

Chapter 1: The changing face of C# development

Chapter 2: Core foundations: Building on C# 1

Chapter 3: Parameterized typing with generics

Chapter 4: Saying nothing with nullable types

Chapter 5: Fast-tracked delegates

Chapter 6: Implementing iterators the easy way

Chapter 7: Concluding C# 2: the final features

Chapter 8: Cutting fluff with a smart compiler

Chapter 9: Lambda expressions and expression trees

Chapter 10: Extension methods

Chapter 11: Query expressions and LINQ to Objects

Chapter 12: LINQ beyond collections

Chapter 13: Minor changes to simplify code

Chapter 14: Dynamic binding in a static language

Chapter 15: Framework features which change coding styles

Chapter 16: Whither now?

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

MEAP Edition
Manning Early Access Program

Copyright 2009 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning.com/

iii

Table of Contents
13. Minor changes to simplify code ... 1

Optional parameters and named arguments .. 1
Optional parameters .. 2
Named arguments ... 7
Putting the two together ... 10

Improvements for COM interoperability .. 14
The horrors of automating Word before C# 4 ... 14
The revenge of default parameters and named arguments ... 15
When is a ref parameter not a ref parameter? ... 16
Linking Primary Interop Assemblies .. 17

Generic variance for interfaces and delegates ... 20
Types of variance: covariance and contravariance ... 21
Using variance in interfaces .. 22
Using variance in delegates .. 25
Complex situations .. 25
Limitations and notes .. 27

Summary ... 29
14. Dynamic binding in a static language .. 31

What? When? Why? How? .. 31
What is dynamic typing? .. 32
When is dynamic typing useful, and why? ... 32
How does C# 4 provide dynamic typing? .. 33

The 5 minute guide to dynamic ... 34
Examples of dynamic typing ... 36

COM in general, and Microsoft Office in particular .. 36
Dynamic languages such as IronPython .. 38
Reflection .. 42

Looking behind the scenes ... 46
Introducing the Dynamic Language Runtime ... 47
DLR core concepts ... 50
How the C# compiler handles dynamic ... 52
The C# compiler gets even smarter .. 55
Restrictions on dynamic code .. 57

Implementing dynamic behavior .. 60
Using ExpandoObject .. 60
Using DynamicObject .. 64
Implementing IDynamicMetaObjectProvider .. 70

Summary ... 70

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

1

Chapter 13. Minor changes to simplify
code

Just as in previous versions, C# 4 has a few minor features which don't really merit individual chapters
to themselves. In fact, there's only one really big feature in C# 4 - dynamic typing - which we'll cover
in the next chapter. The changes we'll cover here just make C# that little bit more pleasant to work with,
particularly if you work with COM on a regular basis. We'll be looking at:

• Optional parameters (so that callers don't need to specify everything)

• Named arguments (to make code clearer, and to help with optional parameters)

• Streamlining ref parameters in COM (a simple compiler trick to remove drudgery)

• Embedding COM Primary Interop Assemblies (leading to simpler deployment)

• Generic variance for interfaces and delegates (in limited situations)

Will any of those make your heart race with excitement? It's unlikely. They're nice features all the same,
and make some patterns simpler (or just more realistic to implement). Let's start off by looking at how
we call methods.

Optional parameters and named arguments
These are perhaps the Batman and Robin1features of C# 4. They're distinct, but usually seen together. I'm
going to keep them apart for the moment so we can examine each in turn, but then we'll use them together
for some more interesting examples.

Parameters and Arguments

This section obviously talks about parameters and arguments a lot. In casual conversation, the two
terms are often used interchangably, but I'm going to use them in line with their formal definitions.
Just to remind you, a parameter (also known as a formal parameter) is the variable which is part
of the method or indexer declaration. An argument is an expression used when calling the method
or indexer. So for example, consider this snippet:

void Foo(int x, int y)
{
 // Do something with x and y
}
...
int a = 10;
Foo(a, 20);

Here the parameters are x and y, and the arguments are a and 20.

We'll start off by looking at optional parameters.

1Or Cavalleria Rusticana and Pagliacci if you're feeling more highly cultured

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

2

Optional parameters

Visual Basic has had optional parameters for ages, and they've been in the CLR from .NET 1.0. The concept
is as obvious as it sounds: some parameters are optional, so they don't have to be explicitly specified by
the caller. Any parameter which hasn't been specified as an argument by the caller is given a default value.

Motivation

Optional parameters are usually used when there are several values required for an operation (often creating
a new object), where the same values are used a lot of the time. For example, suppose you wanted to read
a text file, you might want to provide a method which allows the caller to specify the name of the file and
the encoding to use. The encoding is almost always UTF-8 though, so it's nice to be able to just use that
automatically if it's all you need.

Historically the idiomatic way of allowing this in C# has been to use method overloading, with one
"canonical" method and others which call it, providing default values. For instance, you might create
methods like this:

public IList<Customer> LoadCustomers(string filename,
 Encoding encoding)
{
 ...
}

public IList<Customer> LoadCustomers(string filename)
{
 return LoadCustomers(filename, Encoding.UTF8);
}

Do real work here
Default to UTF-8

This works fine for a single parameter, but it becomes trickier when there are multiple options. Each
extra option doubles the number of possible overloads, and if two of them are of the same type you can
have problems due to trying to declare multiple methods with the same signature. Often the same set
of overloads is also required for multiple parameter types. For example, the XmlReader.Create()
method can create an XmlReader from a Stream, a TextReader or a string - but it also provides
the option of specifying an XmlReaderSettings and other arguments. Due to this duplication, there
are twelve overloads for the method. This could be significantly reduced with optional parameters. Let's
see how it's done.

Declaring optional parameters and omitting them when supplying
arguments

Making a parameter optional is as simple as supplying a default value for it. Figure 13.X shows a method
with three parameters: two are optional, one is required2. Listing 13.X implements the method and called
in three slightly different ways.

2Note for editors, typesetters and MEAP readers: the figure should be to one side of the text, so there isn't the jarring "figure then listing" issue.
Quite how we build that as a PDF remains to be seen.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

3

Figure 13.1. Declaring optional parameters

Example 13.1. Declaring a method with optional parameters and calling

static void Dump(int x, int y = 20, int z = 30)
{
 Console.WriteLine("{0} {1} {2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(1, 2);
Dump(1);

Declares method with optional parameters
Calls method with all arguments
Omits one argument
Omits two arguments

The optional parameters are the ones with default values specified . If the caller doesn't specify y, its
initial value will be 20, and likewise z has a default value of 30. The first call explicitly specifies all the
arguments; the remaining calls (and) omit one or two arguments respectively, so the default values
are used. When there is one argument "missing" the compiler assumes it's the final parameter which has
been omitted - then the penultimate one, and so on. The output is therefore:

x=1 y=2 z=3
x=1 y=2 z=30
x=1 y=20 z=30

Note that although the compiler could use some clever analysis of the types of the optional parameters and
the arguments to work out what's been left out, it doesn't: it assumes that you are supplying arguments in
the same order as the parameters3. This means that the following code is invalid:

static void TwoOptionalParameters(int x = 10,
 string y = "default")
{
 Console.WriteLine("x={0} y={1}", x, y);
}

3Unless you're using named arguments, of course - we'll learn about those soon.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

4

...
TwoOptionalParameters("second parameter");

Error!

This tries to call the TwoOptionalParametersMethod specifying a string for the first argument.
There's no overload with a first parameter which is convertible from a string, so the compiler issues an
error. This is a good thing - overload resolution is tricky enough (particularly when generic type inference
gets involved) without the compiler trying all kinds of different permutations to find something you might
be trying to call. If you want to omit a value for one optional parameter but specify a later one, you need
to use named arguments.

Restrictions on optional parameters

Now, there are a few rules for optional parameters. All optional parameters have to come after required
parameters. The exception to this is a parameter array (as declared with the params modifier) which still
has to come at the end of a parameter list, but can come after optional parameters. A parameter array can't
be declared as an optional parameter - if the caller doesn't specify any values for it, an empty array will be
used instead. Optional parameters can't have ref or out modifiers either.

The type of the optional parameter can be any type, but there are restrictions on the default value specified.
You can always use a constant, including literals, null, references to other const members, and the
default(...) operator. Additionally, for value types, you can call the parameterless constructor,
although this is equivalent to using the default(...) operator anyway. There has to be an implicit
conversion from the specified value to the parameter type, but this must not be a user-defined conversion.
Here are some examples of valid declarations:

• Foo(int x, int y = 10) - numeric literals are allowed

• Foo(decimal x = 10) - implicit built-in conversion from int to decimal is allowed

• Foo(string name = "default") - string literals are allowed

• Foo(DateTime dt = new DateTime()) - "zero" value of DateTime

• Foo(DateTime dt = default(DateTime)) - another way of writing the same thing

• Foo<T>(T value = default(T)) - the default value operator works with type parameters

• Foo(int? x = null) - nullable conversion is valid

• Foo(int x, int y = 10, params int[] z) - parameter array can come after optional
parameters

And some invalid ones:

• Foo(int x = 0, int y) - required non-params parameter cannot come after optional parameter

• Foo(DateTime dt = DateTime.Now) - default values have to be constant

• Foo(XName name = "default") - conversion from string to XName is user-defined

• Foo(params string[] names = null) - parameter arrays can't be optional

• Foo(ref string name = "default") - ref/out parameters can't have default values

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

5

The fact that the default value has to be constant is a pain in two different ways. One of them is familiar
from a slightly different context, as we'll see now.

Versioning and optional parameters

The restrictions on default values for optional parameters may remind you of the restrictions on const
fields, and in fact they behave very similarly. In both cases, when the compiler references the value it
copies it direclty into the output. The generated IL acts exactly as if your original source code had contained
the default value. This means if you ever change the default value without recompiling everything that
references it, the old callers will still be using the old default value. To make this concrete, imagine this
set of steps:

1. Create a class library (Library.dll) with a class like this:

public class LibraryDemo
{
 public static void PrintValue(int value = 10)
 {
 System.Console.WriteLine(value);
 }
}

2. Create a console application (Application.exe) which references the class library:

public class Program
{
 static void Main()
 {
 LibraryDemo.PrintValue();
 }
}

3. Run the application - it will print 10, predictably.

4. Change the declaration of PrintValue as follows, then recompile just the class library:

public static void PrintValue(int value = 20)

5. Rerun the application - it will still print 10. The value has been compiled directly into the executable.

6. Recompile the application and rerun it - this time it will print 20.

This versioning issue can cause bugs which are very hard to track down, because all the code looks correct.
Essentially, you are restricted to using genuine constants which should never change as default values
for optional parameters. Of course, this also means you can't use any values which can't be expressed as
constants anyway - you can't create a method with a default value of "the current time."

Making defaults more flexible with nullity

Fortunately, there is a way round this. Essentially you introduce a "magic value" to represent the default,
and then replace that magic value with the real default within the method itself. If the phrase "magic
value" bothers you, I'm not surprised - except we're going to use null for the magic value, which already
represents the absence of a "normal" value. If the parameter type would normally be a value type, we
simply make it the corresponding nullable value type, at which point we can still specify that the default
value is null.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

6

As an example of this, let's look at a similar situation to the one I used to introduce the whole topic: allowing
the caller to supply an appropriate text encoding to a method, but defaulting to UTF-8. We can't specify
the default encoding as Encoding.UTF8 as that's not a constant value, but we can treat a null parameter
value as "use the default". To demonstrate how we can handle value types, we'll make the method append
a timestamp to a text file with a message. We'll default the encoding to UTF-8 and the timestamp to the
current time. Listing 13.X shows the complete code, and a few examples of using it.

Example 13.2. Using null default values to handle non-constant situations

static void AppendTimestamp(string filename,
 string message,
 Encoding encoding = null,
 DateTime? timestamp = null)
{
 Encoding realEncoding = encoding ?? Encoding.UTF8;
 DateTime realTimestamp = timestamp ?? DateTime.Now;
 using (TextWriter writer = new StreamWriter(filename,
 true,
 realEncoding))
 {
 writer.WriteLine("{0:s}: {1}", realTimestamp, message);
 }
}
...
AppendTimestamp("utf8.txt", "First message");
AppendTimestamp("ascii.txt", "ASCII", Encoding.ASCII);
AppendTimestamp("utf8.txt", "Message in the future", null,
 new DateTime(2030, 1, 1));

Two required parameters
Two optional parameters
Null coalescing operator for convenience
Explicit use of null

Listing 13.X shows a few nice features of this approach. First, we've solved the versioning problem. The
default values for the optional parameters are null , but the effective values are "the UTF-8 encoding" and
"the current date and time." Neither of these could be expressed as constants, and should we ever wish to
change the effective default - for example to use the current UTC time instead of the local time - we could
do so without having to recompile everything that called AppendTimestamp. Of course, changing the
effective default changes the behavior of the method - you need to take the same sort of care over this as
you would with any other code change.

We've also introduced an extra level of flexibility. Not only do optional parameters mean we can make
the calls shorter, but having a specific "use the default" value means that should we ever wish to, we can
explicitly make a call allowing the method to choose the appropriate value. At the moment this is the
only way we know to specify the timestamp explicitly without also providing an encoding , but that will
change when we look at named arguments.

The optional parameter values are very simple to deal with thanks to the null coalescing operator . I've
used separate variables for the sake of formatting, but you could use the same expressions directly in the
calls to the StreamWriter constructor and the WriteLine method.

There's one downside to this approach: it assumes that you don't want to use null as a "real" value. There
are certainly occasions where you want null to mean null - and if you don't want that to be the default

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

7

value, you'll have to find a different constant or just make leave the parameter as a required one. However,
in other cases where there isn't an obvious constant value which will clearly always be the right default, I'd
recommend this approach to optional parameters as one which is easy to follow consistently and removes
some of the normal difficulties.

We'll need to look at how optional parameters affect overload resolution, but it makes sense to visit that
topic just once, when we've seen how named arguments work. Speaking of which...

Named arguments

The basic idea of named arguments is that when you specify an argument value, you can also specify the
name of the parameter it's supplying the value for. The compiler then makes sure that there is a parameter
of the right name, and uses the value for that parameter. Even on its own, this can increase readability in
some cases. In reality, named arguments are most useful in cases where optional parameters are also likely
to appear, but we'll look at the simple situation first.

Indexers, optional parameters and named arguments

You can use optional parameters and named arguments with indexers as well as methods.
However, this is only useful for indexers with more than one parameter: you can't access an
indexer without specifying at least one argument anyway. Given this limitation, I don't expect to
see the feature used very much with indexers, and I haven't demonstrated it in the book.

I'm sure we've all seen code which looks something like this:

MessageBox.Show("Please do not press this button again", // text
 "Ouch!"); // title

I've actually chosen a pretty tame example: it can get a lot worse when there are loads of arguments,
especially if a lot of them are the same type. However, this is still realistic: even with just two parameters, I
would find myself guessing which argument meant what based on the text when reading this code, unless it
had comments like the ones I've got here. There's a problem though: comments can lie very easily. Nothing
is checking them at all. Named arguments ask the compiler to help.

Syntax

All we need to do to the previous example is prefix each argument with the name of the corresponding
parameter and a colon:

MessageBox.Show(text: "Please do not press this button again",
 caption: "Ouch!");

Admittedly we now don't get to choose the name we find most meaningful (I prefer "title" to "caption")
but at least I'll know if I get something wrong. Of course, the most common way in which we could "get
something wrong" here is to get the arguments the wrong way round. Without named arguments, this would
be a problem: we'd end up with the pieces of text switched in the message box. With named arguments,
the position becomes largely irrelevant. We can rewrite the previous code like this:

MessageBox.Show(caption: "Ouch!",
 text: "Please do not press this button again");

We'd still have the right text in the right place, because the compiler would work out what we meant based
on the names.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

8

To explore the syntax in a bit more detail, listing 13.X shows a method with three integer parameters, just
like the one we used to start looking at optional parameters.

Example 13.3. Simple examples of using named arguments

static void Dump(int x, int y, int z)
{
 Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}
...
Dump(1, 2, 3);
Dump(x: 1, y: 2, z: 3);
Dump(z: 3, y: 2, x: 1);
Dump(1, y: 2, z: 3);
Dump(1, z: 3, y: 2);

Declares method as normal
Calls method as normal
Specifies names for all arguments
Specifies names for some arguments

The output is the same for each call in listing 13.X: x=1, y=2, z=3. We've effectively made the same
method call in five different ways. It's worth noting that there are no tricks in the method declaration :
you can use named arguments with any method which has at least one parameter. First we call the method
in the normal way, without using any new features . This is a sort of "control point" to make sure that
the other calls really are equivalent. We then make two calls to the method using just named arguments .
The second of these calls reverses the order of the arguments, but the result is still the same, because the
arguments are matched up with the parameters by name, not position. Finally there are two calls using a
mixture of named arguments and positional arguments . A positional argument is one which isn't named
- so every argument in valid C# 3 code is a positional argument from the point of view of C# 4. Figure
13.X shows how the final line of code works.

Figure 13.2. Positional and named arguments in the same call

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

9

All named arguments have to come after positional arguments - you can't switch between the styles.
Positional arguments always refer to the corresponding parameter in the method declaration - you can't
make positional arguments "skip" a parameter by specifying it later with a named argument. This means
that these method calls would both be invalid:

• Dump(z: 3, 1, y: 2) - positional arguments must come before named ones

• Dump(2, x: 1, z: 3) - x has already been specified by the first positional argument, so we can't
specify it again with a named argument

Now, although in this particular case the method calls have been equivalent, that's not always the case.
Let's take a look at why reordering arguments might change behaviour.

Argument evaluation order

We're used to C# evaluating its arguments in the order they're specified - which, until C# 4, has always
been the order in which the parameters have been declared too. In C# 4, only the first part is still true:
the arguments are still evaluated in order they're written, even if that's not the same as the order in which
they're declared as parameters. This matters if evaluating the arguments has side effects. It's usually worth
trying to avoid having side effects in arguments, but there are cases where it can make the code clearer.
A more realistic rule is to try to avoid side effects which might interfere with each other. For the sake of
demonstrating execution order, we'll break both of these rules. Please don't treat this as a recommendation
that you do the same thing.

First we'll create a relatively harmless example, introducing a method which logs its input and returns it - a
sort of "logging echo". We'll use the return values of three calls to this to call the Dump method (which isn't
shown as it hasn't changed). Listing 13.X shows two calls to Dump which result in slightly different output.

