
ptg

ptg

The Android
Developer’s Cookbook
Building Applications with

the Android SDK

���������������

ptg

The Android
Developer’s Cookbook
Building Applications with

the Android SDK

James Steele
Nelson To

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

���������������

VIPIN
Cross-Out

VIPIN
Cross-Out

VIPIN
Inserted Text

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Steele, James, 1971-
The Android developer's cookbook : building applications with the

Android SDK / James Steele, Nelson To.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-321-74123-3 (pbk. : alk. paper)
ISBN-10: 0-321-74123-4 (pbk. : alk. paper)

1. Application software—Development. 2. Android (Electronic resource)
3. Mobile computing. 4. Smartphones—Programming. 5. Operating systems
(Computers) I. To, Nelson, 1976- II. Title.

QA76.76.A65S743 2011
004.1675—dc22

2010033254

Copyright © 2011 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Images that appear with the link http://www.developer.android.com in the credit line are
exact reproductions or modifications of work created and shared by the Android Open
Source Project (http://code.google.com/policies.html) and are used according to terms
described in the Creative Commons 2.5 Attribution License (http://creativecommons.org/
licenses/by/2.5/).

Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville, Indiana.

First Printing: October 2010

ISBN-10: 0-321-74123-4
ISBN-13: 978-0-321-74123-3

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina McDonald

Development
Editor
Michael Thurston

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Deadline Driven
Publishing

Indexer
Erika Millen

Proofreader
Jovana Shirley

Technical Editors
Romin Irani
Douglas Jones

Publishing
Coordinator
Olivia Basegio

Designer
Gary Adair

Page Layout
Mark Shirar

���������������

http://www.developer.android.com
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
VIPIN
Cross-Out

ptg

❖

To Wei with love.

Jim

To my dear mom.

Nelson

❖

VIPIN
Cross-Out

ptg

Contents at a Glance
1 Overview of Android 1

2 Application Basics: Activities and Intents 23

3 Threads, Services, Receivers, and Alerts 51

4 User Interface Layout 79

5 User Interface Events 117

6 Multimedia Techniques 147

7 Hardware Interface 169

8 Networking 195

9 Data Storage Methods 221

10 Location-Based Services 251

11 Advanced Android Development 277

12 Debugging 303

Index 317

l......

ptg

Table of Contents

1 Overview of Android 1
The Evolution of Android 1

The Dichotomy of Android 2

Devices Running Android 2

HTC Models 6

Motorola Models 6

Samsung Models 6

Tablets 7

Other Devices 7

Hardware Differences on Android Devices 8

Screens 8

User Input Methods 9

Sensors 9

Features of Android 10

Multiprocess and App Widgets 11

Touch, Gestures, and Multitouch 11

Hard and Soft Keyboards 11

Android Development 11

How to Use the Recipes in This Book 12

Designing Applications Well 12

Maintaining Forward Compatibility 13

Robustness 13

Software Development Kit 14

Installing and Upgrading 14

Software Features and API Level 15

Emulator and Android Device Debug 16

Using the Android Debug Bridge 18

Signing and Publishing 18

Android Market 19

End-User License Agreement 19

Improving App Visibility 19

Differentiating an App 20

Charging for an App 20

Managing Reviews and Updates 21

Alternatives to the Android Market 22

�

ptg

viii Contents

2 Application Basics: Activities and Intents 23
Android Application Overview 23

Recipe: Creating a Project and an Activity 24

Directory Structure of Project and Autogenerated
Content 26

Android Package and Manifest File 28

Renaming Parts of an Application 30

Activity Lifecycle 30

Recipe: Utilizing Other Lifecycle Functions 31

Recipe: Forcing Single Task Mode 33

Recipe: Forcing Screen Orientation 34

Recipe: Saving and Restoring Activity Information 34

Multiple Activities 35

Recipe: Using Buttons and TextView 36

Recipe: Launching Another Activity from an Event 37

Recipe: Launching an Activity for a Result Using
Speech to Text 41

Recipe: Implementing a List of Choices 43

Recipe: Using Implicit Intents for Creating an
Activity 44

Recipe: Passing Primitive Data Types Between
Activities 46

3 Threads, Services, Receivers, and Alerts 51
Threads 51

Recipe: Launching a Secondary Thread 51

Recipe: Creating a Runnable Activity 55

Recipe: Setting a Thread’s Priority 57

Recipe: Canceling a Thread 57

Recipe: Sharing a Thread Between Two
Applications 58

Messages Between Threads: Handlers 58

Recipe: Scheduling a Runnable Task from the Main
Thread 59

Recipe: Using a Countdown Timer 61

Recipe: Handling a Time-Consuming Initialization 62

Services 64

Recipe: Creating a Self-Contained Service 65

���������������

ptg

ixContents

Adding a Broadcast Receiver 69

Recipe: Starting a Service When the Camera Button Is
Pressed 70

App Widgets 72

Recipe: Creating an App Widget 72

Alerts 74

Recipe: Using Toast to Show a Brief Message on the
Screen 74

Recipe: Using an Alert Dialog Box 75

Recipe: Showing Notification in Status Bar 76

4 User Interface Layout 79
Resource Directories and General Attributes 79

Recipe: Specifying Alternate Resources 81

Views and ViewGroups 82

Recipe: Building Layouts in the Eclipse Editor 83

Recipe: Controlling the Width and Height of UI
Elements 86

Recipe: Setting Relative Layout and Layout ID 89

Recipe: Declaring a Layout Programmatically 90

Recipe: Updating a Layout from a Separate
Thread 92

Text Manipulation 94

Recipe: Setting and Changing Text Attributes 95

Recipe: Providing Text Entry 98

Recipe: Creating a Form 100

Other Widgets: From Buttons to Seek Bars 101

Recipe: Using Image Buttons in a Table Layout 102

Recipe: Using Check Boxes and Toggle Buttons 105

Recipe: Using Radio Buttons 108

Recipe: Creating a Drop-Down Menu 110

Recipe: Using a Progress Bar 112

Recipe: Using a SeekBar 114

5 User Interface Events 117
Event Handlers and Event Listeners 117

Recipe: Intercepting a Physical Key Press 117

Recipe: Building Menus 121

���������������

ptg

x Contents

Recipe: Defining Menus in XML 126

Recipe: Utilizing the SEARCH Key 127

Recipe: Reacting to Touch Events 128

Recipe: Listening for Fling Gestures 130

Recipe: Using Multitouch 133

Advanced User Interface Libraries 136

Recipe: Using Gestures 136

Recipe: Drawing 3D Images 140

6 Multimedia Techniques 147
Images 148

Recipe: Loading an Image for Manipulation 148

Audio 154

Recipe: Choosing and Playing Back Audio Files 154

Recipe: Recording Audio Files 157

Recipe: Manipulating Raw Audio 158

Recipe: Using Sound Resources Efficiently 163

Recipe: Adding Media and Updating Paths 165

Video 165

7 Hardware Interface 169
Camera 169

Recipe: Customizing the Camera 170

Other Sensors 175

Recipe: Getting a Device’s Rotational Attitude 176

Recipe: Using the Temperature and Light Sensor 179

Telephony 180

Recipe: Utilizing the Telephony Manager 181

Recipe: Listening for Phone States 183

Recipe: Dialing a Phone Number 185

Bluetooth 185

Recipe: Turning on Bluetooth 186

Recipe: Discovering Bluetooth Devices 187

Recipe: Pairing with Bonded Bluetooth Devices 188

Recipe: Opening a Bluetooth Socket 188

Recipe: Using Device Vibration 191

Recipe: Accessing the Wireless Network 191

���������������

ptg

xiContents

8 Networking 195
Using SMS 195

Recipe: Autosend an SMS Based on a Received
SMS 197

Using Web Content 204

Recipe: Customizing a Web Browser 204

Recipe: Using an HTTP GET 204

Recipe: Using HTTP POST 209

Social Networking 210

Recipe: Integrating with Twitter 210

9 Data Storage Methods 221
Shared Preferences 221

Recipe: Creating and Retrieving Shared
Preferences 222

Recipe: Using the Preferences Framework 222

Recipe: Changing the UI Based on Stored Data 225

Recipe: Adding a EULA 228

SQLite Database 232

Recipe: Creating a Separate Database Package 232

Recipe: Using a Separate Database Package 236

Recipe: Creating a Personal Diary 239

Content Provider 243

Recipe: Creating a Custom Content Provider 244

File Saving and Loading 249

10 Location-Based Services 251
Location Basics 251

Recipe: Retrieving Last Location 253

Recipe: Updating Location Upon Change 254

Recipe: Listing All Enabled Providers 256

Recipe: Translating a Location to Address (Reverse
Geocoding) 258

Recipe: Translating an Address to Location
(Geocoding) 261

Using Google Maps 263

Recipe: Adding Google Maps to an Application 265

Recipe: Adding Markers on a Map 267

���������������

ptg

xii Contents

Recipe: Adding Views to a Map 271

Recipe: Marking the Device’s Current Location on a
Map 274

Recipe: Setting up a Proximity Alert 274

11 Advanced Android Development 277
Android Custom View 277

Recipe: Customizing a Button 277

Android Native Components 283

Recipe: Developing a Native Component 284

Android Security 287

Recipe: Declaring and Enforcing Permissions 288

Android Inter-Process Communication 288

Recipe: Implementing a Remote Procedure Call 289

Android Backup Manager 294

Recipe: Creating a Backup of Runtime Data 294

Recipe: Backing Up Files to the Cloud 296

Recipe: Triggering Backup and Restore 296

Android Animation 298

Recipe: Creating an Animation 299

12 Debugging 303
Eclipse Built-in Debug Tools 303

Recipe: Specifying a Run Configuration 303

Recipe: Using the DDMS 304

Recipe: Debugging Through Breakpoints 306

Android SDK Debug Tools 307

Recipe: Using the Android Debug Bridge 307

Recipe: Using LogCat 307

Recipe: Using the Hierarchy Viewer 309

Recipe: Using TraceView 311

Android System Debug Tools 313

Recipe: Setting up GDB Debugging 315

Index 317

���������������

ptg

Preface
Android is the fastest growing mobile operating system (OS).With over 30 smartphones
introduced in the last year and over 10,000 applications (apps) being added every month,
the Android ecosystem is growing as well.There is enough diversity in device features
and wireless carriers to appeal to just about anyone.

Netbooks have always been a natural platform to adopt Android, but the inertia
behind Android has fed the growth further into televisions and even automobiles. Many
of the world’s largest corporations—from banks to fast food chains to airlines—ensure a
presence in Android and offer compatible services.Android developers have many
opportunities, and relevant apps reach more people than ever before, increasing the satis-
faction of creating a relevant app.

Why an Android Cookbook?
The Android OS is simple to learn, and Google provides many libraries to make it easy
to implement rich and complex applications.The only aspect lacking, as mentioned by
many in the Android developer community, is clear and well-explained documentation.
The fact that Android is open source means anyone can dive in and reverse engineer
some documentation. Many developer bulletin boards have excellent examples deduced
using exactly this method. Still, a book that has a consistent treatment across all areas of
the OS is useful.

In addition, a clear working example is worth a thousand words of documentation.
Developers faced with a problem usually prefer to do a form of extreme programming;
that is, they find examples of working code that does something close to the solution
and modify or extend it to meet their needs.The examples also serve as a way to see the
coding style and help to shape other parts of the developer’s code.

This Android Cookbook serves to fill a need by providing many various self-con-
tained recipes.As each recipe is introduced, the main concepts of the Android OS are
also explained.

Who Should Read This Book?
Users who are writing their own Android applications will get the most out of this
cookbook. Basic familiarity with Java and the Eclipse development environment is
assumed, but not required for the majority of the book. Java is a modular language and
most (if not all) of the example recipes can be incorporated with minimal change to the
reader’s own Android project.The motivation for each topic lends itself well for use as an
Android course supplement.

���������������

ptg

Utilizing Recipes
In general, the code recipes in this cookbook are self-contained and include all the
information necessary to run a working application on an Android device. Chapters 1
and 2 give an introduction to the overall use of Android, but feel free to jump around
and start using whatever is necessary.

This book is written first as a reference, providing knowledge mostly by example
with greatest benefits through implementation of the recipes of interest.The main tech-
nique introduced in each recipe is specified in the section heading. However, additional
techniques are included in each recipe as needed to support the main recipe.

After reading this book, a developer should
n Be able to write an Android Application from scratch.
n Be able to write code that works across multiple versions of Android.
n Be able to utilize the various Application Programming Interfaces (APIs) provided

in Android.
n Have a large reference of code snippets to quickly assimilate into applications.
n Appreciate the various ways to do the same task in Android and the benefits of

each.
n Understand the unique aspects of Android programming techniques.

Book Structure
Chapter 1,“Overview of Android,” provides an introduction to all aspects of Android
outside of the code itself. It is the only chapter that doesn’t include recipes, but provides
useful background material. Chapter 2,“Application Basics:Activities and Intents,” pro-
vides an overview of the four Android components and explanation of how an Android
project is organized. It also focuses on the activity as a main application building block.
Chapter 3,“Threads, Services, Receivers, and Alerts,” introduces background tasks such as
threads, services, and receivers, as well as notification methods for these background tasks
using alerts. Chapter 4,“User Interface Layout,” covers the user interface screen layout
and views, and Chapter 5,“User Interface Events,” covers the user initiated events such
as touch events and gestures.

Chapter 6,“Multimedia Techniques,” covers multimedia manipulation and record and
playback of audio and video. Chapter 7,“Hardware Interface,” introduces the hardware
APIs available on Android devices and how to utilize them. Chapter 8,“Networking,”
discusses interaction outside of the Android device with SMS, web browsing, and social
networking. Chapter 9,“Data Storage Methods,” covers various data storage techniques
available in Android including SQLite. Chapter 10,“Location-Based Services,” focuses on
accessing the location through various methods such as GPS and utilizing services such
as the Google Maps API. Chapter 11,“Advanced Android Development,” provides some
advanced techniques in Android including customizing views, using native code for

xiv Preface

���������������

ptg

faster processing, and utilizing the Android Backup Manager. Finally, Chapter 12,
“Debugging,” provides the testing and debugging framework useful throughout the
development cycle.

Additional References
There are many online references for Android.A few essential ones are
n Android Source Code: http://source.android.com/
n Android Developer Pages: http://developer.android.com/
n Android Developer Forums: http://www.svcAndroid.com/
n Open Source Directory: http://osdir.com/
n Stack Overflow Discussion Threads: http://stackoverflow.com/
n Talk Android Developer Forums: http://www.talkandroid.com/android-forums/

xvPreface

���������������

http://source.android.com/
http://developer.android.com/
http://www.svcAndroid.com/
http://osdir.com/
http://stackoverflow.com/
http://www.talkandroid.com/android-forums/

ptg

About the Authors
James Steele was doing post-doctoral work in physics at MIT when he decided to join
a startup in Silicon Valley. Fifteen years later and he continues to innovate, bringing
research projects to production in both the consumer and mobile market. He actively
presents and participates in various Silicon Valley new technology groups.

Nelson To has more than ten applications of his own in the Android Market. He also has
worked on enterprise Android applications for Think Computer, Inc. (PayPhone),AOL
(AIM), Stanford University (Education App), and Logitech (Google TV). He also assists
in organizing the SiliconValley Android Meetup Community and teaches Android classes
both in the Bay Area and China.

���������������

ptg

1
Overview of Android

The Android operating system (OS) has come a long way since the announcement of
the Open Handset Alliance in late 2007.The idea of an open source OS for embedded
systems was not new, but Google aggressively backing it definitely has helped push
Android to the forefront in just a few years.

Many wireless carriers in multiple countries across various communication protocols
have one or more Android phones available. Other embedded devices, such as tablets, net-
books, televisions, set-top boxes, and even automobiles, have also adopted the Android OS.

This chapter discusses various general aspects of Android useful for a developer. It pro-
vides a foundation for the creation of Android applications and a context for the recipes
in the rest of this book.

The Evolution of Android
Google, seeing a large growth of Internet use and search in mobile devices, acquired
Android, Inc., in 2005 to focus its development on a mobile device platform.Apple intro-
duced the iPhone in 2007 with some ground-breaking ideas including multitouch and an
open market for applications.Android was quickly adapted to include these features and
to offer definite distinctions, such as more control for developers and multitasking. In
addition,Android incorporates enterprise requirements, such as exchange support, remote
wipe, and Virtual Private Network (VPN) support, to go after the enterprise market that
Research In Motion has developed and held so well with its Blackberry models.

Device diversity and quick adaptation have helped Android grow its user base, but it
comes with potential challenges for developers.Applications need to support multiple
screen sizes, resolution ratios, keyboards, hardware sensors, OS versions, wireless data rates,
and system configurations. Each can lead to different and unpredictable behavior, but test-
ing applications across all environments is an impossible task.

Android has therefore been constructed to ensure as uniform an experience across
platforms as possible. By abstracting the hardware differences,Android OS tries to insulate
applications from device-specific modifications while providing the flexibility to tune
aspects as needed. Future-proofing of applications to the introduction of new hardware

���������������

ptg

2 Chapter 1 Overview of Android

platforms and OS updates is also a consideration.This mostly works as long as the devel-
oper is well aware of this systematic approach.The generic Application Programming
Interfaces (API) that Android offers and how to ensure device and OS compatibility are
main threads discussed throughout this book.

Still, as with any embedded platform, extensive testing of applications is required.
Google provides assistance to third-party developers in many forms as Android Develop-
ment Tool (ADT) plugins for Eclipse (also as standalone tools) including real-time log-
ging capabilities, a realistic emulator that runs native ARM code, and in-field error reports
from users to developers of Android Market applications.

The Dichotomy of Android
Android has some interesting dichotomies. Knowing about them upfront is useful not
only in understanding what Android is, but what it is not.

Android is an embedded OS that relies on the Linux kernel for core system services,
but it is not embedded Linux. For example, standard Linux utilities such as X-windows
and GNU C libraries are not supported.Writing applications for Android utilizes the
Java framework, but it is not Java. Standard Java libraries such as Swing are not sup-
ported. Other libraries such as Timer are not preferred; they have been replaced by
Android’s own libraries, which are optimized for usage in a resource-constrained,
embedded environment.

The Android OS is open source, which means developers can view and use any of the
system source code, including the radio stack.This source code is one of the first
resources for seeing examples of Android code in action, and it helps clarify the usage
when documentation is lacking.This also means developers can utilize the system in the
same way as any core application and can swap out system components for their own
components. However,Android devices do contain some proprietary software that is
inaccessible to developers (such as Global Positioning System (GPS) navigation).

A final dichotomy of Android OS is that Google is also backing Chrome OS.Android
OS is built for embedded platforms, and Chrome OS is built for cloud-based platforms.
However, which is the best choice for embedded devices that live in the cloud? Net-
books, which fill the gap between smart phones and laptop computers, could presumably
go either way (and they have).Android has started to utilize the cloud more. Does that
mean Chrome OS’s days are numbered? Google also backs a web-based market, so
Chrome OS enjoys the same developer leverage that Android currently has.This points to
a convergence that might have been in the cards all along.

Devices Running Android
There are more than 40 Android phones in the market from more than ten manufactur-
ers. Other hardware also runs Android, such as tablets and televisions. Software can access
information on the target device using the android.os.Build class, for example:

if(android.os.Build.MODEL.equals("Nexus+One")) { ... }

���������������

ptg

3Devices Running Android

Android-supported hardware shares some common features due to the nature of the
operating system.The Android OS is organized into the following images:

n Bootloader—Initiates loading of the boot image during startup
n Boot image—Kernel and RAMdisk
n System image—Android operating system platform and apps
n Data image—User data saved across power cycles
n Recovery image—Files used for rebuilding or updating the system
n Radio image—Files of the radio stack

These images are stored on nonvolatile flash memory, so they are protected when the
device powers down.The flash memory is used like read-only memory (hence, some call
it ROM), but can it be rewritten as necessary (for example, with over-the-air Android
operating system updates).

On startup, the microprocessor executes the bootloader to load the kernel and
RAMdisk to RAM for quick access.The microprocessor then executes instructions and
pages portions of the system and data images into RAM as needed.The radio image
resides on the baseband processor, which connects to the radio hardware.

A comparison of some of the early and more recent smart phone models is shown in
Table 1.1. It shows that the processing hardware architecture is similar across devices: a
microprocessor unit (MPU), synchronous dynamic random access memory (SDRAM or
RAM for short), and flash memory (called ROM for short).The screen size is given in
pixels, but the dots per inch (dpi) vary depending on the physical screen size. For exam-
ple, the HTC Magic has a 3.2-inch diagonal screen with 320x480 pixels.This equates to
180 pixels per inch, but is classified as a medium pixel density device by Android (which
averages as 160 dpi).All smartphones also offer a CMOS image sensor camera, Bluetooth
(BT), and Wi-Fi (802.11), although there are variations.

Table 1.1 Comparison of Some Representative Android Smartphones. Data from
http://en.wikipedia.org/wiki/List_of_Android_devices and http://pdadb.net/.

Model MPU
RAM/
ROM Screen Other Features

HTC Dream / G1
(October 2008)

528-MHz

QCOM

MSM7201A

192MB/
256MB

TFT LCD

320x480
mdpi

GSM/UMTS

slide out keyboard,
trackball, AGPS

BT2.0, 802.11b/g,
3.1-MP camera

���������������

http://en.wikipedia.org/wiki/List_of_Android_devices
http://pdadb.net/

ptg

4 Chapter 1 Overview of Android

Table 1.1 Comparison of Some Representative Android Smartphones. Data from http:/
/en.wikipedia.org/wiki/List_of_Android_devices and http://pdadb.net/.

Model MPU
RAM/
ROM Screen Other Features

Samsung Moment
(November 2009)

800-MHz

ARM1176

JZF-S

288MB/
512MB

AMOLED

320x480
mdpi

CDMA/1xEV-DO

slide out keyboard
(backlit), DPAD
BT2.0, 802.11b/g,
3.1-MP camera

AGPS

Motorola Milestone /
Droid (November
2009)

550-MHz

TI

OMAP3430

256MB/
512MB

TFT LCD

480x854
hdpi

GSM/UMTS or
CDMA/1xEV-DO

slide out keyboard,
DPAD

BT2.1, 802.11b/g,
5-MP camera

AGPS

Nexus One / HTC
Passion (January
2010)

1-GHz

QCOM

Snapdragon

512MB/
512MB

AMOLED

480x800
hdpi

GSM/UMTS

Trackball, dual
microphones

BT2.0, 802.11a/b/g/n,
5-MP camera

AGPS, geotagging

HTC Droid Incredible
(April 2010)

1-GHz

QCOM

Snapdragon

512MB/
512MB

AMOLED

480x800
hdpi

CDMA/1xEV-DO

BT2.1, 802.11a/b/g/n,
8-MP camera

AGPS, geotagging

HTC EVO 4G
(June 2010)

1-GHz

QCOM

Snapdragon

512MB/
1GB

TFT LCD

480x800
hdpi

CDMA/1xEV-
DO/802.16e-2005

BT2.1, 802.11b/g,
8-MP camera

1.3MP front-facing
camera, AGPS

Continued

���������������

ptg

5Devices Running Android

Table 1.1 Comparison of Some Representative Android Smartphones. Data from http:/
/en.wikipedia.org/wiki/List_of_Android_devices and http://pdadb.net/.

Model MPU
RAM/
ROM Screen Other Features

Motorola Droid X
(July 2010)

1-GHz

TI

OMAP3630

512MB/
8GB

TFT LCD

480x854
hdpi

CDMA/1xEV-DO, FM
radio

BT2.1, 802.11b/g/n,
8-MP camera

AGPS, geotagging

Sony-Ericsson Xperia
X10a (June 2010)

1-GHz

QCOM

Snapdragon

256MB/
1GB

TFT LCD

480x854
hdpi

GSM/UMTS, FM radio

BT2.1, 802.11b/g,
8-MP camera

AGPS, geotagging

Samsung Galaxy
S Pro (August 2010)

1-GHz

Samsung

Hummingbird

512MB/
2GB

AMOLED

480x800
hdpi

CDMA/1xEV-DO,
802.16, FM radio

slide out keyboard

BT3.0, 802.11b/g/n,
5-MP camera

0.3MP front-facing
camera, AGPS

Acer Stream / Liquid
(September 2010)

1-GHz

QCOM

Snapdragon

512MB/
512MB

AMOLED

480x800
hdpi

GSM/UMTS, FM radio

BT2.1, 802.11b/g/n,
5-MP camera

AGPS, geotagging

Other than improved capacity and performance on newer models, another main differen-
tiator is additional features. Some devices offer 4G, some have FM radio, some have slide-
out keyboards, and some have a front-facing camera. Knowing the differentiators helps a
developer create great applications. In addition to the built-in hardware, every Android
device comes with a secure digital (SD) card slot.An SD card provides additional storage
space for multimedia and extra application data. However, until Android 2.2, the apps
themselves could be stored only on the internal ROM.

Continued

���������������

ptg

6 Chapter 1 Overview of Android

HTC Models
HTC is a Taiwanese company founded in 1997.The first commercially available hardware
running Android was the HTC Dream (also known as the G1 with G standing for
Google). It was released in October 2008. Since then, HTC has put out over ten phones
running Android, including Google’s Nexus One.

The Nexus One was one of the first Android devices to use a 1-GHz microprocessor,
the Snapdragon platform from Qualcomm.The Snapdragon includes Qualcomm’s own
core as opposed to an ARM core, and it contains circuitry to decode high-definition
video at 720p. Most smartphones that have followed also utilize a 1-GHz microprocessor.
Other distinctions of the Nexus One are the use of two microphones to cancel back-
ground noise during phone conversations and a backlit trackball that lights up different
colors based on the notification.

HTC also released the Droid Incredible in April 2010.As seen in Table 1.1, it is similar
to the Nexus One but has a CDMA instead of a GSM radio hardware and a higher pixel
density camera.The HTC EVO 4G released in June 2010 produced quite a sensation as
the first commercially available phone that supports WiMAX (802.16e-2005).

Motorola Models
Motorola built the first cell phone in the 1980s and has had diverse success in the cell
phone market since. More recently, the wireless division was wavering for a direction
until it focused efforts on Android.The release of the Motorola Droid for CDMA (also
known as the Milestone for the GSM worldwide version) in November 2009 is indeed
considered by many as a major milestone for Android.The Droid’s impact is apparent in
that a significant fraction of Android phones accessing the Android Market are Droids.

In addition, Motorola has put out close to ten additional phone brands running
Android.The Motorola Droid X has capabilities similar to the HTC Droid Incredible,
including HD video capture.

Samsung Models
Samsung has been a strong force in the mobile market and is starting to come into its
own with Android devices.The Samsung Moment was introduced in November 2009,
but does not have hardware capability for multitouch. It will not be upgraded beyond
Android 2.1.A custom version, including a Mobile TV antenna, is available in select mar-
kets for receiving Mobile ATSC signals.

The Samsung Galaxy S is Samsung’s answer to the iPhone. It is well known that Sam-
sung processors are used in the iPhone 3G and 3GS.With the Galaxy S, Samsung devel-
oped a 1-GHz Hummingbird processor with an ARM Cortex-8 core. It is also one of the
first phones to offer Bluetooth 3.0 compatibility.

���������������

ptg

7Devices Running Android

Tablets
With Apple’s introduction of the iPad,Android manufacturers were expected to introduce
tablet computers of their own.A tablet computer is loosely defined as having a screen of
4.8 inches or larger and Wi-Fi connectivity. Because many have 3G wireless service, they
tend to be more like smartphones with large screens.

Archos was one of the first to market an Android tablet in late 2009. It has a diagonal
screen size of 4.8 inches and is called the Archos 5.Archos has since introduced a 7-inch
model called the Archos 7.These models come with an actual hard drive for more data
storage. Dell has also introduced a 5-inch tablet called the Streak with plans for both a 7-
inch and a 10-inch screen size model. Samsung offers the Galaxy Tab with a 7-inch
screen. One downside is the inability for many of these tablets to access the Android Mar-
ket, although that should soon change.A comparison of some tablet computer models is
shown in Table 1.2.

Other Devices
Given Android is a generic embedded platform, it is expected to be utilized in many
other industries beyond smartphones and tablet computers.The first Android-based auto-
mobile is the Roewe 350, which Shanghai Automotive Industry Corporation manufac-
tures.Android is mainly used for GPS navigation but can also support web browsing.

Table 1.2 Comparison of Representative Android Tablet Computers

Model MPU
RAM/
disk Screen Other Features

Archos 5
(September
2009)

800-MHz TI
OMAP 3440

256MB/
8GB

TFT LCD
4.8 inches

800x480

BT2.0,
802.11b/g/n,
FM radio

Archos 7
(June 2010)

600-MHz
Rockchip
RK2808

128MB/
8GB

TFT LCD
7 inches
800x480

802.11b/g

Dell Streak
(June 2010)

1-GHz QCOM
Snapdragon

256MB/
512MB

TFT LCD
5 inches

800x480

GSM/UMTS, BT2.1,
802.11b/g, 5-MP
camera, 0.3-MP
front-facing camera

AGPS, geotagging

Samsung Galaxy
Tablet GT-P1000
(September
2010)

1-GHz Samsung
Hummingbird

512MB/
16GB

TFT LCD
7 inches

1024x600

GSM/UMTS

BT3.0,
802.11b/g/n,
3.1-MP camera

���������������

ptg

8 Chapter 1 Overview of Android

Table 1.3 Summary of Device Screens Supported by Android

Screen
Type

Low-Density
(~120ppi), ldpi

Medium-Density
(~160ppi), mdpi

High-Density
(~240ppi), hdpi

Small
screen

QVGA (240x320), 2.6-inch
to 3.0-inch diagonal

Normal
screen

WQVGA (240x400),
3.2-inch to 3.5-inch
diagonal

FWQVGA (240x432), 3.5-
inch to 3.8-inch diagonal

HVGA (320x480), 3.0-
inch to 3.5-inch
diagonal

WVGA (480x800),
3.3-inch to 4.0-inch
diagonal

FWVGA (480x854),
3.5-inch to 4.0-inch
diagonal

Large
screen

WVGA (480x800),
4.8-inch to 5.5-inch
diagonal

FWVGA (480x854),
5.0-inch to 5.8-inch
diagonal

The first Android-based television, Google TV, is a joint development between Google
for software, Sony for televisions, Intel for processors, and Logitech for set-top boxes. It
brings the Internet to televisions in a natural way, but it also provides access to the
Android Market from the television.

Hardware Differences on Android Devices
The hardware available on each Android device varies, as seen in Table 1.1. In general,
most of the differences are transparent to the developer and not covered further here.
However, a few hardware differences are important to understand to assist in writing
device-independent code. Screens, user input methods, and sensors are discussed here.

Screens
Two technologies used for displays are liquid crystal displays (LCD) and light-emitting
diodes (LED).The two specific choices in Android phones are thin-film transistor (TFT)
LCDs and active-matrix organic LED displays (AMOLED).A benefit of TFT displays is a
longer lifetime.A benefit of AMOLED displays is no need for backlighting and therefore
deeper blacks and lower power.

Overall,Android devices are categorized into small, normal, and large screens and low-,
medium-, and high-pixel density. Note that the actual pixel density might vary but will be
chosen as one of these.A summary of currently available device screens is shown in Table
1.3. Note that Table 1.1 provides the screen density classification for each device listed.

���������������

ptg

9Hardware Differences on Android Devices

User Input Methods
Touchscreens enable users to interact with the visual display.There are three types of
touchscreen technology:

n Resistive—Two resistive material layers sit on top of a glass screen.When a finger,
stylus, or any object applies pressure, the two layers touch together and the loca-
tion of the touch can be determined. Resistive touchscreens are cost-effective, but
only 75 percent of the light shows through, and until recently, multitouch was not
possible.

n Capacitive—A charged material layer is overlaid on a glass screen.When a finger or
any conductive object touches the layer, some charge is drawn off, changing the
capacitance, which is measured to determine the location of the touch. Capacitive
touchscreens allow as much as 90 percent of the light through, although accuracy
can be less than resistive.

n Surface Acoustic Wave—This uses a more advanced method that sends and receives
ultrasonic waves.When a finger or any object touches the screen, the waves are ab-
sorbed.The waves are measured to determine the location of the touch. It is the
most durable solution, but more suitable for large-scale screens such as automatic
bank tellers.

All Android devices use either resistive or capacitive touchscreen technology, and with a
few early exceptions, all support multitouch.

In addition, each Android device needs an alternative method to access the screen.This
is through one of the following methods:

n D-pad (directional pad)—An up-down-right-left type of joystick
n Trackball—A rolling ball acting as a pointing device that is similar to a mouse
n Trackpad—A special rectangular surface acting as a pointing device

Sensors
Smartphones are becoming sensor hubs in a way, opening a rich experience for users.
Other than the microphone that every phone has, the first additional sensor introduced
on phones was the camera. Different phone cameras have varying capabilities, and this is
an important factor for people in selecting a device.The same type of diversity is now
seen with the additional sensors.

Most smartphones have at least three basic sensors: a three-axis accelerometer to meas-
ure gravity, a three-axis magnetometer to measure the ambient magnetic field, and a tem-
perature sensor to measure the ambient temperature. For example, the HTC Dream (G1)
contains the following sensors (which can be displayed using getSensorList()as
described further in Chapter 7,“Hardware Interface”):

���������������

ptg

10 Chapter 1 Overview of Android

AK8976A 3-axis Accelerometer

AK8976A 3-axis Magnetic field sensor

AK8976A Orientation sensor

AK8976A Temperature sensor

The AK8976A is a single package from Asahi Kasei Microsystems (AKM) that combines
a piezoresistive accelerometer, Hall-effect magnetometer, and temperature sensor.All
provide 8-bit precision data.The orientation sensor is a virtual sensor that uses the
accelerometer and magnetometer to determine the orientation.

For comparison, the Motorola Droid contains the following sensors:

LIS331DLH 3-axis Accelerometer

AK8973 3-axis Magnetic field sensor

AK8973 Temperature sensor

SFH7743 Proximity sensor

Orientation sensor type

LM3530 Light sensor

The LIS331DLH is a 12-bit capacitive accelerometer from ST Microelectronics. It
provides much more accurate data and can sample up to 1kHz.The AK8973 is an AKM
package with an 8-bit Hall-effect magnetometer and temperature sensor.

In addition, the Droid contains two more sensors.The SFH7743 is an Opto Semicon-
ductor’s short-range proximity detector that turns the screen off when an object (such as
the ear) is within about 40mm distance.The LM3530 is an LED driver with a program-
mable light sensor from National Semiconductor that detects ambient light and adjusts
the screen backlight and LED flash appropriately.

One other example of sensors available on an Android device is the HTC EVO 4G,
which has the following sensors:

BMA150 3-axis Accelerometer

AK8973 3-axis Magnetic field sensor

AK8973 Orientation sensor

CM3602 Proximity sensor

CM3602 Light sensor

The BMA150 is a Bosch Sensortec 10-bit accelerometer which can sample up to
1.5kHz.The CM3602 is a Capella Microsystems, Inc., short distance proximity sensor and
ambient light sensor combined into one.

Overall, it is important to understand each Android model has different underlying
hardware.These differences can lead to varying performance and accuracy of the sensors.

Features of Android
The detailed features of Android and how to take advantage of them provide a main
theme throughout this book. On a broader level, some key features of Android are major
selling points and differentiators. It is good to be aware of these strong points of Android
and utilize them as much as possible.

���������������

ptg

11Android Development

Multiprocess and App Widgets
The Android OS does not restrict the processor to a single application at a time.The sys-
tem manages priorities of applications and threads within a single application.This has the
benefit that background tasks can be run while a user engages the device in a foreground
process. For example, while a user plays a game, a background process can check stock
prices and trigger an alert as necessary.

App Widgets are mini applications that can be embedded in other applications (such as
the Home screen).They can process events, such as start a music stream or update the
outside temperature, while other applications are running.

Multiprocessing has the benefit of a rich user experience. However, care must be taken
to avoid power-hungry applications that drain the battery.These multiprocess features are
discussed further in Chapter 3,“Threads, Services, Receivers, and Alerts.”

Touch, Gestures, and Multitouch
The touchscreen is an intuitive user interface for a hand-held device. If utilized well, it
can transcend a need for detailed instructions.After a finger touches the screen, drags and
flings are natural ways to interact with graphics. Multitouch provides a way to track more
than one finger down at the same time.This is often used to zoom or rotate a view.

Some touch events are available transparently to the developer without the need to
implement their detailed behaviors. Custom gestures can be defined as needed. It is
important to try to maintain a consistent usage of touch events as compared to other
applications.These touch events are discussed further in Chapter 5,“User Interface
Events.”

Hard and Soft Keyboards
One feature on a pocket device that galvanizes users is whether it should have a physical
(also called hard) keyboard or software (also called soft) keyboard.The tactile feedback
and definite placement of keys provided by a hard keyboard tends to make typing much
faster for some, whereas others prefer the sleek design and convenience offered by a soft-
ware-only input device.With the large variety of Android devices available, either type
can be found.A side effect for developers is the need to support both. One downside of a
soft keyboard is a portion of the screen needs to be dedicated to the input.This needs to
be considered and tested for any user interface (UI) layout.

Android Development
This book is focused on writing Android code, the main aspect of Android development.
However, dedicating a few words to the other aspects of development, including design
and distribution, is appropriate.

���������������

ptg

12 Chapter 1 Overview of Android

How to Use the Recipes in This Book
In general, the code recipes in this cookbook are self-contained and include all the infor-
mation necessary to run a working application on an Android device.As discussed in
detail in Chapter 2,“Application Basics:Activities and Intents,” there are multiple user-
generated files needed to get an application working.When even one is omitted from an
example, its absence impedes those unfamiliar with the Android setup.Therefore, every
recipe contains the necessary files to get code working. Each file is shown as a code listing
with the full filename as the title.This helps to convey where the file lives in an Android
project.

At the same time, when too many files are shown, it clouds functionality.Therefore,
two coding styles are slightly different than would be expected in a normal application:

n The code has limited comments.The text explains the functionality clearer than in-
line comments could, and bolded code shows the main lines needed to get the
particular technique working. In practice, actual code should have more comments
than presented in the recipes.

n Strings are explicit and do not point to a global resource.The method of using a
global resource for strings is encouraged and discussed in detail in Chapter 4,“User
Interface Layout,” with multiple examples. In this book, however, when only a few
strings are needed for a recipe, the strings are made explicit rather than including a
whole additional file just to define them.

People just starting with Android are served well to use Eclipse for the development
environment with the Android plugin.As discussed more in Chapter 2, this ensures
proper Android project setup and context, and Eclipse even adds a placeholder icon fig-
ure. It also helps with more advanced tasks, such as signing an application for distribution.

The emulator provided with the Android Software Development Kit (SDK) is useful,
but nothing beats seeing the application run on a true Android device. It leads to faster
development and more realistic testing.All code examples in this book have been tested
on an actual device running Android 2.1, and as needed,Android 1.5 or Android 2.2.
Some functionality (for example, Bluetooth pairing or sensor changes) is difficult and
opaque when using the emulator.Therefore, it is recommended that initial testing be
done with an action Android device.

Designing Applications Well
Three elements are needed for an excellent application: a good idea, good coding, and
good design. Often, the last element is paid the least attention because most developers
work alone and are not graphic designers. Google must realize this because it has created
a set of design guidelines: icon design,App Widget design, activity and task design, and
menu design.These can be found at http://developer.android.com/guide/practices/
ui_guidelines/.

Good design cannot be stressed enough. It sets an application apart, improves user
adoption, and builds user appreciation. Some of the most successful apps on the Market

���������������

http://developer.android.com/guide/practices/ui_guidelines/
http://developer.android.com/guide/practices/ui_guidelines/

ptg

13Android Development

are a result of the collaboration between a developer and graphic designer.A significant
portion of an app’s development time should be dedicated to considering the best design
for an app.

Maintaining Forward Compatibility
New Android versions are generally additive and forward compatible at the API level. In
fact, a device can be called an Android device only if it passes compatibly tests with the
Android APIs. However, if an application makes changes to the underlying system, com-
patibility is not guaranteed.To ensure forward compatibility of an application when future
Android updates are installed on devices, follow these rules suggested by Google:

n Do not use internal or unsupported APIs.
n Do not directly manipulate settings without asking the user.A future release might

constrain settings for security reasons. For instance, it used to be possible for an app
to turn on GPS or data roaming by itself, but this is no longer allowed.

n Do not go overboard with layouts.This is rare, but complicated layouts (more than
10 deep or 30 total) can cause crashes.

n Do not make bad hardware assumptions. Not all Android devices have all possible
supported hardware. Be sure to check for the hardware needed, and if it does not
exist, handle the exception.

n Ensure device orientations do not disrupt the application or result in unpredictable
behavior. Screen orientation can be locked, as described in Chapter 2.

Note that backward compatibility is not guaranteed with Android. It is best to declare
the minimum SDK version as described in Chapter 2, so the device can load the proper
compatibility settings. Utilizing other new features on older targets is also discussed at
various places throughout the book.

Robustness
In the same vein as compatibility support, applications should be designed and tested for
robustness. Following are a few tips to help ensure robustness:

n Use the Android libraries before Java libraries.Android libraries are constructed
specifically for embedded devices and cover many of the requirements needed in an
application. For the other cases, Java libraries are included. However, for cases where
either can be used, the Android library is best.

n Take care of memory allocation. Initialize variables.Try to reuse objects rather than
reallocate.This speeds up application execution and avoids excessive use of garbage
collection. Memory allocations can be tracked using the Dalvik Debug Monitor
Server (DDMS) tool as discussed in Chapter 12,“Debugging.”

���������������

ptg

14 Chapter 1 Overview of Android

n Utilize the LogCat tool for debugging and check for warnings or errors as also dis-
cussed in Chapter 12.

n Test thoroughly, including different environments and devices if possible.

Software Development Kit
The Android SDK is comprised of the platform, tools, sample code, and documentation
needed to develop Android applications. It is built as an add-on to the Java Development
Kit and has an integrated plugin for the Eclipse Integrated Development Environment.

Installing and Upgrading
There are many places on the Internet that discuss detailed step-by-step instructions on
how to install the Android SDK. For example, all the necessary links can be found on the
Google website http://developer.android.com/sdk/.Therefore, the general procedure
outlined here serves to emphasize the most common installation steps for reference.These
steps should be done on a host computer used as the development environment.

1. Install the Java Development Kit (for example, install JDK 6.0 for use with
Android 2.1 or above; JDK 5.0 is the minimum version needed for any earlier ver-
sion of Android).

2. Install Eclipse Classic (for example, version 3.5.2). In the case of Windows, this just
needs to be unzipped in place and is ready to use.

3. Install the Android SDK starter package (for example, version r06). In the case of
Windows, this just needs to be unzipped in place and is ready to use.

4. Start Eclipse and select Help → Install New Software..., and then type https://
dl-ssl.google.com/android/eclipse/ and install the Android DDMS and Android
Development Tools.

5. In Eclipse, select Window → Preferences... (on a Mac, select Eclipse → Prefer-
ences) and select Android. Browse to the location where the SDK was unzipped
and apply.

6. In Eclipse, select Window → Android SDK and AVD Manager → Available
Packages, and then choose the necessary APIs to install (for example, Documenta-
tion for Android SDK,API 8; SDK Platform Android 2.2,API 8; Google APIs by
Google Inc.; and Android API 8).

7. From the same Android SDK and AVD Manager menu, create an Android virtual
device to run the emulator or install USB drivers to run applications on a plugged-
in phone.

8. In Eclipse, select Run → Run Configurations... and create a new run configuration
to be used with each Android application (or similar for a Debug Configuration).
Android JUnit tests can be configured here, too.

���������������

http://developer.android.com/sdk/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

ptg

15Software Development Kit

Now, the environment should be configured to easily develop any Android application
and run on the emulator or an actual Android device.To upgrade to a new version of the
SDK, it is simply a matter of selecting Help ➞ Software Updates... in Eclipse and
choosing the appropriate version.

Software Features and API Level
The Android OS periodically rolls out new features, enhancements such as improved effi-
ciency, and bug fixes.A main driver in OS improvement is the increased capability of
hardware on new devices. In fact, major releases of the OS are generally coordinated with
new hardware roll-outs (such as Eclair’s release with Droid).

Some legacy Android devices cannot support the new version requirements and are
not updated with new OS releases.This leads to a user base with a variety of different
possible experiences.The developer is left with the task of checking for device capability
or at least warning devices of required features.This can be done through a check of a
single number: the API level.

The following summarizes the different OS releases and main features from a devel-
oper’s perspective:

Cupcake: Android OS 1.5, API level 3, Released April 30, 2009

n Linux kernel 2.6.27.
n Smart virtual (soft) keyboard, support for third-party keyboards.
n AppWidget framework.
n Live Folders.
n Raw audio recording and playback.
n Interactive MIDI playback engine.
n Video recording APIs.
n Stereo Bluetooth support.
n Removed end-user root access (unless tethered to computer and using SDK).
n Speech recognition via RecognizerIntent (cloud service).
n Faster GPS location gathering (using AGPS).

Donut: Android OS 1.6, API Level 4, Released September 15, 2009

n Linux kernel 2.6.29.
n Support for multiple screen sizes.
n Gesture APIs.
n Text-to-speech engine.
n Integrate with the Quick Search Box using the SearchManager.
n Virtual Private Network (VPN) support.

���������������

ptg

16 Chapter 1 Overview of Android

Eclair: Android OS 2.0, API Level 5, Released October 26, 2009
Android OS 2.0.1, API Level 6, Released December 3, 2009
Android OS 2.1, API Level 7, Released January 12, 2010

n Sync adapter APIs to connect to any backend.
n Embed Quick Contact accessible in applications.
n Applications can control the Bluetooth connection to devices.
n HTML5 support.
n Microsoft Exchange support.
n Multitouch is accessible through the MotionEvent class.
n Animated wallpaper support.

FroYo: Android OS 2.2, API Level 8, Released May 20, 2010

n Linux kernel 2.6.32.
n Just-In-Time compilation (JIT) enabled, leading to faster code execution.
n Voice dialing using Bluetooth.
n Car and desk dock themes.
n Better definition of multitouch events.
n Cloud-to-device APIs.
n Applications can request to be installed on the SD memory card.
n Wi-Fi tether support on select devices.
n Thumbnail utility for videos and images.
n Multiple language support on keyboard input.
n Application error reporting for Market apps.

Android is starting to mature in that releases are less frequent.Although possible, the
over-the-air updates are logistically tricky and carriers prefer to avoid them. Hardware
manufacturers also appreciate a level of stability, which does not mean the first flashed
devices in stores need an immediate update. However, when a release is made, the level
of additional features for developers remains high and worthwhile to utilize.

Emulator and Android Device Debug
The emulator launches a window on the development computer that looks like an
Android phone and runs actual ARM instructions. Note the initial startup is slow, even on
high-end computers.Although there are ways to configure the emulator to try to emulate
many aspects of a real Android device such as incoming phone calls, limited data rate, and
screen orientation change, some features (such as sensors and audio/video) are not the
same.The emulator should be considered a useful way to validate basic functionality for

���������������

ptg

17Software Development Kit

Table 1.4 Android OS Emulator Controls

Key Emulated Function

Escape Back button

Home Home button

F2, PageUp Menu button

Shift-F2, PageDown Start button

F3 Call/Dial button

F4 Hangup/EndCall button

F5 Search button

F7 Power button

Ctrl-F3, Ctrl-KEYPAD_5 Camera button

Ctrl-F5, KEYPAD_PLUS Volume up button

Ctrl-F6, KEYPAD_MINUS Volume down button

KEYPAD_5 DPAD center

KEYPAD_4, KEYPAD_6 DPAD left, DPAD right

KEYPAD_8, KEYPAD_2 DPAD up, DPAD down

F8 Toggle cell network on/off

F9 Toggle code profiling (when -trace set)

Alt-ENTER Toggle fullscreen mode

Ctrl-T Toggle trackball mode

Ctrl-F11, KEYPAD_7

Ctrl-F12, KEYPAD_9

Rotate screen orientation to previous or next layout

devices not available to the user. For example, the tablet screen size can be tried without
purchasing a tablet.

Note that a target virtual device must be created before the emulator can properly
run. Eclipse provides a nice method to manage Android Virtual Devices (AVD).A handy
list of keyboard shortcuts for emulator functions is shown in Table 1.4.

In general, the first testing is best done with an Android phone.This ensures full function-
ality and real-time issues that cannot be fully recreated with the emulator. For an Android
device to be used as a developer platform, just hook it to the USB using the USB cable
that came with the phone and ensure the USB driver is detected (this is automatic with a
MAC; the drivers are included with the SDK for Windows; and see Google’s web page
for Linux).

Some settings on the Android device need to be changed to enable developer usage.
From the home screen, select MENU→Settings→Applications→Unknown sources

���������������

ptg

18 Chapter 1 Overview of Android

and MENU→Settings→Applications→Development→USB debugging to enable
installation of applications through the USB cable. More details about Android debugging
are provided in Chapter 12.

Using the Android Debug Bridge
It is often convenient to use the command line to access the Android device.This is possi-
ble when it is connected to a computer using the USB cable.The Android Debug Bridge,
which comes with the SDK, can be used to access the Android device. For example, to
log into the Android device as if it were a Linux computer, type the following:

> adb shell

Then, many UNIX commands are usable on the device. Use exit to exit the shell.A sin-
gle command can be appended to this to be executed without needing to enter and exit
the shell:

> adb shell mkdir /sdcard/app_bkup/

To copy files off the device, use pull and rename it as needed:

> adb pull /system/app/VoiceSearchWithKeyboard.apk VSwithKeyboard.apk

To copy a file onto the device, use push:

> adb push VSwithKeyboard.apk /sdcard/app_bkup/

To delete an application, for example com.dummy.game, from the device, type the
following:

> adb uninstall com.dummy.game

These commands are the most commonly used, but more are available. Some additional
commands are introduced in Chapter 12.

Signing and Publishing
For an application to be accepted on the Android Market, it needs to be signed.To do
this, a private key needs to be generated and kept in a secure place.Then, the app needs to
be packaged in release mode and signed with the private key.When an application is
upgraded, the same key needs to sign it to ensure a transparent update for the user.

Eclipse automatically does all of this. Just right-click on the project to be signed and
select Export... → Export Android Application to initiate packaging.A password can be
used to create a private key, which is saved for future applications and upgrades.Then,
continue through the menu to the creation of an APK file.This is a packaged version of
the Android project in release mode and signed with the private key. It is ready for upload
to the Android Market.

���������������

ptg

19Android Market

Android Market
After an application is designed, developed, tested, and signed, it is ready to be deployed
into the Android Market.To use Google’s Android Market, a Google Checkout account
needs to be created. It is used not only to pay for the initial developer fee of $25, but is
also used for payment back to the developer for any charged apps. Public exposure to a
developer’s creation is often exciting.Within hours of upload, the application can get
hundreds of views, downloads, ratings, and reviews from around the world.A few consid-
erations for publication of an app are provided here for reference.

End-User License Agreement
Any original content distributed in a tangible form is automatically copyrighted in most
of the world under the Berne Convention. Still, it is common practice to add a copyright
with a date of publication to the content, such as © 2010.The method for adding this
symbol to an Android app is discussed in Chapter 4.

This can be taken one step further in an End User License Agreement (EULA), which
is a contract between the developer (or company) and the customer (or end user) provid-
ing the developer a form of protection for publicly distributed software. Most EULAs
contain sections such as “Grant of License,”“Copyright,” and “No Warranties.” It is com-
mon practice to add a EULA to an application, especially if it is offered for sale.The
method for adding a EULA to an Android app is discussed in Chapter 9,“Data Storage
Methods.”

Improving App Visibility
Users find applications in three different ways. Catering to these methods helps to
increase visibility for an application.

The first way users see an app is by choosing to list the “Just in” apps. Choose a good
descriptive name for the application and place it in an appropriate category, such as
Games or Communication. Keep the description simple and to the point to get more
views.The Games category is over laden with apps, so there are sub-categories. If the app
is fun but has no score or goal, consider the Entertainment category. Even so, with over
10,000 applications uploaded to the Android Market each month, an uploaded applica-
tion is pushed off the “Just in” list within a day or two.

The second way users see an app is by keyword search. Determine the essential key-
words users might use and include those in either the title or description of the app.
Some users might speak a different language, so including appropriate international key-
words can help.

The third way users see an app is by choosing the “Top” apps.This is a combination of
the highest rating and the most downloads.To get in this category takes time and effort
with possible updates to fix bugs.This points to the last consideration for app visibility:

���������������

ptg

20 Chapter 1 Overview of Android

robustness. Ensure the app does not contain major bugs, does not waste excessive battery,
and has a foolproof way to exit the application. Nothing turns off a potential customer
more than seeing reviews that say,“This app uses all of my battery,” or,“I can’t uninstall
this app.”

One side note to mention:Almost all interactions between the developer and users are
done through the Android Market. Providing developer contact information or a sup-
porting website is often superfluous, as people browsing the mobile market rarely use it.

Differentiating an App
Sometimes, the developer creates an application only to find a similar variant already in
the Android Market.This should be treated as an opportunity rather than a discourage-
ment. Differentiating the app simply through a better design, interface, or execution can
quickly win over a user base. Basically, originality is nice, but it is not required.That being
said, one must be careful to avoid using copyrighted material.

