| INDEPTH

| | BIYTIIT:

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Chapter 10

Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:

Chapter 16:

The changing face of C# development
Core foundations: Building on C# 1
Parameterized typing with generics
Saying nothing with nullable types
Fast-tracked delegates

Implementing iterators the easy way
Concluding C# 2: the final features
Cutting fluff with a smart compiler

Lambda expressions and expression trees

: Extension methods

Query expressions and LINQ to Objects

LINQ beyond collections

Minor changes to simplify code

Dynamic binding in a static language
Framework features which change coding styles

Whither now?

Download at Boykma.Com

MEAP Edition
Manning Early Access Program

Copyright 2009 Manning Publications

For more information on this and other Manning titles go to
WWW.Mmanning.com

Download at Boykma.Com

http://www.manning.com/

Table of Contents

13. Minor changes to SIMPLITY COUEccouueniiii e 1
Optional parameters and NAaMEd argUMENTSuuueiiiiieiiiii et 1
OPLioNal PAIGIMELENS ... iiett ettt ettt ettt et et e e ere e aennas 2
NBMED GIGUIMENTS ... ettt ettt e ettt e et a e e e e et eeeena s 7
Putting the tWo tOgEINEYouu i 10
Improvements for COM interoperabilityviiiiiiiiiiiii e 14
The horrors of automating Word before CH# 4ooiiiiiiiiiiii e 14

The revenge of default parameters and named argumentsco.ovvveeneiiiniiiineeinns 15
When is aref parameter not aref parameter?coovevviviiieiiiiiee e 16
Linking Primary Interop ASSEmMbBIIESuuiiiiii e 17
Generic variance for interfaces and delegatesuveviiiiiiciii e 20
Types of variance: covariance and CONtravarianCec..veveueeeuieiiii e eeieeeenn 21
Using varianCe in iNtEIfacteSuu i 22
UsSing varianCe iN El@QAIESciieiii et 25
COMPIEX SITUBLTONS ... eeeeee ettt ettt ettt e et e e et e e e e e e enees 25
Limitations @0 NOTEScuuuiiiiii et 27
SUMIMBIY ettt ettt et et ettt e e e e et r et e e et e e e e e ea e enas 29
14. Dynamic binding in & Static [anQUAOEuuniiiiie e 31
What? WHen? WHY? HOW? ...ttt e 31
What iS dyNamiC TYPING?eeeeiieeiiit ettt e e e e e e 32
When is dynamic typing useful, and Why?oiiiiiiiiii e 32

How does C# 4 provide dynamic tyPing?ccouuuieriiiiiieiiiiieeeeer e 33

The 5 minute guUIde O OYNAMICoiiiitieeeei et e e e e eaa e e 34
Examples of dynamiC tYPINGoceeerioiiii e 36
COM in general, and Microsoft Office in particularccccoovieiiiiiiieiiiinnee, 36
Dynamic languages such as [TonPYthoncoiiiiiiiiiiic e 38
REFIECHION ...t e e 42
Looking behind the SCENEScciiii e 46
Introducing the Dynamic Language RUNLIMEuviiiiiiiiiiiieecei e 47

DLR COIE CONCEPES ...eevuiitie ettt ettt e e et e e e e e e e e e eees 50

How the C# compiler handleS dynamiCoveiiiiiiieiiiii e 52

The C# compiler getS @VEN SMAITENuuiiiiiiiieeiiii e 55
Restrictions on dyNamiC COOEccuuuiiiiiiiiie i 57
Implementing dynamiC DENAVIONoiiiiiiiei e 60
UsSiNg EXPandOODECLc.uuiieiiiiiieece e 60
USiNg DYNaMIiCODJECEeuviiiiiiii e e e e e eees 64
Implementing IDynamicMetaObjeCtProvidervveiiiiiiiiiii e 70
SUMIMIBIY ettt ettt et e et e et e e e e et r et e e et n e e e e e ea e enes 70

i Download at Boykma.Com

Chapter 13. Minor changes to simplify
code

Just as in previous versions, C# 4 has a few minor features which don't really merit individual chapters
to themselves. In fact, there's only one really big feature in C# 4 - dynamic typing - which we'll cover
in the next chapter. The changes we'll cover here just make C# that little bit more pleasant to work with,
particularly if you work with COM on aregular basis. We'll be looking at:

» Optional parameters (so that callers don't need to specify everything)

» Named arguments (to make code clearer, and to help with optional parameters)

e Streamlining r ef parametersin COM (a simple compiler trick to remove drudgery)

Embedding COM Primary Interop Assemblies (Ileading to ssmpler deployment)
» Generic variance for interfaces and delegates (in limited situations)

Will any of those make your heart race with excitement? It's unlikely. They're nice features al the same,
and make some patterns simpler (or just more realistic to implement). Let's start off by looking at how
we call methods.

Optional parameters and named arguments

These are perhaps the Batman and Robi n*features of C# 4. They're distinct, but usually seen together. I'm
going to keep them apart for the moment so we can examine each in turn, but then we'll use them together
for some more interesting examples.

Parameters and Arguments

This section obvioudly talks about parameters and argumentsalot. In casual conversation, thetwo
termsare often used interchangably, but I'm going to usethem in linewith their formal definitions.
Just to remind you, a parameter (also known as aformal parameter) isthe variable which is part
of the method or indexer declaration. An argument is an expression used when calling the method
or indexer. So for example, consider this snippet:

void Foo(int x, int y)

{
/1 Do something with x and vy
}
int a = 10;
Foo(a, 20);

Here the parameters are X and y, and the arguments are a and 20.

WEe'll start off by looking at optional parameters.

1Or Cavalleria Rusticana and Pagliacci if you're feeling more highly cultured

Please post comments or correct'fns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Optional parameters

Visual Basic hashad optional parametersfor ages, and they'vebeeninthe CLR from .NET 1.0. The concept
is as obvious as it sounds. some parameters are optional, so they don't have to be explicitly specified by
the caller. Any parameter which hasn't been specified as an argument by the caller is given adefault value.

Motivation

Optional parametersare usually used when there are several valuesreguired for an operation (often creating
anew object), where the same values are used alot of the time. For example, suppose you wanted to read
atext file, you might want to provide a method which alows the caller to specify the name of thefile and
the encoding to use. The encoding is amost always UTF-8 though, so it's nice to be able to just use that
automatically if it'sall you need.

Historically the idiomatic way of allowing this in C# has been to use method overloading, with one
"canonical" method and others which call it, providing default values. For instance, you might creste
methods like this:

public IList<Custoner> LoadCustoners(string fil enane,
Encodi ng encodi ng)

{
o
}
public IList<Customer> LoadCustoners(string fil enane)
{
return LoadCustoners(fil enane, Encoding. UTF8); @
}

©® Doread work here
® Defaultto UTF-8

This works fine for a single parameter, but it becomes trickier when there are multiple options. Each
extra option doubles the number of possible overloads, and if two of them are of the same type you can
have problems due to trying to declare multiple methods with the same signature. Often the same set
of overloads is also required for multiple parameter types. For example, the Xm Reader . Cr eat e()
method can create an X Reader from a St ream a Text Reader or astring - but it also provides
the option of specifying an Xm Reader Set t i ngs and other arguments. Due to this duplication, there
are twelve overloads for the method. This could be significantly reduced with optional parameters. Let's
see how it's done.

Declaring optional parameters and omitting them when supplying
arguments
Making a parameter optional is as simple as supplying a default value for it. Figure 13.X shows a method

with three parameters. two are optional, oneis requi red. Listi ng 13.X implements the method and called
in three dightly different ways.

Note for editors, typesetters and MEAP readers: the figure should be to one side of the text, so there isn't the jarring “figure then listing" issue.
Quite how we build that as a PDF remains to be seen.

Please post comments or correct'?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Figure 13.1. Declaring optional parameters

required parameter

void Foo (int x, int 4=10)

J

Option al Para meter

Example 13.1. Declaring a method with optional parametersand calling

static void Dunp(int x, int y =20, int z =30) ©
{

}
Dup(1, 2, 3); ©

Dunp(1, 2); ©
Dunp(1l); ©

Consol e. WiteLine("{0} {1} {2}", X, vy, 2);

00 Declares method with optiona parameters
00 Calls method with all arguments

00 Omitsone argument

00 Omitstwo arguments

The optional parameters are the ones with default values specified @. If the caller doesn't specify v, its
initial valuewill be 20, and likewise z has adefault value of 30. Thefirst call ® explicitly specifiesal the
arguments; the remaining calls (@ and @) omit one or two arguments respectively, so the default values
are used. When there is one argument "missing” the compiler assumesit's the final parameter which has
been omitted - then the penultimate one, and so on. The outpult is therefore:

Note that although the compiler could use some clever analysis of the types of the optional parameters and
the arguments to work out what's been left out, it doesn't: it assumes that you are supplying argumentsin
the same order as the parameters3. This means that the following code isinvalid:

static void TwoOptional Paraneters(int x = 10,
string y = "default")

{
}

Su nless you're using named arguments, of course - we'll learn about those soon.

Consol e. WiteLine("x={0} y={1}", X, Vy);

Please post comments or correctipns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

TwoOpt i onal Par amet er s("second paraneter"); @
O Error!

This tries to call the TwoOpt i onal Par anet er sMet hod specifying a string for the first argument.
There's no overload with a first parameter which is convertible from a string, so the compiler issues an
error. Thisisagood thing - overload resolution istricky enough (particularly when generic type inference
getsinvolved) without the compiler trying all kinds of different permutationsto find something you might
be trying to call. If you want to omit a value for one optional parameter but specify alater one, you need
to use named arguments.

Restrictions on optional parameters

Now, there are a few rules for optional parameters. All optional parameters have to come after required
parameters. The exception to thisisaparameter array (as declared with the par ans modifier) which till
hasto come at the end of a parameter list, but can come after optional parameters. A parameter array can't
be declared as an optional parameter - if the caller doesn't specify any valuesfor it, an empty array will be
used instead. Optional parameters can't haver ef or out modifiers either.

Thetype of the optional parameter can be any type, but there are restrictions on the default val ue specified.
You can always use a constant, including literals, nul | , references to other const members, and the
defaul t (...) operator. Additionally, for value types, you can call the parameterless constructor,
although thisis equivalent to using the def aul t (. . .) operator anyway. There has to be an implicit
conversion from the specified value to the parameter type, but this must not be a user-defined conversion.
Here are some examples of valid declarations:

e Foo(int x, int y = 10) - numericliterasarealowed

» Foo(deci mal x = 10) -implicit built-in conversion fromi nt todeci nal isallowed
 Foo(string nane = "default") - string literalsare allowed

* Foo(DateTine dt = new DateTi nme()) -"zero" value of Dat eTi e

e Foo(DateTi ne dt def aul t (Dat eTi ne)) - another way of writing the same thing
e Foo<T>(T value = defaul t(T)) -thedefault value operator works with type parameters
e Foo(int? x = null) -nullable conversionisvalid

e Foo(int x, int y = 10, parans int[] z) - parameter array can come after optional
parameters

And someinvalid ones:

e Foo(int x = 0, int y) -required non-params parameter cannot come after optional parameter
* Foo(DateTine dt = DateTi me. Now) - default values have to be constant

e Foo(XNanme nane = "default") -conversionfromstri ng toXNane isuser-defined

e Foo(parans string[] nanmes = null) - parameter arrays can't be optional

e Foo(ref string nanme = "default") -ref/out parameterscan't have default values

Please post comments or correcti?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

The fact that the default value has to be constant is a pain in two different ways. One of them is familiar
from adlightly different context, as we'll see now.

Versioning and optional parameters

The restrictions on default values for optional parameters may remind you of the restrictions on const
fields, and in fact they behave very similarly. In both cases, when the compiler references the value it
copiesit direclty intothe output. Thegenerated I L actsexactly asif your original source code had contained
the default value. This means if you ever change the default value without recompiling everything that
references it, the old callers will still be using the old default value. To make this concrete, imagine this
set of steps:

1. Createaclasslibrary (Li brary. dl |) with aclasslikethis:

public class LibraryDeno

{
public static void PrintValue(int value = 10)
{
Syst em Consol e. Wit eLi ne(val ue);
}
}

2. Create aconsole application (Appl i cat i on. exe) which references the class library:

public class Program

{
static void Main()
{
Li braryDeno. Pri nt Val ue();
}
}

3. Run the application - it will print 10, predictably.
4. Change the declaration of Pri nt Val ue asfollows, then recompile just the class library:
public static void PrintValue(int value = 20)
5. Rerun the application - it will still print 10. The value has been compiled directly into the executable.
6. Recompile the application and rerun it - thistime it will print 20.

Thisversioning issue can cause bugswhich are very hard to track down, because all the code looks correct.
Essentially, you are restricted to using genuine constants which should never change as default values
for optional parameters. Of course, this a'so means you can't use any values which can't be expressed as
constants anyway - you can't create a method with a default value of "the current time."

Making defaults more flexible with nullity

Fortunately, there is away round this. Essentially you introduce a "magic value" to represent the default,
and then replace that magic value with the real default within the method itself. If the phrase "magic
value" bothersyou, I'm not surprised - except weregoing to usenul | for the magic value, which already
represents the absence of a "normal" value. If the parameter type would normally be a value type, we
simply make it the corresponding nullable value type, at which point we can still specify that the default
vaueisnul | .

Please post comments or correc@ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Asanexampleof this, let'slook at asimilar situation to theone | used to introduce the wholetopic: allowing
the caller to supply an appropriate text encoding to a method, but defaulting to UTF-8. We can't specify
the default encoding as Encodi ng. UTF8 asthat's not a constant value, but we can treat anull parameter
value as "use the default”. To demonstrate how we can handle value types, we'll make the method append
atimestamp to atext file with a message. We'll default the encoding to UTF-8 and the timestamp to the
current time. Listing 13.X shows the complete code, and afew examples of using it.

Example 13.2. Using null default values to handle non-constant situations

static void AppendTi mestanp(string fil ename, ©
string nessage,
Encodi ng encoding = null, @
Dat eTi ne? timestanmp = null)

{
Encodi ng real Encodi ng = encodi ng ?? Encodi ng. UTF8; ©
Dat eTi me real Ti nestanp = tinestanp ?? DateTi ne. Now,
using (TextWiter witer = new StreanWiter(fil enane,
true,
real Encodi ng))
{
witer. WiteLine("{0:s}: {1}", real Ti nestanp, nessage);
}
}
AppendTi nestanp("utf8.txt", "First nessage");
AppendTi nest anp("ascii.txt", "ASCII", Encodi ng. ASCl);
AppendTi nest anp("utf8.txt", "Message in the future", null, O

new Dat eTi ne(2030, 1, 1));

O Two required parameters

00 Two optional parameters

00 Null coalescing operator for convenience
00 Explicit use of null

Listing 13.X shows afew nice features of this approach. First, we've solved the versioning problem. The
default valuesfor the optional parameters are null @, but the effective values are "the UTF-8 encoding” and
"the current date and time." Neither of these could be expressed as constants, and should we ever wish to
change the effective default - for example to use the current UTC time instead of the local time - we could
do so without having to recompile everything that called AppendTi mest anp. Of course, changing the
effective default changes the behavior of the method - you need to take the same sort of care over this as
you would with any other code change.

We've also introduced an extra level of flexibility. Not only do optional parameters mean we can make
the calls shorter, but having a specific "use the default” value means that should we ever wish to, we can
explicitly make a call allowing the method to choose the appropriate value. At the moment this is the
only way we know to specify the timestamp explicitly without also providing an encoding @, but that will
change when we look at named arguments.

The optional parameter values are very simple to deal with thanks to the null coalescing operator @. I've
used separate variables for the sake of formatting, but you could use the same expressions directly in the
calstothe St r eamW i t er constructor and the W i t eLi ne method.

There's one downside to this approach: it assumes that you don't want to use null asa"real" value. There
are certainly occasions where you want null to mean null - and if you don't want that to be the default

Please post comments or correctfé)ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

value, you'll haveto find adifferent constant or just make leave the parameter as arequired one. However,
in other cases where thereisn't an obvious constant value which will clearly always be theright default, 1'd
recommend this approach to optional parameters as one which is easy to follow consistently and removes
some of the normal difficulties.

WEe'l need to look at how optional parameters affect overload resolution, but it makes sense to visit that
topic just once, when we've seen how named arguments work. Speaking of which...

Named arguments

The basic idea of named arguments is that when you specify an argument value, you can also specify the
name of the parameter it's supplying the value for. The compiler then makes sure that there is a parameter
of the right name, and uses the value for that parameter. Even on its own, this can increase readability in
some cases. [n reality, named arguments are most useful in cases where optional parametersare aso likely
to appear, but we'll 1ook at the simple situation first.

Indexers, optional parameters and named arguments

You can use optional parameters and named arguments with indexers as well as methods.
However, this is only useful for indexers with more than one parameter: you can't access an
indexer without specifying at least one argument anyway. Given thislimitation, | don't expect to
see the feature used very much with indexers, and | haven't demonstrated it in the book.

I'm sure we've all seen code which |ooks something like this:

MessageBox. Show(" Pl ease do not press this button again", // text
"Quch!"); [/ title

I've actually chosen a pretty tame example: it can get a lot worse when there are loads of arguments,
especialy if alot of them arethe sametype. However, thisisstill realistic: even with just two parameters, |
would find myself guessing which argument meant what based on the text when reading this code, unlessit
had commentslikethe ones|'ve got here. There'saproblem though: commentscan lievery easily. Nothing
is checking them at all. Named arguments ask the compiler to help.

Syntax

All we need to do to the previous example is prefix each argument with the name of the corresponding
parameter and a colon:

MessageBox. Show(text: "Please do not press this button again",
caption: "Quch!");

Admittedly we now don't get to choose the name we find most meaningful (I prefer "title" to "caption™)
but at least I'll know if | get something wrong. Of course, the most common way in which we could "get
somethingwrong" hereisto get the argumentsthe wrong way round. Without named arguments, thiswould
be a problem: we'd end up with the pieces of text switched in the message box. With named arguments,
the position becomes largely irrelevant. We can rewrite the previous code like this:

MessageBox. Show(capti on: "Quch!",
text: "Please do not press this button again");

We'd still havetheright text in the right place, because the compiler would work out what we meant based
on the names.

Please post comments or correctipns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

To explore the syntax in a bit more detail, listing 13.X shows a method with three integer parameters, just
like the one we used to start looking at optional parameters.

Example 13.3. Simple examples of using named arguments

static void Dunp(int x, int y, int z) @

{
Consol e. WiteLine("x={0} y={1} z={2}", x, vy, z);
}
Dump(1, 2, 3); ©
Dunmp(x: 1, y: 2, z: 3); ©
Dunmp(z: 3, y: 2, x: 1);
Dunp(1, y: 2, z: 3); O
Dunp(1, z: 3, y: 2);

00 Declares method as normal

00 Calls method as normal

0O Specifies namesfor al arguments
00 Specifies names for some arguments

The output isthe samefor each call inlisting 13.X: x=1, y=2, z=3.Weve effectively made the same
method call in five different ways. It's worth noting that there are no tricks in the method declaration @:
you can use hamed arguments with any method which has at |east one parameter. First we call the method
in the normal way, without using any new features ®. Thisis a sort of "control point" to make sure that
the other callsreally are equivalent. We then make two calls to the method using just named arguments ©.
The second of these calls reverses the order of the arguments, but the result is till the same, because the
arguments are matched up with the parameters by name, not position. Finally there are two calls using a
mixture of named arguments and positional arguments@®. A positional argument is one which isn't named
- so every argument in valid C# 3 code is a positional argument from the point of view of C# 4. Figure
13.X shows how the final line of code works.

Figure 13.2. Positional and named argumentsin the same call

SEatic void Dump (int X, nt Y. wnt 3)

/A

D(LMP (', 2: 3' 3: Z)

Posit—iona{, \l'/

ment iam
argu Qrsumeﬂfs

Please post comments or correctg)ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

All named arguments have to come after positional arguments - you can't switch between the styles.
Positional arguments always refer to the corresponding parameter in the method declaration - you can't
make positional arguments "skip" a parameter by specifying it later with a named argument. This means
that these method calls would both be invalid:

e Dunp(z: 3, 1, y: 2) -positional arguments must come before named ones

e Dunmp(2, x: 1, z: 3) -x hasaready been specified by the first positional argument, so we can't
specify it again with a named argument

Now, although in this particular case the method calls have been equivalent, that's not always the case.
Let'stake alook at why reordering arguments might change behaviour.