Example 13.4. Logging argument evaluation

static int Log(int value)
{
 Console.WriteLine("Log: {0}", value);
 return value;
}
...
Dump(x: Log(1), y: Log(2), z: Log(3));
Dump(z: Log(3), x: Log(1), y: Log(2));

The results of running listing 13.X show what happens:

Log: 1
Log: 2
Log: 3
x=1 y=2 z=3
Log: 3
Log: 1
Log: 2
x=1 y=2 z=3

In both cases, the parameters in the Dump method are still 1, 2 and 3 in that order. However, we can see
that while they were evaluated in that order in the first call (which was equivalent to just using positional
arguments), the second call evaluated the value used for the z parameter first. We can make the effect
even more significant by using side effects which change the results of the argument evaluation, as shown
in listing 13.X, again using the same Dump method.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

10

Example 13.5. Abusing argument evaluation order

int i = 0;
Dump(x: ++i, y: ++i, z: ++i);
i = 0;
Dump(z: ++i, x: ++i, y: ++i);

The results of listing 13.X may be best expressed in terms of the blood spatter pattern at a murder scene,
after someone maintaining code like this has gone after the original author with an axe. Yes, technically
speaking the last line prints out x=2 y=3 z=1 but I'm sure you see what I'm getting at. Just say "no"
to code like this. By all means reorder your arguments for the sake of readability: you may think that
laying out a call to MessageBox.Show with the title coming above the text in the code itself reflects
the on-screen layout more closely, for example. If you want to rely on a particular evaluation order for
the arguments though, introduce some local variables to execute the relevant code in separate statements.
The compiler won't care - it will follow the rules of the spec - but this reduces the risk of a "harmless
refactoring" which inadvertently introduces a subtle bug.

To return to cheerier matters, let's combine the two features (optional parameters and named arguments)
and see how much tidier the code can be.

Putting the two together

The two features work in tandem with no extra effort required on your part. It's not at all uncommon to have
a bunch of parameters where there are obvious defaults, but where it's hard to predict which ones a caller
will want to specify explicitly. Figure 13.X shows just about every combination: a required parameter, two
optional parameters, a positoinal argument, a named argument and a "missing" argument for an optional
parameter.

Figure 13.3. Mixing named arguments and optional parameters

Going back to an earlier example in listing 13.X we wanted to append a timestamp to a file using the
"default" encoding of UTF-8, but with a particular timestamp. Back then we just used null for the
encoding argument, but now we can write the same code more simply, as shown in listing 13.X.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

11

Example 13.6. Combining named and optional arguments

static void AppendTimestamp(string filename,
 string message,
 Encoding encoding = null,
 DateTime? timestamp = null)
{

}
...
AppendTimestamp("utf8.txt", "Message in the future",
 timestamp: new DateTime(2030, 1, 1));

Same implementation as before
Encoding is omitted
Named timestamp argument

In this fairly simple situation the benefit isn't particularly huge, but in cases where you want to omit three
or four arguments but specify the final one, it's a real blessing.

We've seen how optional parameters reduce the need for huge long lists of overloads, but one specific
pattern where this is worth mentioning is with respect to immutability.

Immutability and object initialization

One aspect of C# 4 which disappoints me somewhat is that it hasn't done much explicitly to make
immutability easier. Immutable types are a core part of functional programming, and C# has been gradually
supporting the functional style more and more... except for immutability. Object and collection initializers
make it easy to work with mutable types, but immutable types have been left out in the cold. (Automatically
implemented properties fall into this category too.) Fortunately, while it's not a feature which is particularly
designed to aid immutability, named arguments and optional parameters allow you to write object-
initializer-like code which just calls a constructor or other factory method. For instance, suppose we were
creating a Message class, which required a "from" address, a "to" address and a body, with the subject
and attachment being optional. (We'll stick with single recipients in order to keep the example as simple
as possible.) We could create a mutable type with appropriate writable properties, and construct instances
like this:

Message message = new Message {
 From = "skeet@pobox.com",
 To = "csharp-in-depth-readers@everywhere.com",
 Body = "I hope you like the second edition",
 Subject = "A quick message"
};

That has two problems: first, it doesn't enforce the required fields. We could force those to be supplied to
the constructor, but then (before C# 4) it wouldn't be obvious which argument meant what:

Message message = new Message(
 "skeet@pobox.com",
 "csharp-in-depth-readers@everywhere.com",
 "I hope you like the second edition")
{
 Subject = "A quick message"
};

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

12

The second problem is that this construction pattern simply doesn't work for immutable types. The compiler
has to call a property setter after it has initialized the object. However, we can use optional parameters and
named arguments to come up with something that has the nice features of the first form (only specifying
what you're interested in and supplying names) without losing the validation of which aspects of the
message are required or the benefits of immutability. Listing 13.X shows a possible constructor signature
and the construction step for the same message as before.

Example 13.7.

public Message(string from, string to,
 string body, string subject = null,
 byte[] attachment = null)
{

}
...
Message message = new Message(
 from: "skeet@pobox.com",
 to: "csharp-in-depth-readers@everywhere.com",
 body: "I hope you like the second edition",
 subject: "A quick message"
);

Normal initialization code goes here

I really like this in terms of readability and general cleanliness. You don't need hundreds of constructor
overloads to choose from, just one with some of the parameters being optional. The same syntax will
also work with static creation methods, unlike object initializers. The only downside is that it really relies
on your code being consumed by a language which supports optional parameters and named arguments,
otherwise callers will be forced to write ugly code to specify values for all the optional parameters.
Obviously there's more to immutability than getting values to the initialization code, but this is a welcome
step in the right direction nonetheless.

There are couple of final points to make around these features before we move on to COM, both around
the details of how the compiler handles our code and the difficulty of good API design.

Overload resolution

Clearly both of these new features affect how the compiler resolves overloads - if there are multiple
method signatures available with the same name, which should it pick? Optional parameters can increase
the number of applicable methods (if some methods have more parameters than the number of specified
arguments) and named arguments can decrease the number of applicable methods (by ruling out methods
which don't have the appropriate parameter names).

For the most part, the changes are absolutely intuitive: to check whether any particular method is
applicable, the compiler tries to build a list of the arguments it would pass in, using the positional arguments
in order, then matching the named arguments up with the remaining parameters. If a required parameter
hasn't been specified or if a named argument doesn't match any remaining parameters, the method isn't
applicable. The specification gives a little more detail around this, but there are two situations I'd like to
draw particular attention to.

First, if two methods are both applicable and one of them has been given all of its arguments explicitly
while the other uses an optional parameter filled in with a default value, the method which doesn't use any
default values will win. However, this doesn't extend to just comparing the number of default values used
- it's a strict "does it use default values or not" divide. For example, consider the code below.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

13

static void Foo(int x = 10) {}
static void Foo(int x = 10, int y = 20) {}
...
Foo();
Foo(1);
Foo(y: 2);
Foo(1, 2);

Ambiguous call
Valid call - chooses first overload
Argument name forces second overload
Argument count forces second overload

In the first call , both methods are applicable because of their default parameters. However, the compiler
can't work out which one you meant to call: it will raise an error. In the second call both methods are still
applicable, but the first overload is used because it can be applied without using any default values, whereas
the second uses the default value for y. For both the third and fourth calls, only the second overload is
applicable. The third call names the y argument, and the fourth call has two arguments; both of these
mean the first overload isn't applicable.

The second point is that sometimes named arguments can be an alternative to casting in order to help the
compiler resolve overloads. Sometimes a call can be ambiguous because the arguments can be converted
two the parameter types in two different methods, but neither method is "better" than the other in all
respects. For instance, consider the following method signatures and a call:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, 10);

Ambiguous call

Both methods are applicable, and neither is better than the other. There are two ways to resolve this,
assuming you can't change the method names to make them unambiguous that way. (That's my preferred
approach, by the way. Make each method name more informative and specific, and the general readability
of the code can go up.) You can either cast one of the arguments explicitly, or use named arguments to
resolve the ambiguity:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }
...
Method(10, (object) 10);
Method(x: 10, y: 10);

Casting to resolve ambiguity
Naming to resolve ambiguity

Of course this only works if the parameters have different names in the different methods - but it's a handy
trick to know. Sometimes the cast will give more readable code, sometimes the name will. It's just an
extra weapon in the fight for clear code. It does have a downside though, along with named arguments in
general: it's another thing to be careful about when you change a method...

Contracts and overrides

In the past, parameter names haven't matter very much if you've only been using C#. Other languages may
have cared, but in C# the only times that parameter names were important were when you were looking at

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

14

IntelliSense and when you were looking at the method code itself. Now, the parameter names of a method
are effectively part of the API. If you change them at a later date, code can break - anything which was
using a named argument to refer to one of your parameters will fail to compile if you decide to change it.
This may not be much of an issue if your code is only consumed by itself anyway, but if you're writing a
public API such as an Open Source class library, be aware that changing a parameter name is a big deal.
It always has been really, but if everything calling the code was written in C#, we've been able to ignore
that until now.

Renaming parameters is bad: switching the names round is worse. That way the calling code may still
compile, but with a different meaning. A particularly evil form of this is to override a method and switch
the parameter names in the overridden version. The compiler will always look at the "deepest" override it
knows about, based on the static type of the expression used as the target of the method call. You really
don't want to get into a situation where calling the same method implementation with the same argument
list results in different behavior based on the static type of a variable. That's just evil.

Speaking of evil, let's move on to the new features relating to COM. I'm only kidding - mostly, anyway.

Improvements for COM interoperability
I'll readily admit to being far from a COM expert. When I tried to use it before .NET came along, I always
ran into issues which were no doubt partially caused by my lack of knowledge and partially caused by
the components I was working with being poorly designed or implemented. The overall impression of
COM as a sort of "black magic" has lingered, however. I've been reliably informed that there's a lot to
like about it, but unfortunately I haven't found myself going back to learn it in detail - and there seems
to be a lot of detail to study.

This section is Microsoft-specific

The changes for COM interoperability won't make sense for all C# compilers, and a compiler can
still be deemed compliant with the specification without implementing these features.

.NET has certainly made COM somewhat friendlier in general, but until now there have been distinct
advantages to using it from Visual Basic instead of C#. The playing field has been leveled significantly by
C# 4 though, as we'll see in this section. For the sake of familiarity, I'm going to use Word for the example in
this chapter, and Excel in the next chapter. There's nothing Office-specific about the new features though;
you should find the experience of working with COM to be nicer in C# 4 whatever you're doing.

The horrors of automating Word before C# 4

Our example is going to be very simple - it's just going to start Word, create a document with a single
paragraph of text in, save it, and then exit. Sounds easy, right? If only that were so. Listing 13.X shows
the code required before C# 4.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

15

Example 13.8. Creating and saving a document in C# 3

object missing = Type.Missing;

Application app = new Application { Visible = true };

app.Documents.Add(ref missing, ref missing,
 ref missing, ref missing);
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add(ref missing);
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(ref filename, ref format,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing);

doc.Close(ref missing, ref missing, ref missing);
app.Quit(ref missing, ref missing, ref missing);

Starts Word
Creates a new document
Saves the document
Shuts down word

Each step in this code sounds simple: first we create an instance of the COM type and make it visible
using an object initializer expression, then we create and fill in a new document . The mechanism
for inserting some text into a document isn't quite as straightforward as we might expect, but it's worth
remembering that a Word document can have a fairly complex structure: this isn't as bad as it might be. A
couple of the method calls here have optional by-reference parameters; we're not interested in them, so we
pass a local variable by reference with a value of Type.Missing. If you've ever done any COM work
before, you're probably very familiar with this pattern.

Next comes the really nasty bit: saving the document . Yes, the SaveAs method really does have 16
parameters, of which we're only using two. Even those two need to be passed by reference, which means
creating local variables for them. In terms of readability, this is a complete nightmare. Don't worry though
- we'll soon sort it out.

Finally we close the document and the application . Aside from the fact that both calls have three optional
parameters which we don't care about, there's nothing interesting here.

Let's start off by using the features we've already seen in this chapter - they can cut the example down
significantly on their own.

The revenge of default parameters and named
arguments

First things first: let's get rid of all those arguments corresponding to optional parameters we're not
interested in. That also means we don't need the missing variable. That still leaves us with two

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

16

parameters out of a possible 16 for the SaveAs method. At the moment it's obvious which is which based
on the local variable names - but what if we've got them the wrong way round? All the parameters are
weakly typed, so we're really going on a certain amount of guesswork. We can easily give the arguments
names to clarify the call. If we wanted to use one of the later parameters we'd have to specify the name
anyway, just to skip the ones we're not interested in.

Listing 13.X shows the code - it's looking a lot cleaner already.

Example 13.9. Automating Word using named arguments and without specifying
unnecessary parameters

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";

object filename = "demo.doc";
object format = WdSaveFormat.wdFormatDocument97;
doc.SaveAs(FileName: ref filename, FileFormat: ref format);

doc.Close();
app.Quit();

That's much better - although it's still ugly to have to create local variables for the SaveAs arguments
we are specifying. Also, if you've been reading very carefully, you may be a little concerned about the
optional parameters we've removed. They were ref parameters... but optional... which isn't a combination
C# supports normally. What's going on?

When is a ref parameter not a ref parameter?

C# normally takes a pretty strict line on ref parameters. You have to mark the argument with ref as well,
to show that you understand what's going on; that your variable may have its value changed by the method
you're calling. That's all very well in normal code, but COM APIs often use ref parameters for pretty
much everything for perceived performance reasons. They're usually not actually modifying the variable
you pass in. Passing arguments by reference is slightly painful in C#. Not only do you have to specify the
ref modifier, you've also got to have a variable; you can't just pass values by reference.

In C# 4 the compiler makes this a lot easier by letting you pass an argument by value into a COM method,
even if it's for a ref parameter. Consider a call like this, where argument might happen to be a variable
of type string, but the parameter is declared as ref object:

comObject.SomeMethod(argument);

The compiler emits code which is equivalent to this:

object tmp = argument;
comObject.SomeMethod(ref tmp);

Note that any changes made by SomeMethod are discarded, so the call really does behave as if you were
passing argument by value. This same process is used for optional ref parameters: each involves a local
variable initialized to Type.Missing and passed by reference into the COM method. If you decompile
the slimlined C# code, you'll see that the IL emitted is actually pretty bulky with all of those extra variables.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

17

We can now apply the finishing touches to our Word example, as shown in listing 13.X.

Example 13.10. Passing arguments by value in COM methods

Application app = new Application { Visible = true };
app.Documents.Add();
Document doc = app.ActiveDocument;
Paragraph para = doc.Paragraphs.Add();
para.Range.Text = "Thank goodness for C# 4";
doc.SaveAs(FileName: "test.doc",
 FileFormat: WdSaveFormat.wdFormatDocument97);
doc.Close();
app.Quit();

Arguments passed by value

As you can see, the final result is a much cleaner bit of code than we started off with. With an API like
Word you still need to work through a somewhat bewildering set of methods, properties and events in the
core types such as Application and Document, but at least your code will be a lot easier to read.
Of course, writing the code is only part of the battle: you usually need to be able to deploy it onto other
machines as well. Again, C# 4 makes this task easier.

Linking Primary Interop Assemblies

When you build against a COM type, you use an assembly generated for the component library. Usually
you use a Primary Interop Assembly or PIA, which is the canonical interop assembly for a COM library,
signed by the publisher. You can generate these using the Type Library Importer tool (tlbimp) for
your own COM libraries. PIAs make life easier in terms of having "one true way" of accessing the COM
types, but they're a pain in other ways. For one thing, the right version of the PIA has to be present on the
machine you're deploying your application to. It doesn't just have to be physically on the machine though
- it also has to be registered (with the RegAsm tool). As an example of how this can be painful, depending
on the environment your application will be deployed in, you may find that Office is installed but the
relevant PIAs aren't, or that there's a different version of Office than the one you compiled against. You
can redistribute the Office PIAs, but then you need to register them as part of your installation procedure
- which means xcopy deployment isn't really an option.

C# 4 allows a very different approach. Instead of referencing a PIA like any other assembly, you can link it
instead. In Visual Studio 2010 this is an option in the properties of the reference, as shown in figure 13.X.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

18

Figure 13.4. Linking PIAs in Visual Studio 2010

For command line fans, you use the /l option instead of /r to link instead of reference:

csc /l:Path\To\PIA.dll MyCode.cs

When you link a PIA, the compiler embeds just the bits it needs from the PIA directly into your own
assembly. It only takes the types it needs, and only the members within those types. For example, the
compiler creates these types for the code we've written in this chapter:

namespace Microsoft.Office.Interop.Word
{
 [ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
 public interface _Application

 [ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
 public interface _Document

 [ComImport, CompilerGenerated, TypeIdentifier, Guid("...")]
 public interface Application : _Application

 [ComImport, Guid("..."), TypeIdentifier, CompilerGenerated]
 public interface Document : _Document

 [ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
 public interface Documents : IEnumerable

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

19

 [TypeIdentifier("...", "WdSaveFormat"), CompilerGenerated]
 public enum WdSaveFormat
}

And if you look in the _Application interface, it looks like this:

[ComImport, TypeIdentifier, CompilerGenerated, Guid("...")]
public interface _Application
{
 void _VtblGap1_4();
 Documents Documents { [...] get; }
 void _VtblGap2_1();
 Document ActiveDocument { [...] get; }
}

I've omitted the GUIDs and the property attributes here just for the sake of space, but you can always use
Reflector to look at the embedded types. These are just interfaces and enums - there's no implementation.
Whereas in a normal PIA there's a CoClass representing the actual implementation (but proxying
everything to the real COM type of course) when the compiler needs to create an instance of a COM type
via a linked PIA, it creates the instance using the GUID associated with the type. For example, the line
in our Word demo which creates an instance of Application is translated into this code when linking
is enabled4:

Application application = (Application) Activator.CreateInstance(
 Type.GetTypeFromCLSID(new Guid("...")));

Figure 13.X shows how this works at execution time.

4Well very nearly. The object initializer makes it slightly more complicated because the compiler uses an extra temporary variable.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

20

Figure 13.5. Comparing referencing and linking

There are various benefits to embedding type libraries:

• Deployment is easier: the original PIA isn't needed, so there's nothing to install

• Versioning is simpler: so long as you only use members from the version of the COM library which is
actually installed, it doesn't matter if you compile against an earlier or later PIA

• Memory usage may be reduced: if you only use a small fraction of the type library, there's no need to
load a large PIA

• Variants are treated as dynamic types, reducing the amount of casting required

Don't worry about the last point for now - I need to explain dynamic typing before it'll make much sense.
All will be revealed in the next chapter.