Charging for an App
Every time a new application or its update is uploaded to the Android Market, the devel-
oper must choose whether to provide it for free or charge for it. Following are the main
options:

n Provide the app for free. Everyone who can access the Android market can see and
install the app.

n Provide a free app, but include advertisements. In some cases, the developer negoti-
ates sponsorship for an app. More often, the developer works with a third-party
aggregator. Payouts are provided for clicked ads and less often for impressions (ad
views). Figure 1.1 shows an example banner ad from AdMob. Such ads require the
application have permission to access the Internet and the location of the device.
Consider using coarse location instead of fine location to avoid deterring some
potential customers from installing the app.

n Provide the app for a charge. Google handles its charges, but takes 30 percent of the
proceeds. Countries that are not set up for charges through Google Checkout can-
not see or cannot install an app for charge. For these reasons, some developers turn
to third-party app stores for distribution.

n Post a free, limited version, but charge for a full version.This gives users the oppor-
tunity to try the app and if they like it, they will have less resistance to purchasing
the full version. For some apps, this is a natural model (such as a game with ten free
levels), but not all apps can be partitioned this way.

n Sell virtual goods inside the app.This is an important way Facebook apps work, and
it is catching on in the mobile world.

���������������

ptg

21Android Market

Figure 1.1 Example mobile banner ad
from AdMob.

Free applications tend to get a lot of views. Even the most obscure and odd applications
seem to be downloaded and viewed by at least 1,000 people in the first month the
application is on the Market.There are some developers who explicitly say,“This app is
absolutely useless,” and yet, they get over 10,000 downloads and a four-star rating. Some-
what relevant free applications can get as many as 50,000 downloads, and extremely useful
free applications have over 100,000 downloads. For most developers, such exposure is
quite impressive.

Mobile advertisement is still in its infancy and usually does not entice enough users to
click the ad. For now, monetizing apps is best done by charging on the Market.As long as
the app is useful for some people, has a clear description, and has a good selection of posi-
tive reviews, users purchase it. If an app is successful, it might make sense to raise the price
of the app.

Managing Reviews and Updates
Most successful apps from independent developers come through a process of releasing a
version and adapting to the user feedback. Users like to see a developer who is responsive.
This leads to more people downloading an app, and as the number of downloads
increases, it adds validity to the app.

���������������

ptg

22 Chapter 1 Overview of Android

In general, it seems about 1 in 200 people rate an application, and a small subset of
those actually leaves a review. If someone takes the time to type a review, it is usually
worth listening to it, especially if the review comments are constructive, such as “Doesn’t
work on the HTC Hero,” or “Nice app, just wish it did so on and so forth.”

Updates that respond to user comments are seen in a positive light by new potential
customers. In any case, the reason for the update should be clearly highlighted. Most users
get 10 to 20 notifications a day of applications that have updates. If they do not see a
good reason to upgrade, they might not.

Alternatives to the Android Market
Other independent Android app stores exist.They might not have as convenient access to
Android devices as the Google market does, but they provide other benefits for develop-
ers such as better app visibility, more places to charge for apps, and taking no portion of
the proceeds from an app.Also, some Android manufacturers create customized app stores
accessible from their devices. For example, getting app visibility onto Motorola Android
phones in the China and Latin American markets can be done through the Motorola app
market at http://developer.motorola.com/shop4apps.

���������������

http://developer.motorola.com/shop4apps

ptg

Table 2.1 The Four Possible Components of an Android Application

Functionality Java Base Class Examples

Focused thing a user can do Activity Edit a note, play a game

Background process Service Play music, update weather icon

Receive messages BroadcastReceiver Trigger alarm upon event

Store and retrieve data ContentProvider Open a phone contact

2
Application Basics:

Activities and Intents

Each Android application is represented by a single Android project.An overview of the
project structure, including a brief introduction to the basic building blocks of an applica-
tion, is provided as useful background information for the recipes in this book.Then the
focus of this chapter turns to activities and the intents that launch them.

Android Application Overview
An Android application consists of various functionalities. Some examples are editing a
note, playing a music file, ringing an alarm, or opening a phone contact.These functional-
ities can be classified into four different Android components, shown in Table 2.1, each of
which is specified by a Java base class.

Every application is made up of one or more of these components.They are instantiated
by the Android operating system (OS) as needed. Other applications are allowed to use
them, too, within the specified permissions.

As multiple functionalities play out in the OS (some not even related to the intended
application, such as an incoming phone call), each component goes through a lifecycle of
getting created, focused, defocused, and destroyed.The default behavior can be overridden
for a graceful operation, such as saving variables or restoring user interface (UI) elements.

���������������

ptg

24 Chapter 2 Application Basics: Activities and Intents

With the exception of ContentProvider, each component is activated by an asyn-
chronous message called an Intent.The Intent can contain a Bundle of supporting
information describing the component.This provides a method of passing information
between components.

The rest of this chapter demonstrates the previous concepts using the most common
component: the Activity. Because activities almost always specify an interaction with a
user, a window is automatically created with each activity.Therefore, a short introduction
to the UI is also included. Of the other components, Service and BroadcastReceiver
are covered in Chapter 3,“Threads, Services, Receivers, and Alerts,” and
ContentProvider is covered in Chapter 9,“Data Storage Methods.”

Recipe: Creating a Project and an Activity
A straightforward way to create an Android project or any of its components is to use the
Eclipse Integrated Development Environment (IDE).This method ensures proper setup
of the supporting files.The steps to create a new Android project are

1. In Eclipse, choose File → New → Android Project.This displays a New Android
Project creation screen.

2. Fill in the Project name, such as SimpleActivityExample.

3. Select a Build Target from the choices provided.These choices are based on the
Software Development Kit (SDK) versions that are installed on the development
computer.

4. Fill in the Application name, such as Example of Basic Activity.

5. Fill in the Package name, such as com.cookbook.simple_activity.

6. To create the main activity in the same step, be sure Create Activity is checked and
fill in an Activity name, such as SimpleActivity.

All activities extend the abstract class Activity or one of its subclasses.The entry point to
each activity is the onCreate() method. It is almost always overridden to initialize the
activity, such as setting up the UI, creating button listeners, initializing parameters, and
starting threads.

If the main activity is not created with the project or another activity needs to be
added, the steps to create an activity are

1. Create a class to extend Activity. (In Eclipse, this can be done by right-clicking
on the project, choosing New → Class, and then specifying android.app.
Activity as the super class.)

2. Override the onCreate() function. (In Eclipse, this can be done by right-clicking
on the class file, choosing Source → Override/Implement Methods..., and then
checking the onCreate() method.)

���������������

ptg

25Android Application Overview

3. As with most overridden functions, it must invoke the super class method, too; oth-
erwise, an exception may be thrown at run-time. Here, the super.onCreate()
should be called first to properly initialize the activity, as shown in Listing 2.1.

Listing 2.1 src/com/cookbook/simple_activity/SimpleActivity.java

package com.cookbook.simple_activity;

import android.app.Activity;

import android.os.Bundle;

public class SimpleActivity extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

4. If a UI is used, specify the layout in an XML file in the res/layout/ directory. Here
it is called main.xml, as shown in Listing 2.2.

5. Set the layout of the activity using the setContentView() function and passing it
the resource ID for the XML layout file. Here, it is R.layout.main, as shown in
Listing 2.1.

Listing 2.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

</LinearLayout>

6. Declare the properties of the activity in the AndroidManifest XML file.This is cov-
ered in more detail in Listing 2.5.

���������������

ptg

26 Chapter 2 Application Basics: Activities and Intents

Figure 2.1 Android project directory structure,
as seen in the Eclipse IDE.

Note that the string resources are defined in the strings.xml file in the res/values/
folder, as shown in Listing 2.3.This provides a central place for all strings in case text
needs to be changed or reused.

Listing 2.3 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello World, SimpleActivity!</string>

<string name="app_name">SimpleActivity</string>

</resources>

Now a more detailed look at the directory structure of this project and the additional
auto-generated content is explored.

Directory Structure of Project and Autogenerated Content
Figure 2.1 shows an example project structure, as seen from the Eclipse Package Explorer.

With the exception of the Android 2.0 library, the project structure is a mix of user-
generated and auto-generated files.

���������������

ptg

27Android Application Overview

User-generated files include

n src/ contains the Java packages the developer writes or imports for the application.
Each package can have multiple .java files representing different classes.

n res/layout/ contains the XML files that specify the layout of each screen.
n res/values/ contains the XML files used as references by other files.
n res/drawable-hdpi/, res/drawable-mdpi/, and res/drawable-ldpi/ are directories

that contain pictures the application uses.They have high, medium, and low dots-
per-inch resolution, respectively.

n assets/ contains additional nonmedia files the application uses.
n AndroidManifest.xml specifies the project to the Android OS.

Autogenerated files include

n gen/ contains autogenerated code, including the generated class R.java.

n default.properties contains project settings.Although autogenerated, it should be
kept under revision control.

An application’s resources include XML files describing the layout, XML files describing
values such as strings, labels of UI elements, and additional supporting files such as
pictures and sounds.At compile time, references to the resources are gathered into an
autogenerated wrapper class called R.java. The Android Asset Packaging Tool (aapt)
autogenerates this file. Listing 2.4 shows what it looks like for the “Creating a Project
and an Activity” recipe.

Listing 2.4 gen/com/cookbook/simple_activity/R.java

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the

* aapt tool from the resource data it found. It

* should not be modified by hand.

*/

package com.cookbook.simple_activity;

public final class R {

public static final class attr {

}

public static final class drawable {

public static final int icon=0x7f020000;

}

public static final class layout {

public static final int main=0x7f030000;

���������������

ptg

28 Chapter 2 Application Basics: Activities and Intents

Table 2.2 How Different Resources Are Referenced from Within Java and XML Files

Resource Reference in Java Reference in XML

res/layout/main.xml R.layout.main @layout/main

res/drawable-hdpi/icon.png R.drawable.icon @drawable/icon

@+id/home_button R.id.home_button @id/home_button

<string name="hello"> R.string.hello @string/hello

}

public static final class string {

public static final int app_name=0x7f040001;

public static final int hello=0x7f040000;

}

}

Here, each resource is mapped to a unique integer value. In this way, the R.java class
provides a way to reference external resources within Java code. For example, to reference
the main.xml layout file in Java, the R.layout.main integer is used.To reference the
same within XML files, the "@layout/main" string is used.

Referencing resources from within Java or XML files is demonstrated in Table 2.2.
Note that to define a new button ID called home_button, the plus sign is added to the
identifying string: @+id/home_button. More complete details on resources are given in
Chapter 4,“User Interface Layout,” but this suffices to cover the recipes in this chapter.

Android Package and Manifest File
The Android project, sometimes also referred to as an Android package, is a collection of
Java packages. Different Android packages can have the same Java package names, whereas
the Android package name must be unique across all applications installed on the
Android device.

For the OS to access them, each application must declare its available components in a
single AndroidManifest XML file. In addition, this file contains the required permissions
and behavior for the application to run. Listing 2.5 shows what it looks like for the “Cre-
ating a Project and an Activity” recipe.

Listing 2.5 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.simple_activity"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

���������������

ptg

29Android Application Overview

android:label="@string/app_name">

<activity android:name=".SimpleActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

The first line is required and standard across all XML files in Android to specify the
encoding.The manifest element defines the Android package name and version.The
versionCode is an integer that can be evaluated in programs to determine the upgrade or
downgrade relationship.The versionName represents a human readable format that can
have major and minor revisions declared.

The application element defines the icon and label the user sees from the Android
device menu.The label is a string and should be short enough to display under the icon
on a user’s device. Generally the name can be up to two words of ten characters each
without being cut off.

The activity element defines the main activity that is launched when the application
is started and the name shown in the title bar when the activity is active. Here, the Java
package name needs to be specified, which is com.cookbook.simple_activity.
SimpleActivity in this case. Because the Java package name is usually the same as
the Android package name, the shorthand notation is often used: .SimpleActivity.
However, it is best to remember that the Android package and Java package are
distinct.

The intent-filter element informs the Android system of the capabilities of the
component. It can have multiple action, category, or data elements for this purpose.This is
seen as it is utilized in different recipes.

The uses-sdk element defines the application programming interface (API) level
required to run this application. In general, the API level is specified as follows:

<uses-sdk android:minSdkVersion="integer"

android:targetSdkVersion="integer"

android:maxSdkVersion="integer" />

Because the Android OS is constructed to be forward compatible, the maxSdkVersion is
highly discouraged and not even adhered on devices with Android 2.0.1 or later. Specify-
ing the targetSdkVersion is not required, but allows devices of the same SDK version to
disable compatibility settings that might speed up operation.The minSdkVersion should
always be specified to ensure the application does not crash when run on a platform that

���������������

ptg

30 Chapter 2 Application Basics: Activities and Intents

does not support the required features in the application.Always choose the lowest API
level possible when specifying this.

The AndroidManifest can also contain permission settings needed to run the applica-
tion. More complete details about the options are provided in later chapters, but this suf-
fices to cover the recipes in this chapter.

Renaming Parts of an Application
Sometimes a portion of an Android project needs to be renamed. Maybe a file was copied
manually into the project, such as from this book. Maybe the application name has
changed during development, and it needs to be reflected in the filesystem tree.Auto-
matic tools help with this and ensure cross-references are automatically updated. For
example, in the Eclipse IDE, the different ways to rename portions of an application are

n Rename the Android project, as follows:

1. Right-click the project and Refactor → Move to a new directory in the
filesystem.

2. Right-click the project and Refactor → Rename the project.
n Rename an Android package, as follows:

1. Right-click the package and Refactor → Rename the package.

2. Edit the AndroidManifest.xml to ensure the new package name is reflected.
n Rename an Android class (such as the major components Activity, Service,
BroadcastReceiver, ContentProvider), as follows:

1. Right-click the .java file and Refactor → Rename the class.

2. Edit the AndroidManifest.xml to ensure the android:name has the new
component name.

Note that renaming other files, such as XML files, usually requires manually changing the
corresponding references in the Java code.

Activity Lifecycle
Each activity in an application goes through its own lifecycle. Once and only once when
an activity is created, is the onCreate() function executed. If the activity exits, the
onDestroy() function is executed. In between, various events can lead to the activity
being in multiple different states, as illustrated in Figure 2.2.The next recipe provides an
example of each of these functions.

���������������

ptg

31Activity Lifecycle

Activity is
running

Activity is
shut down

onResume()

onDestroy()

The activity is no
longer visible

onStart() onRestart()

onCreate()

Activity
starts

onPause()

The activity comes
to the foreground

Process is
killed

User navigates
back to the activity

Other applications
need memory

onStop()

The activity comes
to the foreground

Another activity comes
in front of the activity

Figure 2.2 Activity Lifecycle from http://developer.android.com/.

Recipe: Utilizing Other Lifecycle Functions
The following recipe provides a simple way to see the activity lifecycle in action. For
illustration purposes, each overridden function is explicit and a Toast command is added
to show on screen when the function is entered (more detail on the Toast widget is

���������������

http://developer.android.com/

ptg

32 Chapter 2 Application Basics: Activities and Intents

provided in Chapter 3).The activity is shown in Listing 2.6. Run it on an Android device
and try various cases. In particular, note the following:

n Changing the screen orientation destroys and recreates the activity from scratch.
n Pressing the Home button pauses the activity, but does not destroy it.
n Pressing the Application icon might start a new instance of the activity, even if the

old one was not destroyed.
n Letting the screen sleep pauses the activity and the screen awakening resumes it.

(This is similar to taking an incoming phone call.)

Listing 2.6 src/com/cookbook/activity_lifecycle/ActivityLifecycle.java

package com.cookbook.activity_lifecycle;

import android.app.Activity;

import android.os.Bundle;

import android.widget.Toast;

public class ActivityLifecycle extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Toast.makeText(this, "onCreate", Toast.LENGTH_SHORT).show();

}

@Override

protected void onStart() {

super.onStart();

Toast.makeText(this, "onStart", Toast.LENGTH_SHORT).show();

}

@Override

protected void onResume() {

super.onResume();

Toast.makeText(this, "onResume", Toast.LENGTH_SHORT).show();

}

@Override

protected void onRestart() {

super.onRestart();

Toast.makeText(this, "onRestart", Toast.LENGTH_SHORT).show();

}

���������������

ptg

33Activity Lifecycle

@Override

protected void onPause() {

Toast.makeText(this, "onPause", Toast.LENGTH_SHORT).show();

super.onPause();

}

@Override

protected void onStop() {

Toast.makeText(this, "onStop", Toast.LENGTH_SHORT).show();

super.onStop();

}

@Override

protected void onDestroy() {

Toast.makeText(this, "onDestroy", Toast.LENGTH_SHORT).show();

super.onDestroy();

}

}

As seen here, various common actions by the user can cause the activity to be paused,
killed, or even launch multiple versions of the application. Before moving on, it is worth
mentioning two additional simple recipes that can control this behavior.

Recipe: Forcing Single Task Mode
As an application is navigated away from and launched again, it can lead to multiple
instances of the activity on the device. Eventually the redundant instance of the activity is
killed to free up memory, but in the meantime, it can lead to odd situations.To avoid
these, the developer can control this behavior for each activity in the AndroidManifest.

To ensure only one instance of the activity runs on the device, specify the following in
an activity element that has the MAIN and LAUNCHER intent filters:

android:launchMode="singleInstance"

This keeps a single instance of each activity in a task at all times. In addition, any child
activity is launched as its own task.To constrain even further to only have a single task for
all activities of an application, use the following:

android:launchMode="singleTask"

This allows the activities to share information easily as the same task.
In addition, it might be desirable to retain the task state, regardless of how a user navi-

gates to the activity. For example, if a user leaves the application and relaunches it later,
the default behavior often resets the task to its initial state.To ensure the user always

���������������

ptg

34 Chapter 2 Application Basics: Activities and Intents

returns to the task in its last state, specify the following in the activity element of the
root activity of a task:

android:alwaysRetainTaskState="true"

Recipe: Forcing Screen Orientation
Any Android device with an accelerometer can determine which way is down.As the
device is tilted from portrait to landscape mode, the default action is to rotate the applica-
tion view accordingly. However, as seen from the “Other Lifecycle Functions” recipe, the
activity is destroyed and restarted on screen orientation changes.When this happens, the
current state of the activity might be lost, disrupting the user experience.

One option to handle screen orientation changes gracefully is to save state informa-
tion before the change and restore information after the change.A simpler method that
might be useful is to force the screen orientation to stay constant. For each activity in
the AndroidManifest, the screenOrientation can be specified. For example, to specify
that the activity always stays in portrait mode, the following can be added to the
activity element:

android:screenOrientation="portrait"

Similarly, landscape mode can be specified using the following:

android:screenOrientation="landscape"

However, the previous still causes the activity to be destroyed and restarted when a hard
keyboard is slid out.Therefore, a third method is possible:Tell the Android system that the
application should handle orientation and keyboard slide-out events.This is done by
adding the following attribute to the activity element:

android:configChanges="orientation|keyboardHidden"

This can be used alone or in combination with the screenOrientation attribute to
specify the required behavior to the application.

Recipe: Saving and Restoring Activity Information
Whenever an activity is about to be killed, the onSaveInstanceState() function is
called. Override this to save relevant information that should be retained.When the activ-
ity is then recreated, the onRestoreInstanceState() is called. Override this function to
retrieve the saved information.This allows for a seamless user experience when an appli-
cation undergoes lifecycle changes. Note that most UI states do not need to be managed
because they are, by default, taken care of by the system.

This function is distinct from onPause(). For example, if another component is
launched in front of the activity, the onPause() function is called. Later, if the activity is
still paused when the OS needs to reclaim resources, it calls onSaveInstanceState()
before killing the activity.

���������������

ptg

35Multiple Activities

An example of saving and restoring the instance state consisting of a string and a float
array is shown in Listing 2.7.

Listing 2.7 Example of onSaveInstanceState() and onRestoreInstanceState()

float[] localFloatArray = {3.14f, 2.718f, 0.577f};

String localUserName = "Euler";

@Override

protected void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

//save the relevant information

outState.putString("name", localUserName);

outState.putFloatArray("array", localFloatArray);

}

@Override

public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);

//restore the relevant information

localUserName = savedInstanceState.getString("name");

localFloatArray = savedInstanceState.getFloatArray("array");

}

Note that onCreate() also contains the Bundle savedInstanceState. In the case
of an activity reinitializing after previously being shut down, the bundle saved in
onSaveInstanceState() is also passed to onCreate(). In all cases, the saved bundle is
passed to the onRestoreInstanceState() function, so it is more natural to utilize this to
restore states.

Multiple Activities
Even the simplest applications have more than one functionality. Hence, there is often a
need to deal with multiple activities. For example, a game can have two activities: a high
scores screen and a game screen.A notepad can have three activities: view a list of notes,
read a selected note, and edit a selected or new note.

The main activity, as defined in the AndroidManifest XML file, is started when the
application is started.This activity can launch another activity, usually after a trigger event.
This causes the main activity to pause while the secondary activity is active.When the
secondary activity ends, the main activity is brought to the foreground and resumed.

To activate a particular component of the application, an intent naming the compo-
nent explicitly is used. If instead the requirements of an application can be specified by

���������������

ptg

36 Chapter 2 Application Basics: Activities and Intents

intent filters, an implicit intent can be used.The system then determines the best compo-
nent or components to use, even if it is in a separate application or native to the OS. Note
that unlike other activities, implicit intents that reside in other applications do not need to
be declared in the current application’s AndroidManifest file.

Android utilizes implicit intents as often as possible, providing a powerful framework
for modular functionality.When a new component is developed that meets the required
implicit intent filter, it can be used in place of an Android internal intent. For example, say
a new application for displaying phone contacts is loaded on an Android device.When a
user selects a contact, the Android system finds all available activities with the proper
intent filter for viewing contacts and asks the user to decide which one should be used.

Recipe: Using Buttons and TextView
To fully demonstrate multiple activities, it is useful to use a trigger event.A button press is
introduced here for that purpose.The steps to adding a button to a given layout and
assigning an action to a button press are

1. Put a button in the designated layout XML file:
<Button android:id="@+id/trigger"

android:layout_width="100dip" android:layout_height="100dip"

android:text="Press this button" />

2. Declare a button that points to the button ID in the layout file:
Button startButton = (Button) findViewById(R.id.trigger);

3. Specify a listener for when the button is clicked:
//setup button listener

startButton.setOnClickListener(new View.OnClickListener() {

//insert onClick here

});

4. Override the onClick function for the listener to do the required action:
public void onClick(View view) {

// do something here

}

To show the result of an action, it is useful to change the text on the screen.The steps for
defining a text field and changing it programmatically are

1. Put a text field in the designated layout XML file with an ID. It can also be initial-
ized to some value (here, it can be initialized to the string named “hello” in the
strings.xml file):
<TextView android:id="@+id/hello_text"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

���������������

ptg

37Multiple Activities

2. Declare a TextView that points to the TextView ID in the layout file:
private TextView tv = (TextView) findViewById(R.id.hello_text);

3. If the text needs to be changed, use the setText function:
tv.setText("new text string");

These two UI techniques are used in the subsequent recipes in this chapter.A more
complete demonstration of UI techniques is covered in Chapter 4.

Recipe: Launching Another Activity from an Event
In this recipe, MenuScreen is the main activity as shown in Listing 2.8. It launches the
PlayGame activity. Here the trigger event is implemented as a button click using the
Button widget.

When a user clicks the button, the startGame() function runs; it launches the
PlayGame activity.When a user clicks the button in the PlayGame activity, it calls
finish() to return control to the calling activity.The steps for launching an activity are

1. Declare an Intent that points to the activity to be launched.

2. Call startActivity on this intent.

3. Declare the additional activity in the AndroidManifest.

Listing 2.8 src/com/cookbook/launch_activity/MenuScreen.java

package com.cookbook.launch_activity;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class MenuScreen extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

//setup button listener

Button startButton = (Button) findViewById(R.id.play_game);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

startGame();

}

});

���������������

ptg

38 Chapter 2 Application Basics: Activities and Intents

}

private void startGame() {

Intent launchGame = new Intent(this, PlayGame.class);

startActivity(launchGame);

}

}

Provide Current Context in an Anonymous Inner Class
Note the additional consideration needed for launching an activity with a Button press, as
shown in Listing 2.8. The intent needs a context. However, using the this shortcut in the
onClick function is not properly resolved. Different ways to provide current context in an
anonymous inner class are

n Use Context.this instead of this.

n Use getApplicationContext() instead of this.

n Explicitly use the class name MenuScreen.this.

Call a function that is declared at the right context level. This is what is used in Listing 2.8:
startGame().

Each of these methods can usually be interchanged. Utilize the one that works best for the
clarity of the situation.

The PlayGame activity shown in Listing 2.9 is simply a button with a onClick listener
that calls finish() to return control to the main activity. More functionality can be
added as needed to this activity, and multiple branches of the code can each lead to their
own finish() calls.

Listing 2.9 src/com/cookbook/launch_activity/PlayGame.java

package com.cookbook.launch_activity;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class PlayGame extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.game);

//setup button listener

Button startButton = (Button) findViewById(R.id.end_game);

startButton.setOnClickListener(new View.OnClickListener() {

���������������

ptg

39Multiple Activities

public void onClick(View view) {

finish();

}

});

}

}

The button must be added to the main layout as shown in Listing 2.10, with the ID
play_game to match what was declared in Listing 2.8. Here, the size of the button is also
declared in device-independent pixels (dip), as discussed more in Chapter 4.

Listing 2.10 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<Button android:id="@+id/play_game"

android:layout_width="100dip" android:layout_height="100dip"

android:text="@string/play_game"

/>

</LinearLayout>

The PlayGame activity references its own button ID end_game in the R.layout.game
layout resource that corresponds to the layout XML file game.xml, as shown in
Listing 2.11.

Listing 2.11 res/layout/game.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button android:id="@+id/end_game"

android:layout_width="100dip" android:layout_height="100dip"

android:text="@string/end_game" android:layout_centerInParent="true"

/>

</LinearLayout>

���������������

ptg

40 Chapter 2 Application Basics: Activities and Intents

Although the text can be written explicitly in each case, it is good coding practice to
define variables for each string. In this recipe, the two string values play_game and
end_game need to be declared in the string XML resource file, as shown in Listing 2.12.

Listing 2.12 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">This is the Main Menu</string>

<string name="app_name">LaunchActivity</string>

<string name="play_game">Play game?</string>

<string name="end_game">Done?</string>

</resources>

Finally, the AndroidManifest XML file needs to register a default action to the new class
PlayGame, as shown in Listing 2.13.

Listing 2.13 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1"

android:versionName="1.0" package="com.cookbook.launch_activity">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".MenuScreen"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".PlayGame"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

���������������

ptg

41Multiple Activities

Recipe: Launching an Activity for a Result Using Speech to Text
In this recipe, launching an activity for a result is demonstrated. It also demonstrates how to
utilize speech to text functionality from Google’s RecognizerIntent and print the result
to the screen. Here, the trigger event is a button press. It launches the RecognizerIntent
activity, which does speech recognition on sound from the microphone and converts it
into text.When finished, the text is passed back to the calling activity.

Upon return, the onActivityResult() function is first called with the returned data,
and then the onResume() function is called to continue the activity as normal.The calling
activity can have a problem and not return properly.Therefore, the resultCode should
always be checked to ensure RESULT_OK before continuing to parse the returned data.

Note that in general any launched activity that returns data causes the same
onActivityResult() function to be called.Therefore, a request code is customarily used
to distinguish which activity is returning.When the launched activity finishes, it returns
control to the calling activity and calls onActivityResult() with the same request code.

The steps for launching an activity for result are

1. Call startActivityForResult() with an intent, defining the launched activity and an
identifying requestCode.

2. Override the onActivityResult() function to check on the status of the result, check
for the expected requestCode, and parse the returned data.

The steps for using RecognizerIntent are

1. Declare an intent with action ACTION_RECOGNIZE_SPEECH.

2. Add any extras to the intent; at least EXTRA_LANGUAGE_MODEL is re-
quired.This can be set as either LANGUAGE_MODEL_FREE_FORM or
LANGUAGE_MODEL_WEB_SEARCH.

3. The returned data bundle contains a list of strings with possible matches to the
original text. Use data.getStringArrayListExtra to retrieve this data.This
should be cast as an ArrayList for use later.

A TextView is used to display the returned text to the screen.The main activity is shown
in Listing 2.14.

The additional supporting files needed are the main.xml and strings.xml, which need
to define a button and the TextView to hold the result.This is accomplished using Listing
2.10 and 2.12 in the “Launching Another Activity from an Event” recipe.The Android-
Manifest needs to declare only the main activity, which is the same as the basic “Creating
an Activity” recipe.The RecognizerIntent activity is native to the Android system and
does not need to be declared explicitly to be utilized.

���������������

ptg

42 Chapter 2 Application Basics: Activities and Intents

Listing 2.14 src/com/cookbook/launch_for_result/RecognizerIntent Example.java

package com.cookbook.launch_for_result;

import java.util.ArrayList;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.speech.RecognizerIntent;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class RecognizerIntentExample extends Activity {

private static final int RECOGNIZER_EXAMPLE = 1001;

private TextView tv;

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.text_result);

//setup button listener

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

// RecognizerIntent prompts for speech and returns text

Intent intent =

new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,

RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

intent.putExtra(RecognizerIntent.EXTRA_PROMPT,

"Say a word or phrase\nand it will show as text");

startActivityForResult(intent, RECOGNIZER_EXAMPLE);

}

});

}

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

//use a switch statement for more than one request code check

if (requestCode==RECOGNIZER_EXAMPLE && resultCode==RESULT_OK) {

���������������

ptg

43Multiple Activities

// returned data is a list of matches to the speech input

ArrayList<String> result =

data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);

//display on screen

tv.setText(result.toString());

}

super.onActivityResult(requestCode, resultCode, data);

}

}

Recipe: Implementing a List of Choices
A common situation in applications is to provide a user with a list of choices that can be
selected by clicking them.This can be easily implemented utilizing ListActivity, a sub-
class of Activity, and triggering an event based on what choice was made.

The steps for creating a list of choices are

1. Create a class that extends the ListActivity class instead of the Activity class:
public class ActivityExample extends ListActivity {

//content here

}

2. Create a String array of labels for each choice:
static final String[] ACTIVITY_CHOICES = new String[] {

"Action 1",

"Action 2",

"Action 3"

};

3. Call setListAdapter() with the ArrayAdapter specifying this list and a layout:
setListAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, ACTIVITY_CHOICES));

getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);

getListView().setTextFilterEnabled(true);

4. Launch an OnItemClickListener to determine which choice was selected and act
accordingly:
getListView().setOnItemClickListener(new OnItemClickListener()

{

@Override

public void onItemClick(AdapterView<?> arg0, View arg1,

int arg2, long arg3) {

switch(arg2) {//extend switch to as many as needed

case 0:

//code for action 1

���������������

ptg

44 Chapter 2 Application Basics: Activities and Intents

break;

case 1:

//code for action 2

break;

case 2:

//code for action 3

break;

default: break;

}

}

});

This technique is utilized in the next recipe.

Recipe: Using Implicit Intents for Creating an Activity
Implicit intents do not specify an exact component to use. Instead, they specify the func-
tionality required through a filter, and the Android system must determine the best com-
ponent to utilize.An intent filter can be either an action, data, or a category.

The most commonly used intent filter is an action, and the most common action is
ACTION_VIEW.This mode requires a uniform resource identifier (URI) to be specified and
then displays the data to the user. It does the most reasonable action for the given URI.
For example, the implicit intents in case 0, 1, and 2 in the following example have the
same syntax but produce different results.

The steps for launching an activity using an implicit intent are

1. Declare the intent with the appropriate filter specified (ACTION_VIEW,
ACTION_WEB_SEARCH, and so on).

2. Attach any extra information to the intent required to run the activity.

3. Pass this intent to startActivity().

This is shown for multiple intents in Listing 2.15.

Listing 2.15 src/com/cookbook/implicit_intents/ListActivityExample.java

package com.cookbook.implicit_intents;

import android.app.ListActivity;

import android.app.SearchManager;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

���������������

ptg

45Multiple Activities

import android.widget.ListView;

import android.widget.AdapterView.OnItemClickListener;

public class ListActivityExample extends ListActivity {

static final String[] ACTIVITY_CHOICES = new String[] {

"Open Website Example",

"Open Contacts",

"Open Phone Dialer Example",

"Search Google Example",

"Start Voice Command"

};

final String searchTerms = "superman";

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setListAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, ACTIVITY_CHOICES));

getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);

getListView().setTextFilterEnabled(true);

getListView().setOnItemClickListener(new OnItemClickListener()

{

@Override

public void onItemClick(AdapterView<?> arg0, View arg1,

int arg2, long arg3) {

switch(arg2) {

case 0: //opens web browser and navigates to given website

startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse("http://www.android.com/")));

break;

case 1: //opens contacts application to browse contacts

startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse("content://contacts/people/")));

break;

case 2: //opens phone dialer and fills in the given number

startActivity(new Intent(Intent.ACTION_VIEW,

Uri.parse("tel:12125551212")));

break;

case 3: //search Google for the string

Intent intent= new Intent(Intent.ACTION_WEB_SEARCH);

intent.putExtra(SearchManager.QUERY, searchTerms);

startActivity(intent);

break;

case 4: //starts the voice command

startActivity(new

Intent(Intent.ACTION_VOICE_COMMAND));

���������������

ptg

46 Chapter 2 Application Basics: Activities and Intents

break;

default: break;

}

}

});

}

}

Recipe: Passing Primitive Data Types Between Activities
Sometimes data needs to be passed to a launched activity. Sometimes a launched activity
creates data that needs to be passed back to the calling activity. For example, a final score
of a game needs to be returned to a high-scores screen.The different ways to pass infor-
mation between activities are

n Declare the relevant variable in the calling activity (for example, public int
finalScore) and set it in the launched activity (for example,
CallingActivity.finalScore=score).

n Attach extras onto Bundles (demonstrated here).
n Use Preferences to store data to be retrieved later (covered in Chapter 5,“User

Interface Events”).
n Use the SQLite database to store data to be retrieved later (covered in Chapter 9).

A Bundle is a mapping from String values to various parcelable types. It can be created by
adding extras to an intent.The following example shows data being passed from the main
activity to the launched activity, where it is modified and passed back.

The variables (in this case, an integer and a String) are declared in the StartScreen
activity.When the intent is created to call the PlayGame class, these variables are attached
to the intent using the putExtra method.When the result is returned from the called
activity, the variables can be read using the getExtras method.These calls are shown in
Listing 2.16.

Listing 2.16 src/com/cookbook/passing_data_activities/StartScreen.java

package com.cookbook.passing_data_activities;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class StartScreen extends Activity {

private static final int PLAY_GAME = 1010;

���������������

ptg

47Multiple Activities

private TextView tv;

private int meaningOfLife = 42;

private String userName = "Douglas Adams";

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.startscreen_text);

//display initial values

tv.setText(userName + ":" + meaningOfLife);

//setup button listener

Button startButton = (Button) findViewById(R.id.play_game);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

startGame();

}

});

}

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

if (requestCode == PLAY_GAME && resultCode == RESULT_OK) {

meaningOfLife = data.getExtras().getInt("returnInt");

userName = data.getExtras().getString("userName");

//show it has changed

tv.setText(userName + ":" + meaningOfLife);

}

super.onActivityResult(requestCode, resultCode, data);

}

private void startGame() {

Intent launchGame = new Intent(this, PlayGame.class);

//passing information to launched activity

launchGame.putExtra("meaningOfLife", meaningOfLife);

launchGame.putExtra("userName", userName);

startActivityForResult(launchGame, PLAY_GAME);

}

}

���������������

ptg

48 Chapter 2 Application Basics: Activities and Intents

The variables passed into the PlayGame activity can be read using the getIntExtra and
getStringExtra methods.When the activity finishes and prepares an intent to return, the
putExtra method can be used to return data back to the calling activity.These calls are
shown in Listing 2.17.

Listing 2.17 src/com/cookbook/passing_data_activities/PlayGame.java

package com.cookbook.passing_data_activities;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class PlayGame extends Activity {

private TextView tv2;

int answer;

String author;

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.game);

tv2 = (TextView) findViewById(R.id.game_text);

//reading information passed to this activity

//Get the intent that started this activity

Intent i = getIntent();

//returns -1 if not initialized by calling activity

answer = i.getIntExtra("meaningOfLife", -1);

//returns [] if not initialized by calling activity

author = i.getStringExtra("userName");

tv2.setText(author + ":" + answer);

//change values for an example of return

answer = answer - 41;

author = author + " Jr.";

//setup button listener

Button startButton = (Button) findViewById(R.id.end_game);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

//return information to calling activity

���������������

ptg

49Multiple Activities

Intent i = getIntent();

i.putExtra("returnInt", answer);

i.putExtra("returnStr", author);

setResult(RESULT_OK, i);

finish();

}

});

}

}

���������������

ptg

This page intentionally left blank

���������������

ptg

3
Threads, Services,

Receivers, and Alerts

This chapter continues the introduction of the basic building blocks of an application.
First, the explicit specification of threads is introduced as a method to separate tasks.
Then, services and broadcast receivers are introduced.These can also benefit from threads,
as shown in some recipes.The application widget, which utilizes receivers, is then cov-
ered.This leads naturally to the discussion of various alerts available to the developer.

Threads
Every application by default runs a single process upon creation that contains all the tasks.
To avoid hanging the user interface, time-consuming tasks, such as network downloads or
computationally intensive calculations, should reside in a separate background thread. It is
up to the developer to implement this properly, but then the Android operating system
(OS) prioritizes the threads accordingly.

Most applications can benefit from the use of threads. If such occasions are not
detected in the software design phase, they quickly display during testing because the
Android system provides an alert to the user when the user interface (UI) hangs, as shown
in Figure 3.1.

Recipe: Launching a Secondary Thread
In this recipe, a ring-tone song is played when an onscreen button is pressed.This pro-
vides a simple illustration of how threads can be used with a time-consuming operation.
In the following, calling the play_music() function without specifying a separate thread
blocks the application during music playback.

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

// BAD USAGE: function call to time-consuming

// function causes main thread to hang

���������������

ptg

52 Chapter 3 Threads, Services, Receivers, and Alerts

Figure 3.1 An example of the message that displays
when a thread hangs.

This means any user request such as navigating back to the home screen or multiple
pushes of an onscreen button are not registered until the music is completely finished
playing.The unresponsive UI might even cause the Android system to show an error such
as the previous one in Figure 3.1.

This is resolved by launching a secondary thread to call the play_music() function.
The steps to do this are

1. Create a new thread to hold a Runnable object:
Thread initBkgdThread = new Thread(

//insert runnable object here

);

2. Create a Runnable object that overrides the run() method to call the time-con-
suming task:
new Runnable() {

public void run() {

play_music();

}

}

3. Start the thread, which then runs the task:
initBkgdThread.start();

play_music();

}

});

���������������

ptg

53Threads

The setup of the secondary thread to contain the time-consuming task is quick, so the
main thread can continue servicing other events.

Before showing the code for the full activity, the supporting files are discussed. Media
playback is covered more fully in Chapter 6,“Multimedia Techniques,” but for illustration,
the song is implemented here as a sequence of notes specified using ring-tone text trans-
fer language (RTTTL). For example, the RTTTL code describing a quarter note of the
A(220Hz) just below middle C is shown in Listing 3.1. Putting this in a single-line text
file in the res/raw/ directory registers it as the R.raw.a4 resource.

Listing 3.1 RTTTL file res/raw/a4.rtttl, which denotes A just below middle-C.

<a4:d=4,o=5,b=250:a4;

Then, a call in the activity to the media player plays this ring-tone note:

m_mediaPlayer = MediaPlayer.create(this, R.raw.a4);

m_mediaPlayer.start();

This recipe uses four different notes in four separate RTTTL files: g4.rtttl, a4.rtttl,
b4.rtttl, and c5.rtttl. These are just exact copies of Listing 3.1 with the a4 changed in
the file to reflect the new note in each case, but it can also be expanded to other notes or
formats.

One aside is that the MediaPlayer launches its own background thread to play the
media. So, if this was a single longer file to play, it is possible to avoid the use of an explicit
thread as explained in Chapter 6.That fact does not help when multiple files need to be
played quickly, as here, but it is important to know that threads are not always necessary.

The trigger for starting the music is a button press.The Button widget needs to be
specified in the main layout file (here called main.xml) and is identified with the name
trigger, as shown in Listing 3.2.

Listing 3.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<Button android:id="@+id/trigger"

android:layout_width="100dip" android:layout_height="100dip"

android:text="Press Me"

/>

</LinearLayout>

���������������

ptg

54 Chapter 3 Threads, Services, Receivers, and Alerts

One side-effect of launching a separate thread is that it still continues even if the main
activity is paused.This is seen by implementing the background thread and navigating
back to the home screen during music play.The music keeps playing until it is completed.
If this is not the preferred behavior, the play_music() function can check a flag (here
called paused), which is set during the main activity’s onPause() function to stop music
playback when the main thread is paused.

All the previous items are combined into the full activity PressAndPlay in Listing 3.3.

Listing 3.3 src/com/cookbook/launch_thread/PressAndPlay.java

package com.cookbook.launch_thread;

import android.app.Activity;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class PressAndPlay extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

//standalone play_music() function call causes

//main thread to hang. Instead, create

//separate thread for time-consuming task

Thread initBkgdThread = new Thread(new Runnable() {

public void run() {

play_music();

}

});

initBkgdThread.start();

}

});

}

int[] notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4};

int NOTE_DURATION = 400; //millisec

MediaPlayer m_mediaPlayer;

private void play_music() {

���������������

ptg

55Threads

for(int ii=0; ii<12; ii++) {

//check to ensure main activity not paused

if(!paused) {

if(m_mediaPlayer != null) {m_mediaPlayer.release();}

m_mediaPlayer = MediaPlayer.create(this, notes[ii%4]);

m_mediaPlayer.start();

try {

Thread.sleep(NOTE_DURATION);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

boolean paused = false;

@Override

protected void onPause() {

paused = true;

super.onPause();

}

@Override

protected void onResume() {

super.onResume();

paused = false;

}

}

Note the Thread.sleep() method pauses the thread for approximately the amount
specified (in milliseconds).This is used to implement the note duration.

Also note the convention used in the lifecycle methods:Additional activity-specific
logic is bracketed by the super methods.This is good practice to ensure proper comple-
tion of commands. So the internal pause flag is set to true before truly pausing the activ-
ity, and the activity is fully resumed before setting the internal pause flag to false.

Recipe: Creating a Runnable Activity
This recipe is an activity that evaluates a computationally intensive function, such as edge
detection in an image. Here, a dummy function called detectEdges() is run to emulate
the actual image-processing algorithm.

If detectEdges() is called in onCreate() by itself, it hangs the main thread and does
not display the UI layout until computation is done.Therefore, a separate thread needs to
be created and started for the time-consuming function. Because the main purpose of the
activity is this time-consuming operation, it is natural to have the activity itself implement
Runnable.As shown in Listing 3.4, the background thread is declared in the onCreate()

���������������

ptg

56 Chapter 3 Threads, Services, Receivers, and Alerts

method.When the background thread is started, it calls the activity’s run() method,
which is overridden with the intended functionality.

The button is implemented exactly as in the previous “Launching a Secondary
Thread” recipe. Pressing the button shows the UI is still responsive when the background
task detectEdges() runs.

Listing 3.4 src/com/cookbook/runnable_activity/EdgeDetection.java

package com.cookbook.runnable_activity;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class EdgeDetection extends Activity implements Runnable {

int numberOfTimesPressed=0;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

final TextView tv = (TextView) findViewById(R.id.text);

//in-place function call causes main thread to hang:

/* detectEdges(); */

//instead, create background thread for time-consuming task

Thread thread = new Thread(EdgeDetection.this);

thread.start();

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

tv.setText("Pressed button " + ++numberOfTimesPressed

+ " times\nAnd computation loop at "

+ "(" + xi + ", " + yi + ") pixels");

}

});

}

@Override

public void run() {

detectEdges();

}

���������������

ptg

57Threads

//Edge Detection

int xi, yi;

private double detectEdges() {

int x_pixels = 4000;

int y_pixels = 3000;

double image_transform=0;

//double loop over pixels for image processing

//meaningless hyperbolic cosine emulates time-consuming task

for(xi=0; xi<x_pixels; xi++) {

for(yi=0; yi<y_pixels; yi++) {

image_transform = Math.cosh(xi*yi/x_pixels/y_pixels);

}

}

return image_transform;

}

}

Recipe: Setting a Thread’s Priority
The Android system handles thread priorities. By default, a new thread myThread gets a
priority of 5.The developer can suggest a different priority by calling
myThread.setPriority(priority) before myThread.start().The priority cannot be
set higher than Thread.MAX_PRIORITY (which is 10) or lower than
Thread.MIN_PRIORITY (which is 1).

Recipe: Canceling a Thread
Sometimes when a component is finished or killed, the developer wants the threads it
spawns to also be killed. For example, take a thread defined in an activity:

private volatile Thread myThread;

The myThread.stop() method is deprecated because it might leave the application in an
unpredictable state. Instead, use the following when needed, such as in the onStop()
method of the parent component:

//use to stop the thread myThread

if(myThread != null) {

Thread dummy = myThread;

myThread = null;

dummy.interrupt();

}

At the application level, there is another way to do this: Declare all spawned threads as
daemon threads using the setDaemon(true) method.This ensures threads associated with
that application are killed when the application’s main thread is killed.

���������������

ptg

58 Chapter 3 Threads, Services, Receivers, and Alerts

//use when initially starting a thread

myThread.setDaemon(true);

myThread.start();

Finally, there is always the method of using a while(stillRunning) loop in the run()
method and externally setting stillRunning=false to kill the thread. However, this
might not provide sufficient control over the timing of when the thread stops.

Recipe: Sharing a Thread Between Two Applications
The previous recipes motivated the use of multiple threads in a single application.The
converse case is also sometimes useful: use of multiple applications in a single thread. For
example, if two applications need to communicate between each other, they can do so
using binders rather than the more complicated inter-process communication (IPC) pro-
tocol.The steps are

1. Make sure each application, when packaged for release, is signed with the same key
for security reasons.

2. Make sure each application is run with the same user ID.This is done by declaring
the same attribute android:sharedUserId="my.shared.userid" in the
ActivityManifest.xml for each application.

3. Declare each relevant activity or component to be run in the same process.This is
done by declaring the same attribute android:process="my.shared.process-
name" in the ActivityManifest.xml for each component.

These simple steps ensure the two components are run in the same thread and transpar-
ently share the same information.The more complex case where permissions cannot be
shared is covered in the “Implementing a Remote Procedure Call” recipe in Chapter 11,
“Advanced Android Development.”

Messages Between Threads: Handlers
After multiple threads run concurrently, such as a main application thread and a back-
ground thread, there needs to be a way to communicate between them. Some examples are

n A main thread serves time-critical information and passes messages to the back-
ground time-consuming thread to update.

n A large computation completes and sends a message back to the calling thread with
the result.

This can be accomplished with handlers, which are objects for sending messages between
threads. Each handler is bound to a single thread, delivering messages to it and executing
commands from it.

���������������

ptg

59Messages Between Threads: Handlers

Recipe: Scheduling a Runnable Task from the Main Thread
This recipe implements a clock timer, which is often needed in applications. For exam-
ple, it can be used in a game to keep track of how long a player takes to complete a level.
This provides a simple way to handle user interaction while a background thread contin-
ues to run.

The timer is run in a background thread so it does not block the UI thread, but it
needs to update the UI whenever the time changes.As shown in Listing 3.5, the
TextView text starts with a welcome message and the button text with trigger ID
starts with the value “Press Me.”

Listing 3.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView android:id="@+id/text"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<Button android:id="@+id/trigger"

android:layout_width="100dip" android:layout_height="100dip"

android:text="Press Me"

/>

</LinearLayout>

These text resources in the layout XML file are associated with TextView variables in the
BackgroundTimer Java activity using the following initializers:

mTimeLabel = (TextView) findViewById(R.id.text);

mButtonLabel = (TextView) findViewById(R.id.trigger);

After identified in Java, the text can be modified during run-time.When the application
starts, the mUpdateTimeTask starts a counting timer and overwrites the text mTimeLabel
with the new time in minutes and seconds.When the button is pressed, its onClick()
method overwrites the text mButtonLabel with the number of times the button was
pressed.

The handler mHandler is created and used to queue the runnable object
mUpdateTimeTask. It is first called in the onCreate() method and then the recursive call
in the task itself continues to update the time every 200ms.This is more often than
needed to ensure a smooth time change each second without excessive overhead in task
calls.The complete activity is shown in Listing 3.6.

���������������

ptg

60 Chapter 3 Threads, Services, Receivers, and Alerts

Listing 3.6 src/com/cookbook/background_timer/BackgroundTimer.java

package com.cookbook.background_timer;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.os.SystemClock;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class BackgroundTimer extends Activity {

//keep track of button presses, a main thread task

private int buttonPress=0;

TextView mButtonLabel;

//counter of time since app started, a background task

private long mStartTime = 0L;

private TextView mTimeLabel;

//Handler to handle the message to the timer task

private Handler mHandler = new Handler();

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

if (mStartTime == 0L) {

mStartTime = SystemClock.uptimeMillis();

mHandler.removeCallbacks(mUpdateTimeTask);

mHandler.postDelayed(mUpdateTimeTask, 100);

}

mTimeLabel = (TextView) findViewById(R.id.text);

mButtonLabel = (TextView) findViewById(R.id.trigger);

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

mButtonLabel.setText("Pressed " + ++buttonPress

+ " times");

}

});

}

���������������

ptg

61Messages Between Threads: Handlers

private Runnable mUpdateTimeTask = new Runnable() {

public void run() {

final long start = mStartTime;

long millis = SystemClock.uptimeMillis() - start;

int seconds = (int) (millis / 1000);

int minutes = seconds / 60;

seconds = seconds % 60;

mTimeLabel.setText("" + minutes + ":"

+ String.format("%02d",seconds));

mHandler.postDelayed(this, 200);

}

};

@Override

protected void onPause() {

mHandler.removeCallbacks(mUpdateTimeTask);

super.onPause();

}

@Override

protected void onResume() {

super.onResume();

mHandler.postDelayed(mUpdateTimeTask, 100);

}

}

Recipe: Using a Countdown Timer
The previous recipe is an example of handlers and a functional timer.Another timer is
provided with the built-in class CountDownTimer.This encapsulates the creation of a
background thread and the handler queuing into a convenient class call.

The countdown timer takes two arguments: the number of milliseconds until the
countdown is done and how often in milliseconds to process onTick() callbacks.The
onTick() method is used to update the countdown text. Note that otherwise the recipe
is identical to the previous recipe.The full activity is shown in Listing 3.7.

Listing 3.7 src/com/cookbook/countdown/CountDownTimerExample.java

package com.cookbook.countdown;

import android.app.Activity;

import android.os.Bundle;

import android.os.CountDownTimer;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

���������������

ptg

62 Chapter 3 Threads, Services, Receivers, and Alerts

public class CountDownTimerExample extends Activity {

//keep track of button presses, a main thread task

private int buttonPress=0;

TextView mButtonLabel;

//count down timer, a background task

private TextView mTimeLabel;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mTimeLabel = (TextView) findViewById(R.id.text);

mButtonLabel = (TextView) findViewById(R.id.trigger);

new CountDownTimer(30000, 1000) {

public void onTick(long millisUntilFinished) {

mTimeLabel.setText(“seconds remaining: “

+ millisUntilFinished / 1000);

}

public void onFinish() {

mTimeLabel.setText(“done!");

}

}.start();

Button startButton = (Button) findViewById(R.id.trigger);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

mButtonLabel.setText("Pressed " + ++buttonPress + " times");

}

});

}

}

Recipe: Handling a Time-Consuming Initialization
This recipe addresses a common case of needing to run a time-consuming initialization
when an application starts. Initially, the layout is set to show a specific “Loading...” splash
screen specified in the loading.xml file. In this example, it is a simple text message as
shown in Listing 3.8, but it could be a company logo or introductory animation.

���������������

ptg

63Messages Between Threads: Handlers

Listing 3.8 res/layout/loading.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<TextView android:id="@+id/loading"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Loading..."

/>

</LinearLayout>

While this layout is being displayed, the function initializeArrays(), which takes time
to complete, is launched in a background thread to avoid hanging the UI.The initializa-
tion uses static variables to ensure a screen change or another instance of the activity does
not require a recalculation of the data.

When the initialization is done, a message is sent to the handler mHandler. Since the
act of sending a message is all the information needed, just an empty message is sent as
mHandler.sendEmptyMessage(0).

Upon receiving the message, the UI thread runs the handleMessage() method. It is
overridden to continue on with the activity after the starting initialization, here setting
up the main screen specified in the main.xml layout file.The full activity is shown in
Listing 3.9.

