
Learn
Java for Android
Development

Get the Java skills and know-how that you’ll need
to learn and write successful Android apps

Jeff “JavaJeff” Friesen

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

 i

Learn Java for Android
Development

■ ■ ■

Jeff “JavaJeff” Friesen

ii

Learn Java for Android Development

Copyright © 2010 by Jeff “JavaJeff” Friesen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3156-1

ISBN-13 (electronic): 978-1-4302-3157-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Paul Connolly
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Debra Kelly
Copy Editor: Bill McManus
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com/book/view/1430231564.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com/book/view/1430231564

 iii

To my best friend

iv

Contents at a Glance

■Contents .. v
■About the Author ... x
■About the Technical Reviewer.. xi
■Acknowledgments... xii
■Introduction.. xiii
■Chapter 1: Getting Started with Java .. 1
■Chapter 2: Learning Language Fundamentals ... 43
■Chapter 3: Learning Object-Oriented Language Features.............................. 97
■Chapter 4: Mastering Advanced Language Features Part 1 139
■Chapter 5: Mastering Advanced Language Features Part 2 181
■Chapter 6: Exploring the Basic APIs Part 1 ... 227
■Chapter 7: Exploring the Basic APIs Part 2 ... 269
■Chapter 8: Discovering the Collections Framework 315
■Chapter 9: Discovering Additional Utility APIs .. 381
■Chapter 10: Performing I/O ... 449
■Appendix: Solutions to Exercises .. 533

■Index.. 595

 v

Contents

■Contents at a Glance... iv
■About the Author ... x
■About the Technical Reviewer.. xi
■Acknowledgments... xii
■Introduction.. xiii

■Chapter 1: Getting Started with Java .. 1

What Is Java?..1
Java Is a Language ..2
Java Is a Platform ..3
Java SE, Java EE, Java ME, and Android ...5

Installing and Exploring the JDK ...6
Installing and Exploring Two Popular IDEs..12

NetBeans IDE ...13
Eclipse IDE ...17

Four of a Kind..20
Understanding Four of a Kind ..21
Modeling Four of a Kind in Pseudocode ..21
Converting Pseudocode to Java Code..23
Compiling, Running, and Distributing FourOfAKind ...37

Summary ..41

■Chapter 2: Learning Language Fundamentals ... 43
Classes..43

Declaring Classes ..44
Introducing Fields ..45
Introducing Methods..58
Introducing Constructors ...75
Introducing Other Initializers..76
Interface Versus Implementation...82

■ CONTENTS

vi

Objects..85
Creating Objects and Arrays ..85
Accessing Fields ..87
Calling Methods ...89
Garbage Collection...92

Summary ..94

■Chapter 3: Learning Object-Oriented Language Features.............................. 97
Inheritance..97

Extending Classes..98
The Ultimate Superclass ..103
Composition ...112
The Trouble with Implementation Inheritance ...112

Polymorphism...116
Upcasting and Late Binding ...117
Abstract Classes and Abstract Methods ..120
Downcasting and Runtime Type Identification ..121
Covariant Return Types..123

Interfaces..125
Declaring Interfaces...125
Implementing Interfaces..127
Extending Interfaces ..130
Why Use Interfaces? ..131

Summary ..137

■Chapter 4: Mastering Advanced Language Features Part 1 139
Nested Types ..139

Static Member Classes ..139
Nonstatic Member Classes ..142
Anonymous Classes...146
Local Classes ...148
Interfaces Within Classes ..150

Packages ..151
What Are Packages?..151
The Package Statement...152
The Import Statement ..153
Searching for Packages and Types..154
Playing with Packages...155
Packages and JAR Files...159

Static Imports ...160
Exceptions ..161

What Are Exceptions? ..162
Representing Exceptions in Source Code ..162
Throwing Exceptions..166
Handling Exceptions ..168
Performing Cleanup ...172

Summary ..178

■Chapter 5: Mastering Advanced Language Features Part 2 181
Assertions ...181

 ■ CONTENTS

 vii

Declaring Assertions..182
Using Assertions ..183
Avoiding Assertions ...188
Enabling and Disabling Assertions...189

Annotations...190
Discovering Annotations ..190
Declaring Annotation Types and Annotating Source Code...193
Processing Annotations ...198

Generics..200
Collections and the Need for Type Safety..200
Generic Types ..202
Generic Methods..212

Enums...214
The Trouble with Traditional Enumerated Types ...214
The Enum Alternative...215
The Enum Class ...220

Summary ..225

■Chapter 6: Exploring the Basic APIs Part 1 ... 227
Math APIs..227

Math and StrictMath ..227
BigDecimal...234
BigInteger ..239

Package Information...243
Primitive Wrapper Classes..247

Boolean ..248
Character ...250
Float and Double ..251
Integer, Long, Short, and Byte ...255
Number ..257

References API..257
Basic Terminology ...257
Reference and ReferenceQueue ..259
SoftReference ..260
WeakReference..263
PhantomReference ..263

Summary ..268

■Chapter 7: Exploring the Basic APIs Part 2 ... 269
Reflection API..269
String Management ..277

String ...278
StringBuffer ...281

System..284
Threading API..287

Runnable and Thread...288
Thread Synchronization ...296

Summary ..313

■Chapter 8: Discovering the Collections Framework 315

■ CONTENTS

viii

Framework Overview..315
Comparable Versus Comparator ..316

Iterable and Collection ..318
Iterator and the Enhanced For Loop Statement ...321
Autoboxing and Unboxing ..323

List ..325
ArrayList...329
LinkedList ..330

Set...332
TreeSet ..332
HashSet..333
EnumSet ..337

SortedSet ..339
Queue..346

PriorityQueue ...348
Map...351

TreeMap...355
HashMap..356
IdentityHashMap ..362
WeakHashMap ...364
EnumMap...366

SortedMap ..367
Utilities..369
Classic Collections Classes...372
Summary ..379

■Chapter 9: Discovering Additional Utility APIs .. 381
Concurrency Utilities...381

Executors ...381
Synchronizers ..390
Concurrent Collections...392
Locks ...394
Atomic Variables ..397

Internationalization APIs ...397
Locales...398
Resource Bundles ..400
Break Iterators ...409
Collators...413
Dates, Time Zones, and Calendars ..415
Formatters ...421

Preferences API ..428
Random Number Generation...432
Regular Expressions API ...434
Summary ..447

■Chapter 10: Performing I/O ... 449
File ..449
RandomAccessFile..462
Streams ..473

 ■ CONTENTS

 ix

Stream Classes Overview ..473
OutputStream and InputStream...475
ByteArrayOutputStream and ByteArrayInputStream..477
FileOutputStream and FileInputStream..479
PipedOutputStream and PipedInputStream ...481
FilterOutputStream and FilterInputStream...485
BufferedOutputStream and BufferedInputStream..492
DataOutputStream and DataInputStream ..493
Object Serialization and Deserialization ..496
PrintStream..508

Writers and Readers ...511
Writer and Reader Classes Overview...512
Writer and Reader..513
OutputStreamWriter and InputStreamReader ..514
FileWriter and FileReader ..518

Summary ..530
The Road Goes Ever On..530

■Appendix: Solutions to Exercises .. 533
Chapter 1: Getting Started with Java..533
Chapter 2: Learning Language Fundamentals ..539
Chapter 3: Learning Object-Oriented Language Features...542
Chapter 4: Mastering Advanced Language Features Part 1..549
Chapter 5: Mastering Advanced Language Features Part 2..555
Chapter 6: Exploring the Basic APIs Part 1 ...560
Chapter 7: Exploring the Basic APIs Part 2 ...563
Chapter 8: Discovering the Collections Framework..569
Chapter 9: Discovering Additional Utility APIs...575
Chapter 10: Performing I/O ...581

■Index.. 595

■ CONTENTS

x

About the Author

Jeff “JavaJeff” Friesen has been actively involved with Java since the late
1990s. Jeff has worked with Java in various companies, including a
healthcare-oriented consulting firm, where he created his own Java/C++
software for working with smart cards. Jeff has written about Java in
numerous articles for JavaWorld (www.javaworld.com), informIT
(www.informit.com), and java.net (http://java.net), and has authored
several books on Java, including Beginning Java SE 6 Platform: From Novice
to Professional (Apress, 2007; ISBN: 159059830X), which focuses exclusively
on Java version 6’s new and improved features. Jeff has also taught Java in
university and college continuing education classes. He has a Bachelor of
Science degree in mathematics and computer science from Brandon
University in Brandon, Manitoba, Canada, and currently freelances in Java
and other software technologies.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://www.javaworld.com
http://www.informit.com
http://java.net

 ■ CONTENTS

 xi

About the Technical
Reviewer

Paul Connolly is the Director of Engineering for Atypon Systems'
RightSuite product line. RightSuite is an enterprise access-control and
commerce solution used by many of the world's largest publishing and
media companies. Paul enjoys designing and implementing high-
performance, enterprise-class software systems. He is also an active
contributor in the open-source community.

Prior to joining Atypon Systems, Paul worked as a senior software
engineer at Standard & Poor's where he architected and developed key
communications systems. Paul is a Sun Certified Java Programmer, Sun
Certified Business Component Developer, and a Sun Certified Web
Component Developer. Paul lives in New York City with his wife, Marina.

■ CONTENTS

xii

Acknowledgments

I thank Steve Anglin for contacting me to write this book, Debra Kelly for guiding me through the
various aspects of this project, Tom Welsh for helping me with the development of my chapters,
Paul Connolly for his diligence in catching various flaws that would otherwise have made it into
this book, and Bill McManus and the production team for making the book’s content look good.

It has been many years since I started writing about Java, and I also thank the following
editors who have helped me share my knowledge with others: Chris Adamson, Bridget Collins,
Richard Dal Porto, Sean Dixon, Victoria Elzey, Kevin Farnham, Todd Green, Jennifer Orr, Athen
O’Shea, Esther Schindler, Daniel Steinberg, Jill Steinberg, Dustin Sullivan, and Atlanta Wilson.

 xiii

Introduction
Smartphones and other touch-based mobile devices are all the rage these days. Their popularity
is largely due to their ability to run apps. Although the iPhone and iPad with their growing
collection of Objective-C-based apps are the leaders of the pack, Android-based smartphones
with their growing collection of Java-based apps are proving to be a strong competitor.

Not only are many iPhone/iPad developers making money by selling their apps, many
Android developers are also making money by selling similar apps. According to tech websites
such as The Register (www.theregister.co.uk/), some Android developers are making lots of
money (www.theregister.co.uk/2010/03/02/android_app_profit/).

In today’s tough economic climate, perhaps you would like to try your hand at becoming an
Android developer and make some money. If you have good ideas, perseverance, and some
artistic talent (or perhaps know some talented individuals), you are already part of the way
toward achieving this goal.

Tip: A good reason to consider Android app development over iPhone/iPad app development is the lower
startup costs that you will incur with Android. For example, you do not need to purchase a Mac on which to
develop Android apps (a Mac is required for developing iPhone/iPad apps); your existing Windows, Linux,
or Unix machine will do nicely.

Most importantly, you will need to possess a solid understanding of the Java language and
foundational application programming interfaces (APIs) before jumping into Android. After all,
Android apps are written in Java and interact with many of the standard Java APIs (such as
threading and input/output APIs).

I wrote Learn Java for Android Development to give you a solid Java foundation that you can
later extend with knowledge of Android architecture, API, and tool specifics. This book will give
you a strong grasp of the Java language and many important APIs that are fundamental to
Android apps and other Java applications. It will also introduce you to key development tools.

Learn Java for Android Development is organized into ten chapters and one appendix. Each
chapter focuses on a collection of related topics and presents a set of exercises that you should
complete to get the most benefit from the chapter’s content. The appendix provides the solutions
to each chapter’s exercises.

http://www.theregister.co.uk
http://www.theregister.co.uk/2010/03/02/android_app_profit

■ INTRODUCTION

xiv

Note: You can download this book’s source code by pointing your web browser to
www.apress.com/book/view/1430231564 and clicking the Source Code link under Book Resources.
Although most of this code is compilable with Java version 6, you will need Java version 7 to compile one
of the applications.

Chapter 1 introduces you to Java by first focusing on Java’s dual nature (language and
platform). It then briefly introduces you to Sun’s/Oracle’s Java SE, Java EE, and Java ME editions
of the Java development software, as well as Google’s Android edition. You next learn how to
download and install the Java SE Development Kit (JDK), and learn some Java basics by
developing and playing with a pair of simple Java applications. After receiving a brief
introduction to the NetBeans and Eclipse IDEs, you learn about application development in the
context of Four of a Kind, a console-based card game.

Chapter 2 starts you on an in-depth journey of the Java language by focusing on language
fundamentals (such as types, expressions, variables, and statements) in the contexts of classes
and objects. Because applications are largely based on classes, it is important to learn how to
architect classes correctly, and this chapter shows you how to do so.

Chapter 3 adds to Chapter 2’s pool of object-based knowledge by introducing you to those
language features that take you from object-based applications to object-oriented applications.
Specifically, you learn about features related to inheritance, polymorphism, and interfaces. While
exploring inheritance, you learn about Java’s ultimate superclass. Also, while exploring interfaces,
you discover the real reason for their inclusion in the Java language; interfaces are not merely a
workaround for Java’s lack of support for multiple implementation inheritance, but serve a
higher purpose.

Chapter 4 introduces you to four categories of advanced language features: nested types,
packages, static imports, and exceptions. While discussing nested types, I briefly introduce the
concept of a closure and state that closures will appear in Java version 7 (which many expect to
arrive later this year).

Note: I wrote this book several months before Java version 7’s expected arrival in the fall of 2010.
Although I have tried to present an accurate portrayal of version 7–specific language features, it is possible
that feature syntax may differ somewhat from what is presented in this book. Also, I only discuss closures
briefly because this feature was still in a state of flux while writing this book. For more information about
closures and other functional programming concepts (such as lambdas) being considered for Java version 7, I
recommend that you check out articles such as “Functional Programming Concepts in JDK 7” by Alex Collins
(http://java.dzone.com/articles/lambdas-closures-jdk-7).

Chapter 5 continues to explore advanced language features by focusing on assertions,
annotations, generics, and enums. Although the topic of generics has brought confusion to many
developers, I believe that my discussion of this topic will clear up much of the murkiness. Among
other items, you learn how to interpret type declarations such as Enum<E extends Enum<E>>.

Chapter 6 begins a trend that focuses more on APIs than language features. This chapter first
introduces you to many of Java’s math-oriented types (such as Math, StrictMath, BigDecimal, and
BigInteger), and also introduces you to Java’s strictfp reserved word. It then looks at the
Package class, primitive wrapper classes, and the References API.

http://www.apress.com/book/view/1430231564
http://java.dzone.com/articles/lambdas-closures-jdk-7

 ■ INTRODUCTION

 xv

Chapter 7 continues to explore Java’s basic APIs by focusing on reflection, string
management, the System class, and threading.

Chapter 8 focuses exclusively on Java’s collections framework, which provides you with a
solution for organizing objects in lists, sets, queues, and maps.

Chapter 9 continues to explore Java’s utility APIs by introducing you to the concurrency
utilities, internationalization, preferences, random number generation, and regular expressions.

Chapter 10 is all about input/output (I/O). In this chapter, you explore Java’s classic I/O
support in terms of its File class, RandomAccessFile class, various stream classes, and various
writer/reader classes. My discussion of stream I/O includes coverage of Java’s object serialization
and deserialization mechanisms.

Note: This book largely discusses APIs that are common to Java SE and Android. However, it diverges from
this practice in Chapter 9, where I use the Swing toolkit to provide a graphical user interface for one of this
chapter’s internationalization examples. (Android does not support Swing.)

After you complete this book, I recommend that you obtain a copy of Beginning Android 2 by
Mark L Murphy (Apress, 2010; ISBN: 1430226293) and start learning how to develop Android
apps. In that book, “you’ll learn how to develop applications for Android 2.x mobile devices,
using simple examples that are ready to run with your copy of the JDK.”

Note: Over the next few months, I will make available at my javajeff.mb.ca website six additional PDF-
based chapters. These chapters will introduce you to more Java APIs (such as networking and database
APIs) that I could not discuss in this book because the book has greatly exceeded its initial 400-page
estimate (and the good folks at Apress have been gracious enough to let me do so, but there are limits). I
present more information about these PDF files at the end of Chapter 10’s “Summary” section.

Thanks for purchasing my book. I hope you find it a helpful preparation for, and I wish you
lots of success in achieving, a satisfying and lucrative career as an Android app developer.

Jeff “JavaJeff” Friesen, August 2010

■ INTRODUCTION

xvi

1

1

 Chapter

Getting Started with Java
Android is Google’s software stack for mobile devices that includes an operating system

and middleware. With help from Java, the OS runs specially designed Java applications

known as Android apps. Because these apps are based on Java, it makes sense for you

to learn about Java before you dive into the world of Android development.

NOTE: This book illustrates Java concepts via non-Android Java applications.

This chapter sets the stage for teaching you the essential Java concepts that you need

to understand before you embark on your Android career. I first answer the “What is

Java?” question. I next show you how to install the Java SE Development Kit, and

introduce you to JDK tools for compiling and running Java applications.

After showing you how to install and use the open source NetBeans and Eclipse IDEs so

that you can develop these applications faster, I present an application for playing a

card game that I call Four of a Kind. This application gives you a significant taste of the

Java language, and is the centerpiece of my discussion on developing applications.

What Is Java?
Java is a language and a platform originated by Sun Microsystems. This section briefly

describes this language and reveals what it means for Java to be a platform. To meet

various needs, Sun organized Java into three main editions: Java SE, Java EE, and Java

ME. This section also briefly explores each of these editions, along with Android.

1

CHAPTER 1: Getting Started with Java 2

NOTE: Java has an interesting history that dates back to December 1990. At that time, James
Gosling, Patrick Naughton, and Mike Sheridan (all employees of Sun Microsystems) were given
the task of figuring out the next major trend in computing. They concluded that one trend would
involve the convergence of computing devices and intelligent consumer appliances. Thus was
born the Green project.

The fruits of Green were Star7, a handheld wireless device featuring a five-inch color LCD
screen, a SPARC processor, a sophisticated graphics capability, and a version of Unix; and Oak, a
language developed by James Gosling for writing applications to run on Star7, and which he
named after an oak tree growing outside of his office window at Sun. To avoid a conflict with
another language of the same name, Dr. Gosling changed this language’s name to Java.

Sun Microsystems subsequently evolved the Java language and platform until Oracle acquired
Sun in early 2010. Check out http://java.sun.com/ for the latest Java news from Oracle.

Java Is a Language
Java is a language in which developers express source code (program text). Java’s

syntax (rules for combining symbols into language features) is partly patterned after the

C and C++ languages to shorten the learning curve for C/C++ developers.

The following list identifies a few similarities between Java and C/C++:

 Java and C/C++ share the same single-line and multiline comment

styles. Comments let you document source code.

 Many of Java’s reserved words are identical to their C/C++

counterparts (for, if, switch, and while are examples) and C++

counterparts (catch, class, public, and try are examples).

 Java also supports character, double precision floating-point, floating-

point, integer, long integer, and short integer primitive types, and via

the same char, double, float, int, long, and short reserved words.

 Java also supports many of the same operators, including arithmetic

(+, -, *, /, and %) and conditional (?:) operators.

 Java also uses brace characters ({ and }) to delimit blocks of

statements.

The following list identifies a few differences between Java and C/C++:

 Java supports an additional comment style known as Javadoc. (I will

briefly introduce Javadoc later in this chapter.)

 Java provides reserved words not found in C/C++ (extends, strictfp,

synchronized, and transient are examples).

http://java.sun.com

CHAPTER 1: Getting Started with Java 3

 Java supports the byte integer type, does not provided a signed

version of the character type, and does not provide unsigned versions

of integer, long integer, and short integer. Furthermore, all of Java’s

primitive types have guaranteed implementation sizes, which is an

important part of achieving portability (discussed later). The same

cannot be said of equivalent primitive types in C and C++.

 Java provides operators not found in C/C++. These operators include

instanceof and >>> (unsigned right shift).

 Java provides labeled break and continue statements that you will not

find in C/C++.

You will learn about single-line and multiline comments in Chapter 2. Also, you will learn

about reserved words, primitive types, operators, blocks, and statements (including

labeled break and continue) in that chapter.

Java was designed to be a safer language than C/C++. It achieves safety in part by

omitting certain C/C++ features. For example, Java does not support pointers (variables

containing addresses) and does not let you overload operators.

Java also achieves safety by modifying certain C/C++ features. For example, loops must

be controlled by Boolean expressions instead of integer expressions where 0 is false

and a nonzero value is true. (Chapter 2 discusses loops and expressions.)

Suppose you must code a C/C++ while loop that repeats no more than ten times. Being

tired, you specify while (x) x++; (assume that x is an integer-based variable initialized

to 0—I discuss variables in Chapter 2) where x++ adds 1 to x’s value. This loop does not

stop when x reaches 10; you have introduced a bug (a defect).

This problem is less likely to occur in Java because it complains when it sees while (x).

This complaint requires you to recheck your expression, and you will then most likely

specify while (x != 10). Not only is safety improved (you cannot specify just x),

meaning is also clarified: while (x != 10) is more meaningful than while (x).

The aforementioned and other fundamental language features support classes, objects,

inheritance, polymorphism, and interfaces. Java also provides advanced features related

to nested types, packages, static imports, exceptions, assertions, annotations, generics,

enums, and more. Subsequent chapters explore all of these language features.

Java Is a Platform
Java is a platform for executing programs. In contrast to platforms that consist of

physical processors (such as an Intel processor) and operating systems (such as Linux),

the Java platform consists of a virtual machine and associated execution environment.

The virtual machine is a software-based processor that presents its own instruction set.

The associated execution environment consists of libraries for running programs and

interacting with the underlying operating system.

CHAPTER 1: Getting Started with Java 4

The execution environment includes a huge library of prebuilt classfiles that perform

common tasks, such as math operations (trigonometry, for example) and network

communications. This library is commonly referred to as the standard class library.

A special Java program known as the Java compiler translates source code into

instructions (and associated data) that are executed by the virtual machine. These

instructions are commonly referred to as bytecode.

The compiler stores a program’s bytecode and data in files having the .class extension.

These files are known as classfiles because they typically store the compiled equivalent

of classes, a language feature discussed in Chapter 2.

A Java program executes via a tool (such as java) that loads and starts the virtual

machine, and passes the program’s main classfile to the machine. The virtual machine

uses a classloader (a virtual machine or execution environment component) to load the

classfile.

After the classfile has been loaded, the virtual machine’s bytecode verifier component

makes sure that the classfile’s bytecode is valid and does not compromise security. The

verifier terminates the virtual machine when it finds a problem with the bytecode.

Assuming that all is well with the classfile’s bytecode, the virtual machine’s interpreter
interprets the bytecode one instruction at a time. Interpretation consists of identifying

bytecode instructions and executing equivalent native instructions.

NOTE: Native instructions (also known as native code) are the instructions understood by the
underlying platform’s physical processor.

When the interpreter learns that a sequence of bytecode instructions is executed

repeatedly, it informs the virtual machine’s Just In Time (JIT) compiler to compile these

instructions into native code.

JIT compilation is performed only once for a given sequence of bytecode instructions.

Because the native instructions execute instead of the associated bytecode instruction

sequence, the program executes much faster.

During execution, the interpreter might encounter a request to execute another

classfile’s bytecode. When that happens, it asks the classloader to load the classfile and

the bytecode verifier to verify the bytecode prior to executing that bytecode.

The platform side of Java promotes portability by providing an abstraction over the

underlying platform. As a result, the same bytecode runs unchanged on Windows-

based, Linux-based, Mac OS X–based, and other platforms.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 1: Getting Started with Java 5

NOTE: Java was introduced with the “write once, run anywhere” slogan. Although Java goes to
great lengths to enforce portability, it does not always succeed. Despite being mostly platform
independent, certain parts of Java (such as the scheduling of threads, discussed in Chapter 7)
vary from underlying platform to underlying platform.

The platform side of Java also promotes security by providing a secure environment in

which code executes. The goal is to prevent malicious code from corrupting the

underlying platform (and possibly stealing sensitive information).

NOTE: Because many developers are not satisfied with the Java language, but believe that the
Java platform is important, they have devised additional languages (such as Groovy) that run on
the Java platform. Furthermore, Java version 7 includes an enhanced virtual machine that
simplifies adapting even more dynamic programming languages (languages that require less-
rigid coding; you do not have to define a variable’s type before using the variable, for example) to
this platform.

Java SE, Java EE, Java ME, and Android
Developers use different editions of the Java platform to create Java programs that run

on desktop computers, web browsers, web servers, mobile information devices (such as

cell phones), and embedded devices (such as television set-top boxes):

 Java Platform, Standard Edition (Java SE): The Java platform for

developing applications, which are stand-alone programs that run on

desktops. Java SE is also used to develop applets, which are

programs that run in the context of a web browser.

 Java Platform, Enterprise Edition (Java EE): The Java platform for

developing enterprise-oriented applications and servlets, which are

server programs that conform to Java EE’s Servlet API. Java EE is built

on top of Java SE.

 Java Platform, Micro Edition (Java ME): The Java platform for

developing MIDlets, which are programs that run on mobile

information devices, and Xlets, which are programs that run on

embedded devices.

Developers also use a special Google-created edition of the Java platform (see

http://developer.android.com/index.html) to create Android apps that run on

Android-enabled devices. This edition is known as the Android platform.

Google’s Android platform largely consists of Java core libraries (partly based on Java

SE) and a virtual machine known as Dalvik. This collective software runs on top of a

specially modified Linux kernel.

http://developer.android.com/index.html

CHAPTER 1: Getting Started with Java 6

NOTE: Check out Wikipedia’s “Android (operating system)” entry
(http://en.wikipedia.org/wiki/Android_%28operating_system%29) to learn more
about the Android OS, and Wikipedia’s “Dalvik (software)” entry
(http://en.wikipedia.org/wiki/Dalvik_%28software%29) to learn more about the
Dalvik virtual machine.

In this book, I cover the Java language (supported by Java SE and Android) and Java SE

APIs (also supported by Android). Furthermore, I present the source code (typically as

code fragments) to Java SE–based applications.

Installing and Exploring the JDK
The Java Runtime Environment (JRE) implements the Java SE platform and makes it

possible to run Java programs. The public JRE can be downloaded from the Java SE

Downloads page (http://java.sun.com/javase/downloads/index.jsp).

However, the public JRE does not make it possible to develop Java programs. For that

task, you need to download and install the Java SE Development Kit (JDK), which

contains development tools (including the Java compiler) and a private JRE.

NOTE: JDK 1.0 was the first JDK to be released (in May 1995). Until JDK 6 arrived, JDK stood for
Java Development Kit (SE was not part of the title). Over the years, numerous JDKs have been
released, with JDK 7 set for release in fall or winter 2010.

Each JDK’s version number identifies a version of Java. For example, JDK 1.0 identifies Java
version 1.0, and JDK 5 identifies Java version 5.0. JDK 5 was the first JDK to also provide an
internal version number: 1.5.0.

The Java SE Downloads page also provides access to the current JDK, which is JDK 6

Update 20 at time of writing. Click the Download JDK link to download the current JDK’s

installer program for your platform.

NOTE: Some of this book’s code requires JDK 7, which is only available as a preview release
(http://java.sun.com/javase/downloads/ea.jsp) at time of writing.

The JDK installer installs the JDK in a home directory. (It can also install the public JRE

in another directory.) On my Windows XP platform, the home directory is C:\Program
Files\Java\jdk1.6.0_16—JDK 6 Update 16 was current when I began this book.

http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Dalvik_%28software%29
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/ea.jsp

CHAPTER 1: Getting Started with Java 7

TIP: After installing the JDK, you should add the bin subdirectory to your platform’s PATH
environment variable. That way, you will be able to execute JDK tools from any directory in your
filesystem.

Finally, you might want to create a projects subdirectory of the JDK’s home directory to
organize your Java projects, and create a separate subdirectory within projects for each of
these projects.

The home directory contains various files (such as README.html, which provides

information about the JDK, and src.zip, which provides the standard class library

source code) and subdirectories, including the following three important subdirectories:

 bin: This subdirectory contains assorted JDK tools, including the Java

compiler tool. You will discover some of these tools shortly.

 jre: This subdirectory contains the JDK’s private copy of the JRE,

which lets you run Java programs without having to download and

install the public JRE.

 lib: This subdirectory contains library files that are used by JDK tools.

For example, tools.jar contains the Java compiler’s classfiles—the

compiler was written in Java.

You will use only a few of the bin subdirectory’s tools in this book, specifically javac

(Java compiler), java (Java application launcher), javadoc (Java documentation

generator), and jar (Java archive creator, updater, and extractor).

NOTE: javac is not the Java compiler. It is a tool that loads and starts the virtual machine,
identifies the compiler’s main classfile (located in tools.jar) to the virtual machine, and
passes the name of the source file being compiled to the compiler’s main classfile.

You execute JDK tools at the command line, passing command-line arguments to a tool.

Learn about the command line and arguments via Wikipedia’s “Command-line interface”

entry (http://en.wikipedia.org/wiki/Command-line_interface).

Now that you have installed the JDK and know something about its tools, you are ready

to explore a small DumpArgs application that outputs its command-line arguments to the

standard output device.

http://en.wikipedia.org/wiki/Command-line_interface

CHAPTER 1: Getting Started with Java 8

NOTE: The standard output device is part of a mechanism known as Standard I/O. This
mechanism, which consists of Standard Input, Standard Output, and Standard Error, and which
originated with the Unix operating system, makes it possible to read text from different sources
(keyboard or file) and write text to different destinations (screen or file).

Text is read from the standard input device, which defaults to the keyboard but can be redirected
to a file. Text is output to the standard output device, which defaults to the screen but can be
redirected to a file. Error message text is output to the standard error device, which defaults to
the screen but can be redirected to a file that differs from the standard output file.

Listing 1–1 presents the DumpArgs application source code.

Listing 1–1. Dumping command-line arguments via main()’s args array to the standard output device

public class DumpArgs
{
 public static void main(String[] args)
 {
 System.out.println("Passed arguments:");
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

Listing 1–1’s DumpArgs application consists of a class named DumpArgs and a method

within this class named main(), which is the application’s entry point and provides the

code to execute. (You will learn about classes and methods in Chapter 2.)

main() is called with an array of strings (character sequences) that identify the

application’s command-line arguments. These strings are stored in String-based array

variable args. (I discuss method calling, arrays, and variables in Chapter 2.)

NOTE: Although the array variable is named args, there is nothing special about this name. You
could name this variable anything you want.

main() first executes System.out.println("Passed arguments:");, which calls

System.out’s println() method with the "Passed arguments:" string. This method call

outputs Passed arguments: to the standard output device and then terminates the

current line so that subsequent output is sent to a new line immediately below the

current line. (I discuss System.out in Chapter 7.)

CHAPTER 1: Getting Started with Java 9

NOTE: System.out provides access to a family of println() methods and a family of
print() methods for outputting different kinds of data (such as sequences of characters and
integers). Unlike the println() methods, the print() methods do not terminate the current
line; subsequent output continues on the current line.

Each println() method terminates a line by outputting a line separator string, which is defined
by system property line.separator, and which is not necessarily a single newline character
(identified in source code via character literal '\n'). (I discuss system properties in Chapter 7,
line.separator in Chapter 10, and character literals in Chapter 2.) For example, on Windows
platforms, the line separator string is a carriage return character (whose integer code is 13)
followed by a line feed character (whose integer code is 10).

main() uses a for loop to repeatedly execute System.out.println(args[i]);. The loop

executes args.length times, which happens to identify the number of strings that are

stored in args. (I discuss for loops in Chapter 2.)

The System.out.println(args[i]); method call reads the string stored in the ith entry

of the args array—the first entry is located at index (location) 0; the last entry is stored at

index args.length - 1. This method call then outputs this string to standard output.

Assuming that you are familiar with your platform’s command-line interface and are at

the command line, make DumpArgs your current directory and copy Listing 1–1 to a file

named DumpArgs.java. Then compile this source file via the following command line:

javac DumpArgs.java

Assuming that that you have included the .java extension, which is required by javac,

and that DumpArgs.java compiles, you should discover a file named DumpArgs.class in

the current directory. Run this application via the following command line:

java DumpArgs

If all goes well, you should see the following line of output on the screen:

Passed arguments:

For more interesting output, you will need to pass command-line arguments to

DumpArgs. For example, execute the following command line, which specifies Curly, Moe,

and Larry as three arguments to pass to DumpArgs:

java DumpArgs Curly Moe Larry

This time, you should see the following expanded output on the screen:

Passed arguments:
Curly
Moe
Larry

CHAPTER 1: Getting Started with Java 10

You can redirect the output destination to a file by specifying the greater than angle

bracket (>) followed by a filename. For example, java DumpArgs Curly Moe Larry
>out.txt stores the DumpArgs application’s output in a file named out.txt.

NOTE: Instead of specifying System.out.println(), you could specify
System.err.println() to output characters to the standard error device. (System.err
provides the same families of println() and print() methods as System.out.) However,
you should only switch from System.out to System.err when you need to output an error
message so that the error messages are displayed on the screen, even when standard output is
redirected to a file.

Congratulations on successfully compiling your first application source file and running

the application! Listing 1–2 presents the source code to a second application, which

echoes text obtained from the standard input device to the standard output device.

Listing 1–2. Echoing text read from standard input to standard output

public class EchoText
{
 public static void main(String[] args) throws java.io.IOException
 {
 System.out.println("Please enter some text and press Enter!");
 int ch;
 while ((ch = System.in.read()) != 13)
 System.out.print((char) ch);
 System.out.println();
 }
}

After outputting a message that prompts the user to enter some text, main() introduces

int variable ch to store each character’s integer representation. (You will learn about int

and integer in Chapter 2.)

main() now enters a while loop (discussed in Chapter 2) to read and echo characters.

The loop first calls System.in.read() to read a character and assign its integer value to

ch. The loop ends when this value equals 13 (the integer value of the Enter key).

NOTE: When standard input is not redirected to a file, System.in.read() returns 13 to
indicate that the Enter key has been pressed. On platforms such as Windows, a subsequent call
to System.in.read() returns integer 10, indicating a line feed character. Whether or not
standard input has been redirected, System.in.read() returns -1 when there are no more
characters to read.

For any other value in ch, this value is converted to a character via (char), which is an

example of Java’s cast operator (discussed in Chapter 2). The character is then output

via System.out.println(). The final System.out.println(); call terminates the current

line without outputting any content.

CHAPTER 1: Getting Started with Java 11

NOTE: When standard input is redirected to a file and System.in.read() is unable to read text
from the file (perhaps the file is stored on a removable storage device that has been removed prior to
the read operation), System.in.read() fails by throwing an object that describes this problem. I
acknowledge this possibility by appending throws java.io.IOException to the end of the
main() method header. I discuss throws in Chapter 4 and java.io.IOException in Chapter 10.

Compile Listing 1–2 via javac EchoText.java, and run the application via java EchoText.

You will be prompted to enter some text. After you input this text and press Enter, the

text will be sent to standard output. For example, consider the following output:

Please enter some text and press Enter!
Hello Java
Hello Java

You can redirect the input source to a file by specifying the less than angle bracket (<)

followed by a filename. For example, java EchoText <EchoText.java reads its text from

EchoText.java and outputs this text to the screen.

Run this application and you will only see EchoText.java’s first line of text. Each one of

this file’s lines ends in a carriage return character (13) (followed by a line feed character,

10, on Windows platforms), and EchoText terminates after reading a carriage return.

In addition to downloading and installing the JDK, you might want to download the

JDK’s companion documentation archive file (jdk-6u18-docs.zip is the most recent file

at time of writing).

After downloading the documentation archive file from the same Java SE Downloads

page (http://java.sun.com/javase/downloads/index.jsp), unzip this file and move its

docs directory to the JDK’s home directory.

To access the documentation, point your web browser to the documentation’s start

page. For example, after moving docs to my JDK’s home directory, I point my browser to

C:\Program Files\Java\jdk1.6.0_16\docs\index.html. See Figure 1–1.

Scroll a bit down the start page and you discover the “API, Language, and Virtual

Machine Documentation” section, which presents a Java 2 Platform API Specification

link. Click this link and you can access the standard class library’s documentation.

TIP: You can read the online documentation by pointing your web browser to a link such as
http://download.java.net/jdk6/archive/b104/docs/, which provides the online
documentation for JDK 6.

http://java.sun.com/javase/downloads/index.jsp
http://download.java.net/jdk6/archive/b104/docs

CHAPTER 1: Getting Started with Java 12

Figure 1–1. The first part of the Java documentation’s start page

Installing and Exploring Two Popular IDEs
Working with the JDK’s tools at the command line is probably okay for small projects.

However, this practice is not recommended for large projects, which are hard to manage

without the help of an integrated development environment (IDE).

An IDE consists of a project manager for managing a project’s files, a text editor for

entering and editing source code, a debugger for locating bugs, and other features. Two

popular IDEs are NetBeans and Eclipse.

NOTE: For convenience, I use JDK tools throughout this book, except for this section where I use
NetBeans IDE and Eclipse IDE.

CHAPTER 1: Getting Started with Java 13

NetBeans IDE
NetBeans IDE is an open source, Java-based IDE for developing programs in Java and

other languages (such as PHP, Ruby, C++, Groovy, and Scala). Version 6.8 is the current

version of this IDE at time of writing.

You should download and install NetBeans IDE 6.8 (or a more recent version) to follow

along with this section’s NetBeans-oriented example. Begin by pointing your browser to

http://netbeans.org/downloads/ and accomplishing the following tasks:

1. Select an appropriate IDE language (such as English).

2. Select an appropriate platform (such as Linux).

3. Click the Download button underneath the leftmost (Java SE) column.

After a few moments, the current page is replaced by another page that gives you the

opportunity to download an installer file. I downloaded the approximately 47MB

netbeans-6.8-ml-javase-windows.exe installer file for my Windows XP platform.

NOTE: According to the “NetBeans IDE 6.8 Installation Instructions”
(http://netbeans.org/community/releases/68/install.html), you must install JDK
5.0 Update 19 or JDK 6 Update 14 or newer on your platform before installing NetBeans IDE 6.8.
If you do not have a JDK installed, you cannot install the NetBeans IDE.

Start the installer file and follow the instructions. You will need to agree to the NetBeans

license, and are given the options of providing anonymous usage data and registering

your copy of NetBeans when installation finishes.

Assuming that you have installed the NetBeans IDE, start this Java application. You

should discover a splash screen identifying this IDE, followed by a main window similar

to that shown in Figure 1–2.

The NetBeans user interface is based on a main window that consists of a menu bar, a

toolbar, a workspace area, and a status bar. The workspace area initially presents a

Start Page tab, which provides NetBeans tutorials as well as news and blogs.

To help you get comfortable with the NetBeans user interface, I will show you how to

create a DumpArgs project containing a single DumpArgs.java source file with Listing 1–1’s

source code. You will also learn how to compile and run this application.

http://netbeans.org/downloads
http://netbeans.org/community/releases/68/install.html

CHAPTER 1: Getting Started with Java 14

Figure 1–2. The NetBeans IDE 6.8 main window

Complete the following steps to create the DumpArgs project:

1. Select New Project from the File menu.

2. On the resulting New Project dialog box’s initial pane, make sure that

Java is the selected category in the Categories list, and Java Application

is the selected project in the Projects list. Click the Next button.

3. On the resulting pane, enter DumpArgs in the Project Name text field.

You will notice that dumpargs.Main appears in the text field to the right

of the Create Main Class check box. Replace dumpargs.Main with

DumpArgs and click Finish. (dumpargs names a package, discussed in

Chapter 4, and Main names a class stored in this package.)

After a few moments, you will see a workspace similar to that shown in Figure 1–3.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 1: Getting Started with Java 15

Figure 1–3. The workspace is divided into multiple work areas.

After creating the DumpArgs project, you will discover that NetBeans has organized the

workspace into four main areas: projects, editor, navigator, and tasks.

The projects area helps you manage your projects. This window is divided into Projects,

Files, and Services tabs:

 The Projects tab is the main entry point to your project’s source and

resource files. It presents a logical view of important project contents.

 The Files tab presents a directory-based view of your projects,

including any files and folders that are not displayed on the Projects

tab.

 The Services tab is the main entry point to runtime resources. It shows

a logical view of important runtime resources such as the servers,

databases, and web services that are registered with the IDE.

The editor area helps you edit a project’s source files. Each file has its own tab, labeled

with the file’s name.

Figure 1–3 reveals a single DumpArgs.java tab, which provides access to skeletal source

code. You will shortly replace this source code with Listing 1–1.

CHAPTER 1: Getting Started with Java 16

The skeletal source code reveals single-line and multiline comments (discussed in

Chapter 2) and Javadoc comments (discussed later in this chapter).

The navigator area reveals the Navigator tab, which presents a compact view of the

currently selected file and simplifies navigation between different parts of the file.

The tasks area reveals the Tasks tab, which presents a to-do list of items for the

project’s various files that need to be resolved.

Replace the skeletal DumpArgs.java source code with Listing 1–1, and select Run Main

Project from the Run menu to compile and run this application. Figure 1–4 shows this

application’s results.

Figure 1–4. An Output tab appears to the left of the Tasks tab and shows the DumpArgs application’s output.

Figure 1–4’s Output tab reveals only the result of the System.out.println("Passed
arguments:") method call. To see more output, you must pass command-line

arguments to DumpArgs. Accomplish this task from within NetBeans IDE 6.8 as follows:

1. Select Project Properties (DumpArgs) from the File menu.

2. In the resulting Project Properties dialog box, select Run in the

Categories tree and enter Curly Moe Larry in the Arguments text field

on the resulting pane. Click the OK button.

CHAPTER 1: Getting Started with Java 17

Once again, select Run Main Project from the Run menu to run the DumpArgs application.

This time, the Output tab should reveal Curly, Moe, and Larry on separate lines below

Passed arguments:.

This is all I have to say about the NetBeans IDE. For more information, study the tutorials

via the Start Page tab, access IDE help via the Help menu, and explore the NetBeans

knowledge base at http://netbeans.org/kb/.

Eclipse IDE
Eclipse IDE is an open source IDE for developing programs in Java and other languages

(such as C, COBOL, PHP, Perl, and Python). Eclipse Classic is one distribution of this

IDE that is available for download; version 3.5.2 is the current version at time of writing.

You should download and install Eclipse Classic to follow along with this section’s

Eclipse-oriented example. Begin by pointing your browser to

http://www.eclipse.org/downloads/ and accomplishing the following tasks:

1. Scroll down the page until you see an Eclipse Classic entry.

2. Click one of the platform links (such as Linux 32 Bit) to the right of this

entry.

3. Select a download mirror from the subsequently displayed page and

proceed to download the distribution’s archive file.

I downloaded the approximately 163MB eclipse-SDK-3.5.2-win32.zip archive file for

my Windows XP platform, unarchived this file, moved the resulting eclipse home

directory to another location, and created a shortcut to that directory’s eclipse.exe file.

NOTE: Unlike NetBeans IDE 6.8, which requires that a suitable JDK be installed before you can
run the installer, a JDK does not have to be installed before running eclipse.exe because the
Eclipse IDE comes with its own Java compiler. However, you will need at least JDK 6 Update 16
to run most of this book’s code (or JDK 7 to run all of the code).

Assuming that you have installed Eclipse Classic, start this application. You should

discover a splash screen identifying this IDE and a dialog box that lets you choose the

location of a workspace for storing projects, followed by a main window like that shown

in Figure 1–5.

The Eclipse user interface is based on a main window that consists of a menu bar, a

toolbar, a workbench area, and a status bar. The workbench area initially presents a

Welcome tab with icon links for accessing tutorials and more.

To help you get comfortable with the Eclipse user interface, I will show you how to

create a DumpArgs project containing a single DumpArgs.java source file with Listing 1–1’s

source code. You will also learn how to compile and run this application.

http://netbeans.org/kb
http://www.eclipse.org/downloads

CHAPTER 1: Getting Started with Java 18

Figure 1–5. The Eclipse IDE 3.5.2 main window

Complete the following steps to create the DumpArgs project:

1. Select New from the File menu and Java Project from the resulting pop-

up menu.

2. In the resulting New Java Project dialog box, enter DumpArgs into the

Project name text field. Keep all the other defaults and click the Finish

button.

3. Click the rightmost (Workbench) icon link to go to the workbench.

Eclipse bypasses the Welcome tab and takes you to the workbench the

next time you start this IDE.

TIP: To return to the Welcome tab, select Welcome from the Help menu.

After the final step, you will see a workbench similar to that shown in Figure 1–6.

CHAPTER 1: Getting Started with Java 19

Figure 1–6. The workbench is divided into multiple work areas.

On the left side of the workbench, you see a tab titled Package Explorer. This tab

identifies the workspace’s projects in terms of packages (discussed in Chapter 4). At the

moment, only a single DumpArgs entry appears on this tab.

Clicking the + icon to the left of DumpArgs expands this entry to reveal src and JRE

System Library items. The src item stores the DumpArgs project’s source files, and JRE

System Library identifies various JRE files that are used to run this application.

We will now add a new file named DumpArgs.java to src, as follows:

1. Highlight src and select New from the File menu, and File from the

resulting pop-up menu.

2. In the resulting New File dialog box, enter DumpArgs.java into the File

name text field, and click the Finish button.

Eclipse responds by displaying an editor tab titled DumpArgs.java. Copy Listing 1–1 into

this tab, and then compile and run this application by selecting Run from the Run menu.

Figure 1–7 shows the results.

CHAPTER 1: Getting Started with Java 20

Figure 1–7. The Console tab at the bottom of the workbench presents the DumpArgs application’s output.

As with the NetBeans IDE, you must pass command-line arguments to DumpArgs to see

additional output from this application. Accomplish this task from within Eclipse IDE

3.5.2 as follows:

1. Select Run Configurations from the Run menu.

2. In the resulting Run Configurations dialog box, select the Arguments

tab.

3. Enter Curly Moe Larry into the Program arguments text area and click

the Close button.

Once again, select Run from the Run menu to run the DumpArgs application. This time,

the Console tab reveals Curly, Moe, and Larry on separate lines below Passed

arguments:.

This is all I have to say about the Eclipse IDE. For more information, study the tutorials

via the Welcome tab, access IDE help via the Help menu, and explore the Eclipse

documentation at http://www.eclipse.org/documentation/.

Four of a Kind
Application development is not an easy task. If you do not plan carefully before you

develop an application, you will probably waste your time and money as you endeavor

to create it, and waste your users’ time and money if it does not meet their needs.

http://www.eclipse.org/documentation

CHAPTER 1: Getting Started with Java 21

CAUTION: It is extremely important to carefully test your software. You could face a lawsuit if
malfunctioning software causes financial harm to its users.

In this section, I present one technique for developing applications efficiently. I present

this technique in the context of a Java application that lets you play a simple card game

called Four of a Kind against the computer.

Understanding Four of a Kind
Before sitting down at the computer and writing code, we need to fully understand the

problem domain that we are trying to model via that code. In this case, the problem

domain is Four of a Kind, and we want to understand how this card game works.

Two to four players play Four of a Kind with a standard 52-card deck. The object of the

game is to be the first player to put down four cards that have the same rank (four aces,

for example), which wins the game.

The game begins by shuffling the deck and placing it face down. Each player takes a

card from the top of the deck. The player with the highest ranked card (king is highest)

deals four cards to each player, starting with the player to the dealer’s left. The dealer

then starts his/her turn.

The player examines his/her cards to determine which cards are optimal for achieving

four of a kind. The player then throws away the least helpful card on a discard pile and

picks up another card from the top of the deck. (If each card has a different rank, the

player randomly selects a card to throw away.) If the player has four of a kind, the player

puts down these cards (face up) and wins the game.

Modeling Four of a Kind in Pseudocode
Now that we understand how Four of a Kind works, we can begin to model this game.

We will not model the game in Java source code because we would get bogged down in

too many details. Instead, we will use pseudocode for this task.

Pseudocode is a compact and informal high-level description of the problem domain.

Unlike the previous description of Four of a Kind, the pseudocode equivalent is a step-

by-step recipe for solving the problem. Check out Listing 1–3.

Listing 1–3. Four of a Kind pseudocode for two players (human and computer)

 1. Create a deck of cards and shuffle the deck.
 2. Create empty discard pile.
 3. Have each of the human and computer players take a card from the top of the deck.
 4. Designate the player with the highest ranked card as the current player.
 5. Return both cards to the bottom of the deck.
 6. The current player deals four cards to each of the two players in alternating
fashion, with the first card being dealt to the other player.

CHAPTER 1: Getting Started with Java 22

 7. The current player examines its current cards to see which cards are optimal for
achieving four of a kind. The current player throws the least helpful card onto the top
of the discard pile.
 8. The current player picks up the deck's top card. If the current player has four of a
kind, it puts down its cards and wins the game.
 9. Designate the other player as the current player.
10. If the deck has no more cards, empty the discard pile to the deck and shuffle the
deck.
11. Repeat at step 7.

Deriving Listing 1–3’s pseudocode from the previous description is the first step in

achieving an application that implements Four of a Kind. This pseudocode performs

various tasks, including decision making and repetition.

Despite being a more useful guide to understanding how Four of a Kind works, Listing

1–3 is too high level for translation to Java. Therefore, we must refine this pseudocode

to facilitate the translation process. Listing 1–4 presents this refinement.

Listing 1–4. Refined Four of a Kind pseudocode for two players (human and computer)

 1. deck = new Deck()
 2. deck.shuffle()
 3. discardPile = new DiscardPile()
 4. hCard = deck.deal()
 5. cCard = deck.deal()
 6. if hCard.rank() == cCard.rank()
 6.1. deck.putBack(hCard)
 6.2. deck.putBack(cCard)
 6.3. deck.shuffle()
 6.4. Repeat at step 4
 7. curPlayer = HUMAN
 7.1. if cCard.rank() > hCard.rank()
 7.1.1. curPlayer = COMPUTER
 8. deck.putBack(hCard)
 9. deck.putBack(cCard)
10. if curPlayer == HUMAN
 10.1. for i = 0 to 3
 10.1.1. cCards[i] = deck.deal()
 10.1.2. hCards[i] = deck.deal()
 else
 10.2. for i = 0 to 3
 10.2.1. hCards[i] = deck.deal()
 10.2.2. cCards[i] = deck.deal()
11. if curPlayer == HUMAN
 11.01. output(hCards)
 11.02. choice = prompt("Identify card to throw away")
 11.03. discardPile.setTopCard(hCards[choice])
 11.04. hCards[choice] = deck.deal()
 11.05. if isFourOfAKind(hCards)
 11.05.1. output("Human wins!")
 11.05.2. putDown(hCards)
 11.05.3. output("Computer's cards:")
 11.05.4. putDown(cCards)
 11.05.5. End game
 11.06. curPlayer = COMPUTER

CHAPTER 1: Getting Started with Java 23

 else
 11.07. choice = leastDesirableCard(cCards)
 11.08. discardPile.setTopCard(cCards[choice])
 11.09. cCards[choice] = deck.deal()
 11.10. if isFourOfAKind(cCards)
 11.10.1. output("Computer wins!")
 11.10.2. putDown(cCards)
 11.10.3. End game
 11.11. curPlayer = HUMAN
12. if deck.isEmpty()
 12.1. if discardPile.topCard() != null
 12.1.1. deck.putBack(discardPile.getTopCard())
 12.1.2. Repeat at step 12.1.
 12.2. deck.shuffle()
13. Repeat at step 11.

In addition to being longer than Listing 1–3, Listing 1–4 shows the refined pseudocode

becoming more like Java. For example, Listing 1–4 reveals Java expressions (such as

new Deck(), to create a Deck object), operators (such as ==, to compare two values for

equality), and method calls (such as deck.isEmpty(), to call deck’s isEmpty() method to

return a Boolean value indicating whether [true] or not [false] the deck identified by deck

is empty of cards).

Converting Pseudocode to Java Code
Now that you have had a chance to absorb Listing 1–4’s Java-like pseudocode, you are

ready to examine the process of converting that pseudocode to Java source code. This

process consists of a couple of steps.

The first step in converting Listing 1–4’s pseudocode to Java involves identifying

important components of the game’s structure and implementing these components as

classes. I will formally introduce classes in Chapter 2.

Apart from the computer player (which is implemented via game logic), the important

components are card, deck, and discard pile. I represent these components via Card,

Deck, and DiscardPile classes. Listing 1–5 presents Card.

NOTE: Do not be concerned if you find this section’s Java source code somewhat hard to follow.
After you have read the next few chapters, you should find this code easier to understand.

Listing 1–5. Merging suits and ranks into cards

/**
 * Simulating a playing card.
 *
 * @author Jeff Friesen
 */
public enum Card
{
 ACE_OF_CLUBS(Suit.CLUBS, Rank.ACE),
 TWO_OF_CLUBS(Suit.CLUBS, Rank.TWO),

CHAPTER 1: Getting Started with Java 24

 THREE_OF_CLUBS(Suit.CLUBS, Rank.THREE),
 FOUR_OF_CLUBS(Suit.CLUBS, Rank.FOUR),
 FIVE_OF_CLUBS(Suit.CLUBS, Rank.FIVE),
 SIX_OF_CLUBS(Suit.CLUBS, Rank.SIX),
 SEVEN_OF_CLUBS(Suit.CLUBS, Rank.SEVEN),
 EIGHT_OF_CLUBS(Suit.CLUBS, Rank.EIGHT),
 NINE_OF_CLUBS(Suit.CLUBS, Rank.NINE),
 TEN_OF_CLUBS(Suit.CLUBS, Rank.TEN),
 JACK_OF_CLUBS(Suit.CLUBS, Rank.JACK),
 QUEEN_OF_CLUBS(Suit.CLUBS, Rank.QUEEN),
 KING_OF_CLUBS(Suit.CLUBS, Rank.KING),
 ACE_OF_DIAMONDS(Suit.DIAMONDS, Rank.ACE),
 TWO_OF_DIAMONDS(Suit.DIAMONDS, Rank.TWO),
 THREE_OF_DIAMONDS(Suit.DIAMONDS, Rank.THREE),
 FOUR_OF_DIAMONDS(Suit.DIAMONDS, Rank.FOUR),
 FIVE_OF_DIAMONDS(Suit.DIAMONDS, Rank.FIVE),
 SIX_OF_DIAMONDS(Suit.DIAMONDS, Rank.SIX),
 SEVEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.SEVEN),
 EIGHT_OF_DIAMONDS(Suit.DIAMONDS, Rank.EIGHT),
 NINE_OF_DIAMONDS(Suit.DIAMONDS, Rank.NINE),
 TEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.TEN),
 JACK_OF_DIAMONDS(Suit.DIAMONDS, Rank.JACK),
 QUEEN_OF_DIAMONDS(Suit.DIAMONDS, Rank.QUEEN),
 KING_OF_DIAMONDS(Suit.DIAMONDS, Rank.KING),
 ACE_OF_HEARTS(Suit.HEARTS, Rank.ACE),
 TWO_OF_HEARTS(Suit.HEARTS, Rank.TWO),
 THREE_OF_HEARTS(Suit.HEARTS, Rank.THREE),
 FOUR_OF_HEARTS(Suit.HEARTS, Rank.FOUR),
 FIVE_OF_HEARTS(Suit.HEARTS, Rank.FIVE),
 SIX_OF_HEARTS(Suit.HEARTS, Rank.SIX),
 SEVEN_OF_HEARTS(Suit.HEARTS, Rank.SEVEN),
 EIGHT_OF_HEARTS(Suit.HEARTS, Rank.EIGHT),
 NINE_OF_HEARTS(Suit.HEARTS, Rank.NINE),
 TEN_OF_HEARTS(Suit.HEARTS, Rank.TEN),
 JACK_OF_HEARTS(Suit.HEARTS, Rank.JACK),
 QUEEN_OF_HEARTS(Suit.HEARTS, Rank.QUEEN),
 KING_OF_HEARTS(Suit.HEARTS, Rank.KING),
 ACE_OF_SPADES(Suit.SPADES, Rank.ACE),
 TWO_OF_SPADES(Suit.SPADES, Rank.TWO),
 THREE_OF_SPADES(Suit.SPADES, Rank.THREE),
 FOUR_OF_SPADES(Suit.SPADES, Rank.FOUR),
 FIVE_OF_SPADES(Suit.SPADES, Rank.FIVE),
 SIX_OF_SPADES(Suit.SPADES, Rank.SIX),
 SEVEN_OF_SPADES(Suit.SPADES, Rank.SEVEN),
 EIGHT_OF_SPADES(Suit.SPADES, Rank.EIGHT),
 NINE_OF_SPADES(Suit.SPADES, Rank.NINE),
 TEN_OF_SPADES(Suit.SPADES, Rank.TEN),
 JACK_OF_SPADES(Suit.SPADES, Rank.JACK),
 QUEEN_OF_SPADES(Suit.SPADES, Rank.QUEEN),
 KING_OF_SPADES(Suit.SPADES, Rank.KING);

 private Suit suit;
 /**
 * Return <code>Card</code>'s suit.
 *
 * @return <code>CLUBS</code>, <code>DIAMONDS</code>, <code>HEARTS</code>,
 * or <code>SPADES</code>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 1: Getting Started with Java 25

 */
 public Suit suit() { return suit; }
 private Rank rank;
 /**
 * Return <code>Card</code>'s rank.
 *
 * @return <code>ACE</code>, <code>TWO</code>, <code>THREE</code>,
 * <code>FOUR</code>, <code>FIVE</code>, <code>SIX</code>,
 * <code>SEVEN</code>, <code>EIGHT</code>, <code>NINE</code>,
 * <code>TEN</code>, <code>JACK</code>, <code>QUEEN</code>,
 * <code>KING</code>.
 */
 public Rank rank() { return rank; }
 Card(Suit suit, Rank rank)
 {
 this.suit = suit;
 this.rank = rank;
 }
 /**
 * A card's suit is its membership.
 *
 * @author Jeff Friesen
 */
 public enum Suit
 {
 CLUBS, DIAMONDS, HEARTS, SPADES
 }
 /**
 * A card's rank is its integer value.
 *
 * @author Jeff Friesen
 */
 public enum Rank
 {
 ACE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN,
 KING
 }
}

Listing 1–5 begins with a Javadoc comment that is used to briefly describe the Card

class and identify this class’s author. I will introduce you to Javadoc comments at the

end of this section.

NOTE: One feature of Javadoc comments is the ability to embed HTML tags. These tags specify
different kinds of formatting for sections of text within these comments. For example, <code>
and </code> specify that their enclosed text is to be formatted as a code listing. Later in this
chapter, you will learn how to convert these comments into HTML documentation.

Card is an example of an enum, which is a special kind of class that I discuss in Chapter

5. For now, think of Card as a place to create and store Card objects that identify all 52

cards that make up a standard deck.

CHAPTER 1: Getting Started with Java 26

Card declares a nested Suit enum. (I discuss nesting in Chapter 4.) A card’s suit denotes

its membership. The only legal Suit values are CLUBS, DIAMONDS, HEARTS, and SPADES.

Card also declares a nested Rank enum. A card’s rank denotes its value: ACE, TWO, THREE,

FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN, and KING are the only legal Rank

values.

A Card object is created when Suit and Rank objects are passed to its constructor. (I

discuss constructors in Chapter 2.) For example, KING_OF_HEARTS(Suit.HEARTS,
Rank.KING) combines Suit.HEARTS and Rank.KING into KING_OF_HEARTS.

Card provides a rank() method for returning a Card’s Rank object. Similarly, Card

provides a suit() method for returning a Card’s Suit object. For example,

KING_OF_HEARTS.rank() returns Rank.KING, and KING_OF_HEARTS.suit() returns

Suit.HEARTS.

Listing 1–6 presents the Java source code to the Deck class, which implements a deck

of 52 cards.

Listing 1–6. Pick a card, any card

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 * Simulate a deck of cards.
 *
 * @author Jeff Friesen
 */
public class Deck
{
 private Card[] cards = new Card[]
 {
 Card.ACE_OF_CLUBS,
 Card.TWO_OF_CLUBS,
 Card.THREE_OF_CLUBS,
 Card.FOUR_OF_CLUBS,
 Card.FIVE_OF_CLUBS,
 Card.SIX_OF_CLUBS,
 Card.SEVEN_OF_CLUBS,
 Card.EIGHT_OF_CLUBS,
 Card.NINE_OF_CLUBS,
 Card.TEN_OF_CLUBS,
 Card.JACK_OF_CLUBS,
 Card.QUEEN_OF_CLUBS,
 Card.KING_OF_CLUBS,
 Card.ACE_OF_DIAMONDS,
 Card.TWO_OF_DIAMONDS,
 Card.THREE_OF_DIAMONDS,
 Card.FOUR_OF_DIAMONDS,
 Card.FIVE_OF_DIAMONDS,
 Card.SIX_OF_DIAMONDS,
 Card.SEVEN_OF_DIAMONDS,
 Card.EIGHT_OF_DIAMONDS,
 Card.NINE_OF_DIAMONDS,

CHAPTER 1: Getting Started with Java 27

 Card.TEN_OF_DIAMONDS,
 Card.JACK_OF_DIAMONDS,
 Card.QUEEN_OF_DIAMONDS,
 Card.KING_OF_DIAMONDS,
 Card.ACE_OF_HEARTS,
 Card.TWO_OF_HEARTS,
 Card.THREE_OF_HEARTS,
 Card.FOUR_OF_HEARTS,
 Card.FIVE_OF_HEARTS,
 Card.SIX_OF_HEARTS,
 Card.SEVEN_OF_HEARTS,
 Card.EIGHT_OF_HEARTS,
 Card.NINE_OF_HEARTS,
 Card.TEN_OF_HEARTS,
 Card.JACK_OF_HEARTS,
 Card.QUEEN_OF_HEARTS,
 Card.KING_OF_HEARTS,
 Card.ACE_OF_SPADES,
 Card.TWO_OF_SPADES,
 Card.THREE_OF_SPADES,
 Card.FOUR_OF_SPADES,
 Card.FIVE_OF_SPADES,
 Card.SIX_OF_SPADES,
 Card.SEVEN_OF_SPADES,
 Card.EIGHT_OF_SPADES,
 Card.NINE_OF_SPADES,
 Card.TEN_OF_SPADES,
 Card.JACK_OF_SPADES,
 Card.QUEEN_OF_SPADES,
 Card.KING_OF_SPADES
 };
 private List<Card> deck;
 /**
 * Create a <code>Deck</code> of 52 <code>Card</code> objects. Shuffle
 * these objects.
 */
 public Deck()
 {
 deck = new ArrayList<Card>();
 for (int i = 0; i < cards.length; i++)
 {
 deck.add(cards[i]);
 cards[i] = null;
 }
 Collections.shuffle(deck);
 }
 /**
 * Deal the <code>Deck</code>'s top <code>Card</code> object.
 *
 * @return the <code>Card</code> object at the top of the
 * <code>Deck</code>
 */
 public Card deal()
 {
 return deck.remove(0);
 }
 /**

CHAPTER 1: Getting Started with Java 28

 * Return an indicator of whether or not the <code>Deck</code> is empty.
 *
 * @return true if the <code>Deck</code> contains no <code>Card</code>
 * objects; otherwise, false
 */
 public boolean isEmpty()
 {
 return deck.isEmpty();
 }
 /**
 * Put back a <code>Card</code> at the bottom of the <code>Deck</code>.
 *
 * @param card <code>Card</code> object being put back
 */
 public void putBack(Card card)
 {
 deck.add(card);
 }
 /**
 * Shuffle the <code>Deck</code>.
 */
 public void shuffle()
 {
 Collections.shuffle(deck);
 }
}

Deck initializes a private cards array to all 52 Card objects. Because it is easier to

implement Deck via a list that stores these objects, Deck’s constructor creates this list

and adds each Card object to the list. (I discuss List and ArrayList in Chapter 8.)

Deck also provides deal(), isEmpty(), putBack(), and shuffle() methods to deal a

single Card from the Deck (the Card is physically removed from the Deck), determine

whether or not the Deck is empty, put a Card back into the Deck, and shuffle the Deck’s

Cards.

Listing 1–7 presents the source code to the DiscardPile class, which implements a

discard pile on which players can throw away a maximum of 52 cards.

Listing 1–7. A garbage dump for cards

/**
 * Simulate a pile of discarded cards.
 *
 * @author Jeff Friesen
 */
public class DiscardPile
{
 private Card[] cards;
 private int top;
 /**
 * Create a <code>DiscardPile</code> that can accommodate a maximum of 52
 * <code>Card</code>s. The <code>DiscardPile</code> is initially empty.
 */
 public DiscardPile()
 {
 cards = new Card[52]; // Room for entire deck on discard pile (should

CHAPTER 1: Getting Started with Java 29

 // never happen).
 top = -1;
 }
 /**
 * Return the <code>Card</code> at the top of the <code>DiscardPile</code>.
 *
 * @return <code>Card</code> object at top of <code>DiscardPile</code> or
 * null if <code>DiscardPile</code> is empty
 */
 public Card getTopCard()
 {
 if (top == -1)
 return null;
 Card card = cards[top];
 cards[top--] = null;
 return card;
 }
 /**
 * Set the <code>DiscardPile</code>'s top card to the specified
 * <code>Card</code> object.
 *
 * @param card <code>Card</code> object being thrown on top of the
 * <code>DiscardPile</code>
 */
 public void setTopCard(Card card)
 {
 cards[++top] = card;
 }
 /**
 * Identify the top <code>Card</code> on the <code>DiscardPile</code>
 * without removing this <code>Card</code>.
 *
 * @return top <code>Card</code>, or null if <code>DiscardPile</code> is
 * empty
 */
 public Card topCard()
 {
 return (top == -1) ? null : cards[top];
 }
}

DiscardPile implements a discard pile on which to throw Card objects. It implements

the discard pile via a stack metaphor: the last Card object thrown on the pile sits at the

top of the pile and is the first Card object to be removed from the pile.

This class stores its stack of Card objects in a private cards array. I found it convenient

to specify 52 as this array’s storage limit because the maximum number of Cards is 52.

(Game play will never result in all Cards being stored in the array.)

Along with its constructor, DiscardPile provides getTopCard(), setTopCard(), and

topCard() methods to remove and return the stack’s top Card, store a new Card object

on the stack as its top Card, and return the top Card without removing it from the stack.

The constructor demonstrates a single-line comment, which starts with the // character

sequence. This comment documents that the cards array has room to store the entire

Deck of Cards. I will formally introduce single-line comments in Chapter 2.

CHAPTER 1: Getting Started with Java 30

The second step in converting Listing 1–4’s pseudocode to Java involves introducing a

FourOfAKind class whose main() method contains the Java code equivalent of this

pseudocode. Listing 1–8 presents FourOfAKind.

Listing 1–8. FourOfAKind application source code

/**
 * <code>FourOfAKind</code> implements a card game that is played between two
 * players: one human player and the computer. You play this game with a
 * standard 52-card deck and attempt to beat the computer by being the first
 * player to put down four cards that have the same rank (four aces, for
 * example), and win.
 *
 * <p>
 * The game begins by shuffling the deck and placing it face down. Each
 * player takes a card from the top of the deck. The player with the highest
 * ranked card (king is highest) deals four cards to each player starting
 * with the other player. The dealer then starts its turn.
 *
 * <p>
 * The player examines its cards to determine which cards are optimal for
 * achieving four of a kind. The player then throws away one card on a
 * discard pile and picks up another card from the top of the deck. If the
 * player has four of a kind, the player puts down these cards (face up) and
 * wins the game.
 *
 * @author Jeff Friesen
 * @version 1.0
 */
public class FourOfAKind
{
 /**
 * Human player
 */
 final static int HUMAN = 0;
 /**
 * Computer player
 */
 final static int COMPUTER = 1;
 /**
 * Application entry point.
 *
 * @param args array of command-line arguments passed to this method
 */
 public static void main(String[] args)
 {
 System.out.println("Welcome to Four of a Kind!");
 Deck deck = new Deck(); // Deck automatically shuffled
 DiscardPile discardPile = new DiscardPile();
 Card hCard;
 Card cCard;
 while (true)
 {
 hCard = deck.deal();
 cCard = deck.deal();
 if (hCard.rank() != cCard.rank())
 break;

CHAPTER 1: Getting Started with Java 31

 deck.putBack(hCard);
 deck.putBack(cCard);
 deck.shuffle(); // prevent pathological case where every successive
 } // pair of cards have the same rank
 int curPlayer = HUMAN;
 if (cCard.rank().ordinal() > hCard.rank().ordinal())
 curPlayer = COMPUTER;
 deck.putBack(hCard);
 hCard = null;
 deck.putBack(cCard);
 cCard = null;
 Card[] hCards = new Card[4];
 Card[] cCards = new Card[4];
 if (curPlayer == HUMAN)
 for (int i = 0; i < 4; i++)
 {
 cCards[i] = deck.deal();
 hCards[i] = deck.deal();
 }
 else
 for (int i = 0; i < 4; i++)
 {
 hCards[i] = deck.deal();
 cCards[i] = deck.deal();
 }
 while (true)
 {
 if (curPlayer == HUMAN)
 {
 showHeldCards(hCards);
 int choice = 0;
 while (choice < 'A' || choice > 'D')
 {
 choice = prompt("Which card do you want to throw away (A, B, " +
 "C, D)? ");
 switch (choice)
 {
 case 'a': choice = 'A'; break;
 case 'b': choice = 'B'; break;
 case 'c': choice = 'C'; break;
 case 'd': choice = 'D';
 }
 }
 discardPile.setTopCard(hCards[choice-'A']);
 hCards[choice-'A'] = deck.deal();
 if (isFourOfAKind(hCards))
 {
 System.out.println();
 System.out.println("Human wins!");
 System.out.println();
 putDown("Human's cards:", hCards);
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = COMPUTER;
 }

CHAPTER 1: Getting Started with Java 32

 else
 {
 int choice = leastDesirableCard(cCards);
 discardPile.setTopCard(cCards[choice]);
 cCards[choice] = deck.deal();
 if (isFourOfAKind(cCards))
 {
 System.out.println();
 System.out.println("Computer wins!");
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = HUMAN;
 }
 if (deck.isEmpty())
 {
 while (discardPile.topCard() != null)
 deck.putBack(discardPile.getTopCard());
 deck.shuffle();
 }
 }
 }
 /**
 * Determine if the <code>Card</code> objects passed to this method all
 * have the same rank.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return true if all <code>Card</code> objects have the same rank;
 * otherwise, false
 */
 static boolean isFourOfAKind(Card[] cards)
 {
 for (int i = 1; i < cards.length; i++)
 if (cards[i].rank() != cards[0].rank())
 return false;
 return true;
 }
 /**
 * Identify one of the <code>Card</code> objects that is passed to this
 * method as the least desirable <code>Card</code> object to hold onto.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return 0-based rank (ace is 0, king is 13) of least desirable card
 */
 static int leastDesirableCard(Card[] cards)
 {
 int[] rankCounts = new int[13];
 for (int i = 0; i < cards.length; i++)
 rankCounts[cards[i].rank().ordinal()]++;
 int minCount = Integer.MAX_VALUE;
 int minIndex = -1;
 for (int i = 0; i < rankCounts.length; i++)
 if (rankCounts[i] < minCount && rankCounts[i] != 0)
 {

CHAPTER 1: Getting Started with Java 33

 minCount = rankCounts[i];
 minIndex = i;
 }
 for (int i = 0; i < cards.length; i++)
 if (cards[i].rank().ordinal() == minIndex)
 return i;
 return 0; // Needed to satisfy compiler (should never be executed)
 }
 /**
 * Prompt the human player to enter a character.
 *
 * @param msg message to be displayed to human player
 *
 * @return integer value of character entered by user.
 */
 static int prompt(String msg)
 {
 System.out.print(msg);
 try
 {
 int ch = System.in.read();
 // Erase all subsequent characters including terminating \n newline
 // so that they do not affect a subsequent call to prompt().
 while (System.in.read() != '\n');
 return ch;
 }
 catch (java.io.IOException ioe)
 {
 }
 return 0;
 }
 /**
 * Display a message followed by all cards held by player. This output
 * simulates putting down held cards.
 *
 * @param msg message to be displayed to human player
 * @param cards array of <code>Card</code> objects to be identified
 */
 static void putDown(String msg, Card[] cards)
 {
 System.out.println(msg);
 for (int i = 0; i < cards.length; i++)
 System.out.println(cards[i]);
 }
 /**
 * Identify the cards being held via their <code>Card</code> objects on
 * separate lines. Prefix each line with an uppercase letter starting with
 * <code>A</code>.
 *
 * @param cards array of <code>Card</code> objects to be identified
 */
 static void showHeldCards(Card[] cards)
 {
 System.out.println();
 System.out.println("Held cards:");
 for (int i = 0; i < cards.length; i++)
 if (cards[i] != null)

CHAPTER 1: Getting Started with Java 34

 System.out.println((char) ('A'+i) + ". " + cards[i]);
 System.out.println();
 }
}

Listing 1–8 follows the steps outlined by and expands on Listing 1–4’s pseudocode.

Because of the various comments, I do not have much to say about this listing.

However, there are a couple of items that deserve mention:

 Card’s nested Rank enum stores a sequence of 13 Rank objects

beginning with ACE and ending with KING. These objects cannot be

compared directly via > to determine which object has the greater

rank. However, their integer-based ordinal (positional) values can be

compared by calling the Rank object’s ordinal() method. For

example, Card.ACE_OF_SPADES.rank().ordinal() returns 0 because

ACE is located at position 0 within Rank’s list of Rank objects, and

Card.KING_OF_CLUBS.rank().ordinal() returns 12 because KING is

located at the last position in this list.

 The leastDesirableCard() method counts the ranks of the Cards in

the array of Card objects passed to this method, and stores these

counts in a rankCounts array. For example, given two of clubs, ace of

spades, three of clubs, and ace of diamonds, this array identifies one

two, two aces, and one three. This method then searches rankCounts

from smallest index (representing ace) to largest index (representing

king) for the first smallest nonzero count (there might be a tie, as in

one two and one three)—a zero count represents no Cards having that

rank in the array of Card objects. Finally, the method searches the

array of Card objects to identify the object whose rank ordinal matches

the index of the smallest nonzero count, and returns the index of this

Card object.

This behavior implies that the least desirable card is always the

smallest ranked card. Furthermore, if there are multiple cards of the

same rank, and if this rank is smaller than the rank of another card in

the array, this method will choose the first (in a left-to-right manner) of

the multiple cards having the same rank as the least desirable card.

However, if the rank of the multiple cards is greater than the rank of

another card, this other card will be chosen as least desirable.

I previously stated that Listing 1–5 begins with a Javadoc comment that describes the

Card class and identifies this class’s author. A Javadoc comment is a documentation

item that documents a class, a method, or other program entity.

A Javadoc comment begins with /** and ends with */. Sandwiched between these

delimiters (a pair of characters that mark the start and stop of some section) are text,

HTML tags (such as <p> and <code>), and Javadoc tags, which are @-prefixed

instructions. The following list identifies three common tags:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 1: Getting Started with Java 35

 @author identifies the source code’s author.

 @param identifies one of a method’s parameters (discussed in Chapter

2).

 @return identifies the kind of value that a method returns.

The JDK provides a javadoc tool that extracts all Javadoc comments from one or more

source files and generates a set of HTML files containing this documentation in an easy-

to-read format. These files serve as the program’s documentation.

For example, suppose that the current directory contains Card.java, Deck.java,

DiscardPile.java, and FourOfAKind.java. To extract all of the Javadoc comments that

appear in these files, specify the following command:

javadoc *.java

The javadoc tool responds by outputting the following messages:

Loading source file Card.java...
Loading source file Deck.java...
Loading source file DiscardPile.java...
Loading source file FourOfAKind.java...
Constructing Javadoc information...
Standard Doclet version 1.6.0_16
Building tree for all the packages and classes...
Generating Card.html...
Generating Card.Rank.html...
Generating Card.Suit.html...
Generating Deck.html...
Generating DiscardPile.html...
Generating FourOfAKind.html...
Generating package-frame.html...
Generating package-summary.html...
Generating package-tree.html...
Generating constant-values.html...
Building index for all the packages and classes...
Generating overview-tree.html...
Generating index-all.html...
Generating deprecated-list.html...
Building index for all classes...
Generating allclasses-frame.html...
Generating allclasses-noframe.html...
Generating index.html...
Generating help-doc.html...
Generating stylesheet.css...

Furthermore, it generates a series of files, including the index.html entry-point file. If you

point your web browser to this file, you should see a page that is similar to the page

shown in Figure 1–8.

CHAPTER 1: Getting Started with Java 36

Figure 1–8. The entry-point page into the generated Javadoc for FourOfAKind and supporting classes

javadoc defaults to generating HTML-based documentation for public classes and

public/protected members of classes. You will learn about public classes and

public/protected members of classes in Chapter 2.

For this reason, FourOfAKind’s documentation reveals only the public main() method. It

does not reveal isFourOfAKind() and the other package-private methods. If you want to

include these methods in the documentation, you must specify -package with javadoc:

javadoc -package *.java

NOTE: The standard class library’s documentation was also generated by javadoc and adheres
to the same format.

CHAPTER 1: Getting Started with Java 37

Compiling, Running, and Distributing FourOfAKind
Unlike the previous DumpArgs and EchoText applications, which each consist of one

source file, FourOfAKind consists of Card.java, Deck.java, DiscardPile.java, and

FourOfAKind.java. You can compile all four source files via the following command line:

javac FourOfAKind.java

The javac tool launches the Java compiler, which recursively compiles the source files

of the various classes it encounters during compilation. Assuming successful

compilation, you should end up with six classfiles in the current directory.

TIP: You can compile all Java source files in the current directory by specifying javac *.java.

After successfully compiling FourOfAKind.java and the other three source files, specify

the following command line to run this application:

java FourOfAKind

In response, you see an introductory message and the four cards that you are holding.

The following output reveals a single session:

Welcome to Four of a Kind!

Held cards:
A. SIX_OF_CLUBS
B. QUEEN_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. NINE_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. FOUR_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. KING_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

CHAPTER 1: Getting Started with Java 38

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. QUEEN_OF_CLUBS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. KING_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. TWO_OF_HEARTS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. FIVE_OF_DIAMONDS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. JACK_OF_CLUBS
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Held cards:
A. SIX_OF_CLUBS
B. TWO_OF_SPADES
C. SIX_OF_HEARTS
D. SIX_OF_SPADES

Which card do you want to throw away (A, B, C, D)? B

Human wins!

Human's cards:
SIX_OF_CLUBS
SIX_OF_DIAMONDS
SIX_OF_HEARTS

CHAPTER 1: Getting Started with Java 39

SIX_OF_SPADES

Computer's cards:
SEVEN_OF_HEARTS
TEN_OF_HEARTS
SEVEN_OF_CLUBS
SEVEN_OF_DIAMONDS

Although Four of a Kind is not much of a card game, you might decide to share the

FourOfAKind application with a friend. However, if you forget to include even one of the

application’s five supporting classfiles, your friend will not be able to run the application.

You can overcome this problem by bundling FourOfAKind’s six classfiles into a single

JAR (Java ARchive) file, which is a ZIP file that contains a special directory and the .jar

file extension. You can then distribute this single JAR file to your friend.

The JDK provides the jar tool for working with JAR files. To bundle all six classfiles into

a JAR file named FourOfAKind.jar, you could specify the following command line, where

c tells jar to create a JAR file and f identifies the JAR file’s name:

jar cf FourOfAKind.jar *.class

After creating the JAR file, try to run the application via the following command line:

java -jar FourOfAKind.jar

Instead of the application running, you will receive an error message having to do with

java not knowing which of the JAR file’s six classfiles is the main classfile (the file whose

class’s main() method executes first).

You can provide this knowledge via a text file that is merged into the JAR file’s manifest,
a special file named MANIFEST.MF that stores information about the contents of a JAR

file, and which is stored in the JAR file’s META-INF directory. Consider Listing 1–9.

Listing 1–9. Identifying the application’s main class

Main-Class: FourOfAKind

Listing 1–9 tells java which of the JAR’s classfiles is the main class file. (You must leave

a blank line after Main-Class: FourOfAKind.)

The following command line, which creates FourOfAKind.jar, includes m and the name

of the text file providing manifest content:

jar cfm FourOfAKind.jar manifest *.class

This time, java -jar FourOfAKind.jar succeeds and the application runs because java

is able to identify FourOfAKind as the main classfile.

CHAPTER 1: Getting Started with Java 40

EXERCISES

The following exercises are designed to test your understanding of what Java means, the JDK, NetBeans,
Eclipse, and Java application development:

1. What is Java?

2. What is a virtual machine?

3. What is the purpose of the Java compiler?

4. True or false: A classfile’s instructions are commonly referred to as bytecode.

5. What does the virtual machine’s interpreter do when it learns that a sequence of
bytecode instructions is being executed repeatedly?

6. How does the Java platform promote portability?

7. How does the Java platform promote security?

8. True or false: Java SE is the Java platform for developing servlets.

9. What is the JRE?

10. What is the difference between the public and private JREs?

11. What is the JDK?

12. Which JDK tool is used to compile Java source code?

13. Which JDK tool is used to run Java applications?

14. What is the purpose of the JDK’s jar tool?

15. What is Standard I/O?

16. What is an IDE?

17. Identify two popular IDEs.

18. What is pseudocode?

19. How would you list FourOfAKind.jar’s table of contents (list of directories and files
contained in the JAR file)?

20. Modify FourOfAKind to give each player the option of picking up the top card from
the deck or discard pile (assuming that the discard pile is not empty; it is empty when
the human player goes first and starts his/her first turn). Display the discard pile’s top
card for the human player’s benefit. (Do not display the deck’s top card.)

CHAPTER 1: Getting Started with Java 41

Summary
Java is a language and a platform. The language is partly patterned after the C and C++

languages to shorten the learning curve for C/C++ developers. The platform consists of

a virtual machine and associated execution environment.

Developers use different editions of the Java platform to create Java programs that run

on desktop computers, web browsers, web servers, mobile information devices, and

embedded devices. These editions are known as Java SE, Java EE, and Java ME.

Developers also use a special Google-created edition of the Java platform to create

Android apps that run on Android-enabled devices. This edition, known as the Android

platform, largely consists of Java core libraries and a virtual machine known as Dalvik.

The public JRE implements the Java SE platform and makes it possible to run Java

programs. The JDK provides tools (including the Java compiler) for developing Java

programs and also includes a private copy of the JRE.

Working with the JDK’s tools at the command line is not recommended for large

projects, which are hard to manage without the help of an integrated development

environment. Two popular IDEs are NetBeans and Eclipse.

Application development is not an easy task. All applications except for the most trivial

require careful planning or you will probably waste your (and your users’) time and

money. One way to develop applications efficiently involves using pseudocode.

FourOfAKind gave you a significant taste of the Java language. Although much of its

source code is probably hard to understand right now, you will find it much easier to

grasp after reading Chapter 2, which introduces you to Java’s language fundamentals.

CHAPTER 1: Getting Started with Java 42

43

43

 Chapter

Learning Language
Fundamentals
Aspiring Android developers need to understand the Java language. Java is an object-
oriented language in which developers use objects to represent entities (things that
exist, such as vehicles, checking and savings bank accounts, and buttons and other
user interface components). Language features supporting this paradigm are the focus
of this chapter and Chapter 3. More advanced features are discussed in Chapters 4 and
5. Additional advanced but minor features are more appropriately discussed in later
chapters.

Classes
Object-oriented applications represent entities as objects (entity abstractions). Each
object encapsulates (combines into a single unit) an entity’s attributes and behaviors.
For example, a checking bank account object might encapsulate a balance attribute
(with a current value of $50) along with deposit and withdrawal behaviors.

NOTE: Encapsulation exists in stark contrast to the separation of attributes and behaviors in C
and other structured programming languages. In such a language, the developer cannot merge
an entity’s attributes and behaviors into an object. Instead, the developer must separately declare
attributes via suitable data structures (organizations of data) and behaviors via suitable functions,
to which data structure instances that contain attribute values are passed.

Objects do not pop out of thin air; they must be instantiated (created) from something.
Languages such as C++ and Java refer to this something as a class, a template for
manufacturing objects (also known as class instances, or instances for short). This
section introduces you to Java’s language features for architecting classes.

2

CHAPTER 2: Learning Language Fundamentals 44

Declaring Classes
Because you cannot instantiate objects from a class that does not exist, you must
declare the class. The declaration consists of a header followed by a body. At minimum,
the header consists of reserved word class followed by a name that identifies the class
(so that it can be referred to from elsewhere in the source code). The body starts with an
open brace character ({) and ends with a close brace (}). Sandwiched between these
delimiters (a pair of characters that mark the start and stop of some section) are field,
method, and other kinds of declarations. Consider Listing 2–1.

Listing 2–1. Declaring a skeletal CheckingAccount class

class CheckingAccount
{
 // field, method, and other member declarations
}

Listing 2–1 declares a class named CheckingAccount. By convention, a class’s name
begins with an uppercase letter. Furthermore, the first letter of each subsequent word in
a multiword class name is capitalized. This is known as camel-casing.

NOTE: A class declaration is an example of type, a template for a set of data values and the
operations that can be legally performed on these values.

CheckingAccount is one example of an identifier, which is a name that identifies a class
or other source code entity. Identifiers consist of letters (A-Z, a-z, or equivalent
uppercase/lowercase letters in other human languages), digits (0-9 or equivalent digits in
other human languages), connecting punctuation characters (such as the underscore),
and currency symbols (such as the dollar sign). However, an identifier can only begin
with a letter, a currency symbol, or a connecting punctuation character. Also, an
identifier’s maximum length cannot exceed the length of the line in which it appears.

NOTE: Identifiers are expressed in Unicode (http://en.wikipedia.org/wiki/Unicode), a
universal character set that encodes the various symbols making up the world’s written
languages.

Additional examples include temperature, Temperature, _class, first$name, and
loopCounter1. temperature and Temperature are two different identifiers because Java is
a case-sensitive language. In contrast, 6x and door^color are not identifiers because the
former character sequence begins with a digit, and the latter character sequence
contains an illegal character (^).

You can choose almost any identifier to name classes and other source code entities.
However, Java reserves the following identifiers, which are commonly referred to as
reserved words, for special uses: abstract, assert, boolean, break, byte, case, catch,
char, class, const, continue, default, do, double, enum, else, extends, false, final,
finally, float, for, goto, if, implements, import, instanceof, int, interface, long,

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://en.wikipedia.org/wiki/Unicode

CHAPTER 2: Learning Language Fundamentals 45

native, new, null, package, private, protected, public, return, short, static, strictfp,
super, switch, synchronized, this, throw, throws, transient, true, try, void, volatile,
and while. Attempting to use any of these reserved words outside of their usage
contexts results in compiler error messages.

The class body is currently empty because we have yet to explore fields, methods, and
other class members. This fact is pointed out by the single-line comment, a line of
documentation that begins with //. The compiler ignores everything from // to the end
of the line.

Introducing Fields
After declaring a class, you can declare variables (memory locations whose values can
change) in the class’s body. Some of these variables are used in an object context to
describe entity attributes. Other variables are used in a class context to describe class
attributes (attributes that are shared by all created objects, such as a variable that
contains a count of all objects created from the class). Regardless of its purpose, a
variable that is introduced into a class’s body is known as a field. This section shows
you how to declare fields, how to initialize them to nondefault values, and how to
declare read-only fields.

Declaring Fields
You can declare a field within a class’s body by minimally specifying a type name,
followed by an identifier that names the field, followed by a semicolon character (;).
Listing 2–2 presents a pair of field declarations.

Listing 2–2. Declaring owner and balance fields in the CheckingAccount class

class CheckingAccount
{
 String owner; // name of person who owns this checking account
 int balance; // number of dollars that can be withdrawn
}

Listing 2–2 declares two fields named owner and balance. By convention, a field’s name
begins with a lowercase letter, and the first letter of each subsequent word in a
multiword field name is capitalized.

A field’s type identifies the kind of values that can be assigned to the field. The owner
field is of type String, which is one of Java’s predefined classes. String objects contain
sequences of characters; the character sequence in any String object assigned to owner
will contain the name of the account’s owner.

The balance field is of type integer, which is implied by reserved word int. (In common
practice, we say that balance is of type int.) This field can store the account balance as
a whole number without a fraction.

CHAPTER 2: Learning Language Fundamentals 46

Integer is one of several primitive types (types whose values are not objects) that are
supported by Java. Table 2–1 describes all of Java’s primitive types except for void
(discussed later).

Table 2–1. Primitive Types

Primitive Type Reserved Word Size Min Value Max Value

Boolean boolean -- -- --

Character char 16-bit Unicode 0 Unicode 216 - 1

Byte integer byte 8-bit -128 +127

Short integer short 16-bit -215
 +215 - 1

Integer int 32–bit -231
 +231 - 1

Long integer long 64-bit -263
 +263 - 1

Floating-point float 32–bit IEEE 754 IEEE 754

Double precision floating-point double 64-bit IEEE 754 IEEE 754

Table 2–1 expresses primitive type sizes in terms of the number of bits (binary digits—
each digit is either 0 or 1) that a value of that type occupies in memory. A group of eight
bits is known as a byte.

Also, Unicode 0 is shorthand for “the first Unicode character,” and IEEE 754
(http://en.wikipedia.org/wiki/IEEE_754) refers to a standard for representing floating-
point numbers in memory.

Except for Boolean, whose size is implementation dependent (one Java implementation
might store a Boolean value in a single bit, whereas another implementation might
require an eight-bit byte for performance efficiency), each primitive type’s
implementation has a specific size.

NOTE: Unlike their C and C++ counterparts, Java’s primitive types have the same size in each
Java implementation, which partly accounts for the portability of Java applications.

Except for Boolean, whose only values are true and false, each primitive type has a
minimum and a maximum value. By studying these limits, you can deduce that the
character type is unsigned (all values are positive). In contrast, each numeric type is
signed (the type supports positive and negative values).

http://en.wikipedia.org/wiki/IEEE_754

CHAPTER 2: Learning Language Fundamentals 47

NOTE: Developers who argue that everything in Java should be an object are not happy about
the inclusion of primitive types in the language. However, Java was designed to include primitive
types to overcome the speed and memory limitations of early 1990s-era devices, to which Java
was originally targeted.

The owner and balance fields are examples of non-array fields because each field can
hold only one value—an array is a multivalue variable; each array element (storage slot)
holds one of these values. Java also lets you declare array-based fields, which, as
Listing 2–3 reveals, are identified by the presence of square brackets ([and]).

Listing 2–3. Declaring cities and temperatures array-based fields in a WeatherData class

class WeatherData
{
 String country;
 String[] cities;
 double[][]temperatures;
}

Listing 2–3 declares a WeatherData class that holds temperature extremes for a variety of
cities in a specific country. The one-dimensional cities array contains the names of
these cities; the two-dimensional temperatures array contains the maximum and
minimum temperature values for each city.

A one-dimensional array is a sequential list of values; it is identified in source code by
one pair of square brackets. A two-dimensional array is a table of values; it is identified
in source code by two pairs of square brackets. These brackets can appear on either
side of the field name, but are often shown with the type name. (Java also supports
higher-dimensional arrays.)

CheckingAccount’s owner and balance fields, and WeatherData’s country, cities, and
temperatures fields are examples of instance fields because they associate with objects.
Each CheckingAccount instance is given its own copy of owner and balance when the
object is created. Similarly, each WeatherData instance is given its own copy of country,
cities, and temperatures when the object is created. Modifying any field’s value does
not affect the value in any other copy of that field.

In many situations, instance fields are all that you need. However, you might encounter a
situation where you need a single copy of a field no matter how many objects are
created.

For example, suppose you want to track the number of CheckingAccount objects that
have been created, and introduce a counter field (initialized to 0) into this class. You also
place code in the class’s constructor (which I will present when I discuss constructors)
to increase counter’s value by 1 when an object is created. However, because each
object has its own copy of the counter field, this field’s value never advances past 1.

CHAPTER 2: Learning Language Fundamentals 48

You can solve this problem by declaring counter to be a class field, a field that
associates with a class instead of with that class’s objects. Listing 2–4 accomplishes
this task by prefixing counter’s declaration with the static reserved word.

Listing 2–4. Adding a counter class field to CheckingAccount

class CheckingAccount
{
 String owner;
 int balance;
 static int counter;
}

Listing 2–4’s static prefix implies that there is only one copy of the counter field, not
one copy per object. Each time an object is created, counter will increase by 1, and you
will get an accurate tally of all CheckingAccount objects that have been created.

Each of owner and balance is created when a CheckingAccount object is created, and
destroyed when the object is destroyed. In contrast, counter is created when
CheckingAccount is loaded into memory, and destroyed when this class is removed from
memory (when the application ends). This quality is known as lifetime.

Each of owner and balance can be accessed only from an instance context (such as a
constructor). In contrast, counter can be accessed from instance and class contexts
(such as a class method, discussed later in this chapter). This quality is known as scope.

Initializing Fields
Listing 2–4’s owner and balance fields are initialized to default null and 0 values
(respectively) when an object is created from the CheckingAccount class. The counter
field is initialized to 0 when this class is loaded into memory.

It is common to initialize an instance field to a (potentially unique) value from within the
class’s constructor. However, you might want to explicitly assign some reasonable
nonunique default value to this field, and give yourself the option of overriding that
default value via the constructor. In contrast, you often explicitly initialize class fields.

Regardless of how you initialize a field, the value results from evaluating an expression,
which is a combination of variables, method calls (invocations), literals (values specified
verbatim), and operators. The expression’s type must agree with the field’s type when
assigning the expression to the field. Otherwise, the compiler reports an error.

Simple Expressions

A simple expression is a value expressed as a variable name (value is read from the
variable), a method call (value is returned from the method), or a literal in source code.

Java supports several kinds of literals: string, Boolean, character, integer, floating-point,
and null (which I will discuss later in this chapter).

A string literal consists of a sequence of Unicode characters surrounded by a pair of
double quotes ("). Example: "The quick brown fox jumps over the lazy dog."

CHAPTER 2: Learning Language Fundamentals 49

A string literal might also contain escape sequences, which are special syntax (rules for
combining symbols into language features) for representing certain printable and
nonprintable characters that otherwise cannot appear in the literal. For example, string
literal "The quick brown \"fox\" jumps over the lazy dog." uses the \" escape
sequence to surround fox with double quotes. Table 2–2 describes all supported
escape sequences.

Table 2–2. Escape Sequences

Escape Syntax Description

\\ Backslash

\" Double quote

\' Single quote

\b Backspace

\f Form feed

\n Newline (also referred to as linefeed)

\r Carriage return

\t Horizontal tab

Finally, a string literal might contain Unicode escape sequences, which are special
syntax for representing Unicode characters. A Unicode escape sequence begins with \u
and continues with four hexadecimal digits (0-9, A-F, a-f) with no intervening space. For
example, \u0041 represents capital letter A, and \u20ac represents the European Union’s
euro currency symbol.

A Boolean literal consists of reserved word true or reserved word false.

A character literal consists of a single Unicode character surrounded by a pair of single
quotes ('A' is an example). You can also represent, as a character literal, an escape
sequence ('\'', for example) or a Unicode escape sequence (such as '\u0041').

An integer literal consists of a sequence of digits. If the literal is to represent a long
integer value, then it must be suffixed with an uppercase L or lowercase l (L is easier to
read). If there is no suffix, the literal represents a 32–bit integer (an int).

Integer literals can be specified in the default decimal, hexadecimal, octal, and (starting
with Java version 7) binary formats:

 The decimal format is the default format. Example: 255

 The hexadecimal format requires that the literal be prefixed with 0x or
0X and continue with hexadecimal digits (0-9, A-F, a-f). Example: 0xFF

CHAPTER 2: Learning Language Fundamentals 50

 The octal format requires that the literal be prefixed with 0 and
continue with octal digits (0-7). Example: 077

 The binary format requires that the literal be prefixed with 0b or 0B and
continue with 0s and 1s. Example: 0b11111111

Java version 7 also adds another nice feature where integer literals are concerned: it lets
you insert underscores between digits to improve readability. Example: 123_456_789.
Although you can insert multiple successive underscores between digits (as in
0b1111__0000), you cannot specify a leading underscore (as in _123) because the
compiler would treat the literal as an identifier. Also, you cannot specify a trailing
underscore (as in 123_).

Finally, a floating-point literal consists of an integer part, a decimal point (represented by
the period character (.)), a fractional part, an exponent (starting with letter E or e), and a
type suffix (letter D, d, F, or f). Most parts are optional, but enough information must be
present to differentiate the floating-point literal from an integer literal. Examples include
0.1 (double precision floating-point), 10F (floating-point), 10D (double precision floating-
point), and 3.0E+23 (double precision floating-point).

Suppose you need to create a class whose objects are used to log messages to a
specific file. Each instance will have a field that identifies the target file, initialized to a
default filename. Listing 2–5 presents this class and shows you how to initialize this field.

Listing 2–5. Initializing the Logger class's filename field

class Logger
{
 String filename = "log.txt";
}

Listing 2–5 uses simple initialization to initialize a non-array field. You can also use
simple initialization with array-based fields. For example, Listing 2–6 shows you how to
initialize array-based cities and temperatures fields.

Listing 2–6. Initializing the WeatherData class's fields

class WeatherData
{
 String country = "United States";
 String[] cities = {"Chicago", "New York", "Los Angeles"};
 double[][] temperatures = {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}};
}

Listing 2–6’s WeatherData class defaults its objects to providing weather data for three
American cities. The cities array is initialized to a comma-separated list of three String
literals, which are specified between braces; the temperatures array is initialized to a
three-row by two-column table of double precision floating-point zeros, which is
specified as a three-element row array with each comma-separated element containing
a two-element column array.

CHAPTER 2: Learning Language Fundamentals 51

Compound Expressions

A compound expression is a sequence of simple expressions and operators, where an
operator is a sequence of instructions (symbolically represented in source code) that
transforms one or more values, known as operands, into another value.

For example, the + symbol denotes the addition or string concatenation operator,
depending on the types of its two operands. When this symbol appears between
numeric operands (6+4, for example), addition is implied. Similarly, when + appears
between string literals (as in "A"+"B"), string concatenation is implied.

Java supplies a wide variety of operators that are classified by the number of operands
they take. A unary operator takes only one operand, a binary operator takes two
operands, and Java’s single ternary operator takes three operands.

These operators are also classified as prefix, postfix, and infix. A prefix operator is a
unary operator that precedes its operand, a postfix operator is a unary operator that
trails its operand, and an infix operator is a binary or ternary operator that is sandwiched
between the binary operator’s two or the ternary operator’s three operands.

Table 2–3 describes all supported operators. (I will explain precedence after this table.)

Table 2–3. Operators

Operator Symbol Description Precedence

Addition + Given operand1 + operand2, where each operand must
be of character or numeric type, add operand2 to
operand1 and return the sum.

10

Array index [] Given variable[index], where index must be of
integral type, read value from or store value into
variable’s storage element at location index.

13

Assignment = Given variable = operand, which must be
assignment-compatible (their types must agree), store
operand in variable.

0

Bitwise AND & Given operand1 & operand2, where each operand must
be of character or integer type, bitwise AND their
corresponding bits and return the result. A result bit is
set to 1 if each operand’s corresponding bit is 1.
Otherwise, the result bit is set to 0.

6

Bitwise
complement

~ Given ~operand, where operand must be of character or
integer type, flip operand’s bits (1s to 0s and 0s to 1s)
and return the result.

12

Bitwise
exclusive OR

^ Given operand1 ^ operand2, where each operand must
be of character or integer type, bitwise exclusive OR
their corresponding bits and return the result. A result
bit is set to 1 if one operand’s corresponding bit is 1
and the other operand’s corresponding bit is 0.
Otherwise, the result bit is set to 0.

5

CHAPTER 2: Learning Language Fundamentals 52

Operator Symbol Description Precedence

Bitwise
inclusive OR

| Given operand1 | operand2, which must be of
character or integer type, bitwise inclusive OR their
corresponding bits and return the result. A result bit is
set to 1 if either (or both) of the operands’
corresponding bits is 1. Otherwise, the result bit is set
to 0.

4

Cast (type) Given (type) operand, convert operand to an
equivalent value that can be represented by type. For
example, you could use this operator to convert a
floating-point value to a 32–bit integer value.

12

Compound
assignment

+=, -=, *=, /=,
%=, &=, |=, ^=,
<<=, >>=, >>>=

Given variable operator operand, where operator is
one of the listed compound operator symbols, and
where operand is assignment-compatible with
variable, perform the indicated operation using
variable’s value as operator’s left operand value, and
store the resulting value in variable.

0

Conditional ?: Given operand1 ? operand2 : operand3, where
operand1 must be of Boolean type, return operand2 if
operand1 is true or operand3 if operand1 is false. The
types of operand2 and operand3 must agree.

1

Conditional
AND

&& Given operand1 && operand2, where each operand
must be of Boolean type, return true if both operands
are true. Otherwise, return false. If operand1 is false,
operand2 is not examined. This is known as short-
circuiting.

3

Conditional OR || Given operand1 || operand2, where each operand
must be of Boolean type, return true if at least one
operand is true. Otherwise, return false. If operand1 is
true, operand2 is not examined. This is known as short-
circuiting.

2

Division / Given operand1 / operand2, where each operand must
be of character or numeric type, divide operand1 by
operand2 and return the quotient.

11

Equality == Given operand1 == operand2, where both operands
must be comparable (you cannot compare an integer
with a string literal, for example), compare both
operands for equality. Return true if these operands are
equal. Otherwise, return false.

7

Inequality != Given operand1 != operand2, where both operands
must be comparable (you cannot compare an integer
with a string literal, for example), compare both
operands for inequality. Return true if these operands
are not equal. Otherwise, return false.

7

CHAPTER 2: Learning Language Fundamentals 53

Operator Symbol Description Precedence

Left shift << Given operand1 << operand2, where each operand
must be of character or integer type, shift operand1’s
binary representation left by the number of bits that
operand2 specifies. For each shift, a 0 is shifted into the
rightmost bit and the leftmost bit is discarded. Only the
five low-order bits of operand2 are used when shifting a
32–bit integer (to prevent shifting more than the
number of bits in a 32–bit integer). Only the six low-
order bits of operand2 are used when shifting a 64-bit
integer (to prevent shifting more than the number of
bits in a 64-bit integer). The shift preserves negative
values. Furthermore, it is equivalent to (but faster than)
multiplying by a multiple of 2.

9

Logical AND & Given operand1 & operand2, where each operand must
be of Boolean type, return true if both operands are
true. Otherwise, return false. In contrast to conditional
AND, logical AND does not perform short-circuiting.

6

Logical
complement

! Given !operand, where operand must be of Boolean
type, flip operand’s value (true to false or false to true)
and return the result.

12

Logical
exclusive OR

^ Given operand1 ^ operand2, where each operand must
be of Boolean type, return true if one operand is true
and the other operand is false. Otherwise, return false.

5

Logical
inclusive OR

| Given operand1 | operand2, where each operand must
be of Boolean type, return true if at least one operand
is true. Otherwise, return false. In contrast to
conditional OR, logical inclusive OR does not perform
short-circuiting.

4

Member
access

. Given identifier1.identifier2, access the
identifier2 member of identifer1. You will learn
about this operator later in this chapter.

13

Method call () Given identifier(argument list), call the method
identified by identifier and matching parameter list.
You will learn about calling methods later in this chapter.

13

Multiplication * Given operand1 * operand2, where each operand must
be of character or numeric type, multiply operand1 by
operand2 and return the product.

11

Object creation new Given new identifier(argument list), allocate
memory for object and call constructor specified as
identifier(argument list). Given new
identifier[integer size], allocate a one-dimensional
array of values.

12

Postdecrement -- Given variable--, where variable must be of
character or numeric type, subtract 1 from variable’s
value (storing the result in variable) and return the
original value.

13

CHAPTER 2: Learning Language Fundamentals 54

Operator Symbol Description Precedence

Postincrement ++ Given variable++, where variable must be of
character or numeric type, add 1 to variable’s value
(storing the result in variable) and return the original
value.

13

Predecrement -- Given --variable, where variable must be of
character or numeric type, subtract 1 from its value,
store the result in variable, and return this value.

12

Preincrement ++ Given ++variable, where variable must be of
character or numeric type, add 1 to its value, store the
result in variable, and return this value.

12

Relational
greater than

> Given operand1 > operand2, where each operand must
be of character or numeric type, return true if operand1
is greater than operand2. Otherwise, return false.

8

Relational
greater than or
equal to

>= Given operand1 >= operand2, where each operand
must be of character or numeric type, return true if
operand1 is greater than or equal to operand2.
Otherwise, return false.

8

Relational less
than

< Given operand1 < operand2, where each operand must
be of character or numeric type, return true if operand1
is less than operand2. Otherwise, return false.

8

Relational less
than or equal
to

<= Given operand1 <= operand2, where each operand
must be of character or numeric type, return true if
operand1 is less than or equal to operand2. Otherwise,
return false.

8

Relational type
checking

instanceof Given operand1 instanceof operand2, where operand1
is an object and operand2 is a class (or other user-
defined type), return true if operand1 is an instance of
operand2. Otherwise, return false.

8

Remainder % Given operand1 % operand2, where each operand must
be of character or numeric type, divide operand1 by
operand2 and return the remainder.

11

Signed right
shift

>> Given operand1 >> operand2, where each operand must
be of character or integer type, shift operand1’s binary
representation right by the number of bits that operand2
specifies. For each shift, a copy of the sign bit (the
leftmost bit) is shifted to the right and the rightmost bit is
discarded. Only the five low-order bits of operand2 are
used when shifting a 32–bit integer (to prevent shifting
more than the number of bits in a 32–bit integer). Only
the six low-order bits of operand2 are used when shifting
a 64-bit integer (to prevent shifting more than the
number of bits in a 64-bit integer). The shift preserves
negative values. Furthermore, it is equivalent to (but
faster than) dividing by a multiple of 2.

9

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 2: Learning Language Fundamentals 55

Operator Symbol Description Precedence

String
concatenation

+ Given operand1 + operand2, where at least one
operand is of String type, append operand2’s string
representation to operand1’s string representation and
return the concatenated result.

10

Subtraction - Given operand1 - operand2, where each operand must
be of character or numeric type, subtract operand2
from operand1 and return the difference.

10

Unary minus - Given -operand, where operand must be of character or
numeric type, return operand’s arithmetic negative.

12

Unary plus + Like its predecessor, but return operand. Rarely used. 12

Unsigned right
shift

>>> Given operand1 >>> operand2, where each operand
must be of character or integer type, shift operand1’s
binary representation right by the number of bits that
operand2 specifies. For each shift, a zero is shifted into
the leftmost bit and the rightmost bit is discarded. Only
the five low-order bits of operand2 are used when
shifting a 32–bit integer (to prevent shifting more than
the number of bits in a 32–bit integer). Only the six low-
order bits of operand2 are used when shifting a 64-bit
integer (to prevent shifting more than the number of
bits in a 64-bit integer). The shift does not preserve
negative values. Furthermore, it is equivalent to (but
faster than) dividing by a multiple of 2.

9

In Table 2–3’s operator descriptions, “integer type” refers to any of the byte integer,
short integer, integer, or long integer types, unless integer type is qualified as a 32–bit
integer. Also, “numeric type” refers to any of these integer types along with floating-
point and double precision floating-point.

Table 2–3’s rightmost column presents a value that indicates the operator’s precedence
(level of importance): the higher the number, the higher the precedence. For example,
addition’s precedence level is 10 and multiplication’s precedence level is 11, which
means that multiplication is performed before addition when evaluating 40+2*4.

Precedence can be circumvented by introducing open and close parentheses, (and),
into the expression, where the innermost pair of nested parentheses is evaluated first.
For example, (40+2)*4 results in addition being performed before multiplication, and
40/(2–4) results in subtraction being performed before divison.

During evaluation, operators with the same precedence level (such as addition and
subtraction, which both have level 10) are processed according to their associativity (a
property that determines how operators having the same precedence are grouped when
parentheses are missing).

For example, expression 6*3/2 is evaluated as if it was (6*3)/2 because * and / are left-
to-right associative operators. In contrast, expression a=b=c=10 is evaluated as if it was
a=(b=(c=10))—10 is assigned to c, c’s new value (10) is assigned to b, and b’s new value
(10) is assigned to a—because = is a right-to-left associative operator.

CHAPTER 2: Learning Language Fundamentals 56

Most of Java’s operators are left-to-right associative. Right-to-left associative operators
include assignment, bitwise complement, cast, compound assignment, conditional,
logical complement, object creation, predecrement, preincrement, unary minus, and
unary plus.

Whenever an operator encounters two operands of different types, it attempts to convert
one (and possibly both) of the operands to a type that is suitable for performing its
operation. For example, if you attempt to add a 16-bit short integer value to a 32–bit
integer value, the addition operator will first convert the short integer value to a 32–bit
integer value, and then add together both 32–bit integer values.

Similarly, if you attempt to add a 32–bit integer value to a 32–bit floating-point value, the
operator will first convert the 32–bit integer value to a 32–bit floating-point value, and
then add together both floating-point values. The operator always converts the value
with a more limited representation (such as a 16-bit short integer) to an equivalent value
in a less limited representation (such as a 32–bit integer).

Sometimes, you need to explicitly perform a conversion, and this is where the cast
operator comes into play. For example, suppose your class contains the following field
declarations:

char c = 'A';
byte b = c;

The compiler reports an error about loss of precision when it encounters byte b = c;.
The reason is that c can represent any unsigned integer value from 0 through 65535,
whereas b can only represent a signed integer value from -128 through +127. Even
though 'A' equates to +65, which can fit within b’s range, c could just have easily been
initialized to '\u0123', which would not fit. Because of the potential for data loss, the
compiler complains.

The solution to this problem involves introducing a (byte) cast, which explicitly tells the
compiler that the developer is aware of the potential for data loss but wants the
conversion to occur:

byte b = (byte) c;

Not all conversions can be performed. For example, the subtraction operator cannot
subtract a string literal from a 32–bit integer. Also, attempting to cast a floating-point
value to a String, as in String s = (String) 20.0;, does not work. In these situations,
the compiler provides suitable error messages.

The mathematical operators (+, -, *, /, %) can yield values that overflow or underflow the
limits of the resulting value’s type. For example, multiplying two large positive 32–bit
integer values can produce a value that cannot be represented as a 32–bit integer value.
Java does not detect overflows and underflows.

Dividing (via / or %) a numeric value by 0 also results in interesting behavior. In the first
case, dividing an integer value by integer 0 causes the operator to throw an
ArithmeticException object (I briefly discuss ArithmeticException in Chapter 4 when I
cover exceptions). Secondly, dividing a floating-point value by 0 causes the operator to

CHAPTER 2: Learning Language Fundamentals 57

return +infinity or -infinity, depending on whether the dividend is positive or negative.
Finally, dividing floating-point 0 by 0 causes the operator to return NaN (Not a Number).

Suppose you have created a ReportWriter class that outputs reports to the printer.
During the testing phase, you want to make sure that reports are properly generated
without wasting paper, so you would like the output to be directed to a file. An additional
requirement is that you would like to be able to change the file’s name or the printer’s
name from application code. Listing 2–7 presents a possible solution.

Listing 2–7. Initializing the ReportWriter class's outputDevice field with the help of the conditional operator

class ReportWriter
{
 static boolean test = true;
 static String outputDevice = (test) ? "file" : "printer";
}

Listing 2–7’s ReportWriter class satisfies the first requirement by providing a test class
field. When this class loads, true is assigned to test, overriding its default false value.
The expression assigned to the outputDevice class field uses the conditional operator to
examine test. Finding this field to contain true, the operator subsequently returns string
literal "file", which is assigned to outputDevice. If test is found to contain false,
"printer" is returned and assigned to outputDevice.

To satisfy the second requirement, simply assign the appropriate destination string literal
to outputDevice from the application’s code.

Read-only Fields
Java provides reserved word final for declaring that a field is read-only.

Each object receives its own copy of a read-only instance field. This field must be
initialized, as part of the field’s declaration or in the class’s constructor. If initialized in
the constructor, the read-only instance field is known as a blank final because it does
not have a value until one is assigned to it in the constructor. Because a constructor can
potentially assign a different value to each object’s blank final, these read-only variables
are not truly constants.

If you want a true constant, which is a single read-only value that is available to all
objects, you need to create a read-only class field. You can accomplish this task by
including the reserved word static with final in that field’s declaration.

Listing 2–8 shows you how to declare a read-only class field.

Listing 2–8. Declaring a true constant in the Employee class

class Employee
{
 final static int RETIREMENT_AGE = 65;
}

Listing 2–8’s RETIREMENT_AGE declaration is an example of a compile-time constant.
Because there is only one copy of its value (thanks to the static reserved word), and

CHAPTER 2: Learning Language Fundamentals 58

because this value will never change (thanks to the final reserved word), the compiler is
free to optimize the compiled code by inserting the constant value into all calculations
where it is used. The code runs faster because it does not have to access a read-only
class field.

Introducing Methods
After declaring a class, you can introduce methods (named bodies of code) into the
class’s body. Some of these methods can associate with objects in order to describe
entity behaviors. Other methods can associate with classes. This section shows you
how to declare methods, how to implement their bodies, and how to overload methods.

Declaring Methods
You can declare a method within a class’s body by minimally specifying a return type,
followed by an identifier that names the method, followed by a parameter list, followed
by a body. Listing 2–9 presents a simple method declaration.

Listing 2–9. Declaring a printBalance() method in the CheckingAccount class

class CheckingAccount
{
 String owner;
 int balance;
 static int counter;
 void printBalance()
 {
 // code that outputs the balance field's value
 }
}

Listing 2–9 declares a method named printBalance in CheckingAccount’s body. By
convention, a method’s name begins with a lowercase letter. Furthermore, the first letter
of each subsequent word in a multiword method name is capitalized.

A method’s parameter list identifies the number, order, and types of values that are
passed to the method when the method is called via a parentheses-delimited and
comma-separated list of variable declarations. Each value passed to the method is
called an argument; the variable that receives the argument is called a parameter.
Because arguments are not passed to printBalance(), its parameter list is empty.

NOTE: The method’s name and the types of its parameters are known as its signature.

The method’s body specifies code that is to be executed when the method is called. In
this example, I chose to leave the body empty, but have supplied a single-line comment
to describe what the body should contain.

Finally, a method’s return type identifies the kind of values returned by the method.
Because printBalance() does not return a value, its return type is set to void via

CHAPTER 2: Learning Language Fundamentals 59

reserved word void. (Think of void as a special kind of primitive type, even though
variables cannot be declared to be void, which is why I did not include it in Table 2–1.)

Because a CheckingAccount class should also provide methods for making deposits and
withdrawals, Listing 2–10 introduces deposit() and withdraw() methods into this class.

Listing 2–10. Declaring deposit() and withdraw() methods

class CheckingAccount
{
 String owner;
 int balance;
 static int counter;
 void printBalance()
 {
 // code that outputs the balance field’s value
 }
 int deposit(int amount)
 {
 // code that adds the specified amount to balance, and returns the new balance
 }
 int withdraw(int amount)
 {
 /* code that subtracts the specified amount from balance, and returns the new
 balance */
 }
}

Listing 2–10’s deposit() and withdraw() methods each specify a nonempty parameter
list consisting of a single amount parameter. As with any parameter, amount’s lifetime
ranges from the point where execution enters the method to the point where execution
exits the method and returns to the method’s caller (the code that called the method).
Also, amount’s scope is the entire method.

The deposit() and withdraw() methods also specify, via their int return types, that they
return integer values.

Because we are not yet ready to code these methods’ bodies, I have introduced
comments to document their tasks. In contrast to printBalance() and deposit(),
withdraw() reveals a multiline comment, one or more lines of documentation starting
with /* and ending with */. The compiler ignores everything from /* through */.

CAUTION: You cannot place a multiline comment inside another multiline comment: /*/*
Nesting multiline comments is illegal! */*/

CheckingAccount’s printBalance(), deposit(), and withdraw() methods are examples
of instance methods because they associate with objects. Each method is called with a
hidden argument that refers to the current object. The hidden argument allows the
method to access the object’s instance fields and call other instance methods.
Furthermore, instance methods can access class fields and call class methods.

CHAPTER 2: Learning Language Fundamentals 60

In many situations, instance methods are all that you need. However, when writing an
application, you must introduce at least one class method, a method that associates
with a class instead of with that class’s objects, into one of the application’s classes.

Specifically, an application must specify public static void main(String[] args) to
serve as the application’s entry point. The static reserved word is what makes this
method a class method. (I will explain reserved word public later in this chapter.)

NOTE: main() is called with an array of String objects, where each object contains the
character representation of a command-line argument.

Because class methods are not called with a hidden argument that refers to the current
object, main() cannot access an object’s instance fields or call its instance methods.
This method can only access class fields and call class methods.

Many methods require you to pass a fixed number of arguments when they are called.
However, Java also provides the ability to pass a variable number of arguments. To
declare a method that takes a variable number of arguments, specify three consecutive
periods after the type name of the method’s rightmost parameter. For example, Listing
2–11 places these periods after the double type name.

Listing 2–11. Declaring a sum() method that takes a variable number of arguments

double sum(double... values)
{
 // code that sums the passed double arguments and returns the sum
}

You will shortly learn how to codify this method, along with the methods that were
previously introduced. Later on, you will learn how to call all of these methods.

Implementing Methods
Listing 2–10’s empty printBalance() method accomplishes nothing. Furthermore, its
empty deposit() and withdraw() methods result in compiler errors because these
methods have non-void return types and do not return values. To make these methods
useful and legal, you must introduce statements into their bodies.

A statement is one or more instructions that perform a task. It can be expressed as a
simple statement or as a compound statement.

A simple statement is a single instruction terminated by a semicolon. In addition to the
empty simple statement, Java supplies local variable declaration, assignment, method-
call, decision, loop (repeated execution), break and continue, and method-return simple
statements. (Chapter 4 introduces additional kinds of simple statements.)

A compound statement is a (possibly empty) sequence of simple and other compound
statements sandwiched between open and close brace delimiters. A method body is an
example. Compound statements can appear wherever simple statements appear, and
are alternatively referred to as blocks.

CHAPTER 2: Learning Language Fundamentals 61

Empty Statements, Local Variable Declarations, Assignments, and Method Calls

An empty statement is nothing followed by a semicolon. Although this kind of statement
appears to be useless, it is useful, as I will explain when I discuss loop statements.

A local variable declaration introduces a variable into a method’s body or other
compound statement. This local variable’s lifetime and scope range from its point of
declaration to the end of the compound statement in which it is declared. Only
statements appearing after the declaration can access the local variable.

NOTE: A local variable is similar to a parameter in that both kinds of variables only exist during a
method’s execution. However, a parameter contains a passed argument, whereas a local
variable contains whatever value is necessary to help the method accomplish its task.

This statement is similar to an instance field declaration in that it minimally begins with a
type name, continues with an identifier that names the local variable, and ends with a
semicolon. By convention, a local variable’s name begins with a lowercase letter.
Furthermore, the first letter of each subsequent word in a multiword local variable name
is capitalized.

CAUTION: You cannot declare multiple local variables with the same name in the same scope
because the compiler will report an “already defined” error message.

An assignment is a close relative of the local variable declaration statement. Instead of
starting with a type, this statement begins with the name of a variable that has already
been declared, continues with the assignment operator (=) or a compound assignment
operator (such as +=), and concludes with an expression and a semicolon.

A method call executes a method, possibly passing arguments and possibly receiving a
value in return. Regardless of whether or not a value is returned, a method call is a
statement. If you do not assign the method’s return value to a variable, the return value
is lost. However, you occasionally might be more interested in what the method
accomplishes than in what the method returns.

Listing 2–12’s printBalance() method demonstrates these statements except for
empty.

Listing 2–12. Declaring and using local variables in printBalance()

void printBalance()
{
 int magnitude = (balance < 0) ? -balance : balance;
 String balanceRep = (balance < 0) ? "(" : "";
 balanceRep += magnitude;
 balanceRep += (balance < 0) ? ")" : "";
 System.out.println(balanceRep);
}

CHAPTER 2: Learning Language Fundamentals 62

Listing 2–12 introduces several statements into printBalance() to create a suitable
string-based representation of the balance field’s value and output this string. If this
value is positive, it is represented and printed as is. If this value is negative, its
magnitude (absolute or positive value) is represented and printed between parentheses.

This listing’s first two statements declare a pair of local variables: magnitude and
balanceRep. An expression initializes the magnitude variable to the balance field’s
magnitude, whereas another expression initializes balanceRep to "(" or "" (the empty
string), depending on whether the balance field’s value is negative or positive.

Unlike fields, which are initialized to default values, and parameters, which are initialized
to arguments, local variables are not implicitly initialized. Before you can read a local
variable’s value, you must assign a value to the variable. Otherwise, the compiler reports
an error about the local variable not having been initialized.

Moving on, two assignment statements follow the local variable declaration statements.
These statements append a string representation of the balance field’s magnitude
followed by ")" or "" to balanceRep. Alternatively, I could have expressed the first of
these statements as balanceRep = balanceRep + magnitude;.

Listing 2–12 concludes by calling the System.out.println() method to output
balanceRep’s character sequence to the standard output device. (Chapter 1 briefly
introduces the concept of standard input/output along with System.out.println() and
related methods.)

Decisions

Listing 2–12 used the conditional operator to determine whether to assign -balance or
balance to magnitude. Although this operator is useful for initializing a variable to one of
two values, it cannot be used for choosing between two statements to execute. Java
supplies the if-else statement for this purpose.

The if-else statement has the following syntax:

if (Boolean expression)
 statement1
else
 statement2

This statement consists of reserved word if, followed by a Boolean expression in
parentheses, followed by a statement to execute (if the Boolean expression evaluates to
true), followed by reserved word else, followed by another statement to execute (if the
Boolean expression evaluates to false).

Listing 2–13 demonstrates if-else.

Listing 2–13. A revised printBalance() method

void printBalance()
{
 if (balance < 0)
 System.out.println("(" + -balance + ")");
 else

CHAPTER 2: Learning Language Fundamentals 63

 System.out.println(balance);
}

Listing 2–13’s if-else statement results in the first System.out.println() method call
executing if balance’s value is less than 0, and the second System.out.println()
method call executing if balance’s value is greater than or equal to 0.

Each of statement1 and statement2 describes another statement to execute. If you do
not need the else part in the preceding syntax, you can omit else and statement2 from
the syntax. The resulting statement is called if.

NOTE: When if and if-else are used together, and the source code is not properly indented, it can
be difficult to determine which if associates with the else. For example:

if (car.door.isOpen())

 if (car.key.isPresent())

 car.start();

else car.door.open();

Did the developer intend for the else to match the inner if, but improperly formatted the code to
make it appear otherwise? For example:

if (car.door.isOpen())

 if (car.key.isPresent())

 car.start();

 else

 car.door.open();

If car.door.isOpen() and car.key.isPresent() each return true, car.start()
executes. If car.door.isOpen() returns true and car.key.isPresent() returns false,
car.door.open(); executes. Attempting to open an open door makes no sense.

The developer must have wanted the else to match the outer if, but forgot that else matches the
nearest if. This problem can be fixed by surrounding the inner if with braces, as follows:

if (car.door.isOpen())

{

 if (car.key.isPresent())

 car.start();

}

else

 car.door.open();

When car.door.isOpen() returns true, the compound statement executes. When this method
returns false, car.door.open(); executes, which makes sense.

CHAPTER 2: Learning Language Fundamentals 64

Forgetting that else matches the nearest if and using poor indentation to obscure this fact is
known as the dangling-else problem.

You can chain multiple if-else statements together, resulting in the following syntax:

if (Boolean expression1)
 statement1
else
if (Boolean expression2)
 statement2
else
 …
else
 statementN

If the first Boolean expression is true, statement1 executes. Otherwise, if the second
Boolean expression is true, statement2 executes. This pattern continues until one of
these expressions is true and its corresponding statement executes, or the final else is
reached and statementN (the default statement) executes.

Listing 2–14 demonstrates chained if-else.

Listing 2–14. A revised printBalance() method using chained if-else

void printBalance()
{
 if (balance < 0)
 System.out.println("(" + -balance + ")");
 else
 if (balance == 0)
 System.out.println("zero balance");
 else
 System.out.println(balance);
}

Look closely at Listing 2–14 and you will see that its chained if-else statement is actually
an if-else statement, where the statement following the else part (the first else) is
another if-else statement.

Chaining if-else statements together leads to verbosity that, in some cases, can be
made more concise by using a switch statement. This statement lets you write code for
choosing one of several statements to execute, and has the following syntax:

switch (selector expression)
{
 case value1: statement1 [break;]
 case value2: statement2 [break;]
 …
 case valueN: statementN [break;]
 [default: statement]
}

The switch statement consists of reserved word switch, followed by a selector
expression in parentheses, followed by a body of cases. The selector expression is

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 2: Learning Language Fundamentals 65

typically any expression that evaluates to an integral value. For example, it might
evaluate to a 32–bit integer or to a 16-bit character.

Each case begins with reserved word case, continues with a literal value and a colon
character (:), continues with a statement to execute, and optionally concludes with a
break statement (which I have yet to discuss).

After evaluating the selector expression, switch compares this value with each case’s
value until it finds a match. If there is a match, the case’s statement is executed. For
example, if the selector expression’s value matches value1, statement1 executes.

The optional break statement (anything placed in square brackets is optional), which
consists of reserved word break followed by a semicolon, prevents the flow of execution
from continuing with the next case’s statement. Instead, execution continues with the
first statement following switch.

NOTE: You will usually place a break statement after a case’s statement. Forgetting to include
break can lead to a hard-to-find bug. However, there are situations where you want to group
several cases together and have them execute common code. In such a situation, you would
omit the break statement from the participating cases.

If none of the cases’ values match the selector expression’s value, and if a default case
(signified by the default reserved word followed by a colon) is present, the default
case’s statement is executed.

Listing 2–15 demonstrates switch.

Listing 2–15. Using switch to output a compass direction

class Compass
{
 static final int NORTH = 0;
 static final int SOUTH = 1;
 static final int WEST = 2;
 static final int EAST = 3;
 void printDirection(int dir)
 {
 switch (dir)
 {
 case NORTH: System.out.println("You are travelling north."); break;
 case SOUTH: System.out.println("You are travelling south."); break;
 case EAST : System.out.println("You are travelling east."); break;
 case WEST : System.out.println("You are travelling west."); break;
 default : System.out.println("Unknown direction");
 }
 }
}

Listing 2–15’s Compass class is an example of an enumerated type, a named sequence of
related constants. NORTH, SOUTH, EAST, and WEST are Compass’s set of constants.

CHAPTER 2: Learning Language Fundamentals 66

Java version 5 introduced the enum as an improved enumerated type that overcomes
problems with the listing’s form of enumerated type. This feature includes a change to
the switch statement, which I will discuss when I cover enums in Chapter 5.

NOTE: Java version 7 introduces the ability to switch on a string-based selector expression. In
this situation, each case’s value is a string literal. I will demonstrate this form of the switch
statement in the next section.

Loops

It is sometimes necessary to execute a statement repeatedly. This repeated execution is
called a loop.

Java provides three kinds of loop statements: for, while, and do-while.

The for statement has the following syntax:

for ([initialize]; [test]; [update])
 statement

This statement consists of reserved word for, followed by a header in parentheses,
followed by a statement to execute. The header consists of an optional initialization
section, followed by an optional test section, followed by an optional update section. A
non-optional semicolon separates each of the first two sections from the next section.

The initialization section consists of a comma-separated list of local variable
declarations or variable assignments. Some or all of these variables are typically used to
control the loop’s duration, and are known as loop-control variables.

The test section consists of a Boolean expression that determines how long the loop
executes. Execution continues as long as this expression evaluates to true.

Finally, the update section consists of a comma-separated list of expressions that
typically modify the loop-control variables.

The for statement is perfect for iterating (looping) over an array. Each iteration (loop
execution) accesses one of the array’s elements via an array[index] expression, where
array is the array whose element is being accessed, and index is the zero-based
location of the element being accessed.

Listing 2–16 uses the for statement to iterate over the array of command-line arguments
that is passed to the main() method. Each argument is read from the array, and Java
version 7’s enhanced switch statement uses the argument to determine a course of
action.

CHAPTER 2: Learning Language Fundamentals 67

Listing 2–16. Using for with switch on a string-based selector expression to process command-line arguments

public static void main(String[] args)
{
 for (int i = 0; i < args.length; i++)
 switch (args[i])
 {
 case "-v":
 case "-V": System.out.println("version 1.0");
 break;
 default : showUsage();
 }
}

Listing 2–16’s for statement presents an initialization section that declares local variable
i, a test section that compares i’s current value to the length of the args array (every
array has a length field that returns the number of elements in the array) to ensure that
this value is less than the array’s length, and an update section that increments i by 1.
The loop continues until i’s value equals the array’s length.

Each iteration (loop execution) accesses one of the array’s values via the args[i]
expression. This expression returns the array’s ith value (which happens to be a String
object in this example). The first value is stored in args[0].

The args[i] expression serves as the switch statement’s selector expression. If this
String object contains -V, the second case is executed, which calls
System.out.println() to output a version number message. The subsequent break
statement keeps execution from falling into the default case, which calls showUsage() to
output usage information when main() is called with unexpected arguments.

If this String object contains -v, the lack of a break statement following the first case
causes execution to fall through to the second case, calling System.out.println(). This
example demonstrates the occasional need to group cases to execute common code.

The while statement has the following syntax:

while (Boolean expression)
 statement

This statement consists of reserved word while, followed by a parenthesized Boolean
expression header, followed by a statement to repeatedly execute.

The while statement first evaluates the Boolean expression. If it is true, while executes
the other statement. Once again, the Boolean expression is evaluated. If it is still true,
while re-executes the statement. This cyclic pattern continues.

Prompting the user to enter a specific character is one situation where while is useful.
For example, suppose that you want to prompt the user to enter a specific uppercase
letter or its lowercase equivalent. Listing 2–17 provides a demonstration.

Listing 2–17. Prompting the user to enter a specific character via a while statement

int ch = 0;
while (ch != 'C' && ch != 'c')
{
 System.out.println("Press C or c to continue.");

CHAPTER 2: Learning Language Fundamentals 68

 ch = System.in.read();
}

Listing 2–17 begins by initializing local variable ch. This variable must be initialized;
otherwise, the compiler will report an uninitialized variable when it tries to read ch’s value
in the while statement’s Boolean expression.

This expression uses the conditional AND operator (&&) to test ch’s value. This operator
first evaluates its left operand, which happens to be expression ch != 'C'. (The !=
operator converts 'C' from 16-bit unsigned char type to 32–bit signed int type, prior to
the comparison.)

If ch does not contain C (which it does not at this point—0 was just assigned to ch), this
expression evaluates to true.

The && operator next evaluates its right operand, which happens to be expression ch !=
'c'. Because this expression also evaluates to true, conditional AND returns true and
while executes the compound statement.

The compound statement first outputs, via the System.out.println() method call, a
message that prompts the user to press either the C key or the c key. It next reads the
entered character via System.in.read() (discussed in Chapter 1), saving the character’s
integer value in ch.

Following this assignment, the compound statement ends and while reevaluates its
Boolean expression.

Suppose ch contains C’s integer value. Conditional AND evaluates ch != 'C', which
evaluates to false. Seeing that the expression is already false, conditional AND short
circuits its evaluation by not evaluating its right operand, and returns false. The while
statement subsequently detects this value and terminates.

Suppose ch contains c’s integer value. Conditional AND evaluates ch != 'C', which
evaluates to true. Seeing that the expression is true, conditional AND evaluates ch !=
'c', which evaluates to false. Once again, the while statement terminates.

NOTE: A for statement can be coded as a while statement. For example,

for (int i = 0; i < 10; i++)

 System.out.println(i);

is equivalent to

int i = 0;

while (i < 10)

{

 System.out.println(i);

 i++;

}

CHAPTER 2: Learning Language Fundamentals 69

The do-while statement has the following syntax:

do
 statement
while(Boolean expression);

This statement consists of the do reserved word, followed by a statement to repeatedly
execute, followed by the while reserved word, followed by a parenthesized Boolean
expression header, followed by a semicolon.

The do-while statement first executes the other statement. It then evaluates the Boolean
expression. If it is true, do-while executes the other statement. Once again, the Boolean
expression is evaluated. If it is still true, do-while re-executes the statement. This cyclic
pattern continues.

Listing 2–18 demonstrates do-while in another example of prompting the user to enter a
specific uppercase letter or its lowercase equivalent.

Listing 2–18. Prompting the user to enter a specific character via a do-while statement

int ch;
do
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
}
while (ch != 'C' && ch != 'c');

Listing 2–18 is similar to Listing 2–17. This time, however, the compound statement is
executed prior to the test. As a result, it is no longer necessary to initialize ch—ch is
assigned System.in.read()’s return value prior to the Boolean expression’s evaluation.

It is sometimes useful for a loop statement to execute the empty statement repeatedly.
The actual work performed by the loop statement takes place in the statement header.
Listing 2–19 presents an example.

Listing 2–19. Reading and outputting lines of text

for (String line; (line = readLine()) != null; System.out.println(line));

Listing 2–19 uses for to present a programming idiom for copying lines of text that are
read from some source, via the fictitious readLine() method in this example, to some
destination, via System.out.println() in this example. Copying continues until
readLine() returns null. Note the semicolon (empty statement) at the end of the line.

CAUTION: Be careful with the empty statement because it can introduce subtle bugs into your
code. For example, the following code fragment is supposed to output Hello on ten lines.
Instead, only one instance of this string appears—the empty statement is executed ten times:

for (int i = 0; i < 10; i++); // this ; represents the empty statement
 System.out.println("Hello");

CHAPTER 2: Learning Language Fundamentals 70

Break and Continue

What do for(;;);, while(true);, and do;while(true); have in common? Each of these
loop statements presents an extreme example of an infinite loop (a loop that never
ends).

An infinite loop is something that you should avoid because its unending execution
causes your application to hang, which is not desirable from the point of view of your
application’s users.

CAUTION: An infinite loop can also arise from a loop header’s Boolean expression comparing a
floating-point value against a nonzero value via the equality or inequality operator, because many
floating-point values have inexact internal representations. For example, the following code
fragment never ends because 0.1 does not have an exact internal representation:

for (double d = 0.0; d != 1.0; d += 0.1)

 System.out.println(d);

However, there are times when it is handy to code a loop as if it were infinite by using
one of the aforementioned programming idioms. For example, you might code a
while(true) loop that repeatedly prompts for a specific keystroke until the correct key is
pressed.

When the correct key is pressed, the loop must end. Java provides the break statement
for this purpose.

The break statement transfers execution to the first statement following a switch
statement (as discussed earlier) or a loop. In either scenario, this statement consists of
reserved word break followed by a semicolon.

Listing 2–20 uses break with an if decision statement to exit a while(true)-based infinite
loop when the user presses the C or c key.

Listing 2–20. Breaking out of an infinite loop

int ch;
while (true)
{
 System.out.println("Press C or c to continue.");
 ch = System.in.read();
 if (ch == 'C' || ch == 'c')
 break;
}

The break statement is also useful in the context of a finite loop. For example, consider a
scenario where an array of values is searched for a specific value, and you want to exit
the loop when this value is found. Listing 2–21 reveals this scenario.

CHAPTER 2: Learning Language Fundamentals 71

Listing 2–21. Prematurely breaking out of a for-based loop

int[] employeeIDs = { 123, 854, 567, 912, 224 };
int employeeSearchID = 912;
boolean found = false;
for (int i = 0; i < employeeIDs.length; i++)
 if (employeeSearchID == employeeIDs[i])
 {
 found = true;
 break;
 }
System.out.println((found) ? "employee " + employeeSearchID + " exists"
 : "no employee ID matches " + employeeSearchID);

Listing 2–21 uses for and if to search an array of employee IDs to determine if a specific
employee ID exists. If this ID is found, if’s compound statement assigns true to found.
Because there is no point in continuing the search, it then uses break to quit the loop.

The continue statement skips the remainder of the current loop iteration, reevaluates the
header’s Boolean expression, and performs another iteration (if true) or terminates the
loop (if false). Continue consists of reserved word continue followed by a semicolon.

Consider a while loop that reads lines from a source and processes nonblank lines in
some manner. Because it should not process blank lines, while skips the current
iteration when a blank line is detected, as demonstrated in Listing 2–22.

Listing 2–22. Skipping the remainder of the current iteration

String line;
while ((line = readLine()) != null)
{
 if (isBlank(line))
 continue;
 processLine(line);
}

Listing 2–22 employs a fictitious isBlank() method to determine if the currently read line
is blank. If this method returns true, if executes the continue statement to skip the rest of
the current iteration and read the next line whenever a blank line is detected.

Look carefully at Listing 2–22 and you should realize that the continue statement is not
needed. Instead, this listing can be shortened via refactoring (rewriting source code to
improve its readability, organization, or reusability), as demonstrated in Listing 2–23.

Listing 2–23. A refactored if statement

String line;
while ((line = readLine()) != null)
{
 if (!isBlank(line))
 processLine(line);
}

Listing 2–23’s refactoring modifies if’s Boolean expression to use the logical
complement operator (!). Whenever isBlank() returns false, this operator flips this value
to true and if executes processLine().

CHAPTER 2: Learning Language Fundamentals 72

Unlike break, continue does not appear to be a necessary part of the language. As you
have just seen, it is possible to remove continue by inverting the Boolean expression. If
you find yourself relying too much on continue, perhaps you need to refactor your code.

Java provides labeled versions of break and continue as disciplined versions of goto, a
statement that transfers execution to a labeled statement. (Many developers hate goto
because undisciplined use of this statement results in unreadable/unmaintainable code.)

NOTE: Java reserves the goto identifier so that it cannot be used to name any source code
entity. However, GOTO is not reserved, so it seems pointless to reserve goto.

The labeled break statement consists of break, followed by an identifier for which a
matching label (an identifier followed by a colon) must exist. Furthermore, the label must
immediately precede a loop statement.

Labeled break is useful for breaking out of nested loops (loops within loops). For
example, Listing 2–24 reveals the labeled break statement transferring execution to the
first statement that follows the outer for loop.

Listing 2–24. Breaking out of nested for loops

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i == 1 && j == 1)
 break outer;
 else
 System.out.println("i=" + i + ", j=" + j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, break outer; is executed to terminate both for
loops. This statement transfers execution to the first statement after the outer for loop,
which happens to be System.out.println("Both loops terminated.");.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
Both loops terminated.

The labeled continue statement consists of continue, followed by an identifier for which
a matching label (an identifier followed by a colon) must exist. Furthermore, the label
must immediately precede a loop statement.

Labeled continue is useful for terminating the current and future iterations of nested
loops and beginning a new iteration of the labeled loop. For example, Listing 2–25
reveals the labeled continue statement terminating the inner for loop’s iterations.

CHAPTER 2: Learning Language Fundamentals 73

Listing 2–25. Continuing the outer for loop

outer:
for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 if (i == 1 && j == 1)
 continue outer;
 else
 System.out.println("i=" + i + ", j=" + j);
System.out.println("Both loops terminated.");

When i’s value is 1 and j’s value is 1, continue outer; is executed to terminate the
inner for loop and continue with the outer for loop at its next value of i. Both loops
continue until they finish.

The following output is generated:

i=0, j=0
i=0, j=1
i=0, j=2
i=1, j=0
i=2, j=0
i=2, j=1
i=2, j=2
Both loops terminated.

Method Return

A void method’s execution flows from its first statement to its last statement. However,
Java’s return statement lets a method exit prior to the last statement. As Listing 2–26
reveals, this statement consists of reserved word return followed by a semicolon.

Listing 2–26. Returning from a method

class Employee
{
 int salary;
 void setSalary(int empSalary)
 {
 if (empSalary < 0)
 {
 System.out.println("salary cannot be negative");
 return;
 }
 salary = empSalary;
 }
}

Listing 2–26’s setSalary() method uses an if statement to detect an attempt to assign a
negative value to the salary field. In this case, an error message is output and return
prematurely exits the method so that the negative value cannot be assigned.

This form of the return statement is not legal in a method that returns a value. For such
methods, Java provides a version of return that lets the method return a value (whose
type must match the method’s return type). Listing 2–27 demonstrates this version.

3

CHAPTER 2: Learning Language Fundamentals 74

Listing 2–27. Returning a value from a method

int deposit(int amount)
{
 if (amount <= 0)
 {
 System.out.println("cannot deposit a negative or zero amount");
 return balance;
 }
 balance += amount;
 return balance;
}

Listing 2–27’s deposit() method uses an if statement to detect an attempt to assign a
negative or zero value to the balance field (of the previously presented CheckingAccount
class), and outputs an error message when this attempt is detected. Furthermore, it
returns balance’s current value. If there is no problem, balance is updated and its new
value is returned.

I previously declared a sum() method whose parameter list indicates that this method
takes a variable number of arguments. I did not present a body for this method because
I had not covered statements (especially return). Now that you have been introduced to
the return statement, take a look at Listing 2–28.

Listing 2–28. Declaring the body of a variable-argument sum() method

double sum(double... values)
{
 int total = 0;
 for (int i = 0; i < values.length; i++)
 total += values[i];
 return total;
}

Listing 2–28’s implementation totals the number of arguments passed to this method.
(Behind the scenes, these arguments are stored in a one-dimensional array, as
evidenced by values.length and values[i]). After these values have been totaled, this
total is returned via the return statement.

Overloaded Methods
Java lets you introduce methods with the same name but different parameter lists into
the same class. This feature is known as method overloading. When the compiler
encounters a method call, it compares the called method’s arguments list with each
overloaded method’s parameter list as it looks for the correct method to call.

Two same-named methods are overloaded if their parameter lists differ in number or
order of parameters. For example, Java’s String class provides overloaded public int
indexOf(int ch) and public int indexOf(int ch, int fromIndex) methods. These
methods differ in parameter counts. (I explore String in Chapter 7.)

Two same-named methods are overloaded if at least one parameter differs in type. For
example, Java’s Math class provides overloaded public static double abs(double a)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 2: Learning Language Fundamentals 75

and public static int abs(int a) methods. One method’s parameter is a double; the
other method’s parameter is an int. (I explore Math in Chapter 6.)

You cannot overload a method by changing only the return type. For example, double
sum(double... values) and int sum(double... values) are not overloaded. These
methods are not overloaded because the compiler does not have enough information to
choose which method to call when it encounters sum(1.0, 2.0) in source code.

Introducing Constructors
Constructors are named blocks of code, declared in class bodies, for constructing
objects by initializing their instance fields and performing other initialization tasks.