As you can see, Microsoft has really taken COM interoperability very seriously for C# 4, making the whole
development process less painful. Of course the degree of pain has always been variable depending on the
COM library you're developing against - some will benefit more than others from the new features.

Our next feature is entirely separate from COM and indeed named arguments and optional parameters,
but again it just eases development a bit.

Generic variance for interfaces and delegates
You may remember that in chapter 3 I mentioned that the CLR had some support for variance in generic
types, but that C# hadn't exposed that support yet. Well, that's changed with C# 4. C# has gained the syntax

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

21

required to declare that interfaces are variant, and the compiler now knows about the possible conversions
for interfaces and delegates.

This isn't a life-changing feature - it's more a case of flattening some speed bumps you may have hit
occasionally. It doesn't even remove all the bumps; there are various limitations, mostly in the name of
keeping generics absolutely typesafe. However, it's still a nice feature to have up your sleeve.

Just in case you need a reminder of what variance is all about, let's start off with a recap of the two basic
forms it comes in.

Types of variance: covariance and contravariance
In essence, variance is about being able to use an object of one type as if it were another, in a typesafe way.

Ultimately, it doesn't matter whether you remember the terminology I'm going to use in this section. It will
be useful while you're reading the chapter, but you're unlikely to find yourself needing it in conversation.
The concepts are far more important.

There are two types of variance: covariance and contravariance. They're essentially the same idea, but
used in the context of values moving in different directions. We'll start with covariance, which is generally
an easier concept to understand.

Covariance: values coming out of an API

Covariance is all about values being returned from an operation back to the caller. Let's imagine
a very, very simple generic interface implementing the factory pattern. It has a single method,
CreateInstance, which will return an instance of the appropriate type. Here's the code:

interface IFactory<T>
{
 T CreateInstance();
}

Now, T only occurs once in the interface (aside from in the name, of course). It's only used as the return
value of a method. That means it makes sense to be able to treat a factory of a specific type as a factory of
a more general type. To put it in real-world terms, you can think of a pizza factory as a food factory.

Some people find it easier to think in terms of "bigger" and "smaller" types. Covariance is about being
able to use a bigger type instead of a smaller one, when that type is only ever being returned by the API.

Contravariance: values going into an API

Contravariance is the opposite way round. It's about values being passed into the API by the caller: the
API is consuming the values instead of producing them. Let's imagine another simple interface - one which
can pretty-print a particular document type to the console. Again, there's just one method, this time called
Print:

interface IPrettyPrinter<T>
{
 void Print(T document);
}

This time T only occurs in the input positions in the intereface, as a parameter. To put this into concrete
terms again, if we had an implementation of IPrettyPrinter<SourceCode>, we should be able to
use it as an IPrettyPrinter<CSharpCode>.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

22

Going back to the "bigger" and "smaller" terminology, contravariance is about being able to use a smaller
type instead of a bigger one when that type is ever being passed into the API.

Invariance: values going both ways

So if covariance applies when values only come out of an API, and contravariance applies when values
only go into the API, what happens when a value goes both ways? In short: nothing. That type would be
invariant. Here's an interface representing a type which can serialize and deserialize a data type.

interface IStorage<T>
{
 byte[] Serialize(T value);
 T Deserialize(byte[] data);
}

This time, if we have an instance for a particular type, we can't treat it as an implementation of the interface
for either a bigger or a smaller type. If we tried to use it in a covariant way, we might pass in an object
which it can't serialize - and if we tried to use it in a contravariant way, we might get an unexpected type
out when we deserialized some bytes.

If it helps, you can think invariance as being like ref parameters: to pass a variable by reference, it has
to be exactly the same type as the parameter itself, because the value goes into the method and effectively
comes out again too.

Using variance in interfaces
C# 4 allows you to specify in the declaration of a generic interface or delegate that a type parameter can be
used covariantly by using the out modifier, or contravariantly using the in modifier. Once the type has
been declared, the relevant types of conversion are available implicitly. This works exactly the same way
in both interfaces and delegates, but I'll show them separately just for clarity. Let's start with interfaces as
they may be a little bit more familiar - and we've used them already to describe variance.

Variant conversions are reference conversions

Any conversion using variance or covariance is a reference conversion, which means that the
same reference is returned after the conversion. It doesn't create a new object, it just treats the
existing reference as if it matched the target type. This is the same as casting between reference
types in a hierarchy: if you cast a Stream to MemoryStream (or use the implicit conversion
the other way) there's still just one object.

The nature of these conversions introduces some limitations, as we'll see later, but it means they're
very efficient, as well as making the behavior easier to understand in terms of object identity.

This time we'll use very familiar interfaces to demonstrate the ideas, with some simple user-defined types
for the type arguments.

Expressing variance with "in" and "out"

There are two interfaces that demonstrate variance particularly effectively: IEnumerable<T> is
covariant in T, and IComparer<T> is contravariant in T. Here are their new type declarations in .NET
4.0:

public interface IEnumerable<out T>
public interface IComparer<in T>

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

23

It's easy enough to remember - if a type parameter is only used for output, you can use out; if it's only
used for input, you can use in. The compiler doesn't know whether or not you can remember which form
is called covariance and which is called contravariance!

Unfortunately the framework doesn't contain very many inheritance hierarchies which would help us
demonstrate variance particularly clearly, so I'll fall back to the standard object oriented example of shapes.
The downloadable source code includes the definitions for IShape, Circle and Square, which are
fairly obvious. The interface exposes properties for the bounding box of the shape and its area. I'm going
to use two lists quite a lot in the following examples, so I'll show their construction code just for reference.

List<Circle> circles = new List<Circle> {
 new Circle(new Point(0, 0), 15),
 new Circle(new Point(10, 5), 20),
};

List<Square> squares = new List<Square> {
 new Square(new Point(5, 10), 5),
 new Square(new Point(-10, 0), 2)
};

The only important point really concerns the types of the variables - they're declared as List<Circle>
and List<Square> rather than List<IShape>. This can often be quite useful - if we were to access
the list of circles elsewhere, we might want to get at circle-specific members without having to cast, for
example. The actual values involved in the construction code are entirely irrelevant; I'll use the names
circles and squares elsewhere to refer to the same lists, but without duplicating the code.5

Using interface covariance

To demonstrate covariance, we'll try to build up a list of shapes from a list of circles and a list of squares.
Listing 13.X shows two different approaches, neither of which would have worked in C# 3.

Example 13.11. Building a list of general shapes from lists of circles and squares
using variance

List<IShape> shapesByAdding = new List<IShape>();
shapesByAdding.AddRange(circles);
shapesByAdding.AddRange(squares);

IEnumerable<IShape> shapeSequence = circles;
List<IShape> shapesByConcat = shapeSequence.Concat(squares).ToList();

Adds lists directly
Uses LINQ for concatenation

Effectively listing 13.X shows covariance in four places, each converting a sequence of circles or
squares into a sequence of general shapes, as far as the type system is converned. First we create a
new List<IShape> and call AddRange to add the circle and square lists to it . (We could have
passed one of them into the constructor instead, then just called AddRange once.) The parameter for
List<T>.AddRange is of type IEnumerable<T>, so in this case we're treating each list as an
IEnumerable<IShape> - something which wouldn't have been possible before. AddRange could
have been written as a generic method with its own type parameter, but it wasn't - and in fact doing this
would have made some optimisations hard or impossible.

5 In the full source code solution these are exposed as properties on the static Shapes class, but in the snippets version I've included the construction
code where it's needed, so you can tweak it easily if you want to.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

24

The other way of creating a list which contains the data in two existing sequences is to use
LINQ . We can't directly call circles.Concat(squares) - we need to convert circles to an
IEnumerable<IShape> first, so that the relevant Concat(IEnumerable<IShape>) overload
is available. However, this covariant conversion from List<Circle> to IEnumerable<IShape>
isn't actually changing the value - just how the compiler treats the value. It isn't building a new sequence,
which is the important point. We then use covariance again in the call to Concat, this time treating the list
of squares as an IEnumerable<IShape>. Covariance is particularly important in LINQ to Objects, as
so much of the API is expressed in terms of IEnumerable<T>.

In C# 3 there would certainly have been other ways to approach the same problem. We could have built
List<IShape> instances instead of List<Circle> and List<Square> for the original shapes;
we could have used the LINQ Cast operator to convert the specific lists to more general ones; we could
have written our own list class with a generic AddRange method. None of these would have been as
convenient or as efficient as the alternatives offered here, however.

Using interface contravariance

We'll use the same types to demonstrate contravariance. This time we'll only use the list of circles, but a
comparer which is able to compare any two shapes by just comparing the areas. We happen to want to sort
a list of circles, but that poses no problems now, as shown in listing 13.X.

Example 13.12. Sorting circles using a general-purpose comparer and
contravariance

class AreaComparer : IComparer<IShape>
{
 public int Compare(IShape x, IShape y)
 {
 return x.Area.CompareTo(y.Area);
 }
}
...
IComparer<IShape> areaComparer = new AreaComparer();
circles.Sort(areaComparer);

Compares shapes by area
Sorts using contravariance

There's nothing complicated here. Our AreaComparer class is about as simple as an implementation
of IComparer<T> can be; it doesn't need any state, for example. In a production environment you
would probably want to introduce a static property to access an instance, rather than making users call
the constructor. You'd also normally implement some null handling in the Compare method, but that's
not necessary for our example.

Once we have an IComparer<IShape>, we're using it to sort a list of circles . The argument
to circles.Sort needs to be an IComparer<Circle>, but covariance allows us to convert our
comparer implicitly. It's as simple as that.

Surprise, surprise

If someone had presented you with this code as if it were C# 3, you might have looked at it and
expected it to work. It seems obvious that it should be able to work, and this is a common feeling;
the invariance in C# 2 and 3 often is an unwelcome surprise. The new abilities of C# 4 in this
area aren't introducing new concepts you'd never have thought of before, they'll just allow you
more flexibility.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

25

These have both been very simple examples using single-method interfaces, but the same principles apply
for more complex APIs. Of course, the more complex the interface is, the more likely it is that a type
parameter will be used for both input and output, which would make it invariant. We'll come back to some
tricky examples later, but first we'll look at delegates.

Using variance in delegates
Now we've seen how to use variance with interfaces, applying the same knowledge to delegates is easy.
We'll use some very familiar types again:

delegate T Func<out T>()
delegate void Action<in T>(T obj)

These are really equivalent to the IFactory<T> and IPrettyPrinter<T> interfaces we started off
with. Using lambda expressions, we can demonstrate both of these very easily, and even chain the two
together. Listing 13.X shows an example using our shape types.

Example 13.13. Using variance with simple Func<T> and Action<T> delegates

Func<Square> squareFactory = () => new Square(new Point(5, 5), 10);
Func<IShape> shapeFactory = squareFactory;

Action<IShape> shapePrinter = shape => Console.WriteLine(shape.Area);
Action<Square> squarePrinter = shapePrinter;

squarePrinter(squareFactory());
shapePrinter(shapeFactory());

Converts Func<T> using covariance
Converts Action<T> using contravariance
Sanity checking...

Hopefully by now the code will need little explanation. Our "square factory" always produces a square at
the same position, with sides of length 10. Covariance allows us to treat a square factory as a general shape
factory with no fuss. We then create a general-purpose action which just prints out the area of whatever
shape is given to it. This time we use a contravariant conversion to treat the action as one which can be
applied to any square . Finally, we feed the square action with the result of calling the square factory,
and the shape action with the result of calling the shape factory. Both print 100, as we'd expect.

Of course we've only used delegates with a single type parameter here. What happens if we use delegates
or interfaces with multiple type parameters? What about type arguments which are themselves generic
delegate types? Well, it can all get quite complicated...

Complex situations
Before I try to make your head spin, I should provide a little comfort. Although we'll be doing some weird
and wonderful things, the compiler will stop you from making mistakes. You may still get confused by the
error messages if you've got several type parameters used in funky ways, but once you've got it compiling
you should be safe6. Complexity is possible in both the delegate and interface forms of variance, although
the delegate version is usually more concise to work with. Let's start off with a relatively simple example.

6Assuming the bug around Delegate.Combine [http://stackoverflow.com/questions/1120688] is fixed, of course. This footnote is a warning to MEAP
readers for 4.0 beta 1, as well as a reminder for me to check it out later on and revise the text appropriately.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://stackoverflow.com/questions/1120688
http://stackoverflow.com/questions/1120688
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

26

Simultaneous covariance and contravariance with
Converter<TInput, TOutput>

The Converter<TInput, TOutput> delegate has been around since .NET 2.0. It's effectively
Func<T, TResult> but with a clearer expected purpose. Listing 13.X shows a few combinations of
variance using a simple converter.

Example 13.14. Demonstrating covariance and contravariance with a single type

Converter<object, string> converter = x => x.ToString();
Converter<string, string> contravariance = converter;
Converter<object, object> covariance = converter;
Converter<string, object> both = converter;

Converts objects to strings
Converts strings to objects

Listing 13.X shows the variance conversions available on a delegate of type Converter<object,
string>: a delegate which takes any object and produces a string. First we implement the delegate using
a simple lambda expression which calls ToString . As it happens, we never actually call the delegate,
so we could have just used a null reference, but I think it's easier to think about variance if you can pin
down a concrete action which would happen if you called it.

The next two lines are relatively straightforward, so long as you only concentrate on one type parameter at
a time. The TInput type parameter is only used an in input position, so it makes sense that you can use it
contravariantly, using a Converter<object, string> as a Converter<string, string>.
In other words, if you can pass any object reference into the converter, you can certainly hand it a string
reference. Likewise the TOutput type parameter is only used in an output position (the return type) so it
makes sense to use that covariantly: if the converter always returns a string reference, you can safely use
it where you only need to guarantee that it will return an object reference.

The final line is just a logical extension of this idea. It uses both contravariance and covariance in the
same conversion, to end up with a converter which only accepts strings and only declares that it will return
an object reference. Note that you can't convert this back to the original conversion type without a cast -
we've essentially relaxed the guarantees at every point, and you can't tighten them up again implicitly.

Let's up the ante a little, and see just how complex things can get if you try hard enough.

Higher order function insanity

The really weird stuff starts happening when you combine variant types together. I'm not going to go into
a lot of detail here - I just want you to appreciate the potential for complexity. Let's look at four delegate
declarations:

delegate Func<T> FuncFunc<out T>();
delegate void ActionAction<out T>(Action<T> action);
delegate void ActionFunc<in T>(Func<T> function);
delegate Action<T> FuncAction<in T>();

Each of these declarations is equivalent to "nesting" one of the standard delegates inside another. For
example, FuncAction<T> is equivalent to Func<Action<T>>. Both represent a function which will
return an Action which can be passed a T. But should this be covariant or contravariant? Well, the
function is going to return something to do with T, so it sounds covariant - but that "something" then

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

27

takes a T so it sounds contravariant. The answer is that the delegate is contravariant in T, which is why
it's declared with the in modifier.

As a quick rule of thumb, you can think of nested contravariance as reversing the previous
variance, whereas covariance doesn't - so while Action<Action<T>> is covariant in T,
Action<Action<Action<T>>> is contravariant. Compare that with Func<T> variance, where you
can write Func<Func<Func<...Func<T>...>>> with as many levels of nesting as you like and
still get covariance.

Just to give a similar example using interfaces, let's imagine we have something that can compare
sequences. If it can compare two sequences of arbitrary objects, it can certainly compare two sequences
of strings - but not vice versa. Converting this to code (without implementing the interface!) we can see
this as:

IComparer<IEnumerable<object>> objectsComparer = ...;
IComparer<IEnumerable<string>> stringsComparer = objectsComparer;

This conversion is legal: IEnumerable<string> is a "smaller" type than IEnumerable<object>
due to the covariance of IEnumerable<T>; the contravariance of IComparer<T> then allows the
conversion from a comparer of "bigger" type to a comparer of a "smaller" type.

Of course we've only used delegates and interfaces with a single type parameter in this section - it can
all apply to multiple type parameters too. Don't worry though: you're unlikely to need this sort of brain-
busting variance very often, and when you do you've got the compiler to help you. I really just wanted
to make you aware of the possibilities.

On the flip side, there are some things you may expect to be able to do, but which aren't supported.

Limitations and notes
The variance support provided by C# 4 is mostly limited by what's provided by the CLR. It would be hard
for the language to support conversions which were prohibited by the underlying platform. This can lead
to a few surprises.

No variance for type parameters in classes

Only interfaces and delegates can have variant type parameters. Even if you have a class which only uses
the type parameter for input (or only uses it for output) you cannot specify the in or out modifiers.
For example Comparer<T>, the common implementation of IComparer<T>, is invariant - there's no
conversion from Comparer<IShape> to Comparer<Circle>.

Aside from any implementation difficulties which this might have incurred, I'd say it makes a certain
amount of sense conceptually. Interfaces represent a way of looking at an object from a particular
perspective, whereas classes are more rooted in the object's actual type. This argument is weakened
somewhat by inheritance letting you treat an object as an instance of any of the classes in its inheritance
hierarchy, admittedly. Either way, the CLR doesn't allow it.

Variance only supports reference conversions

You can't use variance between two arbitrary type arguments just because there's a conversion between
them. It has to be a reference conversion. Basically that limits it to conversions which operate on reference
types and which don't affect the binary representation of the reference. This is so that the CLR can know that
operations will be type safe without having to inject any actual conversion code anywhere. As I mentioned
in section 13.3.2, variant conversions are themselves reference conversions, so there wouldn't be anywhere
for the extra code to go anyway.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

28

In particular, this restriction prohibits any conversions of value types and user-defined conversions. For
example, the following conversions are all invalid:

• IEnumerable<int> to IEnumerable<object> - boxing conversion

• IEnumerable<short> to IEnumerable<int> - value type conversion

• IEnumerable<XmlAttribute> to IEnumerable<string> - user-defined conversion

User-defined conversions aren't likely to be a problem as they're relatively rare, but you may find the
restriction around value types a pain.