Argument evaluation order

We're used to C# evaluating its arguments in the order they're specified - which, until C# 4, has always
been the order in which the parameters have been declared too. In C# 4, only the first part is still true;
the arguments are still evaluated in order they're written, even if that's not the same as the order in which
they're declared as parameters. This mattersif evaluating the arguments has side effects. It's usually worth
trying to avoid having side effects in arguments, but there are cases where it can make the code clearer.
A morereadlistic rule isto try to avoid side effects which might interfere with each other. For the sake of
demonstrating execution order, we'll break both of these rules. Please don't treat this as arecommendation
that you do the same thing.

First welll create arelatively harmless example, introducing a method which logsitsinput and returnsit - a
sort of "logging echo”. We'll usethe return values of three callsto thisto call the Dunp method (whichisn't
shown asit hasn't changed). Listing 13.X showstwo callsto Dunp which result in slightly different output.

Example 13.4. L ogging argument evaluation

static int Log(int value)

{
Consol e. WitelLine("Log: {0}", value);
return val ue;

}

I':)iJ'rrp(x: Log(1), y: Log(2), z: Log(3));
Dunp(z: Log(3), x: Log(1l), y: Log(2));

The results of running listing 13.X show what happens:

Log: 1
Log: 2
Log: 3
x=1 y=2 z=3
Log: 3
Log: 1
Log: 2
x=1 y=2 z=3

In both cases, the parameters in the Dunp method are still 1, 2 and 3 in that order. However, we can see
that while they were evaluated in that order in thefirst call (which was equivalent to just using positional
arguments), the second call evaluated the value used for the z parameter first. We can make the effect
even more significant by using side effects which change the results of the argument evaluation, as shown
inlisting 13.X, again using the same Dunp method.

Please post comments or correc@ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Example 13.5. Abusing argument evaluation order

int i =0;

Dunp(x: ++i, y: ++i, z: ++i);
i = 0;

Dunp(z: ++i, X: ++i, y: ++i);

The results of listing 13.X may be best expressed in terms of the blood spatter pattern at a murder scene,
after someone maintaining code like this has gone after the original author with an axe. Yes, technically
speaking the last line prints out x=2 y=3 z=1 but I'm sure you see what I'm getting at. Just say "no"
to code like this. By all means reorder your arguments for the sake of readability: you may think that
laying out a call to MessageBox. Show with the title coming above the text in the code itself reflects
the on-screen layout more closely, for example. If you want to rely on a particular evaluation order for
the arguments though, introduce some local variables to execute the relevant code in separate statements.
The compiler won't care - it will follow the rules of the spec - but this reduces the risk of a "harmless
refactoring” which inadvertently introduces a subtle bug.

To return to cheerier matters, let's combine the two features (optional parameters and named arguments)
and see how much tidier the code can be.

Putting the two together

Thetwo featureswork in tandem with no extraeffort required on your part. It'snot at all uncommon to have
abunch of parameters where there are obvious defaults, but whereit's hard to predict which ones a caller
will want to specify explicitly. Figure 13.X showsjust about every combination: arequired parameter, two
optional parameters, a positoinal argument, a named argument and a "missing” argument for an optional
parameter.

Figure 13.3. Mixing named arguments and optional parameters

Stah‘c VofGl DwMP (MC' X, Wt 3:20 tat 3-30)

7T

DumP (lO 2:

Going back to an earlier example in listing 13.X we wanted to append a timestamp to a file using the
"default" encoding of UTF-8, but with a particular timestamp. Back then we just used nul | for the
encoding argument, but now we can write the same code more simply, as shown in listing 13.X.

Please post comments or correcj_ ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Example 13.6. Combining named and optional arguments

static void AppendTi mestanmp(string fil enane,
string nmessage,
Encodi ng encoding = nul |,
Dat eTi me? tinmestanmp = null)

{
o
}
AppendTi nestanp("utf8.txt", "Message in the future", ©

ti mestanp: new DateTi me(2030, 1, 1)); ©

© Sameimplementation as before
® Encoding isomitted
©® Named timestamp argument

In thisfairly simple situation the benefit isn't particularly huge, but in cases where you want to omit three
or four arguments but specify the final one, it'sareal blessing.

We've seen how optional parameters reduce the need for huge long lists of overloads, but one specific
pattern where this is worth mentioning is with respect to immutability.

Immutability and object initialization

One aspect of C# 4 which disappoints me somewhat is that it hasn't done much explicitly to make
immutability easier. Immutabletypesare acore part of functional programming, and C# hasbeen gradually
supporting the functional style more and more... except for immutability. Object and collection initializers
makeit easy to work with mutable types, but immutable types have been left out in the cold. (Automatically
implemented propertiesfall into this category too.) Fortunately, whileit'snot afeaturewhichisparticularly
designed to aid immutability, named arguments and optional parameters alow you to write object-
initializer-like code which just calls a constructor or other factory method. For instance, suppose we were
creating a Message class, which required a "from" address, a "to" address and a body, with the subject
and attachment being optional. (We'll stick with single recipients in order to keep the example as simple
aspossible.) We could create a mutabl e type with appropriate writable properties, and construct instances
like this:

Message nessage = new Message {
From = "skeet @obox. cont',
To = "csharp-in-depth-readers@verywhere. conf,
Body = "I hope you |like the second edition",
Subj ect = "A quick nmessage"

b

That has two problems: first, it doesn't enforce the required fields. We could force those to be supplied to
the constructor, but then (before C# 4) it wouldn't be obvious which argument meant what:

Message nmessage = new Message(
"skeet @obox. conf,
"cshar p-i n-dept h-reader s@ver ywhere. conf,
"I hope you like the second edition")

Subj ect = "A quick nessage"

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

The second problem isthat this construction pattern simply doesn't work for immutabl e types. The compiler
hasto call aproperty setter after it hasinitialized the object. However, we can use optional parameters and
named arguments to come up with something that has the nice features of the first form (only specifying
what you're interested in and supplying names) without losing the validation of which aspects of the
message are required or the benefits of immutability. Listing 13.X shows a possible constructor signature
and the construction step for the same message as before.

Example 13.7.

public Message(string from string to,
string body, string subject = null,
byte[] attachnment = null)

{
}

Message nessage = new Message(
from "skeet @obox. cont,
to: "csharp-in-depth-readers@verywhere. cont,
body: "I hope you |like the second edition",
subj ect: "A quick nessage"

)
© Normal initialization code goes here

| redlly like this in terms of readability and general cleanliness. Y ou don't need hundreds of constructor
overloads to choose from, just one with some of the parameters being optional. The same syntax will
also work with static creation methods, unlike object initializers. The only downsideisthat it really relies
on your code being consumed by a language which supports optional parameters and named arguments,
otherwise callers will be forced to write ugly code to specify values for all the optional parameters.
Obviously there's more to immutability than getting valuesto the initialization code, but thisis awelcome
step in the right direction nonethel ess.

There are couple of fina points to make around these features before we move on to COM, both around
the details of how the compiler handles our code and the difficulty of good API design.

Overload resolution

Clearly both of these new features affect how the compiler resolves overloads - if there are multiple
method signatures available with the same name, which should it pick? Optional parameters can increase
the number of applicable methods (if some methods have more parameters than the number of specified
arguments) and named arguments can decrease the number of applicable methods (by ruling out methods
which don't have the appropriate parameter names).

For the most part, the changes are absolutely intuitive: to check whether any particular method is
applicable, thecompiler triesto build alist of theargumentsit would passin, using the positional arguments
in order, then matching the named arguments up with the remaining parameters. If arequired parameter
hasn't been specified or if a named argument doesn't match any remaining parameters, the method isn't
applicable. The specification gives alittle more detail around this, but there are two situations I'd like to
draw particular attention to.

First, if two methods are both applicable and one of them has been given all of its arguments explicitly
while the other uses an optional parameter filled in with a default value, the method which doesn't use any
default values will win. However, this doesn't extend to just comparing the number of default values used
- it'sastrict "does it use default values or not" divide. For example, consider the code below.

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

mailto:skeet@pobox.com
mailto:csharp-in-depth-readers@everywhere.com
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

static void Foo(int x
static void Foo(int x

10) {}
10, int y = 20) {}

Foo(); ©
Foo(1); @
Foo(y: 2); ©
Foo(1, 2); ©

00 Ambiguouscall

00 Vadlidcall - choosesfirst overload

0O Argument name forces second overload
00 Argument count forces second overload

Inthefirst call @, both methods are applicable because of their default parameters. However, the compiler
can't work out which oneyou meant to call: it will raise an error. In the second call @ both methods are still
applicable, but thefirst overload isused becauseit can be applied without using any default values, whereas
the second uses the default value for y. For both the third and fourth calls, only the second overload is
applicable. Thethird call ® namesthey argument, and the fourth call @ has two arguments; both of these
mean the first overload isn't applicable.

The second point is that sometimes named arguments can be an alternative to casting in order to help the
compiler resolve overloads. Sometimes acall can be ambiguous because the arguments can be converted
two the parameter types in two different methods, but neither method is "better" than the other in all
respects. For instance, consider the following method signatures and a call:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }

Met hod(10, 10); ©
© Ambiguouscall

Both methods are applicable, and neither is better than the other. There are two ways to resolve this,
assuming you can't change the method names to make them unambiguous that way. (That's my preferred
approach, by the way. Make each method name more informative and specific, and the general readability
of the code can go up.) You can either cast one of the arguments explicitly, or use named arguments to
resolve the ambiguity:

void Method(int x, object y) { ... }
void Method(object a, int b) { ... }

Met hod(10, (object) 10); ©
Met hod(x: 10, y: 10); ©

© Casting to resolve ambiguity
® Naming to resolve ambiguity

Of coursethisonly worksif the parameters have different namesin the different methods - but it's ahandy
trick to know. Sometimes the cast will give more readable code, sometimes the name will. It's just an
extraweapon in the fight for clear code. It does have a downside though, along with named argumentsin
general: it's another thing to be careful about when you change a method...

Contracts and overrides

In the past, parameter names haven't matter very much if you've only been using C#. Other languages may
have cared, but in C# the only times that parameter names were important were when you were looking at

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Intelli Sense and when you were looking at the method code itself. Now, the parameter names of a method
are effectively part of the API. If you change them at a later date, code can break - anything which was
using a named argument to refer to one of your parameters will fail to compile if you decide to changeit.
This may not be much of an issueif your code is only consumed by itself anyway, but if you're writing a
public API such as an Open Source class library, be aware that changing a parameter name is a big deal.
It always has been readlly, but if everything calling the code was written in C#, we've been able to ignore
that until now.

Renaming parameters is bad: switching the names round is worse. That way the calling code may till
compile, but with adifferent meaning. A particularly evil form of thisisto override a method and switch
the parameter names in the overridden version. The compiler will aways ook at the "deepest” override it
knows about, based on the static type of the expression used as the target of the method call. You realy
don't want to get into a situation where calling the same method implementation with the same argument
list resultsin different behavior based on the static type of avariable. That'sjust evil.

Speaking of evil, let's move on to the new features relating to COM. I'm only kidding - mostly, anyway.

Improvements for COM interoperability

I'll readily admit to being far from aCOM expert. When | tried to use it before .NET came aong, | always
ran into issues which were no doubt partially caused by my lack of knowledge and partially caused by
the components | was working with being poorly designed or implemented. The overall impression of
COM as a sort of "black magic" has lingered, however. I've been reliably informed that there's alot to
like about it, but unfortunately | haven't found myself going back to learn it in detail - and there seems
to bealot of detail to study.

This section is Microsoft-specific

The changes for COM interoperability won't make sense for all C# compilers, and a compiler can
still be deemed compliant with the specification without implementing these features.

.NET has certainly made COM somewhat friendlier in general, but until now there have been distinct
advantagesto using it from Visual Basic instead of C#. The playing field has been leveled significantly by
C# 4 though, aswelll seein thissection. For the sake of familiarity, I'm going to use Word for the examplein
this chapter, and Excel in the next chapter. There's nothing Office-specific about the new features though;
you should find the experience of working with COM to be nicer in C# 4 whatever you're doing.

The horrors of automating Word before C# 4

Our example is going to be very simple - it's just going to start Word, create a document with a single
paragraph of text in, save it, and then exit. Sounds easy, right? If only that were so. Listing 13.X shows
the code required before C# 4.

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Example 13.8. Creating and saving a document in C# 3
obj ect nissing = Type. M ssing;
Application app = new Application { Visible = true }; ©

app. Docunents. Add(ref mssing, ref mssing, ©
ref mssing, ref mssing);

Docurment doc = app. ActiveDocunent;

Par agraph para = doc. Par agraphs. Add(ref mi ssing);

par a. Range. Text = "Thank goodness for C# 4";

object filenanme = "deno.doc"; ©

obj ect format = WiSaveFor nat . wdFor mat Docunent 97;

doc. SaveAs(ref filenane, ref format,
ref missing, ref mssing, ref mssing,
ref missing, ref mssing, ref mssing,
ref missing, ref mssing, ref mssing,
ref missing, ref mssing, ref mssing,
ref missing, ref mssing);

doc. C ose(ref missing, ref missing, ref missing); @
app. Quit(ref missing, ref missing, ref nissing);

00 StartsWord

@0 Creates anew document
00 Savesthe document

00 Shuts down word

Each step in this code sounds simple: first we create an instance of the COM type @ and make it visible
using an object initializer expression, then we create and fill in a new document ®. The mechanism
for inserting some text into a document isn't quite as straightforward as we might expect, but it's worth
remembering that a Word document can have afairly complex structure: thisisn't as bad asit might be. A
couple of the method calls here have optional by-reference parameters; we're not interested in them, so we
pass alocal variable by reference with avalue of Type. M ssi ng. If you've ever done any COM work
before, you're probably very familiar with this pattern.

Next comes the really nasty bit: saving the document @. Yes, the SaveAs method realy does have 16
parameters, of which we're only using two. Even those two need to be passed by reference, which means
creating local variablesfor them. In terms of readability, thisisacomplete nightmare. Don't worry though
- we'll soon sort it out.

Finally we close the document and the application @. Aside from the fact that both calls have three optional
parameters which we don't care about, there's nothing interesting here.

Let's start off by using the features we've aready seen in this chapter - they can cut the example down
significantly on their own.

The revenge of default parameters and named
arguments

First things first: let's get rid of all those arguments corresponding to optional parameters we're not
interested in. That also means we don't need the m ssi ng variable. That till leaves us with two

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

parameters out of apossible 16 for the SaveAs method. At the moment it's obvious which iswhich based
on the local variable names - but what if we've got them the wrong way round? All the parameters are
weakly typed, so we're really going on a certain amount of guesswork. We can easily give the arguments
names to clarify the call. If we wanted to use one of the later parameters we'd have to specify the name
anyway, just to skip the ones we're not interested in.

Listing 13.X shows the code - it's looking alot cleaner already.

Example 13.9. Automating Word using named arguments and without specifying
unnecessary parameters

Application app = new Application { Visible = true };
app. Docunent s. Add() ;

Docurent doc = app. Acti veDocunent ;

Par agr aph para = doc. Par agr aphs. Add() ;

par a. Range. Text = "Thank goodness for C# 4";

object filename = "deno. doc";
obj ect format = WiSaveFor mat . wdFor mat Docunent 97;
doc. SaveAs(Fil eNanme: ref filenane, FileFormat: ref format);

doc. d ose();
app. Quit();

That's much better - athough it's till ugly to have to create local variables for the SaveAs arguments
we are specifying. Also, if you've been reading very carefully, you may be alittle concerned about the
optional parameterswe'veremoved. They werer ef parameters... but optional... whichisn't acombination
C# supports normally. What's going on?

When is a ref parameter not a ref parameter?

C#normally takesapretty strict lineonr ef parameters. Y ou haveto mark theargument withr ef aswell,
to show that you understand what's going on; that your variable may haveits value changed by the method
you're calling. That's all very well in normal code, but COM APIs often use r ef parameters for pretty
much everything for perceived performance reasons. They're usually not actually modifying the variable
you pass in. Passing arguments by referenceis dlightly painful in C#. Not only do you have to specify the
r ef modifier, you've also got to have a variable; you can't just pass values by reference.

In C# 4 the compiler makesthisalot easier by letting you pass an argument by value into a COM method,
evenif it'sfor ar ef parameter. Consider acall likethis, wherear gument might happento beavariable
of typest ri ng, but the parameter isdeclared asr ef obj ect :

conthj ect . SoneMet hod(ar gunent) ;
The compiler emits code which is equivalent to this:

object tnp = argunent;
contbj ect . SoneMet hod(ref tnp);

Note that any changes made by SomeMet hod are discarded, so the call really does behave asif you were
passingar gunent by value. Thissame processisused for optional r ef parameters. eachinvolvesalocal
variableinitializedto Type. M ssi ng and passed by reference into the COM method. If you decompile
the dslimlined C# code, you'll seethat the IL emitted isactually pretty bulky with all of those extravariables.

Please post comments or correoii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

We can now apply the finishing touches to our Word example, as shown in listing 13.X.

Example 13.10. Passing arguments by valuein COM methods

Application app = new Application { Visible = true };
app. Docunent s. Add() ;
Docurment doc = app. ActiveDocunent ;
Par agr aph para = doc. Par agr aphs. Add() ;
par a. Range. Text = "Thank goodness for C# 4";
doc. SaveAs(Fi |l eNanme: "test.doc", ©
Fi | eFormat: WiSaveFor nat . wdFor mat Docunent 97) ;
doc. Cl ose();

app. Quit();
© Arguments passed by value

Asyou can see, the final result is a much cleaner bit of code than we started off with. With an API like
Word you still need to work through a somewhat bewildering set of methods, properties and eventsin the
core types such as Appl i cat i on and Docunent , but at least your code will be a lot easier to read.
Of course, writing the code is only part of the battle: you usually need to be able to deploy it onto other
machines aswell. Again, C# 4 makesthistask easier.

Linking Primary Interop Assemblies

When you build against a COM type, you use an assembly generated for the component library. Usually
you use a Primary Interop Assembly or PIA, which is the canonical interop assembly for a COM library,
signed by the publisher. You can generate these using the Type Library Importer tool (t | bi np) for
your own COM libraries. PIAs make life easier in terms of having "one true way" of accessing the COM
types, but they're apain in other ways. For one thing, the right version of the PIA hasto be present on the
machine you're deploying your application to. It doesn't just have to be physically on the machine though
- it also hasto be registered (with the RegAs mtool). Asan example of how this can be painful, depending
on the environment your application will be deployed in, you may find that Office is installed but the
relevant PIAs aren't, or that there's a different version of Office than the one you compiled against. Y ou
can redistribute the Office PIAS, but then you need to register them as part of your installation procedure
- which means xcopy deployment isn't really an option.

C# 4 dlowsavery different approach. Instead of referencing aPlA like any other assembly, you canlink it
instead. In Visual Studio 2010 thisis an option in the properties of the reference, as shown in figure 13.X.

Please post comments or correoii?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Figure 13.4. Linking PIAsin Visual Studio 2010

Aliases
Copy Local

Culture

Microsoft.Office.Interop.Word Reference Properties
[H== A
el 2 4 IS

(Mame)

Microsoft.Office.Interop.Word
global
False

seription
Embed Interop Types
Identity Microsoft.Office.Interop.Word
Path Ch\Program Files\Microsoft Visual Studio
Resolved True
Runtime Version vl1.4322
Specific Version True
Strong Mame True
Version 12.0.0.0

For command line fans, you use the /I option instead of /r to link instead of reference:
csc /1:Path\To\PI A . dll MCode. cs

When you link a PIA, the compiler embeds just the bits it needs from the PIA directly into your own
assembly. It only takes the types it needs, and only the members within those types. For example, the
compiler creates these types for the code we've written in this chapter:

nanespace M crosoft.Office.lnterop. Wrd

{
[Com nport, Typeldentifier, ConpilerCenerated, Guid("...")]
public interface _Application
[Com nport, Typeldentifier, ConpilerCGenerated, Guid("...")]
public interface _Docunent
[Com nport, ConpilerCenerated, Typeldentifier, Guid("...")]

public interface Application : _Application

[Coml nport, Guid("..."),
public interface Docunent

Typel dentifier,
_Docunent

Conpi | er Gener at ed]

[Coml nport, Typeldentifier,
public interface Docunents :

Conpi | er Gener at ed,
| Enurrer abl e

Qid("...")]