A constructor declaration specifies the same name as the class and a (potentially empty)
parameter list. However, it does not specify a return type. A return type is not necessary
because the result of a constructor call is always a newly created object whose type is
the constructor’s class. Listing 2–29 shows you how to declare a constructor.

Listing 2–29. Introducing a constructor into the CheckingAccount class

class CheckingAccount
{
 String owner;
 int balance;
 static int counter;
 CheckingAccount(String acctOwner, int acctBalance)
 {
 owner = acctOwner;
 balance = acctBalance;
 counter++; // keep track of created CheckingAccount objects
 }
}

Listing 2–29 declares a two-parameter constructor. When this constructor is called
during object creation, acctOwner and acctBalance arguments are passed to this
constructor’s parameters, and subsequently assigned to CheckingAccount’s owner and
balance instance fields.

CAUTION: You cannot include the reserved word static in a constructor declaration because
constructors are used to initialize objects—you can initialize class fields from within a
constructor, but assigning an expression to a class field would probably make more sense. You
cannot include the reserved word final in a constructor declaration because constructors
cannot be inherited. (I discuss inheritance in the next chapter.)

Constructors can be overloaded, just like regular methods. For example, Listing 2–30
reveals a second CheckingAccount constructor.

CHAPTER 2: Learning Language Fundamentals 76

Listing 2–30. An overloaded CheckingAccount constructor

CheckingAccount(String acctOwner)
{
 owner = acctOwner;
 balance = 100;
 counter++; // keep track of created CheckingAccount objects
}

Listing 2–30’s constructor declaration specifies a single acctOwner parameter, which is
assigned to the owner field. Furthermore, it assigns 100 to balance. (Perhaps this second
constructor is called when creating a new checking account, where the initial balance
must default to a minimum of $100.)

Instead of duplicating constructor code, you can have the overloaded constructor call a
previously declared constructor to reuse existing code. Listing 2–31 provides a
demonstration.

Listing 2–31. Calling a CheckingAccount constructor from another CheckingAccount constructor

CheckingAccount(String acctOwner)
{
 this(acctOwner, 100);
}

Listing 2–31’s constructor declaration also specifies a single acctOwner parameter.
Furthermore, it uses reserved word this to call the previous constructor with
acctOwner’s value and 100.

CAUTION: You must use this to call another constructor—you cannot use the class’s name, as
in CheckingAccount(). The this() constructor call (if present) must be the first statement
that is executed within the constructor—this rule prevents you from specifying multiple this()
constructor calls in the same constructor. Finally, you cannot specify this() in a non-
constructor method—constructors can be called only by other constructors and during object
creation.

If a class does not declare a constructor, the class is assigned a default noargument
constructor; this constructor is called during object creation. In addition to taking no
arguments, this constructor’s body is empty: it contains no initialization code for
initializing objects. There is no default constructor when a constructor is declared.

Introducing Other Initializers
You previously learned how to initialize fields by assigning expressions to them. These
kinds of initializers are known as class field initializers and instance field initializers. You
also learned how to use constructors to initialize instance fields. Additionally, Java
supports class initializers and instance initializers.

CHAPTER 2: Learning Language Fundamentals 77

Class Initializers
A class initializer is a static-prefixed compound statement that is introduced into a
class body. It is used to initialize a loaded class via a sequence of statements. For
example, I once used a class initializer to load a custom database driver class. Listing 2–
32 shows the loading details.

Listing 2–32. Loading a database driver via a class initializer

class JDBCFilterDriver implements Driver
{
 static private Driver d;
 static
 {
 // Attempt to load JDBC-ODBC Bridge Driver and register that
 // driver.
 try
 {
 Class c = Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 d = (Driver) c.newInstance();
 DriverManager.registerDriver(new JDBCFilterDriver());
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }
 //...
}

Listing 2–32’s JDBCFilterDriver class uses its class initializer to load and instantiate the
class that describes Java’s JDBC-ODBC Bridge Driver, and to register a
JDBCFilterDriver instance with Java’s database driver. Although much of this listing is
probably meaningless to you right now, it illustrates the usefulness of class initializers.

Instance Initializers
An instance initializer is a compound statement that is introduced into a class body, as
opposed to being introduced into the body of a method or a constructor. The instance
initializer is used to initialize an object via a sequence of statements, as demonstrated in
Listing 2–33.

Listing 2–33. Initializing a pair of arrays via an instance initializer
class Graphics
{
 double[] sines = { 0.0, 0.0, /* ... */ 0.0 }; // should be 360 entries
 double[] cosines = { 0.0, 0.0, /* ... */ 0.0 }; // should be 360 entries
 {
 for (int i = 0; i < sines.length; i++)
 {
 sines[i] = Math.sin(Math.toRadians(i));
 cosines[i] = Math.cos(Math.toRadians(i));
 }
 }
}

CHAPTER 2: Learning Language Fundamentals 78

Listing 2–33’s Graphics class uses an instance initializer to initialize an object’s sines
and cosines arrays to the sines and cosines of angles ranging from 0 through (ideally)
360—not all array elements are present, for brevity. It is faster to read array elements
than to repeatedly call Math.sin() and Math.cos() elsewhere; performance matters.

Because the code in Listing 2–33’s instance initializer could just as easily have been
placed in a constructor, what is the advantage in using an instance initializer? Apart from
possibly clarifying source code, instance initializers are useful in anonymous classes
(discussed Chapter 4), which cannot declare constructors.

Initialization Order
A class’s body can contain multiple instance field initializers, instance class initializers,
constructors, instance initializers, and class initializers. Furthermore, class fields and
instance fields initialize to default values. Understanding the order in which all of this
initialization occurs is important to preventing confusion, so check out Listing 2–34.

Listing 2–34. A complete initialization demo

// InitDemo.java

public class InitDemo
{
 static boolean bool1;
 boolean bool2;
 static byte byte1;
 byte byte2;
 static char char1;
 char char2;
 static double double1;
 double double2;
 static float float1;
 float float2;
 static int int1;
 int int2;
 static long long1;
 long long2;
 static short short1;
 short short2;
 static String string1;
 String string2;
 static
 {
 System.out.println("[class] bool1 = " + bool1);
 System.out.println("[class] byte1 = " + byte1);
 System.out.println("[class] char1 = " + char1);
 System.out.println("[class] double1 = " + double1);
 System.out.println("[class] float1 = " + float1);
 System.out.println("[class] int1 = " + int1);
 System.out.println("[class] long1 = " + long1);
 System.out.println("[class] short1 = " + short1);
 System.out.println("[class] string1 = " + string1);
 System.out.println();
 }
 {

CHAPTER 2: Learning Language Fundamentals 79

 System.out.println("[instance] bool2 = " + bool2);
 System.out.println("[instance] byte2 = " + byte2);
 System.out.println("[instance] char2 = " + char2);
 System.out.println("[instance] double2 = " + double2);
 System.out.println("[instance] float2 = " + float2);
 System.out.println("[instance] int2 = " + int2);
 System.out.println("[instance] long2 = " + long2);
 System.out.println("[instance] short2 = " + short2);
 System.out.println("[instance] string2 = " + string2);
 System.out.println();
 }
 static
 {
 bool1 = true;
 byte1 = 127;
 char1 = 'A';
 double1 = 1.0;
 float1 = 2.0F;
 int1 = 1000000000;
 long1 = 1000000000000L;
 short1 = 32767;
 string1 = "abc";
 }
 {
 bool2 = true;
 byte2 = 127;
 char2 = 'A';
 double2 = 1.0;
 float2 = 2.0F;
 int2 = 1000000000;
 long2 = 1000000000000L;
 short2 = 32767;
 string2 = "abc";
 }
 InitDemo()
 {
 System.out.println("InitDemo() called");
 System.out.println();
 }
 static double double3 = 10.0;
 double double4 = 10.0;
 static
 {
 System.out.println("[class] double3 = " + double3);
 System.out.println();
 }
 {
 System.out.println("[instance] double4 = " + double3);
 System.out.println();
 }
 public static void main(String[] args)
 {
 System.out.println ("main() started");
 System.out.println();
 System.out.println("[class] bool1 = " + bool1);
 System.out.println("[class] byte1 = " + byte1);
 System.out.println("[class] char1 = " + char1);

CHAPTER 2: Learning Language Fundamentals 80

 System.out.println("[class] double1 = " + double1);
 System.out.println("[class] double3 = " + double3);
 System.out.println("[class] float1 = " + float1);
 System.out.println("[class] int1 = " + int1);
 System.out.println("[class] long1 = " + long1);
 System.out.println("[class] short1 = " + short1);
 System.out.println("[class] string1 = " + string1);
 System.out.println();
 for (int i = 0; i < 2; i++)
 {
 System.out.println("About to create InitDemo object");
 System.out.println();
 InitDemo id = new InitDemo();
 System.out.println("id created");
 System.out.println();
 System.out.println("[instance] id.bool2 = " + id.bool2);
 System.out.println("[instance] id.byte2 = " + id.byte2);
 System.out.println("[instance] id.char2 = " + id.char2);
 System.out.println("[instance] id.double2 = " + id.double2);
 System.out.println("[instance] id.double4 = " + id.double4);
 System.out.println("[instance] id.float2 = " + id.float2);
 System.out.println("[instance] id.int2 = " + id.int2);
 System.out.println("[instance] id.long2 = " + id.long2);
 System.out.println("[instance] id.short2 = " + id.short2);
 System.out.println("[instance] id.string2 = " + id.string2);
 System.out.println();
 }
 }
}

Listing 2–34’s InitDemo class declares one class field and one instance field for each of
the primitive types plus String. It also introduces one explicitly initialized class field, one
explicitly initialized instance field, three class initializers, three instance initializers, and
one constructor. If you compile and run this code, you will observe the following output:

[class] bool1 = false
[class] byte1 = 0
[class] char1 = // A char value defaults to Unicode 0, which cannot be printed.
[class] double1 = 0.0
[class] float1 = 0.0
[class] int1 = 0
[class] long1 = 0
[class] short1 = 0
[class] string1 = null

[class] double3 = 10.0

main() started

[class] bool1 = true
[class] byte1 = 127
[class] char1 = A
[class] double1 = 1.0
[class] double3 = 10.0
[class] float1 = 2.0
[class] int1 = 1000000000
[class] long1 = 1000000000000

CHAPTER 2: Learning Language Fundamentals 81

[class] short1 = 32767
[class] string1 = abc

About to create InitDemo object

[instance] bool2 = false
[instance] byte2 = 0
[instance] char2 =
[instance] double2 = 0.0
[instance] float2 = 0.0
[instance] int2 = 0
[instance] long2 = 0
[instance] short2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

id created

[instance] id.bool2 = true
[instance] id.byte2 = 127
[instance] id.char2 = A
[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.float2 = 2.0
[instance] id.int2 = 1000000000
[instance] id.long2 = 1000000000000
[instance] id.short2 = 32767
[instance] id.string2 = abc

About to create InitDemo object

[instance] bool2 = false
[instance] byte2 = 0
[instance] char2 =
[instance] double2 = 0.0
[instance] float2 = 0.0
[instance] int2 = 0
[instance] long2 = 0
[instance] short2 = 0
[instance] string2 = null

[instance] double4 = 10.0

InitDemo() called

id created

[instance] id.bool2 = true
[instance] id.byte2 = 127
[instance] id.char2 = A
[instance] id.double2 = 1.0
[instance] id.double4 = 10.0
[instance] id.float2 = 2.0
[instance] id.int2 = 1000000000

CHAPTER 2: Learning Language Fundamentals 82

[instance] id.long2 = 1000000000000
[instance] id.short2 = 32767
[instance] id.string2 = abc

As you study this output, you will discover some interesting facts about initialization:

 Class fields initialize to default values just after a class is loaded.

 All class initialization occurs prior to the main() method being called.

 Class initialization is performed in a top-down manner. (Attempting to
access a class field prior to its declaration causes the compiler to
report an illegal forward reference.)

 Instance fields initialize to default values at the start of object creation.

 All instance initialization occurs prior to a constructor returning.

 Instance initialization is performed in a top-down manner. (Attempting
to access an instance field prior to its declaration causes the compiler
to report an illegal forward reference.)

Interface Versus Implementation
Every class X exposes an interface (a protocol consisting of constructors, methods, and
[possibly] fields that are made available to objects created from other classes for use in
creating and communicating with X’s objects). X also provides an implementation (the
code within exposed methods along with optional helper methods and optional
supporting fields that should not be exposed) that codifies the interface. Helper methods
are methods that assist exposed methods and should not be exposed.

When designing a class, your goal is to expose a useful interface while hiding details of
that interface’s implementation. You hide the implementation to prevent developers from
accidentally accessing parts of your class that do not belong to the class’s interface, so
that you are free to change the implementation without breaking client code. Hiding the
implementation is often referred to as information hiding. Furthermore, many developers
consider implementation hiding to be part of encapsulation.

Java supports implementation hiding by providing four levels of access control, where
three of these levels are indicated via a reserved word. You can use the following access
control levels to control access to fields, methods, and constructors, and two of these
levels to control access to classes:

 Public: A field, method, or constructor that is declared public is
accessible from anywhere. Classes can be declared public as well.

 Protected: A field, method, or constructor that is declared protected is
accessible from all classes in the same package as the member’s
class as well as subclasses of that class, regardless of package. (I will
discuss packages in Chapter 4.)

CHAPTER 2: Learning Language Fundamentals 83

 Private: A field, method, or constructor that is declared private cannot
be accessed from beyond the class in which it is declared.

 Package-private: In the absence of an access control reserved word, a
field, method, or constructor is only accessible to classes within the
same package as the member’s class. The same is true for non-public
classes.

NOTE: A class that is declared public must be stored in a file with the same name. For
example, a public Employee class must be stored in Employee.java. A source file can only
contain one public class.

You will often declare your class’s instance fields to be private and provide special
public instance methods for setting and getting their values. By convention, methods
that set field values have names starting with set and are known as setters. Similarly,
methods that get field values have names with get (or is, for Boolean fields) prefixes
and are known as getters. Listing 2–35 demonstrates this pattern in the context of an
Employee class declaration.

Listing 2–35. Separation of interface from implementation

public class Employee
{
 private String name;
 public Employee(String name)
 {
 setName(name);
 }
 public void setName(String empName)
 {
 name = empName; // Assign the empName argument to the name field.
 }
 public String getName()
 {
 return name;
 }
}

Listing 2–35 presents an interface consisting of the public constructor and public
setter/getter methods. The implementation consists of the private name field and
constructor/method code.

It might seem pointless to go to all this bother when you could simply omit private and
access the name field directly. However, suppose you are told to introduce a new
constructor that takes separate first and last name arguments, and new methods that
set/get the employee’s first and last names into this class. Furthermore, suppose that it
has been determined that the first and last names will be accessed more often than the
entire name. Listing 2–36 reveals these changes.

CHAPTER 2: Learning Language Fundamentals 84

Listing 2–36. Revising implementation without affecting existing interface

class Employee
{
 private String firstName;
 private String lastName;
 Employee(String name)
 {
 setName(name);
 }
 Employee(String firstName, String lastName)
 {
 setName(firstName + " " + lastName);
 }
 void setName(String name)
 {
 // Assume that the first and last names are separated by a
 // single space character. indexOf() locates a character in a
 // string; substring() returns a portion of a string.
 setFirstName(name.substring(0, name.indexOf(' ')));
 setLastName(name.substring(name.indexOf(' ')+1));
 }
 String getName()
 {
 return getFirstName() + " " + getLastName();
 }
 void setFirstName(String empFirstName)
 {
 firstName = empFirstName;
 }
 String getFirstName()
 {
 return firstName;
 }
 void setLastName(String empLastName)
 {
 lastName = empLastName;
 }
 String getLastName()
 {
 return lastName;
 }
}

Listing 2–36 reveals that the name field has been removed in favor of new firstName and
lastName fields, which were added to improve performance. Because setFirstName()
and setLastName() will be called more frequently than setName(), and because
getFirstName() and getLastName() will be called more frequently than getName(), it is
faster (in each case) to have the first two methods set/get firstName’s and lastName’s
values rather than having to merge either value into/extract this value from name’s value.

Listing 2–36 also reveals setName() calling setFirstName() and setLastName(), and
getName() calling getFirstName() and getLastName(), rather than directly accessing the
firstName and lastName fields. Although avoiding direct access to these fields is not
necessary in this example, imagine another implementation change that adds more

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 2: Learning Language Fundamentals 85

code to setFirstName(), setLastName(), getFirstName(), and getLastName(); not calling
these methods will result in the new code not executing.

Client code (code that instantiates and uses a class, such as Employee) will not break
when Employee’s implementation changes from that shown in Listing 2–35 to that shown
in Listing 2–36, because the original interface remains intact, although the interface has
been extended. This lack of breakage results from hiding Listing 2–35’s implementation,
especially the name field.

TIP: Get into the habit of developing useful interfaces while hiding implementations because it
will save you much trouble when maintaining your classes.

Objects
You previously learned that objects are instantiated from classes. You also discovered
Java’s new operator in Table 2–3, and observed brief examples of this operator’s usage
in Listings 2–32 and 2–34. This section explores object and array creation via new, and
also focuses on accessing fields, calling methods, and garbage collection.

Creating Objects and Arrays
The new operator is used to create, from a class that has already been loaded into
memory, an object whose instance fields default to zero values, which you interpret as
literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or null (depending on field type).
Furthermore, this operator calls the specified constructor to initialize instance fields to
appropriate nondefault values and perform other kinds of initialization. For example, new
Employee("John", "Doe") creates an object from Listing 2–36’s Employee class, and
calls its Employee(String firstName, String lastName) constructor to initialize this
object’s instance fields to the employee’s first and last names.

The new operator creates the object in a special region of memory known as the heap.
Furthermore, new returns this object’s reference (a value that helps the Java virtual
machine locate the heap-based object). One virtual machine implementation might
implement references as physical memory addresses, whereas another implementation
might use handles (numeric identifiers that are used to locate object addresses). It does
not matter how the reference is implemented because it cannot be directly accessed.
About the only thing you can do with a reference is to use ==/!= to compare it with null,
a special literal value that does not refer to any object.

NOTE: The reference that is returned by new is represented literally by reserved word this.
Wherever this appears in source code, it represents the current object.

CHAPTER 2: Learning Language Fundamentals 86

References are lost unless they are stored in fields or local variables, or passed as
arguments to a method. For example, Employee emp = new Employee("John", "Doe");
stores the Employee reference that new returns in Employee variable emp (the reference
and variable types must agree). This variable is known as a reference variable.

NOTE: The String class is treated specially by Java. For example, you have previously learned
that you can assign a string literal to a String variable, as in String s = "abc";. Behind the
scenes, however, Java treats this statement as a shorthand for String s = new
String("abc");, in which a reference to a String object is assigned to s. (I will say more
about this topic when I discuss String in Chapter 7.)

The new operator is also used to create a one-dimensional array of values in the heap.
When creating the array, specify new, followed by a name that identifies the type of the
values that are stored in the array, followed by an integral expression between a pair of
square brackets that specifies the size of the array (the number of elements).

NOTE: An array is implemented as a special Java object whose read-only length field contains
the array’s size.

For example, you can use new to create a one-dimensional array of object references, as
demonstrated in Listing 2–37.

Listing 2–37. Creating a one-dimensional array of Employee object references

Employee[] empArray = new Employee[10];

When you create a one-dimensional array, new zeros the bits in each array element’s
storage location, which you interpret as literal value false, '\u0000', 0, 0L, 0.0, 0.0F, or
null (depending on element type). In the previous example, each of empArray’s elements
is initialized to null.

You cannot access objects via this array until you assign nonnull object references to its
elements, which Listing 2–38 demonstrates.

Listing 2–38. Storing Employee object references in a one-dimensional array

for (int i = 0; i < empArray.length; i++)
 empArray[i] = new Employee("John Doe #" + i);

NOTE: You can combine new with the array initialization syntax if desired. For example,
Employee[] empArray = new Employee[] {new Employee ("John Doe")}; creates
a single-element Employee array initialized to a single Employee object reference.

Suppose you want to use new to create a two-dimensional array, perhaps to assign to
the temperatures field in Listing 2–3’s WeatherData class. The way you accomplish this
task in Java is to first create a one-dimensional row array (the outer array), and then

CHAPTER 2: Learning Language Fundamentals 87

create a one-dimensional column array (the inner array) for each row, as shown in Listing
2–39.

Listing 2–39. Creating a two-dimensional array

// Create the row array.
double[][] temperatures = new double[3][]; // Note the extra empty pair of brackets.
// Create a column array for each row.
for (int row = 0; row < temperatures.length; row++)
 temperatures[row] = new double[2]; // 2 columns per row

When creating the row array, you must specify an extra pair of empty brackets as part of
the expression following new. (For a three-dimensional array—a one-dimensional array of
tables, where this array’s elements contain row arrays—you must specify two pairs of
empty brackets as part of the expression following new.)

After creating a two-dimensional array, you will want to populate its elements with
suitable values. For example, Listing 2–40 initializes each temperatures element, which
is accessed as temperatures[row][col], to a random temperature value.

Listing 2–40. Initializing a two-dimensional array

for (int row = 0; row < temperatures.length; row++)
 for (int col = 0; col < temperatures[row].length; col++)
 temperatures[row][col] = Math.round(Math.random()*100);

You can subsequently output these values in a tabular format by calling Listing 2–41’s
for loop (this listing makes no attempt to align the temperature values in perfect
columns).

Listing 2–41. Outputting a two-dimensional array’s values

for (int row = 0; row < temperatures.length; row++)
{
 for (int col = 0; col < temperatures[row].length; col++)
 System.out.print(temperatures[row][col] + " ");
 System.out.println();
}

Accessing Fields
When you codify a class, you can often specify the field’s name as is in an expression.
For example, Listing 2–12’s printBalance() instance method specifies the name of
CheckingAccount’s balance instance field in statement int magnitude = (balance < 0)
? -balance : balance;.

However, you cannot always access a field by simply specifying its name. For example,
you cannot access a class field from another class in this manner. Also, you cannot
access a field that is hidden from you. For example, you cannot access a private field
from another class.

The following rules will help you learn how to access fields in different contexts, and
even if such access is possible:

CHAPTER 2: Learning Language Fundamentals 88

 Specify the name of a class field as is from anywhere within the same
class as the class field. Example: counter

 Specify the name of the class field’s class, followed by the member
access operator (.), followed by the name of the class field from
outside the class provided that its access control permits this form of
access—the field is public, for example. Example:
CheckingAccount.counter

 Specify the name of an instance field as is from any instance method,
constructor, or instance initializer in the same class as the instance
field. Example: balance

 Specify an object reference, followed by the member access operator,
followed by the name of the instance field from any class method or
class initializer within the same class as the instance field, or from
outside the class provided that its access control permits this form of
access. Example: CheckingAccount ca = new CheckingAccount(); int
bal = ca.balance;

CAUTION: Accessing an instance field (such as ca.balance) is usually not a good idea because
the field exposes implementation details. However, if the class is declared as a private member
of another class (a topic discussed in Chapter 4), and if its fields are frequently accessed by its
enclosing class’s methods, performance is often improved if these fields are accessed directly
rather than being accessed via getter method calls. Although direct access opens up
implementation details to the enclosing class, this is not a problem because these details are
hidden to clients of the enclosing class.

Although the latter rule might seem to imply that you can access an instance field from a
class context, this is not the case. Instead, you access the field from an object context.

The previous access rules are not exhaustive because there exist two more access
scenarios to consider: declaring a local variable (or even a parameter) with the same
name as an instance field or as a class field. In either scenario, the local
variable/parameter is said to shadow (hide or mask) the field.

If you find that you have declared a local variable or parameter that shadows a field, you
can rename the local variable/parameter, or you can use the member access operator
with reserved word this (instance field) or class name (class field) to explicitly identify
the field. Listing 2–42 uses this to qualify an instance field name.

Listing 2–42. Qualifying the name field to circumvent shadowing by a same-named parameter

class Employee
{
 String name;
 void setName(String name)
 {
 this.name = name; // Assign the name argument to the name field.

CHAPTER 2: Learning Language Fundamentals 89

 }
}

Listing 2–42’s setName() method uses this.name to refer to the name field, not to
setName()’s name parameter.

Calling Methods
When you codify a class, you can often specify the method’s name as is in a method-
call statement. For example, the constructor in Listing 2–35’s Employee class specifies
the name of Employee’s setName() method in method-call statement setName(name);.

However, you cannot always call a method by simply specifying its name. For example,
you cannot call a class method from another class in this manner. Also, you cannot call
a method that is hidden from you. For example, you cannot call a private method from
another class.

The following rules will help you learn how to call methods in different contexts, and
even if such calling is possible:

 Specify the name of a class method as is from anywhere within the
same class as the class method. Example: main(new String[0]); //
No arguments are passed

 Specify the name of the class method’s class, followed by the member
access operator, followed by the name of the class method from
outside the class provided that its access control permits this form of
access—the method is declared public, for example. Example:
Math.sin(Math.toRadians(45));

 Specify the name of an instance method as is from any instance
method, constructor, or instance initializer in the same class as the
instance field. Example: processLine(line);

 Specify an object reference, followed by the member access operator,
followed by the name of the instance field from any class method or
class initializer within the same class as the instance field, or from
outside the class provided that its access control permits this form of
access. Example: CheckingAccount ca = new CheckingAccount("John
Doe"); ca.printBalance();

Although the latter rule might seem to imply that you can call an instance method from a
class context, this is not the case. Instead, you call the method from an object context.

NOTE: Field access and method call rules are combined in statement
System.out.println();, where the leftmost member access operator accesses the out
class field (of type PrintStream) in the System class, and where the rightmost member
access operator calls this field’s println() method.

CHAPTER 2: Learning Language Fundamentals 90

Method-Call Stack
Method calls require a special area of memory known as the method-call stack. You can
think of the method-call stack as a simulation of a pile of clean trays in a cafeteria—you
pop (remove) the clean tray off of the top of the pile and the dishwasher will push (insert)
the next clean tray onto the top of the pile.

When a method is called, the virtual machine pushes its arguments and the address of
the first statement to execute following the called method onto the method-call stack.
The virtual machine also allocates stack space for the method’s local variables. When
the method returns, the virtual machine removes local variable space, pops the address
and arguments off of the stack, and transfers execution to the statement at this address.

Recursive Calls
A method normally executes statements that may include calls to other methods.
However, it is occasionally convenient to have a method call itself. This scenario is
known as recursion.

For example, suppose you need to write a method that returns a factorial (the product of
all the positive integers up to and including a specific integer). For example, 3! (the ! is
the mathematical symbol for factorial) equals 3×2×1 or 6.

Your first approach to writing this method might consist of the code presented in Listing
2–43.

Listing 2–43. A nonrecursive approach to obtaining a factorial

int factorial(int n)
{
 int product = 1;
 for (int i = 2; i <= n; i++)
 product *= i;
 return product;
}

Although this code accomplishes its task, factorial() could also be written in Listing 2–
44’s recursive style.

Listing 2–44. A recursive approach to obtaining a factorial

int factorial(int n)
{
 if (n == 1)
 return 1; // base problem
 else
 return n*factorial(n-1);
}

The recursive approach takes advantage of being able to express a problem in simpler
terms of itself. According to Listing 2–44, the simplest problem, which is also known as
the base problem, is 1! (1).

CHAPTER 2: Learning Language Fundamentals 91

When an argument greater than 1 is passed to factorial(), this method breaks the
problem into a simpler problem by calling itself with the next smaller argument value.
Eventually, the base problem will be reached.

For example, calling factorial(4) results in the following stack of expressions:

4*factorial(3)
3*factorial(2)
2*factorial(1)

This last expression is at the top of the stack. When factorial(1) returns 1, these
expressions are evaluated as the stack begins to unwind:

2*factorial(1) now becomes 2*1 (2)

3*factorial(2) now becomes 3*2 (6)

4*factorial(3) now becomes 4*6 (24)

Recursion provides an elegant way to express many problems. Additional examples
include searching tree-based data structures for specific values and, in a hierarchical file
system, outputting the names of all files that contain specific text.

CAUTION: Recursion consumes stack space, so make sure that your recursion eventually ends in
a base problem; otherwise, you will run out of stack space and your application will terminate.

Argument Passing
A method call includes a list of (potentially no) arguments being passed to the method.
Arguments are passed using a style of argument passing that is known as pass-by-
value, which is demonstrated in Listing 2–45.

Listing 2–45. A demonstration of pass-by-value

Employee emp = new Employee("John Doe");
int recommendedAnnualSalaryIncrease = 1000;
printReport(emp, recommendAnnualSalaryIncrease);
printReport(new Employee("Jane Doe"), 1500);

Pass-by-value passes the value of a variable (the reference value stored in emp or the
1000 value stored in recommendedAnnualSalaryIncrease, for example) or the value of
some other expression (such as new Employee("Jane Doe") or 1500) to the method.

Because of pass-by-value, you cannot assign a different Employee object’s reference to
emp from inside printReport() via the printReport() parameter for this argument. After
all, you have only passed a copy of emp’s value to the method.

CHAPTER 2: Learning Language Fundamentals 92

Chained Instance Method Calls
Two or more instance method calls can be chained together via the member access
operator. For example, new CheckingAccount().deposit(1000).printBalance();. This
capability lets you express code more compactly, and is also quite readable. However,
you have to re-architect your methods somewhat differently, as Listing 2–46 reveals.

Listing 2–46. Implementing instance methods so that calls to these methods can be chained together

class CheckingAccount
{
 int balance;
 CheckingAccount deposit(int amount)
 {
 balance += amount;
 return this;
 }
 CheckingAccount printBalance()
 {
 int magnitude = (balance < 0) ? -balance : balance;
 String balanceRep = (balance < 0) ? "(" : "";
 balanceRep += magnitude;
 balanceRep += (balance < 0) ? ")" : "";
 System.out.println(balanceRep);
 return this;
 }
}

According to Listing 2–46, you must specify the name of the class as the method’s
return type. For example, each of deposit() and printBalance() must specify
CheckingAccount as the return type. Also, you must specify return this; (return a
reference to the current object) as the instance method’s last statement.

Garbage Collection
Objects are created via reserved word new, but how are they destroyed? Without some
way to destroy objects, they will eventually fill up the heap’s available space and the
application will not be able to continue.

Java solves this problem by using a garbage collector, code that runs in the background
and checks for unreferenced objects. When it discovers an unreferenced object, the
garbage collector removes it from the heap, making more heap space available.

An unreferenced object is an object that cannot be accessed from anywhere within an
application. For example, new Employee("John", "Doe"); is an unreferenced object
because the Employee reference returned by new is thrown away.

In contrast, a referenced object is an object where the application stores at least one
reference. For example, Employee emp = new Employee("John", "Doe"); is a referenced
object because variable emp contains a reference to the Employee object.

CHAPTER 2: Learning Language Fundamentals 93

A referenced object becomes unreferenced when the application removes its last stored
reference. For example, if emp is a local variable that contains the only reference to an
Employee object, this object becomes unreferenced when emp’s method terminates.

An application can remove a stored reference by assigning null to its reference variable.
For example, emp = null; removes the reference to the Employee object that was
previously stored in emp.

Java’s garbage collector eliminates a form of memory leakage in C++ implementations
that do not rely on a garbage collector. In these implementations, the developer must
destroy dynamically created objects before they go out of scope. If they vanish before
destruction, they remain in the heap. Eventually, the heap fills and the application halts.

Although this form of memory leakage is not a problem in Java, a related form of
leakage is problematic: continually creating objects and forgetting to remove even one
reference to each object causes the heap to fill up and the application to eventually
come to a halt.

This form of memory leakage is a major problem for applications that run for lengthy
periods of time—a web server is one example. For shorter-lived applications, you will
normally not notice this form of memory leakage. However, it is a good habit to assign
null to reference variables when their referenced objects are no longer required.

EXERCISES

The following exercises are designed to test your understanding of Java’s language fundamentals:

1. What does a class declaration contain?

2. Is transient a reserved word? Is delegate a reserved word?

3. What is a variable?

4. Identify Java’s only unsigned primitive type.

5. What is the difference between an instance field and a class field?

6. What is an array?

7. How do you declare a one-dimensional array variable? How do you declare a two-
dimensional array variable?

8. Define scope.

9. Is string literal "The quick brown fox \jumps\ over the lazy dog." legal
or illegal? Why?

10. What is the purpose of the cast operator?

11. Which operator is used to create an object?

12. Can you nest multiline comments?

CHAPTER 2: Learning Language Fundamentals 94

13. True or false: When declaring a method that takes a variable number of arguments,
you must specify the three consecutive periods just after the rightmost parameter’s
type name.

14. Given a two-dimensional array x, what does x.length return?

15. What is the difference between the while and do-while statements?

16. Initialize the sines and cosines array declarations using the new syntax.

17. Why is it okay for an expression assigned to an instance field to access a class field
that is declared after the instance field? In contrast, it is not okay for the expression to
access another instance field that is declared after the instance field.

18. What is required to create an array of objects?

19. How do you prevent a field from being shadowed?

20. How do you chain together instance method calls?

21. The factorial() method provides an example of tail recursion, a special case of
recursion in which the method’s last statement contains a recursive call, which is
known as the tail call. Provide another example of tail recursion.

22. Merge the various CheckingAccount code fragments into a complete application.

Summary
Before you can write applications, you need to understand the fundamentals of the Java
language. These fundamentals revolve around the concepts of class and object, where a
class is nothing more than a template from which objects are created.

Classes are declared with reserved word class and a name. The class declaration’s
brace-delimited body is populated with a combination of field, method, and constructor
declarations.

A field is a variable that stores a value. It initializes to a default value, although you can
explicitly initialize it to a value with the help of an expression, which is a combination of
variables, method calls, literals, and operators.

There are two kinds of fields: instance and class. Instance fields are used to describe
entity attributes, whereas class fields are used to describe class attributes. A class field
is differentiated from an instance field by being declared static.

A method is a named block of code that is called with an optional list of arguments, and
possibly returns a value. Arguments are passed to parameters, which are another kind of
variable. Parameters only exist while the method executes.

A method uses statements to perform tasks. A statement can be a simple statement,
such as empty, local variable declaration, assignment, method-call, decision, loop,
break and continue, and method-return.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 2: Learning Language Fundamentals 95

A statement can be a compound statement, which contains simple and other compound
statements that are placed between braces. A compound statement is also known as a
block and can appear anywhere that a simple statement can appear.

A constructor is a named body of code (it is named after its class) that constructs
objects by initializing their instance fields and performing other initialization tasks. Unlike
methods, constructors do not have return types because they do not return anything.

Constructors (and methods) can be overloaded: they have the same names but different
parameter lists. Constructors use this() to call other constructors in the same class. A
class that does not declare a constructor is assigned a default noargument constructor.

In addition to letting you initialize fields by assigning expressions to them, and providing
constructors for initializing objects, Java provides instance and class initializers to
perform object initialization (when a constructor is not available) and class initialization.

Certain initialization rules are followed when multiple field initializers, constructors,
instance initializers, and class initializers are mixed together in a class. For example,
class initialization occurs prior to instance initialization.

Every class exposes an interface and also provides an implementation that codifies that
interface. When designing a class, your goal is to expose a useful interface while hiding
details of that interface’s implementation. Hiding details is known as information hiding.

Java supports implementation hiding by providing four levels of access control: public,
protected, private, and package-private. Except for package-private, each access
control level is indicated via a same-named reserved word.

An object encapsulates an entity’s attributes and behaviors as initialized fields and
methods. The new operator creates an object from a class and calls its constructor to
initialize these fields and perform other kinds of initialization.

The new operator creates the object in a special region of memory known as the heap.
Furthermore, new returns this object’s reference. Virtual machine implementations can
implement references as physical memory addresses or as handles.

The new operator also creates a one-dimensional array of values in the heap. To create a
two-dimensional array, create a one-dimensional row array and then, for each row array
element, create a one-dimensional column array and assign its reference to the element.

There are rules for accessing fields. For example, to access a public class field from
outside the class, you must specify the name of the class field’s class, followed by the
member access operator, followed by the class field’s name.

A local variable or parameter shadows a field when it has the same name as the field. To
access the field, either rename the local variable/parameter, or use the member access
operator with reserved word this (instance field) or the class name (class field).

There are also rules for calling methods. For example, to call a public class method from
outside the class, you must specify the name of a class method’s class, followed by the
member access operator, followed by the class method’s name and argument list.

CHAPTER 2: Learning Language Fundamentals 96

Method calls require a special area of memory known as the method-call stack. When a
method is called, the virtual machine pushes its arguments and the address of the first
statement to execute following the called method onto the method-call stack.

A method normally executes statements that may include calls to other methods.
However, it is occasionally convenient to have a method call itself. This scenario is
known as recursion.

A method call includes a list of (potentially no) arguments being passed to the method.
Arguments are passed using a style of argument passing that is known as pass-by-
value.

Two or more instance method calls can be chained together via the member access
operator. Accomplish this task by having each method specify its class name as the
method’s return type, and by having the method return this.

Java uses a garbage collector to destroy objects. When it discovers an unreferenced
object, the garbage collector removes it from the heap, making more heap space
available.

Although the garbage collector eliminates the need to explicitly destroy objects, all
references to objects that are no longer needed must be nullified, or else they will remain
in the heap. This scenario is known as a memory leak.

Now that you know how to architect classes and work with objects, you are ready to
write object-based applications. However, this knowledge is not enough to write object-
oriented applications. To acquire that knowledge, you need to proceed to Chapter 3.

97

97

 Chapter

Learning Object-Oriented
Language Features
An object-based language encapsulates attributes and behaviors in objects. To be

known as an object-oriented language, the language must also support inheritance and

polymorphism. This chapter introduces you to Java’s language features that support

these twin pillars of object orientation. Furthermore, the chapter introduces you to

interfaces, Java’s ultimate abstract type mechanism.

Inheritance
Inheritance is a hierarchical relationship between entity categories in which one category

inherits attributes and behaviors from at least one other category. For example, tiger

inherits from animal (tiger is a kind of animal), car inherits from vehicle (car is a kind of

vehicle), and checking account inherits from bank account (checking account is a kind

of bank account). Animal, vehicle, and bank account are more generic categories; and

tiger, car, and checking account are more specific categories.

Java supports implementation inheritance (class extension) by providing language

features for declaring and initializing classes that are extensions of existing classes.

After showing you how to use these features, this section introduces you to a special

class that sits at the top of Java’s class hierarchy. The section then introduces you to

composition, an alternative to implementation inheritance for reusing code. Lastly, I will

show you how composition can overcome problems with implementation inheritance.

NOTE: Java also supports another kind of inheritance called interface inheritance. Later in this
chapter, while discussing Java’s interfaces language feature, I discuss interface inheritance.

3

CHAPTER 3: Learning Object-Oriented Language Features 98

Extending Classes
Java provides the reserved word extends for specifying a hierarchical relationship

between two classes. For example, suppose you have a Vehicle class and want to

introduce a Car class as a kind of Vehicle. Listing 3–1 uses extends to cement this

relationship.

Listing 3–1. Relating two classes via extends

class Vehicle
{
 // member declarations
}
class Car extends Vehicle
{
 // member declarations
}

Listing 3–1 codifies a relationship that is known as an “is-a” relationship: a car is a kind

of vehicle. In this relationship, Vehicle is known as the base class, parent class, or

superclass; and Car is known as the derived class, child class, or subclass.

CAUTION: You cannot extend a final class. For example, if you declared Vehicle as final
class Vehicle, the compiler would report an error upon encountering class Car extends
Vehicle. Developers declare their classes final when they do not want these classes to be
subclassed (for security or other reasons).

In addition to being capable of providing its own member declarations, Car is capable of

inheriting member declarations from its Vehicle superclass. As Listing 3–2 shows,

inherited members become accessible to members of the Car class.

Listing 3–2. Inheriting members

class Vehicle
{
 private String make;
 private String model;
 private int year;
 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;
 }
 String getMake()
 {
 return make;
 }
 String getModel()
 {
 return model;
 }
 int getYear()

CHAPTER 3: Learning Object-Oriented Language Features 99

 {
 return year;
 }
}
class Car extends Vehicle
{
 private int numWheels;
 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 this.numWheels = numWheels;
 }
 public static void main(String[] args)
 {
 Car car = new Car("Ford", "Fiesta", 2009, 4);
 System.out.println("Make = " + car.getMake());
 System.out.println("Model = " + car.getModel ());
 System.out.println("Year = " + car.getYear ());
 // Normally, you cannot access a private field via an object
 // reference. However, numWheels is being accessed from
 // within a method (main()) that is part of the Car class.
 System.out.println("Number of wheels = "+car.numWheels);
 }
}

Listing 3–2’s Vehicle class declares private fields that store a vehicle’s make, model,

and year; a constructor that initializes these fields to passed arguments; and getter

methods that retrieve these fields’ values.

The Car subclass provides a private numWheels field, a constructor that initializes a Car

object’s Vehicle and Car layers, and a main() class method for test-driving this

application.

Car’s constructor uses reserved word super to call Vehicle’s constructor with Vehicle-

oriented arguments, and then initializes Car’s numWheels instance field. The super() call

is analogous to specifying this() to call another constructor in the same class.

CAUTION: The super() call can only appear in a constructor. Furthermore, it must be the first
code that is specified in the constructor.

If super() is not specified, and if the superclass does not have a noargument constructor, the
compiler will report an error because the subclass constructor must call a noargument
superclass constructor when super() is not present.

Car’s main() method creates a Car object, initializing this object to a specific make,

model, year, and number of wheels. Four System.out.println() method calls

subsequently output this information.

The first three System.out.println() method calls retrieve their pieces of information by

calling the Car instance’s inherited getMake(), getModel(), and getYear() methods. The

final System.out.println() method call accesses the instance’s numWheels field directly.

k

CHAPTER 3: Learning Object-Oriented Language Features 100

NOTE: A class whose instances cannot be modified is known as an immutable class. Vehicle is
an example. If Car’s main() method, which can directly read or write numWheels, was not
present, Car would also be an example of an immutable class.

A class cannot inherit constructors, nor can it inherit private fields and methods. Car does not
inherit Vehicle’s constructor, nor does it inherit Vehicle’s private make, model, and year
fields.

A subclass can override (replace) an inherited method so that the subclass’s version of

the method is called instead. Listing 3–3 shows you that the overriding method must

specify the same name, parameter list, and return type as the method being overridden.

Listing 3–3. Overriding a method

class Vehicle
{
 private String make;
 private String model;
 private int year;
 Vehicle(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;
 }
 void describe()
 {
 System.out.println(year + " " + make + " " + model);
 }
}
class Car extends Vehicle
{
 private int numWheels;
 Car(String make, String model, int year, int numWheels)
 {
 super(make, model, year);
 }
 void describe()
 {
 System.out.print("This car is a "); // Print without newline – see Chapter 1.
 super.describe();
 }
 public static void main(String[] args)
 {
 Car car = new Car("Ford", "Fiesta", 2009, 4);
 car.describe();
 }
}

Listing 3–3’s Car class declares a describe() method that overrides Vehicle’s

describe() method to output a car-oriented description. This method uses reserved

word super to call Vehicle’s describe() method via super.describe();.

CHAPTER 3: Learning Object-Oriented Language Features 101

NOTE: You call a superclass method from the overriding subclass method by prefixing the
method’s name with reserved word super and the member access operator. If you do not do
this, you end up recursively calling the subclass’s overriding method.

You can also use super and the member access operator to access non-private superclass
fields from subclasses that replace these fields by declaring same-named fields.

If you were to compile and run Listing 3–3, you would discover that Car’s overriding

describe() method executes instead of Vehicle’s overridden describe() method, and

outputs This car is a 2009 Ford Fiesta.

CAUTION: You cannot override a final method. For example, if Vehicle’s describe() method
was declared as final void describe(), the compiler would report an error upon
encountering an attempt to override this method in the Car class. Developers declare their methods
final when they do not want these methods to be overridden (for security or other reasons).

Also, you cannot make an overriding method less accessible than the method it overrides. For
example, if Car’s describe() method was declared as private void describe(), the
compiler would report an error because private access is less accessible than the default
package access. However, describe() could be made more accessible by declaring it public,
as in public void describe().

Suppose you happened to replace Listing 3–3’s describe() method with the method

shown in Listing 3–4.

Listing 3–4. Incorrectly overriding a method

void describe(String owner)
{
 System.out.print("This car, which is owned by " + owner + ", is a ");
 super.describe();
}

The modified Car class now has two describe() methods, the explicitly declared

method in Listing 3–4 and the method inherited from Vehicle. Listing 3–4 does not

override Vehicle’s describe() method. Instead, it overloads this method.

The Java compiler helps you detect an attempt to overload instead of override a method

at compile time by letting you prefix a subclass’s method header with the @Override

annotation, as shown in Listing 3–5. (I will discuss annotations in Chapter 5.)

Listing 3–5. Annotating an overriding method

@Override void describe()
{
 System.out.print("This car is a ");
 super.describe();
}

CHAPTER 3: Learning Object-Oriented Language Features 102

Specifying @Override tells the compiler that the method overrides another method. If you

overload the method instead, the compiler reports an error. Without this annotation, the

compiler would not report an error because method overloading is a valid feature.

TIP: Get into the habit of prefixing overriding methods with the @Override annotation. This
habit will help you detect overloading mistakes much sooner.

Chapter 2 discussed the initialization order of classes and objects, where you learned

that class members are always initialized first, and in a top-down order (the same order

applies to instance members). Implementation inheritance adds a couple more details:

 A superclass’s class initializers always execute before a subclass’s

class initializers.

 A subclass’s constructor always calls the superclass constructor to

initialize an object’s superclass layer, and then initializes the subclass

layer.

Java lets you extend a single class, which is commonly referred to as single inheritance.

However, Java does not permit you to extend multiple classes, which is known as

multiple implementation inheritance, because it leads to ambiguities.

For example, suppose Java supported multiple implementation inheritance, and you

decided to model a tiglon (a cross between a tiger and a lioness) via the class structure

shown in Listing 3–6.

Listing 3–6. Modeling a tiglon

class Tiger
{
 void describe()
 {
 // Code that outputs a description of the tiger's appearance and behaviors.
 }
}
class Lioness
{
 void describe()
 {
 // Code that outputs a description of the lioness's appearance and behaviors.
 }
}
class Tiglon extends Tiger, Lioness
{
 // Which describe() method does Tiglon inherit?
}

Listing 3–6 shows an ambiguity resulting from each of Tiger and Lioness possessing a

describe() method. Which of these methods does Tiglon inherit? A related ambiguity

arises from same-named fields, possibly of different types. Which field is inherited?

CHAPTER 3: Learning Object-Oriented Language Features 103

The Ultimate Superclass
A class that does not explicitly extend another class implicitly extends Java’s Object

class (located in the java.lang package—I will discuss packages in the next chapter).

For example, Listing 3–1’s Vehicle class extends Object, whereas Car extends Vehicle.

Object is Java’s ultimate superclass because it serves as the ancestor of every other

class, but does not itself extend any other class. Object provides a common set of

methods that other classes inherit. Table 3–1 describes these methods.

Table 3–1. Object’s Methods

Method Description

Object clone() Create and return a copy of the current object.

boolean equals(Object obj) Determine if the current object is equal to the object identified

by obj.

void finalize() Finalize the current object.

Class<?> getClass() Return the current object’s Class object.

int hashCode() Return the current object’s hash code.

void notify() Wake up one of the threads that are waiting on the current

object’s monitor.

void notifyAll() Wake up all threads that are waiting on the current object’s

monitor.

String toString() Return a string representation of the current object.

void wait() Cause the current thread to wait on the current object’s monitor

until it is woken up via notify() or notifyAll().

void wait(long timeout) Cause the current thread to wait on the current object’s monitor

until it is woken up via notify() or notifyAll(), or until the

specified timeout value (in milliseconds) has elapsed,

whichever comes first.

void wait
(long timeout, int nanos)

Cause the current thread to wait on the current object’s monitor

until it is woken up via notify() or notifyAll(), or until the

specified timeout value (in milliseconds) plus nanos value (in

nanoseconds) has elapsed, whichever comes first.

I will discuss getClass(), notify(), notifyAll(), and the wait() methods in Chapter 7.

CHAPTER 3: Learning Object-Oriented Language Features 104

Cloning
The clone() method clones (duplicates) an object without calling a constructor. It copies

each primitive or reference field’s value to its counterpart in the clone, a task known as

shallow copying or shallow cloning. Listing 3–7 demonstrates this behavior.

Listing 3–7. Shallowly cloning an Employee object

class Employee implements Cloneable
{
 String name;
 int age;
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46);
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 }
}

Listing 3–7 declares an Employee class with name and age instance fields, and a

constructor for initializing these fields. The main() method uses this constructor to

initialize a new Employee object’s copies of these fields to John Doe and 46.

NOTE: A class must implement the Cloneable interface or its instances cannot be shallowly
cloned via Object’s clone() method—this method performs a runtime check to see if the
class implements Cloneable. (I will discuss interfaces later in this chapter.) If a class does not
implement Cloneable, clone() throws CloneNotSupportedException. (Because
CloneNotSupportedException is a checked exception, it is necessary for Listing 3–7 to
satisfy the compiler by appending throws CloneNotSupportedException to the main()
method’s header. I will discuss exceptions in the next chapter.) String is an example of a class
that does not implement Cloneable; hence, String objects cannot be shallowly cloned.

After assigning the Employee object’s reference to local variable e1, main() calls the

clone() method on this variable to duplicate the object, and then assigns the resulting

reference to variable e2. The (Employee) cast is needed because clone() returns Object.

To prove that the objects whose references were assigned to e1 and e2 are different,

main() next compares these references via == and outputs the Boolean result, which

happens to be false.

To prove that the Employee object was shallowly cloned, main() next compares the

references in both Employee objects’ name fields via == and outputs the Boolean result,

which happens to be true.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 3: Learning Object-Oriented Language Features 105

NOTE: Object’s clone() method was originally specified as a public method, which meant
that any object could be cloned from anywhere. For security reasons, this access was later
changed to protected, which means that only code within the same package as the class
whose clone() method is to be called, or code within a subclass of this class (regardless of
package), can call clone().

Shallow cloning is not always desirable because the original object and its clone refer to

the same object via their equivalent reference fields. For example, each of Listing 3–7’s

two Employee objects refers to the same String object via its name field.

Although not a problem for String, whose instances are immutable, changing a mutable

object via the clone’s reference field results in the original (noncloned) object seeing the

same change via its equivalent reference field.

For example, suppose you add a reference field named hireDate to Employee. This field

is of type Date with year, month, and day fields. Because Date is mutable, you can

change the contents of these fields in the Date instance assigned to hireDate.

Now suppose you plan to change the clone’s date, but want to preserve the original

Employee object’s date. You cannot do this with shallow cloning because the change is

also visible to the original Employee object.

To solve this problem, you must modify the cloning operation so that it assigns a new

Date reference to the Employee clone’s hireDate field. This task, which is known as deep
copying or deep cloning, is demonstrated in Listing 3–8.

Listing 3–8. Deeply cloning an Employee object

class Date
{
 int year, month, day;
 Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
}
class Employee implements Cloneable
{
 String name;
 int age;
 Date hireDate;
 Employee(String name, int age, Date hireDate)
 {
 this.name = name;
 this.age = age;
 this.hireDate = hireDate;
 }
 @Override protected Object clone() throws CloneNotSupportedException
 {
 Employee emp = (Employee) super.clone();

CHAPTER 3: Learning Object-Oriented Language Features 106

 if (hireDate != null) // no point cloning a null object (one that does not exist)
 emp.hireDate = new Date(hireDate.year, hireDate.month, hireDate.day);
 return emp;
 }
 public static void main(String[] args) throws CloneNotSupportedException
 {
 Employee e1 = new Employee("John Doe", 46, new Date(2000, 1, 20));
 Employee e2 = (Employee) e1.clone();
 System.out.println(e1 == e2); // Output: false
 System.out.println(e1.name == e2.name); // Output: true
 System.out.println(e1.hireDate == e2.hireDate); // Output: false
 System.out.println(e2.hireDate.year + " " + e2.hireDate.month + " " +
 e2.hireDate.day); // Output: 2000 1 20
 }
}

Listing 3–8 declares Date and Employee classes. The Date class declares year, month,

and day fields and a constructor. (You can declare a comma-separated list of variables

on one line provided that these variables all share the same type, which is int in this

case.)

The Employee class overrides the clone() method to deeply clone the hireDate field.

This method first calls the Object superclass’s clone() method to shallowly clone the

current Employee instance’s fields, and then stores the new instance’s reference in emp.

The clone() method next assigns a new Date instance to emp’s hireDate field, where this

instance’s fields are initialized to the same values as those in the original Employee

object’s hireDate instance.

At this point, you have an Employee clone with shallowly cloned name and age fields, and

a deeply cloned hireDate field. The clone() method finishes by returning this Employee

clone.

NOTE: If you are not calling Object’s clone() method from an overridden clone() method
(because you prefer to deeply clone reference fields and do your own shallow copying of non-
reference fields), it is not necessary for the class containing the overridden clone() method to
implement Cloneable, but it should implement this interface for consistency. String does not
override clone(), so String objects cannot be deeply cloned.

Equality
The == and != operators compare two primitive values (such as integers) for equality (==)

or inequality (!=). These operators also compare two references to see if they refer to the

same object or not. This latter comparison is known as an identity check.

You cannot use == and != to determine if two objects are logically the same (or not). For

example, two Car objects with the same field values are logically equivalent. However,

== reports them as unequal because of their different references.

CHAPTER 3: Learning Object-Oriented Language Features 107

NOTE: Because == and != perform the fastest possible comparisons, and because string
comparisons need to be performed quickly (especially when sorting a huge number of strings),
the String class contains special support that allows literal strings and string-valued constant
expressions to be compared via == and !=. (I will discuss this support when I present String in
Chapter 7.) The following statements demonstrate these comparisons:

System.out.println("abc" == "abc"); // Output: true

System.out.println("abc" == "a" + "bc"); // Output: true

System.out.println("abc" == "Abc"); // Output: false

System.out.println("abc" != "def"); // Output: true

System.out.println("abc" == new String("abc")); // Output: false

Recognizing the need to support logical equality in addition to reference equality, Java

provides an equals() method in the Object class. Because this method defaults to

comparing references, you need to override equals() to compare object contents.

Before overriding equals(), make sure that this is necessary. For example, Java’s

StringBuffer class does not override equals(). Perhaps this class’s designers did not

think it necessary to determine if two StringBuffer objects are logically equivalent.

You cannot override equals() with arbitrary code. Doing so will probably prove

disastrous to your applications. Instead, you need to adhere to the contract that is

specified in the Java documentation for this method, and which I present next.

The equals() method implements an equivalence relation on nonnull object references:

 It is reflexive: For any nonnull reference value x, x.equals(x) returns

true.

 It is symmetric: For any nonnull reference values x and y, x.equals(y)

returns true if and only if y.equals(x) returns true.

 It is transitive: For any nonnull reference values x, y, and z, if

x.equals(y) returns true and y.equals(z) returns true, then

x.equals(z) returns true.

 It is consistent: For any nonnull reference values x and y, multiple

invocations of x.equals(y) consistently return true or consistently

return false, provided no information used in equals() comparisons on

the objects is modified.

 For any nonnull reference value x, x.equals(null) returns false.

Although this contract probably looks somewhat intimidating, it is not that difficult to

satisfy. For proof, take a look at the implementation of the equals() method in Listing 3–

9’s Point class.

CHAPTER 3: Learning Object-Oriented Language Features 108

Listing 3–9. Logically comparing Point objects

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }
 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability
 System.out.println(p1.equals(null)); // Output: false
 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 }
}

Listing 3–9’s overriding equals() method begins with an if statement that uses the

instanceof operator to determine if the argument passed to parameter o is an instance

of the Point class. If not, the if statement executes return false;.

The o instanceof Point expression satisfies the last portion of the contract: For any

nonnull reference value x, x.equals(null) returns false. Because null is not an instance

of any class, passing this value to equals() causes the expression to evaluate to false.

The o instanceof Point expression also prevents a ClassCastException instance from

being thrown via expression (Point) o in the event that you pass an object other than a

Point object to equals(). (I will discuss exceptions in the next chapter.)

CHAPTER 3: Learning Object-Oriented Language Features 109

Following the cast, the contract’s reflexivity, symmetry, and transitivity requirements are

met by only allowing Points to be compared with other Points, via expression p.x == x
&& p.y == y.

The final contract requirement, consistency, is met by making sure that the equals()

method is deterministic. In other words, this method does not rely on any field value that

could change from method call to method call.

TIP: You can optimize the performance of a time-consuming equals() method by first using ==
to determine if o’s reference identifies the current object. Simply specify if (o == this)
return true; as the equals() method’s first statement. This optimization is not necessary in
Listing 3–9’s equals() method, which has satisfactory performance.

It is important to always override the hashCode() method when overriding equals(). I did

not do so in Listing 3–9 because I have yet to formally introduce hashCode().

Finalization
Finalization refers to cleanup. The finalize() method’s Java documentation states that

finalize() is “called by the garbage collector on an object when garbage collection

determines that there are no more references to the object. A subclass overrides the

finalize() method to dispose of system resources or to perform other cleanup.”

Object’s version of finalize() does nothing; you must override this method with any

needed cleanup code. Because the virtual machine might never call finalize() before

an application terminates, you should provide an explicit cleanup method, and have

finalize() call this method as a safety net in case the method is not otherwise called.

CAUTION: Never depend on finalize() for releasing limited resources such as graphics
contexts or file descriptors. For example, if an application object opens files, expecting that its
finalize() method will close them, the application might find itself unable to open additional
files when a tardy virtual machine is slow to call finalize(). What makes this problem worse
is that finalize() might be called more frequently on another virtual machine, resulting in this
too-many-open-files problem not revealing itself. The developer might falsely believe that the
application behaves consistently across different virtual machines.

If you decide to override finalize(), your object’s subclass layer must give its

superclass layer an opportunity to perform finalization. You can accomplish this task by

specifying super.finalize(); as the last statement in your method, which Listing 3–10

demonstrates.

CHAPTER 3: Learning Object-Oriented Language Features 110

Listing 3–10. A properly coded finalize() method for a subclass

protected void finalize() throws Throwable
{
 try
 {
 // Perform subclass cleanup.
 }
 finally
 {
 super.finalize();
 }
}

Listing 3–10’s finalize() declaration appends throws Throwable to the method header

because the cleanup code might throw an exception. If an exception is thrown,

execution leaves the method and, in the absence of try-finally, super.finalize(); never

executes. (I will discuss exceptions and try-finally in Chapter 4.)

To guard against this possibility, the subclass’s cleanup code executes in a compound

statement that follows reserved word try. If an exception is thrown, Java’s exception-

handling logic executes the compound statement following the finally reserved word,

and super.finalize(); executes the superclass’s finalize() method.

Hash Codes
The hashCode() method returns a 32-bit integer that identifies the current object’s hash
code, a small value that results from applying a mathematical function to a potentially

large amount of data. The calculation of this value is known as hashing.

You must override hashCode() when overriding equals(), and in accordance with the

following contract, which is specified in hashCode()’s Java documentation:

 Whenever it is invoked on the same object more than once during an

execution of a Java application, the hashCode() method must

consistently return the same integer, provided no information used in

equals(Object) comparisons on the object is modified. This integer

need not remain consistent from one execution of an application to

another execution of the same application.

 If two objects are equal according to the equals(Object) method, then

calling the hashCode() method on each of the two objects must

produce the same integer result.

 It is not required that if two objects are unequal according to the

equals(Object) method, then calling the hashCode() method on each

of the two objects must produce distinct integer results. However, the

programmer should be aware that producing distinct integer results for

unequal objects might improve the performance of hash tables.

Fail to obey this contract and your class’s instances will not work properly with Java’s

hash-based collections, such as HashMap. (I will discuss collections in Chapter 8.)

CHAPTER 3: Learning Object-Oriented Language Features 111

If you override equals() but not hashCode(), you most importantly violate the second

item in the contract: The hash codes of equal objects must also be equal. This violation

can lead to serious consequences, as demonstrated in Listing 3–11.

Listing 3–11. The problem of not overriding hashCode()

java.util. Map map = new java.util.HashMap();
map.put(p1, "first point");
System.out.println(map.get(p1)); // Output: first point
System.out.println(map.get(new Point(10, 20))); // Output: null

Assume that Listing 3–11’s statements are appended to Listing 3–9’s main() method.

After main() creates its Point objects and calls its System.out.println() methods, it

executes Listing 3–11’s statements, which perform the following tasks:

 The first statement instantiates the HashMap class, which is located in

the java.util package. (I will discuss packages in the next chapter.)

 The second statement calls HashMap’s put() method to store Listing 3–

9’s p1 object key and the "first point" value in the hashmap.

 The third statement retrieves the value of the hashmap entry whose

Point key is logically equal to p1 via HashMap’s get() method.

 The fourth statement is equivalent to the third statement, but returns

the null reference instead of "first point".

Although objects p1 and Point(10, 20) are logically equivalent, these objects have

different hash codes, resulting in each object referring to a different entry in the

hashmap. If an object is not stored (via put()) in that entry, get() returns null.

Correcting this problem requires that hashCode() be overridden in order to return the

same integer value for logically equivalent objects. I will show you how to accomplish

this task when I discuss HashMap in Chapter 8.

String Representation
The toString() method returns a string-based representation of the current object. This

representation defaults to the object’s class name, followed by the @ symbol, followed

by a hexadecimal representation of the object’s hash code.

For example, if you were to execute System.out.println(p1); to output Listing 3–9’s p1

object, you would see a line of output similar to Point@3e25a5. (System.out.println()

calls p1’s inherited toString() method behind the scenes.)

You should strive to override toString() so that it returns a concise but meaningful

description of the object. For example, you might declare, in Listing 3–9’s Point class, a

toString() method that is similar to Listing 3–12’s toString() method.

Listing 3–12. Returning a meaningful string-based representation of a Point object

public String toString()
{
 return "(" + x + ", " + y + ")";
}

CHAPTER 3: Learning Object-Oriented Language Features 112

This time, executing System.out.println(p1); results in more meaningful output, such

as (10, 20).

Composition
Implementation inheritance and composition offer two different approaches to reusing

code. As you have learned, implementation inheritance is concerned with extending a

class with a new class, which is based upon an “is-a” relationship between them: a Car

is a Vehicle, for example.

On the other hand, composition is concerned with composing classes out of other

classes, which is based upon a “has-a” relationship between them. For example, a Car

has an Engine, Wheels, and a SteeringWheel.

You have already seen examples of composition in Chapter 2 and this chapter. For

example, Chapter 2’s CheckingAccount class included a String owner field. Listing 3–

13’s Car class provides another example of composition.

Listing 3–13. A Car class whose instances are composed of other objects

class Car extends Vehicle
{
 private Engine engine;
 private Wheel[] wheels;
 private SteeringWheel steeringWheel;
}

Listing 3–13 demonstrates that composition and implementation inheritance are not

mutually exclusive. Although not shown, Car inherits various members from its Vehicle

superclass, in addition to providing its own engine, wheels, and steeringwheel fields.

The Trouble with Implementation Inheritance
Implementation inheritance is potentially dangerous, especially when the developer does

not have complete control over the superclass, or when the superclass is not designed

and documented with extension in mind.

The problem is that implementation inheritance breaks encapsulation. The subclass

relies on implementation details in the superclass. If these details change in a new

version of the superclass, the subclass might break, even if the subclass is not touched.

For example, suppose you have purchased a library of Java classes, and one of these

classes describes an appointment calendar. Although you do not have access to this

class’s source code, assume that Listing 3–14 describes part of its code.

Listing 3–14. An appointment calendar class

public class ApptCalendar
{
 private final static int MAX_APPT = 1000;
 private Appt[] appts;
 private int size;

CHAPTER 3: Learning Object-Oriented Language Features 113

 public ApptCalendar()
 {
 appts = new Appt[MAX_APPT];
 size = 0; // redundant because field automatically initialized to 0
 // adds clarity, however
 }
 public void addAppt(Appt appt)
 {
 if (size == appts.length)
 return; // array is full
 appts[size++] = appt;
 }
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 addAppt(appts[i]);
 }
}

Listing 3–14’s ApptCalendar class stores an array of appointments, with each

appointment described by an Appt instance. For this discussion, the details of Appt are

irrelevant.

Suppose you want to log each appointment in a file. Because a logging capability is not

provided, you extend ApptCalendar with Listing 3–15’s LoggingApptCalendar class,

which adds logging behavior in overriding addAppt() and addAppts() methods.

Listing 3–15. Extending the appointment calendar class

public class LoggingApptCalendar extends ApptCalendar
{
 // A constructor is not necessary because the Java compiler will add a
 // noargument constructor that calls the superclass's noargument
 // constructor by default.
 @Override public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 super.addAppt(appt);
 }
 @Override public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 super.addAppts(appts);
 }
}

Listing 3–15’s LoggingApptCalendar class relies on a Logger class whose log() class

method logs a string to a file (the details are unimportant). Notice the use of toString()

to convert an Appt object to a String object, which is then passed to log().

Although this class looks okay, it does not work as you might expect. Suppose you

instantiate this class and add a few Appt instances to this instance via addAppts(), as

demonstrated in Listing 3–16.

CHAPTER 3: Learning Object-Oriented Language Features 114

Listing 3–16. Demonstrating the logging appointment calendar

LoggingApptCalendar lapptc = new LoggingApptCalendar();
lapptc.addAppts(new Appt[] {new Appt(), new Appt(), new Appt()});

If you also add a System.out.println() method call to Logger’s log() method, to output

this method’s argument, you will discover that log() outputs a total of six messages;

each of the expected three messages (one per Appt object) is duplicated.

When LoggingApptCalendar’s addAppts() method is called, it first calls Logger.log() for

each Appt instance in the appts array that is passed to addAppts(). This method then

calls ApptCalendar’s addAppts() method via super.addAppt(appt);.

ApptCalendar’s addAppts() method calls LoggingApptCalendar’s overriding addAppt()

method for each Appt instance in its appts array argument. addAppt() calls Logger.log()

to log its appt argument, and you end up with three additional logged messages.

If you did not override the addAppts() method, this problem would go away. However,

the subclass would be tied to an implementation detail: ApptCalendar’s addAppts()

method calls addAppt().

It is not a good idea to rely on an implementation detail when the detail is not

documented. (I previously stated that you do not have access to ApptCalendar’s source

code.) When a detail is not documented, it can change in a new version of the class.

Because a base class change can break a subclass, this problem is known as the fragile
base class problem. A related cause of fragility that also has to do with overriding

methods occurs when new methods are added to a superclass in a subsequent release.

For example, suppose a new version of the library introduces a new public void
addAppt(Appt appt, boolean unique) method into the ApptCalendar class. This method

adds the appt instance to the calendar when unique is false, and, when unique is true,

adds the appt instance only if it has not previously been added.

Because this method has been added after the LoggingApptCalendar class was created,

LoggingApptCalendar does not override the new addAppt() method with a call to

Logger.log(). As a result, Appt instances passed to the new addAppt() method are not

logged.

Here is another problem: You introduce a method into the subclass that is not also in the

superclass. A new version of the superclass presents a new method that matches the

subclass method signature and return type. Your subclass method now overrides the

superclass method, and probably does not fulfill the superclass method’s contract.

There is a way to make these problems disappear. Instead of extending the superclass,

create a private field in a new class, and have this field reference an instance of the

superclass. This task demonstrates composition because you are forming a has-a

relationship between the new class and the superclass.

Additionally, have each of the new class’s instance methods call the corresponding

superclass method via the superclass instance that was saved in the private field, and

also return the called method’s return value. This task is known as forwarding, and the

new methods are known as forwarding methods.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 3: Learning Object-Oriented Language Features 115

Listing 3–17 presents an improved LoggingApptCalendar class that uses composition

and forwarding to forever eliminate the fragile base class problem and the additional

problem of unanticipated method overriding.

Listing 3–17. A composed logging appointment calendar class

public class LoggingApptCalendar
{
 private ApptCalendar apptCal;
 public LoggingApptCalendar(ApptCalendar apptCal)
 {
 this.apptCal = apptCal;
 }
 public void addAppt(Appt appt)
 {
 Logger.log(appt.toString());
 apptCal.addAppt(appt);
 }
 public void addAppts(Appt[] appts)
 {
 for (int i = 0; i < appts.length; i++)
 Logger.log(appts[i].toString());
 apptCal.addAppts(appts);
 }
}

Listing 3–17’s LoggingApptCalendar class does not depend upon implementation details

of the ApptCalendar class. You can add new methods to ApptCalendar and they will not

break LoggingApptCalendar.

NOTE: LoggingApptCalendar is an example of a wrapper class, a class whose instances
wrap other instances. Each LoggingApptCalendar instance wraps an ApptCalendar
instance.

LoggingApptCalendar is also an example of the Decorator design pattern, which is presented
on page 175 of Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995; ISBN:
0201633612).

When should you extend a class and when should you use a wrapper class? Extend a

class when an is-a relationship exists between the superclass and the subclass, and

either you have control over the superclass or the superclass has been designed and

documented for class extension. Otherwise, use a wrapper class.

What does “design and document for class extension” mean? Design means provide

protected methods that hook into the class’s inner workings (to support writing efficient

subclasses), and ensure that constructors and the clone() method never call

overridable methods. Document means clearly state the impact of overriding methods.

CHAPTER 3: Learning Object-Oriented Language Features 116

CAUTION: Wrapper classes should not be used in a callback framework, an object framework in
which an object passes its own reference to another object (via this) so that the latter object
can call the former object’s methods at a later time. This “calling back to the former object’s
method” is known as a callback. Because the wrapped object does not know of its wrapper
class, it passes only its reference (via this), and resulting callbacks do not involve the wrapper
class’s methods.

Polymorphism
Polymorphism is the ability to change forms. Examples of polymorphism abound in

nature. For example, water is naturally a liquid, but it changes to a solid when frozen,

and it changes to a gas when heated to its boiling point.

Java supports several kinds of polymorphism:

 Coercion: An operation serves multiple types through implicit type

conversion. For example, division lets you divide an integer by another

integer, or divide a floating-point value by another floating-point value.

If one operand is an integer and the other operand is a floating-point

value, the compiler coerces (implicitly converts) the integer to a

floating-point value, to prevent a type error. (There is no division

operation that supports an integer operand and a floating-point

operand.) Passing a subclass object reference to a method’s

superclass parameter is another example of coercion polymorphism.

The compiler coerces the subclass type to the superclass type, to

restrict operations to those of the superclass.

 Overloading: The same operator symbol or method name can be used

in different contexts. For example, + can be used to perform integer

division, floating-point division, or string concatenation, depending on

the types of its operands. Also, multiple methods having the same

name can appear in a class (through declaration and/or inheritance).

 Parametric: Within a class declaration, a field name can associate with

different types and a method name can associate with different

parameter and return types. The field and method can then take on

different types in each class instance. For example, a field might be of

type Integer and a method might return an Integer in one class

instance, and the same field might be of type String and the same

method might return a String in another class instance. Java supports

parametric polymorphism via generics, which I will discuss in Chapter 5.

CHAPTER 3: Learning Object-Oriented Language Features 117

 Subtype: A type can serve as another type’s subtype. When a subtype

instance appears in a supertype context, executing a supertype

operation on the subtype instance results in the subtype’s version of

that operation executing. For example, suppose that Circle is a

subclass of Point, and that both classes contain a draw() method.

Assigning a Circle instance to a variable of type Point, and then

calling the draw() method via this variable, results in Circle’s draw()

method being called.

Many developers do not regard coercion and overloading as valid kinds of

polymorphism. They see coercion and overloading as nothing more than type

conversions and syntactic sugar (syntax that simplifies a language, making it “sweeter”

to use). In contrast, parametric and subtype are regarded as valid polymorphisms.

This section focuses on subtype polymorphism by first examining upcasting and late

binding. The section then introduces you to abstract classes and abstract methods,

downcasting and runtime type identification, and covariant return types.

Upcasting and Late Binding
Listing 3–9’s Point class represents a point as an x-y pair. Because a circle (in this

example) is an x-y pair denoting its center, and has a radius denoting its extent, you can

extend Point with a Circle class that introduces a radius field. Check out Listing 3–18.

Listing 3–18. A Circle class extending the Point class

class Circle extends Point
{
 private int radius;
 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
}

The fact that Circle is really a Point with a radius implies that you can treat a Circle

instance as if it was a Point instance. Accomplish this task by assigning the Circle

instance to a Point variable, as demonstrated in Listing 3–19.

Listing 3–19. Upcasting from Circle to Point

Circle c = new Circle(10, 20, 30);
Point p = c;

The cast operator is not needed to convert from Circle to Point because access to a

Circle instance via Point’s interface is legal. After all, a Circle is at least a Point. This

assignment is known as upcasting because you are implicitly casting up the type

hierarchy (from the Circle subclass to the Point superclass).

CHAPTER 3: Learning Object-Oriented Language Features 118

After upcasting Circle to Point, you cannot call Circle’s getRadius() method because

this method is not part of Point’s interface. Losing access to subtype features after

narrowing it to a superclass seems useless, but is necessary for achieving subtype

polymorphism.

In addition to upcasting the subclass instance to a variable of the superclass type,

subtype polymorphism involves declaring a method in the superclass and overriding this

method in the subclass.

For example, suppose Point and Circle are to be part of a graphics application, and

you need to introduce a draw() method into each class to draw a point and a circle,

respectively. You end with the class structure shown in Listing 3–20.

Listing 3–20. Declaring a graphics application’s Point and Circle classes

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override public String toString()
 {
 return "(" + x + ", " + y + ")";
 }
 void draw()
 {
 System.out.println("Point drawn at " + toString ());
 }
}
class Circle extends Point
{
 private int radius;
 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
 @Override public String toString()
 {
 return "" + radius;
 }

CHAPTER 3: Learning Object-Oriented Language Features 119

 @Override void draw()
 {
 System.out.println("Circle drawn at " + super.toString() +
 " with radius " + toString());
 }
}

Although the draw() methods will ultimately draw graphics shapes, simulating their

behaviors via System.out.println() method calls is sufficient during the early testing

phase of the graphics application.

Now that you have temporarily finished with Point and Circle, you want to test their

draw() methods in a simulated version of the graphics application. To achieve this

objective, you write Listing 3–21’s Graphics class.

Listing 3–21. A Graphics class for testing Point’s and Circle’s draw() methods

class Graphics
{
 public static void main(String[] args)
 {
 Point[] points = new Point[] {new Point(10, 20), new Circle(10, 20, 30)};
 for (int i = 0; i < points.length; i++)
 points[i].draw();
 }
}

Listing 3–21’s main() method first declares an array of Points. Upcasting is

demonstrated by first having the array’s initializer instantiate the Circle class, and then

by assigning this instance’s reference to the second element in the points array.

Moving on, main() uses a for loop to call each Point element’s draw() method. Because

the first iteration calls Point’s draw() method, whereas the second iteration calls

Circle’s draw() method, you observe the following output:

Point drawn at (10, 20)
Circle drawn at (10, 20) with radius 30

How does Java “know” that it must call Circle’s draw() method on the second loop

iteration? Should it not call Point’s draw() method because Circle is being treated as a

Point thanks to the upcast?

At compile time, the compiler does not know which method to call. All it can do is verify

that a method exists in the superclass, and verify that the method call’s arguments list

and return type match the superclass’s method declaration.

In lieu of knowing which method to call, the compiler inserts an instruction into the

compiled code that, at runtime, fetches and uses whatever reference is in points[1] to

call the correct draw() method. This task is known as late binding.

Late binding is used for calls to non-final instance methods. For all other method calls,

the compiler knows which method to call, and inserts an instruction into the compiled

code that calls the method associated with the variable’s type (not its value). This task is

known as early binding.

CHAPTER 3: Learning Object-Oriented Language Features 120

Abstract Classes and Abstract Methods
Suppose new requirements dictate that your graphics application must include a

Rectangle class. Furthermore, this class must include a draw() method, and this method

must be tested in a manner similar to that shown in Listing 3–21’s Graphics class.

In contrast to Circle, which is a Point with a radius, it does not make sense to think of a

Rectangle as a being a Point with a width and height. Rather, a Rectangle instance

would probably be composed of a Point (indicating its origin) and a width and height.

Because circles, points, and rectangles are examples of shapes, it makes more sense to

declare a Shape class with its own draw() method than to specify class Rectangle
extends Point. Listing 3–22 presents Shape’s declaration.

Listing 3–22. Declaring a Shape class
class Shape
{
 void draw() {}
}

You can now refactor Point to extend Listing 3–22’s Shape class, leave Circle as is, and

introduce a Rectangle class that extends Shape. You can then refactor Listing 3–21’s

Graphics class’s main() method to take Shape into account. Check out Listing 3–23.

Listing 3–23. A new main() method for the Graphics class takes Shape into account
public static void main(String[] args)
{
 Shape[] shapes = new Shape[] {new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25)};
 for (int i = 0; i < shapes.length; i++)
 shapes[i].draw();
}

Because Point and Rectangle directly extend Shape, and because Circle indirectly

extends Shape by extending Point, Listing 3–23’s main() method will call the appropriate

subclass’s draw() method in response to shapes[i].draw();.

Although the introduction of Shape makes our code more flexible, there is a problem.

What is to stop us from instantiating Shape and adding this meaningless instance to the

shapes array, as Listing 3–24 demonstrates?

Listing 3–24. A useless instantiation

Shape[] shapes = new Shape[] {new Point(10, 20), new Circle(10, 20, 30),
 new Rectangle(20, 30, 15, 25), new Shape()};

What does it mean to instantiate Shape? Because this class describes an abstract

concept, what does it mean to draw a generic shape? Fortunately, Java provides a

solution to this problem, which is demonstrated in Listing 3–25.

Listing 3–25. Abstracting the Shape class

abstract class Shape
{
 abstract void draw(); // semicolon is required
}

CHAPTER 3: Learning Object-Oriented Language Features 121

Listing 3–25 uses Java’s abstract reserved word to declare a class that cannot be

instantiated. The compiler reports an error should you try to instantiate this class.

TIP: Get into the habit of declaring classes that describe generic categories (such as shape,
animal, vehicle, and account) abstract. This way, you will not inadvertently instantiate them.

The abstract reserved word is also used to declare a method without a body. The

draw() method does not need a body because it cannot draw an abstract shape.

CAUTION: The compiler reports an error if you attempt to declare a class that is both abstract
and final. For example, abstract final class Shape is an error because an abstract class
cannot be instantiated and a final class cannot be extended.

The compiler also reports an error if you declare a method to be abstract but do not declare its
class to be abstract. For example, removing abstract from the Shape class’s header in Listing
3–25 results in an error. This removal is an error because a non-abstract (concrete) class
cannot be instantiated if it contains an abstract method.

When you extend an abstract class, the extending class must override all of the abstract class’s
abstract methods, or else the extending class must itself be declared to be abstract; otherwise,
the compiler will report an error.

An abstract class can contain non-abstract methods in addition to or instead of

abstract methods. For example, Listing 3–2’s Vehicle class could have been declared

abstract. The constructor would still be present, to initialize private fields, even though

you could not instantiate the resulting class.

Downcasting and Runtime Type Identification
Moving up the type hierarchy via upcasting results in loss of access to subtype features.

For example, assigning a Circle instance to Point variable p means that you cannot use

p to call Circle’s getRadius() method.

However, it is possible to once again access the Circle instance’s getRadius() method

by performing an explicit cast operation; for example, Circle c = (Circle) p;. This

assignment is known as downcasting because you are explicitly moving down the type

hierarchy (from the Point superclass to the Circle subclass).

Although an upcast is always safe (the superclass’s interface is a subset of the

subclass’s interface), the same cannot be said of a downcast. Listing 3–26 shows you

what kind of trouble you can get into when downcasting is used incorrectly.

CHAPTER 3: Learning Object-Oriented Language Features 122

Listing 3–26. The trouble with downcasting

class A
{
}
class B extends A
{
 void d() {}
}
class C
{
 public static void main(String[] args)
 {
 A a = new A();
 B b = (B) a;
 b.d();
 }
}

Listing 3–26 presents a class hierarchy consisting of a superclass named A and a

subclass named B. Although A does not declare any members, B declares a single d()

method.

A third class named C provides a main() method that first instantiates A, and then tries to

downcast this instance to B and assign the result to variable b. The compiler will not

complain because downcasting from a superclass to a subclass in the same type

hierarchy is legal.

However, if the assignment is allowed, the application will undoubtedly crash when it

tries to execute b.d();. The crash happens because the virtual machine will attempt to

call a method that does not exist—class A does not have a d() method.

Fortunately, this scenario will never happen because the virtual machine verifies that the

cast is legal. Because it detects that A does not have a d() method, it does not permit

the cast by throwing an instance of the ClassCastException class.

The virtual machine’s cast verification illustrates runtime type identification (or RTTI, for

short). Cast verification performs RTTI by examining the type of the cast operator’s

operand to see if the cast should be allowed. Clearly, the cast should not be allowed.

A second form of RTTI involves the instanceof operator. This operator checks the left

operand to see if it is an instance of the right operand, and returns true if this is the case.

Listing 3–27 introduces instanceof to Listing 3–26 to prevent the ClassCastException.

Listing 3–27. Preventing a ClassCastException

if(a instanceof B)
{
 B b = (B) a;
 b.d();
}

The instanceof operator detects that variable a’s instance was not created from B and

returns false to indicate this fact. As a result, the code that performs the illegal cast will

not execute. (Overuse of instanceof probably indicates poor software design.)

CHAPTER 3: Learning Object-Oriented Language Features 123

Because a subtype is a kind of supertype, instanceof will return true when its left

operand is a subtype instance or a supertype instance of its right operand supertype.

Listing 3–28 provides a demonstration.

Listing 3–28. Subtype and supertype instances of a supertype

A a = new A();
B b = new B();
System.out.println(b instanceof A); // Output: true
System.out.println(a instanceof A); // Output: true

Listing 3–28, which assumes the class structure shown in Listing 3–26, instantiates

superclass A and subclass B. The first System.out.println() method call outputs true

because b’s reference identifies an instance of a subclass of A; the second

System.out.println() method call outputs true because a’s reference identifies an

instance of superclass A.

So far, you have encountered two forms of RTTI. Java also supports a third form that is

known as reflection. I will introduce you to this form of RTTI when I cover reflection in

Chapter 7.

Covariant Return Types
A covariant return type is a method return type that, in the superclass’s method

declaration, is the supertype of the return type in the subclass’s overriding method

declaration. Listing 3–29 provides a demonstration of this language feature.

Listing 3–29. A demonstration of covariant return types

class Zip
{
 ZipFile getArchive(String name) throws IOException
 {
 return new ZipFile(name); // ZipFile is located in the java.util.zip package
 }
}
class Jar extends Zip
{
 @Override JarFile getArchive(String name) throws IOException
 {
 return new JarFile(name); // JarFile is located in the java.util.jar package
 }
}
class Archive
{
 public static void main(String[] args) throws IOException
 {
 if (args.length == 2 && args[0].equals("-zip"))
 {
 ZipFile zf = new Zip().getArchive(args[1]);
 }
 else
 if (args.length == 2 && args[0].equals("-jar"))
 {
 JarFile jf = new Jar().getArchive(args[1]);

CHAPTER 3: Learning Object-Oriented Language Features 124

 }
 }
}

Listing 3–29 declares a Zip superclass and a Jar subclass; each class declares a

getArchive() method. Zip’s method has its return type set to ZipFile, whereas Jar’s

overriding method has its return type set to JarFile, a subclass of ZipFile.

Covariant return types minimize upcasting and downcasting. For example, Jar’s

getArchive() method does not need to upcast its JarFile instance to its JarFile return

type. Furthermore, this instance does not need to be downcast to JarFile when

assigning to variable jf.

In the absence of covariant return types, you would end up with Listing 3–30.

Listing 3–30. Upcasting and downcasting in the absence of covariant return types

class Zip
{
 ZipFile getArchive(String name) throws IOException
 {
 return new ZipFile(name);
 }
}
class Jar extends Zip
{
 @Override ZipFile getArchive(String name) throws IOException
 {
 return new JarFile(name);
 }
}
class Archive2
{
 public static void main(String[] args) throws IOException
 {
 if (args.length == 2 && args[0].equals("-zip"))
 {
 ZipFile zf = new Zip().getArchive(args[1]);
 }
 else
 if (args.length == 2 && args[0].equals("-jar"))
 {
 JarFile jf = (JarFile) new Jar().getArchive(args[1]);
 }
 }
}

In Listing 3–30, the first bolded code reveals an upcast from JarFile to ZipFile, and the

second bolded code uses the required (JarFile) cast operator to downcast from

ZipFile to jf, which is of type JarFile.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 3: Learning Object-Oriented Language Features 125

Interfaces
In Chapter 2, I stated that every class X exposes an interface, which is a protocol or

contract consisting of constructors, methods, and (possibly) fields that are made

available to objects created from other classes for use in creating and communicating

with X’s objects.

NOTE: A contract is an agreement between two parties. In this case, those parties are a class
and clients (external constructors, methods, class initializers, and instance initializers) that
communicate with the class’s instances by calling constructors and methods, and by accessing
fields (typically public static final fields, or constants). The essence of the contract is that
the class promises to not change its interface, which would break clients that depend upon the
interface.

Java formalizes the interface concept by providing reserved word interface, which is

used to introduce a type without implementation. Java also provides language features

to declare, implement, and extend interfaces. After looking at interface declaration,

implementation, and extension, this section explains the rationale for using interfaces.

Declaring Interfaces
An interface declaration consists of a header followed by a body. At minimum, the

header consists of reserved word interface followed by a name that identifies the

interface. The body starts with an open brace character and ends with a close brace.

Sandwiched between these delimiters are constant and method header declarations.

Consider Listing 3–31.

Listing 3–31. Declaring a Drawable interface

interface Drawable
{
 int RED = 1; // For simplicity, integer constants are used. These constants are
 int GREEN = 2; // not that descriptive, as you will see.
 int BLUE = 3;
 int BLACK = 4;
 void draw(int color);
}

Listing 3–31 declares an interface named Drawable. By convention, an interface’s name

begins with an uppercase letter. Furthermore, the first letter of each subsequent word in

a multiword interface name is capitalized.

CHAPTER 3: Learning Object-Oriented Language Features 126

NOTE: Many interface names end with the able suffix. For example, the Java’s standard class
library includes interfaces named Adjustable, Callable, Comparable, Cloneable,
Iterable, Runnable, and Serializable. It is not mandatory to use this suffix. For example,
the standard class library also provides interfaces named CharSequence, Collection,
Composite, Executor, Future, Iterator, List, Map, and Set.

Drawable declares four fields that identify color constants. Drawable also declares a

draw() method that must be called with one of these constants to specify the color used

to draw something.

NOTE: As with a class declaration, you can precede interface with public, to make your
interface accessible to code outside of its package. (I will discuss packages in the next chapter).
Otherwise, the interface is only accessible to other types in its package.

You can also precede interface with abstract, to emphasize that an interface is abstract.
Because an interface is already abstract, it is redundant to specify abstract in the interface’s
declaration.

An interface’s fields are implicitly declared public, static, and final. It is therefore
redundant to declare them with these reserved words. Because these fields are constants, they
must be explicitly initialized; otherwise, the compiler reports an error.

An interface’s methods are implicitly declared public and abstract. Therefore, it is redundant
to declare them with these reserved words. Because these methods must be instance methods,
do not declare them static or the compiler will report errors.

Drawable identifies a type that specifies what to do (draw something) but not how to do

it. Implementation details are left up to classes that implement this interface. Instances

of such classes are known as drawables because they know how to draw themselves.

NOTE: An interface that declares no members is known as a marker interface or a tagging
interface. It associates metadata with a class. For example, the Cloneable marker/tagging
interface states that instances of its implementing class can be shallowly cloned.

RTTI is used to detect that an object’s class implements a marker/tagging interface. For example,
when Object’s clone() method detects, via RTTI, that the calling instance’s class implements
Cloneable, it shallowly clones the object.

CHAPTER 3: Learning Object-Oriented Language Features 127

Implementing Interfaces
By itself, an interface is useless. To be of any benefit to an application, the interface

needs to be implemented by a class. Java provides the implements reserved word for

this task. This reserved word is demonstrated in Listing 3–32.

Listing 3–32. Implementing the Drawable interface

class Point implements Drawable
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override public String toString()
 {
 return "(" + x + ", " + y + ")";
 }
 @Override public void draw(int color)
 {
 System.out.println("Point drawn at " + toString () + " in color " + color);
 }
}
class Circle extends Point implements Drawable
{
 private int radius;
 Circle(int x, int y, int radius)
 {
 super(x, y);
 this.radius = radius;
 }
 int getRadius()
 {
 return radius;
 }
 @Override public String toString()
 {
 return "" + radius;
 }
 @Override public void draw(int color)
 {
 System.out.println("Circle drawn at " + super.toString() +
 " with radius " + toString() + " in color " + color);
 }
}

CHAPTER 3: Learning Object-Oriented Language Features 128

Listing 3–32 retrofits Listing 3–20’s class hierarchy to take advantage of Listing 3–31’s

Drawable interface. You will notice that each of classes Point and Circle implements

this interface by attaching the implements Drawable clause to its class header.

To implement an interface, the class must specify, for each interface method header, a

method whose header has the same signature and return type as the interface’s method

header, and a code body to go with the method header.

CAUTION: When implementing a method, do not forget that the interface’s methods are implicitly
declared public. If you forget to include public in the implemented method’s declaration, the
compiler will report an error because you are attempting to assign weaker access to the
implemented method.

When a class implements an interface, the class inherits the interface’s constants and

method headers, and overrides the method headers by providing implementations

(hence the @Override annotation). This is known as interface inheritance.

It turns out that Circle’s header does not need the implements Drawable clause. If this

clause is not present, Circle inherits Point’s draw() method, and is still considered to

be a Drawable, whether it overrides this method or not.

An interface specifies a type whose data values are the objects whose classes

implement the interface, and whose behaviors are those specified by the interface. This

fact implies that you can assign an object’s reference to a variable of the interface type,

provided that the object’s class implements the interface. Listing 3–33 provides a

demonstration.

Listing 3–33. Exercising the Drawable interface

public static void main(String[] args)
{
 Drawable[] drawables = new Drawable[] {new Point(10, 20), new Circle(10, 20, 30)};
 for (int i = 0; i < drawables.length; i++)
 drawables[i].draw(Drawable.RED);
}

Because Point and Circle instances are drawables by virtue of these classes

implementing the Drawable interface, it is legal to assign Point and Circle instance

references to variables (including array elements) of type Drawable.

When you run this method, it generates the following output:

Point drawn at (10, 20) in color 1
Circle drawn at (10, 20) with radius 30 in color 1

Listing 3–31’s Drawable interface is useful for drawing a shape’s outline. Suppose you

also need to fill a shape’s interior. You might attempt to satisfy this requirement by

declaring Listing 3–34’s Fillable interface.

CHAPTER 3: Learning Object-Oriented Language Features 129

Listing 3–34. Declaring a Fillable interface

interface Fillable
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
 void fill(int color);
}

You can declare that the Point and Circle classes implement both interfaces by

specifying class Point implements Drawable, Fillable and class Circle implements
Drawable, Fillable.

TIP: You can list as many interfaces as you need to implement by specifying a comma-separated
list of interface names after implements.

Implementing multiple interfaces can lead to name collisions, and the compiler will

report errors. For example, suppose that you attempt to compile Listing 3–35’s interface

and class declarations.

Listing 3–35. Colliding interfaces

interface A
{
 int X = 1;
 void foo();
}
interface B
{
 int X = 1;
 int foo();
}
class C implements A, B
{
 public void foo();
 public int foo() { return X; }
}

Each of interfaces A and B declares a constant named X. Despite each constant having

the same type and value, the compiler will report an error when it encounters X in C’s

second foo() method because it does not know which X is being inherited.

Speaking of foo(), the compiler reports an error when it encounters C’s second foo()

declaration because foo() has already been declared. You cannot overload a method

by changing only its return type.

The compiler will probably report additional errors. For example, the Java version 6

update 16 compiler has this to say when told to compile Listing 3–35:

X.java:14: foo() is already defined in C
 public int foo() { return X; }
 ^

CHAPTER 3: Learning Object-Oriented Language Features 130

X.java:11: C is not abstract and does not override abstract method foo() in B
class C implements A, B
^
X.java:13: foo() in C cannot implement foo() in B; attempting to use incompatible
 return type
found : void
required: int
 public void foo();
 ^
X.java:14: reference to X is ambiguous, both variable X in A and variable X in B match
 public int foo() { return X; }
 ^
4 errors

Extending Interfaces
Just as a subclass can extend a superclass via reserved word extends, you can use this

reserved word to have a subinterface extend a superinterface. This is known as interface
inheritance.

For example, the duplicate color constants in Drawable and Fillable lead to name

collisions when you specify their names by themselves in an implementing class. To

avoid these name collisions, prefix a name with its interface name and the member

access operator, or place these constants in their own interface, and have Drawable and

Fillable extend this interface, as demonstrated in Listing 3–36.

Listing 3–36. Extending the Colors interface

interface Colors
{
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;
 int BLACK = 4;
}
interface Drawable extends Colors
{
 void draw(int color);
}
interface Fillable extends Colors
{
 void fill(int color);
}

The fact that Drawable and Fillable each inherit constants from Colors is not a problem

for the compiler. There is only a single copy of these constants (in Colors) and no

possibility of a name collision, and so the compiler is satisfied.

If a class can implement multiple interfaces by declaring a comma-separated list of

interface names after implements, it seems that an interface should be able to extend

multiple interfaces in a similar way. This feature is demonstrated in Listing 3–37.

CHAPTER 3: Learning Object-Oriented Language Features 131

Listing 3–37. Extending a pair of interfaces

interface A
{
 int X = 1;
}
interface B
{
 double X = 2.0;
}
interface C extends A, B
{
}

Listing 3–37 will compile even though C inherits two same-named constants X with

different return types and initializers. However, if you implement C and then try to access

X, as in Listing 3–38, you will run into a name collision.

Listing 3–38. Discovering a name collision

class D implements C
{
 public void output()
 {
 System.out.println(X); // Which X is accessed?
 }
}

Suppose you introduce a void foo(); method header declaration into interface A, and

an int foo(); method header declaration into interface B. This time, the compiler will

report an error when you attempt to compile the modified Listing 3–37.

Why Use Interfaces?
Now that the mechanics of declaring, implementing, and extending interfaces are out of

the way, we can focus on the rationale for using them. Unfortunately, newcomers to

Java’s interfaces feature are often told that this feature was created as a workaround to

Java’s lack of support for multiple implementation inheritance. While interfaces are

useful in this capacity, this is not their reason for existence. Instead, Java’s interfaces
feature was created to give developers the utmost flexibility in designing their
applications, by decoupling interface from implementation.

If you are an adherent to agile software development (a group of software development

methodologies based on iterative development that emphasizes keeping code simple,

testing frequently, and delivering functional pieces of the application as soon as they are

deliverable), you know the importance of flexible coding. You know that you cannot

afford to tie your code to a specific implementation because a change in requirements

for the next iteration could result in a new implementation, and you might find yourself

rewriting significant amounts of code, which wastes time and slows development.

Interfaces help you achieve flexibility by decoupling interface from implementation. For

example, Listing 3–23’s main() method creates an array of objects from classes that

CHAPTER 3: Learning Object-Oriented Language Features 132

subclass the Shape class, and then iterates over these objects, calling each object’s

draw() method. The only objects that can be drawn are those that subclass Shape.

Suppose you also have a hierarchy of classes that model resistors, transistors, and

other electronic components. Each component has its own symbol that allows the

component to be shown in a schematic diagram of an electronic circuit. Perhaps you

want to add a drawing capability to each class that draws that component’s symbol.

You might consider specifying Shape as the superclass of the electronic component

class hierarchy. However, electronic components are not shapes so it makes no sense

to place these classes in a class hierarchy rooted in Shape.

However, you can make each component class implement the Drawable interface, which

lets you add expressions that instantiate these classes to Listing 3–33’s drawables array

(so you can draw their symbols). This is legal because these instances are drawables.

Wherever possible, you should strive to specify interfaces instead of classes in your

code, to keep your code adaptable to change. This is especially true when working with

Java’s collections framework, which I will discuss at length in Chapter 8.

For now, consider a simple example that consists of the collections framework’s List

interface, and its ArrayList and LinkedList classes. Listing 3–39 shows you an example

of inflexible code based on the ArrayList class.

Listing 3–39. Hardwiring the ArrayList class into source code

ArrayList<String> arrayList = new ArrayList<String>();
void dump(ArrayList<String> arrayList)
{
 // suitable code to dump out the arrayList
}

Listing 3–39 uses the generics-based parameterized type language feature (which I will

discuss in Chapter 5) to identify the kind of objects stored in an ArrayList instance. In

this example, String objects are stored.

Listing 3–39 is inflexible because it hardwires the ArrayList class into multiple locations.

This hardwiring focuses the developer into thinking specifically about array lists instead

of generically about lists.

Lack of focus is problematic when a requirements change, or perhaps a performance

issue brought about by profiling (analyzing a running application to check its

performance), suggests that the developer should have used LinkedList.

Listing 3–39 only requires a minimal number of changes to satisfy the new requirement.

In contrast, a larger code base might need many more changes. Although you only need

to change ArrayList to LinkedList, to satisfy the compiler, consider changing

arrayList to linkedList, to keep semantics (meaning) clear—you might have to change

multiple occurrences of names that refer to an ArrayList instance throughout the source

code.

The developer is bound to lose time while refactoring the code to adapt to LinkedList.

Instead, time could have been saved by writing Listing 3–39 to use the equivalent of

CHAPTER 3: Learning Object-Oriented Language Features 133

constants. In other words, Listing 3–39 could have been written to rely on interfaces,

and to only specify ArrayList in one place. Listing 3–40 shows you what the resulting

code would look like.

Listing 3–40. Using List to minimize referrals to the ArrayList implementation class

List<String> list = new ArrayList<String>();
void dump(List<String> list)
{
 // suitable code to dump out the list
}

Listing 3–40 is much more flexible than Listing 3–39. If a requirements or profiling

change suggests that LinkedList should be used instead of ArrayList, simply replace

Array with Linked and you are done. You do not even have to change the parameter

name.

NOTE: Java provides interfaces and abstract classes for describing abstract types (types that
cannot be instantiated). Abstract types represent abstract concepts (drawable and shape, for
example), and instances of such types would be meaningless.

Interfaces promote flexibility through lack of implementation—Drawable and List illustrate
this flexibility. They are not tied to any single class hierarchy, but can be implemented by any
class in any hierarchy.

Abstract classes support implementation, but can be genuinely abstract (Listing 3–25’s abstract
Shape class, for example). However, they are limited to appearing in the upper levels of class
hierarchies.

Interfaces and abstract classes can be used together. For example, the collections framework
provides List, Map, and Set interfaces; and AbstractList, AbstractMap, and
AbstractSet abstract classes that provide skeletal implementations of these interfaces.

The skeletal implementations make it easy for you to create your own interface implementations,
to address your unique requirements. If they do not meet your needs, you can optionally have
your class directly implement the appropriate interface.

EXERCISES

The following exercises are designed to test your understanding of Java’s object-oriented language
features:

1. What is implementation inheritance?

2. How does Java support implementation inheritance?

3. Can a subclass have two or more superclasses?

CHAPTER 3: Learning Object-Oriented Language Features 134

4. How do you prevent a class from being subclassed?

5. True or false: The super() call can appear in any method.

6. If a superclass declares a constructor with one or more parameters, and if a subclass
constructor does not use super() to call that constructor, why does the compiler
report an error?

7. What is an immutable class?

8. True or false: A class can inherit constructors.

9. What does it mean to override a method?

10. What is required to call a superclass method from its overriding subclass method?

11. How do you prevent a method from being overridden?

12. Why can you not make an overriding subclass method less accessible than the
superclass method it is overriding?

13. How do you tell the compiler that a method overrides another method?

14. Why does Java not support multiple implementation inheritance?

15. What is the name of Java’s ultimate superclass?

16. What is the purpose of the clone() method?

17. When does Object’s clone() method throw CloneNotSupportedException?

18. Explain the difference between shallow copying and deep copying.

19. Can the == operator be used to determine if two objects are logically equivalent? Why
or why not?

20. What does Object’s equals() method accomplish?

21. Does expression "abc" == "a" + "bc" return true or false?

22. How can you optimize a time-consuming equals() method?

23. What is the purpose of the finalize() method?

24. Should you rely on finalize() for closing open files? Why or why not?

25. What is a hash code?

26. True or false: You should override the hashCode() method whenever your override
the equals() method.

27. What does Object’s toString() method return?

28. Why should you override toString()?

29. What is composition?

30. True or false: Composition is used to implement is-a relationships and implementation
inheritance is used to describe has-a relationships.

31. Identify the fundamental problem of implementation inheritance. How do you fix this
problem?

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 3: Learning Object-Oriented Language Features 135

32. What is subtype polymorphism?

33. How is subtype polymorphism accomplished?

34. Why would you use abstract classes and abstract methods?

35. Can an abstract class contain concrete methods?

36. What is the purpose of downcasting?

37. List the three forms of RTTI.

38. What is a covariant return type?

39. How do you formally declare an interface?

40. True or false: You can precede an interface declaration with the abstract reserved
word.

41. What is a marker interface?

42. What is interface inheritance?

43. How do you implement an interface?

44. What problem might you encounter when you implement multiple interfaces?

45. How do you form a hierarchy of interfaces?

46. Why is Java’s interfaces feature so important?

47. What do interfaces and abstract classes accomplish?

48. How do interfaces and abstract classes differ?

49. Model part of an animal hierarchy by declaring Animal, Bird, Fish,
AmericanRobin, DomesticCanary, RainbowTrout, and SockeyeSalmon
classes:

 Animal is public and abstract, declares private String-based kind
and appearance fields, declares a public constructor that initializes these
fields to passed-in arguments, declares public and abstract eat() and
move() methods that take no arguments and whose return type is void,
and overrides the toString() method to output the contents of kind and
appearance.

 Bird is public and abstract, extends Animal, declares a public
constructor that passes its kind and appearance parameter values to its
superclass constructor, overrides its eat() method to output eats seeds
and insects (via System.out.println()), and overrides its move()
method to output flies through the air.

 Fish is public and abstract, extends Animal, declares a public
constructor that passes its kind and appearance parameter values to its
superclass constructor, overrides its eat() method to output eats krill,
algae, and insects, and overrides its move() method to output swims
through the water.

CHAPTER 3: Learning Object-Oriented Language Features 136

 AmericanRobin is public, extends Bird, and declares a public
noargument constructor that passes "americanrobin" and "red
breast" to its superclass constructor.

 DomesticCanary is public, extends Bird, and declares a public
noargument constructor that passes "domesticcanary" and "yellow,
orange, black, brown, white, red" to its superclass constructor.

 RainbowTrout is public, extends Fish, and declares a public
noargument constructor that passes "rainbowtrout" and "bands of
brilliant speckled multicolored stripes running nearly
the whole length of its body" to its superclass constructor.

 SockeyeSalmon is public, extends Fish, and declares a public
noargument constructor that passes "sockeyesalmon" and "bright
red with a green head" to its superclass constructor.

For brevity, I have omitted from the Animal hierarchy abstract Robin, Canary, Trout,
and Salmon classes that generalize robins, canaries, trout, and salmon. Perhaps you might
want to include these classes in the hierarchy.

Although this exercise illustrates the accurate modeling of a natural scenario using
inheritance, it also reveals the potential for class explosion—too many classes may be
introduced to model a scenario, and it might be difficult to maintain all of these classes. Keep
this in mind when modeling with inheritance.

50. Continuing from the previous exercise, declare an Animals class with a main()
method. This method first declares an animals array that is initialized to
AmericanRobin, RainbowTrout, DomesticCanary, and SockeyeSalmon
objects. The method then iterates over this array, first outputting animals[i] (which
causes toString() to be called), and then calling each object’s eat() and move()
methods (demonstrating subtype polymorphism).

51. Continuing from the previous exercise, declare a public Countable interface with a
String getID() method. Modify Animal to implement Countable and have this
method return kind’s value. Modify Animals to initialize the animals array to
AmericanRobin, RainbowTrout, DomesticCanary, SockeyeSalmon,
RainbowTrout, and AmericanRobin objects. Also, introduce code that computes a
census of each kind of animal. This code will use the Census class that is declared in
Listing 3–41.

Listing 3–41. The Census class stores census data on four kinds of animals

public class Census
{
 public final static int SIZE = 4;
 private String[] IDs;
 private int[] counts;
 public Census()
 {
 IDs = new String[SIZE];
 counts = new int[SIZE];
 }
 public String get(int index)
 {
 return IDs[index] + " " + counts[index];

CHAPTER 3: Learning Object-Oriented Language Features 137

 }
 public void update(String ID)
 {
 for (int i = 0; i < IDs.length; i++)
 {
 // If ID not already stored in the IDs array (which is indicated by
 // the first null entry that is found), store ID in this array, and
 // also assign 1 to the associated element in the counts array, to
 // initialize the census for that ID.
 if (IDs[i] == null)
 {
 IDs[i] = ID;
 counts[i] = 1;
 return;
 }

 // If a matching ID is found, increment the associated element in
 // the counts array to update the census for that ID.
 if (IDs[i].equals(ID))
 {
 counts[i]++;
 return;
 }
 }
 }
}

Summary
An understanding of Java’s fundamental language features must take inheritance and

polymorphism into account. Java supports two forms of inheritance: implementation via

class extension, and interface via interface implementation or interface extension.

Java supports four kinds of polymorphism: coercion, overloading, parametric, and

subtype. Subtype polymorphism is used to invoke subclass methods via references to

subclass objects that are stored in variables of the superclass type.

Java’s interfaces feature is essential for writing extremely flexible code. It achieves this

flexibility by decoupling interface from implementation. Classes that implement an

interface provide their own implementations.

You now have enough language knowledge to write interesting Java applications, but

Java’s advanced language features related to nested types, packages, static imports,

and exceptions help simplify this task. Chapter 4 focuses on these feature categories.

CHAPTER 3: Learning Object-Oriented Language Features 138

139

139

 Chapter

Mastering Advanced
Language Features Part 1
Chapters 2 and 3 laid a foundation for learning the Java language. Chapter 4 builds onto

this foundation by introducing you to some of Java’s more advanced language features,

specifically those features related to nested types, packages, static imports, and

exceptions. Additional advanced language features are covered in Chapter 5.

Nested Types
Classes that are declared outside of any class are known as top-level classes. Java also

supports nested classes, which are classes declared as members of other classes or

scopes. Nested classes help you implement top-level class architecture.

There are four kinds of nested classes: static member classes, nonstatic member

classes, anonymous classes, and local classes. The latter three categories are known as

inner classes.

This section introduces you to static member classes and inner classes. For each kind

of nested class, I provide you with a brief introduction, an abstract example, and a more

practical example. The section then briefly examines the topic of nesting interfaces

within classes.

Static Member Classes
A static member class is a static member of an enclosing class. Although enclosed, it

does not have an enclosing instance of that class, and cannot access the enclosing

class’s instance fields and call its instance methods. However, it can access or call

static members of the enclosing class, even those members that are declared private.

Listing 4–1 presents a static member class declaration.

4

CHAPTER 4: Mastering Advanced Language Features Part 1 140

Listing 4–1. Declaring a static member class

public class EnclosingClass
{
 private static int i;
 private static void m1()
 {
 System.out.println(i); // Output: 1
 }
 public static void m2()
 {
 EnclosedClass.accessEnclosingClass();
 }
 public static class EnclosedClass
 {
 public static void accessEnclosingClass()
 {
 i = 1;
 m1();
 }
 public void accessEnclosingClass2()
 {
 m2();
 }
 }
}

Listing 4–1 declares a top-level class named EnclosingClass with class field i, class

methods m1() and m2(), and static member class EnclosedClass. Also, EnclosedClass

declares class method accessEnclosingClass() and instance method

accessEnclosingClass2().

Because accessEnclosingClass() is declared static, m2() must prefix this method’s

name with EnclosedClass and the member access operator to call this method. Also,

EnclosingClass must be part of the prefix when calling this method from beyond this

class. For example, EnclosingClass.EnclosedClass.accessEnclosingClass();.

Because accessEnclosingClass2() is nonstatic, it must be called from an instance of

EnclosedClass. For example, when calling this method from beyond EnclosingClass,

you might specify EnclosingClass.EnclosedClass ec = new
EnclosingClass.EnclosedClass(); ec.accessEnclosingClass2();.

Static member classes have their uses. For example, Listing 4–2’s Double and Float

static member classes provide different implementations of their enclosing Rectangle

class. The Float version occupies less memory because of its 32-bit float fields, and

the Double version provides greater accuracy because of its 64–bit double fields.

Listing 4–2. Using static member classes to declare multiple implementations of their enclosing class

public abstract class Rectangle
{
 public abstract double getX();
 public abstract double getY();
 public abstract double getWidth();
 public abstract double getHeight();
 public static class Double extends Rectangle

CHAPTER 4: Mastering Advanced Language Features Part 1 141

 {
 private double x, y, width, height;
 public Double(double x, double y, double width, double height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }
 public double getX() { return x; }
 public double getY() { return y; }
 public double getWidth() { return width; }
 public double getHeight() { return height; }
 }
 public static class Float extends Rectangle
 {
 private float x, y, width, height;
 public Float(float x, float y, float width, float height)
 {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }
 public double getX() { return x; }
 public double getY() { return y; }
 public double getWidth() { return width; }
 public double getHeight() { return height; }
 }
 // Prevent subclassing. Use the type-specific Double and Float
 // implementation subclass classes to instantiate.
 private Rectangle() {}
 public boolean contains(double x, double y)
 {
 return (x >= getX() && x < getX()+getWidth()) &&
 (y >= getY() && y < getY()+getHeight());
 }
}

Listing 4–2’s Rectangle class demonstrates nested subclasses. Each of the Double and

Float static member classes subclass the abstract Rectangle class, providing private

floating-point or double precision floating-point fields, and overriding Rectangle’s

abstract methods to return these fields’ values as doubles.

Rectangle is abstract because it makes no sense to instantiate this class. Because it

also makes no sense to directly extend Rectangle with new implementations (the Double

and Float nested subclasses should be sufficient), its default constructor is declared

private. Instead, you must instantiate Rectangle.Float (to save memory) or

Rectangle.Double (when accuracy is required). Check out Listing 4–3.

Listing 4–3. Creating and using different Rectangle implementations

public static void main(String[] args)
{
 Rectangle r = new Rectangle.Double(10.0, 10.0, 20.0, 30.0);
 System.out.println("x = " + r.getX());
 System.out.println("y = " + r.getY());

CHAPTER 4: Mastering Advanced Language Features Part 1 142

 System.out.println("width = " + r.getWidth());
 System.out.println("height = " + r.getHeight());
 System.out.println("contains(15.0, 15.0) = " + r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = " + r.contains(0.0, 0.0));
 System.out.println();
 r = new Rectangle.Float(10.0f, 10.0f, 20.0f, 30.0f);
 System.out.println("x = " + r.getX());
 System.out.println("y = " + r.getY());
 System.out.println("width = " + r.getWidth());
 System.out.println("height = " + r.getHeight());
 System.out.println("contains(15.0, 15.0) = " + r.contains(15.0, 15.0));
 System.out.println("contains(0.0, 0.0) = " + r.contains(0.0, 0.0));
}

This method generates the following output:

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

x = 10.0
y = 10.0
width = 20.0
height = 30.0
contains(15.0, 15.0) = true
contains(0.0, 0.0) = false

Java’s class library contains many static member classes. For example, the Character

class (in the java.lang package) encloses a static member class named Subset whose

instances represent subsets of the Unicode character set. AbstractMap.SimpleEntry,

ObjectInputStream.GetField, and KeyStore.PrivateKeyEntry are other examples.

NOTE: When you compile an enclosing class that contains a static member class, the compiler
creates a classfile for the static member class whose name consists of its enclosing class’s
name, a dollar-sign character, and the static member class’s name. For example, compile Listing
4–1 and you will discover EnclosingClass$EnclosedClass.class in addition to
EnclosingClass.class. This format also applies to nonstatic member classes.

Nonstatic Member Classes
A nonstatic member class is a non-static member of an enclosing class. Each instance

of the nonstatic member class implicitly associates with an instance of the enclosing

class. The nonstatic member class’s instance methods can call instance methods in the

enclosing class and access the enclosing class instance’s nonstatic fields.

Listing 4–4 presents a nonstatic member class declaration.

CHAPTER 4: Mastering Advanced Language Features Part 1 143

Listing 4–4. Declaring a nonstatic member class

public class EnclosingClass
{
 private int i;
 private void m1()
 {
 System.out.println(i); // Output: 1
 }
 public class EnclosedClass
 {
 public void accessEnclosingClass()
 {
 i = 1;
 m1();
 }
 }
}

Listing 4–4 declares a top-level class named EnclosingClass with instance field i,

instance method m1(), and nonstatic member class EnclosedClass. Furthermore,

EnclosedClass declares instance method accessEnclosingClass().

Because accessEnclosingClass() is nonstatic, EnclosedClass must be instantiated

before this method can be called. This instantiation must take place via an instance of

EnclosingClass. Listing 4–5 accomplishes these tasks.

Listing 4–5. Calling a nonstatic member class’s instance method

public class NSMCDemo
{
 public static void main(String[] args)
 {
 EnclosingClass ec = new EnclosingClass();
 ec.new EnclosedClass().accessEnclosingClass();
 }
}

Listing 4–5’s main() method first instantiates EnclosingClass and saves its reference in

local variable ec. Then, main() uses this reference as a prefix to the new operator, to

instantiate EnclosedClass, whose reference is then used to call accessEnclosingClass().

NOTE: Prefixing new with a reference to the enclosing class is rare. Instead, you will typically call
an enclosed class’s constructor from within a constructor or an instance method of its enclosing
class.

Suppose you need to maintain a to-do list of items, where each item consists of a name

and a description. After some thought, you create Listing 4–6’s ToDo class to implement

these items.

Listing 4–6. Implementing to-do items as name-description pairs

public class ToDo
{
 private String name;

CHAPTER 4: Mastering Advanced Language Features Part 1 144

 private String desc;
 public ToDo(String name, String desc)
 {
 this.name = name;
 this.desc = desc;
 }
 public String getName()
 {
 return name;
 }
 public String getDesc()
 {
 return desc;
 }
 public String toString()
 {
 return "Name = " + getName() + ", Desc = " + getDesc();
 }
}

You next create a ToDoList class to store ToDo instances. ToDoList uses its ToDoArray

nonstatic member class to store ToDo instances in a growable array—you do not know

how many instances will be stored, and Java arrays have fixed lengths. See Listing 4–7.

Listing 4–7. Storing a maximum of two ToDo instances in a ToDoArray instance

public class ToDoList
{
 private ToDoArray toDoArray;
 private int index = 0;
 public ToDoList()
 {
 toDoArray = new ToDoArray(2);
 }
 public boolean hasMoreElements()
 {
 return index < toDoArray.size();
 }
 public ToDo nextElement()
 {
 return toDoArray.get(index++);
 }
 public void add(ToDo item)
 {
 toDoArray.add(item);
 }
 private class ToDoArray
 {
 private ToDo[] toDoArray;
 private int index = 0;
 ToDoArray(int initSize)
 {
 toDoArray = new ToDo[initSize];
 }
 void add(ToDo item)
 {
 if (index >= toDoArray.length)
 {

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 4: Mastering Advanced Language Features Part 1 145

 ToDo[] temp = new ToDo[toDoArray.length*2];
 for (int i = 0; i < toDoArray.length; i++)
 temp[i] = toDoArray[i];
 toDoArray = temp;
 }
 toDoArray[index++] = item;
 }
 ToDo get(int i)
 {
 return toDoArray[i];
 }
 int size()
 {
 return index;
 }
 }
}

In addition to providing an add() method to store ToDo instances in the ToDoArray

instance, ToDoList provides hasMoreElements() and nextElement() methods to iterate

over and return the stored instances. Listing 4–8 demonstrates these methods.

Listing 4–8. Creating a list of ToDo instances and iterating over this list

public static void main(String[] args)
{
 ToDoList toDoList = new ToDoList();
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));
 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 while (toDoList.hasMoreElements())
 System.out.println(toDoList.nextElement());
}

This method generates the following output:

Name = #1, Desc = Do laundry.
Name = #2, Desc = Buy groceries.
Name = #3, Desc = Vacuum apartment.
Name = #4, Desc = Write report.
Name = #5, Desc = Wash car.

Java’s class library presents many examples of nonstatic member classes. For example,

the java.util package’s HashMap class declares private HashIterator, ValueIterator,

KeyIterator, and EntryIterator classes for iterating over a hashmap’s values, keys,

and entries. (I will discuss HashMap in Chapter 8.)

NOTE: Code within an enclosed class can obtain a reference to its enclosing class instance by
qualifying reserved word this with the enclosing class’s name and the member access
operator. For example, if code within accessEnclosingClass() needed to obtain a reference
to its EnclosingClass instance, it would specify EnclosingClass.this.

CHAPTER 4: Mastering Advanced Language Features Part 1 146

Anonymous Classes
An anonymous class is a class without a name. Furthermore, it is not a member of its

enclosing class. Instead, an anonymous class is simultaneously declared (as an

anonymous extension of a class or as an anonymous implementation of an interface)

and instantiated any place where it is legal to specify an expression.

Listing 4–9 demonstrates an anonymous class declaration and instantiation.

Listing 4–9. Declaring and instantiating an anonymous class that extends a class

abstract class Speaker
{
 abstract void speak();
}
public class ACDemo
{
 public static void main(final String[] args)
 {
 new Speaker()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";
 void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 4–9 introduces an abstract class named Speaker and a concrete class named

ACDemo. The latter class’s main() method declares an anonymous class that extends

Speaker and overrides its speak() method. When this method is called, it outputs

main()’s first command-line argument or a default message if there are no arguments.

An anonymous class does not have a constructor (because the anonymous class does

not have a name). However, its classfile does contain a hidden method that performs

instance initialization. This method calls the superclass’s noargument constructor (prior

to any other initialization), which is the reason for specifying Speaker() after new.

Anonymous class instances should be able to access the surrounding scope’s local

variables and parameters. However, an instance might outlive the method in which it

was conceived (as a result of storing the instance’s reference in a field), and try to

access local variables and parameters that no longer exist after the method returns.

Because Java cannot allow this illegal access, which would most likely crash the virtual

machine, it lets an anonymous class instance only access local variables and

parameters that are declared final. Upon encountering a final local variable/parameter

name in an anonymous class instance, the compiler does one of two things:

CHAPTER 4: Mastering Advanced Language Features Part 1 147

 If the variable’s type is primitive (int or double, for example), the

compiler replaces its name with the variable’s read-only value.

 If the variable’s type is reference (String, for example), the compiler

introduces, into the classfile, a synthetic variable (a manufactured

variable) and code that stores the local variable’s/parameter’s

reference in the synthetic variable.

Listing 4–10 demonstrates an alternative anonymous class declaration and instantiation.

Listing 4–10. Declaring and instantiating an anonymous class that implements an interface

interface Speakable
{
 void speak();
}
public class ACDemo
{
 public static void main(final String[] args)
 {
 new Speakable()
 {
 String msg = (args.length == 1) ? args[0] : "nothing to say";
 public void speak()
 {
 System.out.println(msg);
 }
 }
 .speak();
 }
}

Listing 4–10 is very similar to Listing 4–9. However, instead of subclassing a Speaker

class, this listing’s anonymous class implements an interface named Speakable. Apart

from the hidden method calling Object() (interfaces have no constructors), Listing 4–10

behaves like Listing 4–9.

Although an anonymous class does not have a constructor, you can provide an instance

initializer to handle complex initialization. For example, new Office() {{addEmployee(new
Employee("John Doe"));}}; instantiates an anonymous subclass of Office and adds

one Employee object to this instance by calling Office’s addEmployee() method.

You will often find yourself creating and instantiating anonymous classes for their

convenience. For example, suppose you need to return a list of all filenames having the

.java suffix. Listing 4–11 shows you how an anonymous class simplifies using the

java.io package’s File and FilenameFilter classes to achieve this objective.

Listing 4–11. Using an anonymous class instance to return a list of files with .java extensions

String[] list = new File(directory).list(new FilenameFilter()
 {
 public boolean accept(File f, String s)
 {
 return s.endsWith(".java");
 }
 });

CHAPTER 4: Mastering Advanced Language Features Part 1 148

NOTE: An instance of an anonymous class is similar to a closure, which is a first-class function
(a method not declared in a class) with free variables that are bound in the lexical environment
(surrounding scope). A first-class function is a function that can be passed as an argument to or
returned from a method. A free variable is a variable referred to in a function that is not a local
variable or a parameter. Think of this variable as a placeholder.

Despite their similarity, there are two key differences between these language features. First,
anonymous classes are more syntactically verbose than closures. Second, an anonymous class
instance does not really close over its surrounding scope, because Java cannot allow the
anonymous class instance to access non-final local variables and parameters.

Java version 7 will introduce closures, although the exact syntax and implementation are
unknown at the time of writing. However, Baptiste Wicht revealed Oracle’s first attempt at
implementing closures via his May 29, 2010 blog post “Java 7: Oracle pushes a first version of
closures” (http://www.baptiste-wicht.com/2010/05/oracle-pushes-a-first-
version-of-closures/).

Local Classes
A local class is a class that is declared anywhere that a local variable is declared.

Furthermore, it has the same scope as a local variable. Unlike an anonymous class, a

local class has a name and can be reused. Like anonymous classes, local classes only

have enclosing instances when used in nonstatic contexts.

A local class instance can access the surrounding scope’s local variables and

parameters. However, the local variables and parameters that are accessed must be

declared final. For example, Listing 4–12’s local class declaration accesses a final

parameter and a final local variable.

Listing 4–12. Declaring a local class

public class EnclosingClass
{
 public void m(final int x)
 {
 final int y = x*2;
 class LocalClass
 {
 int a = x;
 int b = y;
 }
 LocalClass lc = new LocalClass();
 System.out.println(lc.a);
 System.out.println(lc.b);
 }
}

http://www.baptiste-wicht.com/2010/05/oracle-pushes-a-first-version-of-closures
http://www.baptiste-wicht.com/2010/05/oracle-pushes-a-first-version-of-closures
http://www.baptiste-wicht.com/2010/05/oracle-pushes-a-first-version-of-closures

CHAPTER 4: Mastering Advanced Language Features Part 1 149

Listing 4–12 declares EnclosingClass with its instance method m() declaring a local

class named LocalClass. This local class declares a pair of instance fields (a and b) that

are initialized to the values of final parameter x and final local variable y when

LocalClass is instantiated: new EnclosingClass().m(10);, for example.

Local classes help improve code clarity because they can be moved closer to where

they are needed. For example, Listing 4–13 declares an Iterator interface and a

ToDoList class whose iterator() method returns an instance of its local Iter class as

an Iterator instance (because Iter implements Iterator).

Listing 4–13. The Iterator interface and the ToDoList class

public interface Iterator
{
 boolean hasMoreElements();
 Object nextElement();
}
public class ToDoList
{
 private ToDo[] toDoList;
 private int index = 0;
 public ToDoList(int size)
 {
 toDoList = new ToDo[size];
 }
 public Iterator iterator()
 {
 class Iter implements Iterator
 {
 int index = 0;
 public boolean hasMoreElements()
 {
 return index < toDoList.length;
 }
 public Object nextElement()
 {
 return toDoList[index++];
 }
 }
 return new Iter();
 }
 public void add(ToDo item)
 {
 toDoList[index++] = item;
 }
}

Because each of Iterator and ToDoList is declared public, these types need to be

stored in separate source files.

Listing 4–14’s main() method demonstrates this revised ToDoList class, Listing 4–6’s

ToDo class, and Iterator.

CHAPTER 4: Mastering Advanced Language Features Part 1 150

Listing 4–14. Creating a list of ToDo instances and iterating over this list

public static void main(String[] args)
{
 ToDoList toDoList = new ToDoList(5);
 toDoList.add(new ToDo("#1", "Do laundry."));
 toDoList.add(new ToDo("#2", "Buy groceries."));
 toDoList.add(new ToDo("#3", "Vacuum apartment."));
 toDoList.add(new ToDo("#4", "Write report."));
 toDoList.add(new ToDo("#5", "Wash car."));
 Iterator iter = toDoList.iterator();
 while (iter.hasMoreElements())
 System.out.println(iter.nextElement());
}

The Iterator instance that is returned from iterator() returns ToDo items in the same

order as when they were added to the list. Although you can only use the returned

Iterator once, you can call iterator() whenever you need a new Iterator. This

capability is a big improvement over the one-shot iterator presented in Listing 4–7.

Interfaces Within Classes
Interfaces can be nested within classes. Once declared, an interface is considered to be

static, even if it is not declared static. For example, Listing 4–15 declares an enclosing

class named X along with two nested static interfaces named A and B.

Listing 4–15. Declaring a pair of interfaces within a class

class X
{
 interface A
 {
 }
 static interface B
 {
 }
}

As with nested classes, nested interfaces help to implement top-level class architecture

by being implemented by nested classes. Collectively, these types are nested because

they cannot (as in Listing 4–13’s Iter local class) or need not appear at the same level

as a top-level class and pollute its package namespace.

NOTE: The previous chapter’s introduction to interfaces showed you how to declare constants
and method headers in the body of an interface. You can also declare interfaces and classes in
an interface’s body. Because there does not appear to be a good reason to do this, it is probably
best to avoid nesting interfaces and/or classes within interfaces.

CHAPTER 4: Mastering Advanced Language Features Part 1 151

Packages
Hierarchical structures organize items in terms of hierarchical relationships that exist

between those items. For example, a filesystem might contain a taxes directory with

multiple year subdirectories, where each subdirectory contains tax information pertinent

to that year. Also, an enclosing class might contain multiple nested classes that only

make sense in the context of the enclosing class.

Hierarchical structures also help to avoid name conflicts. For example, two files cannot

have the same name in a nonhierarchical filesystem (which consists of a single

directory). In contrast, a hierarchical filesystem lets same-named files exist in different

directories. Similarly, two enclosing classes can contain same-named nested classes.

Name conflicts do not exist because items are partitioned into different namespaces.

Java also supports the partitioning of top-level types into multiple namespaces, to better

organize these types and to also prevent name conflicts. Java uses packages to

accomplish these tasks.

This section introduces you to packages. After defining this term and explaining why

package names must be unique, the section presents the package and import

statements. It next explains how the virtual machine searches for packages and types,

and then presents an example that shows you how to work with packages. This section

closes by showing you how to encapsulate a package of classfiles into JAR files.

What Are Packages?
A package is a unique namespace that can contain a combination of top-level classes,

other top-level types, and subpackages. Only types that are declared public can be

accessed from outside the package. Furthermore, the constants, constructors,

methods, and nested types that describe a class’s interface must be declared public to

be accessible from beyond the package.

Every package has a name, which must be a nonreserved identifier. The member access

operator separates a package name from a subpackage name, and separates a

package or subpackage name from a type name. For example, the two member access

operators in graphics.shapes.Circle separate package name graphics from the shapes

subpackage name, and separate subpackage name shapes from the Circle type name.

NOTE: Each of Java SE’s standard class library and Android’s class library organizes its many
classes and other top-level types into multiple packages. Many of these packages are
subpackages of the standard java package. Examples include java.io (types related to
input/output operations), java.lang (language-oriented types), java.lang.reflect
(reflection-oriented language types), java.net (network-oriented types), and java.util (utility
types).

CHAPTER 4: Mastering Advanced Language Features Part 1 152

Package Names Must Be Unique
Suppose you have two different graphics.shapes packages, and suppose that each

shapes subpackage contains a Circle class with a different interface. When the compiler

encounters System.out.println(new Circle(10.0, 20.0, 30.0).area()); in the source

code, it needs to verify that the area() method exists.

The compiler will search all accessible packages until it finds a graphics.shapes

package that contains a Circle class. If the found package contains the appropriate

Circle class with an area() method, everything is fine. Otherwise, if the Circle class

does not have an area() method, the compiler will report an error.

This scenario illustrates the importance of choosing unique package names. Specifically,

the top-level package name must be unique. The convention in choosing this name is to

take your Internet domain name and reverse it. For example, I would choose

ca.mb.javajeff as my top-level package name because javajeff.mb.ca is my domain

name. I would then specify ca.mb.javajeff.graphics.shapes.Circle to access Circle.

NOTE: Reversed Internet domain names are not always valid package names. One or more of its
component names might start with a digit (6.com), contain a hyphen (-) or other illegal character
(aq-x.com), or be one of Java’s reserved words (int.com). Convention dictates that you prefix
the digit with an underscore (com._6), replace the illegal character with an underscore
(com.aq_x), and suffix the reserved word with an underscore (com.int_).

The Package Statement
The package statement identifies the package in which a source file’s types are located.

This statement consists of reserved word package, followed by a member access

operator–separated list of package and subpackage names, followed by a semicolon.

For example, package graphics; specifies that the source file’s types locate in a

package named graphics, and package graphics.shapes; specifies that the source file’s

types locate in the graphics package’s shapes subpackage.

By convention, a package name is expressed in lowercase. If the name consists of

multiple words, each word except for the first word is capitalized.

Only one package statement can appear in a source file. When it is present, nothing

apart from comments must precede this statement.

CAUTION: Specifying multiple package statements in a source file or placing anything apart from
comments above a package statement causes the compiler to report an error.

Java implementations map package and subpackage names to same-named

directories. For example, an implementation would map graphics to a directory named

CHAPTER 4: Mastering Advanced Language Features Part 1 153

graphics, and would map graphics.shapes to a shapes subdirectory of graphics. The

Java compiler stores the classfiles that implement the package’s types in the

corresponding directory.

NOTE: If a source file does not contain a package statement, the source file’s types are said to
belong to the unnamed package. This package corresponds to the current directory.

The Import Statement
Imagine having to repeatedly specify ca.mb.javajeff.graphics.shapes.Circle or some

other lengthy package-qualified type name for each occurrence of that type in source

code. Java provides an alternative that lets you avoid having to specify package details.

This alternative is the import statement.

The import statement imports types from a package by telling the compiler where to

look for unqualified type names during compilation. This statement consists of reserved

word import, followed by a member access operator–separated list of package and

subpackage names, followed by a type name or * (asterisk), followed by a semicolon.

The * symbol is a wildcard that represents all unqualified type names. It tells the

compiler to look for such names in the import statement’s specified package, unless the

type name is found in a previously searched package.

For example, import ca.mb.javajeff.graphics.shapes.Circle; tells the compiler that

an unqualified Circle class exists in the ca.mb.javajeff.graphics.shapes package.

Similarly, import ca.mb.javajeff.graphics.shapes.*; tells the compiler to look in this

package if it encounters a Rectangle class, a Triangle class, or even an Employee class

(if Employee has not already been found).

TIP: You should avoid using the * wildcard so that other developers can easily see which types
are used in source code.

Because Java is case sensitive, package and subpackage names specified in an import

statement must be expressed in the same case as that used in the package statement.

When import statements are present in source code, only a package statement and

comments can precede them.

CAUTION: Placing anything other than a package statement, import/static import statements,
and comments above an import statement causes the compiler to report an error.

You can run into name conflicts when using the wildcard version of the import statement

because any unqualified type name matches the wildcard. For example, you have

graphics.shapes and geometry packages that each contain a Circle class, the source

CHAPTER 4: Mastering Advanced Language Features Part 1 154

code begins with import geometry.*; and import graphics.shape.*; statements, and it

also contains an unqualified occurrence of Circle. Because the compiler does not know

if Circle refers to geometry’s Circle class or graphics.shape’s Circle class, it reports

an error. You can fix this problem by qualifying Circle with the correct package name.

NOTE: The compiler automatically imports the String class and other types from the
java.lang package, which is why it is not necessary to qualify String with java.lang.

Searching for Packages and Types
Newcomers to Java who first start to work with packages often become frustrated by

“no class definition found” and other errors. This frustration can be partly avoided by

understanding how the virtual machine searches for packages and types.

This section explains how the search process works. To understand this process, you

need to realize that the compiler is a special Java application that runs under the control

of the virtual machine. Furthermore, there are two different forms of search.

Compile-Time Search
When the compiler encounters a type expression (such as a method call) in source

code, it must locate that type’s declaration to verify that the expression is legal (a

method exists in the type’s class whose parameter types match the types of the

arguments passed in the method call, for example).

The compiler first searches the Java platform packages (which contain class library

types). It then searches extension packages (for extension types). If the -sourcepath

command-line option was specified when starting the virtual machine (via javac), the

compiler searches the indicated path’s source files.

NOTE: Java platform packages are stored in rt.jar and a few other important JAR files.
Extension packages are stored in a special extensions directory named ext.

Otherwise, it searches the user classpath (in left-to-right order) for the first user classfile

or source file containing the type. If no user classpath is present, the current directory is

searched. If no package matches or the type still cannot be found, the compiler reports

an error. Otherwise, the compiler records the package information in the classfile.

NOTE: The user classpath is specified via the -classpath option used to start the virtual
machine or, if not present, the CLASSPATH environment variable.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 4: Mastering Advanced Language Features Part 1 155

Runtime Search
When the compiler or any other Java application runs, the virtual machine will encounter

types and must load their associated classfiles via special code known as a classloader.
It will use the previously stored package information that is associated with the

encountered type in a search for that type’s classfile.

The virtual machine searches the Java platform packages, followed by extension

packages, followed by the user classpath (in left-to-right order) for the first classfile that

contains the type. If no user classpath is present, the current directory is searched. If no

package matches or the type cannot be found, a “no class definition found” error is

reported. Otherwise, the classfile is loaded into memory.

NOTE: Whether you use the -classpath option or the CLASSPATH environment variable to
specify a user classpath, there is a specific format that must be followed. Under Windows, this
format is expressed as path1;path2;..., where path1, path2, and so on are the locations
of package directories. Under Unix and Linux, this format changes to path1:path2:....

Playing with Packages
Suppose your application needs to log messages to the console, to a file, or to another

destination (perhaps to an application running on another computer). Furthermore,

suppose the application needs to perform some combination of these tasks.

To demonstrate packages, this section presents a simple and reusable logging library.

This library consists of an interface named Logger, an abstract class named

LoggerFactory, and a pair of package-private classes named Console and File.

NOTE: The logging library is an example of the Abstract Factory design pattern, which is
presented on page 87 of Design Patterns: Elements of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995; ISBN:
0201633612).

Listing 4–16 presents the Logger interface, which describes objects that log messages.

Listing 4–16. Describing objects that log messages via the Logger interface

package logging;

public interface Logger
{
 boolean connect();
 boolean disconnect();
 boolean log(String msg);
}

CHAPTER 4: Mastering Advanced Language Features Part 1 156

Each of the connect(), disconnect(), and log() methods returns true upon success,

and false upon failure. (Later in this chapter, you will discover a better technique for

dealing with failure.)

Listing 4–17 presents the LoggerFactory abstract class.

Listing 4–17. Obtaining a logger for logging messages to a specific destination

package logging;

public abstract class LoggerFactory
{
 public final static int CONSOLE = 0;
 public final static int FILE = 1;

 public static Logger newLogger(int dstType, String...dstName)
 {
 switch (dstType)
 {
 case CONSOLE: return new Console(dstName.length == 0 ? null
 : dstName[0]);
 case FILE : return new File(dstName.length == 0 ? null
 : dstName[0]);
 default : return null;
 }
 }
}

newLogger() returns a Logger for logging messages to an appropriate destination. It uses

the variable arguments feature to optionally accept an extra String argument for those

destination types that require the argument. For example, FILE requires a filename.

Listing 4–18 presents the package-private Console class.

Listing 4–18. Logging messages to the console
package logging;

class Console implements Logger
{
 private String dstName;
 Console(String dstName)
 {
 this.dstName = dstName;
 }
 public boolean connect()
 {
 return true;
 }
 public boolean disconnect()
 {
 return true;
 }
 public boolean log(String msg)
 {
 System.out.println(msg);
 return true;
 }
}

CHAPTER 4: Mastering Advanced Language Features Part 1 157

Console’s package-private constructor saves its argument, which most likely will be null

because there is no need for a String argument. Perhaps a future version of Console will

use this argument to identify one of multiple console windows.

Listing 4–19 presents the package-private File class.

Listing 4–19. Logging messages to a file (eventually)

package logging;

class File implements Logger
{
 private String dstName;
 File(String dstName)
 {
 this.dstName = dstName;
 }
 public boolean connect()
 {
 if (dstName == null)
 return false;
 System.out.println("opening file " + dstName);
 return true;
 }
 public boolean disconnect()
 {
 if (dstName == null)
 return false;
 System.out.println("closing file " + dstName);
 return true;
 }
 public boolean log(String msg)
 {
 if (dstName == null)
 return false;
 System.out.println("writing " + msg + " to file " + dstName);
 return true;
 }
}

Unlike Console, File requires a nonnull argument. Each method first verifies that this

argument is not null. If the argument is null, the method returns false to signify failure.

(In Chapter 10, I refactor File to incorporate appropriate file-writing code.)

The logging library allows us to introduce portable logging code into an application.

Apart from a call to newLogger(), this code will remain the same regardless of the

logging destination. Listing 4–20 presents an application that tests this library.

Listing 4–20. Testing the logging library

import logging.*;

public class TestLogger
{
 public static void main(String[] args)
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.CONSOLE);
 if (logger.connect())

CHAPTER 4: Mastering Advanced Language Features Part 1 158

 {
 logger.log("test message #1");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to console-based logger");

 logger = LoggerFactory.newLogger(LoggerFactory.FILE, "x.txt");
 if (logger.connect())
 {
 logger.log("test message #2");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");

 logger = LoggerFactory.newLogger(LoggerFactory.FILE);
 if (logger.connect())
 {
 logger.log("test message #3");
 logger.disconnect();
 }
 else
 System.out.println("cannot connect to file-based logger");
 }
}

Follow the steps (which assume that the JDK has been installed) to create the logging

package and TestLogger application, and to run this application:

1. Create a new directory and make this directory current.

2. Create a logging directory in the current directory.

3. Copy Listing 4–16 to a file named Logger.java in the logging directory.

4. Copy Listing 4–17 to a file named LoggerFactory.java in the logging

directory.

5. Copy Listing 4–18 to a file named Console.java in the logging directory.

6. Copy Listing 4–19 to a file named File.java in the logging directory.

7. Copy Listing 4–20 to a file named TestLogger.java in the current directory.

8. Execute javac TestLogger.java, which also compiles logger’s source files.

9. Execute java TestLogger.

After completing the previous step, you should observe the following output from the

TestLogger application:

test message #1
opening file x.txt
writing test message #2 to file x.txt
closing file x.txt
cannot connect to file-based logger

CHAPTER 4: Mastering Advanced Language Features Part 1 159

What happens when logging is moved to another location? For example, move logging

to the root directory and run TestLogger. You will now observe an error message about

the virtual machine not finding the logging package and its LoggerFactory classfile.

You can solve this problem by specifying -classpath when running the java tool, or by

adding the location of the logging package to the CLASSPATH environment variable. For

example, I chose to use -classpath in the following Windows-specific command line:

java -classpath \;. TestLogger

The backslash represents the root directory in Windows. (I could have specified a

forward slash as an alternative.) Also, the period represents the current directory. If it is

missing, the virtual machine complains about not finding the TestLogger classfile.

TIP: If you discover an error message where the virtual machine reports that it cannot find an
application classfile, try appending a period character to the classpath. Doing so will probably fix
the problem.

Packages and JAR Files
Chapter 1 introduced you to the Java SDK’s jar tool, which is used to archive classfiles

in JAR files, and is also used to extract a JAR file’s classfiles. It probably comes as no

surprise that you can store packages in JAR files, which greatly simplify the distribution

of your package-based class libraries.

NOTE: Java version 7 will introduce modules as a replacement to JAR files. Modules address
JAR file problems such as a lack of versioning support; no reliable way to express, resolve, and
enforce one JAR file’s dependency on another JAR file; and having to specify a JAR file as part of
the classpath. Because the JAR file’s location might change during deployment, developers are
forced to correct all references to the JAR file. This new feature will probably include a new
reserved word named module.

To show you how easy it is to store a package in a JAR file, we will create a logger.jar

file that contains the logging package’s four classfiles (Logger.class,

LoggerFactory.class, Console.class, and File.class). Complete the following steps to

accomplish this task:

1. Make sure that the current directory contains the previously created

logging directory with its four classfiles.

2. Execute jar cf logger.jar logging*.class. You could alternatively

execute jar cf logger.jar logging/*.class.

You should now find a logger.jar file in the current directory. To prove to yourself that

this file contains the four classfiles, execute jar tf logger.jar.

CHAPTER 4: Mastering Advanced Language Features Part 1 160

You can run TestLogger.class by adding logger.jar to the classpath. For example, you

can run TestLogger under Windows via java -classpath logger.jar;. TestLogger.

Static Imports
An interface should only be used to declare a type. However, some developers violate

this principle by using interfaces to only export constants. Such interfaces are known as

constant interfaces, and Listing 4–21 presents an example.

Listing 4–21. Declaring a constant interface

public interface Directions
{
 int NORTH = 0;
 int SOUTH = 1;
 int EAST = 2;
 int WEST = 3;
}

Developers who resort to constant interfaces do so to avoid having to prefix a

constant’s name with the name of its class (as in Math.PI, where PI is a constant in the

java.lang.Math class). They do this by implementing the interface—see Listing 4–22.

Listing 4–22. Implementing a constant interface

public class TrafficFlow implements Directions
{
 public static void main(String[] args)
 {
 showDirection((int)(Math.random()*4));
 }
 private static void showDirection(int dir)
 {
 switch (dir)
 {
 case NORTH: System.out.println("Moving north"); break;
 case SOUTH: System.out.println("Moving south"); break;
 case EAST : System.out.println("Moving east"); break;
 case WEST : System.out.println("Moving west");
 }
 }
}

Listing 4–22’s TrafficFlow class implements Directions for the sole purpose of not

having to specify Directions.NORTH, Directions.SOUTH, Directions.EAST, and

Directions.WEST.

This is an appalling misuse of an interface. These constants are nothing more than an

implementation detail that should not be allowed to leak into the class’s exported

interface, because they might confuse the class’s users (what is the purpose of these

constants?). Also, they represent a future commitment: even when the class no longer

uses these constants, the interface must remain to ensure binary compatibility.