"out" parameters aren't output positions

This one came as a surprise to me, although it makes sense in retrospect. Consider a delegate with the
following definition:

delegate bool TryParser<T>(string input, out T value)

You might expect that you could make T covariant - after all, it's only used in an output position... or is it?
The CLR doesn't really know about out parameters. As far as it's concerned, they're just ref parameters
with an [Out] attribute applied to them. C# attaches special meaning to the attribute in terms of definite
assignment, but the CLR doesn't. Now ref parameters mean data going both ways, so if you have a ref
parameter of type T, that means T is invariant.

Delegates and interfaces using out parameters are quite rare, so this may well never affect you anyway,
but it's worth knowing about just in case.

Variance has to be explicit

When I introduced the syntax for expressing variance - applying the in or out modifiers to type
parameters - you may have wondered why we needed to bother at all. The compiler is able to check that
whatever variance you try to apply is valid - so why doesn't it just apply it automatically?

It could do that, but I'm glad it doesn't. Normally you can add methods to an interface and only affect
implementations rather than callers. However, if you've declared that a type parameter is variant and you
then want to add a method which breaks that variance, all the callers are affected too. I can see this causing
a lot of confusion. Variance requires some thought about what you might want to do in the future, and
forcing developers to explicitly include the modifier encourages them to plan carefully before committing
to variance.

There's less of an argument for this explicit nature when it comes to delegates: any change to the signature
that would affect the variance would probably break existing uses anyway. However, there's a lot to be
said for consistency - it would feel quite odd if you had to specify the variance in interfaces but not in
delegate declarations.

Beware of breaking changes

Whenever new conversions become available there's the risk of your current code breaking. For instance,
if you rely on the results of the is or as operators not allowing for variance, your code will behave
differently when running under .NET 4.0. Likewise there are cases where overload resolution will choose
a different method due to there being more applicable options now. This is another reason for variance to
be explicitly specfied: it reduces the risk of breaking your code.

These situations should be quite rare, however, and the benefit from variance is more significant than the
potential drawbacks. You do have unit tests to catch subtle changes, right? In all seriousness, the C# team

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

29

takes code breakage very seriously, but sometimes there's no way of introducing a new feature without
breaking code.7

No caller-specified or partial variance

This is really a matter of interest and comparison rather than anything else, but it's worth noting that C#'s
variance is very different to Java's system. Java's generic variance manages to be extremely flexible by
approaching it from the other side: instead of the type itself declaring the variance, code using the type
can express the variance it needs.

Want to know more?

This book isn't about Java generics, but if this little teaser has piqued your interest, you may want to
check out Angelika Langer's Java Generics FAQ [http://www.angelikalanger.com/GenericsFAQ/
JavaGenericsFAQ.html]. Be warned: it's a huge and complex topic!

For example, the List<T> interface in Java is roughly equivalent to IList<T> in C#. It contains
methods to both add items and fetch them, so clearly in C# it's invariant - but in Java you decorate the
type at the calling code to explain what variance you want. The compiler then stops you from using the
members which go against that variance. For example, the following code would be perfectly valid:

List<Shape> shapes1 = new ArrayList<Shape>();
List<? super Square> squares = shapes1;
squares.add(new Square(10, 10, 20, 20));

List<Circle> circles = new ArrayList<Circle>();
circles.add(new Circle(10, 10, 20));
List<? extends Shape> shapes2 = circles;
Shape shape = shapes2.get(0);

Declaration using contravariance
Declaration using covariance

For the most part, I prefer generics in C# to Java, and type erasure in particular can be a pain in many
cases. However, I find this treatment of variance really interesting. I don't expect to see anything similar
in future versions of C# - so think carefully about how you can split your interfaces to allow for flexibility,
but without introducing more complexity than is really warranted.

Summary
This has been a bit of a "pick and mix" chapter, with three distinct areas. Having said that, COM greatly
benefits from named arguments and optional parameters, so there's some overlap between them.

I suspect it will take a while for C# developers to get the hang of how best to use the new features for
parameters and arguments. Overloading still provides extra portability for languages which don't support
optional parameters, and named arguments may look strange in some situations until you get used to
them. The benefits can be significant though, as I demonstrated with the example of building instances of
immutable types. You'll need to take some care when assigning default values to optional parameters, but
I hope that you'll find the suggestion of using null as a "default default value" to be a useful and flexible
one which effectively side-steps some of the limitations and pitfalls you might otherwise encounter.

7In .NET 4.0b1 there's no warning given for behavioral changes, as there was when method group conversion variance was introduced in C# 2.
I'm hoping this will change before VS2010 ships.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

30

Working with COM has come on a long way for C# 4. I still prefer to use purely managed solutions where
they're available, but at least the code calling into COM is a lot more readable now, as well as having a
better deployment story. We're not quite finished with the COM story, as the dynamic typing features we'll
see in the next chapter impact on COM too, but even without taking that into account we've seen a short
sample become a lot more pleasant just by applying a few simple steps.

Finally we examined generic variance. Sometimes you may end up using variance without even knowing
it, and I think most developers are more likely to use the variance declared in the framework interfaces
and delegates rather than creating their own ones. I apologise if it occasionally became a bit tricky - but it's
good to know just what's out there. If it's any consolation to you, C# team member Eric Lippert has publicly
acknowledged [http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-
c-part-five-higher-order-functions-hurt-my-brain.aspx] that higher order functions make even his head
hurt, so we're in good company. Eric's post is one in a long series [http://blogs.msdn.com/ericlippert/
archive/tags/Covariance+and+Contravariance/default.aspx] about variance, which is as much as anything
a dialogue about the design decisions involved. If you haven't had enough of variance by now, it's an
excellent read.

This chapter dealt with relatively small changes to C#. Chapter 14 deals with something far more
fundamental: the ability to use C# in a dynamic manner.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://www.manning-sandbox.com/forum.jspa?forumID=569

31

Chapter 14. Dynamic binding in a static
language

C# has always been a statically typed language, with no exceptions. There have been a few areas where
the compiler has looked for particular names rather than interfaces, such as finding appropriate Add
methods for collection initializers, but there's been nothing truly dynamic in the language beyond normal
polymorphism. That changes with C# 4 - at least partially. The simplest way of explaining it is that there's
a new static type called dynamic, which you can try to do pretty much anything with at compile time,
and let the framework sort it out at execution time. Of course there's rather more to it than that, but that's
the executive summary.

Given that C# is still a statically typed language everywhere that you're not using dynamic, I don't expect
fans of dynamic programming to suddenly become C# advocates. That's not the point of the feature: it's all
about interoperability. As dynamic languages such as IronRuby and IronPython join the .NET ecosystem,
it would be crazy not to be able to call into C# code from IronPython and vice versa. Likewise developing
against weakly-typed COM APIs has always been awkward in C#, with an abundance of casts cluttering
the code. We've already seen some improvements in C# 4 when it comes to working with COM, and
dynamic typing is the final new feature of C# 4.

One word of warning though - and I'll be repeating this throughout the chapter - it's worth being careful with
dynamic typing. It's certainly fun to explore, and it's been very well implemented, but I still recommend
that you stay away from it in production code unless there's a clear benefit to using it. Dynamic code will
be slower than static code (even though the framework does a very good job of optimising it as far as it
can) but more importantly, you lose a lot of compile-time safety. While unit testing will help you find a lot
of the mistakes that can crop up when the compiler isn't able to help you much, I still prefer the immediate
feedback of the compiler telling me if I'm trying to use a method which doesn't exist or can't be called
with a given set of arguments.

Dynamic languages certainly have their place, but if you're really looking to write large chunks of your
code dynamically, I suggest you use a language where that's the normal style instead of the exception.
Now that you can easily call into dynamic languages from C#, you can fairly easily separate out the parts
of your code which benefit from a largely dynamic style from those where static typing works better.

I don't want to put too much of a damper on things though: where dynamic typing is useful, it can be a
lot simpler than the alternatives. In this chapter we'll take a look at the basic rules of dynamic typing in
C# 4, and then dive into some examples: using COM dynamically, calling into some IronPython code,
and making reflection a lot simpler. You can do all of this without knowing details, but after we've got
the flavor of dynamic typing, we'll look at what's going on under the hood. In particular, we'll discuss the
Dynamic Language Runtime and what the C# compiler does when it encounters dynamic code. Finally,
we'll see how you can make your own types respond dynamically to methods calls, property accesses and
the like. First though, let's take a step back.

What? When? Why? How?
Before we get to any code showing off this new feature of C# 4, it's worth getting a better handle on why
it was introduced in the first place. I don't know any other languages which have gone from being purely
static to partially dynamic; this is a significant step in C#'s evolution, whether you make use of it often
or only occasionally.

We'll start off by taking a fresh look at what "dynamic" and "static" mean, consider some of the major use
cases for dynamic typing in C#, and lead into how it's implemented in C# 4.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

32

What is dynamic typing?
In chapter 2, I discussed the characteristics of a type system and described how C# was a statically
typed language in versions 1-3. The compiler knows the type of expressions in the code, and knows the
members available on any type. It applies a fairly complex set of rules to determine which exact member
should be used. This includes overload resolution; the only choice which is left until later is to pick the
implementation of virtual methods depending on the execution time type of the object. The process of
working out which member to use is called binding, and in a statically typed language it occurs at compile
time.

In a dynamically typed language, all of this binding occurs at execution time. A compiler is able to check
that the code is syntactically correct, but it can't check that the methods you call and the properties you
access are actually present. It's a bit like a word processor with no dictionary: it may be able to check your
punctuation, but not your spelling. (If you're to have any sort of confidence in your code, you really need a
good set of unit tests.) Some dynamic languages are interpreted to start with, with no compiler involved at
all. Others provide an interpreter as well as a compiler, to allow rapid development with a REPL: a read-
evaluate-print loop.1

It's worth noting that the new dynamic features of C# 4 do not include interpreting C# source code at
execution time: there's no direct equivalent of the JavaScript eval function, for example. To execute code
based on data in strings, you need to use either the CodeDOM API (and CSharpCodeProvider in
particular) or simple reflection to invoke individual members.

Of course, the same kind of work has to be done at some point in time no matter what approach you're
taking. By asking the compiler to do more work before execution, static systems usually perform better
than dynamic ones. Given the downsides we've mentioned so far, you might be wondering why anyone
would want to bother with dynamic typing in the first place.

When is dynamic typing useful, and why?
Dynamic typing has two important points in its favor. First, if you know the name of a member you want
to call, the arguments you want to call it with, and the object you want to call it on, that's all you need. That
may sound like all the information you could have anyway, but there's more that the C# compiler would
normally want to know. Crucially, in order to identify the member exactly (modulo overriding) it would
need to know the type of the object you're calling it on, and the types of the arguments. Sometimes you
just don't know those types at compile-time, even though you do know enough to be sure that the member
will be present and correct when the code actually runs.

For example, if you know that the object you're using has a Length property you want to use, it doesn't
matter whether it's a String, a StringBuilder, an Array, a Stream, or any of the other types with
that property. You don't need that property to be defined by some common base class or interface - which
can be useful if there isn't such a type. This is called duck typing, from the notion that "if it walks like a
duck and quacks like a duck, I would call it a duck."2 Even when there is a type which offers everything
you need, it can sometimes be an irritation to tell the compiler exactly which type you're talking about.
This is particularly relevant when using Microsoft Office APIs via COM. Many method and properties are
declare to just return VARIANT, which means that C# code using these calls is often peppered with casts.
Duck typing allows you to omit all of these casts, so long as you're confident about what you're doing.

The second important feature of dynamic typing is the ability of objects and types to respond to a call by
analysing the name and arguments provided to it. It can behave as if the member had been declared by

1Strictly speaking, REPL isn't solely associated with dynamic languages. Some statically typed languages have "interpreters" too which actually
compile on the fly. Notably, F# comes with a tool called F# Interactive which does exactly this. However, interpreters are much more common
for dynamic languages than static ones.
2The Wikipedia article on duck typing [http://en.wikipedia.org/wiki/Duck_typing] has more information about the history of the term.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

33

the type in the normal way, even if the member names couldn't possibly be known until execution time.
For example, consider the following call:

books.FindByAuthor("Joshua Bloch")

Normally this would require the FindByAuthor member to be declared by the designer of the type
involved. In a dynamic data layer there can be a single smart piece of code which works out that when make
a call like that and there's an Author property in the associated data (whether that's from a database, XML
document, hard-coded data or anything else) then you probably want to do a query using the specified
argument as the author to find. In some ways this is just a more complex way of writing something like:

books.Find("Author", "Joshua Bloch")

However, the first snippet feels more appropriate: the calling code knows the "Author" part statically, even
if the receiving code doesn't. This approach can be used to mimic domain specific languages (DSLs) in
some situations. It can also be used to create a natural API for exploring data structures such as XML trees.

Another feature of programming with dynamic languages tends to be an experimental style of
programming using an appropriate interpreter, as I mentioned earlier. This isn't directly relevant to C#
4, but the fact that C# 4 can interoperate richly with dynamic languages running on the DLR (Dynamic
Language Runtime) means that if you're dealing with a problem which would benefit from this style, you'll
be able to use the results directly from C# instead of having to port it to C# afterwards.

We'll look at these scenarios in more depth when we've learned the basics of C# 4's dynamic abilities, so
we can see more concrete examples. It's worth briefly point out that if these benefits don't apply to you,
dynamic typing is more likely to be a hindrance than a help. Many developers won't need to use dynamic
typing very much in their day-to-day coding, and even when it is required it may well only be for a small
part of the code. Just like any feature, it can be overused; in my view it's usually worth thinking carefully
about whether any alternative designs would allow static typing to solve the same problem elegantly.
However, I'm biased due to having a background in statically typed languages - it's worth reading books
on dynamically typed languages such as Python and Ruby to see a wider variety of benefits than the ones
I present in this chapter.

You're probably getting anxious to see some real code by now, so we'll just take a moment to get a very
brief overview of what's going on, and then dive into some examples.

How does C# 4 provide dynamic typing?
C# 4 introduces a new type called dynamic.The compiler treats this type differently to any normal
CLR type3. Any expression that uses a dynamic value causes the compiler to change its behavior in a
radical way. Instead of trying to work out exactly what the code means, binding each member access
appropriately, performing overload resolution and so on, the compiler just parses the source code to work
out what kind of operation you're trying to perform, its name, what arguments are involved and any other
relevant information. Instead of emitting IL to execute the code directly, the compiler generates code which
calls into the Dynamic Language Runtime with all the required information. The rest of the work is then
performed at execution time.

In many ways this is similar to the differences between the code generated when converting a lambda
expression to an expression tree instead a delegate type. We'll see later that expression trees are extremely
important in the DLR, and in many cases the C# compiler will use expression trees to describe the code. (In
the simplest cases where there's nothing but a member invocation, there's no need for an expression tree.)

3In fact, dynamic doesn't represent a specific CLR type. It's really just System.Object in conjunction with
System.Dynamic.DynamicAttribute. We'll look at this in more detail in section 14.4, but for the moment you can probably pretend it's
a real type.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

34

When the DLR comes to bind the relevant call at execution time, it goes through a complicated process
to determine what should happen. This not only has to take in the normal C# rules for method overloads
and so on, but also the possibility that the object itself will want to be part of the decision, as we saw in
our FindByAuthor example earlier.

Most of this happens under the hood though - the source code you write to use dynamic typing can be
really simple.

The 5 minute guide to dynamic
Do you remember how many new bits of syntax were involved when you learned about LINQ? Well
dynamic typing is just the opposite: there's a single contextual keyword, dynamic, which you can use in
most places that you'd use a type name. That's all the new syntax that's required, and the main rules about
dynamic are easily expressed, if you don't mind a little bit of hand-waving to start with:

• An implicit conversion exists from any CLR type to dynamic

• An implicit conversion exists from dynamic to any CLR type

• Any expression which uses a value of type dynamic is evaluated dynamically

• The static type of any dynamically-evaluated expression is deemed to be dynamic (with the exception
of explicit conversions and constructor calls - in both those cases the compiler knows the type of the
result, even if it doesn't know exactly how it's going to get there)

The detailed rules are more complicated, as we'll see in section 14.4, but for the moment let's stick with
the simplified version above. Listing 14.1 provides a complete example demonstrating each point.

Example 14.1. Using dynamic to iterate through a list, concatenating strings

dynamic items = new List<string> { "First", "Second", Third" };
dynamic valueToAdd = " (suffix)";
foreach (dynamic item in items)
{
 string result = item + valueToAdd;
 Console.WriteLine(result);
}

The result of listing 14.1 shouldn't come as much surprise: it writes out "First (suffix)" and so on. Of
course we could easily have specified the types of the items and valueToAdd variables explicitly in
this case, and it would all have worked in the normal way - but imagine that the variables are getting their
values from other data sources instead of having them hard-coded. What would happen if we wanted to
add an integer instead of a string? Listing 14.2 is just a slight variation, but note that we haven't changed
the declaration of valueToAdd; just the assignment expression.

Example 14.2. Adding integers to strings dynamically

dynamic items = new List<string> { "First", "Second", Third" };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{
 string result = item + valueToAdd;
 Console.WriteLine(result);
}

string + int concatenation

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

35

This time the first result is "First2" - which is hopefully what you'd expect. Using static typing, we'd have
to have explicitly change the declaration of valueToAdd from string to int. The addition operator
is still building a string though. What if we changed the items to be integers as well? Let's try that one
simple change, as shown in listing 14.3.

Example 14.3. Adding integers to integers

dynamic items = new List<int> { 1, 2, 3 };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{
 string result = item + valueToAdd;
 Console.WriteLine(result);
}

int + int addition

Disaster! We're still trying to convert the result of the addition to a string. The only conversions which
are allowed are the same ones which are present in C# normally, so there's no conversion from int to
string. The result is an exception (at execution time, of course):

Unhandled Exception:
 Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:
Cannot implicitly convert type 'int' to 'string'
 at CallSite.Target(Closure , CallSite , Object)
 at System.Dynamic.UpdateDelegates.UpdateAndExecute1[T0,TRet]
 (CallSite site, T0 arg0)
 ...

Unless you're perfect, you're likely to encounter RuntimeBinderException quite a lot when you
start using dynamic typing. It's the new NullPointerException, in some ways: you're bound to
come across it, but with any luck it'll be in the context of unit tests rather than customer bug reports.
Anyway, we can fix it by changing the type of result to dynamic, so that the conversion isn't
required anyway. Come to think of it, why bother with the result variable in the first place? Let's just call
Console.WriteLine immediately. Listing 14.4 shows the changes.