Please post comments or correcii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

[Typeldentifier("...", "WiSaveFormat"), Conpil erCGener at ed]
publ i c enum WiSaveFor mat

}

Andif youlook inthe _Appl i cati on interface, it looks like this;

[Com nport, Typeldentifier, ConpilerCenerated, Guid("...")]
public interface _Application
{

void _Vtbl Gapl_4();

Docurents Docunents { [...] get; }

void _Vtbhl Gap2_1();

Docurent ActiveDocument { [...] get; }
}

I've omitted the GUIDs and the property attributes here just for the sake of space, but you can always use
Reflector to look at the embedded types. These are just interfaces and enums - there's no implementation.
Whereas in a normal PIA there's a CoCl ass representing the actual implementation (but proxying
everything to the real COM type of course) when the compiler needs to create an instance of a COM type
viaalinked PIA, it creates the instance using the GUID associated with the type. For example, the line
in our Wozd demo which creates an instance of Appl i cat i on istransdated into this code when linking
isenabled™

Application application = (Application) Activator.Createlnstance(
Type. Get TypeFronCLSI D(new Gui d("...")));

Figure 13.X shows how this works at execution time.

“well very nearly. The object initializer makesit slightly more complicated because the compiler uses an extratemporary variable.

Please post comments or correcii ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Figure 13.5. Comparing referencing and linking

Compi(e ==l =2~

Eme ey 2ol
App.cs A1A. L
Qef‘ﬁf‘encinj / \(nkinj
App-exe %ot | App - exe
Exe(,ue.l 0N \(0o w‘c
time f
P dl(v
'“/ ’
wise | CoM.dll mos | CoM.dl

There are various benefits to embedding type libraries:
» Deployment is easier: the original PIA isn't needed, so there's nothing to install

» Versioning issimpler: so long as you only use members from the version of the COM library which is
actually installed, it doesn't matter if you compile against an earlier or later PIA

* Memory usage may be reduced: if you only use a small fraction of the type library, there's no need to
load alarge PIA

» Variants are treated as dynamic types, reducing the amount of casting required

Don't worry about the last point for now - | need to explain dynamic typing before it'll make much sense.
All will be revealed in the next chapter.

Asyou can see, Microsoft hasreally taken COM interoperability very seriously for C# 4, making thewhole
development process |ess painful. Of course the degree of pain has always been variable depending on the
COM library you're developing against - some will benefit more than others from the new features.

Our next feature is entirely separate from COM and indeed named arguments and optional parameters,
but again it just eases development a bit.

Generic variance for interfaces and delegates

Y ou may remember that in chapter 3 | mentioned that the CLR had some support for variance in generic
types, but that C# hadn't exposed that support yet. Well, that's changed with C# 4. C# has gained the syntax

Please post comments or correcﬁ ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

required to declare that interfaces are variant, and the compiler now knows about the possible conversions
for interfaces and delegates.

This isn't a life-changing feature - it's more a case of flattening some speed bumps you may have hit
occasionaly. It doesn't even remove all the bumps; there are various limitations, mostly in the name of
keeping generics absolutely typesafe. However, it's still a nice feature to have up your sleeve.

Just in case you need areminder of what variance is all about, let's start off with arecap of the two basic
formsit comesin.

Types of variance: covariance and contravariance

In essence, varianceis about being able to use an object of onetypeasif it were another, in atypesafe way.

Ultimately, it doesn't matter whether you remember the terminology 1'm going to usein this section. It will
be useful while you're reading the chapter, but you're unlikely to find yourself needing it in conversation.
The concepts are far more important.

There are two types of variance: covariance and contravariance. They're essentially the same idea, but
used in the context of values moving in different directions. Welll start with covariance, which isgenerally
an easier concept to understand.

Covariance: values coming out of an API

Covariance is all about values being returned from an operation back to the caller. Let's imagine
a very, very simple generic interface implementing the factory pattern. It has a single method,
Cr eat el nst ance, which will return an instance of the appropriate type. Here's the code:

interface | Factory<T>

{
}

Now, T only occurs once in the interface (aside from in the name, of course). It's only used as the return
value of amethod. That means it makes sense to be able to treat afactory of a specific type as afactory of
amore general type. To put it in real-world terms, you can think of a pizzafactory as afood factory.

T Createl nstance();

Some people find it easier to think in terms of "bigger" and "smaller" types. Covariance is about being
ableto use a bigger type instead of a smaller one, when that type is only ever being returned by the API.

Contravariance: values going into an API

Contravariance is the opposite way round. It's about values being passed into the API by the caller: the
API isconsuming the valuesinstead of producing them. Let'simagine another smpleinterface - onewhich
can pretty-print a particular document type to the console. Again, there's just one method, thistime called

Print:
interface | PrettyPrinter<T>
{

void Print(T docunent);
}

Thistime T only occurs in the input positions in the intereface, as a parameter. To put thisinto concrete
termsagain, if we had an implementation of | Pr et t yPri nt er <Sour ceCode>, we should be ableto
useitasan| PrettyPri nt er <CShar pCode>.

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Going back to the "bigger" and "smaller" terminology, contravariance is about being able to use asmaller
type instead of abigger one when that type is ever being passed into the API.

Invariance: values going both ways

So if covariance applies when values only come out of an API, and contravariance applies when values
only go into the API, what happens when a value goes both ways? In short: nothing. That type would be
invariant. Here's an interface representing a type which can serialize and deserialize a data type.

i nterface | Storage<T>

{
byte[] Serialize(T value);
T Deserialize(byte[] data);

}

Thistime, if we have aninstancefor aparticular type, we can't treat it as an implementation of theinterface
for either a bigger or a smaller type. If we tried to use it in a covariant way, we might pass in an object
which it can't seridlize - and if we tried to useit in a contravariant way, we might get an unexpected type
out when we deserialized some bytes.

If it helps, you can think invariance as being like r ef parameters: to pass a variable by reference, it has
to be exactly the same type as the parameter itself, because the value goes into the method and effectively
comes out again too.

Using variance in interfaces

C# 4 dlowsyou to specify in the declaration of ageneric interface or delegate that atype parameter can be
used covariantly by using the out maodifier, or contravariantly using the i n modifier. Once the type has
been declared, the relevant types of conversion are available implicitly. Thisworks exactly the same way
in both interfaces and delegates, but I'll show them separately just for clarity. Let's start with interfaces as
they may be alittle bit more familiar - and we've used them already to describe variance.

Variant conversions ar er efer ence conver sions

Any conversion using variance or covariance is a reference conversion, which means that the
same reference is returned after the conversion. It doesn't create a new object, it just treats the
existing reference as if it matched the target type. Thisis the same as casting between reference
typesin ahierarchy: if you cast a St r eamto Menor y St r eam(or use the implicit conversion
the other way) there's till just one object.

The nature of these conversionsintroduces some limitations, aswel'll seelater, but it meansthey're
very efficient, as well as making the behavior easier to understand in terms of object identity.

Thistime we'll use very familiar interfaces to demonstrate the ideas, with some simple user-defined types
for the type arguments.

Expressing variance with "in" and "out"

There are two interfaces that demonstrate variance particularly effectively: | Enuner abl e<T> is
covariant in T, and | Conpar er <T> is contravariant in T. Here are their new type declarationsin .NET
4.0:

public interface |Enunerabl e<out T>
public interface | Conparer<in T>

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

It's easy enough to remember - if a type parameter is only used for output, you can use out; if it's only
used for input, you can use in. The compiler doesn't know whether or not you can remember which form
is called covariance and which is called contravariance!

Unfortunately the framework doesn't contain very many inheritance hierarchies which would help us
demonstrate variance particularly clearly, so I'll fall back to the standard object oriented exampl e of shapes.
The downloadable source code includes the definitions for | Shape, G r cl e and Squar e, which are
fairly obvious. The interface exposes properties for the bounding box of the shape and its area. I'm going
to usetwo listsquite alot in the following examples, so I'll show their construction codejust for reference.

List<Circle> circles = new List<Circle> {
new Circl e(new Point(0, 0), 15),
new Circl e(new Point (10, 5), 20),

1

Li st <Squar e> squares = new Li st<Square> {
new Squar e(new Point(5, 10), 5),
new Squar e(new Point(-10, 0), 2)

b

The only important point really concerns the types of the variables - they're declared asLi st <Ci r cl e>
and Li st <Squar e> rather than Li st <l Shape>. This can often be quite useful - if we wereto access
the list of circles elsewhere, we might want to get at circle-specific members without having to cast, for
example. The actua values involved in the construction code are entirely irrelevant; I'll use the names
ci rcl es and squar es elsewhere to refer to the same lists, but without duplicating the code.

Using interface covariance

To demonstrate covariance, well try to build up alist of shapesfrom alist of circlesand alist of squares.
Listing 13.X shows two different approaches, neither of which would have worked in C# 3.

Example 13.11. Building a list of general shapes from lists of circles and squares
using variance

Li st <I Shape> shapesByAddi ng = new Li st <l Shape>(); @
shapesByAddi ng. AddRange(ci rcl es);
shapesByAddi ng. AddRange(squar es) ;

| Enurrer abl e<| Shape> shapeSequence = circles; ©
Li st <l Shape> shapesByConcat = shapeSequence. Concat (squares). ToLi st ();

00 Addslistsdirectly
00 UsesLINQ for concatenation

Effectively listing 13.X shows covariance in four places, each converting a sequence of circles or
squares into a sequence of general shapes, as far as the type system is converned. First we create a
new Li st <l Shape> and call AddRange to add the circle and square lists to it @. (We could have
passed one of them into the constructor instead, then just called AddRange once.) The parameter for
Li st <T>. AddRange is of type | Enuner abl e<T>, so in this case we're treating each list as an
| Enuner abl e<| Shape> - something which wouldn't have been possible before. AddRange could
have been written as a generic method with its own type parameter, but it wasn't - and in fact doing this
would have made some optimisations hard or impossible.

5 Inthefull source code solution these are exposed as properties on the static Shapes class, but in the snippetsversion I'veincluded the construction
code where it's needed, so you can tweak it easily if you want to.

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

The other way of creating a list which contains the data in two existing sequences is to use
LINQ ©. We can't directly call ci rcl es. Concat (squar es) - we need to convert circles to an
| Enunrer abl e<| Shape> first, so that the relevant Concat (| Enuner abl e<l Shape>) overload
is available. However, this covariant conversion from Li st <Ci r ¢l e> to | Enuner abl e<l Shape>
isn't actually changing the value - just how the compiler treats the value. It isn't building a new sequence,
which istheimportant point. Wethen use covariance againinthecall to Concat , thistimetreating thelist
of squaresasan | Enuner abl e<l Shape>. Covarianceis particularly important in LINQ to Objects, as
so much of the API is expressed in terms of | Enuner abl e<T>.

In C# 3 there would certainly have been other ways to approach the same problem. We could have built
Li st <l Shape> instances instead of Li st <Ci rcl e> and Li st <Squar e> for the original shapes,
we could have used the LINQ Cast operator to convert the specific lists to more general ones; we could
have written our own list class with a generic AddRange method. None of these would have been as
convenient or as efficient as the aternatives offered here, however.

Using interface contravariance

WE'I use the same types to demonstrate contravariance. This time well only use the list of circles, but a
comparer which is ableto compare any two shapes by just comparing the areas. We happen to want to sort
alist of circles, but that poses no problems now, as shown in listing 13.X.

Example 13.12. Sorting circles using a general-purpose comparer and
contravariance

cl ass AreaConparer : | Conparer<| Shape> @

{
public int Conpare(l Shape x, | Shape y)
{
return x. Area. ConpareTo(y. Area);
}
}

| Conpar er <l Shape> ar eaConparer = new AreaConparer();
circles. Sort(areaConparer); ©

00 Compares shapes by area
00 Sortsusing contravariance

There's nothing complicated here. Our Ar eaConpar er class® is about as simple as an implementation
of | Conpar er <T> can be; it doesn't need any state, for example. In a production environment you
would probably want to introduce a static property to access an instance, rather than making users call
the constructor. You'd a'so normally implement some null handling in the Conpar e method, but that's
not necessary for our example.

Once we have an | Conpar er <I Shape>, we're using it to sort a list of circles @. The argument
tocircles. Sort needsto bean | Conpar er <GCi r cl e>, but covariance allows us to convert our
comparer implicitly. It's as simple as that.

Surprise, surprise

If someone had presented you with this code asif it were C# 3, you might have looked at it and
expected it to work. It seems obviousthat it should be able to work, and thisisacommon fegling;
the invariance in C# 2 and 3 often is an unwelcome surprise. The new abilities of C# 4 in this
area aren't introducing new concepts you'd never have thought of before, they'll just allow you
more flexibility.

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

These have both been very simple examples using single-method interfaces, but the same principles apply
for more complex APIs. Of course, the more complex the interface is, the more likely it is that a type
parameter will be used for both input and output, which would make it invariant. We'll come back to some
tricky examples later, but first we'll look at delegates.

Using variance in delegates

Now we've seen how to use variance with interfaces, applying the same knowledge to delegates is easy.
WEe'll use some very familiar types again:

del egate T Func<out T>()
del egate void Action<in T>(T obj)

These arereally equivalent tothel Fact or y<T>and| Pr et t yPri nt er <T> interfaces we started off
with. Using lambda expressions, we can demonstrate both of these very easily, and even chain the two
together. Listing 13.X shows an example using our shape types.

Example 13.13. Using variance with simple Func<T> and Act i on<T> delegates

Func<Squar e> squareFactory = () => new Square(new Point (5, 5), 10);
Func<l Shape> shapeFactory = squareFactory; ©

Act i on<l Shape> shapePrinter = shape => Consol e. WiteLi ne(shape. Area);
Act i on<Squar e> squarePrinter = shapePrinter; @

squar ePrinter(squareFactory()); ©
shapePri nt er (shapeFactory());

00 Converts Func<T> using covariance
80 ConvertsAct i on<T> using contravariance
©® Sanity checking...

Hopefully by now the code will need little explanation. Our "square factory" always produces a square at
the same position, with sides of length 10. Covariance allows usto treat a square factory as ageneral shape
factory @ with no fuss. We then create a general -purpose action which just prints out the area of whatever
shape is given to it. This time we use a contravariant conversion to treat the action as one which can be
applied to any square ®. Finally, we feed the square action with the result of calling the square factory,
and the shape action with the result of calling the shape factory. Both print 100, as we'd expect.

Of course we've only used delegates with a single type parameter here. What happens if we use delegates
or interfaces with multiple type parameters? What about type arguments which are themselves generic
delegate types? Well, it can all get quite complicated...

Complex situations

Before| try to make your head spin, | should provide alittle comfort. Although we'll be doing someweird
and wonderful things, the compiler will stop you from making mistakes. Y ou may still get confused by the
error messages if you've got several type parameters used in funky ways, but once you've got it compiling
you should be safe’. Complexity is possiblein both the delegate and interface forms of variance, although
the delegate version is usually more concise to work with. Let's start off with arelatively simple example.

6Assumi ng the bug around Del egate. Combine [http://stackoverflow.com/questions/1120688] isfixed, of course. Thisfootnoteisawarningto MEAP
readers for 4.0 beta 1, as well as areminder for me to check it out later on and revise the text appropriately.

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://stackoverflow.com/questions/1120688
http://stackoverflow.com/questions/1120688
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Simultaneous covariance and contravariance with
Converter<Tl nput, TQut put>

The Converter<Tlnput, TQut put> delegate has been around since .NET 2.0. It's effectively
Func<T, TResult> but with aclearer expected purpose. Listing 13.X shows a few combinations of
variance using a simple converter.

Example 13.14. Demonstrating covariance and contravariance with a single type

Converter<object, string> converter = x => x.ToString(); ©
Converter<string, string> contravariance = converter;
Converter <obj ect, object> covariance = converter;
Converter<string, object> both = converter; ©

00 Convertsobjectsto strings
00 Converts strings to objects

Listing 13.X shows the variance conversions available on a delegate of type Convert er <obj ect
st ri ng>: adelegate which takes any object and produces a string. First weimplement the del egate using
asimplelambdaexpression which cals ToSt r i ng @. Asit happens, we never actually call the delegate,
so we could have just used a null reference, but | think it's easier to think about variance if you can pin
down a concrete action which would happen if you called it.

The next two lines arerelatively straightforward, so long as you only concentrate on one type parameter at
atime. The Tl nput type parameter isonly used an ininput position, so it makes sense that you can useit
contravariantly, using aConvert er <obj ect, string>asaConverter<string, string>.
In other words, if you can pass any object reference into the converter, you can certainly hand it a string
reference. Likewise the TOut put type parameter isonly used in an output position (the return type) so it
makes sense to use that covariantly: if the converter always returns a string reference, you can safely use
it where you only need to guarantee that it will return an object reference.

Thefina line @ isjust alogical extension of thisidea. It uses both contravariance and covariance in the
same conversion, to end up with a converter which only accepts strings and only declaresthat it will return
an object reference. Note that you can't convert this back to the origina conversion type without a cast -
we've essentially relaxed the guarantees at every point, and you can't tighten them up again implicitly.

Let's up the ante alittle, and see just how complex things can get if you try hard enough.

Higher order function insanity

Theredly weird stuff starts happening when you combine variant types together. I'm not going to go into
alot of detail here - | just want you to appreciate the potential for complexity. Let's ook at four delegate
declarations:

del egat e Func<T> FuncFunc<out T>();

del egate void ActionAction<out T>(Action<T> action);
del egate void ActionFunc<in T>(Func<T> function);
del egate Action<T> FuncAction<in T>();

Each of these declarations is equivalent to "nesting”" one of the standard delegates inside another. For
example, FuncAct i on<T> isequivalent to Func<Act i on<T>>. Both represent afunction which will
return an Act i on which can be passed a T. But should this be covariant or contravariant? Well, the
function is going to return something to do with T, so it sounds covariant - but that "something" then

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

takes a T so it sounds contravariant. The answer is that the delegate is contravariant in T, which is why
it's declared with thei n modifier.

As a quick rule of thumb, you can think of nested contravariance as reversing the previous
variance, whereas covariance doesn't - so while Acti on<Acti on<T>> is covariant in T,
Act i on<Acti on<Act i on<T>>> iscontravariant. Compare that with Func <T> variance, where you
can write Func<Func<Func<. .. Func<T>. .. >>> with as many levels of nesting as you like and
still get covariance.

Just to give a similar example using interfaces, let's imagine we have something that can compare
sequences. If it can compare two sequences of arbitrary objects, it can certainly compare two sequences
of strings - but not vice versa. Converting this to code (without implementing the interface!) we can see
thisas:

| Conpar er <l Enuner abl e<obj ect >> obj ect sConpar er
| Conpar er <l Enuner abl e<stri ng>> stringsConpar er

obj ect sConparer;

Thisconversionislegal: | Enumer abl e<st ri ng>isa"smaller" typethan| Enurrer abl e<obj ect >
due to the covariance of | Enumer abl e<T>; the contravariance of | Conpar er <T> then alows the
conversion from a comparer of "bigger" type to a comparer of a"smaller" type.

Of course we've only used delegates and interfaces with a single type parameter in this section - it can
all apply to multiple type parameters too. Don't worry though: you're unlikely to need this sort of brain-
busting variance very often, and when you do you've got the compiler to help you. | realy just wanted
to make you aware of the possibilities.

On theflip side, there are some things you may expect to be able to do, but which aren't supported.

Limitations and notes

The variance support provided by C# 4 is mostly limited by what's provided by the CLR. It would be hard
for the language to support conversions which were prohibited by the underlying platform. This can lead
to afew surprises.

No variance for type parameters in classes

Only interfaces and delegates can have variant type parameters. Even if you have a class which only uses
the type parameter for input (or only uses it for output) you cannot specify the i n or out modifiers.
For example Conpar er <T>, the common implementation of | Conpar er <T>, isinvariant - there's no
conversion from Conpar er <l Shape> to Conpar er <Ci r cl e>.

Aside from any implementation difficulties which this might have incurred, 1'd say it makes a certain
amount of sense conceptually. Interfaces represent a way of looking at an object from a particular
perspective, whereas classes are more rooted in the object's actual type. This argument is weakened
somewhat by inheritance letting you treat an object as an instance of any of the classes in its inheritance
hierarchy, admittedly. Either way, the CLR doesn't allow it.

Variance only supports reference conversions

You can't use variance between two arbitrary type arguments just because there's a conversion between
them. It hasto be areference conversion. Basically that limitsit to conversionswhich operate on reference
typesand which don't affect thebinary representation of thereference. Thisisso that the CLR canknow that
operationswill be type safe without having to inject any actual conversion code anywhere. As| mentioned
insection 13.3.2, variant conversions are themsel ves reference conversions, so therewouldn't be anywhere
for the extra code to go anyway.