CHAPTER 4: Mastering Advanced Language Features Part 1 161

Java version 5 introduced an alternative that satisfies the desire for constant interfaces

while avoiding their problems. This static imports feature lets you import a class’s

static members so that you do not have to qualify them with their class names. It is

implemented via a small modification to the import statement, as follows:

import static packagespec . classname . (staticmembername | *);

The static import statement specifies static after import. It then specifies a member

access operator–separated list of package and subpackage names, which is followed by

the member access operator and a class’s name. Once again, the member access

operator is specified, followed by a single static member name or the asterisk wildcard.

CAUTION: Placing anything apart from a package statement, import/static import statements,
and comments above a static import statement causes the compiler to report an error.

You specify a single static member name to import only that name:

import static java.lang.Math.PI; // Import the PI static field only.
import static java.lang.Math.cos; // Import the cos() static method only.

In contrast, you specify the wildcard to import all static member names:

import static java.lang.Math.*; // Import all static members from Math.

You can now refer to the static member(s) without having to specify the class name:

System.out.println(cos(PI));

Using multiple static import statements can result in name conflicts, which causes the

compiler to report errors. For example, suppose your geom package contains a Circle

class with a static member named PI. Now suppose you specify import static
java.lang.Math.*; and import static geom.Circle.*; at the top of your source file.

Finally, suppose you specify System.out.println(PI); somewhere in that file’s code.

The compiler reports an error because it does not know if PI belongs to Math or Circle.

Exceptions
In an ideal world, nothing bad ever happens when an application runs. For example, a

file always exists when the application needs to open the file, the application is always

able to connect to a remote computer, and the virtual machine never runs out of

memory when the application needs to instantiate objects.

In contrast, real-world applications occasionally attempt to open files that do not exist,

attempt to connect to remote computers that are unable to communicate with them, and

require more memory than the virtual machine can provide. Your goal is to write code

that properly responds to these and other exceptional situations (exceptions).

This section introduces you to exceptions. After defining this term, the section looks at

representing exceptions in source code. It then examines the topics of throwing and

CHAPTER 4: Mastering Advanced Language Features Part 1 162

handling exceptions, and concludes by discussing how to perform cleanup tasks before

a method returns, whether or not an exception has been thrown.

What Are Exceptions?
An exception is a divergence from an application’s normal behavior. For example, the

application attempts to open a nonexistent file for reading. The normal behavior is to

successfully open the file and begin reading its contents. However, the file cannot be

read if the file does not exist.

This example illustrates an exception that cannot be prevented. However, a workaround

is possible. For example, the application can detect that the file does not exist and take

an alternate course of action, which might include telling the user about the problem.

Unpreventable exceptions where workarounds are possible must not be ignored.

Exceptions can occur because of poorly written code. For example, an application might

contain code that accesses each element in an array. Because of careless oversight, the

array-access code might attempt to access a nonexistent array element, which leads to

an exception. This kind of exception is preventable by writing correct code.

Finally, an exception might occur that cannot be prevented, and for which there is no

workaround. For example, the virtual machine might run out of memory, or perhaps it

cannot find a classfile. This kind of exception, known as an error, is so serious that it is

impossible (or at least inadvisable) to work around; the application must terminate,

presenting a message to the user that states why it is terminating.

Representing Exceptions in Source Code
An exception can be represented via error codes or objects. This section discusses

each kind of representation and explains why objects are superior. It then introduces

you to Java’s exception and error class hierarchy, emphasizing the difference between

checked and runtime exceptions. It closes by discussing custom exception classes.

Error Codes Versus Objects
One way to represent exceptions in source code is to use error codes. For example, a

method might return true on success and false when an exception occurs. Alternatively,

a method might return 0 on success and a nonzero integer value that identifies a specific

kind of exception.

Developers traditionally designed methods to return error codes; I demonstrated this

tradition in each of the three methods in Listing 4–16’s Logger interface. Each method

returns true on success, or returns false to represent an exception (unable to connect to

the logger, for example).

Although a method’s return value must be examined to see if it represents an exception,

error codes are all too easy to ignore. For example, a lazy developer might ignore the

CHAPTER 4: Mastering Advanced Language Features Part 1 163

return code from Logger’s connect() method and attempt to call log(). Ignoring error

codes is one reason why a new approach to dealing with exceptions has been invented.

This new approach is based on objects. When an exception occurs, an object

representing the exception is created by the code that was running when the exception

occurred. Details describing the exception’s surrounding context are stored in the

object. These details are later examined to work around the exception.

The object is then thrown, or handed off to the virtual machine to search for a handler,
code that can handle the exception. (If the exception is an error, the application should

not provide a handler.) When a handler is located, its code is executed to provide a

workaround. Otherwise, the virtual machine terminates the application.

Apart from being too easy to ignore, an error code’s Boolean or integer value is less

meaningful than an object name. For example, fileNotFound is self-evident, but what

does false mean? Also, an object can contain information about what led to the

exception. These details can be helpful to a suitable workaround.

The Throwable Class Hierarchy
Java provides a hierarchy of classes that represent different kinds of exceptions. These

classes are rooted in java.lang.Throwable, the ultimate superclass for all throwables

(exception and error objects—exceptions and errors, for short—that can be thrown).

Table 4–1 identifies and describes most of Throwable’s constructors and methods.

Table 4–1. Throwable’s Constructors and Methods

Method Description

Throwable() Create a throwable with a null detail message and cause.

Throwable(String message) Create a throwable with the specified detail message and a

null cause.

Throwable(String message,
Throwable cause)

Create a throwable with the specified detail message and

cause.

Throwable(Throwable cause) Create a throwable whose detail message is the string

representation of a nonnull cause, or null.

Throwable getCause() Return the cause of this throwable. If there is no cause, null is

returned.

String getMessage() Return this throwable’s detail message, which might be null.

StackTraceElement[]
getStackTrace()

Provide programmatic access to the stack trace information

printed by printStackTrace() as an array of stack trace

elements, each representing one stack frame.

CHAPTER 4: Mastering Advanced Language Features Part 1 164

Method Description

Throwable initCause(Throwable
cause)

Initialize the cause of this throwable to the specified value.

void printStackTrace() Print this throwable and its backtrace of stack frames to the

standard error stream.

It is not uncommon for a class’s public methods to call helper methods that throw

various exceptions. A public method will probably not document exceptions thrown

from a helper method because they are implementation details that often should not be

visible to the public method’s caller.

However, because this exception might be helpful in diagnosing the problem, the public

method can wrap the lower-level exception in a higher-level exception that is

documented in the public method’s contract interface. The wrapped exception is known

as a cause because its existence causes the higher-level exception to be thrown.

When an exception is thrown, it leaves behind a stack of unfinished method calls. Each

stack entry is represented by an instance of the java.lang.StackTraceElement class.

This class’s methods provide access to information about a stack entry. For example,

public String getMethodName() returns the name of an unfinished method.

Moving down the throwable hierarchy, you encounter the java.lang.Exception and

java.lang.Error classes, which respectively represent exceptions and errors. Each

class offers four constructors that pass their arguments to their Throwable counterparts,

but provides no methods apart from those that are inherited from Throwable.

Exception is itself subclassed by java.lang.CloneNotSupportedException (discussed in

Chapter 3), java.lang.IOException (discussed in Chapter 10), and other classes.

Similarly, Error is itself subclassed by java.lang.AssertionError (discussed in Chapter

5), java.lang.OutOfMemoryError, and other classes.

CAUTION: Never instantiate Throwable, Exception, or Error. The resulting objects are
meaningless because they are too generic.

Checked Exceptions Versus Runtime Exceptions

A checked exception is an exception that represents a problem with the possibility of

recovery, and for which the developer must provide a workaround. The developer

checks (examines) the code to ensure that the exception is handled in the method where

it is thrown, or is explicitly identified as being handled elsewhere.

Exception and all subclasses except for RuntimeException (and its subclasses) describe

checked exceptions. For example, the aforementioned CloneNotSupportedException and

IOException classes describe checked exceptions. (CloneNotSupportedException should

not be checked because there is no runtime workaround for this kind of exception.)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 4: Mastering Advanced Language Features Part 1 165

A runtime exception is an exception that represents a coding mistake. This kind of

exception is also known as an unchecked exception because it does not need to be

handled or explicitly identified—the mistake must be fixed. Because these exceptions

can occur in many places, it would be burdensome to be forced to handle them.

RuntimeException and its subclasses describe unchecked exceptions. For example,

java.lang.ArithmeticException describes arithmetic problems such as integer division

by zero. Another example is java.lang.ArrayIndexOutOfBoundsException. (In hindsight,

RuntimeException should have been named UncheckedException because all exceptions

occur at runtime.)

NOTE: Many developers are not happy with checked exceptions because of the work involved in
having to handle them. This problem is made worse by libraries providing methods that throw
checked exceptions when they should throw unchecked exceptions. As a result, many modern
languages support only unchecked exceptions.

Custom Exception Classes
You can declare your own exception classes. Before doing so, ask yourself if an existing

exception class in Java’s class library meets your needs. If you find a suitable class, you

should reuse it. (Why reinvent the wheel?) Other developers will already be familiar with

the existing class, and this knowledge will make your code easier to learn.

If no existing class meets your needs, think about whether to subclass Exception or

RuntimeException. In other words, will your exception class be checked or unchecked?

As a rule of thumb, your class should subclass RuntimeException if you think that it will

describe a coding mistake.

TIP: When you name your class, follow the convention of providing an Exception suffix. This
suffix clarifies that your class describes an exception.

Suppose you are creating a Media class whose static methods perform various media-

oriented utility tasks. For example, one method converts files in non-MP3 media formats

to MP3 format. This method will be passed source file and destination file arguments,

and will convert the source file to the format implied by the destination file’s extension.

Before performing the conversion, the method needs to verify that the source file’s

format agrees with the format implied by its file extension. If there is no agreement, an

exception must be thrown. Furthermore, this exception must store the expected and

existing media formats so that a handler can identify them in a message to the user.

Because Java’s class library does not provide a suitable exception class, you decide to

introduce a class named InvalidMediaFormatException. Detecting an invalid media

format is not the result of a coding mistake, and so you also decide to extend Exception

to indicate that the exception is checked. Listing 4–23 presents this class’s declaration.

CHAPTER 4: Mastering Advanced Language Features Part 1 166

Listing 4–23. Declaring a custom exception class

public class InvalidMediaFormatException extends Exception
{
 private String expectedFormat;
 private String existingFormat;
 public InvalidMediaFormatException(String expectedFormat,
 String existingFormat)
 {
 super("Expected format: " + expectedFormat + ", Existing format: " +
 existingFormat);
 this.expectedFormat = expectedFormat;
 this.existingFormat = existingFormat;
 }
 public String getExpectedFormat()
 {
 return expectedFormat;
 }
 public String getExistingFormat()
 {
 return existingFormat;
 }
}

InvalidMediaFormatException provides a constructor that calls Exception’s public
Exception(String message) constructor with a detail message that includes the

expected and existing formats. It is wise to capture such details in the detail message

because the problem that led to the exception might be hard to reproduce.

InvalidMediaFormatException also provides getExpectedFormat() and

getExistingFormat() methods that return these formats. Perhaps a handler will present

this information in a message to the user. Unlike the detail message, this message might

be localized, expressed in the user’s language (French, German, English, and so on).

Throwing Exceptions
Now that you have created an InvalidMediaFormatException class, you can declare the

Media class and begin to code its convert() method. The initial version of this method

validates its arguments, and then verifies that the source file’s media format agrees with

the format implied by its file extension. Check out Listing 4–24.

Listing 4–24. Throwing exceptions from the convert() method

public static void convert(String srcName, String dstName)
 throws InvalidMediaFormatException
{
 if (srcName == null)
 throw new NullPointerException(srcName + " is null");
 if (dstName == null)
 throw new NullPointerException(dstName + " is null");
 // Code to access source file and verify that its format matches the
 // format implied by its file extension.
 //
 // Assume that the source file's extension is RM (for Real Media) and
 // that the file's internal signature suggests that its format is

CHAPTER 4: Mastering Advanced Language Features Part 1 167

 // Microsoft WAVE.
 String expectedFormat = "RM";
 String existingFormat = "WAVE";
 throw new InvalidMediaFormatException(expectedFormat, existingFormat);
}

Listing 4–24 demonstrates a throws clause, which consists of reserved word throws

followed by a comma-separated list of checked exception class names, and which is

appended to a method header. This clause identifies all checked exceptions that are

thrown out of the method, and which must be handled by some other method.

Listing 4–24 also demonstrates the throw statement, which consists of reserved word

throw followed by an instance of Throwable or a subclass. (You typically instantiate an

Exception subclass.) This statement throws the instance to the virtual machine, which

then searches for a suitable handler to handle the exception.

The first use of the throw statement is to throw a java.lang.NullPointerException

instance when a null reference is passed as the source or destination filename. This

unchecked exception is commonly thrown to indicate that a contract has been violated

via a passed null reference. For example, you cannot pass null filenames to convert().

The second use of the throw statement is to throw an InvalidMediaFormatException

instance when the expected media format does not match the existing format. In the

contrived example, the exception is thrown because the expected format is RM and the

existing format is WAVE.

Unlike InvalidMediaFormatException, NullPointerException is not listed in convert()’s

throws clause because NullPointerException instances are unchecked. They can occur

so frequently that it is too big a burden to force the developer to properly handle these

exceptions. Instead, the developer should write code that minimizes their occurrences.

NullPointerException is one kind of exception that is thrown when an argument proves

to be invalid. The java.lang.IllegalArgumentException class generalizes the illegal

argument scenario to include other kinds of illegal arguments. For example, Listing 4–25

throws an IllegalArgumentException instance when a numeric argument is negative.

Listing 4–25. Throwing an IllegalArgumentException instance when x is negative (you can’t calculate a
negative number’s square root)

public static double sqrt(double x)
{
 if (x < 0)
 throw new IllegalArgumentException(x + " is negative");
 // Calculate the square root of x.
}

There are a few additional items to keep in mind when working with throws clauses and

throw statements:

 You can append a throws clause to a constructor and throw an

exception from the constructor when something goes wrong while the

constructor is executing. The resulting object will not be created.

CHAPTER 4: Mastering Advanced Language Features Part 1 168

 When an exception is thrown out of an application’s main() method,

the virtual machine terminates the application and calls the

exception’s printStackTrace() method to print, to the console, the

sequence of nested method calls that was awaiting completion when

the exception was thrown.

 If a superclass method declares a throws clause, the overriding

subclass method does not have to declare a throws clause. However,

if it does declare a throws clause, the clause must not include the

names of exception classes that are not also included in the

superclass method’s throws clause.

 A checked exception class name does not need to appear in a throws

clause when the name of its superclass appears.

 The compiler reports an error when a method throws a checked

exception and does not also handle the exception or list the exception

in its throws clause.

 Do not include the names of unchecked exception classes in a throws

clause. These names are not required because such exceptions

should never occur. Furthermore, they only clutter source code, and

possibly confuse someone who is trying to understand that code.

 You can declare a checked exception class name in a method’s

throws clause without throwing an instance of this class from the

method. Perhaps the method has yet to be fully coded.

Handling Exceptions
A method indicates its intention to handle one or more exceptions by specifying a try

statement and one or more appropriate catch clauses. The try statement consists of

reserved word try followed by a brace-delimited body. You place code that throws

exceptions into this body.

A catch clause consists of reserved word catch, followed by a round bracket–delimited

single-parameter list that specifies an exception class name, followed by a brace-

delimited body. You place code that handles exceptions whose types match the type of

the catch clause’s parameter list’s exception class parameter in this body.

A catch clause is specified immediately after a try statement’s body. When an exception

is thrown, the virtual machine searches for a handler by first examining the catch clause

to see if its parameter type matches or is the superclass type of the exception that has

been thrown.

If the catch clause is found, its code executes and the exception is handled. Otherwise,

the virtual machine proceeds up the method-call stack, looking for the first method

whose try statement contains an appropriate catch clause. This process continues

unless a catch clause is found or execution leaves the main() method.

CHAPTER 4: Mastering Advanced Language Features Part 1 169

Listing 4–26 illustrates try and catch.

Listing 4–26. Handling a thrown exception

public static void main(String[] args)
{
 if (args.length != 2)
 {
 System.err.println("usage: java Converter srcfile dstfile");
 return;
 }
 try
 {
 Media.convert(args[0], args[1]);
 }
 catch (InvalidMediaFormatException imfe)
 {
 System.out.println("Unable to convert " + args[0] + " to " + args[1]);
 System.out.println("Expecting " + args[0] + " to conform to " +
 imfe.getExpectedFormat() + " format.");
 System.out.println("However, " + args[0] + " conformed to " +
 imfe.getExistingFormat() + " format.");
 }
}

Media’s convert() method is placed in a try statement’s body because this method is

capable of throwing an instance of the checked InvalidMediaFormatException class—

checked exceptions must be handled or be declared to be thrown via a throws clause

that is appended to the method.

A catch clause immediately follows try’s body. This clause presents a parameter list

whose single parameter matches the type of the InvalidMediaFormatException object

thrown from convert(). When the object is thrown, the virtual machine will transfer

execution to the statements within this clause.

TIP: You might want to name your catch clause parameters using the abbreviated style shown in
Listing 4–26. Not only does this convention result in more meaningful exception-oriented
parameter names (imfe indicates that an InvalidMediaFormatException has been
thrown), it will probably reduce compiler errors.

It is common practice to name a catch clause’s parameter e, for convenience. (Why type a long
name?) However, the compiler will report an error when a previously declared local variable or
parameter also uses e as its name—multiple same-named local variables and parameters
cannot exist in the same scope.

The catch clause’s statements are designed to provide a descriptive error message to

the user. A more sophisticated application would localize these names so that the user

could read the message in the user’s language. The developer-oriented detail message

is not output because it is not necessary in this trivial application.

CHAPTER 4: Mastering Advanced Language Features Part 1 170

NOTE: A developer-oriented detail message is typically not localized. Instead, it is expressed in
the developer’s language. Users should never see detail messages.

You can specify multiple catch clauses after try’s body. For example, a later version of

convert() will also throw java.io.FileNotFoundException when it cannot open the

source file or create the destination file, and IOException when it cannot read from the

source file or write to the destination file. All of these exceptions must be handled.

Listing 4–27 illustrates multiple catch clauses.

Listing 4–27. Handling more than one thrown exception

try
{
 Media.convert(args[0], args[1]);
}
catch (InvalidMediaFormatException imfe)
{
 System.out.println("Unable to convert " + args[0] + " to " + args[1]);
 System.out.println("Expecting " + args[0] + " to conform to " +
 imfe.getExpectedFormat() + " format.");
 System.out.println("However, " + args[0] + " conformed to " +
 imfe.getExistingFormat() + " format.");
}
catch (FileNotFoundException fnfe)
{
}
catch (IOException ioe)
{
}

Listing 4–27 assumes that convert() also throws IOException and

FileNotFoundException. Although this assumption suggests that both classes need to

be listed in convert()’s throws clause, only IOException needs to be listed because it is

the superclass of FileNotFoundException.

CAUTION: The compiler reports an error when you specify two or more catch clauses with the
same parameter type after a try body. Example: try {} catch (IOException ioe1) {}
catch (IOException ioe2) {}. You must merge these catch clauses into one clause.

Catch clauses often can be specified in any order. However, the compiler restricts this

order when one catch clause’s parameter is a supertype of another catch clause’s

parameter. The subtype parameter catch clause must precede the supertype parameter

catch clause; otherwise, the subtype parameter catch clause will never be called.

For example, the FileNotFoundException catch clause must precede the IOException

catch clause. If the compiler allowed the IOException catch clause to be specified first,

the FileNotFoundException catch clause would never execute because a

FileNotFoundException instance is also an instance of its IOException superclass.

CHAPTER 4: Mastering Advanced Language Features Part 1 171

NOTE: Java version 7 introduces a catch clause improvement known as multicatch, which lets
you place common exception-handling code in a single catch clause. For example, catch
(InvalidMediaFormatException | UnsupportedMediaFormatException ex) { /*

common code */ } handles InvalidMediaFormatException and a similar
UnsupportedMediaFormatException in one place.

Multicatch is not always necessary. For example, you do not need to specify catch
(FileNotFoundException | IOException exc) { /* suitable common code */ }
to handle FileNotFoundException and IOException because catch (IOException
ioe) accomplishes the same task, by catching FileNotFoundException as well as
IOException.

The empty FileNotFoundException and IOException catch clauses illustrate the often-

seen problem of leaving catch clauses empty because they are inconvenient to code.

Unless you have a good reason, do not create an empty catch clause. It swallows

exceptions and you do not know that the exceptions were thrown.

CAUTION: Do not code empty catch clauses. Because they swallow exceptions, you will probably
find it more difficult to debug a faulty application.

While discussing the Throwable class, I discussed wrapping lower-level exceptions in

higher-level exceptions. This activity will typically take place in a catch clause, and is

illustrated in Listing 4–28.

Listing 4–28. Throwing a new exception that contains a wrapped exception

catch (IOException ioe)
{
 throw new ReportCreationException(ioe);
}

This example assumes that a helper method has just thrown a generic IOException as

the result of trying to create a report. The public method’s contract states that

ReportCreationException is thrown in this case. To satisfy the contract, the latter

exception is thrown. To satisfy the developer who is responsible for debugging a faulty

application, the IOException instance is wrapped inside the ReportCreationException

instance that is thrown to the public method’s caller.

Sometimes, a catch clause might not be able to fully handle an exception. Perhaps it

needs access to information provided by some ancestor method in the method-call

stack. However, the catch clause might be able to partly handle the exception. In this

case, it should partly handle the exception, and then rethrow the exception so that a

handler in the ancestor method can finish handling the exception. This scenario is

demonstrated in Listing 4–29.

CHAPTER 4: Mastering Advanced Language Features Part 1 172

Listing 4–29. Rethrowing an exception

catch (FileNotFoundException fnfe)
{
 // Provide code to partially handle the exception here.
 throw fnfe; // Rethrow the exception here.
}

NOTE: Java version 7 introduces a catch clause improvement known as final rethrow, which lets
you declare a catch clause parameter final in order to throw only those checked exception
types that were thrown in the try body, are a subtype of the catch parameter type, and are not
caught in preceding catch clauses. For example, suppose you declare the following method:

void method() throws Exc1, Exc2 // Exc1 and Exc2 extend Exception

{

 try

 {

 /* Code that can throw Exc1,Exc2 */

 }

 catch (Exception exc)

 {

 logger.log(exc);

 throw exc; // Attempt to throw caught exception as an Exception

 }

}

The compiler would report an error when asked to compile this method because you are trying to
rethrow an exception that is first upcasted to Exception, but Exception is not listed in
method()’s throws clause. However, if you change the catch clause header to catch (final
Exception exc), the compiler will not report an error because you are rethrowing Exc1 or
Exc2 exceptions without the upcasting.

Performing Cleanup
In some situations, you might want to prevent an exception from being thrown out of a

method before the method’s cleanup code is executed. For example, you might want to

close a file that was opened, but could not be written, possibly because of insufficient

disk space. Java provides the finally clause for this situation.

The finally clause consists of reserved word finally followed by a body, which provides

the cleanup code. A finally clause follows either a catch clause or a try body. In the

former case, the exception is handled (and possibly rethrown) before finally executes. In

the latter case, finally executes before the exception is thrown and handled.

CHAPTER 4: Mastering Advanced Language Features Part 1 173

Listing 4–30 demonstrates the finally clause in the context of a file-copying application’s

main() method.

Listing 4–30. Cleaning up after handling a thrown exception

public static void main(String[] args)
{
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 FileInputStream fis = null;
 try
 {
 fis = new FileInputStream(args[0]);
 FileOutputStream fos = null;
 try
 {
 fos = new FileOutputStream(args[1]);
 int b; // I chose b instead of byte because byte is a reserved word.
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[1] + " could not be created, possibly because " +
 "it might be a directory";
 System.err.println(msg);
 }
 catch (IOException ioe)
 {
 String msg = args[0] + " could not be read, or " + args[1] +
 " could not be written";
 System.err.println(msg);
 }
 finally
 {
 if (fos != null)
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close " + args[1]);
 }
 }
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[0] + " could not be found or might be a directory";
 System.err.println(msg);
 }
 finally
 {
 if (fis != null)
 try

CHAPTER 4: Mastering Advanced Language Features Part 1 174

 {
 fis.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close " + args[0]);
 }
 }
}

NOTE: Do not be concerned if you find this listing’s file-oriented code difficult to grasp; I will
formally introduce I/O and the listing’s file-oriented types in Chapter 10. I’m presenting this code
here because file copying provides a perfect example of the finally clause.

Listing 4–30 presents an application that copies bytes from a source file to a destination

file via a nested pair of try bodies. The outer try body uses a FileInputStream object to

open the source file for reading; the inner try body uses a FileOutputStream object to

create the destination file for writing, and also contains the file-copying code.

If the fis = new FileInputStream(args[0]); expression throws FileNotFoundException,

execution flows into the outer try statement’s catch (FileNotFoundException fnfe)

clause, which outputs a suitable message to the user. Execution then enters the outer

try statement’s finally clause.

The outer try statement’s finally clause closes an open source file. However, when

FileNotFoundException is thrown, the source file is not open—no reference was

assigned to fis. The finally clause uses if (fis != null) to detect this situation, and

does not attempt to close the file.

If fis = new FileInputStream(args[0]); succeeds, execution flows into the inner try

statement, whose body executes fos = new FileOutputStream(args[1]);. If this

expression throws FileNotFoundException, execution moves into the inner try’s catch
(FileNotFoundException fnfe) clause, which outputs a suitable message to the user.

This time, execution continues with the inner try statement’s finally clause. Because the

destination file was not created, no attempt is made to close this file. In contrast, the

open source file must be closed, and this is accomplished when execution moves from

the inner finally clause to the outer finally clause.

FileInputStream’s and FileOutputStream’s close() methods throw IOException when a

file is not open. Because IOException is checked, these exceptions must be handled;

otherwise, it would be necessary to append a throws IOException clause to the main()

method header.

You can specify a try statement with only a finally clause. You would do so when you are

not prepared to handle an exception in the enclosing method (or enclosing try

statement, if present), but need to perform cleanup before the thrown exception causes

execution to leave the method. Listing 4–31 provides a demonstration.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 4: Mastering Advanced Language Features Part 1 175

Listing 4–31. Cleaning up before handling a thrown exception

public static void main(String[] args)
{
 if (args.length != 2)
 {
 System.err.println("usage: java Copy srcfile dstfile");
 return;
 }
 try
 {
 copy(args[0], args[1]);
 }
 catch (FileNotFoundException fnfe)
 {
 String msg = args[0] + " could not be found or might be a directory," +
 " or " + args[1] + " could not be created, " +
 "possibly because " + args[1] + " is a directory";
 System.err.println(msg);
 }
 catch (IOException ioe)
 {
 String msg = args[0] + " could not be read, or " + args[1] +
 " could not be written";
 System.err.println(msg);
 }
}
static void copy(String srcFile, String dstFile) throws IOException
{
 FileInputStream fis = new FileInputStream(srcFile);
 try
 {
 FileOutputStream fos = new FileOutputStream(dstFile);
 try
 {
 int b;
 while ((b = fis.read()) != -1)
 fos.write(b);
 }
 finally
 {
 try
 {
 fos.close();
 }
 catch (IOException ioe)
 {
 System.err.println("unable to close " + dstFile);
 }
 }
 }
 finally
 {
 try
 {
 fis.close();
 }

CHAPTER 4: Mastering Advanced Language Features Part 1 176

 catch (IOException ioe)
 {
 System.err.println("unable to close " + srcFile);
 }
 }
}

Listing 4–31 provides an alternative to Listing 4–30 that attempts to be more readable. It

accomplishes this task by introducing a copy() method that uses a nested pair of try-

finally constructs to perform the file-copy operation, and also close each open file

whether an exception is or is not thrown.

If the FileInputStream fis = new FileInputStream(srcFile); expression results in a

thrown FileNotFoundException, execution leaves copy() without entering the outer try

statement. This statement is only entered after the FileInputStream object has been

created, indicating that the source file was opened.

If the FileOutputStream fos = new FileOutputStream(dstFile); expression results in a

thrown FileNotFoundException, execution leaves copy() without entering the inner try

statement. However, execution leaves copy() only after entering the finally clause that is

mated with the outer try statement. This clause closes the open source file.

If the read() or write() method in the inner try statement’s body throws an IOException

object, the finally clause associated with the inner try statement is executed. This clause

closes the open destination file. Execution then flows into the outer finally clause, which

closes the open source file, and continues on out of copy().

CAUTION: If the body of a try statement throws an exception, and if the finally clause results in
another exception being thrown, this new exception replaces the previous exception, which is
lost.

Despite Listing 4–31 being somewhat more readable than Listing 4–30, there is still too

much boilerplate thanks to each finally clause requiring a try statement to close a file.

This boilerplate is necessary; its removal results in a new IOException possibly being

thrown from the catch clause, which would mask a previously thrown IOException.

NOTE: Java version 7 introduces automatic resource management to eliminate the boilerplate
associated with closing files and other resources. Furthermore, this feature can eliminate bugs
that arise from masking thrown exceptions with other exceptions.

Automatic resource management consists of a new Disposable interface that resource classes
(such as FileInputStream) implement, and syntactic sugar that associates a semicolon-
separated list of resource class instantiations with try.

For example, automatic resource management can turn Listing 4–31’s copy() method into the
following shorter method:

CHAPTER 4: Mastering Advanced Language Features Part 1 177

static void copy(String srcFile, String dstFile) throws IOException

{

 try (FileInputStream fis = new FileInputStream(srcFile);

 FileOutputStream fos = new FileOutputStream(dstFile))

 {

 int b;

 while ((b = fis.read()) != -1)

 fos.write(b);

 }

}

EXERCISES

The following exercises are designed to test your understanding of nested types, packages, static imports,
and exceptions:

1. What is a nested class?

2. Identify the four kinds of nested classes.

3. Which nested classes are also known as inner classes?

4. True or false: A static member class has an enclosing instance.

5. How do you instantiate a nonstatic member class from beyond its enclosing class?

6. When is it necessary to declare local variables and parameters final?

7. True or false: An interface can be declared within a class or within another interface.

8. What is a package?

9. How do you ensure that package names are unique?

10. What is a package statement?

11. True or false: You can specify multiple package statements in a source file.

12. What is an import statement?

13. How do you indicate that you want to import multiple types via a single import
statement?

14. During a runtime search, what happens when the virtual machine cannot find a
classfile?

15. How do you specify the user classpath to the virtual machine?

16. What is a constant interface?

17. Why are constant interfaces used?

18. Why are constant interfaces bad?

CHAPTER 4: Mastering Advanced Language Features Part 1 178

19. What is a static import statement?

20. How do you specify a static import statement?

21. What is an exception?

22. In what ways are objects superior to error codes for representing exceptions?

23. What is a throwable?

24. What does the getCause() method return?

25. What is the difference between Exception and Error?

26. What is a checked exception?

27. What is a runtime exception?

28. Under what circumstance would you introduce your own exception class?

29. True or false: You use a throw statement to identify exceptions that are thrown from a
method by appending this statement to a method’s header.

30. What is the purpose of a try statement, and what is the purpose of a catch clause?

31. What is the purpose of a finally clause?

32. A 2D graphics package supports two-dimensional drawing and transformations
(rotation, scaling, translation, and so on). These transformations require a 3-by-3
matrix (a table). Declare a G2D class that encloses a private Matrix nonstatic
member class. Instantiate Matrix within G2D’s noargument constructor, and initialize
the Matrix instance to the identity matrix (a matrix where all entries are 0 except for
those on the upper-left to lower-right diagonal, which are 1).

33. Extend the logging package to support a null device in which messages are thrown
away.

34. Modify the logging package so that Logger’s connect() method throws
CannotConnectException when it cannot connect to its logging destination, and
the other two methods each throw NotConnectedException when connect()
was not called or when it threw CannotConnectException.

35. Modify TestLogger to respond appropriately to thrown CannotConnectException
and NotConnectedException objects.

Summary
Classes that are declared outside of any class are known as top-level classes. Java also

supports nested classes, which are classes declared as members of other classes or

scopes.

There are four kinds of nested classes: static member classes, nonstatic member

classes, anonymous classes, and local classes. The latter three categories are known as

inner classes.

CHAPTER 4: Mastering Advanced Language Features Part 1 179

Java supports the partitioning of top-level types into multiple namespaces, to better

organize these types and to also prevent name conflicts. Java uses packages to

accomplish these tasks.

The package statement identifies the package in which a source file’s types are located.

The import statement imports types from a package by telling the compiler where to

look for unqualified type names during compilation.

An exception is a divergence from an application’s normal behavior. Although it can be

represented by an error code or object, Java uses objects because error codes are

meaningless and cannot contain information about what led to the exception.

Java provides a hierarchy of classes that represent different kinds of exceptions. These

classes are rooted in Throwable. Moving down the throwable hierarchy, you encounter

the Exception and Error classes, which represent nonerror exceptions and errors.

Exception and its subclasses, except for RuntimeException (and its subclasses),

describe checked exceptions. They are checked because you must check the code to

ensure that an exception is handled where thrown or identified as being handled

elsewhere.

RuntimeException and its subclasses describe unchecked exceptions. You do not have

to handle these exceptions because they represent coding mistakes (fix the mistakes).

Although the names of their classes can appear in throws clauses, doing so adds clutter.

The throw statement throws an exception to the virtual machine, which searches for an

appropriate handler. If the exception is checked, its name must appear in the method’s

throws clause, unless the name of the exception’s superclass is listed in this clause.

A method handles one or more exceptions by specifying a try statement and appropriate

catch clauses. A finally clause can be included to execute cleanup code whether an

exception is thrown or not, and before a thrown exception leaves the method.

Now that you have mastered the advanced language features related to nested types,

packages, static imports, and exceptions, you can leverage this knowledge in Chapter 5,

where you explore features related to assertions, annotations, generics, and enums.

CHAPTER 4: Mastering Advanced Language Features Part 1 180

181

181

 Chapter

Mastering Advanced
Language Features Part 2
Chapters 2 and 3 laid a foundation for learning the Java language, and Chapter 4 built

onto this foundation by introducing some of Java’s more advanced language features.

Chapter 5 continues to cover advanced language features by focusing on those features

related to assertions, annotations, generics, and enums.

Assertions
Writing source code is not an easy task. All too often, bugs (defects) are introduced into

the code. When a bug is not discovered before compiling the source code, it makes it

into runtime code, which will probably fail unexpectedly. At this point, the cause of

failure can be very difficult to determine.

Developers often make assumptions about application correctness, and some

developers think that specifying comments that state their beliefs about what they think

is true at the comment locations is sufficient for determining correctness. However,

comments are useless for preventing bugs because the compiler ignores them.

Many languages address this problem by providing an assertions language feature that

lets the developer codify assumptions about application correctness. When the

application runs, if an assertion fails, the application terminates with a message that

helps the developer diagnose the failure’s cause.

This section introduces you to Java’s assertions language feature. After defining this

term, showing you how to declare assertions, and providing examples, the section looks

at using and avoiding assertions. Finally, you learn how to selectively enable and disable

assertions via the Java SE 6u16 javac compiler tool’s command-line arguments.

5

CHAPTER 5: Mastering Advanced Language Features Part 2 182

Declaring Assertions
An assertion is a statement that lets you express an assumption of program correctness

via a Boolean expression. If this expression evaluates to true, execution continues with

the next statement. Otherwise, an error that identifies the cause of failure is thrown.

There are two forms of the assertion statement, with each form beginning with reserved

word assert:

assert expression1 ;
assert expression1 : expression2 ;

In both forms of this statement, expression1 is the Boolean expression. In the second

form, expression2 is any expression that returns a value. It cannot be a call to a method

whose return type is void.

When expression1 evaluates to false, this statement instantiates the AssertionError

class. The first statement form calls this class’s noargument constructor, which does not

associate a message identifying failure details with the AssertionError instance.

The second form calls an AssertionError constructor whose type matches the type of

expression2’s value. This value is passed to the constructor and its string representation

is used as the error’s detail message.

When the error is thrown, the name of the source file and the number of the line from

where the error was thrown are output to the console as part of the thrown error’s stack

trace. In many situations, this information is sufficient for identifying what led to the

failure, and the first form of the assertion statement should be used.

Listing 5–1 demonstrates the first form of the assertion statement.

Listing 5–1. Throwing an assertion error without a detail message

public class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0;
 }
}

When assertions are enabled (I discuss this task later), running the previous application

results in the following output:

Exception in thread "main" java.lang.AssertionError
 at AssertionDemo.main(AssertionDemo.java:6)

In other situations, more information is needed to help diagnose the cause of failure. For

example, suppose expression1 compares variables x and y, and throws an error when

x’s value exceeds y’s value. Because this should never happen, you would probably use

the second statement form to output these values so you could diagnose the problem.

Listing 5–2 demonstrates the second form of the assertion statement.

CHAPTER 5: Mastering Advanced Language Features Part 2 183

Listing 5–2. Throwing an assertion error with a detail message

public class AssertionDemo
{
 public static void main(String[] args)
 {
 int x = 1;
 assert x == 0: x;
 }
}

Once again, it is assumed that assertions are enabled. Running the previous application

results in the following output:

Exception in thread "main" java.lang.AssertionError: 1
 at AssertionDemo.main(AssertionDemo.java:6)

The value in x is appended to the end of the first output line, which is somewhat cryptic.

To make this output more meaningful, you might want to specify an expression that also

includes the variable’s name: assert x == 0: "x = " + x;, for example.

Using Assertions
There are many situations where assertions should be used. These situations organize

into internal invariant, control-flow invariant, and design-by-contract categories. An

invariant is something that does not change.

Internal Invariants
An internal invariant is expression-oriented behavior that is not expected to change. For

example, Listing 5–3 introduces an internal invariant by way of chained if-else

statements that output the state of water based on its temperature.

Listing 5–3. Discovering that an internal invariant can vary

public class IIDemo
{
 public static void main(String[] args)
 {
 double temperature = 50.0; // Celsius
 if (temperature < 0.0)
 System.out.println("water has solidified");
 else
 if (temperature >= 100.0)
 System.out.println("water is boiling into a gas");
 else
 {
 // temperature > 0.0 and temperature < 100.0
 assert(temperature > 0.0 && temperature < 100.0): temperature;
 System.out.println("water is remaining in its liquid state");
 }
 }
}

CHAPTER 5: Mastering Advanced Language Features Part 2 184

A developer might specify only a comment stating an assumption as to what expression

causes the final else to be reached. Because the comment might not be enough to

detect the lurking < 0.0 expression bug, an assertion statement is necessary.

Another example of an internal invariant concerns a switch statement with no default

case. The default case is avoided because the developer believes that all paths have

been covered. However, this is not always true, as Listing 5–4 demonstrates.

Listing 5–4. Another buggy internal invariant

public class IIDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;
 final static int EAST = 2;
 final static int WEST = 3;
 public static void main(String[] args)
 {
 int direction = (int)(Math.random()*5);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;
 case WEST : System.out.println("travelling west"); break;
 default : assert false;
 }
 }
}

Listing 5–4 assumes that the expression tested by switch will only evaluate to one of

four integer constants. However, (int)(Math.random()*5) can also return 4, causing the

default case to execute assert false;, which always throws AssertionError. (You

might have to run this application a few times to see the assertion error, but first you

need to learn how to enable assertions, which I discuss later in this chapter.)

TIP: When assertions are disabled, assert false; does not execute and the bug goes
undetected. To always detect this bug, replace assert false; with throw new
AssertionError(direction);.

Control-Flow Invariants
A control-flow invariant is a flow of control that is not expected to change. For example,

Listing 5–4 uses an assertion to test an assumption that switch’s default case will not

execute. Listing 5–5, which fixes Listing 5–4’s bug, provides another example.

Listing 5–5. A buggy control-flow invariant

public class CFDemo
{
 final static int NORTH = 0;
 final static int SOUTH = 1;

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 5: Mastering Advanced Language Features Part 2 185

 final static int EAST = 2;
 final static int WEST = 3;
 public static void main(String[] args)
 {
 int direction = (int)(Math.random()*4);
 switch (direction)
 {
 case NORTH: System.out.println("travelling north"); break;
 case SOUTH: System.out.println("travelling south"); break;
 case EAST : System.out.println("travelling east"); break;
 case WEST : System.out.println("travelling west");
 default : assert false;
 }
 }
}

Because the original bug has been fixed, the default case should never be reached.

However, the omission of a break statement that terminates case WEST causes execution

to reach the default case. This control-flow invariant has been broken. (Again, you might

have to run this application a few times to see the assertion error, but first you need to

learn how to enable assertions, which I discuss later in this chapter.)

CAUTION: Be careful when using an assertion statement to detect code that should never be
executed. If the assertion statement cannot be reached according to the rules set forth in The
Java Language Specification, Third Edition, by James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha (Addison-Wesley, 2005; ISBN: 0321246780) (also available at
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html), the
compiler will report an error. For example, for(;;); assert false; causes the compiler to
report an error because the infinite for loop prevents the assertion statement from executing.

Design-by-Contract
Design-by-Contract is a way to design software based on preconditions, postconditions,

and invariants (internal, control-flow, and class). Assertion statements support an

informal design-by-contract style of development.

Preconditions

A precondition is something that must be true when a method is called. Assertion

statements are often used to satisfy a helper method’s preconditions by checking that

its arguments are legal. Listing 5–6 provides an example.

Listing 5–6. Verifying a precondition

public class Lotto649
{
 public static void main(String[] args)
 {
 // Lotto 649 requires that six unique numbers be chosen.

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html

CHAPTER 5: Mastering Advanced Language Features Part 2 186

 int[] selectedNumbers = new int[6];

 // Assign a unique random number from 1 to 49 (inclusive) to each slot
 // in the selectedNumbers array.
 for (int slot = 0; slot < selectedNumbers.length; slot++)
 {
 int num;

 // Obtain a random number from 1 to 49. That number becomes the
 // selected number if it has not previously been chosen.
 try_again:
 do
 {
 num = rnd(49)+1;
 for (int i = 0; i < slot; i++)
 if (selectedNumbers[i] == num)
 continue try_again;
 break;
 }
 while (true);

 // Assign selected number to appropriate slot.
 selectedNumbers[slot] = num;
 }

 // Sort all selected numbers into ascending order and then print these
 // numbers.
 sort(selectedNumbers);
 for (int i = 0; i < selectedNumbers.length; i++)
 System.out.print(selectedNumbers[i] + " ");
 }
 private static int rnd(int limit)
 {
 // This method returns a random number (actually, a pseudorandom number)
 // ranging from 0 through limit-1 (inclusive).
 assert limit > 1: "limit = " + limit;
 return (int)(Math.random()*limit);
 }
 private static void sort(int[] x)
 {
 // This method sorts the integers in the passed array into ascending
 // order.
 for (int pass = 0; pass < x.length-1; pass++)
 for (int i = x.length-1; i > pass; i--)
 if (x[i] < x[pass])
 {
 int temp = x[i];
 x[i] = x[pass];
 x[pass] = temp;
 }
 }
}

Listing 5–6’s application simulates Lotto 6/49, one of Canada’s national lottery games.

The rnd() helper method returns a randomly chosen integer between 0 and limit-1. An

assertion statement verifies the precondition that limit’s value must be 2 or higher.

CHAPTER 5: Mastering Advanced Language Features Part 2 187

NOTE: The sort() helper method sorts (orders) the selectedNumbers array’s integers into
ascending order by implementing an algorithm (a recipe for accomplishing some task) called
Bubble Sort.

Bubble Sort works by making multiple passes over the array. During each pass, various
comparisons and swaps ensure that the next smallest element value “bubbles” toward the top of
the array, which would be the element at index 0.

Bubble Sort is not efficient, but is more than adequate for sorting a six-element array. Although I
could have used one of the efficient sort() methods located in the java.util package’s
Arrays class (for example, Arrays.sort(selectedNumbers); accomplishes the same
objective as Listing 5–6’s sort(selectedNumbers); method call, but does so more
efficiently), I chose to use Bubble Sort because I prefer to wait until Chapter 8 before getting into
the Arrays class.

Postconditions

A postcondition is something that must be true after a method successfully completes.

Assertion statements are often used to satisfy a helper method’s postconditions by

checking that its result is legal. Listing 5–7 provides an example.

Listing 5–7. Verifying a postcondition in addition to preconditions

public class MergeArrays
{
 public static void main(String[] args)
 {
 int[] x = { 1, 2, 3, 4, 5 };
 int[] y = { 1, 2, 7, 9 };
 int[] result = merge(x, y);
 for (int i = 0; i < result.length; i++)
 System.out.println(result[i]);
 }
 public static int[] merge(int[] a, int[] b)
 {
 if (a == null)
 throw new NullPointerException("a is null");
 if (b == null)
 throw new NullPointerException("b is null");
 int[] result = new int[a.length+b.length];
 // Precondition
 assert result.length == a.length+b.length: "length mismatch";
 for (int i = 0; i < a.length; i++)
 result[i] = a[i];
 for (int i = 0; i < b.length; i++)
 result[a.length+i-1] = b[i];
 // Postcondition
 assert containsAll(result, a, b): "value missing from array";
 return result;
 }

CHAPTER 5: Mastering Advanced Language Features Part 2 188

 private static boolean containsAll(int[] result, int[] a, int[] b)
 {
 for (int i = 0; i < a.length; i++)
 if (!contains(result, a[i]))
 return false;
 for (int i = 0; i < b.length; i++)
 if (!contains(result, b[i]))
 return false;
 return true;
 }
 private static boolean contains(int[] a, int val)
 {
 for (int i = 0; i < a.length; i++)
 if (a[i] == val)
 return true;
 return false;
 }
}

Listing 5–7 uses an assertion statement to verify the postcondition that all of the values

in the two arrays being merged are present in the merged array. The postcondition is not

satisfied, however, because this listing contains a bug.

Listing 5–7 also shows preconditions and postconditions being used together. The

solitary precondition verifies that the merged array length equals the lengths of the

arrays being merged prior to the merge logic.

Class Invariants

A class invariant is a kind of internal invariant that applies to every instance of a class at

all times, except when an instance is transitioning from one consistent state to another.

For example, suppose instances of a class contain arrays whose values are sorted in

ascending order. You might want to include an isSorted() method in the class that

returns true if the array is still sorted, and verify that each constructor and method that

modifies the array specifies assert isSorted(); prior to exit, to satisfy the assumption

that the array is still sorted when the constructor/method exists.

Avoiding Assertions
Although there are many situations where assertions should be used, there also are

situations where they should be avoided. For example, you should not use assertions to

check the arguments that are passed to public methods, for the following reasons:

 Checking a public method’s arguments is part of the contract that

exists between the method and its caller. If you use assertions to

check these arguments, and if assertions are disabled, this contract is

violated because the arguments will not be checked.

CHAPTER 5: Mastering Advanced Language Features Part 2 189

 Assertions also prevent appropriate exceptions from being thrown. For

example, when an illegal argument is passed to a public method, it is

common to throw IllegalArgumentException or

NullPointerException. However, AssertionError is thrown instead.

You should also avoid using assertions to perform work required by the application to

function correctly. This work is often performed as a side effect of the assertion’s

Boolean expression. When assertions are disabled, the work is not performed.

For example, suppose you have a list of Employee objects and a few null references that

are also stored in this list, and you want to remove all of the null references. It would not

be correct to remove these references via the following assertion statement:

assert employees.removeAll(null);

Although the assertion statement will not throw AssertionError because there is at least

one null reference in the employees list, the application that depends upon this statement

executing will fail when assertions are disabled.

Instead of depending on the former code to remove the null references, you would be

better off using code similar to the following:

boolean allNullsRemoved = employees.removeAll(null);
assert allNullsRemoved;

This time, all null references are removed regardless of whether assertions are enabled

or disabled, and you can still specify an assertion to verify that nulls were removed.

Enabling and Disabling Assertions
The compiler records assertions in the classfile. However, assertions are disabled at

runtime because they can affect performance. An assertion might call a method that

takes awhile to complete, and this would impact the running application’s performance.

You must enable the classfile’s assertions before you can test assumptions about the

behaviors of your classes. Accomplish this task by specifying the -enableassertions or

-ea command-line option when running the java application launcher tool.

The -enableassertions and -ea command-line options let you enable assertions at

various granularities based upon one of the following arguments (except for the

noargument scenario, you must use a colon to separate the option from its argument):

 No argument: Assertions are enabled in all classes except system

classes.

 PackageName...: Assertions are enabled in the specified package and

its subpackages by specifying the package name followed by

 ...: Assertions are enabled in the unnamed package, which happens

to be whatever directory is current.

 ClassName: Assertions are enabled in the named class by specifying

the class name.

CHAPTER 5: Mastering Advanced Language Features Part 2 190

For example, you can enable all assertions except system assertions when running the

MergeArrays application via java –ea MergeArrays. Also, you could enable any

assertions in Chapter 4’s logging package by specifying java –ea:logging TestLogger.

Assertions can be disabled, and also at various granularities, by specifying either of the

–disableassertions or –da command-line options. These options take the same

arguments as -enableassertions and -ea. For example, java -ea –da:loneclass
mainclass enables all assertions except for those in loneclass. (loneclass and

mainclass are placeholders for the actual classes that you specify.)

The previous options apply to all classloaders. Except when taking no arguments, they

also apply to system classes. This exception simplifies the enabling of assertion

statements in all classes except for system classes, which is often desirable.

To enable system assertions, specify either -enablesystemassertions or -esa; for

example, java -esa –ea:logging TestLogger. Specify either -disablesystemassertions

or -dsa to disable system assertions.

Annotations
While developing a Java application, you might want to annotate, or associate metadata

(data that describes other data) with, various application elements. For example, you

might want to identify methods that are not fully implemented so that you will not forget

to implement them. Java’s annotations language feature lets you accomplish this task.

This section introduces you to annotations. After defining this term and presenting three

kinds of compiler-supported annotations as examples, the section shows you how to

declare your own annotation types and use these types to annotate source code. Finally,

you discover how to process your own annotations to accomplish useful tasks.

NOTE: Java has always supported ad hoc annotation mechanisms. For example, the
java.lang.Cloneable interface identifies classes whose instances can be shallowly cloned
via Object’s clone() method, the transient reserved word marks fields that are to be
ignored during serialization, and the @deprecated javadoc tag documents methods that are
no longer supported. In contrast, the annotations feature is a standard for annotating code.

Discovering Annotations
An annotation is an instance of an annotation type and associates metadata with an

application element. It is expressed in source code by prefixing the type name with the @

symbol. For example, @Readonly is an annotation and Readonly is its type.

CHAPTER 5: Mastering Advanced Language Features Part 2 191

NOTE: You can use annotations to associate metadata with constructors, fields, local variables,
methods, packages, parameters, and types (annotation, class, enum, and interface).

Beginning with Java version 7, annotations can appear on any use of a type. For example, you
might declare Employee[@Readonly] emps; to indicate that emps is an unmodifiable one-
dimensional array of mutable (modifiable) Employee instances.

The compiler supports the Override, Deprecated, and SuppressWarnings annotation

types. These types are located in the java.lang package.

@Override annotations are useful for expressing that a subclass method overrides a

method in the superclass, and does not overload that method instead. Listing 5–8

reveals that this annotation prefixes the overriding method.

Listing 5–8. Annotating an overriding method

@Override
public void draw(int color)
{
 // drawing code
}

NOTE: In Chapter 3, I presented @Override on the same line as the method header. In Listing
5–8, I present this annotation on a separate line above the method header.

It is common practice to place annotations on separate lines above the application elements that
they annotate, unless they are being used to annotate parameters. In that case, an annotation
must appear on the same line as and in front of the parameter’s name.

@Deprecated annotations are useful for indicating that the marked application element is

deprecated (phased out) and should no longer be used. The compiler warns you when a

deprecated application element is accessed by nondeprecated code.

In contrast, the @deprecated javadoc tag and associated text warns you against using

the deprecated item, and tells you what to use instead. Listing 5–9 demonstrates that

@Deprecated and @deprecated can be used together.

Listing 5–9. Deprecating a method via @Deprecated and @deprecated

/**
 * Allocates a <code>Date</code> object and initializes it so that
 * it represents midnight, local time, at the beginning of the day
 * specified by the <code>year</code>, <code>month</code>, and
 * <code>date</code> arguments.
 *
 * @param year the year minus 1900.
 * @param month the month between 0-11.
 * @param date the day of the month between 1-31.
 * @see java.util.Calendar
 * @deprecated As of JDK version 1.1,

CHAPTER 5: Mastering Advanced Language Features Part 2 192

 * replaced by <code>Calendar.set(year + 1900, month, date)</code>
 * or <code>GregorianCalendar(year + 1900, month, date)</code>.
 */
@Deprecated
public Date(int year, int month, int date)
{
 this(year, month, date, 0, 0, 0);
}

Listing 5–9 excerpts one of the constructors in Java’s Date class (located in the

java.util package). This constructor has been deprecated in favor of using the set()

method in the Calendar class (also located in the java.util package).

The compiler suppresses warnings if a compilation unit (typically a class or interface)

refers to a deprecated class, method, or field. This feature lets you modify legacy APIs

without generating deprecation warnings, and is demonstrated in Listing 5–10.

Listing 5–10. Referencing a deprecated field from within the same class declaration

public class Employee
{
 /**
 * Employee's name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

Listing 5–10 declares an Employee class with a name field that has been deprecated.

Although Employee’s main() method refers to name, the compiler will suppress a

deprecation warning because the deprecation and reference occur in the same class.

Suppose you refactor Listing 5–10 by introducing a new UseEmployee class and moving

Employee’s main() method to this class. Listing 5–11 presents the resulting class

structure.

Listing 5–11. Referencing a deprecated field from within another class declaration

class Employee
{
 /**
 * Employee's name
 * @deprecated New version uses firstName and lastName fields.
 */
 @Deprecated
 String name;
 String firstName;
 String lastName;
}

CHAPTER 5: Mastering Advanced Language Features Part 2 193

public class UseEmployee
{
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

If you attempt to compile this source code via Java SE 6u16’s javac compiler tool, you

will discover the following messages:

Note: Employee.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

You will need to specify -Xlint:deprecation as one of javac’s command-line arguments

to discover the deprecated item and the code that refers to this item:

Employee.java:17: warning: [deprecation] name in Employee has been deprecated
 emp.name = "John Doe";
 ^
1 warning

@SuppressWarnings annotations are useful for suppressing deprecation or unchecked

warnings via a "deprecation" or an "unchecked" argument. (Unchecked warnings occur

when mixing code that uses generics with pre-generics legacy code.)

For example, Listing 5–12 uses @SuppressWarnings with a "deprecation" argument to

suppress the compiler’s deprecation warnings when code within the UseEmployee class’s

main() method accesses the Employee class’s name field.

Listing 5–12. Suppressing the previous deprecation warning

public class UseEmployee
{
 @SuppressWarnings("deprecation")
 public static void main(String[] args)
 {
 Employee emp = new Employee();
 emp.name = "John Doe";
 }
}

Declaring Annotation Types and Annotating Source Code
Before you can annotate source code, you need annotation types that can be

instantiated. Java supplies many annotation types in addition to Override, Deprecated,

and SuppressWarnings. Java also lets you declare your own types.

You declare an annotation type by specifying the @ symbol, immediately followed by

reserved word interface, followed by the type’s name, followed by a body. For

example, Listing 5–13 uses @interface to declare an annotation type named Stub.

Listing 5–13. Declaring the Stub annotation type

public @interface Stub

CHAPTER 5: Mastering Advanced Language Features Part 2 194

{
}

Instances of annotation types that supply no data apart from a name—their bodies are

empty—are known as marker annotations because they mark application elements for

some purpose. As Listing 5–14 reveals, @Stub is used to mark empty methods (stubs).

Listing 5–14. Annotating a stubbed-out method

public class Deck // Describes a deck of cards.
{
 @Stub
 public void shuffle()
 {
 // This method is empty and will presumably be filled in with appropriate
 // code at some later date.
 }
}

Listing 5–14’s Deck class declares an empty shuffle() method. This fact is indicated by

instantiating Stub and prefixing shuffle()’s method header with the resulting @Stub

annotation.

NOTE: Although marker interfaces (discussed in Chapter 3) appear to have been replaced by
marker annotations, this is not the case, because marker interfaces have advantages over
marker annotations. One advantage is that a marker interface specifies a type that is
implemented by a marked class, which lets you catch problems at compile time. For example, if
a class does not implement the Cloneable interface, its instances cannot be shallowly cloned
via Object’s clone() method. If Cloneable had been implemented as a marker annotation,
this problem would not be detected until runtime.

Although marker annotations are useful (@Override and @Deprecated are good

examples), you will typically want to enhance an annotation type so that you can store

metadata via its instances. You accomplish this task by adding elements to the type.

An element is a method header that appears in the annotation type’s body. It cannot

have parameters or a throws clause, and its return type must be a primitive type (such

as int), String, Class, an enum, an annotation type, or an array of the preceding types.

However, it can have a default value.

Listing 5–15 adds three elements to Stub.

Listing 5–15. Adding three elements to the Stub annotation type

public @interface Stub
{
 int id(); // A semicolon must terminate an element declaration.
 String dueDate();
 String developer() default "unassigned";
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 5: Mastering Advanced Language Features Part 2 195

The id() element specifies a 32-bit integer that identifies the stub. The dueDate()

element specifies a String-based date that identifies when the method stub is to be

implemented. Finally, developer() specifies the String-based name of the developer

responsible for coding the method stub.

Unlike id() and dueDate(), developer() is declared with a default value, "unassigned".

When you instantiate Stub and do not assign a value to developer() in that instance, as

is the case with Listing 5–16, this default value is assigned to developer().

Listing 5–16. Initializing a Stub instance’s elements

public class Deck
{
 @Stub
 (
 id = 1,
 dueDate = "10/21/2010"
)
 public void shuffle()
 {
 }
}

Listing 5–16 reveals one @Stub annotation that initializes its id() element to 1 and its

dueDate() element to "10/21/2010". Each element name does not have a trailing (), and

the comma-separated list of two element initializers appears between (and).

Suppose you decide to replace Stub’s id(), dueDate(), and developer() elements with

a single String value() element whose string specifies comma-separated ID, due date,

and developer name values. Listing 5–17 shows you two ways to initialize value.

Listing 5–17. Initializing each Stub instance’s value() element

public class Deck
{
 @Stub(value = "1,10/21/2010,unassigned")
 public void shuffle()
 {
 }
 @Stub("2,10/21/2010,unassigned")
 public Card[] deal(int ncards)
 {
 return null;
 }
}

This listing reveals special treatment for the value() element. When it is an annotation

type’s only element, you can omit value()’s name and = from the initializer. I used this

fact to specify @SuppressWarnings("deprecation") in Listing 5–12.

CHAPTER 5: Mastering Advanced Language Features Part 2 196

Using Meta-Annotations in Annotation Type Declarations
Each of the Override, Deprecated, and SuppressWarnings annotation types is itself

annotated with meta-annotations (annotations that annotate annotation types). For

example, Listing 5–18 shows you that the SuppressWarnings annotation type is

annotated with two meta-annotations.

Listing 5–18. The annotated SuppressWarnings type declaration

@Target(value={TYPE,FIELD,METHOD,PARAMETER,CONSTRUCTOR,LOCAL_VARIABLE})
@Retention(value=SOURCE)
public @interface SuppressWarnings

The Target annotation type, which is located in the java.lang.annotation package,

identifies the kinds of application elements to which an annotation type applies. @Target

indicates that @SuppressWarnings annotations can be used to annotate types, fields,

methods, parameters, constructors, and local variables.

Each of TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, and LOCAL_VARIABLE is a member

of the ElementType enum, which is also located in the java.lang.annotation package.

The { and } characters surrounding the comma-separated list of values assigned to

Target’s value() element signify an array—value()’s return type is String[]. Although

these braces are necessary (unless the array consists of one item), value= could be

omitted when initializing @Target because Target declares only a value() element.

The Retention annotation type, which is located in the java.lang.annotation package,

identifies the retention (also known as lifetime) of an annotation type’s annotations.

@Retention indicates that @SuppressWarnings annotations have a lifetime that is limited

to source code—they do not exist after compilation.

SOURCE is one of the members of the RetentionPolicy enum (located in the

java.lang.annotation package). The other members are CLASS and RUNTIME. These

three members specify the following retention policies:

 CLASS: The compiler records annotations in the classfile, but the virtual

machine does not retain them (to save memory space). This policy is

the default.

 RUNTIME: The compiler records annotations in the classfile, and the

virtual machine retains them so that they can be read via the

Reflection API (discussed in Chapter 7) at runtime.

 SOURCE: The compiler discards annotations after using them.

There are two problems with the Stub annotation type shown in Listings 5–13 and 5–15.

First, the lack of an @Target meta-annotation means that you can annotate any

application element @Stub. However, this annotation only makes sense when applied to

methods and constructors. Check out Listing 5–19.

CHAPTER 5: Mastering Advanced Language Features Part 2 197

Listing 5–19. Annotating undesirable application elements

@Stub("1,10/21/2010,unassigned")
public class Deck
{
 @Stub("2,10/21/2010,unassigned")
 private Card[] cardsRemaining;
 @Stub("3,10/21/2010,unassigned")
 public Deck()
 {
 }
 @Stub("4,10/21/2010,unassigned")
 public void shuffle()
 {
 }
 @Stub("5,10/21/2010,unassigned")
 public Card[] deal(@Stub("5,10/21/2010,unassigned") int ncards)
 {
 return null;
 }
}

Listing 5–19 uses @Stub to annotate the Deck class, the cardsRemaining field, and the

ncards parameter in addition to annotating the constructor and the two methods. The first

three application elements are inappropriate to annotate because they are not stubs.

You can fix this problem by prefixing the Stub annotation type declaration with

@Target({ElementType.METHOD, ElementType.CONSTRUCTOR}) so that Stub only applies to

methods and constructors. After doing this, the Java SE 6u16 javac compiler tool will

output the following error messages when you attempt to compile Listing 5–19:

Deck.java:1: annotation type not applicable to this kind of declaration
@Stub("1,10/21/2010,unassigned")
^
Deck.java:4: annotation type not applicable to this kind of declaration
 @Stub("2,10/21/2010,unassigned")
 ^
Deck.java:15: annotation type not applicable to this kind of declaration
 public Card[] deal(@Stub("5,10/21/2010,unassigned") int ncards)
 ^
3 errors

The second problem is that the default CLASS retention policy makes it impossible to

process @Stub annotations at runtime. You can fix this problem by prefixing the Stub

type declaration with @Retention(RetentionPolicy.RUNTIME).

Listing 5–20 presents the Stub annotation type with the desired @Target and @Retention

meta-annotations.

Listing 5–20. A revamped Stub annotation type

@Target({ElementType.METHOD, ElementType.CONSTRUCTOR})
@Retention(RetentionPolicy.RUNTIME)
public @interface Stub
{
 String value();
}

CHAPTER 5: Mastering Advanced Language Features Part 2 198

NOTE: Java also provides Documented and Inherited meta-annotation types in the
java.lang.annotation package. Instances of @Documented-annotated annotation types are
to be documented by javadoc and similar tools.

Instances of @Inherited-annotated annotation types are automatically inherited. According to
Inherited’s Java documentation, if “the user queries the annotation type on a class
declaration, and the class declaration has no annotation for this type, then the class’s superclass
will automatically be queried for the annotation type. This process will be repeated until an
annotation for this type is found, or the top of the class hierarchy (Object) is reached. If no
superclass has an annotation for this type, then the query will indicate that the class in question
has no such annotation.”

Processing Annotations
It is not enough to declare an annotation type and use that type to annotate source

code. Unless you do something specific with those annotations, they remain dormant.

One way to accomplish something specific is to write an application that processes the

annotations. Listing 5–21’s StubFinder application does just that.

Listing 5–21. The StubFinder application

import java.lang.reflect.*;

public class StubFinder
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StubFinder classfile");
 return;
 }
 Method[] methods = Class.forName(args[0]).getMethods();
 for (int i = 0; i < methods.length; i++)
 if (methods[i].isAnnotationPresent(Stub.class))
 {
 Stub stub = methods[i].getAnnotation(Stub.class);
 String[] components = stub.value().split(",");
 System.out.println("Stub ID = " + components[0]);
 System.out.println("Stub Date = " + components[1]);
 System.out.println("Stub Developer = " + components[2]);
 System.out.println();
 }
 }
}

StubFinder loads a classfile whose name is specified as a command-line argument, and

outputs the metadata associated with each @Stub annotation that precedes each public

method header. These annotations are instances of Listing 5–20’s Stub annotation type.

CHAPTER 5: Mastering Advanced Language Features Part 2 199

StubFinder next uses a special class named Class and its forName() class method to

load a classfile. Class also provides a getMethods() method that returns an array of

Method objects describing the loaded class’s public methods.

For each loop iteration, a Method object’s isAnnotationPresent() method is called to

determine if the method is annotated with the annotation described by the Stub class

(referred to as Stub.class).

If isAnnotationPresent() returns true, Method’s getAnnotation() method is called to

return the annotation Stub instance. This instance’s value() method is called to retrieve

the string stored in the annotation.

Next, String’s split() method is called to split the string’s comma-separated list of ID,

date, and developer values into an array of String objects. Each object is then output

along with descriptive text.

Class’s forName() method is capable of throwing various exceptions that must be

handled or explicitly declared as part of a method’s header. For simplicity, I chose to

append a throws Exception clause to the main() method’s header.

CAUTION: There are two problems with throws Exception. First, it is better to handle the
exception and present a suitable error message than to “pass the buck” by throwing it out of
main(). Second, Exception is generic—it hides the names of the kinds of exceptions that are
thrown. However, it is convenient to specify throws Exception in a throwaway utility.

Do not be concerned if you do not understand Class, forName(), getMethods(), Method,

isAnnotationPresent(), .class, getAnnotation(), and split(). You will learn about

these items in Chapter 7.

After compiling StubFinder (javac StubFinder.java), Stub (javac Stub.java), and

Listing 5–17’s Deck class (javac Deck.java), run StubFinder with Deck as its single

command-line argument (java StubFinder Deck). You will observe the following output:

Stub ID = 2
Stub Date = 10/21/2010
Stub Developer = unassigned

Stub ID = 1
Stub Date = 10/21/2010
Stub Developer = unassigned

If you expected the output to reflect the order of appearance of @Stub annotations in

Deck.java, you are probably surprised by the output’s unsorted order. This lack of order

is caused by getMethods(). According to this method’s Java documentation, “the

elements in the array returned are not sorted and are not in any particular order.”

CHAPTER 5: Mastering Advanced Language Features Part 2 200

NOTE: Java version 5 introduced an apt tool for processing annotations. This tool’s functionality
has been integrated into the compiler beginning with Java version 6—apt is being phased out.
My “Processing Annotations in Java SE 6” article (http://javajeff.mb.ca/cgi-
bin/mp.cgi?a=/java/javase/articles/paijse6) provides a tutorial on using the Java
version 6 compiler to process annotations.

Generics
Java version 5 introduced generics, language features for declaring and using type-

agnostic classes and interfaces. When working with Java’s collections framework (which

I introduce in Chapter 8), these features help you avoid java.lang.ClassCastExceptions.

NOTE: Although the main use for generics is the collections framework, Java’s class library also
contains generified (retrofitted to make use of generics) classes that have nothing to do with this
framework: java.lang.Class, java.lang.ThreadLocal, and
java.lang.ref.WeakReference are three examples.

This section introduces you to generics. You first learn how generics promote type

safety in the context of the collections classes, and then you explore generics in the

contexts of generic types and generic methods.

Collections and the Need for Type Safety
Java’s collections framework makes it possible to store objects in various kinds of

containers (known as collections) and later retrieve those objects. For example, you can

store objects in a list, a set, or a map. You can then retrieve a single object, or iterate

over the collection and retrieve all objects.

Before Java version 5 overhauled the collections framework to take advantage of

generics, there was no way to prevent a collection from containing objects of mixed

types. The compiler did not check an object’s type to see if it was suitable before it was

added to a collection, and this lack of static type checking led to ClassCastExceptions.

Listing 5–22 demonstrates how easy it is to generate a ClassCastException.

Listing 5–22. Lack of type safety leading to a ClassCastException at runtime

public static void main(String[] args)
{
 List employees = new ArrayList();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Doe"));
 employees.add("Doe Doe");
 Iterator iter = employees.iterator();
 while (iter.hasNext())

http://javajeff.mb.ca/cgi-bin/mp.cgi?a=/java/javase/articles/paijse6
http://javajeff.mb.ca/cgi-bin/mp.cgi?a=/java/javase/articles/paijse6
http://javajeff.mb.ca/cgi-bin/mp.cgi?a=/java/javase/articles/paijse6

CHAPTER 5: Mastering Advanced Language Features Part 2 201

 {
 Employee emp = (Employee) iter.next();
 System.out.println(emp.getName());
 }
}

After instantiating ArrayList, main() uses this list collection object’s reference to add a

pair of Employee objects to the list. It then adds a String object, which violates the

implied contract that ArrayList is supposed to store only Employee objects.

Moving on, main() obtains an Iterator for iterating over the list of Employees. As long as

Iterator’s hasNext() method returns true, its next() method is called to return an

object stored in the ArrayList.

The Object that next() returns must be downcast to Employee so that the Employee

object’s getName() method can be called to return the employee’s name. The string that

this method returns is then output to the standard output device via

System.out.println().

The (Employee) cast checks the type of each object returned by next() to make sure

that it is an Employee. Although this is true of the first two objects, it is not true of the

third object. Attempting to cast "Doe Doe" to Employee results in a ClassCastException.

The ClassCastException occurs because of an assumption that a list is homogenous. In

other words, a list stores only objects of a single type or a family of related types. In

reality, the list is heterogeneous in that it can store any Object.

Listing 5–23’s generics-based homogenous list avoids ClassCastException.

Listing 5–23. Lack of type safety leading to a compiler error

public static void main(String[] args)
{
 List<Employee> employees = new ArrayList<Employee>();
 employees.add(new Employee("John Doe"));
 employees.add(new Employee("Jane Doe"));
 employees.add("Doe Doe");
 Iterator<Employee> iter = employees.iterator();
 while (iter.hasNext())
 {
 Employee emp = iter.next();
 System.out.println(emp.getName());
 }
}

Three of Listing 5–23’s bolded code fragments illustrate the central feature of generics,

which is the parameterized type (a class or interface name followed by an angle bracket–

delimited type list identifying what kinds of objects are legal in that context).

For example, List<Employee> indicates only Employee objects can be stored in the List.

The <Employee> designation must be repeated with ArrayList, which is the collection

implementation that stores the Employees.

CHAPTER 5: Mastering Advanced Language Features Part 2 202

NOTE: Java version 7 introduces the diamond operator (<>) to save you from having to repeat a
parameterized type. For example, you could use this operator to specify List<Employee>
employees = new ArrayList<>();.

Also, Iterator<Employee> indicates that iterator() returns an Iterator whose next()

method returns only Employee objects. It is not necessary to cast iter.next()’s returned

value to Employee because the compiler inserts the cast on your behalf.

If you attempt to compile this listing, the compiler will report an error when it encounters

employees.add("Doe Doe");. The error message will tell you that the compiler cannot

find an add(java.lang.String) method in the java.util.List<Employee> interface.

Unlike in the pre-generics List interface, which declares an add(Object) method, the

generified List interface’s add() method parameter reflects the interface’s

parameterized type name. For example, List<Employee> implies add(Employee).

Listing 5–22 revealed that the unsafe code causing the ClassCastException

(employees.add("Doe Doe");) and the code that triggers the exception ((Employee)
iter.next()) are quite close. However, they are often farther apart in larger applications.

Rather than having to deal with angry clients while hunting down the unsafe code that

ultimately led to the ClassCastException, you can rely on the compiler saving you this

frustration and effort by reporting an error when it detects this code during compilation.

Detecting type safety violations at compile time is the benefit of using generics.

Generic Types
A generic type is a class or interface that introduces a family of parameterized types by

declaring a formal type parameter list (a comma-separated list of type parameter names

between angle brackets). This syntax is expressed as follows:

class identifier<formal_type_parameter_list> {}
interface identifier<formal_type_parameter_list> {}

For example, List<E> is a generic type, where List is an interface and type parameter E

identifies the list’s element type. Similarly, Map<K, V> is a generic type, where Map is an

interface and type parameters K and V identify the map’s key and value types.

NOTE: When declaring a generic type, it is conventional to specify single uppercase letters as
type parameter names. Furthermore, these names should be meaningful. For example, E
indicates element, T indicates type, K indicates key, and V indicates value. If possible, you should
avoid choosing a type parameter name that is meaningless where it is used. For example,
List<E> means list of elements, but what does List<S> mean?

Parameterized types instantiate generic types. Each parameterized type replaces the

generic type’s type parameters with type names. For example, List<Employee> (List of

CHAPTER 5: Mastering Advanced Language Features Part 2 203

Employee) and List<String> (List of String) are examples of parameterized types based

on List<E>. Similarly, Map<String, Employee> is an example of a parameterized type

based on Map<K, V>.

The type name that replaces a type parameter is known as an actual type argument.
Generics supports five kinds of actual type arguments:

 Concrete type: The name of a class or interface is passed to the type

parameter. For example, List<Employee> employees; specifies that the

list elements are Employee instances.

 Concrete parameterized type: The name of a parameterized type is

passed to the type parameter. For example, List<List<String>>
nameLists; specifies that the list elements are lists of strings.

 Array type: An array is passed to the type parameter. For example,

List<String[]> countries; specifies that the list elements are arrays

of Strings, possibly city names.

 Type parameter: A type parameter is passed to the type parameter.

For example, given class declaration class X<E> { List<E> queue; },

X’s type parameter E is passed to List’s type parameter E.

 Wildcard: The ? is passed to the type parameter. For example, List<?>
list; specifies that the list elements are unknown. You will learn about

this type parameter later in the chapter, in “The Need for Wildcards”

section.

A generic type also identifies a raw type, which is a generic type without its type

parameters. For example, List<Employee>’s raw type is List. Raw types are nongeneric

and can hold any Object.

NOTE: Java allows raw types to be intermixed with generic types to support the vast amount of
legacy code that was written prior to the arrival of generics. However, the compiler outputs a
warning message whenever it encounters a raw type in source code.

Declaring and Using Your Own Generic Types
It is not difficult to declare your own generic types. In addition to specifying a formal

type parameter list, your generic type specifies its type parameter(s) throughout its

implementation. For example, Listing 5–24 declares a Queue<E> generic type.

Listing 5–24. Declaring and using a Queue<E> generic type

public class Queue<E>
{
 private E[] elements;
 private int head, tail;
 @SuppressWarnings("unchecked")
 public Queue(int size)

CHAPTER 5: Mastering Advanced Language Features Part 2 204

 {
 elements = (E[]) new Object[size];
 head = 0;
 tail = 0;
 }
 public void insert(E element)
 {
 if (isFull()) // insert() should throw an exception when full. I did
 return; // not implement insert() to do so for brevity.
 elements[tail] = element;
 tail = (tail+1)%elements.length;
 }
 public E remove()
 {
 if (isEmpty())
 return null;
 E element = elements[head];
 head = (head+1)%elements.length;
 return element;
 }
 public boolean isEmpty()
 {
 return head == tail;
 }
 public boolean isFull()
 {
 return (tail+1)%elements.length == head;
 }
 public static void main(String[] args)
 {
 Queue<String> queue = new Queue<String>(5);
 System.out.println(queue.isEmpty());
 queue.insert("A");
 queue.insert("B");
 queue.insert("C");
 queue.insert("D");
 queue.insert("E");
 System.out.println(queue.isFull());
 System.out.println(queue.remove());
 queue.insert("F");
 while (!queue.isEmpty())
 System.out.println(queue.remove());
 System.out.println(queue.isEmpty());
 System.out.println(queue.isFull());
 }
}

Queue implements a queue, a data structure that stores elements in first-in, first-out

order. An element is inserted at the tail and removed at the head. The queue is empty

when the head equals the tail, and full when the tail is one less than the head.

Notice that Queue<E>’s E type parameter appears throughout the source code. For

example, E appears in the elements array declaration to denote the array’s element type.

E is also specified as the type of insert()’s parameter and as remove()’s return type.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 5: Mastering Advanced Language Features Part 2 205

E also appears in elements = (E[]) new Object[size];. (I will explain later why I

specified this expression instead of specifying the more compact elements = new
E[size]; expression.)

The E[] cast results in the compiler warning about this cast being unchecked. The

compiler is concerned that downcasting from Object[] to E[] might result in a violation

of type safety because any kind of object can be stored in Object[].

The compiler’s concern is not justified in this example. There is no way that a non-E

object can appear in the E[] array. Because the warning is meaningless in this context, it

is suppressed by prefixing the constructor with @SuppressWarnings("unchecked").

CAUTION: Be careful when suppressing an unchecked warning. You must first prove that a
ClassCastException cannot occur, and then you can suppress the warning.

When you run this application, it generates the following output:

true
true
A
B
C
D
F
true
false

Type Parameter Bounds
List<E>’s E type parameter and Map<K, V>’s K and V type parameters are examples of

unbounded type parameters. You can pass any actual type argument to an unbounded

type parameter.

It is sometimes necessary to restrict the kinds of actual type arguments that can be

passed to a type parameter. For example, you might want to declare a class whose

instances can only store instances of classes that subclass an abstract Shape class.

To restrict actual type arguments, you can specify an upper bound, a type that serves as

an upper limit on the types that can be chosen as actual type arguments. The upper

bound is specified via reserved word extends followed by a type name.

For example, ShapesList<E extends Shape> identifies Shape as an upper bound. You

can specify ShapesList<Circle>, ShapesList<Rectangle>, and even ShapesList<Shape>,

but not ShapesList<String> because String is not a subclass of Shape.

You can assign more than one upper bound to a type parameter, where the first bound

is a class or interface, and where each additional upper bound is an interface, by using

the ampersand character (&) to separate bound names. Consider Listing 5–25.

CHAPTER 5: Mastering Advanced Language Features Part 2 206

Listing 5–25. Assigning multiple upper bounds to a type parameter

abstract class Shape
{
}
class Circle extends Shape implements Comparable<Circle>
{
 private double x, y, radius;
 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }
 @Override
 public int compareTo(Circle circle)
 {
 if (radius < circle.radius)
 return -1;
 else
 if (radius > circle.radius)
 return 1;
 else
 return 0;
 }
 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ", " + radius + ")";
 }
}
class SortedShapesList<S extends Shape & Comparable<S>>
{
 @SuppressWarnings("unchecked")
 private S[] shapes = (S[]) new Shape[2];
 private int index = 0;
 void add(S shape)
 {
 shapes[index++] = shape;
 if (index < 2)
 return;
 System.out.println("Before sort: " + this);
 sort();
 System.out.println("After sort: " + this);
 }
 private void sort()
 {
 if (index == 1)
 return;
 if (shapes[0].compareTo(shapes[1]) > 0)
 {
 S shape = (S) shapes[0];
 shapes[0] = shapes[1];
 shapes[1] = shape;
 }
 }
 @Override
 public String toString()

CHAPTER 5: Mastering Advanced Language Features Part 2 207

 {
 return shapes[0].toString() + " " + shapes[1].toString();
 }
}
public class SortedShapesListDemo
{
 public static void main(String[] args)
 {
 SortedShapesList<Circle> ssl = new SortedShapesList<Circle>();
 ssl.add(new Circle(100, 200, 300));
 ssl.add(new Circle(10, 20, 30));
 }
}

Listing 5–25’s Circle class extends Shape and implements the java.lang.Comparable

interface, which is used to specify the natural ordering of Circle objects. The interface’s

compareTo() method implements this ordering by returning a value to reflect the order:

 A negative value is returned if the current object should precede the

object passed to compareTo() in some fashion.

 A zero value is returned if the current and argument objects are the

same.

 A positive value is returned if the current object should succeed the

argument object.

Circle’s overriding compareTo() method compares two Circle objects based on their

radii. This method orders a Circle instance with the smaller radius before a Circle

instance with a larger radius.

The SortedShapesList class specifies <S extends Shape & Comparable<S>> as its

parameter list. The actual type argument passed to the S parameter must subclass

Shape, and it must also implement the Comparable interface.

Circle satisfies both criteria: it subclasses Shape and implements Comparable. As a

result, the compiler does not report an error when it encounters the main() method’s

SortedShapesList<Circle> ssl = new SortedShapesList<Circle>(); statement.

An upper bound offers extra static type checking that guarantees that a parameterized

type adheres to its bounds. This assurance means that the upper bound’s methods can

be called safely. For example, sort() can call Comparable’s compareTo() method.

If you run this application, you will discover the following output, which shows that the

two Circle objects are sorted in ascending order of radius:

Before sort: (100.0, 200.0, 300.0) (10.0, 20.0, 30.0)
After sort: (10.0, 20.0, 30.0) (100.0, 200.0, 300.0)

You can also restrict actual type arguments by specifying a lower bound, a type that

serves as a lower limit on the types that can be chosen as actual type arguments. The

lower bound is specified via the wildcard, reserved word super, and a type name.

Because lower bounds are used exclusively with the wildcard type argument, I will have

more to say about lower bounds when I discuss the need for wildcards.

CHAPTER 5: Mastering Advanced Language Features Part 2 208

Type Parameter Scope
A type parameter’s scope (visibility) is its generic type, which includes the formal type

parameter list of which the type parameter is a member. For example, the scope of S in

SortedShapesList<S extends Shape & Comparable<S>> is all of SortedShapesList and

the formal type parameter list.

NOTE: A type parameter bound that includes the type parameter is known as a recursive type
bound. For example, Comparable<S> in <S extends Shape & Comparable<S>> is a
recursive type bound. Recursive type bounds are rare and typically show up in conjunction with
the Comparable interface, for specifying a type’s natural ordering.

It is possible to mask a type parameter by declaring a same-named type parameter in a

nested type’s formal type parameter list. For example, Listing 5–26 masks an enclosing

class’s T type parameter.

Listing 5–26. Masking a type variable

class EnclosingClass<T>
{
 static class EnclosedClass<T extends Comparable<T>>
 {
 }
}

EnclosingClass’s T type parameter is masked by EnclosedClass’s T type parameter,

which specifies an upper bound where only those types that implement the Comparable

interface can be passed to EnclosedClass.

If masking is undesirable, it is best to choose a different name for the type parameter.

For example, you might specify EnclosedClass<U extends Comparable<U>>. Although U

is not as meaningful a name as T, this situation justifies this choice.

The Need for Wildcards
In Chapter 3, you learned that a subtype is a kind of supertype. For example, Circle is a

kind of Shape and String is a kind of Object. This polymorphic behavior also applies to

related parameterized types with the same type parameters (List<Object> is a kind of

Collection<Object>, for example).

However, this polymorphic behavior does not apply to multiple parameterized types that

differ only in regard to one type parameter being a subtype of another type parameter.

For example, List<String> is not a kind of List<Object>. Listing 5–27 reveals why

parameterized types differing only in type parameters are not polymorphic.

Listing 5–27. Proving that parameterized types differing only in type parameters are not polymorphic

public static void main(String[] args)
{
 List<String> ls = new ArrayList<String>();
 List<Object> lo = ls;

CHAPTER 5: Mastering Advanced Language Features Part 2 209

 lo.add(new Employee());
 String s = ls.get(0);
}

If Listing 5–27 compiled, a ClassCastException would be thrown at runtime. After

instantiating a List of String and upcasting its reference to a List of Object, main()

adds a new Employee object to the List of Object. The Employee object is then returned

via get() and the List of String reference variable. The ClassCastException is thrown

because of the implicit cast to String—an Employee is not a String.

NOTE: Although you cannot upcast List<String> to List<Object>, you can upcast
List<String> to the raw type List in order to interoperate with legacy code.

This example can be generalized into the following rule: for a given subtype x of type y,

and given G as a raw type declaration, G<x> is not a subtype of G<y>. Listing 5–28

shows you how easy it is to run afoul of this rule.

Listing 5–28. Attempting to output a list of string

public static void main(String[] args)
{
 List<String> ls = new ArrayList<String>();
 ls.add("first");
 ls.add("second");
 ls.add("third");
 outputList(ls);
}
static void outputList(List<Object> list)
{
 for (int i = 0; i < list.size(); i++)
 System.out.println(list.get(i));
}

Listing 5–28 will not compile because it assumes that List of String is also a List of

Object, which you have just learned is not true because it violates type safety. The

outputList() method can only output a list of objects, which makes it useless.

The wildcard type argument (?) provides a typesafe workaround to this problem because

it accepts any actual type argument. Simply change List<Object> list to List<?> list

and Listing 5–28 will compile.

However, you cannot add elements to a List<?> because doing so would violate type

safety. For example, Listing 5–29 presents a copyList() method that attempts to copy

one List<?> to another List<?>.

Listing 5–29. Attempting to copy one List<?> to another List<?>

public static void main(String[] args)
{
 List<String> ls1 = new ArrayList<String>();
 ls1.add("first");
 ls1.add("second");
 ls1.add("third");
 List<String> ls2 = new ArrayList<String>();

CHAPTER 5: Mastering Advanced Language Features Part 2 210

 copyList(ls1, ls2);
}
static void copyList(List<?> list1, List<?> list2)
{
 for (int i = 0; i < list1.size(); i++)
 list2.add(list1.get(i));
}

Listing 5–29 will not compile. Instead, the compiler reports the following error message

when it encounters list2.add(list1.get(i));:

x.java:13: cannot find symbol
symbol : method add(java.lang.Object)
location: interface java.util.List<capture#469 of ?>
 list2.add(list1.get(i));
 ^
1 error

The error message reflects that although list1’s elements (which can be of any type)

can be assigned to Object, list2’s element type is unknown. If this type is anything

other than Object (such as String), type safety is violated. One solution to this problem

is to specify static void copyList(List<String> list1, List<String> list2).

A second solution to this problem requires that copyList()’s first type parameter be

specified as ? extends String and its second parameter be specified as ? super
String. Listing 5–30 reveals the same copyList() method with these upper and lower

bounds.

Listing 5–30. Using bounded wildcards to successfully copy one list to another

public static void main(String[] args)
{
 List<String> ls1 = new ArrayList<String>();
 ls1.add("first");
 ls1.add("second");
 ls1.add("third");
 List<String> ls2 = new ArrayList<String>();
 copyList(ls1, ls2);
}
static void copyList(List<? extends String> list1, List<? super String> list2)
{
 for (int i = 0; i < list1.size(); i++)
 list2.add(list1.get(i));
}

Listing 5–30’s copyList() method reveals that the list1 parameter accepts String or

any subclass. Because String is declared final, no subclasses can be passed as actual

type arguments. In contrast, the list2 parameter accepts String and its Object

superclass—a subclass is a kind of superclass.

Although Listing 5–30 compiles and runs, its version of the copyList() header is little

better than specifying static void copyList(List<String> list1, List<String>
list2). You can only copy a List of String to a List of String or a List of Object. You

will shortly discover that generic methods offer a much better solution.

CHAPTER 5: Mastering Advanced Language Features Part 2 211

Reification and Erasure
Reification is the process or result of treating the abstract as if it was concrete. For

example, 0xa000000 is an abstract hexadecimal integer literal that is treated as if it was

the concrete 32-bit memory address that it represents.

Java arrays are reified. Because they are aware of their element types, they can enforce

these types at runtime. Attempting to store an invalid element in an array (see Listing 5–

31) results in a java.lang.ArrayStoreException.

Listing 5–31. How an ArrayStoreException occurs

class Point
{
 int x, y;
}
class ColoredPoint extends Point
{
 int color;
}
public class ReificationDemo
{
 public static void main(String[] args)
 {
 ColoredPoint[] cptArray = new ColoredPoint[1];
 Point[] ptArray = cptArray;
 ptArray[0] = new Point();
 }
}

Listing 5–31 demonstrates that arrays are covariant in that an array of supertype

references is a supertype of an array of subtype references. A subtype array can be

assigned to a supertype variable; for example, Point[] ptArray = cptArray;.

Covariance can be dangerous. For example, an ArrayStoreException is thrown when

ptArray[0] = new Point(); tries to store a Point object in the ColoredPoint array via

the ptArray intermediary. The exception occurs because a Point is not a ColoredPoint.

In contrast to arrays, a generic type’s type parameters are not reified. In other words,

they are not available at runtime. Instead, these type parameters are discarded following

compilation. This throwing away of type parameters is known as erasure.

Erasure also involves replacing uses of other type variables by the upper bound of the

type variable (such as Object) and inserting casts to the appropriate type when the

resulting code is not type correct.

Although erasure makes it possible for generic types to interoperate with raw types, it

does have consequences. For example, you cannot create an array of a generic type:

new List<E>[10], new E[size], and new Map<String, String>[100] are illegal.

The compiler reports a “generic array creation” error when it encounters an attempt to

create an array of a generic type. It does so because the attempt is not typesafe. If

allowed, compiler-inserted casts could trigger ClassCastExceptions—see Listing 5–32.

CHAPTER 5: Mastering Advanced Language Features Part 2 212

Listing 5–32. Why creating an array of a generic type is not a good idea

List<Employee>[] empListArray = new List<Employee>[1];
List<String> strList = new ArrayList<String>(); strList.add("string");
Object[] objArray = empListArray;
objArray[0] = strList;
Employee e = empListArray[0].get(0);

Let us assume that Listing 5–32 is legal. The first line creates a one-element array where

this element stores a List of Employee. The second line creates a List of String and

stores a single String in this list.

The third line assigns empListArray to objArray. This assignment is legal because arrays

are covariant. The fourth line stores the List of String into objArray[0], which works

because of erasure. An ArrayStoreException does not occur because List<String>’s

runtime type is List and List<Employee>[]’s runtime type is List[].

However, there is a problem. A List<String> instance has been stored in an array that

can only hold List<Employee> instances. When the compiler-inserted cast operator

attempts to cast empListArray[0].get(0)’s return value ("string") to Employee, the cast

operator throws a ClassCastException object.

Another consequence of erasure is that the instanceof operator cannot be used with

parameterized types apart from unbounded wildcard types. For example, List<String>
ls = null; if (ls instanceof LinkedList<String>) {} is illegal. Instead you must

change the instanceof expression to either of the following expressions:

ls instanceof LinkedList<?> // legal to use with unbounded wildcard type
ls instanceof LinkedList // legal to use with raw type (the preferred use)

Generic Methods
A generic method is a static or non-static method with a type-generalized

implementation. A formal type parameter list precedes the method’s return type, uses

the same syntax, and has the same meaning as the generic type’s formal type

parameter list. This syntax is expressed as follows:

<formal_type_parameter_list> return_type identifier(parameter_list)
{
}

The collections framework provides many examples of generic methods. For example,

the Collections class provides a public static <T extends Object & Comparable<?
super T>> T min(Collection<? extends T> coll) method for returning the minimum

element in the given collection according to the natural ordering of its elements.

Listing 5–33 converts the aforementioned copyList() method into a generic method so

that it can copy a list of an arbitrary type to another list of the same type.

Listing 5–33. Declaring and using a copyList() generic method

class Circle
{
 private double x, y, radius;

CHAPTER 5: Mastering Advanced Language Features Part 2 213

 Circle(double x, double y, double radius)
 {
 this.x = x;
 this.y = y;
 this.radius = radius;
 }
 @Override
 public String toString()
 {
 return "(" + x + ", " + y + ", " + radius + ")";
 }
}
public class CopyList
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 ls.add("A");
 ls.add("B");
 ls.add("C");
 outputList(ls);
 List<String> lsCopy = new ArrayList<String>();
 copyList(ls, lsCopy);
 outputList(lsCopy);
 List<Circle> lc = new ArrayList<Circle>();
 lc.add(new Circle(10.0, 20.0, 30.0));
 lc.add(new Circle (5.0, 4.0, 16.0));
 outputList(lc);
 List<Circle> lcCopy = new ArrayList<Circle>();
 copyList(lc, lcCopy);
 outputList(lcCopy);
 }
 static <T> void copyList(List<T> c1, List<T> c2)
 {
 for (int i = 0; i < c1.size(); i++)
 c2.add(c1.get(i));
 }
 static void outputList(List<?> l)
 {
 for (int i = 0; i < l.size(); i++)
 System.out.println (l.get(i));
 System.out.println();
 }
}

The generic method’s type parameters are inferred from the context in which the

method was invoked. For example, the compiler determines that copyList(ls, lsCopy);

copies a List of String to another List of String. Similarly, it determines that

copyList(lc, lcCopy); copies a List of Circle to another List of Circle.

CHAPTER 5: Mastering Advanced Language Features Part 2 214

When you run this application, it generates the following output:

A
B
C

A
B
C

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

(10.0, 20.0, 30.0)
(5.0, 4.0, 16.0)

Enums
An enumerated type is a type that specifies a named sequence of related constants as

its legal values. The months in a calendar, the coins in a currency, and the days of the

week are examples of enumerated types.

Java developers have traditionally used sets of named integer constants to represent

enumerated types. Because this form of representation has proven to be problematic,

Java version 5 introduced the enum alternative.

This section introduces you to enums. After discussing the problems with traditional

enumerated types, the section presents the enum alternative. It then introduces you to

the Enum class, from which enums originate.

The Trouble with Traditional Enumerated Types
Listing 5–34 declares a Coin enumerated type whose set of constants identifies different

kinds of coins in a currency.

Listing 5–34. An enumerated type identifying coins

public class Coin
{
 public final static int PENNY = 0;
 public final static int NICKEL = 1;
 public final static int DIME = 2;
 public final static int QUARTER = 3;
}

Listing 5–35 declares a Weekday enumerated type whose set of constants identifies the

days of the week.

Listing 5–35. An enumerated type identifying weekdays

public class Weekday
{
 public final static int SUNDAY = 0;
 public final static int MONDAY = 1;

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 5: Mastering Advanced Language Features Part 2 215

 public final static int TUESDAY = 2;
 public final static int WEDNESDAY = 3;
 public final static int THURSDAY = 4;
 public final static int FRIDAY = 5;
 public final static int SATURDAY = 6;
}

Listing 5–34’s and 5–35’s approach to representing an enumerated type is problematic,

where the biggest problem is the lack of compile-time type safety. For example, you can

pass a coin to a method that requires a weekday and the compiler will not complain.

You can also compare coins to weekdays, as in Coin.NICKEL == Weekday.MONDAY, and

specify even more meaningless expressions, such as Coin.DIME+Weekday.FRIDAY-
1/Coin.QUARTER. The compiler does not complain because it only sees ints.

Applications that depend upon enumerated types are brittle. Because the type’s

constants are compiled into an application’s classfiles, changing a constant’s int value

requires you to recompile dependent applications or risk them behaving erratically.

Another problem with enumerated types is that int constants cannot be translated into

meaningful string descriptions. For example, what does 4 mean when debugging a

faulty application? Being able to see THURSDAY instead of 4 would be more helpful.

NOTE: You could circumvent the previous problem by using String constants. For example, you
might specify public final static String THURSDAY = "THURSDAY";. Although the
constant value is more meaningful, String-based constants can impact performance because
you cannot use == to efficiently compare just any old strings (as you will discover in Chapter 7).
Other problems related to String-based constants include hard-coding the constant’s value
("THURSDAY") instead of the constant’s name (THURSDAY) into source code, which makes it
very difficult to change the constant’s value at a later time; and misspelling a hard-coded
constant ("THURZDAY"), which compiles correctly but is problematic at runtime.

The Enum Alternative
Java version 5 introduced enums as a better alternative to traditional enumerated types.

An enum is an enumerated type that is expressed via reserved word enum. Listing 5–36

uses enum to declare Listing 5–34’s and 5–35’s enumerated types.

Listing 5–36. Improved enumerated types for coins and weekdays

public enum Coin { PENNY, NICKEL, DIME, QUARTER }
public enum Weekday { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY }

Despite their similarity to the int-based enumerated types found in C++ and other

languages, Listing 5–36’s enums are classes. Each constant is a public static final

field that represents an instance of its enum class.

CHAPTER 5: Mastering Advanced Language Features Part 2 216

Because constants are final, and because you cannot call an enum’s constructors to

create more constants, you can use == to compare constants efficiently and (unlike

string constant comparisons) safely. For example, you can specify c == Coin.NICKEL.

Enums promote compile-time type safety by preventing you from comparing constants

in different enums. For example, the compiler will report an error when it encounters

Coin.PENNY == Weekday.SUNDAY.

The compiler also frowns upon passing a constant of the wrong enum kind to a method.

For example, you cannot pass Weekday.FRIDAY to a method whose parameter type is

Coin.

Applications depending upon enums are not brittle because the enum’s constants are

not compiled into an application’s classfiles. Also, the enum provides a toString()

method for returning a more useful description of a constant’s value.

Because enums are so useful, Java version 5 enhanced the switch statement to support

them. Listing 5–37 demonstrates this statement switching on one of the constants in

Listing 5–36’s Coin enum.

Listing 5–37. Using the switch statement with an enum

public class EnhancedSwitch
{
 private enum Coin { PENNY, NICKEL, DIME, QUARTER }
 public static void main(String[] args)
 {
 Coin coin = Coin.NICKEL;
 switch (coin)
 {
 case PENNY : System.out.println("1 cent"); break;
 case NICKEL : System.out.println("5 cents"); break;
 case DIME : System.out.println("10 cents"); break;
 case QUARTER: System.out.println("25 cents");
 default : assert false;
 }
 }
}

Listing 5–37 demonstrates switching on an enum’s constants. This enhanced statement

only allows you to specify the name of a constant as a case label. If you prefix the name

with the enum, as in case Coin.DIME, the compiler reports an error.

Enhancing an Enum
You can add fields, constructors, and methods to an enum—you can even have the

enum implement interfaces. For example, Listing 5–38 adds a field, a constructor, and

two methods to Coin to associate a denomination value with a Coin constant (such as 1

for penny and 5 for nickel) and convert pennies to the denomination.

CHAPTER 5: Mastering Advanced Language Features Part 2 217

Listing 5–38. Enhancing the Coin enum

public enum Coin
{
 PENNY(1),
 NICKEL(5),
 DIME(10),
 QUARTER(25);

 private final int denomValue;
 Coin(int denomValue)
 {
 this.denomValue = denomValue;
 }
 public int denomValue()
 {
 return denomValue;
 }
 public int toDenomination(int numPennies)
 {
 return numPennies/denomValue;
 }
}

Listing 5–38’s constructor accepts a denomination value, which it assigns to a private

blank final field named denomValue—all fields should be declared final because

constants are immutable. Notice that this value is passed to each constant during its

creation (PENNY(1), for example).

CAUTION: When the comma-separated list of constants is followed by anything other than an
enum’s closing brace, you must terminate the list with a semicolon or the compiler will report an
error.

Furthermore, this listing’s denomValue() method returns denomValue, and its

toDenomination() method returns the number of coins of that denomination that are

contained within the number of pennies passed to this method as its argument. For

example, 3 nickels are contained in 16 pennies.

Listing 5–39 shows you how to use the enhanced Coin enum.

Listing 5–39. Exercising the enhanced Coin enum

public static void main(String[] args)
{
 if (args.length == 1)
 {
 int numPennies = Integer.parseInt(args[0]);
 System.out.println(numPennies + " pennies is equivalent to:");
 int numQuarters = Coin.QUARTER.toDenomination(numPennies);
 System.out.println(numQuarters + " " + Coin.QUARTER.toString() +
 (numQuarters != 1 ? "s," : ","));
 numPennies -= numQuarters*Coin.QUARTER.denomValue();
 int numDimes = Coin.DIME.toDenomination(numPennies);
 System.out.println(numDimes + " " + Coin.DIME.toString() +

CHAPTER 5: Mastering Advanced Language Features Part 2 218

 (numDimes != 1 ? "s, " : ","));
 numPennies -= numDimes*Coin.DIME.denomValue();
 int numNickels = Coin.NICKEL.toDenomination(numPennies);
 System.out.println(numNickels + " " + Coin.NICKEL.toString() +
 (numNickels != 1 ? "s, " : ", and"));
 numPennies -= numNickels*Coin.NICKEL.denomValue();
 System.out.println(numPennies + " " + Coin.PENNY.toString() +
 (numPennies != 1 ? "s" : ""));
 }
 System.out.println();
 System.out.println("Denomination values:");
 for (int i = 0; i < Coin.values().length; i++)
 System.out.println(Coin.values()[i].denomValue());
}

Listing 5–39 describes an application that converts its solitary “pennies” command-line

argument to an equivalent amount expressed in quarters, dimes, nickels, and pennies. In

addition to calling a Coin constant’s denomValue() and toDenomValue() methods, the

application calls toString() to output a string representation of the coin.

Another called enum method is values(). This method returns an array of all Coin

constants that are declared in the Coin enum (value()’s return type, in this example, is

Coin[]). This array is useful when you need to iterate over these constants. For example,

Listing 5–39 calls this method to output each coin’s denomination.

When you run this application with 119 as its command-line argument, it generates the

following output:

119 pennies is equivalent to:
4 QUARTERs,
1 DIME,
1 NICKEL, and
4 PENNYs

Denomination values:
1
5
10
25

The output shows that toString() returns a constant’s name. It is sometimes useful to

override this method to return a more meaningful value. For example, a method that

extracts tokens (named character sequences) from a string might use a Token enum to

list token names and, via an overriding toString() method, values—see Listing 5–40.

Listing 5–40. Overriding toString() to return a Token constant’s value

public enum Token
{
 IDENTIFIER("ID"),
 INTEGER("INT"),
 LPAREN("("),
 RPAREN(")"),
 COMMA(",");

 private final String tokValue;
 Token(String tokValue)

CHAPTER 5: Mastering Advanced Language Features Part 2 219

 {
 this.tokValue = tokValue;
 }
 @Override
 public String toString()
 {
 return tokValue;
 }
 public static void main(String[] args)
 {
 System.out.println("Token values:");
 for (int i = 0; i < Token.values().length; i++)
 System.out.println(Token.values()[i].name() + " = " +
 Token.values()[i]);
 }
}

This application calls values() to return the array of Token constants. For each constant,

it calls the constant’s name() method to return the constant’s name, and implicitly calls

toString() to return the constant’s value. If you were to run this application, you would

observe the following output:

Token values:
IDENTIFIER = ID
INTEGER = INT
LPAREN = (
RPAREN =)
COMMA = ,

Another way to enhance an enum is to assign a different behavior to each constant. You

can accomplish this task by introducing an abstract method into the enum and

overriding this method in an anonymous subclass of the constant. Listing 5–41’s

TempConversion enum demonstrates this technique.

Listing 5–41. Using anonymous subclasses to vary the behaviors of enum constants

public enum TempConversion
{
 C2F("Celsius to Fahrenheit")
 {
 @Override
 public double convert(double value)
 {
 return value*9.0/5.0+32.0;
 }
 },
 F2C("Fahrenheit to Celsius")
 {
 @Override
 public double convert(double value)
 {
 return (value-32.0)*5.0/9.0;
 }
 };

 TempConversion(String desc)
 {

CHAPTER 5: Mastering Advanced Language Features Part 2 220

 this.desc = desc;
 }
 private String desc;
 @Override
 public String toString()
 {
 return desc;
 }
 public abstract double convert(double value);
 public static void main(String[] args)
 {
 System.out.println(C2F + " for 100.0 degrees = " +
 C2F.convert(100.0));
 System.out.println(F2C + " for 98.6 degrees = " +
 F2C.convert(98.6));
 }
}

When you run this application, it generates the following output:

Celsius to Fahrenheit for 100.0 degrees = 212.0
Fahrenheit to Celsius for 98.6 degrees = 37.0

The Enum Class
The compiler regards enum as syntactic sugar. When it encounters an enum type

declaration (enum Coin {}), it generates a class whose name (Coin) is specified by the

declaration, and which also subclasses the abstract Enum class (in the java.lang

package), the common base class of all Java language–based enumeration types.

If you examine Enum’s Java documentation, you will discover that it overrides Object’s

clone(), equals(), finalize(), hashCode(), and toString() methods:

 clone() is overridden to prevent constants from being cloned so that

there is never more than one copy of a constant; otherwise, constants

could not be compared via ==.

 equals() is overridden to compare constants via their references—

constants with the same identities (==) must have the same contents

(equals()), and different identities imply different contents.

 finalize() is overridden to ensure that constants cannot be finalized.

 hashCode() is overridden because equals() is overridden.

 toString() is overridden to return the constant’s name.

Except for toString(), all of the overridden methods are declared final so that they

cannot be overridden in a subclass.

Enum also provides its own methods. These methods include the final compareTo(),

(Enum implements Comparable), getDeclaringClass(), name(), and ordinal() methods:

CHAPTER 5: Mastering Advanced Language Features Part 2 221

 compareTo() compares the current constant with the constant passed

as an argument to see which constant precedes the other constant in

the enum, and returns a value indicating their order. This method

makes it possible to sort an array of unsorted constants.

 getDeclaringClass() returns the Class object corresponding to the

current constant’s enum. For example, the Class object for Coin is

returned when calling Coin.PENNY.getDeclaringClass() for Listing 5–

36’s Coin enum. Also, TempConversion is returned when calling

TempConversion.C2F.getDeclaringClass() for Listing 5–41’s

TempConversion enum. The compareTo() method uses Class’s

getClass() method and Enum’s getDeclaringClass() method to ensure

that only constants belonging to the same enum are compared.

Otherwise, a ClassCastException is thrown. (I will discuss Class in

Chapter 7.)

 name() returns the constant’s name. Unless overridden to return

something more descriptive, toString() also returns the constant’s

name.

 ordinal() returns a zero-based ordinal, an integer that identifies the

position of the constant within the enum type. compareTo() compares

ordinals.

Enum also provides the static valueOf(Class<T>enumType, String name) method for

returning the enum constant from the specified enum with the specified name:

 enumType identifies the Class object of the enum from which to return a

constant.

 name identifies the name of the constant to return.

For example, Coin penny = Enum.valueOf(Coin.class, "PENNY"); assigns the Coin

constant whose name is PENNY to penny.

You will not discover a values() method in Enum’s Java documentation because the

compiler synthesizes (manufactures) this method while generating the class.

Extending the Enum Class
Enum’s generic type is Enum<E extends Enum<E>>. Although the formal type parameter list

looks ghastly, it is not that hard to understand. But first, take a look at Listing 5–42.

Listing 5–42. The Coin class as it appears from the perspective of its classfile

public final class Coin extends Enum<Coin>
{
 public static final Coin PENNY = new Coin("PENNY", 0);
 public static final Coin NICKEL = new Coin("NICKEL", 1);
 public static final Coin DIME = new Coin("DIME", 2);
 public static final Coin QUARTER = new Coin("QUARTER", 3);
 private static final Coin[] $VALUES = { PENNY, NICKEL, DIME, QUARTER };
 public static Coin[] values()

CHAPTER 5: Mastering Advanced Language Features Part 2 222

 {
 return Coin.$VALUES.clone();
 }
 public static Coin valueOf(String name)
 {
 return Enum.valueOf(Coin.class, "Coin");
 }
 private Coin(String name, int ordinal)
 {
 super(name, ordinal);
 }
}

Behind the scenes, the compiler converts Listing 5–36’s Coin enum declaration into a

class declaration that is similar to Listing 5–42.

The following rules show you how to interpret Enum<E extends Enum<E>> in the context of

Coin extends Enum<Coin>:

 Any subclass of Enum must supply an actual type argument to Enum.

For example, Coin’s header specifies Enum<Coin>.

 The actual type argument must be a subclass of Enum. For example,

Coin is a subclass of Enum.

 A subclass of Enum (such as Coin) must follow the idiom that it supplies

its own name (Coin) as an actual type argument.

The third rule allows Enum to declare methods—compareTo(), getDeclaringClass(), and

valueOf()—whose parameter and/or return types are specified in terms of the subclass

(Coin), and not in terms of Enum.

The rationale for doing this is to avoid having to specify casts. For example, you do not

need to cast valueOf()’s return value to Coin in Coin penny =
Enum.valueOf(Coin.class, "PENNY");.

NOTE: You cannot compile Listing 5–42 because the compiler will not compile any class that
extends Enum. It will also complain about super(name, ordinal);.

EXERCISES

The following exercises are designed to test your understanding of assertions, annotations, generics, and
enums:

1. What is an assertion?

2. When would you use assertions?

3. True or false: Specifying the -ea command-line option with no argument enables all
assertions, including system assertions.

4. What is an annotation?

CHAPTER 5: Mastering Advanced Language Features Part 2 223

5. What kinds of application elements can be annotated?

6. Identify the three compiler-supported annotation types.

7. How do you declare an annotation type?

8. What is a marker annotation?

9. What is an element?

10. How do you assign a default value to an element?

11. What is a meta-annotation?

12. Identify Java’s four meta-annotation types.

13. Define generics.

14. Why would you use generics?

15. What is the difference between a generic type and a parameterized type?

16. Which one of the nonstatic member class, local class, and anonymous class inner
class categories cannot be generic?

17. Identify the five kinds of actual type arguments.

18. True or false: You cannot specify a primitive type name (such as double or int) as
an actual type argument.

19. What is a raw type?

20. When does the compiler report an unchecked warning message and why?

21. How do you suppress an unchecked warning message?

22. True or false: List<E>’s E type parameter is unbounded.

23. How do you specify a single upper bound?

24. True or false: MyList<E super Circle> specifies that the E type parameter has a
lower bound of Circle.

25. What is a recursive type bound?

26. Why are wildcard type arguments necessary?

27. What is reification?

28. True or false: Type parameters are reified.

29. What is erasure?

30. What is a generic method?

31. In Listing 5–43, which overloaded method does the methodCaller() generic
method call?

Listing 5–43. Which someOverloadedMethod() is called?

import java.util.Date;

public class CallOverloadedNGMethodFromGMethod
{

x

CHAPTER 5: Mastering Advanced Language Features Part 2 224

 public static void someOverloadedMethod(Object o)
 {
 System.out.println("call to someOverloadedMethod(Object o)");
 }
 public static void someOverloadedMethod(Date d)
 {
 System.out.println("call to someOverloadedMethod(Date d)");
 }
 public static <T> void methodCaller(T t)
 {
 someOverloadedMethod(t);
 }
 public static void main(String[] args)
 {
 methodCaller(new Date());
 }
}

32. What is an enumerated type?

33. Identify three problems that can arise when you use enumerated types whose
constants are int-based.

34. What is an enum?

35. How do you use the switch statement with an enum?

36. In what ways can you enhance an enum?

37. What is the purpose of the abstract Enum class?

38. What is the difference between Enum’s name() and toString() methods?

39. True or false: Enum’s generic type is Enum<E extends Enum<E>>.

40. Declare a ToDo marker annotation type that annotates only type elements, and that
also uses the default retention policy.

41. Rewrite the StubFinder application to work with Listing 5–15’s Stub annotation
type (with appropriate @Target and @Retention annotations) and Listing 5–16’s
Deck class.

42. Implement a stack in a manner that is similar to Listing 5–24’s Queue class. Stack
must be generic, it must declare push(), pop(), and isEmpty() methods (it could
also declare an isFull() method but that method is not necessary in this exercise),
push() must throw a StackFullException instance when the stack is full, and
pop() must throw a StackEmptyException instance when the stack is empty.
(You must create your own package-private StackFullException and
StackEmptyException helper classes because they are not provided for you in
Java’s class library.) Declare a similar main() method, and insert two assertions into
this method that validate your assumptions about the stack being empty immediately
after being created and immediately after popping the last element.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 5: Mastering Advanced Language Features Part 2 225

NOTE: A stack is a data structure that stores elements in a last-in, first-out order. Elements are
added to the stack via an operation known as push. They are removed from the stack via an
operation known as pop. The last element pushed onto the stack is the first element popped off
of the stack.

43. Declare a Compass enum with NORTH, SOUTH, EAST, and WEST members. Declare a
UseCompass class whose main() method randomly selects one of these constants
and then switches on that constant. Each of the switch statement’s cases should
output a message such as heading north.

Summary
An assertion is a statement that lets you express an assumption of application

correctness via a Boolean expression. If this expression evaluates to true, execution

continues with the next statement. Otherwise, an error that identifies the cause of failure

is thrown.

There are many situations where assertions should be used. These situations organize

into internal invariant, control-flow invariant, and design-by-contract categories. An

invariant is something that does not change.

Although there are many situations where assertions should be used, there also are

situations where they should be avoided. For example, you should not use assertions to

check the arguments that are passed to public methods.

The compiler records assertions in the classfile. However, assertions are disabled at

runtime because they can affect performance. You must enable the classfile’s assertions

before you can test assumptions about the behaviors of your classes.

Annotations are instances of annotation types and associate metadata with application

elements. They are expressed in source code by prefixing their type names with @

symbols. For example, @Readonly is an annotation and Readonly is its type.

Java supplies a wide variety of annotation types, including the compiler-oriented

Override, Deprecated, and SuppressWarnings types. However, you can also declare your

own annotation types by using the @interface syntax.

Annotation types can be annotated with meta-annotations that identify the application

elements they can target (such as constructors, methods, or fields), their retention

policies, and other characteristics.

Annotations whose types are assigned a runtime retention policy via @Retention

annotations can be processed at runtime using custom applications or Java’s apt tool,

whose functionality has been integrated into the compiler starting with Java version 6.

CHAPTER 5: Mastering Advanced Language Features Part 2 226

Java version 5 introduced generics, language features for declaring and using type-

agnostic classes and interfaces. When working with Java’s collections framework, these

features help you avoid ClassCastExceptions.

A generic type is a class or interface that introduces a family of parameterized types by

declaring a formal type parameter list. A generic method is a static or non-static

method with a type-generalized implementation.

An enumerated type is a type that specifies a named sequence of related constants as

its legal values. Java developers have traditionally used sets of named integer constants

to represent enumerated types.

Because sets of named integer constants have proven to be problematic, Java version 5

introduced the enum alternative. An enum is an enumerated type that is expressed via

reserved word enum.

You can add fields, constructors, and methods to an enum—you can even have the

enum implement interfaces. Also, you can override toString() to provide a more useful

description of a constant’s value, and subclass constants to assign different behaviors.

The compiler regards enum as syntactic sugar for a class that subclasses Enum. This

abstract class overrides various Object methods to provide default behaviors (usually for

safety reasons), and provides additional methods for various purposes.

This chapter largely completes our tour of the Java language. However, there are a few

more advanced language features to explore. You will encounter one of these minor

features in Chapter 6, which begins a multichapter exploration of various types that are

located in Java SE’s/Android’s standard class library.

227

227

 Chapter

Exploring the Basic APIs
Part 1
Aspiring Android developers need to acquire a solid understanding of foundational Java

APIs. You have already encountered a few of these APIs, such as the Object and String

classes and the Throwable class hierarchy. This chapter introduces you to additional

language-oriented (basic) APIs pertaining to math, packages, primitive types, and the

garbage collector.

NOTE: Chapter 6 explores basic API classes and interfaces that are located in the java.lang,
java.lang.ref, and java.math packages.

Math APIs
Chapter 2 presented Java’s +, -, *, /, and % operators for performing basic arithmetic on

primitive type values. Java also provides classes for performing trigonometry and other

advanced math operations, representing monetary values accurately, and supporting

extremely long integers for use in RSA encryption (http://en.wikipedia.org/wiki/RSA)

and other contexts.

Math and StrictMath
The java.lang.Math class declares double constants E and PI that represent the natural

logarithm base value (2.71828...) and the ratio of a circle’s circumference to its diameter

(3.14159...). E is initialized to 2.718281828459045 and PI is initialized to

3.141592653589793. Math also declares assorted class methods to perform various math

operations. Table 6–1 describes many of these methods.

6

http://en.wikipedia.org/wiki/RSA

CHAPTER 6: Exploring the Basic APIs Part 1 228

Table 6–1. Math Methods

Method Description

double abs(double d) Return the absolute value of d. There are four special cases:

abs(-0.0) = +0.0, abs(+infinity) = +infinity, abs(-
infinity) = +infinity, and abs(NaN) = NaN.

float abs(float f) Return the absolute value of f. There are four special cases:

abs(-0.0) = +0.0, abs(+infinity) = +infinity, abs(-
infinity) = +infinity, and abs(NaN) = NaN.

int abs(int i) Return the absolute value of i. There is one special case: the

absolute value of Integer.MIN_VALUE is Integer.MIN_VALUE.

long abs(long l) Return the absolute value of l. There is one special case: the

absolute value of Long.MIN_VALUE is Long.MIN_VALUE.

double acos(double d) Return angle d’s arc cosine within the range 0 through PI. There

are three special cases: acos(anything > 1) = NaN,

acos(anything < -1) = NaN, and acos(NaN) = NaN.

double asin(double d) Return angle d’s arc sine within the range -PI/2 through PI/2.

There are three special cases: asin(anything > 1) = NaN,

asin(anything < -1) = NaN, and asin(NaN) = NaN.

double atan(double d) Return angle d’s arc tangent within the range -PI/2 through PI/2.

There are five special cases: atan(+0.0) = +0.0, atan(-0.0) =
-0.0, atan(+infinity) = +PI/2, atan(-infinity) = -PI/2, and

atan(NaN) = NaN.

double ceil(double d) Return the smallest value (closest to negative infinity) that is not

less than d and is equal to an integer. There are six special

cases: ceil(+0.0) = +0.0, ceil(-0.0) = -0.0, ceil(anything >
-1.0 and < 0.0) = -0.0, ceil(+infinity) = +infinity, ceil(-
infinity) = -infinity, and ceil(NaN) = NaN.

double cos(double d) Return the cosine of angle d (expressed in radians). There are

three special cases: cos(+infinity) = NaN, cos(-infinity) =
NaN, and cos(NaN) = NaN.

double exp(double d) Return Euler’s number e raised to the power d. There are three

special cases: exp(+infinity) = +infinity, exp(-infinity) =
+0.0, and exp(NaN) = NaN.

double floor(double d) Return the largest value (closest to positive infinity) that is not

greater than d and is equal to an integer. There are five special

cases: floor(+0.0) = +0.0, floor(-0.0) = -0.0,

floor(+infinity) = +infinity, floor(-infinity) = -infinity,

and floor(NaN) = NaN.

CHAPTER 6: Exploring the Basic APIs Part 1 229

Method Description

double log(double d) Return the natural logarithm (base e) of d. There are six special

cases: log(+0.0) = -infinity, log(-0.0) = -infinity,

log(anything < 0) = NaN, log(+infinity) = +infinity, log(-
infinity) = NaN, and log(NaN) = NaN.

double log10(double d) Return the base 10 logarithm of d. There are six special cases:

log10(+0.0) = -infinity, log10(-0.0) = -infinity,

log10(anything < 0) = NaN, log10(+infinity) = +infinity,

log10(-infinity) = NaN, and log10(NaN) = NaN.

double max(double d1, double
d2)

Return the most positive (closest to positive infinity) of d1 and d2.

There are four special cases: max(NaN, anything) = NaN,

max(anything, NaN) = NaN, max(+0.0, -0.0) = +0.0, and max(-
0.0, +0.0) = +0.0.

float max(double f1, double
f2)

Return the most positive (closest to positive infinity) of f1 and f2.

There are four special cases: max(NaN, anything) = NaN,

max(anything, NaN) = NaN, max(+0.0, -0.0) = +0.0, and max(-
0.0, +0.0) = +0.0.

int max(int i1, int i2) Return the most positive (closest to positive infinity) of i1 and i2.

long max(long l1, long l2) Return the most positive (closest to positive infinity) of l1 and l2.

double min(double d1, double
d2)

Return the most negative (closest to negative infinity) of d1 and

d2. There are four special cases: min(NaN, anything) = NaN,

min(anything, NaN) = NaN, min(+0.0, -0.0) = -0.0, and min(-
0.0, +0.0) = -0.0.

float min(float f1, float f2) Return the most negative (closest to negative infinity) of f1 and

f2. There are four special cases: min(NaN, anything) = NaN,

min(anything, NaN) = NaN, min(+0.0, -0.0) = -0.0, and min(-
0.0, +0.0) = -0.0.

int min(int i1, int i2) Return the most negative (closest to negative infinity) of i1 and

i2.

long min(long l1, long l2) Return the most negative (closest to negative infinity) of l1 and

l2.

double random() Return a pseudorandom number between 0.0 (inclusive) and 1.0

(exclusive).

long round(double d) Return the result of rounding d to a long integer. The result is

equivalent to (long) Math.floor(d+0.5). There are seven

special cases: round(+0.0) = +0.0, round(-0.0) = +0.0,

round(anything > Long.MAX_VALUE) = Long.MAX_VALUE,

round(anything < Long.MIN_VALUE) = Long.MIN_VALUE,

CHAPTER 6: Exploring the Basic APIs Part 1 230

Method Description

round(+infinity) = Long.MAX_VALUE, round(-infinity) =
Long.MIN_VALUE, and round(NaN) = +0.0.

int round(float f) Return the result of rounding f to an integer. The result is

equivalent to (int) Math.floor(f+0.5). There are seven special

cases: round(+0.0) = +0.0, round(-0.0) = +0.0,

round(anything > Integer.MAX_VALUE) = Integer.MAX_VALUE,

round(anything < Integer.MIN_VALUE) = Integer.MIN_VALUE,

round(+infinity) = Integer.MAX_VALUE, round(-infinity) =
Integer.MIN_VALUE, and round(NaN) = +0.0.

double signum(double d) Return the sign of d as -1.0 (d less than 0.0), 0.0 (d equals 0.0),

and 1.0 (d greater than 0.0). There are five special cases:

signum(+0.0) = +0.0, signum(-0.0) = -0.0, signum(+infinity)
= +1.0, signum(-infinity) = -1.0, and signum(NaN) = NaN.

float signum(float f) Return the sign of f as -1.0 (f less than 0.0), 0.0 (f equals 0.0),

and 1.0 (f greater than 0.0). There are five special cases:

signum(+0.0) = +0.0, signum(-0.0) = -0.0, signum(+infinity)
= +1.0, signum(-infinity) = -1.0, and signum(NaN) = NaN.

double sin(double d) Return the sine of angle d (expressed in radians). There are five

special cases: sin(+0.0) = +0.0, sin(-0.0) = -0.0,

sin(+infinity) = NaN, sin(-infinity) = NaN, and sin(NaN) =
NaN.

double sqrt(double d) Return the square root of d. There are five special cases:

sqrt(+0.0) = +0.0, sqrt(-0.0) = -0.0, sqrt(anything < 0) =
NaN, sqrt(+infinity) = +infinity, and sqrt(NaN) = NaN.

double tan(double d) Return the tangent of angle d (expressed in radians). There are

five special cases: tan(+0.0) = +0.0, tan(-0.0) = -0.0,

tan(+infinity) = NaN, tan(-infinity) = NaN, and tan(NaN) =
NaN.

double toDegrees
(double angrad)

Convert angle angrad from radians to degrees via expression

angrad*180/PI. There are five special cases: toDegrees(+0.0) =
+0.0, toDegrees(-0.0) = -0.0, toDegrees(+infinity) =
+infinity, toDegrees(-infinity) = -infinity, and

toDegrees(NaN) = NaN.

double toRadians
(angdeg)

Convert angle angdeg from degrees to radians via expression

angdeg/180*PI. There are five special cases: toRadians(+0.0) =
+0.0, toRadians(-0.0) = -0.0, toRadians(+infinity) =
+infinity, toRadians(-infinity) = -infinity, and

toRadians(NaN) = NaN.

CHAPTER 6: Exploring the Basic APIs Part 1 231

Table 6–1 reveals a wide variety of useful math-oriented methods. For example, each

abs() method returns its argument’s absolute value (number without regard for sign).

abs(double) and abs(float) are useful for comparing double precision floating-point

and floating-point values safely. For example, 0.3 == 0.1+0.1+0.1 evaluates to false

because 0.1 has no exact representation. However, you can compare these expressions

with abs() and a tolerance value, which indicates an acceptable range of error. For

example, Math.abs(0.3-(0.1+0.1+0.1)) < 0.1 returns true because the absolute

difference between 0.3 and 0.1+0.1+0.1 is less than a 0.1 tolerance value.

Previous chapters demonstrated other Math methods. For example, Chapter 2

demonstrated Math’s sin(), toRadians(), cos(), round(double), and random() methods.

As Chapter 5’s Lotto649 application revealed, random() (which returns a number that

appears to be randomly chosen but is actually chosen by a predictable math calculation,

and hence is pseudorandom) is useful in simulations, games, and wherever an element

of chance is needed, but first its return value (0.0 to almost 1.0) must somehow be

transformed into a more useful range, perhaps 0 through 49, or maybe -100 through

100. You will find Listing 6–1’s rnd() method useful for making these transformations.

Listing 6–1. Converting random()’s return value into something more useful

public static int rnd(int limit)
{
 return (int) (Math.random()*limit);
}

rnd() transforms random()’s 0.0 to almost 1.0 double precision floating-point range to a

0 through limit - 1 integer range. For example, rnd(50) returns an integer ranging from

0 through 49. Also, -100+rnd(201) transforms 0.0 to almost 1.0 into -100 through 100 by

adding a suitable offset and passing an appropriate limit value.

CAUTION: Do not specify (int) Math.random()*limit because this expression always
evaluates to 0. The expression first casts random()’s double precision floating-point fractional
value (0.0 through 0.99999. . .) to integer 0 by truncating the fractional part, and then multiplies
0 by limit, which results in 0.

Table 6–1 also reveals some curiosities beginning with +infinity, -infinity, +0.0, -0.0, and

NaN (Not a Number).

Java’s floating-point calculations are capable of returning +infinity, -infinity, +0.0, -0.0,

and NaN because Java largely conforms to IEEE 754

(http://en.wikipedia.org/wiki/IEEE_754), a standard for floating-point calculations.

The following are the circumstances under which these special values arise:

 +infinity returns from attempting to divide a positive number by 0.0.

For example, System.out.println(1.0/0.0); outputs Infinity.

 -infinity returns from attempting to divide a negative number by 0.0.

For example, System.out.println(-1.0/0.0); outputs -Infinity.

http://en.wikipedia.org/wiki/IEEE_754

CHAPTER 6: Exploring the Basic APIs Part 1 232

 NaN returns from attempting to divide 0.0 by 0.0, attempting to

calculate the square root of a negative number, and attempting other

strange operations. For example, System.out.println(0.0/0.0); and

System.out.println(Math.sqrt(-1.0)); each output NaN.

 +0.0 results from attempting to divide a positive number by +infinity.

For example, System.out.println(1.0/(1.0/0.0)); outputs +0.0.

 -0.0 results from attempting to divide a negative number by +infinity.

For example, System.out.println(-1.0/(1.0/0.0)); outputs -0.0.

Once an operation yields +infinity, -infinity, or NaN, the rest of the expression usually

equals that special value. For example, System.out.println(1.0/0.0*20.0); outputs

Infinity. Also, an expression that first yields +infinity or -infinity might devolve into

NaN. For example, 1.0/0.0*0.0 yields +infinity (1.0/0.0) and then NaN (+infinity*0.0).

Another curiosity is Integer.MAX_VALUE, Integer.MIN_VALUE, Long.MAX_VALUE, and

Long.MIN_VALUE. Each of these items is a primitive wrapper class constant that identifies

the maximum or minimum value that can be represented by the class’s associated

primitive type.

Finally, you might wonder why the abs(), max(), and min() overloaded methods do not

include byte and short versions, as in byte abs(byte b) and short abs(short s). There

is no need for these methods because the limited ranges of bytes and short integers

make them unsuitable in calculations. If you need such a method, check out Listing 6–2.

Listing 6–2. Overloaded byte abs(byte b) and short abs(short s) methods

public static byte abs(byte b)
{
 return (b < 0) ? (byte) -b : b;
}
public static short abs(short s)
{
 return (s < 0) ? (short) -s : s;
}
public static void main(String[] args)
{
 byte b = -2;
 System.out.println(abs(b)); // Output: 2
 short s = -3;
 System.out.println(abs(s)); // Output: 3
}

The (byte) and (short) casts are necessary because -b converts b’s value from a byte

to an int, and -s converts s’s value from a short to an int. In contrast, these casts are

not needed with (b < 0) and (s < 0), which automatically cast b’s and s’s values to an

int before comparing them with int-based 0.

CHAPTER 6: Exploring the Basic APIs Part 1 233

TIP: Their absence from Math suggests that byte and short are not very useful in method
declarations. However, these types are useful when declaring arrays whose elements store small
values (such as a binary file’s byte values). If you declared an array of int or long to store such
values, you would end up wasting heap space (and might even run out of memory).

While searching through the Java documentation for the java.lang package, you will

probably encounter a class named StrictMath. Apart from a longer name, this class

appears to be identical to Math. The differences between these classes can be summed

up as follows:

 StrictMath’s methods return exactly the same results on all platforms.

In contrast, some of Math’s methods might return values that vary ever

so slightly from platform to platform.

 Because StrictMath cannot utilize platform-specific features such as

an extended-precision math coprocessor, an implementation of

StrictMath might be less efficient than an implementation of Math.

For the most part, Math’s methods call their StrictMath counterparts. Two exceptions

are toDegrees() and toRadians(). Although these methods have identical code bodies

in both classes, StrictMath’s implementations include reserved word strictfp in the

method headers:

public static strictfp double toDegrees(double angrad)
public static strictfp double toRadians(double angdeg)

Wikipedia’s “strictfp” entry (http://en.wikipedia.org/wiki/Strictfp) mentions that

strictfp restricts floating-point calculations to ensure portability. This reserved word

accomplishes portability in the context of intermediate floating-point representations

and overflows/underflows (generating a value too large or small to fit a representation).

NOTE: The previously cited “strictfp” article states that Math contains public static
strictfp double abs(double); and other strictfp methods. If you check out this
class’s source code under Java version 6 update 16, you will not find strictfp anywhere in the
source code. However, many Math methods (such as sin()) call their StrictMath
counterparts, which are implemented in a platform-specific library, and the library’s method
implementations are strict.

Without strictfp, an intermediate calculation is not limited to the IEEE 754 32-bit and

64-bit floating-point representations that Java supports. Instead, the calculation can

take advantage of a larger representation (perhaps 128 bits) on a platform that supports

this representation.

An intermediate calculation that overflows/underflows when its value is represented in

32/64 bits might not overflow/underflow when its value is represented in more bits.

http://en.wikipedia.org/wiki/Strictfp

CHAPTER 6: Exploring the Basic APIs Part 1 234

Because of this discrepancy, portability is compromised. strictfp levels the playing

field by requiring all platforms to use 32/64 bits for intermediate calculations.

When applied to a method, strictfp ensures that all floating-point calculations

performed in that method are in strict compliance. However, strictfp can be used in a

class header declaration (as in public strictfp class FourierTransform) to ensure that

all floating-point calculations performed in that class are strict.

NOTE: Math and StrictMath are declared final so that they cannot be extended. Also, they
declare private empty noargument constructors so that they cannot be instantiated.

Math and StrictMath are examples of utility classes because they exist as placeholders for
utility constants and utility (static) methods.

BigDecimal
In Chapter 2, I introduced a CheckingAccount class with a balance field. I declared this

field to be of type int, and included a comment stating that balance represents the

number of dollars that can be withdrawn. Alternatively, I could have stated that balance

represents the number of pennies that can be withdrawn.

Perhaps you are wondering why I did not declare balance to be of type double or float.

That way, balance could store values such as 18.26 (18 dollars in the whole number part

and 26 pennies in the fraction part). I did not declare balance to be a double or float for

the following reasons:

 Not all floating-point values that can represent monetary amounts

(dollars and cents) can be stored exactly in memory. For example, 0.1

(which you might use to represent 10 cents), has no exact storage

representation. If you executed double total = 0.1; for (int i = 0;
i < 50; i++) total += 0.1; System.out.println(total);, you would

observe 5.099999999999998 instead of the correct 5.1 as the output.

 The result of each floating-point calculation needs to be rounded to

the nearest cent. Failure to do so introduces tiny errors that can cause

the final result to differ from the correct result. Although Math supplies

a pair of round() methods that you might consider using to round a

calculation to the nearest cent, these methods round to the nearest

integer (dollar).

Listing 6–3’s InvoiceCalc application demonstrates both problems. However, the first

problem is not serious because it contributes very little to the inaccuracy. The more

serious problem occurs from failing to round to the nearest cent after performing a

calculation.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 6: Exploring the Basic APIs Part 1 235

Listing 6–3. Floating-point-based invoice calculations leading to confusing results

import java.text.NumberFormat;

class InvoiceCalc
{
 final static double DISCOUNT_PERCENT = 0.1; // 10%
 final static double TAX_PERCENT = 0.05; // 5%
 public static void main(String[] args)
 {
 double invoiceSubtotal = 285.36;
 double discount = invoiceSubtotal*DISCOUNT_PERCENT;
 double subtotalBeforeTax = invoiceSubtotal-discount;
 double salesTax = subtotalBeforeTax*TAX_PERCENT;
 double invoiceTotal = subtotalBeforeTax+salesTax;
 NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();
 System.out.println("Subtotal: " + currencyFormat.format(invoiceSubtotal));
 System.out.println("Discount: " + currencyFormat.format(discount));
 System.out.println("SubTotal after discount: " +
 currencyFormat.format(subtotalBeforeTax));
 System.out.println("Sales Tax: " + currencyFormat.format(salesTax));
 System.out.println("Total: " + currencyFormat.format(invoiceTotal));
 }
}

Listing 6–3 relies on the NumberFormat class (located in the java.text) package and its

format() method to format a double precision floating-point value into a currency—I will

discuss NumberFormat in Chapter 9. When you run InvoiceCalc, you will discover the

following output:

Subtotal: $285.36
Discount: $28.54
SubTotal after discount: $256.82
Sales Tax: $12.84
Total: $269.67

This output reveals the correct subtotal, discount, subtotal after discount, and sales tax.

In contrast, it incorrectly reveals 269.67 instead of 269.66 as the final total. The

customer will not appreciate paying an extra penny, even though 269.67 is the correct

value according to the floating-point calculations:

Subtotal: 285.36
Discount: 28.536
SubTotal after discount: 256.824
Sales Tax: 12.8412
Total: 269.6652

The problem arises from not rounding the result of each calculation to the nearest cent

before performing the next calculation. As a result, the 0.024 in 256.824 and 0.0012 in

12.84 contribute to the final value, causing NumberFormat’s format() method to round

this value to 269.67.

Java provides a solution to both problems in the form of a java.math.BigDecimal class.

This immutable class (a BigDecimal instance cannot be modified) represents a signed

decimal number (such as 23.653) of arbitrary precision (number of digits) with an

associated scale (an integer that specifies the number of digits after the decimal point).

CHAPTER 6: Exploring the Basic APIs Part 1 236

BigDecimal declares three convenience constants: ONE, TEN, and ZERO. Each constant is

the BigDecimal equivalent of 1, 10, and 0 with a zero scale.

CAUTION: BigDecimal declares several ROUND_-prefixed constants. These constants are
largely obsolete and should be avoided, along with the public BigDecimal
divide(BigDecimal divisor, int scale, int roundingMode) and public
BigDecimal setScale(int newScale, int roundingMode) methods, which are still
present so that dependent legacy code continues to compile.

BigDecimal also declares a variety of useful constructors and methods. A few of these

constructors and methods are described in Table 6–2.

Table 6–2. BigDecimal Constructors and Methods

Method Description

BigDecimal(int val) Initialize the BigDecimal instance to val’s digits. Set the scale

to 0.

BigDecimal(String val) Initialize the BigDecimal instance to the decimal equivalent of

val. Set the scale to the number of digits after the decimal

point, or 0 if no decimal point is specified. This constructor

throws java.lang.NullPointerException when val is null,

and java.lang.NumberFormatException when val’s string

representation is invalid (contains letters, for example).

BigDecimal abs() Return a new BigDecimal instance that contains the absolute

value of the current instance’s value. The resulting scale is the

same as the current instance’s scale.

BigDecimal add(BigDecimal
augend)

Return a new BigDecimal instance that contains the sum of the

current value and the argument value. The resulting scale is

the maximum of the current and argument scales. This method

throws NullPointerException when augend is null.

BigDecimal divide(BigDecimal
divisor)

Return a new BigDecimal instance that contains the quotient

of the current value divided by the argument value. The

resulting scale is the difference of the current and argument

scales. It might be adjusted when the result requires more

digits. This method throws NullPointerException when

divisor is null, or java.lang.ArithmeticException when

divisor represents 0 or the result cannot be represented

exactly.

BigDecimal max(BigDecimal val) Return either this or val, whichever BigDecimal instance

contains the larger value. This method throws

NullPointerException when val is null.

CHAPTER 6: Exploring the Basic APIs Part 1 237

Method Description

BigDecimal min(BigDecimal val) Return either this or val, whichever BigDecimal instance

contains the smaller value. This method throws

NullPointerException when val is null.

BigDecimal multiply(BigDecimal
multiplicand)

Return a new BigDecimal instance that contains the product of

the current value and the argument value. The resulting scale

is the sum of the current and argument scales. This method

throws NullPointerException when multiplicand is null.

BigDecimal negate() Return a new BigDecimal instance that contains the negative

of the current value. The resulting scale is the same as the

current scale.

int precision() Return the precision of the current BigDecimal instance.

BigDecimal remainder(BigDecimal
divisor)

Return a new BigDecimal instance that contains the remainder

of the current value divided by the argument value. The

resulting scale is the difference of the current scale and the

argument scale. It might be adjusted when the result requires

more digits. This method throws NullPointerException when

divisor is null, or ArithmeticException when divisor

represents 0.

int scale() Return the scale of the current BigDecimal instance.

BigDecimal setScale(int
newScale, RoundingMode
roundingMode)

Return a new BigDecimal instance with the specified scale and

rounding mode. If the new scale is greater than the old scale,

additional zeros are added to the unscaled value. In this case

no rounding is necessary. If the new scale is smaller than the

old scale, trailing digits are removed. If these trailing digits are

not zero, the remaining unscaled value has to be rounded. For

this rounding operation, the specified rounding mode is used.

This method throws NullPointerException when

roundingMode is null, and ArithmeticException when

roundingMode is set to RoundingMode.ROUND_UNNECESSARY but

rounding is necessary based on the current scale.

BigDecimal subtract(BigDecimal
subtrahend)

Return a new BigDecimal instance that contains the current

value minus the argument value. The resulting scale is the

maximum of the current and argument scales. This method

throws NullPointerException when subtrahend is null.

String toString() Return a string representation of this BigDecimal. Scientific

notation is used when necessary.

Table 6–2 refers to RoundingMode, which is an enum containing various rounding mode

constants. These constants are described in Table 6–3.

CHAPTER 6: Exploring the Basic APIs Part 1 238

Table 6–3. RoundingMode Constants

Constant Description

CEILING Round toward positive infinity.

DOWN Round toward zero.

FLOOR Round toward negative infinity.

HALF_DOWN Round toward the “nearest neighbor” unless both neighbors are equidistant, in

which case round down.

HALF_EVEN Round toward the “nearest neighbor” unless both neighbors are equidistant, in

which case round toward the even neighbor.

HALF_UP Round toward “nearest neighbor” unless both neighbors are equidistant, in

which case round up. (This is the rounding mode commonly taught at school.)

UNNECESSARY Rounding is not necessary because the requested operation produces the

exact result.

UP Positive values are rounded toward positive infinity and negative values are

rounded toward negative infinity.

The best way to get comfortable with BigDecimal is to try it out. Listing 6–4 uses this

class to correctly perform the invoice calculations that were presented in Listing 6–3.

Listing 6–4. BigDecimal-based invoice calculations not leading to confusing results

class InvoiceCalc
{
 public static void main(String[] args)
 {
 BigDecimal invoiceSubtotal = new BigDecimal("285.36");
 BigDecimal discountPercent = new BigDecimal("0.10");
 BigDecimal discount = invoiceSubtotal.multiply(discountPercent);
 discount = discount.setScale(2, RoundingMode.HALF_UP);
 BigDecimal subtotalBeforeTax = invoiceSubtotal.subtract(discount);
 subtotalBeforeTax = subtotalBeforeTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal salesTaxPercent = new BigDecimal("0.05");
 BigDecimal salesTax = subtotalBeforeTax.multiply(salesTaxPercent);
 salesTax = salesTax.setScale(2, RoundingMode.HALF_UP);
 BigDecimal invoiceTotal = subtotalBeforeTax.add(salesTax);
 invoiceTotal = invoiceTotal.setScale(2, RoundingMode.HALF_UP);
 System.out.println("Subtotal: " + invoiceSubtotal);
 System.out.println("Discount: " + discount);
 System.out.println("SubTotal after discount: " + subtotalBeforeTax);
 System.out.println("Sales Tax: " + salesTax);
 System.out.println("Total: " + invoiceTotal);
 }
}

CHAPTER 6: Exploring the Basic APIs Part 1 239

Listing 6–4’s main() method first creates BigDecimal objects invoiceSubtotal and

discountPercent that are initialized to 285.36 and 0.10, respectively. It multiplies

invoiceSubtotal by discountPercent and assigns the BigDecimal result to discount.

At this point, discount contains 28.5360. Apart from the trailing zero, this value is the

same as that generated by invoiceSubtotal*DISCOUNT_PERCENT in Listing 6–3. The value

that should be stored in discount is 28.54. To correct this problem before performing

another calculation, main() calls discount’s setScale() method with these arguments:

 2: Two digits after the decimal point

 RoundingMode.HALF_UP: The conventional approach to rounding

After setting the scale and proper rounding mode, main() subtracts discount from

invoiceSubtotal, and assigns the resulting BigDecimal instance to subtotalBeforeTax.

main() calls setScale() on subtotalBeforeTax to properly round its value before moving

on to the next calculation.

main() next creates a BigDecimal object named salesTaxPercent that is initialized to

0.05. It then multiplies subtotalBeforeTax by salesTaxPercent, assigning the result to

salesTax, and calls setScale() on this BigDecimal object to properly round its value.

Moving on, main() adds salesTax to subtotalBeforeTax, saving the result in

invoiceTotal, and rounds the result via setScale(). The values in these objects are sent

to the standard output device via System.out.println(), which calls their toString()

methods to return string representations of the BigDecimal values.

When you run this new version of InvoiceCalc, you will discover the following output:

Subtotal: 285.36
Discount: 28.54
SubTotal after discount: 256.82
Sales Tax: 12.84
Total: 269.66

CAUTION: BigDecimal declares a public BigDecimal(double val) constructor that you
should avoid using if at all possible. This constructor initializes the BigDecimal instance to the
value stored in val, making it possible for this instance to reflect an invalid representation when
the double cannot be stored exactly. For example, BigDecimal(0.1) results in
0.1000000000000000055511151231257827021181583404541015625 being stored in the
instance. In contrast, BigDecimal("0.1") stores 0.1 exactly.