Listing 3.9 src/com/cookbook/handle_message/HandleMessage.java

package com.cookbook.handle_message;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.os.Message;

public class HandleMessage extends Activity implements Runnable {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.loading);

Thread thread = new Thread(this);

thread.start();

}

���������������

ptg

64 Chapter 3 Threads, Services, Receivers, and Alerts

private Handler mHandler = new Handler() {

public void handleMessage(Message msg) {

setContentView(R.layout.main);

}

};

public void run(){

initializeArrays();

mHandler.sendEmptyMessage(0);

}

final static int NUM_SAMPS = 1000;

static double[][] correlation;

void initializeArrays() {

if(correlation!=null) return;

correlation = new double[NUM_SAMPS][NUM_SAMPS];

//calculation

for(int k=0; k<NUM_SAMPS; k++) {

for(int m=0; m<NUM_SAMPS; m++) {

correlation[k][m] = Math.cos(2*Math.PI*(k+m)/1000);

}

}

}

}

Services
A service is an Android component that runs in the background without any user interac-
tion. It can be started and stopped by any component.While it is running, any compo-
nent can bind to it.A service can also stop itself. Some illustrative scenarios are

n An activity provides the user a way to select a set of music files, which then starts a
service to play back the files. During playback, a new activity starts and binds to the
existing service to allow the user to change songs or stop playback.

n An activity starts a service to upload a set of pictures to a website.A new activity
starts and binds to the existing service to determine which file is currently being
uploaded and displays the picture to the screen.

n A broadcast receiver receives a message that a picture was taken and launches a
service to upload the new picture to a website.The broadcast receiver then goes in-
active and is eventually killed to reclaim memory, but the service continues until
the picture is uploaded.Then, the service stops itself.

The general lifecycle of a service is illustrated in Figure 3.2.

���������������

ptg

65Services

Service is
running

Service is
shut down

onStart()

onCreate()

Service is
started by

startService()

onDestroy()

The service is stopped
(no callback)

Service is
shut down

onBind()

onCreate()

Service is
created by

bindService()

onDestroy()

Client interacts
with the service

onUnbind()

onRebind()

Figure 3.2 Service Lifecycle from http://developer.android.com/.

An aside on the third scenario:Any background task within a component will be killed
when the component is killed.Therefore, tasks that are meaningful to continue even after
the component stops should be done by launching a service.This ensures the operating
system is aware active work is still being done by the process.

All services extend the abstract class Service or one of its subclasses. Similar to an
Activity, the entry point to each service is the onCreate() method.There is no concept
of pausing a service, but it can be stopped, which calls the onDestroy() method.

Recipe: Creating a Self-Contained Service
The steps to create a self-contained service associated with a single component are

1. Create a class to extend Service. (In Eclipse, this can be done by right-clicking
the project, choosing New → Class and specifying android.app.Service as the
super class.)

���������������

http://developer.android.com/

ptg

66 Chapter 3 Threads, Services, Receivers, and Alerts

2. Declare the service in the AndroidManifest.xml file by adding a variation of the
following (this should be done automatically with the previous Eclipse step):
<service android:name=".myService"></service>

3. Override the onCreate() and onDestroy() methods. (In Eclipse, this can be done
by right-clicking on the class file, choosing Source → Override/Implement
Methods..., and checking the onCreate() and onDestroy() methods.) These con-
tain the functionality of the service when it is started and stopped.

4. Override the onBind() method for cases when a new component binds to this
service after it has already been created.

5. Activate the service from an external trigger.The service cannot run by itself, but
instead needs to be activated by a separate component or trigger in some way. For
example, a component can create an intent to start or stop the service using
startService() or stopService() as needed.

To illustrate the previous, a simple service is shown in Listing 3.10 to use the
play_music() function from the first recipe in this chapter. Note the following:

n A Toast is used to show when the service is started or stopped.
n The onBind() method is overridden, but not used. (This can be extended as

needed.)
n A thread still needs to be created for playing music to not block the UI.
n The service does not stop when the activity is destroyed (for example, by changing

the screen orientation) or when the activity is paused (for example, when pressing
the home button).This shows the service, although launched by the activity, runs as
its own entity.

Listing 3.10 src/com/cookbook/simple_service/SimpleService.java

package com.cookbook.simple_service;

import android.app.Service;

import android.content.Intent;

import android.media.MediaPlayer;

import android.os.IBinder;

import android.widget.Toast;

public class SimpleService extends Service {

@Override

public IBinder onBind(Intent arg0) {

return null;

}

boolean paused = false;

���������������

ptg

67Services

@Override

public void onCreate() {

super.onCreate();

Toast.makeText(this,"Service created ...",

Toast.LENGTH_LONG).show();

paused = false;

Thread initBkgdThread = new Thread(new Runnable() {

public void run() {

play_music();

}

});

initBkgdThread.start();

}

@Override

public void onDestroy() {

super.onDestroy();

Toast.makeText(this, "Service destroyed ...",

Toast.LENGTH_LONG).show();

paused = true;

}

int[] notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4};

int NOTE_DURATION = 400; //millisec

MediaPlayer m_mediaPlayer;

private void play_music() {

for(int ii=0; ii<12; ii++) {

//check to ensure main activity not paused

if(!paused) {

if(m_mediaPlayer != null) {m_mediaPlayer.release();}

m_mediaPlayer = MediaPlayer.create(this, notes[ii%4]);

m_mediaPlayer.start();

try {

Thread.sleep(NOTE_DURATION);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

}

The AndroidManifest.xml now has both the activity and service declared, as shown in
Listing 3.11.

���������������

ptg

68 Chapter 3 Threads, Services, Receivers, and Alerts

Listing 3.11 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.simple_service"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".SimpleActivity"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name=".SimpleService"></service>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

The example activity that sets up the UI to trigger the start and stop of this service is shown
in Listing 3.12, and the associated layout file is shown in Listing 3.13 for the two buttons.

Listing 3.12 src/com/cookbook/simple_service/SimpleActivity.java

package com.cookbook.simple_service;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class SimpleActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button startButton = (Button) findViewById(R.id.Button01);

startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view){

startService(new Intent(SimpleActivity.this,

SimpleService.class));

}

});

Button stopButton = (Button)findViewById(R.id.Button02);

���������������

ptg

69Adding a Broadcast Receiver

stopButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View v){

stopService(new Intent(SimpleActivity.this,

SimpleService.class));

}

});

}

}

Listing 3.13 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<Button android:text="Do it" android:id="@+id/Button01"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

<Button android:text="Stop it" android:id="@+id/Button02"

android:layout_width="wrap_content"

android:layout_height="wrap_content"></Button>

</LinearLayout>

Adding a Broadcast Receiver
A broadcast receiver listens for relevant broadcast messages to trigger an event. Some
examples of broadcasted events already sent from the OS are

n The camera button was pressed.
n The battery is low.
n A new application was installed.

A user-generated component can also send a broadcast, such as:

n A calculation was finished.
n A particular thread has started.

All broadcast receivers extend the abstract class BroadcastReceiver or one of its sub-
classes.The lifecycle of a broadcast receiver is simple.A single method, onReceive(), is

���������������

ptg

70 Chapter 3 Threads, Services, Receivers, and Alerts

called when a message arrives for the receiver.After this method is finished, the
BroadcastReceiver instance goes inactive.

A broadcast receiver normally initiates a separate component or sends a notification to
the user in its onReceive() method, as discussed later in this chapter. If a broadcast
receiver needs to do something more time-consuming, it should start a service instead of
spawn a thread because an inactive broadcast receiver might be killed by the system.

Recipe: Starting a Service When the Camera Button Is Pressed
This recipe shows how to start a service based on a broadcasted event, such as when the
camera button is pressed.The broadcast receiver is needed to listen for the specified
event(s) and subsequently launch the service.The broadcast receiver itself is started in
another component. (Here, it is implemented as a standalone activity, SimpleActivity.)

The activity shown in Listing 3.14 sets up a broadcast receiver and sets up an intent
with the filter for the camera button.The filter for package-added messages is also added
for illustration purposes.Then, the broadcast receiver is started and this intent filter is
passed to it using the registerReceiver() method.

Listing 3.14 src/com/cookbook/simple_receiver/SimpleActivity.java

package com.cookbook.simple_receiver;

import android.app.Activity;

import android.content.Intent;

import android.content.IntentFilter;

import android.os.Bundle;

public class SimpleActivity extends Activity {

SimpleBroadcastReceiver intentReceiver =

new SimpleBroadcastReceiver();

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

IntentFilter intentFilter =

new IntentFilter(Intent.ACTION_CAMERA_BUTTON);

intentFilter.addAction(Intent.ACTION_PACKAGE_ADDED);

registerReceiver(intentReceiver, intentFilter);

}

@Override

protected void onDestroy() {

unregisterReceiver(intentReceiver);

���������������

ptg

71Adding a Broadcast Receiver

super.onDestroy();

}

}

Note the receiver is unregistered if the activity is ever destroyed.This is unnecessary, but
useful.The BroadcastReceiver component is shown in Listing 3.15.The single lifecycle
method onReceive() is overridden to check for any broadcasted event. If it matches the
specified event (here, it is the ACTION_CAMERA_BUTTON event), a service is started in the
original context.

Listing 3.15 src/com/cookbook/simple_receiver/SimpleBroadcastReceiver .java

package com.cookbook.simple_receiver;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

public class SimpleBroadcastReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context rcvContext, Intent rcvIntent) {

String action = rcvIntent.getAction();

if (action.equals(Intent.ACTION_CAMERA_BUTTON)) {

rcvContext.startService(new Intent(rcvContext,

SimpleService2.class));

}

}

}

The service that is started in the SimpleBroadcastReceiver of Listing 3.15 is shown in
Listing 3.16.The service simply shows whether it was started or stopped using Toast.

Listing 3.16 src/com/cookbook/simple_receiver/SimpleService2.java

package com.cookbook.simple_receiver;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.widget.Toast;

public class SimpleService2 extends Service {

@Override

public IBinder onBind(Intent arg0) {

return null;

}

���������������

ptg

72 Chapter 3 Threads, Services, Receivers, and Alerts

@Override

public void onCreate() {

super.onCreate();

Toast.makeText(this,"Service created ...",

Toast.LENGTH_LONG).show();

}

@Override

public void onDestroy() {

super.onDestroy();

Toast.makeText(this, “Service destroyed ...",

Toast.LENGTH_LONG).show();

}

}

App Widgets
App Widgets are small icon-like views into an application.They implement a subclass of
the broadcast receiver for use in updating this view. Called widgets for short, they can be
embedded into other applications, such as the home screen, by long clicking (in other
words, pressing and holding) an empty area of the touchscreen.This displays a menu
where a widget can be selected to install at that location.They can be removed by a long
click on the widget and dragging to the trash can. In all, they require the following:

n A view describing the appearance of the widget.This is defined in an XML layout
resource file and contains text, background, and other layout parameters.

n An App Widget provider that receives broadcast events and interfaces to the widget
to update it.

n Detailed information about the App Widget, such as the size and update frequency.
Note that the home screen is divided into 4x4 cells and so a widget is often a mul-
tiple of a single cell size (which is 80x100dp in Portrait mode and 106x74dp in
Landscape mode).

n Optionally, an App Widget configuration activity can be defined to properly set any
parameters of the Widget.This activity is launched upon creation of the Widget.

Recipe: Creating an App Widget
This recipe creates a simple App Widget that displays some text on the home screen.The
text is configured to update every second, but note that by default, the Android system
forces the minimum update time to be 30 minutes.This helps avoid poorly written widg-
ets from draining the battery. Listing 3.17 implements an AppWidgetProvider, which is a
subclass of BroadcastReceiver.The main method to override is the onUpdate() func-
tion, which gets called when the system determines it is time to update the widgets.

���������������

ptg

73App Widgets

Listing 3.17 src/com/cookbook/widget_example/SimpleWidgetProvider.java

package com.cookbook.simple_widget;

import android.appwidget.AppWidgetManager;

import android.appwidget.AppWidgetProvider;

import android.content.Context;

import android.widget.RemoteViews;

public class SimpleWidgetProvider extends AppWidgetProvider {

final static int APPWIDGET = 1001;

@Override

public void onUpdate(Context context,

AppWidgetManager appWidgetManager, int[] appWidgetIds) {

super.onUpdate(context, appWidgetManager, appWidgetIds);

// Loop through all widgets to display an update

final int N = appWidgetIds.length;

for (int i=0; i<N; i++) {

int appWidgetId = appWidgetIds[i];

String titlePrefix = “Time since the widget was started:";

updateAppWidget(context, appWidgetManager, appWidgetId,

titlePrefix);

}

}

static void updateAppWidget(Context context, AppWidgetManager

appWidgetManager, int appWidgetId, String titlePrefix) {

Long millis = System.currentTimeMillis();

int seconds = (int) (millis / 1000);

int minutes = seconds / 60;

seconds = seconds % 60;

CharSequence text = titlePrefix;

text += " " + minutes + ":" + String.format("%02d",seconds));

// Construct the RemoteViews object.

RemoteViews views = new RemoteViews(context.getPackageName(),

R.layout.widget_layout);

views.setTextViewText(R.id.widget_example_text, text);

// Tell the widget manager

appWidgetManager.updateAppWidget(appWidgetId, views);

}

}

���������������

ptg

74 Chapter 3 Threads, Services, Receivers, and Alerts

The XML file describing the detailed information on the widget is shown in Listing 3.18.
It shows the size the widget takes on the home screen and how often it should be
updated in milliseconds. (The system minimum is 30 minutes.)

Listing 3.18 src/res/xml/widget_info.xml

<?xml version="1.0" encoding="utf-8"?>

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"

android:minWidth="146dp"

android:minHeight="72dp"

android:updatePeriodMillis="1000"

android:initialLayout="@layout/widget_layout">

</appwidget-provider>

The view describing the appearance of the widget is laid out in an XML file, as shown in
Listing 3.19.

Listing 3.19 src/res/layout/widget_layout.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/widget_example_text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textColor="#ff000000"

android:background="#ffffffff"

/>

Alerts
Alerts provide a quick message to the user outside of the application’s main UI. It can be
in an overlay window such as a Toast or AlertDialog box. It can also be in the notification
bar at the top of the screen.The Toast alert provides a printed message to the screen with
a single line of code.There is no need to work with the layout files. For this reason, it is
also a handy debug tool, equivalent to the printf statement in C programs.

Recipe: Using Toast to Show a Brief Message on the Screen
The Toast method has been introduced in the previous chapter in a compact form:

Toast.makeText(this, "text", Toast.LENGTH_SHORT).show();

It can also be written as a multiline command:

Toast tst = Toast.makeText(this, "text", Toast.LENGTH_SHORT);

tst.show();

���������������

ptg

75Alerts

This form is useful when the text needs to be shown multiple times, as the instance in the
first line can be reused.

Two other uses for the multiline Toast command are to reposition the text location or
to add an image.To reposition the text location, or to center the Toast in the screen dis-
play, use setGravity before calling the show() method:

tst.setGravity(Gravity.CENTER, tst.getXOffset() / 2,

tst.getYOffset() / 2);

To add an image to a Toast, use the following:

Toast tst = Toast.makeText(this, "text", Toast.LENGTH_LONG);

ImageView view = new ImageView(this);

view.setImageResource(R.drawable.my_figure);

tst.setView(view);

tst.show();

Recipe: Using an Alert Dialog Box
Providing a user with an alert and up to three buttons of possible actions can be done
with the AlertDialog class. Some examples are

n “Your final score was 80/100:Try this level again, advance to next level, or go back
to the main menu.”

n “The image file is corrupt, choose another or cancel action.”

This recipe takes the first example and shows how to provide an action on each choice
depending on which button is clicked.The example code is shown in Listing 3.20.

The AlertDialog is initialized using the create() method; the text is specified using
the setMessage() method; the three possible button text and corresponding actions are
specified using the setButton() method; and finally, the dialog box is displayed to the
screen using the show() method. Note the logic in each of the onClick() callback func-
tions is just an example to show how to specify button actions.

Listing 3.20 Example of AlertDialog

AlertDialog dialog = new AlertDialog.Builder(this).create();

dialog.setMessage("Your final score: " + mScore + "/" + PERFECT_SCORE);

dialog.setButton(DialogInterface.BUTTON_POSITIVE, "Try this level again",

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

mScore = 0;

start_level();

}

});

dialog.setButton(DialogInterface.BUTTON_NEGATIVE, "Advance to next level",

new DialogInterface.OnClickListener() {

���������������

ptg

76 Chapter 3 Threads, Services, Receivers, and Alerts

Figure 3.3 Example of an alert dialog box.

public void onClick(DialogInterface dialog, int which) {

mLevel++;

start_level();

}

});

dialog.setButton(DialogInterface.BUTTON_NEUTRAL, "Back to the main menu",

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

mLevel = 0;

finish();

}

});

dialog.show();

This produces the pop-up dialog box shown in Figure 3.3. Note that the buttons are
displayed in the order BUTTON_POSITIVE, BUTTON_NEUTRAL, and BUTTON_NEGATIVE. If a
dialog box with two options or one option is needed, do not specify all three button
choices.

Recipe: Showing Notification in Status Bar
The status bar across the top of the device screen shows pending notifications for the user
to read at a convenient time. In general, because an activity mostly interacts with the user,
services are more likely to utilize this feature.As a rule, notifications should be concise
and minimal for the best user experience.

The steps for creating a status bar notification are

1. Declare a notification and specify how it displays on the status bar:
String ns = Context.NOTIFICATION_SERVICE;

mNManager = (NotificationManager) getSystemService(ns);

final Notification msg = new Notification(R.drawable.icon,

"New event of importance",

System.currentTimeMillis());

���������������

ptg

77Alerts

2. Define how it looks when the status bar is expanded for details and the action
taken when clicked (this future action is defined by a PendingIntent class):
Context context = getApplicationContext();

CharSequence contentTitle = "ShowNotification Example";

CharSequence contentText = "Browse Android Cookbook Site";

Intent msgIntent = new Intent(Intent.ACTION_VIEW,

Uri.parse("http://www.pearson.com"));

PendingIntent intent =

PendingIntent.getActivity(ShowNotification.this,

0, msgIntent,

Intent.FLAG_ACTIVITY_NEW_TASK);

3. Add any further configurable information, such as whether to blink an LED, play a
sound, or automatically cancel the notification after it is selected.The latter two are
shown here:
msg.defaults |= Notification.DEFAULT_SOUND;

msg.flags |= Notification.FLAG_AUTO_CANCEL;

4. Set the info for the notification event to the system:
msg.setLatestEventInfo(context,

contentTitle, contentText, intent);

5. On the event of interest, trigger notification with a unique identifier:
mNManager.notify(NOTIFY_ID, msg);

6. Upon completion, clear notification as needed with the same identifier.

If any information gets changed, the notification should be updated rather than sending
another notification.This can be done by updating the relevant information in step 2, and
then again calling setLatestEventInfo.An example activity to show a notification is
shown in Listing 3.21.

Listing 3.21 src/com/cookbook/show_notification/ShowNotification.java

package com.cookbook.show_notification;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.PendingIntent;

import android.content.Context;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

���������������

ptg

78 Chapter 3 Threads, Services, Receivers, and Alerts

public class ShowNotification extends Activity {

private NotificationManager mNManager;

private static final int NOTIFY_ID=1100;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

String ns = Context.NOTIFICATION_SERVICE;

mNManager = (NotificationManager) getSystemService(ns);

final Notification msg = new Notification(R.drawable.icon,

"New event of importance",

System.currentTimeMillis());

Button start = (Button)findViewById(R.id.start);

Button cancel = (Button)findViewById(R.id.cancel);

start.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

Context context = getApplicationContext();

CharSequence contentTitle = "ShowNotification Example";

CharSequence contentText = "Browse Android Cookbook Site";

Intent msgIntent = new Intent(Intent.ACTION_VIEW,

Uri.parse("http://www.pearson.com"));

PendingIntent intent =

PendingIntent.getActivity(ShowNotification.this,

0, msgIntent,

Intent.FLAG_ACTIVITY_NEW_TASK);

msg.defaults |= Notification.DEFAULT_SOUND;

msg.flags |= Notification.FLAG_AUTO_CANCEL;

msg.setLatestEventInfo(context,

contentTitle, contentText, intent);

mNManager.notify(NOTIFY_ID, msg);

}

});

cancel.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

mNManager.cancel(NOTIFY_ID);

}

});

}

}

���������������

ptg

4
User Interface Layout

The Android user interface (UI) consists of screen views, screen touch events, and key
presses.The framework for specifying the UI is constructed to support the various differ-
ent Android devices.This chapter focuses on the utilization of this framework for the ini-
tial graphical layout and its changes. Chapter 5,“User Interface Events,” handles key
presses and gestures.

Resource Directories and General Attributes
The UI display utilizes developer-generated resource files, some of which are discussed in
Chapter 2,“Application Basics:Activities and Intents,” in the context of the directory
structure of an Android project. For completeness, the entire set of resource directories is
summarized here:

n res/anim/—Frame-by-frame animation or tweened animation objects.
n res/drawable/—Image resources. Note these images can be modified and optimized

during compilation.
n res/layout/—eXtensible Markup Language (XML) files specifying screen layouts.
n res/values/—XML files with resource descriptors.As with other resource directo-

ries, filenames are arbitrary, but common ones, as utilized in this book, are
arrays.xml, colors.xml, dimens.xml, strings.xml, and styles.xml.

n res/xml/—Other arbitrary XML files not covered previously.
n res/raw/—Other arbitrary resources not covered previously, including images that

should not be modified or optimized.

Each UI object has three definable attributes that customize the look and feel of the UI:
the dimension of the object, text in the object, and the color of the object.The possible
values for these three general UI attributes are summarized in Table 4.1. Note that for
dimension, it is best to use dp or sp for device-independent compliance.

���������������

ptg

80 Chapter 4 User Interface Layout

Table 4.1 Possible Values for the Three General UI Attributes

Attribute Possible Values

Dimension Any number followed by one of the following dimensions:

px—Actual pixels on the screen

dp (or dip)—Device-independent pixels relative to a 160dpi screen

sp—Device-independent pixels scaled by user’s font size preference

in—Inches based on physical screen size

mm—Millimeters based on physical screen size

pt—1/72 of an inch based on physical screen size

String Any string, as long as apostrophes/quotes are escaped: Don\’t worry

Any properly quoted string: “Don’t worry”

Any formatted string, for example: Population: %1$d

Can include HTML tags, such as , <i>, or <u>

Can include special characters, such as © given by ©

Color Possible values are a 12-bit color #rgb, 16-bit color with alpha opacity #argb,
24-bit color #rrggbb, or 32-bit color with alpha opacity #aarrggbb. It is also
possible to utilize the predefined colors in the Color class within Java files,
such as Color.CYAN.

To unify the look and feel of the application, a global resource file can be used for each of
these attributes.This is also useful in that it is easy to redefine the attributes later, as they
are all collected in three files:

n Measurements and dimensions of items are declared in the XML resource file
res/values/dimens.xml. For example:

n XML declaration—<dimen name="large">48sp</dimen>

n XML reference—@dimen/large

n Java reference—getResources().getDimension(R.dimen.large)

n Label and text of items are declared in the XML resource file
res/values/strings.xml. For example:

n XML declaration—<string name="start_pt">I\'m here</string>

n XML reference—@string/start_pt

n Java reference—getBaseContext().getString(R.string.start_pt)

n The colors of items are declared in the XML resource file res/values/colors.xml.
For example:

n XML declaration—<color name="red">#f00</color>

n XML reference—@color/red

n Java reference—getResources().getColor(R.color.red)

���������������

ptg

81Resource Directories and General Attributes

Recipe: Specifying Alternate Resources
The resources described in the previous section provide a generic configuration that
Android can use by default.The developer has the ability to specify different values for
specific configurations distinguished by various qualifiers.

To support multiple languages, the strings can be translated and used in different lan-
guage values directories. For example,American English, British English, French, simpli-
fied Chinese (used in mainland China), traditional Chinese (used in Taiwan), and German
strings are added using:

res/values-en-rUS/strings.xml

res/values-en-rGB/strings.xml

res/values-fr/strings.xml

res/values-zh-rCN/strings.xml

res/values-zh-rTW/strings.xml

res/values-de/strings.xml

Not all strings need to be redefined in these files.Any missing strings from the selected
language file fall back to the default res/values/strings.xml file, which should contain a
complete set of all strings used in the application. If any drawables contain text and
require a language-specific form, a similar directory structure should also apply to them
(such as res/drawables-zh-hdpi/).

To support multiple screen pixel densities, the drawables and raw resources (as needed)
can be scaled and used in different dots per inch (dpi) value directories. For example, an
image file can belong to each of the following directories:

res/drawable-ldpi/

res/drawable-mdpi/

res/drawable-hdpi/

res/drawable-nodpi/

The low-, medium-, and high-density screens are defined as 120dpi, 160dpi, and 240dpi.
Not all dpi choices need to be populated.At run-time,Android determines the closest
available drawables and scales them appropriately.The nodpi choice can be used with
bitmap images to prevent them from being scaled. In case both a language and dpi choice
are specified, the directory can contain both qualifiers: drawable-en-rUS-mdpi/.

The various types of screens available for Android devices are discussed in Chapter 1,
“Overview of Android.” It is often useful to define separate XML layouts for the different
screen types.The most often used qualifiers are

n Portrait and landscape screen orientations: -port and -land

n Regular (QVGA, HVGA, and VGA) and wide aspect ratios (WQVGA, FWVGA,
and WVGA): -notlong and -long

n Small (up to 3.0-inch diagonal), normal (up to 4.5-inch diagonal), and large (above
4.5-inch diagonal) screen sizes: -small, -normal, and -large

���������������

ptg

82 Chapter 4 User Interface Layout

Figure 4.1 View example that contains
ViewsGroups and widgets.

If screen orientation or aspect ratio are not defined, the Android system auto-scales the
UI for the screen (although not always elegantly). However, if layouts for different screens
are defined, a special element should be added to the Android Manifest XML file at the
application element level to ensure proper support:

<supports-screens

android:largeScreens="true"

android:normalScreens="true"

android:smallScreens="true"

android:resizable="true"

android:anyDensity="true" />

Note that if android:minSdkVersion or android:targetSdkVersion is “3” (Android
1.5), then by default only android:normalScreens (the screen for the G1) is set to
“true.”Therefore, it is useful to explicitly declare the supports-screens element for the
application so more recent phones have a properly scaled UI.

Views and ViewGroups
The basic building block of a graphical layout is a view. Each view is described by a View
Object, which is responsible for drawing a rectangular area and handling events in that
area.The View is a base class for objects that interact with the user; they are called widg-
ets. Examples of widgets are buttons and check boxes.

A ViewGroup Object is a type of View that acts as a container to hold multiple Views
(or other ViewGroups). For example, a ViewGroup can hold a vertical or horizontal place-
ment of views and widgets, as shown in Figure 4.1.The ViewGroup is a base class for
screen layouts.

���������������

ptg

83Views and ViewGroups

The layout defines the user interface elements, their positions, and their actions. It can be
specified from either XML or Java. Most often, an initial base layout is declared in XML
and any run-time changes are handled in Java.This combines the ease of developing the
overall position of View and ViewGroup Objects using XML and the flexibility to change
any component within the application using Java.

Another benefit of separating the XML layout from the Java activity is that the same
Android application can produce a different behavior depending on the screen orienta-
tion, type of device (such as phone versus tablet), and locale (such as English versus Chi-
nese).These customizations can be abstracted into various XML resource files without
cluttering the underlying activity.

Recipe: Building Layouts in the Eclipse Editor
A quick way to get started with layouts is to use the handy graphical layout editor in
Eclipse.Take a new activity and open its layout resource XML file. Here, it is the
main.xml file.Then, click the Layout tab.This shows how the layout would look graphi-
cally. Click the black screen and remove everything to start from scratch.Then, follow
these steps:

1. Click and drag a layout from the Layouts Selector to the screen area. For example,
choose TableLayout, which holds multiple Views or ViewGroups down a column.

2. Click and drag any other layouts to nest them inside the first one. For example,
choose TableRow, which hold multiples Views or ViewGroups along a row.Add
three of these for this example.

3. Right-click each TableRow in the Outline view and add view elements from the
Views Selector. For example, add a Button and CheckBox to the first TableRow, two
TextViews to the second, and a TimePicker to the third.

4. Add a Spinner and VideoView view below the TableRow elements.

This looks like Figure 4.2, and the landscape and portrait view can be toggled to see the
difference in the layout. Clicking the main.xml tab shows XML code like that shown in
Listing 4.1.This provides a simple method to build UIs with the Android look and feel.

Listing 4.1 main.xml

<?xml version="1.0" encoding="utf-8"?>

<TableLayout android:id="@+id/TableLayout01"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

xmlns:android="http://schemas.android.com/apk/res/android">

<TableRow android:id="@+id/TableRow01"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<Button android:text="@+id/Button01"

android:id="@+id/Button01"

���������������

ptg

84 Chapter 4 User Interface Layout

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<CheckBox android:text="@+id/CheckBox01"

android:id="@+id/CheckBox01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow android:id="@+id/TableRow02"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<TextView android:text="@+id/TextView01"

android:id="@+id/TextView01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<TextView android:text="@+id/TextView02"

android:id="@+id/TextView02"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow android:id="@+id/TableRow03"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<TimePicker android:id="@+id/TimePicker01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<Spinner android:id="@+id/Spinner01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<VideoView android:id="@+id/VideoView01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableLayout>

Another way to view the layout is using the Hierarchy Viewer. Running an application in
the emulator, the hierarchyviewer can be run from the command line. It resides in the
tools/ directory of the Software Development Kit (SDK) installation. For security reasons,
this works only with the emulator as the device because running the hierarchyviewer on
an actual device might reveal secure settings. Click the window of interest and select
Load View Hierarchy. This produces a relational view of the different layouts. For this
recipe, the result is as shown in Figure 4.3.

���������������

ptg

85Views and ViewGroups

Figure 4.2 Android layout builder example, as seen in Eclipse.

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

TableRow

#2@43 afdbB

id/TableRow03

Figure 4.3 Android hierarchy viewer on the example in Listing 4.1.

���������������

ptg

86 Chapter 4 User Interface Layout

Recipe: Controlling the Width and Height of UI Elements
This recipe shows how specifying the width and height of UI elements changes the over-
all layout. Each View object must specify a total width android:layout_width and total
height android:layout_height in one of three ways:

n exact dimension—Provides control, but does not scale to multiple screen types well.
n wrap_content—Just big enough to enclose the contents of the element plus padding.
n fill_parent—Size maximized to fill the element’s parent, including padding.

Padding is the blank space surrounding an element, and defaults to zero if it is not speci-
fied. It is part of the size of an UI element and must be specified as an exact dimension,
but can be specified using one of two types of attributes:

n padding—Sets padding equal on all four sides of an element.
n paddingLeft, paddingRight, paddingTop, paddingBottom—Sets padding on each

side of an element separately.

Another attribute is android:layout_weight, which can be assigned a number. It pro-
vides the Android system with a way to determine relative importance between different
elements of a layout.

Listing 4.2 shows the main layout file as a linear layout with four buttons.This aligns
them horizontally on the screen, as shown in Figure 4.4.

Listing 4.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<Button android:text="add"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

/>

<Button android:text="subtract"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

/>

<Button android:text="multiply"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

/>

<Button android:text="divide"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

/>

</LinearLayout>

���������������

ptg

87Views and ViewGroups

Figure 4.4 LinearLayout with four buttons
aligned horizontally, as shown in Listing 4.2.

Figure 4.5 The fill_parent in height keeps the horizontal alignment, but a
fill_parent in width washes out the remaining buttons.

If the height of the “add” button is changed to fill_parent, the button fills the vertical
space of its parent while keeping the words aligned. If the width of any button is changed
to fill_parent, then all subsequent buttons in the horizontal layout are washed out.
These are shown in Figure 4.5.

Another thing to point out in Figure 4.4 is that the “multiply” and “divide” buttons have
a portion of the last letter cut off.This can be fixed by appending a space to the text, such
as “multiply” and “divide”. However, a more general method to resolve this utilizes the
layout.Take a look at the various button formats in Figure 4.6.

Figure 4.6 Various methods to tweak
the layout of four buttons.

���������������

ptg

88 Chapter 4 User Interface Layout

The four rows of buttons in Figure 4.6 are as follows:

n The first row is the same as Listing 4.2, but with spaces appended to the end of
each word.

n In the second row, the layout width is changed to fill_parent for the last button,
providing the space needed for the button, but it cannot be used for the earlier but-
tons on the line as evidenced by the right part of Figure 4.5:

<Button android:text="divide"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

/>

n In the third row, padding is added to the multiply button to make the button big-
ger, but it does not add this space to the word itself because it was declared as
wrap_content:

<Button android:text="multiply"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:paddingRight="20sp"

/>

n In the fourth row, all buttons use fill_parent, but also add layout_weight and
assign it the same value for all buttons.This gives the most satisfying layout:

<Button android:text="add"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1"

/>

<Button android:text="subtract"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1"

/>

<Button android:text="multiply"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1"

/>

<Button android:text="divide"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1"

/>

���������������

ptg

89Views and ViewGroups

Recipe: Setting Relative Layout and Layout ID
Sometimes it is more convenient to set the layout relative to a starting object or parent
object rather than absolute rules.Also, if the UI starts nesting LinearLayouts, it might be
simpler to use relative layouts.This can be done using a RelativeLayout view, as shown
in Listing 4.3.The layout is shown in Figure 4.7.

Listing 4.3 RelativeLayout example

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:id="@+id/mid" android:text="middle"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerInParent="true"/>

<TextView android:id="@+id/high" android:text="high"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_above="@id/mid"/>

<TextView android:id="@+id/low" android:text="low"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_below="@id/mid"/>

<TextView android:id="@+id/left" android:text="left"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignBottom="@id/high"

android:layout_toLeftOf="@id/low"/>

</RelativeLayout>

Figure 4.7 Four text views from the
RelativeLayout example.

���������������

ptg

90 Chapter 4 User Interface Layout

Table 4.2 Possible Rules for Children in a Relative Layout

Relative Layout Rule
XML Attribute (All Start with
the android: Tag) Java Constant

Align this view’s edge
relative to anchor view’s
edge

layout_above

layout_below

layout_toRightOf

layout_toLeftOf

ABOVE

BELOW

RIGHT_OF

LEFT_OF

Align this view’s edge
with anchor view’s edge

layout_alignTop

layout_alignBottom

layout_alignRight

layout_alignLeft

ALIGN_TOP

ALIGN_BOTTOM

ALIGN_RIGHT

ALIGN_LEFT

Align this view’s text
baseline with anchor
view’s text baseline

layout_alignBaseline ALIGN_BASELINE

Align this view’s edge
with parent view’s edge

layout_alignParentTop

layout_alignParentBottom

layout_alignParentRight

layout_alignParentLeft

ALIGN_PARENT_TOP

ALIGN_PARENT_BOTTOM

ALIGN_PARENT_RIGHT

ALIGN_PARENT_LEFT

Center this view within
parent

layout_centerInParent

layout_centerHorizontal

layout_centerVertical

CENTER_IN_PARENT

CENTER_HORIZONTAL

CENTER_VERTICAL

The explanation of these attributes and a list of the different available rules for relative
layout are collected in Table 4.2. Because every layout can have portions declared in XML
files and other portions in Java code, both methods of referring to layouts are shown.The
first three rows of the table show attributes that need to point to a view ID, and the last
two rows show attributes that are boolean.

Recipe: Declaring a Layout Programmatically
The XML layout framework in Android is the preferred method for enabling general
device changes and simple development. However, sometimes it is useful to change some
layout aspects programmatically—using Java, for example. In fact, the entire layout can be

���������������

ptg

91Views and ViewGroups

declared using Java. For illustration, a portion of the previous recipe’s layout is shown
implemented as Java code in Listing 4.4. It should be stressed that not only is coding lay-
out in Java cumbersome, but it is also discouraged because it does not take advantage of
the modular approach to resource directories where a layout can be changed simply with-
out modification of Java code, as discussed in the “Specifying Alternate Resources” recipe.

Listing 4.4 src/com/cookbook/programmaticlayout/ProgrammaticLayout.java

package com.cookbook.programmatic_layout;

import android.app.Activity;

import android.os.Bundle;

import android.view.ViewGroup;

import android.view.ViewGroup.LayoutParams;

import android.widget.RelativeLayout;

import android.widget.TextView;

public class ProgrammaticLayout extends Activity {

private int TEXTVIEW1_ID = 100011;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Here is an alternative to: setContentView(R.layout.main);

final RelativeLayout relLayout = new RelativeLayout(this);

relLayout.setLayoutParams(new RelativeLayout.LayoutParams(

LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT));

TextView textView1 = new TextView(this);

textView1.setText("middle");

textView1.setTag(TEXTVIEW1_ID);

RelativeLayout.LayoutParams text1layout = new

RelativeLayout.LayoutParams(LayoutParams.WRAP_CONTENT,

LayoutParams.WRAP_CONTENT);

text1layout.addRule(RelativeLayout.CENTER_IN_PARENT);

relLayout.addView(textView1, text1layout);

TextView textView2 = new TextView(this);

textView2.setText("high");

RelativeLayout.LayoutParams text2Layout = new

RelativeLayout.LayoutParams(LayoutParams.WRAP_CONTENT,

LayoutParams.WRAP_CONTENT);

text2Layout.addRule(RelativeLayout.ABOVE, TEXTVIEW1_ID);

relLayout.addView(textView2, text2Layout);

setContentView(relLayout);

}

}

���������������

ptg

92 Chapter 4 User Interface Layout

Recipe: Updating a Layout from a Separate Thread
As discussed in Chapter 3,“Threads, Services, Receivers, and Alerts,” when a time-con-
suming activity is being run, care must be taken to ensure the UI thread stays responsive.
This is done by creating a separate thread for the time-consuming task and letting the UI
thread continue at high priority. If the separate thread subsequently needs to update the
UI, a handler can be used to post updates to the UI thread.

This recipe uses a button to trigger a time-consuming computation in two parts and
updates to the screen when each part is done.The layout, represented by the XML in
Listing 4.5, consists of status text called computation_status and a trigger button called
action. It utilizes the strings defined in strings.xml, as shown in Listing 4.6.

Listing 4.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:id="@+id/computation_status"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello" android:textSize="36sp"

android:textColor="#000" />

<Button android:text="@string/action"

android:id="@+id/action"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

Listing 4.6 res/layout/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello World, HandlerUpdateUi!</string>

<string name="app_name">HandlerUpdateUi</string>

<string name="action">Press to Start</string>

<string name="start">Starting...</string>

<string name="first">First Done</string>

<string name="second">Second Done</string>

</resources>

The steps to update the UI from a background thread are

1. Initialize a handle to the UI object that updates by the background thread. (Here, it
is called av.)

���������������

ptg

93Views and ViewGroups

2. Define a runnable function (here, it is called mUpdateResults) that updates the UI
as needed.

3. Declare a handler to handle the messages between threads. (Here, it is called
mHandler.)

4. In the background thread, set flags as appropriate to communicate the change in
status. (Here, the text_string and background_color are to be changed.)

5. In the background thread, have the handler post the UI update function to the
main thread.

The activity with these steps is shown in Listing 4.7.

Listing 4.7 src/com/cookbook/handler_ui/HandlerUpdateUi.java

package com.cookbook.handler_ui;

import android.app.Activity;

import android.graphics.Color;

import android.os.Bundle;

import android.os.Handler;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class HandlerUpdateUi extends Activity {

TextView av; //UI reference

int text_string = R.string.start;

int background_color = Color.DKGRAY;

final Handler mHandler = new Handler();

// Create runnable for posting results to the UI thread

final Runnable mUpdateResults = new Runnable() {

public void run() {

av.setText(text_string);

av.setBackgroundColor(background_color);

}

};

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

av = (TextView) findViewById(R.id.computation_status);

Button actionButton = (Button) findViewById(R.id.action);

actionButton.setOnClickListener(new View.OnClickListener() {

���������������

ptg

94 Chapter 4 User Interface Layout

public void onClick(View view) {

do_work();

}

});

}

//example of a computationally intensive action with UI updates

private void do_work() {

Thread thread = new Thread(new Runnable() {

public void run() {

text_string=R.string.start;

background_color = Color.DKGRAY;

mHandler.post(mUpdateResults);

computation(1);

text_string=R.string.first;

background_color = Color.BLUE;

mHandler.post(mUpdateResults);

computation(2);

text_string=R.string.second;

background_color = Color.GREEN;

mHandler.post(mUpdateResults);

}

});

thread.start();

}

final static int SIZE=1000; //large enough to take some time

double tmp;

private void computation(int val) {

for(int ii=0; ii<SIZE; ii++)

for(int jj=0; jj<SIZE; jj++)

tmp=val*Math.log(ii+1)/Math.log1p(jj+1);

}

}

Text Manipulation
In views that incorporate text, such as TextView, EditText, and Button, the text is repre-
sented in the XML layout file by the android:text element.As discussed in the begin-
ning of this chapter, it is good practice to initialize this with a string defined in the strings

���������������

ptg

95Text Manipulation

Table 4.3 Useful TextView Attributes with Default Values in Bold in the Last Column

TextView Attribute XML Element Java Method
Possible and
Default Values

Display string android:text setText(CharSequence) Any string

Font size android:textSize setTextSize(float) Any dimension

Font color android:textColor setTextColor(int) Any color

Background color N/A setBackgroundColor(int) Any color

Font style android:textStyle setTypeface(Typeface) bold

italic

bold italic

Font type android:typeface setTypeface(Typeface) normal

sans

serif

monospace

Text placement in
display area

android:gravity setGravity(int) top

bottom

left

right

(more...)

XML file, so that all strings are contained in a single place.Therefore, a way to add text to
an UI element, such as TextView, looks like the following:

<TextView android:text="@string/myTextString"

android:id="@+id/my_text_label"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

The default font depends on Android device and user preferences.To specify the exact
font, use the elements shown in Table 4.3.

Recipe: Setting and Changing Text Attributes
This recipe changes the color of displayed text when a button is clicked. It can easily be
extended to change the font size or style instead, as discussed at the end of this recipe.

The main layout is simply a TextView and Button arranged in a vertical
LinearLayout, as shown in Listing 4.8.The text is identified as mod_text and displays the
string changed_text defined in the strings.xml file, as shown in Listing 4.9.The button
is identified as change and displays the string button_text from the strings XML file.

���������������

ptg

96 Chapter 4 User Interface Layout

Listing 4.8 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:text="@string/changed_text"

android:textSize="48sp"

android:id="@+id/mod_text"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<Button android:text="@string/button_text"

android:textSize="48sp"

android:id="@+id/change"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

Listing 4.9 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">ChangeFont</string>

<string name="changed_text">Rainbow Connection</string>

<string name="button_text">Press to change the font color</string>

</resources>

The activity shown in Listing 4.10 utilizes the main.xml layout and identifies the
TextView handle to the mod_text ID.Then the button’s OnClickListener is overriden
to set the text color described in Table 4.3.The possible color resources are defined in a
global colors.xml file, as shown in Listing 4.11.As defined, the colors are red, green, and
blue, but they are named functionally as the start, mid, and last.This provides an easy way
to change the colors later without needing to change their handle names.

Listing 4.10 src/com/cookbook/change_font/ChangeFont.java

package com.cookbook.change_font;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class ChangeFont extends Activity {

TextView tv;

private int color_vals[]={R.color.start, R.color.mid, R.color.last};

int idx=0;

���������������

ptg

97Text Manipulation

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.mod_text);

Button changeFont = (Button) findViewById(R.id.change);

changeFont.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

tv.setTextColor(getResources().getColor(color_vals[idx]));

idx = (idx+1)%3;

}

});

}

}

Listing 4.11 res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="start">#f00</color>

<color name="mid">#0f0</color>

<color name="last">#00f</color>

</resources>

This recipe can be modified to change the text size (or text style) easily. For example, the
color_vals[] would change to size_vals[] and point to the R.dimen resources:

private int size_vals[]={R.dimen.small, R.dimen.medium, R.dimen.large};

tv.setTextSize(getResources().getDimension(size_vals[idx]));

Also, instead of the colors.xml file, the dimens.xml file would be used, as shown in
Listing 4.12.

Listing 4.12 Example of Similar Usage for the dimens.xml File

<?xml version="1.0" encoding="utf-8"?>

<resources>

<dimen name="small">12sp</dimen>

<dimen name="medium">24sp</dimen>

<dimen name="large">48sp</dimen>

</resources>

To use this recipe to change the text string instead, the color_vals[] would change to
text_vals[] and point to the R.string resources as follows:

private int text_vals[]={R.string.first_text,

R.string.second_text, R.string.third_text};

tv.setText(getBaseContext().getString(text_vals[idx]));

���������������

ptg

98 Chapter 4 User Interface Layout

Table 4.4 Useful EditText Attributes in Addition to Those in Table 4.3. Again the
Default Values Are in Bold in the Last Column.

EditText Attribute XML Element
Possible and Default
Values

Minimum number of lines to display android:minLines Any integer

Maximum number of lines to display android:maxLines Any integer

Hint text to show when display empty android:hint Any string

The strings.xml file would then be used, as shown in Listing 4.13.

Listing 4.13 Example of Similar Usage for the strings.xml File

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">ChangeFont</string>

<string name="changed_text">Rainbow Connection</string>

<string name="button_text">Press To Change the Font Color</string>

<string name="first_text">First</string>

<string name="second_text">Second</string>

<string name="third_text">Third</string>

</resources>

Recipe: Providing Text Entry
The EditText class provides a simple view for user input. It can be declared just like a
TextView with the most useful attributes shown in Table 4.4.Although each does have a
corresponding Java method, it is less illuminating to show those here.

Input type android:inputType text

textCapSentences

textAutoCorrect

textAutoComplete

textEmailAddress

textNoSuggestions

textPassword

number

phone

date

time

(more...)

���������������

ptg

99Text Manipulation

For example, using the following XML code in a layout file shows a text entry window
with “Type text here” displayed in grayed out text as a hint. On devices without a key-
board or on those where the keyboard is hidden, selecting the Edit window brings up the
soft keyboard for text entry, as shown in Figure 4.8.

<EditText android:id="@+id/text_result"

android:inputType="text"

android:textSize="30sp"

android:hint="Type text here"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

Figure 4.8 Text entry with soft keyboard.

���������������

ptg

100 Chapter 4 User Interface Layout

Figure 4.9 Examples of utilizing different soft keyboards when
inputText is set as “phone” or “textEmailAddress”.

By using android:inputType="phone" or ="textEmailAddress", the soft keyboard for
phone number entry or the soft keyboard for email address entry display when the user
selects the Input window.These are shown in Figure 4.9 with appropriately changed
hint text.

One more note:The text entry method can be specified as shown in Table 4.4 to auto-
matically capitalize each sentence as typed, automatically correct mistyped words, or turn
off word suggestions during typing. Control over these choices might be useful depend-
ing on the text entry situation.

Recipe: Creating a Form
A form is a graphical layout with areas that can take text input or selection. For text
input, an EditText object can be used.After it is declared, some Java code needs to cap-
ture the text entry at run-time.This is done as shown in Listing 4.14. Note that the con-
tent of the text entry textResult in this example should not be modified.A copy of the
content can be made in case modification is needed.

���������������

ptg

101Other Widgets: From Buttons to Seek Bars

Listing 4.14 Capturing Text from an EditText Object

CharSequence phoneNumber;

EditText textResult = (EditText) findViewById(R.id.text_result);

textResult.setOnKeyListener(new OnKeyListener() {

public boolean onKey(View v, int keyCode, KeyEvent event) {

// register the text when "enter" is pressed

if ((event.getAction() == KeyEvent.ACTION_DOWN) &&

(keyCode == KeyEvent.KEYCODE_ENTER)) {

// grab the text for use in the activity

phoneNumber = textResult.getText();

return true;

}

return false;

}

});

Returning true from the onKey method indicates to the super function that the key press
event was consumed (utilized), and there is no need to process further.

To provide user selection of different options normally used in forms, the use of stan-
dard widgets such as checkboxes, radio buttons, and drop-down selection menus are
implemented using widgets as shown in the next section.

Other Widgets: From Buttons to Seek Bars
The Android system provides some standard graphical widgets that developers can utilize
to create a cohesive user experience across applications.The most common ones are

n Button—A rectangular graphic that registers when the screen is touched within its
bounds. It can contain user-provided text or images.

n CheckBox—A button with a checkmark graphic and description text that can be tog-
gled on or off when touched.The ToggleButton is similar and also discussed here.

n RadioButton—A button with a dot graphic that can be selected when touched,
but cannot then be turned off. Multiple radio buttons can be grouped together
into a RadioGroup, which allows only one radio button of the group to be selected
at a time.

n Spinner—A button showing the current selection and an arrow graphic to denote
a drop-down menu.When the spinner is touched, the list of possible values displays
and when a new selection is made, it is displayed in the spinner.

n ProgressBar—A bar that lights up to visually indicate the percentage of progress
(and optionally secondary progress) in an operation. It is not interactive. If a quanti-
tative measure of progress cannot be determined, it can be set in indeterminate
mode, which shows a rotating circular motion instead.

���������������

ptg

102 Chapter 4 User Interface Layout

Figure 4.10 Example results of
android:scaleType for image views.

n SeekBar—An interactive progress bar that allows progress to be dragged and
changed.This is useful to show media playback, for example. It can show how
much of the media has been played, and a user can drag to move to an earlier or
later place in the file.

The following recipes provide some practical examples of these widgets.

Recipe: Using Image Buttons in a Table Layout
Buttons were introduced in Chapter 2. Like any view, a background image can be added
to a button using the android:background attribute. However, using the special
ImageButton widget provides some additional layout flexibility. It specifies an image
using the android:src attribute as follows:

<ImageButton android:id="@+id/imagebutton0"

android:src="@drawable/android_cupcake"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

When used in this way, the image shows on top of a button widget.The ImageButton
inherits image placement from the ImageView widget using android:scaleType. Possible
values and how they modify a given image are illustrated in Figure 4.10.

���������������

ptg

103Other Widgets: From Buttons to Seek Bars

In addition, some other possible manipulations used with image buttons are

n Using android:padding to keep buttons from overlapping or to add space be-
tween them

n Setting android:background to null (which is @null in the XML layout file) to
hide the button and show only the image

When the button is hidden, by default, there is no visual feedback that an image button
was pressed.This can be rectified by creating a drawable XML file that contains just a
selector element:

<?xml version="1.0" encoding="utf-8"?>

<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable="@drawable/myImage_pressed"

android:state_pressed="true" />

<item android:drawable="@drawable/myImage_focused"

android:state_focused="true" />

<item android:drawable="@drawable/myImage_normal" />

</selector>

This specifies three different images depending on whether the button is pressed, in focus,
or just a normal state.The three different images for these cases should also reside in the
drawable resource directory (such as res/drawable-mdpi/).Then, the selector file can be
specified as the android:src of an ImageButton.

When multiple image buttons are placed together in a layout, it is often useful to uti-
lize the table layout, which is also shown in this recipe.The TableLayout view group is
similar to a LinearLayout with vertical orientation.Then, multiple rows can be specified
using the TableRow view group for each row.The example layout shown in Listing 4.15
specifies an ImageButton and TextView view in each row, producing the screen layout
shown in Figure 4.11.

Listing 4.15 res/layout/ibutton.xml

<?xml version="1.0" encoding="utf-8"?>

<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TableRow>

<ImageButton android:id="@+id/imagebutton0"

android:src="@drawable/android_cupcake"

android:scaleType="fitXY"

android:background="@null"

android:padding="5dip"

android:layout_width="wrap_content"

android:layout_height="90dip" />

<TextView android:text="Cupcake"

���������������

ptg

104 Chapter 4 User Interface Layout

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow>

<ImageButton android:id="@+id/imagebutton1"

android:src="@drawable/android_donut"

android:scaleType="fitXY"

android:background="@null"

android:padding="5dip"

android:layout_width="wrap_content"

android:layout_height="90dip" />

<TextView android:text="Donut"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow>

<ImageButton android:id="@+id/imagebutton2"

android:src="@drawable/android_eclair"

android:scaleType="fitXY"

android:background="@null"

android:padding="5dip"

android:layout_width="wrap_content"

android:layout_height="90dip" />

<TextView android:text="Eclair"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow>

<ImageButton android:id="@+id/imagebutton3"

android:src="@drawable/android_froyo"

android:scaleType="fitXY"

android:background="@null"

android:padding="5dip"

android:layout_width="wrap_content"

android:layout_height="90dip" />

<TextView android:text="FroYo"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

<TableRow>

<ImageButton android:id="@+id/imagebutton4"

android:src="@drawable/android_gingerbread"

android:scaleType="fitXY"

android:background="@null"

android:padding="5dip"

android:layout_width="wrap_content"

android:layout_height="90dip" />

<TextView android:text="Gingerbread"

���������������

ptg

105Other Widgets: From Buttons to Seek Bars

Figure 4.11 TableLayout of ImageButtons
and TextViews.

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</TableRow>

</TableLayout>

Recipe: Using Check Boxes and Toggle Buttons
Check boxes have a predetermined checkmark graphic, colors for selection, and colors for
behavior when pressed.This provides a unifying look and feel across Android applications.
However, if a custom graphic to denote selection is required, the setButtonDrawable()
method can be used.

Sticking with the check box example here, the CheckBox widget needs to be declared
in a layout file, as shown in Listing 4.16.The android:text attribute displays as a label
after the checkbox. For illustration, a few text views are also added to the layout.

Listing 4.16 res/layout/ckbox.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

���������������

ptg

106 Chapter 4 User Interface Layout

android:layout_height="fill_parent">

<CheckBox android:id="@+id/checkbox0"

android:text="Lettuce"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<CheckBox android:id="@+id/checkbox1"

android:text="Tomato"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<CheckBox android:id="@+id/checkbox2"

android:text="Cheese"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<TextView android:text="Lettuce, Tomato, Cheese choices:"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<TextView android:id="@+id/status"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

The views in the layout file can be associated with view instances in the Java file, as
shown in Listing 4.17. Here, a private inner class is used to register the toppings of a sand-
wich.All three checkboxes have an onClickListener, which keeps track of the changes
to the toppings, and this is updated to the text view as an example.The final output with
some sample selections is shown in Figure 4.12.