Example 14.4. Adding integers to integer - but without the exception

dynamic items = new List<int> { 1, 2, 3 };
dynamic valueToAdd = 2;
foreach (dynamic item in items)
{
 Console.WriteLine(item + valueToAdd);
}

Calls overload with int argument

Now this prints 3, 4, 5 as we'd expect. Changing the input data would now not only change the operator
which was chosen at execution time - it would also change which overload of Console.WriteLine
was called. With the original data, it would call Console.WriteLine(string); with the updated
variables if would call Console.WriteLine(int). The data could even contain a mixture of values,
making the exact call change on every iteration!

You can use dynamic as the declared type for fields, parameters and return types as well. This is in stark
contrast to the use of var, which is restricted to local variables.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

36

Differences between var and dynamic

In many of the examples so far, when we've really known the types at compile-time, we could
have used var to declare the variables. At first glance, the two features look very similar. In both
cases it looks like we're declaring a variable without specifying its type - but using dynamic we're
explicitly setting the type to be dynamic. You can only use var when the compiler is able to infer
the type you mean statically, and the type system really does remain entirely static.

The compiler is very smart about the information it records, and the code which then uses that information
at execution time is clever too: basically it's a "mini C# compiler" in its own right. It uses whatever static
type information was known at compile time to make the code behave as intuitively as possible. Other
than a few details of what you can't do with dynamic typing, that's all you really need to know in order to
start using it in your own code. Later on we'll come back to those restrictions, as well as details of what
the compiler is actually doing - but first let's see dynamic typing doing something genuinely useful.

Examples of dynamic typing
Dynamic typing is a little bit like unsafe code, or interoperability with native code using P/Invoke. Many
developers will have no need for it, or use it once in a blue moon. For other developers - particularly those
dealing with Microsoft Office - it will be give a huge productivity boost, either by making their existing
code simpler or by allowing radically different approaches to their problems.

This section is not meant to be exhaustive by any means, and I look forward to seeing innovative uses
of dynamic typing from C# in the coming years. Will unit testing and mocking take a big step forward
with new frameworks? Will we see dynamic web service clients, accessing RESTful services with simple
member access? I'm not going to make any predictions, other than that it'll be an interesting area to keep
can eye on.

We're going to look at three examples here: working with Excel, calling into Python, and using normal
managed .NET types in a more flexible way.

COM in general, and Microsoft Office in particular

We've already seen most of the new features C# 4 brings to COM interop, but there was one that we couldn't
cover in chapter 13 because we hadn't seen dynamic typing yet. If you choose to embed the interop types
you're using into the assembly (by using the /link compiler switch, or setting the "Embed Interop Types"
property to True) then anything in the API which would otherwise be declared as object is changed to
dynamic. This makes it much easier to work with somewhat weakly typed APIs such as those exposed
by Office. (Although the object model in Office is reasonably strong in itself, many properties are exposed
as variants as they can deal with numbers, strings dates and so on.)

Again, I'll just show you just a short example here - one which does even less than the Word example in
chapter 13. The dynamic aspect is very easy to understand from just this one example - although there's a
quirk you might not expect. We're going to set the first ten cells of the top row of a new Excel worksheet
to the numbers 1 to 20. Listing 14.X shows an initial, statically typed piece of code to achieve this.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

37

Example 14.5. Setting a range of values with static typing

var app = Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = (Worksheet) app.ActiveSheet;
Range start = (Range) worksheet.Cells[1, 1];
Range end = (Range) worksheet.Cells[1, 20];
worksheet.get_Range(start, end).Value2 = Enumerable.Range(1, 20)
 .ToArray();

Open Excel with an active worksheet
Determine start and end cells
Fill the range with [1, 20]

This time we've imported the Microsoft.Office.Interop.Excel namespace - so the
Application type refers to Excel, not Word. We're still using the new features of C# 4, by not specifying
an argument for the optional parameter in the Workbooks.Add() call while we're setting things up .
When Excel is up and running, we work out the start and end cells of our overall range. In this case they're
both on the same row, but we could have created a rectangular range instead by selecting two opposite
corners. We could have created the range in a single call to get_Range("A1:T1") but I personally
find it easier to work with numbers consistently. Cell names like B3 are great for humans, but harder to
use in a program.

Once we've got the range, we set all the values in it by setting the Value2 property with an array of integers.
We can use a one-dimensional array as we're only setting a single row; to set a range spanning multiple
rows we'd need to use a rectangular array. This all works, but we've had to use three casts in six lines
of code. The indexer we call via Cells and the ActiveSheet property are both declared to return object
normally. (Various parameters are also declared as type object, but that doesn't matter as much because
there's an implicit conversion from any type to object - it's only coming the other way that requires
the cast.)

With the Primary Interop Assembly set to embed the required types into our own binary, all of these
examples become dynamic. With the implicit conversion from dynamic to any other type, we can just
remove all the casts, as shown in listing 14.X.

Example 14.6. Using implicit conversions from dynamic in Excel

var app = new Application { Visible = true };
app.Workbooks.Add();
Worksheet worksheet = app.ActiveSheet;
Range start = worksheet.Cells[1, 1];
Range end = worksheet.Cells[1, 20];
worksheet.get_Range(start, end).Value2 = Enumerable.Range(1, 20)
 .ToArray();

This really is exactly the same code as listing 14.X but without the casts. However, it's worth noting that the
conversions are still checked at execution time. If we changed the declaration of start to be Worksheet,
the conversion would fail and an exception would be thrown. Of course, you don't have to perform the
conversion. You could just leave everything as dynamic:

var app = new Application { Visible = true };
app.Workbooks.Add();
dynamic worksheet = app.ActiveSheet;
dynamic start = worksheet.Cells[1, 1];
dynamic end = worksheet.Cells[1, 20];
worksheet.get_Range(start, end).Value2 = Enumerable.Range(1, 20)

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

38

 .ToArray();

This approach has two problems. First, you don't get any IntelliSense on worksheet, start and end
variables, because the compiler doesn't know the real types involved. More importantly, the code throws
an exception on the last line: the COM dynamic binder fails on the call to get_Range. This is easy to
fix by changing the method call to Range instead, as shown in listing 14.X - but the important point to
take away is that code which works with static typing doesn't always work with dynamic typing.

Example 14.7. Using dynamic excessively, requiring a change in method name

var app = new Application { Visible = true };
app.Workbooks.Add();
dynamic worksheet = app.ActiveSheet;
dynamic start = worksheet.Cells[1, 1];
dynamic end = worksheet.Cells[1, 20];
worksheet.Range(start, end).Value2 = Enumerable.Range(1, 20)
 .ToArray();

For this reason, I'd encourage you to use static typing as far as possible even when using COM. The implicit
conversion of dynamic is very useful in terms of removing casts, but taking it too far is dangerous - as
well as inconvenient due to losing IntelliSense.

From the relatively old technology of COM, we're going to jump to interoperating with something much
more recent: IronPython.

Dynamic languages such as IronPython
In this section I'm only going to use IronPython as an example, but of course that's not the only dynamic
language available for the DLR. It's arguably the most mature, but there are already alternatives such as
IronRuby and IronScheme. One of the stated aims of the DLR is to make it easier for budding language
designers to create a working language which has good interoperability with other DLR languages and the
traditional .NET languages such as C#, as well as access to the huge .NET framework libraries.

Why would I want to use IronPython from C#?

There are many reasons one might want to interoperate with a dynamic language, just as it's been beneficial
to interoperate with other managed languages from .NET's infancy. It's clearly useful for a VB developer
to be able to use a class library written in C# and vice versa - so why would the same not be true of dynamic
languages? I asked Michael Foord, the author of Iron Python in Action, to come up with a few ideas for
using IronPython within a C# application. Here's his list:

• User scripting

• Writing a layer of your application in IronPython

• Using Python as a configuration language

• Using Python as a rules engine with rules stored as text (even in a database)

• Using a Python library such as feedparser [http://www.feedparser.org/]

• Putting a live interpreter into your application for debugging

If you're still skeptical, you might want to consider that embedding a scripting language in a mainstream
application is far from uncommon - indeed, Sid Meye's Civilization IV computer game4is scriptable with

4Or way of life, depending on how you view the world and your level of addiction to playing the game.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.feedparser.org/
http://www.feedparser.org/
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

39

Python. This isn't just an afterthought for modifications, either - a lot of the core gameplay is written
in Python: once they'd built the engine the developers found it to be a more powerful development
environment than they'd originally imagined.

For this chapter, I'm going to pick the single example of using Python as a configuration language. Just as
with the COM example, I'm going to keep it very simple, but hopefully it'll provide enough of a starting
point for you to experiment more with it if you're interested.

Getting started: embedding "hello, world"

MEAP note: this is based on Visual Studio 4.0 beta 1 and IronPython 2.6-with-.NET 4.0 CTP 1. It may
well change in terms of namespaces etc, which is why I haven't been precise yet. This will be fixed before
publication!

There are various types available if you want to host or embed another language within a C# application,
depending on the level of flexibility and control you want to achieve. We're only going to use
ScriptEngine and ScriptScope, because our requirements are quite primitive. In our example we
know we're always going to use Python, so we can ask the IronPython framework to create a ScriptEngine
directly; in more general situations you can use a ScriptRuntime to pick language implementations
dynamically by name. More demanding scenarios may require you to work with ScriptHost and
ScriptSource, as well as using more of the features of the other types too.

Not content with merely printing "hello, world" once, our initial example will do so twice, first by using
text passed directly into the engine as a string, and then by loading a file called HelloWorld.py.

Example 14.8. Printing "hello, world" twice using Python embedded in C#

ScriptEngine engine = Python.CreateEngine();
engine.Execute("print 'hello, world'");
engine.ExecuteFile("HelloWorld.py");

You may find this listing either quite dull or very exciting, both for the same reason. It's simple to
understand, requiring very little explanation. It does very little, in terms of actual output... and yet the fact
that it is so easy to embed Python code into C# is a cause for celebration. True, our level of interaction is
somewhat minimal so far - but it really couldn't be much easier than this.

Note

The Python file contains a single line: print "hello, world" - note the double quotes in the
file compared with the single quotes in the string literal we passed into engine.Execute().
Either would have been fine in either source. Python has various string literal representations,
including triple single quotes or triple double quotes for multi-line literals. I only mention this
because it's very useful not to have to escape double quotes any time you want to put Python
code into a C# string literal.

The next type we need is ScriptScope, which will be crucial to our configuration script.

Storing and retrieving information from a ScriptScope

The execution methods we've used both have overloads with a second parameter - a scope. In its simplest
terms, this can be regarded as a dictionary of names and values. Scripting languages often allow variables
to be assigned without any explicit declaration, and when this is done in the top level of a program (instead
of in a function or class) this usually affects a global scope. When a ScriptScope instance is passed into

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

40

an execution method, that is the global scope for the script you've asked the engine to execute. The script
can retrieve existing values from the scope, and create new values, as shown in listing 14.X.

Example 14.9. Passing information between a host and the hosted script using
ScriptScope

string python = @"
text = 'hello'
output = input + 1
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
scope.SetVariable("input", 10);
engine.Execute(python, scope);
Console.WriteLine(scope.GetVariable("text"));
Console.WriteLine(scope.GetVariable("input"));
Console.WriteLine(scope.GetVariable("output"));

Python code embedded as a C# string literal
Sets variable for Python code to use
Fetches variables back from scope

I've embedded the Python source code into the C# code as a verbatim string literal rather than putting it
in a file, so that it's easier to see all the code in one place. I don't recommend that you do this in production
code, partly because Python is sensitive to whitespace - reformatting the code in a seemingly-harmless
way can make it fail completely at execution time.

The SetVariable and GetVariable methods simply put values into the scope and fetch them out
again in the obvious way. They're declared in terms of object rather than dynamic, as you might
have expected. However, GetVariable also allows you to specify a type argument, which acts as a
conversion request. This is not quite the same as just casting the result of the nongeneric method, as the
latter just unboxes the value - which means you need to cast it to exactly the right type. For example, we
can put an integer into the scope, but retrieve it as a double:

scope.SetVariable("num", 20)
double x = scope.GetVariable<double>("num")
double y = (double) scope.GetVariable("num");

Converts successfully to double
Unboxing throws exception

The scope can also hold functions which we can retrieve and then call dynamically, passing arguments
and returning values. The easiest way of doing this is to use the dynamic type, as shown in listing 14.X.

Example 14.10. Calling a function declared in a ScriptScope

string python = @"
def sayHello(user):
 print 'Hello %(name)s' % {'name' : user}
";
ScriptEngine engine = Python.CreateEngine();
ScriptScope scope = engine.CreateScope();
engine.Execute(python, scope);
dynamic function = scope.GetVariable("sayHello");
function("Jon");

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

41

Configuration files may not often need this ability, but it can be useful in other situations. For example,
you could easily use Python to script a graph-drawing program, by providing a function to be called on
each input point. A simple example of this can be found on the book's web site.

Putting it all together

Now that we can get values into our scope, we're essentially done. We could potentially wrap the scope in
another object providing access via an indexer - or even access the values dynamically using the techniques
shown in section 14.5. The application code might look something like this:

static Configuration LoadConfiguration()
{
 ScriptEngine engine = Python.CreateEngine();
 ScriptScope scope = engine.CreateScope();
 engine.ExecuteFile("configuration.py", scope);
 return Configuration.FromScriptScope(scope);
}

The exact form of the Configuration type will depend on your application, but it's unlikely to be
terribly exciting code. I've provided a sample dynamic implementation in the full source, which allows
you to retrieve values as properties and call functions directly too. Of course we're not limited to just using
primitive types in our configuration: the Python code could be arbitrarily complex, building collections,
wiring up components and services and so forth. Indeed, it could perform a lot of the roles of a normal
Dependency Injection or Inversion of Control container.

The important thing is that we now have a configuration file which is active instead of the traditional
passive XML and .ini files. Of course, you could have embedded your own programming language into
previous configuration files - but the result would probably have been less powerful, and would have taken
a lot more effort to implement. As an example of where this could be useful in a simpler situation than
full dependency injection, you might want to configure the number of threads to use for some background
processing component in your application. You might normally use as many threads as you have processors
in the system, but occasionally reduce it in order to help another application run smoothly on the same
system. The configuration file would simply change from something like this:

agentThreads = System.Environment.ProcessorCount
agentThreadName = 'Processing agent'

To this:

agentThreads = 1
agentThreadName = 'Processing agent (single thread only)'

This change wouldn't require the application to be rebuilt or redeployed - just edit the file and restart the
application.

Other than executing functions, we haven't really looked at using Python in a particularly dynamic way.
The full power of Python is available, and using the dynamic type in your C# code you can take advantage
of meta-programming and all the other dynamic features. The C# compiler is responsible for representing
your code in an appropriate fashion, and the script engine is responsible for taking that code and working
out what it means for the Python code. Just don't feel you have to be doing anything particularly clever for
it to be worth embedding the script engine in your application. It's a simple step towards a more powerful
application.

So far our examples have been interoperating with other systems. Dynamic typing can make sense even
within a purely managed system, however. You may well have implemented it yourself in a very limited
sense, with reflection. If you're lucky, a lot of that reflection code can be completely eliminated using
dynamic typing.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

42

Reflection
Reflection is effectively the manual way of doing dynamic typing. In my experience, it's very easy to make
mistakes when writing code to use reflection, and even when it's working you often need to put extra effort
in to optimise it. In this section we'll look at a few examples of using dynamic typing, and we'll go into a
bit more detail than in the previous sections, as the examples will lead us into a wider discussion of what
exactly is going on behind the scenes.

It's particularly tricky to use generic types and methods from reflection. For example, if you have an object
which you know implements IList<T> for some type argument T, it can be very difficult to work out
exactly what T is. If the only reason for discovering T is to then call another generic method, you really
want to just ask the compiler to call whatever it would have called if you knew the actual type. Of course,
that's exactly what dynamic typing does.

Execution-time type parameter inference

If you want to do more than just call a single method, it's often best to wrap all the additional work in a
generic method. You can then call the generic method dynamically, but write all the rest of the code using
static typing. Listing 14.X shows a simple example of this. We're going to pretend we've been given a list of
some type and a new element by some other part of the system. We've be promised that they're compatible,
but we don't know their types statically. There are various reasons this could happen; in particular there are
some type relationships which C# just can't express. Anyway, our code is meant to add the new element to
the end of the list, but only if there are fewer than ten elements in the list at the moment. The method returns
whether or not the element was actually added. Obviously in real life the business logic would be more
complicated, but the point is that we'd really like to be able to use the strong types for these operations.

Example 14.11. Using dynamic type inference

private static bool AddConditionallyImpl<T>(IList<T> list, T item)
{
 if (list.Count < 10)
 {
 list.Add(item);
 return true;
 }
 return false;
}

public static bool AddConditionally(dynamic list, dynamic item)
{
 return AddConditionallyImpl(list, item);
}
...
List<string> list = new List<string> { "x", "y" };
Console.WriteLine(AddConditionally(list, "z"));
Console.WriteLine(list.Count);

Normal statically typed code
Call helper method dynamically
Prints "True" (item added)
Prints "3"

The public method takes dynamic arguments: in previous versions of C# it would perhaps have taken
IEnumerable and Object, relying on complicated checks with reflection to work out the type of the

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

43

list and then act appropriately. With dynamic typing, we can just call a strongly-typed implementation
using the dynamic arguments , isolating the dynamic access to the single call in the wrapper method.

Of course, we could also expose the strongly-typed method publicly to avoid the dynamic typing for callers
who knew their list types statically. It would be worth keeping the names different in that case, to avoid
accidentally calling the dynamic version due to a slight mistake with the static types of the arguments. (It
also makes it a lot easier to make the right call within the dynamic version when the names are different!)

As another example of I've already bemoaned the lack of generic operator support in C# - there's no concept
of specifying a constraint saying "T has to have an operator which allows me to add two values of type
T together." We used this in our initial demonstration of dynamic typing, so mentioning it here should
come as no surprise. We'll take a slightly deeper look at this example, as it raises some interesting general
points about dynamic typing.

Summing values dynamically

Have you ever looked at the list of overloads for Enumerable.Sum? It's pretty long. Admittedly half
of the overloads are due to a projection, but even so there are 10 overloads, each of which just takes a
sequence of elements and adds them together... and that doesn't even cover summing unsigned values, or
bytes or shorts. How about we use dynamic typing to try to do it all in one method?