Please post comments or correcﬁ'?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

In particular, this restriction prohibits any conversions of value types and user-defined conversions. For
example, the following conversions are all invalid:

* | Enunrer abl e<i nt >to| Enuner abl e<obj ect > - boxing conversion
* | Enuner abl e<short >tol Enuner abl e<i nt > - value type conversion
e | Enunrer abl e<Xm Attri but e>tol Enuner abl e<st ri ng> - user-defined conversion

User-defined conversions aren't likely to be a problem as they're relatively rare, but you may find the
restriction around value types a pain.

"out" parameters aren't output positions

This one came as a surprise to me, although it makes sense in retrospect. Consider a delegate with the
following definition:

del egate bool TryParser<T>(string input, out T val ue)

Y ou might expect that you could make T covariant - after all, it's only used in an output position... or isit?
The CLR doesn't really know about out parameters. As far asit's concerned, they're just r ef parameters
withan[Qut] attribute applied to them. C# attaches special meaning to the attribute in terms of definite
assignment, but the CLR doesn't. Now r ef parameters mean data going both ways, so if you have ar ef
parameter of type T, that means T isinvariant.

Delegates and interfaces using out parameters are quite rare, so this may well never affect you anyway,
but it's worth knowing about just in case.

Variance has to be explicit

When | introduced the syntax for expressing variance - applying the i n or out modifiers to type
parameters - you may have wondered why we needed to bother at all. The compiler is able to check that
whatever variance you try to apply isvalid - so why doesn't it just apply it automatically?

It could do that, but I'm glad it doesn't. Normally you can add methods to an interface and only affect
implementations rather than callers. However, if you've declared that a type parameter is variant and you
then want to add amethod which breaksthat variance, all the callersare affected too. | can seethis causing
alot of confusion. Variance requires some thought about what you might want to do in the future, and
forcing devel opersto explicitly include the modifier encourages them to plan carefully before committing
to variance.

There'sless of an argument for this explicit nature when it comes to delegates: any change to the signature
that would affect the variance would probably break existing uses anyway. However, there's alot to be
said for consistency - it would feel quite odd if you had to specify the variance in interfaces but not in
delegate declarations.

Beware of breaking changes

Whenever new conversions become available there's the risk of your current code breaking. For instance,
if you rely on the results of the i s or as operators not alowing for variance, your code will behave
differently when running under .NET 4.0. Likewise there are cases where overload resolution will choose
adifferent method due to there being more applicable options now. Thisis another reason for variance to
be explicitly specfied: it reduces the risk of breaking your code.

These situations should be quite rare, however, and the benefit from variance is more significant than the
potential drawbacks. Y ou do have unit tests to catch subtle changes, right? In all seriousness, the C# team

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

takes code breakage very serioudy, but sometimes there's no way of introducing a new feature without
breaking code.’

No caller-specified or partial variance

Thisisreally amatter of interest and comparison rather than anything else, but it's worth noting that C#'s
variance is very different to Java's system. Java's generic variance manages to be extremely flexible by
approaching it from the other side: instead of the type itself declaring the variance, code using the type
can express the variance it needs.

Want to know more?

Thisbook isn't about Java generics, but if thislittle teaser has piqued your interest, you may want to
check out Angelika Langer's Java Generics FAQ [http://www.angelikalanger.com/GenericsFAQ/
JavaGenericsFAQ.html]. Be warned: it's a huge and complex topic!

For example, the Li st <T> interface in Java is roughly equivalent to | Li st <T> in C#. It contains
methods to both add items and fetch them, so clearly in C# it's invariant - but in Java you decorate the
type at the calling code to explain what variance you want. The compiler then stops you from using the
members which go against that variance. For example, the following code would be perfectly valid:

Li st <Shape> shapesl = new ArraylLi st <Shape>();
Li st <? super Square> squares = shapesl; ©
squar es. add(new Squar e(10, 10, 20, 20));

List<Circle> circles = new ArrayList<Crcle>();
circles.add(new Circle(10, 10, 20));

Li st <? extends Shape> shapes2 = circles; ©
Shape shape = shapes2. get(0);

© Declaration using contravariance
® Declaration using covariance

For the most part, | prefer generics in C# to Java, and type erasure in particular can be a pain in many
cases. However, | find this treatment of variance really interesting. | don't expect to see anything similar
in future versions of C# - so think carefully about how you can split your interfacesto allow for flexibility,
but without introducing more complexity than is really warranted.

Summary

This has been a bit of a"pick and mix" chapter, with three distinct areas. Having said that, COM greatly
benefits from named arguments and optional parameters, so there's some overlap between them.

| suspect it will take a while for C# developers to get the hang of how best to use the new features for
parameters and arguments. Overloading still provides extra portability for languages which don't support
optional parameters, and named arguments may look strange in some situations until you get used to
them. The benefits can be significant though, as | demonstrated with the example of building instances of
immutable types. You'll need to take some care when assigning default values to optional parameters, but
| hope that you'll find the suggestion of using null as a "default default value" to be a useful and flexible
one which effectively side-steps some of the limitations and pitfalls you might otherwise encounter.

In .NET 4.0b1 there's no warni ng given for behavioral changes, as there was when method group conversion variance was introduced in C# 2.
I'm hoping this will change before V S2010 ships.

Please post comments or correcﬁ' ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.manning-sandbox.com/forum.jspa?forumID=569

Minor changes to simplify code

Working with COM has come on along way for C# 4. | still prefer to use purely managed solutions where
they're available, but at least the code calling into COM is alot more readable now, as well as having a
better deployment story. We're not quite finished with the COM story, asthe dynamic typing featureswelll
see in the next chapter impact on COM too, but even without taking that into account we've seen a short
sample become alot more pleasant just by applying afew simple steps.

Finally we examined generic variance. Sometimes you may end up using variance without even knowing
it, and | think most developers are more likely to use the variance declared in the framework interfaces
and delegatesrather than creating their own ones. | apologiseif it occasionally became abit tricky - but it's
good to know just what'sout there. If it'sany consolation to you, C#team member Eric Lippert has publicly
acknowledged [http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-
c-part-five-higher-order-functions-hurt-my-brain.aspx] that higher order functions make even his head
hurt, so we're in good company. Eric's post is one in a long series [http://blogs.msdn.com/ericlippert/
archive/tags/Covariancet+and+Contravariance/default.aspx] about variance, which is as much as anything
a dialogue about the design decisions involved. If you haven't had enough of variance by now, it's an
excellent read.

This chapter dealt with relatively small changes to C#. Chapter 14 deals with something far more
fundamental: the ability to use C# in a dynamic manner.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/2007/10/24/covariance-and-contravariance-in-c-part-five-higher-order-functions-hurt-my-brain.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://blogs.msdn.com/ericlippert/archive/tags/Covariance+and+Contravariance/default.aspx
http://www.manning-sandbox.com/forum.jspa?forumID=569

Chapter 14. Dynamic binding in a static
language

C# has aways been a statically typed language, with no exceptions. There have been a few areas where
the compiler has looked for particular names rather than interfaces, such as finding appropriate Add
methods for collection initializers, but there's been nothing truly dynamic in the language beyond normal
polymorphism. That changeswith C# 4 - at least partially. The simplest way of explaining it isthat there's
anew static type called dynami ¢, which you can try to do pretty much anything with at compile time,
and let the framework sort it out at execution time. Of course there's rather more to it than that, but that's
the executive summary.

Giventhat C#isstill astatically typed language everywhere that you're not usingdynami ¢, | don't expect
fans of dynamic programming to suddenly become C# advocates. That's not the point of the feature: it'sall
about interoperability. As dynamic languages such as IronRuby and IronPython join the NET ecosystem,
it would be crazy not to be able to call into C# code from IronPython and vice versa. Likewise developing
against weakly-typed COM APIs has always been awkward in C#, with an abundance of casts cluttering
the code. We've dready seen some improvements in C# 4 when it comes to working with COM, and
dynamic typing is the final new feature of C# 4.

Oneword of warning though - and I'll be repeating thisthroughout the chapter - it'sworth being careful with
dynamic typing. It's certainly fun to explore, and it's been very well implemented, but | still recommend
that you stay away from it in production code unless there's a clear benefit to using it. Dynamic code will
be slower than static code (even though the framework does a very good job of optimising it as far as it
can) but more importantly, you lose alot of compile-time safety. While unit testing will help you find alot
of the mistakes that can crop up when the compiler isn't able to help you much, | still prefer theimmediate
feedback of the compiler telling me if I'm trying to use a method which doesn't exist or can't be called
with a given set of arguments.

Dynamic languages certainly have their place, but if you're really looking to write large chunks of your
code dynamically, | suggest you use a language where that's the normal style instead of the exception.
Now that you can easily call into dynamic languages from C#, you can fairly easily separate out the parts
of your code which benefit from alargely dynamic style from those where static typing works better.

| don't want to put too much of a damper on things though: where dynamic typing is useful, it can be a
lot simpler than the alternatives. In this chapter we'll take alook at the basic rules of dynamic typing in
C# 4, and then dive into some examples: using COM dynamically, calling into some IronPython code,
and making reflection a lot simpler. You can do al of this without knowing details, but after we've got
the flavor of dynamic typing, we'll look at what's going on under the hood. In particular, we'll discuss the
Dynamic Language Runtime and what the C# compiler does when it encounters dynamic code. Finally,
welll see how you can make your own types respond dynamically to methods calls, property accesses and
the like. First though, let's take a step back.

What? When? Why? How?

Before we get to any code showing off this new feature of C# 4, it's worth getting a better handle on why
it was introduced in the first place. | don't know any other languages which have gone from being purely
static to partialy dynamic; thisis a significant step in C#'s evolution, whether you make use of it often
or only occasionally.

WEell start off by taking afresh look at what "dynamic" and "static" mean, consider some of the major use
cases for dynamic typing in C#, and lead into how it'simplemented in C# 4.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

What is dynamic typing?

In chapter 2, | discussed the characteristics of a type system and described how C# was a statically
typed language in versions 1-3. The compiler knows the type of expressions in the code, and knows the
members available on any type. It applies afairly complex set of rules to determine which exact member
should be used. This includes overload resolution; the only choice which is left until later isto pick the
implementation of virtual methods depending on the execution time type of the object. The process of
working out which member to useiscalled binding, and in astatically typed language it occurs at compile
time.

In adynamically typed language, all of this binding occurs at execution time. A compiler is ableto check
that the code is syntactically correct, but it can't check that the methods you call and the properties you
access are actually present. It'sabit like aword processor with no dictionary: it may be able to check your
punctuation, but not your spelling. (If you'reto have any sort of confidencein your code, you really need a
good set of unit tests.) Some dynamic languages are interpreted to start with, with no compiler involved at
all. Others provide an interpreter as well as a compiler, to allow rapid development with a REPL: a read-
evaluate-print loop.t

It's worth noting that the new dynamic features of C# 4 do not include interpreting C# source code at
execution time: there's no direct equivalent of the JavaScript eval function, for example. To execute code
based on data in strings, you need to use either the CodeDOM API (and CShar pCodePr ovi der in
particular) or simple reflection to invoke individual members.

Of course, the same kind of work has to be done at some point in time no matter what approach you're
taking. By asking the compiler to do more work before execution, static systems usually perform better
than dynamic ones. Given the downsides we've mentioned so far, you might be wondering why anyone
would want to bother with dynamic typing in the first place.

When is dynamic typing useful, and why?

Dynamic typing has two important pointsin its favor. First, if you know the name of a member you want
to call, the arguments you want to call it with, and the object you want to call it on, that'sall you need. That
may sound like all the information you could have anyway, but there's more that the C# compiler would
normally want to know. Crucially, in order to identify the member exactly (modulo overriding) it would
need to know the type of the object you're calling it on, and the types of the arguments. Sometimes you
just don't know those types at compile-time, even though you do know enough to be sure that the member
will be present and correct when the code actually runs.

For example, if you know that the object you're using has a Length property you want to use, it doesn't
matter whether it'saSt ri ng,aSt ri ngBui | der,anArray, aSt r eam or any of the other typeswith
that property. You don't need that property to be defined by some common base class or interface - which
can be useful if thereisn't such atype. Thisis called duck typing, from the notion that "if it walks like a
duck and quacks like a duck, | would call it a duck."? Even when there is a type which offers everything
you need, it can sometimes be an irritation to tell the compiler exactly which type you're talking abouit.
Thisis particularly relevant when using Microsoft Office APIsviaCOM. Many method and propertiesare
declare to just return VARI ANT, which means that C# code using these callsis often peppered with casts.
Duck typing allows you to omit all of these casts, so long as you're confident about what you're doing.

The second important feature of dynamic typing is the ability of objects and types to respond to a call by
analysing the name and arguments provided to it. It can behave as if the member had been declared by

1Strictly speaking, REPL isn't solely associated with dynamic languages. Some statically typed languages have "interpreters’ too which actually
compile on the fly. Notably, F# comes with a tool called F# Interactive which does exactly this. However, interpreters are much more common
for dynamic languages than static ones.

°The Wiki pedia article on duck typing [http://en.wikipedia.org/wiki/Duck_typing] has more information about the history of the term.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

the type in the normal way, even if the member names couldn't possibly be known until execution time.
For example, consider the following call:

books. Fi ndByAut hor ("Joshua Bl och")

Normally this would require the Fi ndBy Aut hor member to be declared by the designer of the type
involved. In adynamic datalayer there can be asingle smart piece of code which works out that when make
acall likethat and there's an Author property in the associated data (whether that's from a database, XML
document, hard-coded data or anything else) then you probably want to do a query using the specified
argument as the author to find. In some ways thisisjust a more complex way of writing something like:

books. Fi nd(" Aut hor", "Joshua Bl och")

However, thefirst snippet feels more appropriate: the calling code knowsthe " Author" part statically, even
if the receiving code doesn't. This approach can be used to mimic domain specific languages (DSLS) in
some situations. It can also be used to create anatural API for exploring data structures such as XML trees.

Another feature of programming with dynamic languages tends to be an experimental style of
programming using an appropriate interpreter, as | mentioned earlier. This isn't directly relevant to C#
4, but the fact that C# 4 can interoperate richly with dynamic languages running on the DLR (Dynamic
Language Runtime) meansthat if you're dealing with aproblem which would benefit from this style, you'll
be able to use the results directly from C# instead of having to port it to C# afterwards.

WEe'll look at these scenarios in more depth when we've learned the basics of C# 4's dynamic abilities, so
we can see more concrete examples. It's worth briefly point out that if these benefits don't apply to you,
dynamic typing is more likely to be a hindrance than a help. Many devel opers won't need to use dynamic
typing very much in their day-to-day coding, and even when it isrequired it may well only be for a small
part of the code. Just like any feature, it can be overused; in my view it's usually worth thinking carefully
about whether any alternative designs would allow static typing to solve the same problem elegantly.
However, I'm biased due to having a background in statically typed languages - it's worth reading books
on dynamically typed languages such as Python and Ruby to see awider variety of benefits than the ones
| present in this chapter.

Y ou're probably getting anxious to see some real code by now, so well just take a moment to get a very
brief overview of what's going on, and then dive into some examples.

How does C# 4 provide dynamic typing?

C# 4 introduces a new type called dynami c.The compiler treats this type differently to any normal
CLR type3. Any expression that uses a dynamic value causes the compiler to change its behavior in a
radical way. Instead of trying to work out exactly what the code means, binding each member access
appropriately, performing overload resolution and so on, the compiler just parses the source code to work
out what kind of operation you're trying to perform, its name, what arguments are involved and any other
relevant information. Instead of emitting IL to executethe codedirectly, the compiler generates codewhich
callsinto the Dynamic Language Runtime with all the required information. The rest of the work is then
performed at execution time.

In many ways this is similar to the differences between the code generated when converting a lambda
expression to an expression tree instead a delegate type. We'll seelater that expression trees are extremely
important inthe DLR, and in many casesthe C# compiler will use expression treesto describethe code. (In
the simplest cases where there's nothing but a member invocation, there's no need for an expression tree.)

8In fact, dynami ¢ doesn't represent a gpecific CLR type. It's redly just System Object in conjunction with
System Dynami c. Dynami cAttri but e. Well look at thisin more detail in section 14.4, but for the moment you can probably pretend it's
ared type.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

When the DLR comes to hind the relevant call at execution time, it goes through a complicated process
to determine what should happen. This not only has to take in the normal C# rules for method overloads
and so on, but also the possibility that the object itself will want to be part of the decision, aswe saw in
our Fi ndByAut hor example earlier.

Most of this happens under the hood though - the source code you write to use dynamic typing can be
really smple.

The 5 minute guide to dynam ¢

Do you remember how many new bits of syntax were involved when you learned about LINQ? Well
dynamic typing isjust the opposite: there's asingle contextual keyword, dynarmi ¢, which you can usein
most places that you'd use atype name. That's all the new syntax that's required, and the main rules about
dynamic are easily expressed, if you don't mind alittle bit of hand-waving to start with:

* Animplicit conversion exists from any CLR typeto dynami ¢
* Animplicit conversion exists from dynami c to any CLR type
» Any expression which uses avaue of type dynani c¢ isevauated dynamically

» Thestatic type of any dynamically-evaluated expression isdeemed to bedynani ¢ (with the exception
of explicit conversions and constructor calls - in both those cases the compiler knows the type of the
result, even if it doesn't know exactly how it's going to get there)

The detailed rules are more complicated, as we'll see in section 14.4, but for the moment let's stick with
the simplified version above. Listing 14.1 provides a complete example demonstrating each point.

Example 14.1. Using dynami c toiterate through alist, concatenating strings

dynamc items = new List<string> { "First", "Second", Third" };
dynam ¢ val ueToAdd = " (suffix)";

foreach (dynamic itemin itens)

{

string result = item + val ueToAdd,;
Consol e. WitelLine(result);

}

The result of listing 14.1 shouldn't come as much surprise: it writes out "First (suffix)" and so on. Of
course we could easily have specified the types of thei t enrs and val ueToAdd variables explicitly in
this case, and it would all have worked in the normal way - but imagine that the variables are getting their
values from other data sources instead of having them hard-coded. What would happen if we wanted to
add an integer instead of a string? Listing 14.2 isjust a slight variation, but note that we haven't changed
the declaration of val ueToAdd; just the assignment expression.

Example 14.2. Adding integersto strings dynamically

dynamc itens = new List<string> { "First", "Second", Third" };
dynam c val ueToAdd = 2;
foreach (dynamic itemin itens)
{
string result = item + val ueToAdd; ©
Consol e. WitelLine(result);

}

© string + int concatenation

Please post comments or correcigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Thistimethefirst result is"First2" - which is hopefully what you'd expect. Using static typing, we'd have
to have explicitly change the declaration of val ueToAdd from st ri ng toi nt . The addition operator
is still building a string though. What if we changed the items to be integers as well? Let's try that one
simple change, as shown in listing 14.3.

Example 14.3. Adding integersto integers

dynamic itens = new List<int> { 1, 2, 3 };
dynam ¢ val ueToAdd = 2;
foreach (dynamic itemin itens)
{
string result = item + val ueToAdd; ©
Consol e. WitelLine(result);

}
© int+int addition

Disaster! We're still trying to convert the result of the addition to a string. The only conversions which
are alowed are the same ones which are present in C# normally, so there's no conversion fromi nt to
st ri ng. Theresult is an exception (at execution time, of course):

Unhandl ed Excepti on:
M crosoft. CShar p. Runt i meBi nder . Runti meBi nder Excepti on:
Cannot inmplicitly convert type 'int' to 'string'
at CallSite. Target(Cl osure , CallSite , Object)
at System Dynami c. Updat eDel egat es. Updat eAndExecut el[TO, TRet]
(CallSite site, TO argO)

Unless you're perfect, you're likely to encounter Runt i meBi nder Except i on quite a lot when you
start using dynamic typing. It's the new Nul | Poi nt er Excepti on, in some ways. you're bound to
come across it, but with any luck it'll be in the context of unit tests rather than customer bug reports.
Anyway, we can fix it by changing the type of resul t to dynam c, so that the conversion isn't
required anyway. Come to think of it, why bother with the result variable in the first place? Let's just call
Consol e. Wi teLi ne immediately. Listing 14.4 shows the changes.