BigInteger
BigDecimal stores a signed decimal number as an unscaled value with a 32-bit integer

scale. The unscaled value is stored in an instance of the java.math.BigInteger class.

BigInteger is an immutable class that represents a signed integer of arbitrary precision.

It stores its value in two’s complement format (all bits are flipped—1s to 0s and 0s to

CHAPTER 6: Exploring the Basic APIs Part 1 240

1s—and 1 is added to the result to be compatible with the two’s complement format

used by Java’s byte integer, short integer, integer, and long integer types).

NOTE: Check out Wikipedia’s “Two’s complement” entry
(http://en.wikipedia.org/wiki/Two%27s_complement) to learn more about two’s
complement.

BigInteger declares three convenience constants: ONE, TEN, and ZERO. Each constant is

the BigInteger equivalent of 1, 10, and 0.

BigInteger also declares a variety of useful constructors and methods. A few of these

constructors and methods are described in Table 6–4.

Table 6–4. BigInteger Constructors and Methods

Method Description

BigInteger(byte[] val) Initialize the BigInteger instance to the integer that is stored in

the val array, with val[0] storing the integer’s most significant

(leftmost) eight bits. This constructor throws

NullPointerException when val is null, and

NumberFormatException when val.length equals 0.

BigInteger(String val) Initialize the BigInteger instance to the integer equivalent of

val. This constructor throws NullPointerException when val

is null, and NumberFormatException when val’s string

representation is invalid (contains letters, for example).

BigInteger abs() Return a new BigInteger instance that contains the absolute

value of the current instance’s value.

BigInteger add(BigInteger
augend)

Return a new BigInteger instance that contains the sum of the

current value and the argument value. This method throws

NullPointerException when augend is null.

BigInteger divide(BigInteger
divisor)

Return a new BigInteger instance that contains the quotient

of the current value divided by the argument value. This

method throws NullPointerException when divisor is null,

and ArithmeticException when divisor represents 0 or the

result cannot be represented exactly.

BigInteger max(BigInteger val) Return either this or val, whichever BigInteger instance

contains the larger value. This method throws

NullPointerException when val is null.

BigInteger min(BigInteger val) Return either this or val, whichever BigInteger instance

contains the smaller value. This method throws

NullPointerException when val is null.

http://en.wikipedia.org/wiki/Two%27s_complement

CHAPTER 6: Exploring the Basic APIs Part 1 241

Method Description

BigInteger multiply(BigInteger
multiplicand)

Return a new BigInteger instance that contains the product of

the current value and the argument value. This method throws

NullPointerException when multiplicand is null.

BigInteger negate() Return a new BigInteger instance that contains the negative

of the current value.

BigInteger remainder(BigInteger
divisor)

Return a new BigInteger instance that contains the remainder

of the current value divided by the argument value. This

method throws NullPointerException when divisor is null,

and ArithmeticException when divisor represents 0.

BigInteger subtract(BigInteger
subtrahend)

Return a new BigInteger instance that contains the current

value minus the argument value. This method throws

NullPointerException when subtrahend is null.

String toString() Return a string representation of this BigInteger.

The best way to get comfortable with BigInteger is to try it out. Listing 6–5 uses this

class in a factorial() method comparison context.

Listing 6–5. Comparing factorial() methods

class FactComp
{
 public static void main(String[] args)
 {
 System.out.println(factorial(12));
 System.out.println();
 System.out.println(factorial(20L));
 System.out.println();
 System.out.println(factorial(170.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("170")));
 System.out.println();
 System.out.println(factorial(25.0));
 System.out.println();
 System.out.println(factorial(new BigInteger("25")));
 }
 public static int factorial(int n)
 {
 if (n == 0)
 return 1;
 else
 return n*factorial(n-1);
 }
 public static long factorial(long n)
 {
 if (n == 0)
 return 1;
 else
 return n*factorial(n-1);

CHAPTER 6: Exploring the Basic APIs Part 1 242

 }
 public static double factorial(double n)
 {
 if (n == 1.0)
 return 1.0;
 else
 return n*factorial(n-1);
 }
 public static BigInteger factorial(BigInteger n)
 {
 if (n.equals(BigInteger.ZERO))
 return BigInteger.ONE;
 else
 return n.multiply(factorial(n.subtract(BigInteger.ONE)));
 }
}

Listing 6–5 compares four versions of the recursive factorial() method. This

comparison reveals the largest argument that can be passed to each of the first three

methods before the returned factorial value becomes meaningless, because of limits on

the range of values that can be accurately represented by the numeric type.

The first version is based on int and has a useful argument range of 0 through 12.

Passing any argument greater than 12 results in a factorial that cannot be represented

accurately as an int.

You can increase the useful range of factorial(), but not by much, by changing the

parameter and return types to long. After making these changes, you will discover that

the upper limit of the useful range is 20.

To further increase the useful range, you might create a version of factorial() whose

parameter and return types are double. This is possible because whole numbers can be

represented exactly as doubles. However, the largest useful argument that can be passed

is 170.0. Anything higher than this value results in factorial() returning +infinity.

It is possible that you might need to calculate a higher factorial value, perhaps in the

context of calculating a statistics problem involving combinations or permutations. The

only way to accurately calculate this value is to use a version of factorial() based on

BigInteger.

When you run the previous application, it generates the following output:

479001600

2432902008176640000

7.257415615307994E306

7257415615307998967396728211129263114716991681296451376543577798900561843401706157852350
7492426174595114909912378385207766660225654427530253289007732075109024004302800582956039
6661259965825710439855829425756896631343961226257109494680671120556888045719334021266145
28000

1.5511210043330986E25

15511210043330985984000000

CHAPTER 6: Exploring the Basic APIs Part 1 243

The first three values represent the highest factorials that can be returned by the int-

based, long-based, and double-based factorial() methods. The fourth value

represents the BigInteger equivalent of the highest double factorial.

Notice that the double method fails to accurately represent 170! (! is the math symbol for

factorial). Its precision is simply too small. Although the method attempts to round the

smallest digit, rounding does not always work—the number ends in 7994 instead of

7998. Rounding is only accurate up to argument 25.0, as the last two output lines reveal.

NOTE: RSA encryption, BigDecimal, and factorial are practical examples of BigInteger’s
usefulness. However, you can also use BigInteger in unusual ways. For example, my February
2006 JavaWorld article titled “Travel Through Time with Java”
(http://www.javaworld.com/javaworld/jw-02-2006/jw-0213-funandgames.html),
a part of my Java Fun and Games series, used BigInteger to store an image as a very large
integer. The idea was to experiment with BigInteger methods to look for images of people and
places that existed in the past, will exist in the future, or might never exist. If this craziness
appeals to you, check out my article.

Package Information
The java.lang.Package class provides access to information about a package (see

Chapter 4 for an introduction to packages). This information includes version information

about the implementation and specification of a Java package, the name of the

package, and an indication of whether or not the package has been sealed (all classes

that are part of the package are archived in the same JAR file).

NOTE: Chapter 1 introduces JAR files.

Table 6–5 describes some of Package’s methods.

Table 6–5. Package Methods

Method Description

String getImplementationTitle() Return the title of this package’s implementation, which

might be null. The format of the title is unspecified.

String getImplementationVendor() Return the name of the vendor or organization that provides

this package’s implementation. This name might be null. The

format of the name is unspecified.

String getImplementationVersion() Return the version number of this package’s

implementation, which might be null. This version string

must be a sequence of positive decimal integers separated

by periods and might have leading zeros.

http://www.javaworld.com/javaworld/jw-02-2006/jw-0213-funandgames.html

CHAPTER 6: Exploring the Basic APIs Part 1 244

Method Description

String getName() Return the name of this package in standard dot notation;

for example, java.lang.

static Package getPackage(String
packageName)

Return the Package object that is associated with the

package identified as packageName, or null when the package

identified as packageName cannot be found. This method

throws NullPointerException when packageName is null.

static Package[] getPackages() Return an array of all Package objects that are accessible to

this method’s caller.

String getSpecificationTitle() Return the title of this package’s specification, which might

be null. The format of the title is unspecified.

String getSpecificationVendor() Return the name of the vendor or organization that provides

the specification that is implemented by this package. This

name might be null. The format of the name is unspecified.

String getSpecificationVersion() Return the version number of the specification of this

package’s implementation, which might be null. This version

string must be a sequence of positive decimal integers

separated by periods, and might have leading zeros.

boolean isCompatibleWith(String
desired)

Check this package to determine if it is compatible with the

specified version string, by comparing this package’s

specification version with the desired version. Return true

when this package’s specification version number is greater

than or equal to the desired version number (this package is

compatible); otherwise, return false. This method throws

NullPointerException when desired is null, and

NumberFormatException when this package’s version

number or the desired version number is not in dotted form.

boolean isSealed() Return true when this package has been sealed; otherwise,

return false.

I have created a PackageInfo application that demonstrates most of Table 6–5’s Package

methods. Listing 6–6 presents this application’s source code.

Listing 6–6. Obtaining information about a package

public class PackageInfo
{
 public static void main(String[] args)
 {
 if (args.length == 0)
 {
 System.err.println("usage: java PackageInfo packageName [version]");
 return;
 }

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 6: Exploring the Basic APIs Part 1 245

 Package pkg = Package.getPackage(args[0]);
 if (pkg == null)
 {
 System.err.println(args[0] + " not found");
 return;
 }
 System.out.println("Name: " + pkg.getName());
 System.out.println("Implementation title: " +
 pkg.getImplementationTitle());
 System.out.println("Implementation vendor: " +
 pkg.getImplementationVendor());
 System.out.println("Implementation version: " +
 pkg.getImplementationVersion());
 System.out.println("Specification title: " +
 pkg.getSpecificationTitle());
 System.out.println("Specification vendor: " +
 pkg.getSpecificationVendor());
 System.out.println("Specification version: " +
 pkg.getSpecificationVersion());
 System.out.println("Sealed: " + pkg.isSealed());
 if (args.length > 1)
 System.out.println("Compatible with " + args[1] + ": " +
 pkg.isCompatibleWith(args[1]));
 }
}

To use this application, specify at least a package name on the command line. For

example, java PackageInfo java.lang returns the following output under Java version

6:

Name: java.lang
Implementation title: Java Runtime Environment
Implementation vendor: Sun Microsystems, Inc.
Implementation version: 1.6.0_16
Specification title: Java Platform API Specification
Specification vendor: Sun Microsystems, Inc.
Specification version: 1.6
Sealed: false

PackageInfo also lets you determine if the package’s specification is compatible with a

specific version number. A package is compatible with its predecessors.

For example, java PackageInfo java.lang 1.6 outputs Compatible with 1.6: true,

whereas java PackageInfo java.lang 1.8 outputs Compatible with 1.8: false.

You can also use PackageInfo with your own packages, which you learned to create in

Chapter 4. For example, that chapter presented a logging package.

Copy PackageInfo.class into the directory containing the logging package directory

(which contains the compiled classfiles), and execute java PackageInfo logging.

PackageInfo responds by displaying the following output:

logging not found

This error message is presented because getPackage() requires at least one classfile to

be loaded from the package before it returns a Package object describing that package.

CHAPTER 6: Exploring the Basic APIs Part 1 246

The only way to eliminate the previous error message is to load a class from the

package. Accomplish this task by merging Listing 6–7 into Listing 6–6.

Listing 6–7. Dynamically loading a class from a classfile

if (args.length == 3)
try
{
 Class.forName(args[2]);
}
catch (ClassNotFoundException cnfe)
{
 System.err.println("cannot load " + args[2]);
 return;
}

This code fragment, which must precede Package pkg =
Package.getPackage(args[0]);, loads the classfile named by the revised PackageInfo

application’s third command-line argument.

Run the new PackageInfo application via java PackageInfo logging 1.5 logging.File

and you will observe the following output—this command line identifies logging’s File

class as the class to load:

Name: logging
Implementation title: null
Implementation vendor: null
Implementation version: null
Specification title: null
Specification vendor: null
Specification version: null
Sealed: false
Exception in thread "main" java.lang.NumberFormatException: Empty version
 string
 at java.lang.Package.isCompatibleWith(Unknown Source)
 at PackageInfo.main(PackageInfo.java:43)

It is not surprising to see all of these null values because no package information has

been added to the logging package. Also, NumberFormatException is thrown from

isCompatibleWith() because the logging package does not contain a specification

version number in dotted form (it is null).

Perhaps the simplest way to place package information into the logging package is to

create a logging.jar file in a similar manner to the example shown in Chapter 4. But

first, you must create a small text file that contains the package information. You can

choose any name for the file. Listing 6–8 reveals my choice of manifest.mf.

Listing 6–8. manifest.mf containing the package information

Implementation-Title: Logging Implementation
Implementation-Vendor: Jeff Friesen
Implementation-Version: 1.0a
Specification-Title: Logging Specification
Specification-Vendor: Jeff "JavaJeff" Friesen
Specification-Version: 1.0
Sealed: true

CHAPTER 6: Exploring the Basic APIs Part 1 247

NOTE: Make sure to press the Return/Enter key at the end of the final line (Sealed: true).
Otherwise, you will probably observe Sealed: false in the output because this entry will not
be stored in the logging package by the JDK’s jar tool—jar is a bit quirky.

Execute the following command line to create a JAR file that includes logging and its

files, and whose manifest, a special file named MANIFEST.MF that stores information

about the contents of a JAR file, contains the contents of Listing 6–8:

jar cfm logging.jar manifest.mf logging

This command line creates a JAR file named logging.jar (via the c [create] and f [file]

options). It also merges the contents of manifest.mf (via the m [manifest] option) into

MANIFEST.MF, which is stored in the package’s META-INF directory.

NOTE: To learn more about a JAR file’s manifest, read the “JAR Manifest” section of the JDK
documentation’s “JAR File Specification” page
(http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#JAR%20M
anifest).

Assuming that the jar tool presents no error messages, execute the following Windows-

oriented command line (or a command line suitable for your platform) to run PackageInfo

and extract the package information from the logging package:

java -cp logging.jar;. PackageInfo logging 1.0 logging.File

This time, you should see the following output:

Name: logging
Implementation title: Logging Implementation
Implementation vendor: Jeff Friesen
Implementation version: 1.0a
Specification title: Logging Specification
Specification vendor: Jeff "JavaJeff" Friesen
Specification version: 1.0
Sealed: true
Compatible with 1.0: true

Primitive Wrapper Classes
The java.lang package includes Boolean, Byte, Character, Double, Float, Integer, Long,

and Short. These classes are known as primitive wrapper classes because their

instances wrap themselves around values of primitive types.

NOTE: The primitive wrapper classes are also known as value classes.

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#JAR%20Manifest
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html#JAR%20Manifest

CHAPTER 6: Exploring the Basic APIs Part 1 248

Java provides these eight primitive wrapper classes for two reasons:

 The collections framework (discussed Chapter 8) provides lists, sets,

and maps that can only store objects; they cannot store primitive

values. You store a primitive value in a primitive wrapper class

instance and store the instance in the collection.

 These classes provide a good place to associate useful constants

(such as MAX_VALUE and MIN_VALUE) and class methods (such as

Integer’s parseInt() methods and Character’s isDigit(),

isLetter(), and toUpperCase() methods) with the primitive types.

This section introduces you to each of these primitive wrapper classes and a class

named Number.

Boolean
Boolean is the smallest of the primitive wrapper classes. This class declares three

constants, including TRUE and FALSE, which denote precreated Boolean objects.

Boolean also declares a pair of constructors for initializing a Boolean object:

 Boolean(boolean value) initializes the Boolean object to value.

 Boolean(String s) converts s’s text to a true or false value and stores

this value in the Boolean object.

The second constructor compares s’s value with true. Because the comparison is case-

insensitive, any combination of these four letters (such as true, TRUE, or tRue) results in

true being stored in the object. Otherwise, the constructor stores false in the object.

Boolean’s constructors are complemented by boolean booleanValue(), which returns

the wrapped Boolean value.

Boolean also declares or overrides the following methods:

 int compareTo(Boolean b) compares the current Boolean object with b

to determine their relative order. The method returns 0 when the

current object contains the same Boolean value as b, a positive value

when the current object contains true and b contains false, and a

negative value when the current object contains false and b contains

true.

 boolean equals(Object o) compares the current Boolean object with o

and returns true when o is not null, o is of type Boolean, and both

objects contain the same Boolean value.

 static boolean getBoolean(String name) returns true when a system

property (discussed in Chapter 7) identified by name exists and is equal

to true.

CHAPTER 6: Exploring the Basic APIs Part 1 249

 int hashCode() returns a suitable hash code that allows Boolean objects

to be used with hash-based collections (discussed in Chapter 8).

 static boolean parseBoolean(String s) parses s, returning true if s

equals "true", "TRUE", "True", or any other combination of these

letters. Otherwise, this method returns false. (Parsing breaks a

sequence of characters into meaningful components, known as

tokens.)

 String toString() returns "true" when the current Boolean instance

contains true; otherwise, this method returns "false".

 static String toString(boolean b) returns "true" when b contains

true; otherwise, this method returns "false".

 static Boolean valueOf(boolean b) returns TRUE when b contains

true or FALSE when b contains false.

 static Boolean valueOf(String s) returns TRUE when s equals

"true", "TRUE", "True", or any other combination of these letters.

Otherwise, this method returns FALSE.

CAUTION: Newcomers to the Boolean class often think that getBoolean() returns a
Boolean object’s true/false value. However, getBoolean() returns the value of a Boolean-
based system property—I discuss system properties in Chapter 7. If you need to return a
Boolean object’s true/false value, use the booleanValue() method instead.

It is often better to use TRUE and FALSE than to create Boolean objects. For example,

suppose you need a method that returns a Boolean object containing true when the

method’s double argument is negative, or false when this argument is zero or positive.

You might declare your method like the isNegative() method shown in Listing 6–9.

Listing 6–9. An isNegative() method with unnecessary Boolean object creation

public Boolean isNegative(double d)
{
 return new Boolean(d < 0);
}

Although this method is concise, it unnecessarily creates a Boolean object. When the

method is called frequently, many Boolean objects are created that consume heap

space. When heap space runs low, the garbage collector runs and slows down the

application, which impacts performance.

Listing 6–10 reveals a better way to code isNegative().

Listing 6–10. A refactored isNegative() method not creating Boolean objects

public Boolean isNegative(double d)
{
 return (d < 0) ? Boolean.TRUE : Boolean.FALSE;
}

CHAPTER 6: Exploring the Basic APIs Part 1 250

This method avoids creating Boolean objects by returning either the precreated TRUE or

FALSE object.

TIP: You should strive to create as few objects as possible. Not only will your applications have
smaller memory footprints, they will perform better because the garbage collector will not be
required to run as often.

Character
Character is the largest of the primitive wrapper classes, containing many constants, a

constructor, many methods, and a pair of nested classes (Subset and UnicodeBlock).

NOTE: Character’s complexity derives from Java’s support for Unicode
(http://en.wikipedia.org/wiki/Unicode). For brevity, I ignore much of Character’s
Unicode-related complexity, which is beyond the scope of this chapter.

Character declares a single Character(char value) constructor, which you use to

initialize a Character object to value. This constructor is complemented by char
charValue(), which returns the wrapped character value.

When you start writing applications, you might codify expressions such as ch >= '0' &&
ch <= '9' (test ch to see if it contains a digit) and ch >= 'A' && ch <= 'Z' (test ch to

see if it contains an uppercase letter). You should avoid doing so for three reasons:

 It is too easy to introduce a bug into the expression. For example, ch >
'0' && ch <= '9' introduces a subtle bug that does not include '0' in

the comparison.

 The expressions are not very descriptive of what they are testing.

 The expressions are biased toward Latin digits (0–9) and letters (A–Z

and a–z). They do not take into account digits and letters that are valid

in other languages. For example, '\u0beb' is a character literal

representing one of the digits in the Tamil language.

Character declares several comparison and conversion utility methods that address

these concerns. These methods include the following:

 static boolean isDigit(char ch) returns true when ch contains a

digit (typically 0 through 9, but also digits in other languages).

 static boolean isLetter(char ch) returns true when ch contains a

letter (typically A–Z or a–z, but also letters in other languages).

 static boolean isLetterOrDigit(char ch) returns true when ch

contains a letter or digit (typically A–Z, a–z, or 0–9, but also letters or

digits in other languages).

http://en.wikipedia.org/wiki/Unicode

CHAPTER 6: Exploring the Basic APIs Part 1 251

 static boolean isLowerCase(char ch) returns true when ch contains

a lowercase letter.

 static boolean isUpperCase(char ch) returns true when ch contains

an uppercase letter.

 static boolean isWhitespace(char ch) returns true when ch contains

a whitespace character (typically a space, a horizontal tab, a carriage

return, or a line feed).

 static char toLowerCase(char ch) returns the lowercase equivalent

of ch’s uppercase letter; otherwise, this method returns ch’s value.

 static char toUpperCase(char ch) returns the uppercase equivalent

of ch’s lowercase letter; otherwise, this method returns ch’s value.

For example, isDigit(ch) is preferable to ch >= '0' && ch <= '9' because it avoids a

source of bugs, is more readable, and returns true for non-Latin digits (such as

'\u0beb') as well as Latin digits.

Float and Double
Float and Double store floating-point and double precision floating-point values in Float

and Double objects, respectively. These classes declare the following constants:

 MAX_VALUE identifies the maximum value that can be represented as a

float or double.

 MIN_VALUE identifies the minimum value that can be represented as a

float or double.

 NaN represents 0.0F/0.0F as a float and 0.0/0.0 as a double.

 NEGATIVE_INFINITY represents -infinity as a float or double.

 POSITIVE_INFINITY represents +infinity as a float or double.

Float and Double also declare the following constructors for initializing their objects:

 Float(float value) initializes the Float object to value.

 Float(double value) initializes the Float object to the float

equivalent of value.

 Float(String s) converts s’s text to a floating-point value and stores

this value in the Float object.

 Double(double value) initializes the Double object to value.

 Double(String s) converts s’s text to a double precision floating-point

value and stores this value in the Double object.

CHAPTER 6: Exploring the Basic APIs Part 1 252

Float’s constructors are complemented by float floatValue(), which returns the

wrapped floating-point value. Similarly, Double’s constructors are complemented by

double doubleValue(), which returns the wrapped double precision floating-point value.

Float declares several utility methods in addition to floatValue(). These methods

include the following:

 static int floatToIntBits(float value) converts value to a 32-bit

integer.

 static boolean isInfinite(float f) returns true when f’s value is

+infinity or -infinity. A related public boolean isInfinite() method

returns true when the current Float object’s value is +infinity or -

infinity.

 static boolean isNaN(float f) returns true when f’s value is NaN. A

related public boolean isNaN() method returns true when the current

Float object’s value is NaN.

 static float parseFloat(String s) parses s, returning the floating-

point equivalent of s’s textual representation of a floating-point value

or throwing NumberFormatException when this representation is invalid

(contains letters, for example).

Double declares several utility methods in addition to doubleValue(). These methods

include the following:

 static long doubleToLongBits(double value) converts value to a

long integer.

 static boolean isInfinite(double d) returns true when d’s value is

+infinity or -infinity. A related boolean isInfinite() method returns

true when the current Double object’s value is +infinity or -infinity.

 static boolean isNaN(double d) returns true when d’s value is NaN.

A related public boolean isNaN() method returns true when the

current Double object’s value is NaN.

 static double parseDouble(String s) parses s, returning the double

precision floating-point equivalent of s’s textual representation of a

double precision floating-point value or throwing

NumberFormatException when this representation is invalid.

The floatToIntBits() and doubleToIntBits() methods are used in implementations of

the equals() and hashCode() methods that must take float and double fields into

account. floatToIntBits() and doubleToIntBits() allow equals() and hashCode() to

respond properly to the following situations:

CHAPTER 6: Exploring the Basic APIs Part 1 253

 equals() must return true when f1 and f2 contain Float.NaN (or d1 and

d2 contain Double.NaN). If equals() was implemented in a manner

similar to f1.floatValue() == f2.floatValue() (or d1.doubleValue()
== d2.doubleValue()), this method would return false because NaN is

not equal to anything, including itself.

 equals() must return false when f1 contains +0.0 and f2 contains -0.0

(or vice versa), or d1 contains +0.0 and d2 contains -0.0 (or vice versa).

If equals() was implemented in a manner similar to f1.floatValue()
== f2.floatValue() (or d1.doubleValue() == d2.doubleValue()), this

method would return true because +0.0 == -0.0 returns true.

These requirements are needed for hash-based collections (discussed in Chapter 8) to

work properly. Listing 6–11 shows how they impact Float’s and Double’s equals()

methods.

Listing 6–11. Demonstrating Float’s equals() method in a NaN context and Double’s equals() method in a
+/-0.0 context

public static void main(String[] args)
{
 Float f1 = new Float(Float.NaN);
 System.out.println(f1.floatValue());
 Float f2 = new Float(Float.NaN);
 System.out.println(f2.floatValue());
 System.out.println(f1.equals(f2));
 System.out.println(Float.NaN == Float.NaN);
 System.out.println();
 Double d1 = new Double(+0.0);
 System.out.println(d1.doubleValue());
 Double d2 = new Double(-0.0);
 System.out.println(d2.doubleValue());
 System.out.println(d1.equals(d2));
 System.out.println(+0.0 == -0.0);
}

Run this application. The following output proves that Float’s equals() method properly

handles NaN and Double’s equals() method properly handles +/-0.0:

NaN
NaN
true
false

0.0
-0.0
false
true

TIP: If you want to test a float or double value for equality with +infinity or -infinity (but not
both), do not use isInfinite(). Instead, compare the value with NEGATIVE_INFINITY or
POSITIVE_INFINITY via ==. For example, f == Float.NEGATIVE_INFINITY.

CHAPTER 6: Exploring the Basic APIs Part 1 254

You will find parseFloat() and parseDouble() useful in many contexts. For example,

Listing 6–12 uses parseDouble() to parse command-line arguments into doubles.

Listing 6–12. Parsing command-line arguments into double precision floating-point values

public static void main(String[] args)
{
 if (args.length != 3)
 {
 System.err.println("usage: java Calc value1 op value2");
 System.err.println("op is one of +, -, *, or /");
 return;
 }
 try
 {
 double value1 = Double.parseDouble(args[0]);
 double value2 = Double.parseDouble(args[2]);
 if (args[1].equals("+"))
 System.out.println(value1+value2);
 else
 if (args[1].equals("-"))
 System.out.println(value1-value2);
 else
 if (args[1].equals("*"))
 System.out.println(value1*value2);
 else
 if (args[1].equals("/"))
 System.out.println(value1/value2);
 else
 System.err.println("invalid operator: " + args[1]);
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("Bad number format: " + nfe.getMessage());
 }
}

Specify java Calc 10E+3 + 66.0 to try out the Calc application. This application

responds by outputting 10066.0. If you specified java Calc 10E+3 + A instead, you

would observe Bad number format: For input string: "A" as the output, which is in

response to the second parseDouble() method call’s throwing of a

NumberFormatException object.

Although NumberFormatException describes an unchecked exception, and although

unchecked exceptions are often not handled because they represent coding mistakes,

NumberFormatException does not fit this pattern in this example. The exception does not

arise from a coding mistake; it arises from someone passing an illegal numeric argument

to the application, which cannot be avoided through proper coding.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 6: Exploring the Basic APIs Part 1 255

Integer, Long, Short, and Byte
Integer, Long, Short, and Byte store 32-bit, 64-bit, 16–bit, and 8-bit integer values in

Integer, Long, Short, and Byte objects, respectively.

Each class declares MAX_VALUE and MIN_VALUE constants that identify the maximum and

minimum values that can be represented by its associated primitive type.

These classes also declare the following constructors for initializing their objects:

 Integer(int value) initializes the Integer object to value.

 Integer(String s) converts s’s text to a 32-bit integer value and

stores this value in the Integer object.

 Long(long value) initializes the Long object to value.

 Long(String s) converts s’s text to a 64-bit integer value and stores

this value in the Long object.

 Short(short value) initializes the Short object to value.

 Short(String s) converts s’s text to a 16–bit integer value and stores

this value in the Short object.

 Byte(byte value) initializes the Byte object to value.

 Byte(String s) converts s’s text to an 8-bit integer value and stores

this value in the Byte object.

Integer’s constructors are complemented by int intValue(), Long’s constructors are

complemented by long longValue(), Short’s constructors are complemented by short
shortValue(), and Byte’s constructors are complemented by byte byteValue(). These

methods return wrapped integers.

These classes declare various useful integer-oriented methods. For example, Integer

declares the following class methods for converting a 32-bit integer to a String

according to a specific representation (binary, hexadecimal, octal, and decimal):

 static String toBinaryString(int i) returns a String object

containing i’s binary representation. For example,

Integer.toBinaryString(255) returns a String object containing

11111111.

 static String toHexString(int i) returns a String object containing

i’s hexadecimal representation. For example,

Integer.toHexString(255) returns a String object containing ff.

 static String toOctalString(int i) returns a String object

containing i’s octal representation. For example, toOctalString(64)

returns a String object containing 377.

CHAPTER 6: Exploring the Basic APIs Part 1 256

 static String toString(int i) returns a String object containing i’s

decimal representation. For example, toString(255) returns a String

object containing 255.

It is often convenient to prepend zeros to a binary string so that you can align multiple

binary strings in columns. For example, you might want to create an application that

displays the following aligned output:

11110001
+
00000111

11111000

Unfortunately, toBinaryString() does not let you accomplish this task. For example,

Integer.toBinaryString(7) returns a String object containing 111 instead of

00000111. Listing 6–13’s toAlignedBinaryString() method addresses this oversight.

Listing 6–13. Aligning binary strings

public static void main(String[] args)
{
 System.out.println(toAlignedBinaryString(7, 8));
 System.out.println(toAlignedBinaryString(255, 16));
 System.out.println(toAlignedBinaryString(255, 7));
}
static String toAlignedBinaryString(int i, int numBits)
{
 String result = Integer.toBinaryString(i);
 if (result.length() > numBits)
 return null; // cannot fit result into numBits columns
 int numLeadingZeros = numBits-result.length();
 String zerosPrefix = "";
 for (int j = 0; j < numLeadingZeros; j++)
 zerosPrefix += "0";
 return zerosPrefix + result;
}

The toAlignedBinaryString() method takes two arguments: the first argument specifies

the 32-bit integer that is to be converted into a binary string, and the second argument

specifies the number of bit columns in which to fit the string.

After calling toBinaryString() to return i’s equivalent binary string without leading

zeros, toAlignedBinaryString() verifies that the string’s digits can fit into the number of

bit columns specified by numBits. If they do not fit, this method returns null. (You will

learn about length() and other String methods in Chapter 7.)

Moving on, toAlignedBinaryString() calculates the number of leading "0"s to prepend

to result, and then uses a for loop to create a string of leading zeros. This method ends

by returning the leading zeros string prepended to the result string.

Although using the compound string concatenation with assignment operator (+=) in a

loop to build a string looks okay, it is very inefficient because intermediate String

objects are created and thrown away. However, I employed this inefficient code so that I

can contrast it with the more efficient code that I present in Chapter 7.

CHAPTER 6: Exploring the Basic APIs Part 1 257

When you run this application, it generates the following output:

00000111
0000000011111111
null

Number
Each of Float, Double, Integer, Long, Short, and Byte provides the other classes’

xValue() methods in addition to its own xValue() method. For example, Float provides

doubleValue(), intValue(), longValue(), shortValue(), and byteValue() in addition to

floatValue().

All six methods are members of java.lang.Number, which is the abstract superclass of

Float, Double, Integer, Long, Short, and Byte—Number’s floatValue(), doubleValue(),

intValue(), and longValue() methods are abstract. Number is also the superclass of

BigDecimal and BigInteger (and some concurrency-related classes; see Chapter 9).

Number exists to simplify iterating over a collection of Number subclass objects. For

example, you can declare a variable of List<Number> type and initialize it to an instance

of ArrayList<Number>. You can then store a mixture of Number subclass objects in the

collection, and iterate over this collection by calling a subclass method polymorphically.

References API
Chapter 2 introduced you to garbage collection, where you learned that the garbage

collector removes an object from the heap when there are no more references to the

object.

Chapter 3 introduced you to Object’s finalize() method, where you learned that the

garbage collector calls this method before removing an object from the heap. This

method gives the object an opportunity to perform cleanup.

This section continues from where Chapters 2 and 3 left off by introducing you to Java’s

References API. This API makes it possible for an application to interact with the

garbage collector in limited ways.

The section first acquaints you with some basic terminology. It then introduces you to

the API’s Reference and ReferenceQueue classes, followed by the API’s SoftReference,

WeakReference, and PhantomReference classes.

Basic Terminology
When an application runs, its execution reveals a root set of references, a collection of

local variables, parameters, class fields, and instance fields that currently exist and that

contain (possibly null) references to objects. This root set changes over time as the

application runs. For example, parameters disappear after a method returns.

CHAPTER 6: Exploring the Basic APIs Part 1 258

Many garbage collectors identify this root set when they run. They use the root set to

determine if an object is reachable (referenced, also known as live) or unreachable (not

referenced). The garbage collector cannot collect reachable objects. Instead, it can only

collect objects that, starting from the root set of references, cannot be reached.

NOTE: Reachable objects include objects that are indirectly reachable from root-set variables,
which means objects that are reachable through live objects that are directly reachable from
those variables. An object that is unreachable by any path from any root-set variable is eligible
for garbage collection.

Beginning with Java version 1.2, reachable objects were classified as strongly

reachable, softly reachable, weakly reachable, and phantom reachable. Unlike strongly

reachable objects, softly, weakly, and phantom reachable objects can be garbage

collected.

The following list describes these four kinds of reachability in terms of reference

strength, from strongest to weakest:

 An object is strongly reachable when it is reachable by a thread

without the thread having to traverse References API objects—the

thread follows a strong reference in a root-set variable. A newly

created object (such as the object referenced by d in Double d = new
Double(1.0);) is strongly reachable by the thread that created it. (I

discuss threads in Chapter 7.)

 An object is softly reachable when it is not strongly reachable but can

be reached by traversing a soft reference (a reference to the object

where the reference is stored in a SoftReference object). The

strongest reference to this object is a soft reference. When heap

memory runs low, the garbage collector typically clears the soft

references of the oldest softly reachable objects and removes those

objects after finalizing them (by calling finalize()).

 An object is weakly reachable when it is not strongly or softly

reachable but can be reached by traversing a weak reference (a

reference to the object where the reference is stored in a

WeakReference object). The strongest reference to this object is a weak

reference. The garbage collector clears weak references to weakly

reachable objects and throws away these objects (after finalizing them)

the next time it runs, even when memory is plentiful.

 An object is phantom reachable when it is neither strongly, softly, nor

weakly reachable, it has been finalized, and the garbage collector is

ready to reclaim its memory. Furthermore, it is referred to by some

phantom reference (a reference to the object where the reference is

stored in a PhantomReference object). The strongest reference to this

object is a phantom reference.

CHAPTER 6: Exploring the Basic APIs Part 1 259

NOTE: Apart from the garbage collector being less eager to clean up the softly reachable object,
a soft reference is exactly like a weak reference. Also, a weak reference is not strong enough to
keep an object in memory.

The object whose reference is stored in a SoftReference, WeakReference, or

PhantomReference object is known as a referent.

Reference and ReferenceQueue
The References API consists of five classes located in the java.lang.ref package.

Central to this package are Reference and ReferenceQueue.

Reference is the abstract superclass of this package’s concrete SoftReference,

WeakReference, and PhantomReference subclasses.

ReferenceQueue is a concrete class whose instances describe queue data structures.

When you associate a ReferenceQueue instance with a Reference subclass object

(Reference object, for short), the Reference object is added to the queue when the

referent to which its encapsulated reference refers becomes garbage.

NOTE: You associate a ReferenceQueue object with a Reference object by passing the
ReferenceQueue object to an appropriate Reference subclass constructor.

Reference is declared as generic type Reference<T>, where T identifies the referent’s

type. This class provides the following methods:

 void clear() assigns null to the stored reference; the Reference

object on which this method is called is not enqueued (inserted) into

its associated reference queue (if there is an associated reference

queue). (The garbage collector clears references directly; it does not

call clear(). Instead, this method is called by applications.)

 boolean enqueue() adds the Reference object on which this method is

called to the associated reference queue. This method returns true

when this Reference object has become enqueued; otherwise, this

method returns false—this Reference object was already enqueued or

was not associated with a queue when created. (The garbage collector

enqueues Reference objects directly; it does not call enqueue().

Instead, this method is called by applications.)

 T get() returns this Reference object’s stored reference. The return

value is null when the stored reference has been cleared, either by the

application or by the garbage collector.

CHAPTER 6: Exploring the Basic APIs Part 1 260

 boolean isEnqueued() returns true when this Reference object has

been enqueued, either by the application or by the garbage collector.

Otherwise, this method returns false—this Reference object was not

associated with a queue when created.

NOTE: Reference also declares constructors. Because these constructors are package-private,
only classes in the java.lang.ref package can subclass Reference. This restriction is
necessary because instances of Reference’s subclasses must work closely with the garbage
collector.

ReferenceQueue is declared as generic type ReferenceQueue<T>, where T identifies the

referent’s type. This class declares the following constructor and methods:

 ReferenceQueue() initializes a new ReferenceQueue instance.

 Reference<? extends T> poll() polls this queue to check for an

available Reference object. If one is available, the object is removed

from the queue and returned. Otherwise, this method returns

immediately with a null value.

 Reference<? extends T> remove() removes the next Reference object

from the queue and returns this object. This method waits indefinitely

for a Reference object to become available, and throws

java.lang.InterruptedException when this wait is interrupted.

 Reference<? extends T> remove(long timeout) removes the next

Reference object from the queue and returns this object. This method

waits until a Reference object becomes available or until timeout

milliseconds have elapsed—passing 0 to timeout causes the method

to wait indefinitely. If timeout’s value expires, the method returns null.

This method throws java.lang.IllegalArgumentException when

timeout’s value is negative, or InterruptedException when this wait is

interrupted.

SoftReference
The SoftReference class describes a Reference object whose referent is softly

reachable. In addition to inheriting Reference’s methods and overriding get(), this

generic class provides the following constructors for initializing a SoftReference object:

 SoftReference(T r) encapsulates r’s reference. The SoftReference

object behaves as a soft reference to r. No ReferenceQueue object is

associated with this SoftReference object.

CHAPTER 6: Exploring the Basic APIs Part 1 261

 SoftReference(T r, ReferenceQueue<? super T> q) encapsulates r’s

reference. The SoftReference object behaves as a soft reference to r.

The ReferenceQueue object identified by q is associated with this

SoftReference object. Passing null to q indicates a soft reference

without a queue.

SoftReference is useful for implementing caches, such as a cache of images. An image

cache keeps images in memory (because it takes time to load them from disk) and

ensures that duplicate (and possibly very large) images are not stored in memory.

The image cache contains references to image objects that are already in memory. If

these references were strong, the images would remain in memory. You would then

need to figure out which images are no longer needed and remove them from memory

so that they can be garbage collected.

Having to manually remove images duplicates the work of a garbage collector. However,

if you wrap the references to the image objects in SoftReference objects, the garbage

collector will determine when to remove these objects (typically when heap memory runs

low) and perform the removal on your behalf.

Listing 6–14 shows how you might use SoftReference to maintain a cache of images.

Listing 6–14. Maintaining a cache of images

class Image
{
 private byte[] image;
 private Image(String name)
 {
 image = new byte[1024*100];
 }
 static Image getImage(String name)
 {
 return new Image(name);
 }
}
public class ImageCache
{
 final static int NUM_IMAGES = 200;
 @SuppressWarnings("unchecked")
 public static void main(String[] args)
 {
 String[] imageNames = new String[NUM_IMAGES];
 for (int i = 0; i < imageNames.length; i++)
 imageNames[i] = new String("image" + i + ".gif");

 SoftReference<Image>[] cache = new SoftReference[imageNames.length];
 for (int i = 0; i < cache.length; i++)
 cache[i] = new SoftReference<Image>(Image.getImage(imageNames[i]));

 for (int i = 0; i < cache.length; i++)
 {
 Image im = cache[i].get();
 if (im == null)
 {

CHAPTER 6: Exploring the Basic APIs Part 1 262

 System.out.println(imageNames[i] + " not in cache");
 im = Image.getImage(imageNames[i]);
 cache[i] = new SoftReference<Image>(im);
 }
 System.out.println("Drawing image");
 im = null; // Remove strong reference to image.
 }
 }
}

This listing declares an Image class that simulates a loaded image. Each instance is

created by calling the getImage() class method, and the instance’s private image array

occupies 100KB of memory.

The main() method first creates an array of String objects that contain image filenames.

The technique employed in creating this array is inefficient. You will discover an efficient

alternative in Chapter 7.

main() next creates an array of SoftReference objects that serves as a cache for Image

objects. This array is initialized to SoftReference objects; each SoftReference object is

initialized to an Image object’s reference.

main() now enters the application’s main loop. It iterates over the cache, retrieving each

Image object or null when the garbage collector has cleared the soft reference to the

Image object (so that it can make room in the heap).

If the reference assigned to im is not null, the Image object has not been made

unreachable and subsequent code can draw the image on the screen. The im = null;

assignment removes the strong reference to the Image object from the im root-set

variable.

NOTE: The im = null; assignment is not necessary in this application because either im is
immediately overwritten by get()’s return value in the next loop iteration, or the loop and the
application ends. Because im’s value might hang around for a while in a refactored and longer-
lived version of this application, and the garbage collector would not be able to remove the
associated Image object from the heap because that object would be strongly reachable, I’ve
included this assignment to show you how to get rid of im’s value.

When the reference assigned to im is null, the Image object has been made unreachable

and has probably been removed from the heap. In this case, the Image object must be

re-created and stored in a new SoftReference object that is stored in the cache.

Here is a small portion of the output that I observed—you may have to adjust the

application’s code to observe similar output:

image162.gif not in cache
Drawing image
image163.gif not in cache
Drawing image
Drawing image

CHAPTER 6: Exploring the Basic APIs Part 1 263

Regarding the last line of output, its Drawing image message implies that image164.gif

is still in the cache. In other words, the associated Image object is still reachable.

NOTE: If you observe an unending repetition of the Drawing image message, perhaps your
Java virtual machine’s heap space is larger than the heap space used by my virtual machine
when I ran this application on my Windows XP platform. If your virtual machine’s heap space is
large enough, soft references will not be cleared and you will end up with an infinite loop of
output. To correct this situation, you might want to increase the size of Image’s image array
(perhaps from 1024*100 to 1024*500) and (possibly) assign a larger value to NUM_IMAGES
(perhaps 500).

WeakReference
The WeakReference class describes a Reference object whose referent is weakly

reachable. In addition to inheriting Reference’s methods, this generic class provides the

following constructors for initializing a WeakReference object:

 WeakReference(T r) encapsulates r’s reference. The WeakReference

object behaves as a weak reference to r. No ReferenceQueue object is

associated with this WeakReference object.

 WeakReference(T r, ReferenceQueue<? super T> q) encapsulates r’s

reference. The WeakReference object behaves as a weak reference to

r. The ReferenceQueue object identified by q is associated with this

WeakReference object. Passing null to q indicates a weak reference

without a queue.

WeakReference is useful for preventing memory leaks related to hashmaps. A memory

leak occurs when you keep adding objects to a hashmap and never remove them. The

objects remain in memory because the hashmap stores strong references to them.

Ideally, the objects should only remain in memory when they are strongly referenced

from elsewhere in the application. When an object’s last strong reference (apart from

hashmap strong references) disappears, the object should be garbage collected.

This situation can be remedied by storing weak references to hashmap entries so they

are discarded when no strong references to their keys exist. Java’s WeakHashmap class

(discussed in Chapter 8) accomplishes this task.

PhantomReference
The PhantomReference class describes a Reference object whose referent is phantom

reachable. In addition to inheriting Reference’s methods and overriding get(), this

generic class provides a single constructor for initializing a PhantomReference object:

CHAPTER 6: Exploring the Basic APIs Part 1 264

 PhantomReference(T r, ReferenceQueue<? super T> q) encapsulates

r’s reference. The PhantomReference object behaves as a phantom

reference to r. The ReferenceQueue object identified by q is associated

with this PhantomReference object. Passing null to q makes no sense

because get() is overridden to return null and the PhantomReference

object will never be enqueued.

Unlike WeakReference and SoftReference objects, which are enqueued onto their

reference queues when their referents become weakly reachable (before finalization), or

sometime after their referents become softly reachable (before finalization),

PhantomReference objects are enqueued after their referents have been reclaimed.

Although you cannot access a PhantomReference object’s referent (its get() method

returns null), this class is useful because enqueuing the PhantomReference object tells

you exactly when the referent has been removed. Perhaps you want to delay creating a

large object until another large object has been removed (to avoid a thrown

java.lang.OutOfMemoryError object).

PhantomReference is also useful as a substitute for resurrection (making an unreachable

object reachable). Because there is no way to access the referent (get() returns null),

which is no longer in memory when the PhantomReference object is enqueued, the object

can be cleaned up during the first garbage collection cycle in which that object was

discovered to be phantom reachable. You can then clean up related resources after

receiving notification via the PhantomReference object’s reference queue.

NOTE: Resurrection occurs in the finalize() method when you assign this to a root-set
variable. For example, you might specify r = this; within finalize() to assign the
unreachable object identified as this to a class field named r.

In contrast, the garbage collector requires at least two garbage collection cycles to

determine if an object that overrides finalize() can be garbage collected. When the

first cycle detects that the object is eligible for garbage collection, it calls finalize().

Because this method might have resurrected the object, a second garbage collection

cycle is needed to determine if resurrection has happened.

CAUTION: Resurrection has been used to implement object pools that recycle the same objects
when these objects are expensive (time-wise) to create (database connection objects are an
example). Because resurrection exacts a severe performance penalty, and because the
PhantomReference class makes resurrection unnecessary, you should avoid using
resurrection in your applications.

Listing 6–15 shows how you might use PhantomReference to detect the removal of a

large object.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 6: Exploring the Basic APIs Part 1 265

Listing 6–15. Detecting a large object’s removal

class LargeObject
{
 private byte[] memory = new byte[1024*1024*50]; // 50 megabytes
}
public class LargeObjectDemo
{
 public static void main(String[] args)
 {
 ReferenceQueue<LargeObject> rq;
 rq = new ReferenceQueue<LargeObject>();
 PhantomReference<LargeObject> pr;
 pr = new PhantomReference<LargeObject>(new LargeObject(), rq);
 int counter = 0;
 int[] x;
 while (rq.poll() == null)
 {
 System.out.println("waiting for large object to be removed");
 if (counter++ == 10)
 x = new int[1024*1024];
 }
 System.out.println("large object removed");
 }
}

Listing 6–15 declares a LargeObject class whose private memory array occupies 50MB. If

your Java implementation throws OutOfMemoryError when you run this application, you

might need to reduce the size of this array.

The main() method first creates a ReferenceQueue object that describes a queue onto

which a subsequently created PhantomReference object that contains a LargeObject

reference will be enqueued.

main() next creates the PhantomReference object, passing a reference to a newly

created LargeObject object and a reference to the previously created ReferenceQueue

object to the constructor.

After initializing a counter variable (which determines how many loop iterations pass

before another large object is created), and after introducing a local variable named x

that will hold a strong reference to another large object, main() enters a polling loop.

The polling loop begins by calling poll() to detect the removal of the LargeObject

object from memory. As long as this method returns null, meaning that the LargeObject

object is still in memory, the loop outputs a message and increments counter.

When counter’s value reaches 10, x is assigned an int-based array containing one

million integer elements. Because the reference stored in x is strong, this array will not

be garbage collected (before the application ends).

On my platform, assigning this array’s reference to x is sufficient for the garbage

collector to destroy the LargeObject object. Its PhantomReference object is enqueued

onto the rq-referenced ReferenceQueue; poll() returns the PhantomReference object.

CHAPTER 6: Exploring the Basic APIs Part 1 266

Depending on your implementation of the virtual machine, you might or might not

observe the large object removed message. If you do not see this message, you might

need to increase the size of array x, making sure that OutOfMemoryError is not thrown.

When I run this application on my platform, I observe the following output—you may

have to adjust the application’s code to observe similar output:

waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
waiting for large object to be removed
large object removed

NOTE: For a more useful example of PhantomReference, and for more in-depth knowledge of
garbage collection, check out Keith D Gregory’s “Java Reference Objects” blog post
(http://www.kdgregory.com/index.php?page=java.refobj).

EXERCISES

The following exercises are designed to test your understanding of Java’s basic APIs:

1. What constants does Math declare?

2. Why is Math.abs(Integer.MIN_VALUE) equal to Integer.MIN_VALUE?

3. What does Math’s random() method accomplish?

4. Identify the five special values that can arise during floating-point calculations.

5. How do Math and StrictMath differ?

6. What is the purpose of strictfp?

7. What is BigDecimal and why might you use this class?

8. Which RoundingMode constant describes the form of rounding commonly taught at
school?

9. What is BigInteger?

10. What is the purpose of Package’s isSealed() method?

11. True or false: getPackage() requires at least one classfile to be loaded from the
package before it returns a Package object describing that package.

12. Identify the two main uses of the primitive wrapper classes.

http://www.kdgregory.com/index.php?page=java.refobj

CHAPTER 6: Exploring the Basic APIs Part 1 267

13. Why should you avoid coding expressions such as ch >= '0' && ch <= '9' (test
ch to see if it contains a digit) or ch >= 'A' && ch <= 'Z' (test ch to see if it
contains an uppercase letter)?

14. Identify the four kinds of reachability.

15. What is a referent?

16. Which of the References API’s classes is the equivalent of Object’s finalize() method?

17. Before the era of graphics screens, developers sometimes used a text-based screen
to display graphics shapes. For example, a circle might be displayed as follows:

 *

 ** **
 ** **
 * *
 * *
 ** **
 * *
 * *
 * *
 ** **
 * *
 * *
 * *
 ** **
 * *
 * *
 ** **
 ** **

 *

NOTE: This shape appears elliptical instead of circular because each asterisk’s displayed height is
greater than its displayed width. If the height and width matched, the shape would appear circular.

Create a Circle application that generates and displays the previous circle shape. Start by
creating a two-dimensional screen array of 22 rows by 22 columns. Initialize each array
element to the space character (indicating a clear screen). For each integer angle from 0 to
360, compute the x and y coordinates by multiplying a radius value of 10 by each of the
cosine and sine of the angle. Add 11 to the x value and 11 to the y value to center the circle
shape within the screen array. Assign an asterisk to the array at the resulting (x, y)
coordinates. After the loop completes, output the array to the standard output device.

18. A prime number is a positive integer greater than 1 that is evenly divisible only by 1
and itself. Create a PrimeNumberTest application that determines if its solitary
integer argument is prime or not prime, and outputs a suitable message. For example,
java PrimeNumberTest 289 should output the message 289 is not prime. A
simple way to check for primality is to loop from 2 through the square root of the
integer argument, and use the remainder operator in the loop to determine if the
argument is divided evenly by the loop index. For example, because 6%2 yields a
remainder of 0 (2 divides evenly into 6), integer 6 is not a prime number.

CHAPTER 6: Exploring the Basic APIs Part 1 268

Summary
The java.lang.Math class supplements the basic math operations (+, -, *, /, and %) with

advanced operations (such as trigonometry). The companion java.lang.StrictMath

class ensures that all of these operations yield the same values on all platforms.

Money must never be represented by floating-point and double precision floating-point

variables because not all monetary values can be represented exactly. In contrast, the

java.math.BigDecimal class lets you accurately represent and manipulate these values.

BigDecimal relies on the java.math.BigInteger class for representing its unscaled value.

A BigInteger instance describes an integer value that can be of arbitrary length (subject

to the limits of the virtual machine’s memory).

The java.lang.Package class provides access to package information. This information

includes version information about the implementation and specification of a Java

package, the package’s name, and an indication of whether the package is sealed or

not.

Instances of the java.lang package’s Boolean, Byte, Character, Double, Float, Integer,

Long, and Short primitive wrapper classes wrap themselves around values of primitive

types. These classes are useful for storing primitive values in collections.

The References API makes it possible for an application to interact with the garbage

collector in limited ways. This API’s java.lang.ref package contains classes Reference,

ReferenceQueue, SoftReference, WeakReference, and PhantomReference.

SoftReference is useful for implementing image caches, WeakReference is useful for

preventing memory leaks related to hashmaps, and PhantomReference is useful for

learning when an object has died so its resources can be cleaned up.

Your exploration of Java’s basic APIs is far from finished. Chapter 7 continues to focus

on basic APIs by discussing the Reflection API, string management, the System class,

and the low-level Threading API.

269

269

 Chapter

Exploring the Basic APIs
Part 2
Chapter 7 continues to explore Java’s basic (language-oriented) APIs by introducing
APIs that let you use reflection to obtain type information at runtime and more, manage
strings, perform system activities (such as retrieving a system property value and
obtaining the current time), and use threads to improve application performance.

NOTE: Chapter 7 explores basic API classes and interfaces that are located in the java.lang
and java.lang.reflect packages.

Reflection API
Chapter 3 referred to reflection as a third form of runtime type identification (RTTI).
Java’s Reflection API lets applications learn about loaded classes, interfaces, enums (a
kind of class), and annotation types (a kind of interface). The API also lets applications
instantiate classes, call methods, access fields, and perform other tasks reflectively.

Chapter 5 presented a StubFinder application that used part of the Reflection API to
load a class and identify all of the loaded class’s public methods that are annotated with
@Stub annotations. This tool is one example where using reflection is beneficial. Another
example is the class browser, a tool that enumerates the members of a class.

CAUTION: Reflection should not be used indiscriminately. Application performance suffers
because it takes longer to perform operations with reflection than without reflection. Also,
reflection-oriented code can be harder to read, and the absence of compile-time type checking
can result in runtime failures.

7

CHAPTER 7: Exploring the Basic APIs Part 2 270

The java.lang package’s Class class is the entry point into the Reflection API. Class is
generically declared as Class<T>, where T identifies the class, interface, enum, or
annotation type that is being modeled by the Class object. T can be replaced by ? (as in
Class<?>) when the type being modeled is unknown.

Table 7–1 describes some of Class’s methods.

Table 7–1. Class Methods

Method Description

static Class<?> forName(String
typename)

Return the Class object that is associated with typename,
which must include the type’s qualified package name when
the type is part of a package (java.lang.String, for
example). If the class or interface type has not been loaded
into memory, this method takes care of loading (reading the
classfile’s contents into memory), linking (taking these
contents and combining them into the runtime state of the
virtual machine so that they can be executed), and initializing
(setting class fields to default values, running class
initializers, and performing other class initialization) prior to
returning the Class object. This method throws
java.lang.ClassNotFoundException when the type cannot be
found, java.lang.LinkageError when an error occurs during
linkage, and java.lang.ExceptionInInitializerError when
an exception occurs during a class’s static initialization.

Annotation[] getAnnotations() Return a possibly empty array containing all annotations that
are declared for the class represented by this Class object.

Constructor[] getConstructors() Return an array containing Constructor objects representing
all the public constructors of the class represented by this
Class object. An array of length zero is returned when the
represented class has no public constructors, this Class
object represents an array class, or this Class object
represents a primitive type or void.

Annotation[]
getDeclaredAnnotations()

Return an array containing all annotations that are directly
declared on the class represented by this Class object—
inherited annotations are not included. The returned array
might be empty.

Constructor[]
getDeclaredConstructors()

Return an array of Constructor objects representing all the
constructors declared by the class represented by this Class
object. These are public, protected, default (package)
access, and private constructors. The elements in the
returned array are not sorted and are not in any particular
order. If the class has a default constructor, it is included in
the returned array. This method returns an array of length
zero when this Class object represents an interface, a
primitive type, an array class, or void.

CHAPTER 7: Exploring the Basic APIs Part 2 271

Method Description

Field[] getDeclaredFields() Return an array of Field objects representing all the fields
declared by the class or interface represented by this Class
object. This array includes public, protected, default
(package) access, and private fields, but excludes inherited
fields. The elements in the returned array are not sorted and
are not in any particular order. This method returns an array
of length zero when the class or interface declares no fields,
or when this Class object represents a primitive type, an
array class, or void.

Method[] getDeclaredMethods() Return an array of Method objects representing all the
methods declared by the class or interface represented by
this Class object. This array includes public, protected,
default (package) access, and private methods, but excludes
inherited methods. The elements in the returned array are not
sorted and are not in any particular order. This method
returns an array of length zero when the class or interface
declares no methods, or when this Class object represents a
primitive type, an array class, or void.

Field[] getFields() Return an array containing Field objects representing all the
public fields of the class or interface represented by this
Class object, including those public fields inherited from
superclasses and superinterfaces. The elements in the
returned array are not sorted and are not in any particular
order. This method returns an array of length zero when this
Class object represents a class or interface that has no
accessible public fields, or when this Class object represents
an array class, a primitive type, or void.

Method[] getMethods() Return an array containing Method objects representing all the
public methods of the class or interface represented by this
Class object, including those public methods inherited from
superclasses and superinterfaces. Array classes return all the
public member methods inherited from the Object class. The
elements in the returned array are not sorted and are not in
any particular order. This method returns an array of length
zero when this Class object represents a class or interface
that has no public methods, or when this Class object
represents a primitive type or void.

String getName() Return the name of the class represented by this Class
object.

Package getPackage() Return a Package object that describes the package in which
the class represented by this Class object is located, or null
when the class is a member of the unnamed package.

CHAPTER 7: Exploring the Basic APIs Part 2 272

Method Description

Class<? super T> getSuperclass() Return the Class object representing the superclass of the
entity (class, interface, primitive type, or void) represented by
this Class object. When the Class object on which this
method is called represents the Object class, an interface, a
primitive type, or void, null is returned. When this object
represents an array class, the Class object representing the
Object class is returned.

T newInstance() Create and return a new instance of the class represented by
this Class object. The class is instantiated as if by a new
expression with an empty argument list. The class is
initialized when it has not already been initialized. This
method throws java.lang.IllegalAccessException when the
class or its noargument constructor is not accessible;
java.lang.InstantiationException when this Class object
represents an abstract class, an interface, an array class, a
primitive type, or void, or when the class does not have a
noargument constructor (or when instantiation fails for some
other reason); and ExceptionInInitializerError when
initialization fails because the object threw an exception
during initialization.

Table 7–1’s description of the forName() method reveals one way to obtain a Class
object. This method loads, links, and initializes a class or interface that is not in memory
and returns a Class object that represents the class or interface. Listing 7–1
demonstrates forName() and additional methods described in this table.

Listing 7–1. Using reflection to identify a class’s name, package, public fields, constructors, and methods

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Method;

public class ExploreType
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ExploreType pkgAndTypeName");
 return;
 }
 try
 {
 Class<?> clazz = Class.forName(args[0]);
 System.out.println("NAME: " + clazz.getName());
 System.out.println("PACKAGE: " + clazz.getPackage().getName());
 System.out.println("FIELDS");
 Field[] fields = clazz.getDeclaredFields();
 for (int i = 0; i < fields.length; i++)
 System.out.println(fields[i]);

CHAPTER 7: Exploring the Basic APIs Part 2 273

 System.out.println("CONSTRUCTORS");
 Constructor[] constructors = clazz.getDeclaredConstructors();
 for (int i = 0; i < constructors.length; i++)
 System.out.println(constructors[i]);
 System.out.println("METHODS");
 Method[] methods = clazz.getDeclaredMethods();
 for (int i = 0; i < methods.length; i++)
 System.out.println(methods[i]);
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("could not locate " + args[0]);
 }
 }
}

Listing 7–1 presents an application that uses the Reflection API to explore a class or
interface by outputting its name, package, fields, constructors (classes only), and
methods. Only fields, constructors, and methods that are declared in the class, or fields
and methods that are declared in the interface, are output.

After verifying that one command-line argument has been passed to this application,
main() calls forName() to try to return a Class object representing the class or interface
identified by this argument. If successful, the returned object’s reference is assigned to
clazz—I cannot name this variable class because class is a reserved word.

forName() throws an instance of the checked ClassNotFoundException class when it
cannot locate the class’s classfile (perhaps the classfile was erased prior to executing
the application). It also throws LinkageError when a class’s classfile is malformed, and
ExceptionInInitializerError when a class’s static initialization fails.

NOTE: ExceptionInInitializerError is often thrown as the result of a class initializer
throwing an unchecked exception. For example, the class initializer in the following
FailedInitialization class results in ExceptionInInitializerError because
someMethod() throws NullPointerException:

public class FailedInitialization
{
 static
 {
 someMethod(null);
 }
 public static void someMethod(String s)
 {
 int len = s.length(); // s contains null
 System.out.println(s + "'s length is " + len + " characters");
 }
}

CHAPTER 7: Exploring the Basic APIs Part 2 274

When you run this application, you must include the package specification when the
class or interface is located in a package. For example, specifying java ExploreType
java.lang.Boolean to output the fields, constructors, and methods declared in the
java.lang package’s Boolean class results in the following output:

NAME: java.lang.Boolean
PACKAGE: java.lang
FIELDS
public static final java.lang.Boolean java.lang.Boolean.TRUE
public static final java.lang.Boolean java.lang.Boolean.FALSE
public static final java.lang.Class java.lang.Boolean.TYPE
private final boolean java.lang.Boolean.value
private static final long java.lang.Boolean.serialVersionUID
CONSTRUCTORS
public java.lang.Boolean(java.lang.String)
public java.lang.Boolean(boolean)
METHODS
public int java.lang.Boolean.hashCode()
public boolean java.lang.Boolean.equals(java.lang.Object)
public int java.lang.Boolean.compareTo(java.lang.Boolean)
public int java.lang.Boolean.compareTo(java.lang.Object)
public static boolean java.lang.Boolean.getBoolean(java.lang.String)
public static java.lang.String java.lang.Boolean.toString(boolean)
public java.lang.String java.lang.Boolean.toString()
public static java.lang.Boolean java.lang.Boolean.valueOf(java.lang.String)
public static java.lang.Boolean java.lang.Boolean.valueOf(boolean)
public boolean java.lang.Boolean.booleanValue()
public static boolean java.lang.Boolean.parseBoolean(java.lang.String)
private static boolean java.lang.Boolean.toBoolean(java.lang.String)

Table 7–1’s descriptions of the getAnnotations() and getDeclaredAnnotations()
methods reveal that each method returns an array of Annotation, an interface that is
located in the java.lang.annotation package. Annotation is the superinterface of
Override, SuppressWarnings, and all other annotation types.

Table 7–1’s method descriptions also refer to Constructor, Field, and Method. Instances
of these classes (which are members of the java.lang.reflect package) represent a
class’s constructors and a class’s or an interface’s fields and methods.

Constructor represents a constructor and is generically declared as Constructor<T>,
where T identifies the class in which the constructor represented by Constructor is
declared. Constructor declares various methods, including the following methods:

 Annotation[] getDeclaredAnnotations() returns an array of all
annotations declared on the constructor. The returned array has zero
length when there are no annotations.

 Class<T> getDeclaringClass() returns a Class object that represents
the class in which the constructor is declared.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 7: Exploring the Basic APIs Part 2 275

 Class[]<?> getExceptionTypes() returns an array of Class objects
representing the types of exceptions listed in the constructor’s throws
clause. The returned array has zero length when there is no throws
clause.

 String getName() returns the constructor’s name.

 Class[]<?> getParameterTypes() returns an array of Class objects
representing the constructor’s parameters. The returned array has zero
length when the constructor does not declare parameters.

Field represents a field and declares various methods, including the following methods:

 Object get(Object object) returns the value of the field for the
specified object.

 boolean getBoolean(Object object) returns the value of the Boolean
field for the specified object.

 byte getByte(Object object) returns the value of the byte integer
field for the specified object.

 char getChar(Object object) returns the value of the character field
for the specified object.

 double getDouble(Object object) returns the value of the double
precision floating-point field for the specified object.

 float getFloat(Object object) returns the value of the floating-point
field for the specified object.

 int getInt(Object object) returns the value of the integer field for
the specified object.

 long getLong(Object object) returns the value of the long integer
field for the specified object.

 short getShort(Object object) returns the value of the short integer
field for the specified object.

get() returns the value of any type of field. In contrast, the other listed methods return
the values of specific types of fields. All of these methods throw NullPointerException
when object is null and the field is an instance field, IllegalArgumentException when
object is not an instance of the class or interface declaring the underlying field (or not an
instance of a subclass or interface implementor), and IllegalAccessException when the
underlying field cannot be accessed (it is private, for example).

Method represents a method and declares various methods, including the following
methods:

CHAPTER 7: Exploring the Basic APIs Part 2 276

 int getModifiers() returns a 32-bit integer whose bit fields identify
the method’s reserved word modifiers (such as public, abstract, or
static). These bit fields must be interpreted via the
java.lang.reflect.Modifier class. For example, you might specify
(method.getModifiers() & Modifier.ABSTRACT) == Method.ABSTRACT
to find out if the method (represented by the Method object whose
reference is stored in method) is abstract—this expression evaluates to
true when the method is abstract.

 Class<?> getReturnType() returns a Class object that represents the
method’s return type.

 Object invoke(Object receiver, Object... args) calls the method
on the object identified by receiver (which is ignored when the
method is a class method), passing the variable number of arguments
identified by args to the called method. The invoke() method throws
NullPointerException when receiver is null and the method being
called is an instance method, IllegalAccessException when the
method is not accessible (it is private, for example),
IllegalArgumentException when an incorrect number of arguments
are passed to the method (and other reasons), and
java.lang.reflect.InvocationTargetException when an exception is
thrown from the called method.

 boolean isVarArgs() returns true when the method is declared to
receive a variable number of arguments.

The java.lang.reflect.AccessibleObject class is the superclass of Constructor, Field,
and Method. This superclass provides methods for reporting a constructor’s, field’s, or
method’s accessibility (is it private?) and making an inaccessible constructor, field, or
method accessible. AccessibleObject’s methods include the following:

 T getAnnotation(Class<T> annotationType) returns the constructor’s,
field’s, or method’s annotation of the specified type when such an
annotation is present; otherwise, null returns.

 boolean isAccessible() returns true when the constructor, field, or
method is accessible.

 boolean isAnnotationPresent(Class<? extends Annotation>
annotationType) returns true when an annotation of the type specified
by annotationType has been declared on the constructor, field, or
method. This method takes inherited annotations into account.

 void setAccessible(boolean flag) attempts to make an inaccessible
constructor, field, or method accessible when flag is true.

NOTE: The java.lang.reflect package also includes an Array class whose class methods
make it possible to reflectively create and access Java arrays.

CHAPTER 7: Exploring the Basic APIs Part 2 277

Another way to obtain a Class object is to call Object’s getClass() method on an object
reference; for example, Employee e = new Employee(); Class<? extends Employee>
clazz = e.getClass();. The getClass() method does not throw an exception because
the class from which the object was created is already present in memory.

There is one more way to obtain a Class object, and that is to employ a class literal,
which is an expression consisting of a class name, followed by a period separator,
followed by reserved word class. Examples of class literals include Class<Employee>
clazz = Employee.class; and Class<String> clazz = String.class.

Perhaps you are wondering about how to choose between forName(), getClass(), and a
class literal. To help you make your choice, the following list compares each competitor:

 forName() is very flexible in that you can dynamically specify any
reference type by its package-qualified name. If the type is not in
memory, it is loaded, linked, and initialized. However, lack of compile-
time type safety can lead to runtime failures.

 getClass() returns a Class object describing the type of its referenced
object. If called on a superclass variable containing a subclass
instance, a Class object representing the subclass type is returned.
Because the class is in memory, type safety is assured.

 A class literal returns a Class object representing its specified class.
Class literals are compact and the compiler enforces type safety by
refusing to compile the source code when it cannot locate the literal’s
specified class.

NOTE: You can use class literals with primitive types, including void. Examples include
int.class, double.class, and void.class. The returned Class object represents the
class identified by a primitive wrapper class’s TYPE field or java.lang.Void.TYPE. For
example, each of int.class == Integer.TYPE and void.class == Void.TYPE
evaluates to true.

You can also use class literals with primitive type–based arrays. Examples include
int[].class and double[].class. For these examples, the returned Class objects
represent Class<int[]> and Class<double[]>.

String Management
Many computer languages implement the concept of a string, a sequence of characters
treated as a single unit (and not as individual characters). For example, the C language
implements a string as an array of characters terminated by the null character ('\0'). In
contrast, Java implements a string via the java.lang.String class.

CHAPTER 7: Exploring the Basic APIs Part 2 278

String objects are immutable: you cannot modify a String object’s string. The various
String methods that appear to modify the String object actually return a new String
object with modified string content instead. Because returning new String objects is
often wasteful, Java provides the java.lang.StringBuffer class as a workaround.

This section introduces you to String and StringBuffer.

String
String represents a string as a sequence of characters. Unlike C strings, this sequence
is not terminated by a null character. Instead, its length is stored separately.

The Java language provides syntactic sugar that simplifies working with strings. For
example, the compiler recognizes String favLanguage = "Java"; as the assignment of
string literal "Java" to String variable favLanguage. Without this sugar, you would have
to specify String favLanguage = new String("Java");.

Table 7–2 describes some of String’s constructors and methods for initializing String
objects and working with strings.

Table 7–2. String Constructors and Methods

Method Description

String(char[] data) Initialize this String object to the characters in the data array.
Modifying data after initializing this String object has no effect
on the object.

String(String s) Initialize this String object to s’s string.

char charAt(int index) Return the character located at the zero-based index in this
String object’s string. This method throws
java.lang.IndexOutOfBoundsException when index is less
than 0 or greater than or equal to the length of the string.

String concat(String s) Return a new String object containing this String object’s
string followed by the s argument’s string.

boolean endsWith(String suffix) Return true when this String object’s string ends with the
characters in the suffix argument, when suffix is empty
(contains no characters), or when suffix contains the same
character sequence as this String object’s string. This method
performs a case-sensitive comparison (a is not equal to A, for
example), and throws NullPointerException when suffix is
null.

boolean equals(Object object) Return true when object is of type String and this argument’s
string contains the same characters (and in the same order) as
this String object’s string.

CHAPTER 7: Exploring the Basic APIs Part 2 279

Method Description

boolean equalsIgnoreCase(String
s)

Return true when s and this String object contain the same
characters (ignoring case). This method returns false when the
character sequences differ or when null is passed to s.

int indexOf(int c) Return the zero-based index of the first occurrence (from the
start of the string to the end of the string) of the character
represented by c in this String object’s string. Return -1 when
this character is not present.

int indexOf(String s) Return the zero-based index of the first occurrence (from the
start of the string to the end of the string) of s’s character
sequence in this String object’s string. Return -1 when s is
not present. This method throws NullPointerException when
s is null.

String intern() Search an internal table of String objects for an object whose
string is equal to this String object’s string. This String
object’s string is added to the table when not present. Return
the object contained in the table whose string is equal to this
String object’s string. The same String object is always
returned for strings that are equal.

int lastIndexOf(int c) Return the zero-based index of the last occurrence (from the
start of the string to the end of the string) of the character
represented by c in this String object’s string. Return -1 when
this character is not present.

int lastIndexOf(String s) Return the zero-based index of the last occurrence (from the
start of the string to the end of the string) of s’s character
sequence in this String object’s string. Return -1 when s is
not present. This method throws NullPointerException when
s is null.

int length() Return the number of characters in this String object’s string.

String replace(char oldChar,
char newChar)

Return a new String object whose string matches this String
object’s string except that all occurrences of oldChar have
been replaced by newChar.

String[] split(String expr) Split this String object’s string into an array of String objects
using the regular expression (a string whose pattern [template]
is used to search a string for substrings that match the
pattern) specified by expr as the basis for the split. This
method throws NullPointerException when expr is null and
java.util.regex.PatternSyntaxException when expr’s syntax
is invalid.

CHAPTER 7: Exploring the Basic APIs Part 2 280

Method Description

boolean startsWith(String
prefix)

Return true when this String object’s string starts with the
characters in the prefix argument, when prefix is empty
(contains no characters), or when prefix contains the same
character sequence as this String object’s string. This method
performs a case-sensitive comparison (a is not equal to A, for
example), and throws NullPointerException when prefix is
null.

String substring(int start) Return a new String object whose string contains this String
object’s characters beginning with the character located at
start. This method throws IndexOutOfBoundsException when
start is negative or greater than the length of this String
object’s string.

char[] toCharArray() Return a character array that contains the characters in this
String object’s string.

String toLowerCase() Return a new String object whose string contains this String
object’s characters where uppercase letters have been
converted to lowercase. This String object is returned when it
contains no uppercase letters to convert.

String toUpperCase() Return a new String object whose string contains this String
object’s characters where lowercase letters have been
converted to uppercase. This String object is returned when it
contains no lowercase letters to convert.

String trim() Return a new String object that contains this String object’s
string with whitespace characters (characters whose Unicode
values are 32 or less) removed from the start and end of the
string, or this String object if no leading/trailing whitespace.

Table 7–2 reveals a couple of interesting items about String. First, this class’s public
String(String s) constructor does not initialize a String object to a string literal.
Instead, it initializes the String object to the contents of another String object. This
behavior suggests that a string literal is more than what it appears to be.

In reality, a string literal is a String object. You can prove this to yourself by executing
System.out.println("abc".length()); and System.out.println("abc" instanceof
String);. The first method call outputs 3, which is the length of the "abc" String
object’s string, and the second method call outputs true ("abc" is a String object).

The second interesting item is the intern() method, which interns (stores a unique copy
of) a String object in an internal table of String objects. intern() makes it possible to
compare strings via their references and == or !=. These operators are the fastest way to
compare strings, which is especially valuable when sorting a huge number of strings.

CHAPTER 7: Exploring the Basic APIs Part 2 281

By default, String objects denoted by literal strings ("abc") and string-valued constant
expressions ("a" + "bc") are interned in this table, which is why
System.out.println("abc" == "a" + "bc"); outputs true. However, String objects
created via String constructors are not interned, which is why
System.out.println("abc" == new String("abc")); outputs false. In contrast,
System.out.println("abc" == new String("abc").intern()); outputs true.

Table 7–2 also reveals split(), a method that I employed in Chapter 5’s StubFinder
application to split a string’s comma-separated list of values into an array of String
objects. This method uses a regular expression that identifies a sequence of characters
around which the string is split. (I will discuss regular expressions in Chapter 9.)

TIP: The charAt() and length() methods are useful for iterating over a string’s characters.
For example, String s = "abc"; for (int i = 0; i < s.length(); i++)
System.out.println(s.charAt(i)); returns each of s’s a, b, and c characters and
outputs each character on a separate line.

StringBuffer
StringBuffer provides an internal character array for building a string efficiently. After
creating a StringBuffer object, you call various methods to append, delete, and insert
the character representations of various values to, from, and into the array. You then call
toString() to convert the array’s content to a String object and return this object.

CAUTION: Divulging a class’s internal implementation typically is not a good idea because doing
so violates information hiding. Furthermore, the internal implementation might change, which
voids the description of the previous implementation. However, I believe that divulging
StringBuffer’s internal array adds value to my discussion of this class. Furthermore, it is
highly unlikely that StringBuffer will ever use anything other than a character array.

Table 7–3 describes some of StringBuffer’s constructors and methods for initializing
StringBuffer objects and working with string buffers.

CHAPTER 7: Exploring the Basic APIs Part 2 282

Table 7–3. StringBuffer Constructors and Methods

Method Description

StringBuffer() Initialize this StringBuffer object to an empty array with an initial
capacity of 16 characters.

StringBuffer(int capacity) Initialize this StringBuffer object to an empty array with an initial
capacity of capacity characters. This constructor throws
java.lang.NegativeArraySizeException when capacity is
negative.

StringBuffer(String s) Initialize this StringBuffer object to an array containing s’s
characters. This object’s initial capacity is 16 plus the length of s.
This constructor throws NullPointerException when s is null.

StringBuffer append(boolean
b)

Append “true” to this StringBuffer object’s array when b is true
and “false” to the array when b is false, and return this
StringBuffer object.

StringBuffer append(char ch) Append ch’s character to this StringBuffer object’s array, and
return this StringBuffer object.

StringBuffer append(char[]
chars)

Append the characters in the chars array to this StringBuffer
object’s array, and return this StringBuffer object. This method
throws NullPointerException when chars is null.

StringBuffer append(double d) Append the string representation of d’s double precision floating-
point value to this StringBuffer object’s array, and return this
StringBuffer object.

StringBuffer append(float f) Append the string representation of f’s floating-point value to
this StringBuffer object’s array, and return this StringBuffer
object.

StringBuffer append(int i) Append the string representation of i’s integer value to this
StringBuffer object’s array, and return this StringBuffer object.

StringBuffer append(long l) Append the string representation of l’s long integer value to this
StringBuffer object’s array, and return this StringBuffer object.

StringBuffer append(Object
obj)

Call obj’s toString() method and append the returned string’s
characters to this StringBuffer object’s array. Append “null” to
the array when null is passed to obj. Return this StringBuffer
object.

StringBuffer append(String s) Append s’s string to this StringBuffer object’s array. Append
“null” to the array when null is passed to s. Return this
StringBuffer object.

CHAPTER 7: Exploring the Basic APIs Part 2 283

Method Description

int capacity() Return the current capacity of this StringBuffer object’s array.

char charAt(int index) Return the character located at index in this StringBuffer
object’s array. This method throws IndexOutOfBoundsException
when index is negative or greater than or equal to this
StringBuffer object’s length.

void ensureCapacity(int min) Ensure that this StringBuffer object’s capacity is at least that
specified by min. If the current capacity is less than min, a new
internal array is created with greater capacity. The new capacity
is set to the larger of min and the current capacity multiplied by 2,
with 2 added to the result. No action is taken when min is
negative or zero.

int length() Return the number of characters stored in this StringBuffer
object’s array.

StringBuffer reverse() Return this StringBuffer object with its array contents reversed.

void setCharAt(int index,
char ch)

Replace the character at index with ch. This method throws
IndexOutOfBoundsException when index is negative or greater
than or equal to the length of this StringBuffer object’s array.

void setLength(int length) Set the length of this StringBuffer object’s array to length. If the
length argument is less than the current length, the array’s
contents are truncated. If the length argument is greater than or
equal to the current length, sufficient null characters ('\u0000')
are appended to the array. This method throws
IndexOutOfBoundsException when length is negative.

String substring(int start) Return a new String object that contains all characters in this
StringBuffer object’s array starting with the character located at
start. This method throws IndexOutOfBoundsException when
start is less than 0 or greater than or equal to the length of this
StringBuffer object’s array.

String toString() Return a new String object whose string equals the contents of
this StringBuffer object’s array.

A StringBuffer object’s internal array is associated with the concepts of capacity and
length. Capacity refers to the maximum number of characters that can be stored in the
array before the array grows to accommodate additional characters. Length refers to the
number of characters that are already stored in the array.

Chapter 6’s Listing 6-13 declared a toAlignedBinaryString() method whose
implementation included the following inefficient loop:

int numLeadingZeroes = 3;

CHAPTER 7: Exploring the Basic APIs Part 2 284

String zeroesPrefix = "";
for (int j = 0; j < numLeadingZeroes; j++)
 zeroesPrefix += "0";

This loop is inefficient because each of the iterations creates a StringBuffer object and
a String object. The compiler transforms this code fragment into the following fragment:

int numLeadingZeroes = 3;
String zeroesPrefix = "";
for (int j = 0; j < numLeadingZeroes; j++)
 zeroesPrefix = new StringBuffer().append(zeroesPrefix).append("0").toString();

NOTE: Starting with Java version 5, the compiler uses the more performant but otherwise
identical java.lang.StringBuilder class instead of StringBuffer.

A more efficient way to code the previous loop involves creating a StringBuffer object
prior to entering the loop, calling the appropriate append() method in the loop, and
calling toString() after the loop. The following code fragment demonstrates this more
efficient scenario:

int numLeadingZeroes = 3;
StringBuffer sb = new StringBuffer();
for (int j = 0; j < numLeadingZeroes; j++)
 sb.append('0');
String zeroesPrefix = sb.toString();

TIP: When performance matters, and where you are not using multiple threads (discussed later
in this chapter), use the StringBuilder class instead of StringBuffer. StringBuilder
provides the same methods as StringBuffer, but its methods are not synchronized (discussed
later in this chapter). This lack of synchronization results in StringBuilder methods executing
faster than their StringBuffer counterparts under most (if not all) Java implementations.

System
The java.lang.System class provides access to system-oriented resources, including
standard input, standard output, and standard error.

System declares in, out, and err class fields that support standard input, standard
output, and standard error, respectively. The first field is of type java.io.InputStream,
and the last two fields are of type java.io.PrintStream. (I will formally introduce these
classes in Chapter 10.)

System also declares a variety of utility methods, including those methods that are
described in Table 7–4.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 7: Exploring the Basic APIs Part 2 285

Table 7–4. System Methods

Method Description

static void arraycopy(Object
src, int srcPos, Object dest,
int destPos, int length)

Copy the number of elements specified by length from the src
array starting at zero-based offset srcPos into the dest array
starting at zero-based offset destPos. This method throws
NullPointerException when src or dest is null,
IndexOutOfBoundsException when copying causes access to
data outside array bounds, and java.lang.ArrayStoreException
when an element in the src array could not be stored into the
dest array because of a type mismatch.

static long
currentTimeMillis()

Return the current system time in milliseconds since January 1,
1970 00:00:00 UTC.

static void gc() Inform the virtual machine that now would be a good time to run
the garbage collector. This is only a hint; there is no guarantee
that the garbage collector will run.

static String
getProperty(String prop)

Return the value of the system property (platform-specific attribute,
such as a version number) identified by prop or null if such a
property does not exist. System properties recognized by Android
include java.vendor.url, java.class.path, user.home,
java.class.version, os.version, java.vendor, user.dir,
user.timezone, path.separator, os.name, os.arch, line.separator,
file.separator, user.name, java.version, and java.home.

static void runFinalization() Inform the virtual machine that now would be a good time to
perform any outstanding object finalizations. This is only a hint;
there is no guarantee that outstanding object finalizations will be
performed.

Listing 7–2 demonstrates the arraycopy(), currentTimeMillis(), and getProperty()
methods.

Listing 7–2. Experimenting with System methods

public class SystemTasks
{
 public static void main(String[] args)
 {
 int[] grades = { 86, 92, 78, 65, 52, 43, 72, 98, 81 };
 int[] gradesBackup = new int[grades.length];
 System.arraycopy(grades, 0, gradesBackup, 0, grades.length);
 for (int i = 0; i < gradesBackup.length; i++)
 System.out.println(gradesBackup[i]);
 System.out.println("Current time: " + System.currentTimeMillis());
 String[] propNames =
 {
 "java.vendor.url",
 "java.class.path",
 "user.home",

CHAPTER 7: Exploring the Basic APIs Part 2 286

 "java.class.version",
 "os.version",
 "java.vendor",
 "user.dir",
 "user.timezone",
 "path.separator",
 "os.name",
 "os.arch",
 "line.separator",
 "file.separator",
 "user.name",
 "java.version",
 "java.home"
 };
 for (int i = 0; i < propNames.length; i++)
 System.out.println(propNames[i] + ": " +
 System.getProperty(propNames[i]));
 }
}

Listing 7–2’s main() method begins by demonstrating arraycopy(). It uses this method
to copy the contents of a grades array to a gradesBackup array.

TIP: The arraycopy() method is the fastest portable way to copy one array to another. Also,
when you write a class whose methods return a reference to an internal array, you should use
arraycopy() to create a copy of the array, and then return the copy’s reference. That way, you
prevent clients from directly manipulating (and possibly screwing up) the internal array.

main() next calls currentTimeMillis() to return the current time as a milliseconds value.
Because this value is not human-readable, you might want to use the java.util.Date
class (discussed in Chapter 9). The Date() constructor calls currentTimeMillis() and
its toString() method converts this value to a readable date and time.

main() concludes by demonstrating getProperty() in a for loop. This loop iterates over
all of Table 7–4’s property names, outputting each name and value.

When I run this application on my platform, it generates the following output:

86
92
78
65
52
43
72
98
81
Current time: 1274895119343
java.vendor.url: http://java.sun.com/
java.class.path: .
user.home: C:\Documents and Settings\Jeff Friesen
java.class.version: 50.0
os.version: 5.1

http://java.sun.com

CHAPTER 7: Exploring the Basic APIs Part 2 287

java.vendor: Sun Microsystems Inc.
user.dir: C:\prj\dev\ljfad\c06\code\SYSTEM~1
user.timezone:
path.separator: ;
os.name: Windows XP
os.arch: x86
line.separator:

file.separator: \
user.name: Jeff Friesen
java.version: 1.6.0_16
java.home: C:\Program Files\Java\jre6

NOTE: line.separator stores the actual line separator character/characters, not its/their
representation (such as \r\n), which is why a blank line appears after line.separator:.

Threading API
Applications execute via threads, which are independent paths of execution through an
application’s code. When multiple threads are executing, each thread’s path can differ
from other thread paths. For example, a thread might execute one of a switch
statement’s cases, and another thread might execute another of this statement’s cases.

NOTE: Applications use threads to improve performance. Some applications can get by with only
the default main thread to carry out their tasks, but other applications need additional threads to
perform time-intensive tasks in the background, so that they remain responsive to their users.

The virtual machine gives each thread its own method-call stack to prevent threads from
interfering with each other. Separate stacks let threads keep track of their next
instructions to execute, which can differ from thread to thread. The stack also provides a
thread with its own copy of method parameters, local variables, and return value.

Java supports threads via its Threading API. This API consists of one interface
(Runnable) and four classes (Thread, ThreadGroup, ThreadLocal, and
InheritableThreadLocal) in the java.lang package. After exploring Runnable and Thread
(and mentioning ThreadGroup during this exploration), this section explores thread
synchronization, ThreadLocal, and InheritableThreadLocal.

NOTE: Java version 5 introduced the java.util.concurrent package as a high-level
alternative to the low-level Threading API. (I will discuss this package in Chapter 9.) Although
java.util.concurrent is the preferred API for working with threads, you should also be
somewhat familiar with Threading because it is helpful in simple threading scenarios. Also, you
might have to analyze someone else’s source code that depends on Threading.

CHAPTER 7: Exploring the Basic APIs Part 2 288

Runnable and Thread
Java provides the Runnable interface to identify those objects that supply code for
threads to execute via this interface’s solitary public void run() method—a thread
receives no arguments and returns no value. Classes implement Runnable to supply this
code, and one of these classes is Thread.

Thread provides a consistent interface to the underlying operating system’s threading
architecture. (The operating system is typically responsible for creating and managing
threads.) Thread makes it possible to associate code with threads, as well as start and
manage those threads. Each Thread instance associates with a single thread.

Thread declares several constructors for initializing Thread objects. Some of these
constructors take Runnable arguments: you can supply code to run without having to
extend Thread. Other constructors do not take Runnable arguments: you must extend
Thread and override its run() method to supply the code to run.

For example, Thread(Runnable runnable) initializes a new Thread object to the specified
runnable whose code is to be executed. In contrast, Thread() does not initialize Thread
to a Runnable argument. Instead, your Thread subclass provides a constructor that calls
Thread(), and the subclass also overrides Thread’s run() method.

In the absence of an explicit name argument, each constructor assigns a unique default
name (starting with Thread-) to the Thread object. Names make it possible to
differentiate threads. In contrast to the previous two constructors, which choose default
names, Thread(String threadName) lets you specify your own thread name.

Thread also declares methods for starting and managing threads. Table 7–5 describes
many of the more useful methods.

Table 7–5. Thread Methods

Method Description

static Thread currentThread() Return the Thread object associated with the thread that calls
this method.

String getName() Return the name associated with this Thread object.

Thread.State getState() Return the state of the thread associated with this Thread object.
The state is identified by the Thread.State enum as one of
BLOCKED (waiting to acquire a lock, discussed later), NEW (created
but not started), RUNNABLE (executing), TERMINATED (the thread has
died), TIMED_WAITING (waiting for a specified amount of time to
elapse), or WAITING (waiting indefinitely).

void interrupt() Set the interrupt status flag in this Thread object. If the
associated thread is blocked or waiting, clear this flag and wake
up the thread by throwing an instance of the checked
InterruptedException class.

CHAPTER 7: Exploring the Basic APIs Part 2 289

Method Description

static boolean interrupted() Return true when the thread associated with this Thread object
has a pending interrupt request. Clear the interrupt status flag.

boolean isAlive() Return true to indicate that this Thread object’s associated
thread is alive and not dead. A thread’s lifespan ranges from just
before it is actually started within the start() method to just
after it leaves the run() method, at which point it dies.

boolean isDaemon() Return true when the thread associated with this Thread object is
a daemon thread, a thread that acts as a helper to a user thread
(nondaemon thread) and dies automatically when the
application’s last nondaemon thread dies so the application can
exit.

boolean isInterrupted() Return true when the thread associated with this Thread object
has a pending interrupt request.

void join() The thread that calls this method on this Thread object waits for
the thread associated with this object to die. This method throws
InterruptedException when this Thread object’s interrupt()
method is called.

void join(long millis) The thread that calls this method on this Thread object waits for
the thread associated with this object to die, or until millis
milliseconds have elapsed, whichever happens first. This method
throws InterruptedException when this Thread object’s
interrupt() method is called.

void setDaemon(boolean
isDaemon)

Mark this Thread object’s associated thread as a daemon thread
when isDaemon is true. This method throws
java.lang.IllegalThreadStateException when the thread has
not yet been created and started.

void setName(String
threadName)

Assign threadName’s value to this Thread object as the name of
its associated thread.

static void sleep(long time) Pause the thread associated with this Thread object for time
milliseconds. This method throws InterruptedException when
this Thread object’s interrupt() method is called while the
thread is sleeping.

void start() Create and start this Thread object’s associated thread. This
method throws IllegalThreadStateException when the thread
was previously started and is running or has died.

Listing 7–3 introduces you to the Threading API via a main() method that demonstrates
Runnable, Thread(Runnable runnable), currentThread(), getName(), and start().

CHAPTER 7: Exploring the Basic APIs Part 2 290

Listing 7–3. A pair of counting threads

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 }
}

The default main thread that executes main() first instantiates an anonymous class that
implements Runnable. It then creates two Thread objects, initializing each object to the
runnable, and calls Thread’s start() method to create and start both threads. After
completing these tasks, the main thread exits main() and dies.

Each of the two started threads executes the runnable’s run() method. It calls Thread’s
currentThread() method to obtain its associated Thread instance, uses this instance to
call Thread’s getName() method to return its name, initializes count to 0, and enters an
infinite loop where it outputs name and count and increments count on each iteration.

TIP: To stop an application that does not end, press the Ctrl and C keys simultaneously.

I observe both threads alternating in their execution when I run this application on the
Windows XP platform. Partial output from one run appears here:

Thread-0: 0
Thread-0: 1
Thread-0: 2
Thread-0: 3
Thread-0: 4
Thread-0: 5
Thread-0: 6
Thread-0: 7
Thread-1: 0
Thread-1: 1
Thread-1: 2
Thread-1: 3
Thread-1: 4
Thread-1: 5
Thread-1: 6

CHAPTER 7: Exploring the Basic APIs Part 2 291

Thread-1: 7
Thread-1: 8
Thread-1: 9
Thread-1: 10
Thread-1: 11
Thread-1: 12
Thread-1: 13
Thread-1: 14
Thread-1: 15
Thread-0: 8
Thread-0: 9

When a computer has enough processors and/or processor cores, the computer’s
operating system assigns a separate thread to each processor or core so the threads
execute concurrently (at the same time). When a computer does not have enough
processors and/or cores, a thread must wait its turn to use the shared processor/core.

The operating system uses a scheduler
(http://en.wikipedia.org/wiki/Scheduling_%28computing%29) to determine when a
waiting thread executes. The following list identifies three different schedulers:

 Linux 2.6 through 2.6.22 uses the O(1) scheduler
(http://en.wikipedia.org/wiki/O%281%29_scheduler).

 Linux 2.6.23 uses the Completely Fair Scheduler
(http://en.wikipedia.org/wiki/Completely_Fair_Scheduler).

 Windows NT-based operating systems (NT, XP, and Vista) use a
multilevel feedback queue scheduler
(http://en.wikipedia.org/wiki/Multilevel_feedback_queue).

The previous output from the counting threads application resulted from running this
application via Windows XP’s multilevel feedback queue scheduler. Because of this
scheduler, both threads take turns executing.

CAUTION: Although this output indicates that the first thread starts executing, never assume that
the thread associated with the Thread object whose start() method is called first is the first
thread to execute. While this might be true of some schedulers, it might not be true of others.

A multilevel feedback queue and many other thread schedulers take the concept of
priority (thread relative importance) into account. They often combine preemptive
scheduling (higher priority threads preempt—interrupt and run instead of—lower priority
threads) with round robin scheduling (equal priority threads are given equal slices of
time, which are known as time slices, and take turns executing).

Thread supports priority via its void setPriority(int priority) method (set the priority
of this Thread object’s thread to priority, which ranges from Thread.MIN_PRIORITY to
Thread.MAX_PRIORITY—Thread.NORMAL_PRIORITY identifies the default priority) and int
getPriority() method (return the current priority).

http://en.wikipedia.org/wiki/Scheduling_%28computing%29
http://en.wikipedia.org/wiki/O%281%29_scheduler
http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://en.wikipedia.org/wiki/Multilevel_feedback_queue

CHAPTER 7: Exploring the Basic APIs Part 2 292

CAUTION: Using the setPriority() method can impact an application’s portability across
platforms because different schedulers can handle a priority change in different ways. For
example, one platform’s scheduler might delay lower priority threads from executing until higher
priority threads finish. This delaying can lead to indefinite postponement or starvation because
lower priority threads “starve” while waiting indefinitely for their turn to execute, and this can
seriously hurt the application’s performance. Another platform’s scheduler might not indefinitely
delay lower priority threads, improving application performance.

Listing 7–4 refactors Listing 7–3’s main() method to give each thread a nondefault
name, and to put each thread to sleep after outputting name and count.

Listing 7–4. A pair of counting threads revisited

public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 {
 System.out.println(name + ": " + count++);
 try
 {
 Thread.sleep(100);
 }
 catch (InterruptedException ie)
 {
 }
 }
 }
 };
 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
}

Threads A and B execute Thread.sleep(100); to sleep for 100 milliseconds. This sleep
results in each thread executing more frequently, as the following partial output reveals:

A: 0
B: 0
A: 1
B: 1
A: 2
B: 2
A: 3

CHAPTER 7: Exploring the Basic APIs Part 2 293

B: 3
A: 4
B: 4
A: 5
B: 5

A thread will occasionally start another thread to perform a lengthy calculation,
download a large file, or perform some other time-consuming activity. After finishing its
other tasks, the thread that started the worker thread is ready to process the results of
the worker thread and waits for the worker thread to finish and die.

It is possible to wait for the worker thread to die by using a while loop that repeatedly
calls Thread’s isAlive() method on the worker thread’s Thread object and sleeps for a
certain length of time when this method returns true. However, Listing 7–5 demonstrates
a less verbose alternative: the join() method.

Listing 7–5. Joining the default main thread with a background thread

public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 System.out.println("Worker thread is simulating " +
 "work by sleeping for 5 seconds.");
 try
 {
 Thread.sleep(5000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Worker thread is dying");
 }
 };
 Thread thd = new Thread(r);
 thd.start();
 System.out.println("Default main thread is doing work.");
 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 }
 System.out.println("Default main thread has finished its work.");
 System.out.println("Default main thread is waiting for worker thread " +
 "to die.");
 try
 {
 thd.join();
 }
 catch (InterruptedException ie)
 {
 }

CHAPTER 7: Exploring the Basic APIs Part 2 294

 System.out.println("Main thread is dying");
}

This listing demonstrates the default main thread starting a worker thread, performing
some work, and then waiting for the worker thread to die by calling join() via the
worker thread’s thd object. When you run this application, you will discover output
similar to the following (message order might differ somewhat):

Default main thread is doing work.
Worker thread is simulating work by sleeping for 5 seconds.
Default main thread has finished its work.
Default main thread is waiting for worker thread to die.
Worker thread is dying
Main thread is dying

Every Thread object belongs to some ThreadGroup object; Thread declares a
ThreadGroup getThreadGroup() method that returns this object. You should ignore
thread groups because they are not that useful. If you need to logically group Thread
objects, you should use an array or collection instead.

CAUTION: Various ThreadGroup methods are flawed. For example, int
enumerate(Thread[] threads) will not include all active threads in its enumeration when
its threads array argument is too small to store their Thread objects. Although you might think
that you could use the return value from the int activeCount() method to properly size this
array, there is no guarantee that the array will be large enough because activeCount()’s
return value fluctuates with the creation and death of threads.

However, you should still know about ThreadGroup because of its contribution in
handling exceptions that are thrown while a thread is executing. Listing 7–6 sets the
stage for learning about exception handling by presenting a run() method that attempts
to divide an integer by 0, which results in a thrown ArithmeticException instance.

Listing 7–6. Throwing an exception from the run() method

public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1/0; // Line 8
 }
 };
 Thread thd = new Thread(r);
 thd.start();
}

Run this application and you will see an exception trace that identifies the thrown
ArithmeticException:

Exception in thread "Thread-0" java.lang.ArithmeticException: / by zero

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 7: Exploring the Basic APIs Part 2 295

 at ExceptionThread$1.run(ExceptionThread.java:8)
 at java.lang.Thread.run(Unknown Source)

When an exception is thrown out of the run() method, the thread terminates and the
following activities take place:

 The virtual machine looks for an instance of
Thread.UncaughtExceptionHandler installed via Thread’s void
setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh)
method. When this handler is found, it passes execution to the
instance’s void uncaughtException(Thread t, Throwable e) method,
where t identifies the Thread object of the thread that threw the
exception, and e identifies the thrown exception or error—perhaps an
OutOfMemoryError instance was thrown. If this method throws an
exception/error, the exception/error is ignored by the virtual machine.

 Assuming that setUncaughtExceptionHandler() was not called to
install a handler, the virtual machine passes control to the associated
ThreadGroup object’s uncaughtException(Thread t, Throwable e)
method. Assuming that ThreadGroup was not extended, and that its
uncaughtException() method was not overridden to handle the
exception, uncaughtException() passes control to the parent
ThreadGroup object’s uncaughtException() method when a parent
ThreadGroup is present. Otherwise, it checks to see if a default
uncaught exception handler has been installed (via Thread’s static
void setDefaultUncaughtExceptionHandler
(Thread.UncaughtExceptionHandler handler) method.) If a default
uncaught exception handler has been installed, its
uncaughtException() method is called with the same two arguments.
Otherwise, uncaughtException() checks its Throwable argument to
determine if it is an instance of java.lang.ThreadDeath. If so, nothing
special is done. Otherwise, as Listing 7–6’s exception message shows,
a message containing the thread’s name, as returned from the
thread’s getName() method, and a stack backtrace, using the
Throwable argument’s printStackTrace() method, is printed to the
standard error stream.

Listing 7–7 demonstrates Thread’s setUncaughtExceptionHandler() and
setDefaultUncaughtExceptionHandler() methods.

Listing 7–7. Demonstrating uncaught exception handlers

public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 int x = 1/0;
 }
 };

CHAPTER 7: Exploring the Basic APIs Part 2 296

 Thread thd = new Thread(r);
 Thread.UncaughtExceptionHandler uceh;
 uceh = new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {
 System.out.println("Caught throwable " + e + " for thread "
 + t);
 }
 };
 thd.setUncaughtExceptionHandler(uceh);
 uceh = new Thread.UncaughtExceptionHandler()
 {
 public void uncaughtException(Thread t, Throwable e)
 {
 System.out.println("Default uncaught exception handler");
 System.out.println("Caught throwable " + e + " for thread "
 + t);
 }
 };
 thd.setDefaultUncaughtExceptionHandler(uceh);
 thd.start();
}

When you run this application, you will observe the following output:

Caught throwable java.lang.ArithmeticException: / by zero for thread

 Thread[Thread-0,5,main]

You will not also see the default uncaught exception handler’s output because the
default handler is not called. To see that output, you must comment out
thd.setUncaughtExceptionHandler(uceh);. If you also comment out
thd.setDefaultUncaughtExceptionHandler(uceh);, you will see Listing 7–6’s output.

CAUTION: Thread declares several deprecated methods, including stop() (stop an executing
thread). These methods have been deprecated because they are unsafe. Do not use these
deprecated methods. (I will show you how to safely stop a thread later in this chapter.)

Also, you should avoid the static void yield() method, which is intended to switch
execution from the current thread to another thread, because it can affect portability and hurt
application performance. Although yield() might switch to another thread on some platforms
(which can improve performance), yield() might only return to the current thread on other
platforms (which hurts performance because the yield() call has only wasted time).

Thread Synchronization
Throughout its execution, each thread is isolated from other threads because it has been
given its own method-call stack. However, threads can still interfere with each other
when they access and manipulate shared data. This interference can corrupt the shared
data, and this corruption can cause an application to fail.

CHAPTER 7: Exploring the Basic APIs Part 2 297

For example, consider a checking account in which a husband and wife have joint
access. Suppose that the husband and wife decide to empty this account at the same
time without knowing that the other is doing the same thing. Listing 7–8 demonstrates
this scenario.

Listing 7–8. A problematic checking account

public class CheckingAccount
{
 private int balance;
 public CheckingAccount(int initialBalance)
 {
 balance = initialBalance;
 }
 public boolean withdraw(int amount)
 {
 if (amount <= balance)
 {
 try
 {
 Thread.sleep((int)(Math.random()*200));
 }
 catch (InterruptedException ie)
 {
 }
 balance -= amount;
 return true;
 }
 return false;
 }
 public static void main(String[] args)
 {
 final CheckingAccount ca = new CheckingAccount(100);
 Runnable r = new Runnable()
 {
 public void run()
 {
 String name = Thread.currentThread().getName();
 for (int i = 0; i < 10; i++)
 System.out.println (name + " withdraws $10: " +
 ca.withdraw(10));
 }
 };
 Thread thdHusband = new Thread(r);
 thdHusband.setName("Husband");
 Thread thdWife = new Thread(r);
 thdWife.setName("Wife");
 thdHusband.start();
 thdWife.start();
 }
}

This application lets more money be withdrawn than is available in the account. For
example, the following output reveals $110 being withdrawn when only $100 is
available:

Wife withdraws $10: true

CHAPTER 7: Exploring the Basic APIs Part 2 298

Wife withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Wife withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: true
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Husband withdraws $10: false
Wife withdraws $10: true
Wife withdraws $10: false
Wife withdraws $10: false
Wife withdraws $10: false
Wife withdraws $10: false
Wife withdraws $10: false

The reason why more money is withdrawn than is available for withdrawal is that a race
condition exists between the husband and wife threads.

NOTE: A race condition is a scenario in which multiple threads update the same object at the
same time or nearly at the same time. Part of the object stores values written to it by one thread,
and another part of the object stores values written to it by another thread.

The race condition exists because the actions of checking the amount for withdrawal to
ensure that it is less than what appears in the balance and deducting the amount from
the balance are not atomic (indivisible) operations. (Although atoms are divisible, atomic
is commonly used to refer to something being indivisible.)

NOTE: The Thread.sleep() method call that sleeps for a variable amount of time (up to a
maximum of 199 milliseconds) is present so that you can observe more money being withdrawn
than is available for withdrawal. Without this method call, you might have to execute the
application hundreds of times (or more) to witness this problem, because the scheduler might
rarely pause a thread between the amount <= balance expression and the balance -=
amount; expression statement—the code executes rapidly.

Consider the following scenario:

 The Husband thread executes withdraw()’s amount <= balance
expression, which returns true. The scheduler pauses the Husband
thread and lets the Wife thread execute.

 The Wife thread executes withdraw()’s amount <= balance expression,
which returns true.

CHAPTER 7: Exploring the Basic APIs Part 2 299

 The Wife thread performs the withdrawal. The scheduler pauses the
Wife thread and lets the Husband thread execute.

 The Husband thread performs the withdrawal.

This problem can be corrected by synchronizing access to withdraw() so that only one
thread at a time can execute inside this method. You synchronize access at the method
level by adding reserved word synchronized to the method header prior to the method’s
return type; for example, public synchronized boolean withdraw(int amount).

As I demonstrate later, you can also synchronize access to a block of statements by
specifying synchronized(object) { /* synchronized statements */ }, where object is
an arbitrary object reference. No thread can enter a synchronized method or block until
execution leaves the method/block; this is known as mutual exclusion.

Synchronization is implemented in terms of monitors and locks. A monitor is a
concurrency construct for controlling access to a critical section, a region of code that
must execute atomically. It is identified at the source code level as a synchronized
method or a synchronized block.

A lock is a token that a thread must acquire before a monitor allows that thread to
execute inside a monitor’s critical section. The token is released automatically when the
thread exits the monitor, to give another thread an opportunity to acquire the token and
enter the monitor.

NOTE: A thread that has acquired a lock does not release this lock when it calls one of Thread’s
sleep() methods.

A thread entering a synchronized instance method acquires the lock associated with the
object on which the method is called. A thread entering a synchronized class method
acquires the lock associated with the class’s Class object. Finally, a thread entering a
synchronized block acquires the lock associated with the block’s controlling object.

TIP: Thread declares a public static boolean holdsLock(Object o) method that
returns true when the calling thread holds the monitor lock on object o. You will find this method
handy in assertion statements, such as assert Thread.holdsLock(o);.

The need for synchronization is often subtle. For example, Listing 7–9’s ID utility class
declares a getNextID() method that returns a unique long-based ID, perhaps to be used
when generating unique filenames. Although you might not think so, this method can
cause data corruption and return duplicate values.

Listing 7–9. A utility class for returning unique IDs

public class ID
{
 private static long nextID = 0;
 public static long getNextID()

CHAPTER 7: Exploring the Basic APIs Part 2 300

 {
 return nextID++;
 }
}

There are two lack-of-synchronization problems with getNextID(). Because 32-bit
virtual machine implementations require two steps to update a 64-bit long integer,
adding 1 to nextID is not atomic: the scheduler could interrupt a thread that has only
updated half of nextID, which corrupts the contents of this variable.

NOTE: Variables of type long and double are subject to corruption when being written to in an
unsynchronized context on 32-bit virtual machines. This problem does not occur with variables of
type boolean, byte, char, float, int, or short; each type occupies 32 bits or less.

Assume that multiple threads call getNextID(). Because postincrement (++) reads and
writes the nextID field in two steps, multiple threads might retrieve the same value. For
example, thread A executes ++, reading nextID but not incrementing its value before
being interrupted by the scheduler. Thread B now executes and reads the same value.

Both problems can be corrected by synchronizing access to nextID so that only one
thread can execute this method’s code. All that is required is to add synchronized to the
method header prior to the method’s return type; for example, public static
synchronized int getNextID().

Synchronization is also used to communicate between threads. For example, you might
design your own mechanism for stopping a thread (because you cannot use Thread’s
unsafe stop() methods for this task). Listing 7–10 shows how you might accomplish this
task.

Listing 7–10. Attempting to stop a thread

public static void main(String[] args)
{
 class StoppableThread extends Thread
 {
 private boolean stopped = false;
 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 public void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second

CHAPTER 7: Exploring the Basic APIs Part 2 301

 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
}

Listing 7–10 introduces a main() method with a local class named StoppableThread that
subclasses Thread. StoppableThread declares a stopped field initialized to false, a
stopThread() method that sets this field to true, and a run() method whose infinite loop
checks stopped on each loop iteration to see if its value has changed to true.

After instantiating StoppableThread, the default main thread starts the thread associated
with this Thread object. It then sleeps for one second and calls StoppableThread’s
stop() method before dying. When you run this application on a single-
processor/single-core machine, you will probably observe the application stopping.

You might not see this stoppage when the application runs on a multiprocessor machine
or a uniprocessor machine with multiple cores. For performance reasons, each
processor or core probably has its own cache with its own copy of stopped. When one
thread modifies its copy of this field, the other thread’s copy of stopped is not changed.

Listing 7–11 refactors Listing 7–10 to guarantee that the application will run correctly on
all kinds of machines.

Listing 7–11. Guaranteed stoppage on a multiprocessor/multicore machine

public static void main(String[] args)
{
 class StoppableThread extends Thread
 {
 private boolean stopped = false;
 @Override
 public void run()
 {
 while(!isStopped())
 System.out.println("running");
 }
 public synchronized void stopThread()
 {
 stopped = true;
 }
 private synchronized boolean isStopped()
 {
 return stopped;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }

CHAPTER 7: Exploring the Basic APIs Part 2 302

 thd.stopThread();
}

Listing 7–11’s stopThread() and isStopped() methods are synchronized to support
thread communication (between the default main thread that calls stopThread() and the
started thread that executes inside run()). When a thread enters one of these methods,
it is guaranteed to access a single shared copy of the stopped field (not a cached copy).

Synchronization is necessary to support mutual exclusion or mutual exclusion combined
with thread communication. However, there exists an alternative to synchronization
when the only purpose is to communicate between threads. This alternative is reserved
word volatile, which Listing 7–12 demonstrates.

Listing 7–12. The volatile alternative to synchronization for thread communication

public static void main(String[] args)
{
 class StoppableThread extends Thread
 {
 private volatile boolean stopped = false;
 @Override
 public void run()
 {
 while(!stopped)
 System.out.println("running");
 }
 public void stopThread()
 {
 stopped = true;
 }
 }
 StoppableThread thd = new StoppableThread();
 thd.start();
 try
 {
 Thread.sleep(1000); // sleep for 1 second
 }
 catch (InterruptedException ie)
 {
 }
 thd.stopThread();
}

Listing 7–12 declares stopped to be volatile; threads that access this field will always
access a single shared copy (not cached copies on multiprocessor/multicore machines).
In addition to generating code that is less verbose, volatile might offer improved
performance over synchronization.

CHAPTER 7: Exploring the Basic APIs Part 2 303

CAUTION: You should only use volatile in the context of thread communication. Also, you can
only use this reserved word in the context of field declarations. Although you can declare double
and long fields volatile, you should avoid doing so on 32-bit virtual machines because it
takes two operations to access a double or long variable’s value, and mutual exclusion via
synchronization is required to access their values safely.

Object’s wait(), notify(), and notifyAll() methods support a form of thread
communication where a thread voluntarily waits for some condition (a prerequisite for
continued execution) to arise, at which time another thread notifies the waiting thread
that it can continue. wait() causes its calling thread to wait on an object’s monitor, and
notify() and notifyAll() wake up one or all threads waiting on the monitor.

CAUTION: Because the wait(), notify(), and notifyAll() methods depend on a lock,
they cannot be called from outside of a synchronized method or synchronized block. If you fail to
heed this warning, you will encounter a thrown instance of the
java.lang.IllegalMonitorStateException class. Also, a thread that has acquired a lock
releases this lock when it calls one of Object’s wait() methods.

A classic example of thread communication involving conditions is the relationship
between a producer thread and a consumer thread. The producer thread produces data
items to be consumed by the consumer thread. Each produced data item is stored in a
shared variable.

Imagine that the threads are not communicating and are running at different speeds. The
producer might produce a new data item and record it in the shared variable before the
consumer retrieves the previous data item for processing. Also, the consumer might
retrieve the contents of the shared variable before a new data item is produced.

To overcome those problems, the producer thread must wait until it is notified that the
previously produced data item has been consumed, and the consumer thread must wait
until it is notified that a new data item has been produced. Listing 7–13 shows you how
to accomplish this task via wait() and notify().

Listing 7–13. The producer-consumer relationship

public class PC
{
 public static void main(String[] args)
 {
 Shared s = new Shared();
 new Producer(s).start();
 new Consumer(s).start();
 }
}
class Shared
{
 private char c = '\u0000';

CHAPTER 7: Exploring the Basic APIs Part 2 304

 private boolean writeable = true;
 synchronized void setSharedChar(char c)
 {
 while (!writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 this.c = c;
 writeable = false;
 notify();
 }
 synchronized char getSharedChar()
 {
 while (writeable)
 try
 {
 wait();
 }
 catch (InterruptedException e) {}
 writeable = true;
 notify();
 return c;
 }
}
class Producer extends Thread
{
 private Shared s;
 Producer(Shared s)
 {
 this.s = s;
 }
 @Override
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 synchronized(s)
 {
 s.setSharedChar(ch);
 System.out.println(ch + " produced by producer.");
 }
 }
 }
}
class Consumer extends Thread
{
 private Shared s;
 Consumer(Shared s)
 {
 this.s = s;
 }
 @Override
 public void run()
 {
 char ch;

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 7: Exploring the Basic APIs Part 2 305

 do
 {
 synchronized(s)
 {
 ch = s.getSharedChar();
 System.out.println(ch + " consumed by consumer.");
 }
 }
 while (ch != 'Z');
 }
}

The application creates a Shared object and two threads that get a copy of the object’s
reference. The producer calls the object’s setSharedChar() method to save each of 26
uppercase letters; the consumer calls the object’s getSharedChar() method to acquire
each letter.

The writeable instance field tracks two conditions: the producer waiting on the
consumer to consume a data item, and the consumer waiting on the producer to
produce a new data item. It helps coordinate execution of the producer and consumer.
The following scenario, where the consumer executes first, illustrates this coordination:

1. The consumer executes s.getSharedChar() to retrieve a letter.

2. Inside of that synchronized method, the consumer calls wait() because

writeable contains true. The consumer now waits until it receives

notification from the producer.

3. The producer eventually executes s.setSharedChar(ch);.

4. When the producer enters that synchronized method (which is possible

because the consumer released the lock inside of the wait() method

prior to waiting), the producer discovers writeable’s value to be true

and does not call wait().

5. The producer saves the character, sets writeable to false (which will

cause the producer to wait on the next setSharedChar() call when the

consumer has not consumed the character by that time), and calls

notify() to awaken the consumer (assuming the consumer is waiting).

6. The producer exits setSharedChar(char c).

7. The consumer wakes up (and reacquires the lock), sets writeable to

true (which will cause the consumer to wait on the next

getSharedChar() call when the producer has not produced a character

by that time), notifies the producer to awaken that thread (assuming the

producer is waiting), and returns the shared character.

Although the synchronization works correctly, you might observe output (on some
platforms) that shows multiple producing messages before a consuming message. For
example, you might see A produced by producer., followed by B produced by

CHAPTER 7: Exploring the Basic APIs Part 2 306

producer., followed by A consumed by consumer., at the beginning of the application’s
output.

This strange output order is caused by the call to setSharedChar() followed by its
companion System.out.println() method call not being atomic, and by the call to
getSharedChar() followed by its companion System.out.println() method call not
being atomic. The output order is corrected by wrapping each of these method call pairs
in a synchronized block that synchronizes on the Shared object referenced by s.

When you run this application, its output should always appear in the same alternating
order, as shown next (only the first few lines are shown for brevity):

A produced by producer.
A consumed by consumer.
B produced by producer.
B consumed by consumer.
C produced by producer.
C consumed by consumer.
D produced by producer.
D consumed by consumer.

CAUTION: Never call wait() outside of a loop. The loop tests the condition (!writeable or
writeable in the previous example) before and after the wait() call. Testing the condition
before calling wait() ensures liveness. If this test was not present, and if the condition held and
notify() had been called prior to wait() being called, it is unlikely that the waiting thread
would ever wake up. Retesting the condition after calling wait() ensures safety. If retesting did
not occur, and if the condition did not hold after the thread had awakened from the wait() call
(perhaps another thread called notify() accidentally when the condition did not hold), the
thread would proceed to destroy the lock’s protected invariants.

Too much synchronization can be problematic. If you are not careful, you might
encounter a situation where locks are acquired by multiple threads, neither thread holds
its own lock but holds the lock needed by some other thread, and neither thread can
enter and later exit its critical section to release its held lock because some other thread
holds the lock to that critical section. Listing 7–14’s atypical example demonstrates this
scenario, which is known as deadlock.

Listing 7–14. A pathological case of deadlock

public class Deadlock
{
 private Object lock1 = new Object();
 private Object lock2 = new Object();
 public void instanceMethod1()
 {
 synchronized(lock1)
 {
 synchronized(lock2)
 {
 System.out.println("first thread in instanceMethod1");
 // critical section guarded first by

CHAPTER 7: Exploring the Basic APIs Part 2 307

 // lock1 and then by lock2
 }
 }
 }
 public void instanceMethod2()
 {
 synchronized(lock2)
 {
 synchronized(lock1)
 {
 System.out.println("second thread in instanceMethod2");
 // critical section guarded first by
 // lock2 and then by lock1
 }
 }
 }
 public static void main(String[] args)
 {
 final Deadlock dl = new Deadlock();
 Runnable r1 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 dl.instanceMethod1();
 }
 };
 Thread thdA = new Thread(r1);
 Runnable r2 = new Runnable()
 {
 @Override
 public void run()
 {
 while(true)
 dl.instanceMethod2();
 }
 };
 Thread thdB = new Thread(r2);
 thdA.start();
 thdB.start();
 }
}

Listing 7–14’s thread A and thread B call instanceMethod1() and instanceMethod2(),
respectively, at different times. Consider the following execution sequence:

1. Thread A calls instanceMethod1(), obtains the lock assigned to the

lock1-referenced object, and enters its outer critical section (but has not

yet acquired the lock assigned to the lock2-referenced object).

2. Thread B calls instanceMethod2(), obtains the lock assigned to the

lock2-referenced object, and enters its outer critical section (but has not

yet acquired the lock assigned to the lock1-referenced object).

CHAPTER 7: Exploring the Basic APIs Part 2 308

3. Thread A attempts to acquire the lock associated with lock2. The virtual

machine forces the thread to wait outside of the inner critical section

because thread B holds that lock.

4. Thread B attempts to acquire the lock associated with lock1. The virtual

machine forces the thread to wait outside of the inner critical section

because thread A holds that lock.

5. Neither thread can proceed because the other thread holds the needed

lock. We have a deadlock situation and the program (at least in the

context of the two threads) freezes up.

Although the previous example clearly identifies a deadlock state, it is often not that
easy to detect deadlock. For example, your code might contain the following circular
relationship among various classes (in several source files):

 Class A’s synchronized method calls class B’s synchronized method.

 Class B’s synchronized method calls class C’s synchronized method.

 Class C’s synchronized method calls class A’s synchronized method.

If thread A calls class A’s synchronized method and thread B calls class C’s
synchronized method, thread B will block when it attempts to call class A’s
synchronized method and thread A is still inside of that method. Thread A will continue
to execute until it calls class C’s synchronized method, and then block. Deadlock
results.

NOTE: Neither the Java language nor the virtual machine provides a way to prevent deadlock,
and so the burden falls on you. The simplest way to prevent deadlock from happening is to avoid
having either a synchronized method or a synchronized block call another synchronized
method/block. Although this advice prevents deadlock from happening, it is impractical because
one of your synchronized methods/blocks might need to call a synchronized method in a Java
API, and the advice is overkill because the synchronized method/block being called might not call
any other synchronized method/block, so deadlock would not occur.

You will sometimes want to associate per-thread data (such a user ID) with a thread.
Although you can accomplish this task with a local variable, you can only do so while the
local variable exists. You could use an instance field to keep this data around longer, but
then you would have to deal with synchronization. Thankfully, Java supplies ThreadLocal
as a simple alternative.

Each instance of the ThreadLocal class describes a thread-local variable, which is a
variable that provides a separate storage slot to each thread that accesses the variable.
You can think of a thread-local variable as a multislot variable in which each thread can
store a different value in the same variable. Each thread sees only its value and is
unaware of other threads having their own values in this variable.

CHAPTER 7: Exploring the Basic APIs Part 2 309

ThreadLocal is generically declared as ThreadLocal<T>, where T identifies the type of
value that is stored in the variable. This class declares the following constructor and
methods:

 ThreadLocal() creates a new thread-local variable.

 T get() returns the value in the calling thread’s storage slot. If an entry
does not exist when the thread calls this method, get() calls
initialValue().

 T initialValue() creates the calling thread’s storage slot and stores
an initial (default) value in this slot. The initial value defaults to null. You
must subclass ThreadLocal and override this protected method to
provide a more suitable initial value.

 void remove() removes the calling thread’s storage slot. If this method
is followed by get() with no intervening set(), get() calls
initialValue().

 void set(T value) sets the value of the calling thread’s storage slot to
value.

Listing 7–15 shows you how to use ThreadLocal to associate a different user ID with
each of two threads.

Listing 7–15. Different user IDs for different threads

private static volatile ThreadLocal<String> userID =
 new ThreadLocal<String>();
public static void main(String[] args)
{
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 if (name.equals("A"))
 userID.set("foxtrot");
 else
 userID.set("charlie");
 System.out.println(name + " " + userID.get());
 }
 };
 Thread thdA = new Thread(r);
 thdA.setName("A");
 Thread thdB = new Thread(r);
 thdB.setName("B");
 thdA.start();
 thdB.start();
}

After instantiating ThreadLocal and assigning the reference to a volatile class field
named userID (the field is volatile because it is accessed by different threads, which

CHAPTER 7: Exploring the Basic APIs Part 2 310

might execute on a multiprocessor/multicore machine), the default main thread creates
two more threads that store different String objects in userID and output their objects.

When you run this application, you will observe the following output (possibly not in this
order):

A foxtrot
B charlie

Values stored in thread-local variables are not related. When a new thread is created, it
gets a new storage slot containing initialValue()’s value. Perhaps you would prefer to
pass a value from a parent thread, a thread that creates another thread, to a child
thread, the created thread. You accomplish this task with InheritableThreadLocal.

InheritableThreadLocal is a subclass of ThreadLocal. In addition to declaring a public
InheritableThreadLocal() constructor, this class declares the following protected method:

 T childValue(T parentValue) calculates the child’s initial value as a
function of the parent’s value at the time the child thread is created.
This method is called from the parent thread before the child thread is
started. The method returns the argument passed to parentValue and
should be overridden when another value is desired.

Listing 7–16 shows you how to use InheritableThreadLocal to pass a parent thread’s
Integer object to a child thread.

Listing 7–16. Passing an object from parent thread to child thread

private static volatile InheritableThreadLocal<Integer> intVal =
 new InheritableThreadLocal<Integer>();
public static void main(String[] args)
{
 Runnable rP = new Runnable()
 {
 @Override
 public void run()
 {
 intVal.set(new Integer(10));
 Runnable rC = new Runnable()
 {
 public void run()
 {
 Thread thd;
 thd = Thread.currentThread();
 String name = thd.getName();
 System.out.println(name + " " +
 intVal.get());
 }
 };
 Thread thdChild = new Thread(rC);
 thdChild.setName("Child");
 thdChild.start();
 }
 };
 new Thread(rP).start();
}

CHAPTER 7: Exploring the Basic APIs Part 2 311

After instantiating InheritableThreadLocal and assigning it to a volatile class field
named intVal, the default main thread creates a parent thread, which stores an Integer
object containing 10 in intVal. The parent thread creates a child thread, which accesses
intVal and retrieves its parent thread’s Integer object.

When you run this application, you will observe the following output:

Child 10

EXERCISES

The following exercises are designed to test your understanding of this chapter’s additional basic APIs:

1. What is reflection?

2. What is the difference between Class’s getDeclaredFields() and getFields()
methods?

3. How would you determine if the method represented by a Method object is abstract?

4. Identify the three ways of obtaining a Class object.

5. True or false: A string literal is a String object.

6. What is the purpose of String’s intern() method?

7. How do String and StringBuffer differ?

8. How do StringBuffer and StringBuilder differ?

9. What does System’s arraycopy() method accomplish?

10. What is a thread?

11. What is the purpose of the Runnable interface?

12. What is the purpose of the Thread class?

13. True or false: A Thread object associates with multiple threads.

14. What is a race condition?

15. What is synchronization?

16. How is synchronization implemented?

17. How does synchronization work?

18. True or false: Variables of type long or double are not atomic on 32-bit virtual
machines.

19. What is the purpose of reserved word volatile?

20. True or false: Object’s wait() methods can be called from outside of a
synchronized method or block.

21. What is deadlock?

22. What is the purpose of the ThreadLocal class?

CHAPTER 7: Exploring the Basic APIs Part 2 312

23. How does InheritableThreadLocal differ from ThreadLocal?

24. In Chapter 6, Listing 6-14’s demonstration of the SoftReference class includes the
following array declaration and inefficient loop:

 String[] imageNames = new String[NUM_IMAGES];
 for (int i = 0; i < imageNames.length; i++)
 imageNames[i] = new String("image" + i + ".gif");

Rewrite this loop to use StringBuffer.

25. Class declares boolean isAnnotation(), boolean isEnum(), and boolean
isInterface() methods that return true when the Class object represents an
annotation type, an enum, or an interface, respectively. Create a Classify
application that uses Class’s forName() method to load its single command-line
argument, which will represent an annotation type, enum, interface, or class (the
default). Use a chained if-else statement along with the aforementioned methods to
output Annotation, Enum, Interface, or Class.

26. The output from Listing 7–1’s ExploreType application does not look like a class
declaration for the Boolean class. Improve this application so that java
ExploreType java.lang.Boolean generates the following output:

public class java.lang.Boolean
{
 // FIELDS
 public static final java.lang.Boolean java.lang.Boolean.TRUE
 public static final java.lang.Boolean java.lang.Boolean.FALSE
 public static final java.lang.Class java.lang.Boolean.TYPE
 private final boolean java.lang.Boolean.value
 private static final long java.lang.Boolean.serialVersionUID

 // CONSTRUCTORS
 public java.lang.Boolean(java.lang.String)
 public java.lang.Boolean(boolean)

 // METHODS
 public int java.lang.Boolean.hashCode()
 public boolean java.lang.Boolean.equals(java.lang.Object)
 public int java.lang.Boolean.compareTo(java.lang.Boolean)
 public int java.lang.Boolean.compareTo(java.lang.Object)
 public static boolean java.lang.Boolean.getBoolean(java.lang.String)
 public static java.lang.String java.lang.Boolean.toString(boolean)
 public java.lang.String java.lang.Boolean.toString()
 public static java.lang.Boolean java.lang.Boolean.valueOf(java.lang.String)
 public static java.lang.Boolean java.lang.Boolean.valueOf(boolean)
 public boolean java.lang.Boolean.booleanValue()
 public static boolean java.lang.Boolean.parseBoolean(java.lang.String)
 private static boolean java.lang.Boolean.toBoolean(java.lang.String)
}

27. Modify Listing 7–3’s CountingThreads application by marking the two started
threads as daemon threads. What happens when you run the resulting application?

CHAPTER 7: Exploring the Basic APIs Part 2 313

28. Modify Listing 7–3’s CountingThreads application by adding logic to stop both
counting threads when the user presses the Enter key. The default main thread should
call System.in.read() prior to terminating, and assign true to a variable named
stopped after this method call returns. Each counting thread should test this variable
to see if it contains true at the start of each loop iteration, and only continue the loop
when the variable contains false.

Summary
The Reflection API lets applications learn about loaded classes, interfaces, enums, and
annotation types. The API also lets applications instantiate classes, call methods,
access fields, and perform other tasks reflectively.

The entry point into the Reflection API is a special java.lang class named Class.
Additional classes are located in the java.lang.reflect package, and include
Constructor, Field, Method, AccessibleObject, and Array.

The java.lang.String class represents a string as a sequence of characters. Because
instances of this class are immutable, Java provides java.lang.StringBuffer for
building a string more efficiently.

The java.lang.System class provides access to standard input, standard output, and
standard error, and other system-oriented resources. For example, System provides the
arraycopy() method as the fastest portable way to copy one array to another.

Finally, Java supports threads via its Threading API. This API consists of one interface
(Runnable) and four classes (Thread, ThreadGroup, ThreadLocal, and
InheritableThreadLocal) in the java.lang package.

This chapter completes my coverage of Java’s basic APIs. Chapter 8 continues to
explore Java’s foundational APIs by focusing on its utility APIs. Specifically, Chapter 8
introduces you to the collections framework.

CHAPTER 7: Exploring the Basic APIs Part 2 314

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

315

315

 Chapter

Discovering the
Collections Framework
Java’s standard class library includes various utility APIs. An important category of utility

APIs is the collections framework, which lets applications manage groups of objects.

After presenting an overview of this framework, this chapter introduces you to the

framework’s core interfaces, implementation classes, and utility classes. Chapter 8 ends

by discussing Java’s classic collections classes.

NOTE: Unless otherwise noted, Chapter 8 explores classes and interfaces that are located in the
java.util package.

Framework Overview
A collection is a group of objects that are stored in an instance of a class designed for

this purpose. You could create your own collections classes, but why should you waste

time “reinventing the wheel” when you could spend that time focusing on your

applications? For this and other reasons, Java provides the collections framework,

which is a standardized architecture for representing and manipulating collections.

The collections framework largely consists of three components:

 Core interfaces: The framework employs core interfaces for

manipulating collections independently of their implementations.

 Implementation classes: The framework employs classes that provide

different implementations of the core interfaces to address

performance and other requirements.

 Utility classes: The framework provides utility classes whose methods

let you sort arrays, obtain synchronized collections, and more.

8

CHAPTER 8: Discovering the Collections Framework 316

The collections framework’s core interfaces include Iterable, Collection, List, Set,

SortedSet, Queue, Map, and SortedMap. Collection extends Iterable; List, Set, and

Queue each extend Collection; SortedSet extends Set; and SortedMap extends Map.

Figure 8–1 illustrates the core interfaces hierarchy (arrows point to parent interfaces).

Figure 8–1. A hierarchy of core interfaces

The framework’s implementation classes include ArrayList, LinkedList, TreeSet,

HashSet, LinkedHashSet, EnumSet, PriorityQueue, TreeMap, HashMap, LinkedHashMap,

IdentityHashMap, WeakHashMap, and EnumMap. The name of each concrete class ends in a

core interface name, identifying the core interface on which it is based.

NOTE: Additional implementation classes are part of the concurrency utilities (see Chapter 9).

The framework’s implementation classes also include the abstract AbstractCollection,

AbstractList, AbstractSequentialList, AbstractSet, AbstractQueue, and AbstractMap

classes. These classes offer skeletal implementations of the core interfaces to facilitate

the creation of concrete implementation classes.

Finally, the framework provides two utility classes: Arrays and Collections.

Comparable Versus Comparator
A collection implementation stores its elements in some order (arrangement). This order

may be unsorted, or it may be sorted according to some criterion (such as alphabetical,

numerical, or chronological).

A sorted collection implementation defaults to storing its elements according to their

natural ordering. For example, the natural ordering of String objects is lexicographic or

dictionary (also known as alphabetical) order.

CHAPTER 8: Discovering the Collections Framework 317

A collection cannot rely on equals() to dictate natural ordering because this method can

only determine if two elements are equivalent. Instead, element classes must implement

the java.lang.Comparable<T> interface and its int compareTo(T o) method.

NOTE: According to Comparable’s JDK documentation, this interface is considered to be part of
the collections framework, even though it is a member of the java.lang package.

A sorted collection uses compareTo() to determine the natural ordering of this method’s

element argument o in a collection. compareTo() compares argument o with the current

element (which is the element on which compareTo() was called) and does the following:

 It returns a negative value when the current element should precede o.

 It returns a zero value when the current element and o are the same.

 It returns a positive value when the current element should succeed o.

When you need to implement Comparable’s compareTo() method, there are some rules

that you must follow. These rules, listed next, are similar to those shown in Chapter 3 for

implementing the equals() method:

 compareTo() must be reflexive: For any nonnull reference value x,

x.compareTo(x) must return 0.

 compareTo() must be symmetric: For any nonnull reference values x

and y, x.compareTo(y) == -y.compareTo(x) must hold.

 compareTo() must be transitive: For any nonnull reference values x, y,

and z, if x.compareTo(y) > 0 is true, and if y.compareTo(z) > 0 is true,

then x.compareTo(z) > 0 must also be true.

Also, compareTo() should throw NullPointerException when the null reference is passed

to this method. However, you do not need to check for null because this method throws

NullPointerException when it attempts to access a null reference’s members.

NOTE: Prior to Java version 5 and its introduction of generics, compareTo()’s argument was of
type Object and had to be cast to the appropriate type before the comparison could be made.
The cast operator would throw a java.lang.ClassCastException instance when the
argument’s type was not compatible with the cast.

You might occasionally need to store in a collection objects that are sorted in some

order that differs from their natural ordering. In this case, you would supply a

comparator to provide that ordering.

A comparator is an object whose class implements the Comparator interface. This

interface, whose generic type is Comparator<T>, provides the following pair of methods:

CHAPTER 8: Discovering the Collections Framework 318

 int compare(T o1, T o2) compares both arguments for order. This

method returns 0 when o1 equals o2, a negative value when o1 is less

than o2, and a positive value when o1 is greater than o2.

 boolean equals(Object o) returns true when o “equals” this

Comparator in that o is also a Comparator and imposes the same

ordering. Otherwise, this method returns false.

NOTE: Comparator declares equals() because this interface places an extra condition on this
method’s contract. Additionally, this method can return true only if the specified object is also a
comparator and it imposes the same ordering as this comparator. You do not have to override
equals(), but doing so may improve performance by allowing programs to determine that two
distinct comparators impose the same order.

Chapter 5 provided an example that illustrated implementing Comparable, and you will

discover an additional example later in this chapter. Also, this chapter will present

examples of implementing Comparator.

Iterable and Collection
Most of the core interfaces are rooted in Iterable and its Collection subinterface. Their

generic types are Iterable<T> and Collection<E>.

Iterable describes any object that can return its contained objects in some sequence.

This interface declares an Iterator<T> iterator() method that returns an Iterator

instance for iterating over all of the contained objects.

Collection represents a collection of objects that are known as elements. This interface

provides methods that are common to the Collection subinterfaces on which many

collections are based. Table 8–1 describes these methods.

Table 8–1. Collection Methods

Method Description

boolean add(E e) Add element e to this collection. Return true if this collection was

modified as a result; otherwise, return false. (Attempting to add e

to a collection that does not permit duplicates and already

contains a same-valued element results in e not being added.)

This method throws java.lang.UnsupportedOperationException

when add() is not supported, ClassCastException when e’s class

is not appropriate for this collection,

java.lang.IllegalArgumentException when some property of e

prevents it from being added to this collection, and

java.lang.NullPointerException when e contains the null

reference and this collection does not support null elements.

CHAPTER 8: Discovering the Collections Framework 319

Method Description

boolean addAll(Collection<?
extends E> c)

Add all elements of collection c to this collection. Return true if this

collection was modified as the result; otherwise, return false. This

method throws UnsupportedOperationException when this

collection does not support addAll(), ClassCastException when

the class of one of c’s elements is inappropriate for this collection,

IllegalArgumentException when some property of an element

prevents it from being added to this collection, and

NullPointerException when c contains the null reference or when

one of its elements is null and this collection does not support null

elements.

void clear() Remove all elements from this collection. This method throws

UnsupportedOperationException when this collection does not

support clear().

boolean contains
(Object o)

Return true when this collection contains o; otherwise, return

false. This method throws ClassCastException when the class of

o is inappropriate for this collection, and NullPointerException

when o contains the null reference and this collection does not

support null elements.

boolean containsAll
(Collection<?> c)

Return true when this collection contains all of the elements that

are contained in the collection specified by c; otherwise, return

false. This method throws ClassCastException when the class of

one of c’s elements is inappropriate for this collection, and

NullPointerException when c contains the null reference or when

one of its elements is null and this collection does not support null

elements.

boolean equals
(Object o)

Compare o with this collection and return true when o equals this

collection; otherwise, return false.

int hashCode() Return this collection’s hash code. Equal collections have equal

hash codes.

boolean isEmpty() Return true when this collection contains no elements; otherwise,

return false.

Iterator<E> iterator() Return an Iterator instance for iterating over all of the elements

contained in this collection. This Iterable method is redeclared in

Collection for convenience.

boolean remove
(Object o)

Remove the element identified as o from this collection. Return

true when the element is removed; otherwise, return false. This

method throws UnsupportedOperationException when this

collection does not support remove(), ClassCastException when

the class of o is inappropriate for this collection, and

NullPointerException when o contains the null reference and this

collection does not support null elements.

CHAPTER 8: Discovering the Collections Framework 320

Method Description

boolean removeAll
(Collection<?> c)

Remove all of the elements from this collection that are also

contained in collection c. Return true when this collection is

modified by this operation; otherwise, return false. This method

throws UnsupportedOperationException when this collection does

not support removeAll(), ClassCastException when the class of

one of c’s elements is inappropriate for this collection, and

NullPointerException when c contains the null reference or when

one of its elements is null and this collection does not support null

elements.

boolean retainAll
(Collection<?> c)

Retain all of the elements in this collection that are also contained

in collection c. Return true when this collection is modified by this

operation; otherwise, return false. This method throws

UnsupportedOperationException when this collection does not

support retainAll(), ClassCastException when the class of one

of c’s elements is inappropriate for this collection, and

NullPointerException when c contains the null reference or when

one of its elements is null and this collection does not support null

elements.

int size() Return the number of elements contained in this collection, or

Integer.MAX_VALUE when there are more than Integer.MAX_VALUE

elements contained in the collection.

Object[] toArray() Return an array containing all of the elements stored in this

collection. If this collection makes any guarantees as to what

order its elements are returned in by its iterator, this method

returns the elements in the same order.

The returned array is “safe” in that no references to it are

maintained by this collection. (In other words, this method

allocates a new array even when this collection is backed by an

array.) The caller can safely modify the returned array.

<T> T[] toArray(T[] a) Return an array containing all of the elements in this collection;

the runtime type of the returned array is that of the specified

array. If the collection fits in the specified array, it is returned in

the array. Otherwise, a new array is allocated with the runtime

type of the specified array and the size of this collection. This

method throws NullPointerException when null is passed to a,

and java.lang.ArrayStoreException when a’s runtime type is not

a supertype of the runtime type of every element in this collection.

Table 8–1 reveals three exceptional things about various Collection methods. First,

some methods can throw instances of the UnsupportedOperationException class. For

example, add() throws UnsupportedOperationException when you attempt to add an

object to an immutable (unmodifiable) collection (discussed later in this chapter).

CHAPTER 8: Discovering the Collections Framework 321

Second, some of Collection’s methods can throw instances of the ClassCastException

class. For example, remove() throws ClassCastException when you attempt to remove

an entry (also known as mapping) from a tree-based map whose keys are Strings, but

specify a non-String key instead.

Finally, Collection’s add() and addAll() methods throw IllegalArgumentException

instances when some property (attribute) of the element to be added prevents it from

being added to this collection. For example, a third-party collection class’s add() and

addAll() methods might throw this exception when they detect negative Integer values.

NOTE: Perhaps you are wondering why remove() is declared to accept any Object argument
instead of accepting only objects whose types are those of the collection. In other words, why is
remove() not declared as boolean remove(E e)? Also, why are containsAll(),
removeAll(), and retainAll() not declared with an argument of type Collection<?
extends E>, to ensure that the collection argument only contains elements of the same type as
the collection on which these methods are called? The answer to these questions is the need to
maintain backward compatibility. The collections framework was introduced prior to Java version
5 and its introduction of generics. To let legacy code written before version 5 continue to
compile, these four methods were declared with weaker type constraints.

Iterator and the Enhanced For Loop Statement
By extending Iterable, Collection inherits that interface’s iterator() method, which

makes it possible to iterate over a collection. iterator() returns an instance of a class

that implements the Iterator interface, whose generic type is expressed as Iterator<E>

and which declares the following three methods:

 boolean hasNext() returns true when this Iterator instance has more

elements to return; otherwise, this method returns false.

 E next() returns the next element from the collection associated with

this Iterator instance, or throws NoSuchElementException when there

are no more elements to return.

 void remove() removes the last element returned by next() from the

collection associated with this Iterator instance. This method can be

called only once per next() call. The behavior of an Iterator instance

is unspecified when the underlying collection is modified while iteration

is in progress in any way other than by calling remove(). This method

throws UnsupportedOperationException when it is not supported by

this Iterator, and java.lang.IllegalStateException when remove()

has been called without a previous call to next() or when multiple

remove() calls occur with no intervening next() calls.

CHAPTER 8: Discovering the Collections Framework 322

Listing 8–1 shows you how to iterate over a collection after calling iterator() to return

an Iterator instance. The while loop repeatedly calls the iterator’s hasNext() method to

determine whether or not iteration should continue, and (if it should continue) the next()

method to return the next element from the associated collection.

Listing 8–1. Classic collection iteration via the while loop idiom

Collection<String> col = ... // This code does not compile because of the ...
// Add elements to col.
Iterator iter = col.iterator();
while (iter.hasNext())
 System.out.println(iter.next());

Because this idiom is commonly used, Java version 5 introduced syntactic sugar to the

for loop statement to simplify iteration in terms of the idiom. This sugar makes this

statement appear like the foreach statement found in languages such as Perl, and is

revealed in Listing 8–2’s simplified equivalent of Listing 8–1.

Listing 8–2. Simplified collection iteration via the enhanced for loop statement

Collection<String> col = ... // This code does not compile because of the ...
// Add elements to col.
for (String s: col)
 System.out.println(s);

This sugar hides col.iterator(), a method call that returns an Iterator instance for

iterating over col’s elements. It also hides calls to Iterator’s hasNext() and next()

methods on this instance. You interpret this sugar to read as follows: “for each String

object in col, assign this object to s at the start of the loop iteration.”

NOTE: The enhanced for loop statement is also useful in an arrays context, in which it hides the
array index variable. Consider the following code fragment:

String[] verbs = { "run", "walk", "jump" };

for (String verb: verbs)

 System.out.println (verb);

This code fragment, which reads as “for each String object in the verbs array, assign that
object to verb at the start of the loop iteration,” is equivalent to the following code fragment:

String[] verbs = { "run", "walk", "jump" };

for (int i = 0; i < verbs.length; i++)

 System.out.println (verbs[i]);

The enhanced for loop statement is limited in that you cannot use this statement where

access to the iterator is required to remove an element from a collection. Also, it is not

usable where you must replace elements in a collection/array during a traversal, and it

cannot be used where you must iterate over multiple collections or arrays in parallel.

CHAPTER 8: Discovering the Collections Framework 323

Autoboxing and Unboxing
Developers who believe that Java should support only reference types have complained

about Java’s support for primitive types. One area where the dichotomy of Java’s type

system is clearly seen is the collections framework: you can store objects but not

primitive type–based values in collections.

Although you cannot directly store a primitive type–based value in a collection, you can

indirectly store this value by first wrapping it in an object created from a primitive

wrapper class such as Integer, and then storing this primitive wrapper class instance in

the collection—see Listing 8–3. (Chapter 6 discusses Java’s primitive wrapper classes.)