There are actually two approaches here, which have different pros and cons. We could write a new generic
method which sums an IEnumerable<T> without restriction, or we could write one which sums an
IEnumerable<dynamic> and then rely on interface variance (introduced in the next chapter) and an
extra method to convert to an IEnumerable<dynamic> when we needed to. The mixture of dynamic
and generics can get slightly hairy, with some surprising problems which we'll see later, so for the purposes
of simplicity we'll sum IEnumerable<T>5. Listing 14.X shows an initial implementation which does
pretty well, although it's not ideal. I've named the method DynamicSum rather than Sum to avoid clashing
with the methods in Enumerable: the compiler will pick a non-generic overload over a generic one where
both signatures have the same parameter types, and it's just simpler to avoid the collision in the first place.

Example 14.12. Summing an arbitrary sequence of elements dynamically

public static T DynamicSum<T>(this IEnumerable<T> source)
{
 dynamic total = default(T);
 foreach (T element in source)
 {
 total += element;
 }
 return total;
}
...
byte[] bytes = new byte[] { 1, 2, 3 };
Console.WriteLine(bytes.DynamicSum());

Dynamically typed for later use
Choose addition operator dynamically
Prints "6"

The code is very straightforward: it looks almost exactly the same as any of the implementations of the
normal Sum overloads would. I've omitted checking whether source is null just for brevity, but most of

5An article [http://csharpindepth.com/Articles/Chapter13/FIXME.html] discussing summing IEnumerable<dynamic> is available on the
book's web site.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://csharpindepth.com/Articles/Chapter13/FIXME.html
http://csharpindepth.com/Articles/Chapter13/FIXME.html
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

44

the rest is what you'd expect, other than possibly the use of default(T) to initialize total, which is
declared as dynamic so that we get the desired dynamic behavior. Sure enough, running the code prints
6 as we'd expect it to.

We have to start off with an initial value somehow: we could try to use the first value in the sequence,
but then we'd be stuck if the sequence were empty. For non-nullable value types, default(T) is almost
always an appropriate value anyway: it's a natural zero. For reference types, we'll end up adding the first
element of the sequence to null, which may or may not be appropriate. For nullable value types, we'll
end up trying to add the first element to the null value for that type, which certainly won't be appropriate.

We could improve things somewhat by adding an overload which takes the "zero value" as another
parameter, which would be okay for reference types but still wouldn't help much for nullable types...

Summing sequence of nullable values

The problem is that the way C# defines operators working with nullable types, if any value in the sequence
is null, the result would end up being null. Assuming that we don't want that, and instead we want the same
behavior as the existing Enumerable.Sum methods working over nullable types, we need to introduce
a new method, as shown in listing 14.X:

Example 14.13. Summing nullable value types dynamically

public static T DynamicSum<T>(this IEnumerable<T?> source)
 where T : struct
{
 dynamic total = default(T);
 foreach (T? element in source)
 {
 if (element != null)
 {
 total += element.Value;
 }
 }
 return total;
}

Only sum non-null values

Again, the code is simple - once you've got your head round the fact that here T is the non-nullable type
involved: if we were summing a List<int?> for example, T would be int. The result of the sum is
always non-null, and we start off with the default value of the non-nullable type. This time when we iterate
through the sequence, we only use non-null values (where "null" here means "the null value for the
nullable type", not a null reference) and we add the underlying non-nullable value to the current total.

Even though we're overloading the DynamicSum method here, the new method will be called in
preference to the old one when both are applicable: T? is always more specific than T, because there's an
implicit conversion from T to T? but only an explicit conversion from T? to T. The overload resolution
rules are tricky to work through, but this time they work in our favor.

It's worth noting the mixture of dynamic typing and static typing here. The method starts with the
declaration of the dynamic total variable, but the iteration itself, the null check and the extraction of
the underlying value are all compiled statically. This is easy to verify: if you change element.Value
to element.VALUE you'll see a compilation error:

error CS1061: 'System.Nullable<T>' does not contain a definition
 for 'VALUE' and no extension method 'VALUE' accepting a first

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

45

 argument of type 'System.Nullable<T>' could be found (are you
 missing a using directive or an assembly reference?)

This is reassuring. We can restrict dynamic operations to just the ones that we need to be dynamic: we get
the benefits of dynamic typing in terms of discovering the addition operator at execution time, but most
of the code still benefits from the compile-time checking and performance benefits of static typing. This
is similar to the dynamic AddConditional method in listing 14.X calling the statically typed version,
but here the static and dynamic code appear within the same method.

Speaking of the addition operator, we're effectively duck-typing on it in this case. This is a good example
of an area where we simply can't express the requirements statically - it's impossible to specify operators
in an interface, so even if we had complete control of the framework, we couldn't really do any better. In
many other situations, duck-typing is useful when dealing with disparate frameworks which happen to use
the same member names but don't implement a common interface.

So, we now have two methods to sum a sequence of any type, so long as that type has an addition operator
which results in a value of the same type. Hang on though... earlier on we summed a sequence of bytes.
What's going on?

Attention to detail: binding operators

There's no addition operator defined for the byte type. If you try to add two bytes together, both are
promoted to int values, and the return value is an int. There's one exception to this, however: the
compound assignment += operator is permitted, effectively converting both operands to integers and then
casting back to byte at the end. We can see this in action if we try to sum values which overflow the
range of byte:

byte[] values = new byte[] { 100, 100, 100 };
Console.WriteLine(values.DynamicSum());

By default, the result printed here is 44: when the operation overflowed, the result was truncated. That's
may be what we want, but it goes against the behavior of the built-in Enumerable.Sum methods which
throw an OverflowException. There are actually two alternatives to the current implementation. The first
is to mimic Enumerable.Sum. We don't need to be clever here, because overflow-safe arithmetic is easy in
C#: we just need to work in a checked context. We do this in dynamic code in the same way as we would
in traditional C#. Listing 14.X shows a checked implementation of DynamicSum.

Example 14.14. Summing dynamically in a checked context

public static T DynamicSum<T>(this IEnumerable<T> source)
{
 dynamic total = default(T);
 checked
 {
 foreach (T element in source)
 {
 total += element;
 }
 }
 return total;
}
...
byte[] values = new byte[] { 100, 100, 100 };
Console.WriteLine(values.DynamicSum());

Throws OverflowException

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

46

The other alternative is to avoid restricting the result to byte in the first place. The compiler knows how
to promote values and add them, it's just that we'll get back an int instead of a byte. Of course, we don't
know the types involved at compile-time, and we can't describe them generically... but we can change the
method to return a dynamic value too. Then we just need to change how the addition is performed, and
we're away. Listing 14.X shows this final change.

Example 14.15. Summing with a dynamic result and automatic byte to int
promotion

public static dynamic DynamicSum<T>(this IEnumerable<T> source)
{
 dynamic total = default(T);
 foreach (T element in source)
 {
 total = total + element;
 }
 return total;
}
...
byte[] values = new byte[] { 100, 100, 100 };
Console.WriteLine(values.DynamicSum());

Prints 300

Of course, as listing 14.X is no longer operating in a checked context, we could eventually overflow.
However, the point of the example was to demonstrate that the normal rules for C# operators are obeyed,
even though they're being bound at execution time. The statements x+=y; and x=x+y; may look very
similar, but we've seen how they can behave very differently - and we'd only notice this difference at
execution time when we're using dynamic code. Be careful!

Note that these are C# rules which are being applied here - not .NET rules. In situations where Visual Basic
and C# would handle things differently, dynamic code compiled in one of the two languages will follow
the rules of the compiler for that language.

I should warn you that things are about to get tricky. In fact, it's all extremely elegant, but it's complicated
because programming languages provide a rich set of operations, and representing all the necessary
information about those operations as data and then acting on it appropriately is a complex job. The good
news is that you don't need to understand it all intimately. As ever, you'll get more out of dynamic typing
the more familiar you are with the machinery behind it, but even if you just use the techniques we've seen
so far there may well be situations where it makes you a lot more productive.

Looking behind the scenes
Despite the warning of the previous paragraph, I'm not going to go into huge amounts of detail about the
inner workings of dynamic typing. There would be an awful lot of ground to cover, both in terms of the
framework and language changes. It's not often that I shy away from the nitty-gritty of specifications, but in
this case I truly believe there's not much to be gained from learning it all. I'll cover the most important (and
interesting) points of course, and I can thoroughly recommend Sam Ng [http://blogs.msdn.com/samng]'s
blog, the C# language specification and the DLR project page [http://dlr.codeplex.com/Wiki/View.aspx?
title=Docs%20and%20specs] for more information if you need to dig into a particular scenario.

Our eventual goal is to understand what the C# compiler is doing - the code it emits to achieve dynamic
binding at execution time. Unfortunately, none of the generated code will make any sense until we see the

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://blogs.msdn.com/samng
http://blogs.msdn.com/samng
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://blogs.msdn.com/samng
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

47

mechanism that underpins it all - namely the DLR. You might like to think of a statically typed program as a
conventional stage play with a fixed script, and a dynamically typed program as more like an improvisation
show. The DLR takes the place of the actors' brains frantically coming up with something to say in response
to audience suggestions. Let's meet our quick-thinking star performer.

Introducing the Dynamic Language Runtime
I've been bandying the acronym "DLR" around for a while now, occasionally expanding it to "Dynamic
Language Runtime" but never really explaining what it is. This has been entirely deliberate: I've been
trying to get across the nature of dynamic typing and how it affects developers, rather than the details of
the implementation. However, that excuse was never going to last until the end of the chapter - so here
we are. In its barest terms, the Dynamic Language Runtime is a library which all dynamic languages and
the C# compiler use to execute code dynamically.

Amazingly enough, it really is just a library. Despite its name, it isn't at the same level as the CLR (Common
Language Runtime) - it doesn't deal in JIT compilation, native API marshalling, garbage collection and
so forth. However, it builds on a lot of the work in .NET 2.0 and 3.5, particularly the DynamicMethod
and Expression types. The expression tree API has been expanded in .NET 4.0 to allow the DLR to
express more concepts, too. Figure 14.X shows how it all fits together.

Figure 14.1. How .NET 4.0 fits together

As well as the DLR, there's another library which may be new to you in figure 14.X. The
Microsoft.CSharp assembly contains a number of types which are referenced by the C#
compiler when you use dynamic in your code. Confusingly, this doesn't include the existing

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

48

Microsoft.CSharp.Compiler and Microsoft.CSharp.CodeDomProvider. (They're not
even in the same assembly as each other!) We'll see exactly what the new types are used for in section
14.4.3, where we decompile some code written using dynamic.

There's one other important aspect which differentiates the DLR from the rest of the .NET framework:
it's provided as Open Source. The complete code lives in a CodePlex project [http://dlr.codeplex.com],
so you can download it and see the inner workings. One of the benefits of this approach is that the DLR
hasn't had to be reimplemented for Mono [http://mono-project.com]: the same code runs on both .NET
and its cross-platform cousin.

Although the DLR doesn't handle native code directly, you can think of it as doing a similar job to the CLR
in one sense: just as the CLR converts IL (Intermediate Language) into native code, the DLR converts
code represented using binders, call sites, meta-objects and various other concepts into expression trees
which can then be compiled down into IL and eventually native code by the CLR. Figure 14.X shows a
simplified view of the lifecycle of a single evaluation of a dynamic expression.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://dlr.codeplex.com
http://dlr.codeplex.com
http://mono-project.com
http://mono-project.com
http://dlr.codeplex.com
http://mono-project.com]:
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

49

Figure 14.2. Lifecycle of a dynamic expression

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

50

As you can see, one of the important aspects of the DLR is a multi-level cache. This is crucial for
performance reasons, but to understand that and the other concepts we've already mentioned, we'll need
to dive one layer lower.

DLR core concepts
We can summarise the purpose of the DLR in very general terms as taking a high-level representation
of code, and executing that code, based on various pieces of information which may only be known as
execution time. In this section I'm going to introduce a lot of terminology to describe how the DLR works,
but it's all contributing to that common aim.

Call sites

The first concept we need is a call site. This is the sort of atom of the DLR - the smallest piece of code
which can be considered as a single unit. One expression may contain a lot of call sites, but the behavior
is built up in the natural way, evaluating one call site at a time. For the rest of the discussion, we'll only
consider a single call site at a time. It's going to be useful to have a small example of a call site to refer to,
so here's a very simple one, where d is of course a variable of type dynamic.

d.Foo(10);

The call site is represented in code as a System.Runtime.CompilerServices.CallSite<T>.
We'll see some details of how call sites are actually created in the next section, when we look at what the
C# compiler does at compile-time.

Receivers and binders

Once we've got a call site, something has to decide what it means and how to execute it. In the DLR, there
are two entities which can decide this: the receiver of a call, and the binder.The receiver of a call is simply
the object that a member is called on. In our sample call site, the receiver is the object that d refers to at
execution time. The binder will depend on the calling language - in this case, the C# compiler emits code
to create a CSharpInvokeMemberBinder.

The DLR always gives precedence to the receiver: if it's a dynamic object which knows how to handle
the call, then it will use whatever execution path the object provides. An object can advertise itself as
being dynamic by implementing the new IDynamicMetaObjectProvider interface. The name is a
mouthful, but it only contains a single element: GetMetaObject. You'll need to be a bit of an expression
tree ninja to implement it correctly, as well as knowing the DLR quite well. However, in the right hands
this can be a very powerful tool, giving you the lower level interaction with the DLR and its execution
cache. If you need to implement dynamic behavior in a high-performance fashion, it's worth the investment
of learning the details. There are two implementations of IDynamicMetaObjectProvider included in the
framework, however, to make it easy to implement dynamic behavior in situations where performance
isn't quite as critical. We'll look at all of this in more detail in section 14.5, but for now you just need to
be aware of the interface itself, and that it represents the ability of an object to react dynamically.

If the receiver isn't dynamic, the binder gets to decide how the code should be executed. In our code, it
would apply C#-specific rules to the code, and work out what to do. If you were creating your own dynamic
language, you could implement your own binder to decide how it should behave in general (when the
object doesn't override the behavior). This lies well beyond the scope of this book, but it's an interesting
topic in and of itself: one of the aims of the DLR is to make it easier to implement your own languages.

Rules and caches

The decision for how to execute a call is represented as a rule. Fundamentally this consists of two elements
of logic: the circumstances under which the call site should behave this way, and the behavior itself. The

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

51

first part is really for optimisation. Suppose you have a call site which represents addition of two dynamic
values, and the first time it's evaluated, both values are of type byte. The binder has gone to a fair amount
of effort to work out that this means both operands should be promoted to int, and the result should be
the sum of those integers. It can reuse that operation any time the operands turn out to both be byte.
Checking a set of previous results for validity can save a lot of time. The rule I've used as an example
("the operand types must be exactly the same as the ones I've just seen") is a common one, but the DLR
supports other rules too.

The second part of a rule is the code to use when the rule matches, and it's represented as an expression tree.
It could have been stored just as a compiled delegate to call - but keeping the expression tree representation
means the cache can really optimise heavily. There are three levels of cache in the DLR: L0, L1 and L2.
The caches store information in different ways, and with a different scope. Each call site has its own L0
and L1 caches, but an L2 cache may be shared between several similar call sites, as shown in figure 14.X.

Figure 14.3. Layout of caches

The set of call sites which share an L2 cache is determined by their binders - each binder has an L2 cache
associated with it. The compiler (or whatever is creating the call sites) decides how many binders it wants
to use. It can only use a binder for multiple call sites which represent very similar code, of course: where
if the context is the same at execution time, the call sites should execute in the same way. In fact, the
C# compiler doesn't make use of this facility - it creates a new binder for every call site, so there's not
much difference between the L1 and L2 caches for C# developers. Genuinely dynamic languages such as
IronRuby and IronPython make more use of it though.

The caches themselves are executable, which takes a little while to understand. The C# compiler generates
code to simply execute the call site's L0 cache (which is a delegate accessed through the Target property).
That's it! When L0 cache delegate is called, it looks through the rules it knows about, and if it finds a
matching rule it executes the associated behavior. If it doesn't find any matches, it calls into the L1 cache,
which in turn calls into the L2 cache. If the L2 cache can't find any matching rules, it asks the receiver or
the binder to resolve the call. The results are then put into the cache for next time.

The L1 and L2 caches look through their rules in a fairly standard way - each has a collection of rules,
and each rule is asked whether or not it matches. The L0 cache is somewhat different. The rules in its
cache are assembled into a single method which is then JIT compiled. Updating the L0 cache consists of

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

52

rebuilding the method from the new set of rules. This is where it becomes vital that the rules are available
as expression trees: it's an awful lot easier to stitch together several expression trees than to analyze the
IL generated for each rule and combine that together.

The result of all of this is that typical call sites which see similar context repeatedly are very, very fast;
the dispatch mechanism is as about as lean as you could make it if you hand-coded the tests yourself. Of
course this has to be weighed against the cost of all the dynamic code generation involved, but the multi-
level cache is complicated precisely because it tries to achieve a balance across various different scenarios.

Now that we know a bit about the machinery in the DLR, we'll be able to understand what the C# compiler
does for us in order to set it all in motion.

How the C# compiler handles dynamic
The main jobs of the C# compiler when it comes to dynamic code are to work out when dynamic behavior
is required, and to capture all the necessary context so that the binder and receiver have enough information
to resolve the call at execution time.

If it uses dynamic, it's dynamic!

There's one situation which is very obviously dynamic: when the target of a member call is dynamic. The
compiler has no way of knowing how that will be resolved. It may be a truly dynamic object which will
perform the resolution itself, or it may end up with the C# binder resolving it with reflection later. Either
way, there's simply no opportunity for the call to be resolved statically.

However, when the dynamic value is being used as an argument for the call, there are some situations
where you might expect the call to be resolved statically - particularly if there's a suitable overload which
has a parameter type of dynamic. However, the rule is that if any part of a call is dynamic, the call
becomes dynamic and will resolve the overload with the execution-time type of the dynamic value. Listing
14.X demonstrates this using a method with two overloads, and invoking it in a number of different ways.

