
are able, using classifiers such as NBC, to do quite well at the various
versions of the ‘generalized reverse Turing Test’ that we defined in
Chapter 2. But is learning labels ‘really’ learning? Surely there is more
to learning a concept thanmere labelling?

* * *
Machine learning using a classifier certainly learns a concept, at least
from a utilitarian point of view. However, concepts in real life, espe-
cially in human language, are surely more complex thanmere tools to

99



THE INTELLIGENT WEB

distinguish instances, such asdogs andcats. Butmore complex inwhat
way? The instance [size:large, head shape:square, sound:roar, legs:4,
animal:lion] was suspected to be problematic. Why? Because a lion is
also a cat, i.e., a member of the cat family, rather than the animal cat.
Thus labels have context.When labels are used in language theymight
be used vaguely, such as ‘a big cat’, or ‘an American flight’. The context
is not clear. Complexity arises in otherways also: a dog has legs, so does
a cat. The concepts ‘dog’ and ‘legs’ are related. So are, indirectly, ‘dog’
and ‘cat’, since they both ‘have’ legs.
To see how context and structure in concepts might be tackled, we

return once more to our analogy with Shannon’s information the-
ory. Instead of a physical medium, the message being transmitted is
the actual class label, i.e., ‘dog’ or ‘cat’, while the message we receive
consists only of features, i.e., size, shape, etc. The interesting thing
we notice in our analogy between machine learning and communi-
cations is that, unlike in the case of actual communication, we have
farmore flexibility in choosing the channel itself. In the case of a phys-
ical medium, such as a telephone line, the physical properties of the
channel are largely out of our control. However, in the case ofmachine
learningwecanchange the ‘channel’ itself by simply choosing the right
set of features to use for learning. In particular,we are not bound touse
all possible features that might be available. It turns out that mutual
information tells us exactly which features to use.
Suppose we tried to learn to distinguish dogs and cats using only

one feature, say ‘size’. Using sufficient training data, we can actually
compute the mutual information between the type of animal and its
size. If this mutual information is high, it makes sense to use this fea-
ture in our NBC. However, consider the feature ‘legs’. Almost every
instance of a dogor cat has four legs. Knowing the number of legs of an
animal therefore serves little to reduce the uncertainty about whether
the animal is a dog or a cat. Consequently, the mutual information
between the animal type and number of legs will be very low. Note
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however that the computer has no knowledge of the real world when
it computes mutual information. It does not know that dogs and cats
have four legs. However, as long as it knows how to count ‘legs’, it can
figure out that number of legs is not important to distinguish between
dogs and cats, just by mere calculations, which computers are quite
good at. What this small but significant example illustrates is that the
machine can indeed learn a structural property of the world, i.e., that
size is more important than number of legs in distinguishing between
dogs and cats, entirely by itself from training data alone. The machine
was never explicitly told this property, unlike the labelling of animals.
Indeed, this is our first example of unsupervised learning, which is all
about learning structure.
Of course, it is important tonote that this argument restsona funda-

mental assumption, i.e., that the machine somehow knows that ‘legs’
is a feature, as is ‘head shape’, etc. The problem of how features might
themselves emerge in anunsupervisedmanner, i.e., ‘feature induction’,
is a deep and important subject towhichwe shall return very soon. For
now, let’s see what other insights followmerely frommutual informa-
tion, albeit using already known features. Instead of using one feature
and the concept ‘animal name’, the computer can just as well calcu-
late the mutual information between any pair of features. For example,
suppose we had used colour as a feature. The mutual information
between colour and, say, sound is likely to be low, since knowing the
colour of an animal rarely tells usmuch about which animal it is. Thus
the machine learns that these two features, i.e., colour and sound, are
independent.
What aboutGoogle’s possible efforts towards separating buyers and

browsers? Certain words, such as ‘cheap’ and similar adjectives, will
have a high mutual information with the desired distinction, while
others might not. Google’s computers learn this using mutual infor-
mation, and therefore Google ‘learns’ to ignore such words in its
classification scheme. Similarly, Google figures out which words are
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used together with others, and in which context: ‘want cheap clothes’
indicates a likely buyer, whereas ‘taking cheap shots’ does not. Such
knowledge can be used to decide which features to use, as well as,
for example, how to group words while computing likelihoods. The
machine has learned some structure, and is also able to exploit it, at
least somewhat.

Rules and Facts

Analysing mutual information between features can lead to some
structure, but this is still far from satisfying. For example, even though
the machine can discover, automatically, that the number of legs does
not help us distinguish between cats and dogs, it should also be able
to figure out that a ‘cat (or dog) has four legs’. In other words, can the
machine learn rules, such as ‘if an animal is a cat, then it meows’? Or
more complex ones such as, ‘if an animal has two legs, feathers, and
chirps, then it also flies’? Further, we would like the machine to also
estimate how confident it is about any rule that it learns, since after all,
some birds do not fly.
Such rules are more than mere correlations, and form a basis for

reasoning, which is at the core of thought, and to which we shall turn
in detail in Chapter 4. The field of machine learning deals mostly with
techniques for learning concepts, such as the naive Bayes classifier we
have seen earlier, as well as their theoretical underpinnings, such as
PAC learning. On the other hand, learning deeper structure from data
is usually thought of as the field of data mining, which aims to ‘mine’
knowledge from available data. At the same time, the two fields are so
closely interrelated that the distinction is often moot.
It is probably reasonable to expect that if a machine is going to

learn rules, it should be on the basis of reasonably large volumes of
data. So, to learn anything with any degree of certainty about two-
legged creatures that chirp andhave feathers, presumably themachine
needs to have seen a large number of examples of such animals. In the
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language of data mining, there should be a large number of data items
that actually prove the rule; such a rule is said to have large support.
Further, in order to infer our rule, it should also be the case that of the
two-legged creatures that have feathers and chirp, a very large fraction
of them do indeed fly. In technical terms, this rule has a high confi-

dence. Finally, and quite importantly, our rulewould be rather useless if
almost all animals also flew, instead of only the two-legged, feathered
chirping variety that our rule seeks to distinguish. Fortunately, what
makes our ‘association rule’ interesting is that the fraction of fliers is far
higher amongst the two-legged, feathered, chirping variety of animals,
as compared to animals in general.
It might appear that we are spending a lot of time dealing with this

rather simple rule about feathered creatures flying. The point is that
in the course of actual experiences humans observe a multitude of
objects, including animals of course, but a lot of other kinds of data
as well. A child does not need to be told that most flying creatures
have two legs, feathers, and chirp. She ‘learns’ this ‘rule’ from expe-
rience; most importantly, she learns this rule along with a myriad of
other rules about animals and objects in general. The number of rules
is neither predetermined nor constrained in any way, such as ‘rules
involving three features’.
It certainly appears that we unconsciously learn many rules, some

simple and some far more complex: ‘Birds of a feather flock together!’
More seriously, while we don’t see machines as developing idiom, we
would like to somehow discover all possible ‘interesting association
rules that have large support and confidence’, from any collection of
objects described by features, however large, regardless of how many
features there may be. Last but not least, it would be useful if the algo-
rithm for this seemingly complicated task were also efficient, in that it
could deal with very large volumes without taking forever.
In 1994, Rakesh Agrawal and Ramakrishnan Srikant published a

now famous technique, called the Apriori algorithm,46 for efficiently
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computing all interesting association rules in very large volumes of
data. The key to understanding this rather elegant algorithm is howwe
define the rules themselves. Recall that we are looking for rules with
large support, i.e. rules involving combinations of features that occur
fairly often in a large data set.
Once we have found such a combination enjoying large-enough

support because of its frequency, everything else required to learn
a rule from this ‘frequent set’ of data items can be calculated fairly
directly. Suppose a combination involves four features, say, ‘has two
legs’, ‘has feathers’, ‘chirps’, and ‘flies’. There arenowfourpossibleways
of defining a rule of the form ‘if feathers, flies, and two legs then chirps’,
i.e., by choosing one feature in turn as the conclusion of the rule with
the remaining forming the conditions.
Once we have a possible rule, we can calculate its confidence and

‘interestingness’ in a rather straightforwardmanner: confidence is cal-
culated by comparing the support for this combination with the sup-
port enjoyed only by the three conditions, e.g., ‘feathers, flies, and two
legs’. In other words, what fraction of instances with ‘feathers, flies,
and two legs’ also ‘chirp’. (If you notice some similarly with the like-
lihoods we computed for naive Bayes, your intuition is correct; this
‘confidence’ is merely an estimate of the likelihood of ‘chirp’, given the
features ‘feathers, flies, and two legs’.)
Whether or not a rule is ‘interesting’, on the other hand, requires us

to examine whether its confidence is significant enough.We therefore
calculate the support enjoyed by the conclusion ‘chirp’, as a fraction of
possible items; of course, this is merely the probability of the feature
‘chirp’ in all our data. Our rule is deemed to be interesting only if the
confidence with which it asserts that ‘chirp’ is likely, having observed
‘feathers, flies, and two legs’, is significantly larger than the probability
of ‘chirp’ in general, i.e., the support of ‘chirp’ alone as a fraction of the
total number of data items.
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Finally, just as we examined four rules, each having three features
implying the fourth, there could be rules with two features implying
the other two, or one feature implying the other three. However, in
order to limit the number of such possibilities, one normally looks for
rules that involve only one consequent feature, such as ‘chirp’ in our
example.
Still, the difficult part remains to figure out all possible frequent (i.e.,

high-support) combinations of features in the first place. As we have
seen before, the number of possible combinations of features grows
rapidly as the number of features increases. For four features, each
taking one of five possible values, it is only 625, but grows to almost 10
million for ten features. Thus, checking every possible combination of
features for its support is practically impossible. Agrawal and Srikant
made the rather obvious observation that if we confine ourselves to
looking for rules with a fixed support, i.e., those that occur say more
than a thousand times in the data set, then if a combination occurs
at least a thousand times, so must each of its features. Similarly, if a
combination of, say, four features occurs at least a thousand times, so
must every triple out of these four. Obvious though their observation
was, it was crucial, as it allowed them to devise a technique that did not
need to look at every possible combination of features.
The Apriori algorithm of Agrawal and Srikant computes associa-

tion rules from any collection of data, as long as each such item is
characterized by a set of features. The algorithm determines all pos-
sible association rules that enjoy a minimum support, confidence,
and interestingness. Apriori first scans the entire data and counts the
frequency of each single feature. It then scans the data once more
and retains only those instances containing single features that occur
with at least the required support. Next the process is repeated, this
time with pairs of features. Because of Agrawal and Srikant’s obser-
vation, all possible frequent pairs are bound to be found during this
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second pass. The process continues, with triples, groups of four fea-
tures, and so on, until no more combinations with the required sup-
port can be found. At this point, all possible frequent sets have been
found, and rules for each frequent set canbe enumerated and tested for
confidence and interestingness. Most of the hard work, i.e., scanning
the large data volume, has been done. Further, at each step, the data
retained decreases, hopefully significantly, and therefore the process
becomes efficient.
The Apriori algorithm works efficiently since in practice combina-

tions involving a large number of feature values are rare and don’t
enjoy any reasonable support. But there is no guarantee of this other
than an expectation that feature values are reasonably random, and
that the algorithm is used with a sufficiently high support value. To
see how Apriori itself might be inefficient, we might consider using
a support value of one, i.e., any combination that occurs needs to be
considered. In this extreme case, Apriori will go on to compute all
possible combinations of features, resulting in too much work as the
number of features becomes large. It is important to understand this
behaviour, which is typical of many practical data-mining as well as
learning techniques. Theirworst-casebehaviour ismuchpoorer than for
an ‘average’ case. (This is why theories such as PAC learning that focus
onworst-case behaviour oftenhave little to say about the performance
of learning algorithms in practice.)
Using techniques such as rule mining we can now understand

how a computer might be able to learn structural properties of
the world purely from the statistical frequency with which fea-
tures co-occur together in experiences. Such rules take the familiar
‘if . . . then . . .’ form, which makes it possible for a machine to reason

using them (as we shall discuss in Chapter 4). Further, statistical confi-
dence lends credence to the directionality of the rule. For example, the
rule ‘birds have two legs’ is learned with a high confidence, sincemost
instances of birdswouldhave two legs.On theother hand, ‘two-legged
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creatures are birds’ should enjoy low confidence. In contrast, both the
rules ‘birds chirp’ and ‘chirping animals are birds’, might be found to
hold equally high confidence from real-world observations.
As we have argued throughout this book, significant progress in

computing techniques is often driven more by practical applications
than lofty goals ofmimicking human intelligence. Thus itmakes sense
to ask why association rules might be important for the web-based
economy or otherwise? There is the, by now classic, story about ‘beer
and diapers’ that explains the origins of interest in mining associa-
tion rules. As the story goes, a large chain store used association-rule
mining to learn a rather unintuitive rule that ‘consumers often bought
beer and diapers together’. The purported explanation of this pecu-
liar finding is that people who have babies are more likely to drink at
home rather than go to a bar. The story is most certainly fabricated,
but serves to illustrate the potential of data mining. Presumably, by
placing beer and diapers together near each other in a store, sales of
both items might be boosted. Traditional bricks-and-mortar stores
have made significant investments in data mining since the popular-
ization of this anecdote, which has been generalized and referred to as
‘market-basket analysis’. Whatever the results on their sales, the field
of data mining certainly received a boost with all their interest.

* * *
Apart from marketing, rule mining is also used in many other appli-
cations. In Chapter 1 we recounted the 26/11 Mumbai terrorist attacks
of 2008, and mentioned the work23 of V. S. Subrahmanian and others
in computationally analysing the activities of terrorist groups such
as the Lashkar-e-Taiba (LeT). They enumerate 61 ‘temporal’ rules in
their book, all learned fromhard data. These are similar to association
rules, except that they also include a time element. For example, a
number of rules demonstrate that ‘deaths of LeT commanders seem
to be positively correlated with some subsequent actions (in the next
1–3 months) by LeT such as attacks on Indian civilians’.23
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In the context of the 26/11 Mumbai attacks, we know of at least five
LeT operatives killed during September 2008, in different encounters
with Indian security forces in Kashmir. These include∗ Qari Usman
(6 September), Abu Sanwariya (21 September), Tahir Pathan and Abu
Maaz (both on 22 September), and Abu Khubaib (26–7 September).
These facts, together with a number of rules described in the book,
could have pointed to an increased chance of terrorist activities by the
LeT in subsequent months.
Anexampleof sucha temporal association rule is thePST-3 ruledoc-

umented in Subrahmanian’s book: ‘LeT attacks symbolic sites three
months after anymonth inwhich 0–5 LeT commanders are killed and
LeT has [training] locations across the border.’ The important thing to
note is that this rule is supported by 40 pieces of information, with a
confidence level of 90.8%; inotherwords, outof all the40documented
monthswhen the antecedents of this rulewere true, includingSeptem-
ber 2008, in 90.9%cases, i.e., 36 instances, LeT attacked symbolic sites.
Equally important is that this rule has 0% negative probability, which
means that therewasnomonthwhenattackswere carriedout thatwas
notprecededbya situation threemonthspriorwhenLeTcommanders
were killed and LeT had locations across the border (of course, the
latter condition has been true for years on end).
Of course, rules such as PST-3 say nothing aboutwhere attacksmight

take place. Nevertheless, related work47 by V. S. Subrahmanian and
Paulo Shakarian used geo-spatial data-mining techniques to detect the
most probable locations of secret explosives caches maintained by
Iraqi insurgents, based on the spatial pattern of actual bomb attacks
on US and Allied forces.
The potential for data mining to aid in intelligence and counter-

terrorism is vast. Early initiatives such as the US’s TIA program met
with scepticism as well as justifiable privacy concerns. Now that the

∗ Source: SATP.org.

108



LEARN

power of large-scale data mining has been demonstrated in so many
applications, many of which each of us experience every day on the
web, there is far less scepticism in the technology, even as privacy
concerns have gone up.

* * *
In much of market-basket analysis, the directionality of the rules is
less important than the fact that selected items are grouped together.
Thus, it may well be that the beer-and-diapers combination enjoys
high support, and that is all that matters. Confidence in either of the
statements ‘peoplewho buy beer also buy diapers’, or ‘peoplewho buy
diapers also buy beer’ may well be only moderate. Only one of these
rules may be interesting, however, in that people who buy diapers are
unusually likely to buy beer as compared to all those who normally
buy beer.
Like traditional bricks-and-mortar stores, e-commerce sites also

need to position related items near each other on their websites so
that consumers are likely to purchase more items during each visit.
You might be tempted to believe that association rules should work
for e-commerce just as well as for traditional retail. While this is true
to a certain extent, the opportunity for co-marketing related items on
theweb is actuallymuchwider than implied by traditional association
rules designed for the bricks-and-mortar economy. Exploring these
opportunities has resulted in new data-mining techniques, such as
collaborative filtering and ‘latent feature’ discovery. Later on we shall
find that such techniques also point the way towards addressing the
difficult question of ‘where features come from’.

Collaborative Filtering

By their very nature, association rules rely on high support, i.e., a
large volume of evidence grounded in data. Rules enjoying lower lev-
els of support rapidly become both excessively numerous as well as
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statistically insignificant, making them all but useless. This is true
regardless of whether one is dealing with a customer buying patterns
or learning properties of the world around us. At the same time, there
aremany important structural properties thatmight never enjoy large
support in any reasonable collection of experiences.
While shopping online at a site such as Amazon.com, we are reg-

ularly presented with a list of ‘people who bought this book also
bought . . .’. These look like association rules reminiscent of market-
basket analysis. Looking closer, however, there are significant differ-
ences. First, the ‘support’ enjoyed by any particular combination of
books is likely to be close to zero, whatever that combination is, just
going by the number of possible combinations. So no frequent set will
work; in fact there are no frequent sets. Next, the recommendation
system is contextual, i.e., the set of books shown depends on the one
you are currently browsing.
But that is not all. Who are the ‘people’ who ‘bought this book . . .’?

Clearly there are many people, and the books they each bought prob-
ably span a wide variety of interests as well as the different purposes
for which books are bought, i.e., work, leisure, for kids, etc. Merely
combining the set of all books bought by people who bought ‘this’
book would likely yield a rather meaningless potpourri. So how does
Amazon decide which books to show you along with the one you are
browsing?
It is indeed possible to group books based on the similarity of the

people buying them. Further, and most interestingly, the similarity of
people can in turn be computed basedon the books that they buy. This
seemingly circular argument is at the heart of what is called collabora-
tive filtering. No features are used other than the relationship between
people and the books they buy. Unlike association rules, collaborative
filtering allows groups with low support to be discovered.
Collaborative filtering addresseswhat is often referred to as the ‘long

tail’ of online marketing. In traditional marketing that is based on

110



LEARN

placing products on shelves or advertising to a broad audience on TV,
association rules based on frequent sets enjoying high support are
useful since they point to groups that might attract the largest volume
of buyers given the fact that in the end the retailer has to choose one
particular way to organize their shelves, or finally decide on a single
TV ad to commission and broadcast in prime time. The online world
is very different and presentsmarketers with the opportunity to target
specific ads for each individual. We have seen one example of this in
Google’s AdSense. Recommendation systems, such as for books on
Amazon, are another example of the same phenomenon, using col-
laborative filtering to target ads instead of content similarity as in the
case of AdSense.
The recent story of the Netflix competition48 illustrates how dif-

ficult the collaborative filtering problem becomes on large complex
data sets. In October 2006, the online DVD rental service Netflix
announced a prize of 1 million dollars to any team that could beat
its own in-house algorithm, called Cinematch. The problem posed
by Netflix was to accurately predict film ratings based on past data.
The data consisted of over 100 million ratings given by almost half a
million users to just over 17,000 films. Based on this data contestants
needed to predict the ratings of a further two million entries, which
were also provided sans the rating values. Notice that this is also a
collaborative filtering problem. In the case of Amazon, the accuracy
of the recommendations given are best measured by how well they
match actual purchases by the same users in the future. Instead of pre-
dicting purchases, which may be viewed in binary terms—as zero or
one values, the Netflix challenge is to predict ratings, between 1 and 5.
The million-dollar prize, to be given for improving over the perfor-
mance Cinematch by just 10%, was finally awarded only in September
2009, toBobBell, ChrisVolinsky, andYehudaKoren fromtheStatistics
Research group of AT&T Labs.

* * *
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Even though collaborative filtering appears tough, let us take a stab at
it nevertheless: how might we group books based on the people that
buy them?Whenyoubuy a bookonAmazon.com, youneed to supply
your user ID. One way to think about this is to characterize a book
not by the words it contains (which would be the natural ‘features’
of a book), but instead by the user IDs of the people who bought it.
The ‘closeness’ of two books is then measurable by the number of
common people who bought both books. NowAmazon can find and
display the few books that are most similar, according to this mea-
sure, to the one you are currently browsing.Of course, Amazon stocks
well over 10 million books (14 million is the current estimate as per
Amazon itself ). It is needlessly expensive to have to search for simi-
lar books each time a viewer browses a title. Instead, Amazon could
group books into clusters by calculatingwhich ones aremost similar to
each other.
Clustering, i.e., grouping items that are similar to each other, is

another basic technique for unsupervised learning. All that is needed is
some way to compare two items, in this case books. A simple algo-
rithm for clustering might proceed by first placing each book in its
owngroupofone.Next, twosuch single-itemgroups that are closest to
eachother aremerged intoagroupof two.Theprocess is then repeated
until groups of the desired size are obtained. In the case of Amazon, it
might be enough to formgroupsof a dozenor sobooks.Note however
that in all but the first step we need to compute the similarity between
groups of books, rather than pairs. The similarity between two groups
of booksmight be taken as the average of the similarities between each
pair. Alternatively, one particular book in the group might be chosen
as a representative, perhaps because it is more or less equidistant to
others in the group, i.e., it serves as some kind of ‘group centre’.
How long does this above clustering algorithm, also called hierarchi-

cal clustering, take to complete? If we have 10 million books, the first
step itself requires us to compute the distance between 10million× 10
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million, i.e., 1014 books.∗ Now, 1014 is thenumber 1with 14zeros, soper-
haps clusteringwas not such a good idea after all. Fortunately there are
other, much faster, clustering techniques. In particular, the technique
of ‘locality sensitive hashing’ allows us to somehow get away without
ever having to compute distances between each pair.

Random Hashing

As you may recall from Chapter 1, locality sensitive hashing (LSH),
invented as recently as 1998 by Indyk andMotwani,17 is a quite remark-
able and general approach that allows one to cluster n data items in
only O(n) steps, as opposed to the n2 steps needed to exhaustively
compare all pairs. We discussed then how you might compare two
volumes todecidewhether theywere identical copiesof the samebook
by randomly comparing a small number of pages rather than checking
all pairs.
LSHgeneralizes this approachusing random ‘locality-sensitive hash

functions’, rather than random page numbers. An interesting exam-
ple of using LSH to cluster similar books together is called ‘min-
hashing’. Consider all possible words (there could be millions), and
imagine arranging them in some random order, e.g. 1-‘big’, 2-‘outside’,
3-‘astounding’. Now take one of the books and figure out which of the
tens of thousands of words in it have the smallest numbering accord-
ing to this random ordering. Let’s say the word is ‘outside’ (i.e., the
volumedoesnot contain ‘big’); then themin-hashof thebookwill be 2.
Do the same for another volume. If the two books are very similar,
maybe even identical, then its min-hash should also be 2, since both
books will contain identical words.
Now, instead of using randompage numbers, we usemany random

orderings of all words and calculate the min-hash of both volumes
each time. The only way such a pair of min-hash values can differ

∗ Tenmillion is 107, so 107 × 107 = 1014.
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is if aword is present in oneof the volumes butmissing from theother;
otherwise both min-hash values will always be equal. If we repeat the
process, say, 20 times, i.e., using 20 different orderings of words, the
percentage of time the min-hashes match will be directly related to
how many common words the two books have. So LSH using min-
hashing is ameans to cluster similar books together. (Note that we are
no longer worried about whether the copies are identical; similarity
will do, since min-hashing ignores the order of words in each book.)
The really important part about LSH is that themin-hash values for

each book (i.e., all 20 of them) can be computed once for each book,
independent of any other book,making it a linear algorithm that takes
only O(n) steps. Books having the same min-hash values are auto-
matically assigned to the same cluster, without having to individually
compare each pair of books.
Because of the way min-hashes are calculated, books in the same

cluster are highly likely to be very similar to each other. It turns out
that if two books are, say, 80% similar, the probability that they have
the same min-hash value for any one of the random orderings is also
0.8, i.e., 80%; the proof is not too complicated, but still a bit involved
so I’m omitting it here. Now, there is a further very important trick
to LSH: by using many hash functions we can force the probability
of similar books getting into the same cluster to be as close to 100%
as we want, while at the same time, the chance that dissimilar books
are mapped to the same cluster remains small. We shall return to LSH
in Chapter 5 to describe how this is done; interestingly we shall also
find that LSH is closely related to techniques that try to model human
memory.

Latent Features

Letus stepbacknowto return toourproblemofgroupingbooksbased
on the people that read them. It is quite easy to see that clustering
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achieves the same result just searching for the ‘closest’ few books, as
we had initially thought of doing. Further, if we use an efficient clus-
tering algorithm, it will certainly be faster to pre-cluster books so that
instead of searching for nearby books among all possible ones we
need only search within the pre-computed cluster to which a book
belongs.
Still, clustering ultimately results in a book being assigned to exactly

one cluster, or group. In reality, this may or may not be reflective of
reality. For example, the book you are reading right now, i.e., this book
itself, might possibly be bought both by computer science students as
well as readers of popular science. Of course, unless Amazon knows
something more about a particular browser of this book, the best it
can do is to recommend other books that are ‘close’ to this one, which
might be a mix of elementary computer science texts together with
some popular science books. On the other hand, Amazon does know
more, such as the query youused to access this book; and alternatively,
if you are logged in with your user ID, it can actually identify you. In
this case it should be possible to use such knowledge to give better
recommendations.
Supposewe allowourselves to assign books tomultiple groups; let’s

call them roles. Similarly, people are assumed to play multiple roles.
Roles might represent computer science students, popular science
readers, etc. So a role is nothing but a groupof books, and each book is
a member of some such roles (groups). At the same time, each person
can also belong to many roles. Further, each book or person might
be thought of as belonging to different roles with different degrees of
affinity. The degree of affinity of a person to a role measures, via a
fraction (or percentage), the extent to which that role represents her,
as compared to others. Similarly, a book’s degree of membership in
different roles is also some fraction (or percentage).
If we somehow had a list of such roles and the affinities of each

book and person to them, we could use this information to give better
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recommendations.Wewould simply find out themajor roles a person
plays, as well as the books in these roles. The list of recommendations
would be chosen from the books across all roles that a person has high
affinity to, using the role-affinities of both people and books as prob-
abilities driving the random selection process. Thus, the books ‘most
closely linked to the roles that a personplays themost’would appear in
larger numbers than others. The resulting recommendations are both
more relevant as well as more personalized. It is easy to experience
this phenomenon for oneself. The books that Amazon recommends
to you against any particular book title are visibly different depending
on whether or not you are logged in.

* * *
Now comes the interesting bit:we don’t really know what roles there actually

are. Instead,wewould like tofindwhat rolesmake sensegiven theavail-
able data, i.e., the facts about people and the books they have bought.
And what is a role, after all? A role is nothing but a label; but there
is no way the computer can assign a label such as ‘computer science
student’. Instead, the computer gives rolesmeaningless labels.Weonly
need to decide up front howmany roles there should be. The problem
then becomes one of finding a ‘good’ mapping of books to roles, and
people to roles. But what is a ‘good’ mapping?
Letus recallwhat constituted ‘goodness’ in thecaseof simple cluster-

ing, where each book was assigned to exactly one cluster. We tried to
ensure that eachpair of bookswithin agroupwere ‘close’ to eachother,
in terms of the number of common people that bought both books
in a pair. By the same token, clustering algorithms also try to ensure
that books in different clusters are not too close. We can extend this
concept of goodness to our case of multi-way clustering in a similar
manner. For example, wemight still considerminimizing the distance
between pairs of books within a cluster, or role, but now adjust the
calculations to account for the fact that each book in a pair, as well as
the people that bought them, belongs to that role to a different degree.
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Similarly, we would try to maximize the distance between books that
do not belong to clusters, oncemorewith adjusted distancemeasures.

* * *
The algorithms that achieve suchmulti-way clustering are far toocom-
plex to explain here. Further, the best of these techniques are derived
from what are called ‘generative’ models rather than analogues of
clustering. Among the most popular of these techniques is the Latent
DirichletAllocation, or LDAalgorithm.49 LDAand similar techniques,
such as Latent Semantic Analysis, whichwe also came across in Chap-
ter 2, were actually designed for a very similar problem that we have
also seen earlier, i.e., that of automatically discovering topics in a col-
lection of documents.
A document can be thought of as a mere collection of words, and

words as co-occurring in documents. The analogy to the collabora-
tive filtering problem is almost self-evident: if documents are books,
then words are people. Buying a book is akin to including a word in
a document. Instead of assigning roles to books and people, we view
a document as being a collection of topics, each to a different degree.
Similarly, each word can be thought of as contributing, to a certain
degree, to eachof a set of topics. Finally, just as for roles,we really don’t
know the topics beforehand; rather, the algorithm needs to discover
what set of topics best represents the data at hand, which is in turn
nothing but the documents we started out with.
There are close relationships between collaborative filtering, topic

discovery, probabilistic (‘generative’) models, information theory,
clustering, classification, and other applications and techniques.
Deeper connections between these techniques have recently been
explored. As is often the case in science andmathematics, very similar
techniques are discovered for different problems in different areas of
application. Only later do their relationships emerge. The subject of
‘latent’ topic-like models is one such area, with a variety of techniques
originating independently being found to reveal similarities, deeper
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insight, as well as ideas for new applications and opportunities for
improved performance.50 Moreover, as we now proceed to explore,
collaborative filtering and topic models might teach us something
about our pressing question regarding how we ourselves learn
features.

* * *
Let us step back and compare the collaborative filtering problemwith
that of recognizing a category or class of objects, such as ‘dogs’, based
on its ‘features’, i.e., shape and size. In collaborative filtering, there is
no distinction between ‘objects’ and ‘features’, as was required in the
case of machine learning using classifiers. Books are objects with the
people who buy them as features. Conversely, people are objects with
the books they buy being their features. Similarly for films and ratings.
The features that emerge out of collaborative filtering are hidden, or
‘latent’, such as the roles people play. While we have described only
one latent feature in our discussion earlier, there can bemany layers of
latent features. For example, booksmay belong to one ormore genres,
which in turn are favouredbydifferent roles that people play. Themost
important aspect of latent learning techniques is that they can learn
hidden features, be they roles, genres, or topics, merely based on the
co-occurrence of objects, e.g., books, people, and words, in ‘experi-
ences’, be they book purchases or documents.
Now let us return to a question that came up even while we figured

out how to learn classes using machine learning, as well as rules that
characterized such classes using datamining. Each of these techniques
relied on data being described by crisp features; we had postponed
the ‘problem’ of feature induction for later. Can latent learning teach
us something about how features themselves emerge from the world
around us?
The study of how humans learn categories along with the features

by which to distinguish then is an important area of research for
cognitive scientists and psychologists. Systematic studies51 on infants
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have shown that the categories they learn are different depending
on which items they see occurring together, i.e., co-occurrence is
important. For example, when presented with pairs of dogs, and then
pairs of cats, the infant is surprised (i.e., gives more attention to) a
picture of a dog and a cat together. On the other hand, when pre-
sented with pairs of white animals followed by pairs of black ani-
mals, they learn the black-or-white feature, and are surprised only
when presentedwith one black and anotherwhite animal, even if both
are dogs.
A common question posed to kindergarten children is to identify

items that ‘go together’. Presented with a number of animal pictures,
some common pets, others wild animals such as lions and elephants,
the child somehow groups the domestic animals together, separately
from the wild ones. How? Based on the empirically established51

importance of co-occurrence as an important element of learning,
we might well speculate that children recall having seen wild animals
during experiences such as visiting a zoo or watching the Discovery
channel, while pets are seen in homes, i.e., during different experi-
ences. Animals are seen in experiences: different experiences contain
different animals. Might such a categorization process be similar to
how people and books get grouped into many different, even ‘per-
sonal’, categories, in the context of Amazon?
The number of scenes a child experiences and the variety of objects

they contain are huge. So is the number of books and the people buy-
ing them on Amazon. Yet books get grouped, as do animals. Surely
animals can be grouped together based on how similar their features
are?Butwhat aboutwolves anddogs? Should theybegrouped together
because they look similar, or separately: onewild and theother domes-
tic? Similarly, onemight expect that books containing similar content
should be grouped together. If this were the case, one should be seeing
recommendations for college textbooks on physics when browsing
Stephen Hawking’s popular science books. But we don’t see those.
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What we see is uncannily what we expect to see, seemingly due to
collaborative filtering techniques that are able to learn latent features.
At the cost of dipping our toes in philosophical waters, let us ask

what exactly is required for a technique such as collaborative filtering
to work? In the case of books and films, people need to interact with
these objects in well-defined transactions; further, the objects them-
selves, be they people, books, or films, need to be distinguished.
In the case of scenes and animals, the presence of an object in a

scene needs to be distinguished. Exactlywhat the object ismight come
later; our built-in perceptual apparatusmerely needs to distinguish an
object in a scene. Experiments with very young infants have shown
that movement is something they recognize easily.51 Any part of their
visual field that moves automatically becomes a candidate object wor-
thy of being distinguished from its background.
Next, scenes themselves need to be identified, perhaps as contigu-

ous periods of time. It has been observed that even babies appear to
have the innate capability to subitize, i.e., distinguish between scenes
with say, one, two, or three objects.52 Subitizing in time in order to
identify distinct experiences is also presumably innate.
The ability to discern objects in a scene, as infants do usingmotion,

and then to subitize in time, is all that is needed for collaborative fil-
tering to work. Collaborative filtering then neatly sidesteps the dis-
tinction between ‘objects’ and ‘features’. Latent features can be learned
merely by co-occurrence of objects in experiences. Thus the feature
needed to distinguish black animals from white ones, i.e., black or
white colour, might be learned when infants see groups of similarly
coloured objects. More complex features that can distinguish a dog
from a cat might be learned when infants experience many dogs, and
many cats, and also many ‘legs’, which are also identified as objects in
a scene because they move rapidly.
Speculating further, consider another kindergarten exercise where

a child is asked to ‘find the odd man out’, i.e., identify which object
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does not ‘fit in’ with the rest. Given a collection of curved shapes and
one pointy shape, such as a star, the child is easily able to determine
that ‘pointedness’ is the feature to look for. In another exercise though,
when presented with stars, circles, and squares, she accurately finds
an irregular convex polygon as the odd one out; here regularity was
the feature used. Perhaps such exercises themselves form the experi-
ences with which the child automatically learns latent features such
as ‘pointedness’, regularity, or even convexity, smoothness, and con-
nectedness. Collaborative filtering is also a plausible explanation for
how we learn relationships between low-level visual features, such
as angles or smoothness, so as to form higher-level concepts such as
‘pointedness’.
Does collaborative filtering serve as a rational model for how

humans learn features such as ‘wild animals’, pointedness, or convex-
ity as just alluded to? We don’t know. Speculation on these matters
is still in the domain of the philosophy of cognition, as exemplified
in Andy Clark’s book Natural-Born Cyborgs: Minds, Technologies, and the

Future ofHuman Intelligence.53 Clark asks: ‘Howdoeshuman thought and
reason emerge from looping interactions betweenmaterial brains and
bodies, and complex cultural and technological environments?’ He
uses collaborativefiltering as an exampleofhow ‘concepts finely tuned
to the desires and needs of consumers are learned as an “emergent
phenomenon” of the unplanned by-products of the primary activity,
i.e., online shopping’. In a review of Clark’s book, Leslie Marsh asks
how ‘the principles of [collaborative filtering] [could] be integrated
into theories ofmemetics of ideas’.54 The term ‘meme’ itself was intro-
duced by Richard Dawkins in his 1976 book55 to denote an idea, or a
‘unit of culture’, that is transmitted between people and generations in
a manner similar to biological genes. In this sense, a ‘meme’ is similar
to a ‘topic’; and, as we have seen, collaborative filtering can automati-
cally learn a set of topics from a collection of documents. Thus, Marsh
appears to be asking the same question that we are, i.e., whether col-
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laborative filtering sheds any light on how humans learnmemes from
conversations and experience.
Nevertheless, in spite of interest from philosophers of cognition

such as Clark and Marsh, many more systematic psychological exper-
iments need to be carried out before we can decide if latent feature
learning via collaborative filtering forms a reasonable model for how
humans learn features. Be that as it may, i.e., whether or not it has any
bearing on understanding human cognition, collaborative filtering is
certainly a mechanism for machines to learn structure about the real
world. Structure that we ourselves learn, and sometimes define in elu-
sive ways (e.g., topics and genre), can be learned bymachines. Further,
the machine learns this structure without any active supervision, i.e.,
this is a case of unsupervised learning. All that is needed is the machine
equivalent of subitizing, i.e., distinct objects occurring or co-occurring
in identified transactions.