Listing 8–3. Wrapping an int in an Integer, which is then stored in the collection

Collection<Integer> col = ...; // This code does not compile because of the ...
int x = 27;
col.add(new Integer(x)); // Indirectly store int value 27 via an Integer object.

The reverse situation is also tedious. When you want to retrieve the int from col, you

must invoke Integer’s intValue() method (which, if you recall, is inherited from

Integer’s Number superclass). Continuing on from Listing 8–3, you would specify int y =
col.iterator().next().intValue(); to assign the stored 32-bit integer to y.

To alleviate this tedium, Java version 5 introduced autoboxing and unboxing, which are

a pair of complementary syntactic sugar–based language features that make primitive

values appear more like objects. (This “sleight of hand” is not complete because you

cannot specify expressions such as 27.doubleValue().)

Autoboxing automatically boxes (wraps) a primitive value in an object of the appropriate

primitive wrapper class type whenever a primitive type is specified but a reference is

required. For example, you could change Listing 8–3’s third line to col.add(x); and

have the compiler box x into an Integer object.

Unboxing automatically unboxes (unwraps) a primitive value from its wrapper object

whenever a reference is specified but a primitive type is required. For example, you

could specify int y = col.iterator().next(); and have the compiler unbox the

returned Integer object to int value 27 prior to the assignment.

Although autoboxing and unboxing were introduced to simplify working with primitive

values in a collections context, these language features can be used in other contexts,

and this arbitrary use can lead to a problem that is difficult to understand without

knowledge of what is happening behind the scenes. For example, consider Listing 8–4.

Listing 8–4. The trouble with autoboxing and unboxing

public static void main(String[] args)
{
 Integer i1 = 127;
 Integer i2 = 127;
 System.out.println(i1 == i2); // Output: true
 System.out.println(i1 < i2); // Output: false
 System.out.println(i1 > i2); // Output: false
 System.out.println(i1 + i2); // Output: 254
 i1 = 30000;

CHAPTER 8: Discovering the Collections Framework 324

 i2 = 30000;
 System.out.println(i1 == i2); // Output: false
 System.out.println(i1 < i2); // Output: false
 System.out.println(i1 > i2); // Output: false
 i2 = 30001;
 System.out.println(i1 < i2); // Output: true
 System.out.println(i1 + i2); // Output: 60001
}

With one exception, this listing’s output is as expected. The exception is the i1 == i2

comparison where each of i1 and i2 contains 30000. Instead of returning true, as is the

case where each of i1 and i2 contains 127, i1 == i2 returns false. What is causing this

problem?

Examine the generated code and you will discover that Integer i1 = 127; is converted

to Integer i1 = Integer.valueOf(127); and Integer i2 = 127; is converted to

Integer i2 = Integer.valueOf(127);. According to valueOf()’s Java documentation,

this method takes advantage of caching to improve performance.

NOTE: valueOf() is also used when adding a primitive value to a collection. For example,
col.add(27) is converted to col.add(Integer.valueOf(27)).

Integer maintains an internal cache of unique Integer objects over a small range of

values. The low bound of this range is -128, and the high bound defaults to 127.

However, you can change the high bound by assigning a different value to system

property java.lang.Integer.IntegerCache.high (via the System class’s String
setProperty(String prop, String value) method—I demonstrated this method’s

getProperty() counterpart in Chapter 7).

NOTE: Each of Byte, Long, and Short also maintains an internal cache of unique Byte, Long,
and Short objects, respectively.

Because of the cache, each Integer.valueOf(127) call returns the same Integer object

reference, which is why i1 == i2 (which compares references) evaluates to true.

Because 30000 lies outside of the default range, each Integer.valueOf(30000) call

returns a reference to a new Integer object, which is why i1 == i2 evaluates to false.

In contrast to == and !=, which do not unbox the boxed values prior to the comparison,

operators such as <, >, and + unbox these values before performing their operations. As

a result, i1 < i2 is converted to i1.intValue() < i2.intValue() and i1 + i2 is

converted to i1.intValue() + i2.intValue().

CAUTION: Do not assume that autoboxing and unboxing are used in the context of the == and !=
operators.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 8: Discovering the Collections Framework 325

List
A list is an ordered collection, which is also known as a sequence. Elements can be

stored in and accessed from specific locations via integer indexes. Some of these

elements may be duplicates or null (when the list’s implementation allows null elements).

Lists are described by the List interface, whose generic type is List<E>.

List extends Collection and redeclares its inherited methods, partly for convenience. It

also redeclares iterator(), add(), remove(), equals(), and hashCode() to place extra

conditions on their contracts. For example, List’s contract for add() specifies that it

appends an element to the end of the list, rather than adding the element to the

collection.

List also declares Table 8–2’s list-specific methods.

Table 8–2. List-specific Methods

Method Description

void add(int index, E e) Insert element e into this list at position index. Shift the element

currently at this position (if any) and any subsequent elements to the

right. This method throws UnsupportedOperationException when

this list does not support add(), ClassCastException when e’s class

is inappropriate for this list, IllegalArgumentException when some

property of e prevents it from being added to this list,

NullPointerException when e contains the null reference and this

list does not support null elements, and

java.lang.IndexOutOfBoundsException when index is less than 0 or

index is greater than size().

boolean addAll
(int index, Collection<?
extends E> c)

Insert all of c’s elements into this list starting at position index. Shift

the element currently at this position (if any) and any subsequent

elements to the right. The new elements appear in this list in the

order in which they are returned by c’s iterator. This method throws

UnsupportedOperationException when this list does not support

addAll(), ClassCastException when the class of one of c’s

elements is inappropriate for this list, IllegalArgumentException

when some property of an element prevents it from being added to

this list, NullPointerException when c contains the null reference or

when one of its elements is null and this list does not support null

elements, and IndexOutOfBoundsException when index is less than

0 or index is greater than size().

E get(int index) Return the element stored in this list at position index. This method

throws IndexOutOfBoundsException when index is less than 0 or

index is greater than or equal to size().

int indexOf
(Object o)

Return the index of the first occurrence of element o in this list, or -1

when this list does not contain the element. This method throws

ClassCastException when o’s class is inappropriate for this list, and

NullPointerException when o contains the null reference and this

list does not support null elements.

CHAPTER 8: Discovering the Collections Framework 326

Method Description

int lastIndexOf
(Object o)

Return the index of the last occurrence of element o in this list, or -1

when this list does not contain the element. This method throws

ClassCastException when o’s class is inappropriate for this list, and

NullPointerException when o contains the null reference and this

list does not support null elements.

ListIterator<E>
listIterator()

Return a list iterator over the elements in this list. The elements are

returned in the same order as they appear in the list.

ListIterator<E>
listIterator(int index)

Return a list iterator over the elements in this list starting with the

element located at index. The elements are returned in the same

order as they appear in the list. This method throws

IndexOutOfBoundsException when index is less than 0 or index is

greater than size().

E remove(int index) Remove the element at position index from this list and return this

element. This method throws UnsupportedOperationException when

this list does not support remove(), and IndexOutOfBoundsException

when index is less than 0 or index is greater than or equal to

size().

E set(int index,
E e)

Replace the element at position index in this list with element e and

return the element previously stored at this position. This method

throws UnsupportedOperationException when this list does not

support set(), ClassCastException when e’s class is inappropriate

for this list, IllegalArgumentException when some property of e

prevents it from being added to this list, NullPointerException

when e contains the null reference and this list does not support null

elements, and IndexOutOfBoundsException when index is less than

0 or index is greater than or equal to size().

List<E> subList
(int fromIndex, int
toIndex)

Return a view (discussed later) of the portion of this list between

fromIndex (inclusive) and toIndex (exclusive). (If fromIndex and

toIndex are equal, the returned list is empty.) The returned list is

backed by this list, so nonstructural changes in the returned list are

reflected in this list and vice versa. The returned list supports all of

the optional list methods (those methods that can throw

UnsupportedOperationException) supported by this list. This

method throws IndexOutOfBoundsException when fromIndex is less

than 0, toIndex is greater than size(), or fromIndex is greater than

toIndex.

Table 8–2 refers to the ListIterator interface, which is more flexible than its Iterator

superinterface in that ListIterator provides methods for iterating over a list in either

direction, modifying the list during iteration, and obtaining the iterator’s current position

in the list.

CHAPTER 8: Discovering the Collections Framework 327

NOTE: The Iterator and ListIterator instances that are returned by the iterator() and
listIterator() methods in the ArrayList and LinkedList List implementation classes
are fail-fast: when a list is structurally modified (by calling the implementation’s add() method
to add a new element, for example) after the iterator is created, in any way except through the
iterator's own add() or remove() methods, the iterator throws
java.lang.ConcurrentModificationException. Therefore, in the face of concurrent
modification, the iterator fails quickly and cleanly, rather than risking arbitrary, nondeterministic
behavior at an undetermined time in the future.

ListIterator declares the following methods:

 void add(E e) inserts e into the list being iterated over. This element is

inserted immediately before the next element that would be returned

by next(), if any, and after the next element that would be returned by

previous(), if any. This method throws

UnsupportedOperationException when this list does not support add(),

ClassCastException when e’s class is inappropriate for this list, and

IllegalArgumentException when some property of e prevents it from

being added to this list.

 boolean hasNext() returns true when this list iterator has more

elements when traversing the list in the forward direction.

 boolean hasPrevious() returns true when this list iterator has more

elements when traversing the list in the reverse direction.

 E next() returns the next element in this list. This method throws

NoSuchElementException when there is no next element.

 int nextIndex() returns the index of the element that would be

returned by a subsequent call to next(), or the size of the list when at

the end of the list.

 E previous() returns the previous element in this list. This method

throws NoSuchElementException when there is no previous element.

 int previousIndex() returns the index of the element that would be

returned by a subsequent call to previous(), or -1 when at the

beginning of the list.

 void remove() removes from this list the last element that was

returned by next() or previous(). This call can be made only once per

call to next() or previous(). Furthermore, it can be made only when

add() has not been called after the last call to next() or previous().

This method throws UnsupportedOperationException when this list

does not support remove(), and IllegalStateException when neither

next() nor previous() has been called, or remove() or add() has

already been called after the last call to next() or previous().

CHAPTER 8: Discovering the Collections Framework 328

 void set(E e) replaces the last element returned by next() or

previous() with element e. This call can be made only when neither

remove() nor add() has been called after the last call to next() or

previous(). This method throws UnsupportedOperationException

when this list does not support set(), ClassCastException when e’s

class is inappropriate for this list, IllegalArgumentException when

some property of e prevents it from being added to this list, and

IllegalStateException when neither next() nor previous() has been

called, or remove() or add() has already been called after the last call

to next() or previous().

A ListIterator instance does not have the concept of a current element. Instead, it has

the concept of a cursor for navigating through a list. The nextIndex() and

previousIndex() methods return the cursor position, which always lies between the

element that would be returned by a call to previous() and the element that would be

returned by a call to next(). A list iterator for a list of length n has n+1 possible cursor

positions, as illustrated by each caret (^) below:

 Element(0) Element(1) Element(2) ... Element(n-1)
cursor positions: ^ ^ ^ ^ ^

NOTE: You can mix calls to next() and previous() as long as you are careful. Keep in mind
that the first call to previous() returns the same element as the last call to next().
Furthermore, the first call to next() following a sequence of calls to previous() returns the
same element as the last call to previous().

Table 8–2’s description of the subList() method refers to the concept of a view, which

is a list that is backed by another list. Changes that are made to the view are reflected in

this backing list. The view can cover the entire list or, as subList()’s name implies, only

part of the list.

The subList() method is useful for performing range-view operations over a list in a

compact manner. For example, list.subList(fromIndex, toIndex).clear(); removes

a range of elements from list where the first element is located at fromIndex and the

last element is located at toIndex-1.

CAUTION: A view’s meaning becomes undefined when changes are made to the backing list.
Therefore, you should only use subList() temporarily, whenever you need to perform a
sequence of range operations on the backing list.

CHAPTER 8: Discovering the Collections Framework 329

ArrayList
The ArrayList class provides a list implementation that is based on an internal array. As

a result, access to the list’s elements is fast. However, because elements must be

moved to open a space for insertion or to close a space after deletion, insertions and

deletions of elements is slow.

NOTE: Refer to Chapter 2 for an introduction to arrays.

ArrayList supplies three constructors:

 ArrayList() creates an empty array list with an initial capacity (storage

space) of ten elements. Once this capacity is reached, a larger array is

allocated, elements from the current array are copied into the larger

array, and the larger array becomes the new current array. This

process repeats as additional elements are added to the array list.

 ArrayList(Collection<? extends E> collection) creates an array list

containing collection’s elements in the order in which they are

returned by the collection’s iterator.

 ArrayList(int capacity) creates an empty array list with an initial

capacity of capacity elements.

Listing 8–5 demonstrates an array list.

Listing 8–5. A demonstration of an array-based list
import java.util.ArrayList;
import java.util.List;

public class ArrayListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new ArrayList<String>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);
 ls.set(ls.indexOf("Wed"), "Wednesday");
 dump("ls:", ls);
 ls.remove(ls.lastIndexOf("Fri"));
 dump("ls:", ls);
 }
 static void dump(String title, List<String> ls)
 {
 System.out.print(title + " ");
 for (String s: ls)
 System.out.print(s + " ");
 System.out.println();
 }
}

CHAPTER 8: Discovering the Collections Framework 330

The dump() method’s enhanced for loop statement uses iterator(), hasNext(), and

next() behind the scenes.

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Fri Sat
ls: Sun Mon Tue Wednesday Thu Sat

LinkedList
The LinkedList class provides a list implementation that is based on linked nodes.

Because links must be traversed, access to the list’s elements is slow. However,

because only node references need to be changed, insertions and deletions of elements

are fast.

WHAT IS A NODE?

A node is a fixed sequence of value and link memory locations. Unlike an array, where each slot stores a
single value of the same primitive type or reference supertype, a node can store multiple values of different
types. It can also store links (references to other nodes).

Consider the following simple Node class:

class Node
{
 // value field
 String name;
 // link field
 Node next;
}

Node describes simple nodes where each node consists of a single name value field and a single next
link field. Notice that next is of the same type as the class in which it is declared. This arrangement lets a
node instance store a reference to another node instance (which is the next node) in this field. The
resulting nodes are linked together.

The following code fragment creates a couple of Node objects and links the second Node object to the first
Node object. This fragment also demonstrates how to traverse this linked list by following each Node
object’s next field. Node traversal stops when the traversal code discovers that next contains the null
reference, which signifies the end of the list.

Node first = new Node();
first.name = "First node";
Node last = new Node();
last.name = "Last node";
last.next = null;
first.next = last;
Node temp = first;
while (temp != null)
{
 System.out.println(temp.name);
 temp = temp.next;
}

CHAPTER 8: Discovering the Collections Framework 331

The code first builds a linked list of two Nodes, and then assigns first to local variable temp in order to
traverse the list without losing the reference to the first node that is stored in first. While temp is not
null, the loop outputs the name field. It also navigates to the next Node object in the list via the temp =
temp.next; statement.

If you convert this code into an application and run the application, you will discover the following output:

First node
Last node

LinkedList supplies two constructors:

 LinkedList() creates an empty linked list.

 LinkedList(Collection<? extends E> collection) creates a linked

list containing collection’s elements in the order in which they are

returned by the collection’s iterator.

Listing 8–6 demonstrates a linked list.

Listing 8–6. A demonstration of a list of linked nodes

import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;

public class LinkedListDemo
{
 public static void main(String[] args)
 {
 List<String> ls = new LinkedList<String>();
 String[] weekDays = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
 for (String weekDay: weekDays)
 ls.add(weekDay);
 dump("ls:", ls);
 ls.add(1, "Sunday");
 ls.add(3, "Monday");
 ls.add(5, "Tuesday");
 ls.add(7, "Wednesday");
 ls.add(9, "Thursday");
 ls.add(11, "Friday");
 ls.add(13, "Saturday");
 dump("ls:", ls);
 ListIterator<String> li = ls.listIterator(ls.size());
 while (li.hasPrevious())
 System.out.print(li.previous() + " ");
 System.out.println();
 }
 static void dump(String title, List<String> ls)
 {
 System.out.print(title + " ");
 for (String s: ls)
 System.out.print(s + " ");
 System.out.println();
 }
}

CHAPTER 8: Discovering the Collections Framework 332

This application demonstrates that each successive add() method call must increase its

index by 2 to account for the previously added element when adding longer weekday

names to the list. It also shows you how to output a list in reverse order: return a list

iterator with its cursor initialized past the end of the list and repeatedly call previous().

When you run this application, it generates the following output:

ls: Sun Mon Tue Wed Thu Fri Sat
ls: Sun Sunday Mon Monday Tue Tuesday Wed Wednesday Thu Thursday Fri Friday Sat Saturday
Saturday Sat Friday Fri Thursday Thu Wednesday Wed Tuesday Tue Monday Mon Sunday Sun

Set
A set is a collection that contains no duplicate elements. In other words, a set contains

no pair of elements e1 and e2 such that e1.equals(e2) returns true. Furthermore, a set

can contain at most one null element. Sets are described by the Set interface, whose

generic type is Set<E>.

Set extends Collection and redeclares its inherited methods, for convenience and also

to add stipulations to the contracts for add(), equals(), and hashCode(), to address how

they behave in a set context. Also, Set’s documentation states that all constructors of

implementation classes must create sets that contain no duplicate elements.

Set does not introduce new methods.

TreeSet
The TreeSet class provides a set implementation that is based on a tree data structure.

As a result, elements are stored in sorted order. However, accessing these elements is

somewhat slower than with the other Set implementations (which are not sorted)

because links must be traversed.

NOTE: Check out Wikipedia’s “Tree (data structure)” entry
(http://en.wikipedia.org/wiki/Tree_%28data_structure%29) to learn about trees.

TreeSet supplies four constructors:

 TreeSet() creates a new, empty tree set that is sorted according to

the natural ordering of its elements. All elements inserted into the set

must implement the Comparable interface.

 TreeSet(Collection<? extends E> collection) creates a new tree set

containing collection’s elements, sorted according to the natural

ordering of its elements. All elements inserted into the new set must

implement the Comparable interface. This constructor throws

ClassCastException when collection’s elements do not implement

Comparable or are not mutually comparable, and

NullPointerException when collection contains the null reference.

http://en.wikipedia.org/wiki/Tree_%28data_structure%29

CHAPTER 8: Discovering the Collections Framework 333

 TreeSet(Comparator<? super E> comparator) creates a new, empty

tree set that is sorted according to the specified comparator. Passing

null to comparator implies that natural ordering will be used.

 TreeSet(SortedSet<E> sortedSet) creates a new tree set containing

the same elements and using the same ordering as sortedSet. (I

discuss sorted sets later in this chapter.) This constructor throws

NullPointerException when sortedSet contains the null reference.

Listing 8–7 demonstrates a tree set.

Listing 8–7. A demonstration of a tree set with String elements sorted according to their natural ordering

import java.util.Set;
import java.util.TreeSet;

public class TreeSetDemo
{
 public static void main(String[] args)
 {
 Set<String> ss = new TreeSet<String>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }
 static void dump(String title, Set<String> ss)
 {
 System.out.print(title + " ");
 for (String s: ss)
 System.out.print(s + " ");
 System.out.println();
 }
}

Because String implements Comparable, it is legal for this application to use the

TreeSet() constructor to insert the contents of the fruits array into the set.

When you run this application, it generates the following output:

ss: apples bananas grapes kiwis pears

HashSet
The HashSet class provides a set implementation that is backed by a hashtable data

structure (implemented as a HashMap instance, discussed later, which provides a quick

way to determine if an element has already been stored in this structure). Although this

class provides no ordering guarantees for its elements, HashSet is much faster than

TreeSet. Furthermore, HashSet permits the null reference to be stored in its instances.

NOTE: Check out Wikipedia’s “Hash table” entry
(http://en.wikipedia.org/wiki/Hash_table) to learn about hashtables.

http://en.wikipedia.org/wiki/Hash_table

CHAPTER 8: Discovering the Collections Framework 334

HashSet supplies four constructors:

 HashSet() creates a new, empty hashset where the backing HashMap

instance has an initial capacity of 16 and a load factor of 0.75. You will

learn what these items mean when I discuss HashMap later in this

chapter.

 HashSet(Collection<? extends E> collection) creates a new

hashset containing collection’s elements. The backing HashMap has

an initial capacity sufficient to contain collection’s elements and a

load factor of 0.75. This constructor throws NullPointerException

when collection contains the null reference.

 HashSet(int initialCapacity) creates a new, empty hashset where

the backing HashMap instance has the capacity specified by

initialCapacity and a load factor of 0.75. This constructor throws

IllegalArgumentException when initialCapacity’s value is less than

0.

 HashSet(int initialCapacity, float loadFactor) creates a new,

empty hashset where the backing HashMap instance has the capacity

specified by initialCapacity and the load factor specified by

loadFactor. This constructor throws IllegalArgumentException when

initialCapacity is less than 0 or when loadFactor is less than or

equal to 0.

Listing 8–8 demonstrates a hashset.

Listing 8–8. A demonstration of a hashset with String elements unordered

import java.util.HashSet;
import java.util.Set;

public class HashSetDemo
{
 public static void main(String[] args)
 {
 Set<String> ss = new HashSet<String>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis",
 "pears", null};
 for (String fruit: fruits)
 ss.add(fruit);
 dump("ss:", ss);
 }
 static void dump(String title, Set<String> ss)
 {
 System.out.print(title + " ");
 for (String s: ss)
 System.out.print(s + " ");
 System.out.println();
 }
}

In Listing 8–7’s TreeSetDemo application, I did not add null to the fruits array because

TreeSet throws NullPointerException when it detects an attempt to add this element. In

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 8: Discovering the Collections Framework 335

contrast, HashSet permits null to be added, which is why Listing 8–8 includes null in

HashSetDemo’s fruits array.

When you run this application, it generates unordered output such as the following:

ss: null grapes bananas kiwis pears apples

Suppose you want to add instances of your classes to a hashset. As with String, your

classes must override equals() and hashCode(); otherwise, duplicate class instances

can be stored in the hashset. For example, Listing 8–9 presents the source code to an

application whose Planet class overrides equals() but fails to also override hashCode().

Listing 8–9. A custom Planet class not overriding hashCode()

import java.util.HashSet;
import java.util.Set;

public class CustomClassAndHashSet
{
 public static void main(String[] args)
 {
 Set<Planet> sp = new HashSet<Planet>();
 sp.add(new Planet("Mercury"));
 sp.add(new Planet("Venus"));
 sp.add(new Planet("Earth"));
 sp.add(new Planet("Mars"));
 sp.add(new Planet("Jupiter"));
 sp.add(new Planet("Saturn"));
 sp.add(new Planet("Uranus"));
 sp.add(new Planet("Neptune"));
 sp.add(new Planet("Fomalhaut b"));
 Planet p1 = new Planet("51 Pegasi b");
 sp.add(p1);
 Planet p2 = new Planet("51 Pegasi b");
 sp.add(p2);
 System.out.println(p1.equals(p2));
 System.out.println(sp);
 }
}
class Planet
{
 private String name;
 Planet(String name)
 {
 this.name = name;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Planet))
 return false;
 Planet p = (Planet) o;
 return p.name.equals(name);
 }
 String getName()
 {
 return name;

CHAPTER 8: Discovering the Collections Framework 336

 }
 @Override
 public String toString()
 {
 return name;
 }
}

Listing 8–9’s Planet class declares a single name field of type String. Although it might

seem pointless to declare Planet with a single String field because I could refactor this

listing to remove Planet and work with String, I might want to introduce additional fields

to Planet (perhaps to store a planet’s mass and other characteristics) in the future.

NOTE: equals() relies on a little known fact about the Java language: one instance’s private
members can be accessed from another instance of the same class. For example, equals()
can specify p.name to access p’s private name field. Directly accessing an instance’s
private members in this manner is legal because encapsulation is not violated.

When you run this application, it generates unordered output such as the following:

true
[Jupiter, Fomalhaut b, Neptune, Uranus, Venus, Earth, Mercury, 51 Pegasi b, Mars,
Saturn, 51 Pegasi b]

This output reveals two 51 Pegasi b elements in the hashset. Although these elements

are equal from the perspective of the overriding equals() method (the first output line,

true, proves this point), overriding equals() is not enough to avoid duplicate elements

being stored in a hashset: you must also override hashCode().

The easiest way to override hashCode() in Listing 8–9’s Planet class is to have the

overriding method call the name field’s hashCode() method and return its value. (This

technique only works with a class whose single reference field’s class provides a valid

hashCode() method.) Listing 8–10 presents this overriding hashCode() method.

Listing 8–10. Handing over hash code calculation to another hashCode() method

@Override
public int hashCode()
{
 return name.hashCode();
}

Introduce this method into the previous Planet class and run the application. You will

observe output (similar to that shown below) that reveals no duplicate elements:

true
[Saturn, Earth, Uranus, Fomalhaut b, 51 Pegasi b, Venus, Jupiter, Mercury, Mars,
 Neptune]

CHAPTER 8: Discovering the Collections Framework 337

NOTE: LinkedHashSet is a subclass of HashSet that uses a linked list to store its elements.
As a result, LinkedHashSet’s iterator returns elements in the order in which they were
inserted. For example, if Listing 8–8 had specified Set<String> ss = new
LinkedHashSet<String>();, the application’s output would have been ss: apples pears
grapes bananas kiwis null. Also, LinkedHashSet offers slower performance than
HashSet and faster performance than TreeSet.

EnumSet
Chapter 5 introduced you to traditional enumerated types and their enum replacement.

(An enum is an enumerated type that is expressed via reserved word enum.) Listing 8–11

presents an example of a traditional enumerated type.

Listing 8–11. An enumerated type of weekday constants

public static final int SUNDAY = 1;
public static final int MONDAY = 2;
public static final int TUESDAY = 4;
public static final int WEDNESDAY = 8;
public static final int THURSDAY = 16;
public static final int FRIDAY = 32;
public static final int SATURDAY = 64;

Although the enum has many advantages over the traditional enumerated type, the

traditional enumerated type is less awkward to use when combining constants into a

set; for example, public static final int DAYS_OFF = SUNDAY | MONDAY;.

DAYS_OFF is an example of an integer-based, fixed-length bitset, which is a set of bits

where each bit indicates that its associated member belongs to the set when the bit is

set to 1, and is absent from the set when the bit is set to 0.

NOTE: An int-based bitset cannot contain more than 32 members because int has a size of 32
bits. Similarly, a long-based bitset cannot contain more than 64 members because long has a
size of 64 bits.

This bitset is formed by bitwise inclusive ORing the traditional enumerated type’s integer

constants together via the bitwise inclusive OR operator (|): you could also use +. Each

constant must be a unique power of two (starting with one) because otherwise it is

impossible to distinguish between the members of this bitset.

To determine if a constant belongs to the bitset, create an expression that involves the

bitwise AND operator (&). For example, ((DAYS_OFF & MONDAY) == MONDAY) bitwise ANDs

DAYS_OFF (3) with MONDAY (2), which results in 2. This value is compared via == with MONDAY

(2), and the result of the expression is true: MONDAY is a member of the DAYS_OFF bitset.

CHAPTER 8: Discovering the Collections Framework 338

You can accomplish the same task with an enum by instantiating an appropriate Set

implementation class and calling the add() method multiple times to store the constants

in the set. Listing 8–12 illustrates this more awkward alternative.

Listing 8–12. Creating the Set equivalent of DAYS_OFF

import java.util.Set;
import java.util.TreeSet;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
class DaysOff
{
 public static void main(String[] args)
 {
 Set<Weekday> daysOff = new TreeSet<Weekday>();
 daysOff.add(Weekday.SUNDAY);
 daysOff.add(Weekday.MONDAY);
 System.out.println(daysOff);
 }
}

When you run this application, it generates the following output:

[SUNDAY, MONDAY]

NOTE: The constants’ ordinals and not their names are stored in the tree set, which is why the
names appear unordered even though the constants are stored in sorted order of their ordinals.

In addition to being more awkward to use (and verbose) than the bitset, the Set

alternative requires more memory to store each constant and is not as fast. Because of

these problems, EnumSet was introduced.

The EnumSet class provides a Set implementation that is based on a bitset. Its elements

are constants that must come from the same enum, which is specified when the enum

set is created. Null elements are not permitted; any attempt to store a null element

results in a thrown NullPointerException.

Listing 8–13 demonstrates EnumSet.

Listing 8–13. Creating the EnumSet equivalent of DAYS_OFF

import java.util.EnumSet;
import java.util.Iterator;
import java.util.Set;

enum Weekday
{
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
public class EnumSetDemo
{
 public static void main(String[] args)

CHAPTER 8: Discovering the Collections Framework 339

 {
 Set<Weekday> daysOff = EnumSet.of(Weekday.SUNDAY, Weekday.MONDAY);
 Iterator<Weekday> iter = daysOff.iterator();
 while (iter.hasNext())
 System.out.println(iter.next());
 }
}

EnumSet, whose generic type is EnumSet<E extends Enum<E>>, provides a variety of utility

methods for conveniently constructing enum sets. For example, <E extends Enum<E>>
EnumSet<E> of(E e1, E e2) returns an EnumSet instance consisting of elements e1 and

e2. In this example, those elements are Weekday.SUNDAY and Weekday.MONDAY.

When you run this application, it generates the following output:

SUNDAY
MONDAY

NOTE: In addition to providing several overloaded of() methods, EnumSet provides other
methods for conveniently creating enum sets. For example, allOf() returns an EnumSet
instance that contains all of an enum’s constants, where this method’s solitary argument is a
class literal that identifies the enum:

Set<Weekday> allWeekDays = EnumSet.allOf(Weekday.class);

Similarly, range() returns an EnumSet instance containing a range of an enum’s elements
(with the range’s limits as specified by this method’s two arguments):

for (WeekDay wd : EnumSet.range(WeekDay.MONDAY, WeekDay.FRIDAY))

 System.out.println(wd);

SortedSet
TreeSet is an example of a sorted set, which is a set that maintains its elements in

ascending order, sorted according to their natural ordering or according to a comparator

that is supplied when the sorted set is created. Sorted sets are described by the

SortedSet interface.

SortedSet, whose generic type is SortedSet<E>, extends Set. With two exceptions, the

methods it inherits from Set behave identically on sorted sets as on other sets:

 The Iterator instance returned from iterator() traverses the sorted

set in order.

 The array returned by toArray() contains the sorted set’s elements in

order.

CHAPTER 8: Discovering the Collections Framework 340

NOTE: Although not guaranteed, the toString() methods of SortedSet implementations in
the collections framework (such as TreeSet) return a string containing all of the sorted set’s
elements in order.

SortedSet’s documentation requires that an implementation must provide the four

standard constructors that I presented in my discussion of TreeSet. Furthermore,

implementations of this interface must implement the methods that are described in

Table 8–3.

Table 8–3. SortedSet-specific Methods

Method Description

Comparator<?
super E>
comparator()

Return the comparator used to order the elements in this set, or null when this

set uses the natural ordering of its elements.

E first() Return the first (lowest) element currently in this set, or throw a

NoSuchElementException instance when this set is empty.

SortedSet<E>
headSet(E
toElement)

Return a view of that portion of this set whose elements are strictly less than

toElement. The returned set is backed by this set, so changes in the returned

set are reflected in this set and vice versa. The returned set supports all

optional set operations that this set supports. This method throws

ClassCastException when toElement is not compatible with this set’s

comparator (or, when the set has no comparator, when toElement does not

implement Comparable), NullPointerException when toElement is null and this

set does not permit null elements, and IllegalArgumentException when this

set has a restricted range and toElement lies outside of this range’s bounds.

E last() Return the last (highest) element currently in this set, or throw a

NoSuchElementException instance when this set is empty.

SortedSet<E>
subSet(E
fromElement, E
toElement)

Return a view of the portion of this set whose elements range from

fromElement, inclusive, to toElement, exclusive. (When fromElement and

toElement are equal, the returned set is empty.) The returned set is backed by

this set, so changes in the returned set are reflected in this set and vice versa.

The returned set supports all optional set operations that this set supports.

This method throws ClassCastException when fromElement and toElement

cannot be compared to one another using this set’s comparator (or, when the

set has no comparator, using natural ordering), NullPointerException when

fromElement or toElement is null and this set does not permit null elements,

and IllegalArgumentException when fromElement is greater than toElement or

when this set has a restricted range and fromElement or toElement lies outside

of this range’s bounds.

CHAPTER 8: Discovering the Collections Framework 341

Method Description

SortedSet<E>
tailSet(E
fromElement)

Return a view of that portion of this set whose elements are greater than or

equal to fromElement. The returned set is backed by this set, so changes in the

returned set are reflected in this set and vice versa. The returned set supports

all optional set operations that this set supports. This method throws

ClassCastException when fromElement is not compatible with this set’s

comparator (or, when the set has no comparator, when fromElement does not

implement Comparable), NullPointerException when fromElement is null and

this set does not permit null elements, and IllegalArgumentException when

this set has a restricted range and fromElement lies outside of the range’s

bounds.

The set-based range views returned from headSet(), subSet(), and tailSet() are

analogous to the list-based range view returned from List’s subList() method except

that a set-based range view remains valid even when the backing sorted set is modified.

As a result, a set-based range view can be used for a lengthy period of time.

NOTE: Unlike a list-based range view whose endpoints are elements in the backing list, the
endpoints of a set-based range view are absolute points in element space, allowing a set-based
range view to serve as a window onto a portion of the set’s element space. Any changes made to
the set-based range view are written back to the backing sorted set and vice versa.

Each range view returned by headSet(), subSet(), or tailSet() is half open because it

does not include its high endpoint (headSet() and subSet()) or its low endpoint

(tailSet()). For the first two methods, the high endpoint is specified by argument

toElement; for the last method, the low endpoint is specified by argument fromElement.

NOTE: You could also regard the returned range view as being half closed because it includes
only one of its endpoints.

Listing 8–14 demonstrates a sorted set based on a tree set.

Listing 8–14. A sorted set of fruit and vegetable names

import java.util.SortedSet;
import java.util.TreeSet;

public class SortedSetDemo
{
 public static void main(String[] args)
 {
 SortedSet<String> sss = new TreeSet<String>();
 String[] fruitAndVeg =
 {
 "apple", "potato", "turnip", "banana", "corn", "carrot", "cherry",
 "pear", "mango", "strawberry", "cucumber", "grape", "banana",
 "kiwi", "radish", "blueberry", "tomato", "onion", "raspberry",

CHAPTER 8: Discovering the Collections Framework 342

 "lemon", "pepper", "squash", "melon", "zucchini", "peach", "plum",
 "turnip", "onion", "nectarine"
 };
 System.out.println("Array size = " + fruitAndVeg.length);
 for (String fruitVeg: fruitAndVeg)
 sss.add(fruitVeg);
 dump("sss:", sss);
 System.out.println("Sorted set size = " + sss.size());
 System.out.println("First element = " + sss.first());
 System.out.println("Last element = " + sss.last());
 System.out.println("Comparator = " + sss.comparator());
 dump("hs:", sss.headSet("n"));
 dump("ts:", sss.tailSet("n"));
 System.out.println("Count of p-named fruits & vegetables = " +
 sss.subSet("p", "q").size());
 System.out.println("Incorrect count of c-named fruits & vegetables = " +
 sss.subSet("carrot", "cucumber").size());
 System.out.println("Correct count of c-named fruits & vegetables = " +
 sss.subSet("carrot", "cucumber\0").size());
 }
 static void dump(String title, SortedSet<String> sss)
 {
 System.out.print(title + " ");
 for (String s: sss)
 System.out.print(s + " ");
 System.out.println();
 }
}

When you run this application, it generates the following output:

Array size = 29
ss: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon
 nectarine onion peach pear pepper plum potato radish raspberry squash strawberry
 tomato turnip zucchini
Sorted set size = 26
First element = apple
Last element = zucchini
Comparator = null
hs: apple banana blueberry carrot cherry corn cucumber grape kiwi lemon mango melon
ts: nectarine onion peach pear pepper plum potato radish raspberry squash strawberry
 tomato turnip zucchini
Count of p-named fruits & vegetables = 5
Incorrect count of c-named fruits & vegetables = 3
Correct count of c-named fruits & vegetables = 4

This output reveals that the sorted set’s size is less than the array’s size because a set

cannot contain duplicate elements: the duplicate banana, turnip, and onion elements

are not stored in the sorted set.

The comparator() method returns null because the sorted set was not created with a

comparator. Instead, the sorted set relies on the natural ordering of String elements to

store them in sorted order.

CHAPTER 8: Discovering the Collections Framework 343

The headSet() and tailSet() methods are called with argument "n" to return,

respectively, a set of elements whose names begin with a letter that is strictly less than

n, and a letter that is greater than or equal to n.

Finally, the output shows you that you must be careful when passing an upper limit to

subSet(). As you can see, ss.subSet("carrot", "cucumber") does not include cucumber

in the returned range view because cucumber is subSet()’s high endpoint.

To include cucumber in the range view, you need to form a closed range or closed
interval (both endpoints are included). With String objects, you accomplish this task by

appending \0 to the string. For example, ss.subSet("carrot", "cucumber\0") includes

cucumber because it is less than cucumber\0.

This same technique can be applied wherever you need to form an open range or open
interval (neither endpoint is included). For example, ss.subSet("carrot\0", "cucumber")

does not include carrot because it is less than carrot\0. Furthermore, it does not

include high endpoint cucumber.

NOTE: When you want to create closed and open ranges for elements created from your own
classes, you need to provide some form of predecessor() and successor() methods that
return an element’s predecessor and successor.

You need to be careful when designing classes that work with sorted sets. For example,

the class must implement Comparable when you plan to store the class’s instances in a

sorted set where these elements are sorted according to their natural ordering. Consider

Listing 8–15.

Listing 8–15. A custom Employee class not implementing Comparable

import java.util.SortedSet;
import java.util.TreeSet;

public class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<Employee>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe")); // ClassCastException thrown here
 sse.add(new Employee("John Doe"));
 System.out.println(sse);
 }
}
class Employee
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public String toString()

CHAPTER 8: Discovering the Collections Framework 344

 {
 return name;
 }
}

When you run this application, it generates the following output:

Exception in thread "main" java.lang.ClassCastException: Employee cannot be cast to
 java.lang.Comparable
 at java.util.TreeMap.put(Unknown Source)
 at java.util.TreeSet.add(Unknown Source)
 at CustomClassAndSortedSet.main(CustomClassAndSortedSet.java:10)

The ClassCastException instance is thrown during the second add() method call because

the sorted set implementation, an instance of TreeSet, is unable to call the second Employee

element’s compareTo() method, because Employee does not implement Comparable.

The solution to this problem is to have the class implement Comparable, which is exactly

what is revealed in Listing 8–16.

Listing 8–16. Making Employee elements comparable

import java.util.SortedSet;
import java.util.TreeSet;

public class CustomClassAndSortedSet
{
 public static void main(String[] args)
 {
 SortedSet<Employee> sse = new TreeSet<Employee>();
 sse.add(new Employee("Sally Doe"));
 sse.add(new Employee("Bob Doe"));
 Employee e1 = new Employee("John Doe");
 Employee e2 = new Employee("John Doe");
 sse.add(e1);
 sse.add(e2);
 System.out.println(sse);
 System.out.println(e1.equals(e2));
 }
}
class Employee implements Comparable<Employee>
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public int compareTo(Employee e)
 {
 return name.compareTo(e.name);
 }
 @Override
 public String toString()
 {
 return name;
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 8: Discovering the Collections Framework 345

Listing 8–16’s main() method differs from Listing 8–15 in that it also creates two

Employee objects initialized to "John Doe", adds these objects to the sorted set, and

compares these objects for equality via equals(). Furthermore, Listing 8–16 declares

Employee to implement Comparable, introducing a compareTo() method into Employee.

When you run this application, it generates the following output:

[Bob Doe, John Doe, Sally Doe]
false

This output shows that only one "John Doe" Employee object is stored in the sorted set.

After all, a set cannot contain duplicate elements. However, the false value (resulting

from the equals() comparison) also shows that the sorted set’s natural ordering is

inconsistent with equals(), which violates SortedSet’s contract:

The ordering maintained by a sorted set (whether or not an explicit comparator is
provided) must be consistent with equals() if the sorted set is to correctly implement the
Set interface. This is so because the Set interface is defined in terms of the equals()
operation, but a sorted set performs all element comparisons using its compareTo() (or
compare()) method, so two elements that are deemed equal by this method are, from the
standpoint of the sorted set, equal.

Because the application works correctly, why should SortedSet’s contract matter?

Although the contract does not appear to matter with respect to the TreeSet

implementation of SortedSet, perhaps it will matter in the context of a third-party class

that implements this interface.

Listing 8–17 shows you how to correct this problem and make Employee instances work

with any implementation of a sorted set.

Listing 8–17. A contract-compliant Employee class

class Employee implements Comparable<Employee>
{
 private String name;
 Employee(String name)
 {
 this.name = name;
 }
 @Override
 public int compareTo(Employee e)
 {
 return name.compareTo(e.name);
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name);
 }
 @Override
 public String toString()
 {

CHAPTER 8: Discovering the Collections Framework 346

 return name;
 }
}

Listing 8–17 corrects the SortedSet contract violation by overriding equals(). If you

replace Listing 8–16’s Employee class with Listing 8–17, and run the resulting application,

you will observe [Bob Doe, John Doe, Sally Doe] as the first line of output and true as

the second line: the sorted set’s natural ordering is now consistent with equals().

NOTE: Although it is important to override hashCode() whenever you override equals(), I did
not override hashCode() (although I overrode equals()) in Listing 8–17’s Employee class to
emphasize that tree-based sorted sets ignore hashCode().

Queue
A queue is a collection in which elements are stored and retrieved in a specific order.

Most queues are categorized as one of the following:

 First-in, first-out (FIFO) queue: Elements are inserted at the queue’s tail
and removed at the queue’s head.

 Last-in, first-out (LIFO) queue: Elements are inserted and removed at

one end of the queue such that the last element inserted is the first

element retrieved. This kind of queue behaves as a stack.

 Priority queue: Elements are inserted according to their natural

ordering, or according to a comparator that is supplied to the queue

implementation.

Queue, whose generic type is Queue<E>, extends Collection, redeclaring add() to adjust

its contract (insert the specified element into this queue if it is possible to do so

immediately without violating capacity restrictions), and inheriting the other methods

from Collection. Table 8–4 describes add() and the other Queue-specific methods.

Table 8–4. Queue-specific Methods

Method Description

boolean add(E e) Insert element e into this queue if it is possible to do so immediately

without violating capacity restrictions. Return true on success;

otherwise, throw IllegalStateException when the element cannot be

added at this time because of a capacity restriction. This method also

throws ClassCastException when e’s class prevents e from being added

to this queue, NullPointerException when e contains the null reference

and this queue does not permit null elements to be added, and

IllegalArgumentException when some property of e prevents it from

being added to this queue.

CHAPTER 8: Discovering the Collections Framework 347

Method Description

E element() Return but do not also remove the element at the head of this queue.

This method throws NoSuchElementException when this queue is empty.

boolean offer(E e) Insert element e into this queue if it is possible to do so immediately

without violating capacity restrictions. Return true on success;

otherwise, return false when the element cannot be added at this time

because of a capacity restriction. This method throws

ClassCastException when e’s class prevents e from being added to this

queue, NullPointerException when e contains the null reference and

this queue does not permit null elements to be added, and

IllegalArgumentException when some property of e prevents it from

being added to this queue.

E peek() Return but do not also remove the element at the head of this queue.

This method returns null when this queue is empty.

E poll() Return and also remove the element at the head of this queue. This

method returns null when this queue is empty.

E remove() Return and also remove the element at the head of this queue. This

method throws NoSuchElementException when this queue is empty. This

is the only difference between remove() and poll().

Table 8–4 reveals two sets of methods: in one set, a method (such as add()) throws an

exception when an operation fails; in the other set, a method (such as offer()) returns a

special value (false or null) in the presence of failure. The methods that return a special

value are useful in the context of capacity-restricted Queue implementations where failure

is a normal occurrence.

Note: The offer() method is generally preferable to add() when using a capacity-restricted
queue because offer() does not throw IllegalStateException.

Java supplies many Queue implementation classes, where most of these classes are

members of the java.util.concurrent package: LinkedBlockingQueue and

SynchronousQueue are examples. In contrast, the java.util package provides

LinkedList and PriorityQueue as its Queue implementation classes.

CAUTION: Many Queue implementation classes do not allow null elements to be added.
However, some classes (such as LinkedList) permit null elements. You should avoid adding a
null element because null is used as a special return value by the peek() and poll() methods
to indicate that a queue is empty.

CHAPTER 8: Discovering the Collections Framework 348

PriorityQueue
The PriorityQueue class provides an implementation of a priority queue, which is a

queue that orders its elements according to their natural ordering or by a comparator

provided when the queue is instantiated. Priority queues do not permit null elements,

and do not permit insertion of non-Comparable objects when relying on natural ordering.

The element at the head of the priority queue is the least element with respect to the

specified ordering. If multiple elements are tied for least element, one of those elements

is arbitrarily chosen as the least element. Similarly, the element at the tail of the priority

queue is the greatest element, which is arbitrarily chosen when there is a tie.

Priority queues are unbounded, but have a capacity that governs the size of the internal

array that is used to store the priority queue’s elements. The capacity value is at least as

large as the queue’s length, and grows automatically as elements are added to the

priority queue.

PriorityQueue (whose generic type is PriorityQueue<E>) supplies six constructors:

 PriorityQueue() creates a PriorityQueue instance with an initial

capacity of 11 elements, and which orders its elements according to

their natural ordering.

 PriorityQueue(Collection<? extends E> collection) creates a

PriorityQueue instance containing collection’s elements. If

collection is a SortedSet or PriorityQueue instance, this priority

queue will be ordered according to the same ordering. Otherwise, this

priority queue will be ordered according to the natural ordering of its

elements. This constructor throws ClassCastException when

collection’s elements cannot be compared to one another according

to the priority queue’s ordering, and NullPointerException when

collection or any of its elements contain the null reference.

 PriorityQueue(int initialCapacity) creates a PriorityQueue

instance with the specified initialCapacity, and which orders its

elements according to their natural ordering. This constructor throws

IllegalArgumentException when initialCapacity is less than 1.

 PriorityQueue(int initialCapacity, Comparator<? super E>
comparator) creates a PriorityQueue instance with the specified

initialCapacity, and which orders its elements according to the

specified comparator. Natural ordering is used when comparator

contains the null reference. This constructor throws

IllegalArgumentException when initialCapacity is less than 1.

CHAPTER 8: Discovering the Collections Framework 349

 PriorityQueue(PriorityQueue<? extends E> priorityQueue) creates

a PriorityQueue instance containing priorityQueue’s elements. This

priority queue will be ordered according to the same ordering as

priorityQueue. This constructor throws ClassCastException when

priorityQueue’s elements cannot be compared to one another

according to priorityQueue’s ordering, and NullPointerException

when priorityQueue or any of its elements contains the null reference.

 PriorityQueue(SortedSet<? extends E> sortedSet) creates a

PriorityQueue instance containing sortedSet’s elements. This priority

queue will be ordered according to the same ordering as sortedSet.

This constructor throws ClassCastException when sortedSet’s

elements cannot be compared to one another according to

sortedSet’s ordering, and NullPointerException when sortedSet or

any of its elements contains the null reference.

Listing 8–18 demonstrates a priority queue.

Listing 8–18. Adding randomly generated integers to a priority queue

import java.util.PriorityQueue;
import java.util.Queue;

public class PriorityQueueDemo
{
 public static void main(String[] args)
 {
 Queue<Integer> qi = new PriorityQueue<Integer>();
 for (int i = 0; i < 15; i++)
 qi.add((int) (Math.random()*100));
 while (!qi.isEmpty())
 System.out.print(qi.poll() + " ");
 System.out.println();
 }
}

After creating a priority queue, the main thread adds 15 randomly generated integers

(ranging from 0 through 99) to this queue. It then enters a while loop that repeatedly

polls the priority queue for the next element and outputs that element until the queue is

empty.

When you run this application, it outputs a line of 15 integers in ascending numerical

order from left to right. For example, I observed the following output from one run:

5 10 12 13 33 36 40 41 44 55 62 63 64 71 91

Because poll() returns null when there are no more elements, I could have coded this

loop as follows:

Integer i;
while ((i = qi.poll()) != null)
 System.out.print(i + " ");

Suppose you want to reverse the order of the previous example’s output so that the

largest element appears on the left and the smallest element appears on the right. As

CHAPTER 8: Discovering the Collections Framework 350

Listing 8–19 demonstrates, you can achieve this task by passing a comparator to the

appropriate PriorityQueue constructor.

Listing 8–19. Using a comparator with a priority queue

import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;

public class PriorityQueueDemo
{
 final static int NELEM = 15;
 public static void main(String[] args)
 {
 Comparator<Integer> cmp;
 cmp = new Comparator<Integer>()
 {
 public int compare(Integer e1, Integer e2)
 {
 return e2-e1;
 }
 };
 Queue<Integer> qi = new PriorityQueue<Integer>(NELEM, cmp);
 for (int i = 0; i < NELEM; i++)
 qi.add((int) (Math.random()*100));
 while (!qi.isEmpty())
 System.out.print(qi.poll() + " ");
 System.out.println();
 }
}

Listing 8–19 is similar to Listing 8–18, but there are some differences. First, I have

declared an NELEM constant so that I can easily change both the priority queue’s initial

capacity and the number of elements inserted into the priority queue by specifying the

new value in one place.

Second, Listing 8–19 declares and instantiates an anonymous class that implements

Comparator. Its compareTo() method subtracts element e2 from element e1 to achieve

descending numerical order. The compiler handles the task of unboxing e2 and e1 by

converting e2-e1 to e2.intValue()-e1.intValue().

Finally, Listing 8–19 passes an initial capacity of NELEM elements and the instantiated

comparator to the PriorityQueue(int initialCapacity, Comparator<? super E>
comparator) constructor. The priority queue will use this comparator to order these

elements.

Run this application and you will now see a single output line of 15 integers shown in

descending numerical order from left to right. For example, I observed this output line:

91 90 80 72 71 69 67 65 53 38 33 25 8 8 7

CHAPTER 8: Discovering the Collections Framework 351

Map
A map is a group of key/value pairs (also known as entries). Because the key identifies

an entry, a map cannot contain duplicate keys. Furthermore, each key can map to at

most one value. Maps are described by the Map interface, which has no parent interface,

and whose generic type is Map<K,V> (K is the key’s type; V is the value’s type).

Table 8–5 describes Map’s methods.

Table 8–5. Map Methods

Method Description

void clear() Remove all elements from this map, leaving it empty. This

method throws UnsupportedOperationException when clear()

is not supported.

boolean containsKey
(Object key)

Return true when this map contains an entry for the specified

key; otherwise, return false. This method throws

ClassCastException when key is of an inappropriate type for

this map, and NullPointerException when key contains the null

reference and this map does not permit null keys.

boolean containsValue(Object
value)

Return true when this map maps one or more keys to value.

This method throws ClassCastException when value is of an

inappropriate type for this map, and NullPointerException

when value contains the null reference and this map does not

permit null values.

Set<Map.Entry<K,V>> entrySet() Return a Set view of the entries contained in this map. Because

the view is backed by this map, changes that are made to the

map are reflected in the set and vice versa.

boolean equals(Object o) Compare o with this map for equality. Return true when o is also

a map and the two maps represent the same entries; otherwise,

return false.

V get(Object key) Return the value to which key is mapped, or null when this map

contains no entry for key. If this map permits null values, then a

return value of null does not necessarily indicate that the map

contains no entry for key; it is also possible that the map

explicitly maps key to the null reference. The containsKey()

method may be used to distinguish between these two cases.

This method throws ClassCastException when key is of an

inappropriate type for this map, and NullPointerException

when key contains the null reference and this map does not

permit null keys.

CHAPTER 8: Discovering the Collections Framework 352

Method Description

int hashCode() Return the hash code for this map. A map’s hash code is

defined to be the sum of the hash codes for the entries in the

map’s entrySet() view.

boolean isEmpty() Return true when this map contains no entries; otherwise, return

false.

Set<K> keySet() Return a Set view of the keys contained in this map. Because

the view is backed by this map, changes that are made to the

map are reflected in the set and vice versa.

V put(K key,V value) Associate value with key in this map. If the map previously

contained an entry for key, the old value is replaced by value.

This method returns the previous value associated with key, or

null when there was no entry for key. (The null return value can

also indicate that the map previously associated the null

reference with key, if the implementation supports null values.)

This method throws UnsupportedOperationException when

put() is not supported, ClassCastException when key’s or

value’s class is not appropriate for this map,

IllegalArgumentException when some property of key or value

prevents it from being stored in this map, and

NullPointerException when key or value contains the null

reference and this map does not permit null keys or values.

void putAll(Map<? extends K,?
extends V> m)

Copy all of the entries from map m to this map. The effect of this

call is equivalent to that of calling put(k, v) on this map once

for each mapping from key k to value v in map m. This method

throws UnsupportedOperationException when putAll() is not

supported, ClassCastException when the class of a key or value

in map m is not appropriate for this map,

IllegalArgumentException when some property of a key or

value in map m prevents it from being stored in this map, and

NullPointerException when m contains the null reference or

when m contains null keys or values and this map does not

permit null keys or values.

V remove(Object key) Remove key’s entry from this map if it is present. This method

returns the value to which this map previously associated with

key, or null when the map contained no mapping for key. If this

map permits null values, then a return value of null does not

necessarily indicate that the map contained no entry for key; it is

also possible that the map explicitly mapped key to null. This

map will not contain an entry for key once the call returns. This

method throws UnsupportedOperationException when remove()

is not supported, ClassCastException when the class of key is

not appropriate for this map, and NullPointerException when

key contains the null reference and this map does not permit

null keys.

CHAPTER 8: Discovering the Collections Framework 353

Method Description

int size() Return the number of key/value entries in this map. If the map

contains more than Integer.MAX_VALUE entries, this method

returns Integer.MAX_VALUE.

Collection<V> values() Return a Collection view of the values contained in this map.

Because the view is backed by this map, changes that are

made to the map are reflected in the collection and vice versa.

Unlike List, Set, and Queue, Map does not extend Collection. However, it is possible to

view a map as a Collection instance by calling Map’s keySet(), values(), and

entrySet() methods, which respectively return a Set of keys, a Collection of values,

and a Set of key/value pair entries.

NOTE: The values() method returns Collection instead of Set because multiple keys can
map to the same value, and values() would then return multiple copies of the same value.

The Collection views returned by these methods (recall that a Set is a Collection

because Set extends Collection) provide the only means to iterate over a Map. For

example, suppose you declare Listing 8–20’s Color enum with its three Color constants,

RED, GREEN, and BLUE.

Listing 8–20. A colorful enum

enum Color
{
 RED(255, 0, 0),
 GREEN(0, 255, 0),
 BLUE(0, 0, 255);
 private int r, g, b;
 private Color(int r, int g, int b)
 {
 this.r = r;
 this.g = g;
 this.b = b;
 }
 @Override
 public String toString()
 {
 return "r = " + r + ", g = " + g + ", b = " + b;
 }
}

Listing 8–21’s code fragment declares a map of String keys and Color values, adds

several entries to the map, and iterates over the keys and values.

Listing 8–21. Iterating over a map’s String-based keys and Color-based values

Map<String, Color> colorMap = …; // … represents the creation of a Map implementation
colorMap.put("red", Color.RED);
colorMap.put("blue", Color.BLUE);

CHAPTER 8: Discovering the Collections Framework 354

colorMap.put("green", Color.GREEN);
colorMap.put("RED", Color.RED);
for (String colorKey: colorMap.keySet())
 System.out.println(colorKey);
Collection<Color> colorValues = colorMap.values();
for (Iterator<Color> it = colorValues.iterator(); it.hasNext();)
 System.out.println(it.next());

When running this code fragment against a hashmap implementation (discussed later) of

colorMap, you should observe output similar to the following:

red
blue
green
RED
r = 255, g = 0, b = 0
r = 0, g = 0, b = 255
r = 0, g = 255, b = 0
r = 255, g = 0, b = 0

The first four output lines identify the map’s keys; the second four output lines identify

the map’s values.

The entrySet() method returns a Set of Map.Entry objects. Each of these objects

describes a single entry as a key/value pair and is an instance of a class that implements

the Map.Entry interface, where Entry is a nested interface of Map. Table 8–6 describes

Map.Entry’s methods.

NOTE: In Chapter 4, I mentioned that there does not appear to be a good reason to declare
interfaces and classes in an interface’s body. Although I have yet to find a good reason to nest a
class within an interface, Map.Entry proves that it is occasionally useful to nest an interface
within another interface.

Table 8–6. Map.Entry Methods

Method Description

boolean equals(Object o) Compare o with this entry for equality. Return true when o is

also a map entry and the two entries have the same key and

value.

K getKey() Return this entry’s key. This method optionally throws

IllegalStateException when this entry has previously been

removed from the backing map.

V getValue() Return this entry’s value. This method optionally throws

IllegalStateException when this entry has previously been

removed from the backing map.

int hashCode() Return this entry’s hash code.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 8: Discovering the Collections Framework 355

Method Description

V setValue(V value) Replace this entry’s value with value. The backing map is

updated with the new value. This method throws

UnsupportedOperationException when setValue() is not

supported, ClassCastException when value’s class prevents it

from being stored in the backing map, NullPointerException

when value contains the null reference and the backing map

does not permit null, IllegalArgumentException when some

property of value prevents it from being stored in the backing

map, and (optionally) IllegalStateException when this entry

has previously been removed from the backing map.

Continuing from the previous example, Listing 8–22 shows you how you might iterate

over the map’s entries.

Listing 8–22. Iterating over a map’s entries

for (Map.Entry<String, Color> colorEntry: colorMap.entrySet())
 System.out.println(colorEntry.getKey() + ": " + colorEntry.getValue());

When running Listing 8–22’s code fragment against the previously mentioned hashmap

implementation, you would observe the following output:

red: r = 255, g = 0, b = 0
blue: r = 0, g = 0, b = 255
green: r = 0, g = 255, b = 0
RED: r = 255, g = 0, b = 0

TreeMap
The TreeMap class provides a map implementation that is based on a red-black tree. As

a result, entries are stored in sorted order of their keys. However, accessing these

entries is somewhat slower than with the other Map implementations (which are not

sorted) because links must be traversed.

NOTE: Check out Wikipedia’s “Red-black tree” entry
(http://en.wikipedia.org/wiki/Red-black_tree) to learn about red-black trees.

TreeMap supplies four constructors:

 TreeMap() creates a new, empty tree map that is sorted according to

the natural ordering of its keys. All keys inserted into the map must

implement the Comparable interface.

 TreeMap(Comparator<? super K> comparator) creates a new, empty

tree map that is sorted according to the specified comparator. Passing

null to comparator implies that natural ordering will be used.

http://en.wikipedia.org/wiki/Red-black_tree

CHAPTER 8: Discovering the Collections Framework 356

 TreeMap(Map<? extends K, ? extends V> map) creates a new tree

map containing map’s entries, sorted according to the natural ordering

of its keys. All keys inserted into the new map must implement the

Comparable interface. This constructor throws ClassCastException

when map’s keys do not implement Comparable or are not mutually

comparable, and NullPointerException when map contains the null

reference.

 TreeMap(SortedMap<K, ? extends V> sortedMap) creates a new tree

map containing the same entries and using the same ordering as

sortedMap. (I discuss sorted maps later in this chapter.) This

constructor throws NullPointerException when sortedMap contains

the null reference.

Listing 8–23 demonstrates a tree map.

Listing 8–23. Sorting a map’s entries according to the natural ordering of their String-based keys

import java.util.Map;
import java.util.TreeMap;

public class TreeMapDemo
{
 public static void main(String[] args)
 {
 Map<String, Integer> msi = new TreeMap<String, Integer>();
 String[] fruits = {"apples", "pears", "grapes", "bananas", "kiwis"};
 int[] quantities = {10, 15, 8, 17, 30};
 for (int i = 0; i < fruits.length; i++)
 msi.put(fruits[i], quantities[i]);
 for (Map.Entry<String, Integer> entry: msi.entrySet())
 System.out.println(entry.getKey() + ": " + entry.getValue());
 }
}

When you run this application, it generates the following output:

apples: 10
bananas: 17
grapes: 8
kiwis: 30
pears: 15

HashMap
The HashMap class provides a map implementation that is based on a hashtable data

structure. This implementation supports all Map operations, and permits null keys and

null values. It makes no guarantees on the order in which entries are stored.

A hashtable maps keys to integer values with the help of a hash function. Java provides

this function in the form of Object’s hashCode() method, which classes override to

provide appropriate hash codes.

CHAPTER 8: Discovering the Collections Framework 357

A hash code identifies one of the hashtable’s array elements, which is known as a

bucket or slot. For some hashtables, the bucket may store the value that is associated

with the key. Figure 8–2 illustrates this kind of hashtable.

Figure 8–2. A simple hashtable of buckets

The hash function hashes Bob Doe to 0, which identifies the first bucket. This bucket

contains ACCTS, which is Bob Doe’s employee type. The hash function also hashes John
Doe and Sally Doe to 1 and 2 (respectively) whose buckets contain SALES.

A perfect hash function hashes each key to a unique integer value. However, this ideal is

very difficult to meet. In practice, some keys will hash to the same integer value. This

nonunique mapping is referred to as a collision.

To address collisions, most hashtables associate a linked list of entries with a bucket.

Instead of containing a value, the bucket contains the address of the first node in the

linked list, and each node contains one of the colliding entries. See Figure 8–3.

Figure 8–3. A complex hashtable of buckets and linked lists (X indicates a null reference)

When storing a value in a hashtable, the hashtable uses the hash function to hash the

key to its hash code, and then searches the appropriate linked list to see if an entry with

a matching key exists. If there is an entry, its value is updated with the new value.

CHAPTER 8: Discovering the Collections Framework 358

Otherwise, a new node is created, populated with the key and value, and appended to

the list.

When retrieving a value from a hashtable, the hashtable uses the hash function to hash

the key to its hash code, and then searches the appropriate linked list to see if an entry

with a matching key exists. If there is an entry, its value is returned. Otherwise, the

hashtable may return a special value to indicate that there is no entry, or it might throw

an exception.

The number of buckets is known as the hashtable’s capacity. The ratio of the number of

stored entries divided by the number of buckets is known as the hashtable’s load factor.
Choosing the right load factor is important for balancing performance with memory use:

 As the load factor approaches 1, the probability of collisions and the

cost of handling them (by searching lengthy linked lists) increase.

 As the load factor approaches 0, the hashtable’s size in terms of

number of buckets increases with little improvement in search cost.

 For many hashtables, a load factor of 0.75 is close to optimal. This

value is the default for HashMap’s hashtable implementation.

HashMap supplies four constructors:

 HashMap() creates a new, empty hashmap with an initial capacity of 16

and a load factor of 0.75.

 HashMap(int initialCapacity) creates a new, empty hashmap with a

capacity specified by initialCapacity and a load factor of 0.75. This

constructor throws IllegalArgumentException when

initialCapacity’s value is less than 0.

 HashMap(int initialCapacity, float loadFactor) creates a new,

empty hashmap with a capacity specified by initialCapacity and a

load factor specified by loadFactor. This constructor throws

IllegalArgumentException when initialCapacity is less than 0 or

when loadFactor is less than or equal to 0.

 HashMap(Map<? extends K, ? extends V> map) creates a new

hashmap containing map’s entries. This constructor throws

NullPointerException when map contains the null reference.

Listing 8–24 demonstrates a hashmap.

Listing 8–24. Using a hashmap to count command-line arguments

import java.util.HashMap;
import java.util.Map;

public class HashMapDemo
{
 public static void main(String[] args)
 {
 Map<String, Integer> argMap = new HashMap<String, Integer>();
 for (String arg: args)

CHAPTER 8: Discovering the Collections Framework 359

 {
 Integer count = argMap.get(arg);
 argMap.put(arg, (count == null) ? 1 : count+1);
 }
 System.out.println(argMap);
 System.out.println("Number of distinct arguments = " + argMap.size());
 }
}

HashMapDemo creates a hashmap of String keys and Integer values. Each key is one of

the command-line arguments passed to this application, and its value is the number of

occurrences of that argument on the command line.

For example, java HashMapDemo how much wood could a woodchuck chuck if a
woodchuck could chuck wood generates the following output:

{wood=2, could=2, how=1, if=1, chuck=2, a=2, woodchuck=2, much=1}
Number of distinct arguments = 8

Because the String class overrides equals() and hashCode(), Listing 8–24 can use

String objects as keys in a hashmap. When you create a class whose instances are to

be used as keys, you must ensure that you override both methods.

Listing 8–10 showed you that a class’s overriding hashCode() method can call a

reference field’s hashCode() method and return its value, provided that the class

declares a single reference field (and no primitive type fields).

More commonly, classes declare multiple fields, and a better implementation of the

hashCode() method is required. The implementation should try to generate hash codes

that minimize collisions.

There is no rule on how to best implement hashCode(), and various algorithms (recipes

for accomplishing tasks) have been created. My favorite algorithm appears in Effective
Java, Second Edition, by Joshua Bloch (Addison-Wesley, 2008; ISBN: 0321356683).

The following algorithm, which assumes the existence of an arbitrary class that is

referred to as X, closely follows Bloch’s algorithm, but is not identical:

1. Initialize int variable hashCode (the name is arbitrary) to an arbitrary

nonzero integer value, such as 19. This variable is initialized to a

nonzero value to ensure that it takes into account any initial fields whose

hash codes are zeros. If you initialize hashCode to 0, the final hash code

will be unaffected by such fields and you run the risk of increased

collisions.

2. For each field f that is also used in X’s equals() method, calculate f’s

hash code and assign it to int variable hc as follows:

a. If f is of Boolean type, calculate hc = f?1:0.

b. If f is of byte integer, character, integer, or short integer type,

calculate hc = (int) f. The integer value is the hash code.

CHAPTER 8: Discovering the Collections Framework 360

c. If f is of long integer type, calculate hc = (int) (f^(f>>>32)).

This expression exclusive ORs the long integer’s least significant

32 bits with its most significant 32 bits.

d. If f is of type floating-point, calculate hc =
Float.floatToIntBits(f). This method takes +infinity, -infinity,

and NaN into account.

e. If f is of type double precision floating-point, calculate long l =
Double.doubleToLongBits(f); hc = (int) (l^(l>>>32)).

f. If f is a reference field with a null reference, calculate hc = 0.

g. If f is a reference field with a nonnull reference, and if X’s equals()

method compares the field by recursively calling equals() (as in

Listing 8–17’s Employee class), calculate hc = f.hashCode().

However, if equals() employs a more complex comparison, create

a canonical (simplest possible) representation of the field and call

hashCode() on this representation.

h. If f is an array, treat each element as a separate field by applying

this algorithm recursively and combining the hc values as shown in

the next step.

3. Combine hc with hashCode as follows: hashCode = hashCode*31+hc.

Multiplying hashCode by 31 makes the resulting hash value dependent on

the order in which fields appear in the class, which improves the hash

value when a class contains multiple fields that are similar (several ints,

for example). I chose 31 to be consistent with the String class’s

hashCode() method.

4. Return hashCode from hashCode().

TIP: Instead of using this or another algorithm to create a hash code, you might find it easier to
work with the HashCodeBuilder class (see http://commons.apache.org/lang/api-
2.4/org/apache/commons/lang/builder/HashCodeBuilder.html for an explanation of
this class). This class, which follows Bloch’s rules, is part of the Apache Commons Lang
component, which you can download from http://commons.apache.org/lang/.

In Chapter 3, Listing 3-9’s Point class overrides equals() but does not override

hashCode(). Listing 3-11 presents a small code fragment that must be appended to

Point’s main() method to demonstrate the problem of not overriding hashCode(). I

restate this problem here:

Although objects p1 and Point(10, 20) are logically equivalent, these objects have
different hash codes, resulting in each object referring to a different entry in the
hashmap. If an object is not stored (via put()) in that entry, get() returns null.

http://commons.apache.org/lang/api-2.4/org/apache/commons/lang/builder/HashCodeBuilder.html
http://commons.apache.org/lang/api-2.4/org/apache/commons/lang/builder/HashCodeBuilder.html
http://commons.apache.org/lang

CHAPTER 8: Discovering the Collections Framework 361

Listing 8–25 modifies Listing 3-9’s Point class by declaring a hashCode() method. This

method uses the aforementioned algorithm to ensure that logically equivalent Point

objects hash to the same entry.

Listing 8–25. Overriding hashCode() to return proper hash codes for Point objects

import java.util.HashMap;
import java.util.Map;

class Point
{
 private int x, y;
 Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 int getX()
 {
 return x;
 }
 int getY()
 {
 return y;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Point))
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }
 @Override
 public int hashCode()
 {
 int hashCode = 19;
 int hc = x;
 hashCode = hashCode*31+hc;
 hc = y;
 hashCode = hashCode*31+hc;
 return hc;
 }
 public static void main(String[] args)
 {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(20, 30);
 Point p3 = new Point(10, 20);
 // Test reflexivity
 System.out.println(p1.equals(p1)); // Output: true
 // Test symmetry
 System.out.println(p1.equals(p2)); // Output: false
 System.out.println(p2.equals(p1)); // Output: false
 // Test transitivity
 System.out.println(p2.equals(p3)); // Output: false
 System.out.println(p1.equals(p3)); // Output: true
 // Test nullability

CHAPTER 8: Discovering the Collections Framework 362

 System.out.println(p1.equals(null)); // Output: false
 // Extra test to further prove the instanceof operator's usefulness.
 System.out.println(p1.equals("abc")); // Output: false
 Map<Point, String> map = new HashMap<Point, String>();
 map.put(p1, "first point");
 System.out.println(map.get(p1)); // Output: first point
 System.out.println(map.get(new Point(10, 20))); // Output: null
 }
}

The hashCode() method is a little verbose in that it assigns each of x and y to local

variable hc, rather than directly using these fields in the hash code calculation. However,

I decided to follow this approach to more closely mirror the hash code algorithm.

When you run this application, its last two lines of output are of the most interest.

Instead of presenting first point followed by null on two separate lines, the

application now correctly presents first point followed by first point on these lines.

NOTE: LinkedHashMap is a subclass of HashMap that uses a linked list to store its entries. As a
result, LinkedHashMap’s iterator returns entries in the order in which they were inserted. For
example, if Listing 8–24 had specified Map<String, Integer> argMap = new
LinkedHashMap<String, Integer>();, the application’s output for java HashMapDemo
how much wood could a woodchuck chuck if a woodchuck could chuck wood
would have been {how=1, much=1, wood=2, could=2, a=2, woodchuck=2,
chuck=2, if=1} followed by Number of distinct arguments = 8.

IdentityHashMap
The IdentityHashMap class provides a Map implementation that uses reference equality

(==) instead of object equality (equals()) when comparing keys and values. This is an

intentional violation of Map’s general contract, which mandates the use of equals() when

comparing elements.

IdentityHashMap obtains hash codes via System’s static int identityHashCode(Object
x) method instead of via each key’s hashCode() method. identityHashCode() returns

the same hash code for x as returned by Object’s hashCode() method, whether or not

x’s class overrides hashCode(). The hash code for the null reference is zero.

These characteristics give IdentityHashMap a performance advantage over other Map

implementations. Also, IdentityHashMap supports mutable keys (objects used as keys

and whose hash codes change when their field values change while in the map). Listing

8–26 contrasts IdentityHashMap with HashMap where mutable keys are concerned.

Listing 8–26. Contrasting IdentityHashMap with HashMap in a mutable key context

import java.util.IdentityHashMap;
import java.util.HashMap;
import java.util.Map;

CHAPTER 8: Discovering the Collections Framework 363

public class IdentityHashMapDemo
{
 public static void main(String[] args)
 {
 Map<Employee, String> map1 = new IdentityHashMap<Employee, String>();
 Map<Employee, String> map2 = new HashMap<Employee, String>();
 Employee e1 = new Employee("John Doe", 28);
 map1.put(e1, "SALES");
 System.out.println(map1);
 Employee e2 = new Employee("Jane Doe", 26);
 map2.put(e2, "MGMT");
 System.out.println(map2);
 System.out.println("map1 contains key e1 = " + map1.containsKey(e1));
 System.out.println("map2 contains key e2 = " + map2.containsKey(e2));
 e1.setAge(29);
 e2.setAge(27);
 System.out.println(map1);
 System.out.println(map2);
 System.out.println("map1 contains key e1 = " + map1.containsKey(e1));
 System.out.println("map2 contains key e2 = " + map2.containsKey(e2));
 }
}
class Employee
{
 private String name;
 private int age;
 Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 @Override
 public boolean equals(Object o)
 {
 if (!(o instanceof Employee))
 return false;
 Employee e = (Employee) o;
 return e.name.equals(name) && e.age == age;
 }
 @Override
 public int hashCode()
 {
 int hashCode = 19;
 hashCode = hashCode*31+name.hashCode();
 hashCode = hashCode*31+age;
 return hashCode;
 }
 void setAge(int age)
 {
 this.age = age;
 }
 void setName(String name)
 {
 this.name = name;
 }
 @Override
 public String toString()

CHAPTER 8: Discovering the Collections Framework 364

 {
 return name + " " + age;
 }
}

Listing 8–26’s main() method creates IdentityHashMap and HashMap instances that each

store an entry consisting of an Employee key and a String value. Because Employee

instances are mutable (because of setAge() and setName()), main() changes their ages

while these keys are stored in their maps. These changes result in the following output:

{John Doe 28=SALES}
{Jane Doe 26=MGMT}
map1 contains key e1 = true
map2 contains key e2 = true
{John Doe 29=SALES}
{Jane Doe 27=MGMT}
map1 contains key e1 = true
map2 contains key e2 = false

The last four lines show that the changed entries remain in their maps. However, map2’s

containsKey() method reports that its HashMap instance no longer contains its Employee

key (which should be Jane Doe 27), whereas map1’s containsKey() method reports that

its IdentityHashMap instance still contains its Employee key, which is now John Doe 29.

NOTE: IdentityHashMap’s documentation states that “a typical use of this class is topology-
preserving object graph transformations, such as serialization or deep copying.” (I discuss
serialization in Chapter 10.) It also states that “another typical use of this class is to maintain
proxy objects.” Also, developers responding to stackoverflow’s “Use Cases for Identity HashMap”
topic (http://stackoverflow.com/questions/838528/use-cases-for-identity-
hashmap) mention that it is much faster to use IdentityHashMap than HashMap when the
keys are Class objects.

WeakHashMap
The WeakHashMap class provides a Map implementation that is based on weakly reachable

keys. Because each key object is stored indirectly as the referent of a weak reference,

the key is automatically removed from the map only after the garbage collector clears all

weak references to the key (inside and outside of the map).

NOTE: Check out Chapter 6’s “References API” section to learn about weakly reachable and
weak references.

In contrast, value objects are stored via strong references. These objects should not

strongly refer to their own keys, either directly or indirectly, because doing so prevents

their associated keys from being discarded. When a key is removed from a map, its

associated value object is also removed.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://stackoverflow.com/questions/838528/use-cases-for-identity-hashmap
http://stackoverflow.com/questions/838528/use-cases-for-identity-hashmap

CHAPTER 8: Discovering the Collections Framework 365

Listing 8–27 provides a simple demonstration of the WeakHashMap class.

Listing 8–27. Automatically removing a String value object from a weak hashmap when the strong reference to
its associated LargeObject key object is nullified

import java.util.Map;
import java.util.WeakHashMap;

class LargeObject
{
 private byte[] memory = new byte[1024*1024*50]; // 50 megabytes
}
public class WeakHashMapDemo
{
 public static void main(String[] args)
 {
 Map<LargeObject, String> map = new WeakHashMap<LargeObject, String>();
 LargeObject lo = new LargeObject();
 map.put(lo, "Large Object");
 System.out.println(map);
 lo = null;
 while (!map.isEmpty())
 {
 System.gc();
 new LargeObject();
 }
 System.out.println(map);
 }
}

Listing 8–27’s main() method stores a 50MB LargeObject key and a String value in the

weak hashmap, and then removes the key’s strong reference by assigning null to lo.

main() next enters a while loop that executes until the map is empty (map.isEmpty()

returns true).

Each loop iteration begins with a System.gc() method call, which may or may not cause

a garbage collection to take place (depending upon platform). To encourage a garbage

collection, the iteration then creates a LargeObject object and throws away its reference.

This activity should eventually cause the garbage collector to run and remove the map’s

solitary entry.

When I run this application on my Windows XP platform, I observe the following

output—you might need to modify the code if you find that the application is in an

infinite loop:

{LargeObject@addbf1=Large Object}
{}

NOTE: WeakHashMap is useful for avoiding memory leaks, as explained in Brian Goetz’s article
“Java Theory and Practice: Plugging Memory Leaks with Weak References”
(http://www.ibm.com/developerworks/java/library/j-jtp11225/).

http://www.ibm.com/developerworks/java/library/j-jtp11225

CHAPTER 8: Discovering the Collections Framework 366

EnumMap
The EnumMap class provides a Map implementation whose keys are the members of the

same enum. Null keys are not permitted; any attempt to store a null key results in a

thrown NullPointerException. Because an enum map is represented internally as an

array, an enum map approaches an array in terms of performance.

EnumMap supplies the following constructors:

 EnumMap(Class<K> keyType) creates an empty enum map with the

specified keyType. This constructor throws NullPointerException

when keyType contains the null reference.

 EnumMap(EnumMap<K,? extends V> map) creates an enum map with the

same key type as map, and with map’s entries. This constructor throws

NullPointerException when map contains the null reference.

 EnumMap(Map<K,? extends V> map) creates an enum map initialized

with map’s entries. If map is an EnumMap instance, this constructor

behaves like the previous constructor. Otherwise, map must contain at

least one entry in order to determine the new enum map’s key type.

This constructor throws NullPointerException when map contains the

null reference, and IllegalArgumentException when map is not an

EnumMap instance and is empty.

Listing 8–28 demonstrates EnumMap.

Listing 8–28. An enum map of Coin constants

import java.util.EnumMap;
import java.util.Map;

enum Coin
{
 PENNY, NICKEL, DIME, QUARTER
}
public class EnumMapDemo
{
 public static void main(String[] args)
 {
 Map<Coin, Integer> map = new EnumMap<Coin, Integer>(Coin.class);
 map.put(Coin.PENNY, 1);
 map.put(Coin.NICKEL, 5);
 map.put(Coin.DIME, 10);
 map.put(Coin.QUARTER, 25);
 System.out.println(map);
 Map<Coin,Integer> mapCopy = new EnumMap<Coin, Integer>(map);
 System.out.println(mapCopy);
 }
}

When you run this application, it generates the following output:

{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}
{PENNY=1, NICKEL=5, DIME=10, QUARTER=25}

CHAPTER 8: Discovering the Collections Framework 367

SortedMap
TreeMap is an example of a sorted map, which is a map that maintains its entries in

ascending order, sorted according to the keys’ natural ordering or according to a

comparator that is supplied when the sorted map is created. Sorted maps are described

by the SortedMap interface.

SortedMap, whose generic type is SortedMap<K, V>, extends Map. With two exceptions,

the methods it inherits from Map behave identically on sorted maps as on other maps:

 The Iterator instance returned by the iterator() method on any of

the sorted map’s Collection views traverses the collections in order.

 The arrays returned by the Collection views’ toArray() methods

contain the keys, values, or entries in order.

NOTE: Although not guaranteed, the toString() methods of the Collection views of
SortedSet implementations in the collections framework (such as TreeMap) return a string
containing all of the view’s elements in order.

SortedMap’s documentation requires that an implementation must provide the four standard

constructors that I presented in my discussion of TreeMap. Furthermore, implementations of

this interface must implement the methods that are described in Table 8–7.

Table 8–7. SortedMap-specific Methods

Method Description

Comparator<? super K>
comparator()

Return the comparator used to order the keys in this map, or null

when this map uses the natural ordering of its keys.

Set<Map.Entry<K,V>> entrySet() Return a Set view of the mappings contained in this map. The

set’s iterator returns these entries in ascending key order.

Because the view is backed by this map, changes that are made

to the map are reflected in the set and vice versa.

K firstKey() Return the first (lowest) key currently in this map, or throw a

NoSuchElementException instance when this map is empty.

SortedMap<K, V> headMap
(K toKey)

Return a view of that portion of this map whose keys are strictly

less than toKey. Because the returned map is backed by this

map, changes in the returned map are reflected in this map and

vice versa. The returned map supports all optional map

operations that this map supports. This method throws

ClassCastException when toKey is not compatible with this

map’s comparator (or, when the map has no comparator, when

toKey does not implement Comparable), NullPointerException

when toKey is null and this map does not permit null keys, and

IllegalArgumentException when this map has a restricted range

and toKey lies outside of this range’s bounds.

CHAPTER 8: Discovering the Collections Framework 368

Method Description

Set<K> keySet() Return a Set view of the keys contained in this map. The set’s

iterator returns the keys in ascending order. Because the view is

backed by this map, changes that are made to the map are

reflected in the set and vice versa.

K lastKey() Return the last (highest) key currently in this map, or throw a

NoSuchElementException instance when this map is empty.

SortedMap<K, V> subMap
(K fromKey, K toKey)

Return a view of the portion of this map whose keys range from

fromKey, inclusive, to toKey, exclusive. (When fromKey and toKey

are equal, the returned map is empty.) Because the returned

map is backed by this map, changes in the returned map are

reflected in this map and vice versa. The returned map supports

all optional map operations that this map supports. This method

throws ClassCastException when fromKey and toKey cannot be

compared to one another using this map’s comparator (or, when

the map has no comparator, using natural ordering),

NullPointerException when fromKey or toKey is null and this

map does not permit null keys, and IllegalArgumentException

when fromKey is greater than toKey or when this map has a

restricted range and fromKey or toKey lies outside of this range’s

bounds.

SortedMap<K, V> tailMap
(K fromKey)

Return a view of that portion of this map whose keys are greater

than or equal to fromKey. Because the returned map is backed

by this map, changes in the returned map are reflected in this

map and vice versa. The returned map supports all optional map

operations that this map supports. This method throws

ClassCastException when fromKey is not compatible with this

map’s comparator (or, when the map has no comparator, when

fromKey does not implement Comparable), NullPointerException

when fromKey is null and this map does not permit null

elements, and IllegalArgumentException when this map has a

restricted range and fromKey lies outside of the range’s bounds.

Collection<V> values() Return a Collection view of the values contained in this map.

The collection’s iterator returns the values in ascending order of

the corresponding keys. Because the collection is backed by the

map, changes that are made to the map are reflected in the

collection and vice versa.

Listing 8–29 demonstrates a sorted map based on a tree map.

Listing 8–29. A sorted map of office supply names and quantities

import java.util.Comparator;
import java.util.SortedMap;
import java.util.TreeMap;

public class SortedMapDemo

CHAPTER 8: Discovering the Collections Framework 369

{
 public static void main(String[] args)
 {
 SortedMap<String, Integer> smsi = new TreeMap<String, Integer>();
 String[] officeSupplies =
 {
 "pen", "pencil", "legal pad", "CD", "paper"
 };
 int[] quantities =
 {
 20, 30, 5, 10, 20
 };
 for (int i = 0; i < officeSupplies.length; i++)
 smsi.put(officeSupplies[i], quantities[i]);
 System.out.println(smsi);
 System.out.println(smsi.headMap("pencil"));
 System.out.println(smsi.headMap("paper"));
 SortedMap<String, Integer> smsiCopy;
 Comparator<String> cmp;
 cmp = new Comparator<String>()
 {
 public int compare(String key1, String key2)
 {
 return key2.compareTo(key1); // descending order
 }
 };
 smsiCopy = new TreeMap<String, Integer>(cmp);
 smsiCopy.putAll(smsi);
 System.out.println(smsiCopy);
 }
}

When you run this application, it generates the following output:

{CD=10, legal pad=5, paper=20, pen=20, pencil=30}
{CD=10, legal pad=5, paper=20, pen=20}
{CD=10, legal pad=5}
{pencil=30, pen=20, paper=20, legal pad=5, CD=10}

Utilities
The collections framework would not be complete without its Arrays and Collections

utility classes. Each class supplies various utility (static) methods that implement useful

algorithms in the contexts of arrays and collections.

Following is a sampling of the Arrays class’s array-oriented utility methods:

 static <T> List<T> asList(T... array) returns a fixed-size list

backed by the specified array. (Changes to the returned list “write

through” to the array.) For example, List<String> birds =
Arrays.asList("Robin", "Oriole", "Bluejay"); converts the three-

element array of Strings (recall that a variable sequence of arguments

is implemented as an array) to a List whose reference is assigned to

birds.

CHAPTER 8: Discovering the Collections Framework 370

 static int binarySearch(int[] array, int key) searches array for

entry key using the binary search algorithm (explained following this

list). The array must be sorted before calling this method; otherwise,

the results are undefined. This method returns the index of the search

key, if it is contained in the array; otherwise, (-(insertion point) - 1) is

returned. The insertion point is the point at which key would be

inserted into the array (the index of the first element greater than key,

or array.length if all elements in the array are less than key) and

guarantees that the return value will be greater than or equal to 0 if and

only if key is found. For example, Arrays.binarySearch(new String[]
{"Robin", "Oriole", "Bluejay"}, "Oriole") returns 1, "Oriole"’s

index.

 static void fill(char[] array, char character) stores character

in each element of the specified character array. For example,

Arrays.fill(screen[i], ' '); fills the ith row of a 2D screen array

with spaces.

 static void sort(long[] array) sorts the elements in the long

integer array into ascending numerical order; for example, long
lArray = new long[] { 20000L, 89L, 66L, 33L};
Arrays.sort(lArray);.

 static <T> void sort(T[] array, Comparator<? super T>
comparator) sorts the elements in array using comparator to order

them. For example, when given Comparator<String> cmp = new
Comparator<String>() { public int compare(String e1, String e2)
{ return e2.compareTo(e1); } }; String[] innerPlanets = {
"Mercury", "Venus", "Earth", "Mars" };,
Arrays.sort(innerPlanets, cmp); uses cmp to help in sorting

innerPlanets into descending order of its elements: Venus, Mercury,

Mars, Earth is the result.

There are two common algorithms for searching an array for a specific element. Linear
search searches the array element by element from index 0 to the index of the searched

for element or the end of the array. On average, half of the elements must be searched;

larger arrays take longer to search. However, the arrays do not need to be sorted.

In contrast, binary search searches ordered array a’s n items for element e in a much

faster amount of time. It works by recursively performing the following steps:

1. Set low index to 0.

2. Set high index to n-1.

3. If low index > high index, then Print “Unable to find ” e. End.

4. Set middle index to (low index+high index)/2.

5. If e > a[middle index], then set low index to middle index+1. Go to 3.

6. If e < a[middle index], then set high index to middle index-1. Go to 3.

CHAPTER 8: Discovering the Collections Framework 371

7. Print “Found ” e “at index ” middle index.

The algorithm is similar to optimally looking for a name in a phone book. Start by

opening the book to the exact middle. If the name is not on that page, proceed to open

the book to the exact middle of the first half or the second half, depending on in which

half the name occurs. Repeat until you find the name (or not).

Applying a linear search to 4,000,000,000 elements results in approximately

2,000,000,000 comparisons (on average), which takes time. In contrast, applying a

binary search to 4,000,000,000 elements results in a maximum of 32 comparisons. This

is why Arrays contains binarySearch() methods and not also linearSearch() methods.

Following is a sampling of the Collections class’s collection-oriented utility methods:

 static <T extends Object & Comparable<? super T>> T
min(Collection<? extends T> collection) returns the minimum

element of collection collection according to the natural ordering of

its elements. For example,
System.out.println(Collections.min(Arrays.asList(10, 3, 18,
25))); outputs 3. All of collection’s elements must implement the

Comparable interface. Furthermore, all elements must be mutually

comparable. This method throws NoSuchElementException when

collection is empty.

 static void reverse(List<?> list) reverses the order of list’s

elements. For example, List<String> birds =
Arrays.asList("Robin", "Oriole", "Bluejay");
Collections.reverse(birds); System.out.println(birds); results in

[Bluejay, Oriole, Robin] as the output.

 static <T> List<T> singletonList(T o) returns an immutable list

containing only object o. For example,

list.removeAll(Collections.singletonList(null)); removes all null

elements from list.

 static <T> Set<T> synchronizedSet(Set<T> set) returns a

synchronized (thread-safe) set backed by the specified set; for

example, Set<String> ss = Collections.synchronizedSet(new
HashSet<String>());. In order to guarantee serial access, it is critical

that all access to the backing set is accomplished through the

returned set.

 static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends
V> map) returns an unmodifiable view of the specified map; for example,
Map<String, Integer> msi = Collections.synchronizedMap(new
HashMap<String, Integer>());. Query operations on the returned map

“read through” to the specified map, and attempts to modify the

returned map, whether direct or via its collection views, result in an

UnsupportedOperationException.

CHAPTER 8: Discovering the Collections Framework 372

NOTE: For performance reasons, collections implementations are unsynchronized—
unsynchronized collections have better performance than synchronized collections. To use a
collection in a multithreaded context, however, you need to obtain a synchronized version of that
collection. You obtain that version by calling a method such as synchronizedSet().

Classic Collections Classes
Java version 1.2 introduced the collections framework. Prior to the framework’s

inclusion in Java, developers had two choices where collections were concerned: create

their own frameworks, or use the Vector, Enumeration, Stack, Dictionary, Hashtable,

Properties, and BitSet types, which were introduced by Java version 1.0.

Vector is a concrete class that describes a growable array, much like ArrayList. Unlike

an ArrayList instance, a Vector instance is synchronized. Vector has been generified

and also retrofitted to support the collections framework, which makes statements such

as List<String> list = new Vector<String>(); legal.

The collections framework provides Iterator for iterating over a collection’s elements.

In contrast, Vector’s elements() method returns an instance of a class that implements

the Enumeration interface for enumerating (iterating over and returning) a Vector

instance’s elements via Enumeration’s hasMoreElements() and nextElement() methods.

Vector is subclassed by the concrete Stack class, which represents a LIFO data

structure. Stack provides an E push(E item) method for pushing an object onto the

stack, an E pop() method for popping an item off the top of the stack, and a few other

methods, such as boolean empty() for determining whether or not the stack is empty.

Stack is a good example of bad API design. By inheriting from Vector, it is possible to

call Vector’s void add(int index, E element) method to add an element anywhere you

wish, and violate a Stack instance’s integrity. In hindsight, Stack should have used

composition in its design: use a Vector instance to store a Stack instance’s elements.

Dictionary is an abstract superclass for subclasses that map keys to values. The

concrete Hashtable class is Dictionary’s only subclass. As with Vector, HashTable

instances are synchronized, HashTable has been generified, and HashTable has been

retrofitted to support the collections framework.

Hashtable is subclassed by Properties, a concrete class representing a persistent set of

properties (String-based key/value pairs that identify application settings). Properties

provides Object setProperty(String key, String value) for storing a property, and

public String getProperty(String key) for returning a property’s value.

CHAPTER 8: Discovering the Collections Framework 373

NOTE: Applications use properties for various purposes. For example, if your application has a
graphical user interface, you might persist its main window’s screen location and size to a file via
a Properties object so that the application can restore the window’s location and size when it
next runs.

Properties is another good example of bad API design. By inheriting from Hashtable,

you can call Hashtable’s V put(K key, V value) method to store an entry with a non-

String key and/or a non-String value. In hindsight, Properties should have leveraged

composition: store a Properties instance’s elements in a Hashtable instance.

NOTE: Chapter 3 discusses wrapper classes, which is how Stack and Properties should
have been implemented.

Finally, BitSet is a concrete class that describes a variable-length set of bits. This

class’s ability to represent bitsets of arbitrary length contrasts with the previously

described integer-based, fixed-length bitset that is limited to a maximum number of

members: 32 members for an int-based bitset, or 64 members for a long-based bitset.

BitSet provides a pair of constructors for initializing a BitSet instance: BitSet()

initializes the instance to initially store an implementation-dependent number of bits,

whereas BitSet(int nbits) initializes the instance to initially store nbits bits. BitSet

also provides various methods, including the following:

 void and(BitSet bs) bitwise ANDs this bitset with bs. This bitset is

modified such that a bit is set to 1 when it and the bit at the same

position in bs are 1.

 void andNot(BitSet bs) sets all of the bits in this bitset to 0 whose

corresponding bits are set to 1 in bs.

 void clear() sets all of the bits in this bitset to 0.

 Object clone() clones this bitset to produce a new bitset. The clone

has exactly the same bits set to one as this bitset.

 boolean get(int bitIndex) returns the value of this bitset’s bit, as a

Boolean true/false value (true for 1, false for 0) at the zero-based

bitIndex. This method throws IndexOutOfBoundsException when

bitIndex is less than 0.

 int length() returns the “logical size” of this bitset, which is the index

of the highest 1 bit plus 1, or 0 if this bitset contains no 1 bits.

 void or(BitSet bs) bitwise inclusive ORs this bitset with bs. This

bitset is modified such that a bit is set to 1 when it or the bit at the

same position in bs is 1, or when both bits are 1.

CHAPTER 8: Discovering the Collections Framework 374

 void set(int bitIndex, boolean value) sets the bit at the zero-

based bitIndex to value (true is converted to 1; false is converted to

0). This method throws IndexOutOfBoundsException when bitIndex is

less than 0.

 int size() returns the number of bits that are being used by this

bitset to represent bit values.

 String toString() returns a string representation of this bitset in

terms of the positions of bits that are 1; for example, {4, 5, 9, 10}.

 void xor(BitSet set) bitwise exclusive ORs this bitset with bs. This

bitset is modified such that a bit is set to 1 when either it or the bit at

the same position in bs (but not both) is 1.

Listing 8–30 presents an application that demonstrates some of these methods, and

gives you more insight into how the bitwise AND (&), bitwise inclusive OR (|), and bitwise

exclusive OR (^) operators work.

Listing 8–30. Working with variable-length bitsets

import java.util.BitSet;

public class BitSetDemo
{
 public static void main(String[] args)
 {
 BitSet bs1 = new BitSet();
 bs1.set(4, true);
 bs1.set(5, true);
 bs1.set(9, true);
 bs1.set(10, true);
 BitSet bsTemp = (BitSet) bs1.clone();
 dumpBitset(" ", bs1);
 BitSet bs2 = new BitSet();
 bs2.set(4, true);
 bs2.set(6, true);
 bs2.set(7, true);
 bs2.set(9, true);
 dumpBitset(" ", bs2);
 bs1.and(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("AND (&) ", bs1);
 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();
 bs1.or(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("OR (|) ", bs1);
 System.out.println();
 bs1 = bsTemp;
 dumpBitset(" ", bs1);
 dumpBitset(" ", bs2);
 bsTemp = (BitSet) bs1.clone();

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 8: Discovering the Collections Framework 375

 bs1.xor(bs2);
 dumpSeparator(Math.min(bs1.size(), 16));
 dumpBitset("XOR (^) ", bs1);
 }
 static void dumpBitset(String preamble, BitSet bs)
 {
 System.out.print(preamble);
 for (int i = 0; i < Math.min(bs.size(), 16); i++)
 System.out.print(bs.get(i) ? "1" : "0");
 System.out.print(" size(" + bs.size() + "), length(" + bs.length() + ")");
 System.out.println();
 }
 static void dumpSeparator(int len)
 {
 System.out.print(" ");
 for (int i = 0; i < len; i++)
 System.out.print("-");
 System.out.println();
 }
}

Why did I specify Math.min(bs.size(), 16) in dumpBitset(), and pass a similar

expression to dumpSeparator()? I wanted to display exactly 16 bits and 16 dashes (for

aesthetics), and needed to account for a bitset’s size being less than 16. Although this

does not happen with the JDK’s BitSet class, it might happen with a non-JDK variant.

When you run this application, it generates the following output:

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

AND (&) 0000100001000000 size(64), length(10)

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

OR (|) 0000111101100000 size(64), length(11)

 0000110001100000 size(64), length(11)
 0000101101000000 size(64), length(10)

XOR (^) 0000011100100000 size(64), length(11)

CAUTION: Unlike Vector and Hashtable, BitSet is not synchronized. You must externally
synchronize access to this class when using BitSet in a multithreaded context.

The collections framework has made Vector, Enumeration, Stack, Dictionary, and

Hashtable obsolete. These types continue to be part of the standard class library to

support legacy code. Also, the Preferences API (see Chapter 9) has made Properties

largely obsolete. Because BitSet is still relevant, this class continues to be improved.

CHAPTER 8: Discovering the Collections Framework 376

NOTE: It is not surprising that BitSet is being improved (as recently as Java version 6 at time of
writing) when you realize the usefulness of variable-length bitsets. Because of their compactness
and other advantages, variable-length bitsets are often used to implement an operating system’s
priority queues and facilitate memory page allocation. Unix-oriented file systems also use bitsets
to facilitate the allocation of inodes (information nodes) and disk sectors. And bitsets are useful in
Huffman coding, a data-compression algorithm for achieving lossless data compression.

EXERCISES

The following exercises are designed to test your understanding of the collections

framework:

1. What is a collection?

2. What is the collections framework?

3. The collections framework largely consists of what components?

4. What is a comparable?

5. When would you have a class implement the Comparable interface?

6. What is a comparator and what is its purpose?

7. True or false: A collection uses a comparator to define the natural

ordering of its elements.

8. What does the Iterable interface describe?

9. What does the Collection interface represent?

10. Identify a situation where Collection’s add() method would throw an

instance of the UnsupportedOperationException class.

11. Iterable’s iterator() method returns an instance of a class that

implements the Iterator interface. What methods does this interface

provide?

12. What is the purpose of the enhanced for loop statement?

13. How is the enhanced for loop statement expressed?

14. True or false: The enhanced for loop works with arrays.

15. What is autoboxing?

16. What is unboxing?

17. What is a list?

CHAPTER 8: Discovering the Collections Framework 377

18. What does a ListIterator instance use to navigate through a list?

19. What is a view?

20. Why would you use the subList() method?

21. What does the ArrayList class provide?

22. What does the LinkedList class provide?

23. What is a node?

24. True or false: ArrayList provides faster element insertions and deletions

than LinkedList.

25. What is a set?

26. What does the TreeSet class provide?

27. What does the HashSet class provide?

28. True or false: To avoid duplicate elements in a hashset, your own

classes must correctly override equals() and hashCode().

29. What is the difference between HashSet and LinkedHashSet?

30. What does the EnumSet class provide?

31. What is a sorted set?

32. True or false: HashSet is an example of a sorted set.

33. Why would a sorted set’s add() method throw ClassCastException

when you attempt to add an element to the sorted set?

34. What is a queue?

35. True or false: Queue’s element() method throws

NoSuchElementException when it is called on an empty queue.

36. What does the PriorityQueue class provide?

37. What is a map?

38. What does the TreeMap class provide?

39. What does the HashMap class provide?

40. What does a hashtable use to map keys to integer values?

41. Continuing from the previous question, what are the resulting integer

values called, and what do they accomplish?

42. What is a hashtable’s capacity?

43. What is a hashtable’s load factor?

CHAPTER 8: Discovering the Collections Framework 378

44. What is the difference between HashMap and LinkedHashMap?

45. What does the IdentityHashMap class provide?

46. What does the WeakHashMap class provide?

47. What does the EnumMap class provide?

48. What is a sorted map?

49. True or false: TreeMap is an example of a sorted map.

50. What is the purpose of the Arrays class’s static <T> List<T>
asList(T... array) method?

51. True or false: Binary search is slower than linear search.

52. Which Collections method would you use to return a synchronized

variation of a hashset?

53. Identify the seven legacy collections-oriented types.

54. As an example of array list usefulness, create a JavaQuiz application

that presents a multiple-choice-based quiz on Java features. The

JavaQuiz class’s main() method first populates the array list with the

entries in the following QuizEntry array:

static QuizEntry[] quizEntries =
{
 new QuizEntry("What was Java's original name?",
 new String[] { "Oak", "Duke", "J", "None of the above" },
 'A'),
 new QuizEntry("Which of the following reserved words is also a literal?",
 new String[] { "for", "long", "true", "enum" },
 'C'),
 new QuizEntry("The conditional operator (?:) resembles which statement?",
 new String[] { "switch", "if-else", "if", "while" },
 'B')
};

Each QuizEntry instance consists of a question, four possible answers, and the

letter (A, B, C, or D) of the correct answer.

main() then uses the array list’s iterator() method to return an Iterator

instance, and this instance’s hasNext() and next() methods to iterate over the

list. Each of the iterations outputs the question and four possible answers, and

then prompts the user to enter the correct choice. After the user enters A, B, C, or

D, main() outputs a message stating whether or not the user made the correct

choice.

55. Why is (int) (f^(f>>>32)) used instead of (int) (f^(f>>32)) in the

hash code generation algorithm?

CHAPTER 8: Discovering the Collections Framework 379

56. Collections provides the static int frequency(Collection<?>
collection, Object o) method to return the number of collection

elements that are equal to o. Create a FrequencyDemo application that

reads its command-line arguments and stores all arguments except for

the last argument in a list, and then calls frequency() with the list and

last command-line argument as this method’s arguments. It then

outputs this method’s return value (the number of occurrences of the

last command-line argument in the previous command-line arguments).

For example, java FrequencyDemo should output Number of occurrences
of null = 0, and java FrequencyDemo how much wood could a
woodchuck chuck if a woodchuck could chuck wood wood should

output Number of occurrences of wood = 2.

Summary
A collection is a group of objects that are stored in an instance of a class designed for

this purpose. To save you from having to create your own collections classes, Java

provides the standardized collections framework for representing and manipulating

collections.

The collections framework largely consists of core interfaces, implementation classes,

and the Arrays and Collections utility classes. The core interfaces make it possible to

manipulate collections independently of their implementations.

The collections framework’s core interfaces include Iterable, Collection, List, Set,

SortedSet, Queue, Map, and SortedMap. Collection extends Iterable; List, Set, and

Queue each extend Collection; SortedSet extends Set; and SortedMap extends Map.

The framework’s implementation classes include the concrete ArrayList, LinkedList,

TreeSet, HashSet, LinkedHashSet, EnumSet, PriorityQueue, TreeMap, HashMap,

LinkedHashMap, IdentityHashMap, WeakHashMap, and EnumMap classes.

The framework’s implementation classes also include the abstract AbstractCollection,

AbstractList, AbstractSequentialList, AbstractSet, AbstractQueue, and AbstractMap

classes, which offer skeletal implementations of the core interfaces.

The collections framework would not be complete without its Arrays and Collections

utility classes. Each class supplies various utility (static) methods that implement useful

algorithms in the contexts of arrays and collections.

Prior to Java version 1.2’s introduction of the collections framework, developers could

create their own frameworks, or use the Vector, Enumeration, Stack, Dictionary,

Hashtable, Properties, and BitSet types, which were introduced by Java version 1.0.

8

CHAPTER 8: Discovering the Collections Framework 380

The collections framework has made Vector, Enumeration, Stack, Dictionary, and

Hashtable obsolete. Also, the Preferences API (see Chapter 9) has made Properties

largely obsolete. Because BitSet is still relevant, this class continues to be improved.

Your exploration of Java’s utility APIs is far from finished. Chapter 9 continues to focus

on utility APIs by discussing the concurrency utilities, the internationalization APIs, the

Preferences API, Random, and the Regular Expressions API.

381

381

 Chapter

Discovering Additional
Utility APIs
Chapter 9 continues to explore Java’s utility APIs by introducing APIs that help you work

with threads in an easier way, internationalize your applications to reach a wider

audience, save configuration preferences in persistent storage, obtain random numbers

in a more flexible manner, and quickly search and parse strings.

NOTE: Chapter 9 explores utility API classes and interfaces that are located in the java.text
and java.util packages, and java.util’s concurrent, prefs, and regex subpackages.

Concurrency Utilities
Java version 5 introduced the concurrency utilities, classes and interfaces that simplify

the development of concurrent (multithreaded) applications. These types are located in

the java.util.concurrent package and in its java.util.concurrent.atomic and

java.util.concurrent.locks subpackages.

The concurrency utilities leverage the low-level Threading API (see Chapter 7) in their

implementations and provide higher-level building blocks (such as locking idioms) to

make it easier to create multithreaded applications. These utilities are organized into

executor, synchronizer, concurrent collection, lock, and atomic variable categories.

Executors
Chapter 7 introduced the Threading API, which lets you execute runnable tasks via

expressions such as new Thread(new RunnableTask()).start();. These expressions

tightly couple task submission with the task’s execution mechanics (run on the current

thread, a new thread, or a thread arbitrarily chosen from a pool [group] of threads).

9

CHAPTER 9: Discovering Additional Utility APIs 382

NOTE: A task is an object whose class implements the java.lang.Runnable interface (a
runnable task) or the java.util.concurrent.Callable interface (a callable task).

The concurrency utilities provide executors as a high-level alternative to low-level

Threading API expressions for executing runnable tasks. An executor is an object whose

class directly or indirectly implements the java.util.concurrent.Executor interface,

which decouples task submission from task-execution mechanics.

NOTE: The executor framework’s use of interfaces to decouple task submission from task-
execution mechanics is analogous to the collections framework’s use of core interfaces to
decouple lists, sets, queues, and maps from their implementations. Decoupling results in flexible
code that is easier to maintain.

Executor declares a solitary void execute(Runnable runnable) method that executes

the runnable task named runnable at some point in the future. execute() throws

java.lang.NullPointerException when runnable is null, and

java.util.concurrent.RejectedExecutionException when it cannot execute runnable.

NOTE: RejectedExecutionException can be thrown when an executor is shutting down and
does not want to accept new tasks. Also, this exception can be thrown when the executor does
not have enough room to store the task (perhaps the executor uses a bounded blocking queue to
store tasks and the queue is full—I discuss blocking queues later in this chapter).

Listing 9–1 presents the Executor equivalent of the aforementioned new Thread(new
RunnableTask()).start(); expression.

Listing 9–1. Decoupling runnable task submission from task-execution mechanics

Executor executor = ...; // ... represents some executor creation
executor.execute(new RunnableTask());

Although Executor is easy to use, this interface is limited in various ways:

 Executor focuses exclusively on Runnable. Because Runnable’s run()

method does not return a value, there is no convenient way for a

runnable task to return a value to its caller.

 Executor does not provide a way to track the progress of executing

runnable tasks, cancel an executing runnable task, or determine when

the runnable task finishes execution.

 Executor cannot execute a collection of runnable tasks.

 Executor does not provide a way for an application to shut down an

executor (much less to properly shut down an executor).

CHAPTER 9: Discovering Additional Utility APIs 383

These limitations are addressed by the java.util.concurrent.ExecutorService

interface, which extends Executor, and whose implementation is typically a thread pool.

Table 9–1 describes ExecutorService’s methods.

Table 9–1. ExecutorService Methods

Method Description

boolean awaitTermination
(long timeout, TimeUnit
unit)

Block (wait) until all tasks have finished after a shutdown request, the

timeout (measured in unit time units) expires, or the current thread is

interrupted, whichever happens first. Return true when this executor

has terminated, and false when the timeout elapses before

termination. This method throws java.lang.InterruptedException

when interrupted.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>>
tasks)

Execute each callable task in the tasks collection, and return a List

of Future instances that hold task statuses and results when all tasks

complete—a task completes through normal termination or by

throwing an exception. The List of Futures is in the same sequential

order as the sequence of tasks returned by tasks’ iterator. This

method throws InterruptedException when it is interrupted while

waiting, in which case unfinished tasks are canceled,

NullPointerException when tasks or any of its elements is null, and

RejectedExecutionException when any one of tasks’ tasks cannot

be scheduled for execution.

<T> List<Future<T>>
invokeAll(Collection<?
extends Callable<T>>
tasks, long timeout,
TimeUnit unit)

Execute each callable task in the tasks collection, and return a List

of Future instances that hold task statuses and results when all tasks

complete—a task completes through normal termination or by

throwing an exception—or the timeout (measured in unit time units)

expires. Tasks that are not completed at expiry are canceled. The

List of Futures is in the same sequential order as the sequence of

tasks returned by tasks’ iterator. This method throws

InterruptedException when it is interrupted while waiting, in which

case unfinished tasks are canceled, NullPointerException when

tasks or any of its elements is null, and

RejectedExecutionException when any one of tasks’ tasks cannot

be scheduled for execution.

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks)

Execute the given tasks, returning the result of an arbitrary task that

has completed successfully (i.e., without throwing an exception), if

any does. Upon normal or exceptional return, tasks that have not

completed are canceled. This method throws InterruptedException

when it is interrupted while waiting, NullPointerException when

tasks or any of its elements is null,

java.lang.IllegalArgumentException when tasks is empty,

java.util.concurrent.ExecutionException when no task completes

successfully, and RejectedExecutionException when none of the

tasks can be scheduled for execution.

CHAPTER 9: Discovering Additional Utility APIs 384

Method Description

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks, long
timeout, TimeUnit unit)

Execute the given tasks, returning the result of an arbitrary task that

has completed successfully (i.e., without throwing an exception), if

any does before the timeout (measured in unit time units) expires—

tasks that are not completed at expiry are canceled. Upon normal or

exceptional return, tasks that have not completed are canceled. This

method throws InterruptedException when it is interrupted while

waiting, NullPointerException when tasks or any of its elements is

null, IllegalArgumentException when tasks is empty,

java.util.concurrent.TimeoutException when the timeout elapses

before any task successfully completes, ExecutionException when

no task completes successfully, and RejectedExecutionException

when none of the tasks can be scheduled for execution.

boolean isShutdown() Return true when this executor has been shut down; otherwise,

return false.

boolean isTerminated() Return true when all tasks have completed following shutdown;

otherwise, return false. This method will never return true prior to

shutdown() or shutdownNow() being called.

void shutdown() Initiate an orderly shutdown in which previously submitted tasks are

executed, but no new tasks will be accepted. Calling this method has

no effect after the executor has shut down.

List<Runnable>
shutdownNow()

Attempt to stop all actively executing tasks, halt the processing of

waiting tasks, and return a list of the tasks that were awaiting

execution. There are no guarantees beyond best-effort attempts to

stop processing actively executing tasks. For example, typical

implementations will cancel via Thread.interrupt(), so any task that

fails to respond to interrupts may never terminate.

<T> Future<T> submit
(Callable<T> task)

Submit a callable task for execution and return a Future instance

representing task’s pending results. The Future instance’s get()

method returns task’s result upon successful completion. This method

throws RejectedExecutionException when task cannot be scheduled

for execution, and NullPointerException when task is null.

Future<?> submit
(Runnable task)

Submit a runnable task for execution and return a Future instance

whose get() method returns the null reference upon successful

completion. This method throws RejectedExecutionException when

task cannot be scheduled for execution, and NullPointerException

when task is null.

<T> Future<T> submit
(Runnable task, T result)

Submit a runnable task for execution and return a Future instance

whose get() method returns result upon successful completion.

This method throws RejectedExecutionException when task cannot

be scheduled for execution, and NullPointerException when task is

null.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 9: Discovering Additional Utility APIs 385

Table 9–1 refers to java.util.concurrent.TimeUnit, an enum that represents time

durations at given units of granularity: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES,

NANOSECONDS, and SECONDS. Furthermore, TimeUnit declares methods for converting

across units, and for performing timing and delay operations in these units.

Table 9–1 also refers to callable tasks, which are analogous to runnable tasks. Unlike

Runnable, whose void run() method cannot throw checked exceptions, Callable<V>

declares a V call() method that returns a value, and which can throw checked

exceptions because call() is declared with a throws Exception clause.

Finally, Table 9–1 refers to the java.util.concurrent.Future interface, which represents

the result of an asynchronous computation. Future, whose generic type is Future<V>,

provides methods for canceling a task, for returning a task’s value, and for determining

whether or not the task has finished. Table 9–2 describes Future’s methods.

Table 9–2. Future Methods

Method Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempt to cancel execution of this task, and return true when the task

was cancelled; otherwise, return false (perhaps the task completed

normally before this method was called).

The cancellation attempt fails when the task has completed, has

already been cancelled, or could not be cancelled for some other

reason. If successful and this task had not started when cancel() was

called, the task should never run. If the task has already started, then

mayInterruptIfRunning determines whether the thread executing this

task should be interrupted (true) or not (false) in an attempt to stop the

task. After this method returns, subsequent calls to isDone() always

return true. Subsequent calls to isCancelled() always return true

when cancel() returns true.

V get() Wait if necessary for the task to complete and then return the result. This

method throws java.util.concurrent.CancellationException when the

task was cancelled prior to this method being called, ExecutionException
when the task threw an exception, and InterruptedException when the

current thread was interrupted while waiting.

V get(long timeout,
TimeUnit unit)

Wait at most timeout units (as specified by unit) for the task to

complete and then return the result. This method throws

CancellationException when the task was cancelled prior to this

method being called, ExecutionException when the task threw an

exception, InterruptedException when the current thread was

interrupted while waiting, and TimeoutException when this method’s

timeout value expires (the wait times out).

boolean isCancelled() Return true when this task was cancelled before it completed normally.

boolean isDone() Return true when this task completed. Completion may be due to

normal termination, an exception, or cancellation—this method returns

true in all of these cases.

CHAPTER 9: Discovering Additional Utility APIs 386

Suppose you intend to write an application whose graphical user interface lets the user

enter a word. Once the user enters the word, the application presents this word to

several online dictionaries and obtains each dictionary’s entry. These entries are

subsequently displayed to the user.

Because online access can be slow, and because the user interface should remain

responsive (perhaps the user might want to end the application), you offload the “obtain

word entries” task to an executor that runs this task on a separate thread. Listing 9–2

employs ExecutorService, Callable, and Future to accomplish this objective.

Listing 9–2. An executor-based skeletal framework for obtaining word entries from online dictionaries

ExecutorService executor = ...; // ... represents some executor creation
Future<String[]> taskFuture = executor.submit(new Callable<String[]>()
 {
 public String[] call()
 {
 String[] entries = ...;
 // Access online dictionaries
 // with search word and populate
 // entries with their resulting
 // entries.
 return entries;
 }
 });
// Do stuff.
String entries = taskFuture.get();

After obtaining an executor in some manner (you will learn how shortly), Listing 9–2’s

main thread submits a callable task to the executor. The submit() method immediately

returns with a reference to a Future object for controlling task execution and accessing

results. The main thread ultimately calls this object’s get() method to get these results.

NOTE: The java.util.concurrent.ScheduledExecutorService interface extends
ExecutorService and describes an executor that lets you schedule tasks to run once or to
execute periodically after a given delay.

Although you could create your own Executor, ExecutorService, and

ScheduledExecutorService implementations (such as class DirectExecutor implements
Executor { public void execute(Runnable r) { r.run(); } }—run executor directly

on the calling thread), the concurrency utilities offer a simpler alternative: Executors.

TIP: If you intend to create your own ExecutorService implementations, you will find it helpful
to work with the java.util.concurrent.AbstractExecutorService and
java.util.concurrent.FutureTask classes.

CHAPTER 9: Discovering Additional Utility APIs 387

The java.util.concurrent.Executors utility class declares several static methods that

return instances of various ExecutorService and ScheduledExecutorService

implementations (and other kinds of instances). This class’s utility methods accomplish

the following tasks:

 Create and return an ExecutorService instance that is configured with

commonly used configuration settings.

 Create and return a ScheduledExecutorService instance that is

configured with commonly used configuration settings.

 Create and return a “wrapped” ExecutorService or

ScheduledExecutorService instance, and disable reconfiguration of the

executor service by making implementation-specific methods

inaccessible.

 Create and return a java.util.concurrent.ThreadFactory instance for

creating new threads.

 Create and return a Callable instance out of other closure-like forms

(such as a Runnable instance) so that they can be used in execution

methods (such as ExecutorService’s submit(Callable) method) that

require Callable arguments.

For example, static ExecutorService newFixedThreadPool(int nThreads) creates a

thread pool that reuses a fixed number of threads operating off of a shared unbounded

queue. At most, nThreads threads are actively processing tasks. If additional tasks are

submitted when all threads are active, they wait in the queue for an available thread.

If any thread terminates because of a failure during execution before the executor shuts

down, a new thread will take its place when needed to execute subsequent tasks. The

threads in the pool will exist until the executor is explicitly shut down. This method

throws IllegalArgumentException when you pass zero or a negative value to nThreads.

NOTE: Thread pools are used to eliminate the overhead from having to create a new thread for
each submitted task. Thread creation is not cheap, and having to create many threads could
severely impact an application’s performance.

You would commonly use executors, runnables, callables, and futures in an input/output

context. (I discuss input/output in Chapter 10.) Performing a lengthy calculation offers

another scenario where you could use these types. For example, Listing 9–3 uses an

executor, a callable, and a future in a calculation context of Euler’s number e

(2.71828…).

Listing 9–3. Calculating Euler’s number e

import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;

import java.util.concurrent.Callable;

CHAPTER 9: Discovering Additional Utility APIs 388

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class CalculateE
{
 final static int LASTITER = 17;
 public static void main(String[] args)
 {
 ExecutorService executor = Executors.newFixedThreadPool(1);
 Callable<BigDecimal> callable;
 callable = new Callable<BigDecimal>()
 {
 public BigDecimal call()
 {
 MathContext mc = new MathContext(100,
 RoundingMode.HALF_UP);
 BigDecimal result = BigDecimal.ZERO;
 for (int i = 0; i <= LASTITER; i++)
 {
 BigDecimal factorial = factorial(new BigDecimal (i));
 BigDecimal res = BigDecimal.ONE.divide(factorial, mc);
 result = result.add(res);
 }
 return result;
 }
 public BigDecimal factorial(BigDecimal n)
 {
 if (n.equals(BigDecimal.ZERO))
 return BigDecimal.ONE;
 else
 return n.multiply(factorial(n.subtract(BigDecimal.ONE)));
 }
 };
 Future<BigDecimal> taskFuture = executor.submit(callable);
 try
 {
 while (!taskFuture.isDone())
 System.out.println("waiting");
 System.out.println(taskFuture.get());
 }
 catch(ExecutionException ee)
 {
 System.err.println("task threw an exception");
 System.err.println(ee);
 }
 catch(InterruptedException ie)
 {
 System.err.println("interrupted while waiting");
 }
 executor.shutdownNow();
 }
}

CHAPTER 9: Discovering Additional Utility APIs 389

The main thread first obtains an executor by calling Executors’ newFixedThreadPool()

method. It then instantiates an anonymous class that implements Callable and submits

this task to the executor, receiving a Future instance in response.

After submitting a task, a thread typically does some other work until it needs to obtain

the task’s result. I have chosen to simulate this work by having the main thread

repeatedly output a waiting message until the Future instance’s isDone() method

returns true. (In a realistic application, I would avoid this looping.) At this point, the main

thread calls the instance’s get() method to obtain the result, which is then output.

CAUTION: It is important to shut down the executor after it completes; otherwise, the application
might not end. The executor accomplishes this task by calling shutdownNow().

The callable’s call() method calculates e by evaluating the mathematical power series

e = 1/0!+1/1!+1/2!+…. This series can be evaluated by summing 1/n!, where n ranges

from 0 to infinity.

call() first instantiates java.math.MathContext to encapsulate a precision (number of

digits) and a rounding mode. I chose 100 as an upper limit on e’s precision, and I also

chose HALF_UP as the rounding mode.

TIP: Increase the precision as well as MAXITER’s value to converge the series to a lengthier and
more accurate approximation of e.

call() next initializes a BigDecimal local variable named result to BigDecimal.ZERO. It

then enters a loop that calculates a factorial, divides BigDecimal.ONE by the factorial,

and adds the division result to result.

The divide() method takes the MathContext instance as its second argument to ensure

that the division does not result in a nonterminating decimal expansion, which throws

java.lang.ArithmeticException, which the executor rethrows as ExecutionException.

When you run this application, you should observe output similar to the following:

waiting
waiting
waiting
waiting
waiting
waiting
waiting
2.718281828459045070516047795848605061178979635251032698900735004065225042504843314055
887974344245741730039454062711

CHAPTER 9: Discovering Additional Utility APIs 390

Synchronizers
The Threading API offers synchronization primitives for synchronizing thread access to

critical sections. Because it can be difficult to correctly write synchronized code that is

based on these primitives, the concurrency utilities include synchronizers, classes that

facilitate common forms of synchronization.

Four commonly used synchronizers are countdown latches, cyclic barriers, exchangers,

and semaphores:

 A countdown latch lets one or more threads wait at a “gate” until

another thread opens this gate, at which point these other threads can

continue. The java.util.concurrent.CountDownLatch class

implements this synchronizer.

 A cyclic barrier lets a group of threads wait for each other to reach a

common barrier point. The java.util.concurrent.CyclicBarrier

class implements this synchronizer, and makes use of the

java.util.concurrent.BrokenBarrierException class.

 An exchanger lets a pair of threads exchange objects at a

synchronization point. The java.util.concurrent.Exchanger class

implements this synchronizer.

 A semaphore maintains a set of permits for restricting the number of

threads that can access a limited resource. The

java.util.concurrent.Semaphore class implements this synchronizer.

Consider the CountDownLatch class. Each of its instances is initialized to a nonzero

count. A thread calls one of CountDownLatch’s await() methods to block until the count

reaches zero. Another thread calls CountDownLatch’s countDown() method to decrement

the count. Once the count reaches zero, the waiting threads are allowed to continue.

NOTE: Once waiting threads are released, subsequent calls to await() return immediately.
Also, because the count cannot be reset, a CountDownLatch instance can be used only once.
When repeated use is a requirement, use the CyclicBarrier class instead.

We can use CountDownLatch to ensure that threads start working at approximately the

same time. For example, check out Listing 9–4.

Listing 9–4. Using a countdown latch to trigger a coordinated start

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class CountDownLatchDemo
{
 final static int NTHREADS = 3;
 public static void main(String[] args)

CHAPTER 9: Discovering Additional Utility APIs 391

 {
 final CountDownLatch enterLatch = new CountDownLatch(NTHREADS);
 Runnable r = new Runnable()
 {
 public void run()
 {
 try
 {
 report("entered run()");
 enterLatch.countDown();
 enterLatch.await();
 report("doing work");
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 }
 void report(String s)
 {
 System.out.println(System.currentTimeMillis() + ": " +
 Thread.currentThread() + ": " + s);
 }
 };
 ExecutorService executor = Executors.newFixedThreadPool(NTHREADS);
 for (int i = 0; i < NTHREADS; i++)
 executor.execute(r);
 try
 {
 Thread.sleep(3000); // Sleep for 3 seconds.
 }
 catch (InterruptedException ie)
 {
 System.err.println(ie);
 }
 executor.shutdownNow();
 }
}

Listing 9–4’s main thread first creates a countdown latch with a count initialized to the

number of threads that must start working at approximately the same time. It then

creates a runnable whose run() method is executed by subsequently created threads.

The runnable’s run() method first outputs an initial message and then calls the latch

instance’s countDown() method to decrement the count. It next calls await() to wait for

the latch’s count to reach zero, at which time it can output its work message.

After obtaining an executor that is based on a thread pool of NTHREADS threads, the main

thread calls the executor’s execute() method NTHREADS times, passing the runnable to

each of the NTHREADS pool-based threads.

The main thread then sleeps for three seconds to give these threads a chance to

demonstrate the countdown latch before the main thread shuts down the executor by

calling shutdownNow().

When you run this application, you will observe output similar to the following:

CHAPTER 9: Discovering Additional Utility APIs 392

1279656117609: Thread[pool-1-thread-1,5,main]: entered run()
1279656117609: Thread[pool-1-thread-2,5,main]: entered run()
1279656117609: Thread[pool-1-thread-3,5,main]: entered run()
1279656117609: Thread[pool-1-thread-1,5,main]: doing work
1279656117609: Thread[pool-1-thread-2,5,main]: doing work
1279656117609: Thread[pool-1-thread-3,5,main]: doing work

NOTE: For brevity, I have avoided examples that demonstrate CyclicBarrier, Exchanger,
and Semaphore. Instead, I refer you to the Java documentation for these classes. Each class’s
documentation provides an example that shows you how to use the class.

Concurrent Collections
The java.util.concurrent package includes several interfaces and classes that are

concurrency-oriented extensions to the collections framework (see Chapter 8):

 BlockingQueue is a subinterface of java.util.Queue that describes a

first-in, first-out (FIFO) data structure. It provides additional operations

that wait for the queue to become nonempty before retrieving an

element, and wait for space to become available in the queue before

storing an element. Each of the ArrayBlockingQueue,

LinkedBlockingQueue, PriorityBlockingQueue, and SynchronousQueue

classes implements this interface.

 ConcurrentMap is a subinterface of java.util.Map that declares

additional atomic putIfAbsent(), remove(), and replace() methods.

The ConcurrentHashMap class (the concurrent equivalent of

java.util.HashMap) implements this interface.

 ConcurrentLinkedQueue is an unbounded thread-safe FIFO

implementation of the Queue interface.

Listing 9–5 uses BlockingQueue and ArrayBlockingQueue in an alternative to Listing 7-

13’s producer-consumer application (PC).

Listing 9–5. The blocking queue equivalent of Listing 7-13’s PC application

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class PC
{
 public static void main(String[] args)
 {
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()

CHAPTER 9: Discovering Additional Utility APIs 393

 {
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try
 {
 bq.put(ch);
 System.out.println(ch + " produced by producer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 ch = bq.take();
 System.out.println(ch + " consumed by consumer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

Listing 9–5 uses BlockingQueue’s put() and take() methods, respectively, to put an

object on the blocking queue and to remove an object from the blocking queue. put()

blocks when there is no room to put an object; take() blocks when the queue is empty.

Although BlockingQueue ensures that a character is never consumed before it is

produced, this application’s output may indicate otherwise. For example, here is a

portion of the output from one run:

Y consumed by consumer.
Y produced by producer.
Z consumed by consumer.
Z produced by producer.

CHAPTER 9: Discovering Additional Utility APIs 394

Chapter 7’s PC application overcame this incorrect output order by introducing an extra

layer of synchronization around setSharedChar()/System.out.println() and an extra

layer of synchronization around getSharedChar()/System.out.println(). The next

section shows you an alternative in the form of locks.

Locks
The java.util.concurrent.locks package provides interfaces and classes for locking

and waiting for conditions in a manner that is distinct from built-in synchronization and

monitors.

This package’s most basic lock interface is Lock, which provides more extensive locking

operations than can be achieved via the synchronized reserved word. Lock also

supports a wait/notification mechanism through associated Condition objects.

NOTE: The biggest advantage of Lock objects over the implicit locks that are obtained when
threads enter critical sections (controlled via the synchronized reserved word) is their ability to
back out of an attempt to acquire a lock. For example, the tryLock() method backs out if the
lock is not available immediately or before a timeout expires (if specified). Also, the
lockInterruptibly() method backs out when another thread sends an interrupt before the
lock is acquired.

ReentrantLock implements Lock, describing a reentrant mutual exclusion Lock

implementation with the same basic behavior and semantics as the implicit monitor lock

accessed via synchronized, but with extended capabilities.

Listing 9–6 demonstrates Lock and ReentrantLock in a version of Listing 9–5 that

ensures that the output is never shown in incorrect order (a consumed message

appearing before a produced message).

Listing 9–6. Achieving synchronization in terms of locks

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class PC
{
 public static void main(String[] args)
 {
 final Lock lock = new ReentrantLock();
 final BlockingQueue<Character> bq;
 bq = new ArrayBlockingQueue<Character>(26);
 final ExecutorService executor = Executors.newFixedThreadPool(2);
 Runnable producer;
 producer = new Runnable()

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 9: Discovering Additional Utility APIs 395

 {
 public void run()
 {
 for (char ch = 'A'; ch <= 'Z'; ch++)
 {
 try
 {
 lock.lock();
 try
 {
 while (!bq.offer(ch))
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 System.out.println(ch + " produced by producer.");
 }
 catch (InterruptedException ie)
 {
 assert false;
 }
 }
 finally
 {
 lock.unlock();
 }
 }
 }
 };
 executor.execute(producer);
 Runnable consumer;
 consumer = new Runnable()
 {
 public void run()
 {
 char ch = '\0';
 do
 {
 try
 {
 lock.lock();
 try
 {
 Character c;
 while ((c = bq.poll()) == null)
 {
 lock.unlock();
 Thread.sleep(50);
 lock.lock();
 }
 ch = c; // unboxing behind the scenes
 System.out.println(ch + " consumed by consumer.");
 }
 catch (InterruptedException ie)
 {
 assert false;

CHAPTER 9: Discovering Additional Utility APIs 396

 }
 }
 finally
 {
 lock.unlock();
 }
 }
 while (ch != 'Z');
 executor.shutdownNow();
 }
 };
 executor.execute(consumer);
 }
}

Listing 9–6 uses Lock’s lock() and unlock() methods to obtain and release a lock.

When a thread calls lock() and the lock is unavailable, the thread is disabled (and

cannot be scheduled) until the lock becomes available.

This listing also uses BlockingQueue’s offer() method instead of put() to store an

object in the blocking queue, and its poll() method instead of take() to retrieve an

object from the queue. These alternative methods are used because they do not block.

If I had used put() and take(), this application would have deadlocked in the following

scenario:

1. The consumer thread acquires the lock via its lock.lock() call.

2. The producer thread attempts to acquire the lock via its lock.lock() call

and is disabled because the consumer thread has already acquired the

lock.

3. The consumer thread calls take() to obtain the next Character object

from the queue.

4. Because the queue is empty, the consumer thread must wait.

5. The consumer thread does not give up the lock that the producer thread

requires before waiting, so the producer thread also continues to wait.

NOTE: If I had access to the private lock used by BlockingQueue implementations, I would
have used put() and take(), and also would have called Lock’s lock() and unlock()
methods on that lock. The resulting application would then have been identical (from a lock
perspective) to Listing 7-13’s PC application, which used synchronized twice for each of the
producer and consumer threads.

Run this application and you will discover that it generates the same output as Listing 7-

13’s PC application.

CHAPTER 9: Discovering Additional Utility APIs 397

Atomic Variables
The java.util.concurrent.atomic package provides Atomic-prefixed classes (such as

AtomicLong) that support lock-free, thread-safe operations on single variables. Each

class declares methods such as get() and set() to read and write this variable without

the need for external synchronization.

Listing 7-9 declared a small utility class named ID for returning unique long integer

identifiers via ID’s getNextID() method. Because this method was not synchronized,

multiple threads could obtain the same identifier. Listing 9–7 fixes this problem by

including reserved word synchronized in the method header.

Listing 9–7. Returning unique identifiers in a thread-safe manner via synchronized

public class ID
{
 private static long nextID = 0;
 public static synchronized long getNextID()
 {
 return nextID++;
 }
}

Although synchronized is appropriate for this class, excessive use of this reserved word

in more complex classes can lead to deadlock, starvation, or other problems. Listing 9–8

shows you how to avoid these assaults on a concurrent application’s liveness (the ability

to execute in a timely manner) by replacing synchronized with an atomic variable.

Listing 9–8. Returning unique IDs in a thread-safe manner via AtomicLong

public class ID
{
 private static AtomicLong nextID = new AtomicLong(0);
 public static long getNextID()
 {
 return nextID.getAndIncrement();
 }
}

In Listing 9–8, I have converted nextID from a long to an AtomicLong instance, initializing

this object to 0. I have also refactored the getNextID() method to call AtomicLong’s

getAndIncrement() method, which increments the AtomicLong instance’s internal long

integer variable by 1 and returns the previous value in one indivisible step.

Internationalization APIs
We tend to write software that reflects our cultural backgrounds. For example, a Spanish

developer’s application might present Spanish text, an Arabic developer’s application

might present a Hijri (Islamic) calendar, and a Japanese developer’s application might

display its currencies using the Japanese Yen currency symbol. Because cultural biases

restrict the size of an application’s audience, you might consider internationalizing your

Android and Java SE applications to reach a larger audience (and make more money).

CHAPTER 9: Discovering Additional Utility APIs 398

Internationalization is the process of creating an application that automatically adapts to

its current user’s culture so that the user can read the application’s text, hear audio clips

in the user’s language (if audio is supported), and so on. Java simplifies

internationalization by supporting Unicode (a universal character set that encodes the

various symbols making up the world’s written languages) via char (see Chapter 2) and

java.lang.Character (see Chapter 6), and by offering the APIs discussed in this section.

Locales
The java.util.Locale class is the centerpiece of the various internationalization APIs.

Instances of this class represent locales, which are geographical, political, or cultural

regions.

NOTE: Java version 6 introduced the Locale-Sensitive Services SPI (Service Provider Interface) to
let third parties support unsupported locales by introducing new implementations of various
locale-sensitive classes located in the java.text and java.util packages. For example, you
can use this SPI to provide new implementations of the java.util.BreakIterator class
(discussed later in this chapter). To learn about Locale-Sensitive Services, and to explore an
example that introduces a new currency, check out this topic in my book Beginning Java SE 6
Platform: From Novice to Professional (Apress, 2007; ISBN: 159059830).

Locale declares constants (such as CANADA) that describe some common locales. This

class also declares three constructors for initializing Locale objects, in case you cannot

find an appropriate Locale constant for a specific locale:

 Locale(String language) initializes a Locale instance to a language

code; for example, "fr" for French.

 Locale(String language, String country) initializes a Locale

instance to a language code and a country code; for example, "en" for

English and "US" for United States.

 Locale(String language, String country, String variant)

initializes a Locale instance to a language code, a country code, and a

vendor- or browser-specific variant code; for example, "de" for

German, "DE" for Germany, and "WIN" for Windows (or "MAC" for

Macintosh).

The International Standards Organization (ISO) defines language and country codes. ISO

639 (http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt) defines language

codes. ISO 3166 (http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html)

defines country codes. Locale works with both standards.

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

CHAPTER 9: Discovering Additional Utility APIs 399

NOTE: ISO 639 is not a stable standard and some language codes have changed; specifically, iw,
ji, and in have changed to he, yi, and id, respectively.

Variant codes are useful for dealing with computing platform differences. For example,

font differences may force you to use different characters on Windows-, Linux-, and

Unix-based operating systems (such as Solaris). Unlike language and country codes,

variant codes are not standardized.

Although applications can create their own Locale objects (perhaps to let users choose

from similar locales), they will often call API methods that work with the default locale,

which is the locale made available to the virtual machine at startup. An application can

call Locale’s static Locale getDefault() method if it needs to access this locale.

For testing or other purposes, the application can override the default locale by calling

Locale’s static void setDefault(Locale locale) method. setDefault() sets the

default locale to locale. However, passing null to locale causes setDefault() to throw

NullPointerException.

Listing 9–9 demonstrates getDefault() and setDefault().

Listing 9–9. Viewing and changing the default locale

import java.util.Locale;

public class MyLocale
{
 public static void main(String[] args)
 {
 System.out.println(Locale.getDefault());
 Locale.setDefault(Locale.CANADA);
 System.out.println(Locale.getDefault());
 }
}

When I run this application, I observe the following output:

en_US
en_CA

You can change the default locale that is made available to the virtual machine by

assigning appropriate values to the user.language and user.country system properties

when you launch the application via the java tool. For example, the following java

command line changes the default locale to fr_FR:

java -Duser.language=fr -Duser.country=FR MyLocale

As you continue to explore Locale, you will discover additional useful methods. For

example, static String[] getISOLanguages() returns an array of ISO 639 language

codes (including former and changed codes), and static String[] getISOCountries()

returns an array of ISO 3166 country codes.

CHAPTER 9: Discovering Additional Utility APIs 400

NOTE: Read John O’Conner’s “Internationalization: Understanding Locale in the Java Platform”
article (http://java.sun.com/developer/technicalArticles/J2SE/locale/) for
more information on Locale.

Resource Bundles
An internationalized application contains no hard-coded text or other locale-specific

elements (such as a specific currency format). Instead, each supported locale’s version

of these elements is stored outside of the application.

NOTE: Creating a set of locale-specific elements is known as localization.

Java is responsible for storing each locale’s version of certain elements, such as

currency formats. In contrast, it is your responsibility to store each supported locale’s

version of other elements, such as text, audio clips, and locale-sensitive images.

Java facilitates this element storage by providing resource bundles, which are containers

that hold one or more locale-specific elements, and which are each associated with one

and only one locale.

Many applications work with one or more resource bundle families. Each family consists

of resource bundles for all supported locales and typically contains one kind of element

(perhaps text, or audio clips that contain language-specific verbal instructions).

Each family also shares a common family name (also known as a base name); each of its

resource bundles has a unique locale designation that is appended to the family name,

to differentiate one resource bundle from another within the family.

Consider an internationalized text-based game application for English and French users.

After choosing game as the family name, and en and fr as the English and French locale

designations, you end up with the following complete resource bundle names:

 game_en is the complete resource bundle name for English users.

 game_fr is the complete resource bundle name for French users.

Although you can store all of your game’s English text in the game_en resource bundle,

you might want to differentiate between American and British text (such as elevator

versus lift). This differentiation leads to the following complete resource bundle names:

 game_en_US is the complete resource bundle name for users who

speak the United States version of the English language.

 game_en_GB is the complete resource bundle name for users who

speak the British version of the English language.

http://java.sun.com/developer/technicalArticles/J2SE/locale

CHAPTER 9: Discovering Additional Utility APIs 401

An application loads its resource bundles by calling the various getBundle() utility

methods that are located in the abstract java.util.ResourceBundle class. For example,

the application might call the following getBundle() factory methods:

 static ResourceBundle getBundle(String baseName) loads a

resource bundle using the specified baseName and the default locale.

For example, ResourceBundle resources =
ResourceBundle.getBundle("game"); attempts to load the resource

bundle whose base name is game, and whose locale designation

matches the default locale. If the default locale is en_US, getBundle()

attempts to load game_en_US.

 static ResourceBundle getBundle(String baseName, Locale locale)

loads a resource bundle using the specified baseName and locale. For

example, ResourceBundle resources =
ResourceBundle.getBundle("game", new Locale("zh", "CN",
"WIN")); attempts to load the resource bundle whose base name is

game, and whose locale designation is Chinese with a Windows variant.

In other words, getBundle() attempts to load game_zh_CN_WIN.

NOTE: ResourceBundle is an example of a pattern that you will discover throughout the
internationalization APIs. With few exceptions, each API is architected around an abstract entry-
point class whose factory methods return instances of concrete subclasses.

If the resource bundle identified by the base name and locale designation does not exist,

the getBundle() methods search for the next closest bundle. For example, if the locale

is en_US and game_en_US does not exist, getBundle() looks for game_en.

The getBundle() methods first generate a sequence of candidate bundle names for the

specified locale (language1, country1, and variant1) and the default locale (language2,

country2, and variant2) in the following order:

 baseName + "_" + language1 + "_" + country1 + "_" + variant1

 baseName + "_" + language1 + "_" + country1

 baseName + "_" + language1

 baseName + "_" + language2 + "_" + country2 + "_" + variant2

 baseName + "_" + language2 + "_" + country2

 baseName + "_" + language2

 baseName

Candidate bundle names in which the final component is an empty string are omitted

from the sequence. For example, if country1 is an empty string, the second candidate

bundle name is omitted.

CHAPTER 9: Discovering Additional Utility APIs 402

The getBundle() methods iterate over the candidate bundle names to find the first name

for which they can instantiate an actual resource bundle. For each candidate bundle

name, getBundle() attempts to create a resource bundle as follows:

 It first attempts to load a class that extends the abstract

java.util.ListResourceBundle class using the candidate bundle

name. If such a class can be found and loaded using the specified

class loader, is assignment compatible with ResourceBundle, is

accessible from ResourceBundle, and can be instantiated, getBundle()

creates a new instance of this class and uses it as the result resource

bundle.

 Otherwise, getBundle() attempts to locate a properties file. It

generates a pathname from the candidate bundle name by replacing

all “.” characters with “/” and appending “.properties.” It attempts to

find a “resource” with this name using java.lang.ClassLoader.
getResource(). (Note that a “resource” in the sense of getResource()

has nothing to do with the contents of a resource bundle; it is just a

container of data, such as a file.) If getResource() finds a “resource,” it

attempts to create a new java.util.PropertyResourceBundle instance

from its contents. If successful, this instance becomes the result

resource bundle.

If no result resource bundle is found, getBundle() throws an instance of the

java.util.MissingResourceException class; otherwise, getBundle() instantiates the

bundle’s parent resource bundle chain.

NOTE: The parent resource bundle chain makes it possible to obtain fallback values when
resources are missing. The chain is built by using ResourceBundle’s protected void
setParent(ResourceBundle parent) method.

getBundle() builds the chain by iterating over the candidate bundle names that can be

obtained by successively removing variant, country, and language (each time with the

preceding “_”) from the complete resource bundle name of the result resource bundle.

NOTE: Candidate bundle names where the final component is an empty string are omitted.

With each candidate bundle name, getBundle() tries to instantiate a resource bundle, as

just described. If it succeeds, it calls the previously instantiated resource bundle’s

setParent() method with the new resource bundle, unless the previously instantiated

resource bundle already has a nonnull parent.

NOTE: getBundle() caches instantiated resource bundles and may return the same resource
bundle instance multiple times.

CHAPTER 9: Discovering Additional Utility APIs 403

ResourceBundle declares various methods for accessing a resource bundle’s resources.

For example, Object getObject(String key) gets an object for the given key from this

resource bundle or one of its parent bundles.

getObject() first tries to obtain the object from this resource bundle using the protected

abstract handleGetObject() method, which is implemented by concrete subclasses of

ResourceBundle (such as PropertyResourceBundle).

If handleGetObject() returns null, and if a nonnull parent resource bundle exists,

getObject() calls the parent’s getObject() method. If still not successful, it throws

MissingResourceException.

Two other resource-access methods are String getString(String key) and String[]
getStringArray(String key). These convenience methods are wrappers for (String)
getObject(key) and (String[]) getObject(key).

NOTE: Java version 6 introduced numerous ResourceBundle enhancements. Enhancements
range from new clearCache() methods for removing resource bundles from the cache to a
new nested Control class whose methods let you take control of the resource bundle search
order, and even load resource bundles from another source (such as an XML file). Although
Android does not support these enhancements at the time of writing, this may change in a future
release of Android. I explore the enhancements to ResourceBundle in Beginning Java SE 6
Platform: From Novice to Professional.

Property Resource Bundles
A property resource bundle is a resource bundle that is backed by a properties file, a

text file (with a .properties extension) that stores textual elements as a series of

key=value entries. The key is a nonlocalized identifier that an application uses to obtain

the localized value.