Example 14.16. Experimenting with method overloading and dynamic values

static void Execute(string x)
{
 Console.WriteLine("String overload");
}

static void Execute(dynamic x)
{
 Console.WriteLine("Dynamic overload);
}
...
dynamic text = "text";
Execute(text);
dynamic number = 10;
Execute(number);

Prints "String overload"
Prints "Dynamic overload"

Both calls to Execute are bound dynamically. At execution time they are resolved using the types of the
actual values, namely string and int. The parameter of type dynamic is treated as if it were declared

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

53

with type object for the purposes of overload resolution - indeed, if you look at the compiled code you'll
see it is a parameter of type object, just with an attribute applied. This also means you can't have two
methods who signatures differ just by dynamic/object. Speaking of looking at compiled code, let's
dig into the IL generated for dynamic calls.

Creating call sites and binders

You don't need to know the details of what the compiler does with dynamic expressions in order to use
them, but it can be instructive to see what the compiled code looks like. In particular, if you need to
decompile your code for any other reason, it means you won't be surprised by what the dynamic parts look
like. My tool of choice for this kind of work is Reflector [http://www.red-gate.com/products/reflector/],
but you could use ildasm if you wanted to read the IL directly.

We're only going to look at a single example - I'm sure I could fill a whole chapter by looking at
implementation details, but the idea is only to give you the gist of what the compiler is up to. If you find
this example interesting, you may well want to experiment more on your own. Just remember that the exact
details are implementation-specific; they may change in future compiler versions, so long as the behavior
is equivalent. Here's the sample snippet, which exists in a Main method in the normal manner for Snippy:

string text = "text to cut";
dynamic startIndex = 2;
string substring = text.Substring(startIndex);

Pretty simple, right? Well, it actually contains two dynamic operations - one to call Substring, and
one to dynamically convert the result (which is just dynamic at compile-time) to a string. Listing 14.X
shows the decompiled code for the Snippet class. I've omitted the class declaration itself and the implicit
parameterless constructor, just to save space - and I've reformatted the code with significantly reduced
whitespace for the same reason.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

54

Example 14.17. The results of compiling dynamic code

[CompilerGenerated]
private static class <Main>o__SiteContainer0 {
 public static CallSite<Func<CallSite, object, string>> <>p__Site1;
 public static CallSite<Func<CallSite, string, object, object>>
 <>p__Site2;
}

private static void Main() {
 string text = "text to cut";
 object startIndex = 2;
 if (<Main>o__SiteContainer0.<>p__Site1 == null) {
 <Main>o__SiteContainer0.<>p__Site1 =
 CallSite<Func<CallSite, object, string>>.Create(
 new CSharpConvertBinder(typeof(string),
 CSharpConversionKind.ImplicitConversion, false));
 }
 if (<Main>o__SiteContainer0.<>p__Site2 == null) {
 <Main>o__SiteContainer0.<>p__Site2 =
 CallSite<Func<CallSite, string, object, object>>.Create(
 new CSharpInvokeMemberBinder(CSharpCallFlags.None,
 "Substring", typeof(Snippet), null,
 new CSharpArgumentInfo[] {
 new CSharpArgumentInfo(
 CSharpArgumentInfoFlags.UseCompileTimeType, null),
 new CSharpArgumentInfo(
 CSharpArgumentInfoFlags.None, null) }));
 }
 string substring =
 <Main>o__SiteContainer0.<>p__Site1.Target.Invoke(
 <Main>o__SiteContainer0.<>p__Site1,
 <Main>o__SiteContainer0.<>p__Site2.Target.Invoke(
 <Main>o__SiteContainer0.<>p__Site2, text, startIndex));
}

Storage for call sites
Creation of conversion call site
Creation of substring call site
Preserve static type of text variable
Invocation of both calls

I don't know about you, but I'm jolly glad that I never have to write or encounter code quite like that, other
than for the purpose of learning about exactly what's going on. There's nothing new about that though - the
generated code for iterator blocks, expression trees and anonymous functions can be pretty gruesome too.

There's a nested static type which is used to store all the call sites , as they only need to be created once.
(And indeed if they were created each time the cache would be useless!) It's possible that the call sites
could be created more than once due to multi-threading, but if that happens it's just slightly inefficient -
and it means the lazy creation is achieved with no locking at all. It doesn't really matter if one call site
instance is replaced with another.

After the call sites are created (and) they are simply invoked. The substring call is invoked first (read
the code from the innermost part of the statement outwards) and then the conversion is invoked on the result

. At this point we have a statically typed value again, so we can assign it to the substring variable.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

55

There's one more aspect to this code which I'd like to highlight, and that's the way that some static type
information is preserved in the call site. The type information itself is present in the delegate signature
used for the type argument of the call site (Func<CallSite, string, object, object>) and
a flag in the corresponding CSharpArgumentInfo indicates that this type information should be used
in the binder . (Even though this is the target of the method, it's represented as an argument; instance
methods are treated as static methods with an implicit first parameter of "this".) This is a crucial part of
making the binder behave as if it were just recompiling your code at execution time. Let's take a look at
why this is so important.

The C# compiler gets even smarter

C# 4 lets you straddle the static/dynamic boundary not just by having some of your code bound statically
and some bound dynamically, but also by combining the two ideas within a single binding. It remembers
everything it needs to know within the call site, then cleverly works merges this information with the types
of the dynamic values at execution time.

Preserving compiler behavior at execution time

The ideal model for working out how the binder should behave is to imagine that instead of having a
dynamic value in your source code, you have a value of exactly the right type: the type of the actual value
at execution time. However, that only applies for dynamic values: any value with a type known at compile
time is treated as being of that statically-determined type; the actual value isn't used for lookups such as
member resolution. I'll give two examples of where this makes a difference. Listing 14.X shows a simple
overloaded method in a single type.

Example 14.18. Dynamic overload resolution within a single type

static void Execute(dynamic x, string y)
{
 Console.WriteLine("dynamic, string");
}

static void Execute(dynamic x, object y)
{
 Console.WriteLine("dynamic, object");
}
...
object text = "text";
dynamic d = 10;
Execute(d, text);

Prints "dynamic, object"

The important variable here is text. Its compile-time type is object, but at execution time it's a string.
The call to Execute is dynamic because we're using the dynamic variable d as one of the arguments, but
the overload resolution uses the static type of text, so the result is dynamic, object. If the text
variable had been declared as dynamic as well, it would have used the other overload.

Listing 14.X is similar, but this time it's the receiver of the call which matters.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

56

Example 14.19. Dynamic overload resolution within a class hierarchy

class Base
{
 public void Execute(object x)
 {
 Console.WriteLine("object");
 }
}

class Derived : Base
{
 public void Execute(string x)
 {
 Console.WriteLine("string");
 }
}
...
Base receiver = new Derived();
dynamic d = "text";
receiver.Execute(d);

Prints "object"

In listing 14.X, the type of receiver is Derived at execution time, so you might have expected the
overload introduced in Derived to be called. However, the compile-time type of receiver is Base,
and so the binder restricts the set of methods it considers to just the ones which would have been available
if we'd been binding the method statically.

I take my hat off to the C# team for their attention to detail here - they've clearly worked very hard to
make the behavior of execution-time binding match compile-time binding as closely as possible. That's
assuming you want C# behavior of course... what about COM calls?

Delegating to the COM binder

In section 14.3.1 I sneakily mentioned "the COM binder" without explaining what I meant, because we
hadn't covered "binders" in general. Now that we know what they do, how can code sometimes use the
COM binder and sometimes use the C# binder? Doesn't the call site specify one or the other?

The answer is a nice use of composition. The C# compiler always generates a call site using the C# binder...
but that asks the COM binder whether it's able to bind a call first. The COM binder will refuse to bind
any non-COM calls, at which point the C# binder applies its own logic instead. That way we appear to
get two binders for the price of one - and any other language can use the same form of piggy-backing to
achieve consistent COM execution very easily.

Despite all of these decisions which have to be taken later, there are still some compile-time checks
available, even for code which will be fully bound at execution time.

Compile-time errors for dynamic code

As I said near the start of this chapter, one of the disadvantages of dynamic typing is that some errors
which would normally be detected by the compiler are delayed until execution time, at which point an
exception is thrown. There are many situations where the compiler has to just hope you know what you're
doing, but where it can help you, it will. The simplest example of this is when you try to call a method

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

57

with a statically typed receiver (or indeed a static method) and none of the overloads can possibly be valid,
whatever type the dynamic value has at execution time. Listing 14.X shows three examples of invalid
calls, two of which are caught by the compiler.

Example 14.20. Catching errors in dynamic calls at compile-time

string text = "cut me up";
dynamic guid = Guid.NewGuid();
text.Substring(guid);
text.Substring("x", guid);
text.Substring(guid, guid, guid);

Here we have three calls to string.Substring. The compiler knows the exact set of possible
overloads, because it knows the type of text statically. It doesn't complain at the first call, because it
can't tell what type guid will be - if it turns out to be an integer, all will be well. However, the final two
lines throw up errors: there are no overloads which take a string as the first argument, and there are no
overloads with three parameters. The compiler can guarantee that these would fail at execution time, so
it's reasonable for it to fail at compile time instead.

A slightly trickier example is with type inference. If a dynamic value is used to infer a type argument
in a call to a generic method, then the actual type argument won't be known until execution time and no
validation can occur beforehand. However, any type argument which would be inferred without using any
dynamic values can cause type inference to fail at compile-time. Listing 14.X shows an example of this

Example 14.21. Generic type inference with mixed static and dynamic values

void Execute<T>(T first, T second, string other) where T : struct
{
}
...
dynamic guid = Guid.NewGuid();
Execute(10, 0, guid);
Execute(10, false, guid);
Execute("hello", "hello", guid);

Again, the first call compiles, but would fail at execution time. The second call won't compile because
T can't be both int and bool, and there are no conversions between the two of them. The third call won't
compile because T is inferred to be string, which violates the constraint that it must be a value type.

That covers the most important points in terms of what the compiler can do for you. However, you can't
use dynamic absolutely everywhere. There are limitations, some of which are painful, but most of which
are quite obscure.

Restrictions on dynamic code
You can mostly use dynamic wherever you'd normally use a type name, and then write normal C#.
However, there are a few exceptions. This isn't an exhaustive list, but it covers the cases you're most likely
to run into.

Extension methods aren't resolved dynamically

The compiler emits some of the context of the call into the call site, as we've already seen: in particular,
the site knows the static types that the compiler was aware of. However, it doesn't currently know which

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

58

using directives occurred in the source file containing the call. That means it doesn't know which
extension methods are available at execution time.

This doesn't just mean you can't call extension methods on dynamic values - it means you can't pass
them into extension methods as arguments either. There are two workarounds, however, both of which
are helpfully suggested by the compiler. If you actually know which overload you want, you can cast
the dynamic value to the right type within the method call. Otherwise, assuming you know which static
class contains the extension method, you can just call it as a normal static method. Listing 14.X shows an
example of a failing call and both workarounds.

Example 14.22. Calling extension methods with dynamic arguments

dynamic size = 5;
var numbers = Enumerable.Range(10, 10);
var error = numbers.Take(size);
var workaround1 = numbers.Take((int) size);
var workaround2 = Enumerable.Take(numbers, size);

Both of these approaches will work if you want to call the extension method with the dynamic value as
the implicit this value, too - although the cast becomes pretty ugly in that case.

Delegate conversion restrictions with dynamic

The compiler has to know the exact delegate (or expression) type involved when converting a lambda
expression, an anonymous method or a method group. You can't assign any of these to a plain Delegate
or object variable without casting, and the same is true for dynamic too. However, a cast is enough
to keep the compiler happy. This could be useful in some situations if you want to execute the delegate
dynamically later. You can also use a delegate with a dynamic type as one of its parameters if that's useful.
Listing 14.X shows some examples which will compile, and some which won't.

Example 14.23. Dynamic types and lambda expressions

dynamic badMethodGroup = Console.WriteLine;
dynamic goodMethodGroup = (Action<string>) Console.WriteLine;

dynamic badLambda = y => y + 1;
dynamic goodLambda = (Func<int, int>) (y => y + 1);

dynamic veryDynamic = (Func<dynamic, dynamic>) (d => d.SomeMethod());

Note that because of the way overload resolution works, this means you can't use lambda expressions in
dynamically bound calls at all without casting - even if the only method which could possibly be invoked
has a known delegate type at compile time. For example, this code will not compile:

void Method(Action<string> action, string value)
{
 action(value);
}
...
Method(x => Console.WriteLine(x), "error");

Compile-time error

It's worth pointing out that all is not lost in terms of LINQ and dynamic interacting. You can have a
strongly typed collection with an element type of dynamic, at which point you can still use extension

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

59

methods, lambda expressions and even query expressions. The collection can contain objects of different
types, and they'll behave appropriately at execution time, as shown in listing 14.X.

Example 14.24. Querying a collection of dynamic elements

var list = new List<dynamic> { 50, 5m, 5d, 3 };
var query = from number in list
 where number > 4
 select (number / 20) * 10;

foreach (var item in query)
{
 Console.WriteLine(item);
}

This prints 20, 2.50, and 2.5. I deliberately divided by 20 and then multiplied by 10 to show
the difference between decimal and double: the decimal type keeps track of precision without
normalising, which is why 2.50 is displayed instead 2.5. The first value is an integer, so integer division
is used, hence the value of 20 instead of 25.

Constructors and static methods

You can call constructors and methods dynamically in the sense that you can specify dynamic arguments,
but you can't resolve a constructor or static method against a dynamic type. There's just no way of
specifying which type you mean.

If you run into a situation where you want to be able to do this dynamically in some way, try to think of ways
to use instance methods instead - for instance, by creating a factory type. You may well find that you can
get the "dynamic" behavior you want using simple polymorphism or interfaces, but within static typing.

Type declarations and generic type parameters

You can't declare that a type has a base class of dynamic. You also can't use dynamic in a type parameter
constraint, or as part of the set of interfaces that your type implements. You can use it as a type argument
for a base class, or when you're specifying an interface for a variable declaration. So, for example, these
declarations are invalid:

• class BaseTypeOfDynamic : dynamic

• class DynamicTypeConstraint<T> where T : dynamic

• class DynamicTypeConstraint<T> where T : List<dynamic>

• class DynamicInterface : IEnumerable<dynamic>

These are valid, however:

• class GenericDynamicBaseClass : List<dynamic>

• IEnumerable<dynamic> variable;

Most of these restrictions around generics are the result of the dynamic type not really existing as
a .NET type. The CLR doesn't know about it - any uses in your code are translated into object with the
DynamicAttribute applied appropriately. (For dynamic base types such as List<dynamic>, an

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

60

alternative constructor for DynamicAttribute is used to indicate which parts of the type declaration
are dynamic.) All the dynamic behavior is achieved through compiler cleverness in deciding how the
source code should be translated, and library cleverness at execution time. This equivalence between
dynamic and object is evident in various places, but it's perhaps most obvious if you look at
typeof(dynamic) and typeof(object), which return the same reference. In general, if you find
you can't do what you want to with the dynamic type, remember what it looks like to the CLR and see
if that explains the problem. It may not suggest a solution, but at least you'll get better at predicting what
will work ahead of time.

That's all the detail I'm going to give about how C# 4 treats dynamic, but there's another aspect of the
dynamic typing picture which we really need to look at to get a well-rounded view of the topic: reacting
dynamically. It's one thing to be able to call code dynamically, but it's another to be able to respond
dynamically to those calls.

Implementing dynamic behavior
The C# language doesn't offer any specific help in implementing dynamic behavior, but the framework
does. A type has to implement IDynamicMetaObjectProvider in order to react dynamically, but
there are two built-in implementations which can take a lot of the work away in many cases. We'll look
at both of these, as well as a very simple implementation of IDynamicMetaObjectProvider, just
to show you what's involved. These three approaches are really very different, and we'll start with the
simplest of them: ExpandoObject.

Using ExpandoObject
System.Dynamic.ExpandoObject looks like a funny beast at first glance. Its single public
constructor has no parameters. It has no public methods, unless you count the explicit implementation
of various interfaces - crucially IDynamicMetaObjectProvider and IDictionary<string,
object>. (The other interfaces it implements are all due to IDictionary<,> extending other
interfaces.) Oh, and it's sealed - so it's not a matter of deriving from it to implement useful behavior. No,
ExpandoObject is only useful if you refer to it via dynamic or one of the interfaces it implements.

Setting and retrieving individual properties

The dictionary interface gives a hint as to its purpose - it's basically a way of storing objects via names.
However, those names can also be used as properties via dynamic typing. Listing 14.X shows this working
both ways6.

Example 14.25. Storing and retrieving values with ExpandoObject

dynamic expando = new ExpandoObject();
IDictionary<string, object> dictionary = expando;
expando.First = "value set dynamically";
Console.WriteLine(dictionary["First"]);

dictionary.Add("Second", "value set with dictionary");
Console.WriteLine(expando.Second);

Listing 14.X just uses strings as the values for convenience - you can use any object, as you'd expect with
an IDictionary<string, object>. If you specify a delegate as the value, you can then call the
delegate as if it were a method on the expando, as shown in listing 14.X.

6We should be able to set values with an indexer here - it's a bug in 4.0b1. I'll change the code when a version of .NET 4.0 is released that fixes it.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

61

Example 14.26. Faking methods on an ExpandoObject with delegates

dynamic expando = new ExpandoObject();
expando.AddOne = (Func<int, int>) (x => x + 1);
Console.Write(expando.AddOne(10));

Although this looks like a method access, you can also think of it as a property access which returns a
delegate, and then an invocation of the delegate. If you created a statically typed class with an AddOne
property of type Func<int, int> you could use exactly the same syntax. The C# generated to call
AddOne does in fact use "invoke member" rather than trying to access it as a property and then invoke
it, but ExpandoObject knows what to do. You can still access the property to retrieve the delegate if
you want to though.

Let's move on to a slightly larger example - although we're still not going to do anything particularly tricky.

Creating a DOM tree

We're going to create a tree of expandos which mirrors an XML DOM tree. This is a pretty crude
implementation, designed for simplicity of demonstration rather than real world use. In particular, it's going
to assume we don't have any XML namespaces to worry about. Each node in the tree has two name/value
pairs which will always be present: XElement, which stores the original LINQ to XML element used to
create the node, and ToXml, which stores a delegate which just returns the node as an XML string. You
could just call node.XElement.ToString(), but this way gives another example of how delegates
work with ExpandoObject. One point to mention is that I used ToXml instead of ToString, as setting
the ToString property on an expando doesn't override the normal ToString method. This could lead
to very confusing bugs, so I opted for the different name instead.