Example 14.4. Adding integersto integer - but without the exception

dynamc items = new List<int> { 1, 2, 3 };
dynam ¢ val ueToAdd = 2;
foreach (dynamic itemin itens)

{
}

© Cdlsoverload withi nt argument

Consol e. WiteLine(item + val ueToAdd); ©

Now this prints 3, 4, 5 as we'd expect. Changing the input data would now not only change the operator
which was chosen at execution time - it would also change which overload of Consol e. Wit eLi ne
was called. With the original data, it would call Consol e. Wit eLi ne(stri ng); with the updated
variablesif would call Consol e. Wi t eLi ne(i nt) . Thedatacould even contain amixture of values,
making the exact call change on every iteration!

You can usedynami c asthe declared typefor fields, parameters and return typesaswell. Thisisin stark
contrast to the use of var , which isrestricted to local variables.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Differences between var and dynamic

In many of the examples so far, when we've really known the types at compile-time, we could
have used var to declare the variables. At first glance, the two features ook very similar. In both
casesit looks like we're declaring a variable without specifying itstype - but using dynami ¢ we're
explicitly setting the type to be dynamic. Y ou can only use var when the compiler is able to infer
the type you mean statically, and the type system really does remain entirely static.

The compiler isvery smart about the information it records, and the code which then uses that information
at execution timeis clever too: basically it'sa"mini C# compiler” in its own right. It uses whatever static
type information was known at compile time to make the code behave as intuitively as possible. Other
than afew details of what you can't do with dynamic typing, that's all you really need to know in order to
start using it in your own code. Later on we'll come back to those restrictions, as well as details of what
the compiler is actually doing - but first let's see dynamic typing doing something genuinely useful.

Examples of dynamic typing

Dynamic typing is alittle bit like unsafe code, or interoperability with native code using P/Invoke. Many
developerswill have no need for it, or use it once in ablue moon. For other developers - particularly those
dealing with Microsoft Office - it will be give a huge productivity boost, either by making their existing
code ssimpler or by allowing radically different approaches to their problems.

This section is not meant to be exhaustive by any means, and | look forward to seeing innovative uses
of dynamic typing from C# in the coming years. Will unit testing and mocking take a big step forward
with new frameworks? Will we see dynamic web service clients, accessing RESTful serviceswith simple
member access? I'm not going to make any predictions, other than that it'll be an interesting area to keep
can eye on.

WEe're going to look at three examples here: working with Excel, calling into Python, and using normal
managed .NET typesin amore flexible way.

COM in general, and Microsoft Office in particular

We'veaready seen most of the new features C# 4 bringsto COM interop, but there was one that we couldn't
cover in chapter 13 because we hadn't seen dynamic typing yet. If you choose to embed the interop types
you're using into the assembly (by using the /link compiler switch, or setting the "Embed Interop Types"
property to True) then anything in the API which would otherwise be declared as obj ect is changed to
dynam c. Thismakesit much easier to work with somewhat weakly typed APIs such as those exposed
by Office. (Although the object model in Officeisreasonably strong initself, many properties are exposed
as variants as they can deal with numbers, strings dates and so on.)

Again, I'll just show you just a short example here - one which does even less than the Word example in
chapter 13. The dynamic aspect is very easy to understand from just this one example - although there'sa
quirk you might not expect. We're going to set the first ten cells of the top row of a new Excel worksheet
to the numbers 1 to 20. Listing 14.X shows an initial, statically typed piece of code to achieve this.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.5. Setting a range of values with static typing

var app = Application { Visible = true }; ©

app. Wor kbooks. Add() ;

Wor ksheet wor ksheet = (Wirksheet) app. ActiveSheet;

Range start = (Range) worksheet.Cells[1, 1]; ©

Range end = (Range) worksheet.Cells[1, 20];

wor ksheet . get _Range(start, end).Value2 = Enunerabl e. Range(1, 20) ©
. ToArray();

00 Open Excel with an active worksheet
® Determine start and end cells
©® Fill therangewith [1, 20]

This time weve imported the M crosoft. O fice. |l nterop. Excel namespace - so the
Appl i cat i ontyperefersto Excel, not Word. We'restill using the new features of C# 4, by not specifying
an argument for the optional parameter in the Wor kbooks. Add() call while we're setting things up ©.
When Excel isup and running, we work out the start and end cells of our overall range. In this case they're
both on the same row, but we could have created a rectangular range instead by selecting two opposite
corners. We could have created the range in a single call to get _Range(" Al: T1") but | personally
find it easier to work with numbers consistently. Cell names like B3 are great for humans, but harder to
usein aprogram.

Oncewevegot therange, we set all thevaluesin it by setting the Value2 property with an array of integers.
We can use a one-dimensional array as we're only setting a single row; to set a range spanning multiple
rows we'd need to use a rectangular array. This all works, but we've had to use three casts in six lines
of code. The indexer we call via Cells and the ActiveSheet property are both declared to return obj ect
normally. (Various parameters are also declared astype obj ect , but that doesn't matter as much because
there's an implicit conversion from any type to obj ect - it's only coming the other way that requires
the cast.)

With the Primary Interop Assembly set to embed the required types into our own binary, al of these
examples become dynami c. With theimplicit conversion from dynani c to any other type, we can just
remove al the casts, as shown in listing 14.X.

Example 14.6. Using implicit conversionsfrom dynam c in Excel

var app = new Application { Visible = true };

app. Wr kbooks. Add() ;

Wor ksheet wor ksheet = app. Acti veSheet;

Range start = worksheet.Cells[1, 1];

Range end = worksheet. Cel |l s[1, 20];

wor ksheet . get _Range(start, end).Val ue2 = Enunerabl e. Range(1, 20)
. ToArray();

Thisreally isexactly the same code aslisting 14.X but without the casts. However, it'sworth noting that the
conversions are still checked at execution time. If we changed the declaration of start to be Wor ksheet ,
the conversion would fail and an exception would be thrown. Of course, you don't have to perform the
conversion. You could just leave everything asdynani c:

var app = new Application { Visible = true };

app. Wr kbooks. Add() ;

dynam c wor ksheet = app. Acti veSheet;

dynam c start = worksheet.Cells[1, 1];

dynam c end = worksheet. Cells[1, 20];

wor ksheet . get _Range(start, end).Value2 = Enunerabl e. Range(1, 20)

Please post comments or correcé?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

. ToArray();

This approach has two problems. First, you don't get any IntelliSense on wor ksheet , st art and end
variables, because the compiler doesn't know the real types involved. More importantly, the code throws
an exception on the last line: the COM dynamic binder fails on the call to get _Range. Thisiseasy to
fix by changing the method call to Range instead, as shown in listing 14.X - but the important point to
take away is that code which works with static typing doesn't always work with dynamic typing.

Example 14.7. Using dynamni ¢ excessively, requiring a changein method name

var app = new Application { Visible = true };

app. Wr kbooks. Add() ;

dynam ¢ wor ksheet = app. Acti veSheet;

dynam c start = worksheet.Cells[1, 1];

dynam ¢ end = worksheet. Cells[1, 20];

wor ksheet . Range(start, end).Value2 = Enunerabl e. Range(1, 20)
. ToArray();

For thisreason, I'd encourage you to use static typing asfar as possible even when using COM. Theimplicit
conversion of dynamic is very useful in terms of removing casts, but taking it too far is dangerous - as
well asinconvenient due to losing Intelli Sense.

From the relatively old technology of COM, we're going to jump to interoperating with something much
more recent: IronPython.

Dynamic languages such as IronPython

In this section I'm only going to use IronPython as an example, but of course that's not the only dynamic
language available for the DLR. It's arguably the most mature, but there are already alternatives such as
IronRuby and IronScheme. One of the stated aims of the DLR isto make it easier for budding language
designersto create aworking language which has good interoperability with other DLR languages and the
traditional .NET languages such as C#, as well as access to the huge .NET framework libraries.

Why would | want to use IronPython from C#?

There are many reasons one might want to interoperate with adynamic language, just asit's been beneficial
to interoperate with other managed languages from .NET's infancy. It's clearly useful for a VB developer
to be ableto useaclasslibrary written in C# and vice versa - so why would the same not be true of dynamic
languages? | asked Michael Foord, the author of Iron Python in Action, to come up with afew ideas for
using lronPython within a C# application. Here's hislist:

e User scripting

» Writing alayer of your application in IronPython

 Using Python as a configuration language

» Using Python as arules engine with rules stored as text (even in a database)
» Using aPython library such as feedparser [http://www.feedparser.org/]

* Putting aliveinterpreter into your application for debugging

If you're till skeptical, you might want to consider that embedding a scripting language in a mainstream
application isfar from uncommon - indeed, Sid Meye's Civilization IV computer game4is scriptable with

4or way of life, depending on how you view the world and your level of addiction to playing the game.

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.feedparser.org/
http://www.feedparser.org/
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Python. This isn't just an afterthought for modifications, either - a lot of the core gameplay is written
in Python: once they'd built the engine the developers found it to be a more powerful development
environment than they'd originally imagined.

For this chapter, I'm going to pick the single example of using Python as a configuration language. Just as
with the COM example, I'm going to keep it very simple, but hopefully it'll provide enough of a starting
point for you to experiment more with it if you're interested.

Getting started: embedding "hello, world"

MEAP note: thisis based on Visual Studio 4.0 beta 1 and IronPython 2.6-with-.NET 4.0 CTP 1. It may
well change in terms of namespaces etc, which iswhy | haven't been precise yet. Thiswill be fixed before
publication!

There are various types available if you want to host or embed another language within a C# application,
depending on the level of flexibility and control you want to achieve. We're only going to use
Scri pt Engi ne and Scri pt Scope, because our requirements are quite primitive. In our example we
know we're aways going to use Python, so we can ask the IronPython framework to create a ScriptEngine
directly; in more genera situations you can use a Scr i pt Runt i ne to pick language implementations
dynamically by name. More demanding scenarios may require you to work with Scri pt Host and
Scri pt Sour ce, aswell as using more of the features of the other types too.

Not content with merely printing "hello, world" once, our initial example will do so twice, first by using
text passed directly into the engine as a string, and then by loading afile called Hel | oWor | d. py.

Example 14.8. Printing " hello, world" twice using Python embedded in C#

Scri pt Engi ne engi ne = Pyt hon. Creat eEngi ne();
engi ne. Execute("print 'hello, world ");
engi ne. Execut eFi | e("Hel | oWor I d. py");

You may find this listing either quite dull or very exciting, both for the same reason. It's simple to
understand, requiring very little explanation. It does very little, in terms of actual output... and yet the fact
that it is so easy to embed Python code into C# is a cause for celebration. True, our level of interaction is
somewhat minimal so far - but it really couldn't be much easier than this.

Note

ThePythonfilecontainsasingleline:pri nt "hel | o, worl d" - notethedoublequotesinthe
file compared with the single quotes in the string literal we passed into engi ne. Execut e() .
Either would have been fine in either source. Python has various string literal representations,
including triple single quotes or triple double quotes for multi-line literals. | only mention this
because it's very useful not to have to escape double quotes any time you want to put Python
code into a C# string literal .

The next typewe need isScr i pt Scope, which will be crucial to our configuration script.

Storing and retrieving information from a Scri pt Scope

The execution methods we've used both have overloads with a second parameter - a scope. In its simplest
terms, this can be regarded as adictionary of names and values. Scripting languages often allow variables
to be assigned without any explicit declaration, and when thisisdonein thetop level of aprogram (instead
of in afunction or class) this usually affects a global scope. When a ScriptScope instance is passed into

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

an execution method, that is the global scope for the script you've asked the engine to execute. The script
can retrieve existing values from the scope, and create new values, as shown in listing 14.X.

Example 14.9. Passing information between a host and the hosted script using
Scri pt Scope

string python = @

text = "hello' ©

output = input + 1

Scri pt Engi ne engi ne = Pyt hon. Creat eEngi ne();
Scri pt Scope scope = engi ne. Creat eScope() ;

scope. Set Vari abl e("input", 10); ©

engi ne. Execut e(pyt hon, scope);

Consol e. Wi teLi ne(scope. Get Vari able("text")); ©
Consol e. Wi telLi ne(scope. Get Vari abl e("i nput"));
Consol e. Wi telLi ne(scope. Get Vari abl e("out put"));

00 Python code embedded as a C# string literal
00 Setsvariable for Python code to use
©0 Fetches variables back from scope

I've embedded the Python source code into the C# code as a verbatim string literal @ rather than putting it
inafile sothat it'seasier to see dl the codein one place. | don't recommend that you do thisin production
code, partly because Python is sensitive to whitespace - reformatting the code in a seemingly-harmless
way can make it fail completely at execution time.

The Set Vari abl e and Get Var i abl e methods simply put valuesinto the scope @ and fetch them out
again @ in the obvious way. They're declared in terms of obj ect rather than dynam ¢, as you might
have expected. However, Get Var i abl e aso alows you to specify a type argument, which acts as a
conversion request. Thisis not quite the same as just casting the result of the nongeneric method, as the
latter just unboxes the value - which means you need to cast it to exactly the right type. For example, we
can put an integer into the scope, but retrieve it asadoubl e:

scope. Set Vari abl e("nunm', 20)
doubl e x = scope. Get Vari abl e<doubl e>("nuni') @
double y = (double) scope. GetVariable("nun'); @

© Convertssuccessfully to doubl e
® Unboxing throws exception

The scope can aso hold functions which we can retrieve and then call dynamically, passing arguments
and returning values. The easiest way of doing thisisto usethedynani c type, asshowninlisting 14.X.

Example 14.10. Calling a function declared in a Scr i pt Scope

string python = @
def sayHel | o(user):
print "Hello %nanme)s’ % {' name' : user}
Scri pt Engi ne engi ne = Pyt hon. Cr eat eEngi ne() ;
Scri pt Scope scope = engi ne. Creat eScope() ;
engi ne. Execut e(pyt hon, scope);
dynam c function = scope. Get Vari abl e("sayHel | 0");
function("Jon");

Please post comments or correc& ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Configuration files may not often need this ability, but it can be useful in other situations. For example,
you could easily use Python to script a graph-drawing program, by providing a function to be called on
each input point. A simple example of this can be found on the book's web site.

Putting it all together

Now that we can get values into our scope, we're essentially done. We could potentially wrap the scopein
another object providing accessviaan indexer - or even accessthe values dynamically using the techniques
shown in section 14.5. The application code might ook something like this:

static Configuration LoadConfiguration()

{
Scri pt Engi ne engi ne = Pyt hon. Cr eat eEngi ne() ;
Scri pt Scope scope = engi ne. Creat eScope() ;
engi ne. Execut eFi | e("configuration. py", scope);
return Configuration. FronBcri pt Scope(scope);

}

The exact form of the Conf i gur at i on type will depend on your application, but it's unlikely to be
terribly exciting code. I've provided a sample dynamic implementation in the full source, which alows
you to retrieve values as properties and call functions directly too. Of course we're not limited to just using
primitive types in our configuration: the Python code could be arbitrarily complex, building collections,
wiring up components and services and so forth. Indeed, it could perform alot of the roles of a normal
Dependency Injection or Inversion of Control container.

The important thing is that we now have a configuration file which is active instead of the traditional
passive XML and .ini files. Of course, you could have embedded your own programming language into
previous configuration files - but the result would probably have been less powerful, and would have taken
alot more effort to implement. As an example of where this could be useful in a simpler situation than
full dependency injection, you might want to configure the number of threads to use for some background
processing component in your application. Y ou might normally use as many threads asyou have processors
in the system, but occasionally reduce it in order to help another application run smoothly on the same
system. The configuration file would simply change from something like this:

agent Threads = System Envi ronnment . Processor Count
agent Thr eadName = ' Processi ng agent'

To this:

agent Threads = 1
agent ThreadNanme = ' Processi ng agent (single thread only)’

This change wouldn't require the application to be rebuilt or redeployed - just edit the file and restart the
application.

Other than executing functions, we haven't really looked at using Python in a particularly dynamic way.
Thefull power of Pythonisavailable, and usingthedynami ¢ typeinyour C# codeyou can take advantage
of meta-programming and al the other dynamic features. The C# compiler isresponsible for representing
your code in an appropriate fashion, and the script engine is responsible for taking that code and working
out what it meansfor the Python code. Just don't feel you have to be doing anything particularly clever for
it to be worth embedding the script engine in your application. It's a simple step towards a more powerful
application.

So far our examples have been interoperating with other systems. Dynamic typing can make sense even
within a purely managed system, however. Y ou may well have implemented it yoursdlf in avery limited
sense, with reflection. If you're lucky, a lot of that reflection code can be completely eliminated using
dynamic typing.

Please post comments or correc&ins to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Reflection

Reflection iseffectively the manual way of doing dynamic typing. In my experience, it'svery easy to make
mi stakes when writing code to use reflection, and even when it's working you often need to put extra effort
in to optimiseit. In this section we'll ook at a few examples of using dynamic typing, and we'lll go into a
bit more detail than in the previous sections, as the examples will lead us into awider discussion of what
exactly is going on behind the scenes.

It's particularly tricky to use generic types and methods from reflection. For example, if you have an object
which you know implements | Li st <T> for some type argument T, it can be very difficult to work out
exactly what T is. If the only reason for discovering T is to then call another generic method, you really
want to just ask the compiler to call whatever it would have called if you knew the actual type. Of course,
that's exactly what dynamic typing does.

Execution-time type parameter inference

If you want to do more than just call a single method, it's often best to wrap all the additional work in a
generic method. Y ou can then call the generic method dynamically, but write all the rest of the code using
static typing. Listing 14.X showsasimple exampleof this. We're going to pretend we've been given alist of
sometype and anew element by some other part of the system. We've be promised that they're compatible,
but we don't know their types statically. There are various reasons this could happen; in particular there are
some type rel ationships which C# just can't express. Anyway, our code is meant to add the new element to
theend of thelist, but only if there arefewer than ten elementsin thelist at the moment. The method returns
whether or not the element was actually added. Obviously in rea life the business logic would be more
complicated, but the point is that we'd really like to be able to use the strong types for these operations.

Example 14.11. Using dynamic type inference

private static bool AddConditional lylmpl<T>(IList<T> list, T item

{
if (list.Count < 10) ©
list.Add(item;
return true;
}
return false;
}
public static bool AddConditionally(dynamc list, dynamc item
{
return AddConditional lylmpl (list, item; &
}

List<string> list = new List<string> { "x",
Consol e. WiteLi ne(AddCondi tional ly(list, "z")
Consol e. WitelLine(list.Count); @

b
3)

00 Norma staticaly typed code
00 Call helper method dynamically
® Prints"True" (item added)

O Prints"3"

The public method takes dynamic arguments: in previous versions of C# it would perhaps have taken
| Enuner abl e and Obj ect , relying on complicated checks with reflection to work out the type of the

Please post comments or correc&gns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

list and then act appropriately. With dynamic typing, we can just call a strongly-typed implementation @
using the dynamic arguments @, isolating the dynamic access to the single call in the wrapper method.

Of course, we could a so expose the strongly-typed method publicly to avoid the dynamic typing for callers
who knew their list types statically. It would be worth keeping the names different in that case, to avoid
accidentally calling the dynamic version due to a slight mistake with the static types of the arguments. (It
also makesit alot easier to make the right call within the dynamic version when the names are different!)

Asanother exampleof I've aready bemoaned thelack of generic operator support in C# - there's no concept
of specifying a constraint saying "T has to have an operator which alows me to add two vaues of type
T together." We used this in our initial demonstration of dynamic typing, so mentioning it here should
come as no surprise. Well take adlightly deeper look at this example, asit raises some interesting general
points about dynamic typing.

Summing values dynamically

Have you ever looked at the list of overloads for Enurrer abl e. Sun? It's pretty long. Admittedly half
of the overloads are due to a projection, but even so there are 10 overloads, each of which just takes a
sequence of elements and adds them together... and that doesn't even cover summing unsigned values, or
bytes or shorts. How about we use dynamic typing to try to do it al in one method?

There are actually two approaches here, which have different pros and cons. We could write anew generic
method which sums an | Enurrer abl e<T> without restriction, or we could write one which sums an
| Enurrer abl e<dynani ¢> and then rely on interface variance (introduced in the next chapter) and an
extramethod to convert to an | Enumer abl e<dynami ¢> when we needed to. The mixture of dynamic
and genericscan get dightly hairy, with some surprising problemswhich we'll seelater, so for the purposes
of simplicity we'll sum | Enurrer abl e<T>°. Listi ng 14.X shows an initial implementation which does
pretty well, althoughit'snot ideal. I've named the method Dy nani ¢ Sumrather than Sum to avoid clashing
withthemethodsin Enurrer abl e: thecompiler will pick anon-generic overload over ageneric onewhere
both signatures have the same parameter types, and it's just smpler to avoid the collision in thefirst place.