Learning Facts from Text

We have seen that machines can learn from examples. In the case of
supervised learning, suchas forbrowsers versus surfers, or dogs versus
cats, a human-labelled set of training examples is needed. In unsuper-
vised learning, such as discovering market-basket rules, or collabora-
tive filtering to recommend books on Amazon, no explicit training
set is needed. Instead the machine learns from experiences as long
as they can be clearly identified, even if implicitly, such as purchase
transactions, or scenes with features.
We began this chapter with the example of the Jeopardy!-beating

Watson computer. While we might be convinced, based on our dis-
cussions so far, that a machine such as Watson could in principle
learn various kinds of facts and rules, it does seem that it would
need to learn such knowledge from a far richer set of experiences
than, say, e-commerce transactions, or idealized scenes. Instead, it
might be far better for Watson to learn directly from the 50 billion or
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so indexed web pages that already document and describe so many
humanexperiences and recollections.Of course,webpages aremostly
unstructured text, andweknow that text canbe analysedusingnatural
language processing (NLP) techniques as we have seen in Chapter 2.
NLP, togetherwith variousmachine-learning techniques, should allow
the machine to learn a much larger number of ‘general knowledge
facts’ from such a large corpus as the entire web.
Watson does indeed use web pages to learn and accumulate facts.

Many of the techniques it uses are those of ‘open information extrac-
tion from the web’, an area that that has seen considerable atten-
tion and progress in recent years. Open information extraction seeks
to learn a wide variety of facts from the web; specific ones such as
‘Einstein was born in Ülm’, or even more general statements such
as ‘Antibiotics kill bacteria’. Professor Oren Etzioni and his research
group at theUniversity ofWashington are pioneers in this subject, and
they coined the term ‘open information extraction from the web’ as
recently as 2007.
The REVERB56 system most recently developed by Etzioni’s group

is simple enough to describe at a high level. Recall that NLP tech-
nology, itself based on machine learning, can fairly accurately pro-
duce a shallow parse of a sentence to identify the part of speech
for each word. Thus, a shallow parse of a sentence such as ‘Einstein
was born in Ülm’ would tag each word with its most likely part of
speech, basedona combinationof classifierswhich in turnwouldhave
been trained on a vast corpus of sentences. The result would prob-
ably be something like, [Einstein/noun-phrase was/verb-descriptor
born/verb in/preposition-in Ülm/noun-phrase]. While deeper pars-
ing as we have seen in Chapter 2 could also be done, this may or
may not reveal the actual scenario that is conveyed by the sentence.
REVERB takes a simpler approach, and instead looks for verbs, or verb
phrases such as ‘was born’, alongwith surrounding prepositions. Here
REVERB would focus on ‘was born in’, and try to learn a ‘fact’ with
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this verb-based group as the central element. The facts being sought
are triples of the form [Einstein, was born in, Ülm]. Having identified
the longest verb-based sequence to focus on, REVERB then looks for
nearby nouns or noun phrases. It also tries to choose proper nouns
over simple ones, especially if they occur often enough in other sen-
tences. Thus, for the sentence ‘Einstein, the scientist, was born inÜlm’,
REVERBwould prefer to learn that [Einstein, was born in, Ülm] rather
than a fact that a [scientist, was born in, Ülm]. Of course, REVERB is a
bit more complex than what we have described. For example, among
other things, it is able to identify more than one fact from a sentence.
Thus, the sentence ‘Mozartwas born in Salzburg, butmoved toVienna
in 1781’ extracts the fact [Mozart, moved to, Vienna], in addition to
[Mozart, was born in, Salzburg].
Open information extraction techniques such as REVERB have

extracted a vast number of such triples, each providing some evidence
of a ‘fact’,merely by crawling theweb.REVERB itself has extractedover
a billion triples. In fact, one can search this set of triples online.∗ A
search for all triplesmatching the pattern [Einstein, born in, ??] results
in a number of ‘facts’, each supported bymany triples. For example,we
find that REVERB has ‘learned’ that Albert Einstein was born in Ger-
many (39), Ülm (34), 1879 (33), where the numbers in brackets indicate
how many independently learned triples support a particular combi-
nation.
Of course, REVERBvery often fails, perhaps evenonmost sentences

actually found in web pages. Recall we had considered the following
sentence to highlight how difficult a task Watson had before it: ‘One
day, from among his city views of Ülm, Otto chose a watercolour to
send to Albert Einstein as a remembrance of Einstein’s birthplace.’
What do you think REVERB does on this more complex, but cer-
tainly not uncommon, sentence structure? Well, REVERB discovers

∗ <http://openie.cs.washington.edu>.
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the pretty useless fact that [Otto, chose, awatercolour]. To give it some
credit though, REVERB attaches a confidence of only 21% to this dis-
covery, while it concludes [Einstein, was born in, Ülm] with 99.9%
confidence from the easier sentence ‘Einstein was born in Ülm’. The
REVERB system is but one fact-discovery engine.Different techniques,
such as those used in an earlier system called TextRunner,57also built
by Etzioni’s group, can discover a variety of other constructs, such as
the possessive ‘Einstein’s birthplace’, or ‘Steve Jobs, the brilliant and
visionary CEO of Apple, passed away today’ to learn [Steve Jobs, CEO
of, Apple] in addition to [Steve Jobs, passed away, 5 October 2011].
One may have noticed our use of the terms confidence and sup-

port in this discussion, just as in the case of association rules. This is
no coincidence. Sentence-level analysis such as REVERB can discover
many triples fromvast volumesof text. These canbeviewedas transac-
tions, each linking a subject to an object via a verb. Frequently occur-
ring sets of identical or closely related triples can be viewed as more
concrete facts, depending on the support they enjoy. Association rules
within such frequent triple-sets can point to the most likely answers
to a question. For example, of the many triples of the form [Einstein,
was born in, ?], the majority of them have either Germany or Ülm as
the object; only one had Wurttemberg, while some others point to
the year 1879.
Facts becomemore useful if they can be combined with other facts.

For example, it should be possible to combine [Einstein, was born in,
Ülm] and [Ülm, is a city in, Germany] to conclude that [Einstein, was
born in a city in, Germany]. Verbs from triples learned from different
sentences can be combined just as if they occurred in the same sen-
tence, with the two triples being ‘joined’ because the object of one, i.e.,
Ülm, is the subject of the other.
It is even more interesting to ask whether more general rules can

be learned by combining triples other than what appear to be simple
statements. For example, many triples of the form [some person, is born
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in, some place] might yield a higher-level rule, or fact, that ‘persons are
born in places’. Another set of higher-level facts, learned from many
sentences including the definition of ‘birthplace’, might be that ‘per-
sons have a birthplace’, ‘birthplace is a place’, and ‘persons are born in
their birthplace’. A system such as Watson would require the explo-
ration ofmany different combinations of such facts, each of which the
machine ‘knows’ with a different degree of confidence. Watson uses
a variety of mechanisms, possibly these and many more, to discover
facts, both preprogrammed ones as well as many learned during the
question-answering process. Watson also uses direct keyword-based
search on the vast volumes of raw web-texts it has stored in its mem-
ory. Searches are often issued dynamically, in response to facts it has
already found, so as to gather more data in an effort to garner support
for these facts, while continuously juggling with a set of hypothetical
answers to the quiz question it may be trying to answer.
Combining specific facts with more general rules, learning

additional facts in the process, while also taking into account the
uncertainty with which each fact is ‘known’, is actually the process
of reasoning, and is at the heart of our ability to ‘connect the dots’ and
make sense of the world around us. Representing rules and facts and
then reasoning with them, as Watson appears to do, is the subject of
Chapter 4, ‘Connect’.

Learning vs ‘Knowing’

However, before proceeding to reasoning, let us reflect on what we
might conclude about amachine’s ability to learn using the techniques
discussed so far. All our discussions required the computer to be pre-
sented with objects or experiences that in turn may include or be
related to other objects or experiences. These relationships, be they of
containment or sharedpresence in a transaction, determine the features
onwhichmachine learning of all forms relies. Attributes of dogs, cats,
or birds, of buyers and browsers, are features. Similarly, the books
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people buy are features of people, just as the people themselves are
features of books.
All our machine learning is based on first being able to distinguish

objects along with some of the features describing them. The ability
to distinguish different objects or segregate experiences is probably
an innate ability of humans. Computers, on the other hand, derive
this ability directly through our programming. Classifiers can then
distinguish different classes of objects, dogs from cats, buyers from
browsers, provided they have been trained suitably. Unsupervised rule
learning can discover important features and frequently observed
associations between features, thereby learning some structure of the
world. ‘Latent’ learning techniques such as collaborative filtering can
similarly discover even infrequent correlations between objects (e.g.,
books) based on their features (e.g., people who bought them), as
well as between features (e.g., topics in words) based on objects (e.g.,
the articles they occur in). Finally, the computer can learn ‘facts’ of
the form [subject, verb, object] from vast volumes of text available
on the web.
Classes, rules, groups, facts—all surely very useful forms of ‘knowl-

edge’ that can well be exploited for certain types of applications. At
the same time,many philosophers have askedwhether the acquisition
of such rules and facts has anything to do with ‘knowing’ anything,
or with how humans actually learn knowledge. Our goal in this book
is far more limited to highlighting the similarities between human
capabilities andwhatmachines can nowdo in theweb age, rather than
seeking to comment on such philosophicalmatters. Nevertheless, I do
feel theneed todescribe twosomewhat recent anddiametricallyoppo-
site viewpoints on this topic, if only for the sake of completeness.
In a highly debated 1980 article entitled ‘Minds, Brains, and Pro-

grams’,58 the philosopher John Searle severely questioned whether a
machine knowing rules and facts such as those we have seen it can
learn, knows anything at all in the sense humans do. Searle makes
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his arguments through a variation of the Turing Test, in a thought
experiment wherein an English-speaking human is taught how to rec-
ognize and manipulate Chinese characters using programmed rules,
facts, etc., armed with which the man is then able to answer simple
questions, also presented in Chinese, about a paragraph of Chinese
text given tohim.Themanhimself hasnoknowledgeofChinese. Toan
external Chinese speaking interrogator though, he, along with all his
rules and facts, does appear todisplay someabilities of comprehension
in Chinese. Perhaps the interrogator might even believe that the man
inside this ‘Chinese room’was indeed aChinese speaker. Searle’s point
was that in spite of this external behaviour, in no way could the man,
even with all his tools, be considered as ‘knowing’ Chinese. Searle in
effect refutes that the Turing Test has anything to say about such a
machine’s ‘understanding’ as being in any way related to ‘real’ human
understanding or knowledge.
Searle’s criticisms were directed at the proponents of ‘strong AI’,

who believed that a suitably programmed machine, even if highly
complex, could in fact be considered as conscious as a human or at
least some higher animal. Searle was however ready to admit and
accept that such knowledge and its manipulation could be highly use-
ful, and might even assist us in understanding howminds function:

If by ‘digital computer’ we mean anything at all that has a level of descrip-
tion where it can correctly be described as the instantiation of a computer
program, then again the answer is, of course, yes, since we are the instanti-
ations of any number of computer programs, and we can think.58

Yet he also asserts strongly that the knowledge maintained by a com-
puter andmanipulated by its programming cannot actually be said to
be doing anything akin to human thinking:

But could something think, understand, and so on solely in virtue of being
a computer with the right sort of program? Could instantiating a program,
the right program of course, by itself be a sufficient condition of under-
standing? This I think is the right question to ask, though it is usually con-
fusedwith one ormore of the earlier questions, and the answer to it is no.58
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Searle’s argumentwas itself strongly criticized byHofstadter andDen-
nett in their 1981 book on consciousness, The Mind’s I,59 which also
reprinted Searle’s article. Hofstadter and Dennett essentially reaffirm
the strong-AI view that pure programs could eventually learn and
achieve ‘understanding’ equivalent to humans, possibly via facts and
rules, as well as the ability to reason sufficiently well using them.
When we are describing Google, or Watson, as having ‘learned

about us’, or ‘learned facts about the world’, the Searle–Hofstadter
debate does come tomind, and therefore deservesmention and reflec-
tion.Whether or not the facts and rules learnedbymachines operating
usingweb-scale data sets and text corpora ‘actually’ understand or not
will probably always remain a philosophical debate. The points we
will continue to focus on are what such systems can do in practice, as
well as aspects of their programming that might occasionally provide
rational models of some limited aspects of human thought, and that
too only when borne out by psychological experiments.
At least one of Searle’s primary arguments was that a system that

‘only manipulates formal symbols’ could have ‘no interesting connec-
tion with the brain’. The absence of any direct link to sensory per-
ception is one of the things that makes mere symbol manipulation
suspect: ‘visual experience[s], are both caused by and realised in the
neurophysiology of the brain’.58

An interesting counter to this argument is now somewhat possi-
ble based on recent studies of how human babies learn: ‘Consider
a baby on a day trip to the city, observing cars and people on the
road . . . How does she make sense of this blooming buzzing con-
fusion?’ writes Amitabha Mukerjee,60 a senior AI professor at the
Indian Institute of Technology in Kanpur. Studies have shown that
4–7-month-old babies can distinguish foreground and background,
identify distinct objects, and direct their attention based on visible
motion. They understand occlusion, i.e., ‘are surprised by a tall object
disappearing behind a short barrier [i.e., one too short to actually
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occlude it]’.60 They can also ‘understand’ that one object is ‘contained
in’ another, but only later, at 7 months or more of age.
Now, what is interesting is that Mukerjee and his student Prithwi-

jit Guha have shown how a computer can also learn similar ‘visual
concepts’ by processing videos of the real world. No human supervi-
sion is needed, only basic low-level computations on pixels in images,
much as performed by neurons in our visual cortex. The machine
learns higher-level visual concepts using grouping, or clustering tech-
niques similar to thosewehavedescribed earlier, all by itself. Thiswork
shows that ‘starting with complex perceptual input, [it] is [possible]
to . . . identify a set of spatio-temporal patterns (concepts), in a com-
pletely unsupervised manner’.60

Mukerjee and Guha then go on to show how such visual concepts
might get associated with language: students were asked to write tex-
tual descriptions of each of the real-world videos. Multi-way cluster-
ing is then able to learn relationships between visual concepts and
words. Mukerjee and Guha’s work provides some evidence that ‘lan-
guage is . . . a mechanism for expressing (and transferring) categories
acquired from sensory experience rather than a purely formal symbol
manipulation system’.60 Does visual concept acquisition as demon-
strated by Mukerjee and Guha’s work address at least one of Searle’s
arguments, i.e., that direct perception about the real world is required
for any learning to be ‘real’? Perhaps, if only to a small extent.

* * *
What does all this have to do with the web? Consider this: in 2010
alone 13 million hours of video were uploaded to YouTube. In con-
trast, the amount of visual sensory input available to any one of
us over an entire lifetime is about 525,000 hours (90 years × 365
days × 16 hours/day). How much could Google (which now owns
YouTube) learn using such a vast volume of real-world videos. Could
themachine learn and acquire concepts in the real, yes, realworld? Just
as ababymight, using ideas such asMukerjee andGuha’s, independent
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of language and ‘mere symbol manipulation’? Further adding to the
possibilities are the 50 billion web pages of text. Missing, of course, is
any direct link between so many videos and all that text; but there is
certainly potential for deeper learning lurking somewhere in this mix.
Could Google’s machines acquire visual concepts to the extent that

they would ‘be surprised by a tall object disappearing behind a short
barrier’? Of course, rather than ‘be surprised’, the machine might
merely identify such a video as being a bit ‘odd’, or an ‘outlier’ inmath-
ematical terms.
But what causes a machine to expect one thing and ‘be surprised’

if it is not found? Why should the machine learn any facts at all? So
far, all we can say is ‘because we programmed it to do so’. Here we
come up against Searle’s second and deeper objection to ‘strong AI’.
Where does intention or purpose arise in a machine?We postpone our
discussion on ‘purpose’ to the end of this book. For the moment, we
resume where we left off before our excursion into philosophy; i.e.,
having learned facts and rules, albeit symbolic, howmight a computer
reason using these to achieve some fairly complex goals, even if these
be only what we ask of it?
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CONNECT

On 14 October 2011, the Apple Computer Corporation launched
the latest generation of the iPhone 4S mobile phone. The

iPhone 4S included Siri, a speech interface that allows users to ‘talk to
their phone’. As we look closer though, we begin to suspect that Siri
is possibly more than ‘merely’ a great speech-to-text conversion tool.
Apart from being able to use one’s phone via voice commands instead
of one’s fingers, we are also able to interact with other web-based ser-
vices. We can search the web, for instance, and if we are looking for a
restaurant, those nearest our current location are retrieved, unless, of
course, we indicated otherwise. Last but not least, Siri talks back, and
that too in a surprisingly human fashion.
‘Voice-enabled location-based search—Google has it already, so

what?’, we might say. But there is more. Every voice interaction is
processed by Apple’s web-based servers; thus Siri runs on the ‘cloud’
rather than directly on one’s phone. So, as Siri interacts with us, it is
also continuously storing data about each interaction on the cloud;
whether we repeated words while conversing with it, which words,
fromwhich countrywewere speaking, andwhether it ‘understands’ us
or not in that interaction. As a result, we are told, Siri will, over time,
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learn from all this data, improve its speech-recognition abilities, and
adapt itself to each individual’s needs.
We have seen the power of machine learning in Chapter 3. So,

regardless ofwhat Siri does or does not do today, let us for themoment
imagine what is possible. After all, Siri’s cloud-based back-end will
very soon have millions of voice conversations to learn from. Thus, if
we ask Siri to ‘call my wife Jane’ often enough, it should soon learn to
‘call mywife’, and fill in her name automatically. Further, since storage
is cheap, Siri can remember all our actions, for every one of us: ‘call
the same restaurant I used last week’, should figure out where I ate last
week, and in case I eat out often, it might choose the one I used on
the same day last week. As Siri learns our habits, it should learn to
distinguish between the people we call at work and those we call in
the evenings. Therefore, more often than not it should automatically
choose the right ‘Bob’ to call, depending on when we are calling—
perhaps prefacing its action with a brief and polite ‘I’m calling Bob
from the office, okay?’, just to make sure. As we gradually empower
Siri to do evenmore actions on our behalf, it might easily ‘bookme at
the Marriott nearest Chicago airport tomorrow night’, and the job is
done. Today’sweb-basedhotel bookingprocessesmight appeardecid-
edly clunky in a Siri-enabled future.
A recent Hollywood film61 titled Horrible Bosses includes a scene

involving an in-car Siri-like device, called Gregory in the film. Voice
interfaces and talking cars are already being seen in the real world,
but Gregory, like Siri, does more than just ‘turn on the heat’. As the
protagonists inadvertently drive into a crime-prone locality, Gregory
automatically rolls up the car windows and locks their doors, while
also warning them of possible dangers lurking ahead. Of course, this
is aHollywood film, so eventuallywe find thatGregory also records all
conversations taking place in and around the car, a fact that it volun-
tarily reveals in due course, thereby assisting the police in identifying
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the true killers. However, lest we begin to suspect the film director of
extraordinary prescience, Gregory is endowed with an Indian accent,
so the scriptwriter probably had in mind an outsourced call-centre
employee as the brains behind Gregory, rather than some highly
sophisticated Siri-like technology. Nevertheless, now that we do have
the real Siri, which will only learn and improve over time, we might
well imagine it behaving quite Gregory-like in the not-too-distant
future.
The scenes just outlined are, at least today, hypothetical. However,

they are well within the power of today’s technologies, and will most
certainly come to be, in somemanifestation or other. Clearly,machine
learning is an important element of making such applications come
to life. But that is not enough. Notice that in our imaginary future Siri
does more than look up facts that it may have learned. It also reasons,
using its knowledge to resolve ambiguities and possibly much more,
especially in Gregory’s case.
To figure out ‘the same restaurant as last week’, Siri would need to

connect its knowledge about where you ate last week with what day of
the week it is today, and then apply a rule that drives it to use the day of
the week to derive the restaurant you are most likely referring to. There
may be other rules it discards along the way, such as possibly the fact
that you mostly prefer Italian food, because of the concepts it manages
to extract from the natural language command you gave it, which
provide the context to select the right rule. Thus, reasoning involves
connecting facts and applying rules. Further, the results derived may
be uncertain, and the choice of which rules to use depends on the
context.
Reasoning is an important characteristic of being human. Hardly

anyother living species thatwe knowof can reason thewaywedo, and
reasoning is one of the key tools we employ for ‘connecting the dots’
andmaking sense of ourworld.We celebrate reasoningprowess: those
who reason better and faster are considered more intelligent than
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others. ‘Fromadropofwater, a logician could infer thepossibilityof an
Atlantic or a Niagara without having seen or heard of one or the other.
So all life is a great chain, the nature of which is known whenever we
are shown a single link of it,’ writes the legendary detective Sherlock
Holmes, as related inA Study in Scarlet.62

At the same time, the ability to reason and ‘connect the dots’
depends on the dots one has managed to accumulate. Thus looking,
listening, and learning are precursors and prerequisites of reasoning.
Further, it is equally important to choose and organize the dots one
gathers. To quote Holmes once more:

‘I consider that a man’s brain originally is like a little empty attic, and you
have to stock it with such furniture as you choose. A fool takes in all the
lumber of every sort that he comes across, so that the knowledge which
might be useful to him gets crowded out, or at best is jumbled up with a
lot of other things so that he has a difficulty in laying his hands upon it.
Now the skilful workman is very careful indeed as to what he takes into his
brain-attic. Hewill have nothing but the toolswhichmayhelp him in doing
his work, but of these he has a large assortment, and all in themost perfect
order. It is a mistake to think that that little room has elastic walls and can
distend to any extent. Depend upon it there comes a time when for every
addition of knowledge you forget something that you knew before. It is of
the highest importance, therefore, not to have useless facts elbowing out
the useful ones’.62

The facts we cumulate in our ‘attic’ form the knowledge using which
we reason, and in turn create more knowledge. So it is important to
understand how knowledge is stored, or ‘represented’. After all, differ-
ent ways of knowledge representation might be best suited for differ-
ent kinds of reasoning.
Reasoning involves simple logical inferences, from the oft-repeated

Socratic syllogism ‘all men are mortal, Socrates is a man, therefore
Socrates is mortal,’ to more sophisticated mathematical deductions
such as Euclid’s proof that there are infinite prime numbers, andmost
interestingly, the reasoning process by which such deductions are dis-
covered. Further, uncertainty or vagueness about the world brings in
unexpected complications: ‘most firemen are men; most men have
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safe jobs; therefore most firemen have safe jobs’, while apparently a
valid chain of inference, yet results in an inaccurate conclusion; after
all,most firemendo nothave safe jobs.Merely replacing ‘all’ with ‘most’
creates difficulties. Watson, as we have already seen in Chapter 3, cer-
tainly needs to deal with such uncertain facts that apply often, but not
universally. There are indeed different kinds of reasoning, which we
shall nowproceed to explore.After all, any intelligent behaviourwhich
might eventually emerge from a future cloud-based Siri, Gregory, or
Watson, will most certainly employ a variety of different reasoning
techniques.

Mechanical Logic

When we make a point in a court of law, fashion a logical argument,
reason with another person or even with ourselves, our thinking
process is naturally comprised a chain of ‘deductions’, one follow-
ing ‘naturally’ from the previous one. Each step in the chain should
be seemingly obvious, or else the intervening leap of faith can be a
possible flaw in one’s argument. Alternatively, longer leaps of faith
might sometimes be needed in order to even postulate a possible
argumentative chain, which we later attempt to fill in with sufficient
detail. Guesses and ‘gut feelings’ are all part and parcel of the complex
reasoning processes continually active between every pair of human
ears. Not surprisingly therefore, efforts to better understand ‘how we
think’, or inotherwords, to reasonabouthowwe reason, go far back to
the ancient Indian, Chinese, and Greek civilizations. In ancient China
and India, the understanding of inference was closely linked to ascer-
taining the validity of legal arguments. In fact the ancient Indian sys-
tem of logic was called ‘Nyaya’, which translates to ‘law’, even in the
spoken Hindi of today.
However, the systematic study of reasoning, merely for the sake of

understanding how to think clearly, and thereby discover knowledge
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about the world, began with Aristotle in ancient Greece. Prior Greek
philosophers, such as Pythagoras, aswell as the Babylonians, certainly
used logical chains of deduction, but, as far as we know, they did not
study the process of reasoning itself. According to Aristotle, a deduc-
tion, or syllogism, is ‘speech in which, certain things having been sup-
posed, something different from those supposed results of necessity
because of their being so’.63 In other words, the conclusion follows
‘naturally’, of necessity, from the premise. Aristotelian logic then goes
on to systematically definewhat kinds of syllogisms are in fact ‘natural
enough’ so they can be used for drawing valid inferences in a chain
of reasoning.
The study of logic became an area of mathematics, called ‘symbolic

logic’, in the 19th century with the work of George Boole and Gottlob
Frege. The logic of Boole, also called ‘classical’ logic, abstracted many
aspects of Aristotelian logic so that they could be described mathe-
matically. Whereas Aristotelian logic dealt with statements in natural
language, classical Boolean logic is all about statements in the abstract.
(In fact there is a resurgence of interest in the direct use of Aristotelian
‘natural logic’ todealwith inferences innatural language.64) In classical
logic a statement, such as ‘it is raining’, is either true or false.While this
may seem obvious, there are alternative reasoning paradigms where
statements may be true only to ‘a certain degree’. We shall return to
these when we discuss reasoning under uncertainty, such as is used in
theWatson system aswell as formany other web-intelligence applica-
tions.
Boolean logic defines how statements can be logically combined to

yield new statements. Thus ‘it is raining’ can be combined with ‘the
grass is wet’ to yield ‘it is raining and the grass is wet’. An alternative
combination with ‘the sprinkler is on’ might be ‘it is raining or the
sprinkler is on’. Now, the rules of classical logic define when each of
these combinations are true or false depending on the truth or false-
hood of their constituent statements. The first and-combination is true
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only if both the statements ‘it is raining’ and ‘the grass is wet’ are true. If
either of these is false, the and-combination is also false. On the other
hand, the latter or-combination is true if either (or both) the statements
‘it is raining’ or ‘the sprinkler is on’ are true. The operations and and
or, used to combine statements, are called Boolean operations. These
operations also form the very basis for how information is represented
and manipulated in digital form as ones and zeros within computer
systems.
So much for that. Now comes the key to reasoning using classical

logic, i.e., how the process of inference itself is defined in terms of
Boolean operations. Suppose we wish to state a rule such as

if it is raining then the grass is wet.

What does itmean for such a rule to be true? It turns out that we could
just as well have said

it is not raining or the grass is wet

This statement says exactly the same thing as the if–then rule! Let’s see
why. Suppose it is raining; then the first part of the implication, i.e., ‘it
is not raining’, is false. But then, for ‘it is not raining or the grass is wet’
to be true, which we have stated is indeed the case, the second part
of this statement must be true, because of the or-operation. Therefore
the grass must be wet. In effect ‘it is not raining or the grass is wet’
says the same thing as ‘if it is raining, then the grass is wet’. Thus, by
merely stating each ‘implication’ as yet another logical statement, the
idea of one statement ‘following from’ another, ‘naturally’, ‘of neces-
sity’, becomes part of the logical system itself. The consequence ‘the
grass is wet’ follows from ‘it is raining’ simply in order to avoid an
inconsistency.
There is a subtle but very important difference between the implica-

tion about rain and grass just described, and the well-known example
‘all men are mortal, Socrates is a man, so Socrates is mortal’. Whereas
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the statement ‘it is raining’ is a plain and simple ‘fact’, the statement
‘all men are mortal’ says something in general about allmen. We can
think of this statement as expressing a property ‘mortality’ about any
‘thing’ that also has the property of ‘being a man’. Thus, this implica-
tion is firstly about properties of things in the world rather than directly
about things. Such properties are called ‘predicates’ in classical logic,
whereas direct statements of fact, either in general or about a partic-
ular thing, are called ‘propositions’ that can either be true or false.
Thus, ‘being a man’ is a predicate, which when stated about a partic-
ular thing named Socrates, results in the proposition, or fact, ‘Socrates
is a man’.
Secondly, the implication ‘all men aremortal’ is a general statement,

about all things. Referring to all things is called ‘universal quantifica-
tion’. On the other hand, the statement ‘somemen are mortal’ implies
that there is at least one thing that is a man, which is also mortal.
This is called ‘existential quantification’, since it is in effect saying that
‘there exists at least one man, who is mortal’. Classical logic without
predicates or quantifications is called propositional calculus. After adding
the additional subtleties of predicates and quantification it becomes
predicate logic.
Note that every statement in predicate logic is about properties of

things, or variables, whether they are particular things or unknown
ones quantified either universally or existentially. Consequently, in
order to state the fact ‘it is raining’ (i.e., a simple proposition) in pred-
icate logic, one needs to write it as a predicate, i.e., a property; only in
this case there is no ‘thing’ involved, so it becomes a predicate with no
variables as its ‘arguments’. In the languageof predicate logicwewould
write the statement ‘Socrates is a man’ as Man(Socrates) whereas the
fact ‘it is raining’ becomes a statement of the form Raining().
We note in passing that this distinction between statements using

predicates versus those about facts alone is something introduced
by modern logicians; original unfettered Aristotelian logic treated
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statements about the particular, i.e., propositions, together with those
referring to all or some things. Properties of things, or predicates, were
also naturally included, just as they occurred in human language. It is
for this reason, perhaps, that Aristotelian ‘natural logic’ is once more
finding its way into modern computational linguistics, as we have
alluded to earlier.
Bringing in variables and quantification makes the process of rea-

soning in predicate logic slightlymore involved than the natural chain
by which one statement follows from another in propositional cal-
culus. The statement ‘all men are mortal’ reworded in predicate logic
becomes ‘for all things it is true that, if a thing “is aman”, then that thing
“is mortal” ’, which can also be written as the predicate-logic formula

∀ T if Man(T) thenMortal(T)

where the symbol ∀ stands for ‘for all’, and T for a ‘thing’. On the other
hand, as we have seen earlier, the particular statement ‘Socrates is a
man’, expresses the fact that ‘the thing Socrates “is a man” ’, and is
simply written as Man(Socrates).
In the case of propositions, such as ‘it is raining’, wewould be able to

conclude ‘the grass is wet’ because of the implication directly linking
these two statements. In predicate logic, however, the chain of reason-
ing needs to be established by a process of matching particular things,
such as ‘Socrates’, with hitherto unknown things within quantified
statements such as ‘for all things, if a thing “is a man”. . .’. Since the lat-
ter statement is true for all things, it is also true for the particular thing
called ‘Socrates’. This matching process, called ‘unification’, results in
the implication ‘if Socrates is a man, then Socrates is mortal’, written
more formally as

if Man(Socrates) then Mortal(Socrates)

which is obtained by ‘unifying’ the variable Twith the particular value
Socrates.Now, this implicationwhen taken togetherwith the assertion
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that Socrates is indeed a man, i.e., that Man(Socrates) is a true fact,
allows us to conclude Mortal(Socrates), i.e., that ‘Socrates is mortal’.
Whew!A lot ofwork tomerely describe the ‘chain of reasoning’ that

comes so naturally to all of us. However, as a result of all this work, we
can now see that reasoning using classical logic can be simply auto-
mated by a computer. All one needs are a bunch of logical statements.
Some statements are facts about the world as observed, which can be
independent propositions such as ‘it is raining’, or propositions stating
aproperty of someparticular thing, such as ‘John is aman’.Alongwith
these are statements representing ‘rules’ suchas ‘if it rains then thegrass
is wet’, or ‘all men are mortal’. As we saw earlier, such rules can be
merely encoded in terms of or-combinations such as ‘it is not raining
or the grass is wet’, or ‘a thing x is not a man or the thing x is mortal’.
Thereafter, a computer program canmechanically reason forwards

to establish the truth or falsehood of all remaining facts that follow
from these statements. Along the way, it also attempts to ‘unify’ par-
ticular things such as ‘John’ with unknowns, or variables, such as ‘a
thing x’, which occurwithin logical statements. Reasoning forwards in
this manner from a set of facts and rules is called ‘forward-chaining’.
Conversely, suppose wewanted to check the truth of a statement such
as ‘the grass is wet’, or ‘Tom is mortal’. For this we could also reason
backwards to check whether or not any chain of inferences and uni-
fications leads to a truth value for our original statement, or ‘goal’, a
process referred to as ‘backward-chaining’.

* * *
Unlike in the simple examples just discussed, real-world applica-
tions require dealing with hundreds or even thousands of facts and
rules. Rule engines are computer systems that perform forward- or
backward-chaining on extremely large sets of rules and facts. Now,
unification on sets of rules with even a moderate number of variables
also poses computational challenges. With a mere ten variables and,
say, ten things, there are 1010, or 10 trillion, combinations, i.e., different
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ways in which ten things can be unified with ten variables. Of course,
we don’t search for all possible combinations, and clever algorithms
for efficient reasoning unify only where required, both for forward-
as well as backward-chaining. We shall return to describe such tech-
niques later in the context of some examples.
Computer systems that used rule engines to evaluate very large

numbers of facts and rules became ratherwidespread in themid-1970s
to late 1980s, and acquired the popular name ‘expert systems’. Expert
systems were developed and successfully used for diagnosing faults in
complexmachinery or aircraft by encoding themany ‘rules of thumb’
used by experienced engineers or extracted from voluminous doc-
umentation. Other expert systems were proposed to assist in med-
ical diagnosis: the knowledge of expert doctors as well as facts and
rules extracted from large corpora of medical research were encoded
as facts and rules. Thereafter less experienced doctors, or those in
developing countries or far-flung remote areas, could benefit from the
knowledge of others, as delivered through the automated reasoning
carried out by such expert systems.
Over time, however, the popularity of expert systems waned. One

of the main challenges was in coming up with a large-enough set of
rules that encoded enough real-world knowledge to be useful. The
process of interviewing experts and manually extracting rules from
documents and researchpaperswas not easy to do, andwas difficult to
scale and replicate across different applications. Thus, the knowledge
extracted and encoded once, say, for fault diagnosis of a particular
military aircraft, did not in anyway speedup theprocess of developing
the next expert system, for, say, a tank. The other very real problem
when dealing with large numbers of rules was that more often than
not, different rules could lead to contradictory results. Thus, one set of
rules might yield ‘the patient has diabetes’, while another evaluation
pathmight lead to a different conclusion. Establishing the consistency
of a large system of rules is itself a very difficult problem. Moreover,

142



CONNECT

dealing with the contradictions that naturally emerge required a dif-
ferent kind of logic that could deal with uncertainty. Good old clas-
sical logic, where a statement is either true or false, was no longer
good enough. So expert systems went into cold storage for almost
two decades.
In the meanwhile, as we have seen in Chapter 3, there have been

significant advances in the ability to automatically extract facts and
rules from large volumes of data and text. Additionally, the business
of reasoning under uncertainty, which was pretty much an ‘art’ in the
days of early expert systems, has since acquired stronger theoretical
underpinnings. The time is possibly ripe for large-scale automated rea-
soning systems toonceagain resurface, aswehave speculated theywell
might do, even if in the guise of Siri-like avatars very different from the
expert systems of old. Let us see how.