The interesting part isn't the fixed names though, it's the ones which depend on the real XML. I'm going
to ignore attributes completely, but any elements in the original XML which are children of the original
element are accessible via properties of the same name. For instance, consider the following XML:

<root>
 <branch>
 <leaf />
 </branch>
</root>

Assuming a dynamic variable called root representing the Root element, we could access the leaf node
with two simple property accesses, which can occur in a single statement:

dynamic leaf = root.branch.leaf;

If an element occurs more than once within a parent, the property just refers to the first element with
that name. To make the other elements accessible, each element will also be exposed via a property
using the element name with a suffix of "List" which returns a List<dynamic> containing each of the
elements with that name in document order. In other words, the above access could also be represented
as root.branchList[0].leaf, or perhaps root.branchList[0].leafList[0]. Note that
the indexer here is being applied to the list - you can't define your own indexer behavior for expandos.
The implementation of all of this is actually remarkably simple, with a single recursive method doing all
the work, as shown in listing 14.X.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

62

Example 14.27. Implementing a simplistic XML DOM conversion with
ExpandoObject

public static dynamic CreateDynamicXml(XElement element)
{
 dynamic expando = new ExpandoObject();
 expando.XElement = element;
 expando.ToXml = (Func<string>)element.ToString;

 IDictionary<string, object> dictionary = expando;
 foreach (XElement subElement in element.Elements())
 {
 dynamic subNode = CreateDynamicXml(subElement);
 string name = subElement.Name.LocalName;
 string listName = name + "List";
 if (dictionary.ContainsKey(name))
 {
 ((List<dynamic>) dictionary[listName]).Add(subNode);
 }
 else
 {
 dictionary.Add(name, (object) subNode);
 dictionary.Add(listName, new List<dynamic> { subNode });
 }
 }
 return expando;
}

Assigns a simple property
Converts a method group to delegate to use as property
Recursively processes sub-element
Adds repeated element to list
Creates new list and sets properties

Without the list handling, listing 14.X would have been even simpler. We set the XElement and ToXml
properties dynamically (and), but we can't do that for the elements or their lists, because we don't know
the names at compile time. We use the dictionary representation instead (and), which also allows
us to check for repeated elements easily. You can't tell whether or not an expando contains a value for a
particular key just by accessing it as a property: any attempt to access a property which hasn't already been
defined results in an exception. The recursive handling of sub-elements is as straightforward in dynamic
code as it would be in statically typed code: we just call the method recursively with each sub-element,
using its result to populate the appropriate properties.

We're going to need some XML to use as an example, but it's helpful to picture it graphically as well
as in its raw format. We'll use a very simple structure representing books. Each book has a single name
represented as an attribute, and may have multiple authors, each with their own element. Figure 14.X
shows the whole file as a tree, and the text appears below.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

63

Figure 14.4. Tree structure of sample XML file

<books>
 <book name="Mortal Engines">
 <author name="Philip Reeve" />
 </book>
 <book name="The Talisman">
 <author name="Stephen King" />
 <author name="Peter Straub" />
 </book>
 <book name="Rose">
 <author name="Holly Webb" />
 <excerpt>
 Rose was remembering the illustrations from
 Morally Instructive Tales for the Nursery.
 </excerpt>
 </book>
</book>

Listing 14.X shows a brief example of how the expando code can be used with this XML document,
including the ToXml and XElement properties. The books.xml file contains the XML tree shown in
the figure.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

64

Example 14.28. Using a dynamic DOM created from expandos

XDocument doc = XDocument.Load("books.xml");
dynamic root = CreateDynamicXml(doc.Root);
Console.WriteLine(root.book.author.ToXml());
Console.WriteLine(root.bookList[2].excerpt.XElement.Value);

Listing 14.X should hold no surprises, unless you're unfamiliar with the XElement.Value property
which simply returns the text within an element. The output of the listing is as we'd expect:

<author name="Philip Reeve" />
Rose was remembering the illustrations from
Morally Instructive Tales for the Nursery.

This is all very well, but there are a few issues with our DOM. In particular:

• It doesn't handle attributes at all

• We need two properties for each element name, due to the need to represent lists

• It would be nice to override ToString() instead of adding an extra property

• The result is mutable - there's nothing to stop code from adding its own properties afterwards

• Although the expando is mutable, it won't reflect any changes to the underlying XElement (which is
also mutable)

Fixing these issues requires more control than just being able to set properties. Enter DynamicObject...

Using DynamicObject
DynamicObject is a more powerful way of interacting with the DLR than using ExpandoObject,
but it's a lot simpler than implementing IDynamicMetaObjectProvider. Although it's not actually
an abstract class, you really need to derive from it to do anything useful - and the only constructor is
protected, so it might as well be abstract for all practical purposes. There are four kinds of method which
you might wish to override:

• TryXXX() invocation methods, representing dynamic calls to the object

• GetDynamicMemberNames(), which can return an list of the available members

• The normal Equals()/GetHashCode()/ToString() methods which can be overridden as usual

• GetMetaObject() which returns the meta-object used by the DLR

We'll look at all but the last of these to improve our XML DOM representation, and we'll discuss meta-
objects in the next section when we implement IDynamicMetaObjectProvider. In addition, it can
be very useful to create new members in your derived type, even if callers are likely to use any instances
as dynamic values anyway. Before we take any of these steps, we'll need a class to add all the code to.

Getting started

As we're deriving from DynamicObject instead of just calling methods on it, we need to start with a
class declaration. Listing 14.X shows the basic skeleton that we'll be fleshing out.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

65

Example 14.29. Skeleton of DynamicXElement

public sealed class DynamicXElement : DynamicObject
{
 private readonly XElement element;

 private DynamicXElement(XElement element)
 {
 this.element = element;
 }

 public static dynamic CreateInstance(XElement element)
 {
 return new DynamicXElement(element);
 }
}

XElement this instance wraps
Private constructor prevents direct instantiation
Public method to create instances

The DynamicXElement class just wraps an XElement . This will be all the state we have, which
is a significant design decision in itself. When we created an ExpandoObject earlier, we recursed
into its structure and populated a whole mirrored tree. We really had to do that, because we couldn't
intercept property accesses with custom code later on. Obviously this is more expensive than the
DynamicXElement approach, where we will only ever wrap the elements of the tree we actually have to.
Additionally, it means that any changes to the XElement after we've created the expando are effectively
lost: if you add more sub-elements, for example, they won't appear as properties because they weren't
present when we took the snapshot. The lightweight wrapping approach is always "live" - any changes
you make in the tree will be visible through the wrapper.

The disadvantage of this is that we no longer provide the same idea of identity that we had before. With
the expando, the expression root.book.author would evaluate to the same reference if we used it
twice. Using DynamicXElement, each time the expression is evaluated it will create new instances to
wrap the sub-elements. We could implement some sort of smart caching to get around this, but it could
end up getting very complicated very quickly.

I've chosen to make the constructor of DynamicXElement private and instead provide a public static
method to create instances . The method has a return type of dynamic, because that's how we expect
developers to the class. A slight alternative would have been to create a separate public static class with
an extension method to XElement, and keep DynamicXElement itself internal. The class itself is an
implementation detail: there's not a lot of point in using it unless you're working dynamically.

With our skeleton in place, we can start adding features. We'll start with really simple stuff: adding methods
and indexers as if this were just a normal class.

DynamicObject support for simple members

When we created our expando, there were two members we always added: the ToXml "method" and the
XElement property. This time we don't need a new method to convert the object to a string representation:
we can override the normal ToString() method. We can also provide the XElement property as if
we were writing any other class. One of the nice things about DynamicObject is that when you don't
need truly dynamic behavior, you don't have to implement it. The meta-object used to resolve calls uses
any of the TryXXX methods, it checks to see whether the member already exists as a straightforward CLR
member. If it does, that member will be called. This makes life significantly simpler.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

66

We're going to have two indexers in DynamicXElement as well, to provide access to attributes and
replace our element lists. Listing 14.X shows the new code to be added to the class.

Example 14.30. Adding non-dynamic members to DynamicXElement

public override string ToString()
{
 return element.ToString();
}

public XElement XElement
{
 get { return element; }
}

public XAttribute this[XName name]
{
 get { return element.Attribute(name); }
}

public dynamic this[int index]
{
 get
 {
 XElement parent = element.Parent;
 if (parent == null)
 {
 if (index != 0)
 {
 throw new ArgumentOutOfRangeException();
 }
 return this;
 }
 XElement sibling = parent.Elements(element.Name)
 .ElementAt(index);
 return element == sibling ? this
 : new DynamicXElement(sibling);
 }
}

Overrides ToString() as normal
Returns wrapped element
Indexer retrieving an attribute
Indexer retrieving a sibling element
Is this a root element?
Find appropriate sibling

There's a fair amount of code in listing 14.X, but most of it is very straightforward. We override
ToString() by just proxying the call to the XElement, and if we wanted to implement value
equality we could do something similar for Equals() and GetHashCode(). The property returning
the underlying element and the indexer for attributes are also very simple, although it's worth noting
that we only need to use an XName for the parameter to the attribute indexer: if you provide a string at
execution time, DynamicObject will take care of calling the implicit conversion to XName for you.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

67

The trickiest part of the code is understanding what the indexer with the int parameter is meant to be
doing. It's probably easiest to explain this in terms of expected usage. The idea is to avoid having the extra
"list" property by making an element act as both a single element and a list of elements. Figure 14.X shows
our sample XML with a few expressions to reach different nodes within it.

Figure 14.5. Selecting data using DynamicXElement

Once you understand what the indexer is meant to do, the implementation is fairly simple, complicated
only by the possibility that we could already be at the top of the tree . Otherwise we just have to ask the
element for all its siblings, then pick the one we've been asked for .

So far we haven't done anything dynamic except in terms of the return type of CreateInstance()
- none of our examples will work, because we haven't written the code to fetch sub-elements. Let's fix
that now.

Overriding TryXXX methods

In DynamicObject, you respond to calls dynamically by overriding one of the TryXXX methods. There
are 12 of them, representing different types of operation, as shown in table 14.X.

Table 14.1. Virtual TryXXX methods in DynamicObject

Name Type of call represented (where x is the dynamic
object)

TryBinaryOperation Binary operation such as x + y

TryConvert Conversions such as (Target) x

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

68

Name Type of call represented (where x is the dynamic
object)

TryCreateInstance Object creation expressions: no equivalent in C#

TryDeleteIndex Indexer removal operation: no equivalent in C#

TryDeleteMember Property removal operation: no equivalent in C#

TryGetIndex Indexer "getter" such as x[10]

TryGetMember Property "getter" such as x.Property

TryInvoke Direct invocation effectively treating x like a
delegate, such as x(10)

TryInvokeMember Invocation of a member, such as x.Method()

TrySetIndex Indexer "setter" such as x[10] = 20

TrySetMember Property setter, such as x.Property = 10

TryUnaryOperation Unary operation such as !x or -x

Each of these methods has a Boolean return type to indicate whether or not the binding was successful.
Each takes an appropriate binder as the first parameter, and if the operation logically has arguments (for
instance the arguments to a method, or the indexes for an indexer) these are represented as an object[].
Finally, if the operation might have a return value (which includes everything except the set and delete
operations) then there's an out parameter of type object to capture that value. The exact type of the
binder depends on the operation: there's a different binder type for each of the operations. For example,
the full signature of TryInvokeMember is:

public virtual bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args, out object result)

You only need to override the methods representing operations you support dynamically. In our case,
we have dynamic read-only properties (for the elements) so we need to override TryGetMember(), as
shown in listing 14.X.

Example 14.31. Implementing a dynamic property with TryGetMember()

public override bool TryGetMember(GetMemberBinder binder,
 out object result)
{
 XElement subElement = element.Element(binder.Name);
 if (subElement != null)
 {
 result = new DynamicXElement((XElement)subElement);
 return true;
 }
 return base.TryGetMember(binder, out result);
}

Find the first matching sub-element
If found, build a new dynamic element
Otherwise use the base implementation

The implementation in listing 14.X is quite simple. The binder contains the name of the property which
was requested, so we look for the appropriate sub-element in the tree . If there is one, we create a new
DynamicXElement with it, assign that to the output parameter result, and return true to indicate

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

69

that the call was bound successfully . If there was no sub-element with the right name, we just call
the base implementation of TryGetMember() . The base implementation of each of the TryXXX
methods just returns false and sets the output parameter to null if there is one. We could easily have
done this explicitly, but we'd have had two separate statements: one to set the output parameter and one
to return false. If you prefer the slightly longer code, there's absolutely no reason not to write it - the
base implementations are just slightly convenient in terms of doing everything required to indicate that
the binding failed.

There's one bit of complexity I've side-stepped: the binder has another property (IgnoreCase) which
indicates whether or not the property should be bound in a case-insensitive way. For example, Visual Basic
is case-insensitive, so its binder implementation would return true for this property, whereas C#'s would
return false. In our situation, it's slightly awkward. Not only would it be more work for TryGetMember
to find the element in a case-insensitive manner ("more work" is always unpleasant, but it's not a good
reason not to implement it) - there's the more philosophical problem of what happens when you then use
the indexer to select siblings. Should the object remember whether it's case-sensitive or not, and select
siblings in the same way later on? If so, you'd see different results for element.Name[2] depending
on the language. If, on the other hand, the indexer is always case-sensitive, then element.name[0]
might not even find itself! This sort of impedance mismatch is likely to happen in similar situations. If you
aim for perfection, you're likely to tie yourself up in knots. Instead, aim for a practical solution that you're
confident you can implement and maintain, and then document the restrictions.

With all this in place, we can test DynamicXElement as shown in listing 14.X.

Example 14.32. Testing DynamicXElement

XDocument doc = XDocument.Load("books.xml");
dynamic root = CreateDynamicXml(element.Root);
Console.WriteLine(root.book["name"]);
Console.WriteLine(root.book[2].author[1]);

We could add more complexity to our class, of course. We could add a Parent property to go back
up the tree, or we might want to change to access sub-elements using method calls and make property
access represent attributes. The principle would be exactly the same: where you know the name in
advance, implement it as a normal class member. If you need it to be dynamic, override the appropriate
DynamicObject method.

There's one more piece of polish to apply to DynamicXElement before we leave it though. It's time to
advertise what we've got to offer.

Overriding GetDynamicMemberNames

Some languages, such as Python, allow an object to publish what names it knows about; it's the dir
function in Python, if you're interested. This information is useful in a REPL environment, and it can
also be handy when you're debugging in an IDE. The DLR makes this information available through
the GetDynamicMemberNames() method of both DynamicObject and DynamicMetaObject
(we'll meet the latter in a minute). All we have to do is override this method, provide a sequence of the
dynamic member names, and we make our object's properties more discoverable. Listing 14.X shows the
implementation for DynamicXElement.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

70

Example 14.33. Implementing GetDynamicMemberNames in
DynamicXElement

public override IEnumerable<string> GetDynamicMemberNames()
{
 return element.Elements()
 .Select(x => x.Name.LocalName)
 .Distinct()
 .OrderBy(x => x);
}

As you can see, all we need is a simple LINQ query. Of course that won't always be the case, but I suspect
many dynamic implementations will be able to use LINQ in this way. In this case we need to make sure
that we don't return the same value more than once if there's more than one element with any particular
name, and I've sorted the results just for consistency. In the Visual Studio 2010 debugger, you can expand
the "Dynamic View" of a dynamic object and see the property names and values, as shown in figure 14.X.

Figure 14.6. Visual Studio 2010 displaying dynamic properties of a
DynamicXElement

Unfortunately the dynamic view just calls ToString() on each of the values; there's no way of drilling
down further. FIXME: Check this against later betas!

We've now finished our DynamicXElement class, as far as we're going to take it in this book. I believe
that DynamicObject hits a sweet spot between control and simplicity: it's fairly easy to get it right,
but it has far fewer restrictions than ExpandoObject. However, if you really need total control over
binding, you'll need to implement IDynamicMetaObjectProvider directly.

Implementing IDynamicMetaObjectProvider
FIXME: MEAP readers, I need your help! IDynamicMetaObjectProvider is all very well, but I can't
currently think of a good example which uses it in anything other than a very contrived way. I will keep
thinking, but if you have any ideas of what you'd like to see in this section, please post them in the forum.

Summary
It feels like we've come a very long way from mainstream, statically typed C#. We've looked at some
situations where dynamic typing can be useful, how C# 4 makes it possible (both in terms of the code you
write and how it works under the surface) and how to respond dynamically to calls. Along the way, we've
seen a bit of COM, a bit of Python, some reflection, and learned a little about the Dynamic Language
Runtime.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569

Licensed to Alison Tyler <pedbro@gmail.com>

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

71

This has not been a complete guide to how the DLR works, or even how C# operates with it. The truth is,
this is a deep topic with many dark corners. In reality, you're unlikely to bump into the problems - and most
developers won't even use the simple scenarios very often. I'm sure whole books will be written about the
DLR, but I hope I've given enough detail here to let 99% of C# developers get on with their jobs without
needing any more information. If you want to know more, the documentation on the DLR web site [http://
dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs] is a good starting point.

If you never use the dynamic type, you can pretty much ignore dynamic typing entirely. I recommend
that that's exactly what you do for the majority of your code - in particular, I wouldn't use it as a crutch
to avoid creating appropriate interfaces, base classes and so on. Where you do need dynamic typing, I'd
use it as sparingly as possible: don't take the attitude of "I'm using dynamic in this method, so I might
as well just make everything dynamic."

I don't want to sound too negative, however. If you find yourself in a situation where dynamic typing is
helpful, I'm sure you'll be very thankful that it's present in C# 4. Even if you never need it for production
code, I'd encourage you to give it a try for the fun of it - I've found it fascinating to delve into. You may
also find the DLR useful without really using dynamic typing: most of our Python example didn't use any
dynamic typing, but it used the DLR to execute the Python script containing the configuration data.

Between this chapter and the previous one, we've now covered all the new features of C# as a language.
However, part of the aim of this book is to help developers evolve their ideas of idiomatic C#. Two of the
new technologies introduced into .NET 4.0 have the potential to change the way we write code in terms
of robustness and concurrency, just as LINQ has changed our perspective on working with collections. In
the next chapter, we'll look at the Code Contracts and Parallel Extensions libraries.

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=569 Download at Boykma.Com

http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://www.manning-sandbox.com/forum.jspa?forumID=569