NOTE: Properties files are accessed via instances of the java.util.Properties class. In
Chapter 8, I mentioned that the Preferences API (discussed later in this chapter) has made
Properties largely obsolete. Property resource bundles prove that the Properties class is
not entirely obsolete.

PropertyResourceBundle, a concrete subclass of ResourceBundle, manages property

resource bundles. You should rarely (if ever) need to work with this subclass. Instead, for

maximum portability, you should only work with ResourceBundle, as Listing 9–10

demonstrates.

CHAPTER 9: Discovering Additional Utility APIs 404

Listing 9–10. Accessing a localized elevator entry in game resource bundles

import java.util.ResourceBundle;

public class PropertyResourceBundleDemo
{
 public static void main(String[] args)
 {
 ResourceBundle resources = ResourceBundle.getBundle("game");
 System.out.println("elevator = " + resources.getString("elevator"));
 }
}

Listing 9–10 refers to ResourceBundle instead of PropertyResourceBundle, which lets you

easily migrate to ListResourceBundle as necessary. I use getString() instead of

getObject() for convenience; text resources are stored in textual properties files.

When you run this application, it generates the following output:

Exception in thread "main" java.util.MissingResourceException: Can't find bundle for
base name game, locale en_US
 at java.util.ResourceBundle.throwMissingResourceException(Unknown Source)
 at java.util.ResourceBundle.getBundleImpl(Unknown Source)
 at java.util.ResourceBundle.getBundle(Unknown Source)
 at PropertyResourceBundleDemo.main(PropertyResourceBundleDemo.java:7)

This exception is thrown because no property resource bundles exist. You can easily

remedy this situation by copying Listing 9–11 into a game.properties file, which is the

basis for a property resource bundle.

Listing 9–11. A fallback game.properties resource bundle

elevator=elevator

Assuming that game.properties is located in the same directory as

PropertyResourceBundleDemo.class, execute java PropertyResourceBundleDemo and

you will see the following output:

elevator = elevator

Because my locale is en_US, getBundle() first tries to load game_en_US.properties.

Because this file does not exist, getBundle() tries to load game_en.properties. Because

this file does not exist, getBundle() tries to load game.properties, and succeeds.

Copy Listing 9–12 into a game_en_GB.properties file.

Listing 9–12. A game resource bundle for the en_GB locale

elevator=lift

Execute java -Duser.language=en -Duser.country=GB PropertyResourceBundleDemo.

This time, you should see the following output:

elevator = lift

With the locale set to en_GB, getBundle() first tries to load game_en_GB.properties, and

succeeds.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 9: Discovering Additional Utility APIs 405

Comment out elevator = lift by prepending a # character to this line (as in #elevator
= lift). Then execute java -Duser.language=en -Duser.country=GB
PropertyResourceBundleDemo and you should see the following output:

elevator = elevator

Although getBundle() loaded game_en_GB.properties, getString() (via getObject())

could not find an elevator entry. As a result, getString()/getObject() searched the

parent resource bundle chain, encountering game.properties’ elevator=elevator entry,

whose elevator value was subsequently returned.

NOTE: A common reason for getString() throwing MissingResourceException in a
property resource bundle context is forgetting to append .properties to a properties file’s
name.

List Resource Bundles
A list resource bundle is a resource bundle that is backed by a classfile, which describes

a concrete subclass of ListResourceBundle (an abstract subclass of ResourceBundle). As

a result, list resource bundles can store binary data (such as images or audio) as well as

text. In contrast, property resource bundles can only store text.

NOTE: If a property resource bundle and a list resource bundle have the same complete resource
bundle name, the list resource bundle takes precedence over the property resource bundle. For
example, when getBundle() is confronted with game_en.properties and
game_en.class, it loads game_en.class instead of game_en.properties.

Listing 9–13 demonstrates a list resource bundle by presenting a flags_en_CA class that

extends ListResourceBundle.

Listing 9–13. A resource bundle containing a small Canadian flag image and English/French text

import java.awt.Toolkit;

import java.util.ListResourceBundle;

public class flags_en_CA extends ListResourceBundle
{
 private byte image[] =
 {
 (byte) 137,
 (byte) 80,
 (byte) 78,
 (byte) 71,
 (byte) 13,
 (byte) 10,
 (byte) 26,
 (byte) 10,

CHAPTER 9: Discovering Additional Utility APIs 406

 (byte) 0,
 (byte) 0,
// ...
 (byte) 0,
 (byte) 0,
 (byte) 73,
 (byte) 69,
 (byte) 78,
 (byte) 68,
 (byte) 174,
 (byte) 66,
 (byte) 96,
 (byte) 130
 };
 private Object[][] contents =
 {
 { "flag", Toolkit.getDefaultToolkit().createImage(image) },
 { "msg", "Welcome to Canada! | Bienvenue vers le Canada !" },
 { "title", "CANADA | LA CANADA" }
 };
 public Object[][] getContents()
 {
 return contents;
 }
}

Listing 9–13’s flags_en_CA class describes a list resource bundle whose base name is

flags and whose locale designation is en_CA. This class’s image array stores a Portable

Network Graphics (PNG)-based sequence of byte integers that describes an image of

the Canadian flag, contents stores key/value pairs, and getContents() returns contents.

NOTE: For brevity, Listing 9–13 does not present the complete image array with Canadian flag
image data. You must obtain flags_en_CA.java from this book’s companion code file (see the
book’s introduction for instructions on how to obtain this file) to get the complete listing.

The first key/value pair consists of a key named flag (which will be passed to

ResourceBundle’s getObject() method) and an instance of the java.awt.Image class.

This instance represents the flag image and is obtained with the help of the

java.awt.Toolkit class and its createImage() utility method.

NOTE: AWT stands for Abstract Window Toolkit, a windowing toolkit that makes it possible to
create crude user interfaces consisting of windows, buttons, text fields, and so on. The AWT was
released as part of Java version 1.0 in 1995, and continues to be part of Java’s standard class
library. The AWT is not supported by Android.

Listing 9–14 shows you how to load the default flags_en_CA list resource bundle (or

another list resource bundle via command-line arguments) and display its flag and text.

CHAPTER 9: Discovering Additional Utility APIs 407

Listing 9–14. Obtaining and displaying a list resource bundle’s flag image and text

import java.awt.EventQueue;
import java.awt.Image;

import java.util.Locale;
import java.util.ResourceBundle;

import javax.swing.ImageIcon;
import javax.swing.JOptionPane;

public class ListResourceBundleDemo
{
 public static void main(String[] args)
 {
 Locale l = Locale.CANADA;
 if (args.length == 2)
 l = new Locale(args[0], args[1]);
 final ResourceBundle resources = ResourceBundle.getBundle("flags", l);
 Runnable r = new Runnable()
 {
 public void run()
 {
 Image image = (Image) resources.getObject("flag");
 String msg = resources.getString("msg");
 String title = resources.getString("title");
 ImageIcon ii = new ImageIcon(image);
 JOptionPane.showMessageDialog(null,
 msg,
 title,
 JOptionPane.PLAIN_MESSAGE,
 ii);
 }
 };
 EventQueue.invokeLater(r);
 }
}

Listing 9–14’s main() method begins by selecting CANADA as its default Locale. If it

detects that two arguments were passed on the command line, main() assumes that the

first argument is the language code and the second argument is the country code, and

creates a new Locale object based on these arguments as its default locale.

main() next attempts to load a list resource bundle by passing the flags base name and

the previously chosen Locale object to ResourceBundle’s getBundle() method.

Assuming that MissingResourceException is not thrown, main() creates a runnable task

on which to load resources from the list resource bundle and display them graphically.

main() relies on a windowing toolkit known as Swing to present a simple user interface

that displays the flag and text. Because Swing is single threaded, where everything runs

on a special thread known as the event-dispatching thread, it is important that all Swing-

based operations occur on this thread. EventQueue.invokeLater() makes this happen.

CHAPTER 9: Discovering Additional Utility APIs 408

NOTE: Swing is built on top of the AWT and provides many sophisticated features. This
windowing toolkit was officially released as part of Java version 1.2, and continues to be part of
Java’s standard class library. Swing is not supported by Android.

If you would like to learn more about Swing, I recommend the definitive Java Swing, Second
Edition, by Marc Loy, Robert Eckstein, David Wood, James Elliott, and Brian Cole (O’Reilly Media,
2002; ISBN: 0596004087).

Shortly after EventQueue.invokeLater() is executed on the main thread, the event-

dispatching thread starts running and executes the runnable task. This task first obtains

the Image object from the list resource bundle by passing flag to getObject() and

casting this method’s return value to Image.

The task then obtains the msg and title strings by passing these keys to getString(),

and converts the Image object to a javax.swing.ImageIcon instance. This instance is

required by the subsequent JOptionPane.showMessageDialog() method call, which

presents a simple message-oriented dialog box.

NOTE: JOptionPane is a Swing component that makes it easy to display a standard dialog box
that prompts the user to enter a value or informs the user of something important.

Now that you understand how ListResourceBundleDemo works, obtain the complete

flags_en_CA.java source file, compile this source code (javac flags_en_CA.java) and

Listing 9–14 (javac ListResourceBundleDemo.java), and execute the application (java
ListResourceBundleDemo). Figure 9–1 shows the resulting user interface on Windows XP.

Figure 9–1. An almost completely localized dialog box (OK is not localized) displaying Canada-specific resources
on Windows XP

NOTE: I obtained the language translations for this section’s examples from Yahoo! Babel Fish
(http://babelfish.yahoo.com/), an online text translation service.

This book’s accompanying code file also contains flags_fr_FR.java, which presents

resources localized for the France locale. After compiling this source file, execute java
ListResourceBundleDemo fr FR and you will see Figure 9–2.

http://babelfish.yahoo.com

CHAPTER 9: Discovering Additional Utility APIs 409

Figure 9–2. An almost completely localized dialog box displaying France-specific resources on Windows XP

Finally, this book’s accompanying code file also contains flags_ru_RU.java, which

presents resources localized for the Russia locale. After compiling this source file,

execute java ListResourceBundleDemo ru RU and you will see Figure 9–3.

Figure 9–3. An almost completely localized dialog box displaying Russia-specific resources on Windows XP

NOTE: You will need to ensure that appropriate Cyrillic fonts are installed to view the Russian
text. Also, because I stored Russian characters verbatim (and not as Unicode escape sequences,
such as '\u0041'), flags_ru_RU.java is a Unicode file and must be compiled via javac –
encoding Unicode flags_ru_RU.java.

Break Iterators
Internationalized text-processing applications (such as word processors) need to detect

logical boundaries within the text they are manipulating. For example, a word processor

needs to detect these boundaries when highlighting a character, selecting a word to cut

to the clipboard, moving the caret (text insertion point indicator) to the start of the next

sentence, and wrapping a word at the end of a line.

Java provides the Break Iterator API with its abstract java.text.BreakIterator entry-

point class to detect text boundaries.

BreakIterator declares the following factory methods for obtaining break iterators that

detect character, word, sentence, and line boundaries:

 static BreakIterator getCharacterInstance()

 static BreakIterator getWordInstance()

 static BreakIterator getSentenceInstance()

 static BreakIterator getLineInstance()

CHAPTER 9: Discovering Additional Utility APIs 410

Each of these factory methods returns a break iterator for the default locale. If you need

a break iterator for a specific locale, you can call the following factory methods:

 static BreakIterator getCharacterInstance(Locale locale)

 static BreakIterator getWordInstance(Locale locale)

 static BreakIterator getSentenceInstance(Locale locale)

 static BreakIterator getLineInstance(Locale locale)

Each of these factory methods throws NullPointerException when its locale argument

is null.

BreakIterator’s locale-sensitive factory methods might not support every locale. For

this reason, you should only pass Locale objects that are also stored in the array

returned from this class’s static Locale[] getAvailableLocales() method (which is

also declared in other entry-point classes) to the aforementioned factory methods—this

array contains at least Locale.US. Check out Listing 9–15.

Listing 9–15. Obtaining BreakIterator’s supported locales and passing the first locale (possibly Locale.US) to
getCharacterInstance(Locale)

Locale[] supportedLocales = BreakIterator.getAvailableLocales();
BreakIterator bi = BreakIterator.getCharacterInstance(supportedLocales[0]);

A BreakIterator instance has an imaginary cursor that points to the current boundary

within a text string. This cursor position can be interrogated and the cursor moved from

boundary to boundary with the help of the following BreakIterator methods:

 abstract int current() returns the text boundary that was most

recently returned by next(), next(int), previous(), first(), last(),

following(int), or preceding(int). If any of these methods returns

BreakIterator.DONE because either the first or the last text boundary

has been reached, current() returns the first or last text boundary

depending on which one was reached.

 abstract int first() returns the first text boundary. The iterator’s

current position is set to this boundary.

 abstract int following(int offset) returns the first text boundary

following the specified character offset. If offset equals the last text

boundary, following(int) returns BreakIterator.DONE and the

iterator’s current position is unchanged. Otherwise, the iterator’s

current position is set to the returned text boundary. The value

returned is always greater than offset or BreakIterator.DONE.

 abstract int last() returns the last text boundary. The iterator’s

current position is set to this boundary.

 abstract int next() returns the text boundary following the current

boundary. If the current boundary is the last text boundary, next()

returns BreakIterator.DONE and the iterator’s current position is

CHAPTER 9: Discovering Additional Utility APIs 411

unchanged. Otherwise, the iterator’s current position is set to the

boundary following the current boundary.

 abstract int next(int n) returns the nth text boundary from the

current boundary. If either the first or the last text boundary has been

reached, next(int) returns BreakIterator.DONE and the current

position is set to either the first or last text boundary depending on

which one is reached. Otherwise, the iterator’s current position is set

to the new text boundary.

 int preceding(int offset) returns the last text boundary preceding

the specified character offset. If offset equals the first text boundary,

preceding(int) returns BreakIterator.DONE and the iterator’s current

position is unchanged. Otherwise, the iterator’s current position is set

to the returned text boundary. The returned value is always less than

offset or equals BreakIterator.DONE. (This method was added to

BreakIterator in Java version 1.2. It could not be declared abstract

because abstract methods cannot be added to existing classes; such

methods would also have to be implemented in subclasses that might

be inaccessible.)

 abstract int previous() returns the text boundary preceding the

current boundary. If the current boundary is the first text boundary,

previous() returns BreakIterator.DONE and the iterator’s current

position is unchanged. Otherwise, the iterator’s current position is set

to the boundary preceding the current boundary.

Figure 9–4 reveals that characters are located between boundaries, boundaries are

zero-based, and the last boundary is the length of the string.

Figure 9–4. JAVA’s character boundaries as reported by the next() and previous() methods

BreakIterator also declares a void setText(String newText) method that identifies

newText as the text to be iterated over. This method resets the cursor position to the

beginning of this string.

Listing 9–16 shows you how to use a character-based break iterator to iterate over a

string’s characters in a locale-independent manner.

Listing 9–16. Iterating over English/US and Arabic/Saudi Arabia strings

import java.text.BreakIterator;

import java.util.Locale;

public class BreakIteratorDemo

y

CHAPTER 9: Discovering Additional Utility APIs 412

{
 public static void main(String[] args)
 {
 BreakIterator bi = BreakIterator.getCharacterInstance(Locale.US);
 bi.setText("JAVA");
 dumpPositions(bi);
 bi = BreakIterator.getCharacterInstance(new Locale("ar", "SA"));
 bi.setText("\u0631\u0641\u0651");
 dumpPositions(bi);
 }
 static void dumpPositions(BreakIterator bi)
 {
 int boundary = bi.first();
 while (boundary != BreakIterator.DONE)
 {
 System.out.print(boundary + " ");
 boundary = bi.next();
 }
 System.out.println();
 }
}

The main() method first obtains a character-based break iterator for the United States

locale. main() then calls the iterator’s setText() method to specify JAVA as the text to be

iterated over.

Iteration occurs in the dumpPositions() method. After calling first() to obtain the first

boundary, this method uses a while loop to output the boundary and move to the next

boundary (via next()) while the current boundary does not equal BreakIterator.DONE.

Because character iteration is straightforward for English words, main() next obtains a

character-based break iterator for the Saudi Arabia locale, and uses this iterator to

iterate over the characters in Figure 9–5’s Arabic version of “shelf” (as in shelf of books).

Figure 9–5. The letters and diacritic making up the Arabic equivalent of “shelf” are written from right to left.

In Arabic, the word “shelf” consists of letters resh and pe, and diacritic shadda. A

diacritic is an ancillary glyph, or mark on paper or other writing medium, added to a

letter, or basic glyph. Shadda, which is shaped like a small written Latin w, indicates

gemination (consonant doubling or extra length), which is phonemic (the smallest

identifiable discrete unit of sound employed to form meaningful contrasts between

CHAPTER 9: Discovering Additional Utility APIs 413

utterances) in Arabic. Shadda is written above the consonant that is to be doubled,

which happens to be pe in this example.

When you run this application, it generates the following output:

0 1 2 3 4
0 1 3

The first output line reveals Figure 9–4’s character boundaries for the word JAVA. The

second output line (0 comes before resh, 1 comes before pe) implies that you cannot

move an Arabic word processor’s caret on the screen once for every Unicode character.

Instead, it is moved once for every user character, a logical character that can be

composed of multiple Unicode characters, such as pe (\u0641) and shadda (\u0651).

NOTE: For examples of break iterators that iterate over words, sentences, and lines, check out
the “Detecting Text Boundaries” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/
boundaryintro.html) in The Java Tutorials’ Internationalization trail.

Collators
Applications perform string comparisons while sorting text. When an application targets

English-oriented users, String’s compareTo() method is probably sufficient for

comparing strings. However, this method’s binary comparison of each string’s Unicode

characters is not reliable for languages where the relative order of their characters does

not correspond to the Unicode values of these characters. French is one example.

Java provides the Collator API with its abstract java.text.Collator entry-point class for

making reliable comparisons.

Collator declares the following factory methods for obtaining collators:

 static Collator getInstance()

 static Collator getInstance(Locale locale)

The first factory method obtains a collator for the default locale; the second factory

method throws NullPointerException when its locale argument is null. As with

BreakIterator, you should only pass Locale objects that are also stored in the array

returned from Collator’s static Locale[] getAvailableLocales() method to the

second factory method.

Listing 9–17 shows you how to use a collator to perform comparisons so that French

words that differ only in terms of accented characters are sorted into the correct order.

Listing 9–17. Using a collator to correctly order French words in the France locale

import java.text.Collator;

import java.util.Arrays;
import java.util.Locale;

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/boundaryintro.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/boundaryintro.html

CHAPTER 9: Discovering Additional Utility APIs 414

public class CollatorDemo
{
 public static void main(String[] args)
 {
 Collator en_USCollator = Collator.getInstance(Locale.US);
 Collator fr_FRCollator = Collator.getInstance(Locale.FRANCE);
 String[] words =
 {
 "côte", "coté", "côté", "cote"
 };
 Arrays.sort(words, en_USCollator);
 for (String word: words)
 System.out.println(word);
 System.out.println();
 Arrays.sort(words, fr_FRCollator);
 for (String word: words)
 System.out.println(word);
 }
}

In Listing 9–17, each of the four words being sorted has a different meaning. For

example, côte means coast and côté means side.

When you run this application, it generates the following output (I am showing this

output as it appears in the Windows XP Notepad editor):

cote
coté
côte
côté

cote
côte
coté
côté

The first four output lines show the order in which these words are sorted according to

the en_US locale. This ordering is not correct because it does not account for accents.

In contrast, the final four output lines show the correct order when the words are sorted

according to the fr_FR locale. Words are compared as if none of the characters contain

accents, and then equal words are compared from right to left for accents.

NOTE: Learn about Collator’s java.text.RuleBasedCollator subclass for creating
custom collators when predefined collation rules do not meet your needs, and about improving
collation performance via java.text.CollationKey and Collator’s CollationKey
getCollationKey(String source) method by reading the “Comparing Strings” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/
collationintro.html) in The Java Tutorials’ Internationalization trail.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/collationintro.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/text/collationintro.html

CHAPTER 9: Discovering Additional Utility APIs 415

Dates, Time Zones, and Calendars
Internationalized applications must properly handle dates, time zones, and calendars. A

date is a recorded temporal moment, a time zone is a set of geographical regions that

share a common number of hours relative to Greenwich Mean Time (GMT), and a

calendar is a system of organizing the passage of time.

NOTE: GMT identifies the standard geographical location from where all time is measured. UTC,
which stands for Coordinated Universal Time, is often specified in place of GMT.

Java version 1.0 introduced the java.util.Date class as its first attempt to describe

calendars. However, Date was not amenable to internationalization because of its

English-oriented nature, and because of its inability to represent dates prior to midnight

January 1, 1970 GMT, which is known as the Unix epoch.

Date was eventually refactored to make it more useful by allowing Date instances to

represent dates prior to the epoch as well as after the epoch, and by deprecating most

of this class’s constructors and methods—deprecated methods have been replaced by

more appropriate API classes. Table 9–3 describes the more useful Date class.

Table 9–3. Date Constructors and Methods

Method Description

Date() Allocate a Date object and initialize it to the current time by calling

System.currentTimeMillis().

Date(long date) Allocate a Date object and initialize it to the time represented by date

milliseconds. A negative value indicates a time before the epoch, 0 indicates

the epoch, and a positive value indicates a time after the epoch.

boolean after
(Date date)

Return true when this date occurs after date. This method throws

NullPointerException when date is null.

boolean before
(Date date)

Return true when this date occurs before date. This method throws

NullPointerException when date is null.

Object clone() Return a copy of this object.

int compareTo
(Date date)

Compare this date with date. Return 0 when this date equals date, a negative

value when this date comes before date, and a positive value when this date

comes after date. This method throws NullPointerException when date is

null.

boolean equals
(Object obj)

Compare this date with the Date object represented by obj. Return true if and

only if obj is not null and is a Date object that represents the same point in

time (to the millisecond) as this date.

CHAPTER 9: Discovering Additional Utility APIs 416

Method Description

long getTime() Return the number of milliseconds that must elapse before the epoch (a

negative value) or have elapsed since the epoch (a positive value).

int hashCode() Return this date’s hash code. The result is the exclusive OR of the two halves

of the long integer value returned by getTime(). That is, the hash code is the

value of expression (int) (this.getTime()^(this.getTime()>>>32)).

void setTime
(long time)

Set this date to represent the point in time specified by time milliseconds (a

negative value refers to before the epoch; a positive value refers to after the

epoch).

String toString() Return a String object containing this date’s representation as dow mon dd
hh:mm:ss zzz yyyy, where dow is the day of the week (Sun, Mon, Tue, Wed,

Thu, Fri, Sat), mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,

Oct, Nov, Dec), dd is the two decimal digit day of the month (01 through 31),

hh is the two decimal digit hour of the day (00 through 23), mm is the two

decimal digit minute within the hour (00 through 59), ss is the two decimal

digit second within the minute (00 through 61, where 60 and 61 account for

leap seconds), zzz is the (possibly empty) time zone (and may reflect daylight

saving time), and yyyy is the four decimal digit year.

Listing 9–18 provides a small demonstration of the Date class.

Listing 9–18. Exploring the Date class

import java.util.Date;

class DateDemo
{
 public static void main(String[] args)
 {
 Date now = new Date();
 System.out.println(now);
 Date later = new Date(now.getTime()+86400);
 System.out.println(later);
 System.out.println(now.after(later));
 System.out.println(now.before(later));
 }
}

Listing 9–18’s main() method creates a pair of Date objects (now and later) and outputs

their dates, formatted according to Date’s implicitly called toString() method. main()

then demonstrates after() and before(), proving that now comes before later, which is

one second in the future.

When you run this application, it generates output similar to the following:

Sun Jul 25 18:36:20 CDT 2010
Sun Jul 25 18:37:47 CDT 2010
false
true

CHAPTER 9: Discovering Additional Utility APIs 417

The toString() method’s description and Listing 9–18’s output reveal that a time zone

is part of a date. Java provides the abstract java.util.TimeZone entry-point class for

obtaining TimeZone instances. This class declares a pair of factory methods for obtaining

TimeZone instances:

 static TimeZone getDefault()

 static TimeZone getTimeZone(String ID)

The latter method returns a TimeZone instance for the time zone whose String identifier

(such as "CST") is passed to ID.

NOTE: Some time zones take into account daylight saving time, the practice of temporarily
advancing clocks so that afternoons have more daylight and mornings have less; for example,
Central Daylight Time (CDT). Check out Wikipedia’s “Daylight saving time” entry
(http://en.wikipedia.org/wiki/Daylight_saving_time) to learn more about daylight
saving time.

If you need to introduce a new time zone or modify an existing time zone, perhaps to deal with
changes to a time zone’s daylight saving time policy, you can work directly with TimeZone’s
java.util.SimpleTimeZone concrete subclass. SimpleTimeZone describes a raw offset
from GMT and provides rules for specifying the start and end of daylight saving time.

Java version 1.1 introduced the Calendar API with its abstract java.util.Calendar

entry-point class as a replacement for Date. Calendar is intended to represent any kind

of calendar. However, time constraints meant that only the Gregorian calendar could be

implemented (via the concrete java.util.GregorianCalendar subclass) for version 1.1.

NOTE: Java version 1.4 introduced support for the Thai Buddhist calendar via an internal class
that subclasses Calendar. Java version 6 introduced support for the Japanese Imperial Era
calendar via the package-private java.util.JapaneseImperialCalendar class, which also
subclasses Calendar. For an in-depth look at the Japanese Imperial Era calendar, and to
explore an example that presents this calendar graphically, check out this topic in Beginning
Java SE 6 Platform: From Novice to Professional.

Calendar declares the following factory methods for obtaining calendars:

 static Calendar getInstance()

 static Calendar getInstance(Locale locale)

 static Calendar getInstance(TimeZone zone)

 static Calendar getInstance(TimeZone zone, Locale locale)

The first and third methods return calendars for the default locale; the second and fourth

methods take the specified locale into account. Also, calendars returned by the first two

http://en.wikipedia.org/wiki/Daylight_saving_time

CHAPTER 9: Discovering Additional Utility APIs 418

methods are based on the current time in the default time zone; calendars returned by

the last two methods are based on the current time in the specified time zone.

Calendar declares various constants, including YEAR, MONTH, DAY_OF_MONTH, DAY_OF_WEEK,

LONG, and SHORT. These constants identify the year (four digits), month (0 represents

January), current month day (1 through the month’s last day), and current weekday (1

represents Sunday) calendar fields, and display styles (such as January versus Jan).

The first four constants are used with Calendar’s various set() methods to set calendar

fields to specific values (set the year field to 2010, for example). They are also used with

Calendar’s int get(int field) method to return field values, along with other field-

oriented methods, such as void clear(int field) (unset a field).

The latter two constants are used with Calendar’s String getDisplayName(int field,
int style, Locale locale) and Map<String,Integer> getDisplayNames(int field,
int style, Locale locale) methods, which return short (Jan, for example) or long

(January, for example) localized String representations of various field values.

Listing 9–19 shows you how to use various Calendar constants and methods to output

calendar pages according to the en_US and fr_FR locales.

Listing 9–19. Outputting calendar pages

import java.util.Calendar;
import java.util.Iterator;
import java.util.Locale;
import java.util.Map;
import java.util.Set;

public class CalendarDemo
{
 public static void main(String[] args)
 {
 if (args.length < 2)
 {
 System.err.println("usage: java CalendarDemo yyyy mm [f|F]");
 return;
 }
 try
 {
 int year = Integer.parseInt(args[0]);
 int month = Integer.parseInt(args[1]);
 Locale locale = Locale.US;
 if (args.length == 3 && args[2].equalsIgnoreCase("f"))
 locale = Locale.FRANCE;
 showPage(year, month, locale);
 }
 catch (NumberFormatException nfe)
 {
 System.err.print(nfe);
 }
 }
 static void showPage(int year, int month, Locale locale)
 {
 if (month < 1 || month > 12)
 throw new IllegalArgumentException("month [" + month + "] out of " +

CHAPTER 9: Discovering Additional Utility APIs 419

 "range [1, 12]");
 Calendar cal = Calendar.getInstance(locale);
 cal.set(Calendar.YEAR, year);
 cal.set(Calendar.MONTH, --month);
 cal.set(Calendar.DAY_OF_MONTH, 1);
 displayMonthAndYear(cal, locale);
 displayWeekdayNames(cal, locale);
 int daysInMonth = cal.getActualMaximum(Calendar.DAY_OF_MONTH);
 int firstRowGap = cal.get(Calendar.DAY_OF_WEEK)-1; // 0 = Sunday
 for (int i = 0; i < firstRowGap; i++)
 System.out.print(" ");
 for (int i = 1; i <= daysInMonth; i++)
 {
 if (i < 10)
 System.out.print(' ');
 System.out.print(i);
 if ((firstRowGap+i)%7 == 0)
 System.out.println();
 else
 System.out.print(' ');
 }
 System.out.println();
 }
 static void displayMonthAndYear(Calendar cal, Locale locale)
 {
 System.out.println(cal.getDisplayName(Calendar.MONTH, Calendar.LONG,
 locale) + " " +
 cal.get(Calendar.YEAR));
 }
 static void displayWeekdayNames(Calendar cal, Locale locale)
 {
 Map<String, Integer> weekdayNamesMap;
 weekdayNamesMap = cal.getDisplayNames(Calendar.DAY_OF_WEEK,
 Calendar.SHORT, locale);
 String[] names = new String[weekdayNamesMap.size()];
 int[] indexes = new int[weekdayNamesMap.size()];
 Set<Map.Entry<String, Integer>> weekdayNamesEntries;
 weekdayNamesEntries = weekdayNamesMap.entrySet();
 Iterator<Map.Entry<String, Integer>> iter;
 iter = weekdayNamesEntries.iterator();
 while (iter.hasNext())
 {
 Map.Entry<String, Integer> entry = iter.next();
 names[entry.getValue()-1] = entry.getKey();
 indexes[entry.getValue()-1] = entry.getValue();
 }
 for (int i = 0; i < names.length; i++)
 for (int j = i; j < names.length; j++)
 if (indexes[j] == i+1)
 {
 System.out.print(names[j].substring(0, 2) + " ");
 continue;
 }
 System.out.println();
 }
}

CHAPTER 9: Discovering Additional Utility APIs 420

Listing 9–19 is pretty straightforward, with the exception of displayWeekdayNames(). This

method calls Calendar’s getDisplayNames() method to return a map of localized

weekday names. Instead of returning a map where the keys are Integers and the values

are localized Strings, this map’s keys are the localized Strings.

This would be fine if the keys were ordered (as in Sunday first and Saturday last, or lundi

first and dimanche last). However, they are not ordered. To output these names in order,

it is necessary to obtain a set of map entries, iterate over these entries and populate

parallel arrays, and then iterate over these arrays to output the weekday names.

NOTE: A French calendar begins the week on lundi (Monday) and ends it on dimanche (Sunday).
However, Calendar does not take this ordering into account.

Specify java CalendarDemo 2010 7 and you will see the following calendar page for the

en_US locale:

July 2010
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

If you would like to see this page in the fr_FR locale, specify java CalendarDemo 2010 7
f or java CalendarDemo 2010 7 F:

juillet 2010
di lu ma me je ve sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

NOTE: Calendar declares a Date getTime() method that returns a calendar’s time
representation as a Date instance. Calendar also declares a void setTime(Date date)
method that sets a calendar’s time representation to the specified date.

Joda Time (http://joda-time.sourceforge.net/), the Java date and time API, offers a
high-quality replacement for Java’s date and time classes. You might prefer to use these classes
as an alternative.

http://joda-time.sourceforge.net

CHAPTER 9: Discovering Additional Utility APIs 421

Formatters
Internationalized applications do not present unformatted numbers (including currencies

and percentages), dates, and messages to the user. These items must be formatted

according to the user’s locale so they appear meaningful to the user. To help with

formatting, Java provides the abstract java.text.Format class and various subclasses.

NOTE: Format defines the programming interface for formatting locale-sensitive objects into
Strings via its format() methods, and for parsing Strings back into objects via its
parseObject() methods. For brevity, I ignore the parseObject() methods.

Number Formatters
The abstract java.text.NumberFormat entry-point class (a Format subclass) declares the

following factory methods to return formatters that format numbers as currencies,

integers, numbers with decimal points, and percentages (and also to parse such values):

 static NumberFormat getCurrencyInstance()

 static NumberFormat getCurrencyInstance(Locale locale)

 static NumberFormat getIntegerInstance()

 static NumberFormat getIntegerInstance(Locale locale)

 static NumberFormat getInstance()

 static NumberFormat getInstance(Locale locale)

 static NumberFormat getNumberInstance()

 static NumberFormat getNumberInstance(Locale locale)

 static NumberFormat getPercentInstance()

 static NumberFormat getPercentInstance(Locale locale)

The getInstance() and getInstance(Locale) factory methods are equivalent to

getNumberInstance() and getNumberInstance(Locale). They are present as a shorthand

convenience to the longer-named getNumberInstance() methods.

Listing 9–20 shows you how to obtain and use number formatters to format numbers as

currencies, integers, numbers with decimals points, and percentages for various locales.

Listing 9–20. Formatting numbers as currencies, integers, numbers with decimal points, and percentages

import java.text.NumberFormat;

import java.util.Locale;

public class NumberFormatDemo
{

CHAPTER 9: Discovering Additional Utility APIs 422

 public static void main(String[] args)
 {
 System.out.println("Unformatted: " + 9875432.25);
 formatCurrencies(Locale.US, 98765432.25);
 formatCurrencies(Locale.FRANCE, 98765432.25);
 formatCurrencies(Locale.GERMANY, 98765432.25);
 System.out.println();
 System.out.println("Unformatted: " + 123456789.0);
 formatIntegers(Locale.US, 123456789.0);
 formatIntegers(Locale.FRANCE, 123456789.0);
 formatIntegers(Locale.GERMANY, 123456789.0);
 System.out.println();
 System.out.println("Unformatted: " + 6751.326);
 formatNumbers(Locale.US, 6751.326);
 formatNumbers(Locale.FRANCE, 6751.326);
 formatNumbers(Locale.GERMANY, 6751.326);
 System.out.println();
 System.out.println("Unformatted: " + 0.85);
 formatPercentages(Locale.US, 0.85);
 formatPercentages(Locale.FRANCE, 0.85);
 formatPercentages(Locale.GERMANY, 0.85);
 }
 static void formatCurrencies(Locale locale, double amount)
 {
 NumberFormat nf = NumberFormat.getCurrencyInstance(locale);
 System.out.println(locale + ": " + nf.format(amount));
 }
 static void formatIntegers(Locale locale, double amount)
 {
 NumberFormat nf = NumberFormat.getIntegerInstance(locale);
 System.out.println(locale + " : " + nf.format(amount));
 }
 static void formatNumbers(Locale locale, double amount)
 {
 NumberFormat nf = NumberFormat.getNumberInstance(locale);
 System.out.println(locale + ": " + nf.format(amount));
 }
 static void formatPercentages(Locale locale, double amount)
 {
 NumberFormat nf = NumberFormat.getPercentInstance(locale);
 System.out.println(locale + ": " + nf.format(amount));
 }
}

Listing 9–20 uses a double instead of a BigDecimal object to represent 9875432.25 as a

currency, for simplicity and because this value can be represented exactly as a double.

When you run this application, it generates output that is shown with the Windows XP

Notepad editor window (so that the Euro currency symbol can be seen) in Figure 9–6.

CHAPTER 9: Discovering Additional Utility APIs 423

Figure 9–6. Unformatted and formatted numeric output for the US, France, and Germany locales

NumberFormat declares void setMaximumFractionDigits(int newValue), void
setMaximumIntegerDigits(int newValue), void setMinimumFractionDigits(int
newValue), and void setMinimumIntegerDigits(int newValue) methods to limit the

number of digits that are allowed in a formatted number’s integer or fraction. These

methods are helpful for aligning numbers, as Listing 9–21 demonstrates.

Listing 9–21. Aligning numbers

NumberFormat nf = NumberFormat.getInstance();
System.out.println(nf.format(123.4567)); // Output: 123.457
nf.setMaximumIntegerDigits(10);
nf.setMinimumIntegerDigits(6);
nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2);
System.out.println(nf.format(123.4567)); // Output: 000,123.46
System.out.println(nf.format(80978.3)); // Output : 080,978.30

This code fragment specifies that a number’s integer portion cannot exceed ten digits,

but must have a minimum of six digits. Leading zeros are output to meet the minimum.

The code fragment reveals that the fraction is rounded.

A concrete subclass of NumberFormat might enforce an upper limit on the value passed

to setMaximumFractionDigits(int), setMaximumIntegerDigits(int),

setMinimumFractionDigits(int), or setMinimumIntegerDigits(int). Call

getMaximumFractionDigits(), getMaximumIntegerDigits(), getMinimumFactionDigits(),

or getMinimumIntegerDigits() to find out if the value you specified has been accepted.

CHAPTER 9: Discovering Additional Utility APIs 424

NOTE: If you ever need to create customized number formatters, you will find yourself working
with NumberFormat’s java.text.DecimalFormat subclass and this subclass’s
java.text.DecimalFormatSymbols companion class. The “Customizing Formats” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/forma
t/decimalFormat.html) in The Java Tutorials’ Internationalization trail introduces you to
these classes.

Date Formatters
The abstract java.text.DateFormat entry-point class (a Format subclass) provides

access to formatters that format Date instances as dates or time values (and also to

parse such values). This class declares the following factory methods:

 static DateFormat getDateInstance()

 static DateFormat getDateInstance(int style)

 static DateFormat getDateInstance(int style, Locale locale)

 static DateFormat getDateTimeInstance()

 static DateFormat getDateTimeInstance(int dateStyle, int
timeStyle)

 static DateFormat getDateTimeInstance(int dateStyle, int
timeStyle, Locale locale)

 static DateFormat getInstance()

 static DateFormat getTimeInstance()

 static DateFormat getTimeInstance(int style)

 static DateFormat getTimeInstance(int style, Locale locale)

The getDateInstance() factory methods’ formatters generate only date information, the

getTimeInstance() factory methods’ formatters generate only time information, and the

getDateTimeInstance() factory methods’ formatters generate date and time information.

The dateStyle and timeStyle fields determine how that information will be presented

according to the following DateFormat constants:

 SHORT is completely numeric, such as 12.13.52 or 3:30pm

 MEDIUM is longer, such as Jan 12, 1952

 LONG is longer, such as January 12, 1952 or 3:30:32pm

 FULL is pretty completely specified, such as Tuesday, April 12, 1952

AD or 3:30:42pm PST.

Listing 9–22 shows you how to format a Date instance that represents the Unix epoch

according to the local time zone and the UTC time zone.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/decimalFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/decimalFormat.html

CHAPTER 9: Discovering Additional Utility APIs 425

Listing 9–22. Formatting the Unix epoch

import java.text.DateFormat;

import java.util.Date;
import java.util.Locale;
import java.util.TimeZone;

public class DateFormatDemo
{
 public static void main(String[] args)
 {
 Date d = new Date(0); // Unix epoch
 System.out.println(d);
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.LONG,
 Locale.US);
 System.out.println("Default format: " + df.format(d));
 df.setTimeZone(TimeZone.getTimeZone("UTC"));
 System.out.println("Taking UTC into account: " + df.format(d));
 }
}

When you run this application, it generates the following output for the CST time zone:

Wed Dec 31 18:00:00 CST 1969
Default format: December 31, 1969 6:00:00 PM CST
Taking UTC into account: January 1, 1970 12:00:00 AM UTC

The Unix epoch, which is represented by passing 0 to the Date(long) constructor, is

defined as January 1, 1970 00:00:00 UTC, but the first output line does not indicate this

fact. Instead, it shows the epoch in my CST time zone, which is six hours away from

GMT/UTC. To show the epoch correctly, I need to obtain the UTC time zone, which I

accomplish by passing "UTC" to TimeZone’s getTimeZone(String) factory method, and

install this time zone instance into the date formatter with the help of DateFormat’s void
setTimeZone(TimeZone zone) method.

NOTE: If you ever need to create customized date formatters, you will find yourself working with
DateFormat’s java.text.SimpleDateFormat subclass and this subclass’s
java.text.DateFormatSymbols companion class. The “Customizing Formats” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/forma
t/decimalFormat.html) and the “Changing Date Format Symbols” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/forma
t/dateFormatSymbols.html) in The Java Tutorials’ Internationalization trail introduce you to
these classes.

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/decimalFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/decimalFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/dateFormatSymbols.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/dateFormatSymbols.html

CHAPTER 9: Discovering Additional Utility APIs 426

Message Formatters
Applications often display simple and/or compound status and error messages to the

user. A simple message consists of static (unchanging) text, whereas a compound
message consists of static text and variable (changeable) data. For example, consider

the following compound messages, where the underlined text identifies variable data:

10,536 visitors have visited your website since June 16, 2010.
Warning: 25 files have been modified in a suspicious manner.
Account balance is $10,567.00!

For a simple message, you obtain its text from a resource bundle and then display this

text to the user. For a compound message, you obtain a pattern (template) for the

message from a property resource bundle, pass this pattern along with the variable data

to a message formatter to create a simple message, and display this message’s text.

A message formatter is an instance of the concrete java.util.MessageFormat class (a

Format subclass). (Unlike other APIs, the Message Format API does not have an abstract

entry-point class with factory methods for obtaining instances of subclasses.) This class

declares the following constructors:

 MessageFormat(String pattern) initializes a MessageFormat instance to

the specified pattern and the default locale. This constructor throws

IllegalArgumentException when pattern is invalid.

 MessageFormat(String pattern, Locale locale) initializes a

MessageFormat instance to the specified pattern and locale. This

constructor throws IllegalArgumentException when pattern is invalid.

A pattern consists of static text and placeholders for variable data. Each placeholder is a

brace-delimited sequence of a zero-based integer identifier, an optional format type, and

an optional format style. Examples include {0} (insert text between braces), {1, date}

(insert a date in default style), and {2, number, currency} (insert a currency).

For example, the previous set of compound messages can be converted into Listing 9–

23’s patterns for the en_US locale.

Listing 9–23. Patterns in an example_en_US.properties file

p1 = {0, number, integer} visitors have visited your website since {1, date, long}.
p2 = Warning: {0, number, integer} files have been modified in a suspicious manner.
p3 = Account balance is {0, number, currency}!

The same placeholders can be used in equivalent compound messages localized to

another locale, such as Listing 9–24’s fr_FR locale.

Listing 9–24. Patterns in an example_fr_FR.properties file

p1 = {0, number, integer} visiteurs ont visité votre site Web depuis le {1, date, long}.
p2 = Avertissement : {0, number, integer} dossiers ont été modifiés d'une façon
 soupçonneuse.
p3 = L''équilibre de compte est {0, number, currency} !

CHAPTER 9: Discovering Additional Utility APIs 427

NOTE: An apostrophe (also known as a single quote) in a pattern starts a quoted string, in which,
for example, '{0, number, currency} is treated as a literal string and is not interpreted as a
placeholder by the formatter. To ensure that this placeholder is not treated as a literal string in
Listing 9–24, L'équilibre’s single quote must be doubled, which is why L''équilibre
appears.

After instantiating a MessageFormat instance, where the pattern is obtained from a

resource bundle, you typically create an array of Objects and call Message’s inherited

String format(Object obj) method (from Format) with this array—passing an array of

Objects to a method whose parameter type is Object works because arrays are Objects.

When format() is called, it scans the pattern, replacing each placeholder with the

corresponding entry in the Objects array. For example, if format() finds a placeholder

with integer identifier 0, it causes the zeroth entry in the Objects array to be formatted

and then the formatted results to be output.

TIP: You might find MessageFormat’s static String format(String pattern,
Object... arguments) method convenient for one-time formatting operations. This method
is equivalent to executing new MessageFormat(pattern).format(arguments, new
StringBuffer(), null).toString() on the default locale.

Listing 9–25 demonstrates message formatting in the context of Listings 9–23’s and 9–

24’s properties files and their localized patterns.

Listing 9–25. Formatting and outputting compound messages according to the en_US and fr_FR locales

import java.text.MessageFormat;

import java.util.Calendar;
import java.util.Locale;
import java.util.ResourceBundle;

public class MessageFormatDemo
{
 public static void main(String[] args)
 {
 dumpMessages(Locale.US);
 System.out.println();
 dumpMessages(Locale.FRANCE);
 }
 static void dumpMessages(Locale locale)
 {
 ResourceBundle rb = ResourceBundle.getBundle("example", locale);
 MessageFormat mf = new MessageFormat(rb.getString("p1"), locale);
 Calendar cal = Calendar.getInstance(locale);
 cal.set(Calendar.YEAR, 2010);
 cal.set(Calendar.MONTH, Calendar.JUNE);
 cal.set(Calendar.DAY_OF_MONTH, 16);
 Object[] args = new Object[] { 10536, cal.getTime() };

CHAPTER 9: Discovering Additional Utility APIs 428

 System.out.println(mf.format(args));
 mf.applyPattern(rb.getString("p2"));
 args = new Object[] { 25 };
 System.out.println(mf.format(args));
 mf.applyPattern(rb.getString("p3"));
 args = new Object[] { 10567.0 };
 System.out.println(mf.format(args));
 }
}

Listing 9–25 takes advantage of MessageFormat’s void applyPattern(String pattern)

method to override a previous pattern with a new pattern.

When you run this application, it generates output that is shown with the Windows XP

Notepad editor window (so that the Euro currency symbol can be seen) in Figure 9–7.

Figure 9–7. Compound messages formatted for the en_US and fr_FR locales

NOTE: Some compound messages contain singular and plural words. For example, Logging 1
message to x.log and Logging 2 messages to x.log reveal singular and plural
messages. Although you could specify pattern Logging {0} message(s) to {1}, it is not
grammatically correct to state Logging 2 message(s) to x.log. The solution to this
problem is to use the concrete java.text.ChoiceFormat class, a subclass of
NumberFormat and a partner of MessageFormat, so that you can output Logging 1
message to x.log or Logging 2 messages to x.log depending on the numeric value
passed to {0}. To learn how to use ChoiceFormat, check out the “Handling Plurals” section
(http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/forma
t/choiceFormat.html) in The Java Tutorials’ Internationalization trail.

Preferences API
Significant applications have preferences, which are configuration items. Examples

include the location and size of the application’s main window, and the locations and

names of files that the application most recently accessed. Preferences are persisted to

a file, to a database, or to some other storage mechanism so that they will be available

to the application the next time it runs.

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/choiceFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/choiceFormat.html

CHAPTER 9: Discovering Additional Utility APIs 429

The simplest approach to persisting preferences is to use the Properties API, which

consists of the Properties class. This class persists preferences as a series of

key=value entries to text-based properties files. Although properties files are ideal for

simple applications with few preferences, they have proven to be problematic with larger

applications:

 Properties files tend to grow in size and the probability of name

collisions among the various keys increases. This problem could be

eliminated if properties files stored preferences in a hierarchy, but they

are nonhierarchical in nature.

 As an application grows in size and complexity, it tends to acquire

numerous properties files with each part of the application associated

with its own properties file. The names and locations of these

properties files must be hard-coded in the application’s source code.

Additionally, someone could directly modify these text-based properties files (perhaps

inserting gibberish), causing the application that depends upon the modified properties

file to crash unless it is properly coded to deal with this possibility. Also, properties files

cannot be used on diskless computing platforms. Because of these problems, the

Preferences API has been introduced as a replacement for the Properties API.

The Preferences API lets you store preferences in a hierarchical manner so that you can

avoid name collisions. Because this API is backend-neutral, it does not matter where the

preferences are stored (a file, a database, or [on Windows platforms] the registry); you

do not have to hardcode file names and locations. Also, there are no text-based files

that can be modified, and Preferences can be used on diskless platforms.

This API uses trees of nodes to manage preferences. These nodes are the analogue of a

hierarchical filesystem’s directories. Also, preference name/value pairs stored under

these nodes are the analogues of a directory’s files. You navigate these trees in a similar

manner to navigating a filesystem: specify an absolute path starting from the root node

(/) to the node of interest; for example, /window/location and /window/size.

There are two kinds of trees: system and user. All users share the system preference
tree, whereas the user preference tree is specific to a single user, which is generally the

person who logged into the underlying operating system. (The precise description of

“user” and “system” varies from implementation to implementation of the Preferences

API.)

Although the Preferences API’s java.util.prefs package contains three interfaces

(NodeChangeListener, PreferencesChangeListener, and PreferencesFactory), four

regular classes (AbstractPreferences, NodeChangeEvent, PreferenceChangeEvent, and

Preferences), and two exception classes (BackingStoreException and

InvalidPreferencesFormatException), you mostly work with the Preferences class.

The Preferences class describes a node in a tree of nodes. To obtain a Preferences

node, you must call one of the following utility methods:

CHAPTER 9: Discovering Additional Utility APIs 430

 static Preferences systemNodeForPackage(Class<?> c): Return the

node whose path corresponds to the package containing the class

represented by c from the system preference tree.

 static Preferences systemRoot(): Return the root preference node of

the system preference tree.

 static Preferences userNodeForPackage(Class<?> c): Return the

node whose path corresponds to the package containing the class

represented by c from the current user’s preference tree.

 static Preferences userRoot(): Return the root preference node of

the current user’s preference tree.

Listing 9–26 demonstrates systemNodeForPackage(), along with Preferences’ abstract
void put(String key, String value) and abstract String get(String key, String
def) methods for storing String-based preferences to and retrieving String-based

preferences from the system preference tree. A default value must be passed to get() in

case no value is associated with the key (which should not happen in this example).

Listing 9–26. Storing a single preference to and retrieving a single preference from the system preference tree

package ca.mb.javajeff.examples;

import java.util.prefs.Preferences;

public class PrefsDemo
{
 public static void main(String[] args)
 {
 Preferences prefs = Preferences.systemNodeForPackage(PrefsDemo.class);
 prefs.put("version", "1.0");
 System.out.println(prefs.get("version", "unknown"));
 }
}

When you run this application (java ca.mb.javajeff.examples.PrefsDemo), it generates

the following output:

1.0

More interestingly, Figure 9–8 reveals how this preference is stored in the Windows XP

registry.

Figure 9–8. Listing 9–26’s version key in a Windows XP registry context

CHAPTER 9: Discovering Additional Utility APIs 431

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Prefs is the path to the Windows

XP registry area for storing system preferences. Under Prefs, you will find a node for

each package stored in this area. For example, ca identifies Listing 9–26’s ca package.

Continuing, a hierarchy of nodes is stored under ca. Within the bottommost node

(examples), you find an entry consisting of version (the key) and 1.0 (the value).

Listing 9–27 provides a second example that works with the user preference tree and

presents a more complex key.

Listing 9–27. Storing a single preference to and retrieving a single preference from the current user’s preference
tree

import java.util.prefs.Preferences;

public class PrefsDemo
{
 public static void main(String[] args)
 {
 Preferences prefs = Preferences.userNodeForPackage(PrefsDemo.class);
 prefs.put("SearchEngineURL", "http://www.google.com");
 System.out.println(prefs.get("SearchEngineURL", "http://www.bing.com"));
 }
}

When you run this application (java PrefsDemo), it generates the following output:

http://www.google.com

More interestingly, Figure 9–9 reveals how this preference is stored in the Windows XP

registry.

Figure 9–9. Listing 9–27’s SearchEngineURL key in a Windows XP registry context

The Windows XP registry encodes the SearchEngineURL key into /Search/Engine/U/R/L

because Preferences regards keys and node names as case sensitive but the Windows

XP registry does not.

NOTE: Check out Ray Djajadinataz’s “Sir, What Is Your Preference?” article
(http://www.javaworld.com/javaworld/jw-08-2001/jw-0831-preferences.html)
to learn more about the Preferences API.

http://www.google.com
http://www.bing.com
http://www.google.com
http://www.javaworld.com/javaworld/jw-08-2001/jw-0831-preferences.html

CHAPTER 9: Discovering Additional Utility APIs 432

Random Number Generation
Chapter 6 formally introduced you to the java.lang.Math class’s random() method. If

you were to investigate this method’s source code, you would discover Listing 9–28’s

implementation (for Java SE 6 Update 16).

Listing 9–28. Implementing Math’s random() method

public static double random()
{
 if (randomNumberGenerator == null)
 initRNG();
 return randomNumberGenerator.nextDouble();
}
private static Random randomNumberGenerator;
private static synchronized void initRNG()
{
 if (randomNumberGenerator == null)
 randomNumberGenerator = new Random();
}

Listing 9–28 shows you that Math’s random() method is implemented in terms of a class

named Random, which is located in the java.util package. Random instances generate

sequences of random numbers and are known as random number generators.

NOTE: These numbers are not truly random because they are generated from a mathematical
algorithm. As a result, they are often referred to as pseudorandom numbers. However, it is often
convenient to drop the “pseudo” prefix and refer to them as random numbers.

Also, delaying object creation (new Random(), for example) until the first time the object is
needed is known as lazy initialization.

Random generates its sequence of random numbers by starting with a special 48-bit

value that is known as a seed. This value is subsequently modified by a mathematical

algorithm, which is known as a linear congruential generator.

NOTE: Check out Wikipedia’s “Linear congruential generator” entry
(http://en.wikipedia.org/wiki/Linear_congruential_generator) to learn about
this algorithm for generating random numbers.

Random declares a pair of constructors:

 Random() creates a new random number generator. This constructor

sets the seed of the random number generator to a value that is very

likely to be distinct from any other call to this constructor.

 Random(long seed) creates a new random number generator using its

seed argument. This argument is the initial value of the internal state of

http://en.wikipedia.org/wiki/Linear_congruential_generator

CHAPTER 9: Discovering Additional Utility APIs 433

the random number generator, which is maintained by the protected
int next(int bits) method.

Because Random() does not take a seed argument, the resulting random number

generator always generates a different sequence of random numbers. This explains why

Math.random() generates a different sequence each time an application starts running.

TIP: Random(long seed) gives you the opportunity to reuse the same seed value, allowing the
same sequence of random numbers to be generated. You will find this capability useful when
debugging a faulty application that involves random numbers.

Random(long seed) calls the void setSeed(long seed) method to set the seed to the

specified value. If you call setSeed() after instantiating Random, the random number

generator is reset to the state that it was in immediately after calling Random(long seed).

Listing 9–28 demonstrates Random’s double nextDouble() method, which returns the

next pseudorandom, uniformly distributed double precision floating-point value between

0.0 and 1.0 in this random number generator’s sequence.

Random also declares the following methods for returning other kinds of values:

 boolean nextBoolean() returns the next pseudorandom, uniformly

distributed Boolean value in this random number generator’s

sequence. Values true and false are generated with (approximately)

equal probability.

 void nextBytes(byte[] bytes) generates pseudorandom byte integer

values and stores them in the bytes array. The number of generated

bytes is equal to the length of the bytes array.

 float nextFloat() returns the next pseudorandom, uniformly

distributed floating-point value between 0.0 and 1.0 in this random

number generator’s sequence.

 double nextGaussian() returns the next pseudorandom, Gaussian

(“normally”) distributed double precision floating-point value with mean

0.0 and standard deviation 1.0 in this random number generator’s

sequence.

 int nextInt() returns the next pseudorandom, uniformly distributed

integer value in this random number generator’s sequence. All 232

possible integer values are generated with (approximately) equal

probability.

 int nextInt(int n) returns a pseudorandom, uniformly distributed

integer value between 0 (inclusive) and the specified value (exclusive),

drawn from this random number generator’s sequence. All n possible

integer values are generated with (approximately) equal probability.

CHAPTER 9: Discovering Additional Utility APIs 434

 long nextLong() returns the next pseudorandom, uniformly distributed

long integer value in this random number generator’s sequence.

Because Random uses a seed with only 48 bits, this method will not

return all possible 64-bit long integer values.

The java.util.Collections class declares a pair of shuffle() methods for shuffling the

contents of a list. In contrast, the java.util.Arrays class does not declare a shuffle()

method for shuffling the contents of an array. Listing 9–29 addresses this omission.

Listing 9–29. Shuffling an array of integers

import java.util.Random;

public class Shuffler
{
 public static void main(String[] args)
 {
 Random r = new Random();
 int[] array = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 for (int i = 0; i < array.length; i++)
 {
 int n = r.nextInt(array.length);
 // swap array[i] with array[n]
 int temp = array[i];
 array[i] = array[n];
 array[n] = temp;
 }
 for (int i = 0; i < array.length; i++)
 System.out.print(array[i] + " ");
 System.out.println();
 }
}

Listing 9–29 presents a simple recipe for shuffling an array of integers—this recipe could

be generalized. For each array entry from the start of the array to the end of the array,

this entry is swapped with another entry whose index is chosen by int nextInt(int n).

When you run this application, you will observe a shuffled sequence of integers that is

similar to the following sequence that I observed:

5 8 3 4 0 2 7 6 9 1

Regular Expressions API
Text-processing applications often need to match text against patterns. For example, an

application might need to locate all occurrences of a word in a text file so that it can

replace those occurrences with another word. Java provides regular expressions to help

text-processing applications perform pattern matching.

A regular expression (also known as a regex or regexp) is a string-based pattern that

represents the set of strings that match this pattern. The pattern consists of literal

characters and metacharacters, which are characters with special meanings instead of

literal meanings.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 9: Discovering Additional Utility APIs 435

The Regular Expressions API provides the java.util.regex.Pattern class to represent

patterns via compiled regexes. Regexes are compiled for performance reasons; pattern

matching via compiled regexes is much faster than if the regexes were not compiled.

Table 9–4 describes Pattern’s methods.

Table 9–4. Pattern Methods

Method Description

static Pattern compile
(String regex)

Compile regex and return its Pattern object. This method throws

java.util.regex.PatternSyntaxException when regex’s syntax is

invalid.

static Pattern compile
(String regex,int flags)

Compile regex according to the given flags (a bitset consisting of

some combination of Pattern’s CANON_EQ, CASE_INSENSITIVE,

COMMENTS, DOTALL, LITERAL, MULTILINE, UNICODE_CASE, and UNIX_LINES

constants) and return its Pattern object. This method throws

PatternSyntaxException when regex’s syntax is invalid, and

IllegalArgumentException when bit values other than those

corresponding to the defined match flags are set in flags.

int flags() Return this Pattern object’s match flags. This method returns 0 for

Pattern instances created via compile(String), and the bitset of flags

for Pattern instances created via compile(String, int).

Matcher matcher
(CharSequence input)

Return a Matcher that will match input against this Pattern’s compiled

regex.

static boolean matches
(String regex,
CharSequence input)

Compile regex and attempt to match input against the compiled

regex. Return true if there is a match; otherwise, return false. This

convenience method is equivalent to

Pattern.compile(regex).matcher(input).matches(), and throws

PatternSyntaxException when regex’s syntax is invalid.

String pattern() Return this Pattern’s uncompiled regex.

static String quote
(String s)

Quote s using "\Q" and "\E" so that all other metacharacters lose their

special meaning. If the returned String is later compiled into a

Pattern instance, it can only be matched literally.

String[] split
(CharSequence input)

Split input around matches of this Pattern’s compiled regex and

return an array containing the matches.

String[] split
(CharSequence input,
int limit)

Split input around matches of this Pattern’s compiled regex; limit

controls the number of times the compiled regex is applied and thus

affects the length of the resulting array.

String toString() Return this Pattern’s uncompiled regex.

CHAPTER 9: Discovering Additional Utility APIs 436

Table 9–4 reveals the java.lang.CharSequence interface, which describes a readable

sequence of char values. Instances of any class that implements this interface (such as

String, StringBuffer, and StringBuilder) can be passed to Pattern methods that take

CharSequence arguments (such as split(CharSequence)).

NOTE: CharSequence declares methods char charAt(int index) (return the character at
location index within this sequence), int length() (return the length of this sequence),
CharSequence subSequence(int start, int end) (return a subsequence of this
sequence ranging from location start, inclusive, to location end, exclusive), and String
toString() (return a string containing this sequence’s characters in the same order and having
the same length as this sequence).

Table 9–4 also reveals that each of Pattern’s compile() methods and its matches()

method (which calls the compile(String) method) throws PatternSyntaxException when

a syntax error is encountered while compiling the pattern argument. Table 9–5 describes

PatternSyntaxException’s methods.

Table 9–5. PatternSyntaxException Methods

Method Description

String getDescription() Return a description of the syntax error.

int getIndex() Return the approximate index of where the syntax error occurred in

the pattern, or -1 if the index is not known.

String getMessage() Return a multiline string containing the description of the syntax error

and its index, the erroneous pattern, and a visual indication of the

error index within the pattern.

String getPattern() Return the erroneous pattern.

Finally, Table 9–4’s Matcher matcher(CharSequence input) method reveals that the

Regular Expressions API also provides the java.util.regex.Matcher class, whose

matchers attempt to match compiled regexes against input text. Matcher declares the

following methods to perform matching operations:

 boolean matches() attempts to match the entire region against the

pattern. If the match succeeds, more information can be obtained by

calling Matcher’s start(), end(), and group() methods. For example,

int start() returns the start index of the previous match, int end()

returns the offset of the first character following the previous match,

and String group() returns the input subsequence matched by the

previous match. Each method throws

java.lang.IllegalStateException when a match has not yet been

attempted or the previous match attempt failed.

CHAPTER 9: Discovering Additional Utility APIs 437

 boolean lookingAt() attempts to match the input sequence, starting

at the beginning of the region, against the pattern. As with matches(),

this method always starts at the beginning of the region. Unlike

matches(), lookingAt() does not require that the entire region be

matched. If the match succeeds, more information can be obtained by

calling Matcher’s start(), end(), and group() methods.

 boolean find() attempts to find the next subsequence of the input

sequence that matches the pattern. It starts at the beginning of this

matcher’s region, or, if a previous call to this method was successful

and the matcher has not since been reset (by calling Matcher’s Matcher
reset() or Matcher reset(CharSequence input) method), at the first

character not matched by the previous match. If the match succeeds,

more information can be obtained by calling Matcher’s start(), end(),

and group() methods.

NOTE: A matcher finds matches in a subset of its input called the region. By default, the region
contains all of the matcher’s input. The region can be modified by calling Matcher’s Matcher
region(int start, int end) method (set the limits of this matcher’s region), and queried
by calling Matcher’s int regionStart() and int regionEnd() methods.

I have created a simple application that demonstrates Pattern, PatternSyntaxException,

and Matcher. Listing 9–30 presents this application’s source code.

Listing 9–30. Playing with regular expressions

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class RegExDemo
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java RegExDemo regex input");
 return;
 }
 try
 {
 System.out.println("regex = " + args[0]);
 System.out.println("input = " + args[1]);
 Pattern p = Pattern.compile(args[0]);
 Matcher m = p.matcher(args[1]);
 while (m.find())
 System.out.println("Located [" + m.group() + "] starting at "
 + m.start() + " and ending at " + (m.end()-1));
 }
 catch (PatternSyntaxException pse)
 {

CHAPTER 9: Discovering Additional Utility APIs 438

 System.err.println("Bad regex: " + pse.getMessage());
 System.err.println("Description: " + pse.getDescription());
 System.err.println("Index: " + pse.getIndex());
 System.err.println("Incorrect pattern: " + pse.getPattern());
 }
 }
}

After compiling this source code, execute java RegExDemo ox ox. You will discover the

following output:

regex = ox
input = ox
Located [ox] starting at 0 and ending at 1

find() searches for a match by comparing regex characters with the input characters in

left-to-right order, and returns true because o equals o and x equals x.

Continuing, execute java RegExDemo box ox. This time, you will discover the following

output:

regex = box
input = ox

find() begins by comparing regex character b with input character o. Because these

characters are not equal, and because there are not enough characters in the input to

continue the search, find() does not output a “Located” message to indicate a match.

However, if you execute java RegExDemo ox box, you will discover a match:

regex = ox
input = box
Located [ox] starting at 1 and ending at 2

The ox regex consists of literal characters. More sophisticated regexes combine literal

characters with metacharacters (such as the period [.]) and other regex constructs.

TIP: To specify a metacharacter as a literal character, precede the metacharacter with a
backslash character (as in \.), or place the metacharacter between \Q and \E (as in \Q.\E). In
either case, make sure to double the backslash character when the escaped metacharacter
appears in a string literal; for example, "\\." or "\\Q.\\E".

The period metacharacter matches all characters except for the line terminator (a one-

or two-character sequence designating the end of the line). For example, each of java
RegExDemo .ox box and java RegExDemo .ox fox report a match because the period

matches the b in box and the f in fox.

CHAPTER 9: Discovering Additional Utility APIs 439

NOTE: Pattern recognizes the following line terminators: carriage return (\r), newline (line
feed) (\n), carriage return immediately followed by newline (\r\n), next line (\u0085), line
separator (\u2028), and paragraph separator (\u2029). The period metacharacter can be made
to also match these line terminators by specifying the Pattern.DOTALL flag when calling
Pattern.compile(String, int).

A character class is a set of characters appearing between [and]. There are six kinds

of character classes:

 A simple character class consists of literal characters placed side by

side, and matches only these characters. For example, [abc] consists

of characters a, b, and c. Also, java RegExDemo t[aiou]ck tack

reports a match because a is a member of [aiou]. It also reports a

match when the input is tick, tock, or tuck because i, o, and u are

members.

 A negation character class consists of a circumflex metacharacter (^),

followed by literal characters placed side by side, and matches all

characters except for the characters in the class. For example, [^abc]

consists of all characters except for a, b, and c. Also, java RegExDemo
"[^b]ox" box does not report a match because b is not a member of

[^b], whereas java RegExDemo "[^b]ox" fox reports a match because

f is a member. (The double quotes surrounding [^b]ox are necessary

on my Windows XP platform because ^ is treated specially at the

command line.)

 A range character class consists of successive literal characters

expressed as a starting literal character, followed by the hyphen

metacharacter (-), followed by an ending literal character, and matches

all characters in this range. For example, [a-z] consists of all

characters from a through z. Also, java RegExDemo [h-l]ouse house

reports a match because h is a member of the class, whereas java
RegExDemo [h-l]ouse mouse does not report a match because m lies

outside of the range and is therefore not part of the class. You can

combine multiple ranges within the same range character class by

placing them side by side; for example, [A-Za-z] consists of all

uppercase and lowercase Latin letters.

 A union character class consists of multiple nested character classes,

and matches all characters that belong to the resulting union. For

example, [abc[u-z]] consists of characters a, b, c, u, v, w, x, y, and z.

Also, java RegExDemo [[0-9][A-F][a-f]] e reports a match because

e is a hexadecimal character. (I could have alternatively expressed this

character class as [0-9A-Fa-f] by combining multiple ranges.)

CHAPTER 9: Discovering Additional Utility APIs 440

 An intersection character class consists of multiple &&-separated

nested character classes, and matches all characters that are common

to these nested character classes. For example, [a-c&&[c-f]]

consists of character c, which is the only character common to [a-c]

and [c-f]. Also, java RegExDemo "[aeiouy&&[y]]" y reports a match

because y is common to classes [aeiouy] and [y].

 A subtraction character class consists of multiple &&-separated nested

character classes, where at least one nested character class is a

negation character class, and matches all characters except for those

indicated by the negation character class/classes. For example, [a-
z&&[^x-z]] consists of characters a through w. (The square brackets

surrounding ^x-z are necessary; otherwise, ^ is ignored and the

resulting class consists of only x, y, and z.) Also, java RegExDemo "[a-
z&&[^aeiou]]" g reports a match because g is a consonant and only

consonants belong to this class. (I am ignoring y, which is sometimes

regarded as a consonant and sometimes regarded as a vowel.)

A predefined character class is a regex construct for a commonly specified character

class. Table 9–6 identifies Pattern’s predefined character classes.

Table 9–6. Predefined Character Classes

Predefined Character Class Description

\d Match any digit character. \d is equivalent to [0-9].

\D Match any non-digit character. \D is equivalent to [^\d].

\s Match any whitespace character. \s is equivalent to [\t\n\x0B\f\r
].

\S Match any non-whitespace character. \S is equivalent to [^\s].

\w Match any word character. \w is equivalent to [a-zA-Z0-9].

\W Match any non-word character . \W is equivalent to [^\w].

For example, java RegExDemo \wbc abc reports a match because \w matches the word

character a in abc.

A capturing group saves a match’s characters for later recall during pattern matching,

and is expressed as a character sequence surrounded by parentheses metacharacters (

and). All characters within a capturing group are treated as a unit. For example, the

(Android) capturing group combines A, n, d, r, o, i, and d into a unit. It matches the

Android pattern against all occurrences of Android in the input. Each match replaces the

previous match’s saved Android characters with the next match’s Android characters.

CHAPTER 9: Discovering Additional Utility APIs 441

Capturing groups can appear inside other capturing groups. For example, capturing

groups (A) and (B(C)) appear inside capturing group ((A)(B(C))), and capturing group

(C) appears inside capturing group (B(C)). Each nested or nonnested capturing group

receives its own number, numbering starts at 1, and capturing groups are numbered

from left to right. For example, ((A)(B(C))) is assigned 1, (A) is assigned 2, (B(C)) is

assigned 3, and (C) is assigned 4.

A capturing group saves its match for later recall via a back reference, which is a

backslash character followed by a digit character denoting a capturing group number.

The back reference causes the matcher to use the back reference’s capturing group

number to recall the capturing group’s saved match, and then use that match’s

characters to attempt a further match. The following example uses a back reference to

determine if the input consists of two consecutive Android patterns:

java RegExDemo "(Android) \1" "Android Android"

RegExDemo reports a match because the matcher detects Android, followed by a space,

followed by Android in the input.

A boundary matcher is a regex construct for identifying the beginning of a line, a word

boundary, the end of text, and other commonly occurring boundaries. See Table 9–7.

Table 9–7. Boundary Matchers

Boundary Matcher Description

^ Match beginning of line.

$ Match end of line.

\b Match word boundary.

\B Match non-word boundary.

\A Match beginning of text.

\G Match end of previous match.

\Z Match end of text except for line terminator (if present).

\z Match end of text.

For example, java RegExDemo \b\b "I think" reports several matches, as revealed in

the following output:

regex = \b\b
input = I think
Located [] starting at 0 and ending at -1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 7 and ending at 6

CHAPTER 9: Discovering Additional Utility APIs 442

This output reveals several zero-length matches. When a zero-length match occurs, the

starting and ending indexes are equal, although the output shows the ending index to be

one less than the starting index because I specified end()-1 in Listing 9–30 (so that a

match’s end index identifies a non-zero-length match’s last character, not the character

following the non-zero-length match’s last character).

NOTE: A zero-length match occurs in empty input text, at the beginning of input text, after the
last character of input text, or between any two characters of that text. Zero-length matches are
easy to identify because they always start and end at the same index position.

The final regex construct I present is the quantifier, a numeric value implicitly or explicitly

bound to a pattern. Quantifiers are categorized as greedy, reluctant, or possessive:

 A greedy quantifier (?, *, or +) attempts to find the longest match.

Specify X? to find one or no occurrences of X, X* to find zero or more

occurrences of X, X+ to find one or more occurrences of X, X{n} to find

n occurrences of X, X{n,} to find at least n (and possibly more)

occurrences of X, and X{n,m} to find at least n but no more than m

occurrences of X.

 A reluctant quantifier (??, *?, or +?) attempts to find the shortest match.

Specify X?? to find one or no occurrences of X, X*? to find zero or more

occurrences of X, X+? to find one or more occurrences of X, X{n}? to

find n occurrences of X, X{n,}? to find at least n (and possibly more)

occurrences of X, and X{n,m}? to find at least n but no more than m

occurrences of X.

 A possessive quantifier (?+, *+, or ++) is similar to a greedy quantifier

except that a possessive quantifier only makes one attempt to find the

longest match, whereas a greedy quantifier can make multiple

attempts. Specify X?+ to find one or no occurrences of X, X*+ to find

zero or more occurrences of X, X++ to find one or more occurrences of

X, X{n}+ to find n occurrences of X, X{n,}+ to find at least n (and

possibly more) occurrences of X, and X{n,m}+ to find at least n but no

more than m occurrences of X.

For an example of a greedy quantifier, execute java RegExDemo .*end "wend rend end".

You will discover the following output:

regex = .*end
input = wend rend end
Located [wend rend end] starting at 0 and ending at 12

The greedy quantifier (.*) matches the longest sequence of characters that terminates in

end. It starts by consuming all of the input text, and then is forced to back off until it

discovers that the input text terminates with these characters.

For an example of a reluctant quantifier, execute java RegExDemo .*?end "wend rend
end". You will discover the following output:

CHAPTER 9: Discovering Additional Utility APIs 443

regex = .*?end
input = wend rend end
Located [wend] starting at 0 and ending at 3
Located [rend] starting at 4 and ending at 8
Located [end] starting at 9 and ending at 12

The reluctant quantifier (.*?) matches the shortest sequence of characters that

terminates in end. It begins by consuming nothing, and then slowly consumes characters

until it finds a match. It then continues until it exhausts the input text.

For an example of a possessive quantifier, execute java RegExDemo .*+end "wend rend
end". You will discover the following output:

regex = .*+end
input = wend rend end

The possessive quantifier (.*+) does not detect a match because it consumes the entire

input text, leaving nothing left over to match end at the end of the regex. Unlike a greedy

quantifier, a possessive quantifier does not back off.

While working with quantifiers, you will probably encounter zero-length matches. For

example, execute java RegExDemo 1? 101101:

regex = 1?
input = 101101
Located [1] starting at 0 and ending at 0
Located [] starting at 1 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3
Located [] starting at 4 and ending at 3
Located [1] starting at 5 and ending at 5
Located [] starting at 6 and ending at 5

The result of this greedy quantifier is that 1 is detected at locations 0, 2, 3, and 5 in the

input text, and that nothing is detected (a zero-length match) at locations 1, 4, and 6.

This time, execute java RegExDemo 1?? 101101:

regex = 1??
input = 101101
Located [] starting at 0 and ending at -1
Located [] starting at 1 and ending at 0
Located [] starting at 2 and ending at 1
Located [] starting at 3 and ending at 2
Located [] starting at 4 and ending at 3
Located [] starting at 5 and ending at 4
Located [] starting at 6 and ending at 5

This output might look surprising, but remember that a reluctant quantifier looks for the

shortest match, which (in this case) is no match at all.

Finally, execute java RegExDemo 1+? 101101:

regex = 1+?
input = 101101
Located [1] starting at 0 and ending at 0
Located [1] starting at 2 and ending at 2
Located [1] starting at 3 and ending at 3

CHAPTER 9: Discovering Additional Utility APIs 444

Located [1] starting at 5 and ending at 5

This possessive quantifier only matches the locations where 1 is detected in the input

text. It does not perform zero-length matches.

NOTE: Refer to the JDK documentation on the Pattern class to learn about additional regex
constructs.

Most of the previous regex examples have not been practical, except to help you grasp

how to use the various regex constructs. In contrast, the following examples reveal a

regex that matches phone numbers of the form (ddd) ddd-dddd or ddd-dddd. A single

space appears between (ddd) and ddd; there is no space on either side of the hyphen.

java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" "800 555-1212"
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = (800) 555-1212
Located [(800) 555-1212] starting at 0 and ending at 13
java RegExDemo "(\(\d{3}\))?\s*\d{3}-\d{4}" 555-1212
regex = (\(\d{3}\))?\s*\d{3}-\d{4}
input = 555-1212
Located [555-1212] starting at 0 and ending at 7

NOTE: To learn more about regular expressions, check out my JavaWorld article “Regular
Expressions Simplify Pattern-Matching Code”
(http://www.javaworld.com/javaworld/jw-02-2003/jw-0207-java101.html). Also,
you should check out “Lesson: Regular Expressions” (http://download-
llnw.oracle.com/javase/tutorial/essential/regex/index.html) in The Java
Tutorials’ Essential Classes trail.

EXERCISES

The following exercises are designed to test your understanding of this chapter’s additional utility APIs:

1. Define task.

2. Define executor.

3. Identify the Executor interface’s limitations.

4. How are Executor’s limitations overcome?

5. What differences exist between Runnable’s run() method and Callable’s call()
method?

6. True or false: You can throw checked and unchecked exceptions from Runnable’s
run() method but can only throw unchecked exceptions from Callable’ call()
method?

7. Define future.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://www.javaworld.com/javaworld/jw-02-2003/jw-0207-java101.html
http://download-llnw.oracle.com/javase/tutorial/essential/regex/index.html
http://download-llnw.oracle.com/javase/tutorial/essential/regex/index.html
http://download-llnw.oracle.com/javase/tutorial/essential/regex/index.html

CHAPTER 9: Discovering Additional Utility APIs 445

8. Describe the Executors class’s newFixedThreadPool() method.

9. Define synchronizer.

10. Identify and describe four commonly used synchronizers.

11. What concurrency-oriented extensions to the collections framework are provided by
the concurrency utilities?

12. Define lock.

13. What is the biggest advantage that Lock objects hold over the implicit locks that are
obtained when threads enter critical sections (controlled via the synchronized
reserved word)?

14. Define atomic variable.

15. Define internationalization.

16. Define locale.

17. What are the components of a Locale object?

18. Define resource bundle.

19. True or false: If a property resource bundle and a list resource bundle have the same
complete resource bundle name, the list resource bundle takes precedence over the
property resource bundle.

20. Define break iterator.

21. What kinds of break iterators does the Break Iterator API support?

22. True or false: You can pass any Locale object to any of BreakIterator’s factory
methods that take Locale arguments.

23. What is a collator?

24. Define date, time zone, and calendar.

25. True or false: Date instances can represent dates prior to or after the Unix epoch.

26. How would you obtain a TimeZone object that represents Central Standard Time?

27. Assuming that cal identifies a Calendar instance and locale identifies a specific
locale, how would you obtain a localized name for the month represented by cal?

28. Define formatter.

29. What kinds of formatters does NumberFormat return?

30. True or false: DateFormat’s getInstance() factory method is a shortcut to
obtaining a default date/time formatter that uses the MEDIUM style for both the date
and the time.

31. What does a message formatter let you accomplish?

32. Define preference.

33. Why is the Properties API problematic for persisting preferences?

34. How does the Preferences API persist preferences?

CHAPTER 9: Discovering Additional Utility APIs 446

35. What does the Random class accomplish?

36. Define regular expression.

37. What does the Pattern class accomplish?

38. What do Pattern’s compile() methods do when they discover illegal syntax in their
regular expression arguments.

39. What does the Matcher class accomplish?

40. What is the difference between Matcher’s matches() and lookingAt() methods?

41. Define character class.

42. Identify the various kinds of character classes.

43. Define capturing group.

44. What is a zero-length match?

45. Define quantifier.

46. What is the difference between a greedy quantifier and a reluctant quantifier?

47. How do possessive and greedy quantifiers differ?

48. Create a SpanishCollation application that outputs Spanish words ñango (weak),
llamado (called), lunes (monday), champán (champagne), clamor (outcry), cerca
(near), nombre (name), and chiste (joke) according to this language’s current collation
rules followed by its traditional collation rules. According to the current collation rules,
the output order is as follows: cerca, champán, chiste, clamor, llamado, lunes,
nombre, and ñango. According to the traditional collation rules, the output order is as
follows: cerca, clamor, champán, chiste, lunes, llamado, nombre, and ñango. Use
the RuleBasedCollator class to specify the rules for traditional collation. Also,
construct your Locale object using only the es (Spanish) language code.

NOTE: The Spanish alphabet consists of 29 letters: a, b, c, ch, d, e, f, g, h, i, j, k, l, ll, m, n, ñ, o,
p, q, r, s, t, u, v, w, x, y, z. (Vowels are often written with accents, as in tablón [plank or board],
and u is sometimes topped with a dieresis or umlaut, as in vergüenza [bashfulness]. However,
vowels with these diacritical marks are not considered separate letters.) Prior to April 1994’s
voting at the X Congress of the Association of Spanish Language Academies, ch was collated
after c, and ll was collated after l. Because this congress adopted the standard Latin alphabet
collation rules, ch is now considered a sequence of two distinct characters, and dictionaries now
place words starting with ch between words starting with ce and ci. Similarly, ll is now
considered a sequence of two characters.

49. Create a RearrangeText application that takes a single text argument of the form
x, y and outputs y x. For example, java RearrangeText "Gosling, Dr.
James" outputs "Dr. James Gosling".

50. Create a ReplaceText application that takes input text, a pattern that specifies text
to replace, and replacement text command-line arguments, and uses Matcher’s
String replaceAll(String replacement) method to replace all matches of

CHAPTER 9: Discovering Additional Utility APIs 447

the pattern with the replacement text (passed to replacement). For example, java
ReplaceText "too many embedded spaces" "\s+" " " should
output too many embedded spaces with only a single space character between
successive words.

Summary
Java version 5 introduced the concurrency utilities to simplify the development of

concurrent applications. The concurrency utilities are organized into executor,

synchronizer, concurrent collection, lock, and atomic variable categories, and leverage

the low-level Threading API in their implementations.

An executor decouples task submission from task-execution mechanics and is

described by the Executor, ExecutorService, and ScheduledExecutorService interfaces.

A synchronizer facilitates common forms of synchronization: countdown latches, cyclic

barriers, exchangers, and semaphores are commonly used synchronizers.

A concurrent collection is an extension to the collections framework. A lock supports

high-level locking and can associate with conditions in a manner that is distinct from

built-in synchronization and monitors. Finally, an atomic variable encapsulates a single

variable, and supports lock-free, thread-safe operations on that variable.

We tend to write software that reflects our cultural backgrounds. Internationalization is

the process of creating an application that automatically adapts to its current user’s

culture so that the user can read the application’s text, hear audio clips in the user’s

language (if audio is supported), and so on.

Java encourages internationalization by supporting Unicode via the char reserved word

and the Character class, and by offering the Locale class and additional APIs, including

Break Iterator, Calendar, and Collator. Locale is the centerpiece of the

internationalization APIs.

Significant applications have preferences that must be persisted to a file, to a database,

or to some other storage mechanism so that they are available to the application the

next time it runs. The simplest approach to persisting preferences is to use the

Properties API, but this API has proven to be problematic with larger applications.

These problems are solved with the Preferences API, which lets you store preferences in

a hierarchical manner so that you can avoid name collisions. This API uses trees of

nodes to manage preferences. All users share the system preference tree, whereas the

user preference tree is specific to a single user.

The Math class’s random() method is implemented in terms of the Random class, whose

instances are known as random number generators. Random generates a sequence of

random numbers by starting with a special 48-bit seed. This value is subsequently

modified via a mathematical algorithm that is known as a linear congruential generator.

Text-processing applications often match text against patterns. Java provides the

Regular Expressions API to help text-processing applications perform pattern matching.

CHAPTER 9: Discovering Additional Utility APIs 448

This API’s Pattern class represents patterns via compiled regexes. Its Matcher class

describes matchers that attempt to match compiled regexes against input text.

Meaningful applications perform input and output operations. Java supports these I/O

operations in part through classic I/O APIs such as File, RandomAccessFile, streams,

and writers/readers. It also supports I/O operations through modern I/O APIs such as

bytes, channels, and selectors. I introduce you to Java’s classic I/O APIs in Chapter 10.

449

449

 Chapter

Performing I/O
Applications often input data for processing and output processing results. Data is input

from a file or some other source, and is output to a file or some other destination. Java

supports I/O via the classic I/O APIs located in the java.io package. This chapter

introduces you to java.io’s File, RandomAccessFile, stream, and writer/reader classes.

File
File-oriented I/O activities often interact with a filesystem, which is typically expressed

as a hierarchy of files and directories starting from a root directory. The underlying

platform on which a Java virtual machine runs may support zero or more filesystems.

For example, a Unix or Linux platform combines all mounted (attached and prepared)

disks into a single virtual filesystem. In contrast, a Windows platform associates a

separate filesystem with each active disk drive.

Java offers access to the underlying platform’s available filesystem(s) via its concrete

File class. File declares the static File[] listRoots() utility method to return the

root directories (roots) of available filesystems as an array of File objects.

NOTE: The set of available filesystem roots is affected by various system-level operations, such
as the insertion or ejection of removable media, and the disconnecting or unmounting of physical
or virtual disk drives.

Listing 10–1 presents a DumpRoots application that uses listRoots() to obtain an array

of available filesystem roots and then outputs the array’s contents.

Listing 10–1. Dumping available filesystem roots to the standard output device

import java.io.File;

public class DumpRoots
{
 public static void main(String[] args)
 {

10

CHAPTER 10: Performing I/O 450

 File[] roots = File.listRoots();
 for (File root: roots)
 System.out.println(root);
 }
}

When I run this application on my Windows XP platform, I receive the following output,

which reveals four available roots:

A:\
C:\
D:\
E:\

If I happened to run DumpRoots on a Unix or Linux platform, I would receive one line of

output that consists of the virtual filesystem root (/).

Instances of the File class contain the pathnames of files and directories that may or

may not exist in their filesystems. For example, a File object containing pathname C:\

identifies the root directory on the C: drive (and this pathname most likely exists).

NOTE: A path is a hierarchy of directories that must be traversed to locate a file or a directory. A
pathname is a string representation of a path; a platform-dependent separator character (such as
the Windows backslash [\] character) appears between consecutive names. File’s constructors
convert these separator characters to the correct platform separator character; I discuss this
conversion later in this section.

Apart from listRoots(), the easiest way to instantiate File is to use the File(String
pathname) constructor, which creates a File instance that stores the pathname string.

The following assignment statements demonstrate this constructor:

File file1 = new File("/x/y");
File file2 = new File("C:\\temp\\x.dat");

The first statement assumes a Unix or Linux platform, starts the pathname with root

directory symbol /, and continues with directory name x, separator character /, and file

or directory name y.

The second statement assumes a Windows platform, starts the pathname with drive

specifier C:, and continues with root directory symbol \, directory name temp, separator

character \, and filename x.dat (although x.dat might refer to a directory).

CAUTION: Always double backslash characters that appear in a string literal, especially when
specifying a pathname; otherwise, you run the risk of bugs or compiler error messages. For
example, I doubled the backslash characters in the second statement to denote a backslash and
not a tab (\t), and to avoid a compiler error message (\x is illegal).

CHAPTER 10: Performing I/O 451

Each statement’s pathname is an absolute pathname, which is a pathname that starts

with the root directory symbol. In contrast, a relative pathname does not start with the

root directory symbol; it is interpreted via information taken from some other pathname.

NOTE: The java.io package’s classes default to resolving relative pathnames against the
current user (also known as working) directory, which is identified by system property
user.dir, and which is typically the directory in which the virtual machine was launched. (In
Chapter 7, I show you how to read system properties via System’s getProperty() method.)

File offers additional constructors for instantiating this class. For example, the following

constructors merge parent and child pathnames into combined pathnames that are

stored in File objects:

 File(String parent, String child) creates a new File instance from

a parent pathname string and a child pathname string.

 File(File parent, String child) creates a new File instance from a

parent pathname File instance and a child pathname string.

Each constructor’s parent parameter is passed a parent pathname, a string that

consists of all pathname components except for the last name, which is specified by

child. The following statement demonstrates this concept via File(String, String):

File file3 = new File("prj/books/", "ljfad");

The constructor merges parent pathname prj/books/ with child pathname ljfad into

pathname prj/books/ljfad. (If I had specified prj/books as the parent pathname, the

constructor would have added the separator character after books.)

All three constructors normalize their pathname arguments by replacing separator

characters with the default name-separator character so that the pathname is compliant

with the underlying filesystem.

NOTE: The default name-separator character is obtainable from system property
file.separator, and is also stored in File’s separator and separatorChar static
fields. The first field stores the character as a char and the second field stores it as a String.
Neither field name follows the convention of appearing entirely in uppercase.

For example, if you pass argument "/x/y" to a File constructor on a Unix or Linux

platform, the constructor normalizes this pathname to "/x/y". However, if you pass this

same argument on a Windows platform, the constructor normalizes it to "\x\y".

Because these constructors do not detect invalid pathname arguments (and throw

exceptions), you must be careful when specifying pathnames. You should strive to only

specify pathnames that are valid for all platforms on which the application will run.

CHAPTER 10: Performing I/O 452

NOTE: If you plan to create applications exclusively for Android devices, which are based on a
Linux kernel, you probably do not need to worry about platform independence for pathnames and
can specify them according to Unix/Linux conventions. However, you never know what changes
might arrive in the future.

For example, instead of hard-coding a drive specifier (such as C:) in a pathname, use the

roots that are returned from listRoots(). Even better, keep your pathnames relative to

the current user/working directory (returned from the user.dir system property).

After you obtain a File object, you can interrogate it to learn about its stored pathname

by calling the methods that are described in Table 10–1.

Table 10–1. File Methods for Learning About a Stored Pathname

Method Description

File getAbsoluteFile() Return the absolute form of this File object’s pathname. This

method is equivalent to new File(this.getAbsolutePath()), which is

roughly how File implements this method.

String getAbsolutePath() Return the absolute pathname string of this File object’s pathname.

If this File object’s pathname is already absolute, the pathname

string is returned as if by calling getPath().

File getCanonicalFile() Return the canonical (simplest possible) form of this File object’s

pathname. This method is equivalent to new
File(this.getCanonicalPath()), which is roughly how File

implements this method. It throws IOException when an I/O error

occurs (constructing the canonical pathname may require filesystem

queries).

String getCanonicalPath() Return the canonical pathname string of this File object’s pathname.

A canonical pathname is absolute and unique. This method throws

IOException when an I/O error occurs (constructing the canonical

pathname may require filesystem queries).

String getName() Return the name of the file or directory denoted by this File object’s

pathname. The returned value is the last name in the pathname’s

name sequence.

String getParent() Return the parent pathname string of this File object’s pathname, or

return null when this pathname does not name a parent directory.

File getParentFile() Return a File object containing the parent pathname of this File

object’s pathname, or return null when this File object’s pathname

does not name a parent directory.

String getPath() Return this File object’s pathname.

CHAPTER 10: Performing I/O 453

Method Description

boolean isAbsolute() Return true when this File object’s pathname is absolute; otherwise,

return false when it is relative.

String toString() A synonym for getPath().

Table 10-1 refers to IOException, which is the common exception superclass for those

exception classes that describe various kinds of I/O errors.

Listing 10–2 instantiates File with its pathname command-line argument, and calls

some of the File methods described in Table 10–1 to learn about this pathname.

Listing 10–2. Obtaining abstract pathname information

import java.io.File;
import java.io.IOException;

public class PathnameInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PathnameInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("Absolute path = " + file.getAbsolutePath());
 System.out.println("Canonical path = " + file.getCanonicalPath());
 System.out.println("Name = " + file.getName());
 System.out.println("Parent = " + file.getParent());
 System.out.println("Path = " + file.getPath());
 System.out.println("Is absolute = " + file.isAbsolute());
 }
}

For example, when I specify java PathnameInfo . (the period represents the current

directory on my XP platform), I observe the following output:

Absolute path = C:\prj\dev\ljfad\c10\code\PathnameInfo\.
Canonical path = C:\prj\dev\ljfad\c10\code\PathnameInfo
Name = .
Parent = null
Path = .
Is absolute = false

This output reveals that the canonical pathname does not include the period. It also

shows that there is no parent pathname and that the pathname is relative.

Continuing, I now specify java PathnameInfo c:\reports\2010\..\2009\February. This

time, I observe the following output:

Absolute path = c:\reports\2010\..\2009\February
Canonical path = C:\reports\2009\February
Name = February

CHAPTER 10: Performing I/O 454

Parent = c:\reports\2010\..\2009
Path = c:\reports\2010\..\2009\February
Is absolute = true

This output reveals that the canonical pathname does not include 2010. It also shows

that the pathname is absolute.

For my final example, suppose I specify java PathnameInfo "" to obtain information for

the empty pathname. In response, this application generates the following output:

Absolute path = C:\prj\dev\ljfad\c10\code\PathnameInfo
Canonical path = C:\prj\dev\ljfad\c10\code\PathnameInfo
Name =
Parent = null
Path =
Is absolute = false

The output reveals that getName() and getPath() return the empty string ("") because

the empty pathname is empty.

You can interrogate the filesystem to learn about the file or directory represented by a

File object’s stored pathname by calling the methods that are described in Table 10–2.

Table 10–2. File Methods for Learning About a File or Directory

Method Description

boolean canRead() Return true when this File object’s pathname represents an existing

readable file.

boolean canWrite() Return true when this File object’s pathname represents an existing file

that can be modified.

boolean exists() Return true if and only if the file or directory that is denoted by this File

object’s pathname exists.

boolean isDirectory() Return true when this File object’s pathname refers to an existing

directory.

boolean isFile() Return true when this File object’s pathname refers to an existing

normal file. (A file is normal when it is not a directory and satisfies other

platform-dependent criteria: it is not a symbolic link or named pipe, for

example. Any non-directory file created by a Java application is

guaranteed to be a normal file.)

boolean isHidden() Return true when the file denoted by this File object’s pathname is

hidden. The exact definition of hidden is platform dependent. On

Unix/Linux platforms, a file is hidden when its name begins with a period

character. On Windows platforms, a file is hidden when it has been

marked as such in the filesystem.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 455

Method Description

long lastModified() Return the time that the file denoted by this File object’s pathname was

last modified, or 0 when the file does not exist or an I/O error occurred

during this method call. The returned value is measured in milliseconds

since the Unix epoch (00:00:00 GMT, January 1, 1970).

long length() Return the length of the file denoted by this File object’s pathname. The

return value is unspecified when the pathname denotes a directory.

Listing 10–3 instantiates File with its pathname command-line argument, and calls all of

the File methods described in Table 10–2 to learn about the pathname’s file/directory.

Listing 10–3. Obtaining file/directory information

import java.io.File;
import java.io.IOException;

import java.util.Date;

public class FileDirectoryInfo
{
 public static void main(final String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java FileDirectoryInfo pathname");
 return;
 }
 File file = new File(args[0]);
 System.out.println("About " + file + ":");
 System.out.println("Can read = " + file.canRead());
 System.out.println("Can write = " + file.canWrite());
 System.out.println("Exists = " + file.exists());
 System.out.println("Is directory = " + file.isDirectory());
 System.out.println("Is file = " + file.isFile());
 System.out.println("Is hidden = " + file.isHidden());
 System.out.println("Last modified = " + new Date(file.lastModified()));
 System.out.println("Length = " + file.length());
 }
}

For example, suppose I have a three-byte read-only file named x.dat. When I specify

java FileDirectoryInfo x.dat, I observe the following output:

About x.dat:
Can read = true
Can write = false
Exists = true
Is directory = false
Is file = true
Is hidden = false
Last modified = Wed Aug 04 16:58:32 CDT 2010
Length = 3

CHAPTER 10: Performing I/O 456

NOTE: Java version 6 extended File with new boolean canExecute(), long
getFreeSpace(), long getTotalSpace(), and long getUsableSpace() methods that
return additional information about the file, the directory, or the partition (an operating system–
specific portion of storage for a filesystem; for example, C:\) described by the File instance’s
pathname. At time of writing, Android’s File documentation (see
http://developer.android.com/reference/java/io/File.html) indicated that
Android does not support these methods. However, Android might support them in the future.

File declares five methods that return the names of files and directories located in the

directory identified by a File object’s pathname. Table 10–3 describes these methods.

Table 10–3. File Methods for Obtaining Directory Content

Method Description

String[] list() Return an array of strings naming the files and directories in the

directory denoted by this File object’s pathname. If the pathname

does not denote a directory, or if an I/O error occurs, this method

returns null. Otherwise, it returns an array of strings, one string for

each file or directory in the directory. Names denoting the directory

itself and the directory’s parent directory are not included in the result.

Each string is a filename rather than a complete path.

There is no guarantee that the name strings in the resulting array will

appear in any specific order; they are not, in particular, guaranteed to

appear in alphabetical order.

String[] list
(FilenameFilter filter)

Return an array of strings naming the files and directories in the

directory denoted by this File object’s pathname that satisfy the

specified filter. If the pathname does not denote a directory, or if an

I/O error occurs, this method returns null. Otherwise, it returns an

array of strings, one string for each file or directory that is accepted by

filter. If filter is null, all names are accepted. Otherwise, a name

is accepted only when filter’s accept(File, String) method returns

true for the file or directory whose File object is passed to accept().

Names denoting the directory itself and the directory’s parent

directory are not included in the result. Each string is a filename rather

than a complete path.

There is no guarantee that the name strings in the resulting array will

appear in any specific order; they are not, in particular, guaranteed to

appear in alphabetical order.

File[] listFiles() A synonym for calling list() and converting its array of Strings to an

array of Files.

http://developer.android.com/reference/java/io/File.html

CHAPTER 10: Performing I/O 457

Method Description

File[] listFiles
(FileFilter filter)

A synonym for calling list() and converting its array of Strings to an

array of Files, but only for those Strings that satisfy filter.

File[] listFiles
(FilenameFilter filter)

A synonym for calling list() and converting its array of Strings to an

array of Files, but only for those Strings that satisfy filter.

The overloaded list() methods return arrays of Strings. The second method lets you

return only those names of interest (such as only those names that end with extension

.txt) via a FilenameFilter-based filter object.

The FilenameFilter interface declares a single boolean accept(File dir, String
name) method that is called for each file/directory located in the directory identified by

the File object’s pathname:

 dir identifies the parent portion of the pathname (the directory path).

 name identifies the name portion of the pathname (the final directory

name or the filename).

The accept() method uses these arguments to determine whether or not the file or

directory satisfies its criteria for what is acceptable. It returns true when the file/directory

name should be included in the returned array; otherwise, this method returns false.

Listing 10–4 presents a Dir(ectory) application that uses list(FilenameFilter) to obtain

only those names that end with a specific extension.

Listing 10–4. Listing specific names

import java.io.File;
import java.io.FilenameFilter;

public class Dir
{
 public static void main(final String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Dir dirpath ext");
 return;
 }
 File file = new File(args[0]);
 FilenameFilter fnf = new FilenameFilter()
 {
 public boolean accept(File dir, String name)
 {
 return name.endsWith(args[1]);
 }
 };
 String[] names = file.list(fnf);
 for (String name: names)
 System.out.println(name);
 }
}

CHAPTER 10: Performing I/O 458

When I, for example, specify java Dir c:\windows exe on my XP platform, Dir outputs

only those \windows directory filenames that have the exe extension:

explorer.exe
hh.exe
IsUninst.exe
notepad.exe
NuNinst.exe
regedit.exe
slrundll.exe
twunk_16.exe
twunk_32.exe
uninst.exe
winhelp.exe
winhlp32.exe

The overloaded listFiles() methods return arrays of Files. For the most part, they are

symmetrical with their list() counterparts. However, listFiles(FileFilter) introduces

an asymmetry.

The FileFilter interface declares a single boolean accept(String pathname) method

that is called for each file/directory located in the directory identified by the File object’s

pathname:

 pathname identifies the complete path of the file or directory.

The accept() method uses this argument to determine whether or not the file or

directory satisfies its criteria for what is acceptable. It returns true when the file/directory

name should be included in the returned array; otherwise, this method returns false.

NOTE: Because each interface’s accept() method accomplishes the same task, you might be
wondering which interface to use. If you prefer a path broken into its directory and name
components, use FilenameFilter. However, if you prefer a complete pathname, use
FileFilter; you can always call getParent() and getName() to get these components.

File also declares several methods for creating files and manipulating existing files.

Table 10–4 describes these methods.

CHAPTER 10: Performing I/O 459

Table 10–4. File Methods for Creating Files and Manipulating Existing Files

Method Description

boolean createNewFile() Atomically create a new, empty file named by this File object’s

pathname if and only if a file with this name does not yet exist. The

check for file existence and the creation of the file if it does not exist

are a single operation that is atomic with respect to all other

filesystem activities that might affect the file. This method throws

IOException when an I/O error occurs.

static File createTempFile
(String prefix, String
suffix)

Create an empty file in the default temporary file directory using the

given prefix and suffix to generate its name. This overloaded

method calls its three-parameter variant, passing prefix, suffix,

and null to this other method, and returning this other method’s

return value.

static File createTempFile
(String prefix, String
suffix, File directory)

Create an empty file in the specified directory using the given

prefix and suffix to generate its name. The name begins with the

character sequence specified by prefix and ends with the

character sequence specified by suffix; .tmp is used as the suffix

when suffix is null. This method returns the created file’s

pathname when successful. It throws

java.lang.IllegalArgumentException when prefix contains fewer

than three characters, and IOException when the file could not be

created.

boolean delete() Delete the file or directory denoted by this File object’s pathname.

Return true when successful; otherwise, return false. If the

pathname denotes a directory, the directory must be empty in order

to be deleted.

void deleteOnExit() Request that the file or directory denoted by this File object’s

pathname be deleted when the virtual machine terminates. Once

deletion has been requested, it is not possible to cancel the

request. Therefore, this method should be used with care.

boolean mkdir() Create the directory named by this File object’s pathname. Return

true when successful; otherwise, return false.

boolean mkdirs() Create the directory and any necessary intermediate directories

named by this File object’s pathname. Return true when

successful; otherwise, return false.

CHAPTER 10: Performing I/O 460

Method Description

boolean renameTo
(File dest)

Rename the file denoted by this File object’s pathname to dest.

Return true when successful; otherwise, return false. Throw

java.lang.NullPointerException when dest is null.

Many aspects of this method’s behavior are platform dependent.

For example, the rename operation might not be able to move a file

from one filesystem to another, the operation might not be atomic,

or it might not succeed if a file with the destination pathname

already exists. The return value should always be checked to make

sure that the rename operation was successful.

boolean setLastModified
(long time)

Set the last-modified time of the file or directory named by this File

object’s pathname. Return true when successful; otherwise, return

false. This method throws IllegalArgumentException when time is

negative.

All platforms support file-modification times to the nearest second,

but some provide more precision. The time value will be truncated

to fit the supported precision. If the operation succeeds and no

intervening operations on the file take place, the next call to

lastModified() will return the (possibly truncated) time value

passed to this method.

boolean setReadOnly() Mark the file or directory denoted by this File object’s pathname so

that only read operations are allowed. After calling this method, the

file or directory is guaranteed not to change until it is deleted or

marked to allow write access. Whether or not a read-only file or

directory can be deleted depends upon the filesystem.

Suppose you are designing a text-editor application that a user will use to open a text

file and make changes to its content. Until the user explicitly saves these changes to the

file, you want the text file to remain unchanged.

Because the user does not want to lose these changes when the application crashes or

the computer loses power, you design the application to save these changes to a

temporary file every few minutes. This way, the user has a backup of the changes.

You can use the overloaded createTempFile() methods to create the temporary file. If

you do not specify a directory in which to store this file, it is created in the directory

identified by the java.io.tmpdir system property.

You probably want to remove the temporary file after the user tells the application to

save or discard the changes. The deleteOnExit() method lets you register a temporary

file for deletion; it is deleted when the virtual machine ends without a crash/power loss.

Listing 10–5 presents a TempFileDemo application that lets you experiment with the

createTempFile() and deleteOnExit() methods.

CHAPTER 10: Performing I/O 461

Listing 10–5. Experimenting with temporary files

import java.io.File;
import java.io.IOException;

public class TempFileDemo
{
 public static void main(String[] args) throws IOException
 {
 System.out.println(System.getProperty("java.io.tmpdir"));
 File temp = File.createTempFile("text", ".txt");
 System.out.println(temp);
 temp.deleteOnExit();
 }
}

After outputting the location where temporary files are stored, TempFileDemo creates a

temporary file whose name begins with text and which ends with the .txt extension.

TempFileDemo next outputs the temporary file’s name and registers the temporary file for

deletion upon the successful termination of the application.

After compiling the source code, run this application. During one run of TempFileDemo, I

observed the following output (and the file did not hang around after application exit):

C:\DOCUME~1\JEFFFR~1\LOCALS~1\Temp\
C:\DOCUME~1\JEFFFR~1\LOCALS~1\Temp\text3010913241139161364.txt

NOTE: Java version 6 extended File with new boolean setExecutable(boolean
executable), boolean setExecutable(boolean executable, boolean
ownerOnly), boolean setReadable(boolean readable), boolean
setReadable(boolean readable, boolean ownerOnly), boolean
setWritable(boolean writable), and boolean setWritable(boolean writable,
boolean ownerOnly) methods that let you set the owner’s or everybody’s execute, read, and
write permissions (respectively) for the file identified by the File object’s pathname. At time of
writing, Android’s File documentation indicated that Android does not support these methods.
However, Android might support them in the future.

Finally, File implements the java.lang.Comparable interface’s compareTo() method, and

overrides equals() and hashCode(). Table 10–5 describes these miscellaneous methods.

CHAPTER 10: Performing I/O 462

Table 10–5. File’s Miscellaneous Methods

Method Description

int compareTo
(File pathname)

Compare two pathnames lexicographically. The ordering defined by this method

depends upon the underlying platform. On Unix/Linux platforms, alphabetic

case is significant when comparing pathnames; on Windows platforms,

alphabetic case is not significant. Return zero when pathname equals this File

object’s pathname, a negative value when this File object’s pathname is less

than pathname, and a positive value when this File object’s pathname is greater

than pathname.

boolean equals
(Object obj)

Compare this File object with obj for equality. Pathname equality depends

upon the underlying platform. On Unix/Linux platforms, alphabetic case is

significant when comparing pathnames; on Windows platforms, alphabetic case

is not significant. Return true if and only if obj is not null and is a File object

whose pathname denotes the same file/directory as this File object’s

pathname.

int hashCode() Calculate and return a hash code for this pathname. This calculation depends

upon the underlying platform. On Unix/Linux systems, a pathname’s hash code

equals the exclusive OR of its pathname string’s hash code and decimal value

1234321. On Windows systems, the hash code equals the exclusive OR of the

lowercased pathname string’s hash code and decimal value 1234321. The

current locale is not taken into account when lowercasing the pathname string.

TIP: To accurately compare two File objects, first call getCanonicalFile() on each File
object and then compare the returned File objects.

RandomAccessFile
Files can be created and/or opened for random access in which a mixture of write and

read operations can occur until the file is closed. Java supports this random access by

providing the concrete RandomAccessFile class.

RandomAccessFile declares the following constructors:

 RandomAccessFile(File file, String mode) creates and opens a new

file if it does not exist, or opens an existing file. The file is identified by

file’s pathname and is created and/or opened according to the mode

that is specified by mode.

 RandomAccessFile(String pathname, String mode) creates and opens

a new file if it does not exist, or opens an existing file. The file is

identified by pathname and is created and/or opened according to the

mode that is specified by mode.

CHAPTER 10: Performing I/O 463

CAUTION: Be careful when specifying a pathname for either constructor. You should strive to
specify only pathnames that are valid for all platforms on which the application will run, unless
you are creating your application to run on a single platform.

Either constructor’s mode argument must be one of "r", "rw", "rws", or "rwd"; otherwise,

the constructor throws IllegalArgumentException. These string literals have the

following meanings:

 "r" informs the constructor to open an existing file for reading only.

Any attempt to write to the file results in a thrown instance of the

IOException class.

 "rw" informs the constructor to create and open a new file if it does

not exist for reading and writing, or open an existing file for reading

and writing.

 "rwd" informs the constructor to create and open a new file if it does

not exist for reading and writing, or open an existing file for reading

and writing. Furthermore, each update to the file’s content must be

written synchronously to the underlying storage device.

 "rws" informs the constructor to create and open a new file if it does

not exist for reading and writing, or open an existing file for reading

and writing. Furthermore, each update to the file’s content or metadata

must be written synchronously to the underlying storage device.

NOTE: A file’s metadata is data about the file and not actual file contents. Examples of metadata
include the file’s length and the time the file was last modified.

The "rwd" and "rws" modes ensure than any writes to a file located on a local storage

device are written to the device, which guarantees that critical data is not lost when the

system crashes. No guarantee is made when the file does not reside on a local device.

NOTE: Operations on a random access file opened in "rwd" or "rws" mode are slower than
these same operations on a random access file opened in "rw" mode.

These constructors throw FileNotFoundException (a subclass of IOException) when

mode is "r" and the file identified by pathname cannot be opened (it might not exist or

might be a directory), or when mode is "rw" and pathname is read-only or a directory.

The following example demonstrates the second constructor by attempting to open an

existing random access file via the "r" mode string:

RandomAccessFile raf = new RandomAccessFile("employee.dat", "r");

CHAPTER 10: Performing I/O 464

A random access file is associated with a file pointer, a cursor that identifies the location

of the next byte to write or read. When an existing file is opened, the file pointer is set to

its first byte, at offset 0. The file pointer is also set to 0 when the file is created.

Write or read operations start at the file pointer and advance it past the number of bytes

written or read. Operations that write past the current end of the file cause the file to be

extended. These operations continue until the file is closed.

RandomAccessFile declares a wide variety of methods. I present a representative sample

of these methods in Table 10–6.

Table 10–6. RandomAccessFile Methods

Method Description

void close() Close the file and release any associated system resources. Subsequent

writes or reads result in IOException. Also, the file cannot be reopened with

this RandomAccessFile object. This method throws IOException when an I/O

error occurs.

FileDescriptor
getFD()

Return the file’s associated file descriptor object. This method throws

IOException when an I/O error occurs.

long
getFilePointer()

Return the file pointer’s current zero-based byte offset into the file. This

method throws IOException when an I/O error occurs.

long length() Return the length (measured in bytes) of the file. This method throws

IOException when an I/O error occurs.

int read() Read and return (as an int in the range 0 to 255) the next byte from the file, or

return -1 when the end of the file is reached. This method blocks if no input is

available, and throws IOException when an I/O error occurs.

int read
(byte[] b)

Read up to b.length bytes of data from the file into byte array b. This method

blocks until at least one byte of input is available. It returns the number of

bytes read into the array, or returns -1 when the end of the file is reached. It

throws NullPointerException when b is null, and IOException when an I/O

error occurs.

char readChar() Read and return a character from the file. This method reads two bytes from

the file starting at the current file pointer. If the bytes read, in order, are b1 and

b2, where 0 <= b1, b2 <= 255, the result is equal to (char) ((b1<<8)|b2). This

method blocks until the two bytes are read, the end of the file is detected, or

an exception is thrown. It throws EOFException (a subclass of IOException)

when the end of the file is reached before reading both bytes, and

IOException when an I/O error occurs.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 465

Method Description

int readInt() Read and return a 32-bit integer from the file. This method reads four bytes

from the file starting at the current file pointer. If the bytes read, in order, are

b1, b2, b3, and b4, where 0 <= b1, b2, b3, b4 <= 255, the result is equal to

(b1<<24)|(b2<<16)+(b3<<8)+b4. This method blocks until the four bytes are

read, the end of the file is detected, or an exception is thrown. It throws

EOFException when the end of the file is reached before reading all four bytes,

and IOException when an I/O error occurs.

void seek
(long pos)

Set the file pointer’s current offset to pos (which is measured in bytes from the

beginning of the file). If the offset is set beyond the end of the file, the file’s

length does not change. The file length will only change by writing after the

offset has been set beyond the end of the file. This method throws

IOException when the value in pos is negative, or when an I/O error occurs.

void setLength
(long newLength)

Set the file’s length. If the present length as returned by length() is greater

than newLength, the file is truncated. In this case, if the file offset as returned

by getFilePointer() is greater than newLength, the offset will be equal to

newLength after setLength() returns. If the present length is smaller than

newLength, the file is extended. In this case, the contents of the extended

portion of the file are not defined. This method throws IOException when an

I/O error occurs.

int skipBytes
(int n)

Attempt to skip over n bytes. This method skips over a smaller number of

bytes (possibly zero) when the end of file is reached before n bytes have been

skipped. It does not throw EOFException in this situation. If n is negative, no

bytes are skipped. The actual number of bytes skipped is returned. This

method throws IOException when an I/O error occurs.

void write
(byte[] b)

Write b.length bytes from byte array b to the file starting at the current file

pointer position. This method throws IOException when an I/O error occurs.

void write(int b) Write the lower eight bits of b to the file at the current file pointer position. This

method throws IOException when an I/O error occurs.

void writeChars
(String s)

Write string s to the file as a sequence of characters starting at the current file

pointer position. This method throws IOException when an I/O error occurs.

void writeInt
(int i)

Write 32-bit integer i to the file starting at the current file pointer position. The

four bytes are written with the high byte first. This method throws IOException

when an I/O error occurs.

Most of Table 10–6’s methods are fairly self-explanatory. However, the getFD() method

requires further enlightenment.

CHAPTER 10: Performing I/O 466

NOTE: RandomAccessFile’s read-prefixed methods and skipBytes() originate in the
DataInput interface, which this class implements. Furthermore, RandomAccessFile’s
write-prefixed methods originate in the DataOutput interface, which this class also
implements.

When a file is opened, the underlying platform creates a platform-dependent structure to

represent the file. A handle to this structure is stored in an instance of the

FileDescriptor class, which getFD() returns.

NOTE: A handle is an identifier that Java passes to the underlying platform to identify, in this
case, a specific open file when it requires that the underlying platform perform a file operation.

FileDescriptor is a small class that declares three FileDescriptor constants named in,

out, and err. These constants let System.in, System.out, and System.err provide

access to the standard input, standard output, and standard error streams.

FileDescriptor also declares a pair of methods:

 void sync() tells the underlying platform to flush (empty) the contents

of the open file’s output buffers to their associated local disk device.

sync() returns after all modified data and attributes have been written

to the relevant device. It throws SyncFailedException when the buffers

cannot be flushed, or because the platform cannot guarantee that all

the buffers have been synchronized with physical media.

 boolean valid() determines whether or not this file descriptor object

is valid. It returns true when the file descriptor object represents an

open file or other active I/O connection; otherwise, it returns false.

Data that is written to an open file ends up being stored in the underlying platform’s

output buffers. When the buffers fill to capacity, the platform empties them to the disk.

Buffers improve performance because disk access is slow.

However, when you write data to a random access file that has been opened via mode

"rwd" or "rws", each write operation’s data is written straight to the disk. As a result,

write operations are slower than if the random access file was opened in "rw" mode.

Suppose you have a situation that combines writing data through the output buffers and

writing data directly to the disk. Listing 10–6 addresses this hybrid scenario by opening

the file in mode "rw" and selectively calling FileDescriptor’s sync() method.

Listing 10–6. Selectively calling sync()

RandomAccessFile raf = new RandomAccessFile("employee.dat", "rw");
FileDescriptor fd = raf.getFD();
// Perform a critical write operation.
raf.write(...);
// Synchronize with underlying disk by flushing platform's output buffers to disk.

CHAPTER 10: Performing I/O 467

fd.sync();
// Perform non-critical write operation where synchronization is not necessary.
raf.write(...);
// Do other work.
// Close file, emptying output buffers to disk.
raf.close();

RandomAccessFile is useful for creating a flat file database, a single file organized into

records and fields. A record stores a single entry (such as a part in a parts database)

and a field stores a single attribute of the entry (such as a part number).

A flat file database typically organizes its content into a sequence of fixed-length

records. Each record is further organized into one or more fixed-length fields. Figure 10–

1 illustrates this concept in the context of a parts database.

Figure 10–1. A flat file database of automotive parts

According to Figure 10–1, each field has a name (partnum, desc, qty, and ucost). Also,

each record is assigned a number starting at 0. This example consists of five records, of

which only three are shown for brevity.

NOTE: The term field is also used to refer to a variable declared within a class. To avoid
confusion with this overloaded terminology, think of a field variable as being analogous to a
record’s field attribute.

To show you how to implement a flat file database in terms of RandomAccessFile, I have

created a simple PartsDB class to model Figure 10–1. Check out Listing 10–7.

Listing 10–7. Implementing the parts flat file database

import java.io.IOException;
import java.io.RandomAccessFile;

public class PartsDB
{
 public final static int PNUMLEN = 20;
 public final static int DESCLEN = 30;

CHAPTER 10: Performing I/O 468

 public final static int QUANLEN = 4;
 public final static int COSTLEN = 4;

 private final static int RECLEN = 2*PNUMLEN+2*DESCLEN+QUANLEN+COSTLEN;
 private RandomAccessFile raf;

 public PartsDB(String pathname) throws IOException
 {
 raf = new RandomAccessFile(pathname, "rw");
 }
 public void append(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 raf.seek(raf.length());
 write(partnum, partdesc, qty, ucost);
 }
 public void close()
 {
 try
 {
 raf.close();
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 }
 public int numRecs() throws IOException
 {
 return (int) raf.length()/RECLEN;
 }
 public Part select(int recno) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno*RECLEN);
 return read();
 }
 public void update(int recno, String partnum, String partdesc, int qty,
 int ucost) throws IOException
 {
 if (recno < 0 || recno >= numRecs())
 throw new IllegalArgumentException(recno + " out of range");
 raf.seek(recno*RECLEN);
 write(partnum, partdesc, qty, ucost);
 }
 private Part read() throws IOException
 {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < PNUMLEN; i++)
 sb.append(raf.readChar());
 String partnum = sb.toString().trim();
 sb.setLength(0);
 for (int i = 0; i < DESCLEN; i++)
 sb.append(raf.readChar());
 String partdesc = sb.toString().trim();
 int qty = raf.readInt();

CHAPTER 10: Performing I/O 469

 int ucost = raf.readInt();
 return new Part(partnum, partdesc, qty, ucost);
 }
 private void write(String partnum, String partdesc, int qty, int ucost)
 throws IOException
 {
 StringBuffer sb = new StringBuffer(partnum);
 if (sb.length() > PNUMLEN)
 sb.setLength(PNUMLEN);
 else
 if (sb.length() < PNUMLEN)
 {
 int len = PNUMLEN-sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 sb = new StringBuffer(partdesc);
 if (sb.length() > DESCLEN)
 sb.setLength(DESCLEN);
 else
 if (sb.length() < DESCLEN)
 {
 int len = DESCLEN-sb.length();
 for (int i = 0; i < len; i++)
 sb.append(" ");
 }
 raf.writeChars(sb.toString());
 raf.writeInt(qty);
 raf.writeInt(ucost);
 }
 public static class Part
 {
 private String partnum;
 private String desc;
 private int qty;
 private int ucost;
 public Part(String partnum, String desc, int qty, int ucost)
 {
 this.partnum = partnum;
 this.desc = desc;
 this.qty = qty;
 this.ucost = ucost;
 }
 String getDesc()
 {
 return desc;
 }
 String getPartnum()
 {
 return partnum;
 }
 int getQty()
 {
 return qty;
 }
 int getUnitCost()

CHAPTER 10: Performing I/O 470

 {
 return ucost;
 }
 }
}

PartsDB first declares constants that identify the lengths of the string and 32-bit integer

fields. It then declares a constant that calculates the record length in terms of bytes. The

calculation takes into account the fact that a character occupies two bytes in the file.

These constants are followed by a field named raf that is of type RandomAccessFile.

This field is assigned an instance of the RandomAccessFile class in the subsequent

constructor, which creates/opens a new file or opens an existing file because of "rw".

The public interface continues with append(), close(), numRecs(), select(), and

update(). These methods append a record to the file, close the file, return the number of

records in the file, select and return a specific record, and update a specific record.

The append() method first calls length() and seek(). Doing so ensures that the file

pointer is positioned to the end of the file before calling the private write() method to

write a record containing this method’s arguments.

RandomAccessFile’s close() method can throw IOException. Because this is a rare

occurrence, I chose to handle this exception in PartDB’s close() method, which keeps

that method’s signature simple. However, I print a message when IOException occurs.

The numRecs() method returns the number of records in the file. These records are

numbered starting with 0 and ending with numRecs()-1. Each of the select() and

update() methods verifies that its recno argument lies within this range.

The select() method calls the private read() method to return the record identified by

recno as an instance of the Part static member class. Part’s constructor initializes a

Part object to a record’s field values, and its getter methods return these values.

The update() method is equally simple. As with select(), it first positions the file pointer

to the start of the record identified by recno. As with append(), it calls the write()

method to write out its arguments, but replaces a record instead of adding one.

Fields must have exact sizes. write() pads String-based values that are shorter than a

field size with spaces on the right, and truncates these values to the field size if needed.

read() removes the padding before saving a String-based field value in the Part object.

By itself, PartsDB is useless. We need an application that lets us experiment with this

class, and Listing 10–8 fulfills this requirement.

Listing 10–8. Experimenting with the parts flat file database

import java.io.IOException;

public class UsePartsDB
{
 public static void main(String[] args)
 {
 PartsDB pdb = null;
 try

CHAPTER 10: Performing I/O 471

 {
 pdb = new PartsDB("parts.db");
 if (pdb.numRecs() == 0)
 {
 // Populate the database with records.
 pdb.append("1-9009-3323-4x", "Wiper Blade Micro Edge", 30, 2468);
 pdb.append("1-3233-44923-7j", "Parking Brake Cable", 5, 1439);
 pdb.append("2-3399-6693-2m", "Halogen Bulb H4 55/60W", 22, 813);
 pdb.append("2-599-2029-6k", "Turbo Oil Line O-Ring ", 26, 155);
 pdb.append("3-1299-3299-9u", "Air Pump Electric", 9, 20200);
 }
 dumpRecords(pdb);
 pdb.update(1, "1-3233-44923-7j", "Parking Brake Cable", 5, 1995);
 dumpRecords(pdb);
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 finally
 {
 if (pdb != null)
 pdb.close();
 }
 }
 static String format(String value, int maxWidth, boolean leftAlign)
 {
 StringBuffer sb = new StringBuffer();
 int len = value.length();
 if (len > maxWidth)
 {
 len = maxWidth;
 value = value.substring(0, len);
 }
 if (leftAlign)
 {
 sb.append(value);
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 }
 else
 {
 for (int i = 0; i < maxWidth-len; i++)
 sb.append(" ");
 sb.append(value);
 }
 return sb.toString();
 }
 static void dumpRecords(PartsDB pdb) throws IOException
 {
 for (int i = 0; i < pdb.numRecs(); i++)
 {
 PartsDB.Part part = pdb.select(i);
 System.out.print(format(part.getPartnum(), PartsDB.PNUMLEN, true));
 System.out.print(" | ");
 System.out.print(format(part.getDesc(), PartsDB.DESCLEN, true));

CHAPTER 10: Performing I/O 472

 System.out.print(" | ");
 System.out.print(format("" + part.getQty(), 10, false));
 System.out.print(" | ");
 String s = part.getUnitCost()/100 + "." + part.getUnitCost()%100;
 if (s.charAt(s.length()-2) == '.') s += "0";
 System.out.println(format(s, 10, false));
 }
 System.out.println("Number of records = " + pdb.numRecs());
 System.out.println();
 }
}

The main() method begins by instantiating PartsDB, with parts.db as the name of the

database file. If this file has no records, numRecs() returns 0 and several records are

appended to the file via the append() method.

main() next dumps the five records stored in parts.db to the standard output device,

updates the unit cost in the record whose number is 1, once again dumps these records

to the standard output device to show this change, and closes the database.

NOTE: I store unit cost values as integer-based penny amounts. For example, I specify literal
1995 to represent 1995 pennies, or $19.95. If I were to use BigDecimal objects to store
currency values, I would have to refactor PartsDB to take advantage of object serialization, and I
am not prepared to do that right now. (I discuss object serialization later in this chapter.)

main() relies on a dumpRecords() helper method to dump these records, and

dumpRecords() relies on a format() helper method to format field values so that they can

be presented in properly aligned columns. The following output reveals this alignment:

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 14.39
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

1-9009-3323-4x | Wiper Blade Micro Edge | 30 | 24.68
1-3233-44923-7j | Parking Brake Cable | 5 | 19.95
2-3399-6693-2m | Halogen Bulb H4 55/60W | 22 | 8.13
2-599-2029-6k | Turbo Oil Line O-Ring | 26 | 1.55
3-1299-3299-9u | Air Pump Electric | 9 | 202.00
Number of records = 5

And there you have it: a simple flat file database. Despite its lack of support for

advanced database features such as indexes and transaction management, a flat file

database might be all that your Android application requires.

CHAPTER 10: Performing I/O 473

NOTE: Check out Wikipedia’s “Flat file database” entry
(http://en.wikipedia.org/wiki/Flat_file_database) to learn more about flat file
databases.

Streams
Along with File and RandomAccessFile, Java uses streams to perform I/O operations. A

stream is an ordered sequence of bytes of arbitrary length. Bytes flow over an output
stream from an application to a destination, and flow over an input stream from a source

to an application. Figure 10–2 illustrates these flows.

Figure 10–2. Conceptualizing output and input streams

NOTE: Java’s use of the word stream is analogous to other uses that refer to a flow of water or a
flow of electrons.

Java recognizes various stream destinations; for example, byte arrays, files, screens,

sockets (network endpoints), and thread pipes. Java also recognizes various stream

sources. Examples include byte arrays, files, keyboards, sockets, and thread pipes. (I do

not discuss sockets in this chapter.)

Stream Classes Overview
The java.io package provides several output stream and input stream classes that are

descendents of the abstract OutputStream and InputStream classes. In the following list

of classes, output stream classes (except for PrintStream) are denoted by their

OutputStream suffixes and input stream classes are denoted by their InputStream

suffixes:

http://en.wikipedia.org/wiki/Flat_file_database

CHAPTER 10: Performing I/O 474

 BufferedOutputStream

 BufferedInputStream

 ByteArrayOutputStream

 ByteArrayInputStream

 DataOutputStream

 DataInputStream

 FileOutputStream

 FileInputStream

 FilterOutputStream

 FilterInputStream

 ObjectOutputStream

 ObjectInputStream

 PipedOutputStream

 PipedInputStream

 PrintStream

 PushbackInputStream

 SequenceInputStream

Additionally, java.io offers LineNumberInputStream and StringBufferInputStream

classes. However, these classes have been deprecated because they do not support

different character encodings, a topic I discuss later in this chapter. LineNumberReader

and StringReader are their replacements. (I discuss readers later in this chapter.)

NOTE: PrintStream is another class that should be deprecated because it does not support
different character encodings; PrintWriter is its replacement. However, it is doubtful that
Oracle will deprecate this class because PrintStream is the type of the java.lang.System
class’s out and err class fields, and too much legacy code depends upon this fact.

Other Java packages provide additional output stream and input stream classes. For

example, java.util.zip provides four output stream classes that compress

uncompressed data into various formats, and four matching input stream classes that

uncompress compressed data from the same formats:

 CheckedOutputStream

 CheckedInputStream

 DeflaterOutputStream

 GZIPOutputStream

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 475

 GZIPInputStream

 InflaterInputStream

 ZipOutputStream

 ZipInputStream

NOTE: For an example of ZipOutputStream, check out Kode Java’s “How do I create a zip
file?” example (http://www.kodejava.org/examples/119.html). For an example of
ZipInputStream, check out Kode Java’s “How do I decompress a zip file using
ZipInputStream?” example (http://www.kodejava.org/examples/334.html).

Also, the java.util.jar package provides a pair of stream classes for writing content to

a JAR file and for reading content from a JAR file:

 JarOutputStream

 JarInputStream

The next several sections take you on a tour of most of java.io’s output stream and

input stream classes, beginning with OutputStream and InputStream.

OutputStream and InputStream
Java provides the OutputStream and InputStream classes for performing stream I/O.

OutputStream is the superclass of all output stream subclasses. Table 10–7 describes

OutputStream’s methods.

Table 10–7. OutputStream Methods

Method Description

void close() Close this output stream and release any system resources associated

with the stream. This method throws IOException when an I/O error

occurs.

void flush() Flush this output stream by writing any buffered output bytes to the

destination. If the intended destination of this output stream is an

abstraction provided by the underlying platform (for example, a file),

flushing the stream only guarantees that bytes previously written to the

stream are passed to the underlying platform for writing; it does not

guarantee that they are actually written to a physical device such as a disk

drive. This method throws IOException when an I/O error occurs.

void write(byte[] b) Write b.length bytes from byte array b to this output stream. In general,

write(b) behaves as if you specified write(b, 0, b.length). This method

throws NullPointerException when b is null, and IOException when an

I/O error occurs.

http://www.kodejava.org/examples/119.html
http://www.kodejava.org/examples/334.html

CHAPTER 10: Performing I/O 476

Method Description

void write(byte[] b,
int off, int len)

Write len bytes from byte array b starting at offset off to this output

stream. This method throws NullPointerException when b is null;

java.lang.IndexOutOfBoundsException when off is negative, len is

negative, or off+len is greater than b.length; and IOException when an

I/O error occurs.

void write(int b) Write byte b to this output stream. Only the 8 low-order bits are written; the

24 high-order bits are ignored. This method throws IOException when an

I/O error occurs.

The flush() method is useful in a long-running application where you need to save

changes every so often; for example, the previously mentioned text-editor application

that saves changes to a temporary file every few minutes.

NOTE: The close() method automatically flushes the output stream. If an application ends
before close() is called, the output stream is automatically closed and its data is flushed.

InputStream is the superclass of all input stream subclasses. Table 10–8 describes

InputStream’s methods.

Table 10–8. InputStream Methods

Method Description

int available() Return an estimate of the number of bytes that can be read from this input

stream via the next read() method call (or skipped over via skip()) without

blocking the calling thread. This method throws IOException when an I/O

error occurs.

It is never correct to use this method’s return value to allocate a buffer for

holding all of the stream’s data because a subclass may not return the total

size of the stream.

void close() Close this input stream and release any system resources associated with

the stream. This method throws IOException when an I/O error occurs.

void mark
(int readlimit)

Mark the current position in this input stream. A subsequent call to reset()

repositions this stream to the last marked position so that subsequent read

operations reread the same bytes. The readlimit argument tells this input

stream to allow that many bytes to be read before invalidating this mark (so

that the stream cannot be reset to the marked position).

boolean
markSupported()

Return true when this input stream supports mark() and reset(); otherwise,

return false.

CHAPTER 10: Performing I/O 477

Method Description

int read() Read and return (as an int in the range 0 to 255) the next byte from this

input stream, or return -1 when the end of the stream is reached. This

method blocks until input is available, and throws IOException when an I/O

error occurs.

int read(byte[] b) Read some number of bytes from this input stream and store them in byte

array b. Return the number of bytes actually read (which might be less than

b’s length but is never more than this length), or return -1 when the end of

the stream is reached (no byte is available to read). This method blocks until

input is available. It throws NullPointerException when b is null, and

IOException when an I/O error occurs.

int read(byte[] b,
int off, int len)

Read no more than len bytes from this input stream and store them in byte

array b, starting at the offset specified by off. Return the number of bytes

actually read (which might be less than len but is never more than len), or

return -1 when the end of the stream is reached (no byte is available to

read). This method blocks until input is available. It throws

NullPointerException when b is null; IndexOutOfBoundsException when

off is negative, len is negative, or len is greater than b.length-off; and

IOException when an I/O error occurs.

void reset() Reposition this input stream to the position at the time mark() was last

called. This method throws IOException when this input stream has not

been marked or the mark has been invalidated.

long skip(long n) Skip over and discard n bytes of data from this input stream. This method

may skip over some smaller number of bytes (possibly zero); for example,

when the end of the file is reached before n bytes have been skipped. The

actual number of bytes skipped is returned. If n is negative, no bytes are

skipped. This method throws IOException when this input stream does not

support skipping or when some other I/O error occurs.

InputStream subclasses such as ByteArrayInputStream support marking the current

read position in the input stream via the mark() method, and later return to that position

via the reset() method.

CAUTION: Do not forget to call markSupported() to find out if the subclass supports mark()
and reset().

ByteArrayOutputStream and ByteArrayInputStream
Byte arrays are occasionally useful as stream destinations and sources. The concrete

ByteArrayOutputStream class lets you write a stream of bytes to a byte array; the

concrete ByteArrayInputStream class lets you read a stream of bytes from a byte array.

CHAPTER 10: Performing I/O 478

ByteArrayOutputStream declares a pair of constructors. Each constructor creates a byte

array output stream with an internal byte array; a copy of this array can be returned by

calling ByteArrayOutputStream’s byte[] toByteArray() method:

 ByteArrayOutputStream() creates a byte array output stream with an

internal byte array whose initial size is 32 bytes. This array grows as

necessary.

 ByteArrayOutputStream(int size) creates a byte array output stream

with an internal byte array whose initial size is specified by size, and

which grows as necessary. This constructor throws

IllegalArgumentException when size is less than zero.

The following example uses ByteArrayOutputStream() to create a byte array output

stream with an internal byte array set to a default size:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ByteArrayInputStream also declares a pair of constructors. Each constructor creates a

byte array input stream based on the specified byte array, and also keeps track of the

next byte to read from the array and the number of bytes to read:

 ByteArrayInputStream(byte[] ba) creates a byte array input stream

that uses ba as its byte array (ba is used directly; a copy is not

created). The position is set to 0 and the number of bytes to read is set

to ba.length.

 ByteArrayInputStream(byte[] ba, int offset, int count) creates a

byte array input stream that uses ba as its byte array (no copy is

made). The position is set to offset and the number of bytes to read is

set to count.

The following example uses ByteArrayInputStream(byte[]) to create a byte array input

stream whose source is a copy of the previous byte array output stream’s byte array:

ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());

ByteArrayOutputStream can be useful in a scenario where an image file is converted to

an array of bytes, perhaps as a prelude to storing the image in a database. Listing 10–

9’s Android-specific example provides a demonstration.

Listing 10–9. Decoding a file into an Android-specific BitMap instance, compressing this instance into a
ByteArrayOutputStream instance, and obtaining a copy of the byte array output stream’s array

String pathname = ... ; // Assume a legitimate pathname to an image.
Bitmap bm = BitmapFactory.decodeFile(pathname);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
If (bm.compress(Bitmap.CompressFormat.PNG, 100, baos))
{
 byte[] imageBytes = baos.toByteArray();
 // Do something with imageBytes.
}

Listing 10–9 obtains a pathname of an image file and then calls the concrete

android.graphics.BitmapFactory class’s static Bitmap decodeFile(String pathname)

CHAPTER 10: Performing I/O 479

method. This method decodes the image file identified by pathname into a bitmap, and

returns an android.graphics.Bitmap instance that represents this bitmap.

After creating a ByteArrayOutputStream object, Listing 10–9 uses the returned Bitmap

instance to call BitMap’s boolean compress(Bitmap.CompressFormat format, int
quality, OutputStream stream) method to write a compressed version of the bitmap to

the byte array output stream:

 format identifies the format of the compressed image. I have chosen

to use the popular Portable Network Graphics (PNG) format.

 quality hints to the compressor as to how much compression is

required. This value ranges from 0 through 100, where 0 means

maximum compression at the expense of quality and 100 means

maximum quality at the expense of compression. Formats such as

PNG ignore quality because they employ lossless compression.

 stream identifies the stream on which to write the compressed image

data.

If compress() returns true, which means that it successfully compressed the image onto

the byte array output stream in the PNG format, the ByteArrayOutputStream object’s

toByteArray() method is called to create and return a byte array with the image’s bytes.

FileOutputStream and FileInputStream
Files are common stream destinations and sources. The concrete FileOutputStream

class lets you write a stream of bytes to a file; the concrete FileInputStream class lets

you read a stream of bytes from a file.

FileOutputStream subclasses OutputStream and declares five constructors for creating

file output streams. For example, FileOutputStream(String pathname) creates a file

output stream to the existing file identified by pathname. This constructor throws

FileNotFoundException when the file does not exist, it is a directory rather than a normal

file, or there is some other reason for why the file cannot be opened for output.

The following example uses FileOutputStream(String pathname) to create a file output

stream with employee.dat as its destination:

FileOutputStream fos = new FileOutputStream("employee.dat");

TIP: FileOutputStream(String pathname) overwrites an existing file. To append data
instead of overwriting existing content, call a FileOutputStream constructor that includes a
boolean append parameter and pass true to this parameter.

FileInputStream subclasses InputStream and declares three constructors for creating

file input streams. For example, FileInputStream(String pathname) creates a file input

stream from the existing file identified by pathname. This constructor throws

CHAPTER 10: Performing I/O 480

FileNotFoundException when the file does not exist, it is a directory rather than a normal

file, or there is some other reason for why the file cannot be opened for input.

The following example uses FileInputStream(String pathname) to create a file input

stream with employee.dat as its source:

FileInputStream fis = new FileInputStream("employee.dat");

CAUTION: Be careful when specifying a pathname for these classes’ constructors. You should
strive to only specify pathnames that are valid for all platforms on which the application will run,
unless you are creating your application to run on a single platform.

Listing 10–10 presents the source code to a DumpFileInHex application, which uses this

FileInputStream constructor to create a file input stream from a binary (nontextual) file,

reads this stream’s bytes, and outputs them to standard output in hexadecimal format.

Listing 10–10. Outputting a file input stream’s bytes to standard output in hexadecimal format

import java.io.FileInputStream;
import java.io.IOException;

public class DumpFileInHex
{
 public static void main(String[] args) throws IOException
 {
 if (args.length != 1)
 {
 System.err.println("usage: java DumpFileInHex pathname");
 return;
 }
 FileInputStream fis = new FileInputStream(args[0]);
 StringBuffer sb = new StringBuffer();
 int offset = 0;
 int ch;
 while ((ch = fis.read()) != -1)
 {
 if ((offset % 16) == 0)
 System.out.printf("%08X ", offset);
 System.out.printf("%02X ", ch);
 if (ch < 32 || ch > 127)
 sb.append('.');
 else
 sb.append((char) ch);
 if ((++offset % 16) == 0)
 {
 System.out.println(sb.toString());
 sb.setLength(0);
 }
 }
 if (sb.length() != 0)
 {
 for (int i = 0; i < 16-sb.length(); i++)
 System.out.printf(" ");
 System.out.println(sb.toString());

CHAPTER 10: Performing I/O 481

 }
 fis.close();
 }
}

After establishing a file input stream and storing its reference in local variable fis, the

main thread enters a loop that reads each byte from this stream and outputs the byte to

standard output as part of a formatted hexadecimal listing.

The source code uses System.out.printf() method calls to output the eight-character

hex equivalent of the offset argument and the two-character hex equivalent of the ch

argument. (I will discuss printf() when I explore PrintStream later in the chapter.)

NOTE: If the application throws IOException, fis.close(); is not executed. This is not a
problem because the file input stream is automatically closed when the application exits.

Suppose you want to see a hexadecimal listing of DumpFileInHex.class. Execute java
DumpFileInHex DumpFileInHex.class and this command line generates the following

output, which I have abbreviated because the listing is extensive:

00000000 CA FE BA BE 00 00 00 32 00 53 0A 00 0C 00 24 092.S....$.
00000010 00 25 00 26 08 00 27 0A 00 28 00 29 07 00 2A 0A .%.&..'..(.)..*.
00000020 00 05 00 2B 07 00 2C 0A 00 07 00 24 0A 00 05 00 ...+..,....$....
00000030 2D 09 00 25 00 2E 08 00 2F 07 00 30 0A 00 31 00 -..%..../..0..1.
00000040 32 0A 00 28 00 33 08 00 34 0A 00 07 00 35 0A 00 2..(.3..4....5..
00000050 07 00 36 0A 00 07 00 37 0A 00 07 00 38 08 00 39 ..6....7....8..9
00000060 0A 00 05 00 3A 07 00 3B 01 00 06 3C 69 6E 69 74:..;...<init
00000070 3E 01 00 03 28 29 56 01 00 04 43 6F 64 65 01 00 >...()V...Code..
00000080 0F 4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 6C 65 .LineNumberTable
00000090 01 00 04 6D 61 69 6E 01 00 16 28 5B 4C 6A 61 76 ...main...([Ljav
000000A0 61 2F 6C 61 6E 67 2F 53 74 72 69 6E 67 3B 29 56 a/lang/String;)V
000000B0 01 00 0D 53 74 61 63 6B 4D 61 70 54 61 62 6C 65 ...StackMapTable
000000C0 07 00 2A 07 00 2C 01 00 0A 45 78 63 65 70 74 69 ..*..,...Excepti
000000D0 6F 6E 73 07 00 3C 01 00 0A 53 6F 75 72 63 65 46 ons..<...SourceF
000000E0 69 6C 65 01 00 12 44 75 6D 70 46 69 6C 65 49 6E ile...DumpFileIn
000000F0 48 65 78 2E 6A 61 76 61 0C 00 17 00 18 07 00 3D Hex.java.......=

NOTE: Chapter 4 presents a pair of FileInputStream/FileOutputStream binary file-
copying examples, which I located there to demonstrate the try statement’s finally clause.

PipedOutputStream and PipedInputStream
Threads often need to communicate. One communication approach involves using

shared variables. Another approach involves using piped streams courtesy of Java’s

PipedOutputStream and PipedInputStream classes.

The concrete PipedOutputStream class lets a sending thread write a stream of bytes to

an instance of the concrete PipedInputStream class, which a receiving thread uses to

subsequently read those bytes.

CHAPTER 10: Performing I/O 482

CAUTION: Attempting to use a PipedOutputStream object and a PipedInputStream object
from a single thread is not recommended because it may deadlock the thread.

PipedOutputStream declares a pair of constructors for creating piped output streams:

 PipedOutputStream() creates a piped output stream that is not yet

connected to a piped input stream. It must be connected to a piped

input stream, either by the receiver or the sender, before being used.

 PipedOutputStream(PipedInputStream dest) creates a piped output

stream that is connected to piped input stream dest. Bytes written to

the piped output stream can be read from dest. This constructor

throws IOException when an I/O error occurs.

PipedOutputStream declares a void connect(PipedInputStream dest) method that

connects this piped output stream to dest. This method throws IOException when this

piped output stream is already connected to another piped input stream.

PipedInputStream declares four constructors for creating piped input streams:

 PipedInputStream() creates a piped input stream that is not yet

connected to a piped output stream. It must be connected to a piped

output stream before being used.

 PipedInputStream(int pipeSize) creates a piped input stream that is

not yet connected to a piped output stream and uses pipeSize to size

the piped input stream’s buffer. It must be connected to a piped

output stream before being used. This constructor throws

IllegalArgumentException when pipeSize is less than or equal to 0.

 PipedInputStream(PipedOutputStream src) creates a piped input

stream that is connected to piped output stream src. Bytes written to

src can be read from this piped input stream. This constructor throws

IOException when an I/O error occurs.

 PipedInputStream(PipedOutputStream src, int pipeSize) creates a

piped input stream that is connected to piped output stream src and

uses pipeSize to size the piped input stream’s buffer. Bytes written to

src can be read from this piped input stream. This constructor throws

IOException when an I/O error occurs, and IllegalArgumentException

when pipeSize is less than or equal to 0.

PipedInputStream declares a void connect(PipedInputStream src) method that

connects this piped input stream to src. This method throws IOException when this

piped input stream is already connected to another piped output stream.

The easiest way to create a pair of piped streams is in the same thread, and in either

order. For example, you can first create the piped output stream:

CHAPTER 10: Performing I/O 483

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream(pos);

Alternatively, you can first create the piped input stream:

PipedInputStream pis = new PipedInputStream();
PipedOutputStream pos = new PipedOutputStream(pis);

You can leave both streams unconnected and later connect them to each other using

the appropriate piped stream’s connect() method, as follows:

PipedOutputStream pos = new PipedOutputStream();
PipedInputStream pis = new PipedInputStream();
// ...
pos.connect(pis);

Listing 10–11 presents a PipedStreamsDemo application whose sender thread streams a

sequence of randomly generated byte integers to a receiver thread, which outputs this

sequence.