* * *
The origins of Siri on the iPhone 4S go back to SRI, a contract
research firm on the outskirts of Stanford University, in a project
christened CALO, or ‘Cognitive Agent that Learns and Optimizes’.
CALO’s goal was to create a personal digital assistant that could
assist a typical knowledge worker in day-to-day tasks such as break-
ing down high-level project goals into smaller action-items, which
in turn might require specific tasks to be completed, meetings to
be scheduled, documents to be reviewed, etc. CALO would assist its
humanmaster by taking over themoremundane activities of schedul-
ing mutually convenient times for meetings, prioritizing and orga-
nizing emails, as well as reminding its master of imminent meetings,
impending deadlines, or potentially important emails that remained
unattended.
Further, CALO would, over time, learn what its master meant by

‘important’, which people were her ‘bosses’, peers, or subordinates,
and ‘how’ each category was to be dealt with. In effect, CALO would
act much as a human assistant does. CALO was funded by the US
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Defense Advanced Research Projects Agency, DARPA, to ‘revolution-
ize how machines support decision makers’.65 CALO was to have
advanced natural-language understanding capabilities, and interact
with its users via speech and vision interfaces,while performing its job
as a personal digital assistant. Just before theDARPAproject neared its
end, in 2007 SRI spun off a company called Siri to commercialize the
CALO technology for non-classified applications. Siri was bought by
Apple in April 2010, and the rest is history.
From the perspective of CALO’s original goals, Siri actually does far

less. At least as of today, Siri does not understand projects, tasks, and
howmeetings or calls fit into the overall schemeofwork. Siri is for per-
sonal use, and supposed to be fun, not work. Much of Siri’s engaging
and entertaining behaviour is quite similar to a very early experiment
dating back to the 1960s, called Eliza.66 Joseph Weizenbaum wrote
the Eliza program at MIT in the mid-1960s, to demonstrate how fairly
rudimentary computer programs could fool humans into ascribing
far greater intelligence to them than was warranted. Eliza was based
onmatching its human conversation partner’s comments with simple
patterns. For example, supposeyouwere toutter ‘I plan togo toOxford
tomorrowwith my wife’. An Eliza-like programwould recognize this
as being a statement rather than a question, and therefore respond
with a question, such as ‘What happens if you don’t go to Oxford
tomorrow with your wife?’ The program has ‘understood’ nothing; it
merelymatches the incoming sentencewith a set of stockpatterns that
it can recognize, and respondswith a stock answer. Thepattern,which
could be of the form ‘[I] [verb phrase] [noun phase]’, triggers one of a
set of stock responses, i.e., ‘What happens if you don’t [verb phrase]?’
Additionally, Eliza applies a simple few rules so as to replace ‘my’
with ‘your’.
Siri certainly has Eliza-like elements: one of Siri’s responses to ‘what

is the meaning of life’ is ‘all evidence to date suggests it’s chocolate’!
Moreover, similar entertaining yet obviously stock responses pop up
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regularly and at startlingly appropriatemoments during one’s conver-
sationswith Siri.Of course, Siri could potentially domore thanmerely
entertain. ‘I plan to go to Oxford with my wife’ should be accurately
recognized as an intent to travel, with Siri then offering to book train
tickets for you and your wife. A bit of Eliza, but clearly more as well.
In order to actually accomplish tasks without needing excruciat-

ingly detailed directions, bothCALOaswell as, to at least some extent,
Siri need to reason in a fairly human-likemanner. For example, consider
what it would take for CALO to ‘send this email to those who need to
see it’. Any of us who use email for work know how much cognitive
effort goes into deciding whom to send an email to. Sometimes it’s a
simple decision, we reply to the sender, andwhen in doubt, reply to all.
(As a direct consequence, much of our daily efforts ‘at work’ are spent
in figuring out which of the many emails we each receive are really
meant for us to see and possibly respond to.)
First, CALOwould need to figure out the project within whose con-

text the email most likely lies. The project’s structure would need to
be ‘represented’ somehowwithin CALO’smemory, including the peo-
ple involved, their roles, the items and documents being created or
discussed, and emails already exchanged. Next, CALO would need to
make a hypothesis regarding the role that this particular email might
play within an overall project, such as which task it is serving to ini-
tiate, report on, or discuss. Based on the structure of the project and
the role purportedly played by the email at hand, CALOwould finally
need to rely on some rule-based understanding of ‘those who need to
see it’. Perhaps the past behaviour of its master has allowed CALO to
learn rules about what she means by ‘those who need to see it’, and
how this might differ from ‘those possibly interested in it’.
Last butnot least,CALOmight also endup learning somereal-world

rules about office politics, such as which ‘rivals’ its master does not
want copied in, regardlessof their real needorpotential interest. CALO
might even go so far as to analyse each email-chain it sees and figure
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out who the rivals of its master’s rivals are—a truly intelligent assis-
tant indeed, perhaps even better than most human ones. Of course,
youmight justifiably argue that people are unlikely to ever trust office
politics to their automated assistants anytime in the foreseeable future,
however intelligent these might appear to be. Still, it is interesting to
explore what it might take to embody software such as CALO or Siri
with such capabilities.

* * *
If reasoningmeans being able to navigate through logical rules such as
‘if it rains then the grass iswet’, thenwe can readily imaginemany rules
that could assist CALO in deciding which people to send the email
to. One rule could state that a person who has authored an earlier
version of a document that is attached to the current email certainly
needs to see the latest one. Another rule might deem that anyone who
is responsible for a task that depends on the one the current email
thread is serving to accomplish also needs to see this mail, but only if
the current email is reporting completion of the task. We could go on
and on. Presumably such rules can be learned from past experience,
using techniques such as those we saw in Chapter 3. CALO’s master
may also correct its actions occasionally, thereby providingmore data
to learn rules from. Another, similar set of rules might define who
‘should be interested’ in the email, as opposed to actually needing it.
Lastly, theremaybe a list of ‘rivals’ that are regularly deleted fromevery
email copy list. It appears that all CALO needs is a reasoning engine
that can process such rules, however they might be learned, so as to
compile the list of people who need to see the email.
Unfortunately, life is not that easy. Even in the simpleworld of a per-

sonal digital assistant, the number of rules that CALO would need to
learn andworkwith could grow very large indeed. Further, how could
one ensure that the rule for ‘needs to see’ always results in a subset
of people who ‘should be interested’ in any document? And suppose
that, while learning and defining large numbers of rules, CALO’s rules
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do not fulfil this natural constraint? How could such an inconsistency
be discovered?
Next, any rules that are learned or defined about CALO’s world are

necessarily ‘about’ common work concepts such as projects, action
items, tasks, meetings, emails, and documents. They would also deal
with people and their mutual relationships in an office: managers,
team members, consultants, customers, and of course ‘rivals’. Surely,
one might say, are not computer systems especially good at keeping
track of such information in databases, such as those maintained by
every bank or even an email program?We could merely keep track of
such ‘structural’ information in a database and let a rule engine reason
on such data using a large enough set of rules.
The early AI programs of the 1970s, many of which later morphed

into the expert systems of the 1980s, did exactly this, i.e., maintained
facts in a so-called ‘knowledgebase’, overwhich ruleswouldbewritten
and executed by rule engines using forward- or backward-chaining.
Often such knowledge bases were also represented diagrammatically,
depicting, for example, the ‘concept’ of an ‘expert’ by lines joining a
circle labelled ‘expert’ with others labelled ‘email’, with the line joining
the two labelled as ‘comments on’. The circle labelled ‘email’ may in
turn be connected, by a line labelled ‘talks about’, to a circle labelled
‘technology’. Such diagrams went by many names, such as ‘semantic
nets’ and ‘frames’. But they were far from being semantic in the formal
sense of statements in a logical system, such as predicate logic. Any
meaning they conveyed was dependent on their readers attributing
meanings to the labels they contained. Such diagrams merely assisted
programmers in writing the rules that actually encoded knowledge in
a manner logically executable by a computer.
Not only were such knowledge representations unsatisfying by

not really distinguishing themselves from mere databases of facts,
there were further complications indicating that the task of repre-
senting knowledge is actually ill-served by such conventional data

147



THE INTELLIGENT WEB

representations. Suppose we wanted to define ‘those interested’ in
an email to include people who are experts in the same or related
technologies asmentioned in the email or attached documents. ‘Being
an expert’ itself could be defined as people who might have com-
mented on emails or edited documents dealing with a particular tech-
nology. On the other hand, wemay consider a person’s work as being
‘dependent’ on a particular task, email, or meeting if the action-item
assigned to them in another meeting is identified as being dependent
on any of these activities.
Now, suppose CALO’s owner wanted to send an email only to peo-

plewho ‘should be interested in it’ orwere ‘experts in a project thatwas
dependent on the current one’. Amoment’s reasoning reveals, at least
to us, that such people are all experts in some technology or other, and
wemight immediately figure out that posting this mail to an ‘expert’s’
newsgroup might be more efficient than sending it to all the people
who fit the descriptionmentioned. This might especially be the case if
there is another rule saying thatmails tomore than ten persons should
be directed to news-groupswhenever possible. However, howmight a
computer program reason in such amanner?Certainly not by including
even more complicated rules atop of ‘meaningless’ facts stored in a
database.
Moreover, what if we later decided to change or expand the defi-

nition of ‘expert’ to include people who had authored independent
documents on related technologies? Drawing additional lines in a
semantic diagram would scarcely change our system’s behaviour.
Would we then return to the drawing board, add new database tables
or typesof files, alongwithnewprogramming? Evenmore challenging
wouldbedealingwithnewconceptswhich, insteadofbeingdefinedby
humans, are learned from experience.
Thus, it appears that mere rules evaluated using a plain database of

facts are not enough if we need to support powerful yet efficient auto-
mated reasoning on large volumes of information, asmight be needed
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in tomorrow’s world of CALO-like web-intelligence systems. Not sur-
prisingly, it turnsout that there arebettermechanisms for representing
knowledge; true ‘knowledge bases’, rather thanmere databases.

* * *
In the 1970s, the nascent field of artificial intelligence had two schools
of thought with respect to knowledge representation. On the one
hand lay the world of loosely defined but easy-to-understand seman-
tic nets and frames, which had to be translated into data structures
on which logical rules could be defined. On the other side were the
proponents of purely logical reasoning without recourse to any sepa-
rate knowledge representation form. Logic could, in principle, be the
basis for reasoning systems, reasoned the logicians. Nothing more
was needed. True, in principle. But in practice, relying on pure logic
was unwieldy except for the simplest of real-world problems. The
purely logical approach did, however, result in considerable progress
in some specialized tasks, such as that of automated theorem-proving
in mathematics (which we do not deal with here in this book). How-
ever, techniques relying on logical rules alone did not easily scale for
more general tasks on larger volumes of information.
A breakthrough in the realm of practical knowledge representation

came with the invention of ‘description logics’ beginning with the
early work of Ron Brachman in 1977,67 and formulation of their the-
oretical underpinnings and limits in 1987, by Brachman himself along
with Herman Levesque.68 The theory of description logic shows how
data can be endowed with semantic structure, so that it no longer
remains a ‘mere database’, and can justifiably be called a ‘knowl-
edge’ base.
So, what does it mean for data to have semantics, so that we can call

it knowledge?As in the languageof logic, one statement ‘follows from’,
or is ‘entailed by’, another, naturally, due to the basic laws of logic.
Similarly, data in a description logic is stored in the form of facts that
automatically ‘entail’ other facts, even those that are not initially stored
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or asserted. Additional rules on top of the data are not required; new
facts follow, or are entailed,merely because of the structure of the facts
themselves. In this manner the theory of description logic, as intro-
duced by Brachman, clearly distinguishes knowledge bases frommere
databases. A knowledge base builds in semantics, while a database
does not. Databases need to be augmented by semantics, either via
rules or programs, in order to do any reasoning at all. Knowledgebases
too can be, and often are, augmented by rules, aswe shall soon see; but
evenbefore such rules come intoplay, aknowledgebase thatuses some
form of description logic has reasoning power of its own. Last but not
least, knowledge bases using description logic form the basis for the
emerging ‘semantic web’ that promises to add intelligent, human-like
reasoning to our everyday experience of the web.

The Semantic Web

In 1999 Tim Berners-Lee, the inventor of hyperlinked web pages13 and
thereby the web itself, outlined his vision for its future:

I have a dream for the Web [in which computers] become capable of
analysing all the data on the Web—the content, links, and transactions
between people and computers. A SemanticWeb, which should make this
possible, has yet to emerge, butwhen it does, theday-to-daymechanismsof
trade, bureaucracy and our daily lives will be handled by machines talking
to machines. The intelligent agents people have touted for ages will finally
materialise.69

Over thepastdecade the technology to realize a semanticwebhasbeen
developed and put to a variety of practical uses. Today, semantic web
technology is represented by the still evolving OWL, or ‘web ontol-
ogy language’. (The word ‘ontology’ is often used to refer to any
mechanism of knowledge representation.) As it happens, the evolu-
tion of the semantic web, including OWL and its companions such
as RDF (‘resource description framework’), has been based on the
ideas of description logic as expounded by Brachman and others since
the mid-1980s.
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Toseewhat a semantic knowledgebaseusingdescription logic looks
like, let us recall our encounter with Watson in Chapter 3. In order
to answer a question about, say, places where Einstein lived, Watson
would ideally prefer to have at its disposal the answer stated as a fact,
such as [Einstein, ‘lived in’, Ülm], or [Einstein, ‘lived in’, Princeton].
Unfortunately, as we argued earlier, Watsonmight not have such facts
in its database. Instead, itmay have some general knowledge about the
world, in the guise of concepts, such as ‘persons’ and ‘places’, and pos-
sible relationships between concepts, such as [person, ‘lives in’, place]
and [person, ‘worked in’, place]. Further, the structure of the world
may also be encoded using statements about concepts; for example,
‘places some person “worked in” ’ is a sub-concept of, i.e., is contained
in, the concept of ‘places a person “lived in” ’.
Of course, concepts, relationships, and statements are writtenmore

formally in the syntax of a description logic, such as the OWL lan-
guage, rather than as informally described here. The important thing
to note is that if knowledge about the world is available along with its
semantics, it is possible to reason without recourse to external rules.
Thus, Watson need only somehow assert the relationships [Einstein,
‘worked in’, Princeton], along with knowledge that Einstein refers to a
person, and Princeton to a place. Thereafter, the knowledge base can
itself derive the conclusion that [Einstein, ‘lived in’, Princeton], merely
because it ‘knows’ that placeswhere peoplework aremost oftenwhere
they live, or at least close by.

* * *
Let us now imagine how a CALO-like personal digital assistant might
encode the structure of the office world in a semantic knowledge
base, or ontology, so as to give rise to intelligent behaviour, rather
than merely better search. The concept of a person ‘being an expert’,
a project ‘being dependent’ on another, or a document ‘relating to’
a technology, are all possible to express in description logic. So are
concepts such as people who ‘should be interested in’ a document,
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which might be defined in terms of other concepts such as experts
and people in dependent projects. Once knowledge is so encoded, it
should be possible for a CALO-like system to be able to determine that
the compound concept of people who ‘should be interested in or are
experts in a dependent project’ is subsumed in the simpler concept
of people who are ‘experts in some technology’. At the same time, if
the user’s desire is to send a document to all people who ‘should be
interested in or work in a dependent project’, clearly the short cut of
using the experts’ newsgroup would not work. In the latter case the
subsumption of the two concepts, i.e., that asked for and the short cut,
doesnot follow from, i.e., is not entailedby, the knowledge available, and
thus the short cut is likely to be invalid.
These examples serve to demonstrate that ontologies that allow for

reasoning within the semantics of a knowledge base appear valuable.
For one, knowledge encoded in a semantic knowledge base is guaran-
teed to at least be consistent. It is not possible to add facts to such an
ontology if they lead to contradictions. Next, using a knowledge base
makes it easy to check if a statement, such as that emanating from an
external query, i.e., [Einstein, ‘lived in’, Princeton], or the hypothesized
short cut of people towhomto send adocument, followsdirectly from
the knowledge available. (Of course, this begs the question of how a
computer comes up with a hypothesis such as the particular short
cut in the first place; we shall return to the question of generating, or
predicting, possible hypotheses in Chapter 5.)

* * *
In systems such as Watson or Siri, knowledge about the world will
most likely be learned from the vast volumes of information available
in the web, using learning techniques that we explored in Chapter 3.
While encoding facts learned in thismannerwithin a semantic knowl-
edge base using a formal description logic, we can choose to include
rules that appear to be true with high probability. Thus, probable
structural properties uncovered in the form of association rules, or
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concepts learned through collaborative filtering and clustering, can be
formally encoded to become part of the knowledge base itself.
Learning rules from many instances is also a form of reasoning,

called inductive as opposed to deductive reasoning. Deduction, as we
have already seen, proceeds ‘naturally’ from generalities, or rules,
to specifics, or conclusions. Induction, on the other hand, proceeds
frommany specifics, or instances, to generalizations, or rules. Further,
induction is almost always probabilistic, and introduces uncertainties
(rather than the ‘natural’, certain entailment of deduction). The fact
that such induced or learned knowledge is almost always uncertain,
and can therefore be contradicted by future discoveries, introduces
new problems; we shall return to some of these issues later in this
chapter as well as in Chapter 5.
In recent years there have been large research projects dedicated

to inductively learning rules and facts from the web, so as to develop
ontologies for ‘common-sense knowledge’. In Chapter 3, we described
the REVERB project as one such example that tries to learn simple
subject-verb-object triples, but no further structure. Other projects
such as Cyc and Yago use more powerful semantic knowledge bases
and are thereby able to capturemore structure. Cyc,70 an older project
pre-dating the semanticweb, directly uses rules in predicate logic in its
ontology. Yago71 ismore recent and its ontology is based on a descrip-
tion logic that is closely related to OWL.
Interestingly, Yago’s knowledge base has been constructed using

Wikipedia. Yago uses categories as defined inWikipedia to derive ‘is-a’
relationships between entities, for example names and concepts such
as ‘person’. To date, Yago is probably the largest available semantic
ontology, with over 6 billion facts, which Yago also claims it ‘knows’
with an accuracy of 95%. (Cyc and REVERB, the next closest in size,
have 2 billion and 1 billion facts respectively. In contrast,WordNet, the
publicly available buthandcrafted thesaurus, hasbut 200,000entries.)
Thus, posing a semantic query to Yago, such as ‘scientists who were
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born nearÜlm andwon aNobel Prize’, yields not onlyAlbert Einstein,
but also Hans Spemann andGerhard Ertl, Nobel laureates inmedicine
and chemistry respectively.Most certainly any futureWatson andSiri-
like systems will be served by such large and semantically powerful
knowledge bases.
In fact, semantic search is already a part of Siri: when you ask Siri

a question it sometimes consults WolframAlpha, a semantic search
engine launched in 2009by the cognitive scientist StephenWolfram.72

Like the semantic-web vision of Berners-Lee, WolframAlpha scours
the web for information, which it then curates and stores in a struc-
tured form. WolframAlpha claims to use its own proprietary mech-
anisms to represent such knowledge, rather than languages such as
OWL that are more popularly associated with the semantic web. Nev-
ertheless, it is still a semantic search engine in that it extracts knowl-
edge from the web, rather than indexing the web directly using key-
words as Google and others do.
Does Wolfram Alpha yield better results than Google? If we ask

Wolfram ‘who is the prime minister of Canada?’, it comes up with
the right answer; but so does Google. Unfortunately, if one asks ‘who
is the president of Canada?’, it finds the president of India instead, at
least for me: presumably Wolfram figures out that I’m logged in from
India and returns the geographically closest ‘president’ entry in its
database. Google, on the other hand, at least points us to Wikipedia.
Further, Google associates ‘president’ and ‘prime minister’ as related
words and therefore throws up the right pages. Yago, on the other
hand, does indeed figure out that by ‘president of Canada’, what
the user probably means is the leader of Canada, which is actually
its prime minister. However, Yago too is unable to return the exact
name. Instead, and not surprisingly given its origins, it points us to
Wikipedia.
It appears that the prospects for semantic search competing with

traditional search any time soon appear fairly dim, at least today,
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unless, as we have speculated in Chapter 3, people actually start using
complete sentences in their queries leading to deeper understanding
of a user’s intent. Further, the actual reasoning that such systems do
in response to queries will also need to improve significantly. For
example, while WolframAlpha correctly recognizes that ‘president’
is a ‘leadership position’, it fails to relate it to other leadership posi-
tions, such as ‘prime minister’. However, it should have been able to
figure this out using reasoning techniques, such as those used by the
more powerful Yago. However, even Yago fails to zero in on the ‘right’
answer, at least by itself. Clearly, semantic web technology has a long
way to go in practice. Not only will semantic web engines need to use
reasoning to extract facts from the web, they will also need to reason
in response to queries, much asWatson does.
Nevertheless, it should now be clear that computational reasoning

has many potential uses. We have seen that an important component
of reasoning has to dowith computing entailments, i.e., statements that
‘follow naturally’ from a collection of knowledge and rules. Therefore,
it is only natural to also ask whether this is an easy problem to solve
or whether reasoning is actually ‘hard’ in a computational as well as
colloquial sense, as aptly implied by Sherlock Holmes: ‘the Science of
Deduction andAnalysis is onewhich can only be acquired by long and
patient study, nor is life long enough to allow any mortal to attain the
highest possible perfection in it.’62

Limits of Logic

The formalization of logic by George Boole and Gottlob Frege in
the late 19th century led to considerable excitement in the small
world of philosophy and, in particular, mathematical philosophy. It
suddenly appeared that all reasoning, especially that used in mathe-
matics, could be reduced to a set of facts and rules expressed in for-
mal logic. If one were able to do so, all possible mathematical truths
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should, in principle, naturally ‘follow’ from these basic facts through
the inexorable prowess of logical entailment. Indeed, this was exactly
the approach used many centuries earlier by Euclid, the great Greek
mathematician, in coming up with the idea of geometric proofs from
basic axioms, which all of us have learned in high school. But now,
with logic on a firm foundational footing it appeared that muchmore
was possible. In the early 20th century, Bertrand Russell and Alfred
North Whitehead published a monumental treatise called Principia

Mathematica, which attempted to define all the basic facts and rules
from which all of mathematics would naturally follow. All reasoning,
at least in mathematics, appeared to be reducible to the logic of Boole
and Frege. Any mathematical truth could be simply calculated from
Russell Whitehead’s axioms using logical reasoning.
However, the euphoria, at least in the limited world of mathemat-

ical philosophy, was short-lived. In 1931, Kurt Gödel stunned this
small world with his demonstration of a mathematical statement that
could neither be proved nor disproved.73 Further, this statement was
expressed using the very same logical building blocks that Russell
and Whitehead had so painstakingly put together. Essentially, Gödel
showed how to write, using the precise formal language of logic, a
statement that essentially said ‘this statement cannot be proven’. Here
the ‘this’ refers to the very same statement itself. The paradox is imme-
diately apparent: if the statement can be proven, then it must be false,
and so logical reasoning has proved a falsehood. On the other hand,
if it cannot be proven it demonstrates the limits of logical reasoning
in that it is a true statement that cannot be proven using logical rules.
Consequently, the belief that any true mathematical statement could
be proven using logic was shattered. In fact, Gödel went even further:
not only could his artfully crafted statement not be proven, it was not
even possible to logically prove that it could not be proven. Finally,
Gödel showed that such difficulties were inherent in any ‘sufficiently
powerful’ logical system, i.e., not only the oneproposedbyRussell and
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Whitehead. Thus, very surprisingly indeed, reasoning using logical
rules had very fundamental limits. Some clearly evident (at least to
humans) truths simply could not follow naturally from logic.
Around the same time that Gödelwas busy shaking the foundations

of logic in Germany, Alan Turing, the father of computer science, was
developing the fundamental theory of computing at Cambridge Uni-
versity in England. As we have seen earlier, the rules of logic can, in
principle, be mechanically followed by a computer. So, it seemed nat-
ural to expect that a computer should be able to prove any logical state-
ment, by mechanically following an appropriate procedure based on
the rules of logical entailment. Turing wondered what would happen
if such a computer were presented with a true but unprovable state-
ment such as the ones devised by Gödel. The computer would have
to go on forever and never stop, concluded Turing. Of course, Turing’s
computers, called ‘Turing machines’, were abstract ones, nothing but
mathematically defined ideas, rather than actual physical computers
as we see today. But Turing was concerned with the theoretical limits
of computing, much as Gödel was with the limits of logical reasoning.
Turing argued that any practical computer, even those not invented
in his time, could be simulated by his abstract machine, and therefore
faced the same limits on what it could compute.
Turingwas not satisfiedwith the explanation that a computer trying

to prove Gödel’s statement would never halt. Was this good enough
to argue that computers following the rules of logic were subject to
the same limitations as logic itself? Suppose he could devise a special
Turingmachine that could determine if any other computer procedure
would ever halt. Then he could use this special Turing machine on
the computer trying to prove Gödel’s statement. The special machine
would say ‘no, the Gödel-statement-proving computer does not halt’,
and therebyprove that theGödel statementwasunprovable. ButGödel
had shown that this was not possible using the rules of logic. So were
Turing machines more powerful than logic?
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Fortunately, or unfortunately, this was not the case. Turing used a
simple argument to show that his special Turingmachine, i.e., the one
that could determine if another machine halted, was impossible. The
key to Turing’s argument was being able to represent any computer,
or rather its equivalent Turing machine, as a number; think of it as
a unique serial number for every possible Turing machine. Thus, the
special Turing machine would take a computer’s serial number and
some input, such as the Gödel statement, and determine if that com-
puter halted on the given input or not.
Turing went about showing that such a special Turing machine was

an impossibility; his proof is depicted in Figure 1. Turing imagined a
second special machine, T2 in Figure 1, which used the first special
Turingmachine, called T1 in the figure, as one of its parts. This second
special machine T2 takes a number and gives it to the first special
machine T1 twice, i.e., it asks T1whether the computerwith a particular
serial numberhalts if given its own serial number as input. If the answer
is no, the second machine itself actually halts. But if the answer is yes,
it goes on forever.
A convoluted procedure for sure, but one that also leads to a para-

dox. The trick is that this second special Turing machine itself also

Does t halt with input x?
t,x

yes

no
halt

T1

T2

T2
T2,T2

FIGURE 1 Turing’s proof. If T1 says T2 halts on input T2, then it deliberately
does not halt. If T1 says T2 does not halt on input T2, then T2 halts. Each case
leads to a contradiction, so T1 cannot exist.
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has a serial number (T2), just like any other computer. Suppose we
gave the T2 machine its own serial number as input? Would it halt or
not? Remember, all that T2 does is pass on the serial number to the
first machine T1. Thus it asks the same question as we just did, i.e.,
would it halt on its own input? If T1, which is supposed to answer such
questions, says yes, then T2 stubbornly goes on forever, contradicting
this answer. Similarly, if T1 said no, then T2 indeed halts, again contra-
dicting the first machine’s answer. Either way there is a contradiction,
so the only conclusion to draw is that the special Turing machine T1,
i.e, the one that is supposed to check whether any othermachine halts
or not, is itself an impossibility.
So, just asGödel found the limits of logical reasoning, Turingdiscov-

ered the limits of computing: some things just could not be computed
by any computer, however powerful. Reasoning using a computer,
mechanically following the rules of logic, is not only hard, it can some-
times be impossible.
At the same time, the surprising thing is that we humans do indeed

reason, and quitewell too. Further, we are able to reason thewayGödel
and Turing did, demonstrating contradictions and impossibilities that
themselves do not follow automatically using the rules of logic or rea-
soning. Does this mean that we do not use logic to reason? How can
that be? After all, logic is our own invention, created to reason more
carefully and better understand our reasoning processes.
Someauthors, such asDouglasHofstadter inparticular, have argued

that far from exposing its limits, Gödel-like self-reference, where a
logical statement can refer to itself, or a Turing machine referring
to its own serial number, might point the way to figuring out how
machines might not only be able to exploit self-reference themselves
to come up with proofs such as Gödel’s and Turing’s, but might
also serve as a model for how consciousness itself arises.74 Others,
such as the neuroscientist Antonio Damasio, have also quite inde-
pendently pointed to self-reference as being an important element of
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consciousness.75 However, we shall not speculate in these philoso-
phical waters.
Let us now return to our problem of reasoning in systems such as

CALO, Siri, or Gregory. Reasoning and computing have their limits.
But surely many reasoning tasks are actually possible to encode and
execute efficiently in practice using systems such as description logic
and rules expressed in predicate calculus. But which ones? First let us
imagine an example from a possible Siri-enabled world of the future.

Description and Resolution

Those of us who use social networking sites such as Facebook know
how cumbersome it can be to manage privacy in such forums. What
one posts on Facebook will likely be seen by all one’s friends, who
may in turn ‘like’ the post, thereby propagating it to their friends, and
so on. Devices such as the iPhone 4S make it really easy to propagate
the contents of, say, an email, to a social website such as Facebook. To
send a really private email we need to avoid any of our friends who are
friendly with someone we are definitely unfriendly with. (While this
does not guarantee privacy, it certainly reduces the probability that
our mail is seen by people whomwe do not get along with.)
Even for us, such an exercise represents a non-trivial bit of reason-

ing. It also requires us to search Facebook for our friends’ friend-lists.
Definitely something we would like an intelligent agent such as Siri to
handle if possible. Siri would need to examine our list of friends, as
well as a list of people whomwe do not get along with. Of course, Siri
may not have all the information it needs; for example, all the people
we know well enough may not in fact be our friends on Facebook.
So Siri would need to ask us a few questions before sending out the
email. At the same time, it would be irritating if Siri asked us too
manyquestions; soSiri needs to reasoncarefully. Let’s seehow itmight
do this.

160



CONNECT

Suppose you are friends with Amy, while Chloe is someone you
wish to avoid, i.e., ‘block’. You want to ensure that what you say is
unlikely to reach Chloe. Siri also knows (possibly by crawling Face-
book’s site) that Amy and Bob are friends, as are Bob and Chloe.What
questions should Siri ask before deciding whether to send the mail
to Amy? More importantly, how should Siri go about this reasoning
problem? Siri wants to find out if anyone is friends with someone
whomwe have blocked, and avoid sending the email to that person. In
the language of reasoning, Siri needs to check if the following logical
statement is true for some X and Y, or show that it is always false:

X is a friend AND X is a friend of Y AND Y is blocked.

At its disposal Siri has the following facts in its knowledgebase, ‘Amy is
a friend’, and ‘Chloe is blocked’. It also has the binary predicates∗ ‘Amy
is a friend of Bob’, and ‘Bob is a friend of Chloe’.
Siri needs todeterminewhether the logical statement it is examining

is directly entailed by the facts in the knowledge base. In other words,
Siri is actually trying to prove or disprove the logical statement ‘if
knowledge base then logical statement in question’. The entire knowl-
edge base is included in this latter statement, thus making it an inde-
pendent logical statement that is simply either true or not. Of course,
as we have seen in the case of Gödel, there is always the faint chance
that logical reasoning cannot prove or disprove a statement. However,
wehope that at least in the caseofour simple example suchanunfortu-
nate situation does not arise. Hopefully Siri should be able to arrive at
a definite conclusion eitherway simply by following the laws of logical
entailment.
First, recall that the implication ‘if knowledge base then statement

to be proven’ is the same thing as saying ‘knowledge base is false OR
statement to be proven is true’. It turns out that it is easier to disprove

∗ Binary predicates express a relationship between two things, as opposed to unary ones
that describe a property of a single object.
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a statement than to prove it. We start out with the negation of the
statement to be proven and try to reach a contradiction; if we succeed,
then the negation is false and the original statement true. Now, the
negation∗ of the statement to be proven works out to

X is not a friend OR X is not a friend of Y OR Y is not blocked.

We’ll call this the target statement. The next trick we use is called ‘reso-
lution’. Imaginewe have two statements that we assume are both true,
for example

Gary is a friend

and a more complex statement such as

Gary is not a friend OR John is not blocked.

But the two contradicting sub-statements, ‘Gary is a friend’ and ‘Gary
is not a friend’ cannot both be true, so what remains in the second
complex statement must be true, i.e.,

John is not blocked.

This ‘resolvent’ statement can now be resolved with others.
Returning to our task of proving or disproving the target statement,

we need to replace (i.e., ‘unify’) the unknowns X and Y with some
values before any resolution can take place. First we try X=Amy and
Y=Bob. The target now becomes

Amy is not a friend OR Amy is not a friend of Bob OR Bob is not

blocked.

The first two pieces cancel out with the known facts, i.e., ‘Amy is a
friend’ and ‘Amy is a friend of Bob’, leaving us with the resolvent ‘Bob

∗ Negating theANDof a bunch of statements is easily done by negating each of the state-
ments while replacing AND with OR; similarly, negating the OR of a bunch of statements
results in the AND of their negations; you can easily verify this mentally.
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is not blocked’. Next we try the combination X=Bob and Y=Chloe.
The target becomes ‘Bob is not a friendORBob is not a friend of Chloe
ORChloe is not blocked’. This time, the last two pieces cancel with the
known facts ‘Bob is a friend of Chloe’ and ‘Chloe is blocked’, yielding
the resolvent ‘Bob is not a friend’.
Siri nowknowswhat to ask us. It first askswhether Bob is blocked. If

we say ‘yes’, then it contradicts one of the resolvents, hence disproving
our target, and proving the original statement (since the target was
the negation of what we were after). On the other hand, if we say ‘no’,
Siri can ask us if Bob is a friend. If he is, then the second resolvent is
contradicted and we prove what we are after. But if again we say ‘no’,
then we are unable to reach a conclusion. It might then try a third
combination, i.e., X=Amy and Y=Chloe. You might like to verify
that the resolvent will be ‘Amy is not a friend of Chloe’. Siri asks us
if we know. If Amy is a friend of Chloe, then we have a contradic-
tion, once again proving what we are after. If not, once more Siri is
stuck, and cannot conclude a direct one-hop chain from a friend to a
blocked person.
Hopefully this scenario has convinced you that reasoning is pretty

complex, especially for a computer. Yet there are techniques, such as
the combination of unification and resolution just described, which a
computer can use to reason automatically. A few questions arise nat-
urally. Do procedures such as unification and resolution always work?
Clearly not, since there were situations when Siri could come to no
conclusion. Next, what should be done if no conclusion is reached?
Should Siri assume that the statement it set out to prove is false? After
all, we may not know conclusively that Amy and Chloe are definitely
not friends. Suppose they are? In otherwords, if we can’t verify a resol-
vent, should we not assume the worst case?What are the implications
of assuming ‘failure equals negation’? We shall return to this question
in a short while.

* * *
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But first, there are even more fundamental difficulties. It turns out
that proving or disproving a complex statement, such as the one used
earlier, is inherently difficult. If we have a really complex combina-
tion of, say, n statements linked by ANDs and ORs, the resolution
procedure requires, in the worst case, on the order of 2n steps. In
other words, there are examples where, using resolution, we really
need to try almost all possible combinations of assigning true or
false values to each of the n statements before we can decide whether
or not there is some satisfying combination of values that makes the
statement true.
But perhaps there are better procedures than resolution? Unfortu-

nately it appears unlikely. In 1971 Stephen Cook76 formally introduced
the notion of what it means for a problem (rather than a specific pro-
cedure) to be computationally intractable. The ‘satisfiability problem’,
or SAT for short, was in fact Cook’s first example of such a problem.
The theory of computational intractability is founded on the notion
of ‘NP-completeness’, a rather involved concept that we do not go
into here except to say there are a large number of such NP-complete
problems that are believed (but not proven) to be computationally
intractable.
However, in the case of reasoning, the theoretical situation is even

worse than computational intractability might warrant. The SAT
problem only covers statements in propositional (as opposed to pred-
icate) logic, where there are no variables, such as the x and y in our
earlier example. In the case of predicate logic, such variables first need
to be unified with values during the resolution process, as we did by
first choosing x =Amy and y =Bob, etc. Unfortunately, if we allow
variables, the resolution plus unification proceduremay go on forever,
i.e., it may take infinite time. This is actually not surprising, since we
know fromGödel and Turing that such situations should in fact arise,
since there are true statements that cannot be proven, and procedures
for which we cannot logically prove termination.
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However, before we get all gloomy and give up, all that such ‘worst
case’ results mean is that logical reasoning may not always work, and
even it it does, it is highly unlikely it is efficient in all cases. It is impor-
tant to note that neither Gödel nor computational intractability say
that there are no easier special cases, where resolution always terminates
and does so efficiently. If fact there are, and that is why semantic web
systems and rule engines actually work in practice.

* * *
We have already seen an example of a special case, namely, the
description logic that was used to represent our knowledge of ‘project
structure’ in CALO. Recall that we alsomentioned that the web ontol-
ogy language, OWL, devised for Burners-Lee’s semantic web, is also
description logic-based. There are actually a variety of simpler special-
izations of the OWL language, such as OWL-DL and OWL-Lite, also
based on description logic. Such specializations have been designed
specifically tomake themeasier to reasonwith. In particular,OWL-DL
and OWL-Lite, unlike full predicate logic, are in fact decidable. Thus,
statements expressed in these languages, such as ‘all experts are tech-
nologists’, can be verified to be true or false in finite time. There is no
Gödel-like unprovability or Turing-like uncertainty here. (Note how-
ever, the completeOWLsystem is actually aspowerful aspredicate logic,
and therefore also not decidable.)
It is certainly comforting to know that we can express our knowl-

edge about the world in a manner that computers can process with
some degree of certainty. Unfortunately, all is not so well after all. It
turns out that while reasoning in such languages is decidable, it is not
necessarily efficient. Both OWL-DL and OWL-Lite suffer from worst-
case behaviour that grows like 2n with the size of the knowledge base.
Fortunately there is some good news too. While reasoning using res-
olution and unification is in general intractable for the propositional
case (and in fact undecidable if variables are used, i.e., in the predicate-
logic case), there are special types of statements that do allow efficient
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reasoning. Luckily, these special cases are exactly right for defining
rules about the world, i.e., implications of the form ‘if a person is a
child and a female then the person is a girl’.
Rules where we are allowed to have any number of conditions, but

onlyone consequent (i.e., right-hand sideof the implication), are called
‘Horn clauses’, after theAmerican logicianAlfredHorn. Thus, the rule
‘if a person is a child and a female then the person is a girl’ is a Horn
clause, whereas ‘if a person is a child and a female then the person is a
girl and she likes dolls’ is not, because of the two consequents involved
(being a girl and liking dolls).
To see why Horn clauses are easy to reason with, let’s see how reso-

lution works for them. As earlier, implications are rewritten as logical
statements, so the Horn clause defining ‘girl’ becomes

not a child OR not a female OR girl.