Listing 4.17 src/com/cookbook/layout_widgets/CheckBoxExample.java

package com.cookbook.layout_widgets;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.CheckBox;

import android.widget.TextView;

public class CheckBoxExample extends Activity {

private TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.ckbox);

tv = (TextView) findViewById(R.id.status);

class Toppings {private boolean LETTUCE, TOMATO, CHEESE;}

���������������

ptg

107Other Widgets: From Buttons to Seek Bars

final Toppings sandwichToppings = new Toppings();

final CheckBox checkbox[] = {

(CheckBox) findViewById(R.id.checkbox0),

(CheckBox) findViewById(R.id.checkbox1),

(CheckBox) findViewById(R.id.checkbox2)};

checkbox[0].setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

if (((CheckBox) v).isChecked()) {

sandwichToppings.LETTUCE = true;

} else {

sandwichToppings.LETTUCE = false;

}

tv.setText(""+sandwichToppings.LETTUCE + " "

+sandwichToppings.TOMATO + " "

+sandwichToppings.CHEESE + " ");

}

});

checkbox[1].setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

if (((CheckBox) v).isChecked()) {

sandwichToppings.TOMATO = true;

} else {

sandwichToppings.TOMATO = false;

}

tv.setText(""+sandwichToppings.LETTUCE + " "

+sandwichToppings.TOMATO + " "

+sandwichToppings.CHEESE + " ");

}

});

checkbox[2].setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

if (((CheckBox) v).isChecked()) {

sandwichToppings.CHEESE = true;

} else {

sandwichToppings.CHEESE = false;

}

tv.setText(""+sandwichToppings.LETTUCE + " "

+sandwichToppings.TOMATO + " "

+sandwichToppings.CHEESE + " ");

}

});

}

}

���������������

ptg

108 Chapter 4 User Interface Layout

Toggle buttons are similar to checkboxes, but use a different graphic. In addition, the text
is incorporated into the button rather than put alongside. Listing 4.16 (and Listing 4.17
for that matter) can be modified to replace each CheckBox with a ToggleButton:

<ToggleButton android:id="@+id/ToggleButton0"

android:textOff="No Lettuce"

android:textOn="Lettuce"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

Note the android:text element is replaced by an android:textOff (defaults to "OFF" if
not specified) and android:textOn (defaults to "ON" if not specified) element for display
depending on the selection state of the toggle button.An example output is shown in
Figure 4.13.

Recipe: Using Radio Buttons
A radio button is like a checkbox that cannot be unchecked. Selecting one radio button
unselects a previously selected one. Usually a group of radio buttons is put into a
RadioGroup view group that ensures only one button of the collection is selected at a
time.This is shown in the layout file in Listing 4.18.

Figure 4.12 Checkbox example showing unselected
and selected widgets.

���������������

ptg

109Other Widgets: From Buttons to Seek Bars

Figure 4.13 ToggleButton example with unselected
and selected widgets.

Listing 4.18 res/layout/rbutton.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<RadioGroup android:id="@+id/RadioGroup01"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<RadioButton android:text="Republican"

android:id="@+id/RadioButton02"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<RadioButton android:text="Democrat"

android:id="@+id/RadioButton03"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<RadioButton android:text="Independent"

android:id="@+id/RadioButton01"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</RadioGroup>

</LinearLayout>

An example activity is similar to the previous recipe in Listing 4.17, but with CheckBox
replaced by RadioButton. Listing 4.18’s layout is shown in Figure 4.14.

���������������

ptg

110 Chapter 4 User Interface Layout

Figure 4.14 RadioGroup example showing
three radio buttons.

Recipe: Creating a Drop-Down Menu
A drop-down menu is called a spinner. It is a widget defined in a normal screen layout
such as the one shown in Listing 4.19.

Listing 4.19 res/layout/spinner.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"

android:layout_height="wrap_content">

<Spinner android:id="@+id/spinner"

android:prompt="@string/ocean_prompt"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

The title of the drop-down menu can be specified with the android:prompt attribute. It
needs to be defined in a strings.xml file, for example:

<string name="ocean_prompt">Choose your favorite ocean</string>

The spinner also needs a separate layout defined for the drop-down menu appearance,
such as Listing 4.20 for the spinner_entry.xml.

Listing 4.20 res/layout/spinner_entry.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView

xmlns:android="http://schemas.android.com/apk/res/android"

���������������

ptg

111Other Widgets: From Buttons to Seek Bars

android:gravity="center"

android:textColor="#000"

android:textSize="40sp"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

</TextView>

Note the spinner entry layout is not limited to text, but can include images or any object
supported in layouts.

The activity to call the spinner needs to declare an Adapter to fill the drop-down
menu with the view from the spinner entry layout file.An example of such an activity is
shown in Listing 4.21.

Listing 4.21 src/com/cookbook/layout_widgets/SpinnerExample.java

package com.cookbook.layout_widgets;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.Spinner;

public class SpinnerExample extends Activity {

private static final String[] oceans = {

"Pacific", "Atlantic", "Indian",

"Arctic", "Southern" };

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.spinner);

Spinner favoriteOcean = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<String> mAdapter = new

ArrayAdapter<String>(this, R.layout.spinner_entry, oceans);

mAdapter.setDropDownViewResource(R.layout.spinner_entry);

favoriteOcean.setAdapter(mAdapter);

}

}

In the previous example, the spinner entries are defined by the string array oceans[],
which is passed to the ArrayAdapter constructor. This implementation assumes
the spinner entries do not change during run-time.To specify a more general case where
spinner entries can be added or manipulated, mAdapter needs to be built using its add()

���������������

ptg

112 Chapter 4 User Interface Layout

method.The bold part of code in the onCreate() method would then become the fol-
lowing:

Spinner favoriteOcean = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<String> mAdapter = new

ArrayAdapter<String>(this, R.layout.spinner_entry);

mAdapter.setDropDownViewResource(R.layout.spinner_entry);

for(int idx=0; idx<oceans.length; idx++)

mAdapter.add(oceans[idx]);

favoriteOcean.setAdapter(mAdapter);

This ArrayAdapter allows the add(), remove(), and clear() methods to change the
selection list during run-time, and getView() to improve performance speed by reusing
layout views for each spinner entry.

Recipe: Using a Progress Bar
This recipe demonstrates the usage of a progress bar by taking Listing 4.7 from “Recipe:
Updating a Layout from a Separate Thread,” which used text to show progress in a computa-
tion, and it shows the progress graphically instead.This is done by adding a progress bar
object to the layout, such as:

<ProgressBar android:id="@+id/ex_progress_bar"

style="?android:attr/progressBarStyleHorizontal"

android:layout_width="270px"

android:layout_height="50px"

android:progress="0"

android:secondaryProgress="0" />

As the progress changes, the android:progress attribute can change to show a bright
orange bar going across the screen.The optional android:secondaryProgress attribute
shows a lighter colored orange bar that can be used to indicate a progress milestone, for
example.

The activity to update the progress bar is shown in Listing 4.22. It is similar to Listing
4.7, but it uses a ProgressBar instead. Here the update results function updates the
progress attribute from Java.

Listing 4.22 src/com/cookbook/handler_ui/HandlerUpdateUi.java

package com.cookbook.handler_ui;

import android.app.Activity;

import android.os.Bundle;

import android.os.Handler;

import android.view.View;

import android.widget.Button;

import android.widget.ProgressBar;

���������������

ptg

113Other Widgets: From Buttons to Seek Bars

public class HandlerUpdateUi extends Activity {

private static ProgressBar m_progressBar; //UI reference

int percent_done = 0;

final Handler mHandler = new Handler();

// Create runnable for posting results to the UI thread

final Runnable mUpdateResults = new Runnable() {

public void run() {

m_progressBar.setProgress(percent_done);

}

};

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

m_progressBar = (ProgressBar) findViewById(R.id.ex_progress_bar);

Button actionButton = (Button) findViewById(R.id.action);

actionButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

do_work();

}

});

}

//example of a computationally intensive action with UI updates

private void do_work() {

Thread thread = new Thread(new Runnable() {

public void run() {

percent_done = 0;

mHandler.post(mUpdateResults);

computation(1);

percent_done = 50;

mHandler.post(mUpdateResults);

computation(2);

percent_done = 100;

mHandler.post(mUpdateResults);

}

});

thread.start();

}

final static int SIZE=1000; //large enough to take some time

double tmp;

���������������

ptg

114 Chapter 4 User Interface Layout

private void computation(int val) {

for(int ii=0; ii<SIZE; ii++)

for(int jj=0; jj<SIZE; jj++)

tmp=val*Math.log(ii+1)/Math.log1p(jj+1);

}

}

If the updates need to be shown more often, use the postDelayed method of the handler
instead of the post method and add a postDelayed to the end of the runnable update
results function (similar to what was used in “Scheduling a Runnable Task from the Main
Thread recipe” in Chapter 3).

Recipe: Using a SeekBar
A seek bar is similar to a progress bar that can take user input to change the amount of
progress. Current progress is indicated by a small sliding box called a thumb.A user can
click and drag the thumb to visually indicate the new place to set the progress.The main
activity is shown in Listing 4.23.

Listing 4.23 src/com/cookbook/seekbar/SeekBarEx.java

package com.cookbook.seekbar;

import android.app.Activity;

import android.os.Bundle;

import android.widget.SeekBar;

public class SeekBarEx extends Activity {

private SeekBar m_seekBar;

boolean advancing = true;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

m_seekBar = (SeekBar) findViewById(R.id.SeekBar01);

m_seekBar.setOnSeekBarChangeListener(new

SeekBar.OnSeekBarChangeListener() {

public void onProgressChanged(SeekBar seekBar,

int progress, boolean fromUser) {

if(fromUser) count = progress;

}

public void onStartTrackingTouch(SeekBar seekBar) {}

public void onStopTrackingTouch(SeekBar seekBar) {}

});

���������������

ptg

115Other Widgets: From Buttons to Seek Bars

Thread initThread = new Thread(new Runnable() {

public void run() {

show_time();

}

});

initThread.start();

}

int count;

private void show_time() {

for(count=0; count<100; count++) {

m_seekBar.setProgress(count);

try {

Thread.sleep(100);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

The widget declaration in the layout XML file is shown in Listing 4.24. Note that rather
than use the default thumb button, a cupcake image is used, as shown in Figure 4.15.

Listing 4.24 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="24sp" android:text="Drag the cupcake"

android:layout_alignParentTop="true" />

<SeekBar android:id="@+id/SeekBar01"

android:layout_centerInParent="true"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:thumb="@drawable/pink_cupcake_no_bg" />

</RelativeLayout>

���������������

ptg

116 Chapter 4 User Interface Layout

Figure 4.15 Seek bar with a custom picture of a
cupcake as the thumb.

���������������

ptg

5
User Interface Events

The two aspects of a user interface are screen layout and event handling. Chapter 4,
“User Interface Layout,” discussed how layouts are made up of View objects, such as text
and buttons.This chapter shows how to handle events from a user, such as physical key
presses, touch events, and menu navigation. It also shows how to utilize a few advanced
user interface (UI) libraries, namely gestures and 3D graphics.

Event Handlers and Event Listeners
Most user interaction with an Android device is captured by the system and sent to a cor-
responding callback method. For example, if the physical Back button is pressed, the
onBackPressed() method is called.These events can be handled by extending the class
and overriding the methods, called event handlers.

User interaction with View or ViewGroup objects can also support event listeners.These
are methods that wait for the registered event and then trigger the system to send the
event information to the corresponding callback method. For example, the
setOnClickListener() event listener can be registered for a button and when it is
pressed, the onClick() method is called.

Event listeners are the preferred method when available because they avoid the class
extension overhead. Furthermore, an Activity implementing an event listener gets a call-
back for all the layout objects it contains, allowing for more concise code. Both event lis-
teners and event handlers are demonstrated in this chapter within the context of handling
physical key press events and screen touch events.

Recipe: Intercepting a Physical Key Press
A standard Android device has multiple physical keys that can trigger events, as listed in
Table 5.1.

���������������

ptg

118 Chapter 5 User Interface Events

Table 5.1 The Possible Physical Keys on an Android Device

Physical Key KeyEvent Description

Power button KEYCODE_POWER Turns on the device or wakes it
from sleep; brings UI to the lock
screen

BACK key KEYCODE_BACK Navigates to the previous screen

MENU key KEYCODE_MENU Shows the menu for the active
application

HOME key KEYCODE_HOME Navigates to the home screen

SEARCH key KEYCODE_SEARCH Launches a search in the active
application

Camera button KEYCODE_CAMERA Launches the camera

Volume button KEYCODE_VOLUME_UP

KEYCODE_VOLUME_DOWN

Controls volume of the media by
context (voice when in a phone
call, music when in media
playback, or ringer volume)

DPAD KEYCODE_DPAD_CENTER

KEYCODE_DPAD_UP

KEYCODE_DPAD_DOWN

KEYCODE_DPAD_LEFT

KEYCODE_DPAD_RIGHT

Directional pad on some devices

Trackball - Directional joystick on some
devices

Keyboard KEYCODE_0, ...,

KEYCODE_9, KEYCODE_A,

..., KEYCODE_Z

Pull-out keyboard on some
devices

Media button KEYCODE_HEADSETHOOK Headset Play/Pause button

The system first sends any KeyEvent to the appropriate callback method in the in-focus
activity or view.These callback methods are

n onKeyUp(), onKeyDown(), onKeyLongPress()—Physical key press callbacks
n onTrackballEvent(), onTouchEvent()—Trackball and touchscreen press callbacks
n onFocusChanged()—Called when the view gains or loses focus

These can be overridden by the application to customize with different actions. For
example, to turn off the camera button (to avoid accidental presses), just consume the
event in the onKeyDown() callback method for the Activity.This is done by intercepting
the method for the event KeyEvent.KEYCODE_CAMERA and returning true:

���������������

ptg

119Event Handlers and Event Listeners

public boolean onKeyDown(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_CAMERA) {

return true; // consume event, hence do nothing on camera button

}

return super.onKeyDown(keyCode, event);

}

By consuming the event, it does not get passed on to other Android components.There
are a few exceptions to this:

n The Power button and HOME key are intercepted by the system and do not reach
the application for customization.

n The BACK, MENU, HOME, and SEARCH keys should not intercept the
KeyDown but instead the KeyUp.This coincides with Android 2.0 suggestions be-
cause these buttons might not be physical keys in other platforms.

Listing 5.1 shows a variety of examples of intercepting physical key presses, including the
following:

n The Camera and DPAD left buttons are intercepted in onKeyDown() to show a
message to the screen, and then it is consumed (by returning true).

n The Volume Up button is intercepted to show a message to the screen, but it is not
consumed (returning false) and hence also actually increases the volume.

n The SEARCH key is intercepted in onKeyDown(), and the startTracking()
method is used to track it through to the key up where a message is sent to the screen.

n The BACK key is intercepted in onBackPressed().

A note on the latter:An Android guideline for usability is that the BACK key should gen-
erally not be customized. However, if needed for some reason in an activity or dialog,
there is a separate callback method available with Application Programming Interface
(API) level 5 (Eclair) and higher to intercept the BACK key: onBackPressed().

For backward compatibility with earlier Software Development Kits (SDKs), the
KeyEvent.KEYCODE_BACK can be intercepted, and the onBackPressed() method can be
explicitly called for earlier SDKs, as shown in Listing 5.1. (Note, this code can only be
compiled with Android 2.0 or higher due to the explicit mention of Eclair, but it is back-
ward compatible at run-time on all devices.) To intercept the BACK key in a view (not
shown here) requires using the startTracking() method, which is similar to the
SEARCH key example in Listing 5.1.

Listing 5.1 src/com/cookbook/PhysicalKeyPress.java

package com.cookbook.physkey;

import android.app.Activity;

import android.os.Bundle;

import android.view.KeyEvent;

import android.widget.Toast;

���������������

ptg

120 Chapter 5 User Interface Events

public class PhysicalKeyPress extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

public boolean onKeyDown(int keyCode, KeyEvent event) {

switch (keyCode) {

case KeyEvent.KEYCODE_CAMERA:

Toast.makeText(this, "Pressed Camera Button",

Toast.LENGTH_LONG).show();

return true;

case KeyEvent.KEYCODE_DPAD_LEFT:

Toast.makeText(this, "Pressed DPAD Left Button",

Toast.LENGTH_LONG).show();

return true;

case KeyEvent.KEYCODE_VOLUME_UP:

Toast.makeText(this, "Pressed Volume Up Button",

Toast.LENGTH_LONG).show();

return false;

case KeyEvent.KEYCODE_SEARCH:

//example of tracking through to the KeyUp

if(event.getRepeatCount() == 0)

event.startTracking();

return true;

case KeyEvent.KEYCODE_BACK:

// Make new onBackPressed compatible with earlier SDK's

if (android.os.Build.VERSION.SDK_INT

< android.os.Build.VERSION_CODES.ECLAIR

&& event.getRepeatCount() == 0) {

onBackPressed();

}

}

return super.onKeyDown(keyCode, event);

}

public void onBackPressed() {

Toast.makeText(this, "Pressed BACK Key",

Toast.LENGTH_LONG).show();

}

public boolean onKeyUp(int keyCode, KeyEvent event) {

if (keyCode == KeyEvent.KEYCODE_SEARCH && event.isTracking()

&& !event.isCanceled()) {

Toast.makeText(this, "Pressed SEARCH Key",

Toast.LENGTH_LONG).show();

return true;

���������������

ptg

121Event Handlers and Event Listeners

}

return super.onKeyUp(keyCode, event);

}

}

Recipe: Building Menus
A developer can implement three types of menus in Android, and this recipe creates an
example of each:

n Options menu—The main menu for an Activity that displays when the MENU
key is pressed. It contains an Icon menu and possibly an Expanded menu when the
More menu item is selected.

n Context Menu—A floating list of menu items that displays when a view is long
pressed.

n Submenu—A floating list of menu items that displays when a menu item is
pressed.

The Options menu is created the first time the MENU key is pressed in an activity.This
launches the onCreateOptionsMenu() method that usually contains Menu methods,
such as:

menu.add(GROUP_DEFAULT, MENU_ADD, 0, "Add")

.setIcon(R.drawable.icon);

The first argument of the add() method labels the group of the menu item. Groups of
items can be manipulated together.The second argument is an integer ID that represents
the menu item. It is passed to the callback function to determine which menu item was
selected.The third argument is the order of the item in the menu. If it is not used, the
order falls back to the order the items were added to the Menu object.The last argument is
the text that displays with the menu item. It can be a String or a string resource such as
R.string.myLabel.This is the only menu that also supports adding icons to the menu
choices using the setIcon() method.

This method is called only once, and the menu does not need to be built again for the
rest of the activity. However, the onPrepareOptionsMenu() can be used if any of the
menu options need to change during run-time.

When an item from the options menu is clicked, the onOptionsItemSelected()
method is called.This passes the selected item ID, and a switch statement can be used to
determine which option was selected.

For this recipe, the options are to add a note, delete a note, or send a note.These are
represented as simple mock functions that increment a counter (itemNum), decrement a
counter, or show a Toast to the screen of the current counter value.To show an example
of changing the menu options at run-time, the delete option is available only if a note

���������������

ptg

122 Chapter 5 User Interface Events

has already been added in the past.This is done by grouping the delete option in a sepa-
rate group and hiding the group when the itemNum is zero.The activity is shown in
Listing 5.2.

Listing 5.2 src/com/cookbook/building_menus/BuildingMenus.java

package com.cookbook.building_menus;

import android.app.Activity;

import android.os.Bundle;

import android.view.ContextMenu;

import android.view.Menu;

import android.view.MenuItem;

import android.view.SubMenu;

import android.view.View;

import android.view.ContextMenu.ContextMenuInfo;

import android.widget.TextView;

import android.widget.Toast;

public class BuildingMenus extends Activity {

private final int MENU_ADD=1, MENU_SEND=2, MENU_DEL=3;

private final int GROUP_DEFAULT=0, GROUP_DEL=1;

private final int ID_DEFAULT=0;

private final int ID_TEXT1=1, ID_TEXT2=2, ID_TEXT3=3;

private String[] choices = {"Press Me", "Try Again", "Change Me"};

private static int itemNum=0;

private static TextView bv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

bv = (TextView) findViewById(R.id.focus_text);

registerForContextMenu((View) findViewById(R.id.focus_text));

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

menu.add(GROUP_DEFAULT, MENU_ADD, 0, "Add")

.setIcon(R.drawable.icon); //example of adding icon

menu.add(GROUP_DEFAULT, MENU_SEND, 0, "Send");

menu.add(GROUP_DEL, MENU_DEL, 0, "Delete");

return super.onCreateOptionsMenu(menu);

}

���������������

ptg

123Event Handlers and Event Listeners

@Override

public boolean onPrepareOptionsMenu(Menu menu) {

if(itemNum>0) {

menu.setGroupVisible(GROUP_DEL, true);

} else {

menu.setGroupVisible(GROUP_DEL, false);

}

return super.onPrepareOptionsMenu(menu);

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch(item.getItemId()) {

case MENU_ADD:

create_note();

return true;

case MENU_SEND:

send_note();

return true;

case MENU_DEL:

delete_note();

return true;

}

return super.onOptionsItemSelected(item);

}

@Override

public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenuInfo menuInfo) {

super.onCreateContextMenu(menu, v, menuInfo);

if(v.getId() == R.id.focus_text) {

SubMenu textMenu = menu.addSubMenu("Change Text");

textMenu.add(0, ID_TEXT1, 0, choices[0]);

textMenu.add(0, ID_TEXT2, 0, choices[1]);

textMenu.add(0, ID_TEXT3, 0, choices[2]);

menu.add(0, ID_DEFAULT, 0, "Original Text");

}

}

@Override

public boolean onContextItemSelected(MenuItem item) {

switch(item.getItemId()) {

case ID_DEFAULT:

bv.setText(R.string.hello);

return true;

case ID_TEXT1:

case ID_TEXT2:

case ID_TEXT3:

���������������

ptg

124 Chapter 5 User Interface Events

bv.setText(choices[item.getItemId()-1]);

return true;

}

return super.onContextItemSelected(item);

}

void create_note() { // mock code to create note

itemNum++;

}

void send_note() { // mock code to send note

Toast.makeText(this, "Item: "+itemNum,

Toast.LENGTH_SHORT).show();

}

void delete_note() { // mock code to delete note

itemNum—;

}

}

The activity in Listing 5.2 also shows an example of a context menu and submenu.A
TextView focus_text is added to the layout, as shown in Listing 5.3, and registered for a
context menu using the registerForContextMenu() function in the onCreate()
method of the activity.

When the view is pressed and held, the onCreateContextMenu() method is called to
build the context menu. Here, the SubMenu is implemented using the addSubMenu()
method for the Menu instance.The submenu items are specified along with the main
menu items, and the onContextItemSelected() method is called when an item from
either menu is clicked. Here, the recipe shows a change of text based on the menu choice.

Listing 5.3 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView android:id="@+id/focus_text"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="40sp"

android:text="@string/hello"

/>

</LinearLayout>

Figures 5.1 and 5.2 show how the menus look for the different cases.

���������������

ptg

125Event Handlers and Event Listeners

Figure 5.1 Options menu (top) and an added
option at run-time (bottom).

Figure 5.2 The Context menu that displays with a long click on the text
(left) and the submenu for the Change Text option that provides three

alternate strings for the text view (right).

���������������

ptg

126 Chapter 5 User Interface Events

Recipe: Defining Menus in XML
Menus can also be built in XML and inflated with the appropriate callback method from
the previous recipe.This is a useful context for larger menus. Dynamic choices can still be
handled in Java.

Menu files are usually kept in the res/menu/ resources directory. For example, to
make the context menu from the previous chapter, just create the XML file with nested
menus, as shown in Listing 5.4.

Listing 5.4 res/menu/context_menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/submenu" android:title="Change Text">

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/text1" android:title="Press Me" />

<item android:id="@+id/text2" android:title="Try Again" />

<item android:id="@+id/text3" android:title="Change Me" />

</menu>

</item>

<item android:id="@+id/orig" android:title="Original Text" />

</menu>

Then, inflate this XML in the creation of the menu, and reference the IDs from the item
selection method.The two methods in Listing 5.2 that would be replaced are shown in
Listing 5.5.

Listing 5.5 Changed Methods in the Main Activity

@Override

public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenuInfo menuInfo) {

super.onCreateContextMenu(menu, v, menuInfo);

MenuInflater inflater = getMenuInflater();

inflater.inflate(R.menu.context_menu, menu);

}

@Override

public boolean onContextItemSelected(MenuItem item) {

switch(item.getItemId()) {

case R.id.orig:

bv.setText(R.string.hello);

return true;

case R.id.text1:

bv.setText(choices[0]);

return true;

case R.id.text2:

bv.setText(choices[1]);

���������������

ptg

127Event Handlers and Event Listeners

return true;

case R.id.text3:

bv.setText(choices[2]);

return true;

}

return super.onContextItemSelected(item);

}

Recipe: Utilizing the SEARCH Key
If an activity in the in-focus application is defined to be searchable, the SEARCH key
invokes it.A menu choice or equivalent should always be a redundant way to call the
searchable activity to accommodate devices without a SEARCH key.The menu choice
simply needs a call to onSearchRequested().

The searchable activity ideally should be declared as singleTop launch mode, as dis-
cussed in Chapter 2,“Application Basics:Activities and Intents.”This enables multiple
searches to take place without clogging the stack with multiple instances of the activity.
The manifest file would have the following lines:

<activity android:name=".SearchDialogExample"

android:launchMode="singleTop" >

<intent-filter>

<action android:name="android.intent.action.SEARCH" />

</intent-filter>

<meta-data android:name="android.app.searchable"

android:resource="@xml/my_search"/>

</activity>

Here, the XML file referencing the detail is shown in Listing 5.6.

Listing 5.6 res/xml/my_search.xml

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

android:label="@string/app_name" android:hint="Search MyExample Here" >

</searchable>

This recipe provides a search interface.When the application starts, the simplest main
activity is shown in Listing 5.7 with a default main.xml file.

Listing 5.7 src/com/cookbook/search_diag/MainActivity.java

package com.cookbook.search_diag;

import android.app.Activity;

import android.os.Bundle;

���������������

ptg

128 Chapter 5 User Interface Events

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

Then, if the SEARCH key is selected, the searchable activity is activated.The onCreate()
method checks for whether the intent is an ACTION_SEARCH, and if it is, it acts on it.
Listing 5.8 shows the main activity, which just displays the query to the screen.

Listing 5.8 src/com/cookbook/search_diag/SearchDialogExample.java

package com.cookbook.search_diag;

import android.app.Activity;

import android.app.SearchManager;

import android.content.Intent;

import android.os.Bundle;

import android.widget.Toast;

public class SearchDialogExample extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Intent intent = getIntent();

if (Intent.ACTION_SEARCH.equals(intent.getAction())) {

String query = intent.getStringExtra(SearchManager.QUERY);

Toast.makeText(this, "The QUERY: " + query,

Toast.LENGTH_LONG).show();

}

}

}

Recipe: Reacting to Touch Events
Any interaction with the screen, be it a touch or a navigated selection using the trackball,
is an interaction with the corresponding view at that location. Because the screen layout
is a hierarchy of views, as described in Chapter 4, the system starts at the top of this hier-
archy and passes the event down the tree until it is handled by a view. Some events, if not
consumed, can continue to pass down the tree after being handled.

���������������

ptg

129Event Handlers and Event Listeners

Listing 5.9 shows a button called ex_button that handles both a click and a long click
(press and hold) by setting two event listeners.When the event occurs, the corresponding
callback method is called and displays a Toast to the screen to show the method was
triggered.

Listing 5.9 src/com/cookbook/touch_examples/TouchExamples.java

package com.cookbook.touch_examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.View.OnLongClickListener;

import android.widget.Button;

import android.widget.Toast;

public class TouchExamples extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button ex = (Button) findViewById(R.id.ex_button);

ex.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

Toast.makeText(TouchExamples.this, "Click",

Toast.LENGTH_SHORT).show();

}

});

ex.setOnLongClickListener(new OnLongClickListener() {

public boolean onLongClick(View v) {

Toast.makeText(TouchExamples.this, "LONG Click",

Toast.LENGTH_SHORT).show();

return true;

}

});

}

}

The layout providing the button is given in Listing 5.10.

Listing 5.10 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

���������������

ptg

130 Chapter 5 User Interface Events

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<Button android:id="@+id/ex_button"

android:text="Press Me"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

For compactness, this callback method is defined in place in Listing 5.9, but it can also be
defined explicitly for readability and reusability:

View.OnClickListener myTouchMethod = new View.OnClickListener() {

public void onClick(View v) {

//insert relevant action here

}

};

ex.setOnClickListener(myTouchMethod);

Another way is to have the activity implement the OnClickListener interface.Then, the
method is at the activity level and avoids an extra class load:

public class TouchExamples extends Activity implements OnClickListener {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button ex = (Button) findViewById(R.id.ex_button);

ex.setOnClickListener(this);

}

public void onClick(View v) {

if(v.getId() == R.id.directory_button) {

// insert relevant action here

}

}

}

This implementation of the onClick() method at the activity level helps to show how a
parent view can handle touch events for multiple children.

Recipe: Listening for Fling Gestures
As discussed in the beginning of the chapter, each view has an onTouchEvent() method
associated with it. In this recipe, it is overridden with a gesture detector that sets a gesture
listener.The possible gestures in the OnGestureListener interface are

���������������

ptg

131Event Handlers and Event Listeners

n onDown()—Notifies when a tap down event occurs
n onFling()—Notifies when a tap down, movement, and matching up event occurs
n onLongPress()—Notifies when a long press occurs
n onScroll()—Notifies when a scroll occurs
n onShowPress()—Notifies when a tap down occurs before any movement or release
n onSingleTapUp()—Notifies when a tap up event occurs

When only a subset of gestures are needed, the SimpleOnGestureListener class can
be extended instead. It returns false for any of the previous methods not explicitly
implemented.

A fling consists of two events: a touch down (the first MotionEvent) and a release (the
second MotionEvent). Each motion event has a specified location on the screen given by
an (x,y) coordinate pair, where x is the horizontal axis and y is the vertical axis.The (x,y)
velocity of the event is also provided.

Listing 5.11 shows an activity that implements the onFling() method.When the
movement is large enough (here, defined as 60 pixels), the event is consumed and appends
the statement describing the event to the screen.

Listing 5.11 src/com/cookbook/fling_ex/FlingExample.java

package com.cookbook.fling_ex;

import android.app.Activity;

import android.os.Bundle;

import android.view.GestureDetector;

import android.view.MotionEvent;

import android.view.GestureDetector.SimpleOnGestureListener;

import android.widget.TextView;

public class FlingExample extends Activity {

private static final int LARGE_MOVE = 60;

private GestureDetector gestureDetector;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.text_result);

gestureDetector = new GestureDetector(this,

new SimpleOnGestureListener() {

@Override

public boolean onFling(MotionEvent e1, MotionEvent e2,

float velocityX, float velocityY) {

���������������

ptg

132 Chapter 5 User Interface Events

if (e1.getY() - e2.getY() > LARGE_MOVE) {

tv.append("\nFling Up with velocity " + velocityY);

return true;

} else if (e2.getY() - e1.getY() > LARGE_MOVE) {

tv.append("\nFling Down with velocity " + velocityY);

return true;

} else if (e1.getX() - e2.getX() > LARGE_MOVE) {

tv.append("\nFling Left with velocity " + velocityX);

return true;

} else if (e2.getX() - e1.getX() > LARGE_MOVE) {

tv.append("\nFling Right with velocity " + velocityX);

return true;

}

return false;

} });

}

@Override

public boolean onTouchEvent(MotionEvent event) {

return gestureDetector.onTouchEvent(event);

}

}

The TextView that contains the descriptive text in the previous activity is defined in the
main XML layout shown in Listing 5.12.

Listing 5.12 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:id="@+id/text_result"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:textSize="16sp"

android:text="Fling right, left, up, or down\n" />

</LinearLayout>

���������������

ptg

133Event Handlers and Event Listeners

Recipe: Using Multitouch
A multitouch event is when more than one pointer (such as a finger) touches the screen
at the same time.This is identified by using a touch listener OnTouchListener, which
receives multiple types of motion events:

n ACTION_DOWN—A press gesture has started with a primary pointer (finger).
n ACTION_POINTER_DOWN—A secondary pointer (finger) has gone down.
n ACTION_MOVE—A change in press location has changed during a press gesture.
n ACTION_POINTER_UP—A secondary pointer was released.
n ACTION_UP—A primary pointer was released, and the press gesture has completed.

This recipe displays an image to the screen and allows the multitouch events to zoom
the image in or out. It also checks for single pointer events to drag the picture around the
screen.This is shown in the activity in Listing 5.13. First, the activity implements the
OnTouchListener that is set in the onCreate() method.When a touch event occurs, the
onTouch() method checks the motion event and acts as follows:

n If a first pointer touches the screen, the touch state is declared to be a drag motion,
and the touch-down position and Matrix are saved.

n If a second pointer touches the screen when the first pointer is still down, the dis-
tance between the two touch-down positions is calculated.As long as it is larger than
some threshold (50 pixels here), the touch state is declared to be a zoom motion, and
the distance and mid-point of the two events, as well as the Matrix, are saved.

n If a move occurs, the figure is translated for a single touch-down event and scaled
for a multitouch event.

n If a pointer goes up, the touch state is declared to be no motion.

Listing 5.13 src/com/cookbook/multitouch/MultiTouch.java

package com.cookbook.multitouch;

import android.app.Activity;

import android.graphics.Matrix;

import android.os.Bundle;

import android.util.FloatMath;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;

import android.widget.ImageView;

���������������

ptg

134 Chapter 5 User Interface Events

public class MultiTouch extends Activity implements OnTouchListener {

// Matrix instances to move and zoom image

Matrix matrix = new Matrix();

Matrix eventMatrix = new Matrix();

// possible touch states

final static int NONE = 0;

final static int DRAG = 1;

final static int ZOOM = 2;

int touchState = NONE;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

ImageView view = (ImageView) findViewById(R.id.imageView);

view.setOnTouchListener(this);

}

final static float MIN_DIST = 50;

static float eventDistance = 0;

static float centerX =0, centerY = 0;

@Override

public boolean onTouch(View v, MotionEvent event) {

ImageView view = (ImageView) v;

switch (event.getAction() & MotionEvent.ACTION_MASK) {

case MotionEvent.ACTION_DOWN:

//primary touch event starts: remember touch down location

touchState = DRAG;

centerX = event.getX(0);

centerY = event.getY(0);

eventMatrix.set(matrix);

break;

case MotionEvent.ACTION_POINTER_DOWN:

//secondary touch event starts: remember distance and center

eventDistance = calcDistance(event);

calcMidpoint(centerX, centerY, event);

if (eventDistance > MIN_DIST) {

eventMatrix.set(matrix);

touchState = ZOOM;

}

break;

���������������

ptg

135Event Handlers and Event Listeners

case MotionEvent.ACTION_MOVE:

if (touchState == DRAG) {

//single finger drag, translate accordingly

matrix.set(eventMatrix);

matrix.setTranslate(event.getX(0) - centerX,

event.getY(0) - centerY);

} else if (touchState == ZOOM) {

//multi-finger zoom, scale accordingly around center

float dist = calcDistance(event);

if (dist > MIN_DIST) {

matrix.set(eventMatrix);

float scale = dist / eventDistance;

matrix.postScale(scale, scale, centerX, centerY);

}

}

// Perform the transformation

view.setImageMatrix(matrix);

break;

case MotionEvent.ACTION_UP:

case MotionEvent.ACTION_POINTER_UP:

touchState = NONE;

break;

}

return true;

}

private float calcDistance(MotionEvent event) {

float x = event.getX(0) - event.getX(1);

float y = event.getY(0) - event.getY(1);

return FloatMath.sqrt(x * x + y * y);

}

private void calcMidpoint(float centerX, float centerY,

MotionEvent event) {

centerX = (event.getX(0) + event.getX(1))/2;

centerY = (event.getY(0) + event.getY(1))/2;

}

}

���������������

ptg

136 Chapter 5 User Interface Events

The layout that specifies a picture to zoom is shown in Listing 5.14. For this recipe, it is
taken as the icon.png, which is automatically created in Eclipse; however, it can be
replaced by any picture.

Listing 5.14 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent" >

<ImageView android:id="@+id/imageView"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:src="@drawable/icon"

android:scaleType="matrix" >

</ImageView>

</FrameLayout>

Advanced User Interface Libraries
Some user interface features require complex algorithmic computations. Optimizing this
for an embedded system can sometimes be challenging and time-consuming. It is in a
developer’s best interest to leverage any available UI libraries.The following two recipes
provide some illustrative examples to use as a starting point.

Recipe: Using Gestures
A gesture is a hand-drawn shape on a touch screen.The android.gesture package pro-
vides libraries to recognize and handle these in a simple way. First, every SDK has a sam-
ple program that can be used to build a collection of gestures in
platforms/android-2.0/samples/GestureBuilder/. The Gesture Builder project can be
imported and run on an Android device. It produces a file called /sdcard/gestures,
which can be copied off of the device and used as a raw resource for this recipe.

As an example, a file of handwritten numbers can be generated as shown in
Figure 5.3. Multiple gestures can have the same name, so providing different examples
of the same gesture is useful to improve pattern recognition.

After this file is created for all numbers from 0 to 9 in all variants of interest, it can be
copied to res/raw/numbers, for example.The layout is shown in Listing 5.15, and the
main activity is shown in Listing 5.16. In the activity, the GestureLibrary is initialized
with this raw resource.

This recipe adds a GestureOverlayView on top of the screen and implements an
OnGesturePerformedListener.When a gesture is drawn, the gesture is passed to the
onGesturePerformed() method, which compares it with all the gestures in the library

���������������

ptg

137Advanced User Interface Libraries

Figure 5.3 The Gesture Builder application,
which comes with the Android SDK, can be used to

create a gesture library.

and returns an ordered list of predictions starting with the most likely. Each prediction has
the name as defined in the library and the score for how correlated the gesture is to the
input gesture.As long as the first entry has a score greater than one, it is generally a match.

Listing 5.15 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:gravity="center_horizontal" android:textSize="20sp"

android:text="Draw a number"

android:layout_margin="10dip"/>

���������������

ptg

138 Chapter 5 User Interface Events

Figure 5.4 The gesture recognition example that
shows prediction scores.

<android.gesture.GestureOverlayView

android:id="@+id/gestures"

android:layout_width="fill_parent"

android:layout_height="0dip"

android:layout_weight="1.0" />

<TextView android:id="@+id/prediction"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:gravity="center_horizontal" android:textSize="20sp"

android:text=""

android:layout_margin="10dip"/>

</LinearLayout>

For illustration, this recipe compiles all the predictions in a String and displays them on
the screen.An example output is shown in Figure 5.4.This shows that even though a
visual match is not complete, the partial number can match a library number well.

���������������

ptg

139Advanced User Interface Libraries

Listing 5.16 src/com/cookbook/gestures/Gestures.java

package com.cookbook.gestures;

import java.text.DecimalFormat;

import java.text.NumberFormat;

import java.util.ArrayList;

import android.app.Activity;

import android.gesture.Gesture;

import android.gesture.GestureLibraries;

import android.gesture.GestureLibrary;

import android.gesture.GestureOverlayView;

import android.gesture.Prediction;

import android.gesture.GestureOverlayView.OnGesturePerformedListener;

import android.os.Bundle;

import android.widget.TextView;

public class Gestures extends Activity

implements OnGesturePerformedListener {

private GestureLibrary mLibrary;

private TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.prediction);

mLibrary = GestureLibraries.fromRawResource(this, R.raw.numbers);

if (!mLibrary.load()) finish();

GestureOverlayView gestures =

(GestureOverlayView) findViewById(R.id.gestures);

gestures.addOnGesturePerformedListener(this);

}

public void onGesturePerformed(GestureOverlayView overlay,

Gesture gesture) {

ArrayList<Prediction> predictions = mLibrary.recognize(gesture);

String predList = "";

NumberFormat formatter = new DecimalFormat("#0.00");

for(int i=0; i<predictions.size(); i++) {

Prediction prediction = predictions.get(i);

predList = predList + prediction.name + " "

+ formatter.format(prediction.score) + "\n";

���������������

ptg

140 Chapter 5 User Interface Events

}

tv.setText(predList);

}

}

Recipe: Drawing 3D Images
Android supports the Open Graphics Library for Embedded Systems (OpenGL ES).This
recipe, based on an Android API Demo, shows how to create a three-dimensional pyramid
shape using this library and have it bounce around the screen and spin as it reflects off the
edges.The main activity requires two separate support classes: one to define the shape
shown in Listing 5.17 and one to render the shape shown in Listing 5.18.

Listing 5.17 src/com/cookbook/open_gl/Pyramid.java

package com.cookbook.open_gl;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.IntBuffer;

import javax.microedition.khronos.opengles.GL10;

class Pyramid {

public Pyramid() {

int one = 0x10000;

/* square base and point top to make a pyramid */

int vertices[] = {

-one, -one, -one,

-one, one, -one,

one, one, -one,

one, -one, -one,

0, 0, one

};

/* purple fading to white at the top */

int colors[] = {

one, 0, one, one,

one, 0, one, one,

one, 0, one, one,

one, 0, one, one,

one, one, one, one

};

/* triangles of the vertices above to build the shape */

byte indices[] = {

���������������

ptg

141Advanced User Interface Libraries

0, 1, 2, 0, 2, 3, //square base

0, 3, 4, // side 1

0, 4, 1, // side 2

1, 4, 2, // side 3

2, 4, 3 // side 4

};

// Buffers to be passed to gl*Pointer() functions

ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length*4);

vbb.order(ByteOrder.nativeOrder());

mVertexBuffer = vbb.asIntBuffer();

mVertexBuffer.put(vertices);

mVertexBuffer.position(0);

ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length*4);

cbb.order(ByteOrder.nativeOrder());

mColorBuffer = cbb.asIntBuffer();

mColorBuffer.put(colors);

mColorBuffer.position(0);

mIndexBuffer = ByteBuffer.allocateDirect(indices.length);

mIndexBuffer.put(indices);

mIndexBuffer.position(0);

}

public void draw(GL10 gl) {

gl.glFrontFace(GL10.GL_CW);

gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer);

gl.glColorPointer(4, GL10.GL_FIXED, 0, mColorBuffer);

gl.glDrawElements(GL10.GL_TRIANGLES, 18, GL10.GL_UNSIGNED_BYTE,

mIndexBuffer);

}

private IntBuffer mVertexBuffer;

private IntBuffer mColorBuffer;

private ByteBuffer mIndexBuffer;

}

Note the pyramid has five vertices: four in a square base and one as the raised pointy
top. It is important the vertices are in an order that can be traversed by a line across the
figure (not just randomly listed).The center of the shape is at the origin (0, 0, 0).

The five colors in RGBA form correspond with the vertices; the base vertices are
defined as purple and the top vertex as white.The library gradates the colors to fill in the
shape. Different colors or shading help provide a three-dimensional look.

���������������

ptg

142 Chapter 5 User Interface Events

Figure 5.5 The rotating, bouncing pyramid created with OpenGL ES.

The main draw() method is defined for triangle elements.The square base can be
made of two triangles and each upper side is a triangle, which leads to 6 total triangles or
18 indices.The pyramid is shown in two different perspectives as it bounces around in
Figure 5.5.

Then a separate class can be created to extend GLSurfaceView.Renderer to render this
pyramid using the OpenGL ES library, as shown in Listing 5.18.Three methods need to
be implemented:

n onSurfaceCreated()—One-time initialization of the OpenGL framework
n onSurfaceChanged()—Sets the projection at start-up or when the viewport is

resized
n onDrawFrame()—Draws the graphic image every frame

Listing 5.18 src/com/cookbook/open_gl/PyramidRenderer.java

package com.cookbook.open_gl;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;

���������������

ptg

143Advanced User Interface Libraries

/**

* Render a tumbling Pyramid

*/

class PyramidRenderer implements GLSurfaceView.Renderer {

public PyramidRenderer(boolean useTranslucentBackground) {

mTranslucentBackground = useTranslucentBackground;

mPyramid = new Pyramid();

}

public void onDrawFrame(GL10 gl) {

/* clear the screen */

gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

/* draw a pyramid rotating */

gl.glMatrixMode(GL10.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslatef(mCenter[0], mCenter[1], mCenter[2]);

gl.glRotatef(mAngle, 0, 1, 0);

gl.glRotatef(mAngle*0.25f, 1, 0, 0);

gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);

gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

mPyramid.draw(gl);

mAngle += mAngleDelta;

/* draw it bouncing off the walls */

mCenter[0] += mVel[0];

mCenter[1] += mVel[1];

if(Math.abs(mCenter[0])>4.0f) {

mVel[0] = -mVel[0];

mAngleDelta=(float) (5*(0.5-Math.random()));

}

if(Math.abs(mCenter[1])>6.0f) {

mVel[1] = -mVel[1];

mAngleDelta=(float) (5*(0.5-Math.random()));

}

}

public void onSurfaceChanged(GL10 gl, int width, int height) {

gl.glViewport(0, 0, width, height);

/* Set a new projection when the viewport is resized */

float ratio = (float) width / height;

���������������

ptg

144 Chapter 5 User Interface Events

gl.glMatrixMode(GL10.GL_PROJECTION);

gl.glLoadIdentity();

gl.glFrustumf(-ratio, ratio, -1, 1, 1, 20);

}

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

gl.glDisable(GL10.GL_DITHER);

/* one-time OpenGL initialization */

gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,

GL10.GL_FASTEST);

if (mTranslucentBackground) {

gl.glClearColor(0,0,0,0);

} else {

gl.glClearColor(1,1,1,1);

}

gl.glEnable(GL10.GL_CULL_FACE);

gl.glShadeModel(GL10.GL_SMOOTH);

gl.glEnable(GL10.GL_DEPTH_TEST);

}

private boolean mTranslucentBackground;

private Pyramid mPyramid;

private float mAngle, mAngleDelta=0;

private float mCenter[]={0,0,-10};

private float mVel[]={0.025f, 0.03535227f, 0f};

}

The dynamics of the bouncing ball are captured in the onDrawFrame() method.The
screen is cleared for the new image, and then the pyramid center is set to mCenter[].The
screen is defined as the origin, so the starting point of (0, 0, -10) sets the shape back
from right up against the screen.At each update, the shape is rotated by mAngleDelta and
translates by mVel[].The mVel in the x- and y-direction are set differently enough to
provide a nice diversity of bouncing around the walls.When the shape reaches the edge
of the screen, the velocity sign is switched to have it bounce back.

Finally, the main activity must set the content view to the OpenGL ES object, as
shown in Listing 5.19.The shape movement can be paused and resumed along with the
activity.

Listing 5.19 src/com/cookbook/open_gl/OpenGlExample.java

package com.cookbook.open_gl;

import android.app.Activity;

import android.opengl.GLSurfaceView;

import android.os.Bundle;

���������������

ptg

145Advanced User Interface Libraries

/* Wrapper activity demonstrating the use of GLSurfaceView, a view

* that uses OpenGL drawing into a dedicated surface. */

public class OpenGlExample extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Set our Preview view as the Activity content

mGLSurfaceView = new GLSurfaceView(this);

mGLSurfaceView.setRenderer(new PyramidRenderer(true));

setContentView(mGLSurfaceView);

}

@Override

protected void onResume() {

super.onResume();

mGLSurfaceView.onResume();

}

@Override

protected void onPause() {

super.onPause();

mGLSurfaceView.onPause();

}

private GLSurfaceView mGLSurfaceView;

}

���������������

ptg

This page intentionally left blank

���������������

ptg
Table 6.1 The Supported Media Types in Android 2.2 for Reading and Writing

Media
Type Compression

Android Native
Codec Support Formats

Image None (raw) View BMP

Lossless View GIF, PNG

Lossy Save/View JPEG

Audio
(Music)

None (raw) Record/Play PCM

None (raw) Play WAVE

Lossless No support For example, FLAC

Lossy Play MP3, MP4, AAC, HE-AACv1,
HE-AACv2, Ogg Vorbis

Midi Play MID, XMF, RTTTL, RTX,
OTA, IMY

Audio
(Speech)

Lossy Record/Play AMR-NB

Lossy Play AMR-WB

Video Nearly
Lossless

Play H.264

Lossy Record/Play H.263, MPEG-4 SP

6
Multimedia Techniques

The Android platform provides comprehensive multimedia functionality.This chapter
introduces techniques to manipulate images, record and play back audio, and record and
play back video. Most decoders are supported by Android for reading multimedia, but
only a subset of encoders is available for creating multimedia. Media framework support
in Android 2.2 is summarized in Table 6.1. In particular, note the absence of a lossless
compressed audio format.This will change in future releases.

���������������

ptg

148 Chapter 6 Multimedia Techniques

An application that records any type of media requires setting the appropriate permission
in the AndroidManifest XML file (one or both of the following):

<uses-permission android:name=”android.permission.RECORD_AUDIO”/>

<uses-permission android:name=”android.permission.RECORD_VIDEO”/>

Images
Images local to an application are usually put in the res/drawable/ directory, as discussed
in Chapter 4,“User Interface Layout,” and are packaged with the application.They can be
accessed with the appropriate resource identifier, such as R.drawable.my_picture.
Images on the Android device filesystem can be accessed using the normal Java classes,
such as an InputStream. However, the preferred method in Android to read an image
into memory for manipulation is to use the built-in class BitmapFactory.

BitmapFactory creates Bitmap objects from files, streams, or byte-arrays. For the two
previous examples:

Bitmap myBitmap1 = BitmapFactory.decodeResource(getResources(),

R.drawable.my_picture);

Bitmap myBitmap2 = BitmapFactory.decodeFile(filePath);

After the image is in memory, it can be manipulated using the bitmap methods, such as
getPixel() and setPixel(). However, most images are too large to manipulate full scale
on an embedded device. Instead, consider subsampling the image:

Bitmap bm = Bitmap.createScaledBitmap(myBitmap2, 480, 320, false);

This avoids OutOfMemory run-time errors.

Recipe: Loading an Image for Manipulation
This recipe shows an example of an image cut into four pieces and scrambled before
being displayed to the screen. It also shows how to create a selectable list of images.

When a picture is taken on the device, it is put in the DCIM/Camera/ directory,
which is used as an example image directory in this recipe.The image directory is passed
to the ListFiles activity, which lists all files and returns the one chosen by the user.

The chosen picture is then loaded into memory for manipulation. If the file is too
large, it can be subsampled as it is loaded to save memory; just replace the single bolded
statement in onActivityResult with the following:

BitmapFactory.Options options = new BitmapFactory.Options();

options.inSampleSize = 4;

Bitmap ImageToChange= BitmapFactory.decodeFile(tmp, options);

An inSampleSize of four creates an image 1/16th the size of the original (four times
smaller in each of the pixel dimensions).The limit can be adaptive based on the original
image size.

���������������

ptg

149Images

Another method to save memory is to resize the bitmap in memory before manipula-
tions.This is done using the createScaledBitmap() method, as shown in this recipe.
Listing 6.1 shows the main activity.

Listing 6.1 src/com/cookbook/image_manip/ImageManipulation.java

package com.cookbook.image_manip;

import android.app.Activity;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Bundle;

import android.os.Environment;

import android.widget.ImageView;

public class ImageManipulation extends Activity {

static final String CAMERA_PIC_DIR = "/DCIM/Camera/";

ImageView iv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

iv = (ImageView) findViewById(R.id.my_image);

String ImageDir = Environment.getExternalStorageDirectory()

.getAbsolutePath() + CAMERA_PIC_DIR;

Intent i = new Intent(this, ListFiles.class);

i.putExtra("directory”, ImageDir);

startActivityForResult(i,0);

}

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if(requestCode == 0 && resultCode==RESULT_OK) {

String tmp = data.getExtras().getString("clickedFile");

Bitmap ImageToChange= BitmapFactory.decodeFile(tmp);

process_image(ImageToChange);

}

}

void process_image(Bitmap image) {

Bitmap bm = Bitmap.createScaledBitmap(image, 480, 320, false);

���������������

ptg

150 Chapter 6 Multimedia Techniques

int width = bm.getWidth();

int height = bm.getHeight();

int x= width>>1;

int y= height>>1;

int[] pixels1 = new int[(width*height)];

int[] pixels2 = new int[(width*height)];

int[] pixels3 = new int[(width*height)];

int[] pixels4 = new int[(width*height)];

bm.getPixels(pixels1, 0, width, 0, 0, width>>1, height>>1);

bm.getPixels(pixels2, 0, width, x, 0, width>>1, height>>1);

bm.getPixels(pixels3, 0, width, 0, y, width>>1, height>>1);

bm.getPixels(pixels4, 0, width, x, y, width>>1, height>>1);

if(bm.isMutable()) {

bm.setPixels(pixels2, 0, width, 0, 0, width>>1, height>>1);

bm.setPixels(pixels4, 0, width, x, 0, width>>1, height>>1);

bm.setPixels(pixels1, 0, width, 0, y, width>>1, height>>1);

bm.setPixels(pixels3, 0, width, x, y, width>>1, height>>1);

}

iv.setImageBitmap(bm);

}

}

The associated main layout is shown in Listing 6.2.