Example 14.12. Summing an ar bitrary sequence of elements dynamically

public static T Dynam cSunxT>(this | Enunerabl e<T> source)

{
dynanmic total = default(T); @
foreach (T elenent in source)
{
total += elenment; ©
}
return total;
}

byte[] bytes = new byte[] { 1, 2, 3 };
Consol e. Wit eLi ne(bytes. Dynam cSun()); ©

© Dynamically typed for later use
® Choose addition operator dynamically
® Prints"6"

The code is very straightforward: it looks almost exactly the same as any of the implementations of the
normal Sumoverloads would. I've omitted checking whether sour ce isnull just for brevity, but most of

SAn article [http://csharpindepth.com/Articles/Chapter13/FIXME.html] discussing summing | Enurrer abl e<dynanmi c> is available on the
book's web site.

Please post comments or correc&§7ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://csharpindepth.com/Articles/Chapter13/FIXME.html
http://csharpindepth.com/Articles/Chapter13/FIXME.html
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

the rest iswhat you'd expect, other than possibly the use of def aul t (T) toinitializet ot al , whichis
declared asdynani ¢ so that we get the desired dynamic behavior. Sure enough, running the code prints
6 aswe'd expect it to.

We have to start off with an initial value somehow: we could try to use the first value in the sequence,
but then we'd be stuck if the sequence were empty. For non-nullable value types, def aul t (T) isalmost
always an appropriate value anyway: it's a natural zero. For reference types, we'll end up adding the first
element of the sequence to nul | , which may or may not be appropriate. For nullable value types, well
end up trying to add the first element to the null value for that type, which certainly won't be appropriate.

We could improve things somewhat by adding an overload which takes the "zero value" as another
parameter, which would be okay for reference types but still wouldn't help much for nullable types...

Summing sequence of nullable values

The problem isthat the way C# defines operators working with nullable types, if any valuein the sequence
isnull, the result would end up being null. Assuming that we don't want that, and instead we want the same
behavior asthe existing Enuner abl e. Summethods working over nullable types, we need to introduce
anew method, as shown in listing 14.X:

Example 14.13. Summing nullable value types dynamically

public static T Dynam cSunxT>(this | Enunerabl e<T?> source)
where T : struct

{
dynam c total = defaul t(T);
foreach (T? element in source)
{
if (element '= null) ©
{
total += el ement. Val ue;
}
}
return total;
}

00 Only sum non-null values

Again, the code is simple - once you've got your head round the fact that here T is the non-nullable type
involved: if we were summing aLi st <i nt ?> for example, T would be i nt . The result of the sum is
always non-null, and we start off with the default value of the non-nullabletype. Thistimewhen weiterate
through the sequence, we only use non-null values @ (where "null" here means "the null value for the
nullable type", not a null reference) and we add the underlying non-nullable value to the current total.

Even though we're overloading the Dynam cSum method here, the new method will be caled in
preference to the old one when both are applicable: T? is aways more specific than T, because there's an
implicit conversion from T to T? but only an explicit conversion from T? to T. The overload resolution
rules are tricky to work through, but this time they work in our favor.

It's worth noting the mixture of dynamic typing and static typing here. The method starts with the
declaration of the dynamic t ot al variable, but the iteration itself, the null check and the extraction of
the underlying value are all compiled statically. Thisis easy to verify: if you change el ermrent . Val ue
toel ement . VALUE you'll see acompilation error:

error CS1061: 'System Nul | abl e<T>' does not contain a definition
for 'VALUE and no extension nethod ' VALUE accepting a first

Please post comments or correcjigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

argunent of type 'System Nul | abl e<T>" could be found (are you
m ssing a using directive or an assenbly reference?)

Thisisreassuring. We can restrict dynamic operations to just the ones that we need to be dynamic: we get
the benefits of dynamic typing in terms of discovering the addition operator at execution time, but most
of the code still benefits from the compile-time checking and performance benefits of static typing. This
issimilar to the dynamic AddCondi ti onal method inlisting 14.X caling the statically typed version,
but here the static and dynamic code appear within the same method.

Speaking of the addition operator, we're effectively duck-typing oniit in this case. Thisis agood example
of an area where we simply can't express the requirements statically - it'simpossible to specify operators
in an interface, so even if we had complete control of the framework, we couldn't really do any better. In
many other situations, duck-typing is useful when dealing with disparate frameworks which happen to use
the same member names but don't implement a common interface.

So, we now have two methods to sum a sequence of any type, so long asthat type has an addition operator
which results in a value of the same type. Hang on though... earlier on we summed a sequence of bytes.
What's going on?

Attention to detail: binding operators

There's no addition operator defined for the byt e type. If you try to add two bytes together, both are
promoted to i nt values, and the return value is an i nt . There's one exception to this, however: the
compound assignment += operator is permitted, effectively converting both operandsto integers and then
casting back to byt e at the end. We can see this in action if we try to sum values which overflow the
range of byt e:

byte[] values = new byte[] { 100, 100, 100 };
Consol e. Wi telLi ne(val ues. Dynami cSum()) ;

By default, the result printed here is 44: when the operation overflowed, the result was truncated. That's
may be what we want, but it goes against the behavior of the built-in Enuner abl e. Summethodswhich
throw an OverflowException. There are actually two alternatives to the current implementation. The first
isto mimic Enumerable.Sum. We don't need to be clever here, because overflow-safe arithmeticiseasy in
C#: we just need to work in a checked context. We do this in dynamic code in the same way as we would
intraditional C#. Listing 14.X shows a checked implementation of Dynamni ¢cSum

Example 14.14. Summing dynamically in a checked context

public static T Dynam cSunxT>(this | Enunerabl e<T> source)

{
dynami c total = default(T);
checked
{
foreach (T el enent in source)
{
total += el enent;
}
}
return total;
}

byte[] values = new byte[] { 100, 100, 100 };
Consol e. WitelLi ne(val ues. Dynani cSum()); @

© Throws OverflowException

Please post comments or correc&sns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

The other alternative is to avoid restricting the result to byte in the first place. The compiler knows how
to promote values and add them, it'sjust that we'll get back ani nt instead of abyte. Of course, we don't
know the typesinvolved at compile-time, and we can't describe them generically... but we can change the
method to return a dynamic value too. Then we just need to change how the addition is performed, and
were away. Listing 14.X shows thisfina change.

Example 14.15. Summing with a dynamic result and automatic byte to int

promaotion
public static dynam c Dynam cSunxT>(this | Enunerabl e<T> source)
{

dynami c total = defaul t(T);

foreach (T el enent in source)

{

total = total + elenent;

}

return total;
}

byte[] values = new byte[] { 100, 100, 100 };
Consol e. Wi telLi ne(val ues. Dynam cSum()); ©

©® Prints300

Of course, as listing 14.X is no longer operating in a checked context, we could eventually overflow.
However, the point of the example was to demonstrate that the normal rules for C# operators are obeyed,
even though they're being bound at execution time. The statements x+=y; and x=x+y; may look very
similar, but we've seen how they can behave very differently - and we'd only notice this difference at
execution time when we're using dynamic code. Be careful!

Note that these are C# ruleswhich are being applied here - not .NET rules. In situationswhere Visual Basic
and C# would handle things differently, dynamic code compiled in one of the two languages will follow
the rules of the compiler for that language.

| should warn you that things are about to get tricky. In fact, it's all extremely elegant, but it's complicated
because programming languages provide a rich set of operations, and representing al the necessary
information about those operations as data and then acting on it appropriately isacomplex job. The good
newsis that you don't need to understand it all intimately. As ever, you'll get more out of dynamic typing
the more familiar you are with the machinery behind it, but even if you just use the techniques we've seen
so far there may well be situations where it makes you alot more productive.

Looking behind the scenes

Despite the warning of the previous paragraph, I'm not going to go into huge amounts of detail about the
inner workings of dynamic typing. There would be an awful lot of ground to cover, both in terms of the
framework and language changes. It'snot often that | shy away from the nitty-gritty of specifications, butin
thiscasel truly believe there's not much to be gained from learning it al. I'll cover the most important (and
interesting) points of course, and | can thoroughly recommend Sam Ng [http://blogs.msdn.com/samng]'s
blog, the C# language specification and the DLR project page [http://dir.codeplex.com/Wiki/View.aspx?
title=Docs%20and%20specs] for more information if you need to dig into a particular scenario.

Our eventual goal isto understand what the C# compiler is doing - the code it emits to achieve dynamic
binding at execution time. Unfortunately, none of the generated code will make any sense until we seethe

Please post comments or correc&sns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://blogs.msdn.com/samng
http://blogs.msdn.com/samng
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://blogs.msdn.com/samng
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

mechanism that underpinsit al - namely the DLR. Y ou might liketo think of astatically typed program asa
conventional stage play with afixed script, and adynamically typed program asmore like an improvisation
show. The DL R takesthe place of the actors' brainsfrantically coming up with something to say inresponse
to audience suggestions. Let's meet our quick-thinking star performer.

Introducing the Dynamic Language Runtime

I've been bandying the acronym "DLR" around for a while now, occasionally expanding it to "Dynamic
Language Runtime" but never really explaining what it is. This has been entirely deliberate: I've been
trying to get across the nature of dynamic typing and how it affects developers, rather than the details of
the implementation. However, that excuse was never going to last until the end of the chapter - so here
we are. Inits barest terms, the Dynamic Language Runtime is alibrary which all dynamic languages and
the C# compiler use to execute code dynamically.

Amazingly enough, itreally isjust alibrary. Despiteitsname, itisn't at the samelevel asthe CLR (Common
Language Runtime) - it doesn't deal in JT compilation, native APl marshalling, garbage collection and
so forth. However, it builds on alot of the work in .NET 2.0 and 3.5, particularly the Dynani cMet hod
and Expr essi on types. The expression tree APl has been expanded in .NET 4.0 to allow the DLR to
express more concepts, too. Figure 14.X shows how it all fits together.

Figure 14.1. How .NET 4.0 fitstogether

PQC{‘M 2““5
q"os a,f!
W lroa &AQ. C# . l VE opps
finders'
eg. CH,
_ vé Ocler .NET
Damwic Liraries: \WCF
Language WPE PSPNET e
Quatime)
(OLR) NET G.o0

(mscorlib, Syseem, System. Core, eec)

CoM ~on Lwauaee lth&ne
(‘:y(‘lj GC, eec)

As well as the DLR, there's ancother library which may be new to you in figure 14.X. The
M crosoft. CSharp assembly contains a number of types which are referenced by the C#
compiler when you use dynam ¢ in your code. Confusingly, this doesn't include the existing

Please post comments or correcﬁ?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

M cr osoft. CShar p. Conpi | er and M cr osof t. CShar p. CodeDonPr ovi der . (They're not
even in the same assembly as each other!) We'll see exactly what the new types are used for in section
14.4.3, where we decompile some code written using dynami c.

There's one other important aspect which differentiates the DLR from the rest of the .NET framework:
it's provided as Open Source. The complete code lives in a CodePlex project [http://dir.codeplex.com],
so you can download it and see the inner workings. One of the benefits of this approach is that the DLR
hasn't had to be reimplemented for Mono [http://mono-project.com]: the same code runs on both .NET
and its cross-platform cousin.

Although the DLR doesn't handle native code directly, you can think of it asdoing asimilar jobtothe CLR
in one sense: just as the CLR converts IL (Intermediate Language) into native code, the DLR converts
code represented using binders, cal sites, meta-objects and various other concepts into expression trees
which can then be compiled down into IL and eventually native code by the CLR. Figure 14.X shows a
simplified view of the lifecycle of asingle evaluation of adynamic expression.

Please post comments or correc&sns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://dlr.codeplex.com
http://dlr.codeplex.com
http://mono-project.com
http://mono-project.com
http://dlr.codeplex.com
http://mono-project.com]:
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Figure 14.2. Lifecycle of a dynamic expression

Code . cs

code

| Call St f—] Cind..y

I
Create once,

Cyxecnte Mulhfte

4/ 9(_2 -+ d\jnam;c OLJ'ech

+ CH Lindﬂ"i
Sue finde- |
» S Objeces vid,
Coache cack y
(CI‘:-Li‘f:lel) (f-ufe;) ache p‘ Lef-.a or

+T1T (OF IL w

cact\e)
Call Sxe Cinder
Cac‘d&i ' Ue‘ L‘at"e
(TL +native Cache Native code _
+ rnles) ("'u(eﬂ |
Can ©exCoure .

(ﬂl— fau-_..)

Next tume. . i-F ache i Lie yust gxemee‘

Please post comments or correcfigns to the Author Online forum at
http://www.manning-sandbox. coétn forum.jspa?forumID=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

As you can see, one of the important aspects of the DLR is a multi-level cache. This is crucial for
performance reasons, but to understand that and the other concepts we've already mentioned, we'll need
to dive one layer lower.

DLR core concepts

We can summarise the purpose of the DLR in very general terms as taking a high-level representation
of code, and executing that code, based on various pieces of information which may only be known as
execution time. In this section I'm going to introduce alot of terminology to describe how the DLR works,
but it's al contributing to that common aim.

Call sites

The first concept we need is a call site. Thisis the sort of atom of the DLR - the smallest piece of code
which can be considered as a single unit. One expression may contain alot of call sites, but the behavior
is built up in the natural way, evaluating one call site at atime. For the rest of the discussion, well only
consider asingle call site at atime. It's going to be useful to have asmall example of a call siteto refer to,
so here's avery simple one, where d is of course avariable of typedynani c.

d. Foo(10);

The call siteisrepresented in code asa Syst em Runt i ne. Conpi | er Servi ces. Cal | Si t e<T>.
WEe'll see some details of how call sites are actually created in the next section, when we look at what the
C# compiler does at compile-time.

Receivers and binders

Once we've got acall site, something hasto decide what it means and how to executeit. Inthe DLR, there
aretwo entitieswhich can decide this: the receiver of acall, and the binder.The receiver of acall issimply
the object that a member is called on. In our sample call site, the receiver is the object that d refersto at
execution time. The binder will depend on the calling language - in this case, the C# compiler emits code
to create aCShar pl nvokeMenber Bi nder .

The DLR aways gives precedence to the receiver: if it's a dynamic object which knows how to handle
the call, then it will use whatever execution path the object provides. An object can advertise itself as
being dynamic by implementing the new | Dynamni cMet aCbj ect Pr ovi der interface. Thenameisa
mouthful, but it only containsasingle element: Get Met aCbj ect . You'll need to beabit of an expression
tree ninjato implement it correctly, as well as knowing the DLR quite well. However, in the right hands
this can be a very powerful tool, giving you the lower level interaction with the DLR and its execution
cache. If you need to implement dynamic behavior in ahigh-performance fashion, it'sworth the investment
of learning the details. There are two implementations of 1DynamicMetaObjectProvider included in the
framework, however, to make it easy to implement dynamic behavior in situations where performance
isn't quite as critical. We'll look at all of thisin more detail in section 14.5, but for now you just need to
be aware of the interface itself, and that it represents the ability of an object to react dynamically.

If the receiver isn't dynamic, the binder gets to decide how the code should be executed. In our code, it
would apply C#-specific rulesto the code, and work out what to do. If you were creating your own dynamic
language, you could implement your own binder to decide how it should behave in general (when the
object doesn't override the behavior). This lies well beyond the scope of this book, but it's an interesting
topic in and of itself: one of the aims of the DLR isto make it easier to implement your own languages.

Rules and caches

Thedecision for how to execute acall isrepresented asarule. Fundamentally this consists of two elements
of logic: the circumstances under which the call site should behave this way, and the behavior itself. The

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

first part isreally for optimisation. Suppose you have acall site which represents addition of two dynamic
values, and thefirst timeit's evaluated, both values are of type byt e. The binder has goneto afair amount
of effort to work out that this means both operands should be promoted to i nt , and the result should be
the sum of those integers. It can reuse that operation any time the operands turn out to both be byt e.
Checking a set of previous results for validity can save alot of time. The rule I've used as an example
("the operand types must be exactly the same as the ones I've just seen) is a common one, but the DLR
supports other rules too.

The second part of aruleisthe code to use when therule matches, and it's represented as an expression tree.
It could have been stored just asacompiled delegate to call - but keeping the expression tree representation
means the cache can really optimise heavily. There are three levels of cacheinthe DLR: LO, L1 and L2.
The caches store information in different ways, and with a different scope. Each call site has its own LO
and L1 caches, but an L2 cache may be shared between several similar cal sites, as shown in figure 14.X.

Figure 14.3. Layout of caches

Call Siee

L& cacle:
olelfﬁate

rules (few) M

(GU sites with e

fame Semantic s)

The set of call siteswhich share an L2 cacheis determined by their binders - each binder hasan L2 cache
associated with it. The compiler (or whatever is creating the call sites) decides how many bindersit wants
to use. It can only use a binder for multiple call sites which represent very similar code, of course; where
if the context is the same at execution time, the call sites should execute in the same way. In fact, the
C# compiler doesn't make use of this facility - it creates a new binder for every call site, so there's not
much difference between the L1 and L 2 caches for C# developers. Genuinely dynamic languages such as
IronRuby and IronPython make more use of it though.

The cachesthemselves are executable, which takes alittle while to understand. The C# compiler generates
codeto simply executethecall site'sL 0 cache (whichisadel egate accessed throughthe Tar get property).
That's it! When LO cache delegate is called, it looks through the rules it knows about, and if it finds a
matching rule it executes the associated behavior. If it doesn't find any matches, it callsinto the L1 cache,
which in turn callsinto the L2 cache. If the L2 cache can't find any matching rules, it asks the receiver or
the binder to resolve the call. The results are then put into the cache for next time.

The L1 and L2 caches look through their rules in a fairly standard way - each has a collection of rules,
and each rule is asked whether or not it matches. The LO cache is somewhat different. The rules in its
cache are assembled into a single method which is then JIT compiled. Updating the LO cache consists of

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

rebuilding the method from the new set of rules. Thisiswhere it becomes vital that the rules are available
as expression trees: it's an awful lot easier to stitch together several expression trees than to analyze the
IL generated for each rule and combine that together.

The result of all of thisisthat typical call sites which see similar context repeatedly are very, very fast;
the dispatch mechanism is as about as lean as you could make it if you hand-coded the tests yourself. Of
course this has to be weighed against the cost of al the dynamic code generation involved, but the multi-
level cacheiscomplicated precisely becauseit triesto achieve abalance across various different scenarios.

Now that we know abit about the machinery inthe DLR, we'll be able to understand what the C# compiler
doesfor usin order to set it al in motion.

How the C# compiler handles dynamni c

The main jobs of the C# compiler when it comes to dynamic code are to work out when dynamic behavior
isrequired, and to capture all the necessary context so that the binder and receiver have enough information
to resolve the call at execution time.

If it uses dynam c, it's dynamic!

There's one situation which is very obviously dynamic: when the target of a member call isdynamic. The
compiler has no way of knowing how that will be resolved. It may be atruly dynamic object which will
perform the resolution itself, or it may end up with the C# binder resolving it with reflection later. Either
way, there's simply no opportunity for the call to be resolved statically.

However, when the dynamic value is being used as an argument for the call, there are some situations
where you might expect the call to be resolved statically - particularly if there's a suitable overload which
has a parameter type of dynani c. However, the rule is that if any part of a call is dynamic, the cal
becomes dynamic and will resolve the overload with the execution-time type of the dynamic value. Listing
14.X demonstrates this using a method with two overloads, and invoking it in anumber of different ways.

Example 14.16. Experimenting with method overloading and dynamic values

static void Execute(string x)

{

Consol e. WitelLine("String overl oad");
}
static void Execute(dynam c Xx)
{

Consol e. Wi telLi ne("Dynam c overl oad);
}
dynam c text = "text";

Execute(text); ©
dynam ¢ nunber = 10;
Execut e(nunber); ©

©® Prints"String overload"
® Prints"Dynamic overload"

Both callsto Execut e are bound dynamically. At execution timethey are resolved using the types of the
actual values, namely st ri ng andi nt . The parameter of typedynami c istreated asif it were declared

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

withtypeobj ect for the purposes of overload resolution - indeed, if you look at the compiled code you'll
see it is a parameter of type obj ect , just with an attribute applied. This also means you can't have two
methods who signatures differ just by dynam c/obj ect . Speaking of looking at compiled code, let's
dig into the IL generated for dynamic calls.