So if we somehow know that the person in question ‘is a child’, then
these two statements resolve, as before, to

not a female OR girl

which is another Horn clause since it has just one consequent, i.e., a
‘positive’, unnegated term—‘girl’. Resolving two Horn clauses results
in another Horn clause; so we can imagine a procedure that contin-
uously resolves clauses in this manner until our desired goal is either
verified or proved false.
For example, suppose our knowledge base had a few more state-

ments: ‘not toddler OR child’, which essentially says ‘if a toddler then
a child’. Also ‘not male OR not child OR boy’, ‘not infant OR child’,
etc. Finally we have two facts about a person, i.e., that (s)he ‘is a
toddler’ and ‘is a female’. How would we test what other facts this
knowledge base entails? Or suppose we want to check if the person
in question ‘is a girl’; howwould a reasoning procedure go about such
a task?
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In fact the two questions we have posed direct us to two different
approaches to reasoning, which we have also mentioned briefly ear-
lier. The latter task, i.e., checking whether ‘is a girl’ is true, leads us to
backward-chaining, in which we check if there is any rule that implies
‘is a girl’, and then check in turn whether each of the conditions of
that rule are satisfied, and so on until we are done. In this case, we find
one such rule that leads us to check for ‘is female’ as well as ‘is a child’.
These in turn cause us to ‘fire’ the rules that imply these conclusions,
including facts, such as ‘is female’, which is already given to us. Once
we reach ‘is a toddler’ and find that it too is a fact, we are done and
have proved that ‘is a girl’ holds true. Unfortunately, and contrary to
expectations, backward-chaining can lead to circular reasoning. For
example, suppose we had a rule such as ‘not a child OR is a child’.
The backward-chaining proceduremight end up firing this rule indef-
initely and getting stuck in a cycle.
On the other hand, it turns out that there are forward-chaining

procedures that can compute all the conclusions from a set of rules
without getting stuck. All we need to do is keep track of which facts
have been calculated and which rules are ‘ready to fire’ because all
their conclusions have been calculated. Thus, in the case of forward-
chaining we begin with the facts, ‘is a toddler’ and ‘is a female’, and
mark these as calculated. This makes the rule ‘toddler implies child’
fire, so ‘is a child’ becomes known. Next, the rule ‘female and child
implies girl’ fires (since all its conditions are calculated), allowing us
to correctly derive ‘girl’. At this point, there are no rules left ready to
fire, and so there is nothing else to derive from the knowledge base.
Such a forward-chaining procedure might need to check facts and

rulesmany times, but atworst asmany times as there are ‘things’ about
which the knowledge base expresses facts. Each time it needs to check
atmost the number of rules in the knowledge base. Thus, this forward-
chaining procedure takes at most ‘number of things’ × ‘number of
rules’ steps,which is certainly very efficient as compared toprocedures
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whose behaviour is ‘exponential’, such as 2n. (In fact, with a few tricks
it can be shown that forward-chaining can be done in linear time, i.e.,
number of things + number of rules steps: this is the famous Rete
algorithm devised in 1982 by Charles Forgy.77)
Wow!Does thatmean thatwecan reasonefficientlywith rulesbased

on Horn clauses and need look no further? But wait, we have only
discussed simple propositional Horn clauses. As expected, when we
introduce variables and require unification, even Horn-clause reason-
ing need not terminate, and can go on forever in peculiar cases. Recall
that this was not the case for description logics, such as OWL-DL and
OWL-Lite. So, what is often done in practice for semanticweb systems
is that description logics are used to capture and reason about structural
properties of the world being represented, whereas Horn clauses are
used for other rules, such as to describe behavioural properties of the
system, e.g., ‘deciding when to dowhat’.

* * *
Recently there has also been a resurgence of interest in using mecha-
nisms based onAristotelian ‘natural’ logic to reason directly in natural
language, without necessarily having to translate every sentence into
a logical statement. In 2007,64 Christopher Manning and his team at
Stanford revived interest in using natural logic for ‘textual inference’,
i.e., the problem of determining whether one natural language sen-
tence ‘follows from’, or is entailed by, another. Entailment in natural
logic, as per Manning, is quite different from one statement implying
another, as in, say predicate logic. It is closer, in fact, to a description
logic, in that we can say what words entail others, just as for concepts
in description logic. A specific word or concept is entailed by a more
general one.
So, shark entails fish, swim entails move. In other words, a shark is a

fish, and something that swims is also something that moves. Words
such as every, on the other hand, express relationships between other
concepts. So, as an example of the rules of Manning’s natural logic,
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one can formally conclude from ‘every fish swims’ that ‘every shark
moves’, because of a rule regarding how the word every behaves with
regard to the two concepts it relates: the first concept, i.e., fish in this
case, can bemademore specific, i.e., specialized ‘downwards’ to shark,
whereas the second, i.e., swims, can be generalized ‘upwards’ to moves.
A moment’s reflection reveals that the reverse does not hold, at least
for the word ‘every’.

* * *
There is one more important issue that will lead us down our next
path of explorations in the realm of reasoning. Even though reason-
ing using Horn clauses is not guaranteed to work, we might imagine
a computer procedure that simply stops if it spends too much time
trying toevaluate a statementusing the resolution-unificationprocess.
Suppose it now assumes that just because it has failed in its efforts,
the fact is false. Let’s see what happens if we begin to allow this kind of
behaviour.
Suppose we have a rule saying ‘if something is a bird and not a

penguin, then it flies’. Now suppose we also know that ‘Tweety’ is a
bird. Unification of the unknown ‘something’ with ‘Tweety’ leads us
to check whether the conditions of the rule are satisfied. Unfortu-
nately, while one of the conditions, i.e., ‘Tweety is a bird’, turns out
to be true, we are unable to say anything about whether Tweety is
a penguin. Thus, using normal logical reasoning it is not possible to
reason further. However, if we take the failure to show that Tweety
is a penguin as meaning its negation, i.e., that ‘Tweety is not a pen-
guin’, then we can indeed conclude that ‘Tweety flies’. However, we
might later come to know that Tweety is in fact a penguin. In normal
logic this would lead to a contradiction. However, we might like to
imagine ‘retracting’ the conclusion we derived by treating ‘failure as
negation’, i.e., to assume thatTweety isnot apenguin.This in turn leads
to our having to retract our earlier conclusion about Tweety being
able to fly.
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In standard logic, a statement is either true or not. Further, once it
is established to be true, it remains true forever, whatever new knowl-
edge might come our way. However, as we have seen in the example
in the previous paragraph, we can treat failure as negation as long as
we also retract any resulting conclusionswhen new facts emerge. If one
thinks about it, this is actually howwehumans reason.We formbeliefs
based on whatever facts are available to us, and revise these beliefs
later if needed. Belief revision requires reasoning using different, ‘non-
monotonic’, logics. The term ‘non-monotonic’ merely means that the
number of facts known to be true can sometimes decrease over time,
instead ofmonotonically increasing (or remaining the same) as in nor-
mal logic. Dealingwith beliefs also leads us tomechanisms for dealing
with uncertainties, such as those whichWatsonmight need to handle
as it tries to figure out the right answer to a Jeopardy! question.
Beliefs and uncertainties are essential aspects of human reasoning.

Perhaps the Siris and Gregories of the future will need to incorporate
such reasoning. Traditional logical inference may not be enough. To
better understand what such reasoning might involve, we turn to a
very different world where humans need to reason together. Hope-
fully, our own belief revision process gets exposed by studying such
a scenario, leading us to computational techniques that mimic it.

Belief albeit Uncertain

During the night of 9 August 2006, British police arrested 24 people
in and around London and Birmingham. These were al-Qaeda terror-
ists suspected of planning a massive terrorist plot to bomb at least
ten airliners heading from Britain to various US destinations. Fortu-
nately a major disaster was avoided. In fact, intelligence operations
leading to these arrests had been going on for months. At its peak, the
investigation involved as many as a thousand intelligence officers and
policemen. Many possible suspects were under surveillance, not only
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in Britain but also Pakistan, for which CIA intelligence was also used.
While we may not wish to delve into the entire history of this affair, it
is perhaps instructive to focus on the process, which at least in such a
case is largely documented,78 unlike similar reasoning processes that
go on all the time inside each of our heads.
First some suspicions arise. This is followed by increasing degrees

of belief that something sinister is afoot. During the process new
probes are activated to validate suspicions, gather more information,
and expand the scope of surveillance. At the same time, it is important
to keep all options open as to exactly what the terrorists are up to,
certain hypotheses get ruled out, while others becomemore probable
with new evidence. Finally, and probably most importantly, there is
the need to remain always vigilant as to when the suspected attack
becomes truly imminent, so as to decide on taking action: wait too
long, and it might be too late; after all, one could never be 100% sure
that no other terrorists remained free who might still carry out an
attack. (Luckily, this was not the case, but it could have been.)
Post-9/11, worldwide continuous surveillance of any and every pos-

sibly suspicious activity had become a necessity. One of the plotters,
Ahmed Ali, was under routine surveillance because of his numer-
ous trips to Pakistan in the past year. In June 2006, police secretly
opened Ahmed’s luggage at Heathrow as he was returning from one
such trip. In it they found a power drink along with a large num-
ber of batteries; not enough to surmise mala fide intent, but enough
to raise the level of surveillance on Ahmed. As a result, the peo-
ple he met often, such as Assad Sarwar and Tanvir Hussain, were
also put under light surveillance, and it was then found that Tanvir
had also recently visited Pakistan. Sanwar was observed disposing of
a large number of hydrogen peroxide bottles at a recycling centre;
then further surveillance revealed that he was buying many items
that appeared unrelated to his daily needs. Meanwhile, Ahmed and
Tanvir were also often seen shopping together, and frequenting a flat
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in east London. The flat was found to have been recently purchased
in cash for £138,000. The accumulated circumstantial evidence was
determined to be cause enough for the police to covertly enter this flat,
where they found a chemical lab that appeared to be a bomb-making
factory.
Let us take a step back and examine the reasoning involved in this

police investigation. First, listening leads to new facts, which serve as
feedback to enlarge the scope of listening to cover more individuals
with surveillance. Next, facts being unearthed are continuously being
connected with each other to evaluate their significance. Reasoning
with multiple facts leads to further surveillance. Eventually, ‘putting
two and two together’ results in the unearthing of the bomb factory.
So far, the reasoning process used in the course of investigations

is largely deductive, in the sense that one fact leads to the next steps
of surveillance, which in turn uncover more facts. Established rules,
regardingwhat kinds of activities should be considered suspicious, are
evaluated at each stage, almostmechanically. No one is trying to figure
out exactly what these people are up to; after all, there is no concrete
evidence that they are really conspirators. Further, these three are a few
among the thousands under continuous investigation throughout the
world; wasting too much effort speculating on every such trio would
drown the intelligence apparatus.
But everything changes once the bomb factory is found. Both the

investigation and the reasoning process move to a new level. Now,
deduction alone is not enough. What kind of bomb plot was under
way? The 2005 bombing of the London Underground was fresh in
everyone’s memory. Naturally there were suspicions that a repeat was
being planned. However, other potential targets could not be ignored
either. Shoppingmalls, government buildings, and of course, airports
and airlines: any of these might be targets. More importantly, how
large was the conspiracy? Were there more terrorists involved who
had so far managed to escape surveillance? If so, cracking down on
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the particular trio and shutting down the bomb factorymight alert the
others, and thereby fail to avert an eventual attack.
In fact the bomb factory was not shut down, and the surveillance

continued. The reasoning processmoved to one of examining all pos-
sible explanations, which in this case consisted of potential targets, ter-
rorists involved, and the timing of the attack. Further investigations
would need to continuously evaluate each of these explanations to
determinewhichwas themostprobable, aswell as themost imminent.
Determining themost probable explanation given some evidence is

called abductive reasoning.While deduction proceeds frompremises to
conclusions, abduction, on the other hand, proceeds from evidence to
explanations. By its very nature, abduction deals with uncertainty; the
‘most probable’ explanation is one of many, it is just more probable
than any of the others.

* * *
Actually, we have seen a simple form of abduction earlier in Chap-
ter 3, when we described the naive Bayes classifier and its use in
learning concepts. Recall that a classifier could, once trained, distin-
guish between, say, dogs and cats, shoppers and surfers, or positive
versus negative comments on Twitter. Given the evidence at hand,
which could be features of an animal or words in a tweet, such a
classifier would find the most probable explanation for such evidence
amongst the available alternatives. ThenaiveBayes classifier computes
the required likelihoodprobabilities during its training phase and uses
them during classification to determine the most probable class, or
explanation, given the evidence, which in this case is an object char-
acterized by a set of features.
However, the classificationproblemdealswith choosing exactly one

of two (or in general many) class labels, or explanations (‘dog’ or ‘cat’,
positive or negative), and ruling out the other one (or ones). More
generally, however, abduction needs to entertain simultaneous belief in
many possible explanations. For example, investigators would have
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explored many different potential targets of the planned bombing:
Underground trains, shoppingmalls, airports, etc. Each new fact, such
asAhmedandTanvir browsing forbackpacks andcamping equipment
in a store, would impact their degree of belief in each of these possible
explanations, possibly to a different extent in each case. Backpacks
could be used for attacking any of these targets; flash-lights however,
might increase belief in a repeat attack on the Underground. In the
end, whenAhmedwas observed researching flight timetables for over
two hours from an internet cafe, belief in an airline attack became the
most dominant one.
Just as earlier for simple classification, abductive reasoning can be

understood in terms of probabilities and Bayes’ Rule. Since we are
dealing with humans rather than machines, past experience takes the
place of explicit training. Investigators know from specific experi-
ence that backpackswere used by the LondonUnderground bombers,
whereas common-sense rules might tell them their potential utility
for other targets. Recall that in the language of Bayesian probabilities,
experience, specific or common, is used to estimate likelihoods, such
as ‘the probability that a backpack will be used for an underground
attack’. Bayes’ Rule then allows one to efficiently reason ‘backwards’
to the most probable cause, i.e., reason abductively. At some point, as
whenAhmedbrowsesflight schedules so intently, theprobabilityof an
airline attackbecomeshigh enough towarrant specific actions, suchas
increasing airport security (rather than policing shoppingmalls), and,
as it turned out in this particular case, triggering the actual arrests.
Such abductive reasoning across many possible explanations can be
thought of as many different classifiers operating together, one for
each possible explanation. In such amodel it is possible to have a high
degree of belief in more than one explanation, i.e., the belief in each
explanation is independent of the other.
At the same time, beliefs are not completely independent either.

Note that the detection of flight-schedule browsing not only increases
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belief in an airline attack, it also decreases our belief in a shopping
mall or Underground attack. As a result, we are more confident about
diverting resources from policing malls and train stations to securing
airports. This ‘explaining away’ effect has actually been observed in
experiments on human subjects.79 In spite of allowing ourselves to
entertain varying and largely independent degrees of belief in many
possible explanations at the same time, we also allow our belief in
one explanation to affect the others somewhat. (At the same time, our
beliefs indifferent causes arenot as closely correlated as in the either-or
modelof a single classifier,where if ourbelief inonecause is 80%,belief
in the others necessarily drops to 20%.) As it turns out, the ‘explain-
ing away’ effect, which is an important feature of human reasoning,
is also observed in Bayesian abduction using probabilities and in
Bayes’ Rule.80

How does the seemingly very human ‘explaining away’ phe-
nomenon take place in the coldworld of probabilities and Bayes’ Rule?
Imagine only two explanations, i.e., the hypothetical targets ‘shopping
mall’ and ‘airline’. For eachof theseweconstruct anaiveBayes classifier
with many features, such as ‘scouting a mall’, ‘browsing flight sched-
ules’, and also ‘making a bomb’. However, the last feature, ‘making a
bomb’, is shared amongst the two hypotheses. Therefore, even though
the likelihood that ‘making a bomb’ is observed is high whichever of
the two cases is true, it is even higher in the unlikely event that both of
the explanations are true, such as if there were actually two attacks
being planned. It turns out that the common feature ‘making a bomb’
which was already observed, is the key to the ‘explaining away’ effect.
Becauseof this commonality, as soonas theprobability (or belief) in an
airline attack rises due to some other feature, such as ‘browsing flight
schedules’, being observed, the belief in ‘shopping mall’ as a possible
target automatically reduces. While we will not do the maths here,
surprisingly the ‘explainingaway’ effect arisesmerely as a consequence
of Bayes’ Rule and simple arithmetic.
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Afew important conclusions emerge fromourdiscussionhere. First
of all, Bayesian inference appears to be a surprisingly good rational
model for thekindofhumanabductive reasoning that tookplace in the
2006 airliner investigation, as also in similar collaborative problem-
solving situations. Consequently, researchers have also speculated on
the fruitfulness of using Bayesian approaches for directly modelling
human thinking.81

Second, Bayesian models comprised of different explanations for a
large set of factual evidence,with some explanations sharing evidence,
are best viewed as a network. Nodes in such a Bayesian network are
either explanations or facts, and the links between them likelihoods.
The structure of the network, determined by which nodes are linked
to others, results in complex ‘explaining away’ effects. A complex
Bayesian network can result in phenomena such as where disparate
pieces of evidence affect one’s degree of belief in seemingly unrelated
explanations.
Finally, as demonstrated by phenomena such as the ‘explaining

away’ effect, abductive reasoning using Bayesian networks is quite
naturally non-monotonic, in that belief in a hypothesis can both
increase or decrease as new evidence is unearthed. Therefore, there
is growing interest in using probabilistic networks, Bayesian or other-
wise, to model complex abductive reasoning under uncertain condi-
tions, such as the emergent behaviour of large groups of investigators,
as well as the unconscious reasoning that takes place within each of
our individual brains.

Collective Reasoning

Barely a fewmonths after the 2006airliner plotwas successfully foiled,
on 11 October 2006 a small aircraft collided with a skyscraper in
New York. Was another terrorist attack under way? The memories of
9/11 were indelible; the security agencies were naturally concerned.
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However, unlike the 2001 situationwhen different intelligence and law
enforcement agencies struggled to communicate rapidly enoughwith
each other, this time they used a tool called Intellipedia,82 inspired by
the web’s Wikipedia. Within 20 minutes of the incident it had a page
of its own on the Intellipedia site, accessible to all concerned agen-
cies and departments. Within the next couple of hours, this page was
updated over 80 times. Each update was accompanied by commen-
tary and discussion, as is the case on Wikipedia as well. Such discus-
sions both revealed and provided a platform for a highly collaborative,
multi-agency abductive reasoning exercise, which finally, and rapidly,
established that the unfortunate crash was in fact an accident and not
another terrorist attack.
The Intellipedia approach represented a radical alternative to the

traditional process of intelligence gathering and analysis. First and
foremost, Intellipedia allowed instantaneous information-sharing
between agencies, rectifying adefectmade apparent after the 9/11 post-
mortem enquiry.83 However, equally important was the fact that dis-
cussions and debate were laid bare for anonymous others to build on.
By contrast, in the traditional intelligence model information moves
up and down in an organizational hierarchy. Each level in the hierar-
chy is responsible for collating and fusing information from multiple
sources. Analysts at each level apply abductive reasoning and com-
municate their most probable explanations up the hierarchy, while
simultaneously also directing lower levels to look for additional facts
that could increase or decrease current degrees of belief in the most
probable set of explanations at a given point in time.
One obvious advantage of the Intellipedia-based approach to

information-sharing is speed. Instead of having to wait until a fact
is processed and collated at each level of a complex hierarchy, every
fact becomes available immediately to anyone searching for related
concepts. Moreover, searches reveal not only all related facts, but also
any discussions between or conclusions drawn by human analysts.
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As a result, connections to be explored using related sets of facts or
hypotheses are discovered dynamically during the process of inves-
tigation, rather than as a part of a strict, hard-wired hierarchy. By
contrast, information moves upwards in a traditional hierarchy only
if belief in its importance is high at any particular level. Thus many
potential high-level explanations can get missed out merely because
the facts they rely on somehow did notmake it up the prescribed hier-
archy.Asbrought to light after the fact, sucha situationwas in fact seen
to have occurred prior to the 9/11 attacks, with information residing in
disconnected silos never being connected together in time.
Of course, a flat ‘everybody shares everything’ architecture can

also get unwieldy to navigate. One increasingly has to rely on the
serendipitous discovery of related pieces of information, as users look
for informationusingkeyword-based search. By 2009, Intellipedia had
over 900,000 pages and 100,000 users, with roughly 5,000 page edits
taking place every day.82

One can imagine users setting up ‘permanent’ searches that are fired
regularly so that information of interest to them naturally flows to
them. Similarly, a user might wish to be informed whenever any of
a selected set of co-users edits a page, merely because of past expe-
rience that found those particular users’ comments to be interest-
ing. In this manner the initially flat Intellipedia architecture begins
to acquire features found on social networking sites such as Face-
book. Imagine if you were presented with every post of each of the
now billion-or-so Facebook users. Besides being technically imprac-
tical, it would also be useless, as this volume of information would
be impossible for any user to digest. Instead, as we all know, users on
Facebook define who their friends are, so as to limit the information
they receive and disseminate information. A similar situation natu-
rally evolves on Twitter, with its follower–followee relationships. In
short, information-sharing at scale naturally requires a complex and
dynamic network. Only recently, however, has belief revision in such
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a human network been modelled using abductive reasoning using
an analogous Bayesian network so as to develop a better theory for
improving human fusion centre operations.84

Perhaps you are wondering what all this has to do with auto-
mated reasoning by computers. The point is that complex reason-
ing with vast quantities of information requires not only reasoning
techniques and mechanisms for representing knowledge, but also an
architecture. As we shall soon see, the Intellipedia architecture is closely
related to a well-researched model for building intelligent systems.
Further, the natural evolution of such an architecture into a network
is essential to handle scale, and in fact points us to closely related
research in neuroscience and related speculations on how large-scale
knowledge representation and reasoning possibly works in the
human brain.

* * *
The hierarchical structure ofmost large human organizations, includ-
ing those for gathering intelligence, did indeed motivate a powerful
idea dating back to the early days of artificial intelligence research. In
1958, Oliver Selfridge, one of the pioneers of AI research, proposed his
‘pandemonium’ model of how cognition might be organized in the
brain, and how intelligent systems should therefore be structured.85

Selfridge’s model involved many ‘demons’, each responsible for some
specific reasoning activity. Lower-level demons would act on direct
sensory input. Each such demon would ‘shout’ if it found evidence of
some specific pattern that it was responsible for discovering; if the evi-
dence was strong, it would shout louder. Higher-level demons would
listen to the shouts emanating from lower levels, and look for more
complex patterns, connecting the dots, so to speak, and in turn shout
out their findings. The cacophony of demons shouting, which moti-
vated thename ‘pandemonium’,would eventually lead to somehigher-
level cognitive output, such as recognizing a sound, letter, sentence,
or even a face.
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In spiteof this early andprescient idea,AI research through the 1970s
continued to focus on problem solving by ‘lone agents’ using specific
techniques, be they of the symbolic-logical or statistical, machine-
learning variety. Looking back on this era in his 1991 address as pres-
ident of the American Association for Artificial Intelligence (AAAI),
Daniel Bobrow reflected disparagingly on the limitations of the lone
agent approach: ‘The agentwas disconnected from theworldwith nei-
ther sensors nor effectors, and more importantly with no connection
to other intelligent goal driven agents. Research results in AI consisted
primarily in the determination of the principles of construction of
such intelligent, but deaf, blind and paraplegic agents.’86 Even if this
was a rather harsh assessment, it did serve to highlight the need to
embrace the changing paradigmofAI research, the seeds ofwhich had
already been laid in the 1970s and 1980s.
The first steps towards just such a collaborative architecture as

described by Selfridge had already been taken in the mid-1970s, by
Raj Reddy and his group at CMU, while developing the first reason-
ably successful speech recognition system,Hearsay II.87 Of course, the
fruits of that labour are apparent for all to see in the Siris of today.
To understand the advantages of the pandemonium-like hierarchical,
collaborative, architecture used in Hearsay II, a simple example serves
to illustratewhy speech recognition turns out to be so difficult, or even
impossible, with a more traditional ‘lone agent’ approach.
Imagine a spoken sentence such as ‘bring the bill please’. If spoken

very fast and possibly with a foreign accent, you may well hear it as
‘ring the bell please’. It is easy to imagine a ‘lone agent’ computer pro-
gram, using a classifier such as naive Bayes to recognize words from
speech waveforms, making just such an error quite often. However,
if you were hearing this sentence in a restaurant, it is unlikely that
you would make such an error. The context in which the utterance
was heard would make the first interpretation far more probable than
the latter. A similar argument holds at finer levels of disambiguation.
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You are unlikely to confuse the utterance with ‘ring the bill’, because
the chance of this word combination is far rarer than ‘bring the bill’,
regardless of context; after all, one does not ‘ring’ a ‘bill’. Similarmech-
anismsare atworkdown to the level of discerningdistinctwords, sylla-
bles or phonemes. The speech waveformmay well sound like ‘ringthe
bill’, or even ‘bring thebill’. However, you know that neither ‘ringthe’
nor ‘thebill’ are words, and so these interpretations are discarded even
though the ‘bottom-up’ processing of the speechwaveform throws up
both these possibilities, alongwithmany others, including the correct
word sequence. In fact, if you were not a native speaker of English
you may well get confused by such alternatives, as you lack some
of the higher-level knowledge about what sounds are definitely not
words, and what sequences of words are clearly impossible. This lack
of higher-level knowledge is why it is more difficult to understand a
foreign tongue when spoken, as opposed to its written form.
The Hearsay II system employed many different ‘knowledge

sources’, operating at different ‘levels’. Some processed the speech
waveformdirectlyusing signal processing techniques.Othersdetected
phonemes and syllables using statistical classifiers of various types.
Higher-level knowledge sources detected probable words using a dic-
tionary. At even higher levels, predictionsweremade about as-yet unde-
tected words using logical reasoning based on the context, such as
being in a restaurant. These predictions are then propagated down
to lower levels to verify their presence. At the highest level, multiple
hypotheses regarding the possible sentence being spoken are gener-
ated and continuously evaluated as to their likelihoodof being correct.
In fact,multiple hypotheses are generated andmaintained at each level
recursively, with each level receiving the outputs of lower levels as
well as predicting possibilities that are propagated back downwards
for further verification.
TheHearsay II system introduced the notionof a ‘blackboard’where

all these multiple hypotheses would be written, and from which
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different knowledge sources would read and in turn write back. This
‘blackboard architecture’ formalized Selfridge’s earlier pandemonium
idea, andhas since beenused in a variety of applications of knowledge-
based techniques.88 The key elements of the blackboard architecture
include the combination of bottom-up and top-down processing,
exploring multiple hypotheses in parallel, combining many different
kinds of knowledge sources, and last but not least, making predictions
of as-yet undetected elements during the collaborative reasoning pro-
cess. These elements have been found to be be immensely useful in a
wide variety of disparate applications rangingwell beyond speech and
natural language understanding to expert systems, computer vision,
and even robotics.

* * *
Further, besides its proven utilitarian value, the blackboard architec-
ture has also been proposed as a plausible rational model for how the
human brain reasons to ‘connect the dots’, make sense of the world,
and even be creative. In particular, the well-known cognitive scien-
tist Douglas Hofstadter has repeatedly used blackboard-like architec-
tures to build models that purport to explain human thinking and
reasoning.
In 1984Hofstadterused the followingproblemto illustratehownon-

obvious, possibly even creative, thinkingmight be simulated.89 We are
given a pair of letter sequences, such as ‘abc’ and a supposedly related
sequence ‘cba’. Now we are presented with a third sequence, such as
‘ijk’, and asked to find another one that is related to this sequence in
‘the samemanner’ as ‘abc’ is related to ‘cba’. Amoment’s thought leads
us to ‘kji’ as the most likely prediction in this particular case.
Relationships can be fairly arbitrary, so given a pair like ‘abc’ and

‘aabbcc’, wewould guess that ‘ijk’ and ‘iijjkk’ are ‘similarly’ related. The
game becomes more interesting with ‘abc’ and ‘abd’: now we need to
know about the alphabet in order to guess that, ‘ijl’ is a better guess
than, say, ‘ijd’. But things become difficult even for us when we seek
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to ‘copy’ the relationship between ‘aabc’ and ‘aabd’ to ‘ijkk’. This time
we might be confused with the doubling of ‘k’; should we replace
both ‘k’s by their successor, yielding ‘ijll’? Alternatively, should ‘k’ be
‘linked’ to ‘a’ because of this doubling, consequently leading us to
link ‘c’ with ‘i’ and replace ‘successor’ by ‘predecessor’, so as to finally
give ‘hjkk’?
Hofstadter argues that ‘being a copycat’, by constructing analogies, as

illustrated in this toy scenario, shouldbe regardedas akey, even thepri-
mary, ingredient of intelligence. In 1990, Hofstadter’s student Melanie
Mitchell described a computational solution to the sequences puzzle
usingwhat is essentially a blackboard architecturewith a combination
of top-downandbottom-up reasoning.90 Insteadofdetectors andclas-
sifiers, their knowledge sources were agents looking for patterns, such
as ‘alphabetic order’, ‘successor’, and ‘numeric order’.
Further, some patterns are related to others, such as ‘successor’

being the ‘opposite’ of ‘predecessor’, and ‘first letter’ being theopposite
of ‘last letter’. Such relationshipswere captured in a semantic network,
which they call a ‘slipnet’. During the reasoning process, elements of
this slipnet are activated, i.e., assigned higher degrees of belief, based
on patterns that are discovered in the given letter sequence, and rela-
tionships between them. All these knowledge sources explore many
alternatives in parallel, evaluating them for the ‘strength’ of the anal-
ogy being proposed by each. Finally, the most appropriate analogy
discovered is used to predict the answer sequence. Hofstadter refers
to the process of top-down, bottom-up, parallel exploration of mul-
tiple hypotheses as a ‘parallel terraced scan’, which, he speculates, is
a key element for understanding how humans reason by discovering
analogies. Quite surprisingly, the copycat program manages to come
up with fairly complex analogies, very similar to those produced by
humans, and sometimes even better.
Let us now compare these pandemonium-like blackboard-based

systems to our earlier example of collaborative problem-solving and

183



THE INTELLIGENT WEB

analysis using Intellipedia. Instead of a ‘blackboard’, Intellipedia uses a
user-editablewebsite, better knownas awiki,which is also thebasis for
the well-knownWikipedia. Of course, unlike Hearsay II and Copycat,
Intellipedia relies on human ‘knowledge sources’ rather than compu-
tational ones. But in other respects they are remarkably similar. Intelli-
pedia provided a shared environmentwhere an inherently hierarchical
collective, such as the intelligence community, could freely share ideas
and insight.
Similarly, the blackboard architecture provided a means for differ-

ent ‘lone agent’ knowledge sources, performing different ‘levels’ of
analysis, to cooperatively solve a largerproblem inanon-deterministic
manner. In fact, a key aspect of the blackboard architectures of both
Hearsay II and Copycat, was how they decided which knowledge
source to apply next. In each case, knowledge sources that were most
likely to produce new hypotheses would be evaluated first, given the
stateof the ‘board’ at anypointof time. Similarly, humananalystsusing
Intellipedia would use their own intuition and the data already seen by
them to decide which topics or pages theymight bemost interested in
reading, as well as decide upon that to which they had something new
to contribute.
Finally, it is exactly in the crucial point of deciding (or choosing)

which knowledge source (or analyst) works on what data and when,
that both the blackboard architecture and Intellipedia face a challenge
when dealing with scale. In the case of Intellipedia, human analysts
would need to be presented with the ‘right’ information, i.e., which
they would be able to either contribute to or use for other analysis.
At the same time, they must not be swamped with so much data that
merely sifting through it to find what is relevant consumes all their
time. The scale challenge for the blackboard architecture is very sim-
ilar, even if articulated in a different manner. The blackboard system
needs to choose which knowledge sources are most likely to be rel-
evant given the data posted on the blackboard at any point of time,
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but without actually trying out all knowledge sources on all available
data. This is currently an area of active research; in fact this author and
his team have recently suggested some approaches to automatically
cluster blackboard data and knowledge sources, without having to
try all combinations,91 by applying locality sensitive hashing (LSH17),
which, you may recall, was also mentioned in earlier chapters as a
surprising way to group n data items into sets of similar items in only
O(n) steps, i.e., without having to compare all n2 pairs. We shall return
to the LSH algorithm in Chapter 5, and also discuss its connections to
related techniques that model memory and how the brain works.
More generally however, the problem of scale is probably better

addressed by replacing the shared wiki, or blackboard, with a net-
work of connections. Aswe havementioned earlier, the need for selec-
tive connections as opposed to complete sharing is already evident
in social networks such as Facebook and Twitter, and similar ideas
are likely to percolate into Intellipedia as well. Similarly, the problem
of scale naturally leads us from a fully shared blackboard model to
network-based ‘connectionist’ architectures for automated reasoning.
Connectionist models are also motivated by neuroscientific studies
of how brains are themselves comprised of very large networks of
neurons, as well as by the success of Bayesian networks in modelling
human abduction, including phenomena such as the ‘explaining away’
effect that we have seen earlier.

* * *
We began our exploration of reasoning with Siri’s need to eventually
reason about our world. This led us into the world of logic, its limits,
and its incorporation into the very fabric of the emerging semantic
web, in the form of OWL and its variants. Logical rules are the basis
for deductive reasoning, from generalities to specifics. We saw how
such rules might be used to power intelligent web-linked agents such
as future Siris. At the same time, inductive reasoning, i.e., going from
many specifics to a generalization, is needed to first learn such rules
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themselves. We found that even inductive learning can be automated,
especially by exploiting the web-based data, using the machine-
learning techniques of Chapter 3, to produce large-scale knowledge
bases such as Yago, Cyc, and REVERB. Next, the limits of deductive
reasoning were once more tested in having to deal with uncertainties
of the real world. Abduction rather than mere deduction appeared to
be equally prevalent in human thought, both individual and collective.
Bayesian networks yielded yet another rational model, this time one
that appeared to mirror human abduction and its properties.
Still, practical problems requiring machines to mirror human anal-

ysis (as in Intellipedia), or insight (as in Copycat), continue to remain
very difficult. Multiple modes of reasoning need to be brought to
bear on such problems to have any hope of success, just as collec-
tive and collaborative analysis by groups of humans is required in
many endeavours, not the least of which is the intelligence (as in CIA)
arena itself.
Finally, we have seen how collaborative reasoning using social plat-

formsmirrors the blackboard architectures ofHearsay II andCopycat,
with all of the embodying aspects that appear key to intelligent rea-
soning:multiple knowledge sources, combining abduction anddeduc-
tion, top-down and bottom-up reasoning, parallel ‘terraced scan’
explorations, and, last but very importantly, the role of prediction in
the reasoning process. In Chapter 5 we shall go even further in these
directions and explore how predictive power can be brought about in
web applications, and why it is so important yet elusive. In fact, we
shall argue that prediction is not only required for intelligent thought,
but is one of its central characteristics.
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‘Predicting the future’—the stuff of dreamsonemight imagine; the
province of astrologers and soothsayers, surely. Perhaps not, the

scientific mindmight retort: after all, is it not the job of science to dis-
cover laws of nature, and thereby make precise, verifiable predictions
about the future? Butwhat ifwewere to claim that prediction is neither
fanciful nor difficult, and not even rare. Rather, it is commonplace;
something thatwe all accomplish each and everymoment of our lives.
Some readers may recall the popular video game, pong, where the

goal is to ‘keep the puck in play’ using an electronic paddle. Figure 2

Reactive Player Predictive Player

FIGURE 2 Pong games with eye-gaze tracking.

With permission from Dr Pawan Sinha, MIT Dept. of Neurosciences.
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shows images of two different pong games in progress. In addition to
the paddle and puck, the players’ eye gaze is also being tracked. The
image on the left shows the player’s eyes tracking the puck itself. On
the other hand, in the right-hand image, the player is already looking
at a point where she expects the puck to travel to. The player on the left
is reactive; she simply tracks the puck, and as the game gets faster, she
eventually misses. The right player, in contrast, is able to predictwhere
thepuckwill be, andmost of the time she gets it right. Further,weoften
see her eyes dart faster than the puck tomultiple regions of the field as
she appears to recalculate her prediction continuously.
What kind of player do you think you are? As it happens, almost

all of us are predictive players. Even if we have never played pong
before, we rapidly begin predicting the puck’s trajectory after even a
few minutes of playing. The ‘reactive player’ in this experiment was
in fact autistic, which apparently affected the person’s ability to make
predictions about the puck’s trajectory. (The neurological causes of
autism are still not well known or agreed upon; the recent research
from which the images in Figure 2 are taken represent new results
thatmight shed somemore light on this debilitating condition.92) So it
appears that prediction, as exhibited bymost pong players, is far from
being a rare and unusual ability. It is in fact a part and parcel of our
everyday lives, and is present, to varying degrees, in all conscious life.
Let us now turn oncemore to theweb and related applications, and see
where they stand in the arena of predictive abilities.