Listing 6.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="30sp"

android:text="Scrambled Picture" />

<ImageView android:id="@+id/my_image"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

The secondary activity to list the files in a given directory is shown in Listing 6.3.A File
object is created based on the directory String passed to the activity. If it is a directory,
the files are sorted into reverse chronological order by specifying a new compare()
method based on the lastModified() flag of the files.

���������������

ptg

151Images

If instead an alphabetical list is desired, the sort() method can be used. (This is in the
ListFiles activity, too, but commented out.) The list is then built and displayed on the
screen using a separate layout file R.layout.file_row, which is shown in Listing 6.4.

Listing 6.3 src/com/cookbook/image_manip/ListFiles.java

package com.cookbook.image_manip;

import java.io.File;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Comparator;

import java.util.List;

import android.app.ListActivity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

public class ListFiles extends ListActivity {

private List<String> directoryEntries = new ArrayList<String>();

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Intent i = getIntent();

File directory = new File(i.getStringExtra("directory"));

if (directory.isDirectory()){

File[] files = directory.listFiles();

//sort in descending date order

Arrays.sort(files, new Comparator<File>(){

public int compare(File f1, File f2) {

return -Long.valueOf(f1.lastModified())

.compareTo(f2.lastModified());

}

});

//fill list with files

this.directoryEntries.clear();

for (File file : files){

this.directoryEntries.add(file.getPath());

}

���������������

ptg

152 Chapter 6 Multimedia Techniques

ArrayAdapter<String> directoryList

= new ArrayAdapter<String>(this,

R.layout.file_row, this.directoryEntries);

//alphabetize entries

//directoryList.sort(null);

this.setListAdapter(directoryList);

}

}

@Override

protected void onListItemClick(ListView l, View v, int pos, long id) {

File clickedFile = new File(this.directoryEntries.get(pos));

Intent i = getIntent();

i.putExtra("clickedFile", clickedFile.toString());

setResult(RESULT_OK, i);

finish();

}

}

The associated layout file for the ListFiles activity is shown in Listing 6.4.The
AndroidManifest XML file must declare both the activities, as shown in Listing 6.5.An
example of the output is shown in Figure 6.1.

Listing 6.4 res/layout/file_row.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="20sp"

android:padding="3pt"

/>

Listing 6.5 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.image_manip"

android:versionCode="1" android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".ImageManipulation"

���������������

ptg

153Images

Figure 6.1 Example of the Android image getting
scrambled.

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".ListFiles"

android:screenOrientation="portrait"

android:label="Choose a File">

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="5" />

</manifest>

���������������

ptg

154 Chapter 6 Multimedia Techniques

Audio
There are two distinct frameworks for recording and playing audio.The choice on which
to use depends on the application:

n MediaPlayer/MediaRecorder—This is the standard method to manipulate audio,
but must be file- or stream-based data. Creates its own thread for processing.
SoundPool utilizes this framework.

n AudioTrack/AudioRecorder—Provides direct access to raw audio. Useful to ma-
nipulate audio in memory, write to the buffer while already playing, or any other
usage that does not require a file or stream. It does not create its own thread for
processing.

These methods are shown in the following section in various recipes.

Recipe: Choosing and Playing Back Audio Files
The MediaRecorder and MediaPlayer classes are used to record and play back either
audio or video.This recipe focuses on audio, and the usage is straightforward. For play-
back, the steps are

1. Create an instance of the MediaPlayer:
MediaPlayer m_mediaPlayer = new MediaPlayer();

2. Specify the source of media. It can be created from a raw resource:
m_mediaPlayer = MediaPlayer.create(this, R.raw.my_music);

Another option is to set as a file from the filesystem (which then also needs a pre-
pare statement):
m_mediaPlayer.setDataSource(path);

m_mediaPlayer.prepare();

In any case, these statements need to be surrounded by a try-catch block because
the specified resource might not exist.

3. Start playback of the audio:
m_mediaPlayer.start();

4. When the playback is done, stop the MediaPlayer and release the instance to free
up resources:

m_mediaPlayer.stop();

m_mediaPlayer.release();

This recipe utilizes the same ListFiles activity shown in Listing 6.3 and 6.4 to create a
selectable list of audio files to choose from for playback. It is assumed that audio files are
in the /sdcard/music/ directory of the Android device, but this is configurable.

When the ListFiles activity returns a file, it is initialized as the MediaPlayer media
source, and the method startMP() is called.This starts the MediaPlayer and sets the but-
ton text to show “Pause.” Similarly, the pauseMP() method pauses the MediaPlayer and

���������������

ptg

155Audio

sets the button text to show “Play.” At any time, the user can click the button to pause or
continue the playback of the music.

In general, the MediaPlayer creates its own background thread and does not pause
when the main activity pauses.This is reasonable behavior for a music player, but in gen-
eral, the developer might want control over this.Therefore, for illustration purposes, in
this recipe, the music playback is paused and resumed along with the main activity by
overriding the onPause() and onResume() methods.This is shown in Listing 6.6.

Listing 6.6 src/com/cookbook/audio_ex/AudioExamples.java

package com.cookbook.audio_ex;

import android.app.Activity;

import android.content.Intent;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.os.Environment;

import android.view.View;

import android.widget.Button;

public class AudioExamples extends Activity {

static final String MUSIC_DIR = "/music/";

Button playPauseButton;

private MediaPlayer m_mediaPlayer;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

playPauseButton = (Button) findViewById(R.id.play_pause);

m_mediaPlayer= new MediaPlayer();

String MusicDir = Environment.getExternalStorageDirectory()

.getAbsolutePath() + MUSIC_DIR;

//Show a list of Music files to choose

Intent i = new Intent(this, ListFiles.class);

i.putExtra("directory", MusicDir);

startActivityForResult(i,0);

playPauseButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

if(m_mediaPlayer.isPlaying()) {

���������������

ptg

156 Chapter 6 Multimedia Techniques

//stop and give option to start again

pauseMP();

} else {

startMP();

}

}

});

}

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if(requestCode == 0 && resultCode==RESULT_OK) {

String tmp = data.getExtras().getString("clickedFile");

try {

m_mediaPlayer.setDataSource(tmp);

m_mediaPlayer.prepare();

} catch (Exception e) {

e.printStackTrace();

}

startMP();

}

}

void pauseMP() {

playPauseButton.setText("Play");

m_mediaPlayer.pause();

}

void startMP() {

m_mediaPlayer.start();

playPauseButton.setText("Pause");

}

boolean needToResume = false;

@Override

protected void onPause() {

if(m_mediaPlayer != null && m_mediaPlayer.isPlaying()) {

needToResume = true;

pauseMP();

}

super.onPause();

}

���������������

ptg

157Audio

@Override

protected void onResume() {

super.onResume();

if(needToResume && m_mediaPlayer != null) {

startMP();

}

}

}

The associated main XML layout with the play/pause button is shown in Listing 6.7.

Listing 6.7 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<Button android:id="@+id/play_pause"

android:text="Play"

android:textSize="20sp"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

Recipe: Recording Audio Files
Recording audio using MediaRecorder is similar to playback from the previous recipe,
except a few more things need to be specified (note, DEFAULT can also be used and is the
same as the first choice in these lists):

n MediaRecorder.AudioSource:
n MIC—Built-in microphone
n VOICE_UPLINK—Transmitted audio during voice call
n VOICE_DOWNLINK—Received audio during voice call
n VOICE_CALL—Both uplink and downlink audio during voice call
n CAMCORDER—Microphone associated with camera if available
n VOICE_RECOGNITION—Microphone tuned for voice recognition if available

n MediaRecorder.OutputFormat:
n THREE_GPP—3GPP media file format
n MPEG_4—MPEG4 media file format
n AMR_NB—Adaptive multirate narrowband file format

���������������

ptg

158 Chapter 6 Multimedia Techniques

n MediaRecorder.AudioEncoder:
n AMR_NB—Adaptive multirate narrowband vocoder

The steps to record audio are

1. Create an instance of the MediaRecorder:
MediaRecorder m_Recorder = new MediaRecorder();

2. Specify the source of media, for example the microphone:
m_Recorder.setAudioSource(MediaRecorder.AudioSource.MIC);

3. Set the output file format and encoding, such as:

m_Recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

m_Recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

4. Set the path for the file to be saved:
m_Recorder.setOutputFile(path);

5. Prepare and start the recording:
m_Recorder.prepare();

m_Recorder.start();

These steps for audio recording can be used just as they were in the previous recipe for
playback.

Recipe: Manipulating Raw Audio
The MediaRecorder/MediaPlayer framework is useful for most audio uses, but to
manipulate raw audio straight from the microphone, process it without saving to a file,
and/or play back raw audio, use AudioRecord/AudioTrack instead. First, set the permis-
sion in the AndroidManifest XML file:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Then, the steps to record are

1. Create an AudioRecord instance, specifying the following to the constructor:

n Audio source—Use one of the MediaRecorder.AudioSource choices de-
scribed in the previous recipe; for example, use
MediaRecorder.AudioSource.MIC.

n Sampling frequency in Hz—Use 44100 for CD-quality audio or half-rates
such as 22050 or 11025 (which are sufficient for voice).

n Channel configuration—Use AudioFormat.CHANNEL_IN_STEREO to record
stereo sound and CHANNEL_IN_MONO to record mono sound.

n Audio encoding—Use either AudioFormat.ENCODING_PCM_8BIT for 8-bit
quantization or AudioFormat.ENCODING_PCM_16BIT for 16-bit.

���������������

ptg

159Audio

n Buffer size in Bytes—This is the total size of allotted memory in static mode
or the size of chunks used in streaming mode.This must be at least
getMinBufferSize() bytes.

2. Start recording from the AudioRecord instance.

3. Read audio data to memory audioData[] using one of the following methods:
read(short[] audioData, int offsetInShorts, int sizeInShorts)

read(byte[] audioData, int offsetInBytes, int sizeInBytes)

read(ByteBuffer audioData, int sizeInBytes)

4. Stop recording.

For example, the following is suitable to record voice from the built-in microphone to a
memory buffer myRecordedAudio, which can be declared a short[] (for instance, 16 bits
each sample). Note that 11,025 samples per second and a buffer size of 10,000 samples
means this recording is a little less than a second long:

short[] myRecordedAudio = new short[10000];

AudioRecord audioRecord = new AudioRecord(

MediaRecorder.AudioSource.MIC, 11025,

AudioFormat.CHANNEL_IN_MONO,

AudioFormat.ENCODING_PCM_16BIT, 10000);

audioRecord.startRecording();

audioRecord.read(myRecordedAudio, 0, 10000);

audioRecord.stop();

Then, the steps to playback are

1. Create an AudioTrack instance specifying the following to the constructor:

n Stream type—Use AudioManager.STREAM_MUSIC for capturing from the mi-
crophone or playback to the speaker. Other choices are STREAM_VOICE_CALL,
STREAM_SYSTEM, STREAM_RING, and STREAM_ALARM.

n Sampling frequency in Hz—This has the same meaning as during recording.

n Channel configuration—Use AudioFormat.CHANNEL_OUT_STEREO to play
back stereo sound.There are many other choices such as CHANNEL_OUT_MONO
and CHANNEL_OUT_5POINT1 (for surround sound).

n Audio encoding—This has the same meaning as recording.

n Buffer size in Bytes—This is the size of chunks of data to play at a time.

n Buffer mode—Use AudioTrack.MODE_STATIC for short sounds that can fully
fit in memory, avoiding transfer overheads. Otherwise, use
AudioTrack.MODE_STREAM to write data to hardware in buffer chunks.

���������������

ptg

160 Chapter 6 Multimedia Techniques

2. Start playback from the AudioTrack instance.

3. Write memory audioData[] to hardware using one of the following methods:
write(short[] audioData, int offsetInShorts, int sizeInShorts)

write(byte[] audioData, int offsetInBytes, int sizeInBytes)

4. Stop playback (optional).

For example, the following is suitable to play back the voice data in the previous record
example:

AudioTrack audioTrack = new AudioTrack(

AudioManager.STREAM_MUSIC, 11025,

AudioFormat.CHANNEL_OUT_MONO,

AudioFormat.ENCODING_PCM_16BIT, 4096,

AudioTrack.MODE_STREAM);

audioTrack.play();

audioTrack.write(myRecordedAudio, 0, 10000);

audioTrack.stop();

This recipe utilizes these two methods to record audio to memory and play it back.The
layout specifies two buttons on the screen: one to record audio and another to play back
that recorded audio, as declared in the main layout file shown in Listing 6.8.

Listing 6.8 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:id="@+id/status"

android:text="Ready" android:textSize="20sp"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<Button android:id="@+id/record"

android:text="Record for 5 seconds"

android:textSize="20sp" android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<Button android:id="@+id/play"

android:text="Play" android:textSize="20sp"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

</LinearLayout>

The main activity shown in Listing 6.9 first creates an OnClickListener for these but-
tons to record or play back the in-memory audio buffer.The onClick() callback method
creates the appropriate background thread because neither AudioTrack or AudioRecord

���������������

ptg

161Audio

should be run in the UI thread. For illustration, two different methods of creating the
thread are shown:The record_thread() has a local thread with the UI updated through
a Handler, and the play thread utilizes the main activity’s run() method.

The buffer is kept in memory. For illustration, the recording is kept to 5 seconds.

Listing 6.9 src/com/cookbook/audio_ex/AudioExamplesRaw.java

package com.cookbook.audio_ex;

import android.app.Activity;

import android.media.AudioFormat;

import android.media.AudioManager;

import android.media.AudioRecord;

import android.media.AudioTrack;

import android.media.MediaRecorder;

import android.os.Bundle;

import android.os.Handler;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class AudioExamplesRaw extends Activity implements Runnable {

private TextView statusText;

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

statusText = (TextView) findViewById(R.id.status);

Button actionButton = (Button) findViewById(R.id.record);

actionButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

record_thread();

}

});

Button replayButton = (Button) findViewById(R.id.play);

replayButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

Thread thread = new Thread(AudioExamplesRaw.this);

thread.start();

}

});

}

���������������

ptg

162 Chapter 6 Multimedia Techniques

String text_string;

final Handler mHandler = new Handler();

// Create runnable for posting

final Runnable mUpdateResults = new Runnable() {

public void run() {

updateResultsInUi(text_string);

}

};

private void updateResultsInUi(String update_txt) {

statusText.setText(update_txt);

}

private void record_thread() {

Thread thread = new Thread(new Runnable() {

public void run() {

text_string = "Starting";

mHandler.post(mUpdateResults);

record();

text_string = "Done";

mHandler.post(mUpdateResults);

}

});

thread.start();

}

private int audioEncoding = AudioFormat.ENCODING_PCM_16BIT;

int frequency = 11025; //Hz

int bufferSize = 50*AudioTrack.getMinBufferSize(frequency,

AudioFormat.CHANNEL_OUT_MONO, audioEncoding);

// Create new AudioRecord object to record the audio.

public AudioRecord audioRecord = new AudioRecord(

MediaRecorder.AudioSource.MIC,

frequency, AudioFormat.CHANNEL_IN_MONO,

audioEncoding, bufferSize);

// Create new AudioTrack object w/same parameters as AudioRecord obj

public AudioTrack audioTrack = new AudioTrack(

AudioManager.STREAM_MUSIC, frequency,

AudioFormat.CHANNEL_OUT_MONO,

audioEncoding, 4096,

AudioTrack.MODE_STREAM);

short[] buffer = new short[bufferSize];

���������������

ptg

163Audio

public void record() {

try {

audioRecord.startRecording();

audioRecord.read(buffer, 0, bufferSize);

audioRecord.stop();

} catch (Throwable t) {

Log.e("AudioExamplesRaw","Recording Failed");

}

}

public void run() { //play audio using runnable Activity

audioTrack.play();

//this alone works: audioTrack.write(buffer, 0, bufferSize);

//but for illustration showing another way to play using a loop:

int i=0;

while(i<bufferSize) {

audioTrack.write(buffer, i++, 1);

}

return;

}

@Override

protected void onPause() {

if(audioTrack!=null) {

if(audioTrack.getPlayState()==AudioTrack.PLAYSTATE_PLAYING) {

audioTrack.pause();

}

}

super.onPause();

}

}

Recipe: Using Sound Resources Efficiently
To keep the smaller memory requirements of compressed audio files but also the benefit
of lower-latency playback of raw audio files, the SoundPool class can be used.This uses
the MediaPlayer service to decode audio and provides methods to repeat sound buffers
and also speed them up or slow them down.

Usage is similar to other sound recipes: initialize, load a resource, play, and release.
However, note that the SoundPool launches a background thread, so a play() right after
a load() might not produce sound if the resource does not have time to load. Similarly, a
release() called right after a play() releases the resource before it can be played.There-
fore, it is best to tie SoundPool resources to activity lifecycle events (such as onCreate and

���������������

ptg

164 Chapter 6 Multimedia Techniques

onPause) and tie the playback of SoundPool resources to a user-generated event (such as
a button press or advancement in a game).

Using the same layout file as in Listing 6.7, the main activity of this recipe is shown in
Listing 6.10.A button press triggers the SoundPool to repeat a drum beat eight times (the
initial time plus seven repeats).Also, the rate alternates from half-speed to double-speed
between button presses. Up to ten streams can play at once, which means ten quick but-
ton presses can launch ten drum beats playing simultaneously.

Listing 6.10 src/com/cookbook/audio_ex/AudioExamplesSP.java

package com.cookbook.audio_ex;

import android.app.Activity;

import android.media.AudioManager;

import android.media.SoundPool;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class AudioExamplesSP extends Activity {

static float rate = 0.5f;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Button playDrumButton = (Button) findViewById(R.id.play_pause);

final SoundPool mySP = new

SoundPool(10, AudioManager.STREAM_MUSIC, 0);

final int soundId = mySP.load(this, R.raw.drum_beat, 1);

playDrumButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view) {

rate = 1/rate;

mySP.play(soundId, 1f, 1f, 1, 7, rate);

}

});

}

}

���������������

ptg

165Video

Recipe: Adding Media and Updating Paths
After an application creates a newly recorded audio file, it can be registered with the sys-
tem as available for use.This is done using the MediaStore class. For example, after an
audio file myFile is saved, Listing 6.11 shows how to register it as a possible ringtone,
notification, and alarm, but not to be seen by an MP3 player (because IS_MUSIC is false).

Listing 6.11 Example of Registering an Audio File to the System

//reload MediaScanner to search for media and update paths

sendBroadcast(new Intent(Intent.ACTION_MEDIA_MOUNTED,

Uri.parse("file://"

+ Environment.getExternalStorageDirectory())));

ContentValues values = new ContentValues();

values.put(MediaStore.MediaColumns.DATA, myFile.getAbsolutePath());

values.put(MediaStore.MediaColumns.TITLE, myFile.getName());

values.put(MediaStore.MediaColumns.TIMESTAMP,

System.currentTimeMillis());

values.put(MediaStore.MediaColumns.MIME_TYPE,

recorder.getMimeContentType());

values.put(MediaStore.Audio.Media.ARTIST, SOME_ARTIST_HERE);

values.put(MediaStore.Audio.Media.IS_RINGTONE, true);

values.put(MediaStore.Audio.Media.IS_NOTIFICATION, true);

values.put(MediaStore.Audio.Media.IS_ALARM, true);

values.put(MediaStore.Audio.Media.IS_MUSIC, false);

ContentResolver contentResolver = new ContentResolver();

Uri base = MediaStore.Audio.INTERNAL_CONTENT_URI;

Uri newUri = contentResolver.insert(base, values);

String path = contentResolver.getDataFilePath(newUri);

Here ContentValues is used to declare some standard properties of the file, such as
TITLE, TIMESTAMP, and MIME_TYPE, and ContentResolver is used to create an entry in
the MediaStore content database with the file’s path automatically added.

Video
Recording and playback of video files utilizes the MediaPlayer/MediaRecorder frame-
work in a similar way to the audio examples discussed previously. For completeness, the
steps are included here. First, if video is recorded, set the permission in the AndroidMani-
fest XML file:

<uses-permission android:name="android.permission.RECORD_VIDEO" />

���������������

ptg

166 Chapter 6 Multimedia Techniques

Then, the specification has different choices from the audio examples (note, DEFAULT can
also be used and is the same as the first choice in these lists):

n MediaRecorder.VideoSource:
n CAMERA—Built-in camera

n MediaRecorder.OutputFormat:
n THREE_GPP—3GPP media file format
n MPEG_4—MPEG4 media file format

n MediaRecorder.VideoEncoder:
n H263—H.263 video codec

n H264—H.264 video codec

n MPEG_4_SP—MPEG4 Simple Profile

The steps to record video are

1. Create an instance of the MediaRecorder:
MediaRecorder m_Recorder = new MediaRecorder();

2. Specify the source of media, which currently is only the camera:
m_Recorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);

3. Set the output file format and encoding:
m_Recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);

m_Recorder.setAudioEncoder(MediaRecorder.AudioEncoder.H263);

4. Set the path for the file to be saved:
m_Recorder.setOutputFile(path);

5. Prepare and start the recording:
m_Recorder.prepare();

m_Recorder.start();

For playback, the steps are

1. Create an instance of the MediaPlayer:
MediaPlayer m_mediaPlayer = new MediaPlayer();

2. Specify the source of media. It can be created from a raw resource:
m_mediaPlayer = MediaPlayer.create(this, R.raw.my_video);

Another option is to set as a file from the filesystem (which then also needs a pre-
pare statement):
m_mediaPlayer.setDataSource(path);

m_mediaPlayer.prepare();

In any case, these statements need to be surrounded by a try-catch block because
the specified resource might not exist.

���������������

ptg

167Video

3. Start playback of the video:
m_mediaPlayer.start();

4. When the playback is done, stop the MediaPlayer instance and release it to free up
resources:
m_mediaPlayer.stop();

m_mediaPlayer.release();

���������������

ptg

This page intentionally left blank

���������������

ptg

7
Hardware Interface

Android devices have multiple different types of hardware that are built in and accessible
to developers. Sensors, such as a camera, accelerometer, magnetometer, pressure sensor,
temperature sensor, and proximity sensor, are available on most devices.Telephony, Blue-
tooth, and other wireless connections are also accessible to the developer in some form.
This chapter shows how to leverage these hardware Application Programming Interfaces
(API) to enrich an application’s experience. Note that these recipes are best run on actual
Android devices because the emulator might not provide accurate or realistic behavior of
hardware interfaces.

Camera
The camera is the most visible and most used sensor in an Android device. It is a selling
point for most consumers, and the capabilities are getting better with each generation.
Image-processing applications normally work on an image after it is taken, but other
applications, such as augmented reality, utilize the camera in real-time with overlays.

There are two ways to access the camera from an application.The first is by declaring
an implicit intent as described in Chapter 2,“Application Basics:Activities and Intents.”
The implicit intent launches the default camera interface:

Intent intent = new Intent("android.media.action.IMAGE_CAPTURE");

startActivity(intent);

The second way leverages the Camera class, which provides more flexibility in the
settings.This creates a custom camera interface, which is the focus of the examples that
follow. Camera hardware access requires explicit permission in the AndroidManifest
XML file:

<uses-permission android:name="android.permission.CAMERA" />

This is implied in the following section.

���������������

ptg

170 Chapter 7 Hardware Interface

Recipe: Customizing the Camera
Control of the camera is abstracted into various components in the Android system:

n Camera class—Accesses the camera hardware
n Camera.Parameters class—Specifies the camera parameters such as picture size,

picture quality, flash modes, and method to assign Global Positioning System (GPS)
location

n Camera Preview methods—Sets the camera output display and toggles streaming
video preview to the display

n SurfaceView class—Dedicates a drawing surface at the lowest level of the view
hierarchy as a placeholder to display the camera preview

Before describing how these are tied together, the layout structure is introduced.The main
layout is shown in Listing 7.1 and includes a SurfaceView to hold the camera output.

Listing 7.1 res/layout/main.xml

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical">

<SurfaceView android:id="@+id/surface"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

</SurfaceView>

</LinearLayout>

A control interface can be added on top of this view by using a separate layout, as shown
in Listing 7.2.This layout contains a button at the bottom, center of the screen to take a
picture.

Listing 7.2 res/layout/cameraoverlay.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="vertical"

android:gravity="bottom"

android:layout_gravity="bottom">

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

���������������

ptg

171Camera

android:layout_height="wrap_content"

android:orientation="horizontal"

android:gravity="center_horizontal">

<Button

android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="take picture"

/>

</LinearLayout>

</LinearLayout>

The main activity involves multiple functionalities. First, the layout is set up as follows:

1. The window settings are changed to be translucent and full screen. (In this instance,
they hide the title and notification bar.)

2. The SurfaceView defined in the previous layout (R.id.surface) is then filled by
the camera preview. Each SurfaceView contains a SurfaceHolder for access and
control over the surface.The activity is added as the SurfaceHolder’s callback and
the type is set to SURFACE_TYPE_PUSH_BUFFERS, which means it creates a “push”
surface and the object does not own the buffer.This makes video streaming more
efficient.

3. A LayoutInflater is declared to inflate another layout (cameraoverlay.xml) over
the original (main.xml) layout.

Next, the activity sets a trigger for taking a picture:

1. An OnClickListener is added on the button from the cameraoverlay layout, so
when clicked, it takes a picture (mCamera.takePicture()).

2. The takePicture() method needs three methods to be defined:.

n ShutterCallback() to define any effects needed after the picture is taken,
such as a sound to let the user know that picture has been captured.

n A PictureCallback() for raw picture data if hardware has enough memory
to support this feature. (Otherwise. the data might return as null.)

n A second PictureCallback() for the compressed picture data.This calls the
local method done() to save the picture.

Then, the activity saves any pictures that were taken:

1. The compressed picture byte array is saved to a local variable tempdata for manipu-
lation.The BitmapFactory is used to decode the ByteArray into a Bitmap Object.

���������������

ptg

172 Chapter 7 Hardware Interface

2. The media content provider is used to save the bitmap and return a URL. If this
main activity were called by another activity, this URL would be the return infor-
mation to the caller activity to retrieve the image.

3. After this process, finish() is called to kill the activity.

Finally, the activity sets up a response to a change in the surface view:

1. A SurfaceHolder.CallBack interface is implemented.This requires three methods
to be overridden:

n surfaceCreated()—Called when the surface is first created. Initialize
objects here.

n surfaceChanged()—Called after surface creation and when the surface
changes (for example, format or size).

n surfaceDestroyed()—Called between removing the surface from the view
of the user and destroying the surface.This is used for memory cleanup.

2. The parameters for the camera are changed when the surface is changed (such as
the PreviewSize based on the surface size).

These functionalities are in the complete activity shown in Listing 7.3.

Listing 7.3 src/com/cookbook/hardware/CameraApplication.java

package com.cookbook.hardware;

import android.app.Activity;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.PixelFormat;

import android.hardware.Camera;

import android.hardware.Camera.PictureCallback;

import android.hardware.Camera.ShutterCallback;

import android.os.Bundle;

import android.provider.MediaStore.Images;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;

import android.view.View.OnClickListener;

import android.view.ViewGroup.LayoutParams;

import android.widget.Button;

import android.widget.Toast;

���������������

ptg

173Camera

public class CameraApplication extends Activity

implements SurfaceHolder.Callback {

private static final String TAG = "cookbook.hardware";

private LayoutInflater mInflater = null;

Camera mCamera;

byte[] tempdata;

boolean mPreviewRunning = false;

private SurfaceHolder mSurfaceHolder;

private SurfaceView mSurfaceView;

Button takepicture;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

getWindow().setFormat(PixelFormat.TRANSLUCENT);

requestWindowFeature(Window.FEATURE_NO_TITLE);

getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,

WindowManager.LayoutParams.FLAG_FULLSCREEN);

setContentView(R.layout.main);

mSurfaceView = (SurfaceView)findViewById(R.id.surface);

mSurfaceHolder = mSurfaceView.getHolder();

mSurfaceHolder.addCallback(this);

mSurfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

mInflater = LayoutInflater.from(this);

View overView = mInflater.inflate(R.layout.cameraoverlay, null);

this.addContentView(overView,

new LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT));

takepicture = (Button) findViewById(R.id.button);

takepicture.setOnClickListener(new OnClickListener(){

public void onClick(View view){

mCamera.takePicture(mShutterCallback,

mPictureCallback, mjpeg);

}

});

}

ShutterCallback mShutterCallback = new ShutterCallback(){

@Override

public void onShutter() {}

};

PictureCallback mPictureCallback = new PictureCallback() {

���������������

ptg

174 Chapter 7 Hardware Interface

public void onPictureTaken(byte[] data, Camera c) {}

};

PictureCallback mjpeg = new PictureCallback() {

public void onPictureTaken(byte[] data, Camera c) {

if(data !=null) {

tempdata=data;

done();

}

}

};

void done() {

Bitmap bm = BitmapFactory.decodeByteArray(tempdata,

0, tempdata.length);

String url = Images.Media.insertImage(getContentResolver(),

bm, null, null);

bm.recycle();

Bundle bundle = new Bundle();

if(url!=null) {

bundle.putString("url", url);

Intent mIntent = new Intent();

mIntent.putExtras(bundle);

setResult(RESULT_OK, mIntent);

} else {

Toast.makeText(this, "Picture can not be saved",

Toast.LENGTH_SHORT).show();

}

finish();

}

@Override

public void surfaceChanged(SurfaceHolder holder, int format,

int w, int h) {

Log.e(TAG, "surfaceChanged");

try {

if (mPreviewRunning) {

mCamera.stopPreview();

mPreviewRunning = false;

}

Camera.Parameters p = mCamera.getParameters();

p.setPreviewSize(w, h);

mCamera.setParameters(p);

mCamera.setPreviewDisplay(holder);

mCamera.startPreview();

���������������

ptg

175Other Sensors

mPreviewRunning = true;

} catch(Exception e) {

Log.d("",e.toString());

}

}

@Override

public void surfaceCreated(SurfaceHolder holder) {

Log.e(TAG, "surfaceCreated");

mCamera = Camera.open();

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

Log.e(TAG, "surfaceDestroyed");

mCamera.stopPreview();

mPreviewRunning = false;

mCamera.release();

mCamera=null;

}

}

Note the camera preview from the camera hardware is not standardized, and some
Android devices might show the preview sideways. In this case, simply add the following
to the onCreate() method of the CameraPreview activity:

this.setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

Other Sensors
The proliferation of small and low-power Micro-Electro-Mechanical Systems (MEMS) is
becoming more evident. Smart-phones are becoming an aggregator of sensors, and the
push for sensor accuracy by smart-phone manufacturers is driving the need for better
performing devices.

As discussed in Chapter 1,“Overview of Android,” each Android phone has a selection
of different sensors.The standard two are a three-axis accelerometer to determine device
tilt and a three-axis magnetometer to determine compass direction. Other devices that
might be integrated are temperature sensor, proximity sensor, light sensor, and gyroscope.
Currently supported sensors in the Android Software Development Kit (SDK) are listed
in Table 7.1.

���������������

ptg

176 Chapter 7 Hardware Interface

Table 7.1 The Sensors Accessible from the Android SDK

Sensor Type Description

TYPE_ACCELEROMETER Measures acceleration in meters/sec2

TYPE_ALL Describes sensor types and is a constant

TYPE_GYROSCOPE Measures orientation based on angular momentum

TYPE_LIGHT Measures ambient light in lux

TYPE_MAGNETIC_FIELD Measures magnetic field in micro-Tesla

TYPE_PRESSURE Measures air pressure

TYPE_PROXIMITY Measures distance of blocking object in centimeters

TYPE_TEMPERATURE Measures temperature in degrees Celsius

The getSensorList() method lists all the available sensors in a particular device.A
SensorManager manages all sensors. It provides various sensor event listeners with
two callback functions—onSensorChanged() and onAccuracyChanged()—that are used
to listen for sensor value and accuracy changes.

Recipe: Getting a Device’s Rotational Attitude
Ideally, the accelerometer measures the Earth’s gravitational field as G=9.8 meters/sec2,
and the magnetometer measures the Earth’s magnetic field that ranges from H=30μT to
60μT depending on the location in the world.These two vectors are enough to imple-
ment a simple textbook estimation of rotation, as used in the getRotationMatrix()
method.This recipe shows how to use this information.

The coordinate system of the device (also known as the body) frame is defined as:

n x-axis in the direction of the short side of the screen (along the menu keys)
n y-axis in the direction of the long side of the screen
n z-axis pointing out of the screen

The coordinate system of the world (also known as inertial) frame is defined as:

n The x-axis is the cross-product of the y-axis with the z-axis.
n The y-axis is tangential to the ground and points toward the North Pole.
n The z-axis points perpendicular to the ground toward the sky.

These two systems are aligned when the device is flat on a table with the screen facing up
and pointing north. In this case, the accelerometer measures (0, 0, G) in the x-, y-, and z-
directions.At most locations, the magnetic field of the Earth points slightly toward the
ground at an angle θ and even when the device points north is given by (0, H cos(θ), -H
sin(θ)).

���������������

ptg

177Other Sensors

As the device tilts and rotates, SensorManager.getRotationMatrix() provides the
3x3 rotation matrix R[] to get from the device coordinate system to the world coordi-
nate system and 3x3 inclination matrix I[] (rotation around the x-axis) to get from the
true magnetic field direction to the ideal case (0, H, 0).

Note that if the device has its own acceleration or is near a strong magnetic field, the
values measured do not necessarily reflect the proper reference frame of the Earth.

Another way to express the rotation is using SensorManager.getOrientation().This
provides the rotation matrix R[] and the attitude vector attitude[]:

n attitude[0]—Azimuth (in radians) is the rotation angle around the world-frame
z-axis required to have the device facing north. It takes values between -PI and PI,
with 0 representing north and PI/2 representing east.

n attitude[1]—Pitch (in radians) is the rotation angle around the world-frame x-
axis required to have the device face straight up along the long dimension of the
screen. It takes values between -PI and PI with 0 representing device face up, and
PI/2 means it points toward the ground.

n attitude[2]—Roll (in radians) is the rotation angle around the world-frame y-
axis required to have the device face straight up along the short dimension of the
screen. It takes values between -PI and PI with 0 representing device face up, and
PI/2 means it points toward the right.

This recipe displays the attitude information to the screen.The layout provides a text with
ID attitude, as shown in Listing 7.4.

Listing 7.4 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView android:id="@+id/attitude"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Azimuth, Pitch, Roll"

/>

</LinearLayout>

The main activity is shown in Listing 7.5.The accelerometer and magnetometer are reg-
istered to return data to the sensor listener.The SensorEventListener then assigns values
based on which sensor triggered the callback.The attitude information is determined

���������������

ptg

178 Chapter 7 Hardware Interface

based on the rotation matrix, converted from radians to degrees, and displayed on the
screen. Note the refresh rate of the sensors can take on different values as follows:

n SENSOR_DELAY_FASTEST—Fastest update rate possible (ranges from 8ms to approxi-
mately 30ms depending on device)

n SENSOR_DELAY_GAME—Update rate suitable for games (approximately 40ms)
n SENSOR_DELAY_NORMAL—The default; update rate suitable for screen orientation

changes (approximately 200ms)
n SENSOR_DELAY_UI—Update rate suitable for the user interface (approximately 350ms)

Listing 7.5 src/com/cookbook/orientation/OrientationMeasurements.java

package com.cookbook.orientation;

import android.app.Activity;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;

import android.hardware.SensorManager;

import android.os.Bundle;

import android.widget.TextView;

public class OrientationMeasurements extends Activity {

private SensorManager myManager = null;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.attitude);

// Set Sensor Manager

myManager = (SensorManager)getSystemService(SENSOR_SERVICE);

myManager.registerListener(mySensorListener,

myManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_GAME);

myManager.registerListener(mySensorListener,

myManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),

SensorManager.SENSOR_DELAY_GAME);

}

float[] mags = new float[3];

float[] accels = new float[3];

float[] RotationMat = new float[9];

float[] InclinationMat = new float[9];

float[] attitude = new float[3];

���������������

ptg

179Other Sensors

final static double RAD2DEG = 180/Math.PI;

private final SensorEventListener mySensorListener

= new SensorEventListener() {

@Override

public void onSensorChanged(SensorEvent event)

{

int type = event.sensor.getType();

if(type == Sensor.TYPE_MAGNETIC_FIELD) {

mags = event.values;

}

if(type == Sensor.TYPE_ACCELEROMETER) {

accels = event.values;

}

SensorManager.getRotationMatrix(RotationMat,

InclinationMat, accels, mags);

SensorManager.getOrientation(RotationMat, attitude);

tv.setText("Azimuth, Pitch, Roll:\n"

+ attitude[0]*RAD2DEG + "\n"

+ attitude[1]*RAD2DEG + "\n"

+ attitude[2]*RAD2DEG);

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}

};

}

For consistent data, it is good practice to avoid putting computationally intensive code
into the onSensorChanged() method.Also note that the SensorEvent is reused for sub-
sequent sensor data.Therefore, for precise data, it is good practice to use the clone()
method on event values, for example:

accels = event.values.clone();

This ensures that if the accels data is used elsewhere in the class, it does not keep chang-
ing as the sensors continue sampling.

Recipe: Using the Temperature and Light Sensor
The temperature sensor is used to determine temperature of the phone for internal hard-
ware calibration.The light sensor measures ambient light and is used to automatically
adjust the brightness of the screen.

These sensors are not available on all phones, but if they exist, the developer can use
them for alternative reasons.The code to read the values from these sensors is shown in
Listing 7.6. It can be added to the activity in the previous recipe to see the result.

���������������

ptg

180 Chapter 7 Hardware Interface

Listing 7.6 Example Code to Access the Temperature and Light Sensors

private final SensorEventListener mTListener

= new SensorEventListener(){

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy) {}

@Override

public void onSensorChanged(SensorEvent event) {

Log.v("test Temperature",

"onSensorChanged:"+event.sensor.getName());

if(event.sensor.getType()==Sensor.TYPE_TEMPERATURE){

tv2.setText("Temperature:"+event.values[0]);

}

}

};

private final SensorEventListener mLListener

= new SensorEventListener(){

@Override

public void onAccuracyChanged(Sensor sensor, int accuracy) {}

@Override

public void onSensorChanged(SensorEvent event) {

Log.v("test Light",

"onSensorChanged:"+event.sensor.getName());

if(event.sensor.getType()==Sensor.TYPE_LIGHT){

tv3.setText("Light:"+event.values[0]);

}

}

};

sensorManager.registerListener(mTListener, sensorManager

.getDefaultSensor(Sensor.TYPE_TEMPERATURE),

SensorManager.SENSOR_DELAY_FASTEST);

sensorManager.registerListener(mLListener, sensorManager

.getDefaultSensor(Sensor.TYPE_LIGHT),

SensorManager.SENSOR_DELAY_FASTEST);

Telephony
The Android telephony API provides a way to monitor basic phone information, such as
the network type, connection state, and utilities for manipulating phone number strings.

���������������

ptg

181Telephony

Recipe: Utilizing the Telephony Manager
The telephony API has a TelephonyManager class, which is an Android system service, to
access information about the telephony services on the device. Some of the telephony infor-
mation is permission protected, so access must be declared in the AndroidManifest XML file:

<uses-permission android:name="android.permission.READ_PHONE_STATE" />

The main activity is shown in Listing 7.7.

Listing 7.7 src/com/cookbook/hardware.telephony/TelephonyApp.java

package com.cookbook.hardware.telephony;

import android.app.Activity;

import android.os.Bundle;

import android.telephony.TelephonyManager;

import android.widget.TextView;

public class TelephonyApp extends Activity {

TextView tv1;

TelephonyManager telManager;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv1 =(TextView) findViewById(R.id.tv1);

telManager = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);

StringBuilder sb = new StringBuilder();

sb.append("deviceid:")

.append(telManager.getDeviceId()).append("\n");

sb.append("device Software Ver:")

.append(telManager.getDeviceSoftwareVersion()).append("\n");

sb.append("Line number:")

.append(telManager.getLine1Number()).append("\n");

sb.append("Network Country ISO:")

.append(telManager.getNetworkCountryIso()).append("\n");

sb.append("Network Operator:")

.append(telManager.getNetworkOperator()).append("\n");

sb.append("Network Operator Name:")

.append(telManager.getNetworkOperatorName()).append("\n");

sb.append("Sim Country ISO:")

.append(telManager.getSimCountryIso()).append("\n");

sb.append("Sim Operator:")

.append(telManager.getSimOperator()).append("\n");

sb.append("Sim Operator Name:")

.append(telManager.getSimOperatorName()).append("\n");

sb.append("Sim Serial Number:")

.append(telManager.getSimSerialNumber()).append("\n");

���������������

ptg

182 Chapter 7 Hardware Interface

Figure 7.1 Output using the TelephonyManager class.

sb.append("Subscriber Id:")

.append(telManager.getSubscriberId()).append("\n");

sb.append("Voice Mail Alpha Tag:")

.append(telManager.getVoiceMailAlphaTag()).append("\n");

sb.append("Voice Mail Number:")

.append(telManager.getVoiceMailNumber()).append("\n");

tv1.setText(sb.toString());

}

}

The main layout XML file is shown in Listing 7.8 and outputs the screen shown in Figure 7.1.

Listing 7.8 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:id="@+id/tv1"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

</LinearLayout>

���������������

ptg

183Telephony

Table 7.2 The Possible Phone State Listener Events and Required Permissions

Phone State Listener Description Permission

LISTEN_CALL_FORWARDING_

INDICATOR

Listen for call forward
indicator changes

READ_PHONE_STATE

LISTEN_CALL_STATE Listen for call state
changes

READ_PHONE_STATE

LISTEN_CELL_LOCATION Listen for cell location
changes

ACCESS_COARSE_

LOCATION

LISTEN_DATA_ACTIVITY Listen for direction of data
traffic on cellular changes

READ_PHONE_STATE

LISTEN_DATA_CONNECTION_

STATE

Listen for data connection
state changes

None

LISTEN_MESSAGE_WAITING_

INDICATOR

Listen for message waiting
indicator changes

READ_PHONE_STATE

LISTEN_NONE Remove listeners None

LISTEN_SERVICE_STATE Listen for network service
state changes

None

LISTEN_SIGNAL_STRENGTHS Listen for network signal
strength changes

None

Recipe: Listening for Phone States
The PhoneStateListener class provides information about the different telephony states
on the device, including network service state, signal strength, and message waiting indi-
cator (voicemail). Some require an explicit permission as shown in Table 7.2.

For example, to listen for an incoming call, the TelephonyManager needs to register a lis-
tener for the PhoneStateListener.LISTEN_CALL_STATE event.The three possible call
states are

n CALL_STATE_IDLE—Device not being used for a phone call
n CALL_STATE_RINGING—Device receiving a call
n CALL_STATE_OFFHOOK—Call in progress

���������������

ptg

184 Chapter 7 Hardware Interface

This recipe lists the phone call state changes as they occur. By using the Logcat tool (dis-
cussed in Chapter 12,“Debugging”), these different states can be seen when an incoming
call or outgoing call occurs.

The main activity is shown in Listing 7.9. It creates a new inner class extending the
PhoneStateListener, which overrides the onCallStateChanged method to catch the
phone call state changes. Other methods that can be overridden are
onCallForwardingIndicator(), onCellLocationChanged(), and onDataActivity().

Listing 7.9 src/com/cookbook/hardware.telephony/HardwareTelephony.java

package com.cookbook.hardware.telephony;

import android.app.Activity;

import android.os.Bundle;

import android.telephony.PhoneStateListener;

import android.telephony.TelephonyManager;

import android.util.Log;

import android.widget.TextView;

public class HardwareTelephony extends Activity {

TextView tv1;

TelephonyManager telManager;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv1 =(TextView) findViewById(R.id.tv1);

telManager = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);

telManager.listen(new TelListener(),

PhoneStateListener.LISTEN_CALL_STATE);

}

private class TelListener extends PhoneStateListener {

public void onCallStateChanged(int state, String incomingNumber) {

super.onCallStateChanged(state, incomingNumber);

���������������

ptg

185Bluetooth

Log.v("Phone State", "state:"+state);

switch (state) {

case TelephonyManager.CALL_STATE_IDLE:

Log.v("Phone State",

"incomingNumber:"+incomingNumber+" ended");

break;

case TelephonyManager.CALL_STATE_OFFHOOK:

Log.v("Phone State",

"incomingNumber:"+incomingNumber+" picked up");

break;

case TelephonyManager.CALL_STATE_RINGING:

Log.v("Phone State",

"incomingNumber:"+incomingNumber+" received");

break;

default:

break;

}

}

}

}

Recipe: Dialing a Phone Number
To make a phone call from an application, the following permission needs to be added to
the AndroidManifest XML file:

<uses-permission android:name="android.permission.CALL_PHONE" />

The act of making a call can either use the ACTION_CALL or ACTION_DIALER implicit
intent.When using the ACTION_DIALER intent, the phone dialer user interface is displayed
with the specified phone number ready to call.This is created using:

startActivity(new Intent(Intent.ACTION_CALL,

Uri.parse("tel:15102345678")));

When using the ACTION_CALL intent, the phone dialer is not shown and the specified
phone number is just dialed.This is created using:

startActivity(new Intent(Intent.ACTION_DIAL,

Uri.parse("tel:15102345678")));

Bluetooth
Bluetooth from the IEEE standard 802.15.1 is an open, wireless protocol for exchanging
data between devices over short distances.A common example is from a phone to a

���������������

ptg

186 Chapter 7 Hardware Interface

headset, but other applications can include proximity tracking.To communicate between
devices using Bluetooth, four steps need to be performed:

1. Turn on Bluetooth for the device.

2. Find paired or available devices in a valid range.

3. Connect to devices.

4. Transfer data between devices.

To use the Bluetooth Service, the application needs to have BLUETOOTH permission to
receive and transmit and BLUETOOTH_ADMIN permission to manipulate Bluetooth settings
or initiate device discovery.These require the following lines in the AndroidManifest
XML file:

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

All the Bluetooth API functionality resides in the android.bluetooth package.There are
five main classes that provide the features:

n BluetoothAdapter—Represents the Bluetooth radio interface that is used to dis-
cover devices and instantiate Bluetooth connections

n BluetoothClass—Describes the general characteristics of the Bluetooth device
n BluetoothDevice—Represents a remote Bluetooth device
n BluetoothSocket—Represents the socket or connection point for data exchange

with another Bluetooth device
n BluetoothServerSocket—Represents an open socket listening for incoming

requests

These are discussed in detail in the following recipes.

Recipe: Turning on Bluetooth
Bluetooth is initialized using the BluetoothAdapter class.The getDefaultAdapter()
method retrieves information about the Bluetooth radio interface. If null is returned, it
means the device does not support Bluetooth:

BluetoothAdapter myBluetooth = BluetoothAdapter.getDefaultAdapter();

Activate Bluetooth using this BluetoothAdapter instance to query the status. If not
enabled, the Android built-in activity ACTION_REQUEST_ENABLE can be used to ask the
user to start Bluetooth:

���������������

ptg

187Bluetooth

if(!myBluetooth.isEnabled()) {

Intent enableIntent = new Intent(BluetoothAdapter

.ACTION_REQUEST_ENABLE);

startActivity(enableIntent);

}

Recipe: Discovering Bluetooth Devices
After Bluetooth is activated, to discover paired or available Bluetooth devices, use the
BluetoothAdapter instance’s startdiscovery() method as an asynchronous call.This
requires registering a BroadcastReceiver to listen for ACTION_FOUND events that tell the
application whenever a new remote Bluetooth device is discovered.This is shown in the
example code in Listing 7.10.

Listing 7.10 Example Code for Discovering Bluetooth Devices

private final BroadcastReceiver mReceiver = new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {

String action = intent.getAction();

// When discovery finds a device

if (BluetoothDevice.ACTION_FOUND.equals(action)) {

// Get the BluetoothDevice object from the Intent

BluetoothDevice device = intent.getParcelableExtra(

BluetoothDevice.EXTRA_DEVICE);

Log.v("BlueTooth Testing",device.getName() + "\n"

+ device.getAddress());

}

}

};

IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);

registerReceiver(mReceiver, filter);

myBluetooth.startDiscovery();

The broadcast receiver can also listen for ACTION_DISCOVERY_STARTED events and
ACTION_DISCOVERY_FINISHED events that tell the application when the discovery starts
and ends.

For other Bluetooth devices to discover the current device, the application can enable
discoverability using the ACTION_REQUEST_DISCOVERABLE intent.This activity displays
another dialog on top of the application to ask users whether or not they want to make
the current device discoverable:

Intent discoverableIntent

= new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);

startActivity(discoverableIntent);

���������������

ptg

188 Chapter 7 Hardware Interface

Recipe: Pairing with Bonded Bluetooth Devices
Bonded Bluetooth devices are those that have already paired with the current devices
sometime in the past.When pairing two Bluetooth devices, one connects as a server and
the other as the client using the BluetoothSocket and BluetoothServerSocket classes.
To get the bonded Bluetooth devices, the BluetoothAdapter instance’s method
getBondedDevices() can be used:

Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();

Recipe: Opening a Bluetooth Socket
To establish a Bluetooth connection with another device, the application needs to imple-
ment either the client-side or server-side socket.After the server and client are bonded,
there is a connected Bluetooth socket for each device on the same RFCOMM (Blue-
tooth transport protocol). However, the client device and service device obtain the Blue-
tooth socket in different ways.The server receives the Bluetooth socket instance when an
incoming connection is accepted.The client receives the instance when it opens an
RFCOMM channel to the server.

Server-side initialization uses the generic client-server programming model with
applications requiring an open socket for accepting incoming requests (similar to TCP).
The interface BluetoothServerSocket should be used to create a server listening port.
After the connection is accepted, a BluetoothSocket is returned and can be used to
manage the connection.

The BluetoothServerSocket can be obtained from the BluetoothAdapter instance’s
method listenUsingRfcommWithServiceRecord().After obtaining the socket, the
accept() method starts listening for a request and returns only when either a connection
has been accepted or an exception has occurred.The BluetoothSocket then returns
when accept() returns a valid connection. Finally, the close() method should be called
to release the server socket and its resources because RFCOMM allows only one con-
nected client per channel at a time.This does not close the connected BluetoothSocket.
The following excerpt shows how these steps are done:

BluetoothServerSocket myServerSocket

= myBluetoothAdapter.listenUsingRfcommWithServiceRecord(name, uuid);

myServerSocket.accept();

myServerSocket.close();

Note that the accept() method is a blocking call and so it should not be implemented
inside the main thread. It is better idea to implement this inside a working thread, as
shown in Listing 7.11.

���������������

ptg

189Bluetooth

Listing 7.11 Example of Establishing a Bluetooth Socket

private class AcceptThread extends Thread {

private final BluetoothServerSocket mmServerSocket;

public AcceptThread() {

// Use a temporary object that is later assigned

// to mmServerSocket, because mmServerSocket is final

BluetoothServerSocket tmp = null;

try {

// MY_UUID is the app’s UUID string, also used by the client

tmp = mAdapter.listenUsingRfcommWithServiceRecord(NAME,MY_UUID);

} catch (IOException e) { }

mmServerSocket = tmp;

}

public void run() {

BluetoothSocket socket = null;

// Keep listening until exception occurs or a socket is returned

while (true) {

try {

socket = mmServerSocket.accept();

} catch (IOException e) {

break;

}

// If a connection was accepted

if (socket != null) {

// Do work to manage the connection (in a separate thread)

manageConnectedSocket(socket);

mmServerSocket.close();

break;

}

}

}

/** Will cancel the listening socket, and cause thread to finish */

public void cancel() {

try {

mmServerSocket.close();

} catch (IOException e) { }

}

}

To implement the client device mechanism, the BluetoothDevice needs to be
obtained from the remote device.Then the socket needs to be retrieved to make the
connection.To retrieve the BluetoothSocket, use the BluetoothDevice method

���������������

ptg

190 Chapter 7 Hardware Interface

createRfcommSocketToServiceRecord(UUID) with the UUID used in
listenUsingRfcommWithServiceRecord.After the socket is retrieved, the connect()
method can be used to initiate a connection.This method is also blocking and should also
be implemented in a separate thread, as shown in Listing 7.12.

Listing 7.12 Example of Connecting to a Bluetooth Socket

private class ConnectThread extends Thread {

private final BluetoothSocket mmSocket;

private final BluetoothDevice mmDevice;

public ConnectThread(BluetoothDevice device) {

// Use a temporary object that is later assigned to mmSocket,

// because mmSocket is final

BluetoothSocket tmp = null;

mmDevice = device;

// Get a BluetoothSocket to connect with the given BluetoothDevice

try {

// MY_UUID is the app’s UUID string, also used by the server code

tmp = device.createRfcommSocketToServiceRecord(MY_UUID);

} catch (IOException e) { }

mmSocket = tmp;

}

public void run() {

// Cancel discovery because it will slow down the connection

mAdapter.cancelDiscovery();

try {

// Connect the device through the socket. This will block

// until it succeeds or throws an exception

mmSocket.connect();

} catch (IOException connectException) {

// Unable to connect; close the socket and get out

try {

mmSocket.close();

} catch (IOException closeException) { }

return;

}

// Do work to manage the connection (in a separate thread)

manageConnectedSocket(mmSocket);

}

���������������

ptg

191Bluetooth

/** Will cancel an in-progress connection, and close the socket */

public void cancel() {

try {

mmSocket.close();

} catch (IOException e) { }

}

}

After the connection is established, the normal InputStream and OutputStream can be
used to read and send data between the Bluetooth devices.