Listing 10–11. Piping randomly generated bytes from a sender thread to a receiver thread

import java.io.IOException;
import java.io.PipedOutputStream;
import java.io.PipedInputStream;

public class PipedStreamsDemo
{
 public static void main(String[] args) throws IOException
 {
 final PipedOutputStream pos = new PipedOutputStream();
 final PipedInputStream pis = new PipedInputStream(pos);
 Runnable senderTask = new Runnable()
 {
 final static int LIMIT = 10;
 public void run()
 {
 try
 {
 for (int i = 0 ; i < LIMIT; i++)
 pos.write((byte)(Math.random()*256));
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 try
 {
 pos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }

CHAPTER 10: Performing I/O 484

 };
 Runnable receiverTask = new Runnable()
 {
 public void run()
 {
 try
 {
 int b;
 while ((b = pis.read()) != -1)
 System.out.println(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 try
 {
 pis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }
 };
 Thread sender = new Thread(senderTask);
 Thread receiver = new Thread(receiverTask);
 sender.start();
 receiver.start();
 }
}

When you run this application, you will discover output similar to the following:

7
23
131
177
138
143
130
117
139
37

Perhaps you are wondering why I did not also declare pos and pis volatile? After all,

each variable is accessed by the main thread and its sender or receiver thread. I did not

declare these variables volatile for the following reasons:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 485

 The compiler outputs a “modifier volatile not allowed here” error

message whenever you attempt to declare a local variable volatile

(only fields can be declared volatile).

 The compiler outputs an “illegal combination of modifiers: final and

volatile” error message whenever you combine final with volatile in

a field declaration (final fields are immutable; they are not volatile).

FilterOutputStream and FilterInputStream
Byte array, file, and piped streams pass bytes unchanged to their destinations. Java also

supports filter streams that buffer, compress/uncompress, encrypt/decrypt, or otherwise

manipulate an input stream’s byte sequence before it reaches its destination.

A filter output stream takes the data passed to its write() methods (the input stream),

filters it, and writes the filtered data to an underlying output stream, which might be

another filter output stream or a destination output stream such as a file output stream.

Filter output streams are created from subclasses of the concrete FilterOutputStream

class, an OutputStream subclass. FilterOutputStream declares a single

FilterOutputStream(OutputStream out) constructor that creates a filter output stream

built on top of out, the underlying output stream.

NOTE: FilterOutputStream’s constructor was originally declared protected because it
does not appear to make sense to instantiate FilterOutputStream. However, this
constructor’s access was later changed to public for reasons unknown to me.

Listing 10–12 reveals that it is easy to subclass FilterOutputStream. At minimum, you

declare a constructor that passes its OutputStream argument to FilterOutputStream’s

constructor and override FilterOutputStream’s write(int) method.

Listing 10–12. Scrambling a stream of bytes

import java.io.FilterOutputStream;
import java.io.IOException;
import java.io.OutputStream;

public class ScrambledOutputStream extends FilterOutputStream
{
 private int[] map;
 public ScrambledOutputStream(OutputStream out, int[] map)
 {
 super(out);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }
 @Override

CHAPTER 10: Performing I/O 486

 public void write(int b) throws IOException
 {
 out.write(map[b]);
 }
}

Listing 10–12 presents a ScrambledOutputStream class that performs trivial encryption on

its input stream by scrambling the input stream’s bytes via a remapping operation. This

constructor takes a pair of arguments:

 out identifies the output stream on which to write the scrambled bytes.

 map identifies an array of 256 byte integer values to which input stream

bytes map.

The constructor first passes its out argument to the FilterOutputStream parent via a

super(out); call. It then verifies its map argument’s integrity (map must be nonnull and

have a length of 256—a byte stream offers exactly 256 bytes to map) before saving map.

The write(int) method is trivial: it calls the underlying output stream’s write(int)

method with the byte to which argument b maps. FilterOutputStream declares out to

be protected (for performance), which is why I can directly access this field.

NOTE: It is only essential to override write(int) because FilterOutputStream’s other two
write() methods are implemented via this method.

Listing 10–13 presents the source code to a Scramble application, which lets us

experiment with ScrambledOutputStream by scrambling a source file’s bytes and writing

these scrambled bytes to a destination file.

Listing 10–13. Scrambling a file’s bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

public class Scramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Scramble srcpath destpath");
 return;
 }
 FileInputStream fis = null;
 ScrambledOutputStream sos = null;
 try
 {
 fis = new FileInputStream(args[0]);
 FileOutputStream fos = new FileOutputStream(args[1]);
 sos = new ScrambledOutputStream(fos, makeMap());

CHAPTER 10: Performing I/O 487

 int b;
 while ((b = fis.read()) != -1)
 sos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (fis != null)
 try
 {
 fis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (sos != null)
 try
 {
 sos.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }
 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 return map;
 }
}

Scramble’s main() method first verifies the number of command-line arguments: the first

argument identifies the source path of the file with unscrambled content; the second

argument identifies the destination path of the file that stores scrambled content.

Assuming that two command-line arguments have been specified, main() instantiates

FileInputStream, creating a file input stream that is connected to the file identified by

args[0].

CHAPTER 10: Performing I/O 488

Continuing, main() instantiates FileOutputStream, creating a file output stream that is

connected to the file identified by args[1]. It then instantiates ScrambledOutputStream,

passing the FileOutputStream instance to ScrambledOutputStream’s constructor.

NOTE: When a stream instance is passed to another stream class’s constructor, we say that the
two streams are chained together. For example, the scrambled output stream is chained to the
file output stream.

main() now enters a loop, reading bytes from the file input stream and writing them to

the scrambled output stream by calling ScrambledOutputStream’s write(int) method.

This loop continues until FileInputStream’s read() method returns -1 (end of file).

The finally clause closes the file input stream and scrambled output stream by calling

their close() methods. It does not call the file output stream’s close() method because

FilterOutputStream automatically calls the underlying output stream’s close() method.

The makeMap() method is responsible for creating the map array that is passed to

ScrambledOutputStream’s constructor. The idea is to populate the array with all 256 byte

integer values, storing them in random order.

NOTE: I pass 0 as the seed argument when creating the Random object in order to return a
predictable sequence of random numbers. I need to use the same sequence of random numbers
when creating the complementary map array in the Unscramble application, which I will
present shortly. Unscrambling will not work without the same sequence.

Suppose you have a simple 15-byte file named hello.txt that contains “Hello, World!”

(followed by a carriage return and a line feed). If you execute java Scramble hello.txt
hello.out on an XP platform, you will observe Figure 10–3’s scrambled output.

Figure 10–3. Different fonts yield different-looking scrambled output.

A filter input stream takes the data obtained from its underlying input stream, which

might be another filter input stream or a source input stream such as a file input stream,

filters it, and makes this data available via its read() methods (the output stream).

Filter input streams are created from subclasses of the concrete FilterInputStream

class, an InputStream subclass. FilterInputStream declares a single

FilterInputStream(InputStream in) constructor that creates a filter input stream built

on top of in, the underlying input stream.

CHAPTER 10: Performing I/O 489

Listing 10–14 reveals that it is easy to subclass FilterInputStream. At minimum, declare

a constructor that passes its InputStream argument to FilterInputStream’s constructor

and override FilterInputStream’s read() and read(byte[], int, int) methods.

Listing 10–14. Unscrambling a stream of bytes

import java.io.FilterInputStream;
import java.io.InputStream;
import java.io.IOException;

public class ScrambledInputStream extends FilterInputStream
{
 private int[] map;
 public ScrambledInputStream(InputStream in, int[] map)
 {
 super(in);
 if (map == null)
 throw new NullPointerException("map is null");
 if (map.length != 256)
 throw new IllegalArgumentException("map.length != 256");
 this.map = map;
 }
 @Override
 public int read() throws IOException
 {
 int value = in.read();
 return (value == -1) ? -1 : map[value];
 }
 @Override
 public int read(byte[] b, int off, int len) throws IOException
 {
 int nBytes = in.read(b, off, len);
 if (nBytes <= 0)
 return nBytes;
 for (int i = 0; i < nBytes; i++)
 b[off+i] = (byte) map[off+i];
 return nBytes;
 }
}

Listing 10–14 presents a ScrambledInputStream class that performs trivial decryption on

its underlying input stream by unscrambling the underlying input stream’s scrambled

bytes via a remapping operation.

The read() method first reads the scrambled byte from its underlying input stream. If the

returned value is -1 (end of file), this value is returned to its caller. Otherwise, the byte is

mapped to its unscrambled value, which is returned.

The read(byte[], int, int) method is similar to read(), but stores bytes read from the

underlying input stream in a byte array, taking an offset into this array and a length

(number of bytes to read) into account.

Once again, -1 might be returned from the underlying read() method call. If so, this

value must be returned. Otherwise, each byte in the array is mapped to its unscrambled

value, and the number of bytes read is returned.

CHAPTER 10: Performing I/O 490

NOTE: It is only essential to override read() and read(byte[], int, int) because
FilterInputStream’s read(byte[]) method is implemented via the latter method.

Listing 10–15 presents the source code to an Unscramble application, which lets us

experiment with ScrambledInputStream by unscrambling a source file’s bytes and writing

these unscrambled bytes to a destination file.

Listing 10–15. Unscrambling a file’s bytes

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.util.Random;

public class Unscramble
{
 public static void main(String[] args)
 {
 if (args.length != 2)
 {
 System.err.println("usage: java Unscramble srcpath destpath");
 return;
 }
 ScrambledInputStream sis = null;
 FileOutputStream fos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 sis = new ScrambledInputStream(fis, makeMap());
 fos = new FileOutputStream(args[1]);
 int b;
 while ((b = sis.read()) != -1)
 fos.write(b);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (sis != null)
 try
 {
 sis.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 if (fos != null)
 try
 {
 fos.close();

CHAPTER 10: Performing I/O 491

 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 }
 static int[] makeMap()
 {
 int[] map = new int[256];
 for (int i = 0; i < map.length; i++)
 map[i] = i;
 // Shuffle map.
 Random r = new Random(0);
 for (int i = 0; i < map.length; i++)
 {
 int n = r.nextInt(map.length);
 int temp = map[i];
 map[i] = map[n];
 map[n] = temp;
 }
 int[] temp = new int[256];
 for (int i = 0; i < temp.length; i++)
 temp[map[i]] = i;
 return temp;
 }
}

Unscramble’s main() method first verifies the number of command-line arguments: the

first argument identifies the source path of the file with scrambled content; the second

argument identifies the destination path of the file that stores unscrambled content.

Assuming that two command-line arguments have been specified, main() instantiates

FileInputStream, creating a file input stream that is connected to the file identified by

args[0].

Continuing, main() instantiates ScrambledInputStream, passing the FileInputStream

instance to ScrambledInputStream’s constructor. It then instantiates FileOutputStream,

creating a file output stream that is connected to the file identified by args[1].

NOTE: When a stream instance is passed to another stream class’s constructor, we say that the
two streams are chained together. For example, the scrambled input stream is chained to the file
input stream.

main() now enters a loop, reading bytes from the scrambled input stream and writing

them to the file output stream. This loop continues until ScrambledInputStream’s read()

method returns -1 (end of file).

The finally clause closes the scrambled input stream and file output stream by calling

their close() methods. It does not call the file input stream’s close() method because

FilterOutputStream automatically calls the underlying input stream’s close() method.

CHAPTER 10: Performing I/O 492

The makeMap() method is responsible for creating the map array that is passed to

ScrambledInputStream’s constructor. The idea is to duplicate Listing 10–13’s map array

and then invert it so that unscrambling can be performed.

Continuing from the previous hello.txt/hello.out example, execute java Unscramble
hello.out hello.bak and you will see the same unscrambled content in hello.bak that

is present in hello.txt.

NOTE: For an additional example of a filter output stream and its complementary filter input
stream, check out the “Extending Java Streams to Support Bit Streams” article
(http://www.drdobbs.com/184410423) on the Dr. Dobb’s website. This article introduces
BitStreamOutputStream and BitStreamInputStream classes that are useful for
outputting and inputting bit streams. The article then demonstrates these classes in a Java
implementation of the Lempel-Zif-Welch (LZW) data compression and decompression algorithm.
(Click the Next Page >> link at the bottom of the article page to access the listings.)

BufferedOutputStream and BufferedInputStream
FileOutputStream and FileInputStream have a performance problem. Each file output

stream write() method call and file input stream read() method call results in a call to

one of the underlying platform’s native methods, and these native calls slow down I/O.

NOTE: A native method is an underlying platform API function that Java connects to an
application via the Java Native Interface (JNI). Java supplies reserved word native to identify a
native method. For example, the RandomAccessFile class declares a private native
void open(String name, int mode) method. When either of RandomAccessFile’s
constructors calls this method, Java asks the underlying platform (via the JNI) to open the
specified file in the specified mode on Java’s behalf.

The concrete BufferedOutputStream and BufferedInputStream filter stream classes

improve performance by minimizing underlying output stream write() and underlying

input stream read() method calls. Instead, calls to BufferedOutputStream write() and

BufferedInputStream read() methods take Java buffers into account:

 When a write buffer is full, write() calls the underlying output stream

write() method to empty the buffer. Subsequent calls to

BufferedOutputStream write() methods store bytes in this buffer until

it is once again full.

 When the read buffer is empty, read() calls the underlying input

stream read() method to fill the buffer. Subsequent calls to

BufferedInputStream read() methods return bytes from this buffer

until it is once again empty.

http://www.drdobbs.com/184410423

CHAPTER 10: Performing I/O 493

BufferedOutputStream declares the following constructors:

 BufferedOutputStream(OutputStream out) creates a buffered output

stream that streams its output to out. An internal buffer is created to

store bytes written to out.

 BufferedOutputStream(OutputStream out, int size) creates a

buffered output stream that streams its output to out. An internal

buffer of length size is created to store bytes written to out.

Listing 10–16 chains a BufferedOutputStream instance to a FileOutputStream instance.

Subsequent write() method calls on the BufferedOutputStream instance buffer bytes

and occasionally result in internal write() method calls on the encapsulated

FileOutputStream instance.

Listing 10–16. Chaining a buffered output stream to a file output stream

FileOutputStream fos = new FileOutputStream("employee.dat");
BufferedOutputStream bos = new BufferedOutputStream(fos); // Chain bos to fos.
bos.write(0); // Write to employee.dat through the buffer.
// Additional write() method calls.
bos.close(); // This method call internally calls fos's close() method.

BufferedInputStream declares the following constructors:

 BufferedInputStream(InputStream in) creates a buffered input

stream that streams its input from in. An internal buffer is created to

store bytes read from in.

 BufferedInputStream(InputStream in, int size) creates a buffered

input stream that streams its input from in. An internal buffer of length

size is created to store bytes read from in.

Listing 10–17 chains a BufferedInputStream instance to a FileInputStream instance.

Subsequent read() method calls on the BufferedInputStream instance unbuffer bytes

and occasionally result in internal read() method calls on the encapsulated

FileInputStream instance.

Listing 10–17. Chaining a buffered input stream to a file input stream

FileInputStream fis = new FileInputStream("employee.dat");
BufferedInputStream bis = new BufferedInputStream(fis); // Chain bis to fis.
int ch = bis.read(); // Read employee.dat through the buffer.
// Additional read() method calls.
bis.close(); // This method call internally calls fis's close() method.

DataOutputStream and DataInputStream
FileOutputStream and FileInputStream are useful for writing and reading bytes and

arrays of bytes. However, they provide no support for writing and reading primitive type

values (such as integers) and strings.

CHAPTER 10: Performing I/O 494

For this reason, Java provides the concrete DataOutputStream and DataInputStream filter

stream classes. Each class overcomes this limitation by providing methods to write or

read primitive type values and strings in a platform-independent way:

 Integer values are written and read in big-endian format (the most

significant byte comes first). Check out Wikipedia’s “Endianness” entry

(http://en.wikipedia.org/wiki/Endianness) to learn about the

concept of endianness.

 Floating-point and double precision floating-point values are written

and read according to the IEEE 754 standard, which specifies four

bytes per floating-point value and eight bytes per double precision

floating-point value.

 Strings are written and read according to a modified version of UTF-8,

a variable-length encoding standard for efficiently storing two-byte

Unicode characters. Check out Wikipedia’s “UTF-8” entry

(http://en.wikipedia.org/wiki/Utf-8) to learn more about UTF-8.

DataOutputStream declares a single DataOutputStream(OutputStream out) constructor.

Because this class implements the DataOutput interface, DataOutputStream also

provides access to the same-named write methods as provided by RandomAccessFile.

DataInputStream declares a single DataInputStream(InputStream in) constructor.

Because this class implements the DataInput interface, DataInputStream also provides

access to the same-named read methods as provided by RandomAccessFile.

Listing 10–18 presents the source code to a DataStreamsDemo application that uses a

DataOutputStream instance to write multibyte values to a FileOutputStream instance,

and uses DataInputStream to read multibyte values from a FileInputStream instance.

Listing 10–18. Outputting and then inputting a stream of multibyte values

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class DataStreamsDemo
{
 final static String FILENAME = "values.dat";
 public static void main(String[] args)
 {
 DataOutputStream dos = null;
 DataInputStream dis = null;
 try
 {
 FileOutputStream fos = new FileOutputStream(FILENAME);
 dos = new DataOutputStream(fos);
 dos.writeInt(1995);
 dos.writeUTF("Saving this String in modified UTF-8 format!");
 dos.writeFloat(1.0F);
 dos.close(); // Close underlying file output stream.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Utf-8

CHAPTER 10: Performing I/O 495

 // The following null assignment prevents another close attempt on
 // dos (which is now closed) should IOException be thrown from
 // subsequent method calls.
 dos = null;
 FileInputStream fis = new FileInputStream(FILENAME);
 dis = new DataInputStream(fis);
 System.out.println(dis.readInt());
 System.out.println(dis.readUTF());
 System.out.println(dis.readFloat());
 dis.close(); // Close underlying file input stream.
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 try
 {
 if (dos != null)
 dos.close();
 }
 catch (IOException ioe2) // Cannot redeclare local variable ioe.
 {
 System.err.println(ioe2.getMessage());
 }
 try
 {
 if (dis != null)
 dis.close();
 }
 catch (IOException ioe2) // Cannot redeclare local variable ioe.
 {
 System.err.println(ioe2.getMessage());
 }
 }
 }
}

DataStreamsDemo creates a file named values.dat, calls DataOutputStream methods to

write an integer, a string, and a floating-point value to this file, and calls DataInputStream

methods to read back these values. Unsurprisingly, it generates the following output:

1995
Saving this String in modified UTF-8 format!
1.0

CAUTION: When reading a file of values written by a sequence of DataOutputStream method
calls, make sure to use the same method-call sequence. Otherwise, you are bound to end up
with erroneous data and, in the case of the readUTF() methods, thrown instances of the
UTFDataFormatException class (a subclass of IOException).

CHAPTER 10: Performing I/O 496

Object Serialization and Deserialization
Although you can use the data stream classes to stream primitive type values and

String objects, you cannot use these classes to stream non-String objects. Instead,

you must use object serialization and deserialization to stream objects of arbitrary types.

Object serialization is a virtual machine mechanism for serializing object state into a

stream of bytes. Its deserialization counterpart is a virtual machine mechanism for

deserializing this state from a byte stream.

NOTE: An object’s state consists of instance fields that store primitive type values and/or
references to other objects. When an object is serialized, the objects that are part of this state
are also serialized (unless you prevent them from being serialized). Furthermore, the objects that
are part of those objects’ states are serialized (unless you prevent this), and so on.

Java supports three forms of serialization and deserialization: default serialization and

deserialization, custom serialization and deserialization, and externalization.

Default Serialization and Deserialization
Default serialization and deserialization is the easiest form to use but offers little control

over how objects are serialized and deserialized. Although Java handles most of the

work on your behalf, there are a couple of tasks that you must perform.

Your first task is to have the class of the object that is to be serialized implement the

Serializable interface (directly, or indirectly via the class’s superclass). The rationale for

implementing Serializable is to avoid unlimited serialization.

NOTE: Serializable is an empty marker interface that a class implements to tell the virtual
machine that it is okay to serialize the class’s objects. When the serialization mechanism
encounters an object whose class does not implement Serializable, it throws an instance of
the NotSerializableException class (an indirect subclass of IOException).

Unlimited serialization is the process of serializing an entire object graph (all objects that

are reachable from a starting object). Java does not support unlimited serialization for

the following reasons:

 Security: If Java automatically serialized an object containing sensitive

information (such as a password or a credit card number), it would be

easy for a hacker to discover this information and wreak havoc. It is

better to give the developer a choice to prevent this from happening.

CHAPTER 10: Performing I/O 497

 Performance: Serialization leverages the Reflection API, introduced in

Chapter 7. In that chapter, you learned that reflection slows down

application performance. Unlimited serialization could really hurt an

application’s performance.

 Objects not amenable to serialization: Some objects exist only in the

context of a running application and it is meaningless to serialize them.

For example, a file stream object that is deserialized no longer

represents a connection to a file.

Listing 10–19 declares an Employee class that implements the Serializable interface to

tell the virtual machine that it is okay to serialize Employee objects.

Listing 10–19. Implementing Serializable

public class Employee implements java.io.Serializable
{
 private String name;
 private int age;
 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 public String getName() { return name; }
 public int getAge() { return age; }
}

Because Employee implements Serializable, the serialization mechanism will not throw

a NotSerializableException instance when serializing an Employee object. Not only

does Employee implement Serializable, the String class also implements this interface.

Your second task is to work with the ObjectOutputStream class and its writeObject()

method to serialize an object, and the OutputInputStream class and its readObject()

method to deserialize the object.

NOTE: Although ObjectOutputStream extends OutputStream instead of
FilterOutputStream, and although ObjectInputStream extends InputStream instead of
FilterInputStream, these classes behave as filter streams.

Java provides the concrete ObjectOutputStream class to initiate the serialization of an

object’s state to an object output stream. This class declares an

ObjectOutputStream(OutputStream out) constructor that chains the object output

stream to the output stream specified by out.

When you pass an output stream reference to out, this constructor attempts to write a

serialization header to that output stream. It throws NullPointerException when out is

null, and IOException when an I/O error prevents it from writing this header.

CHAPTER 10: Performing I/O 498

ObjectOutputStream serializes an object via its void writeObject(Object obj) method.

This method attempts to write information about obj’s class followed by the values of

obj’s instance fields to the underlying output stream.

writeObject() does not serialize the contents of static fields. In contrast, it serializes

the contents of all instance fields that are not explicitly prefixed with the transient

reserved word. For example, consider the following field declaration:

public transient char[] password;

This declaration specifies transient to avoid serializing a password for some hacker to

encounter. The virtual machine’s serialization mechanism ignores any instance field that

is marked transient.

writeObject() throws IOException or an instance of an IOException subclass when

something goes wrong. For example, this method throws NotSerializableException

when it encounters an object whose class does not implement Serializable.

NOTE: Because ObjectOutputStream implements DataOutput, it also declares methods for
writing primitive type values and strings to an object output stream.

Java provides the concrete ObjectInputStream class to initiate the deserialization of an

object’s state from an object input stream. This class declares an

ObjectInputStream(InputStream in) constructor that chains the object input stream to

the input stream specified by in.

When you pass an input stream reference to in, this constructor attempts to read a

serialization header from that input stream. It throws NullPointerException when in is

null, IOException when an I/O error prevents it from reading this header, and

StreamCorruptedException (an indirect subclass of IOException) when the stream

header is incorrect.

ObjectInputStream deserializes an object via its Object readObject() method. This

method attempts to read information about obj’s class followed by the values of obj’s

instance fields from the underlying input stream.

readObject() throws java.lang.ClassNotFoundException, IOException, or an instance

of an IOException subclass when something goes wrong. For example, this method

throws OptionalDataException when it encounters primitive values instead of objects.

NOTE: Because ObjectInputStream implements DataInput, it also declares methods for
reading primitive type values and strings from an object input stream.

Listing 10–20 presents an application that uses these classes to serialize and deserialize

an instance of Listing 10–19’s Employee class to and from an employee.dat file.

CHAPTER 10: Performing I/O 499

Listing 10–20. Serializing and deserializing an Employee object

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

public class SerializationDemo
{
 final static String FILENAME = "employee.dat";
 public static void main(String[] args)
 {
 ObjectOutputStream oos = null;
 ObjectInputStream ois = null;
 try
 {
 FileOutputStream fos = new FileOutputStream(FILENAME);
 oos = new ObjectOutputStream(fos);
 Employee emp = new Employee("John Doe", 36);
 oos.writeObject(emp);
 oos.close();
 emp = null;
 FileInputStream fis = new FileInputStream(FILENAME);
 ois = new ObjectInputStream(fis);
 emp = (Employee) ois.readObject(); // (Employee) cast is necessary.
 ois.close();
 System.out.println(emp.getName());
 System.out.println(emp.getAge());
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println(cnfe.getMessage());
 closeFiles(oos, ois);
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 closeFiles(oos, ois);
 }
 }
 static void closeFiles(ObjectOutputStream oos, ObjectInputStream ois)
 {
 try
 {
 if (oos != null)
 oos.close();
 }
 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 try
 {
 if (ois != null)
 ois.close();
 }

CHAPTER 10: Performing I/O 500

 catch (IOException ioe)
 {
 System.err.println(ioe.getMessage());
 }
 }
}

Most of the source code is taken up with exception handling and closing the underlying

file streams. The crucial code (shown in bold) is much briefer and demonstrates the

tasks of default serialization and deserialization.

When you run this application, you will discover a file named employee.dat and observe

the following output:

John Doe
36

There is no guarantee that the same class will exist when a serialized object is

deserialized (perhaps an instance field has been deleted). During deserialization, this

mechanism causes readObject() to throw an instance of InvalidClassException (an

indirect subclass of IOException) when it detects a difference between the deserialized

object and its class.

Every serialized object has an identifier. The deserialization mechanism compares the

identifier of the object being deserialized with the serialized identifier of its class (all

serializable classes are automatically given unique identifiers unless they explicitly

specify their own identifiers) and causes InvalidClassException to be thrown when it

detects a mismatch.

Perhaps you have added an instance field to a class, and you want the deserialization

mechanism to set the instance field to a default value rather than have readObject()

throw an InvalidClassException instance. (The next time you serialize the object, the

new field’s value will be written out.)

You can avoid the thrown InvalidClassException instance by adding a static final
long serialVersionUID = long integer value; declaration to the class. The long
integer value must be unique and is known as a stream unique identifier (SUID).

During deserialization, the virtual machine will compare the deserialized object’s SUID to

its class’s SUID. If they match, readObject() will not throw InvalidClassException

when it encounters a compatible class change (such as adding an instance field).

However, it will still throw this exception when it encounters an incompatible class
change (such as changing an instance field’s name or type).

NOTE: Whenever you change a class in some fashion, you must calculate a new SUID and assign
it to serialVersionUID.

The JDK provides a serialver tool for calculating the SUID. For example, to generate an

SUID for Listing 10–19’s Employee class, change to the directory containing

Employee.class and execute serialver Employee. In response, serialver generates the

following output, which you paste (except for Employee:) into Employee.java:

CHAPTER 10: Performing I/O 501

Employee: static final long serialVersionUID = 1517331364702470316L;

The Windows version of serialver also provides a graphical user interface that you

might find more convenient to use. To access this interface, specify the -show

command-line option. For example, Figure 10–4 reveals this user interface in the context

of the Employee class.

Figure 10–4. The serialver graphical user interface

Custom Serialization and Deserialization
My previous discussion focused on default serialization and deserialization (with the

exception of marking an instance field transient to prevent it from being included

during serialization). However, situations arise where you need to customize these tasks.

For example, suppose you want to serialize instances of a class that does not implement

Serializable. As a workaround, you subclass this other class, have the subclass

implement Serializable, and forward subclass constructor calls to the superclass.

Although this workaround lets you serialize subclass objects, you cannot deserialize

these serialized objects when the superclass does not declare a noargument

constructor, which is required by the deserialization mechanism.

Consider java.util.StringTokenizer. This concrete class does not implement

Serializable and does not declare a noargument constructor. Listing 10–21 subclasses

StringTokenizer and proves that serialized subclass instances cannot be deserialized.

Listing 10–21. Problematic deserialization

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

import java.util.StringTokenizer;

class SerializableStringTokenizer extends StringTokenizer
 implements Serializable
{
 SerializableStringTokenizer(String str)
 {
 super(str);
 }
 SerializableStringTokenizer(String str, String delim)
 {

CHAPTER 10: Performing I/O 502

 super(str, delim);
 }
 SerializableStringTokenizer(String str, String delim,
 boolean returnDelims)
 {
 super(str, delim, returnDelims);
 }
}
public class SerializationDemo
{
 public static void main(String[] args)
 {
 try
 {
 SerializableStringTokenizer sst;
 sst = new SerializableStringTokenizer("The quick brown fox");
 System.out.println("Number of tokens = " + sst.countTokens());
 System.out.println("First token = " + sst.nextToken());
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(sst); // Line 40
 oos.close();
 System.out.println("sst object written to byte array");
 ByteArrayInputStream bais;
 bais = new ByteArrayInputStream(baos.toByteArray());
 ObjectInputStream ois = new ObjectInputStream(bais);
 Object o = ois.readObject(); // Line 46
 System.out.println("sst object read from byte array");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Listing 10–21’s main() method instantiates SerializableStringTokenizer with a sample

string argument. SerializableStringTokenizer(String) passes this argument to its

StringTokenizer counterpart, which assumes that tokens are delimited with spaces.

main() next calls StringTokenizer’s countTokens() method to return the number of

tokens in the string, and its nextToken() method to return the first token. Both values are

output to the standard output device.

Continuing, main() works with the ByteArrayOutputStream and ByteArrayInputStream

classes to provide a byte array as a stream destination and source. An instance of the

SerializableStringTokenizer class is serialized to and deserialized from this array.

When you run this application, it generates the following output:

Number of tokens = 4
First token = the
sst object written to byte array
java.io.InvalidClassException: SerializableStringTokenizer;
 SerializableStringTokenizer; no valid constructor
 at java.io.ObjectStreamClass.checkDeserialize(Unknown Source)
 at java.io.ObjectInputStream.readOrdinaryObject(Unknown Source)

CHAPTER 10: Performing I/O 503

 at java.io.ObjectInputStream.readObject0(Unknown Source)
 at java.io.ObjectInputStream.readObject(Unknown Source)
 at SerializationDemo.main(SerializationDemo.java:46)
Caused by: java.io.InvalidClassException: SerializableStringTokenizer; no valid
 constructor
 at java.io.ObjectStreamClass.<init>(Unknown Source)
 at java.io.ObjectStreamClass.lookup(Unknown Source)
 at java.io.ObjectOutputStream.writeObject0(Unknown Source)
 at java.io.ObjectOutputStream.writeObject(Unknown Source)
 at SerializationDemo.main(SerializationDemo.java:40)

This output reveals a thrown instance of the InvalidClassException class. This

exception object was thrown during deserialization because StringTokenizer does not

possess a noargument constructor.

We can overcome this problem by taking advantage of the wrapper class pattern that I

presented in Chapter 3. Furthermore, we declare a pair of private methods in the

subclass that the serialization and deserialization mechanisms look for and call.

Normally, the serialization mechanism writes out a class’s instance fields to the

underlying output stream. However, you can prevent this from happening by declaring a

private void writeObject(ObjectOutputStream oos) method in that class.

When the serialization mechanism discovers this method, it calls the method instead of

automatically outputting instance field values. The only values that are output are those

explicitly output via the method.

Conversely, the deserialization mechanism assigns values to a class’s instance fields

that it reads from the underlying input stream. However, you can prevent this from

happening by declaring a private void readObject(ObjectInputStream ois) method.

When the deserialization mechanism discovers this method, it calls the method instead

of automatically assigning values to instance fields. The only values that are assigned to

instance fields are those explicitly assigned via the method.

Because SerializableStringTokenizer does not introduce any fields, and because

StringTokenizer does not offer access to its internal fields, what would a serialized

SerializableStringTokenizer object include?

Although we cannot serialize StringTokenizer’s internal state, we can serialize the

argument(s) passed to its constructors, such as the string being tokenized. The

deserialized StringTokenizer object is then primed to being tokenizing.

Listing 10–22 reveals the refactored SerializableStringTokenizer and

SerializationDemo classes.

Listing 10–22. Solving problematic deserialization

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

CHAPTER 10: Performing I/O 504

import java.util.StringTokenizer;

class SerializableStringTokenizer implements Serializable
{
 private StringTokenizer st;
 private String str, delim;
 private boolean returnDelims;
 SerializableStringTokenizer(String str)
 {
 this(str, null, false);
 }
 SerializableStringTokenizer(String str, String delim)
 {
 this(str, delim, false);
 }
 SerializableStringTokenizer(String str, String delim,
 boolean returnDelims)
 {
 this.str = str;
 this.delim = delim;
 this.returnDelims = returnDelims;
 st = new StringTokenizer(str, delim, returnDelims);
 }
 private void writeObject(ObjectOutputStream oos) throws IOException
 {
 oos.writeUTF(str);
 oos.writeUTF(delim);
 oos.writeBoolean(returnDelims);
 }
 private void readObject(ObjectInputStream ois)
 throws ClassNotFoundException, IOException
 {
 str = ois.readUTF();
 delim = ois.readUTF();
 returnDelims = ois.readBoolean();
 st = new StringTokenizer(str, delim, returnDelims);
 }
 public int countTokens()
 {
 return st.countTokens();
 }
 public String nextToken()
 {
 return st.nextToken();
 }
}
public class SerializationDemo
{
 public static void main(String[] args)
 {
 try
 {
 SerializableStringTokenizer sst;
 sst = new SerializableStringTokenizer("A,B,C,D", ",", true);
 System.out.println("Number of tokens = " + sst.countTokens());
 System.out.println("First token = " + sst.nextToken());
 System.out.println("Second token = " + sst.nextToken());

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 505

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(sst);
 oos.close();
 System.out.println("sst object written to byte array");
 ByteArrayInputStream bais;
 bais = new ByteArrayInputStream(baos.toByteArray());
 ObjectInputStream ois = new ObjectInputStream(bais);
 sst = (SerializableStringTokenizer) ois.readObject();
 System.out.println("sst object read from byte array");
 System.out.println("Number of tokens = " + sst.countTokens());
 System.out.println("First token = " + sst.nextToken());
 System.out.println("Second token = " + sst.nextToken());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

SerializableStringTokenizer’s writeObject(ObjectOutputStream) and

readObject(ObjectInputStream) methods rely on DataOutput and DataInput methods:

they do not need to call writeObject() and readObject() to perform their tasks.

When you run this application, it generates the following output, which reveals that the

deserialized SerializableStringTokenizer object is ready to extract tokens:

Number of tokens = 7
First token = A
Second token = ,
sst object written to byte array
sst object read from byte array
Number of tokens = 7
First token = A
Second token = ,

The writeObject(ObjectOutputStream) and readObject(ObjectInputStream) methods

can be used to serialize/deserialize data items beyond the normal state (non-transient

instance fields); for example, serializing/deserializing the contents of a static field.

However, before serializing or deserializing the additional data items, you must tell the

serialization and deserialization mechanisms to serialize or deserialize the object’s

normal state. The following methods help you accomplish this task:

 ObjectOutputStream’s defaultWriteObject() method outputs the

object’s normal state. Your writeObject(ObjectOutputStream) method

first calls this method to output that state, and then outputs additional

data items via ObjectOutputStream methods such as writeUTF().

 ObjectInputStream’s defaultReadObject() method inputs the object’s

normal state. Your readObject(ObjectInputStream) method first calls

this method to input that state, and then inputs additional data items

via ObjectInputStream methods such as readUTF().

CHAPTER 10: Performing I/O 506

Externalization
In addition to default serialization/deserialization and custom serialization/deserialization,

Java supports externalization. Unlike default/custom serialization/deserialization,

externalization offers complete control over the serialization and deserialization tasks.

NOTE: Externalization helps you improve the performance of the reflection-based serialization
and deserialization mechanisms by giving you complete control over what fields are serialized
and deserialized.

Java supports externalization via its Externalizable interface. This interface declares

the following pair of public methods:

 void writeExternal(ObjectOutput out) saves the calling object’s

contents by calling various methods on the out object. This method

throws IOException when an I/O error occurs. (ObjectOutput is a

subinterface of DataOutput and is implemented by

ObjectOutputStream.)

 void readExternal(ObjectInput in) restores the calling object’s

contents by calling various methods on the in object. This method

throws IOException when an I/O error occurs, and

ClassNotFoundException when the class of the object being restored

cannot be found. (ObjectInput is a subinterface of DataInput and is

implemented by ObjectInputStream.)

If a class implements Externalizable, its writeExternal() method is responsible for

saving all field values that are to be saved. Also, its readExternal() method is

responsible for restoring all saved field values and in the order they were saved.

Listing 10–23 presents a refactored version of Listing 10–19’s Employee class to show

you how to take advantage of externalization.

Listing 10–23. Refactoring Listing 10–19’s Employee class to support externalization

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

public class Employee implements Externalizable
{
 private String name;
 private int age;
 public Employee()
 {
 System.out.println("Employee() called");
 }
 public Employee(String name, int age)
 {
 this.name = name;
 this.age = age;

CHAPTER 10: Performing I/O 507

 }
 public String getName() { return name; }
 public int getAge() { return age; }
 @Override
 public void readExternal(ObjectInput in) throws
 IOException, ClassNotFoundException
 {
 System.out.println("readExternal() called");
 name = in.readUTF();
 age = in.readInt();
 }
 @Override
 public void writeExternal(ObjectOutput out) throws IOException
 {
 System.out.println("writeExternal() called");
 out.writeUTF(name);
 out.writeInt(age);
 }
}

Employee declares a public Employee() constructor because each class that

participates in externalization must declare a public noargument constructor. This

constructor is called during deserialization to instantiate the object.

CAUTION: The deserialization mechanism throws InvalidClassException with a “no valid
constructor” message when it does not detect a public noargument constructor.

You initiate externalization by instantiating ObjectOutputStream and calling its

writeObject(Object) method, or by instantiating ObjectInputStream and calling its

readObject() method.

NOTE: When passing an object whose class (directly/indirectly) implements Externalizable
to writeObject(), the writeObject()-initiated serialization mechanism writes only the
identity of the object’s class to the object output stream.

Suppose you compiled Listing 10–20’s SerializationDemo.java source code and

Listing 10–23’s Employee.java source code in the same directory. Now suppose you

executed java SerializationDemo. In response, you would observe the following

output:

writeExternal() called
Employee() called
readExternal() called
John Doe
36

Before serializing an object, the serialization mechanism checks the object’s class to see

if it implements Externalizable. If so, the mechanism calls writeExternal(). Otherwise,

it looks for a private writeObject(ObjectOutputStream) method, and calls this method if

CHAPTER 10: Performing I/O 508

present. If this method is not present, the mechanism performs default serialization,

which includes only non-transient instance fields.

Before deserializing an object, the deserialization mechanism checks the object’s class

to see if it implements Externalizable. If so, the mechanism attempts to instantiate the

class via the public noargument constructor. Assuming success, it calls

readExternal().

If the object’s class does not implement Externalizable, the deserialization mechanism

looks for a private readObject(ObjectInputStream) method. If this method is not

present, the mechanism performs default deserialization, which includes only non-

transient instance fields.

PrintStream
Of all the stream classes, PrintStream is an oddball: it should have been named

PrintOutputStream for consistency with the naming convention. This filter output stream

class writes string representations of input data items to the underlying output stream.

NOTE: PrintStream uses the default character encoding to convert a string’s characters to
bytes. (I will discuss character encodings in the next section.) Because PrintStream does not
support different character encodings, you should use the equivalent PrintWriter class
instead of PrintStream. However, you need to know about PrintStream when working with
System.out and System.err because these class fields are of type PrintStream.

PrintStream instances are print streams whose various print() and println() methods

print string representations of integers, floating-point values, and other data items to the

underlying output stream. Unlike the print() methods, println() methods append a

line terminator to their output.

NOTE: The line terminator (also known as line separator) is not necessarily the newline (also
commonly referred to as line feed). Instead, to promote portability, the line separator is the
sequence of characters defined by system property line.separator. On Windows platforms,
System.getProperty("line.separator") returns the actual carriage return code (13),
which is symbolically represented by \r, followed by the actual newline/line feed code (10),
which is symbolically represented by \n. In contrast,
System.getProperty("line.separator") returns only the actual newline/line feed code
on Unix and Linux platforms.

The println() methods call their corresponding print() methods followed by the void
println() method, which outputs line.separator’s value. For example, void
println(int x) outputs x’s string representation and calls println() to output the line

separator.

CHAPTER 10: Performing I/O 509

CAUTION: Never hard-code the \n escape sequence in a literal string that you are going to
output via a print() or println() method. Doing so is not portable. For example, when Java
executes System.out.print("first line\n"); followed by
System.out.println("second line");, you will see first line on one line followed by
second line on a subsequent line when this output is viewed at the Windows command line.
In contrast, you will see first linesecond line when this output is viewed in the Windows
Notepad application (which requires a carriage return/line feed sequence to terminate lines).
When you need to output a blank line, the easiest way to do this is to call
System.out.println();, which is why you find this method call scattered throughout my
book. I confess that I do not always follow my own advice, so you might find instances of \n in
literal strings being passed to System.out.print() or System.out.println() elsewhere
in this book.

The PrintStream class also declares a pair of printf() methods that let you achieve

formatted output in a manner similar to that performed by the C language’s printf()

function:

 PrintStream printf(Locale l, String format, Object... args)

creates a formatted string using format specifier string format and the

args array according to the locale specified by l (null indicates the

default locale), and writes the formatted string to the output stream.

 PrintStream printf(String format, Object... args) creates a

formatted string using format specifier string format and the args array

according to the default locale, and writes the formatted string to the

output stream.

Each method throws NullPointerException when format is null, and

IllegalArgumentException when format contains an illegal syntax, format contains a

format specifier that is incompatible with the given arguments, there are insufficient

arguments to match the format string, or some other illegal condition applies.

NOTE: The printf() methods are convenience methods for specifying out.format(l,
format, args) and out.format(format, args), respectively. Behind the scenes, they
call PrintStream’s PrintStream format(Locale l, String format, Object...
args) and PrintStream format(String format, Object... args) methods to write
the formatted string to the output stream. Internally, these methods instantiate the
java.util.Formatter class, which serves as an interpreter for printf()-style strings and
performs the actual formatting.

The format string consists of literal text and format specifiers, %-prefixed character

sequences that offer instructions on how to format an argument. For example, %x

CHAPTER 10: Performing I/O 510

indicates that an integer argument is to be formatted as a hexadecimal string with

lowercase letters (a–f), whereas %X indicates that uppercase letters (A–F) are to be used.

CAUTION: You must specify one argument for each format specifier appearing in the format
specifier string. Fail to do that and printf() throws IllegalArgumentException.

Each printf() method returns a reference to the print stream so that you can create a

chain of printf() method calls. (This is an example of chained instance method calls,

which I discussed in Chapter 2.) Listing 10–24 demonstrates chained printf() method

calls along with various format specifier strings.

Listing 10–24. Formatting and outputting formatted values via System.out.printf()

import java.util.Calendar;
import java.util.Locale;

public class FormattingDemo
{
 public static void main(String[] args)
 {
 String name = "John Doe";
 int age = 36;
 System.out.printf("Name = %s, age = %d%n", name, age);
 System.out.printf(Locale.FRANCE, "e = %10.4f%n", Math.E);
 System.out.printf("e = %10.4f%n", Math.E);
 Calendar cal = Calendar.getInstance();
 System.out.printf("Current time = %tR, ", cal).printf("%tT%n", cal);
 System.out.printf("Current date = %tD%n", cal);
 }
}

The first System.out.printf() method call’s format specifier string demonstrates the %s

(string) and %d (decimal integer) format specifiers. It also demonstrates format specifier

%n, which is equal to the value of the line.separator system property.

The second System.out.printf() method call’s format specifier string demonstrates the

%f (floating-point) format specifier. This format specifier is preceded by 10.4, where 10

specifies that at least ten characters must be written (the width), and 4 specifies that

exactly four characters must be written after a decimal point (the precision).

The second System.out.printf() method call also demonstrates localizing the output

according to a specific locale. In the example, Locale.FRANCE is passed, which indicates

that numbers must be written out with commas instead of decimal points.

The third System.out.printf() method call is similar to the second call, except that it

does not pass a locale. As a result, the default locale is used. On my platform, that

locale is en_US, which results in decimal points being output.

The fourth and fifth System.out.printf() method calls are chained together. The fourth

method call uses format specifier %tR to format a Calendar object’s time as HH:MM,

according to the 24-hour clock. In contrast, the fifth method call uses format specifier

%tT to format a Calendar object’s time as HH:MM:SS, according to the 24-hour clock.

CHAPTER 10: Performing I/O 511

The final System.out.println() method call’s format specifier string demonstrates the

%tD format specifier, which formats the date portion of a Calendar object’s time value as

mm/dd/yy.

When you run this application, it generates the following output:

Name = John Doe, age = 36
e = 2,7183
e = 2.7183
Current time = 19:52, 19:52:13
Current date = 08/11/10

NOTE: The Formatter class’s Java documentation provides a detailed reference on all
supported format specifiers.

PrintStream offers two other features that you will find useful:

 Unlike other output streams, a print stream never rethrows an

IOException instance thrown from the underlying output stream.

Instead, exceptional situations set an internal flag that can be tested

by calling PrintStream’s boolean checkError() method, which returns

true to indicate a problem.

 PrintStream objects can be created to automatically flush their output

to the underlying output stream. In other words, the flush() method is

automatically called after a byte array is written, one of the println()

methods is called, or a newline is written. The PrintStream instances

assigned to System.out and System.err automatically flush their

output to the underlying output stream.

Writers and Readers
Java’s stream classes are good for streaming sequences of bytes, but they are not good

for streaming sequences of characters because bytes and characters are two different

things: a byte represents an 8-bit data item and a character represents a 16-bit data

item. Also, Java’s char and String types naturally handle characters instead of bytes.

More importantly, byte streams have no knowledge of character sets (sets of mappings

between integer values [known as code points] and symbols, such as Unicode) and their

character encodings (mappings between the members of a character set and sequences

of bytes that encode these characters for efficiency, such as UTF-8).

If you need to stream characters, you should take advantage of Java’s writer and reader

classes, which were designed to support character I/O (they work with char instead of

byte). Furthermore, the writer and reader classes take character encodings into account.

CHAPTER 10: Performing I/O 512

A BRIEF HISTORY OF CHARACTER SETS AND CHARACTER ENCODINGS

Early computers and programming languages were created mainly by English-speaking programmers in
countries where English was the native language. They developed a standard mapping between code
points 0 through 127 and the 128 commonly used characters in the English language (such as A–Z). The
resulting character set/encoding was named American Standard Code for Information Interchange (ASCII).

The problem with ASCII is that it is inadequate for most non-English languages. For example, ASCII does
not support diacritical marks such as the cedilla used in the French language. Because a byte can
represent a maximum of 256 different characters, developers around the world started creating different
character sets/encodings that encoded the 128 ASCII characters, but also encoded extra characters to
meet the needs of languages such as French, Greek, or Russian. Over the years, many legacy (and still
important) files have been created whose bytes represent characters defined by specific character
sets/encodings.

The International Organization for Standardization (ISO) and the International Electrotechnical Commission
(IEC) have worked to standardize these eight-bit character sets/encodings under a joint umbrella standard
called ISO/IEC 8859. The result is a series of substandards named ISO/IEC 8859-1, ISO/IEC 8859-2, and so
on. For example, ISO/IEC 8859-1 (also known as Latin-1) defines a character set/encoding that consists of
ASCII plus the characters covering most Western European countries. Also, ISO/IEC 8859-2 (also known as
Latin-2) defines a similar character set/encoding covering Central and Eastern European countries.

Despite ISO’s/IEC’s best efforts, a plethora of character sets/encodings is still inadequate. For example,
most character sets/encodings only allow you to create documents in a combination of English and one
other language (or a small number of other languages). You cannot, for example, use an ISO/IEC character
set/encoding to create a document using a combination of English, French, Turkish, Russian, and Greek
characters.

This and other problems are being addressed by an international effort that has created and is continuing
to develop Unicode, a single universal character set. Because Unicode characters are twice as big as
ISO/IEC characters, Unicode uses one of several variable-length encoding schemes known as Unicode
Transformation Format (UTF) to encode Unicode characters for efficiency. For example, UTF-8 encodes
every character in the Unicode character set in one to four bytes (and is backward compatible with ASCII).

The terms character set and character encoding are often used interchangeably. They mean the same
thing in the context of ISO/IEC character sets, where a code point is the encoding. However, these terms
are different in the context of Unicode, where Unicode is the character set and UTF-8 is one of several
possible character encodings for Unicode characters.

Writer and Reader Classes Overview
The java.io package provides several writer and reader classes that are descendents of

the abstract Writer and Reader classes. In the following list, writer classes are denoted

by their Writer suffixes and reader classes are denoted by their Reader suffixes:

 BufferedWriter

 BufferedReader

 CharArrayWriter

CHAPTER 10: Performing I/O 513

 CharArrayReader

 FileWriter

 FileReader

 FilterWriter

 FilterReader

 InputStreamReader

 LineNumberReader

 OutputStreamWriter

 PipedWriter

 PipedReader

 PrintWriter

 PushbackReader

 StringWriter

 StringReader

Because many of these classes have equivalent stream classes (BufferedWriter is

equivalent to BufferedOutputStream, for example), upcoming sections take you on a tour

of only a few of these writer and reader classes, beginning with Writer and Reader.

Writer and Reader
Java provides the Writer and Reader classes for performing character I/O. Writer is the

superclass of all writer subclasses. The following list identifies differences between

Writer and OutputStream:

 Writer declares several append() methods for appending characters

to this writer. These methods exist because Writer implements the

java.lang.Appendable interface, which is used in partnership with the

Formatter class to output strings that are created in a manner similar

to using the C language’s printf() function.

 Writer declares additional write() methods, including a convenient

void write(String str) method for writing a String object’s

characters to this writer.

Reader is the superclass of all reader subclasses. The following list identifies differences

between Reader and InputStream:

 Reader declares read(char[]) and read(char[], int, int) methods

instead of read(byte[]) and read(byte[], int, int) methods.

 Reader does not declare an available() method.

CHAPTER 10: Performing I/O 514

 Reader declares a boolean ready() method that returns true when the

next read() call is guaranteed not to block for input.

 Reader declares an int read(CharBuffer target) method for reading

characters from a character buffer. (I discuss CharBuffer in Chapter

11—see “The Road Goes Ever On” at the end of this chapter for more

information about Chapter 11 and the other chapters that I am posting

on my website.)

OutputStreamWriter and InputStreamReader
The concrete OutputStreamWriter class (a Writer subclass) is a bridge between an

incoming sequence of characters and an outgoing stream of bytes. Characters written to

this writer are encoded into bytes according to the default or specified character

encoding.

NOTE: The default character encoding is accessible via the file.encoding system property.

Each call to an OutputStreamWriter write() method causes an encoder to be called on

the given character(s). The resulting bytes are accumulated in a buffer before being

written to the underlying output stream. The characters passed to the write() methods

are not buffered.

OutputStreamWriter declares four constructors, including the following:

 OutputStreamWriter(OutputStream out) creates a bridge between an

incoming sequence of characters (passed to OutputStreamWriter via

its append() and write() methods) and underlying output stream out.

The default character encoding is used to encode characters into

bytes.

 OutputStreamWriter(OutputStream out, String charsetName) creates

a bridge between an incoming sequence of characters (passed to

OutputStreamWriter via its append() and write() methods) and

underlying output stream out. charsetName identifies the character

encoding used to encode characters into bytes. This constructor

throws UnsupportedEncodingException when the named character

encoding is not supported.

NOTE: OutputStreamWriter depends on the abstract java.nio.charset.Charset and
java.nio.charset.CharsetEncoder classes to perform character encoding.

Listing 10–25 uses the second constructor to create a bridge to an underlying file output

stream so that Polish text can be written to an ISO/IEC 8859-2-encoded file.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 515

Listing 10–25. Outputting Polish text

FileOutputStream fos = new FileOutputStream("polish.txt");
OutputStreamWriter osw = new OutputStreamWriter(fos, "8859_2");
char ch = '\u0323'; // Accented N.
osw.write(ch);

The concrete InputStreamReader class (a Reader subclass) is a bridge between an

incoming stream of bytes and an outgoing sequence of characters. Characters read

from this reader are decoded from bytes according to the default or specified character

encoding.

Each call to an InputStreamReader read() method may cause one or more bytes to be

read from the underlying input stream. To enable the efficient conversion of bytes to

characters, more bytes may be read ahead from the underlying stream than are

necessary to satisfy the current read operation.

InputStreamReader declares four constructors, including the following:

 InputStreamReader(InputStream in) creates a bridge between

underlying input stream in and an outgoing sequence of characters

(returned from InputStreamReader via its read() methods). The default

character encoding is used to decode bytes into characters.

 InputStreamReader(InputStream in, String charsetName) creates a

bridge between underlying input stream in and an outgoing sequence

of characters (returned from InputStreamReader via its read()

methods). charsetName identifies the character encoding used to

decode bytes into characters. This constructor throws

UnsupportedEncodingException when the named character encoding is

not supported.

NOTE: InputStreamReader depends on the abstract Charset and
java.nio.charset.CharsetDecoder classes to perform character decoding.

Listing 10–26 uses the second constructor to create a bridge to an underlying file input

stream so that Polish text can be read from an ISO/IEC 8859-2-encoded file.

Listing 10–26. Inputting Polish text

FileInputStream fis = new FileInputStream("polish.txt");
InputStreamReader isr = new InputStreamReader(fis, "8859_2");
char ch = isr.read(ch);

NOTE: OutputStreamWriter and InputStreamReader declare a String getEncoding()
method that returns the name of the character encoding in use. If the encoding has a historical
name, that name is returned; otherwise, the encoding’s canonical name is returned.

CHAPTER 10: Performing I/O 516

You may not be aware of all the character encodings supported by your Java virtual

machine. However, you can use the Charset class to find out. Listing 10–27 presents a

DumpEncodings application that shows you how to accomplish this task.

Listing 10–27. Dumping the default and all supported character encodings to standard output

import java.nio.charset.Charset;

import java.util.Iterator;
import java.util.Set;
import java.util.SortedMap;

public class DumpEncodings
{
 public static void main(String[] args)
 {
 System.out.println("Default file encoding = " +
 System.getProperty("file.encoding"));
 SortedMap<String, Charset> map = Charset.availableCharsets();
 Set<String> keys = map.keySet();
 System.out.println("==" +
 "=======");
 System.out.printf("%-20s %-20s %-5s%n", "Canonical name",
 "Display name", "Encode?");
 System.out.println("==" +
 "=======");
 Iterator<String> iter = keys.iterator();
 while (iter.hasNext())
 {
 String canonicalName = iter.next();
 Charset charset = map.get(canonicalName);
 String displayName = charset.displayName();
 boolean canEncode = charset.canEncode();
 System.out.printf("%-20s %-20s %-5b%n", canonicalName,
 displayName, canEncode);
 Set<String> aliases = charset.aliases();
 Iterator<String> iter2 = aliases.iterator();
 System.out.println("ALIASES");
 while (iter2.hasNext())
 System.out.println("- " + iter2.next());
 System.out.println("--" +
 "-------");
 }
 }
}

After outputting file.encoding’s value, main() obtains a sorted map from canonical
(standard) charset names to Charset objects by calling Charset’s static
SortedMap<String,Charset> availableCharsets() method.

CHAPTER 10: Performing I/O 517

NOTE: An instance of a concrete Charset subclass is an implementation of a character
encoding and is often referred to as a charset. In addition to providing methods that return useful
information about the charset, the instance provides methods to obtain an encoder and a
decoder associated with the charset.

main() next calls the sorted map’s keySet() method to return a set of canonical charset

name keys. After calling this set’s iterator() method to return an Iterator instance for

looping over the set of names, main() performs this iteration.

For each iteration, main() uses the returned canonical name to obtain its associated

Charset object from the map. It then calls Charset’s String displayName() method on

this object to return this charset’s human-readable name for the default locale.

NOTE: The intent of displayName() is to provide a localized version of the character encoding
name for display to the user. The default (Charset) implementation of this method returns the
nonlocalized canonical name, which is also returned from Charset’s String name() method.

After outputting the display name, main() calls Charset’s boolean canEncode() method

to find out if this charset supports encoding. Most character sets can be encoded, and

this method returns true. However, this method returns false for auto-detect charsets.

NOTE: An auto-detect charset is a charset whose decoder can determine which of several
possible encoding schemes is in use by examining the input byte sequence. Such a charset does
not support encoding because there is no way to determine which encoding should be used on
output.

After outputting canEncode()’s value, main() calls Charset’s Set<String> aliases()

method to return a nonnull (but possibly empty) set of strings that serve as aliases for

the canonical name. It then iterates over this set, outputting each alias.

When I run this application on my XP platform, it generates the following output (which I

have abbreviated for brevity):

Default file encoding = Cp1252
===
Canonical name Display name Encode?
===
Big5 Big5 true
ALIASES
- csBig5

Big5-HKSCS Big5-HKSCS true
ALIASES
- big5-hkscs:unicode3.0
- Big5_HKSCS
- big5-hkscs

CHAPTER 10: Performing I/O 518

- big5hkscs
- big5hk

EUC-JP EUC-JP true
ALIASES
- eucjis
- Extended_UNIX_Code_Packed_Format_for_Japanese
- x-eucjp
- eucjp
- csEUCPkdFmtjapanese
- euc_jp
- x-euc-jp

NOTE: You can pass a charset’s canonical name or alias to the aforementioned
OutputStreamWriter or InputStreamReader constructors that present charsetName
parameters.

FileWriter and FileReader
FileWriter is a convenience class for writing characters to files. It subclasses

OutputStreamWriter, and its constructors call OutputStreamWriter(OutputStream). An

instance of this class is equivalent to the following code fragment:

FileOutputStream fos = new FileOutputStream(pathname);
OutputStreamWriter osw;
osw = new OutputStreamWriter(fos, System.getProperty("file.encoding"));

In Chapter 4, I presented a logging library with a File class (Listing 4-19) that did not

incorporate file-writing code. Listing 10–28 addresses this situation by presenting a

revised File class that uses FileWriter to log messages to a file.

Listing 10–28. Logging messages to an actual file

package logging;

import java.io.FileWriter;
import java.io.IOException;

class File implements Logger
{
 private final static String LINE_SEPARATOR = System.getProperty("line.separator");
 private String dstName;
 private FileWriter fw;
 File(String dstName)
 {
 this.dstName = dstName;
 }
 public boolean connect()
 {
 if (dstName == null)
 return false;
 try
 {

CHAPTER 10: Performing I/O 519

 fw = new FileWriter(dstName);
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
 public boolean disconnect()
 {
 if (fw == null)
 return false;
 try
 {
 fw.close();
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
 public boolean log(String msg)
 {
 if (fw == null)
 return false;
 try
 {
 fw.write(msg + LINE_SEPARATOR);
 }
 catch (IOException ioe)
 {
 return false;
 }
 return true;
 }
}

Listing 10–28 refactors Listing 4-19 to support FileWriter by making changes to each

of the connect(), disconnect(), and log() methods:

 connect() attempts to instantiate FileWriter, whose instance is saved

in fw upon success; otherwise, fw continues to store its default null

reference.

 disconnect() attempts to close the file by calling FileWriter’s close()

method, but only when fw does not contain its default null reference.

 log() attempts to write its String argument to the file by calling

FileWriter’s void write(String str) method, but only when fw does

not contain its default null reference.

connect()’s catch clause specifies IOException instead of FileNotFoundException

because FileWriter’s constructors throw IOException when they cannot connect to

existing normal files; FileOutputStream’s constructors throw FileNotFoundException.

CHAPTER 10: Performing I/O 520

log()’s write(String) method appends the line.separator value (which I assigned to a

constant for convenience) to the string being output instead of appending \n, which

would violate portability.

FileReader is a convenience class for reading characters from files. It subclasses

InputStreamReader, and its constructors call InputStreamReader(InputStream). An

instance of this class is equivalent to the following code fragment:

FileInputStream fis = new FileInputStream(pathname);
InputStreamReader isr;
isr = new InputStreamReader(fis, System.getProperty("file.encoding"));

Unix introduced a command-line utility called grep (global regular expression print) that

searches files or standard input globally for those lines matching a given regex, and

prints matching lines to the standard output device.

To demonstrate FileReader, Listing 10–29 presents a FindAll application as a vastly

scaled down version of grep. FindAll is useful for identifying the paths and names of

those files that contain content matching the specified regex, and that is it.

Listing 10–29. Finding all files that contain content matching a regex

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class FindAll
{
 static Matcher m;
 public static void main(String[] args)
 {
 if (args.length == 0 || args.length > 2)
 {
 System.err.println("usage: java FindAll regex [pathname]");
 return;
 }
 try
 {
 Pattern p = Pattern.compile(args[0]);
 m = p.matcher("");
 String cwd = System.getProperty("user.dir");
 findAll(new File(args.length == 2 ? args[1] : cwd), p);
 }
 catch (PatternSyntaxException pse)
 {
 pse.printStackTrace();
 }
 }
 static void findAll(File file, Pattern p)
 {
 if (!file.isDirectory())
 {

CHAPTER 10: Performing I/O 521

 System.err.println(file + " is not a directory");
 return;
 }
 File[] files = file.listFiles();
 if (files == null)
 {
 System.err.println("unable to access " + file + "'s contents");
 return;
 }
 for (int i = 0; i < files.length; i++)
 if (files[i].isDirectory())
 findAll(files[i], p);
 else
 if (find(files[i].getPath(), p))
 System.out.println(files[i].getPath());
 }
 static boolean find(String pathname, Pattern p)
 {
 BufferedReader br = null;
 try
 {
 FileReader fr = new FileReader(pathname);
 br = new BufferedReader(fr);
 String line;
 while ((line = br.readLine()) != null)
 {
 m.reset(line);
 if (m.find())
 return true;
 }
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 finally
 {
 if (br != null)
 try
 {
 br.close();
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 return false;
 }
}

After compiling the regex into a Pattern object, creating a Matcher object, and obtaining

the current working directory (also known as the current user directory), main() calls the

recursive findAll() method with the starting search path and Pattern object.

CHAPTER 10: Performing I/O 522

NOTE: The Apache Commons IO library (http://commons.apache.org/io/) includes a
FileUtils class (http://commons.apache.org/io/api-
1.4/org/apache/commons/io/FileUtils.html) that provides methods for recursively
listing the contents of all subdirectories of a directory while applying a filter (and more).

findAll() verifies that its File argument is a directory and then calls listFiles() on

this object to obtain an array of File objects for all directory entries. For each File

object that is a directory, findAll() calls itself with the File and Pattern objects.

However, if the entry is a file, findAll() calls find() with the File object’s pathname

string and Pattern object.

find() attempts to open the pathname for input via the FileReader(String pathname)

constructor. Assuming success, it chains a BufferedReader object to the file reader in

order to speed up file reading through fewer calls to the file reader’s read() methods.

BufferedReader declares a handy String readLine() method for reading a line of text

(not including line-termination characters) into a String object. readLine() returns null

when the end of the input is reached; it throws IOException when an I/O error occurs.

When a line is read, the Matcher object’s reset() method is called with the line’s String

object as an argument. The matcher is reset so that the same Matcher object can be

reused (to avoid creating unnecessary Matcher objects).

Finally, Matcher’s find() method is called to look for a match between the Pattern

object’s compiled regex and the line. If a match is found, find() returns true and the

loop ends by returning true from find(); otherwise, the next line is read and searched.

Now that you know how FindAll works, you will probably want to try it out. The

following examples show you how I might use this application on my XP platform:

java FindAll Emboss \prj\dev

This example searches my \prj\dev directory on my default drive (C:) for all files that

contain the word Emboss (case is significant) and generates the following output:

\prj\dev\ebooks\javase\mj2dipq\c04\code\IP\Emboss.java
\prj\dev\ebooks\javase\mj2dipq\c04\code\IP\EmbossOp.java
\prj\dev\ebooks\javase\mj2dipq\c04\code\IP\IP.java
\prj\dev\ljfad\c10\1-4302-3156-1_Friesen_Ch10.doc
\prj\dev\ws\java\java.html
\prj\dev\wsold\java\java.html

If I now specify java FindAll emboss \prj\dev, I observe the following slightly different

output:

\prj\dev\ebooks\javase\mj2dipq\c04\code\IP\Emboss.java
\prj\dev\ebooks\javase\mj2dipq\c04\code\IP\EmbossOp.java
\prj\dev\ljfad\c10\1-4302-3156-1_Friesen_Ch10.doc
\prj\dev\ws\java\java.html
\prj\dev\wsold\java\java.html

http://commons.apache.org/io
http://commons.apache.org/io/api-1.4/org/apache/commons/io/FileUtils.html
http://commons.apache.org/io/api-1.4/org/apache/commons/io/FileUtils.html

CHAPTER 10: Performing I/O 523

At the end of Chapter 9, I presented a useful demonstration of RegExDemo for matching

phone numbers with or without area codes. Suppose I have a file named

withareacodes.txt that contains (800) 555-1212, and a file named

withoutareacodes.txt that contains 555-1212 in my current directory. When I execute

java FindAll "(\(\d{3}\))?\s*\d{3}-\d{4}", I observe the following output:

C:\prj\dev\ljfad\c10\code\FindAll\withareacodes.txt
C:\prj\dev\ljfad\c10\code\FindAll\withoutareacodes.txt

This output reveals that regex (\(\d{3}\))?\s*\d{3}-\d{4} matched (800) 555-1212 in

withareacodes.txt and 555-1212 in withoutareacodes.txt. I can now identify all files in

a starting directory/subdirectories containing phone numbers with/without area codes.

EXERCISES

The following exercises are designed to test your understanding of Java’s classic I/O APIs:

1. What is the purpose of the File class?

2. What do instances of the File class contain?

3. What does File’s listRoots() method accomplish?

4. What is a path and what is a pathname?

5. What is the difference between an absolute pathname and a relative pathname?

6. How do you obtain the current user (also known as working) directory?

7. What is a parent pathname?

8. File’s constructors normalize their pathname arguments. What does normalize
mean?

9. How do you obtain the default name-separator character?

10. What is a canonical pathname?

11. What is the difference between File’s getParent() and getName() methods?

12. True or false: File’s exists() method only determines whether or not a file exists.

13. What is a normal file?

14. What does File’s lastModified() method return?

15. True or false: File’s list() method returns an array of Strings where each entry
is a filename rather than a complete path.

16. What is the difference between the FilenameFilter and FileFilter interfaces?

17. True or false: File’s createNewFile() method does not check for file existence
and create the file if it does not exist in a single operation that is atomic with respect
to all other filesystem activities that might affect the file.

18. File’s createTempFile(String, String) method creates a temporary file in
the default temporary directory. How can you locate this directory?

CHAPTER 10: Performing I/O 524

19. Temporary files should be removed when no longer needed after an application exits
(to avoid cluttering the filesystem). How do you ensure that a temporary file is
removed when the virtual machine ends normally (it does not crash or the power is
not lost)?

20. How would you accurately compare two File objects?

21. What is the purpose of the RandomAccessFile class?

22. What is the purpose of the "rwd" and "rws" mode arguments?

23. What is a file pointer?

24. True or false: When you call RandomAccessFile’s seek(long) method to set the
file pointer’s value, and if this value is greater than the length of the file, the file’s
length changes.

25. What is a flat file database?

26. What is a stream?

27. What is the purpose of OutputStream’s flush() method?

28. True or false: OutputStream’s close() method automatically flushes the output
stream.

29. What is the purpose of InputStream’s mark(int) and reset() methods?

30. How would you access a copy of a ByteArrayOutputStream instance’s internal
byte array?

31. True or false: FileOutputStream and FileInputStream provide internal buffers
to improve the performance of write and read operations.

32. Why would you use PipedOutputStream and PipedInputStream?

33. What is a filter stream?

34. What does it mean for two streams to be chained together?

35. How do you improve the performance of a file output stream or a file input stream?

36. How do DataOutputStream and DataInputStream support FileOutputStream
and FileInputStream?

37. What is object serialization and deserialization?

38. What three forms of serialization and deserialization does Java support?

39. What is the purpose of the Serializable interface?

40. What does the serialization mechanism do when it encounters an object whose class
does not implement Serializable?

41. Identify the three stated reasons for Java not supporting unlimited serialization.

42. How do you initiate serialization? How do you initiate deserialization?

43. True or false: Class fields are automatically serialized.

44. What is the purpose of the transient reserved word?

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

CHAPTER 10: Performing I/O 525

45. What does the deserialization mechanism do when it attempts to deserialize an object
whose class has changed?

46. How does the deserialization mechanism detect that a serialized object’s class has
changed?

47. How can you add an instance field to a class and avoid trouble when deserializing an
object that was serialized before the instance field was added? What JDK tool can you
use to help with this task?

48. How do you customize the default serialization and deserialization mechanisms
without using externalization?

49. How do you tell the serialization and deserialization mechanisms to serialize or
deserialize the object’s normal state before serializing or deserializing additional data
items?

50. How does externalization differ from default and custom serialization and
deserialization?

51. How does a class indicate that it wishes to support externalization?

52. True or false: During externalization, the deserialization mechanism throws
InvalidClassException with a “no valid constructor” message when it does not
detect a public noargument constructor.

53. What is the difference between PrintStream’s print() and println() methods?

54. What does PrintStream’s noargument void println() method accomplish?

55. True or false: PrintStream’s %tR format specifier is used to format a Calendar
object’s time as HH:MM.

56. Why are Java’s stream classes not good at streaming characters?

57. What does Java provide as the preferred alternative to stream classes when it comes
to character I/O?

58. True or false: Reader declares an available() method.

59. What is the purpose of the OutputStreamWriter class? What is the purpose of the
InputStreamReader class?

60. How do you identify the default character encoding?

61. What is the purpose of the FileWriter class? What is the purpose of the
FileReader class?

62. Create a Java application named Touch for setting a file’s or directory’s timestamp to
the current or specified time. This application has the following usage syntax: java
Touch [-d timestamp] pathname. If you do not specify [-d timestamp],
pathname’s timestamp is set to the current time; otherwise, it is set to the specified
timestamp value, which has the format yyyy-MM-dd HH:mm:ss z (2010–08-13
02:37:45 UTC and 2006-04-22 12:35:45 EST are examples). Hints: The Date
class has a getTime() method whose return value can be passed to File’s
setLastModified() method. Also, you will find Date date = new
SimpleDateFormat("yyyy-MM-dd HH:mm:ss z").parse(args[1]); and
System.err.println("invalid option: " + args[0]); to be helpful.

CHAPTER 10: Performing I/O 526

NOTE: Wikipedia’s “touch (Unix)” entry
(http://en.wikipedia.org/wiki/Touch_%28Unix%29) introduces you to a standard Unix
program named touch. In addition to changing a file’s access and modification timestamps,
touch is used to create a new empty file.

63. Suppose you are creating a Media class whose static methods perform various
media-oriented utility tasks; for example, a getID3Info() method returns an object
containing information about an MP3 file (such as song title and artist). This
information is typically stored in a 128-byte block at the end of the file according to a
format known as ID3. The block begins with ASCII sequence TAG.

Listing 10–30 reveals the skeletal contents of the Media class and this method, and
begins with a description of the ID3v1.1 format that getID3Info() targets (there are
several versions of this format).

Listing 10–30. The Media class and its getID3Info() method

/*

In 1996, Eric Kemp devised ID3, a small file format for storing metadata in
MP3 files. This metadata consisted of song title, artist, album, year,
comments, and genre; and was organized into a 128-byte block stored at the
end of the file.

The following table describes the format of ID3 version 1 (ID3v1):

Offset (decimal) Field Name Field Size (byte)
================ ========== =================
0 Signature (TAG) 3
3 Song title 30
33 Artist 30
63 Album 30
93 Year 4
97 Comment 30
127 Genre 1

Each field except for Genre is a string of ASCII characters. Strings are
padded on the right with zeros or spaces. An uninitialized field is
equivalent to the empty string ("").

In 1997, Michael Mutschler made a small improvement to ID3. Because the
Comment field is too small to write anything of use, he trimmed this field by
two bytes and used those bytes to store the CD track number where the song is
located.

If a track number is stored, the second-last byte of the Comment field is set
to 0 and the subsequent byte stores the track number. The resulting format is
known as ID3v1.1.

Offset (decimal) Field Name Field Size (byte)
================ ========== =================
0 Signature (TAG) 3
3 Song title 30
33 Artist 30

http://en.wikipedia.org/wiki/Touch_%28Unix%29

CHAPTER 10: Performing I/O 527

63 Album 30
93 Year 4
97 Comment 29 (last byte must be a binary 0)
126 Track (0-255) 1
127 Genre (0-255) 1 (255 means no genre)

Unlike most of the fields, Track and Genre are single-byte integer fields.
The legal values that can appear in the Genre field and their descriptions
Are described in the following table:

 0 Blues 20 Alternative 40 AlternRock 60 Top 40
 1 Classic Rock 21 Ska 41 Bass 61 Christian Rap
 2 Country 22 Death Metal 42 Soul 62 Pop/Funk
 3 Dance 23 Pranks 43 Punk 63 Jungle
 4 Disco 24 Soundtrack 44 Space 64 Nat American
 5 Funk 25 Euro-Techno 45 Meditative 65 Cabaret
 6 Grunge 26 Ambient 46 Instrumental Pop 66 New Wave
 7 Hip-Hop 27 Trip-Hop 47 Instrumental Rock 67 Psychadelic
 8 Jazz 28 Vocal 48 Ethnic 68 Rave
 9 Metal 29 Jazz+Funk 49 Gothic 69 Showtunes
10 New Age 30 Fusion 50 Darkwave 70 Trailer
11 Oldies 31 Trance 51 Techno-Industrial 71 Lo-Fi
12 Other 32 Classical 52 Electronic 72 Tribal
13 Pop 33 Instrumental 53 Pop-Folk 73 Acid Punk
14 R&B 34 Acid 54 Eurodance 74 Acid Jazz
15 Rap 35 House 55 Dream 75 Polka
16 Reggae 36 Game 56 Southern Rock 76 Retro
17 Rock 37 Sound Clip 57 Comedy 77 Musical
18 Techno 38 Gospel 58 Cult 78 Rock & Roll
19 Industrial 39 Noise 59 Gangsta 79 Hard Rock

WinAmp expanded this table with the following Genre codes:

80 Folk 92 Progressive Rock 104 Chamber Music 116 Ballad
81 Folk-Rock 93 Psychedelic Rock 105 Sonata 117 Power Ballad
82 National-Folk 94 Symphonic Rock 106 Symphony 118 Rhythmic Soul
83 Swing 95 Slow Rock 107 Booty Brass 119 Freestyle
84 Fast Fusion 96 Big Band 108 Primus 120 Duet
85 Bebob 97 Chorus 109 Porn Groove 121 Punk Rock
86 Latin 98 Easy Listening 110 Satire 122 Drum Solo
87 Revival 99 Acoustic 111 Slow Jam 123 A cappella
88 Celtic 100 Humour 112 Club 124 Euro-House
89 Bluegrass 101 Speech 113 Tango 125 Dance Hall
90 Avantgarde 102 Chanson 114 Samba
91 Gothic Rock 103 Opera 115 Folklore

Although there are probably additional defined codes, treat any other value
stored in the Genre field as Unknown.

To learn more about ID3 and new versions, visit the official site at id3.org.

*/

import java.io.IOException;
import java.io.RandomAccessFile;

public class Media

CHAPTER 10: Performing I/O 528

{
 public static class ID3
 {
 private String songTitle, artist, album, year, comment, genre;
 private int track; // -1 if track not present
 public ID3(String songTitle, String artist, String album, String year,
 String comment, int track, String genre)
 {
 this.songTitle = songTitle;
 this.artist = artist;
 this.album = album;
 this.year = year;
 this.comment = comment;
 this.track = track;
 this.genre = genre;
 }
 String getSongTitle() { return songTitle; }
 String getArtist() { return artist; }
 String getAlbum() { return album; }
 String getYear() { return year; }
 String getComment() { return comment; }
 int getTrack() { return track; }
 String getGenre() { return genre; }
 }
 public static ID3 getID3Info(String mp3path) throws IOException
 {
 return null;
 }
}

Your job is to fill in the getID3Info() method by using the RandomAccessFile
class to obtain the data from the 128-byte block, and then create and populate an ID3
object with this data. getID3Info() subsequently returns this object.

After completing getID3Info(), you will want to test this method. Listing 10–31
presents the source code to a TestMedia application that you can use for this
purpose.

Listing 10–31. The TestMedia class

import java.io.IOException;

public class TestMedia
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java TestMedia mp3path");
 return;
 }
 try
 {
 Media.ID3 id3Info = Media.getID3Info(args[0]);
 if (id3Info == null)
 {
 System.err.printf("%s not MP3 or has no ID3 block%n", args[0]);
 return;

CHAPTER 10: Performing I/O 529

 }
 System.out.println("Song title = " + id3Info.getSongTitle());
 System.out.println("Artist = " + id3Info.getArtist());
 System.out.println("Album = " + id3Info.getAlbum());
 System.out.println("Year = " + id3Info.getYear());
 System.out.println("Comment = " +id3Info.getComment());
 System.out.println("Track = " + id3Info.getTrack());
 System.out.println("Genre = " + id3Info.getGenre());
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
}

Suppose you have ripped a track from a CD that contains Tom Jones’ “She’s a Lady”
into a file called Lady.mp3. When you execute java TestMedia Lady.mp3, you
should see output similar to the following:

Song title = She's A Lady
Artist = Tom Jones
Album = Billboard Top Soft Rock Hits -
Year = 1998
Comment =
Track = 2
Genre = Rock

64. Create a Java application named Split for splitting a large file into a number of
smaller partx files (where x starts at 0 and increments; for example, part0, part1,
part2, and so on). Each partx file (except possibly the last partx file, which holds
the remaining bytes) will have the same size. This application has the following usage
syntax: java Split pathname. Furthermore, your implementation must use the
BufferedInputStream, BufferedOutputStream, File, FileInputStream,
and FileOutputStream classes.

NOTE: I find Split helpful for storing huge files that do not fit onto a single CD/DVD across
multiple CDs/DVDs, and also for emailing huge files to friends. To recombine the part files on a
Windows platform, I use the copy command and its /B binary option. When recombining the part
files, recombine them in order: part0, part1 … part9, part10, and so on.

65. It is often convenient to read lines of text from standard input, and the
InputStreamReader and BufferedReader classes make this task possible.
Create a Java application named CircleInfo that, after obtaining a
BufferedReader instance that is chained to standard input, presents a loop that
prompts the user to enter a radius, parses the entered radius into a double value,
and outputs a pair of messages that report the circle’s circumference and area based
on this radius.

CHAPTER 10: Performing I/O 530

Summary
Applications often input data for processing and output processing results. Data is input

from a file or some other source, and is output to a file or some other destination. Java

supports I/O via the classic I/O APIs located in the java.io package.

File I/O activities often interact with a filesystem. Java offers access to the underlying

platform’s available filesystem(s) via its concrete File class. File instances contain the

pathnames of files and directories that may or may not exist in their filesystems.

Files can be opened for random access in which a mixture of write and read operations

can occur until the file is closed. Java supports this random access by providing the

concrete RandomAccessFile class.

Java uses streams to perform I/O operations. A stream is an ordered sequence of bytes

of arbitrary length. Bytes flow over an output stream from an application to a destination,

and flow over an input stream from a source to an application.

The java.io package provides several output stream and input stream classes that are

descendents of the abstract OutputStream and InputStream classes. Examples of

subclasses include BufferedOutputStream and FileInputStream.

Java’s stream classes are good for streaming sequences of bytes, but are not good for

streaming sequences of characters because bytes and characters are two different

things, and because byte streams have no knowledge of character sets and encodings.

If you need to stream characters, you should take advantage of Java’s writer and reader

classes, which were designed to support character I/O (they work with char instead of

byte). Furthermore, the writer and reader classes take character encodings into account.

The java.io package provides several writer and reader classes that are descendents of

the abstract Writer and Reader classes. Examples of subclasses include

OutputStreamWriter, FileWriter, InputStreamReader, FileReader, and BufferedReader.

The Road Goes Ever On
Although this book is finished from Apress’s perspective, it is not finished from my

perspective because the physical limitations of a paperback book prevented me from

covering additional topics that are important to Android app developers; networking is

one example.

Accordingly, I am writing six more chapters (with the same organization as this book’s

chapters, but not necessarily with the same style) that you will be able to freely

download from my website (javajeff.mb.ca) as PDF files:

 Chapter 11: Performing I/O Redux

 Chapter 12: Parsing and Creating XML Documents

 Chapter 13: Accessing Networks

 Chapter 14: Accessing Databases

CHAPTER 10: Performing I/O 531

 Chapter 15: Working with Security

 Chapter 16: Odds and Ends

Chapter 11 focuses on New I/O in terms of buffers, channels, and selectors.

Furthermore, it discusses additional New I/O APIs being introduced by Java version 7.

The Paths and Path classes are examples.

Chapter 12 focuses on XML, beginning with an abbreviated introduction to this

technology. It continues by exploring Java’s support for parsing XML documents via its

DOM, SAX, and StAX APIs, and for creating these documents via its DOM and StAX

APIs.

Chapter 13 explores Java’s support for networking in terms of various API classes that

range from URL and URLConnection, to Socket and ServerSocket. I have planned exciting

examples for this chapter, including one example that involves HTML 5.

Chapter 14 explores Java’s support for database access in terms of JDBC, which is

Java’s API for accessing databases. However, before exploring JDBC, this chapter

briefly introduces you to SQLite, which is the database supported by Android.

Chapter 15 discusses various aspects of security, ranging from security managers and

access controllers, to HTTP authentication and XML digital signatures. This chapter will

also introduce jarsigner and additional security-oriented JDK tools.

Chapter 16 wraps up my extended book by exploring Java version 7 language features

not covered (such as closures) because they were not available at time of writing, native

methods, additional APIs not covered (such as Logging), and other odds and ends.

These six chapters will not be available immediately but will slowly emerge over the next

several months. I will also make available an appendix that contains solutions to each

chapter’s exercises, and a code.zip file that contains the additional source code.

CHAPTER 10: Performing I/O 532

533

533

 Appendix

Solutions to Exercises
Chapters 1 through 10 close with an “Exercises” section that tests your understanding

of the chapter’s material through various exercises. Solutions to these exercises are

presented in this appendix.

Chapter 1: Getting Started with Java
1. Java is a language and a platform. The language is partly patterned after the C

and C++ languages to shorten the learning curve for C/C++ developers. The

platform consists of a virtual machine and associated execution environment.

2. A virtual machine is a software-based processor that presents its own instruction

set.

3. The purpose of the Java compiler is to translate source code into instructions

(and associated data) that are executed by the virtual machine.

4. The answer is true: a classfile’s instructions are commonly referred to as

bytecode.

5. When the virtual machine’s interpreter learns that a sequence of bytecode

instructions is being executed repeatedly, it informs the virtual machine’s Just In

Time (JIT) compiler to compile these instructions into native code.

6. The Java platform promotes portability by providing an abstraction over the

underlying platform. As a result, the same bytecode runs unchanged on

Windows-based, Linux-based, Mac OS X–based, and other platforms.

7. The Java platform promotes security by providing a secure environment in which

code executes. It accomplishes this task in part by using a bytecode verifier to

make sure that the classfile’s bytecode is valid.

8. The answer is false: Java SE is the platform for developing applications and

applets.

APPENDIX: Solutions to Exercises 534

9. The JRE implements the Java SE platform and makes it possible to run Java

programs.

10. The difference between the public and private JREs is that the public JRE exists

apart from the JDK, whereas the private JRE is a component of the JDK that

makes it possible to run Java programs independently of whether or not the

public JRE is installed.

11. The JDK provides development tools (including a compiler) for developing Java

programs. It also provides a private JRE for running these programs.

12. The JDK’s javac tool is used to compile Java source code.

13. The JDK’s java tool is used to run Java applications.

14. The purpose of the JDK’s jar tool is to create new JAR files, update existing JAR

files, and extract files from existing JAR files.

15. Standard I/O is a mechanism consisting of Standard Input, Standard Output, and

Standard Error that makes it possible to read text from different sources

(keyboard or file), write nonerror text to different destinations (screen or file), and

write error text to different definitions (screen or file).

16. An IDE is a development framework consisting of a project manager for managing

a project’s files, a text editor for entering and editing source code, a debugger for

locating bugs, and other features.

17. Two popular IDEs are NetBeans and Eclipse.

18. Pseudocode is a compact and informal high-level description of the problem

domain.

19. You would use the jar tool along with its t (table of contents) and f (JAR file’s

name) options to list FourOfAKind.jar’s table of contents; for example, jar tf
FourOfAKind.jar.

20. Listing 1 presents the FourOfAKind application’s refactored FourOfAKind class that

was called for in Chapter 1.

Listing 1. Letting the human player pick up the top card from the discard pile or the deck

/**
 * <code>FourOfAKind</code> implements a card game that is played between two
 * players: one human player and the computer. You play this game with a
 * standard 52-card deck and attempt to beat the computer by being the first
 * player to put down four cards that have the same rank (four aces, for
 * example), and win.
 *
 * @author Jeff Friesen
 * @version 1.0
 */
public class FourOfAKind
{

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 535

 /**
 * Human player
 */
 final static int HUMAN = 0;
 /**
 * Computer player
 */
 final static int COMPUTER = 1;
 /**
 * Application entry point.
 *
 * @param args array of command-line arguments passed to this method
 */
 public static void main(String[] args)
 {
 System.out.println("Welcome to Four of a Kind!");
 Deck deck = new Deck(); // Deck automatically shuffled
 DiscardPile discardPile = new DiscardPile();
 Card hCard;
 Card cCard;
 while (true)
 {
 hCard = deck.deal();
 cCard = deck.deal();
 if (hCard.rank() != cCard.rank())
 break;
 deck.putBack(hCard);
 deck.putBack(cCard);
 deck.shuffle(); // prevent pathological case where every successive
 } // pair of cards have the same rank
 int curPlayer = HUMAN;
 if (cCard.rank().ordinal() > hCard.rank().ordinal())
 curPlayer = COMPUTER;
 deck.putBack(hCard);
 hCard = null;
 deck.putBack(cCard);
 cCard = null;
 Card[] hCards = new Card[4];
 Card[] cCards = new Card[4];
 if (curPlayer == HUMAN)
 for (int i = 0; i < 4; i++)
 {
 cCards[i] = deck.deal();
 hCards[i] = deck.deal();
 }
 else
 for (int i = 0; i < 4; i++)
 {
 hCards[i] = deck.deal();
 cCards[i] = deck.deal();
 }
 while (true)
 {
 if (curPlayer == HUMAN)
 {
 showHeldCards(hCards);
 if (discardPile.topCard() != null)

APPENDIX: Solutions to Exercises 536

 {
 System.out.println("Discard pile top card: " +
 discardPile.topCard());
 System.out.println();
 }
 int choice = 0;
 while (choice < 'A' || choice > 'D')
 {
 choice = prompt("Which card do you want to throw away (A, B, " +
 "C, D)? ");
 switch (choice)
 {
 case 'a': choice = 'A'; break;
 case 'b': choice = 'B'; break;
 case 'c': choice = 'C'; break;
 case 'd': choice = 'D';
 }
 }
 Card card = null;
 if (discardPile.topCard() != null)
 {
 int dest = 0;
 while (dest != 'D' && dest != 'P')
 {
 dest = prompt("Pick up top card from deck or discard pile " +
 "(D, P)? ");
 switch (dest)
 {
 case 'd': dest = 'D';
 case 'p': dest = 'P';
 }
 }
 card = (dest == 'D') ? deck.deal() : discardPile.getTopCard();
 }
 else
 card = deck.deal();
 discardPile.setTopCard(hCards[choice-'A']);
 hCards[choice-'A'] = card;
 card = null;
 if (isFourOfAKind(hCards))
 {
 System.out.println();
 System.out.println("Human wins!");
 System.out.println();
 putDown("Human's cards:", hCards);
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = COMPUTER;
 }
 else
 {
 int choice = leastDesirableCard(cCards);
 discardPile.setTopCard(cCards[choice]);
 cCards[choice] = deck.deal();

APPENDIX: Solutions to Exercises 537

 if (isFourOfAKind(cCards))
 {
 System.out.println();
 System.out.println("Computer wins!");
 System.out.println();
 putDown("Computer's cards:", cCards);
 return; // Exit application by returning from main()
 }
 curPlayer = HUMAN;
 }
 if (deck.isEmpty())
 {
 while (discardPile.topCard() != null)
 deck.putBack(discardPile.getTopCard());
 deck.shuffle();
 }
 }
 }
 /**
 * Determine if the <code>Card</code> objects passed to this method all
 * have the same rank.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return true if all <code>Card</code> objects have the same rank;
 * otherwise, false
 */
 static boolean isFourOfAKind(Card[] cards)
 {
 for (int i = 1; i < cards.length; i++)
 if (cards[i].rank() != cards[0].rank())
 return false;
 return true;
 }
 /**
 * Identify one of the <code>Card</code> objects that is passed to this
 * method as the least desirable <code>Card</code> object to hold onto.
 *
 * @param cards array of <code>Card</code> objects passed to this method
 *
 * @return 0-based rank (ace is 0, king is 13) of least desirable card
 */
 static int leastDesirableCard(Card[] cards)
 {
 int[] rankCounts = new int[13];
 for (int i = 0; i < cards.length; i++)
 rankCounts[cards[i].rank().ordinal()]++;
 int minCount = Integer.MAX_VALUE;
 int minIndex = -1;
 for (int i = 0; i < rankCounts.length; i++)
 if (rankCounts[i] < minCount && rankCounts[i] != 0)
 {
 minCount = rankCounts[i];
 minIndex = i;
 }
 for (int i = 0; i < cards.length; i++)
 if (cards[i].rank().ordinal() == minIndex)

APPENDIX: Solutions to Exercises 538

 return i;
 return 0; // Needed to satisfy compiler (should never be executed)
 }
 /**
 * Prompt the human player to enter a character.
 *
 * @param msg message to be displayed to human player
 *
 * @return integer value of character entered by user.
 */
 static int prompt(String msg)
 {
 System.out.print(msg);
 try
 {
 int ch = System.in.read();
 // Erase all subsequent characters including terminating \n newline
 // so that they do not affect a subsequent call to prompt().
 while (System.in.read() != '\n');
 return ch;
 }
 catch (java.io.IOException ioe)
 {
 }
 return 0;
 }
 /**
 * Display a message followed by all cards held by player. This output
 * simulates putting down held cards.
 *
 * @param msg message to be displayed to human player
 * @param cards array of <code>Card</code> objects to be identified
 */
 static void putDown(String msg, Card[] cards)
 {
 System.out.println(msg);
 for (int i = 0; i < cards.length; i++)
 System.out.println(cards[i]);
 }
 /**
 * Identify the cards being held via their <code>Card</code> objects on
 * separate lines. Prefix each line with an uppercase letter starting with
 * <code>A</code>.
 *
 * @param cards array of <code>Card</code> objects to be identified
 */
 static void showHeldCards(Card[] cards)
 {
 System.out.println();
 System.out.println("Held cards:");
 for (int i = 0; i < cards.length; i++)
 if (cards[i] != null)
 System.out.println((char) ('A'+i) + ". " + cards[i]);
 System.out.println();
 }
}

APPENDIX: Solutions to Exercises 539

Chapter 2: Learning Language Fundamentals
1. A class declaration contains field declarations, method declarations, constructor

declarations, and other initializer (instance and class) declarations.

2. Identifier transient is a reserved word in Java. Identifier delegate is not a

reserved word in Java.

3. A variable is a memory location whose value can change.

4. Character is Java’s only unsigned primitive type. It is represented in source code

via the char reserved word.

5. The difference between an instance field and a class field is that each object

(instance) gets its own copy of an instance field, whereas all objects share a

single copy of a class field.

6. An array is a multivalued variable in which each element holds one of these

values.

7. You declare a one-dimensional array variable with a single set of square brackets,

as in String[] cities;. You declare a two-dimensional array variable with two

sets of square brackets, as in double[][] temperatures;.

8. Scope refers to a variable’s accessibility. For example, the scope of a private

field is restricted to the class in which it is declared. Also, the scope of a

parameter is restricted to the method in which the parameter is declared. Another

word for scope is visibility.

9. String literal "The quick brown fox \jumps\ over the lazy dog." is illegal

because, unlike \", \j and \ (a backslash followed by a space character) are not

valid escape sequences. To make this string literal legal, you must escape these

backslashes, as in "The quick brown fox \\jumps\\ over the lazy dog.".

10. The purpose of the cast operator is to convert from one type to another type. For

example, you can use this operator to convert from floating-point type to 32-bit

integer type.

11. The new operator is used to create an object.

12. You cannot nest multiline comments.

13. The answer is true: when declaring a method that takes a variable number of

arguments, you must specify the three consecutive periods just after the

rightmost parameter’s type name.

14. Given a two-dimensional array x, x.length returns the number of rows in the

array.

APPENDIX: Solutions to Exercises 540

15. The difference between the while and do-while statements is that a while

statement performs zero or more iterations, whereas a do-while statement

performs one or more iterations.

16. Initializing the sines array using the new syntax yields double[] sines = new
double[360];. Initializing the cosines array using the new syntax yields double[]
cosines = new double[360];.

17. It is okay for an expression assigned to an instance field to access a class field

that is declared after the instance field because all class fields are initialized

before any instance fields are initialized. The compiler knows that the virtual

machine will know about the class fields before an object is created. As a result,

this situation does not result in an illegal forward reference.

18. Creating an array of objects requires that you first use new to create the array, and

then assign an object reference to each of the array’s elements.

19. You prevent a field from being shadowed by changing the name of a same-

named local variable or parameter, or by qualifying the local variable’s name or a

parameter’s name with this or the class name followed by the member access

operator.

20. You chain together instance method calls by having each participating method

specify the name of the class in which the method is declared as the method’s

return type, and by having the method return this.

21. Calculating the greatest common divisor of two positive integers, which is the

greatest positive integer that divides evenly into both positive integers, provides

another example of tail recursion. Listing 2 presents the source code.

Listing 2. Recursively calculating the greatest common divisor

public static int gcd(int a, int b)
{
 // The greatest common divisor is the largest positive integer that
 // divides evenly into two positive integers a and b. For example,
 // GCD(12,18) is 6.

 if (b == 0) // Base problem
 return a;
 else
 return gcd(b, a%b);
}

As with the Math class’s various static methods, the gcd() method is declared to

be static because it does not rely on any instance fields.

22. Merging the various CheckingAccount code fragments into a complete application

results in something similar to Listing 3.

APPENDIX: Solutions to Exercises 541

Listing 3. A CheckingAccount class that is greater than the sum of its code fragments

public class CheckingAccount
{
 private String owner;
 private int balance;
 public static int counter;
 public CheckingAccount(String acctOwner, int acctBalance)
 {
 owner = acctOwner;
 balance = acctBalance;
 counter++; // keep track of created CheckingAccount objects
 }
 public CheckingAccount(String acctOwner)
 {
 this(acctOwner, 100); // New account requires $100 minimum balance
 }
 public CheckingAccount printBalance()
 {
 System.out.println(owner+"'s balance:");
 int magnitude = (balance < 0) ? -balance : balance;
 String balanceRep = (balance < 0) ? "(" : "";
 balanceRep += magnitude;
 balanceRep += (balance < 0) ? ")" : "";
 System.out.println(balanceRep);
 return this;
 }
 public CheckingAccount deposit(int amount)
 {
 if (amount <= 0.0)
 System.out.println("cannot deposit a negative or zero amount");
 else
 balance += amount;
 return this;
 }
 public CheckingAccount withdraw(int amount)
 {
 if (amount <= 0.0)
 System.out.println("cannot deposit a negative or zero amount");
 else
 if (balance-amount < 0)
 System.out.println("cannot withdraw more funds than are available");
 else
 balance -= amount;
 return this;
 }
 public static void main(String[] args)
 {
 new CheckingAccount("Jane Doe", 1000).withdraw(2000).printBalance();
 CheckingAccount ca = new CheckingAccount("John Doe");
 ca.printBalance().withdraw(50).printBalance().deposit(80).printBalance();
 System.out.println ("Number of created CheckingAccount objects = "+
 ca.counter);
 }
}

APPENDIX: Solutions to Exercises 542

Chapter 3: Learning Object-Oriented Language
Features

1. Implementation inheritance is inheritance through class extension.

2. Java supports implementation inheritance by providing reserved word extends.

3. A subclass can have only one superclass because Java does not support multiple

implementation inheritance.

4. You prevent a class from being subclassed by declaring the class final.

5. The answer is false: the super() call can only appear in a constructor.

6. If a superclass declares a constructor with one or more parameters, and if a

subclass constructor does not use super() to call that constructor, the compiler

reports an error because the subclass constructor attempts to call a nonexistent

noargument constructor in the superclass.

7. An immutable class is a class whose instances cannot be modified.

8. The answer is false: a class cannot inherit constructors.

9. Overriding a method means to replace an inherited method with another method

that provides the same signature and the same return type, but provides a new

implementation.

10. To call a superclass method from its overriding subclass method, prefix the

superclass method name with reserved word super and the member access

operator in the method call.

11. You prevent a method from being overridden by declaring the method final.

12. You cannot make an overriding subclass method less accessible than the

superclass method it is overriding because subtype polymorphism would not

work properly if subclass methods could be made less accessible.

Suppose you upcast a subclass instance to superclass type by assigning the

instance’s reference to a variable of superclass type. Now suppose you specify a

superclass method call on the variable. If this method is overridden by the

subclass, the subclass version of the method is called. However, if access to the

subclass’s overriding method’s access could be made private, calling this method

would break encapsulation—private methods cannot be called directly from

outside of their class.

13. You tell the compiler that a method overrides another method by prefixing the

overriding method’s header with the @Override annotation.

14. Java does not support multiple implementation inheritance because this form of

inheritance can lead to ambiguities.

APPENDIX: Solutions to Exercises 543

15. The name of Java’s ultimate superclass is Object. This class is located in the

java.lang package.

16. The purpose of the clone() method is to duplicate an object without calling a

constructor.

17. Object’s clone() method throws CloneNotSupportedException when the class

whose instance is to be shallowly cloned does not implement the Cloneable

interface.

18. The difference between shallow copying and deep copying is that shallow
copying copies each primitive or reference field’s value to its counterpart in the

clone, whereas deep copying creates, for each reference field, a new object and

assigns its reference to the field. This deep copying process continues recursively

for these newly created objects.

19. The == operator cannot be used to determine if two objects are logically

equivalent because this operator only compares object references, not the

contents of these objects.

20. Object’s equals() method compares the current object’s this reference to the

reference passed as an argument to this method. (When I refer to Object’s

equals() method, I am referring to the equals() method in the Object class.)

21. Expression "abc" == "a" + "bc" returns true. It does so because the String

class contains special support that allows literal strings and string-valued

constant expressions to be compared via ==.

22. You can optimize a time-consuming equals() method by first using == to

determine if this method’s reference argument identifies the current object (which

is represented in source code via reserved word this).

23. The purpose of the finalize() method is to provide a safety net for calling an

object’s cleanup method in case that method is not called.

24. You should not rely on finalize() for closing open files because file descriptors

are a limited resource and an application might not be able to open additional files

until finalize() is called, and this method might be called infrequently (or

perhaps not at all).

25. A hash code is a small value that results from applying a mathematical function to

a potentially large amount of data.

26. The answer is true: you should override the hashCode() method whenever you

override the equals() method.

APPENDIX: Solutions to Exercises 544

27. Object’s toString() method returns a string representation of the current object

that consists of the object’s class name, followed by the @ symbol, followed by a

hexadecimal representation of the object’s hash code. (When I refer to Object’s

toString() method, I am referring to the toString() method in the Object class.)

28. You should override toString() to provide a concise but meaningful description

of the object in order to facilitate debugging via System.out.println() method

calls. It is more informative for toString() to reveal object state than to reveal a

class name, followed by the @ symbol, followed by a hexadecimal representation

of the object’s hash code.

29. Composition is a way to reuse code by composing classes out of other classes,

based upon a has-a relationship between them.

30. The answer is false: composition is used to implement “has-a” relationships and

implementation inheritance is used to implement “is-a” relationships.

31. The fundamental problem of implementation inheritance is that it breaks

encapsulation. You fix this problem by ensuring that you have control over the

superclass as well as its subclasses, by ensuring that the superclass is designed

and documented for extension, or by using a wrapper class in lieu of a subclass

when you would otherwise extend the superclass.

32. Subtype polymorphism is a kind of polymorphism where a subtype instance

appears in a supertype context, and executing a supertype operation on the

subtype instance results in the subtype’s version of that operation executing.

33. Subtype polymorphism is accomplished by upcasting the subtype instance to its

supertype, by assigning the instance’s reference to a variable of that type, and,

via this variable, calling a superclass method that has been overridden in the

subclass.

34. You would use abstract classes and abstract methods to describe generic

concepts (such as shape, animal, or vehicle) and generic operations (such as

drawing a generic shape). Abstract classes cannot be instantiated and abstract

methods cannot be called because they have no code bodies.

35. An abstract class can contain concrete methods.

36. The purpose of downcasting is to access subtype features. For example, you

would downcast a Point variable that contains a Circle instance reference to the

Circle type so that you can call Circle’s getRadius() method on the instance.

37. The three forms of RTTI are the virtual machine verifying that a cast is legal, using

the instanceof operator to determine if an instance is a member of a type, and

reflection.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 545

38. A covariant return type is a method return type that, in the superclass’s method

declaration, is the supertype of the return type in the subclass’s overriding

method declaration.

39. You formally declare an interface by specifying at least reserved word interface,

followed by a name, followed by a brace-delimited body of constants and/or

method headers.

40. The answer is true: you can precede an interface declaration with the abstract

reserved word.

41. A marker interface is an interface that declares no members.

42. Interface inheritance is inheritance through interface implementation or interface

extension.

43. You implement an interface by appending an implements clause, consisting of

reserved word implements followed by the interface’s name, to a class header,

and by overriding the interface’s method headers in the class.

44. You might encounter one or more name collisions when you implement multiple

interfaces.

45. You form a hierarchy of interfaces by appending reserved word extends followed

by an interface name to an interface header.

46. Java’s interfaces feature is so important because it gives developers the utmost

flexibility in designing their applications.

47. Interfaces and abstract classes describe abstract types.

48. Interfaces and abstract classes differ in that interfaces can only declare abstract

methods and constants, and can be implemented by any class in any class

hierarchy. In contrast, abstract classes can declare constants and nonconstant

fields, can declare abstract and concrete methods, and can only appear in the

upper levels of class hierarchies, where they are used to describe abstract

concepts and behaviors.

49. Listings 4 through 10 declare the Animal, Bird, Fish, AmericanRobin,

DomesticCanary, RainbowTrout, and SockeyeSalmon classes that were called for in

Chapter 3.

Listing 4. The Animal class abstracting over birds and fish (and other organisms)

public abstract class Animal
{
 private String kind;
 private String appearance;
 public Animal(String kind, String appearance)
 {
 this.kind = kind;
 this.appearance = appearance;

APPENDIX: Solutions to Exercises 546

 }
 public abstract void eat();
 public abstract void move();
 @Override
 public final String toString()
 {
 return kind + " -- " + appearance;
 }
}

Listing 5. The Bird class abstracting over American robins, domestic canaries, and other kinds of birds

public abstract class Bird extends Animal
{
 public Bird(String kind, String appearance)
 {
 super(kind, appearance);
 }
 @Override
 public final void eat()
 {
 System.out.println("eats seeds and insects");
 }
 @Override
 public final void move()
 {
 System.out.println("flies through the air");
 }
}

Listing 6. The Fish class abstracting over rainbow trout, sockeye salmon, and other kinds of fish

public abstract class Fish extends Animal
{
 public Fish(String kind, String appearance)
 {
 super(kind, appearance);
 }
 @Override
 public final void eat()
 {
 System.out.println("eats krill, algae, and insects");
 }
 @Override
 public final void move()
 {
 System.out.println("swims through the water");
 }
}

Listing 7. The AmericanRobin class denoting a bird with a red breast

public final class AmericanRobin extends Bird
{
 public AmericanRobin()
 {
 super("americanrobin", "red breast");
 }
}

APPENDIX: Solutions to Exercises 547

Listing 8. The DomesticCanary class denoting a bird of various colors

public final class DomesticCanary extends Bird
{
 public DomesticCanary()
 {
 super("domestic canary", "yellow, orange, black, brown, white, red");
 }
}

Listing 9. The RainbowTrout class denoting a rainbow-colored fish

public final class RainbowTrout extends Fish
{
 public RainbowTrout()
 {
 super("rainbowtrout", "bands of brilliant speckled multicolored " +
 "stripes running nearly the whole length of its body");
 }
}

Listing 10. The SockeyeSalmon class denoting a red-and-green fish

public final class SockeyeSalmon extends Fish
{
 public SockeyeSalmon()
 {
 super("sockeyesalmon", "bright red with a green head");
 }
}

Animal’s toString() method is declared final because it does not make sense to

override this method, which is complete in this example. Also, each of Bird’s and

Fish’s overriding eat() and move() methods is declared final because it does

not make sense to override these methods in this example, which assumes that

all birds eat seeds and insects; all fish eat krill, algae, and insects; all birds fly

through the air; and all fish swim through the water.

The AmericanRobin, DomesticCanary, RainbowTrout, and SockeyeSalmon classes

are declared final because they represent the bottom of the Bird and Fish class

hierarchies, and it does not make sense to subclass them.

50. Listing 11 declares the Animals class that was called for in Chapter 3.

Listing 11. The Animals class letting animals eat and move

public class Animals
{
 public static void main(String[] args)
 {
 Animal[] animals = { new AmericanRobin(), new RainbowTrout(),
 new DomesticCanary(), new SockeyeSalmon() };
 for (int i = 0; i < animals.length; i++)
 {
 System.out.println(animals[i]);
 animals[i].eat();
 animals[i].move();
 System.out.println();

APPENDIX: Solutions to Exercises 548

 }
 }
}

51. Listings 12 through 14 declare the Countable interface, the modified Animal class,

and the modified Animals class that were called for in Chapter 3.

Listing 12. The Countable interface for use in taking a census of animals

public interface Countable
{
 String getID();
}

Listing 13. The refactored Animal class for help in census taking

public abstract class Animal implements Countable
{
 private String kind;
 private String appearance;
 public Animal(String kind, String appearance)
 {
 this.kind = kind;
 this.appearance = appearance;
 }
 public abstract void eat();
 public abstract void move();
 @Override
 public final String toString()
 {
 return kind + " -- " + appearance;
 }
 @Override
 public final String getID()
 {
 return kind;
 }
}

Listing 14. The modified Animals class for carrying out the census

public class Animals
{
 public static void main(String[] args)
 {
 Animal[] animals = { new AmericanRobin(), new RainbowTrout(),
 new DomesticCanary(), new SockeyeSalmon(),
 new RainbowTrout(), new AmericanRobin() };
 for (int i = 0; i < animals.length; i++)
 {
 System.out.println(animals[i]);
 animals[i].eat();
 animals[i].move();
 System.out.println();
 }

 Census census = new Census();
 Countable[] countables = (Countable[]) animals;
 for (int i = 0; i < countables.length; i++)

APPENDIX: Solutions to Exercises 549

 census.update(countables[i].getID());

 for (int i = 0; i < Census.SIZE; i++)
 System.out.println(census.get(i));
 }
}

Chapter 4: Mastering Advanced Language Features
Part 1

1. A nested class is a class that is declared as a member of another class or scope.

2. The four kinds of nested classes are static member classes, nonstatic member

classes, anonymous classes, and local classes.

3. Nonstatic member classes, anonymous classes, and local classes are also known

as inner classes.

4. The answer is false: a static member class does not have an enclosing instance.

5. You instantiate a nonstatic member class from beyond its enclosing class by first

instantiating the enclosing class, and then prefixing the new operator with the

enclosing class instance as you instantiate the enclosed class. Example: new
EnclosingClass().new EnclosedClass().

6. It is necessary to declare local variables and parameters final when they are

being accessed by an instance of an anonymous class or a local class.

7. The answer is true: an interface can be declared within a class or within another

interface.

8. A package is a unique namespace that can contain a combination of top-level

classes, other top-level types, and subpackages.

9. You ensure that package names are unique by specifying your reversed Internet

domain name as the top-level package name.

10. A package statement is a statement that identifies the package in which a source

file’s types are located.

11. The answer is false: you cannot specify multiple package statements in a source

file.

12. An import statement is a statement that imports types from a package by telling

the compiler where to look for unqualified type names during compilation.

13. You indicate that you want to import multiple types via a single import statement

by specifying the wildcard character (*).

APPENDIX: Solutions to Exercises 550

14. During a runtime search, the virtual machine reports a “no class definition found”

error when it cannot find a classfile.

15. You specify the user classpath to the virtual machine via the -classpath option

used to start the virtual machine or, if not present, the CLASSPATH environment

variable.

16. A constant interface is an interface that only exports constants.

17. Constant interfaces are used to avoid having to qualify their names with their

classes.

18. Constant interfaces are bad because their constants are nothing more than an

implementation detail that should not be allowed to leak into the class’s exported

interface, because they might confuse the class’s users (what is the purpose of

these constants?). Also, they represent a future commitment: even when the class

no longer uses these constants, the interface must remain to ensure binary

compatibility.

19. A static import statement is a version of the import statement that lets you import

a class’s static members so that you do not have to qualify them with their class

names.

20. You specify a static import statement as import, followed by static, followed by

a member access operator–separated list of package and subpackage names,

followed by the member access operator, followed by a class’s name, followed by

the member access operator, followed by a single static member name or the

asterisk wildcard; for example, import static java.lang.Math.cos; (import the

cos() static method from the Math class).

21. An exception is a divergence from an application’s normal behavior.

22. Objects are superior to error codes for representing exceptions because error

code Boolean or integer values are less meaningful than object names, and

because objects can contain information about what led to the exception. These

details can be helpful to a suitable workaround.

23. A throwable is an instance of Throwable or one of its subclasses.

24. The getCause() method returns an exception that is wrapped inside another

exception.

25. Exception describes exceptions that result from external factors (such as not

being able to open a file) and from flawed code (such as passing an illegal

argument to a method). Error describes virtual machine–oriented exceptions such

as running out of memory or being unable to load a classfile.

26. A checked exception is an exception that represents a problem with the

possibility of recovery, and for which the developer must provide a workaround.

APPENDIX: Solutions to Exercises 551

27. A runtime exception is an exception that represents a coding mistake.

28. You would introduce your own exception class when no existing exception class

in Java’s class library meets your needs.

29. The answer is false: you use a throws clause to identify exceptions that are

thrown from a method by appending this clause to a method’s header.

30. The purpose of a try statement is to provide a scope (via its brace-delimited body)

in which to present code that can throw exceptions. The purpose of a catch

clause is to receive a thrown exception and provide code (via its brace-delimited

body) that handles that exception by providing a workaround.

31. The purpose of a finally clause is to provide cleanup code that is executed

whether an exception is thrown or not.

32. Listing 15 presents the G2D class that was called for in Chapter 3.

Listing 15. The G2D class with its Matrix nonstatic member class

public class G2D
{
 private Matrix xform;
 public G2D()
 {
 xform = new Matrix();
 xform.a = 1.0;
 xform.e = 1.0;
 xform.i = 1.0;
 }
 private class Matrix
 {
 double a, b, c;
 double d, e, f;
 double g, h, i;
 }
}

33. To extend the logging package to support a null device in which messages are

thrown away, first introduce Listing 16’s NullDevice package-private class.

Listing 16. Implementing the proverbial “bit bucket” class

package logging;

class NullDevice implements Logger
{
 private String dstName;
 NullDevice(String dstName)
 {
 }
 public boolean connect()
 {
 return true;
 }
 public boolean disconnect()

APPENDIX: Solutions to Exercises 552

 {
 return true;
 }
 public boolean log(String msg)
 {
 return true;
 }
}

Continue by introducing, into the LoggerFactory class, a NULLDEVICE constant and

code that instantiates NullDevice with a null argument—a destination name is

not required—when newLogger()’s dstType parameter contains this constant’s

value. Check out Listing 17.

Listing 17. A refactored LoggerFactory class

package logging;

public abstract class LoggerFactory
{
 public final static int CONSOLE = 0;
 public final static int FILE = 1;
 public final static int NULLDEVICE = 2;
 public static Logger newLogger(int dstType, String...dstName)
 {
 switch (dstType)
 {
 case CONSOLE : return new Console(dstName.length == 0 ? null
 : dstName[0]);
 case FILE : return new File(dstName.length == 0 ? null
 : dstName[0]);
 case NULLDEVICE: return new NullDevice(null);
 default : return null;
 }
 }
}

34. Modifying the logging package so that Logger’s connect() method throws a

CannotConnectException instance when it cannot connect to its logging

destination, and the other two methods each throw a NotConnectedException

instance when connect() was not called or when it threw a

CannotConnectException instance, results in Listing 18’s Logger interface.

Listing 18. A Logger interface whose methods throw exceptions

package logging;

public interface Logger
{
 void connect() throws CannotConnectException;
 void disconnect() throws NotConnectedException;
 void log(String msg) throws NotConnectedException;
}

Listing 19 presents the CannotConnectException class.

APPENDIX: Solutions to Exercises 553

Listing 19. An uncomplicated CannotConnectException class

package logging;

public class CannotConnectException extends Exception
{
}

The NotConnectedException class has a similar structure.

Listing 20 presents the Console class.

Listing 20. The Console class satisfying Logger’s contract without throwing exceptions

package logging;

class Console implements Logger
{
 private String dstName;
 Console(String dstName)
 {
 this.dstName = dstName;
 }
 public void connect() throws CannotConnectException
 {
 }
 public void disconnect() throws NotConnectedException
 {
 }
 public void log(String msg) throws NotConnectedException
 {
 System.out.println(msg);
 }
}

Listing 21 presents the File class.

Listing 21. The File class satisfying Logger’s contract by throwing exceptions as necessary

package logging;

class File implements Logger
{
 private String dstName;
 File(String dstName)
 {
 this.dstName = dstName;
 }
 public void connect() throws CannotConnectException
 {
 if (dstName == null)
 throw new CannotConnectException();
 }
 public void disconnect() throws NotConnectedException
 {
 if (dstName == null)
 throw new NotConnectedException();
 }
 public void log(String msg) throws NotConnectedException

APPENDIX: Solutions to Exercises 554

 {
 if (dstName == null)
 throw new NotConnectedException();
 System.out.println("writing " + msg + " to file " + dstName);
 }
}

35. When you modify TestLogger to respond appropriately to thrown

CannotConnectException and NotConnectedException objects, you end up with

something similar to Listing 22.

Listing 22. A TestLogger class that handles thrown exceptions

import logging.*;

public class TestLogger
{
 public static void main(String[] args)
 {
 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.CONSOLE);
 logger.connect();
 logger.log("test message #1");
 logger.disconnect();
 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to console-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to console-based logger");
 }

 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.FILE, "x.txt");
 logger.connect();
 logger.log("test message #2");
 logger.disconnect();
 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to file-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to file-based logger");
 }

 try
 {
 Logger logger = LoggerFactory.newLogger(LoggerFactory.FILE);
 logger.connect();
 logger.log("test message #3");
 logger.disconnect();

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 555

 }
 catch (CannotConnectException cce)
 {
 System.err.println("cannot connect to file-based logger");
 }
 catch (NotConnectedException nce)
 {
 System.err.println("not connected to file-based logger");
 }
 }
}

Chapter 5: Mastering Advanced Language Features
Part 2

1. An assertion is a statement that lets you express an assumption of program

correctness via a Boolean expression.

2. You would use assertions to validate internal invariants, control-flow invariants,

preconditions, postconditions, and class invariants.

3. The answer is false: specifying the -ea command-line option with no argument

enables all assertions except for system assertions.

4. An annotation is an instance of an annotation type and associates metadata with

an application element. It is expressed in source code by prefixing the type name

with the @ symbol.

5. Constructors, fields, local variables, methods, packages, parameters, and types

(annotation, class, enum, and interface) can be annotated.

6. The three compiler-supported annotation types are Override, Deprecated, and

SuppressWarnings.

7. You declare an annotation type by specifying the @ symbol, immediately followed

by reserved word interface, followed by the type’s name, followed by a body.

8. A marker annotation is an instance of an annotation type that supplies no data

apart from its name—the type’s body is empty.

9. An element is a method header that appears in the annotation type’s body. It

cannot have parameters or a throws clause. Its return type must be primitive

(such as int), String, Class, an enum type, an annotation type, or an array of the

preceding types. It can have a default value.

10. You assign a default value to an element by specifying default followed by the

value, whose type must match the element’s return type. For example, String
developer() default "unassigned";.

11. A meta-annotation is an annotation that annotates an annotation type.

APPENDIX: Solutions to Exercises 556

12. Java’s four meta-annotation types are Target, Retention, Documented, and

Inherited.

13. Generics can be defined as a suite of language features for declaring and using

type-agnostic classes and interfaces.

14. You would use generics to ensure that your code is typesafe by avoiding

ClassCastExceptions.

15. The difference between a generic type and a parameterized type is that a generic
type is a class or interface that introduces a family of parameterized types by

declaring a formal type parameter list, and a parameterized type is an instance of

a generic type.

16. Anonymous classes cannot be generic because they have no names.

17. The five kinds of actual type arguments are concrete types, concrete

parameterized types, array types, type parameters, and wildcards.

18. The answer is true: you cannot specify a primitive type name (such as double or

int) as an actual type argument.

19. A raw type is a generic type without its type parameters.

20. The compiler reports an unchecked warning message when it detects an explicit

cast that involves a type parameter. The compiler is concerned that downcasting

to whatever type is passed to the type parameter might result in a violation of type

safety.

21. You suppress an unchecked warning message by prefixing the constructor or

method that contains the unchecked code with the

@SuppressWarnings("unchecked") annotation.

22. The answer is true: List<E>’s E type parameter is unbounded.

23. You specify a single upper bound via reserved word extends followed by a type

name.

24. The answer is false: MyList<E super Circle> does not specify that the E type

parameter has a lower bound of Circle. In contrast, MyList<? super Circle>

specifies that Circle is a lower bound.

25. A recursive type bound is a type parameter bound that includes the type

parameter.

26. Wildcard type arguments are necessary because, by accepting any actual type

argument, they provide a typesafe workaround to the problem of polymorphic

behavior not applying to multiple parameterized types that differ only in regard to

one type parameter being a subtype of another type parameter.

APPENDIX: Solutions to Exercises 557

For example, because List<String> is not a kind of List<Object>, you cannot

pass an object whose type is List<String> to a method parameter whose type is

List<Object>. However, you can pass a List<String> object to List<?> provided

that you are not going to add the List<String> object to the List<?>.

27. Reification is the process or result of treating the abstract as if it was concrete.

28. The answer is false: type parameters are not reified.

29. Erasure is the throwing away of type parameters following compilation so that

they are not available at runtime. Erasure also involves replacing uses of other

type variables by the upper bound of the type variable (such as Object), and

inserting casts to the appropriate type when the resulting code is not type correct.

30. A generic method is a static or non-static method with a type-generalized

implementation.

31. Although you might think otherwise, Listing 5-43’s methodCaller() generic

method calls someOverloadedMethod(Object o). This method, instead of

someOverloadedMethod(Date d), is called because overload resolution happens at

compile time, when the generic method is translated to its unique bytecode

representation, and erasure (which takes care of that mapping) causes type

parameters to be replaced by their leftmost bound or Object (if there is no bound).

After erasure, we are left with Listing 23’s nongeneric methodCaller() method.

Listing 23. The nongeneric methodCaller() method that results from erasure

public static void methodCaller(Object t)
{
 someOverloadedMethod(t);
}

32. An enumerated type is a type that specifies a named sequence of related

constants as its legal values.

33. Three problems that can arise when you use enumerated types whose constants

are int-based are lack of compile-time type safety, brittle applications, and the

inability to translate int constants into meaningful string-based descriptions.

34. An enum is an enumerated type that is expressed via reserved word enum.

35. You use a switch statement with an enum by specifying an enum constant as the

statement’s selector expression and constant names as case values.

36. You can enhance an enum by adding fields, constructors, and methods—you can

even have the enum implement interfaces. Also, you can override toString() to

provide a more useful description of a constant’s value, and subclass constants

to assign different behaviors.

37. The purpose of the abstract Enum class is to serve as the common base class of

all Java language–based enumeration types.

APPENDIX: Solutions to Exercises 558

38. The difference between Enum’s name() and toString() methods is that name()

always returns a constant’s name, but toString() can be overridden to return a

more meaningful description instead of the constant’s name.

39. The answer is true: Enum’s generic type is Enum<E extends Enum<E>>.

40. Listing 24 presents a ToDo marker annotation type that annotates only type

elements, and that also uses the default retention policy.

Listing 24. The ToDo annotation type for marking types that need to be completed

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

@Target(ElementType.TYPE)
public @interface ToDo
{
}

41. Listing 25 presents a rewritten StubFinder application that works with Listing 5-

15’s Stub annotation type (with appropriate @Target and @Retention annotations)

and Listing 5-16’s Deck class.

Listing 25. Reporting a stub’s ID, due date, and developer via a new version of StubFinder

import java.lang.reflect.*;

public class StubFinder
{
 public static void main(String[] args) throws Exception
 {
 if (args.length != 1)
 {
 System.err.println("usage: java StubFinder classfile");
 return;
 }
 Method[] methods = Class.forName(args[0]).getMethods();
 for (int i = 0; i < methods.length; i++)
 if (methods[i].isAnnotationPresent(Stub.class))
 {
 Stub stub = methods[i].getAnnotation(Stub.class);
 System.out.println("Stub ID = " + stub.id());
 System.out.println("Stub Date = " + stub.dueDate());
 System.out.println("Stub Developer = " + stub.developer());
 System.out.println();
 }
 }
}

42. Listing 26 presents the generic Stack class and the StackEmptyException and

StackFullException helper classes that were called for in Chapter 5.

APPENDIX: Solutions to Exercises 559

Listing 26. Stack and its StackEmptyException and StackFullException helper classes proving that not all
helper classes need to be nested

class StackEmptyException extends Exception
{
}
class StackFullException extends Exception
{
}
public class Stack<E>
{
 private E[] elements;
 private int top;
 @SuppressWarnings("unchecked")
 public Stack(int size)
 {
 elements = (E[]) new Object[size];
 top = -1;
 }
 public void push(E element) throws StackFullException
 {
 if (top == elements.length-1)
 throw new StackFullException();
 elements[++top] = element;
 }
 E pop() throws StackEmptyException
 {
 if (isEmpty())
 throw new StackEmptyException();
 return elements[top--];
 }
 public boolean isEmpty()
 {
 return top == -1;
 }
 public static void main(String[] args)
 throws StackFullException, StackEmptyException
 {
 Stack<String> stack = new Stack<String>(5);
 assert stack.isEmpty();
 stack.push("A");
 stack.push("B");
 stack.push("C");
 stack.push("D");
 stack.push("E");
 // Uncomment the following line to generate a StackFullException.
 //stack.push("F");
 while (!stack.isEmpty())
 System.out.println(stack.pop());
 // Uncomment the following line to generate a StackEmptyException.
 //stack.pop();
 assert stack.isEmpty();
 }
}

43. Listing 27 presents the Compass enum that was called for in Chapter 5.

APPENDIX: Solutions to Exercises 560

Listing 27. A Compass enum with four direction constants

public enum Compass
{
 NORTH, SOUTH, EAST, WEST
}

Listing 28 presents the UseCompass class that was called for in Chapter 5.

Listing 28. Using the Compass enum to keep from getting lost

public class UseCompass
{
 public static void main(String[] args)
 {
 int i = (int)(Math.random()*4);
 Compass[] dir = { Compass.NORTH, Compass.EAST, Compass.SOUTH,
 Compass.WEST };
 switch(dir[i])
 {
 case NORTH: System.out.println("heading north"); break;
 case EAST : System.out.println("heading east"); break;
 case SOUTH: System.out.println("heading south"); break;
 case WEST : System.out.println("heading west"); break;
 default : assert false; // Should never be reached.
 }
 }
}

Chapter 6: Exploring the Basic APIs Part 1
1. Math declares double constants E and PI that represent, respectively, the natural

logarithm base value (2.71828...) and the ratio of a circle’s circumference to its

diameter (3.14159...). E is initialized to 2.718281828459045 and PI is initialized to

3.141592653589793.

2. Math.abs(Integer.MIN_VALUE) equals Integer.MIN_VALUE because there does not

exist a positive 32-bit integer equivalent of MIN_VALUE. (Integer.MIN_VALUE equals

-2147483648 and Integer.MAX_VALUE equals 2147483647.)

3. Math’s random() method returns a pseudorandom number between 0.0 (inclusive)

and 1.0 (exclusive).

4. The five special values that can arise during floating-point calculations are

+infinity, -infinity, NaN, +0.0, and -0.0.

5. Math and StrictMath differ in the following ways:

 StrictMath’s methods return exactly the same results on all platforms.

In contrast, some of Math’s methods might return values that vary ever

so slightly from platform to platform.

APPENDIX: Solutions to Exercises 561

 Because StrictMath cannot utilize platform-specific features such as

an extended-precision math coprocessor, an implementation of

StrictMath might be less efficient than an implementation of Math.

6. The purpose of strictfp is to restrict floating-point calculations to ensure

portability. This reserved word accomplishes portability in the context of

intermediate floating-point representations and overflows/underflows (generating

a value too large or small to fit a representation). Furthermore, it can be applied at

the method level or at the class level.

7. BigDecimal is an immutable class that represents a signed decimal number (such

as 23.653) of arbitrary precision (number of digits) with an associated scale (an

integer that specifies the number of digits after the decimal point). You might use

this class to accurately store floating-point values that represent monetary values,

and properly round the result of each monetary calculation.

8. The RoundingMode constant that describes the form of rounding commonly taught

at school is HALF_UP.

9. BigInteger is an immutable class that represents a signed integer of arbitrary

precision. It stores its value in two’s complement format (all bits are flipped—1s to

0s and 0s to 1s—and 1 has been added to the result to be compatible with the

two’s complement format used by Java’s byte integer, short integer, integer, and

long integer types).

10. The purpose of Package’s isSealed() method is to indicate whether or not a

package is sealed (all classes that are part of the package are archived in the

same JAR file). This method returns true when the package is sealed.

11. The answer is true: getPackage() requires at least one classfile to be loaded from

the package before it returns a Package object describing that package.

12. The two main uses of the primitive wrapper classes are to store objects

containing primitive values in the collections framework’s lists, sets, and maps;

and to provide a good place to associate useful constants (such as MAX_VALUE and

MIN_VALUE) and class methods (such as Integer’s parseInt() methods and

Character’s isDigit(), isLetter(), and toUpperCase() methods) with the

primitive types.

13. You should avoid coding expressions such as ch >= '0' && ch <= '9' (test ch to

see if it contains a digit) or ch >= 'A' && ch <= 'Z' (test ch to see if it contains an

uppercase letter) because it is too easy to introduce a bug into the expressions,

the expressions are not very descriptive of what they are testing, and the

expressions are biased toward Latin digits (0–9) and letters (A–Z, a–z).

14. The four kinds of reachability are strongly reachable, softly reachable, weakly

reachable, and phantom reachable.

APPENDIX: Solutions to Exercises 562

15. A referent is the object whose reference is stored in a SoftReference,

WeakReference, or PhantomReference object.

16. The References API’s PhantomReference class is the equivalent of Object’s

finalize() method. Both entities are used to perform object cleanup tasks.

17. Listing 29 presents the Circle application that was called for in Chapter 6.

Listing 29. Using asterisks to display a circle shape

public class Circle
{
 final static int NROWS = 22;
 final static int NCOLS = 22;
 final static double RADIUS = 10.0;
 public static void main(String[] args)
 {
 // Create the screen array for storing the cardioid image.
 char[][] screen = new char[NROWS][];
 for (int row = 0; row < NROWS; row++)
 screen[row] = new char[NCOLS];

 // Initialize the screen array to space characters.
 for (int col = 0; col < NCOLS; col++)
 screen[0][col] = ' ';
 for (int row = 1; row < NROWS; row++)
 System.arraycopy(screen[0], 0, screen[row], 0, NCOLS);

 // Create the circle shape.
 for (int angle = 0; angle < 360; angle++)
 {
 int x = (int)(RADIUS*Math.cos(Math.toRadians(angle)))+NCOLS/2;
 int y = (int)(RADIUS*Math.sin(Math.toRadians(angle)))+NROWS/2;
 screen[y][x] = '*';
 }

 // Output the screen array.
 for (int row = 0; row < NROWS; row++)
 System.out.println(screen[row]);
 }
}

18. Listing 30 presents the PrimeNumberTest application that was called for in Chapter 6.

Listing 30. Checking a positive integer argument to discover if it is prime

public class PrimeNumberTest
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java PrimeNumberTest integer");
 System.err.println("integer must be 2 or higher");
 return;
 }
 try
 {

APPENDIX: Solutions to Exercises 563

 int n = Integer.parseInt(args[0]);
 if (n < 2)
 {
 System.err.println(n + " is invalid because it is less than 2");
 return;
 }
 for (int i = 2; i <= Math.sqrt(n); i++)
 if (n % i == 0)
 {
 System.out.println (n + " is not prime");
 return;
 }
 System.out.println(n + " is prime");
 }
 catch (NumberFormatException nfe)
 {
 System.err.println("unable to parse " + args[0] + " into an int");
 }
 }
}

Chapter 7: Exploring the Basic APIs Part 2
1. Reflection is a third form of runtime type identification. Applications use reflection

to learn about loaded classes, interfaces, enums (a kind of class), and annotation

types (a kind of interface); and to instantiate classes, call methods, access fields,

and perform other tasks reflectively.

2. The difference between Class’s getDeclaredFields() and getFields() methods

is as follows: getDeclaredFields() returns an array of Field objects representing

all public, protected, default (package) access, and private fields declared by the

class or interface represented by this Class object while excluding inherited fields,

whereas getFields() returns an array of Field objects representing public fields

of the class or interface represented by this Class object, including those public

fields inherited from superclasses and superinterfaces.

3. You would determine if the method represented by a Method object is abstract by

calling the object’s getModifiers() method, bitwise ANDing the return value with

Modifier.ABSTRACT, and comparing the result with Modifier.ABSTRACT. For

example, ((method.getModifiers() & Modifier.ABSTRACT) ==
Modifier.ABSTRACT) evaluates to true when the method represented by the

Method object whose reference is stored in method is abstract.

4. The three ways of obtaining a Class object are to use Class’s forName() method,

Object’s getClass() method, and a class literal.

5. The answer is true: a string literal is a String object.

APPENDIX: Solutions to Exercises 564

6. The purpose of String’s intern() method is to store a unique copy of a String

object in an internal table of String objects. intern() makes it possible to

compare strings via their references and == or !=. These operators are the fastest

way to compare strings, which is especially valuable when sorting a huge number

of strings.

7. String and StringBuffer differ in that String objects contain immutable

sequences of characters, whereas StringBuffer objects contain mutable

sequences of characters.

8. StringBuffer and StringBuilder differ in that StringBuffer methods are

synchronized, whereas StringBuilder’s equivalent methods are not

synchronized. As a result, you would use the thread-safe but slower StringBuffer

class in multithreaded situations and the nonthread-safe but faster StringBuilder

class in single-threaded situations.

9. System’s arraycopy() method copies all or part of one array’s elements to another

array.

10. A thread is an independent path of execution through an application’s code.

11. The purpose of the Runnable interface is to identify those objects that supply code

for threads to execute via this interface’s solitary public void run() method.

12. The purpose of the Thread class is to provide a consistent interface to the

underlying operating system’s threading architecture. It provides methods that

make it possible to associate code with threads, as well as to start and manage

those threads.

13. The answer is false: a Thread object associates with a single thread.

14. A race condition is a scenario in which multiple threads update the same object at

the same time or nearly at the same time. Part of the object stores values written

to it by one thread, and another part of the object stores values written to it by

another thread.

15. Synchronization is the act of allowing only one thread at time to execute code

within a method or a block.

16. Synchronization is implemented in terms of monitors and locks.

17. Synchronization works by requiring that a thread that wants to enter a monitor-

controlled critical section first acquire a lock. The lock is released automatically

when the thread exits the critical section.

18. The answer is true: variables of type long or double are not atomic on 32-bit

virtual machines.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 565

19. The purpose of reserved word volatile is to let threads running on

multiprocessor or multicore machines access a single copy of an instance field or

class field. Without volatile, each thread might access its cached copy of the

field and will not see modifications made by other threads to their copies.

20. The answer is false: Object’s wait() methods cannot be called from outside of a

synchronized method or block.

21. Deadlock is a situation where locks are acquired by multiple threads, neither

thread holds its own lock but holds the lock needed by some other thread, and

neither thread can enter and later exit its critical section to release its held lock

because some other thread holds the lock to that critical section.

22. The purpose of the ThreadLocal class is to associate per-thread data (such as a

user ID) with a thread.

23. InheritableThreadLocal differs from ThreadLocal in that the former class lets a

child thread inherit a thread-local value from its parent thread.

24. Listing 31 presents a more efficient version of Listing 6-14’s image names loop.

Listing 31. A more efficient image names loop

String[] imageNames = new String[NUM_IMAGES];
StringBuffer sb = new StringBuffer();
for (int i = 0; i < imageNames.length; i++)
{
 sb.append("image");
 sb.append(i);
 sb.append(".gif");
 imageNames[i] = sb.toString();
 sb.setLength(0); // Erase previous StringBuffer contents.
}

25. Listing 32 presents the Classify application that was called for in Chapter 7.

Listing 32. Classifying a command-line argument as an annotation type, enum, interface, or class

public class Classify
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Classify pkgAndTypeName");
 return;
 }
 try
 {
 Class<?> clazz = Class.forName(args[0]);
 if (clazz.isAnnotation())
 System.out.println("Annotation");
 else
 if (clazz.isEnum())
 System.out.println("Enum");
 else

APPENDIX: Solutions to Exercises 566

 if (clazz.isInterface())
 System.out.println("Interface");
 else
 System.out.println("Class");
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("could not locate " + args[0]);
 }
 }
}

Specify java Classify java.lang.Override and you will see Annotation as the

output. Also, java.Classify java.math.RoundingMode outputs Enum, java
Classify java.lang.Runnable outputs Interface, and java Classify
java.lang.Class outputs Class.

26. Listing 33 presents the revised ExploreType application that was called for in

Chapter 7.

Listing 33. An improved ExploreType application

public class ExploreType
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java ExploreType pkgAndTypeName");
 return;
 }
 try
 {
 Class<?> clazz = Class.forName(args[0]);
 if (clazz.isAnnotation())
 dumpAnnotation(clazz);
 else
 if (clazz.isEnum())
 dumpEnum(clazz);
 else
 if (clazz.isInterface())
 dumpInterface(clazz);
 else
 dumpClass(clazz);
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("could not locate " + args[0]);
 }
 }
 public static void dumpAnnotation(Class clazz)
 {
 // Left blank as an exercise for you to complete.
 }
 public static void dumpClass(Class clazz)
 {
 // Output class header.

APPENDIX: Solutions to Exercises 567

 int modifiers = clazz.getModifiers();
 if ((modifiers & Modifier.PUBLIC) == Modifier.PUBLIC)
 System.out.print("public ");
 if ((modifiers & Modifier.ABSTRACT) == Modifier.ABSTRACT)
 System.out.print("abstract ");
 System.out.println("class " + clazz.getName());
 System.out.println("{");

 // Output fields.
 System.out.println (" // FIELDS");
 Field[] fields = clazz.getDeclaredFields();
 for (int i = 0; i < fields.length; i++)
 {
 System.out.print(" ");
 System.out.println(fields[i]);
 }
 System.out.println();

 // Output constructors.
 System.out.println (" // CONSTRUCTORS");
 Constructor[] constructors = clazz.getDeclaredConstructors();
 for (int i = 0; i < constructors.length; i++)
 {
 System.out.print(" ");
 System.out.println(constructors[i]);
 }
 System.out.println();

 // Output methods.
 System.out.println (" // METHODS");
 Method[] methods = clazz.getDeclaredMethods();
 for (int i = 0; i < methods.length; i++)
 {
 System.out.print(" ");
 System.out.println(methods[i]);
 }

 // Output class trailer.
 System.out.println("}");
 }
 public static void dumpEnum(Class clazz)
 {
 // Left blank as an exercise for you to complete.
 }
 public static void dumpInterface(Class clazz)
 {
 // Left blank as an exercise for you to complete.
 }
}

I have deliberately written this application so that it can be expanded to output

annotation types, enums, and interfaces.

27. Listing 34 presents the revised CountingThreads application that was called for in

Chapter 7.

APPENDIX: Solutions to Exercises 568

Listing 34. Counting via daemon threads

public class CountingThreads
{
 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (true)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 thdA.setDaemon(true);
 Thread thdB = new Thread(r);
 thdB.setDaemon(true);
 thdA.start();
 thdB.start();
 }
}

When you run this application, the two daemon threads start executing and you

will probably see some output. However, the application will end as soon as the

default main thread leaves the main() method and dies.

28. Listing 35 presents the StopCountingThreads application that was called for in

Chapter 7.

Listing 35. Stopping the counting threads when Enter is pressed

public class StopCountingThreads
{
 private static volatile boolean stopped = false;

 public static void main(String[] args)
 {
 Runnable r = new Runnable()
 {
 @Override
 public void run()
 {
 String name = Thread.currentThread().getName();
 int count = 0;
 while (!stopped)
 System.out.println(name + ": " + count++);
 }
 };
 Thread thdA = new Thread(r);
 Thread thdB = new Thread(r);
 thdA.start();
 thdB.start();
 try { System.in.read(); } catch (IOException ioe) {}
 stopped = true;

APPENDIX: Solutions to Exercises 569

 }
}

Chapter 8: Discovering the Collections Framework
1. A collection is a group of objects that are stored in an instance of a class

designed for this purpose.

2. The collections framework is a standardized architecture for representing and

manipulating collections.

3. The collections framework largely consists of core interfaces, implementation

classes, and utility classes.

4. A comparable is an object whose class implements the Comparable interface.

5. You would have a class implement the Comparable interface when you want

objects to be compared according to their natural ordering.

6. A comparator is an object whose class implements the Comparator interface. Its

purpose is to allow objects to be compared according to an order that is different

from their natural ordering.

7. The answer is false: a collection uses a comparable (an object whose class

implements the Comparable interface) to define the natural ordering of its

elements.

8. The Iterable interface describes any object that can return its contained objects

in some sequence.

9. The Collection interface represents a collection of objects that are known as

elements.

10. A situation where Collection’s add() method would throw an instance of the

UnsupportedOperationException class is an attempt to add an element to an

unmodifiable collection.

11. Iterable’s iterator() method returns an instance of a class that implements the

Iterator interface. This interface provides a hasNext() method to determine if the

end of the iteration has been reached, a next() method to return a collection’s

next element, and a remove() method to remove the last element returned by

next() from the collection.

12. The purpose of the enhanced for loop statement is to simplify collection or array

iteration.

APPENDIX: Solutions to Exercises 570

13. The enhanced for loop statement is expressed as for (type id: collection) or

for (type id: array) and reads “for each type object in collection, assign this

object to id at the start of the loop iteration” or “for each type object in array,

assign this object to id at the start of the loop iteration.”

14. The answer is true: the enhanced for loop works with arrays. For example, int []
x = { 1, 2, 3 }; for (int i: x) System.out.println(i); declares array x and

outputs all of its int-based elements.

15. Autoboxing is the act of wrapping a primitive value in an object of a primitive

wrapper class type whenever a primitive type is specified but a reference is

required. This feature saves the developer from having to explicitly instantiate a

wrapper class when storing the primitive value in a collection.

16. Unboxing is the act of unwrapping a primitive value from its wrapper object

whenever a reference is specified but a primitive type is required. This feature

saves the developer from having to explicitly call a method on the object (such as

intValue()) to retrieve the wrapped value.

17. A list is an ordered collection, which is also known as a sequence. Elements can

be stored in and accessed from specific locations via integer indexes.

18. A ListIterator instance uses a cursor to navigate through a list.

19. A view is a list that is backed by another list. Changes that are made to the view

are reflected in this backing list.

20. You would use the subList() method to perform range-view operations over a

collection in a compact manner. For example, list.subList(fromIndex,
toIndex).clear(); removes a range of elements from list where the first

element is located at fromIndex and the last element is located at toIndex-1.

21. The ArrayList class provides a list implementation that is based on an internal

array.

22. The LinkedList class provides a list implementation that is based on linked

nodes.

23. A node is a fixed sequence of value and link memory locations.

24. The answer is false: ArrayList provides slower element insertions and deletions

than LinkedList.

25. A set is a collection that contains no duplicate elements.

26. The TreeSet class provides a set implementation that is based on a tree data

structure. As a result, elements are stored in sorted order.

27. The HashSet class provides a set implementation that is backed by a hashtable

data structure.

APPENDIX: Solutions to Exercises 571

28. The answer is true: to avoid duplicate elements in a hashset, your own classes

must correctly override equals() and hashCode().

29. The difference between HashSet and LinkedHashSet is that LinkedHashSet uses a

linked list to store its elements, resulting in its iterator returning elements in the

order in which they were inserted.

30. The EnumSet class provides a Set implementation that is based on a bitset.

31. A sorted set is a set that maintains its elements in ascending order, sorted

according to their natural ordering or according to a comparator that is supplied

when the sorted set is created. Furthermore, the set’s implementation class must

implement the SortedSet interface.

32. The answer is false: HashSet is not an example of a sorted set. However, TreeSet

is an example of a sorted set.

33. A sorted set’s add() method would throw ClassCastException when you attempt

to add an element to the sorted set because the element’s class does not

implement Comparable.

34. A queue is a collection in which elements are stored and retrieved in a specific

order. Most queues are categorized as “first-in, first out,” “last-in, first-out,” or

priority.