* * *
When we search the web using a search engine such as Google, we
are inadvertently disclosing some of our intentions, such as possibly
being interested in buying some product or other. However, we also
search for many other reasons. As it happens, health-related queries
form a significant fraction of online search.Whenever we or someone
we know falls sick, we immediately ‘google’ their symptoms. If there is
a public health warning, such as the H1N1 pandemic that struck the
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world in 2009, we search even more frantically at the slightest sign
of infection.
In 2008 Google launched flu-trends, where it measured search activ-

ity on flu-like symptoms across the world andmade the data available
to public health officials as well as the general public. In a 2009 article
published in Nature,93 Google’s researchers along with CDC∗ scien-
tists showed that the results fromGoogle’s flu-trends predictionswere
highly correlated with manual surveys conducted by CDC officials.
Further, predictionsbasedon search trends cameone to twoweeks ear-
lier, andwere of course far cheaper to obtain as compared to physically
interviewing samples of physicians and door-to-door surveys of peo-
ple at large. Google flu-trends proved especially useful the following
year, during the H1N1 pandemic, and was used by public health agen-
cies to focus vaccination drives towards areas that were most likely to
become centres for the spread of the disease in the near future.
In their recent book The Two-Second Advantage,94 Vivek Randive and

Kevin Maney relate the story of the East Orange, New Jersey, police
department. This crime-ridden county installed smart surveillance
cameras throughout its jurisdiction. Smart cameras not only fed their
video streams to a centralized monitoring centre manned by police-
men, they alsodetected andcorrelatedunusual events. Suppose a cam-
era is witness to a lone person walking down a street, as well as a car
slowing down as it approaches the person. A smart camera can detect
and classify objects, i.e., a person walking and a car slowing down, as
well as note the locations of these events. The central system corre-
lates the two events, which get escalated to an alert if they happen to
be taking place late at night. At this point ‘I want to know about it’,
says police director Cordero. The system then finds a nearby police car
and asks it to turn on its siren, which in many cases prevents a crime
from taking place by scaring off the potential criminals. Compare

∗ Centres for Disease Control and Prevention, USA.
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this scenariowith the as-yet hypothetical NATGRID systemdescribed
in Chapter 2. The East Orange system is actually in place; perhaps
NATGRID-like predictive early-warning systems are less futuristic than
we imagined.
The progress of technology is inexorable, and along with it we now

have access to incredibly detailed and voluminous data, which can be
used for the good, as just shown, but also misused. As of this writing,
Twitter is used in 200 countries with over 500 million tweets being
posted daily. Further, the number of smartphones equippedwithGPS∗

is growing by the day. People use such phones to post messages on
Twitter. Moreover, such Twitter posts are, by and large, free for anyone
to access. In fact, it is possible to ask Twitter to give us a stream of
feeds from any rectangular region in the world. Many of these users
are also high-volume tweeters, and seemingly tweet at the slightest
opportunity.
Imagine what can be done with such a stream of data. For one, it

reveals the daily movements of all the Twitter-users who tweet from
GPS-enabled devices. From this data a computer program can eas-
ily figure out where each such person’s home and office are. For the
more incessant tweeters, it can alsodeterminewhen they are travelling
out of town, how often they visit a mall, or which restaurants they
eat at. Spooky indeed. But there is more: once a person’s daily habits
are revealed, the computer can also predict where they will go in the
immediate future, at least with high probability. The possibilities for
misuse of such information by criminals are obvious, as is the need
for law enforcement agencies to likewise ensure similar predictions to
pre-empt criminal behaviour.
In spite of these dangers, there are many less alarming and poten-

tially beneficial possibilities as well. As more and more people use

∗ Global Positioning System, which uses satellite signals to pinpoint a device’s exact
latitude and longitude; used in car-navigation systems aswell asmanymobile applications.
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smart, location-aware devices, the behavioural patterns of people at
large begin to get revealed at an aggregate level. Retailers, restaurant
chains, and oil companies can use such insight to locate new facili-
ties in the most optimal locations. Tweeters also reveal their interests
and friends, from the content of their tweets as well as their profiles,
followers, and friends. Marketers in the bricks-and-mortar world of
malls and restaurants are increasingly viewing such data as a potential
goldmineof insightwithwhich to target consumersbetter, just asweb-
based retailers are able to target their services based on the behaviour
of consumers while online.
Last but not least, Twitter in particular has also become a rich source

of local news. Many events of local importance are first reported on
Twitter, including many that never reach news channels. Even though
such events may be primarily of local importance, they can also be
of critical interest to some specific but possibly far-flung entities. For
example, afireor labour strikenear a supplier’s factoryhalfwayaround
the world may be of interest even from afar, as it can be used to predict
a possible supply disruption a few weeks into the future.95

Organizations today, be they public-health and law-enforcement
agencies, or large commercial retailers, banks, andmanufacturers, are
only just beginning to exploremany suchways to exploit social media
as a means to make predictions about the future and act on them, in
much the same manner as the ‘predictive’ pong player is able to look
ahead to where the the puck is going to be, rather thanmerely track the
puck as it moves. As aptly put by Randive and Maney, ‘A little bit of
information ahead of time is more valuable than a boatload of infor-
mation later on’.94 Prediction, however limited, is often farmore useful
than perfect analysis with 20-20 hindsight after the fact. Instead, the
goal of analysis needs to be the creation of predictive models, which
can then be used ‘just in time’ to make better decisions.
The power of predictive analysis is often underestimated, and so is

the need for its responsible use, as Andrew Pole of the Target retail
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chain found out quite recently. Target’s ability to predict the future
needs of its shoppers,merely by analysing their past purchases, was so
good that their systempredicted that a teenage customerwas pregnant
even before her father came to know. This highly publicized event
resulted in a scandal of sorts when the girl’s father lodged a strong
complaint.96

One final example before we explore what it takes to make pre-
dictions: in his 2007 book97 on using data to make predictions,
called Super Crunchers, Ian Ayres recounts a story of how a wine
critic named Orley Ashenfelter has successfully used large volumes
of historical data on weather conditions during the wine grow-
ing season to accurately predict the eventual selling price of a
particular wine. Ashenfelter uses basic statistical regression, which
we shall explain soon, to arrive at a seemingly simplistic formula
such as: wine quality = 12.145 + 0.00117×winter rainfall+0.0614 ×
average temperature − 0.00386 × harvest rainfall. Quite surprisin-
gly, Ashenfelter’s predictions are remarkably accurate and have often
astonished the supposed ‘experts’ of the wine-tasting community.

Statistical Forecasting

To begin our exploration of the science of prediction, let us see what
is involved in analysing historical weather data to predict wine qual-
ity. Suppose you are Orley Ashenfeter and have got hold of temper-
ature and rainfall data from the past ten years for the wine region.
How would you go about creating a model, such as the equation just
described that purports to predict wine quality?
Suppose for the moment that Ashenfelter has, somehow, guessed

that average winter rainfall, average temperature during the growing
season, and average harvest rainfall are the right features that could
be predictors of the final wine quality for a region. He is looking for
an equation like the one described, i.e., wine quality = a + b × winter
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rainfall + c × average temperature + d × harvest rainfall, just that he
does not know what numbers to use as a, b, c, and d. Of course, once
he figures out the ‘best’ values for these numbers, he has his model
and can go aboutmakingpredictions using recentweather conditions.
Those familiar with statistics would recognize this as a regression prob-
lem, for which there are well-known formulae. However, for reasons
thatwill becomeclearer later on,we shall describe another, albeitmore
roundabout, route to arrive at the samemodel.
ImagineweareAshenfelter looking for the rightmodel ‘parameters’,

a, b, c, and d. To begin with, we just guess some values out of the blue;
any values, even all zeros, will do. (In this particular case it is true that
any initial guess will do, because the equation is ‘linear’, i.e., does not
involve powers of the parameters, such as a2. Inmore general cases, as
we shall see later, our initial guess itself cannot be too far off.)
Next,we remember thatwedohavea lotofhistorical data,withwine

quality as well as weather conditions formany past years and different
wine-growing regions.Allwedo is test our guessedmodel onpast data
and see what wine quality it predicts. Clearly, our first guess for a, b, c,
and dwill probably produce results that areway off, with the predicted
wine qualities differing greatly from the actual ones. But the nice thing
is that we can easilymeasure how far off we are. For each past year and
region, we measure the difference between the predicted wine quality
and the actual historical value; these are just two numbers, and we
subtract them from each other.∗ By adding up all these differences we
get an idea of how far off we are.
The next step is crucial, and will also form an important piece of

our understanding of prediction later on in this chapter: we make a
small change to each of the guessed parameters a, b, c, and d, say by
adding a fixed but tiny increment.We can also subtract this increment

∗ Since we don’t know which is larger, what is usually done is to blindly subtract the
numbers and take the square: e.g., (15 − 20)2 = (−5)2 = 25. This waywe don’t get fooled by
negative numbers.
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from each parameter; or add the increment to a and subtract it from
all the others. There are two choices to make, i.e., add or subtract the
increment, for each of the four parameters; this gives us 24 or 16 differ-
ent sets of parameters. For each of these 16 ‘nearby’ parameter choices
(they are all near the guess that we began with), we can recalculate
how far off the predicted wine qualities are from the actual ones. Most
likely, one of these choices will be better than our initial guess, i.e., will
predict values that are just slightly closer to the actual wine qualities.
Allwedonext is replaceour initial guess by this newchoice, and repeat
the entire procedure, and continue doing so.
At each step of the algorithm, we are, hopefully, getting closer and

closer to accurately predicting the actual historical wine qualities. At
somepointwe should reach a stagewhere noneof the 16neighbouring
parameter choices improve our model; at this point we stop. By this
time we will find that our model is predicting qualities pretty close
to historical facts, so we should feel comfortable using the model to
predict the future as well.
Most importantly, notonlydoes themodel helpuspredict the future

wine quality for the current year, the model also tells us how confi-

dent we should be about our prediction. Let us see how: even using
our ‘best’ model, our predictions on the historical samples will dif-
fer from the actual values of quality, in fact we would have calcu-
lated the sum of all these errors during our model-finding procedure
in any case. Dividing by the number of historical samples we used,
we get the average error per sample. This ‘residual error’ gives us an
estimate of how far off our future prediction might be. But there is
more; we can also figure out howmuch the model’s errors on histori-
cal data deviated from this residual error—once more we just average
the differences between the model errors and the residual error. This
‘error in the errors’ tells us whether our errors vary widely or not,
i.e., how good our error estimate is, which in turn gives us a precise
measure of how confident we should be in our prediction of future
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wine quality. Without going into more detail, such calculations allow
us tomake precise statements about the confidence of our prediction,
such as ‘there is a 95% chance that predicted wine quality lies between
the two values . . .’.
Similar prediction models work for other scenarios as well. Con-

sider the case of predicting flu outbreaks using search trends. Our
historical data would include the frequencies with which certain key-
words are searched by users, the locations from which these searches
are issued,∗ and of course the actual flu-incidence volumes as mea-
sured after the fact. Again, a regression model, very similar to the
one used for wine quality, would give us the multipliers to use with
different keywords in a simple formula to predict flu-volume for each
region.
Of course, as we havementioned already, there aremuch better and

faster ways of finding the best possible model, and also better ways of
estimating the error in our prediction. The reasoning behindwhy pre-
cise statementsof confidence arepossible is alsoquite straightforward;
however we won’t go into these topics here. The important aspect of
the algorithm just described is that itmakes guesses and then improves
them using historical data; when no further improvement is possible,
we are left with the ‘best’ model that can be found using the historical
data available.

Neural Networks

Of course, the question arises as to whether and how our brains also
formmodels such as the ones described in the previous section. Such
questions were very much a part of early discussions about artificial
intelligence, dating back to the 1940s, when McCulloch and Pitts sug-
gested that the neurons present in their billions in every brain could

∗ Google knows the internet address of the internet service-provider you are using,
which actually lets it figure out where you are in the world!
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be understood, in a logical sense, by certain abstract mathematical
models. Thereafter, if such abstract ‘neuronal elements’ could indeed
be showncapable of tasks normally associatedwithbrain-like capabil-
ities, such as recognition, recollection, or prediction, then perhaps we
would come closer to understanding how brains actually worked. The
field of ‘neural networks’ was thus born. While initially motivated by
the hope of producing rational models of brain-like behaviour, neural
networks have also been successfully used in many practical applica-
tions. Let us see what a neural network looks like, and how it might
possibly learn to predict wine quality by producing amodel similar to
Orley Ashenfelter’s.
Each real-life neuron is connected to many other neurons via its

unique structure, as depicted in Figure 3. The neuron receives input
signals from a large number, often thousands, of other neurons via its
dendrites. It also sends out its own signals via its axon, which in turn
connect to the dendrites of other neurons via synapses. Some synapses
are stronger than others, and so transmit or amplify signals better
than weaker synapses. Further, synapses change their strength over
time, and this is how the brain learns. Lastly, the output signal that a

dendrites

axon

synapses

synapses

FIGURE 3 Neuron: dendrites, axon, and synapses
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neuron transmits along its axon depends on the cumulative input it
receives from other neurons via its dendrites.
McCulloch and Pitts suggested that this behaviour of a neuron could

be modelled as a mathematical equation linking its output signal to
its inputs, with the strengths of its incoming synapses playing the
role of multiplication factors in this equation, in much the sameman-
ner as the number a, b, c, and d did in Orley Ashenfelter’s model of
wine quality. Thus, the output signal of a neuron could be viewed
as an equation that combines its input signals based on incoming
synapse strengths, in much the same manner as Ashenfelter’s equa-
tion combines different pieces of weather data. Of course, the nat-
ural question arises as to how such a neuron might learn ‘correct’
synapse strengths for a particular purpose, such as predicting wine
quality.
Well, wemight be able to adjust the synapse strengths in such a sim-

ple single-neuronmodel inmuch the samemanner aswedid earlier for
Ashenfelter’s model. We merely compare the wine quality predicted
by our current guess of synapse strengths with what we observe in
real life, and make small adjustments to each synapse strength so as
to reduce the error, i.e., the difference between our prediction and our
observation. We make such an adjustment each time we consider a
new year’s data; further, we cycle back to revisit all the data again
and again, continuing tomake adjustments until our predictions come
close enough to our actual observations.
It turns out that our simple single-neuron model can ‘learn’ to pre-

dictwine quality and comeupwith an equation, ormodel, inmuch the
samemanner as our earlier procedure did. The success of abstract neu-
ral elements in learning predictive models led to the development of
the field of neural networks. Neural networks could bemuchmore com-
plex than a single neuron, with complex structures involving larger
numbers of ‘neuronal elements’ connectedwith each other in a variety
of different ways.
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An important technique for efficiently readjusting synapse stren-
gths, called ‘back-propagation’, was first suggested by Werbos in
1974,98 and popularized over ten years later in 1986 byRumelhart, Hin-
ton, and Williams.99 Instead of trying out all possible adjustments to
the many synapse strengths involved in a neural-network model, the
back-propagation technique suggested a far simpler way, essentially
using simple high-school calculus to figure out the relative propor-
tion in which to adjust all the synapse strengths in one fell swoop.
To see why this was a major achievement, even if in hindsight fairly
obvious, imagine a neural network with m synapses; our simplistic
approach of trying out all possible ways to adjustm synapse strengths,
each upwards or downwards, would need to explore 2m combinations.
Using back-propagation instead, not only can we determine the best
combination immediately in one step, but also the relative proportion in
which each synapse is to be adjusted, which eventually results in the
network being able to learn the final model much faster.
Over the years the field of neural networks has grown substan-

tially. Today the ability of neural networks to learn predictive models
is unquestioned, and neural models are used in a variety of practi-
cal applications in diverse domains ranging from early detection of
fraudulent financial transactions to controlling complex machinery
in manufacturing plants or detecting dangerous substances in airport
security scanners.
However, in spite of their success in so many different arenas, it

remains an open question as to whether neural networks are at all
better than themanyothermathematical learning techniques available,
especially those carefully tailored to the problem at hand. Further,
the theoretical underpinnings of neural networks remain fairly weak,
leadingmany researchers toview thefield as a formof ‘black art’.At the
same time, the strongest advantage enjoyed byneural networks is their
ubiquity, i.e., providing a common approach to solving a vast variety
of prediction problems, in much the same manner as the seemingly
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uniformly structured brain does. We shall return to neural models
shortly. Before that however, let us see the role predictive models play
alongside the most apparent functions that large collections of real
neurons (i.e., our brains) perform amazingly well, in particular logical
reasoning and recalling memories.

Predictive Analytics

Let us return once more to the pong videos; how might we explain
the predictive pong player being able to predict the puck’s trajectory?
Let’s recall some of our earlier explorations in the arena of learning,
such as the basic naive Bayes classifier we discussed in Chapter 3. In
principle, such classifiers could, if trainedonmany,manypongvideos,
learn to recognize and distinguish between concepts such as ‘puck
moving left’, ‘puck moving right’, ‘puck moving 30◦ upwards-right’,
‘puck close to top wall’, ‘puck far away from wall’, and so on. More
complex variations of such classifiers can learn to recognize and track
the exact angle, speed, and direction ofmovement of the puck, at least
when it is moving straight rather than bouncing off a wall.
However, as you might well imagine, using learning techniques

such as these, even very rapidly, merely reproduces the behaviour of
the reactive pongplayer, who tracks the puckwith her eyes rather than
predicting where it is going to be a few seconds into the future. So,
can we do more using additional techniques to mimic the predictive
player?
Having learnedbasic concepts suchas ‘puckclose towall’, onemight

further imagine learning a vast number of ‘rules’, again by crunching
past data from many observations of past pong games. For example,
we might learn a rule such as ‘if the puck was moving upwards-right
at a 30◦ angle at time t − 1 and it hits the top wall at time t, then it
moves downwards-right at −30◦ at time t + 1’. Recall the reasoning
techniques we discussed in Chapter 4, such as rules and description
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logic. Reasoning tells us what facts ‘follow from’, or are entailed by,
what is alreadyknown. Thus,we could imagine aprocess of reasoning,
using rules such as those described earlier, to predict where the puck
might be a few seconds later.
Now imagine another system, one that exploits the physics of the

puck-world, i.e., one that knows that the puckwill continue tomove in
a straight line unless it hits awall, andhow itwill reboundwhen it does
hit a wall. Newton’s laws of motion, which we all learn in high school,
give us exactly such a set of equations.Using the shapeof the arena and
these lawsofmotion,we canwrite downequations that canpredict the
exact trajectory of the puck. In otherwords, we have an exactmodel for
this particular world, using which the future can be predicted. Clearly
such amodel is probably simpler to write down and follow than a vast
number of logical rules. What do our brains do? Classify and reason,
or learn models? Or a combination of all three?
Models need not always be exact of course.OrleyAshenfelter learned

a model from past data, rather than a classifier or rules. This model
was in the form of a linear equation between wine quality and weather
parameters.∗ Prediction, at least in this case, involves learning a model
that can produce values, such as the puck location or wine quality.
Suchmodels differ somewhat fromclassifiers that recognize concepts,
or rules that express relationships between concepts.
In a certain sense,models based on equationsmight also be thought

of as more precise rules—ones that allow exact calculations. Could
precise models of the world in general, such as Newton’s laws of
motion, be learned from past data, instead of being ‘discovered’ while
sitting under a tree and having an apple fall on one’s head? Sur-
prisingly, two Cornell University researchers, Michael Schmidt and
Hod Lipson were able to get a computer to learn Newton’s laws

∗ Linear merely means that the weather parameters are not multiplied with, or squared
with, each other; i.e., there is no rainfall2 etc. in the equation.
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of motion for a pendulum, merely from data regarding its move-
ments.100 Moreover, and most importantly, they did not tell the com-
puter anything aboutwhat ‘kind’ of equation these lawswould require,
e.g., ‘linear’ or otherwise. This is an example of a far more powerful
statistical learning technique than Ashenfelter’s use of linear regres-
sion. Schmidt and Lipson’s approach used not only experimental data,
but also some general principles about what ‘kinds’ of equations were
‘elegant’ and simple; their approach thus was a mix of learning and
reasoning.
There are other, practical situations where a combination of a clas-

sifier, rules, and reasoning can also predict. Imagine a bank on the
lookout for fraudulent credit-card transactions. Over time, a clas-
sifier may learn to recognize different patterns of behaviour. Fur-
ther learning may reveal rules that point to certain combinations of
patterns being more likely to indicate fraudulent behaviour in the
future.
It is important to recognize that different techniques and combi-

nations thereof can be used for prediction, including all of the tools
we have come across so far—classifiers, rules, reasoning, and models.
Here ‘model’ is used in the strict sense that it predicts the future value
of a desired quantity, or evenmany values. Further, as we have already
seen, such models themselves can be learned from data, as can con-
cepts or rules.
The term predictive analytics has become popular in the business

world to broadly describe computing systems that use any of these
techniques. In practice, predictive analytics models usually combine
classifiers, rules, and the statistical models just described. Further, not
all applications of so-called predictive analytics systems need to be
‘predictive’, in the strict sense. For example, in the case of bank fraud
we can also use the same set of techniques for detecting, i.e., recogniz-
ing, a fraud in progress, which is somewhat different from predicting
one in the future.
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However, neither of these mechanisms are close to being a rational
model of how human brains actually make predictions. The average
person, even a small child, begins playing pong in a predictive man-
ner within minutes of learning what pong is all about. They cer-
tainly don’t need to observe hundreds of prior pong games such as
the learning-plus-reasoning proposition demands. Nor do they need
to have gone through high-school physics. (Conversely, they don’t

learn Newton’s laws just by observing the world, unlike Schmidt
and Lipson’s computer; and do need to learn these explicitly in high
school!)
Something else is needed to build a good prediction system, one that

that is closer to what is going on in the brain.

* * *
In his best-selling bookOutliers,101 Malcolm Gladwell quotes the neu-
rologist Daniel Levitin: ‘ten thousand hours of practice is required
to achieve the level of mastery associated with being a world-class
expert—in anything’. He goes on to describe example after example of
successful people, from composers to basketball players to ice skaters
and pianists. In each case their mastery of their field, which makes
them ‘outliers’, can be explained by the extra opportunities for prac-
tice that they each happened to find and take advantage of. Randive
and Maney also quote this ‘ten-thousand-hour rule’ in The Two-Second

Advantage,94 to explain the seemingly extraordinary predictive powers
of the ice-hockey playerWayne Gretsky, who somehow always seems
to know where the puck is going to be, just a few seconds before any-
body else. Gretksy is a really good predictive player of real ice hockey,
just as our earlier predictive pong player was much better than the
reactive one.
What is going on in those ten thousand hours of practice that

makes someone an expert? Perhaps the brain too is building a pre-
dictive model of some kind using all the data it collects during these
many,many hours of practice, similar toOrleyAshenfelter’s statistical
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model using many years of weather data, or the Google flu-trends’
statistical model using volumes of past search queries correlated with
actual flu outbreaks. Further, more experience means more data, and
therefore a better predictive model:

Such deliberate practice is how a lot of talented people become so accom-
plished . . . all that practice generates mountains of data that these people’s
brains are able to chunk into an efficient mental model. So the tennis pro
winds up being able to anticipate her opponents’s shots in uncanny ways.
The musician can hear notes before they are played. The CEO can foresee
the outcome of a decision with amazing accuracy,94

submit Randive and Maney, while discussing the ten-thousand-hour
rule.
We came across another, much more commonly possessed pre-

dictive model way back in Chapter 3, ‘Listen’. Recall Shannon’s wife
being able to guess the next letter in some text chosen at random: she
could accurately predict the next letter in ‘the lamp was on the d . . .’.
Why? Because her experience of using language, like most adults, far
exceeded ten thousand hours. As a result, she had probably formed
a strong statistical model of how letters appeared in words, and how
words appear in sentences. Even more importantly, she would have
learned classifiers that could identify objects such as lamps and desks,
as well as rules that would state that lamps are most likely found on
desks, rather than, say, doors (even though both begin with a ‘d’).
Our predictive models are not perfect, though—even those learned

over thousands of hours of ‘practice’. As explained in the recent popu-
lar bookbyDaniel Kahneman,Thinking, Fast and Slow102 our immediate
reactions, presumably based on learned models, which he refers to as
our ‘System 1’, can often be very very wrong. One of the many exam-
ples he uses to illustrate the fallibility of System 1 is a simple puzzle: ‘A
bat and ball cost $1.10. The bat costs a dollar more than the ball. How
much does the ball cost?’
Many people’s instinctive answer is ‘10 cents’. But amoment’s reflec-

tion later, one sees one’s error. The correct answer is 5 cents (so that
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the bat costs $1.05, both together adding up to $1.10). In this moment
of reflection we rely on slightly deeper abilities, involving some
simple logical reasoning.Kahnemanattributes such reasoningabilities
to our ‘System 2’.
Over time, andwith extensive practice, our continued use of System

2 lets us develop System 1 abilities that work faster, and, most often,
give the right answer. The speed of System 1 makes it closer to a
predictive model that uses a small, compact representation, such as
the simple formula that Ashenfelter derived for wine quality. System
2, on the other hand, involves more complex analysis, using logic
and rules, such as might be used by wine ‘experts’ and agricultur-
ists reasoning from first principles to predict how good a wine is
likely to be.

* * *
Now let’s see if the web displays similar predictive powers. Type ‘the
lamp is——’ in the Google search box and it instantly provides a few
alternatives to complete your query: ‘lamp is lit’, the ‘lamp is a lie’,∗ etc.
Try this again with ‘the lamp was——’, and the possible completions
now include ‘the lamp was a lie’, ‘the flame was lit’, and ‘the lamp was
invented’. At first glance at least, these look like the statistically most
probable completions. But let us look closer.
Let’s take another example, and see what comes first to our own

minds: ‘one small step’—what does this evoke? Most of us famil-
iar with history might instantly recall Neil Armstrong’s words as
he took the first steps on the moon: ‘One small step for a man,
one giant leap for mankind’. So does Google’s query completion;
just try it. However, statistically speaking, this sentence is probably
far rarer than the vast number of times the words ‘one small step’
occur in various texts having nothing to do with Neil Armstrong.
As a final example, consider the phrase ‘yes we—’. Until 2008, this

∗ Referring to a much-discussed, and rather risqué, optical illusion.
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sequence of words probably had no special meaning to most of us.
After the US presidential campaign of 2008, though,most of usmight
instantly complete this phrase as ‘yes we can’, echoing Obama’s oft-
quoted refrain. Google too now recalls this phrase instantly, which
it might not have done prior to 2008. Of course I did not verify this
back then—after all, how could I have known that this phrase would
become so well known?
Somethingmore than a statistical model is at work here. In the case

of our own prediction, we instantly recall Armstrong’s famous quote
from memory. Google’s query completion instantly looks up its vast
search index and not only finds those documents that contain this
phrase, but also chooses the most important of these (via its famed
PageRank algorithm) to form the most likely completions. It thus
appears reasonable to conclude that memory also plays an important
role in prediction. Additionally, going back to Kahneman’s two sys-
tems, apart from reasoning his System 2 also relies on recalling facts
frommemory.
Just what kind of memory though? And how do memories, pre-

dictive models, and reasoning work together? Further, the web cer-
tainly has a vast ‘memory’; after all, it appears to store every bit of
recorded human knowledge today. So how does this web memory
compare with human memory, especially when it comes to making
predictions? It looks like we are back where we started, with ‘Looking’
in Chapter 1.

Sparse Memories

Recall our excursion into the world of ‘classifiers’ in Chapter 3, ‘Learn’.
We considered how a computer might learn to distinguish a dog from
a cat based on features, such as ‘it barks’ and ‘is large’, versus ‘itmeows’
and ‘is small’. Our naive Bayes classifier there accumulated statistics
regarding the features of all the animals it observed into a small set of
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probabilities. These ‘likelihoods’ together with Bayes’ Rule allowed it
to successfully decide whether the next animal it saw was a dog or a
cat, or for that matter, some other animal amongst the many it may
have observed. At that point we emphasized that our classifier did not
need to store the details of every animal it ever saw. The small set of
likelihoods were enough for it to disambiguate the future animals it
encountered.
However, if one thinks about it, we experience more than mere

recognition when seeing a dog. If it happens to be a large and fierce
one, we may, at times, instantly recall similar encounters we might
have had with other equally formidable creatures. Most importantly,
we easily and instantly recall images of these earlier seen dogs. At
the same time, our recollections are most likely faint, or hazy, and
certainly not as clear and detailed as the fresh image of the dog in
front of us.
Way back in 1988, Pentti Kanerva, then a scientist at theNASAAmes

research centre in Mountain View, California, proposed an intrigu-
ing mathematical model of how a system resembling human memory
might work. Kanerva’s model was called ‘Sparse Distributed Mem-
ory’, or SDM16 for short. There has been renewed interest in SDM and
related models derived from it in recent years. In particular, a num-
ber of different approaches to modelling the human brain appear to
be closely related both to each other and to SDM. Further, the math-
ematics behind these models also turns out to be that of Bayesian
networks, closely related to our naive Bayes classifier, as well as to
the Bayesian ‘blackboard’ reasoning architecture we saw in Chap-
ter 4. Thus, memories and predictive models appear to be intimately
related, both mathematically and with regard to their actual instan-
tiation in the human brain. Finally, techniques based on these brain-
like memory-prediction models are just beginning to get applied in a
variety of applications, and eventually maybe even the web. Let us see
how, beginning with Kanerva’s SDM.
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Each of us view many hundreds of millions of images each year as
part of our normal waking existence. For instance, within 12 waking
hours we might see and process over a million images (assuming our
retina captures 25 images per second,which is the rate atwhich a high-
quality filmneeds to beplayed). If ourmemoryworked likeGoogle,we
would store each of these images as a separate document, or at least as
a video sequence, so that any picture could be retrieved whenever we
need it.
Clearly ourmemories do not store every single image in full fidelity;

rather, we may be hard pressed to remember the clothes worn by a
colleague who just walked out the door. Kanerva’s SDM also does
not explicitly store all the images it experiences. Yet, when presented
with a fresh image, the SDM reconstructs a closely related image that
somehow ‘represents’ the sumtotal of similar images itmayhave expe-
rienced in the past. Thus, presented with a large, fierce dog, the SDM
produces a similar dog-like image constructed from its past memory,
but which may not be exactly the same as any image it actually expe-
rienced. In a sense, our ownmemory behaves in a similar manner; the
images we recall are rarely exact replicas of our actual experience.
Imagine our animal-viewing computer once more, but this time

instead of a few summarizing features such as size or shape, our
computer is presented with a complete image of the animal in all its
detail. However, for simplicity, in our discussion we assume it is a true
‘black-and-white’ image, not even greyscale. In other words, however
dense in pixels the imagemay be, each pixel in the image is either black
or white. Suppose each image is a 100 × 100 grid of such pixels; then
each image is defined by a bit-pattern comprised of 10,000 bits, with a
one indicating a black pixel and a zero awhite one. (Note that to incor-
porate colour, wemerely needmore bits per pixel, instead of just one.)
Kanerva’s SDM relies on some interesting and counter-intuitive

properties of very large bit-patterns, also called ‘high-dimensional
spaces’, such as the 10,000-bit patterns representing each moderately
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sharp 100 × 100 image. First of all, there are an awful lot of possible
such patterns: just as there are four two-bit patterns (00, 01, 10, and
11), eight three-bit patterns, and so on, so there are 210000 possible
10,000-bit patterns. This is more than the number of electrons in the
universe, more than the number of seconds since the beginning of the
universe, and certainly far more than the number of images we might
ever need to process.
Next, and perhaps quite obviously, any two randomly chosen patterns

differ, on the average, in about 5,000 places. Just as obvious might be
the fact that half of all possible patterns, i.e., half the entire ‘space’, is
further than 5,000 bits from a chosen pattern, or ‘point’ in this space,
with the remaining half being closer than 5,000 bits to this point.
Now come the most unexpected set of facts about high-dimen-

sional spaces: how many patterns are within, say, 4,700 of a chosen
pattern? Surprisingly, only 10−10, or less than a one ten-billionth of
the total space is 300 bits closer than the average (i.e., 5,000) to any
point. In other words, by merely requiring 300 more bits of agree-
ment with our chosen pattern (as compared to the average distance
of 5,000), we eliminate all but one ten-billionth of possible patterns. If
we increase our tolerance to say 4,800, we get many more points, but
still less than one ten-thousandth of the space is within 4,800 of our
initial point.
What do these observations mean from the perspective of stor-

ing and retrieving 10,000-bit patterns? The properties of high-
dimensional spaces mean that once we have observed an image, we
can be sure that any subsequent image of the same animal that is even
slightly close to resembling the original, even differing in as many as
47% of the bits, will still be far closer to the original one as compared
to any other unrelated image.
In a sense, this behaviour resembles our own human ability to rec-

ognize and recall from the faintest of clues. For example, imagine a
(pure) black-and-white picture of your dog; if we randomly change all
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the bits, i.e., the chance that a bit remains the same is only 50%, the
image becomes unrecognizable. However if fewer, but still a reason-
able fraction, of the bits are scrambled, say as many as a third, then a
very faint outline of our dog becomes recognizable even in the highly
distorted image. Notice however, the maths doesn’t quite add up: we
should be able to flip 47% of the bits and still recognize our dog, since
almost no other image is even within the generous tolerance of 4,700
bits in the space 10,000 bits. In reality we cannot tolerate so much
noise. Why?
The trouble is that we need to compare our new imagewith the past

set of images we have seen and stored, somehow. The space of 10,000-
bit patterns is, as we have seen, huge indeed. But so is the collection
of images we may possibly observe. Searching such a vast collection
of images using a conventional index, such as the one that Google
keeps for documents, is close to impossible. Kanerva showed how
such extremely large collections of high-dimensional bit-patterns can
be stored and retrieved efficiently. His procedure further exploits the
properties ofhigh-dimensional spaces; however, in theprocesswefind
thatmultiple images ‘experienced’ by his ‘memory’ systemget blurred,
much as doour ownmemories. So the actual amount of noise that can
be tolerated is lower than the 47% suggested by the pure mathematics
of high dimensions.
Kanerva’s scheme uses only a fraction of the possible high-

dimensional space, say ‘only’ 10 million randomly chosen points,
called ‘hard locations’; it is therefore called a sparse memory. Instead
of storing all the bit-patterns it observes explicitly, each pattern is
mapped to a small number of these hard locations, so the memory
of any pattern is distributed across all these locations. Hence the name
‘Sparse Distributed Memory’.
This is how SDM works. Whenever it sees a new pattern, the SDM

finds all hard locations within, say, 4,800 bits of the input pattern.
Since at most a ten-thousandth of the space is within this distance,
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it will contain a few hundred hard locations, on average. Each hard
location keeps count of the number of times it sees a pattern that
matches, or fails to match, each of its 10,000 bits. In other words,
10,000numbers are kept alongside eachhard location. Thesenumbers
serve as ‘counters’ that are either incremented or decremented based
on whether the new pattern matches or does not match in the respec-
tive bit location. Note that an input pattern only affects a few hundred
hard locations out of the total of 10million, so the computational cost
of storing a pattern remains tractable. Now, when we want to retrieve
a pattern corresponding to a new input, all bit-counters in the hard
locations to which this patternmaps are summed up, resulting in a set
of 10,000 numbers. The output pattern is obtained by placing a one in
any location where the sum exceeds a fixed threshold.
So, images are not explicitly stored in the SDM. Instead they are

‘remembered’ via a distributed representation across the few hard
locations to which each maps. The large number of hard locations,
togetherwith the special properties of high-dimensional spaces, result
in the SDM being able to recall complete images even when presented
with highly distorted or partial inputs, in much the same manner as
humans do.
So far we have described using an SDM as a memory. In fact it is an

example of an ‘auto-associative’ memory, where a pattern is retrieved
using an approximate version of itself as input. Anotherway to use the
SDM is in a ‘hetero-associative’ manner, to store a sequence of patterns,
such as a sequence of images. In such a case, each pattern is used to
store the next pattern in the sequence: when incrementing the coun-
ters at hard locations, the next pattern in a sequence is used rather
than the one used to choose the hard locations themselves. In this
avatar, the SDM becomes a sequence memory, which can remember
complex sequences of patterns, and also predict the next few patterns
in a sequence. For example, Rao and Fuentes103 have used an SDM to
train a robot using a sequence of images of what it ‘sees’ and ‘does’
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on its mission. On subsequent missions the robot is able, via its SDM,
to not only remember what it had seen before but predict the image it
expected to see aswell as its next actions, and all this using real camera
images with errors due to noise, orientation, lighting, etc.
Returning now to the web. Another interesting application of SDM

has been in the arena of ‘web analytics’. Every time a user visits a
website, he leaves a trail of information that traces his behaviour on
the site: each button clicked, each page navigated to, how much time
spent on each page, etc. All these activities of a user surfing the site are
logged, along with the internet address fromwhere the user connects,
or any cookies∗ that could serve to identify the same user reappear-
ing again in later web-surfing sessions. Researchers from China and
Sweden recently104 used a technique called random indexing, which
is based on Kanerva’s SDM, to remember, understand, and ultimately
predict the behaviour of web users.
Sparse Distributed Memories can be used to remember and pre-

dict behaviour in a variety of situations, and are capable of exhibit-
ing behaviour that resembles human ‘remembering’, which is both
approximate as well as represents cumulative experience. In this sense
we can view SDM as a rational model for some aspects of human
memory. But what about the way SDM is constructed? Does this have
anything todowithhowbrains consistingof billionsofneuronswork?
As it turns out, the SDM architecture itself is also closely related to
the neural networkmodels we have seen earlier that attempt tomimic
brain structure.
Suppose an SDM has N hard-locations (we used 10 million in our

earlier example), with which incoming bit-patterns are compared.
Think of each hard location as a neuron connected to all the bits of
the input. Each such neuron compares its input to its particular bit-
pattern, and becomes ‘active’ if the input pattern is close enough to

∗ A ‘cookie’ is a secret number that a website asks a user’s browser to remember, so that
the site can track the same user across his multiple visits.
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its own. Further, the outputs of all the hard-location neurons are also
connected to an ‘output-layer’ of n neurons (where n is the size of the
bit-patterns that the SDM stores; in our example it was 10,000), with
their synapse strengths being the ‘counters’ of the SDM. When a bit-
pattern is ‘observed’, the active neurons adjust their output synapse
strengths. Those corresponding to matching locations are adjusted
upwards, and non-matching ones downwards. This constitutes the
learning process. During prediction, on the other hand, an output-
layer neuron ‘fires’ only if the cumulative input it experiences, which is
nothing but the sumof all the synapse strengths of hard-location neu-
rons active for that input, is large enough. The bit-pattern retrieved by
this neuronal versionof SDMis aone in thosepositions corresponding
to ‘firing’ output locations and a zero otherwise.
So, not only does the SDM model of memory mimic some aspects

of humanmemory, but it can also be represented as a neural network
that ‘learns’ to remember. It thus appears that neural networks can also
remember, recall, and abstract from a vast number of experiences, in
addition to learning predictive models, as we described earlier.