Recipe: Using Device Vibration
Device vibration is a common feature in all cellular phones.To control vibration on an
Android device, a permission must be defined in the AndroidManifest XML file:

<uses-permission android:name="android.permission.VIBRATE" />

Then, using the device vibrator is just another Android system service provided by the
framework. It can be accessed using the Vibrator class:

Vibrator myVib = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

With a Vibrator instance, just call the vibrate() method to start device vibration:

myVib.vibrate(3000); //vibrate for 3 seconds

If needed, the cancel() method can be used to stop a vibration before it finishes:

myVib.cancel(); //cancel the vibration

It is also possible to vibrate a rhythmic pattern.This is specified as a vibration-pause
sequence. For example:

long[] pattern = {2000,1000,5000};

myVib.vibrate(pattern,1);

This causes the device to wait for 2 seconds, and then start a pattern of vibrating for 1
second, pausing for 5 seconds indefinitely.The second argument to the vibrate()
method means the index into the pattern to start repeating at.This can be set to -1 to
cause no repeat of the pattern at all.

Recipe: Accessing the Wireless Network
Many applications utilize the network connectivity of the Android device.To better
understand how to handle application behavior due to network changes,Android pro-
vides access to the underlying network state.This is done by broadcasting intents to notify

���������������

ptg

192 Chapter 7 Hardware Interface

application components of changes in network connectivity and offer control over net-
work settings and connections.

Android provides a system service through the ConnectivityManager class to let
developers monitor the connectivity state, set the preferred network connection, and
manage connectivity failover.This is initialized as follows:

ConnectivityManager myNetworkManager

= (ConnectivityManager) getSystemService(Context.CONNECTIVITY_SERVICE);

To use the connectivity manager, the appropriate permission is needed in the Android-
Manifest XML file for the application:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

The connectivity manager does provide the two methods getNetworkInfo() and
getActiveNetworkInfo() to obtain the details of the current network in a NetworkInfo
class. However, a better way to monitor the network changes is to create a broadcast
receiver, as shown in the following example:

private BroadcastReceiver mNetworkReceiver = new BroadcastReceiver(){

public void onReceive(Context c, Intent i){

Bundle b = i.getExtras();

NetworkInfo ni = (NetworkInfo)

b.get(ConnectivityManager.EXTRA_NETWORK_INFO);

if(ni.isConnected()){

//do the operation

}else{

//announce the user the network problem

}

}

};

After a broadcast receiver is defined, it can be registered to listen for
ConnectivityManager.CONNECTIVITY_ACTION intents:

this.registerReceiver(mNetworkReceiver,

new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION));

The mNetworkReceiver defined previous extracts only the NetworkInfo from
ConnectivityManager.EXTRA_NETWORK_INFO. However the connectivity manager has
more information that can be exposed.The different types of information available are
collected in Table 7.3.

���������������

ptg

193Bluetooth

Table 7.3 The Possible Information from a Connectivity Manager

Type of Information Description

EXTRA_EXTRA_INFO Contains additional information about network state

EXTRA_IS_FAILOVER Returns boolean value if the current connection is
the result of a failover network

EXTRA_NETWORK_INFO Returns a NetworkInfo object

EXTRA_NO_CONNECTIVITY Returns boolean value if there is no network
connectivity

EXTRA_OTHER_NETWORK_INFO Returns a NetworkInfo object about the available
network for failover when the network is disconnected

EXTRA_REASON Returns a String value that describes the reason of
connection failure

The ConnectivityManager also provides the capability to control network hardware and
failover preferences.The setNetworkPreference() method can be used to select a net-
work type.To change the network, the application needs to set another permission in the
AndroidManifest XML file:

<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE" />

���������������

ptg

This page intentionally left blank

���������������

ptg

8
Networking

Network-based applications provide increased value for a user in that content can be
dynamic and interactive. Networking enables multiple features from social networking to
cloud computing.

This chapter focuses on short message service (SMS), Internet resource-based applica-
tions, and social networking applications. SMS is a communication service component
that enables the exchange of short text messages between mobile phone devices. Internet
resource-based applications rely on web content such as HTML (HyperText Markup
Language), XML (eXtensible Markup Language), and JSON (JavaScript Object Nota-
tion). Social networking applications, such as Twitter, are important methods for people
to connect with each other.

Using SMS
The Android framework provides full access to SMS functionality using the SmsManager
class. Early versions of Android placed SmsManager in the android.telephony.gsm pack-
age. Since Android 1.5, where SmsManager supports both GSM and CDMA mobile
telephony standards, the SmsManager is now placed in the android.telephony package.

Sending an SMS through the SmsManager is fairly straightforward.The steps are

1. Set the permission in the AndroidManifest XML file to send SMS:
<uses-permission android:name="android.permission.SEND_SMS">

2. Use the SmsManager.getDefault() static method to get an SMS manager instance:
SmsManager mySMS = SmsManager.getDefault();

3. Define the destination phone number for the message and message to send. Use the
sendTextMesssage() method to send the SMS to another device:
String destination = "16501234567";

String msg = "Sending my first message";

mySMS.sendTextMessage(destination, null, msg, null, null);

���������������

ptg

196 Chapter 8 Networking

This is sufficient to send an SMS message. However, the three additional parameters in
the previous call set to null can be utilized as follows.

n The second parameter is the specific SMS service center to use. Set to null to use
the default service center from the carrier.

n The fourth parameter is a PendingIntent to track if the SMS message was sent.
n The fifth parameter is a PendingIntent to track if the SMS message was received.

To use the fourth and fifth parameters, a send message and a delivered message intent
need to be declared:

String SENT_SMS_FLAG = "SENT_SMS";

String DELIVER_SMS_FLAG = "DELIVER_SMS";

Intent sentIn = new Intent(SENT_SMS_FLAG);

PendingIntent sentPIn = PendingIntent.getBroadcast(this,0,sentIn,0);

Intent deliverIn = new Intent(SENT_SMS_FLAG);

PendingIntent deliverPIn

= PendingIntent.getBroadcast(this,0,deliverIn,0);

Then, a BroadcastReceiver needs to be registered for each PendingIntent to receive
the result:

BroadcastReceiver sentReceiver = new BroadcastReceiver(){

@Override public void onReceive(Context c, Intent in) {

switch(getResultCode()){

case Activity.RESULT_OK:

//sent SMS message successfully;

break;

default:

//sent SMS message failed

break;

}

}

};

BroadcastReceiver deliverReceiver = new BroadcastReceiver(){

@Override public void onReceive(Context c, Intent in) {

//SMS delivered actions

}

};

registerReceiver(sentReceiver, new IntentFilter(SENT_SMS_FLAG));

registerReceiver(deliverReceiver, new IntentFilter(DELIVER_SMS_FLAG));

Most SMSes are restricted to 140 characters per text message.To make sure the message is
within this limitation, use the divideMessage() method that divides the text into fragments
in the maximum SMS message size.Then, the method sendMultipartTextMessage()

���������������

ptg

197Using SMS

should be used instead of the sendTextMessage() method.The only difference is the use of
an ArrayList of messages and pending intents:

ArrayList<String> multiSMS = mySMS.divideMessage(msg);

ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();

ArrayList<PendingIntent> deliverIns = new ArrayList<PendingIntent>();

for(int i=0; i< multiSMS.size(); i++){

sentIns.add(sentIn);

deliverIns.add(deliverIn);

}

mySMS.sendMultipartTextMessage(destination, null,

multiSMS, sentIns, deliverIns);

Recipe: Autosend an SMS Based on a Received SMS
Because most SMS messages are not read by the recipient until hours later, this recipe
sends an autoresponse SMS when an SMS is received.This is done by creating an Android
service in the background that can receive incoming SMS.An alternative method is to
register a broadcast receiver in the AndroidManifest XML file.

The application must declare permission to send and receive SMS in the AndroidManifest
XML file, as shown in Listing 8.1. It also declares a main activity SMSResponder that cre-
ates the autoresponse and a service ResponderService to send the response when an
SMS is received.

Listing 8.1 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.SMSResponder"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".SMSResponder"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:enabled="true" android:name=".ResponderService">

</service>

</application>

���������������

ptg

198 Chapter 8 Networking

<uses-permission android:name="android.permission.RECEIVE_SMS"/>

<uses-permission android:name="android.permission.SEND_SMS"/>

</manifest>

The main layout file shown in Listing 8.2 contains a LinearLayout with three views: a
TextView to display the message used for the autoresponse, a button used to commit
changes on the reply message inside the application, and EditText where the user can
enter a reply message.

Listing 8.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:id="@+id/display"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

android:textSize="18dp"

/>

<Button android:id="@+id/submit"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Change my response"

/>

<EditText android:id="@+id/editText"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

/>

</LinearLayout>

The main activity is shown in Listing 8.3. It starts the service that listens and autore-
sponds to SMS messages. It also allows the user to change the reply message and save it in
a SharedPreference for future use.

Listing 8.3 src/com/cookbook/SMSresponder/SMSResponder.java

package com.cookbook.SMSresponder;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.os.Bundle;

���������������

ptg

199Using SMS

import android.preference.PreferenceManager;

import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class SMSResponder extends Activity {

TextView tv1;

EditText ed1;

Button bt1;

SharedPreferences myprefs;

Editor updater;

String reply=null;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

myprefs = PreferenceManager.getDefaultSharedPreferences(this);

tv1 = (TextView) this.findViewById(R.id.display);

ed1 = (EditText) this.findViewById(R.id.editText);

bt1 = (Button) this.findViewById(R.id.submit);

reply = myprefs.getString("reply",

"Thank you for your message. I am busy now. "

+ "I will call you later");

tv1.setText(reply);

updater = myprefs.edit();

ed1.setHint(reply);

bt1.setOnClickListener(new OnClickListener() {

public void onClick(View view) {

updater.putString("reply", ed1.getText().toString());

updater.commit();

SMSResponder.this.finish();

}

});

try {

// start Service

Intent svc = new Intent(this, ResponderService.class);

startService(svc);

}

���������������

ptg

200 Chapter 8 Networking

catch (Exception e) {

Log.e("onCreate", "service creation problem", e);

}

}

}

The majority of code is contained in the service, as shown in Listing 8.4. It retrieves the
SharedPreferences for this application first.Then it registers a broadcast receiver for
listening to incoming and outgoing SMS messages.The broadcast receiver for outgoing
SMS messages is not used here but shown for completeness.

The incoming SMS broadcast receiver uses a bundle to retrieve the protocol descrip-
tion unit (PDU), which contains the SMS text and any additional SMS meta-data, and
parses it into an Object array.The method createFromPdu() converts the Object array
into an SmsMessage.Then the method getOriginatingAddress() can be used to get the
sender’s phone number, and getMessageBody() can be used to get the text message.

In this recipe, after the sender address is retrieved, it calls the respond() method.This
method tries to get the data stored inside the SharedPreferences for the autorespond
message. If there is no data stored, it uses a default value.Then, it creates two
PendingIntents for sent status and delivered status.The method divideMessage() is
used to make sure the message is not oversized.After all the data is managed, it is sent
using sendMuiltTextMessage().

Listing 8.4 src/com/cookbook/SMSresponder/ResponderService.java

package com.cookbook.SMSresponder;

import java.util.ArrayList;

import android.app.Activity;

import android.app.PendingIntent;

import android.app.Service;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.os.IBinder;

import android.preference.PreferenceManager;

import android.telephony.SmsManager;

import android.telephony.SmsMessage;

import android.util.Log;

import android.widget.Toast;

public class ResponderService extends Service {

���������������

ptg

201Using SMS

//The Action fired by the Android-System when a SMS was received.

private static final String RECEIVED_ACTION =

"android.provider.Telephony.SMS_RECEIVED";

private static final String SENT_ACTION="SENT_SMS";

private static final String DELIVERED_ACTION="DELIVERED_SMS";

String requester;

String reply="";

SharedPreferences myprefs;

@Override

public void onCreate() {

super.onCreate();

myprefs = PreferenceManager.getDefaultSharedPreferences(this);

registerReceiver(sentReceiver, new IntentFilter(SENT_ACTION));

registerReceiver(deliverReceiver,

new IntentFilter(DELIVERED_ACTION));

IntentFilter filter = new IntentFilter(RECEIVED_ACTION);

registerReceiver(receiver, filter);

IntentFilter attemptedfilter = new IntentFilter(SENT_ACTION);

registerReceiver(sender,attemptedfilter);

}

private BroadcastReceiver sender = new BroadcastReceiver(){

@Override

public void onReceive(Context c, Intent i) {

if(i.getAction().equals(SENT_ACTION)) {

if(getResultCode() != Activity.RESULT_OK) {

String reciptent = i.getStringExtra("recipient");

requestReceived(reciptent);

}

}

}

};

BroadcastReceiver sentReceiver = new BroadcastReceiver() {

@Override public void onReceive(Context c, Intent in) {

switch(getResultCode()) {

case Activity.RESULT_OK:

//sent SMS message successfully;

smsSent();

break;

default:

//sent SMS message failed

smsFailed();

break;

}

���������������

ptg

202 Chapter 8 Networking

}

};

public void smsSent() {

Toast.makeText(this, "SMS sent", Toast.LENGTH_SHORT);

}

public void smsFailed() {

Toast.makeText(this, "SMS sent failed", Toast.LENGTH_SHORT);

}

public void smsDelivered() {

Toast.makeText(this, "SMS delivered", Toast.LENGTH_SHORT);

}

BroadcastReceiver deliverReceiver = new BroadcastReceiver() {

@Override public void onReceive(Context c, Intent in) {

//SMS delivered actions

smsDelivered();

}

};

public void requestReceived(String f) {

Log.v("ResponderService","In requestReceived");

requester=f;

}

BroadcastReceiver receiver = new BroadcastReceiver() {

@Override

public void onReceive(Context c, Intent in) {

Log.v("ResponderService","On Receive");

reply="";

if(in.getAction().equals(RECEIVED_ACTION)) {

Log.v("ResponderService","On SMS RECEIVE");

Bundle bundle = in.getExtras();

if(bundle!=null) {

Object[] pdus = (Object[])bundle.get("pdus");

SmsMessage[] messages = new SmsMessage[pdus.length];

for(int i = 0; i<pdus.length; i++) {

Log.v("ResponderService","FOUND MESSAGE");

messages[i] =

SmsMessage.createFromPdu((byte[])pdus[i]);

}

for(SmsMessage message: messages) {

requestReceived(message.getOriginatingAddress());

}

respond();

}

���������������

ptg

203Using SMS

}

}

};

@Override

public void onStart(Intent intent, int startId) {

super.onStart(intent, startId);

}

public void respond() {

Log.v("ResponderService","Responing to " + requester);

reply = myprefs.getString("reply",

"Thank you for your message. I am busy now. "

+ "I will call you later");

SmsManager sms = SmsManager.getDefault();

Intent sentIn = new Intent(SENT_ACTION);

PendingIntent sentPIn = PendingIntent.getBroadcast(this,

0,sentIn,0);

Intent deliverIn = new Intent(DELIVERED_ACTION);

PendingIntent deliverPIn = PendingIntent.getBroadcast(this,

0,deliverIn,0);

ArrayList<String> Msgs = sms.divideMessage(reply);

ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();

ArrayList<PendingIntent> deliverIns =

new ArrayList<PendingIntent>();

for(int i=0; i< Msgs.size(); i++) {

sentIns.add(sentPIn);

deliverIns.add(deliverPIn);

}

sms.sendMultipartTextMessage(requester, null,

Msgs, sentIns, deliverIns);

}

@Override

public void onDestroy() {

super.onDestroy();

unregisterReceiver(receiver);

unregisterReceiver(sender);

}

@Override

public IBinder onBind(Intent arg0) {

return null;

}

}

���������������

ptg

204 Chapter 8 Networking

Using Web Content
To launch an Internet browser to display web content, the implicit intent ACTION_VIEW can
be used as discussed in Chapter 2,“Application Basics:Activities and Intents,” for example:

Intent i = new Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse("http://www.google.com"));

startActivity(i);

It is also possible for developers to create their own web browser by using WebView,
which is a View that displays web content.As with any view, it can occupy the full screen
or only a portion of the layout in an activity. WebView uses WebKit, the open source
browser engine used in Apple’s Safari, to render web pages.

Recipe: Customizing a Web Browser
There are two ways to obtain a WebView object. It can be instantiated from the constructor:

WebView webview = new WebView(this);

Alternatively, a WebView can be used in a layout and declared in the activity:

WebView webView = (WebView) findViewById(R.id.webview);

After the object is retrieved, a web page can be displayed using the loadURL() method:

webview.loadUrl("http://www.google.com/");

The WebSettings class can be used to define the features of the browser. For example,
network images can be blocked in the browser to reduce the data loading using the set-
BlockNetworkImage() method.The font size of the displayed web content can be set
using the setDefaultFontSize() method. Some other commonly used settings are
shown in the example:

WebSettings webSettings = webView.getSettings();

webSettings.setSaveFormData(false);

webSettings.setJavaScriptEnabled(true);

webSettings.setSavePassword(false);

webSettings.setSaveFormData(false);

webSettings.setJavaScriptEnabled(true);

webSettings.setSupportZoom(true);

Recipe: Using an HTTP GET
Besides launching a browser or using the WebView widget to include a WebKit-based
browser control in an activity, developers might also want to create native Internet-based
applications.This means the application relies on only the raw data from the Internet,
such as images, media files, and XML data. Just the data of relevance can be loaded.This is
important for creating social networking applications.Two packages are useful in Android
to handle network communication: java.net and android.net.

���������������

ptg

205Using Web Content

In this recipe, the HTTP GET is used to retrieve XML or JSON data (see http://
www.json.org/ for an overview). In particular, the Google search Representational State
Transfer (REST) Application Programming Interface (API) is demonstrated, and the fol-
lowing query is used:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=

More information on Google Asynchronous Javascript And XML (AJAX) search can be
found at http://code.google.com/apis/ajaxsearch/.

To search any topic, the topic just needs to be appended to the query. For example, to
search information on the National Basketball Association (NBA), the following query
returns JSON data:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA

The activity needs Internet permission to run. So, the following should be added to the
AndroidManifest XML file:

<uses-permission android:name="android.permission.INTERNET"/>

The main layout is shown in Listing 8.5. It has three views: EditText for user input of
the search topic, Button to trigger the search, and TextView to display the search result.

Listing 8.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<EditText

android:id="@+id/editText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:singleLine="true"

/>

<Button

android:id="@+id/submit"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Search"

/>

<TextView

android:id="@+id/display"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:text="@string/hello"

android:textSize="18dp"

/>

</LinearLayout>

���������������

http://www.json.org/
http://www.json.org/
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=
http://code.google.com/apis/ajaxsearch/
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA

ptg

206 Chapter 8 Networking

The main activity is shown in Listing 8.6. It initiates the three layout elements in
onCreate(). Inside the OnClickListener for the button, it calls the SearchRequest().This
composes the search item using the Google REST API URL and then initiates an URL
class instance.The URL class instance is then used to get an HttpURLConnection instance.

The HttpURLConnection instance can retrieve the status of the connection.When the
HttpURLConnection returns a result code of HTTP_OK, it means the whole HTTP transac-
tion went through.Then, the JSON data returned from the HTTP transaction can be
dumped into a string.This is done using an InputStreamReader passed to a
BufferReader to read the data and create a String instance.After the result from HTTP
is obtained, it uses another function ProcessResponse() to parse the JSON data.The
detailed mechanism used requires an understanding of the incoming JSON data structure.
In this case, the Google REST API provides all the result data under the results
JSONArray. Figure 8.1 shows a screenshot of the search result for NBA.

Listing 8.6 src/com/cookbook/internet/search/GoogleSearch.java

package com.cookbook.internet.search;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.security.NoSuchAlgorithmException;

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class GoogleSearch extends Activity {

/** Called when the activity is first created. */

TextView tv1;

EditText ed1;

Button bt1;

static String url =
"http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=";

���������������

ptg

207Using Web Content

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv1 = (TextView) this.findViewById(R.id.display);

ed1 = (EditText) this.findViewById(R.id.editText);

bt1 = (Button) this.findViewById(R.id.submit);

bt1.setOnClickListener(new OnClickListener() {

public void onClick(View view) {

if(ed1.getText().toString()!=null) {

try{

ProcessResponse(

SearchRequest(ed1.getText().toString()));

} catch(Exception e) {

Log.v("Exception google search",

"Exception:"+e.getMessage());

}

}

ed1.setText("");

}

});

}

public String SearchRequest(String searchString)

throws MalformedURLException, IOException {

String newFeed=url+searchString;

StringBuilder response = new StringBuilder();

Log.v("gsearch","gsearch url:"+newFeed);

URL url = new URL(newFeed);

HttpURLConnection httpconn

= (HttpURLConnection) url.openConnection();

if(httpconn.getResponseCode()==HttpURLConnection.HTTP_OK) {

BufferedReader input = new BufferedReader(

new InputStreamReader(httpconn.getInputStream()),

8192);

String strLine = null;

while ((strLine = input.readLine()) != null) {

response.append(strLine);

}

input.close();

}

return response.toString();

}

���������������

ptg

208 Chapter 8 Networking

public void ProcessResponse(String resp) throws IllegalStateException,

IOException, JSONException, NoSuchAlgorithmException {

StringBuilder sb = new StringBuilder();

Log.v("gsearch","gsearch result:"+resp);

JSONObject mResponseObject = new JSONObject(resp);

JSONObject responObject

= mResponseObject.getJSONObject("responseData");

JSONArray array = responObject.getJSONArray("results");

Log.v("gsearch","number of resultst:"+array.length());

for(int i = 0; i<array.length(); i++) {

Log.v("result",i+"] "+array.get(i).toString());

String title = array.getJSONObject(i).getString("title");

String urllink = array.getJSONObject(i)

.getString("visibleUrl");

sb.append(title);

sb.append("\n");

sb.append(urllink);

sb.append("\n");

}

tv1.setText(sb.toString());

}

}

Figure 8.1 The search result from the Google
REST API query.

���������������

ptg

209Using Web Content

Recipe: Using HTTP POST
Sometimes, raw binary data needs to be retrieved from the Internet such as an image,
video, or audio file.This can be achieved using the HTTP POST protocol by using the
setRequestMethod(), such as:

httpconn.setRequestMethod(POST);

Accessing data through the Internet can be time-consuming and unpredictable.Therefore,
a separate thread should be spawned anytime network data is required.

In addition to the methods shown in Chapter 3,“Threads, Services, Receivers, and
Alerts,” there is a built-in Android class called AsyncTask that allows background opera-
tions to be performed and publishes results on the UI thread without needing to manipu-
late threads or handlers. So, the POST method can be implemented asynchronously with
the following code:

private class mygoogleSearch extends AsyncTask<String, Integer, String> {

protected String doInBackground(String... searchKey) {

String key = searchKey[0];

try {

return SearchRequest(key);

} catch(Exception e) {

Log.v("Exception google search",

"Exception:"+e.getMessage());

return "";

}

}

protected void onPostExecute(String result) {

try {

ProcessResponse(result);

} catch(Exception e) {

Log.v("Exception google search",

"Exception:"+e.getMessage());

}

}

}

This excerpt can be added to the end of the GoogleSearch.java activity in Listing 8.6. It
provides the same result with one additional change to the code inside the button
OnClickListener to:

new mygoogleSearch().execute(ed1.getText().toString());

���������������

ptg

210 Chapter 8 Networking

Social Networking
Twitter is a social networking and microblogging service that enables its users to send and
read messages known as tweets.Twitter is described as “SMS of the Internet,” and indeed,
each tweet cannot exceed 140 characters.Twitter users can follow other people’s tweets
or be followed by others.

Recipe: Integrating with Twitter
Some third-party libraries exist to assist in integrating Twitter into an Android application
(from http://dev.twitter.com/pages/libraries#java):

n Twitter4J by Yusuke Yamamoto—An open-sourced, mavenized, and Google App
Engine-safe Java library for the Twitter API, released under the BSD license

n java-twitter by DeWitt Clinton—Pure Java interface for the Twitter API
n jtwitter by Daniel Winterstein—Open-source pure Java interface to Twitter
n Twitter Client by Gist, Inc.—Java client to connect to the streaming API

For this recipe, the Twitter4J library by Yusuke Yamamoto is used, which has documenta-
tion at http://twitter4j.org/en/javadoc/overview-summary.html.The recipe enables users
to log in to Twitter and make a tweet.At the same time, it retrieves any updated tweets
and displays them to the screen.

There are two screens to specify: the login screen and update status screen (see Figure
8.2).Also on the update status screen under the EditText box, the latest status from the
user account is displayed.The two activities (one for each screen) and Internet permis-
sions need to be declared in the AndroidManifest XML file, as shown in Listing 8.7.

Figure 8.2 The login (left) and tweets (right) from the Twitter recipe.

���������������

http://dev.twitter.com/pages/libraries#java
http://twitter4j.org/en/javadoc/overview-summary.html

ptg

211Social Networking

Listing 8.7 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.twitter"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".TwitterCookBook"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".UpdateAndList" />

</application>

<uses-permission android:name="android.permission.INTERNET"/>

</manifest>

The layout files needed are

n login.xml—The login screen, as shown in Listing 8.8
n main.xml—The screen to update the status and display the home status, as shown

in Listing 8.9
n usertimelinerow.xml—The view for display of each status timeline, as shown in

Listing 8.10

Listing 8.8 res/layout/login.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="username"

/>

<EditText

android:id="@+id/userText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:singleLine="true"

/>

���������������

ptg

212 Chapter 8 Networking

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="password"

/>

<EditText

android:id="@+id/passwordText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:password="true"

android:singleLine="true"

/>

<Button

android:id="@+id/loginButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="login"

android:textSize="20dp"

/>

</LinearLayout>

Listing 8.9 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="@drawable/twitter">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="What is in your mind?"

/>

<EditText

android:id="@+id/userStatus"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

/>

<Button

android:id="@+id/updateButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="update"

android:textSize="20dp"

/>

���������������

ptg

213Social Networking

<ListView

android:layout_width="fill_parent"

android:dividerHeight="1px"

android:layout_height="fill_parent"

android:id="list”

/>

</LinearLayout>

Listing 8.10 res/layout/usertimelinerow.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:orientation="vertical"

android:layout_alignLeft="@+id/name"

android:layout_below="@+id/name"

xmlns:android="http://schemas.android.com/apk/res/android"

android:padding="12dip">

<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content" android:id="@+id/name"

android:layout_marginRight="4dp" android:text="Diary Title "

android:textStyle="bold" android:textSize="16dip" />

<TextView android:id="@+id/msg"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Date Recorded"

android:textSize="14dip" />

</LinearLayout>

The two activities needed are the login to Twitter activity and the update and list tweets
activity.The login activity is shown in Listing 8.11. It contains an EditText object for
username and password, Button object to submit the login data, SharedPreferences
object to save the login information upon initial successful login, and Twitter object
from the twitter4j library.

Upon startup, the application checks for login information from SharedPreferences
and if available, it prepopulates the EditText boxes.When the user clicks on the Button,
it initiates the Twitter object with the username and password from the EditText boxes.
After the Twitter object is initiated, it tries to call getFollowersIDs() to verify if the
login is valid. If the login is invalid, an exception is thrown, and in this example, it shows a
Toast message for login failure.

���������������

ptg

214 Chapter 8 Networking

Listing 8.11 src/com/cookbook/twitter/TwitterCookBook.java

package com.cookbook.twitter;

import twitter4j.Twitter;

import twitter4j.TwitterFactory;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.os.Bundle;

import android.preference.PreferenceManager;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class TwitterCookBook extends Activity {

SharedPreferences myprefs;

EditText userET, passwordET;

Button loginBT;

static Twitter twitter;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

myprefs = PreferenceManager.getDefaultSharedPreferences(this);

final String username = myprefs.getString("username", null);

final String password = myprefs.getString("password", null);

setContentView(R.layout.login);

userET = (EditText)findViewById(R.id.userText);

passwordET = (EditText)findViewById(R.id.passwordText);

loginBT = (Button)findViewById(R.id.loginButton);

userET.setText(username);

passwordET.setText(password);

loginBT.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

try {

twitter = new TwitterFactory()

.getInstance(userET.getText().toString(),

passwordET.getText().toString());

twitter.getFollowersIDs();

���������������

ptg

215Social Networking

Intent i = new Intent(TwitterCookBook.this,

UpdateAndList.class);

startActivity(i);

Editor ed = myprefs.edit();

ed.putString("username",userET.getText().toString());

ed.putString("password",

passwordET.getText().toString());

ed.commit();

finish();

} catch (Exception e) {

e.printStackTrace();

Toast.makeText(TwitterCookBook.this, "login failed!!",

Toast.LENGTH_SHORT).show();

}

}

});

}

}

After the login is passed, the UpdateAndList activity is started.As shown in Listing 8.12,
it contains an EditText object for the user to enter their tweet, a Button object to sub-
mit the tweet to the Twitter server, a Twitter object from the twitter4j library, a
ResponseList of status for holding the data returned from the Twitter object, and a cus-
tom adapter for managing the status data.

The activity calls the getHomeTimeline() to retrieve the timeline status shown on the
Twitter home page when a user logs in. Note that all Internet access function calls are
placed inside an AsyncTask to avoid hanging the UI thread.The getHomeTimeline()
method is called every time the user submits a tweet and updates the data adapter.

To hold status data in a ListView format, the activity is extended as ListActivity.
Inside the ListActivity, a custom BaseAdapter called UserTimeLineAdapter is
defined.This adapter uses ResponseList<Status> userTimeLine to display the data in
ListView.

The ListActivity has two AsyncTask classes: setup and loadstatus.They both call
the same operation getHomeTimeLine().The only difference is that setup tries to initiate
the adapter and set the ListActivity with UserTimeLineAdapter, whereas loadstatus
just notifies the UserTimeLineAdapter that data is changed.

Listing 8.12 src/com/cookbook/twitter/UpdateAndList.java

package com.cookbook.twitter;

import twitter4j.ResponseList;

import twitter4j.Status;

import twitter4j.Twitter;

���������������

ptg

216 Chapter 8 Networking

import android.app.ListActivity;

import android.content.Context;

import android.os.AsyncTask;

import android.os.Bundle;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.view.View.OnClickListener;

import android.widget.BaseAdapter;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class UpdateAndList extends ListActivity {

EditText userET;

Button updateBT;

Twitter twitter;

ResponseList<Status> userTimeline;

UserTimeLineAdapter myAdapter;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

userET = (EditText)findViewById(R.id.userStatus);

updateBT = (Button)findViewById(R.id.updateButton);

twitter = TwitterCookBook.twitter;

setup stup = new setup();

stup.execute();

updateBT.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

try {

twitter.updateStatus(userET.getText().toString());

loadstatus ldstatus = new loadstatus();

ldstatus.execute();

userET.setText("");

} catch (Exception e) {

e.printStackTrace();

}

}

});

}

���������������

ptg

217Social Networking

private class UserTimeLineAdapter extends BaseAdapter{

private LayoutInflater mInflater;

public UserTimeLineAdapter(Context context) {

mInflater = LayoutInflater.from(context);

}

@Override

public int getCount() {

return userTimeline.size();

}

@Override

public Status getItem(int i) {

return userTimeline.get(i);

}

@Override

public long getItemId(int i) {

return i;

}

@Override

public View getView(int arg0, View arg1, ViewGroup arg2) {

final ViewHolder holder;

View v = arg1;

if ((v == null) || (v.getTag() == null)) {

v = mInflater.inflate(R.layout.usertimelinerow, null);

holder = new ViewHolder();

holder.mName = (TextView)v.findViewById(R.id.name);

holder.mStatus = (TextView)v.findViewById(R.id.msg);

v.setTag(holder);

} else {

holder = (ViewHolder) v.getTag();

}

holder.status= getItem(arg0);

holder.mName.setText(holder.status.getUser().getName());

holder.mStatus.setText(holder.status.getText());

v.setTag(holder);

return v;

}

���������������

ptg

218 Chapter 8 Networking

public class ViewHolder {

Status status;

TextView mName;

TextView mStatus;

}

}

private class setup extends AsyncTask<String, Integer, String> {

protected String doInBackground(String... searchKey) {

try{

userTimeline = twitter.getHomeTimeline();

return "";

}catch(Exception e){

Log.v("Exception Twitter query",

"Exception:"+e.getMessage());

return "";

}

}

protected void onPostExecute(String result) {

try {

myAdapter = new UserTimeLineAdapter(UpdateAndList.this);

UpdateAndList.this.setListAdapter(myAdapter);

} catch(Exception e) {

Log.v("Exception Twitter query",

"Exception:"+e.getMessage());

}

}

}

private class loadstatus extends AsyncTask<String, Integer, String> {

protected String doInBackground(String... searchKey) {

try {

userTimeline = twitter.getHomeTimeline();

return "";

} catch(Exception e) {

Log.v("Exception Twitter query",

"Exception:"+e.getMessage());

return "";

}

���������������

ptg

219Social Networking

}

protected void onPostExecute(String result) {

try {

myAdapter.notifyDataSetChanged();

} catch(Exception e) {

Log.v("Exception twitter query",

"Exception:"+e.getMessage());

}

}

}

}

���������������

ptg

This page intentionally left blank

���������������

ptg

9
Data Storage Methods

Complicated and robust Android applications often need to utilize some type of data
storage. Depending on the situation, different data storage methods are available to the
developer:

n Shared Preferences for lightweight usage, such as saving application settings and the
user interface (UI) state

n A built-in SQLite database for more complicated usage, such as saving applica-
tion records

n The standard Java flat file storage methods: InputFileStream and
OutputFileStream

These are discussed in this chapter.Also discussed is the Content Provider Android com-
ponent that is used to share data between applications. It should be noted that another
basic data storage method managed by the Android system, the onSaveInstanceState()
and onRestoreInstanceState() pair, was already discussed in Chapter 2,“Application
Basics:Activities and Intents.”The optimal method to use depends on the situation, as dis-
cussed in each case that follows.

Shared Preferences
SharedPreferences is an interface that an application can use to quickly and efficiently
save data in name-values pairs, similar to a Bundle.The information is stored in an XML
file on the Android device. For example, if the application com.cookbook.datastorage
creates a shared preference, the Android system creates a new XML file under the
/data/data/com.cookbook.datastorage/shared_prefs directory. Shared preferences are
usually used for saving application settings such as user settings, theme, and other general
application properties. It can also save login information such as username, password,
auto-login flag and remember-user flag.The shared preferences data is accessible by every
component of the application which created it.

���������������

ptg

222 Chapter 9 Data Storage Methods

Recipe: Creating and Retrieving Shared Preferences
The shared preferences for an activity can be accessed using the getPreferences()
method, which specifies the operating mode for the default preferences file. If instead
multiple preference files are needed, each can be specified using the
getSharedPreferences() method. If the shared preferences XML file exists in the data
directory, it is opened; otherwise, it is created.The operating mode provides control over
the different kinds of access permission to the preferences:

n MODE_PRIVATE—Only the calling application has access to the XML file.
n MODE_WORLD_READABLE—All applications can read the XML file.
n MODE_WORLD_WRITEABLE—All applications can write to the XML file.

After a SharedPreferences object is retrieved, an Editor object is needed to write the
name-value pairs to the XML file using the put() method. Currently, there are five
primitive types supported: int, long, float, String, and boolean.The following code
shows how to create and store shared preferences data:

SharedPreferences prefs = getSharedPreferences("myDataStorage",

MODE_PRIVATE);

Editor mEditor = prefs.edit();

mEditor.putString("username","datastorageuser1");

mEditor.putString("password","password1234");

mEditor.commit();

The following shows how to retrieve shared preferences data:

SharedPreferences prefs = getSharedPreferences("myDataStorage",

MODE_PRIVATE);

String username = prefs.getString("username", "");

String password = prefs.getString("password", "");

Recipe: Using the Preferences Framework
Android provides a standardized framework for setting preferences across all applications.
The framework uses category preferences and screens to group related settings.
PreferenceCategory is used to declare a set of preferences into one category.
PreferenceScreen presents a group of preferences in a new screen.

This recipe uses the preferences defined in the XML file in Listing 9.1.A
PreferenceScreen is the root element with two EditTextPreference elements for
username and password. Other possible elements are CheckBoxPreference,
RingtonePreference, and DialogPreference.The Android system then generates a UI
to manipulate the preferences, as shown in Figure 9.1.These preferences are stored in
shared preferences, which means they can be retrieved by calling getPreferences().

���������������

ptg

223Shared Preferences

Listing 9.1 res/xml/preferences.xml

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

<EditTextPreference android:title="User Name"

android:key="username"

android:summary="Please provide user
name"></EditTextPreference>

<EditTextPreference android:title="Password"

android:password="true"

android:key="password"

android:summary="Please enter your
password"></EditTextPreference>

</PreferenceScreen>

Then, an activity extending the PreferenceActivity calls the
addPreferencesFromResource() method to include these preferences in the activity, as
shown in Listing 9.2.

Listing 9.2 src/com/cookbook/datastorage/MyPreferences.java

package com.cookbook.datastorage;

import android.os.Bundle;

import android.preference.PreferenceActivity;

public class MyPreferences extends PreferenceActivity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);

}

}

The main activity merely needs to launch the PreferenceActivity when needed (for
example, when the Menu button is pressed). Listing 9.3 shows the simple example of
showing the preferences upon startup of the activity.

���������������

ptg

224 Chapter 9 Data Storage Methods

Listing 9.3 src/com/cookbook/datastorage/DataStorage.java

package com.cookbook.datastorage;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

public class DataStorage extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

Intent i = new Intent(this, MyPreferences.class);

startActivity(i);

}

}

The AndroidManifest XML file needs to include all activities, including the new
PreferenceActivity, as shown in Listing 9.4.

Listing 9.4 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.datastorage"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".DataStorage"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER"

/>

</intent-filter>

</activity>

<activity android:name=".MyPreferences" />

</application>

<uses-sdk android:minSdkVersion="7" />

</manifest>

���������������

ptg

225Shared Preferences

Recipe: Changing the UI Based on Stored Data
The DataStorage activity of the previous recipe can be extended to check the shared
preferences when loading, altering the behavior accordingly. In this recipe, if a username
and password is already saved in the SharedPreferences file, a login page is displayed.After
a successful login, the activity can successfully continue. If no login information is on file,
the activity continues directly.

The main.xml layout file can be modified to be a login page, as shown in Listing 9.5.
This uses two EditText objects for username and password, as covered in Chapter 4,
“User Interface Layout.”

Listing 9.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

Figure 9.1 The preferences UI generated by the
Android system from an XML preferences file.

This creates the preferences screen shown in Figure 9.1.

���������������

ptg

226 Chapter 9 Data Storage Methods

android:text="username"

/>

<EditText

android:id="@+id/userText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

/>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="password"

/>

<EditText

android:id="@+id/passwordText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:password="true"

/>

<Button

android:id="@+id/loginButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="login"

android:textSize="20dp"

/>

</LinearLayout>

The main activity DataStorage, as shown in Listing 9.6, is modified to first read the
username and password data from the SharedPreferences instance. If these data are not
set, the application launches the MyPreferences activity (Listing 9.2) directly to set the
preferences. If these data are set, then the application displays the login layout main.xml
shown in Figure 9.2.The button has an onClickListener that verifies whether the login
information matches the username and password from the SharedPreferences file.A
successful login enables the application to continue on, which in this case, just launches
the MyPreferences activity.Any login attempt shows a Toast message of success or failure
for illustration purposes.

Listing 9.6 src/com/cookbook/datastorage/DataStorage.java

package com.cookbook.datastorage;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;

import android.os.Bundle;

import android.preference.PreferenceManager;

import android.view.View;

���������������

ptg

227Shared Preferences

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class DataStorage extends Activity {

SharedPreferences myprefs;

EditText userET, passwordET;

Button loginBT;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

myprefs = PreferenceManager.getDefaultSharedPreferences(this);

final String username = myprefs.getString("username", null);

final String password = myprefs.getString("password", null);

if (username != null && password != null){

setContentView(R.layout.main);

userET = (EditText)findViewById(R.id.userText);

passwordET = (EditText)findViewById(R.id.passwordText);

loginBT = (Button)findViewById(R.id.loginButton);

loginBT.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

try {

if(username.equals(userET.getText().toString())

&& password.equals(

passwordET.getText().toString())) {

Toast.makeText(DataStorage.this,

"login passed!!",

Toast.LENGTH_SHORT).show();

Intent i = new Intent(DataStorage.this,

myPreferences.class);

startActivity(i);

} else {

Toast.makeText(DataStorage.this,

"login failed!!",

Toast.LENGTH_SHORT).show();

}

} catch (Exception e) {

e.printStackTrace();

}

}

});

} else {

Intent i = new Intent(this, MyPreferences.class);

startActivity(i);

}

}

}

���������������

ptg

228 Chapter 9 Data Storage Methods

Recipe: Adding a EULA
As discussed in Chapter 1,“Overview of Android,” it is often useful to have an End User
License Agreement (EULA) display when a user first installs and runs an app. If the user
does not accept it, the downloaded application does not run.After a user does accept it,
the EULA is never shown again.

This EULA functionality is already implemented and available publicly under the
Apache License as the Eula class shown in Listing 9.7. It uses SharedPreferences with
the boolean PREFERENCE_EULA_ACCEPTED to determine whether the EULA was previ-
ously accepted or not accepted.

Listing 9.7 src/com/cookbook/eula_example/Eula.java

/*

* Copyright (C) 2008 The Android Open Source Project

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* http://www.apache.org/licenses/LICENSE-2.0

*

Figure 9.2 The login screen described
by Listing 9.5.

���������������

http://www.apache.org/licenses/LICENSE-2.0

ptg

229Shared Preferences

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*/

package com.cookbook.eula_example;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.content.SharedPreferences;

import java.io.IOException;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.io.Closeable;

/**

* Displays an EULA ("End User License Agreement") that the user has to accept
before

* using the application.

*/

class Eula {

private static final String ASSET_EULA = "EULA";

private static final String PREFERENCE_EULA_ACCEPTED = "eula.accepted";

private static final String PREFERENCES_EULA = "eula";

/**

* callback to let the activity know when the user accepts the EULA.

*/

static interface OnEulaAgreedTo {

void onEulaAgreedTo();

}

/**

* Displays the EULA if necessary.

*/

static boolean show(final Activity activity) {

final SharedPreferences preferences =

activity.getSharedPreferences(

PREFERENCES_EULA, Activity.MODE_PRIVATE);

//to test:

// preferences.edit()

// .putBoolean(PREFERENCE_EULA_ACCEPTED, false).commit();

���������������

ptg

230 Chapter 9 Data Storage Methods

if (!preferences.getBoolean(PREFERENCE_EULA_ACCEPTED, false)) {

final AlertDialog.Builder builder =

new AlertDialog.Builder(activity);

builder.setTitle(R.string.eula_title);

builder.setCancelable(true);

builder.setPositiveButton(R.string.eula_accept,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

accept(preferences);

if (activity instanceof OnEulaAgreedTo) {

((OnEulaAgreedTo) activity).onEulaAgreedTo();

}

}

});

builder.setNegativeButton(R.string.eula_refuse,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {

refuse(activity);

}

});

builder.setOnCancelListener(

new DialogInterface.OnCancelListener() {

public void onCancel(DialogInterface dialog) {

refuse(activity);

}

});

builder.setMessage(readEula(activity));

builder.create().show();

return false;

}

return true;

}

private static void accept(SharedPreferences preferences) {

preferences.edit().putBoolean(PREFERENCE_EULA_ACCEPTED,

true).commit();

}

private static void refuse(Activity activity) {

activity.finish();

}

private static CharSequence readEula(Activity activity) {

BufferedReader in = null;

try {

in = new BufferedReader(new

InputStreamReader(activity.getAssets().open(ASSET_EULA)));

���������������

ptg

231Shared Preferences

String line;

StringBuilder buffer = new StringBuilder();

while ((line = in.readLine()) != null)

buffer.append(line).append(‘\n’);

return buffer;

} catch (IOException e) {

return "";

} finally {

closeStream(in);

}

}

/**

* Closes the specified stream.

*/

private static void closeStream(Closeable stream) {

if (stream != null) {

try {

stream.close();

} catch (IOException e) {

// Ignore

}

}

}

}

The Eula class needs to be customized as follows:

1. The actual text of the EULA needs to be put in a text file called EULA (as speci-
fied by the ASSET_EULA variable in Listing 9.7) and placed in the assets/ directory
of the Android project.This is loaded by the readEula() method of the Eula class.

2. There are few strings that need to be specified for the Acceptance dialog box.These
can be collected in the string’s resource file.An example wording is shown in
Listing 9.8.

Listing 9.8 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Welcome to MyApp</string>

<string name="app_name">MyApp</string>

<string name=”eula_title”>License Agreement</string>

<string name=”eula_accept”>Accept</string>

<string name=”eula_refuse”>Don\’t Accept</string>

</resources>

���������������

ptg

232 Chapter 9 Data Storage Methods

Then, any application can automatically have the EULA functionality by simply putting
the following line in the onCreate() method of the main activity of the application:

Eula.show(this);

SQLite Database
For more complex data structures, a database provides a quicker and more flexible access
method than flat files or shared preferences.Android provides a built-in database called
SQLite that provides full relational database capability utilizing SQL commands. Each
application that uses SQLite has its own instance of the database, which is by default
accessible only from the application itself.The database is stored in the /data/data/
<package_name>/databases folder of an Android device.A Content Provider can be
used to share the database information between applications.The different steps for utiliz-
ing SQLite are

1. Create a database.

2. Open the database.

3. Create a table.

4. Create an insert interface for datasets.

5. Create a query interface for datasets.

6. Close the database.

The next recipe provides a general method to accomplish these steps.

Recipe: Creating a Separate Database Package
A good modular structure to classes is essential for more complicated Android projects.
Here, the database class is put in its own package com.cookbook.data so it is easy to
reuse.This package contains three classes: MyDB, MyDBhelper, and Constants.

The MyDB class is shown in Listing 9.9. It contains a SQLiteDatabase instance and a
MyDBhelper class (described in the following) with the methods that follow:

n MyDB()—Initializes a MyDBhelper instance (the constructor).
n open()—Initializes a SQLiteDatabase instance using the MyDBhelper.This opens a

writeable database connection. If SQLite throws any exception, it tries to get a
readable database instead.

n close()—Closes the database connection.
n insertdiary()—Saves a diary entry to the database as name-value pairs in a
ContentValues instance, and then passes the data to the SQLitedatabase instance
to do an insert.

���������������

ptg

233SQLite Database

n getdiaries()—Reads the diary entries from the database, saves them in a Cursor
class, and returns it from the method.

Listing 9.9 src/com/cookbook/data/MyDB.java

package com.cookbook.data;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.util.Log;

public class MyDB {

private SQLiteDatabase db;

private final Context context;

private final MyDBhelper dbhelper;

public MyDB(Context c){

context = c;

dbhelper = new MyDBhelper(context, Constants.DATABASE_NAME, null,

Constants.DATABASE_VERSION);

}

public void close()

{

db.close();

}

public void open() throws SQLiteException

{

try {

db = dbhelper.getWritableDatabase();

} catch(SQLiteException ex) {

Log.v("Open database exception caught", ex.getMessage());

db = dbhelper.getReadableDatabase();

}

}

public long insertdiary(String title, String content)

{

try{

ContentValues newTaskValue = new ContentValues();

newTaskValue.put(Constants.TITLE_NAME, title);

newTaskValue.put(Constants.CONTENT_NAME, content);

newTaskValue.put(Constants.DATE_NAME,

java.lang.System.currentTimeMillis());

return db.insert(Constants.TABLE_NAME, null, newTaskValue);

} catch(SQLiteException ex) {

���������������

ptg

234 Chapter 9 Data Storage Methods

Log.v("Insert into database exception caught",

ex.getMessage());

return -1;

}

}

public Cursor getdiaries()

{

Cursor c = db.query(Constants.TABLE_NAME, null, null,

null, null, null, null);

return c;

}

}

The MyDBhelper class extends SQLiteOpenHelper and is shown in Listing 9.10.The
SQLiteOpenHelper framework provides methods to manage database creation and
upgrades.The database is initialized in the class constructor MyDBhelper().This requires
the context and database name to be specified for creation of the database file under
/data/data/com.cookbook.datastorage/databases and database schema version to
determine whether the onCreate() or onUpgrade() method is called.

Tables can be added in the onCreate() method using a custom SQL command such as:

create table MyTable (key_id integer primary key autoincrement,

title text not null, content text not null,

recorddate long);

Whenever a database needs to be upgraded (when a user downloads a new version of an
application, for example), the change in database version number calls the onUpgrade()
method.This can be used to alter or drop tables as needed to update the tables to the new
schema.

Listing 9.10 src/com/cookbook/data/MyDBhelper.java

package com.cookbook.data;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteException;

import android.database.sqlite.SQLiteOpenHelper;

import android.database.sqlite.SQLiteDatabase.CursorFactory;

import android.util.Log;

public class MyDBhelper extends SQLiteOpenHelper{

private static final String CREATE_TABLE="create table "+

Constants.TABLE_NAME+" ("+

Constants.KEY_ID+" integer primary key autoincrement, "+

Constants.TITLE_NAME+" text not null, "+

Constants.CONTENT_NAME+" text not null, "+

Constants.DATE_NAME+" long);";

���������������

ptg

235SQLite Database

public MyDBhelper(Context context, String name, CursorFactory factory,

int version) {

super(context, name, factory, version);

}

@Override

public void onCreate(SQLiteDatabase db) {

Log.v("MyDBhelper onCreate","Creating all the tables");

try {

db.execSQL(CREATE_TABLE);

} catch(SQLiteException ex) {

Log.v("Create table exception", ex.getMessage());

}

}

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {

Log.w("TaskDBAdapter", "Upgrading from version "+oldVersion

+" to "+newVersion

+", which will destroy all old data");

db.execSQL("drop table if exists "+Constants.TABLE_NAME);

onCreate(db);

}

}

The third file of the com.cookbook.data package is the Constants class shown in
Listing 9.11.This class is used to hold all the String constants because they are utilized in
both MyDB and MyDBhelper.

Listing 9.11 src/com/cookbook/data/Constants.java

package com.cookbook.data;

public class Constants {

public static final String DATABASE_NAME="datastorage";

public static final int DATABASE_VERSION=1;

public static final String TABLE_NAME="diaries";

public static final String TITLE_NAME="title";

public static final String CONTENT_NAME="content";

public static final String DATE_NAME="recorddate";

public static final String KEY_ID="_id";

}

���������������

ptg

236 Chapter 9 Data Storage Methods

Recipe: Using a Separate Database Package
This recipe demonstrates SQLite data storage utilizing the previous recipe’s database
package. It also ties together the login screen from the “Changing the UI Based on Stored
Data” recipe and enables the creation and listing of personal diary entries. First, a layout
XML file for creating diary entries—diary.xml—is shown in Listing 9.12 with its output
screen shown in Figure 9.3.

Listing 9.12 res/layout/diary.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Diary Title"

/>

<EditText

android:id="@+id/diarydescriptionText"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

/>

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Content"

/>

<EditText

android:id="@+id/diarycontentText"

android:layout_width="fill_parent"

android:layout_height="200dp"

/>

<Button

android:id="@+id/submitButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="submit"

android:textSize="20dp"

/>

</LinearLayout>

���������������

ptg

237SQLite Database

Figure 9.3 The diary entry creation screen.

The main activity is Diary.java, shown in Listing 9.13.The com.cookbook.data package
needs to be imported, and the MyDB object is declared, initialized, and opened for use. It also
displays the diary.xml layout and handles the submit button press to save data to the database.

Listing 9.13 src/com/cookbook/datastorage/Diary.java

package com.cookbook.datastorage;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import com.cookbook.data.MyDB;

public class Diary extends Activity {

EditText titleET, contentET;

Button submitBT;

MyDB dba;

@Override

public void onCreate(Bundle savedInstanceState) {

���������������

ptg

238 Chapter 9 Data Storage Methods

super.onCreate(savedInstanceState);

setContentView(R.layout.diary);

dba = new MyDB(this);

dba.open();

titleET = (EditText)findViewById(R.id.diarydescriptionText);

contentET = (EditText)findViewById(R.id.diarycontentText);

submitBT = (Button)findViewById(R.id.submitButton);

submitBT.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

try {

saveItToDB();

} catch (Exception e) {

e.printStackTrace();

}

}

});

}

public void saveItToDB() {

dba.insertdiary(titleET.getText().toString(),

contentET.getText().toString());

dba.close();

titleET.setText("");

contentET.setText("");

Intent i = new Intent(Diary.this, DisplayDiaries.class);

startActivity(i);

}

}

The DataStorage.java class is the same as in Listing 9.6 with the MyPreferences.class
changed to launch the Diary.class when the login is successful:

Toast.makeText(DataStorage.this, "login passed!!",

Toast.LENGTH_SHORT).show();

Intent i = new Intent(DataStorage.this, Diary.class);

startActivity(i);

Finally, the AndroidManifest XML file must be updated to include the new activities, as
shown in Listing 9.14.

Listing 9.14 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.datastorage"

android:versionCode="1" android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

���������������

ptg

239SQLite Database

<activity android:name=".DataStorage"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".MyPreferences" />

<activity android:name=".Diary"/>

</application>

<uses-sdk android:minSdkVersion="7" />

</manifest>

Now that a separate database has been integrated, the layout for the list of entries is dis-
cussed in the next recipe to complete the diary application.