Creating call sites and binders

You don't need to know the details of what the compiler does with dynamic expressions in order to use
them, but it can be instructive to see what the compiled code looks like. In particular, if you need to
decompile your code for any other reason, it means you won't be surprised by what the dynamic parts|ook
like. My tool of choice for this kind of work is Reflector [http://www.red-gate.com/products/reflector/],
but you could use ildasm if you wanted to read the IL directly.

WEe're only going to look at a single example - I'm sure | could fill a whole chapter by looking at
implementation details, but the ideais only to give you the gist of what the compiler is up to. If you find
thisexampleinteresting, you may well want to experiment more on your own. Just remember that the exact
details are implementation-specific; they may change in future compiler versions, so long as the behavior
isequivalent. Here's the sampl e snippet, which existsin aMai n method in the normal manner for Snippy:

string text = "text to cut”;
dynam c startlndex = 2;
string substring = text. Substring(startlndex);

Pretty simple, right? Well, it actually contains two dynamic operations - one to call Substri ng, and
one to dynamically convert the result (which isjust dynam ¢ at compile-time) to a string. Listing 14.X
showsthe decompiled codefor the Sni ppet class. I've omitted the classdeclaration itself and theimplicit
parameterless constructor, just to save space - and I've reformatted the code with significantly reduced
whitespace for the same reason.

Please post comments or correggigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.red-gate.com/products/reflector/
http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.17. Theresults of compiling dynamic code

[Conpi | er Gener at ed]
private static class <Main>0__SiteContainer0 { @
public static Call Site<Func<CallSite, object, string>> <>p_Sitel,;
public static Call Site<Func<CallSite, string, object, object>>
<>p_Sitez;
}

private static void Main() {
string text = "text to cut”;
obj ect startlndex = 2;
if (<Main>o__SiteContainer0.<>p_Sitel == null) { @
<Mhi n>0__SiteContainer0.<>p_Sitel =
Cal | Site<Func<Cal | Site, object, string>>. Create(
new CShar pConvert Bi nder (typeof (string),
CShar pConver si onKi nd. | npl i ci t Conversi on, false));
}
if (<Main>o__SiteContainer0.<>p_Site2 == null) { ©
<Mhin>0__SiteContainer0.<>p_Site2 =
Cal | Site<Func<Cal | Site, string, object, object>> Create(
new CShar pl nvokeMenber Bi nder (CShar pCal | Fl ags. None,
"Substring", typeof(Snippet), null,
new CShar pArgurentInfo[] {
new CShar pAr gunent | nf o(
CShar pAr gunent | nf oFl ags. UseConpi | eTi neType, null), O
new CShar pAr gunent | nf o(
CShar pAr gunment | nf oFl ags. None, null) }));
}
string substring = ©
<Mai n>0__SiteContai ner0.<>p_Sitel. Target. | nvoke(
<Mai n>0__SiteContai ner0.<>p__ Sitel,
<Mai n>0__SiteContai ner0.<>p__Site2. Target. | nvoke(
<Mhi n>0__SiteContainer0.<>p_ Site2, text, startlndex));

Storage for call sites

Creation of conversion call site
Creation of substring call site
Preserve static type of text variable
Invocation of both calls

88888

I don't know about you, but I'mjolly glad that | never have to write or encounter code quite like that, other
than for the purpose of |earning about exactly what's going on. There's nothing new about that though - the
generated code for iterator blocks, expression trees and anonymous functions can be pretty gruesome too.

There's anested static type which is used to store al the call sites®, asthey only need to be created once.
(And indeed if they were created each time the cache would be useless!) It's possible that the call sites
could be created more than once due to multi-threading, but if that happens it's just dightly inefficient -
and it means the lazy creation is achieved with no locking at all. It doesn't really matter if one call site

instance is replaced with another.

After the call sites are created (@ and 8) they are simply invoked. The substring call isinvoked first (read
the code from theinnermost part of the statement outwards) and then the conversionisinvoked on theresult
©. At this point we have a statically typed value again, so we can assign it to the subst r i ng variable.

Please post comments or correggigns to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forum|D=569

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

There's one more aspect to this code which I'd like to highlight, and that's the way that some static type
information is preserved in the call site. The type information itself is present in the delegate signature
used for the type argument of the call site (Func<Cal | Site, string, object, object>)and
aflagin the corresponding CShar pAr gunent | nf o indicates that this type information should be used
in the binder @. (Even though this is the target of the method, it's represented as an argument; instance
methods are treated as static methods with an implicit first parameter of "this'.) Thisis a crucia part of
making the binder behave as if it were just recompiling your code at execution time. Let's take alook at
why thisis so important.

The C# compiler gets even smarter

C# 4 lets you straddl e the static/dynamic boundary not just by having some of your code bound statically
and some bound dynamically, but also by combining the two ideas within a single binding. It remembers
everything it needsto know within the call site, then cleverly works merges thisinformation with the types
of the dynamic values at execution time.

Preserving compiler behavior at execution time

The ideal model for working out how the binder should behave is to imagine that instead of having a
dynamic value in your source code, you have avalue of exactly the right type: the type of the actual value
at execution time. However, that only appliesfor dynamic values: any value with atype known at compile
time is treated as being of that statically-determined type; the actual value isn't used for lookups such as
member resolution. I'll give two examples of where this makes a difference. Listing 14.X showsasimple
overloaded method in asingle type.

Example 14.18. Dynamic overload resolution within a singletype

static void Execute(dynam c x, string y)

{

Consol e. WitelLine("dynam c, string");
}
static void Execute(dynam c x, object y)
{

Consol e. Wi telLi ne("dynam c, object");
}
object text = "text";

dynamc d = 10;
Execute(d, text); ©

© Prints"dynamic, object”

Theimportant variable hereist ext . Its compile-time typeisobj ect , but at execution time it's a string.
Thecall to Execut e isdynamic because we're using the dynamic variable d as one of the arguments, but
the overload resolution uses the static type of t ext , so theresultisdynamni ¢, obj ect. If thet ext
variable had been declared asdynani ¢ aswell, it would have used the other overload.

Listing 14.X issimilar, but thistime it's the receiver of the call which matters.

Please post comments or correggigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.19. Dynamic overload resolution within a class hierar chy

cl ass Base

{
public voi d Execute(object x)
{
Consol e. Wit eLi ne("object");
}
}
class Derived : Base
{
public void Execute(string x)
{
Consol e. WiteLine("string");
}
}

Base receiver = new Derived();
dynamic d = "text";
recei ver. Execute(d); ©

O Prints"object"

In listing 14.X, the type of r ecei ver isDeri ved at execution time, so you might have expected the
overload introduced in Der i ved to be called. However, the compile-time type of r ecei ver isBase,
and so the binder restricts the set of methodsit considersto just the ones which would have been available
if we'd been binding the method statically.

| take my hat off to the C# team for their attention to detail here - they've clearly worked very hard to
make the behavior of execution-time binding match compile-time binding as closely as possible. That's
assuming you want C# behavior of course... what about COM calls?

Delegating to the COM binder

In section 14.3.1 | sneakily mentioned “the COM binder" without explaining what | meant, because we
hadn't covered "binders’ in general. Now that we know what they do, how can code sometimes use the
COM binder and sometimes use the C# binder? Doesn't the call site specify one or the other?

Theanswer isanice use of composition. The C# compiler alwaysgeneratesacall site using the C#binder...
but that asks the COM binder whether it's able to bind a call first. The COM binder will refuse to bind
any non-COM calls, at which point the C# binder applies its own logic instead. That way we appear to
get two binders for the price of one - and any other language can use the same form of piggy-backing to
achieve consistent COM execution very easily.

Despite al of these decisions which have to be taken later, there are still some compile-time checks
available, even for code which will be fully bound at execution time.

Compile-time errors for dynamic code

As | said near the start of this chapter, one of the disadvantages of dynamic typing is that some errors
which would normally be detected by the compiler are delayed until execution time, at which point an
exception isthrown. There are many situations where the compiler hasto just hope you know what you're
doing, but where it can help you, it will. The simplest example of thisis when you try to call a method

Please post comments or correggigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

with astatically typed receiver (or indeed a static method) and none of the overloads can possibly bevalid,
whatever type the dynamic value has at execution time. Listing 14.X shows three examples of invalid
calls, two of which are caught by the compiler.

Example 14.20. Catching errorsin dynamic calls at compile-time

string text = "cut me up";

dynam ¢ guid = Gui d. NewGui d() ;

t ext. Subst ri ng(guid);

text. Substring("x", guid);

text. Substring(guid, guid, guid);

Here we have three calls to st ri ng. Subst ri ng. The compiler knows the exact set of possible
overloads, because it knows the type of t ext statically. It doesn't complain at the first call, because it
can't tell what type gui d will be - if it turns out to be an integer, all will be well. However, the final two
lines throw up errors: there are no overloads which take a string as the first argument, and there are no
overloads with three parameters. The compiler can guarantee that these would fail at execution time, so
it's reasonable for it to fail at compile time instead.

A dlightly trickier example is with type inference. If a dynamic value is used to infer a type argument
in a call to a generic method, then the actual type argument won't be known until execution time and no
validation can occur beforehand. However, any type argument which would be inferred without using any
dynamic values can cause type inference to fail at compile-time. Listing 14.X shows an example of this

Example 14.21. Generic type inference with mixed static and dynamic values

voi d Execute<T>(T first, T second, string other) where T : struct

{
}

dynam c guid = Gui d. NewGui d() ;
Execut e(10, 0, guid);

Execut e(10, fal se, guid);
Execute("hell 0", "hello", guid);

Again, the first call compiles, but would fail at execution time. The second call won't compile because
T can't be both int and bool, and there are no conversions between the two of them. The third call won't
compile because T isinferred to be st r i ng, which violates the constraint that it must be a value type.

That covers the most important points in terms of what the compiler can do for you. However, you can't

usedynani c absolutely everywhere. There are limitations, some of which are painful, but most of which
are quite obscure.

Restrictions on dynamic code

You can mostly use dynami ¢ wherever you'd normally use a type name, and then write normal C#.
However, there are afew exceptions. Thisisn't an exhaustivelist, but it coversthe cases you're most likely
to runinto.

Extension methods aren't resolved dynamically

The compiler emits some of the context of the call into the call site, as we've already seen: in particular,
the site knows the static types that the compiler was aware of. However, it doesn't currently know which

Please post comments or correcg?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

usi ng directives occurred in the source file containing the call. That means it doesn't know which
extension methods are available at execution time.

This doesn't just mean you can't call extension methods on dynamic values - it means you can't pass
them into extension methods as arguments either. There are two workarounds, however, both of which
are helpfully suggested by the compiler. If you actually know which overload you want, you can cast
the dynamic value to the right type within the method call. Otherwise, assuming you know which static
class contains the extension method, you can just call it asanormal static method. Listing 14.X shows an
example of afailing call and both workarounds.

Example 14.22. Calling extension methods with dynamic arguments

dynam c size = 5;

var nunbers = Enumer abl e. Range(10, 10);

var error = nunbers. Take(size);

var wor karoundl = numnbers. Take((int) size);

var wor karound2 = Enuner abl e. Take(nunbers, size);

Both of these approaches will work if you want to call the extension method with the dynamic value as
theimplicitt hi s value, too - although the cast becomes pretty ugly in that case.

Delegate conversion restrictions with dynamni c

The compiler has to know the exact delegate (or expression) type involved when converting a lambda
expression, an anonymous method or amethod group. Y ou can't assign any of theseto aplain Del egat e
or obj ect variable without casting, and the same is true for dynarmi ¢ too. However, acast is enough
to keep the compiler happy. This could be useful in some situations if you want to execute the delegate
dynamically later. Y ou can a so use adel egate with adynamic type as one of its parametersif that's useful.
Listing 14.X shows some examples which will compile, and some which won't.

Example 14.23. Dynamic types and lambda expressions

dynam ¢ badMet hodG oup = Consol e. Wit eLi ne;
dynam ¢ goodMet hodGroup = (Action<string>) Console.WiteLine;

dynam ¢ badLanbda =y =>vy + 1;
dynam ¢ goodLanbda = (Func<int, int>) (y =>y + 1);

dynam ¢ veryDynami ¢ = (Func<dynam c, dynanmic>) (d => d. SomeMet hod());

Note that because of the way overload resolution works, this means you can't use lambda expressions in
dynamically bound calls at all without casting - even if the only method which could possibly be invoked
has a known delegate type at compile time. For example, this code will not compile:

voi d Met hod(Action<string> action, string val ue)

{
}

Met hod(x => Console. WiteLine(x), "error"); @

action(val ue);

© Compile-timeerror

It's worth pointing out that all is not lost in terms of LINQ and dynami ¢ interacting. You can have a
strongly typed collection with an element type of dynamic, at which point you can still use extension

Please post comments or correggigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

methods, lambda expressions and even query expressions. The collection can contain objects of different
types, and they'll behave appropriately at execution time, as shown in listing 14.X.

Example 14.24. Querying a collection of dynamic elements

var list = new List<dynanic> { 50, 5m 5d, 3 };
var query = from nunber in |ist

wher e nunber > 4

sel ect (number / 20) * 10;

foreach (var itemin query)

{
}

This prints 20, 2. 50, and 2. 5. | deliberately divided by 20 and then multiplied by 10 to show
the difference between deci nal and doubl e: the deci mal type keeps track of precision without
normalising, which iswhy 2.50 is displayed instead 2.5. The first value is an integer, so integer division
is used, hence the value of 20 instead of 25.

Consol e. WitelLine(item;

Constructors and static methods

Y ou can call constructors and methods dynamically in the sense that you can specify dynamic arguments,
but you can't resolve a constructor or static method against a dynamic type. There's just no way of
specifying which type you mean.

If youruninto asituation whereyou want to be ableto do thisdynamically in someway, try to think of ways

to use instance methods instead - for instance, by creating afactory type. Y ou may well find that you can
get the "dynamic" behavior you want using simple polymorphism or interfaces, but within static typing.

Type declarations and generic type parameters

Y ou can't declarethat atypehasabase classof dynani c¢. Youasocan'tusedynani c inatypeparameter
constraint, or as part of the set of interfaces that your type implements. Y ou can useit as atype argument
for abase class, or when you're specifying an interface for a variable declaration. So, for example, these
declarations are invalid:

» class BaseTypeO Dynamic : dynanic

» class Dynam cTypeConstrai nt<T> where T : dynamnic

e class Dynam cTypeConstrai nt<T> where T : List<dynam c>

e class Dynam clnterface : | Enunerabl e<dynam c>

These are vaid, however:

e class GenericDynam cBaseC ass : List<dynam c>

e | Enuner abl e<dynanmi ¢c> vari abl ¢;

Most of these restrictions around generics are the result of the dynam ¢ type not redly existing as

a .NET type. The CLR doesn't know about it - any uses in your code are translated into object with the
Dynam cAttri but e applied appropriately. (For dynamic base types such as Li st <dynam c¢>, an

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

alternative constructor for Dynami cAt t ri but e isused to indicate which parts of the type declaration
are dynamic.) All the dynamic behavior is achieved through compiler cleverness in deciding how the
source code should be translated, and library cleverness at execution time. This equivalence between
dynam ¢ and obj ect is evident in various places, but it's perhaps most obvious if you look at
t ypeof (dynam c) andt ypeof (obj ect), which return the same reference. In general, if you find
you can't do what you want to with the dynam ¢ type, remember what it looks like to the CLR and see
if that explains the problem. It may not suggest a solution, but at least you'll get better at predicting what
will work ahead of time.

That's all the detail I'm going to give about how C# 4 treats dynami ¢, but there's another aspect of the
dynamic typing picture which we really need to look at to get a well-rounded view of the topic: reacting
dynamically. It's one thing to be able to call code dynamically, but it's another to be able to respond
dynamically to those calls.

Implementing dynamic behavior

The C# language doesn't offer any specific help in implementing dynamic behavior, but the framework
does. A type hasto implement | Dynami cMet aObj ect Pr ovi der in order to react dynamically, but
there are two built-in implementations which can take alot of the work away in many cases. We'll ook
at both of these, as well as a very simple implementation of | Dynani cMet aCbj ect Pr ovi der, just
to show you what's involved. These three approaches are really very different, and we'll start with the
simplest of them: ExpandoObj ect .

Using ExpandoObject

Syst em Dynami c. ExpandoQbj ect looks like a funny beast at first glance. Its single public
constructor has no parameters. It has no public methods, unless you count the explicit implementation
of various interfaces - crucially | Dynam cMet aObj ect Provi der and | Di cti onary<stri ng,
obj ect >. (The other interfaces it implements are al due to | Di cti onary<, > extending other
interfaces.) Oh, and it's sealed - so it's not a matter of deriving from it to implement useful behavior. No,
ExpandoObj ect isonly useful if you refer toit viadynanmi ¢ or one of the interfacesit implements.

Setting and retrieving individual properties

The dictionary interface gives a hint as to its purpose - it's basically away of storing objects via hames.
However, ghose names can al so be used as properties viadynamic typing. Listing 14.X showsthisworking
both ways’.

Example 14.25. Storing and retrieving values with ExpandoObj ect

dynam c expando = new ExpandoChject();

I Di ctionary<string, object> dictionary = expando;
expando. First = "val ue set dynam cally";

Consol e. WitelLine(dictionary["First"]);

di ctionary. Add(" Second”, "value set with dictionary");
Consol e. Wit eLi ne(expando. Second) ;

Listing 14.X just uses strings as the values for convenience - you can use any object, as you'd expect with
anl Di ctionary<string, object>. Ifyouspecify adelegate as the value, you can then call the
delegate asiif it were a method on the expando, as shown in listing 14.X.

Swe should be able to set values with an indexer here- it'sabugin 4.0bl. I'll change the code when aversion of .NET 4.0 is released that fixesit.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.26. Faking methods on an ExpandoObject with delegates

dynam ¢ expando = new ExpandoChject();
expando. AddOne = (Func<int, int>) (x => x + 1);
Consol e. Wi te(expando. AddOne(10));

Although this looks like a method access, you can also think of it as a property access which returns a
delegate, and then an invocation of the delegate. If you created a statically typed class with an AddOne
property of type Func<i nt, i nt > you could use exactly the same syntax. The C# generated to call
AddOne doesin fact use "invoke member" rather than trying to access it as a property and then invoke
it, but ExpandoObj ect knows what to do. You can still access the property to retrieve the delegate if
you want to though.

Let'smoveontoasdlightly larger example - although we're still not going to do anything particularly tricky.

Creating a DOM tree

WEe're going to create a tree of expandos which mirrors an XML DOM tree. This is a pretty crude
implementation, designed for simplicity of demonstration rather than real world use. In particular, it'sgoing
to assume we don't have any XML namespaces to worry about. Each node in the tree has two name/value
pairs which will always be present: XEl enent , which storesthe original LINQ to XML element used to
create the node, and ToXnl , which stores a delegate which just returns the node as an XML string. You
could just call node. XEl enent . ToSt ri ng() , but thisway gives another example of how delegates
work with ExpandoOhj ect . Onepointto mentionisthat | used ToXm instead of ToSt r i ng, assetting
the ToSt ri ng property on an expando doesn't override the normal ToSt r i ng method. This could lead
to very confusing bugs, so | opted for the different name instead.