* * *
If you think about what SDM is doing, it is mapping a high-
dimensional object onto a relatively smaller number of hard locations.
This is in some ways similar to locality sensitive hashing (LSH), which
we have seen earlier in both Chapter 1, ‘Look’ and Chapter 3, ‘Learn’.
Just as SDM uses a number of hard locations, LSH, if you recall, com-
putes a small number of hash values for each object. Such a hash func-
tion could be the contents of a randompagewhen one is trying to find
duplicate books, or a ‘min-hash’ value, as described inChapter 3, when
onewants to club similar books, or,more generally, any similar objects
together. All we ask is that it be highly likely (but not certain) that two
similar objects, be they books, or even 10,000-bit patterns, have the
same hash value.
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FIGURE 4 Minutiae
(fingerprint)

To understand the relationship bet-
ween these two techniques, LSH and
SDM, let us see how theymight be used
with some 10,000-bit patterns arising
in an important security application—
fingerprint matching. Figure 4 shows
a human fingerprint. Fingerprints are
characterized by particular features
such as ridge endings, bifurcations,
and short ridges, which are also high-
lighted in the figure. Two fingerprints match if their minutiae match,
i.e., both have the same kind of minutiae points at the same position.
Suppose we lay a 100 × 100 grid on a fingerprint image. These 10,000
grid cells can be converted into a 10,000-bit pattern that has a one if
a grid cell contains a minutiae point, and a zero otherwise. Let us see
how we might group a large number of such 10,000-bit patterns into
clusters containing similar fingerprints using LSH. (For simplicity, we
do not worry about which kind of minutiae is where; in other words,
we assume only one type of minutiae.)
Suppose the chance of any random grid position having a minutiae

is 0.2, i.e., 20%. However, if we have two prints from the same person,
and one of themhas aminutiae-point at a particular position, then the
chance that the other print also has aminutiae at that position ismuch
higher, say 0.9.
Now let us choose three grid cells at random; each fingerprint is

hashed a value of 1 if all three of these positions have minutiae, and
to 0 otherwise. The chance that two prints from different persons get
a hash value of 1 is 0.23 × 0.23, because the chance of a random posi-
tion having minutiae is 0.2, and we want six unrelated cells to all have
minutiae. This works out to 0.000064, a rather small chance indeed.
But if the two prints are from the same person, then the chance of the
first print getting a hash value of 1 is still 0.23, but the second print now
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has a0.93 chanceof havingminutiae in all three positions. So for prints
that are supposed to ‘match’, the chance of them both getting a hash
value of 1 is 0.23 × 0.93, which works out to 0.006, slightly larger than
before.
Still, the prospect of clustering fingerprints using these two hash

values does not inspire confidence, if the chance of matching prints
getting a hash value of 1 is a mere 0.6%. In other words, there is a
1 − 0.006 or 99.4% chance that they do not get hashed to a 1.
But there is still hope. After all, there are many ways to choose

three random grid cells to define our hashing strategy; in fact
there are 161,700 ways. (For the mathematically minded, there
are 100C3 = 161, 700 ways to choose three things out of a hundred.)
Supposewe use just a thousand of them, i.e., a thousand different hash
functions, each defined using a different triplet of grid positions. Now,
the chance that two prints from the same person do not match in all
thousand hash values is 0.9941000; conversely, the chance that at least
one of the thousand hash values match is 1 − 0.9941000, which works
out to 0.997, or 99.7%. On the other hand, if the two prints came from
differentpersons, then the chance that theydonothash to the samevalue
for one particular hash-function is 1 − 0.000064, or 0.999936. So the
chance that these two prints getmatched in one of the thousand hash-
values is 1 − 0.9999361000, which works out to 0.062, or a mere 6%.
Now our calculations do indeed inspire confidence: prints are put

in the same cluster if they match in at least one of the thousand hash
values. The chance that two prints from the same person end up in the
same cluster is 97%,whereas prints from two different personswill get
into the same group only 6% of the time.
It is important to note that the LSH technique never explicitly com-

pares pairs of fingerprints. It only requires computing a thousandhash
values per print independently of others. Thereafter similar prints
end up being grouped together, albeit implicitly by their hash values.
Another way to think about this process is that it is similar to building
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an inverted index as we did for documents in Chapter 1. Instead of
millions of words we have a thousand triplets of grid cells. A print is
said to contain one such ‘word’ if it happens to have minutiae at all
three positions, i.e., has a hash value of 1 according to this procedure.
Once we have such an index, checking for matching prints is easy.
Given a fresh print, we note those hash functions for which this print
gets a hash-value of 1, and merely collect other prints from the index
that also hash to a 1 for any of the same hash functions.
Last but not least, the LSH procedure is related to SDM in the sense

that they both compute sparse representations of high-dimensional
objects such as fingerprints or documents. In the case of SDM, a rel-
atively small number of hard locations are used, whereas in LSH we
use a small number of hash functions to index objects. Of course, a
major difference between the two approaches is that LSH explicitly
stores every object, merely indexing it with hash-values. In contrast,
SDMstores ‘impressions’ about eachobject that it ‘sees’ in the counters
associated to everyhard location.As a result,whereas LSHcan retrieve
each object that it has previously stored, SDM can only reconstruct
objects based on past experience, somewhat similar to how human
brains presumably recallmemories.We return now to techniques that
attempt tomimic thebrain,which, aswe shall see, alsohappen to share
the property of using sparse representations.

Sequence Memory

There has been a resurgence of interest in neuralmodels of the brain in
recent years, along with their utility as computational memories and
prediction engines. This is due also in part to recent progress in more
faithfully modelling the neocortex of the human brain. Additionally,
such neocortical models have, most surprisingly, been shown to be
closely related to another emerging set of techniques called deep belief

networks based on good old Bayesian mathematics. Last but not least,

215



THE INTELLIGENT WEB

some properties of the brain’s internal wiring appear to have a similar
structure to how the web itself is wired. Thus, many threads are com-
ing together, many of which are beginning to be referred to as ‘Deep
Machine Learning’ techniques;105 and all of these have something to
do with predicting the future.
One of the unlikely pioneers in furthering and reviving the cause of

research on neural computational models is Jeff Hawkins. Unlikely,
because Hawkins is probably better known as an entrepreneur and
pioneer in the realm of hand-held computing: he is the inventor of
the Palm Pilot and Handspring Treo, and was the founder of both
these companies in the 1990s. In 2002Hawkins founded the Redwood
Centre forNeuroscience at theUniversity ofCalifornia, Berkeley.Ashe
lucidly explains in his 2004 book106 On Intelligence, Hawkins believes
that the brain is essentially a ‘memory-prediction’ engine. Hawkins’s
neuralmodel, called ‘hierarchical temporalmemory’ (HTM) combines
both aspects of neural networks that we have seen earlier, i.e.,
prediction and memory. Further, HTM also postulates and justifies a
large-scale structure for neural networks thatmimics properties of the
real humanbrain as recently establishedbyneuroscience studies.Most
recently, in 2005 Hawkins founded Numenta, a start-up dedicated to
building predictive computational technology based onmodels of the
human neocortex and theHTM-basedmemory-prediction algorithm.
Neuroscience researchers have studied the physical anatomy of the

brain for years. Using a variety of imaging technologies they have been
able to pinpoint regions of the brain associated with vision, speech,
hearing, movement control, short-term and long-term memories,
etc. One important fact that emerges from such studies is that all
high-level, or ‘intelligent’, tasks such as seeing, listening, language,
and planning appear to be performed by the neocortex, a thin outer
layer of brain tissue that is unique to mammalian brains. Further,
and not surprisingly, humans have the largest neocortex amongst all
mammals. Given the diverse nature of functions performed by the
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brain, and especially the neocortex, one might expect that the brain
itself, including the neocortex, would be comprised of a number of
sub-organs with vastly different structures, much as the stomach
differs from the liver, or the lungs from the heart. However, this is
not the case, as discovered and documented by the neuroscientist
Vernon Mountcastle in 1978. In his paper107 co-authored with Gerald
M. Edelman, Mountcastle pointed out that the neocortex is
remarkably uniform in appearance and structure. He goes on
to propose that because all parts of the neocortex look the
same, perhaps they are also operating a common procedure that
nevertheless miraculously accomplishes all these diverse high-level
functions.
In fact, clinical studies corroborate Mountcastle’s supposition. It

turns out that in totally blind people, regions of the brain normally
active during visual tasks are instead activated by auditory input. It
is known that blind people develop an enhanced sense of hearing;
perhaps it is because larger parts of the neocortex, including unused
portions normally dedicated to vision, are instead used to process
sound. But how can that be? How can such seemingly different tasks
be performed by the same kind of structure? We have seen the ability
of neural networks to learnmodels. The fact is that the basic structure
of neural networks is the same; they just end up performing different
memory-prediction tasks depending on which input patterns are pre-
sented to them. Hawkins’s hierarchical temporal memory, or HTM,
proposes how such neural networks are wired together in a manner
resembling thebrain, so as tonotonlyperformsimpleprediction tasks
but also possibly produce higher-level ‘thought’. As of today how-
ever, no evidence of ‘higher-level thought’ has emerged from anyHTM
implementation.Nevertheless, theHTMmodel is an interestingpoten-
tial rational model to understand how high-level pattern recognition
arises in brains.

* * *
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While the details of HTM are fairly involved, the core HTM algorithm
combines aspects of SDM in both space and time so as to learn to rec-
ognize not only complex patterns, but simultaneously also sequences of
patterns.
An HTM is comprised of a hierarchy of regions, each consisting of

a large number of neurons, or cells. We can view each cell as being
connected to a set of inputs that receive bits from sensory organs or
from other regions in the HTM hierarchy. For comparison with our
SDM example, a region might have 10,000 inputs, representing, for
example, a small 100 × 100 pixel region of the visual field. Each cell
in such a region is connected by synapses to a few hundred inputs
from amongst the 10,000 possible ones, seemingly at random. When
the region observes an input pattern (i.e., an image) each cell sums up
its random sample of the pattern’s bits to decide whether it is ready
to ‘fire’. If the sum of its inputs crosses a threshold, a cell becomes
ready to fire, else it remains off. For some input patterns only a small
number of cells might be ready to fire. In other cases almost all the
cells may be ‘excited’. However, the HTM also ensures that in either
case, only a small number of cells fire. It does this through a process
of inhibition, whereby cells that are ready to fire inhibit those in their
vicinity, so that only the strongest few of the excited cells actually fire.
As a result, theHTMconverts its inputs into a sparse representation,

where only a few cells fire, in much the same manner as the SDM
mapped each input to a sparse set of hard locations. For example, each
10,000-bit input pattern may result in only 100 cells firing. However,
because of the properties of long bit-sequences, two patterns that are
close to each other will usually result in a strong overlap in the cells
that they trigger, so often over 75 of these 100 will match. At the same
time, if two patterns are not close, usually fewer than 25 cells would be
triggered by both patterns. However the sparse representation is still
able to discriminate between patterns, because of the peculiar proper-
ties of high-dimensional spaces, as we saw in SDM.
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Before delving into how HTM deals with sequences, let us first see
how sparse representationswork in a hierarchy of regions. Imagine an
image of a room with many objects. The lowest-level regions in the
HTM hierarchy will form sparse representations of low-level features
such as edges and planes as seen in the small portion of the visual
input handled by the region’s cells. These sparse representations are
passed on as inputs to higher-level regions, which also receive inputs
from other similar low-level regions responsible for the rest of the
visual field of view. A higher-level region also uses the same HTM
algorithm. However, since its inputs are each sparse and come from
many different parts of the visual field, the sparse representation it in
turn creates will represent higher-level objects, such as eyes and hair.
Even higher-level regions might be able to represent a human face, so
as to eventually even recognize particular faces.

* * *
Now let us turn to sequences. It may seem that sequences of patterns
are important only in temporal input streams, such as the sounds
we hear. However, as it turns out, sequences are ubiquitous. If one
observes oneself a bit, one will realize that even while looking at an
image, such as a human face, one’s eyes are always moving; these
movements are called saccades. Thus, the visual inputs arriving at the
neocortex are also sequences, rather than a constant image, even
whilst we might be looking fixedly at a single scene.
The way the HTM algorithm learns sequences is its real strength.

While earlier we considered a region as comprising a number of cells,
now extend this picture to onewhere instead of a cell we have a column
of cells, say four. Such a columnar structure is actually observed by
neuroscientific studies of real brains, where the number of neurons in
a column number varies between five and 15 depending on the region
of the cortex one looks at.
Now suppose that the sparse representation learned by this region

always involves around a hundred active cells directly triggered by
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inputs, each of which is now actually a column of four cells; so we
should really be talking about active columns, not cells. Byusingdiffer-
ent combinations of columnar cells the region manages to remember
sequences of patterns in addition to the patterns themselves. For any
particular combination of a hundred columns, there are 4100 possi-
ble combinations involving exactly these hundred columns with one
cell per column being active. In the HTM algorithm, these possible
combinations are used to represent sequences of patterns in which the
particular hundred-columnsparsepatternhappens tooccur. Thus, the
region is able to keep track of as many as 4100 different sequences in
which our hundred-column spares pattern might occur, which is a
very large number in indeed.
In actual brains it is found that only 10% of the connections within

a region are to other regions, either below or above it in the hierarchy.
The rest are lateral, inter-region connections, which Hawkins specu-
lates are responsible for learning sequences of patterns. For example,
one of the four ‘predictive’ cells in a column might have connections
to a random set of, say, a thousand columns in the same region.When
some of these columns fire in sequence, one after another, such lateral
connections are strengthened. Subsequently, if even a small number,
as small as say five, of the strongly linked lateral columns are found to
be active, the predictive cell becomes ‘ready’ and ‘expects’ that it will
becomeactive soon. If this prophecy is fulfilled, the lateral synapses are
further strengthened, else they are weakened. In effect the predictive
cells behave like a sparse memory in ‘time’ rather than space, and end
up learning sequences.
So the combination of ready cells and those that actually become

active constitute the output of an HTM region. Not only is this input
a sparse representation in space, it is also a sparse representation
in time. The columns include predictive cells that are ‘ready’ to fire,
expecting inputs based on past sequences. Further, when sequences
repeat, the combined set of both ready and active cells stays ‘on’ for
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longer than only the active cells in the actual input image. It is in
this sense that wemight imagine that our thoughts andmemories are
comprised, not of static patterns, but of patterns of neuronal firing
sequences over time.
Finally, and very importantly, an important feature of both theHTM

structure and that of real brains is that the flow of activation from
region to region is not only ‘up’ the hierarchy from lower- to higher-
level regions, but also down the hierarchy from higher-level regions to
lower ones. Butwhat could higher-level regions offer lower ones, since
they are not connected to any inputs? The answer is predictions. Higher-
level regions formaggregated and therefore possiblymore abstract rep-
resentations in both space and time. Thus a higher-level region could
recognize a sequence of musical notes and predict the next one; or
could watch a movie and predict that a person walking towards a
banana skin might soon fall down.
When predictions flow down the hierarchy and are reconfirmed by

actual experience they reinforce learning. Such reinforcement might
even be viewed asmimicking the ‘feeling of satisfaction’ that we some-
times experience when finally recognizing what we see. On the other
hand, when predictions are refuted by experience, such as when hear-
ing a new melody, or staring at a piece of very abstract modern art,
they stimulate higher levels of the hierarchy to cause new high-level
abstractions to be formed and re-formed, until some level of ‘satis-
faction’ with current experience is achieved. Thus, if one stares at
the abstract picture in Figure 5, one might at first be confused as to
whether there is any recognizable object in it. But after awhile aman’s
facemight appear. If theHTMmodel is correct,whathas just happened
is that the predictions made in lower-level regions could not be con-
firmed, and so higher-level ones get involved. However, higher levels
are also slower, because of the aggregation in time that takes place
between regions, in addition to spatial aggregation. So it takes longer
to ‘see’ the face in this abstract image.
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FIGURE 5 Face painting

According to Hawkins, con-
firmation of predictions, be they at
lower levels or higher ones, is the
essence of understanding; and the
process of continuously learning,
remembering, and making pre-
dictions is the essence of thought.
Whether or not this is the case
remains, as of today at least, in the
realm of speculation. Nevertheless
the HTM model certainly sheds
much-needed fresh light on what
could possibly be going on within
brains, as well as the almost-
ubiquitous role that prediction plays
in intelligent thought and making
sense of the world.

Deep Beliefs

Whether or not Hawkins’s
memory-prediction architecture is
related to how brains function, or
even whether or not the cortically
inspired learning algorithms
it proposes actually function better than other mathematical
approaches, there are certainly a few important things to learn
from the approach it adopts. First, it postulates that predicting the
future serves as a unifying goal for all cerebral functions. The ability
to predict based on past experience is critical for guessing the next
few frames received by our visual cortex as we scan a familiar face,
as well as to imagine what might soon happen if we dropped a

222



PREDICT

banana skin on the pavement. According to Hawkins, brains are
continuously predicting, remembering, and learning. Moreover, he
claims that, fundamentally, this is all that they do. More complex
brains, such as mammals and then humans, do this much better than
others, and presumably this gives them an evolutionary advantage,
which also explains why this ability is present. Finally, higher-level
thought of all forms can be traced ultimately to prediction, coupled
with the layered, hierarchical structure of many HTM regions; with
higher-level concepts being formed at higher levels of the HTM
hierarchy.
Another important point that Hawkins makes is to reinforce

Mountcastle’s observation of the uniformity of the actual neocor-
tex. Hawkins postulates that a single HTM-like cortical learning algo-
rithm is at work in the brain, processing all types of sensory inputs as
well as producinghigher-level thought andmemory. Precisely because
of the variety of sensory input being processed in a seemingly uni-
form manner, Hawkins speculates that predictions, at least as pro-
duced by higher layers of the HTM hierarchy, are based on invariant

representations of objects. Higher layers aggregate inputs from lower
levels in both space and time to form models for higher-level con-
cepts, such as a song, a ball, or a box. These invariant concepts get
triggered regardless of the sensory route by which they are experi-
enced, e.g., by touch, vision, or sound. Thus, the ‘same’ neural struc-
ture for ‘ball’ is triggered whether one looks at a ball with one’s eyes,
or feels a ball while blindfolded. In fact, a closely related philosoph-
ical problem was posed by the 18th-century philosopher William
Molyneux:

Suppose a man born blind, and now adult, and taught by his touch to
distinguish between a cube and a sphere of the same metal, and nighly
of the same bigness, so as to tell, when he felt one and the other, which
is the cube, which is the sphere. Suppose then the cube and the sphere
placed on a table, and the blind man made to see: query, Whether by his
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sight, before he touched them, he could now distinguish and tell which is
the globe, which the cube?108

Molyneux is askingwhether basic concepts, such as ‘cube’ and ‘sphere’,
are innate, i.e., something we are born with. If they are, then both his
touch and sight would activate the same innate concept. From the per-
spective of Hawkins’s model, the question arises as to the relationship
between the invariant representation of the sphere based on touch
alone, and that learned from sight. Are these the same or not? If so,
why; if not, howareweable to imagine a spherewhen touching itwhile
blindfolded?
Quite surprisingly, it recently became possible to test some aspects

of both the invariant representation hypothesis as well as Molyneux’s
problem, experimentally, with human subjects. In 2003, Pawan Sinha,
whose team also supplied us with the pong images in Figure 2, was
able to witness exactly the scenario imagined by Molyneux. Pawan’s
pioneering clinical work in India was able to return the gift of sight
to many children born ‘blind’. How he achieved this is a medical and
social miracle in itself, which we do not have the space to describe
here. What Pawan found is that children who could easily recognize
a sphere or a cube based on their experience touching it, could not

distinguish between the two based solely on their now miraculously
restored power of sight. Thus Molyneux’s philosophical poser was
answered, experimentally, in the negative.109

What about the idea of invariant representations, though? It turns
out that while the children could not at first visually discern cubes
from spheres, they could begin to do so quite soon after they were
allowed to touch the objects while also seeing them. Further, within
weeks of getting their sight back, they also developed the ability to
distinguish between two new objects, first by sight and then by touch
when blindfolded, like anyone else. It appears that their visual invari-
ant representations developed very rapidly, and became connected to
tactile ones. Their brains rewired themselves to process and account
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for the new stream of visual input. Pawan’s surprising experimental
observations appear to confirm Hawkins’s ideas on invariant repre-
sentations, aswell asMountcastle’s postulate regarding theuniformity
and plasticity of the brain.
Of course, even if the correspondence between Hawkins’s HTM

structure and that of actual brains is taken as plausible, the con-
nection between the predictive abilities of a hierarchically organized
neocortex and higher-level thought has not been explained, either
by Hawkins, or by anyone else as of today. It certainly remains an
enduring mystery: how do logic, reasoning, or feelings arise from the
predictive efforts of billions of neurons connected by quadrillions of
synapses? The neuroscientist Antonio Damasio does propose some
ideas in his recent book75 Self Comes to Mind; we shall return to some
of his ideas in the Epilogue, ‘Purpose’.

* * *
At a more scientific level however, the memory-prediction-based
learning frameworkand the role it gives topredictionas aprimarygoal
do serve to unify the two learning paradigms we have discussed often
enough so far, i.e., supervised versus unsupervised learning. Recall that in
supervised learning, such as the naive Bayes classifier we saw in Chap-
ter 3, the learning algorithm uses a large number of labelled instances
to learn its model, which in the case of naive Bayes was merely the
likelihood or probabilities. The learned model is then used to assign
labels to future instances, i.e., predictwhat they must be, based on past
experience. In unsupervised learning, on the other hand, instances are
grouped into clusters based on their mutual similarity: there are no
labels, only clusters characterized by a set of similar features. Thus,
close-up pictures of faces naturally emerge as a cluster amongst a large
personal photo collection. However, there is no label, such as ‘faces’ or
anything else meaningful assigned to this subset by the unsupervised
learning system.
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Now let us re-examine what the memory-prediction model of
Hawkins’s HTMdoes. Twokinds of unsupervised clustering are taking
place, in ‘space’, i.e., across pieces of each input pattern as they get
mapped to sparse patterns of columns, as well as in time, so that sim-
ilar sequences of patterns are mapped to similar sets of columnar cells.
Now imagine for the moment that clusters of patterns and sequences
have been learned. In Hawkins’s HTM, these are now used to make
predictions about future inputs, i.e., as towhichpreviously recognized
cluster is possibly being reobserved. If thepredictions indeed appear to
be confirmed by the input, this confirmation works like a supervised
training sample that strengthens, i.e., reinforces, the spatial and tempo-
ralmodels that the clusters collectively represent. Thus, the central role
of prediction is to enhance unsupervised learning with supervision,
using previously learnedmodels as proxy ‘labels’. Of course, unsuper-
vised clustering continues in parallel, thus unifying the two modes of
learning.
Hawkins’s HTM is not the first approach to unify supervised and

unsupervised learning. The field of reinforcement learning is a rich
and promising area of current research that studies many different
approaches that have nothing to do with neural models or mimicking
brain-like structures. Similarly, hierarchical neural models based on
Bayesian mathematics, currently referred to as deep belief networks, are
very similar to HTM, as has also been pointed out by Hawkins and
his team110 as well as others.111 Mathematically linking reinforcement
learning and deep belief networks is another important area attracting
current research interest.
Last but not least, the layered structure and the mixing of bottom-

up and top-down reasoning as in the blackboard architectures we
described in Chapter 4, appear similar to the hierarchical structure
of deep-belief networks as well as that of neocortical models such
as HTM. The idea of using predictions from higher layers to direct
lower-level reasoning is also a common feature of all these models.
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Most importantly, blackboard architectures are examples of symbolic
reasoning, using logic, classical or otherwise, on ‘labelled’ concepts.
The fact that the symbolic reasoning of blackboard systems and the
pattern-matching-based approach of connectionist-neural as well as
probabilistic-network models share many similar features, leads us to
hope that links between brain-like and symbolic computational mod-
els will be made stronger by future research. Progress in this direction
should both lead to a better understanding of the brain and enable us
to build more intelligent applications.

Network Science

We return now to the web. Do the neuroscientific studies of the brain
or neural computational models for prediction have any connection
with the size and structure of the web?
How much information is there on the internet? There are at least

75 million servers in the world today, of which a very large frac-
tion are connected to the internet and involved in publishing a part
of the web. The amount of data stored in the indexed web can be
estimated as a few dozen petabytes, where a petabyte is 1012, i.e., 1
with 12 zeros. Google’s few million servers index the 50 billion pages
or so on the internet. Other studies have shown that the average
web page is about half a megabyte.112 The arithmetic adds up to 25
petabytes. Clearly, while the average web-page size is small, photo
and video content are much bigger and growing faster. Further, we
have not considered the deep web either, so this is probably a gross
underestimate.
Still, we can safely conclude that are at least a few dozen petabytes

on the web today. But howmuch information could be stored on the 75
million or so servers in theworld? If each server has about a terabyte of
data (average PCs have half a terabyte today), this works out to 75,000
petabytes.

227



THE INTELLIGENT WEB

As we noted before, the way information is stored and indexed in
the web is very different from the brain-motivated techniques dis-
cussed earlier. web pages themselves are stored on their respective
sites, whose addresses Google inserts into its vast inverted index. The
brain, on the other hand, stores information very differently, using
mechanisms closer to the sparse-distributed or hierarchical-temporal
models suggested by Kanerva andHawkins. As far as we can tell, there
is no equivalent of the Google index for our memories. Instead, infor-
mation is stored in the synapses that connect the brain’s myriad neu-
rons, and retrieved approximatelywhen needed in the course of its con-
tinuous efforts to predict and respond to external stimuli, at all levels.
There is general agreement that the human brain contains about a

hundred billion neurons. Each neuron is connected to other neurons
via thousands of synapses, which therefore number in the hundreds
of trillions. How much information is stored in these connections?
Actually it is quite difficult, if not impossible, to estimate this number.
After all, we do not really know how the brain stores information. If
Hawkins’s HTM is taken as a rational model though, information in
the brain is more likely to be comprised of sequences of patterns, rather
than the static patterns of bits that make up the web pages stored in
millions of servers. Sequences, are in principle, infinite, unlesswe limit
their length. Limits on the lengths of sequences that can be stored and
retrieved in reasonable time therefore depend on how fast the brain
operates, which in turn determines how many useful sequences it
might be able to store.
Hawkins proposes a ‘one-hundred-step rule’. It is known that neu-

rons fire at a rate of 200 Hz, i.e., each firing takes 5 milliseconds
or so. Assuming that it takes us around half a second to recognize
a face or an object, this is time enough for about a hundred neu-
rons to fire in sequence. In other words, simple memories might well
be stored as sequences of a hundred ‘firing steps’: recognition hap-
pens when prediction based on past experience, as embodied in the
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strengths of synapses, matches such an input sequence as received
from the senses.
Of the 100billionor soneurons, let us imagineonly a billionof them

as ‘inputs’, so that each input fires a hundred other neurons ‘higher
up’ in the hierarchical structure postulated by Hawkins. Now, imag-
ine a sparse distributed memory of a billion bits, and on top of that
sequencesofup toahundred suchpatterns.Again, inHawkins’smodel
these are represented by the equivalent of a Sparse Distributed Mem-
ory, but in time rather than space. The number of possible hundred-
step-long patterns of a billion bits is truly huge. Further, using rea-
sonably straightforward back-of-the-envelope calculations based on
the properties of sparse memories, which however do not go into the
details, we can conclude that the number of such 1,000-bit, hundred-
step memories that a Hawkins-like HTM can store is many orders of
magnitudemore than could possibly be stored in the web. A few hun-
dred or even thousands of petabytes cannot come anywhere close.
At the same time, and in stark contrast, the ‘hardware’ in the brain,

on the face of it, is far less powerful than the collection of computers
that power the web. We have already seen that neurons operate at a
speed of 200 Hz. The lowest end of PCs available today operate 5 to
10 million times faster than such a neuron, i.e., a few GHz (gigahertz).
Next, each of the 75 million servers in the world today typically has
well over a billion transistors. Thus the total number of transistors
is in the thousands of quadrillions range. Even assuming we need a
few thousand transistors to mimic individual neurons and synapses
in ‘silicon’, the raw hardware capacity of the web today is definitely
comparable to that of a human brain. Moreover, it is many millions
of times faster.
Clearly the web appears to be a much ‘faster’ machine than the

brain, while the brain is far more copious in memory. So it is indeed
paradoxical that the web-intelligence applications of today rely so
heavily on storing and retrieving what we think is big data, rather
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than on exploiting the computational power of millions of comput-
ers. Instead, it appears far more likely that the computational prowess
of the web could better serve to augment our own relatively limited
reasoning speed, rather than our much more voluminous memories.
I shall return to such speculations towards the end of the book.

* * *
Now let us consider the network of connections between neurons in
the brain, and compare this with the connections that comprise the
web. In the case of the web, there are at least two different ‘networks’
to consider.Most inquiries into the network structure of theweb focus
on the hyperlinks between web pages; indeed, as we have seen early
on, the famous PageRank algorithmof Google indirectly uses this net-
work of links tomeasure the importance of eachwebpage. However, a
different network is also at work in theweb, i.e., that of the servers that
power the internet and route traffic across its myriad links. Each time
you issue a searchquery, or click a link inyourbrowser,messages travel
between servers via routers and fibre-optic communication lines. The
same data-communications network also powers email, Facebook,
Twitter, and e-commerce transactions.
No single organization owns the network of servers and communi-

cation links, which is actually the internet itself. There are many hun-
dreds of internet service providers, or ISPs, that own parts of thismas-
sive computer network. ISPsworkwith eachother through a complex,
but clearly hierarchical, maze of agreements to route each other’s traf-
fic. The network itself is also hierarchical. There are the long-distance
fibre-optic lines thatmovedata across continents.Next come the inter-
continental and country-specific lines, then metropolitan networks
within a city, etc.
Aswe saw earlier, Hawkins’smodel of the neocortex also postulated

a hierarchical structure. Unfortunately, it is rather difficult to phys-
ically verify whether the brain actually has a hierarchical structure
of connections; after all, they are not laid out for us to observe like
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some organizational hierarchy. Further, ‘hierarchical’ is a very general
statement—there can be many different ways to be hierarchical, as
we shall see shortly. However, there are some simple properties about
network structures that enable us to compare different networks with
each other.

* * *
A popular property is the ‘degree distribution’. A node in a network
that is connected to dother nodes is said tohave degree d. The fractionof
nodes in a network that have degree d is called the degree distribution.
For example, in a square mesh, such as a fishing net, every node has
three or four connections. There are no nodes with, say, a hundred
connections.
However, this is not the case for the network of hyperlinks that

comprise the web. Here the degree distribution of the nodes, in this
case web-pages, ranges from very small degree nodes, such as those
pages that have just a few links pointing to or from them, to those
that have literally millions of links, such as wikipedia.org (to which a
very large fraction of pages link). The degree distribution of this web
network is observed to follow a ‘power law’, i.e., the fraction of pages
with d links is inversely proportional to dr for some r. Through var-
ious exercises of mapping the web, r is believed to lie between 1.6
and 2.2; we can take it as 2 for illustration. What this means is that if
there are a billion pages that have, say, ten links, i.e., degree 10, then
there will be only a hundred thousand that have a thousand links.
But the point is that such high-degree pages will be there. Further,
there will also be pages, albeit only a handful, which have a hundred
thousand links.
It turns out that the network structure of the internet itself, i.e.,

the servers and the links that physically connect them, also follows
a power-law degree distribution. However, unlike the web of hyper-
links, this distribution is slightly different, in that very high degree
nodes donot exist. This is understandable; after all, there is nophysical
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barrier to hundreds of thousands of pages linking toWikipedia. How-
ever, it is impossible to build a data centre that has a hundred thousand
incoming communication links. The data communications network
that comprises the internet follows a ‘truncated’ power-lawdegree dis-
tribution,which is just a normal power-law that stops beyonda certain
maximum degree value.
Quite interestingly, studies113 of neural connections using fMRI∗

studies appear to indicate that a similar truncated power-law distribu-
tion is followed in the brain.
Studying network structures and power-law distributions has

become a very popular research topic. Many biological and social,
as well as certain technological networks, such as the web and the
internet, appear to have such properties. An important property that
follows from a power-law distribution is that the network appears to
be a ‘small world’, where any two nodes are connected by a relatively
short path. We have all heard of the famous maxim saying that any
two people in the world are connected by at most ‘six degrees of sepa-
ration’. It is indeed a small world, in this sense.
Why are small worlds useful? In the case of the internet, it is clearly

desirable for amessage tobe able to get to its destination in the shortest
possible number of ‘hops’. Perhaps such small-world properties are
useful in the brain as well, enabling diverse sensory inputs to rapidly
mingle so as to easily form and access invariant representations. After
all, the brain is much slower than the internet, and at most a hundred
steps of neuronal connections can be traversed in a single instanta-
neous piece of thought. Small-world properties of the network make
this limit a generous one; a hundred steps is more than enough to
traverse between any two nodes of the internet, most pairs of web
pages, and so possibly also any two neurons in the brain.

∗ FunctionalMRI studies where subjects are given tasks while their brain activity is mon-
itored using MRI scans.
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Since power laws and small-world properties have now been com-
monly found in a variety of biological and natural phenomena, these
are today considered tobe indicatorsof systems that can ‘adapt’ to their
environment and behave in surprisingly complex, and yet sometimes
predictive, ways.

* * *
What do we think now of ‘predicting the future’? Rather than being
the domain of soothsayers and astrologers, we find first that there are
indeed ways to predict the future based on past experience. Building
statistical models and finding efficient ways to store and recall ‘mem-
ories’ does allow us to make predictions. When these predictions are
confirmed, they strengthenourmodels and reinforce storedmemories
further. Next, the mathematical principles of prediction and brain-
inspired neural networks are closely linked, such as Hawkins’s mem-
ory prediction framework, deep-belief networks and reinforcement
learning. Finally, the computational prowess of the internet today
rivals and in some ways exceeds that of the brain. Additionally, they
are both examples of networks that exhibit a power-law structurewith
small-world properties that are now believed to be universal features
of complex ‘adaptive’ systems capable of predictive behaviour. Lastly,
all indications are that brains can not only predict, but that prediction
is in fact their primary function—a key ingredient that allows us to
‘connect the dots’, make sense of the world, and, as we shall shortly
see, also control it.
In principle, therefore, it appears that the internet is capable ofmak-

ing complexpredictions. In pockets, andprimarily drivenby theneeds
of better online advertising, elements of prediction do show up in
the algorithms that power the web. At the same time, the manner in
which information is stored in the web is very different from how it is
stored and used in the brain. Can the web exploit such radically differ-
ent organizational principles, such as Hawkins’s memory-prediction
framework? It certainly has the computational capacity.