Recipe: Creating a Personal Diary
This recipe leverages the ListView object to display multiple entries from a SQLite data-
base table. It shows these items in a vertically scrolling list.The ListView needs a data
adapter to tell the View whenever the underlying data changes.Two XML files need to be
created: diaries.xml, which populates the ListView shown in Listing 9.15, and
diaryrow.xml, which populates the row inside the ListView shown in Listing 9.16.

Listing 9.15 res/layout/diaries.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<ListView

android:layout_width="fill_parent" android:dividerHeight="1px"

android:layout_height="fill_parent"

android:id="list”>

</ListView>

</LinearLayout>

Listing 9.16 res/layout/diaryrow.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout android:layout_width="wrap_content"

android:layout_height="wrap_content" android:orientation="vertical"

android:layout_alignLeft="@+id/name" android:layout_below="@+id/name"

xmlns:android="http://schemas.android.com/apk/res/android"

���������������

ptg

240 Chapter 9 Data Storage Methods

android:padding="12dip">

<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content" android:id="@+id/name"

android:layout_marginRight="4dp" android:text="Diary Title "

android:textStyle="bold" android:textSize="16dip" />

<TextView android:id="@+id/datetext"

android:layout_width="wrap_content"

android:layout_height="wrap_content" android:text="Date Recorded"

android:textSize="14dip" />

</RelativeLayout>

The activity DisplayDiaries.java extends ListActivity to display a ListView. Inside
this class are two inner classes defined: MyDiary is a data class to hold the content of the
diary entry (title, content, and date), and DiaryAdapter is a BaseAdapter class to handle
data retrieval from the database (using getdata()).The following methods are derived
from BaseAdapter and called by ListView:

n getCount()—Returns how many items on the adapter
n getItem()—Returns the item specified
n getItemID()—Returns the ID of item (for this example, there is no item ID)
n getView()—Returns a view for each item

Note that ListView calls getView() to draw the view for each item.To improve the UI
rendering performance, the view returned by getView() should be recycled as much as
possible.This is done by creating a ViewHolder class to hold the views.

When getView() is called, the view currently displayed to the user is also passed in,
which is when it is saved in the ViewHolder and tagged. On subsequent calls to
getView() with the same view, the tag identifies the view as already in the ViewHolder. In
this case, the content can be changed on the existing view rather than create a new one.

The main activity is shown in Listing 9.17, and the resulting view of diary entries in a
ListView is shown in Figure 9.4.

Listing 9.17 src/com/cookbook/datastorage/DisplayDiaries.java

package com.cookbook.datastorage;

import java.text.DateFormat;

import java.util.ArrayList;

import java.util.Date;

import android.app.ListActivity;

import android.content.Context;

import android.database.Cursor;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

���������������

ptg

241SQLite Database

import android.view.ViewGroup;

import android.widget.BaseAdapter;

import android.widget.TextView;

import com.cookbook.data.Constants;

import com.cookbook.data.MyDB;

public class DisplayDiaries extends ListActivity {

MyDB dba;

DiaryAdapter myAdapter;

private class MyDiary{

public MyDiary(String t, String c, String r){

title=t;

content=c;

recorddate=r;

}

public String title;

public String content;

public String recorddate;

}

@Override

protected void onCreate(Bundle savedInstanceState) {

dba = new MyDB(this);

dba.open();

setContentView(R.layout.diaries);

super.onCreate(savedInstanceState);

myAdapter = new DiaryAdapter(this);

this.setListAdapter(myAdapter);

}

private class DiaryAdapter extends BaseAdapter {

private LayoutInflater mInflater;

private ArrayList<MyDiary> diaries;

public DiaryAdapter(Context context) {

mInflater = LayoutInflater.from(context);

diaries = new ArrayList<MyDiary>();

getdata();

}

public void getdata(){

Cursor c = dba.getdiaries();

startManagingCursor(c);

if(c.moveToFirst()){

do{

String title =

c.getString(c.getColumnIndex(Constants.TITLE_NAME));

���������������

ptg

242 Chapter 9 Data Storage Methods

String content =

c.getString(c.getColumnIndex(Constants.CONTENT_NAME));

DateFormat dateFormat =

DateFormat.getDateTimeInstance();

String datedata = dateFormat.format(new

Date(c.getLong(c.getColumnIndex(

Constants.DATE_NAME))).getTime());

MyDiary temp = new MyDiary(title,content,datedata);

diaries.add(temp);

} while(c.moveToNext());

}

}

@Override

public int getCount() {return diaries.size();}

public MyDiary getItem(int i) {return diaries.get(i);}

public long getItemId(int i) {return i;}

public View getView(int arg0, View arg1, ViewGroup arg2) {

final ViewHolder holder;

View v = arg1;

if ((v == null) || (v.getTag() == null)) {

v = mInflater.inflate(R.layout.diaryrow, null);

holder = new ViewHolder();

holder.mTitle = (TextView)v.findViewById(R.id.name);

holder.mDate = (TextView)v.findViewById(R.id.datetext);

v.setTag(holder);

} else {

holder = (ViewHolder) v.getTag();

}

holder.mdiary = getItem(arg0);

holder.mTitle.setText(holder.mdiary.title);

holder.mDate.setText(holder.mdiary.recorddate);

v.setTag(holder);

return v;

}

public class ViewHolder {

MyDiary mdiary;

TextView mTitle;

TextView mDate;

}

}

}

���������������

ptg

243Content Provider

Content Provider
Every application has its own sandbox and cannot access data from other applications. If
access to functions not provided by its own sandbox is required, the application must
explicitly declare permission upfront before installation.Android provides an interface
called ContentProvider to act as a bridge between applications, enabling them to share
and change each other’s data.A content provider allows a clean separation between the
application layer and data layer. It requires a permission setting in the AndroidManifest
XML file and can be accessed using a simple URI model.

Some native databases Android makes available as content providers are

n Browser—Read or modify bookmarks, browser history, or web searches.
n CallLog—View or update the call history.
n Contacts—Retrieve, modify, or store the personal contacts. Contact information is

stored in a three-tier data model of tables under a ContactsContract object:
n ContactsContract.Data—Contains all kinds of personal data.There is a

predefined set of common data, such as phone numbers and email addresses,
but the format of this table can be application-specific.

n ContactsContract.RawContacts—Contains a set of Data objects associated
with a single account or person.

Figure 9.4 The ListView of diary entries.

���������������

ptg

244 Chapter 9 Data Storage Methods

n ContactsContract.Contacts—Contains an aggregate of one or more Raw-
Contacts, presumably describing the same person.

n LiveFolders—A special folder whose content is provided by a ContentProvider.
n MediaStore—Access audio, video, and images.
n Setting—View and retrieve Bluetooth settings, ring tones, and other device prefer-

ences.
n SearchRecentSuggestions—Can be configured to operate with a search suggestions

provider.
n SyncStateContract—ContentProvider contract for associating data with a data array

account. Providers that want to store this data in a standard way can use this.
n UserDictionary—Provides user-defined words used by input methods during pre-

dictive text input.Applications and input methods can add words to the dictionary.
Words can have associated frequency information and locale information.

To access a content provider, the application needs to get a contentResolver instance to
query, insert, delete, and update the data from the content provider, as shown in the fol-
lowing example:

ContentResolver crInstance = getContentResolver(); //get a content Resolver
instance

crInstance.query(People.CONTENT_URI, null, null, null, null); //query contacts

ContentValues new_Values= new ContentValues();

crInstance.insert(People.CONTENT_URI, new_Values); // insert new values

crInstance.delete(People_URI, null, null); //delete all contacts

ContentValues update_Values= new ContentValues();

crInstance.update(People_URI, update_Value, null,null); //update values

Each content provider needs to have a Uniform Resource Identifier (URI), which is used
for registration and permission access.The URI must be unique between providers and
have the generic suggested format:

content://<package name>.provider.<custom ContentProvider name>/<DataPath>

For simplicity, it can also be just content://com.cookbook.datastorage/diaries,
which is used in the next recipe.The Urimatcher is utilized in the ContentProvider to
ensure a proper URI is passed.

Recipe: Creating a Custom Content Provider
After getting a sense of how to use a content provider, it is time to integrate one into the
diary project used in previous recipes.This recipe shows how to expose diary entries to
other selected applications.A custom content provider just extends the Android
ContentProvider class, which contains six methods to optionally override:

���������������

ptg

245Content Provider

n query()—Allows third-party applications to retrieve content.
n insert()—Allows third-party applications to insert content.
n update()—Allows third-party applications to update content.
n delete()—Allows third-party applications to delete content.
n getType()—Allows third-party applications to read each of URI structures sup-

ported.
n onCreate()—Creates a database instance to help retrieve the content.

For example, if other applications are allowed to read only content from the provider, just
onCreate() and query() need to be overridden.

A custom ContentProvider is shown in Listing 9.18; it has one URI added to
UriMatcher based on the package com.cookbook.datastorage and the database table
name diaries.The onCreate() method forms a MyDB object with code in Listing 9.9. It
is responsible for the database access.The query() method retrieves all records from the
diaries database, which is passed as the uri argument. In case of a more specific selection
of records, the other arguments of this method would be utilized.

Listing 9.18 src/com/cookbook/datastorage/DiaryContentProvider.java

package com.cookbook.datastorage;

import android.content.ContentProvider;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.sqlite.SQLiteQueryBuilder;

import android.net.Uri;

import com.cookbook.data.Constants;

import com.cookbook.data.MyDB;

public class DiaryContentProvider extends ContentProvider {

private MyDB dba;

private static final UriMatcher sUriMatcher;

//the code returned for URI match to components

private static final int DIARIES=1;

public static final String AUTHORITY = "com.cookbook.datastorage";

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

sUriMatcher.addURI(AUTHORITY, Constants.TABLE_NAME,

DIARIES);

}

@Override

���������������

ptg

246 Chapter 9 Data Storage Methods

public int delete(Uri uri, String selection, String[] selectionArgs) {

return 0;

}

public String getType(Uri uri) {return null;}

public Uri insert(Uri uri, ContentValues values) {return null;}

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {return 0;}

@Override

public boolean onCreate() {

dba = new MyDB(this.getContext());

dba.open();

return false;

}

@Override

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

Cursor c=null;

switch (sUriMatcher.match(uri)) {

case DIARIES:

c = dba.getdiaries();

break;

default:

throw new IllegalArgumentException(

"Unknown URI " + uri);

}

c.setNotificationUri(getContext().getContentResolver(), uri);

return c;

}

}

The provider needs to be specified in the AndroidManifest XML file to be accessible, as
shown in Listing 9.19.

Listing 9.19 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.datastorage"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

���������������

ptg

247Content Provider

<activity android:name=".DataStorage"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name=".MyPreferences" />

<activity android:name=".Diary"/>

<activity android:name=".DisplayDiaries"/>

<provider android:name="DiaryContentProvider"

android:authorities="com.cookbook.datastorage" />

</application>

<uses-sdk android:minSdkVersion="7" />

</manifest>

Now the content provider is ready for other applications to use.To test this content
provider, a new Android project can be created called DataStorageTester with main
activity DataStorageTester.This is shown in Listing 9.20.An instance of the
ContentResult is created to query the data from the DataStorage content provider.After
a Cursor is returned, the testing function parses the second column of each data entry and
concatenates into a String to display on the screen using a StringBuilder object.

Listing 9.20 src/com/cookbook/datastorage_tester/DataStorageTester.java

package com.cookbook.datastorage_tester;

import android.app.Activity;

import android.content.ContentResolver;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.widget.TextView;

public class DataStorageTester extends Activity {

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.output);

String myUri = "content://com.cookbook.datastorage/diaries";

Uri CONTENT_URI = Uri.parse(myUri);

���������������

ptg

248 Chapter 9 Data Storage Methods

//get ContentResolver instance

ContentResolver crInstance = getContentResolver();

Cursor c = crInstance.query(CONTENT_URI, null, null, null, null);

startManagingCursor(c);

StringBuilder sb = new StringBuilder();

if(c.moveToFirst()){

do{

sb.append(c.getString(1)).append("\n");

}while(c.moveToNext());

}

tv.setText(sb.toString());

}

}

Inside the main.xml layout file, an ID needs to be added for the TextView output, as
shown in Listing 9.21.

Listing 9.21 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:id="@+id/output"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

</LinearLayout>

Running the testing function displays the diary entry titles, as shown in Figure 9.5.

���������������

ptg

249File Saving and Loading

Figure 9.5 The result of a query in a Content
Provider to the separate diary application.

File Saving and Loading
In addition to the Android-specific data storage methods mentioned previously, the stan-
dard java.io.File Java package is available, too.This provides for flat file manipulation, such
as FileInputStream, FileOutputStream, InputStream, and OutputStream.An example
is reading from and writing to a file:

FileInputStream fis = openFileInput("myfile.txt");

FileOutputStream fos = openFileOutput("myfile.txt",

Context.MODE_WORLD_WRITABLE);

Another example is saving the bitmap camera picture to a PNG file, as follows:

Bitmap takenPicture;

FileOutputStream out = openFileOutput("mypic.png",

Context.MODE_WORLD_WRITEABLE);

takenPicture.compress(CompressFormat.PNG, 100, out);

out.flush();

out.close();

���������������

ptg

250 Chapter 9 Data Storage Methods

The files in the resources directories can also be opened. For example, to open
myrawfile.txt located in the res/raw folder, use the following:

InputStream is = this.getResource()

.openRawResource(R.raw.myrawfile.txt);

���������������

ptg

10
Location-Based Services

Location-Based Services (LBS) enable some of the most popular mobile applications.
Location can be integrated with many functions, such as Internet searching, picture tak-
ing, gaming, and social networking. Developers can leverage the available location tech-
nology to make their applications more relevant and local.

This chapter introduces methods to obtain the device’s location and then track,
geocode, and map it. In addition, there are recipes on overlaying the map with markers
and views.

Location Basics
An application requires the following to access the location services from the Android
system:

n LocationManager—Class providing access to Android system location services
n LocationListener—Interface for receiving notifications from the
LocationManager when the location has changed

n Location—Class representing a geographic location determined at a particular time

The LocationManager needs to be initialized with the Android system service called
LOCATION_SERVICE.This provides the application with the device’s current location,
movement and can also alert when the device enters or leaves a defined area.An example
of initialization is

LocationManager mLocationManager;

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

After the LocationManager instance is initiated, a location provider needs to be selected.
Different location technologies might be available on the device (such as Assisted Global
Positioning System (AGPS),Wi-Fi, and so on), and a general way to find a proper loca-
tion provider is to define the accuracy and power requirement.This can be done using
the Criteria class defined in android.location.Criteria.This enables the Android

���������������

ptg

252 Chapter 10 Location-Based Services

system to find the best available location technology for the specified requirements.An
example of selecting a location provider based on criteria is

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria, true);

It is also possible to specify the location estimation technology using the location
manager’s getProvider() method.The two most common providers are the satellite-
based Global Positioning System (GPS) (specified by LocationManager.GPS_PROVIDER)
and cell-tower identification (specified by LocationManager.NETWORK_PROVIDER).The
former is more accurate, but the latter is useful when a direct view of the sky is not avail-
able such as indoors.

Unless otherwise noted, all recipes in this will utilize the following two support files.
First, the main layout needs a TextView as shown in Listing 10.1 for displaying the loca-
tion data.

Listing 10.1 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:id="@+id/tv1"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

</LinearLayout>

Second, permission to utilize location information needs to be granted in the
AndroidManifest.xml file, as shown in Listing 10.2 (only the package name needs to
be changed for each recipe). For a more accurate location, such as GPS, add the
ACCESS_FINE_LOCATION permission. Otherwise, add the ACCESS_COARSE_LOCATION
permission.

Listing 10.2 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.mylocationpackage"

android:versionCode="1"

���������������

ptg

253Location Basics

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".MyLocation"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="4" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

</manifest>

Recipe: Retrieving Last Location
Because it might take time to produce a location estimation, getLastKnownLocation()
can be called to retrieve the location last saved for a given provider.The location contains
a latitude, longitude, and Coordinated Universal Time (UTC) timestamp. Depending on
the provider, information on altitude, speed, and bearing might also be included (use
getAltitude(), getSpeed(), and getBearing() on the Location object to retrieve these
and getExtras() to retrieve satellite information).The latitude and longitude are dis-
played to the screen in this recipe.The main activity is shown in Listing 10.3.

Listing 10.3 src/com/cookbook/lastlocation/MyLocation.java

package com.cookbook.lastlocation;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationManager;

import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {

LocationManager mLocationManager;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.tv1);

���������������

ptg

254 Chapter 10 Location-Based Services

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

Location mLocation =

mLocationManager.getLastKnownLocation(locationprovider);

tv.setText("Last location lat:" + mLocation.getLatitude()

+ " long:" + mLocation.getLongitude());

}

}

Recipe: Updating Location Upon Change
The LocationListener interface is used to receive notifications when the location has
changed.The location manager’s requestLocationUpdates() method needs to be called
after a location provider is initialized to specify when the current activity is to be notified
of changes. It depends on the following parameters:

n provider—The location provider the application uses.
n minTime—The minimum time between updates in milliseconds (although the sys-

tem might increase this time to conserve power).
n minDistance—The minimum distance change before updates in meters.
n listener—The location listener should receive the updates.

The location listener’s onLocationChanged() method can be overridden to specify an
action to be done with the new location. Listing 10.4 shows how this is put together for
5 seconds of time and changes of more than 2 meters between updates.An actual imple-
mentation should use larger values between updates to save battery life.Also note that no
heavy processing should be done in the onLocationChanged() method. Rather, copy the
data and pass it off to a thread.

Listing 10.4 src/com/cookbook/update_location/MyLocation.java

package com.cookbook.update_location;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationListener;

���������������

ptg

255Location Basics

import android.location.LocationManager;

import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity implements LocationListener {

LocationManager mLocationManager;

TextView tv;

Location mLocation;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.tv1);

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

mLocation =

mLocationManager.getLastKnownLocation(locationprovider);

mLocationManager.requestLocationUpdates(

locationprovider, 5000, 2.0, this);

}

@Override

public void onLocationChanged(Location location) {

mLocation = location;

showupdate();

}

// these methods are required

public void onProviderDisabled(String arg0) {}

public void onProviderEnabled(String provider) {}

public void onStatusChanged(String a, int b, Bundle c) {}

public void showupdate(){

tv.setText("Last location lat:"+mLocation.getLatitude()

+ " long:" + mLocation.getLongitude());

}

}

���������������

ptg

256 Chapter 10 Location-Based Services

Note that rather than implementing the LocationListener at the activity level, it can
also be declared as a separate inner class as follows.This can easily be added to any of the
following recipes to provide an update mechanism to the location:

mLocationManager.requestLocationUpdates(

locationprovider, 5000, 2.0, myLocL);

}

private final LocationListener myLocL = new LocationListener(){

@Override

public void onLocationChanged(Location location){

mLocation = location;

showupdate();

}

// these methods are required

public void onProviderDisabled(String arg0) {}

public void onProviderEnabled(String provider) {}

public void onStatusChanged(String a, int b, Bundle c) {}

};

Recipe: Listing All Enabled Providers
This recipe lists the different location providers available on a given Android device. One
example output is shown in Figure 10.1, but may be different depending on the device.
The main activity is shown in Listing 10.5.To see a list of possible providers, the
getProviders(true) method is used.To contrast with the previous recipe, the
LocationListener is declared as an anonymous inner class without loss of functionality.

Listing 10.5 src/com/cookbook/show_providers/MyLocation.java

package com.cookbook.show_providers;

import java.util.List;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {

LocationManager mLocationManager;

TextView tv;

���������������

ptg

257Location Basics

Location mLocation;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.tv1);

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

List<String> providers = mLocationManager.getProviders(true);

StringBuilder mSB = new StringBuilder("Providers:\n");

for(int i = 0; i<providers.size(); i++) {

mLocationManager.requestLocationUpdates(

providers.get(i), 5000, 2.0f, new LocationListener(){

// these methods are required

public void onLocationChanged(Location location) {}

public void onProviderDisabled(String arg0) {}

public void onProviderEnabled(String provider) {}

public void onStatusChanged(String a, int b, Bundle c) {}

});

mSB.append(providers.get(i)).append(": \n");

mLocation =

mLocationManager.getLastKnownLocation(providers.get(i));

if(mLocation != null) {

mSB.append(mLocation.getLatitude()).append(" , ");

mSB.append(mLocation.getLongitude()).append("\n");

} else {

mSB.append("Location can not be found");

}

}

tv.setText(mSB.toString());

}

}

���������������

ptg

258 Chapter 10 Location-Based Services

Recipe: Translating a Location to Address (Reverse Geocoding)
The Geocoder class provides a method to translate from an address into a latitude-
longitude coordinate (geocoding) and from a latitude-longitude coordinate into an
address (reverse geocoding). Reverse geocoding might produce only a partial address,
such as city and postal code, depending on the level of detail available to the location
provider.

This recipe uses reverse geocoding to get an address from the device’s location and dis-
play to the screen, as shown in Figure 10.2.The Geocoder instance needs to be initiated
with a context and optionally with a locale if different from the system locale. Here, it is
explicitly set to Locale.ENGLISH.Then the getFromLocation() method provides a list of
addresses associated with the area around the provided location. Here the maximum
number of returned results is set to one (for instance, the most likely address).

The Geocoder returns a List of android.location.Address objects.This translation
to an address depends on a backend service that is not included in the core Android
framework.The Google Maps API provides a client Geocoder service, for example. How-
ever, the translation returns an empty list if no such service exists on the target device.
The address as a list of strings is dumped line by line into a String for display on the
screen.The main activity is shown in Listing 10.6.

Figure 10.1 Example output of all enabled
location providers at their lastKnownLocation using

an actual Android device.

���������������

ptg

259Location Basics

Figure 10.2 Reverse geocoding example, which
converts a latitude-longitude coordinate

into an address.

Listing 10.6 src/com/cookbook/rev_geocoding/MyLocation.java

package com.cookbook.rev_geocoding;

import java.io.IOException;

import java.util.List;

import java.util.Locale;

import android.app.Activity;

import android.content.Context;

import android.location.Address;

import android.location.Criteria;

import android.location.Geocoder;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.util.Log;

import android.widget.TextView;

���������������

ptg

260 Chapter 10 Location-Based Services

public class MyLocation extends Activity {

LocationManager mLocationManager;

Location mLocation;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.tv1);

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

mLocation =

mLocationManager.getLastKnownLocation(locationprovider);

List<Address> addresses;

try {

Geocoder mGC = new Geocoder(this, Locale.ENGLISH);

addresses = mGC.getFromLocation(mLocation.getLatitude(),

mLocation.getLongitude(), 1);

if(addresses != null) {

Address currentAddr = addresses.get(0);

StringBuilder mSB = new StringBuilder("Address:\n");

for(int i=0; i<currentAddr.getMaxAddressLineIndex(); i++) {

mSB.append(currentAddr.getAddressLine(i)).append("\n");

}

tv.setText(mSB.toString());

}

} catch(IOException e) {

tv.setText(e.getMessage());

}

}

}

���������������

ptg

261Location Basics

Recipe: Translating an Address to Location (Geocoding)
This recipe shows how to translate an address to a longitude-latitude coordinate called
geocoding. It is almost the same as the previous recipe, except the
getFromLocationName() method is used instead of getFromLocation(). Listing 10.7
shows the recipe, which takes a specific address in the String myAddress, converts it to a
location, and then displays it to the screen, as shown in Figure 10.3.

Listing 10.7 src/com/cookbook/geocoding/MyLocation.java

package com.cookbook.geocoding;

import java.io.IOException;

import java.util.List;

import java.util.Locale;

import android.app.Activity;

import android.content.Context;

import android.location.Address;

import android.location.Criteria;

import android.location.Geocoder;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {

LocationManager mLocationManager;

Location mLocation;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.tv1);

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

���������������

ptg

262 Chapter 10 Location-Based Services

mLocation =

mLocationManager.getLastKnownLocation(locationprovider);

List<Address> addresses;

String myAddress="Seattle,WA";

Geocoder gc = new Geocoder(this);

try {

addresses = gc.getFromLocationName(myAddress, 1);

if(addresses != null) {

Address x = addresses.get(0);

StringBuilder mSB = new StringBuilder("Address:\n");

mSB.append("latitude: ").append(x.getLatitude());

mSB.append("\nlongitude: ").append(x.getLongitude());

tv.setText(mSB.toString());

}

} catch(IOException e) {

tv.setText(e.getMessage());

}

}

}

Figure 10.3 Geocoding example, which
converts an address string into a

latitude-longitude coordinate.

���������������

ptg

263Using Google Maps

Using Google Maps
Google maps can be used on the Android system in two ways: user access through a
browser and application access through the Google Maps Application Programming
Interface (API).The MapView class is a wrapper around the Google Maps API.To use
MapView, the following setup is needed:

1. Download and install the Google API’s Software Development Kit (SDK):

1. Use the Android SDK and Android Virtual Device (AVD) manager in Eclipse
to download the Google API.

2. Right-click the project that uses the API, and then select Properties.

3. Select Android, and then select Google API to enable it for this project.

2. Obtain a valid Maps API key to use the Google Maps service (see http://code.
google.com/android/add-ons/google-apis/mapkey.html):

1. Use the keytool command to generate an MD5 certificate fingerprint for the
key alias_name:
> keytool -list -alias alias_name -keystore my.keystore

> result:(Certificate fingerprint (MD5):

94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5)

2. Use the MD5 keystore to sign up for the Google Maps service at
http://code.google.com/android/maps-api-signup.html.

3. A Maps API key is provided upon signup. Use this key with MapView.

3. Include <uses-library android:name="com.google.android.maps" /> in the
AndroidManifest.xml file to inform the Android system that the application uses
the com.google.android.maps library from the Google API’s SDK.

4. Add the android.permission.INTERNET permission to the AndroidManifest.xml
file so the application is allowed to use the Internet to receive data from the Google
Maps service.

5. Include a MapView in the layout XML file.

More specifically, the two supporting files needed for a Google Maps activity are as fol-
lows. First, the AndroidManifest XML file needs the proper maps library and permissions,
as shown in Listing 10.8.

���������������

http://code.google.com/android/add-ons/google-apis/mapkey.html
http://code.google.com/android/add-ons/google-apis/mapkey.html
http://code.google.com/android/maps-api-signup.html

ptg

264 Chapter 10 Location-Based Services

Listing 10.8 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.using_gmaps"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".MyLocation"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<uses-library android:name="com.google.android.maps" />

</application>

<uses-sdk android:minSdkVersion="4" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

</manifest>

Second, the layout XML file needs the proper MapView declared to show the Google
Map, as shown in Listing 10.9. It can also declare whether the user can interact with the
map by declaring the clickable element, which is false by default.

Listing 10.9 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

>

<TextView

android:id="@+id/tv1"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello"

/>

<com.google.android.maps.MapView

android:id="@+id/map1"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:clickable="true"

���������������

ptg

265Using Google Maps

android:apiKey="0ZDUMMY13442HjX491CODE44MSsJzfDVlIQ"

/>

</LinearLayout>

This is utilized in the following recipes.

Recipe: Adding Google Maps to an Application
To display a Google Map, the main activity should extend MapActivity, as shown in
Listing 10.10. It also must point to the layout ID for the map in the main layout XML
file, called map1 here. Note that the isRouteDisplayed() method needs to be imple-
mented, too.The resulting display looks like Figure 10.4.

Listing 10.10 src/com/cookbook/using_gmaps/MyLocation.java

package com.cookbook.using_gmaps;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationManager;

import android.os.Bundle;

import android.widget.TextView;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapView;

public class MyLocation extends MapActivity {

LocationManager mLocationManager;

Location mLocation;

TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

MapView mapView = (MapView) findViewById(R.id.map1);

tv = (TextView) findViewById(R.id.tv1);

mLocationManager = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

criteria.setPowerRequirement(Criteria.POWER_LOW);

String locationprovider =

mLocationManager.getBestProvider(criteria,true);

���������������

ptg

266 Chapter 10 Location-Based Services

mLocation =

mLocationManager.getLastKnownLocation(locationprovider);

tv.setText("Last location lat:" + mLocation.getLatitude()

+ " long:" + mLocation.getLongitude());

}

@Override

protected boolean isRouteDisplayed() {

// this method is required

return false;

}

}

Figure 10.4 Example of Google Maps
used from inside an application.

���������������

ptg

267Using Google Maps

Recipe: Adding Markers on a Map
The ItemizedOverlay class provides a way to draw markers and layovers on top of a
MapView. It manages a set of OverlayItem elements, such as an image, in a list and han-
dles the drawing, placement, click handling, focus control, and layout optimization for
each element. Create a class that extends ItemizedOverlay and override the following:

n addOverlay()—Adds an OverlayItem to the ArrayList.This calls populate(),
which reads the item and prepares it to be drawn.

n createItem()—Called by populate() to retrieve the given OverlayItem.
n size()—Returns the number of OverlayItem elements in the ArrayList.
n onTap()—Callback method when a marker is clicked.

The newly created class is given in Listing 10.11 and provides the result in Figure 10.5.

Listing 10.11 src/com/cookbook/adding_markers/MyMarkerLayer.java

package com.cookbook.adding_markers;

import java.util.ArrayList;

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.graphics.drawable.Drawable;

import com.google.android.maps.ItemizedOverlay;

import com.google.android.maps.OverlayItem;

public class MyMarkerLayer extends ItemizedOverlay {

private ArrayList<OverlayItem> mOverlays =

new ArrayList<OverlayItem>();

public MyMarkerLayer(Drawable defaultMarker) {

super(boundCenterBottom(defaultMarker));

populate();

}

public void addOverlayItem(OverlayItem overlay) {

mOverlays.add(overlay);

populate();

}

@Override

protected OverlayItem createItem(int i) {

return mOverlays.get(i);

}

@Override

public int size() {

return mOverlays.size();

}

���������������

ptg

268 Chapter 10 Location-Based Services

@Override

protected boolean onTap(int index) {

AlertDialog.Builder dialog =

new AlertDialog.Builder(MyLocation.mContext);

dialog.setTitle(mOverlays.get(index).getTitle());

dialog.setMessage(mOverlays.get(index).getSnippet());

dialog.setPositiveButton("Ok",

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

dialog.cancel();

}

});

dialog.setNegativeButton("Cancel",

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int whichButton) {

dialog.cancel();

}

});

dialog.show();

return super.onTap(index);

}

}

Figure 10.5 Adding a clickable marker to a map.

���������������

ptg

269Using Google Maps

A few comments on the MyMarkerLayer class that are highlighted in Listing 10.11:

n An OverlayItem container mOverlays is declared to save all the items passed to the
Overlay.

n A binding point for where all overlaid items are attached to the map needs to be
defined before any overlay item is drawn.To specify the bottom center of the map
as that point, boundCenterBottom is added to the class constructor.

n The required methods are overridden: addOverlay(), createItem(), size(), and
onTap(). Here, the onTap() method provides a dialog box when the item is
clicked.

n The populate() method is added to the end of the constructor and
addOverlay().This tells the MyMarkerLayer class to prepare all OverlayItem ele-
ments and draw each one on the map.

Now, this ItemizedOverlay can be added to the MapActivity created in the previous
recipe.As highlighted in Listing 10.12, the activity:

1. Retrieves the existing map overlay items using the getOverlays() method from
MapView.The marker layer is added to this container at the end of the function.

2. Defines an instance of the MyMarkerLayer to handle the overlay items.

3. Retrieves the latitude and longitude (in degrees) of the address.This defines the
point of interest using a GeoPoint class. GeoPoint takes input in microdegrees, so
the latitude and longitude each needs to be multiplied by one million (1E6).

4. Uses a map controller to animate to the GeoPoint and zoom the view.Also, it en-
ables user-controlled zoom using setBuiltInZoomControls().

5. Defines an OverlayItem as a message at the GeoPoint of interest.

6. Adds the item to the MyMarkerLayer using the addOverlayItem() method. It
then puts the now defined MyMarkerLayer into the existing overlay list retrieved
in step 1.

Listing 10.12 src/com/cookbook/adding_markers/MyLocation.java

package com.cookbook.adding_markers;

import java.io.IOException;

import java.util.List;

import android.content.Context;

import android.graphics.drawable.Drawable;

import android.location.Address;

import android.location.Geocoder;

import android.os.Bundle;

import android.widget.TextView;

���������������

ptg

270 Chapter 10 Location-Based Services

import com.google.android.maps.GeoPoint;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapController;

import com.google.android.maps.MapView;

import com.google.android.maps.Overlay;

public class MyLocation extends MapActivity {

TextView tv;

List<Overlay> mapOverlays;

MyMarkerLayer markerlayer;

private MapController mc;

public static Context mContext;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

mContext = this;

setContentView(R.layout.main);

MapView mapView = (MapView) findViewById(R.id.map1);
tv = (TextView) findViewById(R.id.tv1);

mapOverlays = mapView.getOverlays();

Drawable drawable =

this.getResources().getDrawable(R.drawable.icon);

markerlayer = new MyMarkerLayer(drawable);

List<Address> addresses;

String myAddress="1600 Amphitheatre Parkway, Mountain View, CA";

int geolat = 0;

int geolon = 0;

Geocoder gc = new Geocoder(this);

try {

addresses = gc.getFromLocationName(myAddress, 1);

if(addresses != null) {

Address x = addresses.get(0);

geolat = (int)(x.getLatitude()*1E6);

geolon = (int)(x.getLongitude()*1E6);

}

} catch(IOException e) {

tv.setText(e.getMessage());

}

mapView.setBuiltInZoomControls(true);

GeoPoint point = new GeoPoint(geolat,geolon);

mc = mapView.getController();

���������������

ptg

271Using Google Maps

mc.animateTo(point);

mc.setZoom(3);

OverlayItem overlayitem =

new OverlayItem(point, "Google Campus", "I am at Google");

markerlayer.addOverlayItem(overlayitem);

mapOverlays.add(markerlayer);

}

@Override

protected boolean isRouteDisplayed() { return false; }

}

Recipe: Adding Views to a Map
The developer can add any View or ViewGroup to the MapView.This recipe shows the
addition of two simple elements to a map: TextView and Button.When the button is
clicked, the text in the TextView changes.These two views are added to MapView by call-
ing the addView() method with LayoutParams. Here, the location of the elements are
specified in (x,y) screen coordinates, but developers can also provide a GeoPoint to the
LayoutParams instead. Listing 10.13 shows the main activity, which also requires the
MyMarkerLayer class defined in the previous recipe (Listing 10.11 with the first line
changed to reflect the proper package).This results in the map view shown in Figure 10.6.

Listing 10.13 src/com/cookbook/mylocation/MyLocation.java

package com.cookbook.mylocation;

import java.io.IOException;

import java.util.List;

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.graphics.drawable.Drawable;

import android.location.Address;

import android.location.Geocoder;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

import com.google.android.maps.GeoPoint;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapController;

���������������

ptg

272 Chapter 10 Location-Based Services

import com.google.android.maps.MapView;

import com.google.android.maps.Overlay;

public class MyLocation extends MapActivity {

TextView tv;

List<Overlay> mapOverlays;

MyMarkerLayer markerlayer;

private MapController mc;

MapView.LayoutParams mScreenLayoutParams;

public static Context mContext;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

mContext = this;

setContentView(R.layout.main);

MapView mapView = (MapView) findViewById(R.id.map1);

mc = mapView.getController();

tv = (TextView) findViewById(R.id.tv1);

mapOverlays = mapView.getOverlays();

Drawable drawable =

this.getResources().getDrawable(R.drawable.icon);

markerlayer = new MyMarkerLayer(drawable);

List<Address> addresses;

String myAddress="1600 Amphitheatre Parkway, Mountain View, CA";

int geolat = 0;

int geolon = 0;

Geocoder gc = new Geocoder(this);

try {

addresses = gc.getFromLocationName(myAddress, 1);

if(addresses != null) {

Address x = addresses.get(0);

StringBuilder mSB = new StringBuilder("Address:\n");

geolat =(int)(x.getLatitude()*1E6);

geolon = (int)(x.getLongitude()*1E6);

mSB.append("latitude: ").append(geolat).append("\n");

mSB.append("longitude: ").append(geolon);

tv.setText(mSB.toString());

}

���������������

ptg

273Using Google Maps

} catch(IOException e) {

tv.setText(e.getMessage());

}

int x = 50;

int y = 50;

mScreenLayoutParams =

new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,

MapView.LayoutParams.WRAP_CONTENT,

x,y,MapView.LayoutParams.LEFT);

final TextView tv = new TextView(this);

tv.setText("Adding View to Google Map");

tv.setTextColor(Color.BLUE);

tv.setTextSize(20);

mapView.addView(tv, mScreenLayoutParams);

x = 250;

y = 250;

mScreenLayoutParams =

new MapView.LayoutParams(MapView.LayoutParams.WRAP_CONTENT,

MapView.LayoutParams.WRAP_CONTENT,

x,y,

MapView.LayoutParams.BOTTOM_CENTER);

Button clickMe = new Button(this);

clickMe.setText("Click Me");

clickMe.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

tv.setTextColor(Color.RED);

tv.setText("Let’s play");

}

});

mapView.addView(clickMe, mScreenLayoutParams);

}

@Override

protected boolean isRouteDisplayed() { return false; }

}

���������������

ptg

274 Chapter 10 Location-Based Services

Recipe: Marking the Device’s Current Location on a Map
A convenient built-in overlay is MyLocationOverlay, which automatically draws the
user’s current location on a map as a blue dot. It can also show accuracy and which direc-
tion the user is pointing (bearing).There are four significant methods that are often used:

n enableCompass()—Allows the user to see the compass indicator on the map
n enableMyLocation()—Registers the location for most accurate location fix

updates and draws a blinking blue dot surrounded by an outlining blue disk to rep-
resent accuracy

n getMyLocation()—Returns a GeoPoint with the current location data
n getOrientation()—Returns the most recently set compass bearing

These methods provide an easy way for developers to utilize the compass in maps.

Recipe: Setting up a Proximity Alert
The LocationManager provides a method to set a proximity alert.This triggers an alert
when a user enters or leaves a defined area.The area is specified by a latitude-longitude
coordinate and a radius in meters.The alert is specified with a PendingIntent to be
launched whenever a user enters or leaves the specified area.An expiration time for the
alert can also be defined.An example of how to implement this is shown in Listing 10.14.

Figure 10.6 Adding views to a map.

���������������

ptg

275Using Google Maps

Listing 10.14 Example of Setting Up a Proximity Alert

double mlatitude=35.41;

double mlongitude=139.46;

float mRadius=500f; // in meters

long expiration=-1; //-1 never expires or use milliseconds

Intent mIntent = new Intent("You entered the defined area");

PendingIntent mFireIntent

= PendingIntent.getBroadCast(this, -1, mIntent, 0);

mLocationManager.addProximityAlert(mlatitude, mlongitude,

mRadius, expiration, mFireIntent);

���������������

ptg

This page intentionally left blank

���������������

ptg

11
Advanced Android Development

This chapter is a collection of advanced techniques that are useful to make an applica-
tion more robust, faster, and in some cases, to improve the user interface. First, an example
of customizing an Android standard view is shown.Then, the Native Development Kit
(NDK) is introduced as a method for reducing overhead and improving time on complex
computations.Android security is then discussed. Next, a way to do inter-process com-
munication between two different processes is presented.This is followed by data backup
to the cloud, which is a feature introduced in Android 2.2. Finally, some techniques for
user interface animation are shown.

Android Custom View
As discussed in Chapter 4,“User Interface Layout,”Android has two types of views: View
objects and ViewGroup objects.A custom view can be created by either starting from
scratch or inheriting an existing view structure. Some standard widgets are defined by the
Android Framework under the View and ViewGroup class, and if possible, the customiza-
tion should start with one of these:

n Views—Button, EditText, TextView, ImageView, and so on
n ViewGroups—LinearLayout, ListView, RelativeLayout, RadioGroup, and so on

Recipe: Customizing a Button
This recipe customizes a button using a class called myButton. It extends the Button
widget so that the component inherits most of the Button features.To customize a
widget, the most important methods are onMeasure() and onDraw().

The onMeasure() method determines the size requirements for a widget. It takes two
parameters: the width and height measure specification. Customized widgets should cal-
culate the width and height based on the contents inside the widget, and then call
setMeasuredDimension() with these values. If this is not done, an
illegalStateException is thrown by measure().

The onDraw() method allows customized drawing on the widget. Drawing is handled
by walking down the tree and rendering view by view.All parents are drawn before the

���������������

ptg

278 Chapter 11 Advanced Android Development

children get drawn. If a background drawable is set for a view, then the view draws that
before calling back to its onDraw() method.

Inside the myButton class, eight member methods and two constructors are imple-
mented.The member functions are

n setText()—Set the text that is drawn on the button.
n setTextSize()—Set the text size.
n setTextColor()—Set the text color.
n measureWidth()—Measure the width of the button widget.
n measureHeight()—Measure the height of the button widget.
n drawArcs()—Draw arcs.
n onDraw()—Draw the graphics on the button widget.
n onMeasure()—Measure and set the boundary of the button widget.

The methods setText(), setTextSize(), and setTextColor() change the text
attributes. Every time the text is changed, the invalidate() method needs to be called
to force the view to redraw the button widget and reflect the change.The method
requestLayout() is called in the setText() and setTextSize() methods but not in the
setTextColor() method.This is because the layout is only needed when the boundary
of the widget changes, which is not the case with text color change.

Inside onMeasure(), the setMeasuredDimension() method is called with
measureWidth() and measureHeight(). It is an important step for customizing the View.

The methods measureWidth() and measureHeight() are called with the size of the
parent view and need to return the proper width and height values of the custom view
based on the requested mode of measurement. If the EXACTLY mode of measurement is
specified, then the method needs to return the value given from parent View. If the
AT_MOST mode is specified, then the method can return the smaller of the two values—
content size and parent view size—to ensure the content is sized properly. Otherwise, the
method calculates the width and height based on the content inside the widget. In this
recipe, the content size is based on the text size.

The method drawArcs() is a straightforward function that draws arcs on the button.
This is called by onDraw() as the text is drawn.Animation of the arcs also takes place
here. Every time the arc is drawn, its length is incremented a little and the gradient is
rotated making a nice animation.

The class for the custom button is shown in Listing 11.1.A constructor method is
required, and here, two MyButton() methods are shown depending on arguments. Each
initializes the label view with the custom attributes.The android.graphics.* libraries
are similar in format to Java for graphics manipulations, such as Matrix and Paint.

���������������

ptg

279Android Custom View

Listing 11.1 src/com/cookbook/advance/MyButton.java

package com.cookbook.advance.customComponent;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.Matrix;

import android.graphics.Paint;

import android.graphics.RectF;

import android.graphics.Shader;

import android.graphics.SweepGradient;

import android.util.AttributeSet;

import android.util.Log;

import android.widget.Button;

public class MyButton extends Button {

private Paint mTextPaint, mPaint;

private String mText;

private int mAscent;

private Shader mShader;

private Matrix mMatrix = new Matrix();

private float mStart;

private float mSweep;

private float mRotate;

private static final float SWEEP_INC = 2;

private static final float START_INC = 15;

public MyButton(Context context) {

super(context);

initLabelView();

}

public MyButton(Context context, AttributeSet attrs) {

super(context, attrs);

initLabelView();

}

private final void initLabelView() {

mTextPaint = new Paint();

mTextPaint.setAntiAlias(true);

mTextPaint.setTextSize(16);

mTextPaint.setColor(0xFF000000);

setPadding(15, 15, 15, 15);

mPaint = new Paint();

mPaint.setAntiAlias(true);

mPaint.setStrokeWidth(4);

���������������

ptg

280 Chapter 11 Advanced Android Development

mPaint.setAntiAlias(true);

mPaint.setStyle(Paint.Style.STROKE);

mShader = new SweepGradient(this.getMeasuredWidth()/2,

this.getMeasuredHeight()/2,

new int[] { Color.GREEN,

Color.RED,

Color.CYAN,Color.DKGRAY },

null);

mPaint.setShader(mShader);

}

public void setText(String text) {

mText = text;

requestLayout();

invalidate();

}

public void setTextSize(int size) {

mTextPaint.setTextSize(size);

requestLayout();

invalidate();

}

public void setTextColor(int color) {

mTextPaint.setColor(color);

invalidate();

}

@Override

protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec){

setMeasuredDimension(measureWidth(widthMeasureSpec),

measureHeight(heightMeasureSpec));

}

private int measureWidth(int measureSpec) {

int result = 0;

int specMode = MeasureSpec.getMode(measureSpec);

int specSize = MeasureSpec.getSize(measureSpec);

if (specMode == MeasureSpec.EXACTLY) {

// We were told how big to be

result = specSize;

} else {

// Measure the text

result = (int) mTextPaint.measureText(mText)

+ getPaddingLeft()

���������������

ptg

281Android Custom View

+ getPaddingRight();

if (specMode == MeasureSpec.AT_MOST) {

result = Math.min(result, specSize);

}

}

return result;

}

private int measureHeight(int measureSpec) {

int result = 0;

int specMode = MeasureSpec.getMode(measureSpec);

int specSize = MeasureSpec.getSize(measureSpec);

mAscent = (int) mTextPaint.ascent();

if (specMode == MeasureSpec.EXACTLY) {

// We were told how big to be

result = specSize;

} else {

// Measure the text (beware: ascent is a negative number)

result = (int) (-mAscent + mTextPaint.descent())

+ getPaddingTop() + getPaddingBottom();

if (specMode == MeasureSpec.AT_MOST) {

Log.v("Messure Height", "At most Height:"+specSize);

result = Math.min(result, specSize);

}

}

return result;

}

private void drawArcs(Canvas canvas, RectF oval, boolean useCenter,

Paint paint) {

canvas.drawArc(oval, mStart, mSweep, useCenter, paint);

}

@Override protected void onDraw(Canvas canvas) {

mMatrix.setRotate(mRotate, this.getMeasuredWidth()/2,

this.getMeasuredHeight()/2);

mShader.setLocalMatrix(mMatrix);

mRotate += 3;

if (mRotate >= 360) {

mRotate = 0;

}

RectF drawRect = new RectF();

drawRect.set(this.getWidth()-mTextPaint.measureText(mText),

(this.getHeight()-mTextPaint.getTextSize())/2,

���������������

ptg

282 Chapter 11 Advanced Android Development

mTextPaint.measureText(mText),

this.getHeight()-(this.getHeight()-mTextPaint.getTextSize())/2);

drawArcs(canvas, drawRect, false, mPaint);

mSweep += SWEEP_INC;

if (mSweep > 360) {

mSweep -= 360;

mStart += START_INC;

if (mStart >= 360) {

mStart -= 360;

}

}

if(mSweep >180){

canvas.drawText(mText, getPaddingLeft(),

getPaddingTop() -mAscent, mTextPaint);

}

invalidate();

}

}

This custom Button widget can then be used in a layout as shown in Listing 11.2.

Listing 11.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:gravity="center_vertical"

>

<com.cookbook.advance.customComponent.MyButton

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/mybutton1"

/>

</LinearLayout>

The layout XML has only one ViewGroup, LinearLayout, and one View, called by its
definition location com.cookbook.advance.customComponent.myButton.This can be
used in an activity, as shown in Listing 11.3.

Listing 11.3 src/com/cookbook/advance/ShowMyButton.java

package com.cookbook.advance.customComponent;

import android.app.Activity;

import android.os.Bundle;

���������������

ptg

283Android Native Components

Figure 11.1 An example of a custom button.

public class ShowMyButton extends Activity{

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

MyButton myb = (MyButton)findViewById(R.id.mybutton1);

myb.setText("Hello Students");

myb.setTextSize(40);

}

}

This shows the custom button is used the same as a normal Button widget.The resulting
custom button is shown in Figure 11.1.

Android Native Components
When a computationally intensive function is critical to an Android application, it might
be worthwhile to move the intensive computation to native C or C++ for efficiency.The
Android NDK exists to help in the development of a native component.The NDK is a

���������������

ptg

284 Chapter 11 Advanced Android Development

companion to the Android Software Development Kit (SDK) and includes a bundle of
libraries that can be used to build C/C++ libraries. Steps to set up and build an Android
native component are

1. Download the Android NDK from http://developer.android.com/sdk/ndk/, which
includes detailed documents on usage.

2. Create an Android project through the normal means under the NDK directory.

3. Create a jni/ folder under the project created in step 2.

4. Create the necessary C/C++ program files under the jni/ folder.

5. Create an Android.mk make file.

6. Run the build script (ndk-build for NDK-r4) from the project directory.

7. Inside the Android Java project, import the library and call the native functions.

Using the Eclipse Integrated Development Environment (IDE), the native libraries are
properly bundled with the application upon build.

Recipe: Developing a Native Component
In this recipe, a C program is used to create a numerical factorial function.Then, an activ-
ity in Java calls the C library function and shows the result on the screen. First of all, the
C program is shown in Listing 11.4.

Listing 11.4 jni/cookbook.c

#include <string.h>

#include <jni.h>

jint factorial(jint n){

if(n == 1){

return 1;

}

return factorial(n-1)*n;

}

jint Java_com_cookbook_advance_ndk_ndk_factorial(JNIEnv* env,

jobject thiz, jint n) {

return factorial(n);

}

���������������

http://developer.android.com/sdk/ndk/

ptg

285Android Native Components

Table 11.1 Type Mapping Between Java and Native

Java Type in C/C++ Native Type Description

jboolean unsigned char unsigned 8 bits

jbyte signed char signed 8 bits

jchar unsigned short unsigned 16 bits

jshort short signed 16 bits

jint long signed 32 bits

jfloat float 32 bits

jlong long long _int64 signed 64 bits

jdouble double 64 bits

Inside this C program, there is a special type jint, which is the Java type defined in
C/C++.This provides a way to pass native types to Java. If return values from Java to C
are necessary, a casting can be done.Table 11.1 summarizes the type mapping between
Java and native description.

There are two functions inside the C program.The first factorial function is used to do
actual calculations. Java calls the second function.The name of the function should always
be defined as the JAVA_CLASSNAME_METHOD format for interface.

There are three parameters in the second function: a JNIEnv pointer, a jobject
pointer, and a Java argument the Java method declares. JNIEnv is a Java Native Interface
(JNI) pointer passed as an argument for each native function.These functions are mapped
to a Java method that is the structure that contains the interface to the Java Virtual
Machine (JVM). It includes the functions necessary to interact with the JVM and to work
with Java objects. In this example, it does not use any Java functions.The only argument
needed for this program is the Java argument jint n.

The makefile for the builder is shown in Listing 11.5. It should be placed at the same
location as the C program. It contains a definition of the LOCAL_PATH for the builder and
a call to CLEAR_VARS to clean up all LOCAL_* variables before each build.Then, the
LOCAL_MODULE is identified as the name of the custom library ndkcookbook and identifies
the source code files to build.After all these declarations, it includes the
BUILD_SHARED_LIBRARY.This is a generic makefile for building a simple program. More
detailed information on the makefile format is provided in the ANDROID-MK.TXT
file under the docs/ directory of the NDK.

���������������

ptg

286 Chapter 11 Advanced Android Development

Listing 11.5 jni/Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := ndkcookbook

LOCAL_SRC_FILES := cookbook.c

include $(BUILD_SHARED_LIBRARY)

The next step is to build the native library.With NDK-r4, calling the provided build script
ndk-build at the NDK root directory of the project builds the libraries with an associated
makefile. For older versions, the command make APP=NAME_OF_APPLICATION
is needed.After the libraries are built, a lib/ folder is created containing the native
library libndkcookbook.so. In NDK-r4, it also contains two gdb files that help with
debugging.

The Android activity that utilizes this library calls the System.loadLibrary() to load
the ndkcookbook library.Then, the native function needs to be declared.This is shown
in Listing 11.6.The output is shown in Figure 11.2.

Listing 11.6 src/com/cookbook/advance/ndk/ndk.java

package com.cookbook.advance.ndk;

import android.app.Activity;

import android.widget.TextView;

import android.os.Bundle;

public class ndk extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

TextView tv = new TextView(this);

tv.setText(" native calculation on factorial :"+factorial(30));

setContentView(tv);

}

public static native int factorial(int n);

static {

System.loadLibrary("ndkcookbook");

}

}

���������������

ptg

287Android Security

Figure 11.2 Output of the NDK application.

Android Security
Android is a multiprocess system. Each application runs on top of the Android Dalvik
machine. Each Dalvik machine runs on top of a Linux process. Each process runs in its
own sandbox, which means it can access only the resources it creates.

By default, each application is assigned a unique Linux user ID. It is possible to config-
ure multiple applications to share the same user ID.This allows those applications to have
the same permission to access the resources.

To access resources outside of the application sandbox, the application needs to request
permission from the Android system. Most of the native components in Android have
permission restrictions.The permissions requested in the application manifest are exposed
to the user during installation. If a user allows installation of the application, then the per-
missions are granted. Permissions cannot be added after the application is installed.The
permissions are defined under android.Manifest.permission.

As discussed in Chapter 1,“Overview of Android,” each application needs a self-signed
private keystore that contains a certificate.This keystore is used to identify the author of
the application, but does not manage permissions of the applications.An application can
grant permission to a given group using the permission tag in the AndroidManifest file.