The interesting part isn't the fixed names though, it's the ones which depend on the real XML. I'm going
to ignore attributes completely, but any elements in the original XML which are children of the original
element are accessible via properties of the same name. For instance, consider the following XML.:

<r oot >
<branch>
<l eaf />
</ branch>
</ root >

Assuming adynamic variable called r oot representing the Root element, we could access the leaf node
with two simple property accesses, which can occur in a single statement:

dynam c | eaf = root. branch. | eaf;

If an element occurs more than once within a parent, the property just refers to the first element with
that name. To make the other elements accessible, each element will also be exposed via a property
using the element name with a suffix of "List" which returnsalLi st <dynam ¢> containing each of the
elements with that name in document order. In other words, the above access could also be represented
asroot. branchLi st[0]. | eaf,or perhapsr oot . branchLi st[0] .| eaf Li st[0] . Notethat
the indexer here is being applied to the list - you can't define your own indexer behavior for expandos.
The implementation of all of thisis actually remarkably simple, with a single recursive method doing all
the work, as shown in listing 14.X.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.27. Implementing a simplistic XML DOM conversion with
ExpandoObj ect

public static dynam c Creat eDynam cXm (XEl ement el enent)

{

dynam ¢ expando = new ExpandoChject();
expando. XEl enent = el enent; ©@
expando. ToXmi = (Func<string>)el enent. ToString; ®

| Dictionary<string, object> dictionary = expando;
foreach (XEl enment subElenment in el ement. El ements())
{

dynam ¢ subNode = CreateDynam cXm (subEl enent) ; ®

string nane = subEl ement. Nane. Local Nane;

string |listName = nanme + "List";

i f (dictionary. ContainsKey(nane))

{
}

el se

{

((Li st<dynam c>) dictionary[listNanme]).Add(subNode); ®

di ctionary. Add(nane, (object) subNode); ®
di ctionary. Add(Ili st Nane, new Li st<dynam ¢c> { subNode });
}
}

return expando;

—

Assigns a simple property

Converts a method group to delegate to use as property
Recursively processes sub-element

Adds repeated element to list

Creates new list and sets properties

88888

Without the list handling, listing 14.X would have been even simpler. We set the XEl enent and ToXmi
properties dynamically (@ and ®), but we can't do that for the elementsor their lists, because we don't know
the names at compile time. We use the dictionary representation instead (@ and @), which aso alows
us to check for repeated elements easily. Y ou can't tell whether or not an expando contains a value for a
particular key just by accessing it asaproperty: any attempt to access a property which hasn't already been
defined resultsin an exception. The recursive handling of sub-elements is as straightforward in dynamic
code asit would bein statically typed code: we just call the method recursively © with each sub-element,
using its result to populate the appropriate properties.

We're going to need some XML to use as an example, but it's helpful to picture it graphically as well
asin itsraw format. We'll use a very simple structure representing books. Each book has a single name
represented as an attribute, and may have multiple authors, each with their own element. Figure 14.X
shows the wholefile as atree, and the text appears bel ow.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Figure 14.4. Tree structure of sample XML file

book author
nhame="..." name="..."
author
////,/'name=ﬂ"“
book
books name="_"
\\\\"‘~\\ author
name="..."
author
name="..."
book "””’
name="..." \
<books>
<book nane="Mortal Engi nes">
<aut hor name="Philip Reeve" />
</ book>
<book nane="The Tal i sman">
<aut hor name="St ephen King" />
<aut hor nanme="Peter Straub" />
</ book>
<book nane="Rose" >
<aut hor nanme="Hol |y Webb" />
<excer pt >
Rose was renenbering the illustrations from

Morally Instructive Tales for the Nursery.
</ excer pt >
</ book>
</ book>

excerpt p—— (Text node)

Listing 14.X shows a brief example of how the expando code can be used with this XML document,
including the ToXm and XElI enent properties. Thebooks. xm file contains the XML tree shown in

the figure.

Please post comments or correcgigns to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forum|D=569

Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.28. Using a dynamic DOM created from expandos

XDocurent doc = XDocurent. Load("books. xm ");

dynam ¢ root = CreateDynani cXm (doc. Root);

Consol e. Wit eLi ne(root. book. aut hor. ToXm ());

Consol e. Wi telLi ne(root. bookLi st[2].excerpt. XEl ement. Val ue);

Listing 14.X should hold no surprises, unless you're unfamiliar with the XEl enent . Val ue property
which simply returns the text within an element. The output of the listing is as we'd expect:

<aut hor nane="Philip Reeve" />
Rose was remenbering the illustrations from
Morally Instructive Tales for the Nursery.

Thisisall very well, but there are afew issues with our DOM. In particular:

It doesn't handle attributes at all

We need two properties for each element name, due to the need to represent lists

It would be niceto override ToSt ri ng() instead of adding an extra property

The result is mutable - there's nothing to stop code from adding its own properties afterwards

Although the expando is mutable, it won't reflect any changes to the underlying XEl enment (whichis
also mutable)

Fixing these issues requires more control than just being ableto set properties. Enter Dynam cCbj ect ...

Using DynamicObject

Dynam cObj ect isamore powerful way of interacting with the DLR than using ExpandoObj ect ,
but it'salot simpler than implementing | Dynamni cMet aCbj ect Pr ovi der . Although it's not actually
an abstract class, you really need to derive from it to do anything useful - and the only constructor is
protected, so it might as well be abstract for all practical purposes. There are four kinds of method which
you might wish to override:

Tr y XXX() invocation methods, representing dynamic calls to the object
Get Dynam cMenber Names () , which can return an list of the available members
Thenormal Equal s()/ Get HashCode() /ToSt ri ng() methodswhich canbeoverridden asusual

Get Met aObj ect () which returns the meta-object used by the DLR

WEe'l look at all but the last of these to improve our XML DOM representation, and we'll discuss meta-
objectsin the next section when we implement | Dynamni cMet aCObj ect Pr ovi der . Inaddition, it can
be very useful to create new membersin your derived type, even if callers are likely to use any instances
as dynamic values anyway. Before we take any of these steps, we'll need a class to add all the code to.

Getting started

Aswe're deriving from Dynani cQbj ect instead of just calling methods on it, we need to start with a
class declaration. Listing 14.X shows the basic skeleton that we'll be fleshing out.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.29. Skeleton of DynamicX Element

public seal ed cl ass Dynam cXEl enent : Dynam cObj ect

{
private readonly XEl enent elenent; ©
private Dynam cXEl ement (XEl enent el enent) ©
{
this.element = el enent;
}
public static dynam c Createlnstance(XEl enent elenent) ©
{
return new Dynam cXEl enent (el enent) ;
}
}

00 XEl enent thisinstance wraps
00 Private constructor prevents direct instantiation
00 Public method to create instances

The Dynam cXEl enment class just wraps an XEl enent @. This will be al the state we have, which
is a significant design decision in itself. When we created an ExpandoCbj ect earlier, we recursed
into its structure and populated a whole mirrored tree. We really had to do that, because we couldn't
intercept property accesses with custom code later on. Obvioudy this is more expensive than the
Dynam cXEl enent approach, wherewewill only ever wrap the elements of thetreewe actually haveto.
Additionally, it means that any changesto the XEl enent after we've created the expando are effectively
lost: if you add more sub-elements, for example, they won't appear as properties because they weren't
present when we took the snapshot. The lightweight wrapping approach is always "live" - any changes
you make in the tree will be visible through the wrapper.

The disadvantage of thisis that we no longer provide the same idea of identity that we had before. With
the expando, the expression r oot . book. aut hor would evaluate to the same reference if we used it
twice. Using Dynam cXEl enment , each time the expression is evaluated it will create new instancesto
wrap the sub-elements. We could implement some sort of smart caching to get around this, but it could
end up getting very complicated very quickly.

I've chosen to make the constructor of Dynamni ¢ XEl enent private @ and instead provide apublic static
method to create instances ®. The method has a return type of dynani ¢, because that's how we expect
developers to the class. A dight alternative would have been to create a separate public static class with
an extension method to XEl enent , and keep Dynamni ¢ XEl enent itself internal. The classitself isan
implementation detail: there's not alot of point in using it unless you're working dynamically.

With our skeletonin place, we can start adding features. We'll start with really simple stuff: adding methods
and indexers asif thiswere just anormal class.

Dynam cQbj ect support for simple members

When we created our expando, there were two members we always added: the ToXm "method" and the
XEl ement property. Thistimewedon't need anew method to convert the object to astring representation:
we can override the normal ToSt ri ng() method. We can also provide the XEl enent property as if
we were writing any other class. One of the nice things about Dynam cObj ect isthat when you don't
need truly dynamic behavior, you don't have to implement it. The meta-object used to resolve calls uses
any of the Tr y XXX methods, it checks to see whether the member already exists as astraightforward CLR
member. If it does, that member will be called. This makes life significantly simpler.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

WEe're going to have two indexers in Dynam cXEl enent as well, to provide access to attributes and
replace our element lists. Listing 14.X shows the new code to be added to the class.

Example 14.30. Adding non-dynamic member sto DynamicX Element

public override string ToString() ©

{
return el ement. ToString();
}
public XEl enent XEl enent @
{
get { return elenent; }
}
public XAttribute this[XNane nane] ©
{
get { return elenent. Attribute(nane); }
}
public dynamic this[int index] @
{
get
{
XEl ement parent = el ement. Parent;
if (parent == null) ©
{
if (index !'= 0)
{
t hr ow new Ar gunent Qut Of RangeException();
}
return this;
}
XEl ement sibling = parent. El enents(el ement. Nane) 0O
. El enent At (i ndex) ;
return elenent == sibling ? this
new Dynam cXEl enent (si bling);
}
}
00 OverridesToSt ri ng() asnormal
00 Returnswrapped element
©0© Indexer retrieving an attribute
00 |ndexer retrieving asibling element
00 Isthisaroot e ement?
00 Find appropriate sibling

There's a fair amount of code in listing 14.X, but most of it is very straightforward. We override
ToString() @ by just proxying the call to the XEl ermrent , and if we wanted to implement value
equality we could do something similar for Equal s() and Get HashCode() . The property returning
the underlying element @ and the indexer for attributes ® are also very simple, although it's worth noting
that we only need to use an XNane for the parameter to the attribute indexer: if you provide a string at
execution time, Dynani cCbj ect will take care of calling the implicit conversion to XNane for you.

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Thetrickiest part of the code is understanding what the indexer with thei nt parameter @ is meant to be
doing. It's probably easiest to explain thisin terms of expected usage. Theideaisto avoid having the extra
"list" property by making an element act as both asingle element and alist of elements. Figure 14.X shows
our sample XML with afew expressions to reach different nodes within it.

Figure 14.5. Selecting data using Dynam cXEl enent

book author
name="... name="..."

K/ root .book.author ["name"

author

/ name="..."
book

books

name="...
author ‘(/’—_—\\\\\\\\
name="..."
root.book[1l] .author[1]
author
name="..."
book ”””’
name=ﬂJ'\\\\\\
excerpt |—— (Textnode)

root.book[2]
root.book[2] .excerpt.XElement.Value

Once you understand what the indexer is meant to do, the implementation is fairly simple, complicated
only by the possibility that we could already be at the top of the tree @. Otherwise we just have to ask the
element for al its siblings, then pick the one we've been asked for @.

So far we haven't done anything dynamic except in terms of the return type of Cr eat el nst ance()
- none of our examples will work, because we haven't written the code to fetch sub-elements. Let's fix
that now.

Overriding Tr yXXX methods

InDynam cQhbj ect , yourespondto callsdynamically by overriding one of the Tr y XXX methods. There
are 12 of them, representing different types of operation, as shown in table 14.X.

Table 14.1. Virtual Tr y XXX methodsin Dynam cObj ect

Name Type of call represented (wherex isthedynamic
obj ect)

TryBinaryOperation Binary operationsuchasx + y

TryConvert Conversionssuchas(Tar get) x

Please post comments or correcé'?ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Name Type of call represented (wherex isthedynamic
object)

TryCreatel nstance Object creation expressions: no equivalent in C#

TryDeletel ndex Indexer removal operation: no equivalent in C#

TryDeleteMember Property removal operation: no equivalent in C#

TryGetindex Indexer "getter" such asx[10]

TryGetMember Property "getter” suchasx. Property

Trylnvoke Direct invocation effectively treating x like a
delegate, such as x(10)

TrylnvokeMember Invocation of amember, such asx. Met hod()

TrySetindex Indexer "setter" suchasx[10] = 20

TrySetMember Property setter, suchasx. Property = 10

TryUnaryOperation Unary operation such as! x or - x

Each of these methods has a Boolean return type to indicate whether or not the binding was successful.
Each takes an appropriate binder as the first parameter, and if the operation logically has arguments (for
instance the argumentsto amethod, or theindexesfor anindexer) these arerepresented asanobj ect [] .
Finally, if the operation might have a return value (which includes everything except the set and delete
operations) then there's an out parameter of type obj ect to capture that value. The exact type of the
binder depends on the operation: there's a different binder type for each of the operations. For example,
the full signature of Tr yl nvokeMenber is:

public virtual bool TrylnvokeMenber (I nvokeMenber Bi nder bi nder,
object[] args, out object result)

You only need to override the methods representing operations you support dynamically. In our case,
we have dynamic read-only properties (for the elements) so we need to override Tr yGet Menber () , as
shown inlisting 14.X.

Example 14.31. Implementing a dynamic property with Tr yGet Menber ()

public override bool TryGet Menber (Get Menber Bi nder bi nder,
out object result)

{
XEl enment subEl enent = el enent. El enent (bi nder. Nane); ©
if (subElenent !'= null)
{
result = new Dynam cXEl enent ((XEl enent) subEl enent); @
return true;
}
return base. TryGet Menber (bi nder, out result); ©
}

00 Find the first matching sub-element
00 If found, build anew dynamic element
0O Otherwise use the base implementation

The implementation in listing 14.X is quite simple. The binder contains the name of the property which
was requested, so we look for the appropriate sub-element in the tree @. If there is one, we create a new
Dynam cXEl enent with it, assign that to the output parameter r esul t , and returnt r ue to indicate

Please post comments or correctigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

that the call was bound successfully @. If there was no sub-element with the right name, we just call
the base implementation of Tr yGet Menber () ©. The base implementation of each of the Tr y XXX
methods just returnsf al se and sets the output parameter to nul | if thereis one. We could easily have
done this explicitly, but we'd have had two separate statements. one to set the output parameter and one
toreturn f al se. If you prefer the slightly longer code, there's absolutely no reason not to write it - the
base implementations are just slightly convenient in terms of doing everything required to indicate that
the binding failed.

There's one bit of complexity I've side-stepped: the binder has another property (I gnor eCase) which
indicates whether or not the property should be bound in acase-insensitiveway. For example, Visual Basic
is case-insensitive, so its binder implementation would returnt r ue for this property, whereas C#'swould
returnf al se.Inour situation, it'sslightly awkward. Not only would it bemorework for Tr y Get Menber
to find the element in a case-insensitive manner ("more work" is always unpleasant, but it's not a good
reason not to implement it) - there's the more philosophical problem of what happens when you then use
the indexer to select siblings. Should the object remember whether it's case-sensitive or not, and select
siblings in the same way later on? If so, you'd see different results for el errent . Nane[2] depending
on the language. If, on the other hand, the indexer is aways case-sensitive, then el errent . nane[0]
might not even find itself! This sort of impedance mismatch islikely to happenin similar situations. If you
aim for perfection, you're likely to tie yourself up in knots. Instead, aim for apractical solution that you're
confident you can implement and maintain, and then document the restrictions.

With all thisin place, we can test Dynami ¢ XEl enent asshownin listing 14.X.

Example 14.32. Testing Dynam cXEl enent

XDocurent doc = XDocurent. Load("books. xm ");
dynam ¢ root = CreateDynam cXml (el ement. Root);
Consol e. Wi telLi ne(root. book["name"]);

Consol e. Wit eLi ne(root. book[2].author[1]);

We could add more complexity to our class, of course. We could add a Par ent property to go back
up the tree, or we might want to change to access sub-elements using method calls and make property
access represent attributes. The principle would be exactly the same: where you know the name in
advance, implement it as a normal class member. If you need it to be dynamic, override the appropriate
Dynani cCbj ect method.

There's one more piece of polish to apply to Dynani ¢ XEl errent before we leave it though. It'stime to
advertise what we've got to offer.

Overriding Get Dynam cMenber Nanes

Some languages, such as Python, alow an object to publish what names it knows about; it's the di r
function in Python, if you're interested. This information is useful in a REPL environment, and it can
also be handy when you're debugging in an IDE. The DLR makes this information available through
the Get Dynami cMenber Nanmes() method of both Dynamni cChj ect and Dynamni cMet aCbj ect
(we'll meet the latter in a minute). All we have to do is override this method, provide a sequence of the
dynamic member names, and we make our object's properties more discoverable. Listing 14.X showsthe
implementation for Dynami ¢ XEl enment .

Please post comments or correcgigns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

Example 14.33. I mplementing Get Dynanm cMenber Nanes in
Dynam cXEl enent

public override | Enunerabl e<string> Get Dynam cMenber Nanes()

{
return el enent. El enent s()
. Sel ect (x => x. Name. Local Nane)
.Distinct()
.OrderBy(x => x);
}

Asyou can see, all we need isasimple LINQ query. Of course that won't always be the case, but | suspect
many dynamic implementations will be able to use LINQ in thisway. In this case we need to make sure
that we don't return the same value more than once if there's more than one element with any particular
name, and |'ve sorted the resultsjust for consistency. In the Visua Studio 2010 debugger, you can expand
the"Dynamic View" of adynamic object and see the property names and values, as shown in figure 14.X.

Figure 14.6. Visual Studio 2010 displaying dynamic properties of a
Dynam cXEl enent

Watch 1
MNarme Value Type
= o root.book[2] {<book name="Rose"™> <author name="Holly Webh" /> |dynamic {Chapter 14.DynamicXElement}
+ i base {<book name="Rose"> <author name="Holly Webb" /> |System.Dynamic.DynamicObject {Chapter
gp element <book name="Rose"> <author name="Holly Webb"™ 3, - System.¥ml.Ling.XElement
e f,‘ ¥Element <book name="Rose">= <author name="Holly Webb"™ 2, - System.¥ml.Ling.XElement
=1 =i Dynamic View Expanding the Dynamic View will get the dynamic members
2 author {<author name="Haolly Webbh" /=} {Chapter 14.DynamickElement}
J excerpt {<excerpt> Rose was remembering the illustrations fro| {Chapter 14.DynamickElement}

Unfortunately the dynamic view just callsToSt ri ng() on each of the values; there's no way of drilling
down further. FIXME: Check this against later betas!

We've now finished our Dynami ¢ XEl enment class, asfar aswe're going to takeit in this book. | believe
that Dynani cQbj ect hits a sweet spot between control and simplicity: it's fairly easy to get it right,
but it has far fewer restrictions than ExpandoQbj ect . However, if you really need total control over
binding, you'll need to implement | Dynani cMet aCbj ect Pr ovi der directly.

Implementing IDynamicMetaObjectProvider

FIXME: MEAP readers, | need your help! IDynamicMetaObjectProvider is al very well, but | can't
currently think of a good example which uses it in anything other than a very contrived way. | will keep
thinking, but if you have any ideas of what you'd like to seein this section, please post them in the forum.

Summary

It feels like we've come a very long way from mainstream, statically typed C#. We've looked at some
situations where dynamic typing can be useful, how C# 4 makesit possible (both in terms of the code you
write and how it works under the surface) and how to respond dynamically to cals. Along the way, we've
seen a hit of COM, a hit of Python, some reflection, and learned a little about the Dynamic Language
Runtime.

Please post comments or correc-yi ns to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://www.manning-sandbox.com/forum.jspa?forumID=569

Dynamic binding in a static language

This has not been a complete guide to how the DLR works, or even how C# operates with it. Thetruth is,
thisisadeep topic with many dark corners. Inreality, you're unlikely to bump into the problems - and most
developers won't even use the simple scenarios very often. I'm sure whole books will be written about the
DLR, but | hope I've given enough detail here to let 99% of C# developers get on with their jobs without
needing any more information. If you want to know more, the documentation on the DLR web site [http://
dir.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs] is a good starting point.

If you never use the dynami ¢ type, you can pretty much ignore dynamic typing entirely. | recommend
that that's exactly what you do for the mgjority of your code - in particular, | wouldn't use it as a crutch
to avoid creating appropriate interfaces, base classes and so on. Where you do need dynamic typing, I'd
use it as sparingly as possible: don't take the attitude of "I'm using dynami c in this method, so | might
aswell just make everything dynamic."

| don't want to sound too negative, however. If you find yourself in a situation where dynamic typing is
helpful, I'm sure you'll be very thankful that it's present in C# 4. Even if you never need it for production
code, I'd encourage you to give it atry for the fun of it - I've found it fascinating to delve into. Y ou may
also find the DL R useful without really using dynamic typing: most of our Python example didn't use any
dynamic typing, but it used the DLR to execute the Python script containing the configuration data.

Between this chapter and the previous one, we've now covered all the new features of C# as a language.
However, part of the aim of thisbook isto help developers evolve their ideas of idiomatic C#. Two of the
new technologies introduced into .NET 4.0 have the potential to change the way we write code in terms
of robustness and concurrency, just as LINQ has changed our perspective on working with collections. In
the next chapter, we'll look at the Code Contracts and Parallel Extensions libraries.

Please post comments or correc-yiins to the Author Online forum at

http://www.manning-sandbox.com/forum.jspa?forum|D=569 Download at Boykma.Com

http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://dlr.codeplex.com/Wiki/View.aspx?title=Docs%20and%20specs
http://www.manning-sandbox.com/forum.jspa?forumID=569