233



THE INTELLIGENT WEB

The real question is ‘why?’. Web applications are driven by practical
needs, such as advertising, search, and social networking. To the extent
that learning, reasoning, and prediction are needed for these tasks,
we certainly find the entire arsenal of artificial intelligence techniques
being employed by the Googles of the world. If and when these giants
are confronted with needs that challenge their more conventional
computational structure, perhaps they will indeed begin to explore
other alternatives. Of course, these may or may not end up being any-
thing like the brain-inspired models of Hawkins. More likely, com-
pletely new techniques will be found, combining different approaches
that are already showing signs of being deeply linked. For example,
along the way, we might even find a way to connect higher-level rea-
soning with neural and statistical models.
As to ‘why’, we turn now, in Chapter 6, to how learning, reason-

ing, and prediction can be used to control the external environment.
Perhaps the day is not far off when web applications will not only
assist us in fulfilling our informationneeds, but also control themachines
we rely on for our daily lives. In particular, we shall take a closer
look at one such unlikely project that is well under way—Google’s
self-driving car.
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Running on Autopilot

Last summer I took my family on a driving holiday in the American
south-western desert covering many national parks. While driving
along some of the long tracts of razor-straight highways, such as
between Las Vegas and StGeorge, Utah, I often fought drowsiness, not
becauseof lackof sleep, but fromthe sheermonotony.A familiar expe-
rience for many, no doubt. Hardly any conscious thought is needed
during suchdrives. Itmustbeone’s ‘System1’, asperKahneman,which
ismost certainly doingwhateverwork is needed. Nevertheless, sleep is
not an option. In spite of all the marvellous features embedded in the
modern car, the ability to drive itself is, sadly, still missing. The cruise-
control button helps a bit, allowing one’s feet to relax as the car’s speed
remains on an even keel. But the eyes and mind must remain awake
and alert.
When, if ever, one wonders, will cars with a ‘drive’ button become

as common as those with an automatic transmission? Is driving along
a perfectly straight stretch of highway really that difficult? After all,
we all know that a modern jetliner can fly on autopilot, allowing
even a single pilot to read a novel while ‘flying’ the aircraft on a long
transcontinental flight. In fact, the jetliner would fly itself perfectly
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even if the pilot dozed off for many minutes or even hours. We insist
that at least one pilot be awake and alert only for our own peace
of mind, so as to be able to adequately respond to any emergency
situation that might arise.
First of all, the ubiquitous autopilot is itself quite a complex piece of

equipment. Even to get a plane to fly perfectly straight along a desired
heading at a fixed altitude takes a lot of work. The reason, as youmust
have guessed, is that nature, in the guise of the air onwhich our jetliner
rides, can be quite unpredictable. Wind speeds and directions change
continuously, even ever so slightly, requiring constant adjustments to
the plane’s engine power, ailerons, flaps, and rudder. In the absence of
such adjustments, our jetliner would most certainly veer off course,
or lose or gain speed, even dangerously enough to trigger a powered
dive or a stall.
The unpredictable effects of the environment, which engineers call

‘noise’, result in almost immediate changes to an aircraft’s heading,
speed, and altitude. The aircraft’s ‘vital statistics’ are continuously and
directly being affected by the environment. In contrast, the impact of
the natural environment is less immediately felt while driving along a
perfectly straight and level, traffic-free highway. Rarely are crosswinds
so strong as to cause one’s car to stray. Nor are there clouds, rain, or
turbulent air pockets. So, shouldn’t it be easier to ‘auto-drive’ a car,
once we know how to auto-fly a plane?
Sadly, this is not the case. As it happens, it is the very immediacy of

the environment’s effect on our jetliner thatmakes it easier to ‘control’
automatically. The aircraft is equipped with equipment that allows it
to continuously sense its heading, speed, and altitude. Such ‘sensors’
are crucial in making it possible to control the plane and ‘correct’
for the noise it experiences. A small slowdown caused by increased
headwind, and the autopilot immediately reacts by ‘stepping on the
gas’. A slight drift to the left, and the autopilot ‘controller’ responds by
steering the plane ever so slightly to the right until it regains its desired
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heading. Hundreds of such minor corrections happen continuously,
giving the illusion of perfectly steady and straight flight.
The autopilot’s actions are exactly the kind of minute, continuous

corrections that each of us performs, all the time, whether it is while
riding a bicycle, or even during everyday walking. Our cochlear sys-
tem, situated in our ears, provides us with our sense of balance, i.e., a
continuous estimate of how upright we are, whether cycling or walk-
ing. Hardly any conscious thought is required, at least once we have
learned to walk or ride. Our unconscious brain automatically issues
muscle-control signals so as to keep us upright in response to any
perceived deviations from our desired posture.
On the other hand, in the case of a hypothetical self-driving car the

situation is not so happy. Suppose the seemingly razor-straight road
suddenly curves, even a bit, towards the left. By the time the effects of
this ‘change in the environment’ are ‘felt’ by the car in a form that can
be sensed physically, we might already have driven off the right side
of the road. Even if our car veers sharply to the left the minute a few
bumps are felt, therebymanaging to avert disaster, the experience such
a manoeuvre gives the unfortunate passengers is far from desirable.
Human drivers make far greater use of their visual senses, than, say,

a pilot of a jetliner in mid-flight. Vision allows the driver to continu-
ously look out for and predict impending catastrophes, such as a curv-
ing road, or oncoming traffic, and avert disaster before it ever comes
close to transpiring. Sadly, computer vision, i.e., enabling amachine to
‘see’ and understand the environment, is one of the most difficult and
challenging areas in artificial intelligence. Automatic controllers that
need to ‘see’ are farmore challenging to build than, say, those that only
need to ‘feel’.
However, hope is on the horizon. Sebastian Thrun, formerly a pro-

fessor of Computer Science at Stanford and now a Google Fellow, has
been designing and building self-driving cars for much of the past
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decade. His latest prototype has now become Google’s self-driving
car, copies of which have already successfully driven themselves for
hundreds of thousands of miles through California traffic.

* * *
Thrun’s group at Stanford is not alone. Over the past decade, dozens
of research groups across the world have teamed up with leading car
manufacturers to compete in a race to build theworld’s first successful
self-driving car. In 2007 DARPA, the US Defense Advanced Research
Projects Agency, which funds a large fraction of university research in
the US, announced its ‘Urban Grand Challenge’ competition directed
at research groups working on self-driving cars. Previously such com-
petitions, such as DARPA’s 2005 event, had challenged self-driving
vehicles to negotiate rough off-road terrain. Stanford’s ‘Stanley’ car,
also built by Thrun and his group, was the winner of this earlier com-
petition. The urban challenge of 2007 focused on being able to drive
in a simulated city environment, while obeying all traffic rules and
avoiding other cars, and at the same time completing the course as fast
as possible. So, for example, the self-driving cars had to ‘decide’ which
lane todrive in, andwhen toovertakeother cars, all by themselveswith
no human to direct them.
Of the 11 teams that competed in the final challenge event ofNovem-

ber 2007, only six completed the 60-mile course successfully, and of
these only three finished within the stipulated six hours. The win-
ning car, from Carnegie Mellon University, took just over four hours.
Under a half-hour behind them were the second- and third-placed
teams, Sebastian Thrun’s team from Stanford, followed by the team
from Virgina Tech. Recently Google CEO Eric Schmidt revealed the
importance the company places on this project, outlining a vision
of driver-less cars and how they could transform the world by, for
example, eliminating accidents caused by drunk-driving. But more on
these and other possibilities later; first, let us examine exactly how a
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self-driving car, such as Stanford’s ‘Junior’, the predecessor toGoogle’s
self-driving car, actually works.

* * *
Stanford’s Junior114 ‘sees’ using four lasers mounted on its roof. Each
laser is angled downwards to cast its beam across the road ahead
and around the car. Just like a radar, these lasers emit narrow pulses
of high-intensity light and measure the time taken before the beam
reaches an obstacle and gets reflected back, allowing them to deter-
mine the distance of the obstructing object. Each laser device emits
over a million pulses per second, while rotating hundreds of times a
second toprovide a 360◦ viewof theworld. In addition to laser sensors,
Junior is also equipped with a GPS unit, much like those in today’s
high-end mobile phones. The GPS is, however, a poor cousin to the
laser sensors that provide accuracies of a fewcentimetres, compared to
theGPS’s rather coarse estimates that are accurateonly to a fewmetres.
Just like any human driver, Junior needs to look at the road using its

laser-driven eyes, at the same time continuously listening, i.e., watching
out for any obstacles that might threaten to get in its way, while also
learning to ignore the occasional leaves and tree branches that pose no
threat. Junior’s ‘brain’ must connect all the inputs it receives so as to pre-
dict the immediate future, including the likely paths that nearby mov-
ing cars might take. Finally, all these predictions must be processed
and converted into directions to the car’s steering wheel, accelerator,
and brake to continuously correct the car’s trajectory.
Thus, merely driving a car brings together all the elements from

looking to correcting that I have said are necessary for us to ‘connect
the dots’, make sense of and navigate the world. For example, even
while looking and listening with its laser-driven eyes, Junior needs
to correct for errors in these measurements using techniques based
on probability and Bayes’ Rule, just as we did while trying to elicit
sentiment from Twitter posts. The movement of other cars needs to
be modelled statistically and their future positions predicted, just as
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future wine prices were predicted byOrley Ashenfelter. Of course, the
exact models and techniques used differ considerably, both in nature
aswell as speedof execution; in fact, Junior needs toperformhundreds
of thousands of such calculations every second. Nevertheless, the sum
and substance is that using the techniques of looking, listening, learn-
ing, connecting, and predicting, Junior is able to accurately determine
both its own location and speed with respect to the surrounding road
and obstacles, as well as track the motion of nearby moving vehicles.

Feedback Control

Now let’s see how Junior corrects its own motion so as to go where it
wants to. To beginwith,whatmight it take for Junior to simply drive in
a reasonably straight line, sticking to its laneona razor-sharp stretchof
emptyhighway, say in the vast expanses ofUtah?What couldbe easier,
especially once equippedwithmultiple high-accuracy laser-based eyes
that can accurately ‘see’ the lane dividers better than any human eye?
Unfortunately, even driving straight as an arrow needs attention

and concentration, as any experienced driver knows. Fall asleep at the
wheel, and your carwill deviate fairly quickly from its straight andnar-
row path, even if your hands come nowhere near the wheel. And such
deviations are inevitable, while driving a car, controlling an aircraft, or
even in the case of our own locomotion. In the latter case, deviations
are caused by the ‘noise’ of gravity itself coupled with the fact that our
muscular actions themselves can never be perfectly precise or instan-
taneous. In the case of a car, the slightest gust of wind, small change
in road surface, or even theminutest inaccuracy in the steering system
itself, rapidly gets accentuated, causing the vehicle to veer to the left
or right.
As a result, the car cannot drive blind, even on a straight road, and

needs to use its ‘eyes’ to monitor and control its inevitable drift. Let us
suppose that Junior can ‘see’ well enough to estimate, with reasonable
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accuracy, which direction it is moving in. Note that even with its mul-
tiple sophisticated laser-sensors, any such an estimate is still prone to
errors, so, as mentioned earlier, probabilistic techniques using Bayes’
Rule are required. Nevertheless, the best Junior can do is to believe its
own estimate of where it is headed; then what?
Clearly, as soon as Junior finds that its frontwheels are straying from

the straight and narrow, it needs to take corrective action by steering
back towards the centre of its lane. But by how much should Junior’s
steering controller adjust the steering wheel? After all, Junior’s brain
is merely a computer, and needs to be programmed very precisely
to make all such decisions. We might argue that since Junior knows,
albeit approximately, how far away from the centre it is, a simple pos-
sibility is to correct the steering wheel in proportion to this estimated
error; the larger this error, the harder Junior pulls back on the wheel.
Simple, isn’t it?
Unfortunately however, this simple ‘control strategy’ doesn’t actu-

ally result in as smooth a ride as if you or I were driving. As Junior
pulls back on the wheel by an amount proportional to the estimate
error, one of two things happen: either the car tends to overshoot the
desired orientation, i.e., the correction is too much, or the correction
is too little and the car takes forever to return to a straight path. Such
phenomena are rife in the the field of control theory that concerns itself
with such problems.
It turns out that a simple observation allows us to fix the problem

of over- or under-correction. The idea is to base the amount by which
Junior turns the steering wheel not only on the error it perceives, but
alsoonhow fast that error changes due to Junior’s actions. This is called
feedback control; the error changes (becomes smaller, one presumes)
because of Junior’s actions, and this change is itself measured and fed

back to influence the control strategy itself.
Merely by introducing such a ‘differential’ element to our sim-

pler ‘proportional’ control strategy, we are able to compensate for

241



THE INTELLIGENT WEB

over-corrections and Junior smoothly returns to the desired path.
There are further improvements one can make, such as introducing
another ‘integral’ element to the controller so as to also correct for
any basic flaws in the steering mechanism itself, such as an inherent
10◦ bias, which we won’t go into in more detail. Putting all three ele-
ments together, we get the ‘PID’, or ‘proportional integral differential’
controller, which is the basis for all machines that involve controlling
moving parts.
While it might appear complicated, the PID control strategy is

actually rather simple. All Junior needs to do is estimate three kinds
of errors. First, the actual error itself, e.g. how far its front wheels
are from the centre line. Second, how much this error estimate has
changed since the last time it was measured, i.e., the differential error.
Lastly, the total error, which is just the sum of all the errors it has
measured so far. Using these three numbers, Junior calculates the
steering correction to be used at every instant by a formula such as
p × error + d × differential + i × total. Now, it might appear that the
total error will vary depending on how far off from the centre this
process begins. Further, this total will grow continuously and cause
the car to drift way off course. In fact, this does happen for most
choices of the factor i. Interestingly however, there are choices of p,
i, and d for which the car does indeed correct itself perfectly, even
compensating for any inherent faults in the steering system itself.
Of course, this also means that the choice of these parameters must
be done very carefully; and we shall return to this question in a
short while.

* * *
How does feedback control have anything to do with intelligent
behaviour, one might ask? After all, it appears to be merely a solu-
tion to an engineering problem. Ingenious for sure, and obviously
important for building self-driving cars, and presumably many other
machines such as aircraft or industrial robots; but intelligent?
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It turns out that each of us uses feedback control every day, perhaps
even at every instant. To experience this, take a look at the objects in
your immediate surroundings, and then close your eyes. Visualize one
object at random from those just surveyed, and reach out to pick it up.
More than likely, your hand will miss its mark by at least a few inches,
whichwouldnothavehappened if youwere lookingat theobjectwhile
reaching out. Your eyes and hand coordinate in a feedback control
loop, continuously correcting your movements smoothly. Without
this feedback, your reach misses its mark. However, even with your
eyes are closed, as soon as you feel the object, feedback control kicks
in using your sense of touch instead of sight, and you are immediately
able to grasp the object.
The unifying power of feedback control in describing and under-

standing the world is attributed to Norbert Wiener, who founded
the field of Cybernetics in the mid-20th century. His 1961 book Cyber-

netics: Or Control and Communication in the Animal and the Machine115

popularized the field and showed how the ideas of feedback con-
trol could be used beyond their obvious engineering applications
to explain many aspects of human behaviour and possibly even
thought.
During the same period, B. F. Skinner’s philosophy of behaviourism

had come to dominate the field of psychology. Skinner shunned any
examination of internal thought processes. ‘When what a person
does [is] attributed to what is going on inside him, investigation is
brought to an end’.116 According to Skinner, all psychological findings
had to be directly measured via the behaviour of people subjected to
controlled psychological experiments. Behaviourism in psychology
matched and supported the philosophical basis of cybernetics, feed-
ing the belief that intelligent thought should and could be understood
primarily through how human beings, or even animals, perceive and
react to their environment.
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Skinner’s view that ‘what is felt or introspectively observed is not
some nonphysical world of consciousness, mind, or mental life but
the observer’s own body’116 resonates strongly withWeiner’s ‘the ner-
vous system and the automatic machine are fundamentally alike in
that they are devices, which make decisions on the basis of decisions
theymade in the past’.115 Moreover,Wiener’s cyberneticswas deep and
mathematically strong, giving credence to the hope that mathematics
would eventually succeed in explaining conscious life as successfully
as it served physics in understanding the inanimate.
Even if such hopes have hardly been realized in the half-century

since Weiner and Skinner, perhaps we shall indeed learn something
about intelligent behaviour by trying to build a self-driving car; so let
us press on and return to Junior for a deeper dive.

Making Plans

Clearly, a self-driving car needs to do much more than drive in a
straight line. Itmustperceive andavoidother cars, overtake if required,
take turns and exits as needed, andmore generally figure out, i.e., plan,
how to go wherever it needs to. All of us have used Google Maps to
plan our road trips; surely Junior could merely do the same to obtain
its highest-level driving plan. This time its GPS position sensorswould
come in handy for navigating across town. But more is needed: when
should Junior change lanes or overtake another car, how should it
navigate a car park to find space, whenmust it slow down andwhen is
it safe to speed up?
Multiple levels of planning are needed, where planning involves fig-

uring out the ‘best’ way to achieve some goal. Further, planning is
also a key element of intelligent thought. We plan every day, and, for
that matter, every instant. Going from one room to another requires a
plan, as does decidingwhat to read or play, andmore generally how to
plan one’s career or retirement. Of course, the latter examples involve
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conscious, ‘System 2’ decisions, whereas the former plans for how and
where towalk are largely arrived at unconsciously.More on conscious
planning later. Let us first seewhat is involved in Junior’s plans, such as,
for example, getting from the entrance of a car park to an empty park-
ing slot.We shall even grant Junior a reserved, pre-designated parking
area like a companyCEO. Junior can focus on just ‘getting there’ rather
than the slightly more difficult task of finding an empty slot.
Imagine that Junior is entering a car park from the north-west cor-

ner, and its designated slot is all the way at the other end, i.e., at the
south-east corner. The fastest way to get there might be to dart diago-
nally across the car park, following the shortest path to the opposite
corner. Perhaps taking such a path does ignore some driving rules,
strictly speaking, but we have all done this at one time or another, so
we’ll grant Junior this liberty as well. Of course, the car park need not
be empty; if the diagonal is blocked by other cars, it no longer remains
a ‘feasible’ path, and Junior needs to findother alternatives, even if they
are slightly longer than the diagonal.
Let’s see how Junior might figure out the shortest path even in the

presence of other cars already parked in the car park. We assume that
Junior has some kind of map of the car park itself, including where
all the cars are. In the DARPA challenge, each car was indeed given
high-resolution satellitemaps of the entire course, including car parks.
However, in real life Junior would still have to rely on its laser-guided
eyes tofigureoutwhere other carswere,making life a bitmore difficult
than we are assuming for the moment.
We assume thatwhat Junior ‘sees’ is amap such as in Figure 6,which

has been divided into small squares (rectangles in the figure) such as
on a chessboard. Junior is at the top left (i.e., north-west) corner, and
needs to get to the bottom right, south-east, end as quickly as possi-
ble. We assume for simplicity that Junior cannot move diagonally, i.e.,
it can move south, east, north, or west at each move of its eventual
path across the car park. Here is one way Junior might proceed to
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FIGURE 6 Navigating a car park

‘think’ while going about trying to find the shortest path to the other
corner.
Likemost algorithms, thisonealsoproceeds as anumberof steps.At

each step Junior ‘expands’ a particular square by examining all squares
that could be reached from that square in one move, i.e., at most the
square’s four neighbours. For each neighbouring square Junior calcu-
lates a ‘cost’ indicating how many moves away the square is from the
north-west corner (called the ‘origin’, ‘O’, in the figure). This cost is
calculated by simply adding 1 to the number of moves required to get
to the square currently being expanded, which, presumably, has been
computed in previous steps of the algorithm.∗ Each such neighbour,
alongwith its cost, is entered into a ‘ready list’ of positions that remain
to be expanded, as well as marked on the map as ‘considered’ so that
it is not inadvertently added to the ready list in the future. Next Junior
chooses oneof the lowest-cost squares on its ready list as its next target
for expansion and removes it from the ready list. (So the ready-list
keeps growing and shrinking from step to step.)
Let’s follow Junior’s ‘thoughts’ as it plans how to get to its desig-

nation using this algorithm. Junior begins by ‘expanding’ its starting
position, i.e., the origin O, and examining its two neighbours B and C
to the east and south. Junior counts the number of moves required to
get to each of these squares from the origin. In the beginning, it takes

∗ We use ‘step’ to mean step of the algorithm and ‘move’ to indicate units of movement
on the map of squares representing the parking lot.
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0 moves to get to O, so each of the squares B and C is added to the
ready list with a ‘cost’ of 1, since it would take Junior onemove to get to
each of them from the origin O. Additionally, Junior also marks each
of these squares on its map as ‘considered’, so that it does not inadver-
tently consider them again as a candidate to put on the ready list.∗

Next Junior can choose to expand another square on its ready list
that has the lowest cost, which is now one of the squares B or C, since
each of them have an equal ‘cost’ of 1. Let us say Junior chooses to
expand square C, which is dutifully removed from the ready list, leav-
ing just B for the present.
Junior now looks at the neighbours of square C on itsmap, omitting

the square O which it has already ‘considered’. This leaves squares A
and D to be put on the ready list as well as simultaneously marked as
‘considered’ on themap.Onlynowthese squares carry a cost of 2, since
itwould take twomoves to reach them fromtheorigin (one, the cost of
getting toC itself, plus onemore). The ready list nowhas three squares:
[B(1),A(2), andD(2)], i.e., Bwitha costof 1,AandDwithacostof 2 each.
Additionally, squaresO,A, B, C, andD all standmarked as ‘considered’
on the map.
In step three, Junior once again looks at its ready list to find a square

to expand next, and chooses B instead ofAorD, since the former has a
lower cost. So square B is chosen for expansion, and of course, simul-
taneously removed from the ready list. The set of possible neighbours
of B now includes A, which has already been considered, and square
F, which is therefore put on the ready list and marked with a cost of 2,
i.e., one more than the cost of B, which Junior remembers as being 1.
The next step will be to expand square A, at which point only E is

added to the ready list with a cost of 3, since the square with an already
parked car has to be ignored, and its other neighbours B and C have

∗ Needless to say, the origin O is also marked as ‘considered’, an exception to the rule
since it was never itself placed on the ready list.
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already beenmarked as ‘considered’. At this point the ready list will be
[E(3), D(2), F(2)], i.e., E with a cost of 3, and D and F costing 2. One of
the latter two squares is chosen at random for the next expansion, and
so on.
As the procedure continues in this manner Junior eventually

‘reaches’ (albeit logically, i.e., in order to ‘expand’) the goal position G,
its designated parking spot in the south-east corner. At this point the
process of examining new squares can stop, since Junior has by this
time foundapath to the goal, albeit after having takenmanydiversions
along theway. Further, the number ofmoves, or cost, which Junior has
calculated for the goal square must be the length of the shortest path.
To see why this must be the case, recall that at each step the square
chosen from the ready list is the one with the least cost in terms of
number of moves away from the origin. Consequently, as each of its
neighbours are examined, their costs as calculated by the algorithm
also represent the length of the shortest path fromO, and so on.
All that remains now is to retrace the actual shortest path, which

Junior is able to do as follows, provided it had managed to also keep
a record of the direction, i.e., north, south, east, or west, from which
it was examining each square as it was put on the ready list. In other
words, Junior remembers which square was being expanded for every
addition to the ready list. So, starting from the goal G, Junior remem-
bers that Q was being expanded when G was put on the ready list.
At Q it remembers that L was being expanded when Q was added to
the ready list. At L it remembers that K was being expanded when L
was added to the ready list, and so on. To see why, note that the cost
(i.e., distance fromO) of M is higher than K, hence K would have been
expanded beforeM, and L added to the ready list during K’s expansion
rather thanM. Backtracking in thismanner, Junior can reconstruct the
shortest path to G, and then actually start its engines and get moving.

* * *
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The algorithm just described is commonly referred to as
‘Dijkstra’s shortest path’, or DSP, after the famous computer scientist
Edsger Dijkstra.117 An important variant of DSP is called the A∗

algorithm invented by Nils Nillson of Stanford University in 1968.118

This modified planning algorithm has become widely used for a
variety of planning tasks, especially in artificial intelligence, and
especially in programming computers to play games such as chess.
A∗ adds the following very important modification to DSP that also
serves to explain its use in diverse planning scenarios.
Suppose Junior reaches square K for expansion during the DSP pro-

cedure. Since the algorithmchooses a square at randomfromamongst
equal-cost squares on the ready list, it is quite possible that it expands
J before L, and thereby ends up considering N in addition to M. On
the other hand, if it happens to choose L first, thereby putting Q on
the ready list along with M, and thereafter also chooses to expand Q
before M, it could complete its task sooner. The question is, of course,
how does it know which square to choose from amongst those with
equal cost?
The idea that comes to our rescue is that of a ‘heuristic’ cost. Even

though Junior has no idea what the length of the actual shortest path
is, given that there are cars blocking the simple diagonal path, it is safe
to say that the shortest path cannot be shorter than the diagonal. In the
situation just discussed, for example, in the absenceof anyparked cars,
the square J is clearly further fromGthanL, so given a choice between J
and L, the algorithm should prefer to expand L first if possible. By using
such heuristic pre-knowledge A∗ avoids fruitless explorations and so
ends up being far more efficient than simply DSP.
As already mentioned, algorithms such as A∗ can be used even for

planning tasks that have nothing to do with navigating in physical
space. For example, A∗-like techniques have been used in program-
ming chess-playing computers. Instead of physical locations along
which to plan a path, in the case of chess the options to be explored are
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the possible sequences of moves to be played. The process of exam-
ining which sequence of moves is better than another requires some
way to measure the cost at each step, which is provided by a heuristic
formula that can evaluate any particular board position based on data
from previously played games. Such programs evaluate not only the
board position resulting from a single move, but usually many steps
into the future, which is where A∗ comes in handy. Instead of having
to reach a particular final position, the goal becomes to reach a posi-
tion having the highest possible score, given the requirement that one
does in fact have to move in order to play the game.
Chess-playing programs look many moves ahead to evaluate the

best next move to make; and while doing so they assume that at each
step their opponent’s move is also the best estimate that can be com-
puted within the time available to ‘make the move’—a bit likeWatson
trying to figure out the best possible answer to a Jeopardy! question,
at least the sense that in both cases computational power is the lim-
iting factor. Evaluating all possible chess moves is not an option, there
are just too many; similarly, searching all possible answers is just as
impractical forWatson.
Returning to Junior once more, A∗ planning is used not only for

deciding which physical path to follow, but also in making decisions
such as whether or not to overtake another car. To make such deci-
sions Junior needs to estimate not only where the other car is but also
how fast it is going, as well as how fast cars in the neighbouring lane
are travelling. Again, while the planning tasks are are more complex,
A∗ still works. Of course, there is the added complication that unlike
in our example, Junior does not know all the obstacles present in its
environment beyond what it can see. Thus, Junior’s A∗ is a highly
‘local’ version that only knows about objects in the line of sight, and
so Junior needs to continuously rerun its A∗ planner as new objects
come into view.

* * *
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The A∗ procedure is an example of an optimization algorithm, since it
constructs an ‘optimum’ path from start to goal. In general, optimiza-
tion deals with maximizing or minimizing some ‘cost’, which in this
casewas path length. In other situations, theremight be different costs
to be minimized or maximized, such as board scores in chess.
In fact,wehave seenoptimization atwork inChapter 5 aswell, while

trying to find a model to describe wine prices like Orley Ashenfelter.
The problem there was to find the best model parameters a, b, c, and d
that would minimize the ‘cost’ defined by the error between the wine
price as predicted by the model versus actual historical data.
Recall the PID controller that Junior uses to steer itself. We found

that the choice of the ‘control parameters’ p, i, and dwas crucial. In fact,
not only do different choices work better than others by correcting
Junior’s orientation faster, there are also many dangerous combina-
tions that could throw the car violently off course. Once more, this
is an example of an optimization problem, where we need to find a
combination that not only works, but works well, i.e., brings Junior
back on track as fast as possible.
In Chapter 5we sawhow to find an optimumchoice for the parame-

ters a, b, and c in thewine-pricesmodel bymakingmany small changes
to some initial guess for a, b, and c. Once we find a combination that
cannot be improved further in this manner, we declare it to be our
best guess. There is a catch though: while starting from a random
guess works for the ‘linear’ wine-prices model, such a choice need not
always work. For example, in the case of finding optimal PID control
parameters, it ismore than likely that a random initial guess for p, i, and
d will send Junior wildly off course. In such a case, any minor adjust-
ments to the control parameterswould be just as bad, andwewould be
stuck. So in general we need to assume that the initial solution that we
start out with is ‘close enough’ to the optimum solution that we seek.
Unfortunately, there is often no way to make such a good guess with
certainty.
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Moreover, what gives us the confidence that just because we find
some solution, either for the wine model or PID parameters, which
cannot be improved by small modifications, it is indeed the best possi-
ble solution?Might it not be the case that there are better solutions that
can be arrived at only by starting from other initial guesses? As it hap-
pens, this is not a problem for the wine-prices model, again because
its equation is linear. For more general non-linear problems, such as
controlling Junior, there is no guarantee that a solution that cannot
be improved ‘locally’ via small adjustments is also a ‘global’ optimum
solution.

* * *
Reflect for a moment on how a baby figures out how to control its
limbs. Initially it is unable to reach out and grasp objects; it makes
mistakes, and often knocks things over. Such mistakes, even gross
ones, are used to learn better and better ranges for its own control
parameters. Eventually, they are fine-tuned enough so that move-
ment, grasping, crawling, and eventually walking become uncon-
scious skills.
Obviously we cannot allow such destructive experimentation at

high speeds with a real-life Junior. However, there is merit in taking
some clues from real life even here. As any child familiar with com-
puter games knows, one doesn’t have to actually build a self-driving
car to test-drive it. We could merely simulate Junior in a very realistic
computer game. In fact, that is effectivelywhat is donewhile designing
not only self-driving cars, but all kinds of control systems, includ-
ing aircraft to industrial robots. Of course, the simulations no longer
remain game-like, but the principle is the same; trial and error is often
the only way to tackle optimization problems efficiently.
Stepping back for a moment now, let us ask once more whether

control, planning, and optimization necessarily require intelligent
thought at all. The natural world provides many interesting insights
in this regard; in particular the behaviour of swarms of bees, flocks
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of birds, and ant colonies appear to magically solve optimization
problems that leave both humans and computers far behind.

Flocks and Swarms

Think of a large flock of birds flying in unison. Often dozens of birds
are able to synchronize their movements with ease, executing com-
plexmanoeuvres thatwould challenge the best of fighter pilots. Notice
how a flock of pigeons simultaneously gather near a park benchwhere
someone is distributing birdseed. There is no apparent leader in such
a flock. Moreover, in many cases the flock is so dense that each bird
can hardly see beyond its immediate neighbours. Are these birds com-
municating somehow; a form of telepathy perhaps? Indeed, this is
the only explanation that early observers of nature, such as Edmond
Selous,119 were able to find: ‘it seems tome that theymust think collec-
tively… the imperfect calling back of something which we have lost’,
he wrote in 1931.
In the past fewdecades, zoologists such as FrankHeppener and even

physicists suchAndreaCavagnahave usedhigh-speedphotography to
conduct careful studies of exactly how birds flock together.120 What
they found was that far from telepathy, or even any form of cognitive
communication, birds appear to follow very simple rules. On the one
hand, in the absence of any other stimuli, they merely mimic six or
seven of their nearest neighbours. On the other hand, birds that are
able to sight food or sense a predator’s approach obviously react to
suchopportunities or threats.Most importantly, thebehaviourof each
individual bird is a combination of both kinds of inputs.
By incorporating similar simple rules of interaction in large num-

bers of ‘artificial’ birds through a computer simulation and displaying
the resulting behaviour using high-resolution computer graphics, the
computer scientist Craig Reynoldswas able to reproduce highly realis-
tic flocking behaviour indistinguishable from that of natural flocks.120

253



THE INTELLIGENT WEB

Subsequent to Reynolds’s work in the 1980s, flocking behaviour using
simple rules has been used in programming vivid realism into com-
puter games as well as highly realistic hordes of animals, armies, and
other ‘flocks’ while making animation movies.
But let us now return to our original goal.Whatmight flocking have

to do with optimization and path planning, such as finding the best
set of PID control parameters, or the shortest path to a goal? In 1995
James Kennedy and Russell Eberhart described a new algorithm called
‘particle swarm optimization’, or PSO, inspired by exactly such flock-
ing behaviour in nature.121 Kennedy and Eberhart’s approach was to
find anoptimal solution, not through trial and error, but by simulating
many artificial ‘particles’ that would behave in a manner mimicking
a flock of birds They argued that just as flocks of birds all manage to
converge onto the most likely source of food, or for that matter almost
optimally evade a dangerous predator or treacherous path, the particles
could similarly arrive at the optimal solution for any optimization
problem.
Inspired byHeppener’s careful photographic studies of flocking and

the apparent success of simple rules as demonstrated by Reynolds’s
computer graphics, Kennedy and Eberhart’s particles also combine the
influence of neighbouring particles along with measurements of how
good a solution each particle has managed to stumble upon.
As an example, let’s see how we might simulate a particle swarm

to find optimal PID parameters p, i, and d for a control problem, such
as steering Junior. We can imagine dozens or even hundreds of par-
ticles floating in normal three-dimensional space, each representing
different random choices of control parameters.
In other words, we use the control parameters p, i, and d as the coor-

dinate positions of particles. Each particle runs its own independent
simulationof a PID controller, using its ownparticular combinationof
control parameters, and measures how long it takes for the controller
to reach a common goal: for example, the goal might be to correct a
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small deviation from the centre line of the road in the case of our self-
driving car, Junior. In otherwords, each particlemeasures the qualityof
its current best guess for the ‘solution’ to the PID optimization prob-
lem. Next, the particle figures out which of its neighbouring particles
has the best-quality solution. Additionally, each particle also remem-
bers its own ‘personal best’ solution.
Each particle behaves as if it is actuallymoving in a certain direction

with some velocity, as part of a swarm, and continuously changes its
‘position’, and thereby its guess of the solution. However, rather than
moving only in a straight line, it also adjusts its velocity continuously
by combining two factors, mimicking birds flying in a flock: first, how
far it is from its own personal best solution, and second, how far it is
from the best solution of its current set of seven or eight neighbours.
As a result the particle changes its velocity by an amount propor-
tional to this combination, and in a direction that averages these two
factors.
The PSO algorithm simulates many dozens or even hundreds of

particles in this manner. At each step every particle computes the
quality of its solution, adjusts its velocity by combining two factors as
just described, and then moves to a new position based on whatever
velocity it happens to arrive at. When one observes such a particle
swarm in its search for a solution, we truly find it behaving verymuch
like a natural flock of birds or swarm of insects. Moreover, the swarm
rapidly arrives at the best possible solution. Further, if there are many
almost equally good solutions, it manages to findmost of them rather
than only one.
Apart from giving us a novel optimization technique, the fact that

particle swarms are able to find optimal solutions, both as an algo-
rithmaswell as innature,might leadus todoubtwhether control, such
as driving steadily on straight and narrow path, actually requires any
intelligent thought at all.
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Tasks such as picking up objects, walking, and even driving are all
control and planning tasks that we accomplish with ease and without
much conscious attention. The ‘unconscious’ but optimal behaviour
of particle swarms indeed provides an interesting rational model for
such unconscious ‘System 1’ behaviour in our own lives. Are there
simulated ‘swarms’ of somekind continuously findingoptimal control
solutions amongst the billions of neurons in our brains, and these too,
as unconsciously as flocks of birds and swarms of bees? Perhaps; we
have no way of knowing for sure.

Problem Solving

Now let us take another look at the A∗ algorithm. Techniques such
as swarm optimization rely on ‘neighbourhood’ exploration, or ‘local’
search, to explore many different initial guesses in the hope that some
of them are close enough to an optimal solution, so that the swarm as
a whole can find its way there. In contrast, A∗ actually does construct,
from scratch, the best solution, i.e., the shortest possible path to the
goal. It does not need to start with a good initial guess, which in its case
would be some path to the goal, and iteratively improve it. Instead, A∗

constructs the optimum path from scratch. In fact it explores many
alternative ways to construct a path, tracing back its tracks as required
in order to explore alternative choices.
Another important difference between planning, e.g., finding short-

est paths and, say, minimizing the control error, is that the latter is
an example of continuous optimization. On the other hand, a planning
task, such as finding the shortest path on a grid of squares, is a discrete
optimization problem. To understand what this means, notice that
the control parameters, p, i, and d, are real numbers, and therefore in
principle there is a ‘continuum’ of infinite possible values to choose
from. In contrast, since the number of squares in the grid is discrete
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FIGURE 7 Eight queens puzzle

and finite, so are the number of possible paths from start to goal, of
which one or more are the shortest in length.
At first glance it might appear that discrete problems with a finite

number of options to be explored should be easier than continuous
ones that have infinite possibilities. Unfortunately this is not the case.