35. The answer is true: Queue’s element() method throws NoSuchElementException

when it is called on an empty queue.

36. The PriorityQueue class provides an implementation of a priority queue, which is

a queue that orders its elements according to their natural ordering or by a

comparator provided when the queue is instantiated.

37. A map is a group of key/value pairs (also known as entries).

38. The TreeMap class provides a map implementation that is based on a red-black

tree. As a result, entries are stored in sorted order of their keys.

39. The HashMap class provides a map implementation that is based on a hashtable

data structure.

40. A hashtable uses a hash function to map keys to integer values.

41. Continuing from the previous exercise, the resulting integer values are known as

hash codes; they identify hashtable array elements, which are known as buckets

or slots.

42. A hashtable’s capacity refers to the number of buckets.

43. A hashtable’s load factor refers to the ratio of the number of stored entries divided

by the number of buckets.

APPENDIX: Solutions to Exercises 572

44. The difference between HashMap and LinkedHashMap is that LinkedHashMap uses a

linked list to store its entries, resulting in its iterator returning entries in the order in

which they were inserted.

45. The IdentityHashMap class provides a Map implementation that uses reference

equality (==) instead of object equality (equals()) when comparing keys and

values.

46. The WeakHashMap class provides a Map implementation that is based on weakly

reachable keys.

47. The EnumMap class provides a Map implementation whose keys are the members of

the same enum.

48. A sorted map is a map that maintains its entries in ascending order, sorted

according to the keys’ natural ordering or according to a comparator that is

supplied when the sorted map is created. Furthermore, the map’s implementation

class must implement the SortedMap interface.

49. The answer is true: TreeMap is an example of a sorted map.

50. The purpose of the Arrays class’s static <T> List<T> asList(T... array)

method is to return a fixed-size list backed by the specified array. (Changes to

the returned list “write through” to the array.)

51. The answer is false: binary search is faster than linear search.

52. You would use Collections’ static <T> Set<T> synchronizedSet(Set<T> s)

method to return a synchronized variation of a hashset.

53. The seven legacy collections-oriented types are Vector, Enumeration, Stack,

Dictionary, Hashtable, Properties, and BitSet.

54. Listing 36 presents the JavaQuiz application’s JavaQuiz source file that was called

for in Chapter 8.

Listing 36. How much do you know about Java? Take the quiz and find out!

public class JavaQuiz
{
 static QuizEntry[] quizEntries =
 {
 new QuizEntry("What was Java's original name?",
 new String[] { "Oak", "Duke", "J", "None of the above" },
 'A'),
 new QuizEntry("Which of the following reserved words is also a literal?",
 new String[] { "for", "long", "true", "enum" },
 'C'),
 new QuizEntry("The conditional operator (?:) resembles which statement?",
 new String[] { "switch", "if-else", "if", "while" },
 'B')
 };
 public static void main(String[] args)

APPENDIX: Solutions to Exercises 573

 {
 // Populate the quiz list.
 List<QuizEntry> quiz = new ArrayList<QuizEntry>();
 for (QuizEntry entry: quizEntries)
 quiz.add(entry);
 // Perform the quiz.
 System.out.println("Java Quiz");
 System.out.println("---------\n");
 Iterator<QuizEntry> iter = quiz.iterator();
 while (iter.hasNext())
 {
 QuizEntry qe = iter.next();
 System.out.println(qe.getQuestion());
 String[] choices = qe.getChoices();
 for (int i = 0; i < choices.length; i++)
 System.out.println(" " + (char) ('A'+i) + ": " + choices[i]);
 int choice = -1;
 while (choice < 'A' || choice > 'A'+choices.length)
 {
 System.out.print("Enter choice letter: ");
 try
 {
 choice = System.in.read();
 // Remove trailing characters up to and including the newline
 // to avoid having these characters automatically returned in
 // subsequent System.in.read() method calls.
 while (System.in.read() != '\n');
 choice = Character.toUpperCase((char) choice);
 }
 catch (java.io.IOException ioe)
 {
 }
 }
 if (choice == qe.getAnswer())
 System.out.println("You are correct!\n");
 else
 System.out.println("You are not correct!\n");
 }
 }
}

JavaQuiz first creates a list of quiz entries. In a more sophisticated application, I

would obtain quiz data from a database and dynamically create the entries.

JavaQuiz then performs the quiz with the help of iterator() and its returned

Iterator instance’s hasNext() and next() methods.

Listing 37 reveals the companion QuizEntry class.

Listing 37. A helper class for storing a quiz’s data

class QuizEntry
{
 private String question;
 private String[] choices;
 private char answer;
 QuizEntry(String question, String[] choices, char answer)
 {

APPENDIX: Solutions to Exercises 574

 this.question = question;
 this.choices = choices;
 this.answer = answer;
 }
 String[] getChoices()
 {
 // Demonstrate returning a copy of the choices array to prevent clients
 // from directly manipulating (and possibly screwing up) the internal
 // choices array.
 String[] temp = new String[choices.length];
 System.arraycopy(choices, 0, temp, 0, choices.length);
 return temp;
 }
 String getQuestion()
 {
 return question;
 }
 char getAnswer()
 {
 return answer;
 }
}

QuizEntry is a reusable class that stores quiz data. I did not nest QuizEntry in

JavaQuiz because QuizEntry is useful for all kinds of quizzes. However, I made

this class package-private by not declaring QuizEntry to be a public class

because it is a helper class to a quiz’s main class (such as JavaQuiz).

55. (int) (f^(f>>>32)) is used instead of (int) (f^(f>>32)) in the hash code

generation algorithm because >>> always shifts a 0 to the right, which does not

affect the hash code, whereas >> shifts a 0 or a 1 to the right, which affects the

hash code when a 1 is shifted.

56. Listing 38 presents the FrequencyDemo application that was called for in Chapter 8.

Listing 38. Reporting the frequency of last command-line argument occurrences in the previous command-line
arguments

import java.util.LinkedList;
import java.util.Collections;
import java.util.List;

public class FrequencyDemo
{
 public static void main(String[] args)
 {
 List<String> listOfArgs = new LinkedList<String>();
 String lastArg = (args.length == 0) ? null : args[args.length-1];
 for (int i = 0; i < args.length-1; i++)
 listOfArgs.add(args[i]);
 System.out.println("Number of occurrences of " + lastArg + " = " +
 Collections.frequency(listOfArgs, lastArg));
 }
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 575

Chapter 9: Discovering Additional Utility APIs
1. A task is an object whose class implements the Runnable interface (a runnable

task) or the Callable interface (a callable task).

2. An executor is an object whose class directly or indirectly implements the

Executor interface, which decouples task submission from task-execution

mechanics.

3. The Executor interface focuses exclusively on Runnable, which means that there is

no convenient way for a runnable task to return a value to its caller (because

Runnable’s run() method does not return a value); Executor does not provide a

way to track the progress of executing runnable tasks, cancel an executing

runnable task, or determine when the runnable task finishes execution; Executor

cannot execute a collection of runnable tasks; and Executor does not provide a

way for an application to shut down an executor (much less to properly shut down

an executor).

4. Executor’s limitations are overcome by providing the ExecutorService interface.

5. The differences existing between Runnable’s run() method and Callable’s call()

method are as follows: run() cannot return a value whereas call() can return a

value, and run() cannot throw checked exceptions whereas call() can throw

checked exceptions.

6. The answer is false: you can throw checked and unchecked exceptions from

Callable’s call() method but can only throw unchecked exceptions from

Runnable’s run() method.

7. A future is an object whose class implements the Future interface. It represents

an asynchronous computation and provides methods for cancelling a task, for

returning a task’s value, and for determining whether or not the task has finished.

8. The Executors class’s newFixedThreadPool() method creates a thread pool that

reuses a fixed number of threads operating off of a shared unbounded queue. At

most, nThreads threads are actively processing tasks. If additional tasks are

submitted when all threads are active, they wait in the queue for an available

thread. If any thread terminates because of a failure during execution before the

executor shuts down, a new thread will take its place when needed to execute

subsequent tasks. The threads in the pool will exist until the executor is explicitly

shut down.

9. A synchronizer is a class that facilitates a common form of synchronization.

APPENDIX: Solutions to Exercises 576

10. Four commonly used synchronizers are countdown latches, cyclic barriers,

exchangers, and semaphores. A countdown latch lets one or more threads wait at

a “gate” until another thread opens this gate, at which point these other threads

can continue. A cyclic barrier lets a group of threads wait for each other to reach a

common barrier point. An exchanger lets a pair of threads exchange objects at a

synchronization point. A semaphore maintains a set of permits for restricting the

number of threads that can access a limited resource.

11. The concurrency-oriented extensions to the collections framework provided by

the concurrency utilities are BlockingQueue (a subinterface of java.util.Queue

that describes a first-in, first-out data structure, and provides additional

operations that wait for the queue to become nonempty when retrieving an

element, and wait for space to become available in the queue when storing an

element); the ArrayBlockingQueue, LinkedBlockingQueue, PriorityBlockingQueue,

and SynchronousQueue classes that implement BlockingQueue; ConcurrentMap (a

subinterface of java.util.Map that declares additional atomic putIfAbsent(),

remove(), and replace() methods); the ConcurrentHashMap class that implements

ConcurrentMap; and the ConcurrentLinkedQueue class (an unbounded thread-safe

FIFO implementation of the Queue interface).

12. A lock is an instance of a class that implements the Lock interface, which provides

more extensive locking operations than can be achieved via the synchronized

reserved word. Lock also supports a wait/notification mechanism through

associated Condition objects.

13. The biggest advantage that Lock objects hold over the implicit locks that are

obtained when threads enter critical sections (controlled via the synchronized

reserved word) is their ability to back out of an attempt to acquire a lock.

14. An atomic variable is an instance of a class that encapsulates a single variable,

and supports lock-free, thread-safe operations on that variable; for example,

AtomicInteger.

15. Internationalization is the process of creating an application that automatically

adapts to its current user’s culture so that the user can read the application’s text,

hear audio clips in the user’s language (if audio is supported), and so on. This

word is commonly abbreviated to i18n, with 18 representing the number of letters

between the initial i and the final n.

16. A locale is a geographical, political, or a cultural region.

17. The components of a Locale object are a language code, an optional country

code, and an optional variant code.

18. A resource bundle is a container that holds one or more locale-specific elements,

and which is associated with one and only one locale.

APPENDIX: Solutions to Exercises 577

19. The answer is true: if a property resource bundle and a list resource bundle have

the same complete resource bundle name, the list resource bundle takes

precedence over the property resource bundle.

20. A break iterator is an object that detects logical boundaries within a section of

text.

21. The Break Iterator API supports character, word, sentence, and line break

iterators.

22. The answer is false: you cannot pass any Locale object to any of BreakIterator’s

factory methods that take Locale arguments. Instead, you can only pass Locale

objects for locales that are identified by BreakIterator’s getAvailableLocales()

method.

23. A collator is a Collator instance that performs locale-specific comparisons for

sorting purposes. For example, a Collator for the fr_FR locale takes into account

accented characters by first comparing words as if none of the characters contain

accents, and then comparing equal words from right to left for accents.

24. A date is a recorded temporal moment, a time zone is a set of geographical

regions that share a common number of hours relative to Greenwich Mean Time

(GMT), and a calendar is a system of organizing the passage of time.

25. The answer is true: Date instances can represent dates prior to or after the Unix

epoch.

26. You would obtain a TimeZone object that represents Central Standard Time by

calling TimeZone’s static TimeZone getTimeZone(String ID) factory method with

argument "CST".

27. Assuming that cal identifies a Calendar instance and locale identifies a specific

locale, you would obtain a localized name for the month represented by cal by

calling cal.getDisplayName(Calendar.MONTH, Calendar.LONG, locale) to return

the long form of the month name, or by calling

cal.getDisplayName(Calendar.MONTH, Calendar.SHORT, locale) to return the

short form of the month name.

28. A formatter is an instance of a class that subclasses Format.

29. NumberFormat returns formatters that format numbers as currencies, integers,

numbers with decimal points, and percentages (and also to parse such values).

30. The answer is false: DateFormat’s getInstance() factory method is a shortcut to

obtaining a default date/time formatter that uses the SHORT style for both the date

and the time.

APPENDIX: Solutions to Exercises 578

31. A message formatter lets you convert a compound message pattern (a template

consisting of static text and brace-delimited placeholders) along with the variable

data required by the pattern’s placeholders into a localized message.

32. A preference is a configuration item.

33. The Properties API is problematic for persisting preferences because properties

files tend to grow in size and the probability of name collisions among the various

keys increases; a growing application tends to acquire numerous properties files

with each part of the application associated with its own properties file (and the

names and locations of these properties files must be hard-coded in the

application’s source code); someone could directly modify these text-based

properties files (perhaps inserting gibberish) and cause the application that

depends upon the modified properties file to crash unless it is properly coded to

deal with this possibility; and properties files cannot be used on diskless

computing platforms.

34. The Preferences API persists preferences by storing them in platform-specific

storage facilities (such as the Windows registry). Preferences are stored in trees of

nodes, which are the analogue of a hierarchical filesystem’s directories. Also,

preference name/value pairs stored under these nodes are the analogues of a

directory’s files. There are two kinds of trees: system and user. All users share the

system preference tree, whereas the user preference tree is specific to a single

user, which is generally the person who logged into the underlying operating

system.

35. Instances of the Random class generate sequences of random numbers by starting

with a special 48-bit value that is known as a seed. This value is subsequently

modified by a mathematical algorithm, which is known as a linear congruential
generator.

36. A regular expression (also known as a regex or regexp) is a string-based pattern

that represents the set of strings that match this pattern.

37. Instances of the Pattern class represent patterns via compiled regexes. Regexes

are compiled for performance reasons; pattern matching via compiled regexes is

much faster than if the regexes were not compiled.

38. Pattern’s compile() methods throw instances of the PatternSyntaxException

class when they discover illegal syntax in their regular expression arguments.

39. Instances of the Matcher class attempt to match compiled regexes against input

text.

40. The difference between Matcher’s matches() and lookingAt() methods is that,

unlike matches(), lookingAt() does not require the entire region to be matched.

41. A character class is a set of characters appearing between [and].

APPENDIX: Solutions to Exercises 579

42. There are six kinds of character classes: simple, negation, range, union,

intersection, and subtraction.

43. A capturing group saves a match’s characters for later recall during pattern

matching.

44. A zero-length match is a match of zero length in which the start and end indexes

are equal.

45. A quantifier is a numeric value implicitly or explicitly bound to a pattern.

Quantifiers are categorized as greedy, reluctant, or possessive.

46. The difference between a greedy quantifier and a reluctant quantifier is that a

greedy quantifier attempts to find the longest match, whereas a reluctant

quantifier attempts to find the shortest match.

47. Possessive and greedy quantifiers differ in that a possessive quantifier only

makes one attempt to find the longest match, whereas a greedy quantifier can

make multiple attempts.

48. Listing 39 presents the SpanishCollation application that was called for in

Chapter 9.

Listing 39. Outputting Spanish words according to this language’s current collation rules followed by its
traditional collation rules

import java.text.Collator;
import java.text.ParseException;
import java.text.RuleBasedCollator;

import java.util.Arrays;
import java.util.Locale;

public class SpanishCollation
{
 public static void main(String[] args)
 {
 String[] words =
 {
 "ñango", // weak
 "llamado", // called
 "lunes", // monday
 "champán", // champagne
 "clamor", // outcry
 "cerca", // near
 "nombre", // name
 "chiste", // joke
 };
 Locale locale = new Locale("es", "");
 Collator c = Collator.getInstance(locale);
 Arrays.sort(words, c);
 for (String word: words)
 System.out.println(word);
 System.out.println();
 // Define the traditional Spanish sort rules.

APPENDIX: Solutions to Exercises 580

 String upperNTilde = new String ("\u00D1");
 String lowerNTilde = new String ("\u00F1");
 String spanishRules = "< a,A < b,B < c,C < ch, cH, Ch, CH < d,D < e,E " +
 "< f,F < g,G < h,H < i,I < j,J < k,K < l,L < ll, " +
 "lL, Ll, LL < m,M < n,N < " + lowerNTilde + "," +
 upperNTilde + " < o,O < p,P < q,Q < r,R < s,S < " +
 "t,T < u,U < v,V < w,W < x,X < y,Y < z,Z";
 try
 {
 c = new RuleBasedCollator(spanishRules);
 Arrays.sort(words, c);
 for (String word: words)
 System.out.println(word);
 }
 catch (ParseException pe)
 {
 System.err.println(pe);
 }
 }
}

49. Listing 40 presents the RearrangeText application that was called for in Chapter 9.

Listing 40. Rearranging a single text argument of the form x, y into the form y x

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class RearrangeText
{
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java RearrangeText text");
 return;
 }
 try
 {
 Pattern p = Pattern.compile("(.*), (.*)");
 Matcher m = p.matcher(args[0]);
 if (m.matches())
 System.out.println(m.group(2)+" " + m.group(1));
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println(pse);
 }
 }
}

50. Listing 41 presents the ReplaceText application that was called for in Chapter 9.

Listing 41. Replacing all matches of the pattern with replacement text

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

APPENDIX: Solutions to Exercises 581

public class ReplaceText
{
 public static void main(String[] args)
 {
 if (args.length != 3)
 {
 System.err.println("usage: java ReplaceText text oldText newText");
 return;
 }
 try
 {
 Pattern p = Pattern.compile(args[1]);
 Matcher m = p.matcher(args[0]);
 String result = m.replaceAll(args[2]);
 System.out.println(result);
 }
 catch (PatternSyntaxException pse)
 {
 System.err.println(pse);
 }
 }
}

Chapter 10: Performing I/O
1. The purpose of the File class is to offer access to the underlying platform’s

available filesystem(s).

2. Instances of the File class contain the pathnames of files and directories that

may or may not exist in their filesystems.

3. File’s listRoots() method returns an array of File objects denoting the root

directories (roots) of available filesystems.

4. A path is a hierarchy of directories that must be traversed to locate a file or a

directory. A pathname is a string representation of a path; a platform-dependent

separator character (such as the Windows backslash [\] character) appears

between consecutive names.

5. The difference between an absolute pathname and a relative pathname is as

follows: an absolute pathname is a pathname that starts with the root directory

symbol, whereas a relative pathname is a pathname that does not start with the

root directory symbol; it is interpreted via information taken from some other

pathname.

6. You obtain the current user (also known as working) directory by specifying

System.getProperty("user.dir").

7. A parent pathname is a string that consists of all pathname components except

for the last name.

APPENDIX: Solutions to Exercises 582

8. Normalize means to replace separator characters with the default name-separator

character so that the pathname is compliant with the underlying filesystem.

9. You obtain the default name-separator character by accessing File’s separator

and separatorChar static fields. The first field stores the character as a char and

the second field stores it as a String.

10. A canonical pathname is a pathname that is absolute and unique.

11. The difference between File’s getParent() and getName() methods is that

getParent() returns the parent pathname and getName() returns the last name in

the pathname’s name sequence.

12. The answer is false: File’s exists() method determines whether or not a file or

directory exists.

13. A normal file is a file that is not a directory and satisfies other platform-dependent

criteria: it is not a symbolic link or named pipe, for example. Any nondirectory file

created by a Java application is guaranteed to be a normal file.

14. File’s lastModified() method returns the time that the file denoted by this File

object’s pathname was last modified, or 0 when the file does not exist or an I/O

error occurred during this method call. The returned value is measured in

milliseconds since the Unix epoch (00:00:00 GMT, January 1, 1970).

15. The answer is true: File’s list() method returns an array of Strings where each

entry is a filename rather than a complete path.

16. The difference between the FilenameFilter and FileFilter interfaces is as

follows: FilenameFilter declares a single boolean accept(File dir, String
name) method, whereas FileFilter declares a single boolean accept(String
pathname) method. Either method accomplishes the same task of accepting (by

returning true) or rejecting (by returning false) the inclusion of the file or directory

identified by the argument(s) in a directory listing.

17. The answer is false: File’s createNewFile() method checks for file existence and

creates the file if it does not exist in a single operation that is atomic with respect

to all other filesystem activities that might affect the file.

18. The default temporary directory where File’s createTempFile(String, String)

method creates temporary files can be located by reading the java.io.tmpdir

system property.

19. You ensure that a temporary file is removed when the virtual machine ends

normally (it does not crash or the power is not lost) by registering the temporary

file for deletion through a call to File’s deleteOnExit() method.

APPENDIX: Solutions to Exercises 583

20. You would accurately compare two File objects by first calling File’s

getCanonicalFile() method on each File object and then comparing the

returned File objects.

21. The purpose of the RandomAccessFile class is to create and/or open files for

random access in which a mixture of write and read operations can occur until the

file is closed.

22. The purpose of the "rwd" and "rws" mode arguments is to ensure than any writes

to a file located on a local storage device are written to the device, which

guarantees that critical data is not lost when the system crashes. No guarantee is

made when the file does not reside on a local device.

23. A file pointer is a cursor that identifies the location of the next byte to write or

read. When an existing file is opened, the file pointer is set to its first byte, at

offset 0. The file pointer is also set to 0 when the file is created.

24. The answer is false: when you call RandomAccessFile’s seek(long) method to set

the file pointer’s value, and if this value is greater than the length of the file, the

file’s length does not change. The file length will only change by writing after the

offset has been set beyond the end of the file.

25. A flat file database is a single file organized into records and fields. A record

stores a single entry (such as a part in a parts database) and a field stores a single

attribute of the entry (such as a part number).

26. A stream is an ordered sequence of bytes of arbitrary length. Bytes flow over an
output stream from an application to a destination, and flow over an input stream

from a source to an application.

27. The purpose of OutputStream’s flush() method is to write any buffered output

bytes to the destination. If the intended destination of this output stream is an

abstraction provided by the underlying platform (for example, a file), flushing the

stream only guarantees that bytes previously written to the stream are passed to

the underlying platform for writing; it does not guarantee that they are actually

written to a physical device such as a disk drive.

28. The answer is true: OutputStream’s close() method automatically flushes the

output stream. If an application ends before close() is called, the output stream

is automatically closed and its data is flushed.

29. The purpose of InputStream’s mark(int) and reset() methods is to reread a

portion of a stream. mark(int) marks the current position in this input stream. A

subsequent call to reset() repositions this stream to the last marked position so

that subsequent read operations reread the same bytes. Do not forget to call

markSupported() to find out if the subclass supports mark() and reset().

APPENDIX: Solutions to Exercises 584

30. You would access a copy of a ByteArrayOutputStream instance’s internal byte

array by calling ByteArrayOutputStream’s toByteArray() method.

31. The answer is false: FileOutputStream and FileInputStream do not provide

internal buffers to improve the performance of write and read operations.

32. You would use PipedOutputStream and PipedInputStream to communicate data

between a pair of executing threads.

33. A filter stream is a stream that buffers, compresses/uncompresses,

encrypts/decrypts, or otherwise manipulates an input stream’s byte sequence

before it reaches its destination.

34. Two streams are chained together when a stream instance is passed to another

stream class’s constructor.

35. You improve the performance of a file output stream by chaining a

BufferedOutputStream instance to a FileOutputStream instance and calling the

BufferedOutputStream instance’s write() methods so that data is buffered before

flowing to the file output stream. You improve the performance of a file input

stream by chaining a BufferedInputStream instance to a FileInputStream

instance so that data flowing from a file input stream is buffered before being

returned from the BufferedInputStream instance by calling this instance’s read()

methods.

36. DataOutputStream and DataInputStream support FileOutputStream and

FileInputStream by providing methods to write and read primitive type values

and strings in a platform-independent way. In contrast, FileOutputStream and

FileInputStream provide methods for writing/reading bytes and arrays of bytes

only.

37. Object serialization is a virtual machine mechanism for serializing object state into

a stream of bytes. Its deserialization counterpart is a virtual machine mechanism

for deserializing this state from a byte stream.

38. The three forms of serialization and deserialization that Java supports are default

serialization and deserialization, custom serialization and deserialization, and

externalization.

39. The purpose of the Serializable interface is to tell the virtual machine that it is

okay to serialize objects of the implementing class.

40. When the serialization mechanism encounters an object whose class does not

implement Serializable, it throws an instance of the NotSerializableException

class.

41. The three stated reasons for Java not supporting unlimited serialization are as

follows: security, performance, and objects not amenable to serialization.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

APPENDIX: Solutions to Exercises 585

42. You initiate serialization by creating an ObjectOutputStream instance and calling

its writeObject() method. You initialize deserialization by creating an

ObjectInputStream instance and calling its readObject() method.

43. The answer is false: class fields are not automatically serialized.

44. The purpose of the transient reserved word is to mark instance fields that do not

participate in default serialization and default deserialization.

45. The deserialization mechanism causes readObject() to throw an instance of the

InvalidClassException class when it attempts to deserialize an object whose

class has changed.

46. The deserialization mechanism detects that a serialized object’s class has

changed as follows: Every serialized object has an identifier. The deserialization

mechanism compares the identifier of the object being deserialized with the

serialized identifier of its class (all serializable classes are automatically given

unique identifiers unless they explicitly specify their own identifiers) and causes

InvalidClassException to be thrown when it detects a mismatch.

47. You can add an instance field to a class and avoid trouble when deserializing an

object that was serialized before the instance field was added by introducing a

long serialVersionUID = long integer value; declaration into the class. The

long integer value must be unique and is known as a stream unique identifier
(SUID). You can use the JDK’s serialver tool to help with this task.

48. You customize the default serialization and deserialization mechanisms without

using externalization by declaring private void writeObject(ObjectOutputStream)

and void readObject(ObjectInputStream) methods in the class.

49. You tell the serialization and deserialization mechanisms to serialize or deserialize

the object’s normal state before serializing or deserializing additional data items

by first calling ObjectOutputStream’s defaultWriteObject() method in

writeObject(ObjectOutputStream) and by first calling ObjectInputStream’s

defaultReadObject() method in readObject(ObjectInputStream).

50. Externalization differs from default and custom serialization and deserialization in

that it offers complete control over the serialization and deserialization tasks.

51. A class indicates that it supports externalization by implementing the

Externalizable interface instead of Serializable, and by declaring void
writeExternal(ObjectOutput) and void readExternal(ObjectInput in) methods

instead of void writeObject(ObjectOutputStream) and void
readObject(ObjectInputStream) methods.

52. The answer is true: during externalization, the deserialization mechanism throws

InvalidClassException with a “no valid constructor” message when it does not

detect a public noargument constructor.

APPENDIX: Solutions to Exercises 586

53. The difference between PrintStream’s print() and println() methods is that the

print() methods do not append a line terminator to their output, whereas the

println() methods append a line terminator.

54. PrintStream’s noargument void println() method outputs the line.separator

system property’s value to ensure that lines are terminated in a portable manner

(such as a carriage return followed by a newline/line feed on Windows, or only a

newline/line feed on Unix/Linux).

55. The answer is true: PrintStream’s %tR format specifier is used to format a

Calendar object’s time as HH:MM.

56. Java’s stream classes are not good at streaming characters because bytes and

characters are two different things: a byte represents an 8-bit data item and a

character represents a 16-bit data item. Also, byte streams have no knowledge of

character sets and their character encodings.

57. Java provides writer and reader classes as the preferred alternative to stream

classes when it comes to character I/O.

58. The answer is false: Reader does not declare an available() method.

59. The purpose of the OutputStreamWriter class is to serve as a bridge between an

incoming sequence of characters and an outgoing stream of bytes. Characters

written to this writer are encoded into bytes according to the default or specified

character encoding. The purpose of the InputStreamReader class is to serve as a

bridge between an incoming stream of bytes and an outgoing sequence of

characters. Characters read from this reader are decoded from bytes according to

the default or specified character encoding.

60. You identify the default character encoding by reading the value of the

file.encoding system property.

61. The purpose of the FileWriter class is to conveniently connect to the underlying

file output stream using the default character encoding. The purpose of the

FileReader class is to conveniently connect to the underlying file input stream

using the default character encoding.

62. Listing 42 presents the Touch application that was called for in Chapter 10.

Listing 42. Setting a file or directory’s timestamp to the current or specified time

import java.io.File;

import java.text.ParseException;
import java.text.SimpleDateFormat;

import java.util.Date;

public class Touch
{

APPENDIX: Solutions to Exercises 587

 public static void main(String[] args)
 {
 if (args.length != 1 && args.length != 3)
 {
 System.err.println("usage: java Touch [-d timestamp] pathname");
 return;
 }
 long time = new Date().getTime();
 if (args.length == 3)
 {
 if (args[0].equals("-d"))
 {
 try
 {
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss z");
 Date date = sdf.parse(args[1]);
 time = date.getTime();
 }
 catch (ParseException pe)
 {
 pe.printStackTrace();
 }
 }
 else
 {
 System.err.println("invalid option: " + args[0]);
 return;
 }
 }
 new File(args[args.length == 1 ? 0 : 2]).setLastModified(time);
 }
}

63. Listing 43 presents the Media class that was called for in Chapter 10.

Listing 43. Obtaining the data from an MP3 file’s 128-byte ID3 block, and creating/populating/returning an ID3
object with this data

import java.io.IOException;
import java.io.RandomAccessFile;

public class Media
{
 public static class ID3
 {
 private String songTitle, artist, album, year, comment, genre;
 private int track; // -1 if track not present
 public ID3(String songTitle, String artist, String album, String year,
 String comment, int track, String genre)
 {
 this.songTitle = songTitle;
 this.artist = artist;
 this.album = album;
 this.year = year;
 this.comment = comment;
 this.track = track;
 this.genre = genre;

APPENDIX: Solutions to Exercises 588

 }
 String getSongTitle() { return songTitle; }
 String getArtist() { return artist; }
 String getAlbum() { return album; }
 String getYear() { return year; }
 String getComment() { return comment; }
 int getTrack() { return track; }
 String getGenre() { return genre; }
 }
 public static ID3 getID3Info(String mp3path) throws IOException
 {
 RandomAccessFile raf = null;
 try
 {
 raf = new RandomAccessFile(mp3path, "r");
 if (raf.length() < 128)
 return null; // Not MP3 file (way too small)
 raf.seek(raf.length()-128);
 byte[] buffer = new byte[128];
 raf.read(buffer);
 raf.close();
 if (buffer[0] != (byte) 'T' && buffer[1] != (byte) 'A' &&
 buffer[2] != (byte) 'G')
 return null; // No ID3 block (must start with TAG)
 String songTitle = new String(buffer, 3, 30);
 String artist = new String(buffer, 33, 30);
 String album = new String(buffer, 63, 30);
 String year = new String(buffer, 93, 4);
 String comment = new String(buffer, 97, 28);
 // buffer[126]&255 converts -128 through 127 to 0 through 255
 int track = (buffer[125] == 0) ? buffer[126]&255 : -1;
 String[] genres = new String[]
 {
 "Blues",
 "Classic Rock",
 "Country",
 "Dance",
 "Disco",
 "Funk",
 "Grunge",
 "Hip-Hop",
 "Jazz",
 "Metal",
 "New Age",
 "Oldies",
 "Other",
 "Pop",
 "R&B",
 "Rap",
 "Reggae",
 "Rock",
 "Techno",
 "Industrial",
 "Alternative",
 "Ska",
 "Death Metal",
 "Pranks",

APPENDIX: Solutions to Exercises 589

 "Soundtrack",
 "Euro-Techno",
 "Ambient",
 "Trip-Hop",
 "Vocal",
 "Jazz+Funk",
 "Fusion",
 "Trance",
 "Classical",
 "Instrumental",
 "Acid",
 "House",
 "Game",
 "Sound Clip",
 "Gospel",
 "Noise",
 "AlternRock",
 "Bass",
 "Soul",
 "Punk",
 "Space",
 "Meditative",
 "Instrumental Pop",
 "Instrumental Rock",
 "Ethnic",
 "Gothic",
 "Darkwave",
 "Techno-Industrial",
 "Electronic",
 "Pop-Folk",
 "Eurodance",
 "Dream",
 "Southern Rock",
 "Comedy",
 "Cult",
 "Gangsta",
 "Top 40",
 "Christian Rap",
 "Pop/Funk",
 "Jungle",
 "Native American",
 "Cabaret",
 "New Wave",
 "Psychedelic",
 "Rave",
 "Showtunes",
 "Trailer",
 "Lo-Fi",
 "Tribal",
 "Acid Punk",
 "Acid Jazz",
 "Polka",
 "Retro",
 "Musical",
 "Rock & Roll",
 "Hard Rock",
 "Folk",

APPENDIX: Solutions to Exercises 590

 "Folk-Rock",
 "National-Folk",
 "Swing",
 "Fast Fusion",
 "Bebob",
 "Latin",
 "Revival",
 "Celtic",
 "Bluegrass",
 "Avantegarde",
 "Gothic Rock",
 "Progressive Rock",
 "Psychedelic Rock",
 "Symphonic Rock",
 "Slow Rock",
 "Big Band",
 "Chorus",
 "Easy Listening",
 "Acoustic",
 "Humour",
 "Speech",
 "Chanson",
 "Opera",
 "Chamber Music",
 "Sonata",
 "Symphony",
 "Booty Brass",
 "Primus",
 "Porn Groove",
 "Satire",
 "Slow Jam",
 "Club",
 "Tango",
 "Samba",
 "Folklore",
 "Ballad",
 "Power Ballad",
 "Rhythmic Soul",
 "Freestyle",
 "Duet",
 "Punk Rock",
 "Drum Solo",
 "A cappella",
 "Euro-House",
 "Dance Hall"
 };
 assert genres.length == 126;
 String genre = (buffer[127] < 0 || buffer[127] > 125)
 ? "Unknown" : genres[buffer[127]];
 return new ID3(songTitle, artist, album, year, comment, track, genre);
 }
 catch (IOException ioe)
 {
 if (raf != null)
 try
 {
 raf.close();

APPENDIX: Solutions to Exercises 591

 }
 catch (IOException ioe2)
 {
 ioe2.printStackTrace();
 }
 throw ioe;
 }
 }
}

64. Listing 44 presents the Split application that was called for in Chapter 10.

Listing 44. Splitting a large file into numerous smaller part files

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class Split
{
 static final int FILESIZE = 1400000;
 static byte[] buffer = new byte[FILESIZE];
 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("usage: java Split pathname");
 return;
 }
 File file = new File(args[0]);
 long length = file.length();
 int nWholeParts = (int) (length/FILESIZE);
 int remainder = (int) (length%FILESIZE);
 System.out.printf("Splitting %s into %d parts%n", args[0],
 (remainder == 0) ? nWholeParts : nWholeParts+1);
 BufferedInputStream bis = null;
 BufferedOutputStream bos = null;
 try
 {
 FileInputStream fis = new FileInputStream(args[0]);
 bis = new BufferedInputStream(fis);
 for (int i = 0; i < nWholeParts; i++)
 {
 bis.read(buffer);
 System.out.println("Writing part " + i);
 FileOutputStream fos = new FileOutputStream("part" + i);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer);
 bos.close();
 bos = null;
 }
 if (remainder != 0)
 {
 int br = fis.read(buffer);
 if (br != remainder)

APPENDIX: Solutions to Exercises 592

 {
 System.err.println("Last part mismatch: expected " + remainder
 + " bytes");
 System.exit(0);
 }
 System.out.println("Writing part " + nWholeParts);
 FileOutputStream fos = new FileOutputStream("part" + nWholeParts);
 bos = new BufferedOutputStream(fos);
 bos.write(buffer, 0, remainder);
 bos.close();
 bos = null;
 }
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 if (bis != null)
 try
 {
 bis.close();
 }
 catch (IOException ioe2)
 {
 ioe2.printStackTrace();
 }
 if (bos != null)
 try
 {
 bos.close();
 }
 catch (IOException ioe2)
 {
 ioe2.printStackTrace();
 }
 }
 }
}

65. Listing 45 presents the CircleInfo application that was called for in Chapter 10.

Listing 45. Reading lines of text from standard input that represent circle radii, and outputting circumference and
area based on the current radius

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class CircleInfo
{
 public static void main(String[] args) throws IOException
 {
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 while (true)
 {
 System.out.print("Enter circle's radius: ");
 String str = br.readLine();
 double radius;

APPENDIX: Solutions to Exercises 593

 try
 {
 radius = Double.valueOf(str).doubleValue();
 if (radius <= 0)
 System.err.println("radius must not be 0 or negative");
 else
 {
 System.out.println("Circumference: " + Math.PI*2.0*radius);
 System.out.println("Area: " + Math.PI*radius*radius);
 }
 }
 catch (NumberFormatException nfe)
 {
 nfe.printStackTrace();
 }
 }
 }
}

APPENDIX: Solutions to Exercises 594

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

595

595

Index

■ Symbols and
Numerics

$ boundary matcher, 441
^ boundary matcher, 441
? argument

wildcards, generics, 209
@ prefix

annotations, 190, 225
Javadoc tags, 34

@interface syntax
declaring annotation type, 193, 225

* symbol
import statement, 153

%-prefixed character sequences, 509
System.out.printf method, 510

■ A
\A boundary matcher, 441
abs method

BigDecimal class, 236
BigInteger class, 240
Math class, 228, 231, 232

absolute pathnames, 451
isAbsolute method, 453

abstract classes, 120–121, 133
Abstract Factory design pattern, 155
abstract methods, 120–121
abstract reserved word, 121

interfaces, 126
abstract types, 133
Abstract Window Toolkit (AWT), 406, 408
AbstractExecutorService class, 386
accept method

FileFilter interface, 458
FilenameFilter interface, 457

access control levels, 82
access operators

member access operator, 53
AccessibleObject class, 276
accessing fields, 87–89
acos method, Math, 228
activeCount method, ThreadGroup, 294
actual type arguments, 203, 205, 207

array type, 203
concrete parameterized type, 203
concrete type, 203
Enum class, 222
type parameter, 203
wildcards, 203, 209, 210

add method
BigDecimal class, 236
BigInteger class, 240
Collection interface, 318
List interface, 325
ListIterator class, 327
Queue interface, 346
Set interface, 332

addAll method
Collection interface, 319
List interface, 325

addition operator, 51
after method, Date, 415, 416
agile software development, 131
aliases method, Charset, 517
allOf method, EnumSet, 339
and method, BitSet, 373
AND operators

bitwise AND operator, 51
BitSet class, 374

conditional AND operator, 52
logical AND operator, 53
while statement, 68

andNot method, BitSet, 373
Android, 1
Android apps, 1, 41
Android platform, 5
Annotation interface, 274
annotation types

Index 596

adding elements to, 194
declaring, 193–195
Deprecated, 191
Documented, 198
identifying applicable application

elements, 196
Inherited, 198
Override, 191
Retention, 196
Stub, 193
SuppressWarnings, 191, 193, 196
Target, 196

annotations, 190–200, 225
@ prefix, 190
annotating source code, 193–195
annotating undesirable application

elements, 197
getAnnotation method, 199, 276
getAnnotations method, 270, 274
getDeclaredAnnotations method, 270,

274
identifying retention/lifetime of, 196
isAnnotationPresent method, 199, 276
marker annotations, 194
meta-annotations, 196–198
processing, 198–200

anonymous classes, 146–148
enhancing enums, 219

APIs
Break Iterator, 409
Collator, 413
Internationalization, 397–428
Joda Time, 420
Math, 227–243
Preferences, 428–431
Properties, 429
References, 257–266, 268
Reflection, 269–277
Regular Expressions, 434–447
Threading, 287–311

apostrophe in patterns, 427
append method, PartsDB, 470
append methods

StringBuffer class, 282, 284
Writer class, 513

Appendable interface, 513
applets, Java SE, 5
application development

converting pseudocode to Java code,
23–36

Four of a Kind game, 20–40

modeling in pseudocode, 21–23
applications

Android apps, 1
PackageInfo, 244–247
stopping, 290

applyPattern method, MessageFormat, 428
apt tool, 200
argument passing

method calls, 91
arguments, methods, 58, 60
ArithmeticException, 165, 389

division by zero, 56, 294
Array class, 276

methods, 369–370
array index operator, 51
array type, generics, 203
ArrayBlockingQueue class, 392
arraycopy method, System, 285, 286
ArrayList class, 329–330

fail-fast behavior, 327
arrays

covariance, 211
creating objects and, 85–87
description, 47
enhanced for loop statement, 322
initializing array-based fields, 50
one-dimensional array, 47
reification, 211
shuffling array of integers, 434
toArray method, 320, 339
toCharArray method, 280
two-dimensional array, 47

Arrays class, 369–371, 434
asList method, 369
binarySearch method, 370
fill method, 370
sort method, 370

ArrayStoreException, 211, 212, 285, 320
ASCII

character sets and encodings, 512
asin method, Math, 228
asList method, Arrays, 369
assert reserved word, 182
AssertionError

declaring assertions, 182
internal invariants, 184

assertions, 181–190, 225
avoiding, 188–189
class invariants, 188
control-flow invariants, 184–185
declaring, 182–183

Index 597

design-by-contract development, 185–
188

enabling/disabling, 189–190
internal invariants, 183–184
postconditions, 187–188
preconditions, 185–187
preventing bugs, 181
throwing assertion error

with detail message, 183
without detail message, 182

using, 183–188
when not to use, 188

assignment, 61
assignment operator, 51

compound assignment operator, 52
associativity, operators, 55
atan method, Math, 228
atomic operations, 298
atomic variables, 397
AtomicLong class, 397
Atomic-prefixed classes, 397
@author, Javadoc tag, 35
autoboxing, 323–324
auto-detect charset, 517
automatic resource management, 176
available method, IntputStream, 476
availableCharsets method, 516
await methods, CountDownLatch, 390, 391
awaitTermination method, 383
AWT (Abstract Window Toolkit), 406

Swing, 408

■ B
\b boundary matcher, 441
Babel Fish, Yahoo!, 408
back reference, capturing groups, 441
backslash (\)

double backslash characters in
pathnames, 450

escape sequence for, 49
representing root directory, Windows,

159
backspace

escape sequence for, 49
base class see superclass
before method, Date, 415, 416
BigDecimal class, 234–239, 268

constructors, 236, 239
convenience constants, 236
floating-point values, 234

methods, 236
round method, Math class, 234
ROUND_-prefixed constants, 236
superclass of, 257

big-endian format, 494
BigInteger class, 239–243, 268

constructors, 240
convenience constants, 240
factorials, 241–243
methods, 240
RSA encryption, 243
superclass of, 257

bin directory, JDK, 7
binary format

integer literals, 50
binary operator, 51
binary search, 370
binary strings

prepending zeros to, 256
toAlignedBinaryString, 256
toBinaryString method, 255

binarySearch method, Arrays, 370
Bitmap class

compress method, 479
BitmapFactory class

decodeFile method, 479
bits, 46
BitSet class, 373–376

methods, 373–374
bitsets, 337

EnumSet class, 338
variable-length bitsets, 376

BitStreamInputStream class, 492
BitStreamOutputStream class, 492
bitwise AND operator, 51, 374
bitwise complement operator, 51
bitwise exclusive OR operator, 51, 374
bitwise inclusive OR operator, 52, 374
Bloch’s algorithm, 359
BLOCKED value, State enum, 288
BlockingQueue interface, 392, 393

classes implementing, 392
offer method, 396
poll method, 396
put method, 393, 396
take method, 393, 396

Boolean class, 248–250
Boolean literal, 49
Boolean type, 46

getBoolean method, 275
nextBoolean method, 433

Index 598

portability of Java applications, 46
booleanValue method, 248, 249
boundaries

detecting logical boundaries within text,
409

boundary matchers, 441–442
zero-length matches, 442

bounds, generic types
recursive type bound, 208
type parameter bounds, 205–207

boxing
autoboxing and unboxing, 323–324

Break Iterator API, 409
break iterators, 409–413

using character-based break iterator,
411

break reserved word, 70
switch statement, 65

break statement, 65, 70
breaking out of finite loop, 70
breaking out of infinite loop, 70
labeled break statement, 72

BreakIterator class, 409
methods, 410–412

BrokenBarrierException, 390
Bubble Sort algorithm, 187
buckets

hash function, 357
hashtable capacity, 358

BufferedInputStream class, 492, 493
read method, 492, 493

BufferedOutputStream class, 492
write method, 492, 493

BufferedReader class, 522
readLine method, 522

buffers
StringBuffer class, 281–284

bugs, preventing, 181
byte cast, 56
Byte class, 255–257
Byte integer type, 46, 233
ByteArrayInputStream class, 477, 478
ByteArrayOutputStream class, 477, 478–479

toByteArray method, 478, 479
bytecode, 4
bytecode verifier, 4
bytes, 46, 511

getByte method, 275
nextBytes method, 433
skipBytes method, 465

byteValue method, 255

■ C
C/C++

compared with Java, 2
cache

clearCache methods, 403
SoftReference objects, 261–262

Calendar class, 417–420
clear method, 418
displayWeekdayNames method, 420
factory methods, 417
get methods, 418
getDisplayName method, 418
getDisplayNames method, 418, 420
getTime method, 420
set methods, 418
setTime method, 420

calendars
GregorianCalendar class, 417
internationalization, 415
JapaneseImperialCalendar class, 417
outputting calendar pages, 418
Thai Buddhist calendar, 417

call method, Callable interface, 385
calculating Euler’s number, 389

Callable instance
Executors class returning, 387

Callable interface, 382
call method, 385

callable tasks, 382, 385
invokeAll method, 383
submit method, 384
submitting callable task to executor, 386

callbacks, 116
camel-casing, 44
cancel method, Future interface, 385
CancellationException, 385
candidate bundle names, 401, 402
canEncode method, Charset, 517
canExecute method, File, 456
canonical pathname

getCanonicalFile method, 452
getCanonicalPath method, 452
obtaining abstract pathname

information, 453
canRead method, File, 454
canWrite method, File, 454
capacity

array, 283
ArrayList class, 329
ensureCapacity method, 283
hashtable, 358

Index 599

capacity method, StringBuffer, 283
capturing groups, 440–441

back reference, 441
Car class, inheritance, 98, 99
Card enum, Four of a Kind game, 25
Card object, Four of a Kind game, 26, 28

leastDesirableCard method, 34
rank method, 26
suit method, 26

caret
detecting logical boundaries within text,

409
carriage return

escape sequence for, 49
line terminator, 439

case reserved word
equalsIgnoreCase method, 279
switch statement, 65
toLowerCase method, 280
toUpperCase method, 280

case statement, 65
cast operator, 52

conversions, 56
casting

byte cast, 56
downcasting, 121–123
upcasting, 117–119

catch clause
coding empty catch clauses, 171
final rethrow, 172
handling exceptions, 168, 169, 170
multicatch, 171
naming conventions, 169
wrapping exceptions, 171

catch reserved word, 168
cause (wrapped exception), 164
ceil method, Math, 228
CEILING constant, RoundingMode enum,

238
chained instance method calls, 92
Character class, 142, 250–251

Unicode-related complexity, 250
character classes, 439–440
character encodings, 511–512

accessing default, 514
Charset class finding, 516
dumping to standard output, 516

character literal, 49
character sets, 511–512
Character type, 46

getChar method, 275

toCharArray method, 280
characters, 511

getCharacterInstance method, 409, 410
readChar method, 464
setCharAt method, 283
using character-based break iterator,

411
writeChars method, 465

charAt method
CharSequence interface, 436
String class, 278, 281
StringBuffer class, 283

CharSequence interface, 436
Charset class, 516–517

java.nio.charset package, 514, 515
CharsetDecoder class, 515
CharsetEncoder class, 514
charsets, 517

auto-detect charset, 517
charValue method, Character, 250
checked exceptions, 164, 168
checkError method, PrintStream, 511
child class see subclasses
child thread, 310
childValue method, InheritableThreadLocal,

310
class attributes, fields, 45
Class class, 270–274

forName method, 270, 272, 273, 277
getAnnotations method, 270, 274
getDeclaredAnnotations method, 270,

274
methods, 270–272
obtaining Class object, 277
processing annotations, 199

class extension see implementation
inheritance

class field initialization, 48, 75, 82
class fields, 48, 94

accessing, 88
read-only class fields, 57

class header declaration
strictfp used in, 234

class initialization, 77, 82
class invariants
class literals, 277
class methods, 60

calling methods, 89
main method, 60

class reserved word, 44
CLASS retention policy, 196, 197

Index 600

ClassCastException, 108, 122, 317, 321
generics, 200, 201, 202, 205, 209, 211

classes, 43–85
see also objects
abstract classes, 120–121, 133
access control levels, 82
anonymous classes, 146–148
camel-casing of name, 44
character classes, 439–440
compatible class change, 500
composition, 112
constructors, 75–76
declaring, 44–45
declaring fields, 45–48
declaring methods, 58–60
declaring variables, 45
description, 94
extending, 98–102
fields, 45–58
final reserved word, 98, 101
generics, 200–214
generified classes, 200
getClass method, 103, 277
getDeclaringClass method, 274
getSuperclass method, 272
identifiers, 44
immutable classes, 100
implementation, 82
implementing interfaces, 127–129
implementing methods, 60–74
incompatible changes, 500
information hiding, 82
inheritance, 97–116
initialization order, 78–82, 102
initializing fields, 48–57
initializing instance fields, 75
inner classes, 139
interfaces, 82, 125–136
interfaces within, 150
intersection character classes, 440
local classes, 148–150
method overloading, 74
methods, 58–75
multiple inheritance, 102
naming convention for, 44
negation character classes, 439
nested classes, 139–150
nonstatic member classes, 142–145
packages, 151
predefined character classes, 440
primitive wrapper classes, 247–257

range character classes, 439
read-only fields, 57–58
static member classes, 139–142
stream classes, 473–475
subtraction character classes, 440
top-level classes, 139
types, 44
union character classes, 439
utility classes, 234
wrapper classes, 115, 116

classes, list of
see also exception classes
AbstractExecutorService, 386
AccessibleObject, 276
Array, 276
ArrayBlockingQueue, 392
ArrayList, 329–330
Arrays, 369–371, 434
BigDecimal, 234–239
BigInteger, 239–243
BitSet, 373–376
BitStreamInputStream, 492
BitStreamOutputStream, 492
Boolean, 248–250
BreakIterator, 409
BrokenBarrierException, 390
BufferedInputStream, 492, 493
BufferedOutputStream, 492
BufferedReader, 522
Byte, 255–257
ByteArrayInputStream, 477, 478
ByteArrayOutputStream, 477, 478–479
Character, 142, 250–251
Class, 270–274
ClassLoader, 402
Collator, 413
Collections, 371–372, 434
ConcurrentHashMap, 392
ConcurrentLinkedQueue, 392
Constructor, 274–275
CountDownLatch, 390
CyclicBarrier, 390
DataInputStream, 494
DataOutputStream, 494
DateFormat, 424
DateFormatSymbols, 425
DecimalFormat, 424
DecimalFormatSymbols, 424
Dictionary, 372
Double, 251–254
DumpArgs, 8

Index 601

EchoText, 10
Enum, 220–222
EnumMap, 366
EnumSet, 337–339
Error, 164
EventQueue, 407
Exception, 164
Exchanger, 390
Executors, 387
Field, 275
File, 449–462
FileDescriptor, 466
FileInputStream, 479–481
FileOutputStream, 479
FileReader, 520–522
FileUtils, 522
FileWriter, 518–520
FilterInputStream, 488, 491
FilterOutputStream, 485
Float, 251–254
Format, 421
Formatter, 511
FutureTask, 386
HashMap, 145, 356–362
HashSet, 333–337
Hashtable, 372
IdentityHashMap, 362–364
Image, 406
ImageIcon, 408
InheritableThreadLocal, 310
InputStream, 473, 476–477
InputStreamReader, 515
Integer, 255–257
JOptionPane, 408
LineNumberInputStream, 474
LineNumberReader, 474
LinkedHashMap, 362
LinkedHashSet, 337
LinkedList, 330–332
ListResourceBundle, 402, 405
Long, 255–257
Matcher, 436
Math, 227–233
MessageFormat, 426
Method, 275–276
Number, 257
NumberFormat, 235, 421
Object, 103–112
ObjectInputStream, 497, 498
ObjectOutputStream, 497
OutputStream, 473, 475–476

OutputStreamWriter, 514
Package, 243–247
Pattern, 435
PhantomReference, 263–266
PipedInputStream, 481, 482
PipedOutputStream, 481, 482
Preferences, 429
PrintStream, 473, 474, 508–511
PrintWriter, 474
PriorityQueue, 348–350
Properties, 372, 403, 429
PropertyResourceBundle, 402, 403
Random, 432
RandomAccessFile, 462–473
Reader, 513
ReentrantLock, 394
Reference, 259
ReferenceQueue, 259, 260
RuleBasedCollator, 414
Semaphore, 390
Short, 255–257
SimpleDateFormat, 425
SoftReference, 260–263
Stack, 372
StoppableThread, 301
StrictMath, 233–234
String, 278–281
StringBuffer, 281–284
StringBufferInputStream, 474
StringReader, 474
StringTokenizer, 501
Subset, 142
System, 284–287
Thread, 288–289
ThreadGroup, 294
ThreadLocal, 308
Throwable, 163–164
Toolkit, 406
TreeMap, 355–356
TreeSet, 332–333
Vector, 372
WeakHashMap, 364–365
WeakReference, 263
Writer, 513
ZipOutputStream, 475

classfiles, 4
javac identifying, 7

classloader, 4, 155
ClassLoader class, 402
ClassNotFoundException, 270, 273, 506

Index 602

CLASSPATH environment variable, 154,
155, 159

classpath option, 154, 155, 159
cleanup, exceptions, 172–178
clear method

BitSet class, 373
Calendar class, 418
Collection interface, 319
Map interface, 351
Reference class, 259

clearCache methods, ResourceBundle, 403
clone method

BitSet class, 373
Date class, 415
Enum class, 220
Object class, 103, 104–106

Cloneable interface, 104
CloneNotSupportedException, 104, 164
cloning

deep copying/cloning, 105
shallow copying/cloning, 104

close method
FileInputStream class, 481, 488, 491
FileOutputStream class, 488
IntputStream class, 476
OutputStream class, 475, 476
PartsDB class, 470
RandomAccessFile class, 464, 470

closed range/interval
SortedSet interface, 343

closures, 148
code

see also source code
agile software development, 131
converting pseudocode to Java code,

23–36
native code, 4
refactoring, 71

coercion polymorphism, 116
CollationKey class
Collator API, 413
Collator class, 413
collators, 413–414

getCollationKey method, 414
RuleBasedCollator class, 414

Collection interface, 318–321
containsAll method, 319, 321
hierarchy of interfaces, 316
methods, 318–320
remove method, 319, 321
removeAll method, 320, 321

retainAll method, 320, 321
toArray methods, 320, 339, 367

collections, 315
iterating over, 322
storing primitive types in, 323

Collections class, 371–372, 434
generic methods, 212
methods, 371
performance, 372
shuffle methods, 434

collections framework, 315
Collection interface, 318–321
Comparable vs. Comparator, 316
components, 315
concurrent collections, 392–394
core interfaces, 315, 316

hierarchy, 316
generic methods, 212
generics, 200–202
implementation classes, 315, 316
Iterable interface, 318
List interface, 325–328
Map interface, 351–353
Map.Entry interface, 354–355
primitive wrapper classes, 248
Queue interface, 346–347
Set interface, 332
sorted collection, 316, 317
SortedMap interface, 367–369
SortedSet interface, 339–346
utility classes, 315, 316, 369–372

collisions
hash functions, 357

command line
executing JDK tools, 7

comments
multiline comment, 59
preventing bugs, 181
single-line comment, 45

Four of a Kind game, 29
Comparable interface, 317

rules, 317
sorted sets, 343, 344, 345

Comparator interface, 317
methods, 317, 318

comparator method
SortedMap interface, 367
SortedSet interface, 340, 342

compare method, 318
sorted sets, 345

compareTo method

Index 603

Boolean class, 248
Comparable interface, 317

sorted sets, 344, 345
using comparator with priority queue,

350
Date class, 415
Enum class, 221, 222
File class, 462
sorted sets, 345
String class, 413
type parameter bounds, 207

comparison operators, 54
compatible class change, 500
compile method, Pattern, 435, 439
compiler, Java, 4
compile-time search, 154
complement operators

bitwise, 51
logical, 53

composition, 112
compound assignment operator, 52
compound expressions, 51–57
compound messages, 426, 428

formatting and outputting, 427
compound statement, 60, 95
compress method, Bitmap, 479
concat method, String, 278
concatenation

string concatenation operator, 51, 55
concrete parameterized type, generics, 203
concrete type, generics, 203
concurrency utilities, 381–397, 447

atomic variables, 397
concurrent collections, 392–394
executors, 381–389
locks, 394–396
synchronizers, 390–392

concurrent collections, 392–394, 447
BlockingQueue interface, 392

ConcurrentHashMap class, 392
ConcurrentLinkedQueue class, 392
ConcurrentMap interface, 392
ConcurrentModificationException, 327
conditional AND/OR operators, 52
connect method

FileWriter class, 519
PipedInputStream class, 482, 483
PipedOutputStream class, 482, 483

Console class, 156
Console tab, Eclipse, 20
constant interfaces, 160

constants
BigDecimal class, 236
BigInteger class, 240
Double class, 251
Float class, 251
Locale class, 398
primitive wrapper classes, 232, 248
read-only class fields, 57
RoundingMode enum, 238

Constructor class, 274–275
constructors, 75–76, 95

see also factory methods
ArrayList class, 329
BigDecimal class, 236, 239
BigInteger class, 240
Boolean class, 248
BufferedInputStream class, 493
BufferedOutputStream class, 493
Byte class, 255
ByteArrayInputStream class, 478
ByteArrayOutputStream class, 478
Character class, 250
Date class, 415
Double class, 251
enhancing an enum, 216
EnumMap class, 366
File class, 450, 451
FileInputStream class, 479
FileOutputStream class, 479
FilterOutputStream class, 485
Float class, 251
getConstructors method, 270
getDeclaredConstructors method, 270
HashMap class, 358
HashSet class, 334
InheritableThreadLocal class, 310
initializing fields, 48
InputStreamReader class, 515
Integer class, 255
LinkedList class, 331
Locale class, 398
Long class, 255
MessageFormat class, 426
OutputStreamWriter class, 514
PhantomReference class, 263
PipedInputStream class, 482
PipedOutputStream class, 482
PriorityQueue class, 348
Random class, 432
RandomAccessFile class, 462–464
Reference class, 260

Index 604

ReferenceQueue class, 260
Short class, 255
SoftReference class, 260
SortedSet interface, 340
String class, 278, 280
StringBuffer class, 282
ThreadLocal class, 309
Throwable class, 163
TreeMap class, 355
TreeSet class, 332
WeakReference class, 263

contains method, Collection, 319
containsAll method, Collection, 319, 321
containsKey/containsValue methods, Map,

351
continue reserved word, 71
continue statement, 71

labeled continue statement, 72
Control class, 403
control-flow invariants, 184–185
conversions

byte cast, 56
cast operator, 56
operands of different types in operator,

56
Coordinated Universal Time see UTC
copy method, 176
copying

deep copying/cloning, 105
shallow copying/cloning, 104

copylist method, generics, 209, 210, 212,
213

core interfaces, collections framework, 315,
316

cos method, Math, 228
countdown latches, 390
countDown method, 390, 391
CountDownLatch class, 390
countTokens method, StringTokenizer, 502
covariance, arrays, 211
covariant return type, 123–124
createImage method, Toolkit, 406
createNewFile method, 459
createTempFile method, 459, 460
currency

formatting numbers as, 421
NumberFormat class, 235

current method, BreakIterator, 410
currentThread method, 288, 289, 290
currentTimeMillis method, 285, 286, 415
cursor position, ListIterator, 328

cyclic barriers, 390
CyclicBarrier class, 390

■ D
\d predefined character class, 440
daemon thread, 289
Dalvik virtual machine

Android platform, 5
data I/O, 449
data stream classes see stream classes
database driver

loading via class initializer, 77
databases

accessing, 530
creating flat file database, 467–472

DataInputStream class, 494
DataOutputStream class, 494
Date class, 415–416

methods, 415–416
date formatters, 424–425
DateFormat class, 424

setTimeZone method, 425
DateFormatSymbols class, 425
dates

internationalization, 415
Unix epoch, 425

daylight saving time, 417
deadlock, 306–308
deal method, Four of a Kind game, 28
decimal format, integer literals, 49
decimal numbers

formatting numbers as, 421
DecimalFormat class, 424
DecimalFormatSymbols class, 424
decimals

BigDecimal class, 234–239
Deck class, Four of a Kind game, 26, 28

methods, 28
decodeFile method, BitmapFactory, 479
Decorator design pattern, 115
deep copying/cloning, 105
default reserved word

switch statement, 65
defaultReadObject method, 505
defaultWriteObject method, 505
delete method, File, 459
deleteOnExit method, File, 459, 460
delimiters, 44

Javadoc comments, 34
Deprecated annotation type, 191

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

Index 605

@deprecated javadoc tag, 190, 191
deprecation warnings, 192, 193
derived class see subclass
deserialization, 496–508

custom, 501–505
default, 496–501
externalization, 506–508
problematic deserialization, 501, 503

design patterns
Abstract Factory, 155
Decorator, 115

design-by-contract development, 185–188
class invariants, 188
postconditions, 187–188
preconditions, 185–187

diamond operator (<>), generics, 202
Dictionary class, 372, 375
directories

isDirectory method, 454
methods for learning about, 454
methods for obtaining content, 456
mkdir method, 459
mkdirs method, 459
obtaining directory information, 455

disableassertions (da) option, 190
disblesystemassertions (dsa) option, 190
DiscardPile class, Four of a Kind game, 28,

29
setTopCard method, 29
topCard method, 29

disconnect method, FileWriter, 519
displayName method, Charset, 517
displayWeekdayNames method, 420
divide method

BigDecimal class, 236, 389
BigInteger class, 240

division operator, 52
division by zero, 56

do reserved word, 69
documentation archive file, JDK, 11
Documented meta-annotation type, 198
Double class, 251–254

methods, 252
Double precision floating-point type, 46

getDouble method, 275
nextDouble method, 433

double quote (")
escape sequences, 49

doubleToIntBits method, 252
doubleToLongBits method, 252
doubleValue method, 252

do-while loop, 69
DOWN constant, RoundingMode enum, 238
downcasting, 121–123
Drawable interface, 125, 126
DumpArgs application, 7

NetBeans IDE, 14
DumpArgs class, 8
dumpBitset method, 375
dumpPositions method, 412
dumpRecords method, 472
dumpSeparator method, 375

■ E
E constant, 227
early binding, 119
EchoText class, 10
Eclipse Classic, 17
Eclipse IDE, 17–20

Console tab, 20
Package Explorer tab, 19
workbench, 19

editor area, NetBeans IDE, 15
element method, Queue, 347
elements

adding to annotation type, 194
annotating undesirable application

elements, 197
NoSuchElementException, 321

elements method, Vector, 372
ElementType enum, 196
else reserved word, 62

chaining if-else statements, 64
if-else statement, 62

empty method, Stack, 372
empty statement, 61

loop statement excuting, 69
enableassertions (ea) option, 189
enablesystemassertions (esa) option, 190
encapsulation

information hiding, 82
objects, 43
problem with implementation

inheritance, 112
enclosing class

interfaces within classes, 150
local classes, 149
nonstatic member classes, 142
static member classes, 139

encodings, character, 511–512
default character encodings, 514

Index 606

end method, Matcher, 436
endianness

big-endian format, 494
endsWith method, String, 278
enhanced for loop statement, 322
enqueue method, Reference, 259
ensureCapacity method, StringBuffer, 283
Enterprise Edition, Java, 5
entities, 43
entity attributes, fields, 45
Entry interface, maps, 354–355
entrySet method

Map interface, 351, 353, 354
SortedMap interface, 367

Enum class, 220–222
extending, 221–222
methods, 220–222

enum reserved word, 215, 337
enumerate method, ThreadGroup, 294
enumerated type, 214, 226

example of, 65, 337
problem with, 214–215

Enumeration interface, 372, 375
EnumMap class, 366
enums, 214–222, 226

anonymous subclasses, 219
ElementType enum, 196
enhancing, 216–220
RetentionPolicy enum, 196
RoundingMode enum, 237
State enum, 288
TimeUnit enum, 385
tokens, 218
toString method, 216, 218
type safety, 216
values method, 218, 219, 221

EnumSet class, 337–339
methods, 339

equality operator, 52, 106
equals method

accessing another instances private
members, 336

Boolean class, 248
Collection interface, 319
Comparator interface, 318
Date class, 415
Double class, 252, 253
Enum class, 220
File class, 462
Float class, 252, 253
HashSet class, 335, 336

Map interface, 351
Map.Entry interface, 354
Object class, 103, 107–109, 110
Set interface, 332
SortedSet interface, 345, 346
String class, 278

equalsIgnoreCase method, String, 279
erasure, generics, 211–212
Error class, 164
error codes

ignoring, 163
representing exceptions, 162–163

errors
AssertionError, 182, 184
exception and error class hierarchy,

163–164
ExceptionInInitializerError, 273
exceptions, 162
handling, 163
LinkageError, 270, 273
System.err, 10
throwing assertion error

with detail message, 183
without detail message, 182

escape sequences, 49
Euler’s number, calculating, 387
event-dispatching thread, 407
EventQueue class

invokeLater method, 407, 408
Exception class, 164, 179
exception classes

ArithmeticException, 165, 389
ArrayStoreException, 211, 212, 285, 320
BrokenBarrierException, 390
CancellationException, 385
ClassCastException, 108, 122, 317, 321
ClassNotFoundException, 270, 273, 506
CloneNotSupportedException, 104, 164
ConcurrentModificationException, 327
Exception class, 164, 179
ExecutionException, 383, 384, 385
FileNotFoundException, 170, 171, 174,

176, 463, 479, 519
IllegalAccessException, 272, 275, 276
IllegalArgumentException, 167
IllegalMonitorStateException, 303
IllegalStateException, 321, 327, 328
IllegalThreadStateException, 289
IndexOutOfBoundsException, 278, 280,

283, 285, 325, 326
InstantiationException, 272

Index 607

InterruptedException, 260, 289, 383,
384, 385

InvalidClassException, 500, 503, 507
InvocationTargetException, 276
IOException, 11, 164, 170, 171, 174,

176, 453, 470
MissingResourceException, 402, 403,

405
NoSuchElementException, 321, 327,

340, 347, 367, 368, 371
NotSerializableException, 496, 497
NullPointerException, 167, 275, 276, 317
NumberFormatException, 254
OptionalDataException, 498
PatternSyntaxException, 435, 436, 437
RejectedExecutionException, 382
ReportCreationException, 171
RuntimeException, 165, 179
TimeoutException, 384, 385
UnsupportedOperationException, 320

exception handling
run method throwing, 294
setDefaultUncaughtExceptionHandler

method, 295
setUncaughtExceptionHandler method,

295
ExceptionInInitializerError, 273
exceptions, 161–178, 179

checked exceptions, 164
cleanup, 172–178
custom classes, 165–166
errors, 162
exception and error class hierarchy,

163–164
final rethrow, 172
getExceptionTypes method, 275
handling, 163, 168–172
multicatch, 171
naming conventions, 165
representing in source code, 162–166
representing via error codes or objects,

162–163
rethrowing, 172
runtime exceptions, 165
throwing, 163, 166–168
throws Exception clause, 199
unchecked exceptions, 165
when not to use assertions, 189
wrapped exception (cause), 164
wrapping, 171

Exchanger class, 390

exchangers, 390
exclusion

mutual exclusion, 299
threads, 302

execute method, Executor, 382
executing code, threads, 287
execution environment, 3
ExecutionException, 383, 384, 385
Executor interface, 382
executors, 381–389, 447

RejectedExecutionException, 382
ScheduledExecutorService interface,

386
shutdownNow method, 389
submitting callable task to, 386

Executors class, 387
ExecutorService interface, 383

methods, 383–384
exists method, File, 454
exp method, Math, 228
expressions

compound expressions, 51–57
escape sequences, 49
simple expressions, 48–50

ext directory
storing packages, 154

extends reserved word, 98, 130
Enum class, 221
type parameter bounds, 205

Externalizable interface, 506
readExternal method, 506, 508
writeExternal method, 506, 507

externalization, 506–508
initiating, 507

■ F
factorials

BigInteger class, 241–243
factory methods

see also constructors
BreakIterator class, 409
Calendar class, 417
Collator class, 413
DateFormat class, 424
NumberFormat class, 421
ResourceBundle class, 401
TimeZone class, 417, 425

fail-fast behavior
ArrayList/LinkedList classes, 327

false reserved word

Index 608

Boolean literal, 49
Field class, 275
fields, 45–58, 94

accessing, 87–89
class fields, 48
declaring in classes, 45–48
enhancing an enum, 216, 217
flat file database, 467
getDeclaredFields method, 271
getFields method, 271
initialization order, 82
initializing array-based fields, 50
initializing in classes, 48–57
initializing instance fields, 75
naming convention for, 45
read-only class field, 57
read-only fields, 57–58
read-only instance fields, 57
types, 45
variable declared within class, 467

File class
canExecute method, 456
canRead method, 454
canWrite method, 454
compareTo method, 462
comparing two File objects, 462
constructors, 450, 451
createNewFile method, 459
createTempFile method, 459, 460
delete method, 459
deleteOnExit method, 459, 460
equals method, 462
exists method, 454
getAbsoluteFile method, 452
getAbsolutePath method, 452
getCanonicalFile method, 452, 462
getCanonicalPath method, 452
getFreeSpace method, 456
getName method, 452, 454
getParent method, 452
getParentFile method, 452
getPath method, 452, 454
getTotalSpace method, 456
getUsableSpace method, 456
hashCode method, 462
I/O, 449–462
isAbsolute method, 453
isDirectory method, 454
isFile method, 454
isHidden method, 454
lastModified method, 455

length method, 455
list method, 456, 457
listFiles method, 456, 457, 458
listRoots method, 449
logging library using packages, 157
methods for

creating and manipulating files, 459
learning about file or directory, 454
learning about stored pathname, 452
obtaining directory content, 456

mkdir method, 459
mkdirs method, 459
renameTo method, 460
setExecutable method, 461
setLastModified method, 460
setReadable method, 461
setReadOnly method, 460
setWritable method, 461
toString method, 453

file descriptors
getFD method, 464

file pointers
getFilePointer method, 464
RandomAccessFile class, 464

FileDescriptor class, 466
FileFilter interface, 458
FileInputStream class, 174, 479–481

close method, 481, 488, 491
read method, 488, 489, 490, 491, 492

FilenameFilter interface, 458
accept method, 457

FileNotFoundException, 170, 171, 174, 176,
463, 479, 519

FileOutputStream class, 174, 479
close method, 488

FileReader class, 520–522
files

encoding property, 514
isFile method, 454
metadata, 463
methods for creating and manipulating,

459
methods for learning about, 454
obtaining file information, 455

Files tab, NetBeans IDE, 15
filesystem roots, 449
FileUtils class, 522
FileWriter class, 518–520

methods, 519
fill method, Arrays, 370
FilterInputStream class, 488, 491

Index 609

FilterOutputStream class, 485
chaining streams together, 488
subclassing, 485, 486
write method, 485, 486, 492

final reserved word
constructors, 75
extending final class, 98
overriding final method, 101
read-only class field, 57
read-only fields, 57

final rethrow, catch clause, 172
finalization

runFinalization method, 285
finalize method

Enum class, 220
Object class, 103, 109–110, 257
resurrection, 264

finally clause, 172–176, 179
finally reserved word, 172

finalize method, 110
find method, Matcher, 437, 438, 522
FindAll application, 520
findAll method, 521, 522
first method

BreakIterator class, 410
SortedSet interface, 340

first-class function, 148
first-in, first-out (FIFO) queue, 346
firstKey method, SortedMap, 367
flags method, Pattern, 435
flat file database, 467–472
Float class, 251–254

methods, 252
floating-point literal, 50
Floating-point type, 46

getFloat method, 275
nextFloat method, 433

floating-point values
BigDecimal class, 234

floatToIntBits method, 252
floatValue method, 252
FLOOR constant, RoundingMode enum, 238
floor method, Math, 228
flush method

OutputStream class, 475, 476
PrintStream class, 511

following method, BreakIterator, 410
for loops, 66–67

breaking out of nested for loops, 72
continuing, 72
enhanced statement, 322

for reserved word, 66
form feed, escape sequence for, 49
Format class, 421
format method

Format class, 421
MessageFormat class, 427
NumberFormat class, 235

format specifiers, 509
Formatter class, 511
formatters, 421–428

date formatters, 424–425
message formatters, 426–428
number formatters, 421–424

forName method, 270, 272, 273, 277
processing annotations, 199

forwarding methods, 114
Four of a Kind application, 20–40

compiling, 37
distributing, 39
problem domain, 21
running, 37

Four of a Kind game, 20–40
Card enum, 25
Card object, 26, 28
converting pseudocode to Java code,

23–36
deal method, 28
Deck class, 26, 28
DiscardPile class, 28, 29
isEmpty method, 28
Javadoc comments, 25

extracting comments from code, 35
leastDesirableCard method, 34
modeling in pseudocode, 21–23
object of the game, 21
ordinal method, 34
playing Four of a Kind, 21
putBack method, 28
Rank enum, 26, 34
rank method, 26
rankCounts array, 34
setTopCard method, 29
shuffle method, 28
Suit enum, 26
suit method, 26
topCard method, 29

FourOfAKind class, 30
framework, collections, 315
free variable, 148
FULL constant, DateFormat, 424
functions

Index 610

first-class function, 148
Future interface, 385
FutureTask class, 386

■ G
\G boundary matcher, 441
games

Four of a Kind, 20–40
garbage collection, 92–93

finalize method, 109
gc method, 285
PhantomReference objects, 258, 264
reachable objects, 258
References API, 257–266
root set of references, 258
SoftReference objects, 258, 261, 262
WeakHashMap class, 365
WeakReference objects, 258, 263

Gaussian value
nextGaussian method, 433

gc method, System, 285
generic methods, 212–214
generic types, 202–212

declaring, 202
declaring and using, 203–205
raw type, 203
Reference class, 259
ReferenceQueue class, 260
type parameter bounds, 205–207
type parameter scope, 208

generics, 200–214, 226
actual type arguments, 203
array type, 203
collections and type safety, 200–202
concrete parameterized type, 203
concrete type, 203
erasure, 211–212
parameterized types, 201, 202
recursive type bound, 208
reification, 211
type parameter, 203
type parameter bounds, 205–207
type parameter scope, 208
wildcards, 208–210

generified classes, 200
get method

BitSet class, 373
Calendar class, 418
Field class, 275
Future interface, 385

List interface, 325
Map interface, 351
PhantomReference class, 263
Preferences class, 430
Reference class, 259
ThreadLocal class, 309

getAbsoluteFile method, 452
getAbsolutePath method, File, 452
getAndIncrement method, AtomicLong, 397
getAnnotation method

AccessibleObject class, 276
processing annotations, 199

getAnnotations method, 270, 274
getAvailableLocales method

Collator class, 413
Locale class, 410

getBoolean method
Field class, 275
Boolean class, 248, 249

getBundle methods, ResourceBundle, 401,
402, 404

getByte method, Field, 275
getCanonicalFile method, 452

comparing two File objects, 462
getCanonicalPath method, File, 452
getCause method, Throwable, 163
getChar method, Field, 275
getClass method, Object, 103, 277
getCollationKey method, 414
getConstructors method, 270
getDateInstance methods, 424
getDateTimeInstance methods, 424
getDeclaredAnnotations method, 270, 274
getDeclaredConstructors method, 270
getDeclaredFields method, 271
getDeclaredMethods method, 271
getDeclaringClass method

Constructor class, 274
Enum class, 221, 222

getDefault method
Locale class, 399
TimeZone class, 417

getDescription method,
PatternSyntaxException, 436

getDisplayName method, Calendar, 418
getDisplayNames method, Calendar, 418,

420
getDouble method, Field, 275
getEncoding method

InputStreamReader class, 515
OutputStreamWriter class, 515

Index 611

getExceptionTypes method, Constructor,
275

getFD method, RandomAccessFile, 464,
465, 466

getFields method, 271
getFilePointer method, RandomAccessFile,

464
getFloat method, Field, 275
getFreeSpace method, File, 456
getID3Info method, Media, 526
getImplementationXyz methods, Package,

243
getIndex method, PatternSyntaxException,

436
getInstance factory methods,

NumberFormat, 421
getInt method, Field, 275
getISOCountries method, Locale, 399
getISOLanguages method, Locale, 399
getKey method, Map, 354
getLong method, Field, 275
getMessage method

PatternSyntaxException class, 436
Throwable class, 163

getMethods method, 271
processing annotations, 199

getModifiers method, Method class, 276
getName method

Class class, 271
Constructor class, 275
File class, 452, 454
Package class, 244
Thread class, 288, 289, 290

getNextID method, 397
getNumberInstance methods, 421
getObject method, 403
getPackage method

Class class, 271
Package class, 244, 245

getPackages method, 244
getParameterTypes method, Constructor, 275
getParent method, File, 452
getParentFile method, 452
getPath method, File, 452, 454
getPattern method, 436
getProperty method

Properties class, 372
System class, 285, 286, 508

getResource method, ClassLoader, 402
getReturnType method, 276
getSharedChar method, Object, 306

getShort method, Field, 275
getSpecificationXyz methods, Package, 244
getStackTrace method, Throwable, 163
getState method, Thread, 288
getString method, 403
getStringArray method, 403
getSuperclass method, 272
getters, 83

accessing fields, 88
getThreadGroup method, 294
getTime method

Calendar class, 420
Date class, 416

getTimeInstance methods, DateFormat, 424
getTimeZone method, 417, 425
getTotalSpace method, File, 456
getUsableSpace method, File, 456
getValue method, Map, 354
GMT (Greenwich Mean Time), 415
Google

Android platform, 5
goto statement, 72
greater than operators, 54
greedy quantifier, 442, 443
GregorianCalendar class, 417
grep utility, Unix, 520
group method, Matcher, 436

■ H
HALF_XYZ constants, RoundingMode

enum, 238, 239
handle, Java, 466
handles, 85
handling errors, 163
handling exceptions, 163, 168–172
"has a" relationship, 112
hash code, 357

identityHashCode method, 362
hash function, 356
hash maps

ConcurrentHashMap class, 392
hashCode method

Boolean class, 249
Collection interface, 319
creating hashmap of String keys and

Integer values, 359
Date class, 416
Double class, 252
Enum class, 220
File class, 462

Index 612

Float class, 252
HashSet class, 335, 336
Map interface, 352
Map.Entry interface, 354
Object class, 103, 110–111
overriding to return proper hash codes

for Point objects, 361
overriding when override equals(), 346
problem of not overriding, 111
Set interface, 332

HashCodeBuilder class, 360
hashing, 110
HashMap class, 145, 356–362

constructors, 358
contrasting IdentityHashMap with, 362
counting command-line arguments, 358
creating hashmap of String keys and

Integer values, 359
problem of not overriding hashCode, 111

hashmaps
IdentityHashMap class, 362–364
LinkedHashMap class, 362
preventing memory leaks, 263
WeakHashMap class, 364–365

HashSet class, 333–337
equals method, 335, 336
hashCode method, 335, 336
LinkedHashSet class, 337

Hashtable class, 372, 375
hashtables

buckets, 357, 358
load factor, 358

hasMoreElements method, Enumeration,
372

hasNext method
Iterator class, 321, 322
ListIterator class, 327

hasPrevious method, ListIterator, 327
headMap method, SortedMap, 367
headSet method, SortedSet, 340, 341, 343
heap

new operator, 85, 86
helper methods, 82
hexadecimal format

integer literals, 49
toHexString method, 255

holdsLock method, Thread, 299
home directory, JDK, 7
horizontal tab

escape sequence for, 49
Huffman coding, 376

■ I
I/O see input/output
ID class, 397
ID3, 526
IDEs (integrated development

environments), 12
Eclipse IDE, 17–20
NetBeans IDE, 13–17

identifiers, 44
identity check, 106
identityHashCode method, 362
IdentityHashMap class, 362–364
IDs

different user IDs for different threads,
309

returning unique IDs, 299
if reserved word, 62
if-else statement, 62–64

chaining if-else statements, 64
IllegalAccessException, 272, 275, 276
IllegalArgumentException, 167

add methods, collections, 321
assertions, 189
get methods, fields, 275
invoke method, Method class, 276

IllegalMonitorStateException, 303
IllegalStateException, 321, 327, 328

add method, queues, 346
entry methods, maps, 354, 355

IllegalThreadStateException, 289
image cache

SoftReference objects, 261–262
Image class, 406
ImageIcon class, 408
immutability, string objects, 278
immutable classes, 100
implementation

access control levels, 82
classes, 82
decoupling interface from, 131
handles, 85

implementation classes
collections framework, 315, 316

implementation inheritance, 97
extending classes, 98–102
"is a" relationship, 98
multiple class inheritance, 102
problem with, 112

implements reserved word, 127
implicit type conversion

coercion polymorphism, 116

Index 613

import reserved word, 153
import statement, 153–154, 179

static import statement, 161
imports, static, 160–161
incompatible class change, 500
index

array index operator, 51
lastIndexOf method, 279, 326
nextIndex method, 327
previousIndex method, 327

indexOf method
List interface, 325
String class, 279

IndexOutOfBoundsException, 278, 280,
283, 285, 325, 326

inequality operator, 52, 106
infinite loops, 70

breaking out of, 70
infinity, 231

division by zero, 56
equals method, 253
isInfinite method, 252
NEGATIVE_INFINITY constant, 251
POSITIVE_INFINITY constant, 251

infix operator, 51
information hiding, 82, 281
InheritableThreadLocal class, 310
inheritance, 97–116

composition, 112
extending classes, 98–102
implementation inheritance, 97
interface inheritance, 128
"is a" relationship, 98
multiple class inheritance, 102
Object class, 103–112
overriding methods, 100
single inheritance, 102

Inherited meta-annotation type, 198
initCause method, Throwable, 164
initialization

class field initialization, 48, 75
class initialization, 77, 270
instance field initialization, 47, 48, 75
instance initialization, 77–78
lazy initialization, 432

initialization order, 78–82, 102
initializing fields, 48–57
initialValue method, ThreadLocal, 309, 310
inner classes, 139
input/output

BufferedReader class, 522

File class, 449–462
FileReader class, 520–522
FileWriter class, 518–520
I/O Redux, 530
input stream, 473
InputStream class, 473, 476–477
InputStreamReader class, 515
output stream, 473
Output tab, NetBeans IDE, 16
OutputStream class, 473, 475–476
OutputStreamWriter class, 514, 515
RandomAccessFile class, 462–473
Reader class, 513
reader classes, 512–513
readers and writers, 511–529
streams, 473–511
System.in, 10
System.out, 9
Writer class, 513
writer classes, 512–513

instance fields, 94
accessing fields, 88
examples of, 47
initialization, 47, 48, 75, 82
read-only instance fields, 57

instance initialization, 77–78, 82
instance methods, 59

calling methods, 89
chained instance method calls, 92

instanceof operator, 108
runtime type identification, 122

instanceof reserved word, 54
instances

initializing instance fields, 75
newInstance method, 272

instantiation
abstract reserved word, 121
objects, 43

InstantiationException, 272
int reserved word, 45
Integer class, 255–257

autoboxing and unboxing, 323, 324
intValue method, 323
valueOf method, 324

integer classes
Byte class, 255–257
Integer class, 255–257
Long class, 255–257
methods, 255
Short class, 255–257

integer literals, 49

Index 614

underscores, 50
Integer type, 46
integers

BigInteger class, 239–243
formatting numbers as, 421
getInt method, 275
nextInt method, 433
readInt method, 465
shuffling an array of, 434
writeInt method, 465

integrated development environments see
IDEs

interface inheritance, 128, 130
interface reserved word, 125

declaring annotation type, 193
preceding with abstract, 126
preceding with public, 126

@interface syntax, annotations, 225
interfaces, 125–136

able suffix, 126
class design, 82
constant interfaces, 160
declaring, 125–126
decoupling from implementation, 131
description, 82
extending, 130–131
implementing, 127–129
interfaces within classes, 150
marker interfaces, 126, 194
methods, 126
naming conventions, 125
reasons for using, 131–136
tagging interface, 126

interfaces, list of
Annotation, 274
Appendable, 513
BlockingQueue, 392, 393, 396
Callable, 382, 385
CharSequence, 436
Cloneable, 104
Collection, 318–321
Comparable, 317
Comparator, 317
ConcurrentMap, 392
Drawable, 125, 126
Enumeration, 372, 375
Executor, 382
ExecutorService, 383
Externalizable, 506
FileFilter, 458
FilenameFilter, 457, 458

Future, 385
Iterable, 318
List, 325–328
Lock, 394
Logger, 155
Map, 351–353
Map.Entry, 354–355
Queue, 346–347
Runnable, 288
ScheduledExecutorService, 386
Serializable, 496
Set, 332
SortedMap, 367–369
SortedSet, 339–346

intern method, String, 279, 280
internal invariants, 183–184
internationalization, 398

break iterators, 409–413
calendars, 415–420
collators, 413–414
Date class, 415
dates, 415–420
formatters, 421–428
International Standards Organization

(ISO), 398
locales, 398–400
resource bundles, 400–409
time zones, 415–420
Unicode, 398

Internationalization APIs, 397–428
Locale class, 398
ResourceBundle pattern, 401

interpreter, virtual machine, 4
interrupt method, Thread, 288
interrupted method, Thread, 289
InterruptedException, 260, 289, 383, 384,

385
interruption

isInterrupted method, 289
intersection character class, 440
IntputStream class, 476–477
intValue method, Integer, 255

autoboxing and unboxing, 323
InvalidClassException, 500, 503, 507
invariants, 183

class invariants, 188
control-flow invariants, 184–185
internal invariants, 183–184

InvocationTargetException, 276
invoke method, Method class, 276
invokeAll method, ExecutorService, 383

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

Index 615

invokeAny method, ExecutorService, 383,
384

invokeLater method, EventQueue, 407, 408
IOException, 11, 164, 170, 171, 174, 176,

453, 470
"is a" relationship, 98
isAbsolute method, File, 453
isAccessible method, AccessibleObject, 276
isAlive method, Thread, 289, 293
isAnnotationPresent method

AccessibleObject class, 276
processing annotations, 199

isCancelled method, Future interface, 385
isCompatibleWith method, Package, 244,

246
isDaemon method, Thread, 289
isDigit method, Character, 250, 251
isDirectory method, File, 454
isDone method, Future interface, 38, 389
isEmpty method

Collection interface, 319
Four of a Kind game, 28
Map interface, 352

isEnqueued method, Reference, 260
isFile method, 454
isHidden method, File, 454
isInfinite method, 252, 253
isInterrupted method, Thread, 289
isLetter method, Character, 250
isLetterOrDigit method, Character, 250
isLowerCase method, Character, 251
isNaN method, 252
ISO (International Standards Organization),

398
getISOCountries method, 399
getISOLanguages method, 399

ISO 639, 399
ISO/IEC 8859

character sets and encodings, 512
isSealed method, Package, 244
isShutdown method, ExecutorService, 384
isStopped method, StoppableThread, 302
isTerminated method, ExecutorService, 384
isUpperCase method, Character, 251
isVarArgs method, Method class, 276
isWhitespace method, Character, 251
Iterable interface, 318

hierarchy of interfaces, 316
iterator method, 318, 321

iterating over collections, 322
iterations see loops

Iterator class, 372
enhanced for loop statement, 322
methods, 321, 322

iterator method
Collection interface, 319
Iterable interface, 318, 321
SortedMap interface, 367
SortedSet interface, 339

iterators
listIterator methods, 326

■ J
JapaneseImperialCalendar class, 417
jar (Java archive creator, updater, and

extractor), 7, 475
JAR (Java ARchive) files

distributing Four of a Kind, 39
MANIFEST.MF file, 247
modules replacing, 159
packages and, 159–160
packages information, 247
sealed packages, 243
storing packages, 154

Java, 1–6, 41, 43
annotations, 190–200
assertions, 181–190
compared with C/C++, 2
documentation archive file, 11
enums, 214–222
exception and error class hierarchy,

163–164
exceptions, 161–178
generics, 200–214
handle, 466
history, 2
inheritance, 97–116
interfaces, 125–136
language features, 2
loops, 3
nested types, 139–150
Object class, 103–112
packages, 151–160
platforms, 3
polymorphism, 116–124
portability, 4, 46
primitive types, 46
security, 5
static imports, 160–161
stream destinations, 473
stream sources, 473

Index 616

String class, 86
java (Java application launcher), 7

running Four of a Kind, 37
Java APIs see APIs
Java code

converting pseudocode to, 23–36
Java compiler, 4
Java EE (Enterprise Edition), 5
Java ME (Micro Edition), 5
Java packages, 151–160

see also packages
java.awt, 406
java.io, 151

File class, 449–462
I/O, 449
input stream classes, 473
InputStream class, 473
LineNumberInputStream class, 474
LineNumberReader class, 474
output stream classes, 473
OutputStream class, 473
pathnames, 451
PrintStream class, 473, 474
PrintWriter class, 474
RandomAccessFile class, 462–473
StringBufferInputStream class, 474
StringReader class, 474

java.lang, 151, 154
CharSequence interface, 436
Class class, 270–274
ClassLoader class, 402
Comparable interface, 317
Math class, 227–233, 268, 432
Number class, 257
Package class, 243–247, 268
primitive wrapper classes, 247–257,

268
Runnable interface, 382
StrictMath class, 233–234, 268
String class, 278–281
StringBuffer class, 281–284
System class, 284–287

java.lang.ref, 268
Reference class, 259
ReferenceQueue class, 259, 260
References API, 259

java.lang.reflect, 151
AccessibleObject class, 276
Array class, 276
Constructor class, 274–275
Field class, 275

Method class, 275–276
Modifier class, 276

java.math
BigDecimal class, 234–239, 268
BigInteger class, 239–243, 268

java.net, 151
java.nio.charset

Charset class, 514, 515
CharsetDecoder class, 515
CharsetEncoder class, 514

java.text
BreakIterator class, 409
Collator class, 413
DateFormat class, 424
DateFormatSymbols class, 425
DecimalFormat class, 424
DecimalFormatSymbols class, 424
Format class, 421
NumberFormat class, 235, 421
RuleBasedCollator class, 414
SimpleDateFormat class, 425

java.util, 151
Arrays class, 434
Calendar class, 417–420
Collections class, 434
Date class, 415–416
GregorianCalendar class, 417
ListResourceBundle class, 402
Locale class, 398
MessageFormat class, 426
Properties class, 403
PropertyResourceBundle class, 402
Random class, 432
ResourceBundle class, 401
SimpleTimeZone class, 417
TimeZone class, 417

java.util.concurrent, 287, 381, 392
AbstractExecutorService class, 386
BrokenBarrierException class, 390
Callable interface, 382
CountDownLatch class, 390
Exchanger class, 390
Executor interface, 382
Executors class, 387
ExecutorService interface, 383
Future interface, 385
FutureTask class, 386
RejectedExecutionException, 382
ScheduledExecutorService interface,

386
Semaphore class, 390

Index 617

java.util.concurrent.atomic, 381, 397
java.util.concurrent.locks, 381, 394
java.util.prefs, 429
java.util.regex

Matcher class, 436
Pattern class, 435

java.util.zip, 474
javax.swing, 408

Java Runtime Environment (JRE), 6
Java SE (Standard Edition), 5
Java SE Development Kit see JDK
javac (Java compiler), 7

assertions, 181
compiling Four of a Kind, 37

javadoc (Java documentation generator), 7,
35

Javadoc comments, 34–36
delimiters, 34
extracting comments from code, 35
Four of a Kind game, 25

Javadoc tags
@author, 35
@deprecated, 190, 191
@param, 35
@return, 35

javax.swing package, 408
JDBCFilterDriver class, 77
JDK (Java SE Development Kit), 6, 7

documentation archive file, 11
executing JDK tools, 7

JIT compilation, 4
Joda Time, 420
join method, Thread, 289, 293, 294
JOptionPane class

showMessageDialog method, 408
JRE (Java Runtime Environment), 6
jre directory, JDK, 7
Just In Time (JIT) compiler, 4

■ K
key/value pairs, maps, 351
keys

containsKey method, 351
getCollationKey method, 414
mutable keys, 362

keySet method
Map interface, 352, 353
SortedMap interface, 368, 517

keywords see reserved words

■ L
labeled break statement, 72
labeled continue statement, 72
language features, Java, 2
language translations

Yahoo! Babel Fish, 408
last method

BreakIterator class, 410
SortedSet interface, 340

last-in, first-out (LIFO)
queue, 346
stack, 225

lastIndexOf method
List interface, 326
String class, 279

lastKey method, SortedMap, 368
lastModified method, File, 455
late binding

subtype polymorphism, 117–119
lazy initialization, 432
leastDesirableCard method

Four of a Kind game, 34
left shift operator, 53
length method

BitSet class, 373
CharSequence interface, 436
File class, 455
RandomAccessFile class, 464
String class, 279, 281
StringBuffer class, 283

length, array, 283
less than operators, 54
lib directory, JDK, 7
lifetime, 48

isAlive method, 289, 293
local variables, 61

line
getLineInstance method, 409
separator property, 508

line feed
escape sequence for, 49

line separators, 439
line terminators, 438, 439, 508
linear congruential generator, 432
linear search, 370
LineNumberInputStream class, 474
LineNumberReader class, 474
LinkageError

forName method, 270, 273
LinkedHashMap class, 362
LinkedHashSet class, 337

Index 618

LinkedList class, 330–332
fail-fast behavior, 327
nodes, 330

linking
forName method, 270

List interface, 325–328
ArrayList class, 329–330
hierarchy of interfaces, 316
LinkedList class, 330–332
methods, 325–326
range-view operations, 328
subList method, 326, 328
views, 328

list method, File, 456, 457
list resource bundle, 405–409
listFiles method, 456, 457, 458
ListIterator class, 326

methods, 326–328
navigating through lists, 328

ListResourceBundle class, 402, 405
listRoots method, File, 449
lists, 325

ArrayList class, 329–330
LinkedList class, 330–332

literals, 48
Boolean literal, 49
character literal, 49
floating-point literal, 50
integer literal, 49
string literal, 48

liveness, 397
load factor, hashtables, 358
loading

forName method, 270
local classes, 148–150
local variables, 61

accessing fields, 88
naming conventions, 61

Locale class, 398
methods, 399

locales, 398–400
getAvailableLocales method, 410
resource bundles, 400

Locale-Sensitive Services, 398
localization, 400
Lock interface, 394

lock method, 396
lockInterruptibly method, 394
tryLock method, 394
unlock method, 396
wait/notification mechanism, 394

lock method, 396
lockInterruptibly method, 394
locks, 299, 394–396

achieving synchronization, 394
deadlock, 306–308
holdsLock method, 299
ReentrantLock class, 394

log method, FileWriter, 519
log method, Math, 229
log10 method, Math, 229
Logger interface

using packages, 155
LoggerFactory abstract class, 156
logging library

using packages, 155–159
logical operators, 53
Long class, 255–257
LONG constant, DateFormat, 424
Long integer type, 46

getLong method, 275
literal representing, 49
nextLong method, 434

longValue method, 255
lookingAt method, Matcher, 437
loops, 66–69

breaking out of nested for loops, 72
continuing for loop, 72
control variables, 66
do-while loop, 69
excuting empty statement, 69
for loop, 66–67
infinite loops, 70
Java, 3
while loop, 67–68

lowercase
isLowerCase method, 251
toLowerCase method, 251

■ M
main method, 60

DumpArgs class, 8
FourOfAKind class, 30
initialization order, 82

Main-Class specifier
distributing Four of a Kind as JAR file, 39

MANIFEST.MF file
distributing Four of a Kind as JAR file, 39
packages information, 247

Map interface, 351–353
ConcurrentMap subinterface, 392

Index 619

entrySet method, 351, 353, 354
hierarchy of interfaces, 316
keySet method, 352, 353
methods, 351–353

Map.Entry interface, 354–355
maps, 351

EnumMap class, 366
HashMap class, 356–362
IdentityHashMap class, 362–364
LinkedHashMap class, 362
SortedMap interface, 367–369
TreeMap class, 355–356
WeakHashMap class, 364–365

mark method, IntputStream, 476, 477
marker annotations, 194
marker interfaces, 126, 194
markSupported method, IntputStream, 476,

477
masking

type parameter, generics, 208
Matcher class, 436

find method, 437, 438, 522
methods, 436–437
reset method, 437, 522

matcher method, Pattern, 435, 436
matches method

Matcher class, 436
Pattern class, 435

math
StrictMath class, 233–234

Math APIs, 227–243
Math class, 227–233, 268

final reserved word, 234
methods, 227
random method, 432
StrictMath class compared, 233
utility classes, 234

max method
BigDecimal class, 236
BigInteger class, 240
Math class, 229, 232

MAX_VALUE constant, 232, 251, 255
Media class

getID3Info method, 526
MEDIUM constant, DateFormat, 424
member access operator, 53

accessing fields, 88
calling overridden methods, 101

memory leakage, 93
memory leaks, hashmaps

WeakReference objects, 263

message formatters, 426–428
MessageFormat class, 426

applyPattern method, 428
format method, 427

messages
compound messages, 426, 428
simple messages, 426

meta-annotations, 196–198
Documented type, 198
Inherited type, 198
Retention type, 196
Target type, 196

metacharacters
patterns, 434
period metacharacter, 438
regular expressions, 438

metadata
annotations, 190–200, 225
files, 463

META-INF directory
distributing Four of a Kind as JAR file, 39
packages information, 247

method calls, 61
argument passing, 91
chained instance method calls, 92
operator, 53

Method class, 275–276
processing annotations, 199

method overloading, 74
method return, 73–74
method signature, 58
method-call stack, 90
method-call statement, 89
methods, 58–75, 94

abstract methods, 120–121
abstract reserved word, 121
arguments, 58, 60
calling, 89–92
calling overridden methods, 101
class methods, 60
compound statement, 60
covariant return type, 123–124
declaring, 58–60
empty statement, 61
enhancing an enum, 216, 217
final keyword, 101
forwarding, 114
generic methods, 212–214
getDeclaredMethods method, 271
getMethods method, 271
getters, 83

Index 620

helper methods, 82
implementing, 60–74
implementing interfaces, 128
instance methods, 59
integer classes, 255
interfaces, 126
local variables, 61
main method, 60
naming conventions, 58
native methods, 492
Override annotation type, 191
overriding, 100
parameters, 58, 61
postconditions, 187–188
preconditions, 185–187
recursive calls, 90
resource-access methods, 403
return type, 58
returning value from, 73
setters, 83
simple statement, 60
statements, 60
strictfp applied to, 234
when not to use assertions, 188

Micro Edition (Java ME), 5
min method

BigDecimal class, 237
BigInteger class, 240
Collections class, 371
Math class, 229, 232

MIN_VALUE constant, 232, 251, 255
minus

unary minus operator, 55
MissingResourceException, 402, 403, 405
mkdir method, File, 459
mkdirs method, File, 459
modeling Four of a Kind in pseudocode, 21–

23
Modifier class, 276
modifiers

getModifiers method, 276
module reserved word, 159
modules, 159
modulus (remainder) operator, 54
monitors, 299
multicatch, 171
multilevel feedback queue scheduler, 291
multiline comment, 59
multiple implementation (class) inheritance,

102
multiplication operator, 53

multiply method
BigDecimal class, 237
BigInteger class, 241

multithreaded applications
concurrency utilities, 381

mutable keys
IdentityHashMap class, 362

mutual exclusion, 299
threads, 302

■ N
name method

Charset class, 517
Enum class, 221

names
forName method, 270, 272, 273
getName method, 271, 275, 288, 289,

290
setName method, 289

namespaces, 151
naming conventions

catch clause, 169
classes, 44
exceptions, 165
fields, 45
interfaces, 125
local variables, 61
methods, 58
packages, 152

NaN (Not a Number), 232, 251
division by zero, 57
equals method, 253
isNaN method, 252

native code, 4
native methods, 492
native reserved word, 492
navigator area, NetBeans IDE, 16
negate method

BigDecimal class, 237
BigInteger class, 241

negation character class, 439
negative

unary minus operator, 55
NEGATIVE_INFINITY constant, 251

testing float/double for equality with -
infinity, 253

NELEM constant, 350
nested classes, 139–150, 178

anonymous classes, 146–148
interfaces within classes, 150

Index 621

local classes, 148–150
nonstatic member classes, 142–145
static member classes, 139–142

nested loops
labeled break statement, 72

nested types, 139–150
NetBeans IDE, 13–17

DumpArgs project, 14
editor area, 15
Files tab, 15
navigator area, 16
New Project dialog box, 14
Output tab, 16
projects area, 15
Projects tab, 15
Services tab, 15
tasks area, 16
tutorials, 13

networks, accessing, 530
New Java Project dialog box, 18
new operator, 95

creating objects and arrays, 85–87
New Project dialog box

NetBeans IDE, 14
new reserved word, 53
NEW value, State enum, 288
newFixedThreadPool method, Executors,

387
calculating Euler’s number, 389

newInstance method, 272
newline

escape sequence for, 49
hard-coding \n escape sequence, 509
line terminator, 439

next line line terminator, 439
next method

BreakIterator class, 410, 411
Iterator class, 321, 322
ListIterator class, 327, 328

nextBoolean method, Random, 433
nextBytes method, Random, 433
nextDouble method, Random, 433
nextElement method, Enumeration, 372
nextFloat method, Random, 433
nextGaussian method, Random, 433
nextIndex method, ListIterator, 327, 328
nextInt method, Random, 433, 434
nextLong method, Random, 434
nextToken method, StringTokenizer, 502
nodes, 330
nonstatic member classes, 142–145

NoSuchElementException, 321, 327, 340,
347, 367, 368, 371

notify method, Object class, 103
thread communication, 303, 306

notifyAll method, Object, 103
thread communication, 303

NotSerializableException, 496, 497
null references

using assertions, 189
NullPointerException, 167, 275, 276, 317
Number class, 257
number formatters, 421–424

customized number formatters, 424
NumberFormat class, 235, 421

factory methods, 421
format method, 235
setXyz methods, 423

NumberFormatException, 254
numbers, aligning, 423
numRecs method, PartsDB, 470, 472

■ O
Object class, 103–112

clone method, 103, 104–106
equals method, 103, 107–109
finalize method, 103, 109–110, 257
getClass method, 103, 277
hashCode method, 103, 110–111
notify method, 103
notifyAll method, 103
toString method, 103, 111–112
wait method, 103

object creation operator, 53
object pools, implementing, 264
object reference

accessing fields, 88
calling methods, 89

object serialization/deserialization, 496–508
custom, 501–505
default, 496–501
externalization, 506–508

ObjectInputStream class, 497, 498
defaultReadObject method, 505
readObject method, 497, 498, 500, 507,

508
object-orientation

inheritance, 97–116
interfaces, 125–136
polymorphism, 116–124

ObjectOutputStream class, 497

Index 622

defaultWriteObject method, 505
writeObject method, 497, 498, 507

objects, 85–94
see also classes
AccessibleObject class, 276
accessing fields, 87–89
calling methods, 89–92
collection, 315
creating objects and arrays, 85–87
encapsulation, 43
entities, 43
garbage collection, 92–93
initialization order, 78–82, 102
instantiation, 43
phantom reachable objects, 258
primitive types in Java, 47
reachable objects, 258
representing exceptions, 162–163
softly reachable objects, 258
strongly reachable objects, 258
template for manufacturing objects, 43
unreachable objects, 258
weakly reachable objects, 258

octal format
integer literals, 50
toOctalString method, 255

of methods, EnumSet, 339
offer method

BlockingQueue interface, 396
Queue interface, 347

one-dimensional array, 47
open range/interval

SortedSet interface, 343
operands, 51

different types in operator, 56
operators, 51

addition operator, 51
array index operator, 51
assignment operator, 51
binary operator, 51
bitwise AND operator, 51
bitwise complement operator, 51
bitwise exclusive OR operator, 51
bitwise inclusive OR operator, 52
cast operator, 52
compound assignment operator, 52
conditional AND operator, 52
conditional operator, 52
conditional OR operator, 52
division operator, 52
equality operator, 52

inequality operator, 52
infix operator, 51
instanceof operator, 108
left shift operator, 53
logical AND operator, 53
logical complement operator, 53
logical exclusive OR operator, 53
logical inclusive OR operator, 53
member access operator, 53
method call operator, 53
multiplication operator, 53
new operator, 85–87
object creation operator, 53
operands of different types, 56
overflow/underflow, 56
overloading, 3
postdecrement operator, 53
postfix operator, 51
postincrement operator, 54
precedence, 55
predecrement operator, 54
prefix operator, 51
preincrement operator, 54
relational greater than operators, 54
relational less than operators, 54
relational type checking operator, 54
remainder operator, 54
signed right shift operator, 54
string concatenation operator, 51, 55
subtraction operator, 55
ternary operator, 51
unary minus operator, 55
unary operator, 51
unary plus operator, 55
unsigned right shift operator, 55

OptionalDataException, 498
or method, BitSet, 373
OR operators

bitwise exclusive OR operator, 51, 374
bitwise inclusive OR operator, 52, 374
conditional OR operator, 52
logical exclusive OR operator, 53
logical inclusive OR operator, 53

ordinal method
Enum class, 221
Four of a Kind game, 34

output
FileWriter class, 518–520
System.out, 9
Writer class, 513
writer classes, 512–513

Index 623

output stream, 473
Output tab, NetBeans IDE, 16
outputList method, generics, 209
OutputStream class, 473, 475–476

methods, 475–476
OutputStreamWriter class, 514

getEncoding method, 515
write method, 514

overflow/underflow, operators, 56
overflows

strictfp reserved word, 233
overloading

annotating method override to detect,
101

constructors, 75
method overloading, 74

overloading operators, 3
overloading polymorphism, 116
@Override annotation, 191

annotating overriding method, 101
prefixing overriding methods, 102

overriding methods
calling overridden methods, 101
incorrectly overriding method, 101
inheritance, 100
overriding final method, 101
prefixing overriding methods, 102

■ P
Package class, 243–247, 268
Package Explorer tab, Eclipse, 19
package reserved word, 152
package statement, 152–153, 179
PackageInfo application, 244–247
package-private access control level, 83
package-private methods

including in Javadoc documentation, 36
packages, 151–160

see also Java packages
compile-time search, 154
getPackage method, 271
import statement, 153–154
JAR files, 159–160
logging library example, 155–159
namespaces, 151
naming conventions, 152
package statement, 152–153
runtime search, 155
sealed packages, 243

isSealed method, 244

searching for packages and types, 154–
155

storing, 154
unnamed package, 153

paragraph separator line terminator, 439
@param, Javadoc tag, 35
parameterized types, generics, 201, 202

concrete parameterized type, 203
wildcards, 208

parameters
getParameterTypes method, 275
methods, 58, 61

parametric polymorphism, 116
parent class see superclass
parent thread, 310
parentheses

operator precedence, 55
parseBoolean method, 249
parseDouble method, 252, 254
parseFloat method, 252, 254
parseObject methods, 421
PartsDB class, 467, 470
pass-by-value

argument passing, 91
path, 450
pathnames, 450

absolute pathname, 451
compareTo method, 462
getAbsoluteFile method, 452
getAbsolutePath method, 452
getCanonicalPath method, 452
getPath method, 452
isAbsolute method, 453
methods for learning about stored

pathname, 452
obtaining abstract pathname

information, 453
relative pathname, 451
separator character, 451

Pattern class, 435
compile method, 435, 439
line terminators, 439
matcher method, 435, 436
methods, 435

pattern matching
capturing groups, 440

pattern method, 435
patterns, 426

apostrophe in, 427
applyPattern method, 428
Matcher class, 436

Index 624

matching text against, 434
messages, 426
metacharacters, 434
quantifiers, 442
ResourceBundle class, 401

PatternSyntaxException, 435, 436, 437
peek method, Queue, 347
percentages, formatting numbers as, 421
performance

Collections class, 372
reflection, 269
threading, 296, 301, 302
threads, 287
unlimited serialization, 497
using StringBuilder not StringBuffer, 284

period metacharacter, 438
phantom reachable objects, 258
PhantomReference class, 263–266, 268

phantom reachable objects, 258
PI constant, 227
PipedInputStream class, 481, 482
PipedOutputStream class, 481, 482
platforms

Android platform, 5
Java, 3
Java EE (Enterprise Edition), 5
Java ME (Micro Edition), 5
Java SE (Standard Edition), 5

plus
unary plus operator, 55

Point class
equals method, 107

pointers, 3
poll method

BlockingQueue interface, 396
Queue interface, 347, 349
ReferenceQueue class, 260, 265

polymorphism, 116–124
coercion polymorphism, 116
downcasting, 121–123
generics, 208
overloading polymorphism, 116
parametric polymorphism, 116
runtime type identification, 121–123
subtype polymorphism, 117

pooling
implementing object pools, 264

pop
method-call stack, 90
stack, 225

pop method, Stack, 372

portability
hard-coding \n escape sequence, 509
Java, 4
Java applications, 46
strictfp reserved word, 233, 234

positive
unary plus operator, 55

POSITIVE_INFINITY constant, 251
testing float/double for equality with

+infinity, 253
possessive quantifier, 442, 443, 444
postconditions

design-by-contract development, 187–
188

postdecrement operator, 53
postfix operator, 51
postincrement operator, 54
precedence, operators, 55
preceding method, BreakIterator, 411
precision, decimals, 235
precision method, BigDecimal, 237
preconditions

design-by-contract development, 185–
187

predecrement operator, 54
predefined character classes, 440
preemptive scheduling, 291
preferences, 428

java.util.prefs package, 429
storing in Windows XP registry, 430, 431
system preference tree, 429

Preferences APIs, 428–431
Preferences class, 429

methods, 429–430
prefix operator, 51
preincrement operator, 54
previous method

BreakIterator class, 411
ListIterator class, 327, 328

previousIndex method, ListIterator, 327, 328
primitive types, 46

autoboxing and unboxing, 323
portability of Java applications, 46
storing in collections, 323

primitive wrapper classes, 247–257, 268
Boolean class, 248–250
Byte class, 255–257
Character class, 250–251
constants, 232
Double class, 251–254
Float class, 251–254

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

Index 625

Integer class, 255–257
Long class, 255–257
Short class, 255–257
storing primitive types in collections, 323
superclass of, 257

print method
PrintStream class, 508
System.out, 9, 509

printf method
PrintStream class, 509

format specifiers, 510
System.out, 510

println method
PrintStream class, 508
System.out, 9, 509, 511

printStackTrace method, Throwable, 164,
168

PrintStream class, 473, 474, 508–511
checkError method, 511
flush method, 511
print method, 508
printf method, 509

format specifiers, 510
println method, 508
System.err, 508
System.out, 508

PrintWriter class, 474
priority

setPriority method, 291
priority queues, 346, 348
PriorityQueue class, 348–350
private access control level, 83

inheritance, 100
private reserved word, 83
problem domain

Four of a Kind application, 21
profiling, 132
projects area, NetBeans IDE, 15
projects directory, JDK, 7
Projects tab, NetBeans IDE, 15
properties

getProperty method, 285, 286, 372
setProperty method, 372

Properties API, 429
Properties class, 372, 375, 429
properties files, 403
property resource bundle, 403–405
PropertyResourceBundle class, 402, 403
protected access control level, 82
protected reserved word, 82
pseudocode, 21

converting to Java code, 23–36
modeling Four of a Kind in, 21–23

public access control level, 82, 83
accessing fields, 88

public methods
when not to use assertions, 188

public reserved word, 82
interfaces, 126
main method, 60

push
method-call stack, 90
stack, 225

push method, Stack, 372
put method

BlockingQueue interface, 393, 396
Map interface, 352
Preferences class, 430

putAll method, Map, 352
putBack method, Four of a Kind game, 28

■ Q
quantifiers, 442–444

greedy quantifier, 442, 443
possessive quantifier, 442, 443, 444
reluctant quantifier, 442, 443
zero-length matches, 443

queue data structure, 204
Queue implementation classes, 347
Queue interface, 346–347

BlockingQueue subinterface, 392
hierarchy of interfaces, 316
methods, 346–347
PriorityQueue class, 348–350

queues, 346
first-in, first-out (FIFO), 346
last-in, first-out (LIFO), 346
priority queues, 346, 348
PriorityQueue class, 348–350

Queue<E> generic type, 203–205
quote method, Pattern, 435
quotes, escape sequences for, 49

■ R
r mode argument

RandomAccessFile constructor, 463
race condition, threads, 298
Random class, 432–434

methods, 433–434

Index 626

random method, Math class, 229, 231, 432
random number generation, 432–434, 447

seed value, 432
RandomAccessFile class, 462–473

close method, 464, 470
constructors, 462–464
creating flat file database, 467–472
file pointer, 464
getFD method, 464, 465, 466
methods, 464–465
read-prefixed methods, 466
skipBytes method, 465, 466
write-prefixed methods, 466

range character class, 439
range method, EnumSet, 339
range-view operations

List interface, 328
Rank enum, Four of a Kind game, 26, 34
Rank object, Four of a Kind game

ordinal method, 34
rank method, Four of a Kind game, 26
rankCounts array, Four of a Kind game, 34
raw type, generics, 203
reachable objects, 258
read method

BufferedInputStream class, 492, 493
FileInputStream class, 488, 489, 490,

491, 492
InputStreamReader class, 515
IntputStream class, 477
RandomAccessFile class, 464
Reader class, 513, 514
System.in, 10

readChar method, RandomAccessFile, 464
Reader class, 513

read method, 513, 514
ready method, 514

reader classes, 512–513
BufferedReader class, 522
FileReader class, 520–522
InputStreamReader class, 515

readers (and writers), 511–529
readExternal method, 506, 508
readInt method, RandomAccessFile, 465
readLine method, BufferedReader, 522
readObject method, ObjectInputStream,

497, 498, 500, 505, 507, 508
read-only fields, 57–58
ready method, Reader, 514
recursive calls, methods, 90
recursive type bound, generics, 208

ReentrantLock class, 394
refactoring, 71
Reference class, 259–260
reference classes

PhantomReference class, 263–266
SoftReference class, 260–263
WeakReference class, 263

reference variable, 86
Reference<T> generic type, 259
referenced objects

garbage collection, 92
identity check, 106

ReferenceQueue class, 259, 260
ReferenceQueue<T> generic type, 260
References API, 257–266, 268
references, root set of, 257
reflection

identifying class members, 272
performance, 269

Reflection API, 269–277
Class class, 270–274

reflexive rule
Comparable interface, 317

region method, matchers, 437
regionEnd method, 437
regionStart method, 437
regular expressions, 434, 437–444

boundary matchers, 441–442
capturing groups, 440–441
character classes, 439–440
matching phone numbers, 444
matching text against patterns, 434
metacharacters, 434, 438
predefined character classes, 440
quantifiers, 442–444

Regular Expressions API, 434–447
reification, generics, 211
RejectedExecutionException, 382
relational greater than operator, 54
relational less than operator, 54
relational type checking operator, 54
relationships

"has a" relationship, 112
"is a" relationship, 98

relative pathnames, 451
reluctant quantifier, 442, 443
remainder method

BigDecimal class, 237
BigInteger class, 241

remainder operator, 54
remove method

Index 627

Collection interface, 319, 321
Iterator class, 321
List interface, 326
ListIterator class, 327
Map interface, 352
Queue interface, 347
ReferenceQueue class, 260
ThreadLocal class, 309

removeAll method, Collection, 320, 321
renameTo method, File, 460
replace method, String, 279
ReportCreationException, 171
reserved words

getModifiers method, 276
list of reserved identifiers, 44
primitive types, 46

reserved words, list of
abstract, 121
assert, 182
break, 65, 70
case, 65
catch, 168
continue, 71
default, 65
do, 69
else, 62
enum, 215
extends, 98, 130, 205
false, 49
final, 57
finally, 110, 172
for, 66
if, 62
implements, 127
import, 153
instanceof, 54
int, 45
interface, 125
module, 159
native, 492
new, 53
package, 152
private, 83
protected, 82
public, 82
return, 73
static, 48
strictfp, 233
super, 99, 207
switch, 64
synchronized, 394

this, 76, 85
throw, 167
throws, 110, 167
true, 49
try, 110
void, 59
volatile, 302, 303
while, 67

reset method
IntputStream class, 477
Matcher class, 437, 522

resource bundles, 400–409
accessing resources, 403
candidate bundle names, 401, 402
Control class, 403
list resource bundle, 405–409
ListResourceBundle class, 402
properties files, 403
property resource bundle, 403–405
PropertyResourceBundle class, 402

resource management, automatic, 176
resource-access methods, 403
ResourceBundle class, 401

clearCache methods, 403
getBundle methods, 401, 402
setParent method, 402

resurrection, 264
implementing object pools, 264

retainAll method, Collection, 320, 321
Retention meta-annotation type, 196, 197
RetentionPolicy enum, 196
return (carriage return)

escape sequence for, 49
@return, Javadoc tag, 35
return reserved word, 73
return statement

method return, 73–74
return type

covariant return type, 123–124
getReturnType method, 276
methods, 58

reverse method
Collections class, 371
StringBuffer class, 283

right shift operators
signed, 54
unsigned, 55

rnd method, Math, 186
converting random() return value, 231

root directories
listRoots method, 449

Index 628

root directory, Windows
backslash representing, 159

root set of references, 257
round method, Math, 229

BigDecimal floating-point calculations,
234

round robin scheduling, 291
ROUND_-prefixed constants

BigDecimal class, 236
rounding, decimals

setScale method, 237
RoundingMode enum, 237
RSA encryption

BigInteger class, 243
RTTI (runtime type identification), 121–123

marker/tagging interface, 126
RuleBasedCollator class, 414
run method, Runnable interface, 288, 290,

382, 385
countdown latches, 391

runFinalization method, System, 285
Runnable interface, 288, 382

Executor interface limitations, 382
run method, 288, 290, 382, 385

runnable tasks, 382
execute method, 382
submit method, 384

RUNNABLE value, State enum, 288
runtime exceptions, 165
RUNTIME retention policy, 196, 197
runtime search, 155
runtime type identification see RTTI
RuntimeException, 165, 179
rw/rwd/rws mode arguments

RandomAccessFile constructor, 463

■ S
\s predefined character class, 440
scale method, BigDecimal, 237
scale, decimals, 235

setScale method, 237
ScheduledExecutorService instance

Executors class returning, 387
ScheduledExecutorService interface, 386
schedulers, 291

multilevel feedback queue scheduler,
291

preemptive scheduling, 291
round robin scheduling, 291

scope, 48

local variables, 61
type parameter scope, 208

sealed packages, 243
isSealed method, 244

searches, binary/linear, 370
searching for packages and types, 154–155

compile-time search, 154
runtime search, 155

security
Java, 5
unlimited serialization, 496
working with, 531

seed value, 432
setSeed method, 433

seek method, RandomAccessFile, 465
select method, PartsDB, 470
selector expression, switch statement, 64
Semaphore class, 390
semaphores, synchronizers, 390
sentence

getSentenceInstance method, 409
separator character, 450, 451
separators

line terminators, 508
sequence, List interface, 325
Serializable interface, 496, 497
serialization, 496–508

custom, 501–505
default, 496–501
externalization, 506–508
NotSerializableException, 496
unlimited serialization, 496

serialver tool, 500
Services tab, NetBeans IDE, 15
servlets, Java EE, 5
Set interface, 332

add method, 332
EnumSet class, 337–339
equals method, 332
hashCode method, 332
HashSet class, 333–337
hierarchy of interfaces, 316
LinkedHashSet class, 337
TreeSet class, 332–333

set method
BitSet class, 374
Calendar class, 418
List interface, 326
ListIterator class, 328
ThreadLocal class, 309

setAccessible method, 276

Index 629

setCharAt method, StringBuffer, 283
setDaemon method, Thread, 289
setDefault method, locales, 399
setDefaultUncaughtExceptionHandler

method, 295
setExecutable method, File, 461
setLastModified method, File, 460
setLength method

RandomAccessFile class, 465
StringBuffer class, 283

setMaximumFractionDigits method, 423
setMaximumIntegerDigits method, 423
setMinimumFractionDigits method, 423
setMinimumIntegerDigits method, 423
setName method, Thread, 289
setParent method, ResourceBundle, 402
setPriority method, Thread, 291
setProperty method, Properties, 372
setReadable method, File, 461
setReadOnly method, File, 460
sets

bitsets, 337
EnumSet class, 337–339
HashSet class, 333–337
LinkedHashSet class, 337
sorted sets, 339
TreeSet class, 332–333

setScale method, BigDecimal, 236, 237, 239
setSeed method, Random, 433
setSharedChar method, Object, 305, 306
setters, 83
setText method, BreakIterator, 411, 412
setTime method

Calendar class, 420
Date class, 416

setTimeZone method, DateFormat, 425
setTopCard method, Four of a Kind game,

29
setUncaughtExceptionHandler method, 295
setValue method, Map, 355
setWritable method, File, 461
shadowing field

accessing fields, 88
shallow copying/cloning, 104
shift operators

left shift operator, 53
signed right shift operator, 54
unsigned right shift operator, 55

Short class, 255–257
SHORT constant, DateFormat, 424
Short integer type, 46, 233

getShort method, 275
short-circuiting, 52
shortValue method, 255
showMessageDialog method, JOptionPane,

408
shuffle method

Collections class, 434
Four of a Kind game, 28

shutdown method, ExecutorService, 384
shutdownNow method, 384, 389

countdown latches, 391
signature, methods, 58
signed right shift operator, 54
signum method, Math, 230
simple expressions, 48–50
simple messages, 426
simple statement, 60
SimpleDateFormat class, 425
SimpleTimeZone class, 417
sin method, Math, 230
single inheritance, 102
single quote (')

escape sequence for, 49
single-line comment, 45

Four of a Kind game, 29
singletonList method, Collections, 371
size method

BitSet class, 374
Collection interface, 320
Map interface, 353

skip method, IntputStream, 477
skipBytes method, RandomAccessFile, 465,

466
sleep method, Thread, 289, 292, 298, 299
sockets, 473
softly reachable objects, 258
SoftReference class, 260–263, 268

image cache, 261–262
soft reachable objects, 258

sort method
Arrays class, 370
Bubble sort, 187

sorted sets, 339
compare method, 345
compareTo method, 345
ordering, 345

SortedMap interface, 367–369
hierarchy of interfaces, 316
keySet method, 368, 517
methods, 367–368

SortedSet interface, 339–346

Index 630

closed range/interval, 343
comparator method, 340, 342
equals method, 345, 346
first method, 340
headSet method, 340, 341, 343
hierarchy of interfaces, 316
iterator method, 339
last method, 340
open range/interval, 343
subSet method, 340, 341, 343
tailSet method, 341, 343
toArray method, 339
toString method, 340

source code
annotating, 193–195
refactoring, 71
representing exceptions in, 162–166

SOURCE retention policy, 196
SPI (Service Provider Interface), 398
split method

Pattern class, 435
String class, 199, 279, 281

sqrt method, Math, 230
Stack class, 372, 375
stacks, 225

method-call stack, 90
threads, 287

standard class library, 4
Standard Edition (Java SE), 5
Standard I/O, 8
start method

Matcher class, 436
Thread class, 289, 290

startsWith method, String, 280
State enum

getState method, 288
statements, 60, 61, 94

assertions, 181–190
assignment, 61
break statement, 65, 70
case statement, 65
compound statement, 60
continue statement, 71
do-while loop, 69
empty statement, 61
for loop, 66–67
goto statement, 72
if-else statement, 62–64
import statement, 153–154
labeled break statement, 72
labeled continue statement, 72

method call statement, 61, 89
package statement, 152–153
simple statement, 60
switch statement, 64–66
while loop, 67–68

static import statement, 161
static imports, 160–161
static member classes, 139–142
static reserved word, 48

class initialization, 77
constructors, 75
main method, 60
read-only class field, 57

stop method
StoppableThread class, 301
Thread class, 296

StoppableThread class, 301–302
stopThread method, 301, 302
stream classes, 473–475

BitStreamInputStream, 492
BitStreamOutputStream, 492
BufferedInputStream, 492, 493
BufferedOutputStream, 492
ByteArrayInputStream, 477, 478
ByteArrayOutputStream, 477, 478–479
DataInputStream, 494
DataOutputStream, 494
FileInputStream, 479, 479–481
FileOutputStream, 479, 479
FilterInputStream, 488, 491
FilterOutputStream, 485
InputStream, 473, 476–477
LineNumberInputStream, 474
LineNumberReader, 474
ObjectInputStream, 497, 498
ObjectOutputStream, 497
OutputStream, 473, 475–476
PipedInputStream, 481, 482
PipedOutputStream, 481, 482
PrintStream, 473, 474, 508–511
PrintWriter, 474
StringBufferInputStream, 474
StringReader, 474
ZipOutputStream, 475

stream destinations, Java, 473
stream sources, Java, 473
stream unique identifier (SUID), 500
streams, I/O, 473–511

chaining streams, 488, 491, 493
FileReader class, 520–522
FileWriter class, 518–520

Index 631

InputStreamReader class, 515
java.util.jar package, 475
java.util.zip package, 474
OutputStreamWriter class, 514

strictfp reserved word, 233
applied to methods, 234
used in class header declaration, 234

StrictMath class, 233–234, 268
String class, 278–281

charAt method, 278, 281
compareTo method, 413
intern method, 279, 280
Java, 86
length method, 279, 281
methods, 278–280
split method, 199, 279, 281

string concatenation operator, 51, 55
string literal, 48, 280

escape sequences, 49
StringBuffer class, 281–284

append methods, 282, 284
immutability of string objects, 278
methods, 281–283
using StringBuilder class instead, 284

StringBufferInputStream class, 474
StringBuilder class

using instead of StringBuffer, 284
StringReader class, 474
strings

see also toString method
string management, 277–284
immutability of string objects, 278

StringTokenizer class, 501, 503
countTokens method, 502
nextToken method, 502
problematic deserialization, 502

strongly reachable objects, 258
Stub annotation type

adding elements to, 194
annotating Deck class, 197
declaring, 193
meta annotations, 197
meta-annotations, 196
processing annotations, 198
retention policies affecting, 197

StubFinder application
processing annotations, 198–199

subclasses
filter output streams, 485
initialization order, 102
"is a" relationship, 98

subList method, 326, 328
subMap method, 368
submit method, ExecutorService, 384, 386
subSequence method, 436
Subset class, 142
subSet method, 340, 341, 343
substring method

String class, 280
StringBuffer class, 283

subtract method
BigDecimal class, 237
BigInteger class, 241

subtraction character class, 440
subtraction operator, 55, 56
subtype polymorphism, 117

upcasting and late binding, 117–119
Suit enum, Four of a Kind game, 26
suit method, Four of a Kind game, 26
super reserved word

calling overridden methods, 101
finalize method, 109
inheritance, 99
type parameter bounds, 207

superclass
fragile base class problem, 114
getSuperclass method, 272
initialization order, 102
"is a" relationship, 98
Object class, 103–112

SuppressWarnings annotation type, 191,
193

declaring and using generic types, 205
meta-annotations, 196

Swing, 407, 408
JOptionPane class, 408

switch reserved word, 64
switch statement, 64–66

break reserved word, 65
case reserved word, 65
default reserved word, 65
selector expression, 64

symmetric rule
Comparable interface, 317

sync method, FileDescriptor, 466
synchronization, locks, 299, 394
synchronization, threads, 296–311

attempting to stop threads, 300
communication between threads, 300,

302
generating unique filenames, 299
long and double types, 300

Index 632

monitors, 299
mutual exclusion, 299, 302

synchronized reserved word, 394, 397
synchronizedSet method, 371
synchronizers, 390–392, 447

countdown latches, 390
cyclic barriers, 390
exchangers, 390
semaphores, 390

System class, 284–287
arraycopy method, 285, 286
currentTimeMillis method, 285, 286, 415
getProperty method, 285, 286, 508
methods, 284–285

system preference tree, 429
System.err, 10

PrintStream class, 508
System.in

read method, 10
System.out, 9

print method, 509
printf method, 510
println method, 509, 511
PrintStream class, 508

systemNodeForPackage method, 430
systemRoot method, Preferences, 430

■ T
tab, horizontal

escape sequence for, 49
tagging interface, 126
tailSet method, SortedSet, 341, 343
take method, BlockingQueue, 393, 396
tan method, Math, 230
Target meta-annotation type, 196, 197
tasks, 382

callable tasks, 382, 385
decoupling submission from execution,

382
Executor interface limitations, 382
invokeAll method, 383
invokeAny method, 383, 384
isTerminated method, 384
RejectedExecutionException, 382
runnable task, 382
shutdown method, 384
shutdownNow method, 384
submit method, 384

tasks area, NetBeans IDE, 16
TERMINATED value, State enum, 288

text
detecting logical boundaries within, 409
matching against patterns, 434

Thai Buddhist calendar, 417
this reserved word, 85

accessing fields, 88
constructors, 76

Thread class, 288–289
currentThread method, 288, 289, 290
deprecated methods, 296
getName method, 288, 289, 290
getThreadGroup method, 294
isAlive method, 289, 293
join method, 289, 293, 294
methods, 288–289
setDefaultUncaughtExceptionHandler

method, 295
setPriority method, 291
setUncaughtExceptionHandler method,

295
sleep method, 289, 292, 298, 299
start method, 289, 290
stop method, 296
yield method, 296

thread pools, 387
newFixedThreadPool method, 387

ThreadFactory instance
Executors class returning, 387

ThreadGroup class, 294
threading

performance, 296, 301, 302
Threading API, 287–311

concurrency utilities, 381
Runnable interface, 288

ThreadLocal class, 308, 309
initialValue method, 309, 310
methods, 309

thread-local variables, 308, 310
threads, 287

attempting to stop threads, 300
child thread, 310
countdown latches, 390
cyclic barriers, 390
daemon thread, 289
deadlock, 306–308
different user IDs for, 309
event-dispatching thread, 407
exchangers, 390
lock method, 396
Lock objects, 394
mutual exclusion, 302

Index 633

notify method, 103
notifyAll method, 103
parent thread, 310
performance, 287
race condition, 298
returning unique identifiers, 397
semaphores, 390
stacks, 287
StoppableThread class, 301
stopThread method, 301, 302
strongly reachable objects, 258
submitting callable task to executor, 386
synchronization, 296–311, 390
triggering coordinated start, 390
user thread, 289
volatile thread communication, 302
wait method, 103

throw reserved word, 167
throw statement, 167, 179
Throwable class, 163–164

methods, 163–164
printStackTrace method, 164, 168

throwing exceptions, 163, 166–168
final rethrow, 172
rethrowing exceptions, 172

throws clause, 167, 168, 179
throws Exception clause

processing annotations, 199
throws reserved word, 167

finalize method, 110
time

currentTimeMillis method, 285, 286, 415
getTime method, 416
GMT (Greenwich Mean Time), 415
Joda Time, 420
setTime method, 416
Unix epoch, 425
UTC (Coordinated Universal Time), 415

time zones
daylight saving time, 417
internationalization, 415
SimpleTimeZone class, 417

TIMED_WAITING value, State enum, 288
timeout, 383, 384, 385
TimeoutException, 384, 385
TimeUnit enum, 385
TimeZone class, 417

getDefault method, 417
getTimeZone method, 417, 425

title, packages
getImplementationTitle method, 243

getSpecificationTitle method, 244
toAlignedBinaryString, Integer, 256
toArray method

Collection interface, 320
SortedMap interface, 367
SortedSet interface, 339

toBinaryString method, Integer, 255, 256
toByteArray method, 478, 479
toCharArray method, 280
toDegrees method

Math class, 230
StrictMath class, 233

toHexString method, Integer, 255
tokens, enums, 218
toLowerCase method

Character class, 251
String class, 280

toOctalString method, Integer, 255
Toolkit class, 406
topCard method, Four of a Kind game, 29
top-level classes, 139

partitioning of, 151, 179
toRadians method

Math class, 230
StrictMath class, 233

toString method
BigDecimal class, 237, 239
BigInteger class, 241
BitSet class, 374
Boolean class, 249
CharSequence interface, 436
Date class, 416, 417
Enum class, 216, 218, 220
File class, 453
Integer class, 256
Object class, 103, 111–112
Pattern class, 435
SortedMap interface, 367
SortedSet interface, 340
StringBuffer class, 283

touch program, Unix, 526
toUpperCase method

Character class, 251
String class, 280

transitive rule
Comparable interface, 317

translations
Yahoo! Babel Fish, 408

TreeMap class, 355–356
trees

system preference tree, 429

Index 634

user preference tree, 429
TreeSet class, 332–333

sorted sets, 339
trim method, String, 280
true reserved word, 49
try reserved word

finalize method, 110
handling exceptions, 168

try statement, 168, 169
tryLock method, 394
two’s complement format, 239
two-dimensional array, 47
type checking operators

relational type checking operator, 54
type conversion

coercion polymorphism, 116
type parameter, generics, 203

bounds, 205–207
erasure, 211
masking, 208
recursive type bound, 208
scope, 208

type safety
enums, 216
generics, 200–202

wildcards, 209
problem with enumerated type, 215

types
abstract types, 133
compile-time search, 154
covariant return type, 123–124
declaring classes, 44
fields, 45
generic types, 202–212
nested types, 139–150
primitive types, 46
runtime search, 155
runtime type identification, 121–123
searching for packages and, 154–155

■ U
unary operator, 51
unary plus operator, 55
unboxing, 323–324
unchecked exceptions, 165, 168, 179
underflows

strictfp reserved word, 233
underscores

integer literals, 50
Unicode, 44

Character class, 250
character sets and encodings, 512
escape sequences, 49
internationalization, 398
UTF (Unicode Transformation Format),

512
Unicode 0, 46
union character class, 439
Unix epoch, 415, 425

formatting, 425
unlimited serialization, 496
unlock method, 396
unmodifiableMap method, 371
unnamed package, 153
UNNECESSARY constant, RoundingMode

enum, 238
unreachable objects

garbage collection, 258
unreferenced objects

garbage collection, 92
unsigned right shift operator, 55
UnsupportedOperationException, 320
UP constant, RoundingMode enum, 238
upcasting

subtype polymorphism, 117–119
update method, PartsDB, 470
uppercase

isUpperCase method, 251
toUpperCase method, 251

user preference tree, 429
user thread, 289
userNodeForPackage method, 430
userRoot method, 430
users

different user IDs for different threads,
309

UTC (Coordinated Universal Time), 415, 425
UTF (Unicode Transformation Format), 512
utilities

concurrency utilities, 381–397
utility classes, 234

Arrays class, 369–371
Collections class, 371–372
collections framework, 315, 369–372

■ V
valid method, FileDescriptor, 466
value classes see primitive wrapper classes
value method

processing annotations, 199

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

ha
rs

ha
m

v@
va

ria
bl

e3
.c

om

Index 635

valueOf method
Boolean class, 249
Enum class, 221, 222
Integer class, 324

values
containsValue method, 351

values method
Enum class, 218, 219, 221
Map interface, 353
SortedMap interface, 368

variables
atomic variables, 397
declaring in classes, 45
free variable, 148
isVarArgs method, 276
local variables, 61
loop-control variables, 66
reference variable, 86
thread-local variable, 308

Vector class, 372, 375
elements method, 372

vendor, packages
getImplementationVendor method, 243
getSpecificationVendor method, 244

version, packages
getImplementationVersion method, 243
getSpecificationVersion method, 244

views
List interface, 328
range-view operations, 328

virtual machine, 3
bytecode verifier, 4
classloader, 4
Dalvik virtual machine, 5
finalize method, 109
interpreter, 4
javac loading, 7

void reserved word, 59
volatile reserved word, 302, 303, 484

■ W
\w predefined character class, 440
wait method, Object class, 103

thread communication, 303, 306
WAITING value, State enum, 288
warnings

deprecation warnings, 192, 193
SuppressWarnings annotation type, 193

WeakHashMap class, 364–365
weakly reachable objects, 258

WeakReference class, 263, 268
weak reachable objects, 258

web browser
viewing Javadoc in, 35

while loop, 67–68
while reserved word, 67

do-while loop, 69
whitespace

toWhitespace method, 251
wildcards, generics, 208–210

actual type arguments, 203
windowing toolkits

Swing, 407, 408
word processing

detecting logical boundaries within text,
409

words
getWordInstance method, 409

workbench, Eclipse, 19
wrapped exception (cause), 164
wrapper class, 115

primitive wrapper classes, 247–257
storing primitive types in collections, 323

wrapping exceptions, 171
write method

BufferedOutputStream class, 492, 493
FilterOutputStream class, 485, 486, 492
OutputStream class, 475, 476
OutputStreamWriter class, 514
RandomAccessFile class, 465
Writer class, 513

writeChars method, RandomAccessFile, 465
writeExternal method, 506, 507
writeInt method, RandomAccessFile, 465
writeObject method, ObjectOutputStream,

497, 498, 505, 507
Writer class, 513
writer classes, 512–513

FileWriter class, 518–520
OutputStreamWriter class, 514
PrintWriter class, 474

writers (and readers), 511–529

■ X
Xlets, Java ME, 5
XML documents

parsing and creating, 530
xor method, BitSet, 374

Index 636

■ Y
Yahoo! Babel Fish, 408
yield method, Thread, 296

■ Z
\Z boundary matcher, 441

zero, division by, 56
zero-length matches, 442

boundary matchers, 442
quantifiers, 443

zip files
java.util.zip package, 474

ZipOutputStream class, 475

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Getting Started with Java
	What Is Java?
	Java Is a Language
	Java Is a Platform
	Java SE, Java EE, Java ME, and Android

	Installing and Exploring the JDK
	Installing and Exploring Two Popular IDEs
	NetBeans IDE
	Eclipse IDE

	Four of a Kind
	Understanding Four of a Kind
	Modeling Four of a Kind in Pseudocode
	Converting Pseudocode to Java Code
	Compiling, Running, and Distributing FourOfAKind

	Summary

	Learning Language Fundamentals
	Classes
	Declaring Classes
	Introducing Fields
	Introducing Methods
	Introducing Constructors
	Introducing Other Initializers
	Interface Versus Implementation

	Objects
	Creating Objects and Arrays
	Accessing Fields
	Calling Methods
	Garbage Collection

	Summary

	Learning Object-Oriented Language Features
	Inheritance
	Extending Classes
	The Ultimate Superclass
	Composition
	The Trouble with Implementation Inheritance

	Polymorphism
	Upcasting and Late Binding
	Abstract Classes and Abstract Methods
	Downcasting and Runtime Type Identification
	Covariant Return Types

	Interfaces
	Declaring Interfaces
	Implementing Interfaces
	Extending Interfaces
	Why Use Interfaces?

	Summary

	Mastering Advanced Language Features Part 1
	Nested Types
	Static Member Classes
	Nonstatic Member Classes
	Anonymous Classes
	Local Classes
	Interfaces Within Classes

	Packages
	What Are Packages?
	The Package Statement
	The Import Statement
	Searching for Packages and Types
	Playing with Packages
	Packages and JAR Files

	Static Imports
	Exceptions
	What Are Exceptions?
	Representing Exceptions in Source Code
	Throwing Exceptions
	Handling Exceptions
	Performing Cleanup

	Summary

	Mastering Advanced Language Features Part 2
	Assertions
	Declaring Assertions
	Using Assertions
	Avoiding Assertions
	Enabling and Disabling Assertions

	Annotations
	Discovering Annotations
	Declaring Annotation Types and Annotating Source Code
	Processing Annotations

	Generics
	Collections and the Need for Type Safety
	Generic Types
	Generic Methods

	Enums
	The Trouble with Traditional Enumerated Types
	The Enum Alternative
	The Enum Class

	Summary

	Exploring the Basic APIs Part 1
	Math APIs
	Math and StrictMath
	BigDecimal
	BigInteger

	Package Information
	Primitive Wrapper Classes
	Boolean
	Character
	Float and Double
	Integer, Long, Short, and Byte
	Number

	References API
	Basic Terminology
	Reference and ReferenceQueue
	SoftReference
	WeakReference
	PhantomReference

	Summary

	Exploring the Basic APIs Part 2
	Reflection API
	String Management
	String
	StringBuffer

	System
	Threading API
	Runnable and Thread
	Thread Synchronization

	Summary

	Discovering the Collections Framework
	Framework Overview
	Comparable Versus Comparator

	Iterable and Collection
	Iterator and the Enhanced For Loop Statement
	Autoboxing and Unboxing

	List
	ArrayList
	LinkedList

	Set
	TreeSet
	HashSet
	EnumSet

	SortedSet
	Queue
	PriorityQueue

	Map
	TreeMap
	HashMap
	IdentityHashMap
	WeakHashMap
	EnumMap

	SortedMap
	Utilities
	Classic Collections Classes
	Summary

	Discovering Additional Utility APIs
	Concurrency Utilities
	Executors
	Synchronizers
	Concurrent Collections
	Locks
	Atomic Variables

	Internationalization APIs
	Locales
	Resource Bundles
	Break Iterators
	Collators
	Dates, Time Zones, and Calendars
	Formatters

	Preferences API
	Random Number Generation
	Regular Expressions API
	Summary

	Performing I/O
	File
	RandomAccessFile
	Streams
	Stream Classes Overview
	OutputStream and InputStream
	ByteArrayOutputStream and ByteArrayInputStream
	FileOutputStream and FileInputStream
	PipedOutputStream and PipedInputStream
	FilterOutputStream and FilterInputStream
	BufferedOutputStream and BufferedInputStream
	DataOutputStream and DataInputStream
	Object Serialization and Deserialization
	PrintStream

	Writers and Readers
	Writer and Reader Classes Overview
	Writer and Reader
	OutputStreamWriter and InputStreamReader
	FileWriter and FileReader

	Summary
	The Road Goes Ever On

	Solutions to Exercises
	Chapter 1: Getting Started with Java
	Chapter 2: Learning Language Fundamentals
	Chapter 3: Learning Object-Oriented Language Features
	Chapter 4: Mastering Advanced Language Features Part 1
	Chapter 5: Mastering Advanced Language Features Part 2
	Chapter 6: Exploring the Basic APIs Part 1
	Chapter 7: Exploring the Basic APIs Part 2
	Chapter 8: Discovering the Collections Framework
	Chapter 9: Discovering Additional Utility APIs
	Chapter 10: Performing I/O

	Index
	¦ Symbols and
	Numerics
	A
	¦
	¦ B
	¦ C
	¦D
	¦E
	¦ F
	¦ G
	¦H
	¦ I
	¦J
	¦ L
	¦ K
	M
	¦
	N
	¦
	¦O
	¦ P
	Q
	¦
	¦ R
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	¦ X
	¦ Y
	¦ Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