* * *
The eight-queens problem is a popular chess puzzle in which the task
is toplace eight queenson a chessboard so that no twoqueens threaten
each other. Figure 7 illustrates this puzzle. While the arrangement on
the left is a valid solution, the one on the right is not, since two pairs
of queens, i.e., in columns 2 and 4, as well as 6 and 8, are threatening
each other.
For small chessboards, such as a 4× 4 board, the puzzle is trivial to

solve. It gets more difficult for larger sizes, including the standard 8×
8 board. Even in the 8 × 8 case, of the over 4 billion possible arrange-
ments of eight queens, only 92 are correct solutions to the puzzle.
Now, could a computer solve this puzzle, not only for 8 × 8 boards,
but for n queens on an n × n board? The puzzle clearly requires some
kind of reasoning, at least for humans. Even for a machine, the brute
force approach, i.e., enumerating all possible solutions and ruling out
those that do not work, will also fail miserably for larger values of n.
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For example, with a 20 × 20 board, there are over 1018 possibilities,∗

which is farmore than the fastest of computers can explore in a human
lifetime. So, even a finite number of possibilities can still be so large as
to be effectively infinite for all practical purposes.
Nevertheless, it turns out that A∗-style reasoning can indeed solve

the eight-queens problem; let’s see how. For simplicity we’ll use a
board of size four to illustrate the A∗-like heuristic search procedure
that constructs a solution. First, let us consider what needs to be con-
structed. Clearly we need to choose the positions of four queens on
the board. With just a little thought we might realize that two queens
cannot be in the same row or column, so we may as well name the
queens by the row they lie in, since there can be at most one per row.
Now we merely need to find four numbers, the position of the row-
1 queen, the row-2 queen, and so on, in such a manner that the con-
straints of the problem are satisfied, i.e., no two queens threaten each
other.
Let’s start by enumerating the choices for the row-1 queen, such as

1-1, and 1-2, with the second number representingwhich square in row
1 it occupies. Since the board is symmetric, we don’t need to bother
with 1-3 or 1-4, since any solutions with these choices will be mirror
images of thosewith 1-1 or 1-2. Aswe didwhile constructing a shortest
path using A∗, we keep track of these two choices by adding them to a
‘ready list’, and then proceed to ‘expand’ each one in turn. Let us first
expand 1-1, i.e., we assume the row 1 queen is in position 1, and then
proceed to examine possible choices for the row-2 queen.We rule out
2-1 and 2-2 since these will be in the line of fire of queen one, leaving
us with 2-3 and 2-4; these are duly added to the ready list as partial
solutions (1-1, 2-3) and (1-1, 2-4) respectively.
You may recall that in A∗ we sorted the ready list based on the

length of the path each choice represented, sincewewanted to find the

∗ A billion billion, or 1 with 18 zeros.
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shortest path. In contrast, for the queenspuzzlewe aremore interested
in finding a solution, as fast as possible. So insteadwe sort the ready list
by the completeness of the solution. Thus (1-1, 2-3) comes before (1-2),
since the former ismore complete than the latter.As inA∗,we continue
picking up the partial solutions from the ready list and expanding
them further. Feasible solutions, i.e., those that do not involve a pair
of mutually threatening queens, are added to the ready list, unfeasible
ones are ruled out.

* * *
Technically speaking, the n-queens puzzle is actually not an opti-
mization problem; there is nothing being maximized or minimized.
Instead, the task is to find a feasible solution given a set of constraints.
Such problems are called, not surprisingly, constraint satisfaction prob-

lems, or CSPs. Planning techniques based on A∗ apply equally to CSPs
as well as discrete optimization problems such as finding shortest
paths. Moreover, most real-world problems are almost always a com-
bination of constraint satisfaction and optimization.
For example, suppose a self-driving delivery van based on the Junior

model was asked to deliver supplies to a number of locations across the
city, rather than merely travel from one end of a car park to the other.
As in any reasonably large city, it is possible to drive from any one
location directly to any other. At the same time, some locations will
be near each other, while other pairs might be at opposite ends of the
city. All that we want Junior to figure out is the sequence in which to
visit its designated destination locations. Ideally Junior should find the
sequence that takes the least overall time, i.e., the shortest total path.
Just as in the case of the queens puzzle, if the number of locations

Junior needs to visit is small, say four or five, it is easy to check all
possible sequences and find the shortest path. However, as soon as the
number of locations becomes even moderately large, the task rapidly
becomes intractable: with just 15 locations, Junior is facedwith over 43
billion combinations to check.
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In fact, this task is called the travelling salesman problem with n loca-
tions (or TSP for short), and is closely related to other intractable prob-
lems such as the satisfiability problem (or SAT) that we discussed in
Chapter 4. We encountered SAT while trying to figure out how dif-
ficult it would be to prove or disprove any logical statement with n

unknown ‘facts’, each having but two possible values, true or false.
Both SAT and TSP are examples of NP-Complete problems as defined
by Steven Cook in 1971, which have no known efficient solution for
large n. Soon thereafter, in 1972, a whole host of related problems,
including TSP, was shown to be in the same ‘intractable’ league by
Richard Karp.122

Even though TSP is really hard to solve, planning techniques such
as A∗ can be used to attempt finding reasonable solutions, even if not
the shortest one. Just as in our earlier path-planning example, we start
from some location and expand alternative paths from there, choos-
ing a new location that produces a new partial path of the shortest
length amongst the alternatives yet to be tried. As before, A∗ main-
tains a ready list of paths to be further expanded, from which the
shortest path is chosen to expand further. As soon as at least some
number of complete paths appear on the ready list, we choose the
smallest among them and declare it as the best we can find. Unfor-
tunately, the path so found will almost never be the shortest one;
after all, the problem is really hard and we would be incredibly lucky
to find the shortest path. Still, A∗ does reasonably well, and can do
even better using more sophisticated heuristics that we won’t get
into here.

* * *
The A∗ algorithm for path-planning is an example of a more general
category of planning techniques called heuristic search planners, or
HSP for short. The idea of searching through alternatives for con-
structing a solution by systematically exploring different alternatives
is a powerful idea that goes way back to a 1959 proposal by Newell,
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Shaw, and Simon called the ‘general problem solver’, or GPS. In fact,
Newell and Simon’s paper123 was entitled ‘GPS: A Program that Simu-
lates Human Thought’.
As we have mentioned earlier, heuristic search has been used in

chess-playing computers, including IBM’s Deep Blue that beat world
chess champion Garry Kasparov in 1997. Did Deep Blue indeedmimic
human thought? The consensus so far is clearly the negative. In spite
of the heuristics used to limit its search, Deep Blue examined as many
as 200 million chess positions per second. In comparison, it was esti-
mated that Kasparov examined at most three positions per second.
Deep Blue still appeared to be a brute force approach; brawn vs brain,
rather than anything close to intelligent thought. Still, a few, including
Nils Nilsson himself, think differently:

Although Deep Blue relied mainly on brute-force methods rather than on
reasoning (for example), it did use heuristic search, one ofAI’s foundational
techniques. The differences between Kasparov and Deep Blue simply indi-
cate howmuch better chess programswould fare if they employed human-
chess-playing knowledge…andmachine learning.2

Since 1997, chess-playing programshave become cheaper, due in some
part to Moore’s Law and the rapidly decreasing cost of raw comput-
ing power, but also by being able to learn better heuristics from vast
amounts of data via machine learning.
Puzzles such as the eight-queens problem certainly do tax our

brains.Others suchasTSP tax even the fastest of computers.Moreover,
planning techniques suchasA∗ useheuristics to limit their search,much
as we rely on ‘gut feeling’ derived from years of experience. Certainly
very different from the random trial-and-error of swarms of bees and
flocks of birds. So, in spite of the differences between Garry Kasparov
andDeep Blue, it surely appears that techniques for discrete optimiza-
tion might indeed provide a ‘rational model’ for some aspects of the
computations that underlie intelligent thought as we plan our lives
and actions.
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Even if that is the case, the natural world has further surprises yet;
examples of complex ‘discrete’ planning also abound in natural sys-
tems, just aswe found swarms and flocks to be inspirations for contin-
uous optimization. Tofind such examples,weneed to turn fromflying
birds and bees to the surprisingly efficient behaviour of the lowly ant
and, more importantly, ant colonies.

Ants at Work

If you have ever observed an anthill ‘at work’ in any detail, it might
certainly appear that ants are quite dumb; youmight see someof them
going around in circles, others repeating and then undoing their own
actions, and even destroying thework of other ants. Still, when viewed
over a span of hours at amacro-level, the ant colony as a wholemirac-
ulously appears to achieve a lot of useful work. The colony is able to
find food sources and focus on the most promising ones, from which
it rapidly transports goods as efficiently as a Walmart does from its
suppliers. The colony senses predators and reacts appropriately, like
a modern army with sophisticated communications; and when dam-
aged it rebuilds its ramparts with remarkable alacrity. The ant colony
indeed appears to be smart, even if ants themselves are not.
Still, there is no centralized brain behind the ant colony. Contrary to

popular renditions, the queen ant is just as dumb as the rest. There is
no strategy being formulated or debated, nor are orders being trans-
mitted ‘down the chain’ as in a human organization. Yet, the colony’s
‘emergent’ behaviour appears surprisingly efficient, and bordering on
the intelligent.
Since the late 1980s, researchers such as Jean-Louis Deneubourg 120

have studied the behaviour of ants to figure out how they manage
to produce such efficient, and almost intelligent, emergent behaviour.
One of the mechanisms ants use to communicate is by judiciously
releasing small amounts of chemicals called ‘pheromones’ along the
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paths they take. For example, forager ants will drop pheromone along
their path when returning to the colony laden with food supplies,
thereby directing other foragers to follow in their footsteps to getmore
food.
Interestingly, the very simple mechanism of ‘following the

pheromone’ allows the colony as a whole to find the shortest path to a
food source. Longer paths to a food source accumulate pheromone at
their source slower than shorter ones, simply because ants take more
time to return with food from faraway sources or along longer paths
to the same source. As a result, foragers setting out on their journey
naturally follow shorter paths to the nearest sources, simply because
these are the ones with higher concentrations of pheromone.
Inspired by Deneubourg’s and other studies of how ants manage to

find shortest paths using pheromones, Marco Dorigo, in his 1992 the-
sis, suggested using ‘virtual’ ants to solve more general optimization
problems, such as the travelling salesman problem. Dorigo’s seminal
work spawned a whole new class of techniques that now go by the
name ant-colony optimization, or ACO.124

* * *
Let’s see how ACO can be used to find good solutions for the travel-
ling salesman problem. Recall that the travelling salesman problem
involves finding the shortest path that visits a set of prescribed loca-
tions. A number of virtual ants are simulated, one by one. Each ant
starts from a random location and greedily constructs a path that
includes all other locations by choosing, at each step, the closest loca-
tion amongst those remaining to be covered. As an ant travels from
location to location, it leaves behind some ‘virtual pheromone’ on the
connection (or ‘edge’) between every consecutive pair of locations that
ends up being included in its final path. At the same time, mimicking
real life, pheromone evaporates over time, so the pheromone finally
left behind by ants that end up with very long paths largely evapo-
rates by the time the ant is done. As a result, once all ants have found
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their first path, the pheromone trails remaining reflect those pairs of
locations that ended up being used in shorter paths; i.e., an edge (con-
necting a pair of locations) that has a large pheromone residue partici-
pated inmore and shorter paths thanother edgeswith less pheromone
residue.
Next, the ants repeat the procedure again. However, this time they

favour paths that already have larger pheromone residue, in addition
to taking into account which location is the nearest. As a result, after
the second roundof path-finding,many ants succeed in bettering their
earlier performance andfind shorter paths thanbefore.As before, they
leave pheromone during this second round as in the first, even as the
residues left behind earlier continue to evaporate. When the process
of letting loose virtual ants is repeated a number of times, we find that
fairly good TSP solutions, i.e., reasonably short paths, are found by
many ants.
Well, maybe finding shortest paths is what ants do well anyway,

so perhaps the fact that ACO can be used for problems such as TSP
is not surprising. More interestingly though, ACO techniques work
equallywell onmany other problems, including the eight-queens puz-
zle, which appears to have little to do with finding shortest paths of
any kind.
Here is how the queens puzzle can be solved using ACO. As before,

the algorithm simulates many ants each exploring solutions indepen-
dently, only communicating via the pheromone trails they lay. An ant
starts from some row-position, i.e., by placing a queen at a random
position in some random row. Next, the ant chooses another row and
position at random, except for avoiding obviously incorrect choices
suchas choosingacolumnalreadychosenearlier.Onceanantfinishes,
i.e., assigns positions to all n queens, it calculates how bad its solution
is in terms of the number of queens that are in fact threatening each
other. Finally, the ant lays pheromone trails along the ‘path’ of choice-
pairs it made while constructing its solution. For example, an ant that
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chooses position (2,4) after (1,1) lays pheromone on the (1,1) → (2,4)
pair, or ‘edge’. Ants that happen to stumble upon reasonably good
assignments release more pheromone than those whose solutions
were poorer. So the total pheromone deposited on the (1,1) → (2,4)
edge will be proportional to how many good solutions actually
included this particular choice during their construction.
In subsequent iterations ants tend to favour solutions constructed

using edgeswith higher pheromone levels rather than completely ran-
dom ones. The procedure is repeated many times, with pheromone
evaporating continuously. In the end, hopefully,wewill find some ants
that have found the solution. Inpractice,ACO is in fact able to solve the
n-queens problem fairly well.125

If it hasn’t already occurred to you, ant colony techniques are also
related to A∗ planning in some respects. The hard work of other ants
in previous rounds of ACO, as reflected in the pheromone levels,
acts as heuristics do in A∗, ensuring that steps that are likely to be
poor are moved to the end of the queue in future rounds of ant-led
exploration.

Darwin’s Ghost

All the techniques for planning and optimization we have seen so
far, including A∗ as well as particle swarm and ant-colony optimiza-
tion, perform trial-and-error explorationof a large number of possible
solutions, with some element of randomness in the way solutions are
constructed. Of course, PSO and ACO rely on random choices to a
larger extent as compared to A∗.
Even random explorations need to be controlled in some manner;

by neighbourhoods in the case of PSO and via pheromone levels in
ACO.Somehow, it appears that randomexplorationusing simple rules
can often perform just as well as the careful, logical steps followed
in A∗. We might conclude from these discussions that sophisticated
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behaviour need not be the sole prerogative of intelligent thought.
Rather, we may just as well begin to suspect that random explo-
ration has muchmore to teach us about what is involved in conscious
thought and intelligent reasoning than any ‘hard’ logic. Is the latter
merely a by-product of, rather than the basis for, intelligence?
And speaking of trial and error, is not Darwinian evolution itself a

trial-and-error phenomenon that has resulted in, among other things,
neurons and brains that appear to be the seat of intelligent thought
itself?
In fact, the origin of diversity in nature via natural selection has

indeed been the inspiration for a class of optimization algorithms
called genetic algorithms, invented in the 1970s by John Holland.126 The
key idea of a genetic algorithm is that two reasonably good solutions
obtained by random exploration can be combined with each other in
much the same manner as chromosomes from two parents are com-
bined to form a child’s genetic blueprint.
To solve anoptimizationproblemusing a genetic algorithm,wefirst

need to encode candidate solutions in some manner so that they can
be represented as a mere sequence of symbols. The idea is that such a
representation of candidate solutions is analogous to how a bunch of
chromosomes represents all the genetic properties that define a com-
plete organism in the natural world.
For example, a candidate solution to the travelling salesman prob-

lem is comprised of n locations arranged in a sequence, which can
serve as its chromosome coding. In the case of the n-queens puzzle,
a candidate solutionmight be represented by a sequence of n numbers
giving the position to place a queen in each of the n rows on the board.
A genetic algorithmbegins by randomlyproducing a large number of

candidate solutions, each represented by a chromosome coding such
as the ones just described. Next, the fitness of each solution is calcu-
lated. In the case of TSP, fitness wouldmean the total distance covered
by a path; for the n-queens puzzle, fitness might be the number of
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mutually threatening pairs in an arrangement of queens. The large set
of candidate solutions is filtered to weed out the poorer ones, accord-
ing to their fitness,much as happens in trueDarwinian selection in the
natural world.
Finally, random pairs are chosen from the remaining ‘fit enough’

candidates and combined, or ‘mated’. For example, suppose we have
two ‘parent’ chromosomes, (2, 3, 5, 8, 9, 7, 1, 4, 0, 6) and (0, 5, 6, 2, 9, 8, 7, 1,
3, 4), each representing candidate solutions for a 10-locationTSP. Com-
bining, or mating, these chromosomes takes place in a manner that
mimics real life, by cutting both the parents at some ‘crossover’ point
and then swapping corresponding segments of each parent chromo-
some with each other. In this example the crossover procedure might
involve cutting each parent at, say its third position, and swapping
segments, yielding the two child sequences (2, 3, 5, 2, 9, 8, 7, 1, 3, 4) and
(0, 5, 6, 8, 9, 7, 1, 4, 0, 6).
Unfortunately, though, we now find that locations are repeated,

such as 2 and 3 in the first child, and 0 and 6 in the second. Since valid
TSP solutions need to visit each of the 10 locations, these errors need
to be repaired somehow. Fortunately, repair is simply accomplished by
allowing one of the duplicates, say the first, to be replaced randomly
by any of the locations missing in the child. So, by replacing the first 2
by 0 and the first 3 by 6, we get as the repaired first child (0, 6, 5, 2, 9,
8, 7, 1, 3, 4), which is a valid candidate solution for TSP. Similar repair
yields (3, 5, 2, 8, 9, 7, 1, 4, 0, 6) by replacing the first 0with 3 and the first
6 with 2, again yielding a valid new candidate TSP solution.
The new population of candidate solutions is comprised of all the

earlier deemed fit parents along with all their children. Note that in
order to produce enough members in this next stage, many pairs
may need to be mated from amongst those selected as fit after the
first round; polygamy and bigamy is not only desirable here, but
encouraged! Once a new population is produced, it too is weeded
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of poor candidates and the process continues until sufficiently fit
solutions are found.
Genetic algorithms rapidly find good solutions to many difficult

problems. Further, they are notoriously easy to apply. For example,
notice that exactly the same crossover procedure canwork equally well
for the n-queens puzzle to combine, or ‘mate’, two candidate solutions.
The genetic analogy certainly seems as pervasively applicable in algo-
rithm design, as the common genetic basis is prevalent in all life forms
known to us.

Intelligent Systems

Let’s take a few steps back and see where we have arrived. Program-
ming a self-driving car was our first example where we explored how
predictions need to lead to corrections, in order tomake anydifference
in the real world. Smooth and stable corrections, either to Junior’s
steering wheel, or even to our own limbs, require control algorithms.
Next, arriving at good control strategies was itself found to be an
example of a more general optimization problem: in control we seek
to continuously navigate in a manner that minimizes the error from
ourdesired goal.Optimization andplanning allowsus tofind the ‘best’
strategy to control a self-driving car, or, for that matter, the best path
across a parking lot, or even complex tours across townwhile deliver-
ing supplies to many customers.
Optimization techniques themselves range from the shortest-path

and A∗ planning techniques, to the naturally inspired particle swarm,
ant colony, andgenetic algorithms.Moreover, these techniques gowell
beyond mere planning shortest paths; they can be used to find good
solutions to a variety of difficult problems, including puzzles such as
the n-queens problem that clearly tax our mental faculties.
Many real-life systems rely on optimization techniques every day.

When you book a rental car, purchase an airline ticket, shop online,
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or even walk around in a real physical store shopping for almost any-
thing, the prices that you see and the products you find, even the
shelves they lie on—all these are but the final results of continuous
optimizations designed to not only give you a good price, but also
take into account many factors that help the provider. The locations
where cars are likely to be available; the expected load on the flight
sector you are looking for; even the inventory levels, productionplans,
and competitive positioning of the products you are browsing—all
these factors and many more are taken into consideration, either as
constraints or as part of a cost that needs to be minimized or a profit
to be maximized.
Behind the scenes also, manufacturing companies are continuously

forecasting, i.e., predicting demandbasedonpast sales, consumer sen-
timent, and even weather. Demand predictions are fed into complex
optimizations to calculate exactly how much of which product to
produce, and where. Further optimizations decide how to best ship
components to where they need to reach, and that too just in time to
avoid building up costly inventory in warehouses.
Moreover, real-life optimizations are not limited to the commercial

world alone. Public utilities that each of us rely on in everyday life
are equally complex to manage. The way power is distributed across
a national electric grid is rife with optimization problems. In many
countries power is traded between provinces or states, with prices
being determined by complex calculations that take into account pre-
dicted surpluses and deficits, which are continuously corrected by
actual demand and supply. In the future, as many writers including
Thomas Friedman have predicted,127 flexible energy pricing will also
include the source of the power, with greener sources, such as wind
or solar power, costing less than those more harmful to the environ-
ment, such as coal-fired sources. Awindyor sunnydaymay see energy
prices dipping sharply as windmills and solar panels produce more
surplus power.
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Last but not least, water scarcity looms large in many parts of the
world. Increasing sophistication in how best to store, distribute, and
price water is likely to become the basis of next big public utility,
almost as important as thepervasive electricity grid.Oncemore, com-
plex optimizations will be needed to find good solutions.
Finally, as complicated as all these above real-life examples might

appear, they can all be understood in exactly the same manner as the
simple optimization and control problems we have described earlier.
Predict the future, be it demand, supply, or the environment. Use these
predictions to find optimal solutions, and then navigate (i.e., correct)
one’s organization or public utility towards an optimal state. Complex
systems, from self-driving cars to massive industries, all share many
similarities with each other as well as perhaps with the most complex
systems of all, human beings themselves.

* * *
While describing a future filled with self-driving cars, Eric Schmidt
imagined that each car would have a ‘drive’ button. Presumably one
would first tell the car where to drive to, somehow; perhaps even via
one’s voice-recognition-enabled mobile phone.
Underlying such a drive button lie many layers of control and opti-

mization.At the lowest level is thatof Junior trying todrive in a straight
line. At the next level comes planning how to take a turn, overtake
another car, or change lanes. The output of this layer is the path to be
followedby the earlier, lower layer. At the same time, a still higher layer
needs to decide whether or not to overtake the next car, change lanes, or
take a turn. These decisions could be based on local conditions such
as the speed of neighbouring cars and the relative emptiness of other
lanes. Alternatively, instructions may arrive from even higher layers
as to whether an exit to be taken is imminent, or the next left turn just
needs to be taken, full stop. At the very topmost level theremight even
be a complex TSP-like planner that computes the best path to your
final destination taking into account knowledge about expected traffic

270



CORRECT

conditions, roadblocks, and even the collective intentions of all users
of self-driving cars. In a recent talk,128 Vint Cerf, a Google Fellow, who
incidentally, is also credited with the invention of the internet itself,
remarked that the day is not far of when four self-driving cars arriving
at a four-way stop sign would actually wirelessly communicate with
each other to decide which of them should go first. ‘Fender benders’
arising from the all-too-familiar misunderstandings that often occur
at such junctions would be a thing of the past!
Now, a hierarchical control structure such as that just described is

actually quite common. Thinkof the aeroplane autopilot systemsused
today. Planes alreadyhave a ‘fly’ button, even ifwe are yet to experience
Google’s drive-button-enabled cars. At the highest level, all the pilot
needs to feed in is the desired destination and a fewmarkers along the
way indicating which route to take. Then he can sit back and relax.
On the other hand, at the lowest level, each aileron, flap, and rudder
needs to be adjusted continuously in response to minute changes in
wind speed and direction. This lowest level is given its goals, e.g., fly
straight and level, or bank gently and turn 30◦ to the left, by the next
higher level of control.Whether to fly straight or turn is decided at the
intermediate level taking into account local navigational needs, such
as having to avoid a patch of rain, along with the longer-term goals
set by higher levels of path planning. At the same time, each level uses
control concepts to continuously monitor and correct itself to stay on
course and achieve its own individual goals.

* * *
WhenNorbertWiener suggested that the concept of feedback control
systems could serve as a useful model for describing human thoughts
and actions, he also had a hierarchical structure inmind. At the lowest
levels, our brain unconsciouslymonitors and controlsmanyhundreds
of vital functions, from our heart and lungs to the numerous chem-
ical levels that must be maintained within a comfortable range. At
the next level, also largely unconsciously, come individual muscular
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movements that are executed in close coordination so as to achieve
fluid gestures such as raising one’s hand, or grasping an object. As
designers of industrial robots know only too well, replicating the sim-
plest of human gestures by amechanical robot requires tremendously
complex planning and optimization.
Even if we consider the arena of conscious volition, individual ges-

tures and movements are themselves only the lowest levels of con-
scious planning and control. Ever higher levels include deciding, plan-
ning, and executing a walk across the room, one’s commute to work,
the dozens of carefully thought-out decisions and actions we per-
form daily, and so on to the highest levels of planning a career, or an
entire life.
What kinds of predict–correct cycle allow us to plan and control

our actions at higher levels of thought? Surely there must be some
stage at which logical, symbolic thought emerges miraculously from
lower-level feedback loops. We have encountered this dilemma ear-
lier,while discussingHawkins’s hierarchical temporalmemoryandhis
memory-prediction model of intelligent thought. As we have seen in
this chapter, planning and optimization tasks can indeed be achieved
by far dumber entities, such as ants and birds, albeit operating in large
numbers. Do these shed any light on the open question of how to
connect lower levels of largely statistical processing tohigher symbolic
forms of reasoning?We just don’t know, yet.
Moreover, it has also been argued that it is precisely our symbolic

abilities, however they might actually arise, that distinguish humans
the most from other animals, including other primates, and perhaps
also natural systems such as swarms or ant colonies. PatrickWinston,
one of the stalwarts of artificial intelligence research from its begin-
nings, makes this point.129 He quotes the anthropological studies of
Ian Tattersall130 that suggest that not only do other animals, primates
included, lack symbolic abilities, but that symbolic thought emerged
rather suddenly in our ancestorswith the advent of Cro-Magnonman,

272



CORRECT

only around 50,000–70,000 years ago. Winston also quotes the lin-
guist Noam Chomsky’s interpretation of Tattersall’s findings, i.e., that
it is specifically the ability to connect two symbolic concepts to make a
third that brings us powers of reasoning, which in turn leads to the
development of language. Indeed, I have submitted a similar thesis
in this book as well, specifically in Chapter 4, ‘Connect’, but also by
emphasizing that ‘connecting thedots’ is thekey tohowwemake sense
of and navigate the world.
With language comes the ability to tell and understand stories, which

leads toWinston’s ‘strong story hypothesis’, i.e., that this is the key to
how we differ from all other animals. Added to this is our ability to
imagine stories that may not even have occurred, which in turn comes
from the ‘directed perception hypothesis’, i.e., being able to direct our
neurological apparatus for perception, mainly visual, but also audi-
tory, towards imagined events.129

Storytelling helps us control the future… if this drug is used then that will
happen…our experience, recalled through stories, is the way we imagine
and control the future3

says Winston. As a result, we can literally ‘see’ what might happen in
the future, however immediate or remote. Further, we can also imag-
ine what is likely to be the consequence of our actions, and others’
reactions, thereby ‘seeing’ even further into the future. Imagining the
future is exactly what chess champion Garry Kasparov does. So does
the computer Deep Blue while executing symbolic A∗-like search. It
is just that Garry adds an extra ton of ‘gut feeling’, which Deep Blue’s
heuristic optimizations cannot match.
Moreover, we can imagine similar algorithmic techniques—coming

up with predictions using reasoning, coupled with statistical learning
to improve heuristics, followed by optimal planning—as being able to
explain, to a certain extent, how we plan our day, or week, or career.
First, by simply imagining the possibilities, symbolically. We then
exploremany alternatives, pruning themusingpreviously learned ‘gut
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feeling’. Our navigations are at first hypothetical and imagined, some-
times even unconsciously. Finally they become real when we execute
conscious actions, in which control is exercised to ensure we stay on
ourpredeterminedcourse. Last butnot least, all these explorations and
executions are continually taking place at many levels, hierarchically,
as well as at many different timescales, from moments and hours to
days and years.
In contrast, even though the natural world of ants and bees is full of

optimization and planning, their brains, alongwith those of other ani-
mals, appear to lack constructive symbolic abilities. From constructive
imagination in the symbolic universewe are able to explore a farwider
range of possibilities, and further into the future than other animals.
It is this evolutionary accident that we call intelligence.

* * *
Look and listen to learn from past, connect to imagine and then predict

the future, and finally correct one’s actions. We have come full circle,
even though we might not fully understand the origins of symbolic
thought. Further, as we have seen, we can indeed programmany capa-
bilities that closely resemble those arising from ‘true’ intelligence into
the large-scale, web-based systems that are likely to increasingly per-
meate our societies: search engines, social platforms, smart energy
grids, self-driving cars, aswell as amyriad other practical applications.
All of these will increasingly share many features of our own intel-
ligence, even if lacking a few ‘secret sauces’ that might remain to be
understood.
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PURPOSE

As I have argued in the previous chapters, intelligent behaviour, be it
human or as exhibited by an appropriateweb-intelligence application,
is comprisedof six elements: looking, listening, learning, connecting, predict-
ing, and finally correcting. In the end, the final element, correct, serves to
control our journey and guide us closer to our goals.
In the case of online advertising, the goal was to target advertise-

ments better. In the case of the self-driving car, the goal should be a
safer ride for each car, and less congested roads at a higher level. Simi-
larly, the smart gridmight aim to regulate energy usage and reduce the
societal carbon footprint.
Even if by looking, listening, learning, connecting, predicting, and

correcting, web-intelligence systems are able to mimic intelligent
behaviour in the pursuit of such goals, we should also ask where
these goals come from. Obviously the answer is ‘from us’. The web-
intelligence systems themselves do not generate their overarching
goals; these are built in, by their creators, i.e., us.
We are, of course ‘different’; we have, or at any rate, appear to have

‘free will’, and decide our own goals. So whatever web intelligence,
AI, or any other concoction of computing techniques might achieve,
we will still be different, of course. Sure? To make certain, we must
also try to understand where our own goals come from. At times the
discussion that follows will tend to stray into the philosophical, but
bear with me; there is something at the end.

* * *
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For inspiration we turn to the neuroscientist Antonio Damasio’s
exploration of just this subject in his recent book Self Comes to Mind.75

Damasio argues first that the mind’s primary function is to map, or
represent, the world. In the process of such mapping, first the body,
then the external world around us, and finally our experiences, are all
mappedand represented in some form.This ismuchaswehave argued
froma computer science perspective aswell. Learning is all about arriv-
ing at representations, or models, of the world, while connecting and
predicting exercise these models to reason and make predictions about
the world.
The self, on the other hand, is different from the mind, according

to Damasio. As the mind maps the external world, the self maps the
mind, or rather, its historical, autobiographical experience. The self is
the capability to reflect on previous states of mind, which in turn are
representations of the body and external world.
Of course, the mind or self, however Damasio might differentiate

between them, are in the end comprised of mental states arising from
neuronal firing patterns. So, if our reductionist arguments are valid,
these too must be governed by logic and mathematics at some level.
Herewe canfind some comfort in thatwehave seen thatmathematical
structures, such as Gödel’s construction, do indeed possess the capa-
bility for self-reference and therefore possibly also self-representation,
a point which has also been argued extensively by others such as
Hofstadter.74 So perhaps we can indeed believe Damasio’s self–mind
dichotomy even while wearing lenses of computer science and math-
ematics.

* * *
Purpose, according toDamasio, stems from homeostasis, which is noth-
ing but the need to maintain various parameters of one’s body and
environment in a range that is best suited for survival. The job of the
self, as opposed to themind, is to reflect on one’s current situation and
compare itwithpossiblybetter statesof ‘well-being’. The self is aided in
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this endeavour at the lowest level by chemical monitors of well-being,
such as dopamine. At higher levels it is the mind that comes to its aid,
via imagination, which is nothing but the prediction of possible future
states of well-being along with analyses of the the means to achieve
them, by reasoning, i.e., by connecting the dots.
Homeostasis defines biological value, from which in turn follow all

value systems that permeate our existence and bring purpose into our
lives. These range from the personal, e.g., the value of a full stomach,
to the sociocultural, e.g., the benefits of protecting our families, and
eventually the value of a just society: ‘The consciousminds of humans,
armed with such complex selves and supported by even greater capa-
bilities of memory reasoning and language, engender the instruments
of culture and open the way into a new means of homeostasis at the
level of societies and culture’75 argues Damasio, going on to say: ‘Jus-
tice systems, economic and political organisations, the arts, medicine,
and technology∗ are examples of the new devices of regulation’.

* * *
Complexweb-intelligence systems are just beginning to emerge out of
the past decade of progress in large-scale AI, driven initially by online
advertising. Self-driving cars and smart energy grids are the forerun-
ners of even more complex systems that will eventually power and
intelligently control our world and lives.
In the language ofDamasiowemightwell view theweb-intelligence

systems that we shall inexorably weave into the fabric of our society
as an evolution of our minds. At the same time, the societal changes
brought about by these very systems, such as the social networks that
are already changing the way we relate to each other, could be viewed
as the evolution of our collective self, again in Damasio’s terms of
extended homeostasis.

∗ Emphasis added.
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Today, in spite of all their achievements, our web-intelligence sys-
tems remain rather rudimentary implementations of the elements of
looking, learning, connecting, predicting, and correcting, at least as
compared to the human brain. Moreover, the linkages between these
elements, while present, are far from the level of integration that the
human brain achieves. How far can we go by continuing to engineer
these elements and the linkages between them to make them even
stronger? Is it just a matter of more engineering and better techniques
that can bring about a fundamental evolution of our collective self
synergistically with ever more powerful web-intelligence minds?

* * *
Perhaps the key missing ingredient is purpose, or rather how it is engi-
neered. Not that web-intelligence systems need to have purpose; that
will always come from our collective self, as argued earlier. However,
today we engineer purpose into our creations at a micro-level. We
decide exactly how better targeted advertising should be achieved, and
build in the requiredmachine-learning andprediction code.Wedecide
the route-mapping algorithms, control systems, aswell as higher-level
planning techniques to use when building a self-driving car or even a
future networkof such vehicles.Wedefine the pricing policies for each
type of energy source based on our current understanding of carbon
footprint and our estimate of its value vis à vis economic considera-
tions. In each case, we ‘hard-code’ our goals into these systems, at a
fairly low level.
Suppose we were able to pass on purposes to our systems slightly

differently: we decide the homeostatic parameters for both safe driv-
ing and traffic congestion. Similarly, we might define the goals of a
pollution-free, carbon-neutral, yet cost-efficient energy economy. Last
but not least, maximizing an online advertising network’s net market
worth might well serve as its ‘purpose’.
Could our web-intelligence systems, be they for online advertis-

ing, traffic management, or smart energy, do all the rest? In other
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words, could they reason about possible advertising strategies, traffic-
control policies, or grid-management models, try them out, measure
the results, and take decisions, even if suboptimal? Could they then
continue the process iteratively,much aswe do?And last but not least,
would they ever appear to be creative in their endeavours?
The question of whether machines can even appear to be creative

is as hotly debated as the core philosophical question of strong AI
itself. Computational creativity has recently been carefully analysed by
Margaret Boden.131 She identifies three types of creativity: combi-
national, exploratory, and transformational. As she demonstrates by
citing variousAI projects, each type of creative behaviour can be com-
putationally achieved usingmany of the techniques we have discussed
in this book: analogical reasoning, heuristic search, and genetic algo-
rithms in particular. In conclusion she remarks that

thanks in part to AI, we have already begun to understand what sort of phe-
nomenon creativity is. Still something of a mystery, perhaps. And certainly
a marvel. But not—repeat—not—amiracle.131

Sowhat seems to be clear fromour discussions so far is that to achieve
even a glimmer of the reflection, complex reasoning, and even creativ-
ity needed for a higher-level programming of purpose, a true integra-
tion across all the elements of look, listen, learn, connect, predict, and
correct is needed.
If indeed we could articulate purposes at such high levels and

achieve such an integration of elements, our web-intelligence
‘minds’ might well serve our collective, societal selves much more in
the manner in which our own individual selves are served by their
respectiveminds. This, if at all, is possiblywhereAI, in the formofweb
intelligence, might be headed. Not the ‘strong AI’ of lore with its inde-
pendent, ‘intelligent machine’ that can merely fool a human observer.
Instead, a synergy between the collective selves of a networked society
and multiple web intelligence minds adding the power to connect
the dots, at web scale, as never before. Utopian? Perhaps, but possibly
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also merely a different way to think about programming our
web intelligences, and a different level to which we might entrust
technology with our collective ‘biological value’.

* * *
We began our journey by articulating the potential that web-scale AI
offers to mimic our abilities to ‘connect the dots’ and make sense of
the world. Along the way we studied each of the elements that enable
us to do so: look, listen, learn, connect, predict, and correct. In each case we
began virtually from scratch, arguing from fundamentals and eluci-
dating the basic principles of large parts of computer science and AI
in the process. Yet, even while doing so we tried not to lose sight of
the big picture of how these elements are all integrated within our
own minds. At the same time, the ‘hidden agenda’ was always the
position articulated earlier, albeit at the end of our journey: contrary
to both the over-idealistic goals of ‘strong AI’ as well as the perhaps
far-too-pedestrian goals of weak AI, web-intelligence technology just
might have the potential to become amind, while continuing to derive
purpose from our collective societal selves.
Finally, I want to conclude by asking, is this next step a simple one?

While optimism is good, there is also ample reason to be cautious. As
we have witnessed in this book already, there are two distinct flavours
of AI, both the science and the technology: statistical, connection-
oriented, or ‘low-level’ techniques on the one hand, dealing with per-
ception and learning from vast volumes of data, at a higher level we
have the symbolic approach; reasoning, logic, knowledge representa-
tions, etc. And as of today the twain do not meet: ‘Not enough people
are working at the interface, . . . both how the symbolic arises from as
well as influences the perceptual side’,3 says PatWinston.
Further, even on the symbolic side, we are far from understanding

what our inner representation is:

The focus iswrong, it’s Turing’s fault actually, . . . as if reasoning is the centre
of intelligence, . . . reasoning is just the shadow on the wall, logic is only
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a special case of very precise story telling . . . If I thought this is where we
would be 50 years ago, I probably would have hungmyself!

saysWinston,3 disappointingly.Wehave, he concludes, ‘made tremen-
dous contributions on the engineering side, but not enough on the
science’.
For the web-intelligence systems of today to cross the chasm, inte-

grate the six different elements, and become a mind, I believe the link
between perceptual and symbolic needs to be understood properly.
So, it certainly appears that there is much science remaining to be
done. Hopefully, though, I have convinced you of both the potential as
well as the purpose of such an effort.

* * *
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