���������������

ptg

288 Chapter 11 Advanced Android Development

Recipe: Declaring and Enforcing Permissions
Permissions can be assigned to activities, broadcast receivers, content providers, and serv-
ices.To assign a permission, the permission element needs to be declared in the desired
Android component in the AndroidManifest XML file. For example:

<permission android:name="com.myapp"

android:label="my app"

android:description="using my app"

android:permissionGroup="android.permission-group.COST_MONEY"

android:protectionLevel="dangerous" />

This provides a method not only to specify the permission needed, but also the level of
access with the protectionLevel attribute.There are four levels of access: normal,
dangerous, signature, and signatureOrSystem.The permissionGroup attribute is used
only to help the system display permissions to the user, which is optional.The possible
permission groups are

permission group:android.permission-group.DEVELOPMENT_TOOLS

permission group:android.permission-group.PERSONAL_INFO

permission group:android.permission-group.COST_MONEY

permission group:android.permission-group.LOCATION

permission group:android.permission-group.MESSAGES

permission group:android.permission-group.NETWORK

permission group:android.permission-group.ACCOUNTS

permission group:android.permission-group.STORAGE

permission group:android.permission-group.PHONE_CALLS

permission group:android.permission-group.HARDWARE_CONTROLS

permission group:android.permission-group.SYSTEM_TOOLS

The label, description, and name attributes are ways to make the permission more
descriptive.

Android Inter-Process Communication
If two applications need to share resources but cannot get granted permissions, it is possi-
ble to define an inter-process communication (IPC) message.To support IPC, an interface
is needed to serve as a bridge between applications.This is provided by the Android Inter-
face Definition Language (AIDL).

Defining AIDL is similar to a Java interface. In fact, it can be easily done in Eclipse by
creating a new Java interface, and after the definitions are complete, changing the suffix of
the file from .java to .aidl.

The data types that AIDL currently supports are

n Java primitives that include int, boolean, float
n String

n CharSequence

���������������

ptg

289Android Inter-Process Communication

n List

n Map

n Other AIDL-generated interfaces
n Custom classes that implement the Parcelable protocol and are passed by value

Recipe: Implementing a Remote Procedure Call
This recipe implements a remote procedure call (RPC) between two activities. First, an
AIDL interface can be defined, as shown in Listing 11.7.

Listing 11.7 IAdditionalService.aidl under the com.cookbook.advance.rpc.

package com.cookbook.advance.rpc;

// Declare the interface.

interface IAdditionService {

int factorial(in int value);

}

After the AIDL file is created, Eclipse generates an IAdditionalService.java file under the
gen/ folder when the project is built.The contents of this file should not be modified. It
contains a stub class that is needed to implement the remote service.

Inside the first activity, rpcService, an mBinder member is declared as the stub from
the IAdditionalService. It can also be interpreted as an IBinder. In the onCreate()
method, the mBinder is initiated and defined to call the factorial() function. During
the onBind(), it returns mBinder to the caller.After the onBind() is ready, the other
process activities are able to connect to the service.This is shown in Listing 11.8.

Listing 11.8 src/com/cookbook/advance/rpc/rpcService.java

package com.cookbook.advance.rpc;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.os.RemoteException;

public class RPCService extends Service {

IAdditionService.Stub mBinder;

@Override

public void onCreate() {

super.onCreate();

mBinder = new IAdditionService.Stub() {

public int factorial(int value1) throws RemoteException {

int result=1;

���������������

ptg

290 Chapter 11 Advanced Android Development

for(int i=1; i<=value1; i++){

result*=i;

}

return result;

}

};

}

@Override

public IBinder onBind(Intent intent) {

return mBinder;

}

@Override

public void onDestroy() {

super.onDestroy();

}

}

Now the second activity that runs in a different process must be specified.The associated
layout file is shown in Listing 11.9. Inside the layout, it has three views that actually serve the
main roles. EditText takes the input from the user, the Button triggers the factorial()
function call, and the TextView with ID result is used for displaying the result from
factorial.

Listing 11.9 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="Android CookBook RPC Demo"

android:textSize="22dp" />

<LinearLayout

android:orientation="horizontal" android:layout_width="fill_parent"

android:layout_height="wrap_content">

<EditText android:layout_width="wrap_content"

android:layout_height="wrap_content" android:id="@+id/value1"

android:hint="0-30"></EditText>

<Button android:layout_width="wrap_content"

android:layout_height="wrap_content" android:id="@+id/buttonCalc"

android:text="GET"></Button>

</LinearLayout>

<TextView android:layout_width="wrap_content"

���������������

ptg

291Android Inter-Process Communication

android:layout_height="wrap_content" android:text="result"

android:textSize="36dp" android:id="@+id/result"></TextView>

</LinearLayout>

The AndroidManifest is shown in Listing 11.10. Inside the service tag, there is an extra
attribute android:process=".remoteService".This asks the system to create a new
process named remoteService to run the second activity.

Listing 11.10 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.advance.rpc"

android:versionCode="1" android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name" >

<activity android:name=".rpc" android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name=".rpcService" android:process=".remoteService"/>

</application>

<uses-sdk android:minSdkVersion="7" />

</manifest>

The second activity is shown in Listing 11.11. It needs to call bindService() to retrieve
the factorial() method provided in the rpcService.The bindService() requires a
service connection instance as the interface for monitoring the state of an application
service.Therefore, this activity has an inner class myServiceConnection that implements
the service connection.

The myServiceConnection and IAdditionService classes are instantiated in the rpc
activity.The myServiceConnection listens to the onServiceConnected and
onServiceDisconnected callback functions.The onServiceConnected passes the
IBinder instance to the IAdditionService instance.The onServiceDisconnected call-
back function puts the IAdditionService instance to null.

There are also two methods defined inside the rpc activity that are initService()
and releaseService().The initService() tries to initiate a new
myServiceConnetion.Then, it creates a new intent for a specific package name and class
name and passes it to the bindService along with the myServiceConnection instance
and a flag BIND_AUTO_CREATE.After the service is bound, the onServiceConnected call-

���������������

ptg

292 Chapter 11 Advanced Android Development

back function is triggered and it passes the IBinder to the IAdditionService instance so
the rpc activity can start to call the factorial method.The output is shown in Figure 11.3.

Listing 11.11 src/com/cookbook/advance/rpc/rpc.java

package com.cookbook.advance.rpc;

import android.app.Activity;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.IBinder;

import android.os.RemoteException;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

public class rpc extends Activity {

IAdditionService service;

myServiceConnection connection;

class myServiceConnection implements ServiceConnection {

public void onServiceConnected(ComponentName name,

IBinder boundService) {

service = IAdditionService.Stub.asInterface((IBinder) boundService);

Toast.makeText(rpc.this, "Service connected", Toast.LENGTH_SHORT)

.show();

}

public void onServiceDisconnected(ComponentName name) {

service = null;

Toast.makeText(rpc.this, "Service disconnected", Toast.LENGTH_SHORT)

.show();

}

}

���������������

ptg

293Android Inter-Process Communication

private void initService() {

connection = new myServiceConnection();

Intent i = new Intent();

i.setClassName("com.cookbook.advance.rpc",

com.cookbook.advance.rpc.rpcService.class.getName());

if(!bindService(i, connection, Context.BIND_AUTO_CREATE)) {

Toast.makeText(rpc.this, "Bind Service Failed", Toast.LENGTH_LONG)

.show();

}

}

private void releaseService() {

unbindService(connection);

connection = null;

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

initService();

Button buttonCalc = (Button) findViewById(R.id.buttonCalc);

buttonCalc.setOnClickListener(new OnClickListener() {

TextView result = (TextView) findViewById(R.id.result);

EditText value1 = (EditText) findViewById(R.id.value1);

public void onClick(View v) {

int v1, res = -1;

try {

v1 = Integer.parseInt(value1.getText().toString());

res = service.factorial(v1);

} catch (RemoteException e) {

e.printStackTrace();

}

result.setText(new Integer(res).toString());

}

});

}

���������������

ptg

294 Chapter 11 Advanced Android Development

@Override

protected void onDestroy() {

releaseService();

}

}

Figure 11.3 Output of the AIDL application.

Android Backup Manager
In Android devices, end users store a lot of data on different applications like notes, game
data, application settings, address book entries, and so on.All these data cannot be recov-
ered after they are gone. In the past, developers needed to find alternative ways to back up
application data to a remote server.With the introduction of Android 2.2, the support for
an Android backup service hosted by Google was introduced.All the application data can
use the backup service to store any data to the cloud.

Recipe: Creating a Backup of Runtime Data
Android provides the BackupManager class for developers to notify the Backup service to
do backup and restore operations.After the notification is received, the backup manager
requests backup data from the application and delivers it to a cloud storage server during
backup. It also retrieves backup data from the backup transport and returns it to applica-
tions during a restore process.

���������������

ptg

295Android Backup Manager

A backup agent is the interface where the BackupManager communicates with the
applications.To create a backup agent for applications, developers can extend the
BackupAgent in their class. Inside any class that extends BackupAgent, two methods need
to be overridden: onBackup() and onRestore().The onBackup() method is triggered
whenever there is a dataChanged() method call.The onRestore() method is triggered
whenever there is a requestRestore() method call:

public class MyBackupAgent extends BackupAgent {

@Override

public void onCreate() {

...

}

@Override

public void onBackup(ParcelFileDescriptor oldState,

BackupDataOutput data,

ParcelFileDescriptor newState){

...

}

@Override

public void onRestore(BackupDataInput data, int appVersionCode,

ParcelFileDescriptor newState){

...

}

}

The onBackup() method has three parameters that are passed and used by the backup
manager:

n oldState—Return the state from the last backup
n data—The data that is backed up
n newState—Write the current state of the backup, which becomes the oldState

for the next backup

In implementing the onBackup() method, the oldState that the BackupManager passes
in should be checked against the current data state. If it is the same, there is no need to do
the backup. If it is not the same, the data passed to the method should be written, and
the newState should be updated for the backup.

The onRestore() method has three parameters passed and used by the backup man-
ager as well:

n data—The data from the last backup.
n appVersionCode—The application’s version code during the backup operation.

The version code is defined as the attribute android:versionCode in the Android-
Manifest XML file.

n newState—Write the current state as the restore point.

���������������

ptg

296 Chapter 11 Advanced Android Development

Any data conversions required in changes from version to version should be done in the
onRestore() method.That is the reason the BackupManager passes the appVersionCode.
After the data is restored to the application, the state of the application changes.At this
point, a newState needs to be written.

Recipe: Backing Up Files to the Cloud
The BackupAgent is intended to save application run-time data.To save files, there is
another agent named BackupAgentHelper.This is the wrapper class for the backup agent
class. It supports two different kinds of backup helpers:

n SharedPreferencesBackupHelper to backup SharedPreferences files
n FileBackupHelper to backup files

This is shown in Listing 11.12.

Listing 11.12 Example of Extending the BackupAgentHelper

public class MyFileBackupAgentHelper extends BackupAgentHelper {

@Override

public void onCreate() {

FileBackupHelper filehelper = new FileBackupHelper(this,

DATA_FILE_NAME);

addHelper(FILE_HELPER_KEY, helper);

SharedPreferencesBackupHelper xmlhelper

= new SharedPreferencesBackupHelper(this, PREFS);

addHelper(PREFS_BACKUP_KEY, helper);

}

}

All backup agent helpers need an onCreate() method.The BackupAgent can have more
than one backup helper. In the class extended with BackupAgentHelper, it does not need
to override onBackup and onRestore because it is handled well by the BackupAgent.

Recipe: Triggering Backup and Restore
To trigger a backup or restore, the backup agent for the application needs to be defined.
This can be done by adding an android:backupAgent attribute inside the application
tag.This is shown in Listing 11.13.

Listing 11.13 AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.cookbook.databackuprestore"

android:versionCode="1"

android:versionName="1.0">

<uses-sdk android:minSdkVersion="8"/>

<application android:label="Backup/Restore"

���������������

ptg

297Android Backup Manager

android:backupAgent="myBackupAgent">

<activity android:name="MyBandRActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

</manifest>

Anytime the application triggers a backup or restore to the BackupManager, it initiates
with the identified backup agent. For example, with the main activity excerpt as follows:

public class MyBandRActivity extends Activity {

BackupManager mBackupManager;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

...

mBackupManager = new BackupManager(this);

}

void dataUpdate() {

...

// We also need to perform an initial backup; ask for one

mBackupManager.dataChanged();

}

}

Inside the MyBandRActivity activity, the BackupManager instance is created in the
onCreate() function.To ask for a backup, the dataChanged() function is called from the
BackupManager.Then the BackupManager finds the BackupAgent defined in the
AndroidManifest file and calls its onBackup() method.

Android provides two ways to trigger the restore.The first method is to use
requestRestore() from the BackupManager.This method triggers a call to the backup
agent’s onRestore() method.Another way to trigger a restore is whenever the user does
a factory data reset or when the application is reinstalled.The Android system then auto-
matically triggers the restore for the application.

Besides triggering the backup and restore in an Android application,Android also pro-
vides a command-line script bmgr that can do the same thing.To trigger the backup, type

> adb shell bmgr backup <package>

To trigger the restore, type

> adb shell bmgr restore <package>

���������������

ptg

298 Chapter 11 Advanced Android Development

Whenever there is a backup request to the backup manager, it might not start the backup
until a time it determines is appropriate.To force the BackupManager to do the backup
right away, type

> adb shell bmgr run

Android Animation
Android provides two types of animation: frame-by-frame and Tween animation. Frame-
by-frame animation shows a sequence of pictures in order. It enables developers to define
the pictures to display, and then show them like a slideshow.

Frame-by-frame animation first needs an animation-list element in the layout file
containing a list of item elements specifying an ordered list of the different pictures to
display.The oneshot attribute specifies whether the animation is played only once or
repeatedly.The animation list XML file is shown in Listing 11.14.

Listing 11.14 res/anim/animated.xml

<?xml version="1.0" encoding="utf-8"?>

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"

android:oneshot="false">

<item android:drawable="@drawable/anddev1" android:duration="200" />

<item android:drawable="@drawable/anddev2" android:duration="200" />

<item android:drawable="@drawable/anddev3" android:duration="200" />

</animation-list>

To display the frame-by-frame animation, set the animation to a view’s background:

ImageView im = (ImageView) this.findViewById(R.id.myanimated);

im.setBackgroundResource(R.anim.animated);

AnimationDrawable ad = (AnimationDrawable)im.getBackground();

ad.start();

After the view background is set, a drawable can be retrieved by calling
getBackground() and casting it to AnimationDrawable.Then, calling the start()
method starts the animation.

Tween animation uses a different approach that creates an animation by performing a
series of transformations on a single image. In Android, it provides access to the following
classes that are the basis for all the animations:

n AlphaAnimation—Controls transparency changes
n RotateAnimation—Controls rotations
n ScaleAnimation—Controls growing or shrinking
n TranslateAnimation—Controls position changes

���������������

ptg

299Android Animation

These four Animation classes can be used for transitions between activities, layouts, views
and so on.All these can be defined in the layout XML file as <alpha>, <rotate>, <scale>,
and <translate>.They all have to be contained within an AnimationSet <set>:

n <alpha> attributes:

android:fromAlpha, android:toAlpha

The alpha value translates the opacity from 0.0 (transparent) to 1.0 (opaque).
n <rotate> attributes:

android:fromDegrees, android:toDegrees,

android:pivotX, android:pivotY

The rotate specifies the angle to rotate an animation around a center of rotation
defined as the pivot.

n <scale> attributes:

android:fromXScale, android:toXScale,

android:fromYScale, android:toYScale,

android:pivotX, android:pivotY

The scale specifies how to change the size of a view in the x-axis or y-axis.The
pivot location that stays fixed under the scaling can also be specified.

n <translate> attributes:

android:fromXDelta, android:toXDelta,

android:fromYDelta, android:toYDelta

The translate specifies the amount of translation to perform on a View.

Recipe: Creating an Animation
This recipe creates a new mail animation that can be used when mail is received.The
main layout file is shown in Listing 11.15 and is shown in Figure 11.4.

Listing 11.15 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:gravity="center"

>

<ImageView

android:id="@+id/myanimated"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

���������������

ptg

300 Chapter 11 Advanced Android Development

Figure 11.4 Based layout for the animation.

To animate this view, an animation set needs to be defined. In Eclipse, right-click the res/
folder and select New → Android XML File.Then, fill the filename as animated.xml
and select the file-type as Animation. Then, the file can be edited to create the content
shown in Listing 11.16.

Listing 11.16 res/anim/animated.xml

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/and-

roid" android:interpolator="@android:anim/accelerate_interpolator">

android:src="@drawable/mail"

/>

<Button

android:id="@+id/startAnimated"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="you’ve got mail"

/>

</LinearLayout>

���������������

ptg

301Android Animation

<translate android:fromXDelta="100%p" android:toXDelta="0"

android:duration="5000" />

<alpha android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="3000" />

<rotate

android:fromDegrees="0"

android:toDegrees="-45"

android:toYScale="0.0"

android:pivotX="50%"

android:pivotY="50%"

android:startOffset="700"

android:duration="3000" />

<scale

android:fromXScale="0.0"

android:toXScale="1.4"

android:fromYScale="0.0"

android:toYScale="1.0"

android:pivotX="50%"

android:pivotY="50%"

android:startOffset="700"

android:duration="3000"

android:fillBefore="false" />

</set>

The main activity is shown in Listing 11.17. It is a simple activity that creates an
Animation object by using the AnimationUtils to load the animationSet defined in
the animation.Then, every time the user clicks on the button, it uses the image view
object to run animation by calling the startAnimation() method using the Animation
object already loaded.

Listing 11.17 src/com/cookbook/advance/myanimation.java

package com.cookbook.advance;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

import android.widget.Button;

import android.widget.ImageView;

public class myanimation extends Activity {

/** Called when the activity is first created. */

@Override

���������������

ptg

302 Chapter 11 Advanced Android Development

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

final ImageView im

= (ImageView) this.findViewById(R.id.myanimated);

final Animation an

= AnimationUtils.loadAnimation(this, R.anim.animated);

im.setVisibility(View.INVISIBLE);

Button bt = (Button) this.findViewById(R.id.startAnimated);

bt.setOnClickListener(new OnClickListener(){

public void onClick(View view){

im.setVisibility(View.VISIBLE);

im.startAnimation(an);

}

});

}

}

���������������

ptg

12
Debugging

Debugging software can easily take as long as or longer than the development itself.
Understanding the different ways to debug common problems can save a lot of time and
effort.This chapter introduces the basic approach of debugging Android applications, and
it examines the many tools available. First, the common Eclipse Integrated Development
Environment (IDE) debugging tools are discussed.Then, the Android tools provided from
the Android Software Development Kit (SDK) are discussed. Finally, the tools available on
the Android system are discussed. Each application is different, so the appropriate debug-
ging methodology depends on the characteristics of the application itself.

Eclipse Built-in Debug Tools
The Eclipse IDE with the Android Developer Tools (ADT) plugin is a user-friendly
development environment. It includes a What-You-See-Is-What-You-Get (WYSIWYG)
user interface and the tools needed to convert resource layout files into the necessary
ingredients to build an Android executable.A step-by-step guide to setting up the config-
uration follows. Eclipse 3.4 (Ganymede) is assumed, although most steps are the same
between Eclipse versions.

Recipe: Specifying a Run Configuration
The run configuration is a separate profile for each application. It tells Eclipse how to run
the project, start the Activity, and whether to install the application on the emulator or a
connected device.The ADT automatically creates a run configuration for each applica-
tion when it is first created, but it can be customized as described here.

To create a new run configuration or edit an existing one, select Run → Run
Configurations... (or Debug Configurations...) in Eclipse to launch the Run Config-
urations menu shown in Figure 12.1. Inside the run configuration, there are three tabs
related to application testing:

���������������

ptg

304 Chapter 12 Debugging

Figure 12.1 The Run Configurations menu in Eclipse.

n Android—Specify the project and activity to launch.
n Target—Select the virtual device upon which the application will run. For the

emulator environment, the launch parameters are specified here, such as the net-
work speed and latency.This allows for a more realistic simulation of the wireless
link conditions to test how the application behaves. Developers can also choose to
wipe out the persistent storage of the emulator with every launch.

n Common—Specify where the run configuration settings are saved and also
whether the configuration is displayed in the Favorite menu.

After these settings are properly set, the application can be run on the target device with a
single click of the Run button. If an actual Android device is not connected to the host
computer or the target chosen is a virtual device, the emulator is launched to run the
application.

Recipe: Using the DDMS
After the application is run on a target, the Dalvik Debug Monitoring Service (DDMS)
can be opened to examine the status of the devices, as shown in Figure 12.2. DDMS can
be run from the command line or by selecting Window → Open Perspective → DDMS
in Eclipse.

���������������

ptg

305Eclipse Built-in Debug Tools

Figure 12.2 The DDMS Control Panel.

Inside the DDMS are four panels that provide different kinds of debugging data:

n Devices—Displays the connected Android devices including emulators and actual
Android devices.

n Emulator Control—Provides multiple controls for injecting events and data into
the emulator such as Telephony Status,Telephony Action, and Location Control:

n The Telephony Status specifies the voice and data format, network speed, and
latency.

n The Telephony Actions provides a way to make a fake voice phone call or
Short Message Service (SMS) message to the emulator. If an SMS is specified,
the message content can be defined.

n The Location Control provides a way to send a fake Global Positioning Sys-
tem (GPS) signal to the GPS provider in the emulator.

n Bottom Panel—Contains three tabs: LogCat, Outline, and Properties.The LogCat tab
shows all the logging data from the device in real-time. It includes system log mes-
sages and user-generated log messages accessed using the Log class in applications.

n The Device Status Panel—The top, right panel contains four tabs:Thread, Heap,
Allocation Tracker, and File Explorer.These are mostly used to analyze the process.
Clicking the device in the Devices tab can cause these four tabs to reflect the cur-
rently selected device/emulator’s running values, as shown in Figure 12.3.

���������������

ptg

306 Chapter 12 Debugging

Figure 12.3 The DDMS Control Panel with the Device Status Panel open.

Figure 12.4 The Confirm Perspective Switch dialog box.

Recipe: Debugging Through Breakpoints
Developers can also run applications in debug mode and insert breakpoints to freeze an
application in run-time. First, the application needs to be launched in debug mode, which
displays the dialog shown in Figure 12.4. If Yes is selected, it switches to the Debug per-
spective shown in Figure 12.5.

The Debug perspective displays the source file in a window along with some other
windows including variables, breakpoints, outline, and others. Developers can toggle a
breakpoint by double-clicking in the left-hand margin next to the line where the code
execution should freeze.A breakpoint is set when a small blue circle is present on that line.

Using breakpoints is a standard debug method for embedded programmers.The ability
to stop at an instruction, step through functions, see variable values in memory, and mod-
ify values in run-time provides a powerful method to chase down complicated bugs and
unexpected behavior.

���������������

ptg

307Android SDK Debug Tools

Figure 12.5 The Debug perspective in Eclipse.

Android SDK Debug Tools
The Android SDK provides multiple standalone tools for use in debugging.The Android
Debug Bridge, LogCat, Hierarchy Viewer, and TraceView tools are discussed here.They
can be found in the tools/ directory of the Android SDK installation.

Recipe: Using the Android Debug Bridge
The Android Debug Bridge (ADB) provides a way to manage the state of an emulator
instance or USB-connected Android device.The ADB is built of three components: a
client, a server, and a daemon.The client component is initiated by the ADB shell script
on the development machine.The server component runs as a background process on the
development machine.This server can be started or stopped using one of the following
commands:

> adb start-server

> adb kill-server

The daemon component is a background process that runs on the emulator or Android
device.

Recipe: Using LogCat
Logcat is the real-time logging tool Android provides. It collects all system and application
log data in circular buffers, which can then be viewed and filtered. It can be accessed as a
standalone tool or as part of the DDMS tool.

���������������

ptg

308 Chapter 12 Debugging

LogCat can be used in the device after executing the adb shell to log into the device
or by using the logcat command through the adb:

> [adb] logcat [<option>] ... [<filter-spec>] ...

All the messages that utilize the android.util.Log class have an associated tag and priority.
The tag should be meaningful and related to what the activity does.The tag and priority
make the logging data easier to read and filter. Possible tags are

n V—Verbose (lowest priority)
n D—Debug
n I—Info
n W—Warning
n E—Error
n F—Fatal
n S—Silent (highest priority, on which nothing is ever printed)

The LogCat data has a multitude of information, and filters should be used to avoid over-
load by specifying the tag:priority argument to the logcat command. For example:

> adb logcat ActivityManager:V *:S

This shows verbose (V) data on the ActivityManager while silencing (S) all other log
commands.

A circular buffer system is used inside Android logging. By default, all information is
logged to the main log buffer.With the Android 2.2 SDK, there are two other buffers:
one that contains radio/telephony-related messages and one that contains event-related
messages. Different buffers can be enabled using the -b switch. For example:

> adb logcat -b events

This buffer also shows event-related messages:

I/menu_opened(135): 0

I/notification_cancel(74): [com.android.phone,1,0]

I/am_finish_activity(74):

[1128378040,38,com.android.contacts/.DialtactsActivity,app-request]

I/am_pause_activity(74):

[1128378040,com.android.contacts/.DialtactsActivity]

I/am_on_paused_called(135): com.android.contacts.RecentCallsListActivity

I/am_on_paused_called(135): com.android.contacts.DialtactsActivity

I/am_resume_activity(74): [1127710848,2,com.android.launcher/.Launcher]

I/am_on_resume_called(135): com.android.launcher.Launcher

I/am_destroy_activity(74):

[1128378040,38,com.android.contacts/.DialtactsActivity]

I/power_sleep_requested(74): 0

I/power_screen_state(74): [0,1,468,1]

���������������

ptg

309Android SDK Debug Tools

I/power_screen_broadcast_send(74): 1

I/screen_toggled(74): 0

I/am_pause_activity(74): [1127710848,com.android.launcher/.Launcher]

Another example follows

> adb logcat -b radio

This shows radio/telephony-related messages:

D/RILJ (132): [2981]< GPRS_REGISTRATION_STATE {1, null, null, 2}

D/RILJ (132): [2982]< REGISTRATION_STATE {1, null, null, 2, null, null,

null, null, null, null, null, null, null, null}

D/RILJ (132): [2983]< QUERY_NETWORK_SELECTION_MODE {0}

D/GSM (132): Poll ServiceState done: oldSS=[0 home T - Mobile T - Mo-

bile 31026 Unknown CSS not supported -1 -1RoamInd: -1DefRoamInd: -1]

newSS=[0 home T - Mobile T - Mobile 31026 Unknown CSS not supported -1 -

1RoamInd: -1DefRoamInd: -1] oldGprs=0 newGprs=0 oldType=EDGE newType=EDGE

D/RILJ (132): [UNSL]< UNSOL_NITZ_TIME_RECEIVED 10/06/26,21:49:56-28,1

I/GSM (132): NITZ: 10/06/26,21:49:56-28,1,237945599 start=237945602

delay=3

D/RILJ (132): [UNSL]< UNSOL_RESPONSE_NETWORK_STATE_CHANGED

D/RILJ (132): [2984]> OPERATOR

D/RILJ (132): [2985]> GPRS_REGISTRATION_STATE

D/RILJ (132): [2984]< OPERATOR {T - Mobile, T - Mobile, 31026}

D/RILJ (132): [2986]> REGISTRATION_STATE

D/RILJ (132): [2987]> QUERY_NETWORK_SELECTION_MODE

D/RILJ (132): [2985]< GPRS_REGISTRATION_STATE {1, null, null, 2}

D/RILJ (132): [2986]< REGISTRATION_STATE {1, null, null, 2, null, null,

null, null, null, null, null, null, null, null}

D/RILJ (132): [2987]< QUERY_NETWORK_SELECTION_MODE {0}

Logcat is useful when using Java-based Android applications. However, when applications
involve native components, it is harder to trace. In this case, the native components should
log to system.out or system.err. By default, the Android system sends stdout and stderr
(system.out and system.err) output to /dev/null. These can be routed to a log file with
the following ADB commands:

> adb shell stop

> adb shell setprop log.redirect-stdio true

> adb shell start

This stops a running emulator/device instance; use the shell command setprop to enable
the redirection of output and restart the instance.

Recipe: Using the Hierarchy Viewer
A useful way to debug and understand the user interface is by using the Hierarchy
Viewer. It provides a visual representation of the layout’s View hierarchy (the Layout
View) and a magnified inspector of the display (the Pixel Perfect View).

���������������

ptg

310 Chapter 12 Debugging

Figure 12.6 The Hierarchy Viewer tool.

The Hierarchy Viewer is accessed using the tool hierarchyviewer. Executing this pro-
gram launches the interface shown in Figure 12.6. It displays a list of Android devices that
are currently connected to the development machine.When a device is selected, a list of
running programs on the device is shown. It is then possible to select the program
intended for debug or user interface optimization.

After the program is selected, the Load View Hierarchy can be selected to see the View
Tree constructed by the Hierarchy /Viewer.This is also called the Layout View. It contains
three views:

n Tree View—A hierarchy diagram of the views on the left.
n Properties View—A list of the selected view’s properties on the top, right.
n Wire-frame View—A wire-frame drawing of the layout on the bottom, right.

This is shown in Figure 12.7.
These three views are related.When one node of the view is selected, the properties

view and wire-frame view are updated. In an Android system, there is a limitation on the
View Tree that each application can generate.The depth of the tree cannot be deeper
than 10 and the width of the tree cannot be broader than 50. In Android 1.5 or earlier,
there is stack overflow exception thrown when the view tree passes that limit.Although it

���������������

ptg

311Android SDK Debug Tools

Figure 12.7 The Layout View in the Hierarchy View tool.

Recipe: Using TraceView
TraceView is a tool to optimize performance.To leverage this tool, the Debug class needs
to be implemented in the application. It creates log files containing the trace information
for analysis.A recipe is provided here to demonstrate how to use TraceView.This recipe
specifies a factorial method and another method that calls the factorial method. Listing
12.1 shows the main activity.

Listing 12.1 src/com/cookbook/android/debug/traceview/testfactorial.java

package com.cookbook.android.debug.traceview;

import android.app.Activity;

import android.os.Bundle;

import android.os.Debug;

public class testfactorial extends Activity {

public final String tag="testfactorial";

is good to know the limitations, a shallow layout tree always makes the application run
faster and smoother.This can be accomplished using merge or RelativeLayout instead of
LinearLayout to optimize the View tree.

���������������

ptg

312 Chapter 12 Debugging

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

factorial(10);

}

public int factorial(int n) {

Debug.startMethodTracing(tag);

int result=1;

for(int i=1; i<=n; i++) {

result*=i;

}

Debug.stopMethodTracing();

return result;

}

}

The factorial() method contains two calls to the Debug class; the trace is started in a
file called testfactorial.trace when the startMethodTracing() is called.When the
stopMethodTracing() method is called, the system continues buffering the generated
trace data.After the method factorial(10) returns, the trace file should be generated
and saved in /sdcard/. After the file is generated, it can be retrieved to the development
machine using the following command:

> adb pull /sdcard/testfactorial.trace

The traceview tool in the Android SDK tools folder can then be used to analyze the trace
file:

> traceview testfactorial.trace

After the script command is run, it produces an analysis screen, as shown in Figure 12.8.
The screen shows a Timeline Panel and a Profile Panel.The Timeline Panel on the top

half of the screen describes when each thread and method started and stopped.The Profile
Panel on the bottom half of the screen provides the summary of what happened inside
the factorial method. By moving the cursor around in the Timeline Panel, it displays the
time when the tracing started, when the method was called, and when the tracing ended.

The Profile Panel shows a summary of all the time spent in the factorial method.The
panel also shows both the inclusive and exclusive times (in addition to the percentage of
the total time). Exclusive time is the time spent in the method. Inclusive time is the time
spent in the method plus the time spent in any called functions.

The *.trace file is constructed by a data file and a key file.The data file is used to hold
the trace data.The key file provides a mapping from binary identifiers to thread and
method names. If an older version of traceview is used, the key file and data file need to
be combined into a trace file manually.

���������������

ptg

313Android System Debug Tools

Figure 12.8 The TraceView analysis screen.

There is another way to generate a graphical call-stack diagram from trace log files in
Android: dmtracedump.This tool requires the installation of the third-party Graphviz Dot
utility to create the graphical output.

Android System Debug Tools
Android is built on top of Linux, so many Linux tools can be leveraged. For example, to
show the applications currently running and the resources they are using, the top com-
mand can be used.The following command can be issued at the command line when a
device is connected to a host computer through USB cable or the emulator is running:

> adb shell top

An example output from this command is shown in Figure 12.9.
The top command also shows the percentage of CPU and memory used in the over-

all system.
Another important tool is ps, which lists all the processes currently running on the

Android system:

> adb shell ps

An example output from this command is shown in Figure 12.10.

���������������

ptg

314 Chapter 12 Debugging

Figure 12.10 Sample output from the ps command.

Figure 12.9 Sample output from the top command.

This provides the process ID (PID) and user ID of each running process. Memory alloca-
tion can be seen using dumpsys:

> adb shell dumpsys meminfo <package name>

An example output from this command is shown in Figure 12.11.

���������������

ptg

315Android System Debug Tools

Figure 12.11 Sample output from the dumpsys command.

These commands provide information on Java and native components.This informa-
tion is therefore useful for optimizing and analyzing Native Development Kit (NDK)
applications. In addition to memory information, it includes how many views are used
in the process, how many activities are used, how many application contexts are used,
and so on.

Recipe: Setting up GDB Debugging
The GNU project DeBugger (GDB) is a common way to debug programs on Linux. In
Android, a gdb tool is available to debug native libraries. In NDK r4, every native library
is generated; it also generates a gdbserver and gdb.setup.The following commands can
be used to install gdb:

> adb shell

> adb /data/

> mkdir myfolder

> exit

> adb push gdbserver /data/myfolder

To run gdb, the following command can be used:

> adb shell /data/myfolder/gdbserver host:port <native program>

For example, with a program named myprogram running on Android device with IP
address 10.0.0.1 and port number 1234, the following command starts the server:

> adb shell /data/myfolder/gdbserver 10.0.0.1:1234 myprogram

���������������

ptg

316 Chapter 12 Debugging

Then, open another terminal and run gdb on the program:

> gdb myprogram

(gdb) set sysroot ../

(gdb) set solib-search-path ../system/lib

(gdb) target remote localhost:1234

At the gdb prompt, the first command sets the root directory of the target image, the
second command sets the search path of shared libraries, and the last command sets the
target.After the target remote localhost:1234 is running, debugging in the gdb environ-
ment can begin.

���������������

ptg

Index

Numbers
3D images, drawing, 140-145

A
accelerometers, 9

accept() method, 188

ACCESS_COARSE_LOCATION permission,
252

ACCESS_FINE_LOCATION permission, 252

accessing

camera, 169
content providers, 244
wireless networks, 191-193

ACTION_CALL implicit intent, 185

ACTION_DIALER implicit intent, 185

ACTION_DOWN event, 133

ACTION_MOVE event, 133

ACTION_POINTER_DOWN event, 133

ACTION_POINTER_UP event, 133

ACTION_UP event, 133

active-matrix organic LED displays
(AMOLED), 8

activities

AudioExamples, 155-157
AudioExamplesRaw, 161-163
AudioExamplesSP, 164
BackgroundTimer, 60-61
BuildingMenus, 122-124
CameraApplication, 172-175
ChangeFont, 96-97

���������������

ptg

CheckBoxExample, 106-107
CountDownTimerExample, 61-62
creating, 24-26
DataStorage, 224, 226-227
DataStorageTester, 247-248
Diary, 237-238
DiaryContentProvider, 245-246
DisplayDiaries, 240-242
EdgeDetection, 56-57
Eula, 228-231
FlingExample, 131-132
Gestures, 139-140
GoogleSearch, 206-208
HandleMessage, 63-64
HandlerUpdateUi, 93-94, 112-114
HardwareTelephony, 184-185
ImageManipulation, 149-150
launching from events, 37-40
launching with implicit intents, 44-46
lifecycle, 30-33

forcing screen orientation, 34
forcing single task mode, 33-34

ListActivity, 43-44
ListFiles, 151-152, 154
MainActivity, 127
MenuScreen, 37-38
multiple activities

buttons, 36-37
creating activities with implicit

intents, 44-46
explained, 35-36
implementing list of choices, 43-44
launching activities for results using

speed to text, 41-43
launching activities from events,

37-40
passing primitive data types

between activities, 46-49

TextView, 36-37
MultiTouch, 133-135
myanimation, 301-302
MyBandRActivity, 297-298
MyDB, 233-234
MyDBhelper, 234-235
MyLocation, 253-254-255, 256-257,

259-260, 261-262, 265-266, 269-273
MyMarkerLayer, 267-268
MyPreferences, 223
OpenGlExample, 144-145
OrientationMeasurements, 178-179
passing primitive data types between,

46-49
PhysicalKeyPress, 119-121
PlayGame, 38-39, 48-49
PressAndPlay, 54-55
ProgrammaticLayout, 91
Pyramid, 140-141
PyramidRenderer, 142-144
RecognizerIntent, 41-43
ResponderService, 200-203
rpc, 292-294
rpcService, 289-290
runnable activities, creating, 55-57
saving and restoring activity

information, 34
SearchDialogExample, 128
SeekBarEx, 114-115
ShowMyButton, 282-283
ShowNotification, 77-78
SimpleActivity, 25, 68-71
SimpleBroadcastReceiver, 71
SimpleService, 66-67
SimpleService2, 71-72
SimpleWidgetProvider, 73
SMSResponder, 198-200

318 activities

���������������

ptg

SpinnerExample, 111
StartScreen, 46-47
TelephonyApp, 181-182
testfactorial, 311-312
TouchExamples, 129
TwitterCookBook, 214-215
UpdateAndList, 215-219

activity element, 29

ActivityLifecycle, 32-33

ADB (Android Debug Bridge), 307-313

adb kill-server command, 307

adb logcat command, 307-309

adb pull command, 18

adb push command, 18

adb shell bmgr backup command, 297

adb shell bmgr restore command, 297

adb shell bmgr run command, 298

adb shell command, 18

adb shell dumpsys command, 314-315

adb shell ps command, 313

adb shell top command, 313

adb start-server command, 307

adb uninstall command, 18

add() method, 121

addOverlay() method, 267

addOverlayItem() method, 269

addresses

translating addresses to locations,
261-262

translating locations to addresses,
258-260

addSubMenu() method, 124

AIDL (Android Interface Definition
Language), 288

AJAX (Google Asynchronous Javascript And
XML), 205

AK8976A, 10

AKM (Asahi Kasei Microsystems), 10

AlertDialog class, 75-76

alerts

creating with AlertDialog class, 75-76
creating with Toast, 74-75
proximity alerts, 274-275
showing notifications in status bar,

76-78
<alpha> attributes, 299

alternate resources, specifying, 81-82

AMOLED (active-matrix organic LED
displays), 8

Android Debug Bridge (ADB), 18, 307-313

Android Interface Definition Language
(AIDL), 288

Android Market

alternatives to, 22
charging for applications, 20-21
differentiating applications, 20
End User License Agreement

(EULA), 19
improving application visibility, 19-20
managing reviews and updates, 21-22
overview, 19

Android native components

developing, 284-287
explained, 283-284
type mapping between Java and

Android native components, 285
Android OS 1.5, 15

Android OS 1.6, 15

Android OS 2.0, 16

Android OS 2.0.1, 16

Android OS 2.1, 16

Android OS 2.2, 16

Android SDK, 16-17

ADB (Android Debug Bridge),
307-313

Android Debug Bridge, 18

319Android SDK

���������������

ptg

emulator, 16-17
Hierarchy Viewer, 309-313
installing, 14-15
LogCat, 307-309
signing and publishing, 18
software features and API level, 15-16
upgrading, 14-15

Android smartphones

hardware differences
screens, 8
sensors, 9-10
user input methods, 9

HTC models, 6
marking device’s current location

on map, 274
Motorola models, 6
Samsung models, 6
table of, 3

AndroidManifest.xml file, 28-29, 40, 68,
152-153, 197-198, 211, 224, 238-239,
246-247, 252-253, 264, 291, 296-297

Android.mk file, 285-286

animated.xml file, 300-301

animation

creating, 299-302
frame-by-frame animation, 298
Tween animation, 298-299

App Widgets

creating, 72-74
explained, 11, 72

application element, 29

applications

activities. See activities
alerts

creating with AlertDialog class,
75-76

creating with Toast, 74-75
showing notifications in status bar,

76-78
in Android Market

charging for applications, 20-21
differentiating, 20
improving application visibility, 19

AndroidManifest.xml file, 28-30
App Widgets. See App Widgets
autogenerated content, 26-28
broadcast receivers

explained, 69-70
lifecycle, 70
starting services based on

broadcasted events, 70-72
classes. See classes
debugging

Android SDK debug tools,
307-313

Android system debug tools,
313-316

Eclipse built-in debug tools,
303-306

GNU project DeBugger (GDB),
315-316

overview, 303
development. See development
multimedia. See multimedia
overview, 23-24
packages, 28-30
projects

creating, 24
directory structure, 26-28
renaming, 30

renaming parts of, 30
threads

canceling, 57-58
creating runnable activities, 55-57

320 Android SDK

���������������

ptg

explained, 51-52
handlers, 58-64
launching secondary threads, 51-55
setting thread priorities, 57
sharing between two applications,

58
Archos, 7

ArrayAdapter constructor, 112

Asahi Kasei Microsystems (AKM), 10

AsyncTask class, 209

audio

adding media and updating paths, 165
choosing and playing back, 154-157
explained, 154
manipulating raw audio, 158-163
recording, 157-158
SoundPool class, 163-164

AudioExamples activity, 155-157

AudioExamplesRaw activity, 161-163

AudioExamplesSP activity, 164

AudioRecord instance, 158-160

autogenerated content, 26-28

automobiles, Roewe 350, 7

autosending SMSs based on received SMSs,
197-203

B
BackgroundTimer activity, 60-61

backing up

files, 296
runtime data, 294-296

Backup Manager

backing up files, 296
backing up runtime data, 294-296
triggering backup and restore, 296

BackupAgent, 294-296

BackupAgentHelper, 296

BackupManager class, 294-296

bindService() function, 291

BitmapFactory class, 148

Bluetooth

accessing wireless networks, 191-193
device vibration, 191
discovering Bluetooth devices, 187
explained, 185-186
opening Bluetooth sockets, 188-191
pairing with bonded Bluetooth

devices, 188
turning on, 186-187

BluetoothAdapter, 186

BluetoothClass, 186

BluetoothDevice, 186

BluetoothServerSocket, 186

BluetoothSocket, 186

BMA150, 10

boot image, 3

bootloader, 3

Bosch Sensortec, 10

breakpoints, debugging through, 306

broadcast receivers

explained, 69-70
starting services based on broadcasted

events, 70-72
broadcasted events, starting services based

on, 70-72

BroadcastReceiver, 196

Browser database, 243

browsers, customizing, 204

BuildingMenus activity, 122-124

buttons

adding, 36-37, 102-105
customizing, 277-283
defined, 101
playing ring-tone songs on button

press, 51-55

321buttons

���������������

ptg

C
CallBack interface, 172

CallLog, 243

camera

accessing, 169
customizing, 170-175

CameraApplication activity, 172-175

cameraoverlay.xml file, 170-171

canceling threads, 57-58

capacitive touchscreen technology, 9

Capella Microsystems, Inc., 10

capturing text from EditText objects, 101

ChangeFont activity, 96-97

changing

text attributes, 95-98
UI based on stored data, 225-228

charging for applications in Android Market,
20-21

check boxes

creating, 105-109
defined, 101

CheckBoxExample activity, 106-107

choosing audio files, 154-157

Chrome OS, 2

ckbox.xml file, 105-106

classes, 186

ActivityLifecycle, 32-33
AlertDialog, 75-76
AsyncTask, 209
AudioExamples, 155-157
AudioExamplesRaw, 161-163
AudioExamplesSP, 164
BackgroundTimer, 60-61
BackupAgent, 294-296
BackupAgentHelper, 296
BackupManager, 294-296

BitmapFactory, 148
BluetoothAdapter, 186
BluetoothClass, 186
BluetoothDevice, 186
BluetoothSocket, 186
BuildingMenus, 122-124
CameraApplication, 172-175
ChangeFont, 96-97
CheckBoxExample, 106-107
ConnectivityManager, 192-193
Constants, 235
CountDownTimerExample, 61-62
DataStorage, 224, 226-227
DataStorageTester, 247-248
Diary, 237-238
DiaryContentProvider, 245-246
DisplayDiaries, 240-242
EdgeDetection, 56-57
EditText, 98-101
Eula, 228-231
FlingExample, 131-132
Geocoder, 258-261
Gestures, 139-140
GoogleSearch, 206-208
HandleMessage, 63-64
HandlerUpdateUi, 93-94, 112-114
HardwareTelephony, 184-185
ImageManipulation, 149-150
ItemizedOverlay, 267
ListActivityExample, 44-46
ListFiles, 151-152
LocationManager, 251
MainActivity, 127
MediaPlayer, 154-157
MediaRecorder

playing audio, 154-157
recording audio, 157-158

322 CallBack interface

���������������

ptg

MenuScreen, 37-38
MultiTouch, 133-135
myanimation, 301-302
MyBandRActivity, 297-298
MyButton, 279-282
MyDB, 233-234
MyDBhelper, 234-235
MyLocation, 253-255, 256-257, 259-

260, 261-262, 265-266, 269-273
MyMarkerLayer, 267-268
MyPreferences, 223
myServiceConnection, 291
OpenGlExample, 144-145
OrientationMeasurements, 178-179
PhysicalKeyPress, 119-121
PlayGame, 38-39, 48-49
PressAndPlay, 54-55
ProgrammaticLayout, 91
Pyramid, 140-141
PyramidRenderer, 142-144
R, 27-28
renaming, 30
ResponderService, 200-203
rpc, 292-294
rpcService, 289-290
SearchDialogExample, 128
SeekBarEx, 114-115
ShowMyButton, 282-283
ShowNotification, 77-78
SimpleActivity, 68-71
SimpleBroadcastReceiver, 71
SimpleOnGestureListener, 131
SimpleService, 66-67
SimpleService2, 71-72
SimpleWidgetProvider, 73
SmsManager, 195-197
SMSResponder, 198-200

SoundPool, 163-164
SpinnerExample, 111
StartScreen, 46-47
TelephonyApp, 181-182
TelephonyManager, 181-182
testfactorial, 311-312
TouchExamples, 129
TwitterCookBook, 214-215
UpdateAndList, 215-219
Vibrator, 191
WebSettings, 204

Clinton, DeWitt, 210

close() method, 232

CM3602, 10

Color attribute, 80

colors.xml file, 97

commands

adb kill-server, 307
adb logcat, 307-309
adb pull, 18
adb push, 18
adb shell, 18
adb shell bmgr backup, 297
adb shell bmgr restore, 297
adb shell bmgr run, 298
adb shell dumpsys, 314-315
adb shell ps, 313
adb shell top, 313
adb start-server, 307
adb uninstall, 18

comments, 12

compare() method, 150

configuring Google Maps, 263-265

Confirm Perspective Switch dialog box, 306

ConnectivityManager class, 192-193

Constants class, 235

323Constants class

���������������

ptg

Contacts database, 243-244

content providers

accessing, 244
creating, 244-249
native databases available as content

providers, 243-244
URIs (uniform resource identifiers),

244
contentResolver instance, 244

cookbook.c, 284

countdown timer, 61-62

CountDownTimerExample activity, 61-62

createFromPdu() method, 200

createItem() method, 267

createRfcommSocketToServiceRecord()
method, 190

createScaledBitmap() method, 149

Criteria class, 252

Cupcake, 15

customizing

buttons, 277-283
camera, 170-175
views, 277-283
web browsers, 204

D
Dalvik Debug Monitoring Service (DDMS),

304-306

data image, 3

data storage

content providers
accessing, 244
creating, 244-249
native databases available as content

providers, 243-244
URIs (uniform resource identi-

fiers), 244

explained, 221
file saving and loading, 249-250
shared preferences

changing UI based on stored data,
225-228

creating and retrieving, 222
End User License Agreement

(EULA), 228-232
explained, 221
preferences framework, 222-225

SQLite database
creating personal diaries, 239-242
creating separate database package,

232-235
explained, 232
utilizing separate database packages,

236-239
data types, passing between activities,

46-49

databases

Browser, 243
CallLog, 243
Contacts, 243-244
LiveFolders, 244
MediaStore, 244
native databases available as content

providers, 243-244
SearchRecentSuggestions, 244
Setting, 244
SQLite. See SQLite database
SyncStateContract, 244
UserDictionary, 244

DataStorage activity, 224, 226-227

DataStorageTester activity, 247-248

DDMS (Dalvik Debug Monitoring Service),
304-306

debugging

Android Debug Bridge, 18

324 Contacts database

���������������

ptg

Android SDK debug tools
ADB (Android Debug Bridge), 307
Hierarchy Viewer, 309-313
LogCat, 307-309

Android system debug tools, 313-316
Eclipse built-in debug tools

Dalvik Debug Monitoring Service
(DDMS), 304-306

debugging through breakpoints,
306

specifying run configuration,
303-304

GNU project DeBugger (GDB),
315-316

overview, 303
declaring permissions, 287-288

delete() method, 245

design, 12-13

detectEdges() function, 55

development

Android native components, 284-287
Android SDK

Android Debug Bridge, 18
emulator, 16-17
installing, 14-15
signing and publishing, 18
upgrading, 14-15

Android smartphones, software fea-
tures and API level, 15-16

coding styles, 11-12
design, 12-13
forward compatibility, 13
robustness, 13-14

Device Status panel (DDMS), 305

Devices panel (DDMS), 305

devices running Android

automobiles, 7

Bluetooth devices
accessing wireless networks,

191-193
device vibration, 191
discovering, 187
opening Bluetooth sockets,

188-191
pairing with bonded Bluetooth

devices, 188
hardware differences

screens, 8
sensors, 9-10
user input methods, 9

HTC models, 6
marking device’s current location on

map, 274
Motorola models, 6
returning device’s rotational attitude,

176-179
Samsung models, 6
table of, 3-5
tablets, 7

dialing phone numbers, 185

dialog boxes. See specific dialog boxes

diaries.xml file, 239

diary, creating, 239-242

Diary activity, 237-238

DiaryContentProvider activity, 245-246

diaryrow.xml file, 239-240

diary.xml file, 236

dichotomy of Android, 2

differentiating applications in Android
Market, 20

Dimension attribute, 80

dimens.xml file, 97

directories

directory structure of projects, 26-28
resource directories, 79

325directories

���������������

ptg

discovering Bluetooth devices, 187

DisplayDiaries activity, 240-242

divideMessage() method, 197, 200

Donut, 15

D-pad, 9

draw() method, 142

drawArcs() method, 278

drawing 3D images, 140-145

Droid (Motorola), 6

Droid Incredible (HTC), 6

Droid X (Motorola), 6

drop-down menus, creating, 110-112

dumpsys, 314-315

E
Eclair, 16

Eclipse, 12

debug tools
Dalvik Debug Monitoring Service

(DDMS), 304-306
debugging through breakpoints,

306
specifying run configuration,

303-304
layouts, building in Eclipse Editor,

83-85
EdgeDetection activity, 56-57

EditText class, 98-101

elements

activity, 29
application, 29
intent-filter, 29
permission, 287-288

emulator, 12, 16-17

Emulator Control (DDMS), 305

enableCompass() method, 274

enabled providers, listing, 256-258

enableMyLocation() method, 274

End User License Agreement (EULA),
19, 228-232

enforcing permissions, 287-288

EULA (End User License Agreement), 19,
228-232

Eula activity, 228-231

event handlers

building menus, 121-125
defining menus in XML, 126-127
explained, 117
intercepting physical key presses,

117-121
listening for fling gestures, 130-132
multitouch, 133-136
reacting to touch events, 128-130
utilizing SEARCH key, 127-

event listeners

building menus, 121-125
defining menus in XML, 126-127
explained, 117
intercepting physical key presses,

117-121
listening for fling gestures, 130-132
multitouch, 133-136
reacting to touch events, 128-130
utilizing SEARCH key, 127

events

ACTION_DOWN, 133
ACTION_MOVE, 133
ACTION_POINTER_DOWN, 133
ACTION_POINTER_UP, 133
ACTION_UP, 133
broadcasted events, starting services

based on, 70-72
launching activities from, 37-40
phone state listener events, 183
touch events, reacting to, 128-130

326 discovering Bluetooth devices

���������������

ptg

evolution of Android, 1-2

extending BackupAgentHelper, 296

F
factorial() method, 285, 291, 312

file_row.xml file, 152

files. See also specific files

audio files. See audio
autogenerated content, 26-28
backing up, 296
Java files, referencing resources from,

28
saving and loading, 249-250
XML files, referencing resources from,

28
fling gestures, listening for, 130-132

FlingExample activity, 131-132

forcing

screen orientation, 34
single task mode, 33-34

forms, creating, 100-101

forward compatibility, 13

frame-by-frame animation, 298

FroYo, 16

functions. See specific functions

G
Galaxy S (Samsung), 6

Galaxy Tab, 7

game.xml file, 39

GDB (GNU project DeBugger), 315-316

Geocoder class, 258-261

geocoding, 261-262

gestures, 11

fling gestures, listening for, 130-132
Gesture Builder application, 137

Gestures activity, 139-140
libraries, 136-138

getActiveNetworkInfo() method, 192

getCount() method, 240

getDefault() method, 195

getDefaultAdapter() method, 186

getdiaries() method, 233

getFromLocationName() method, 261

getHomeTimeline() method, 215

getIntExtra method, 48

getItem() method, 240

getItemID() method, 240

getLastKnownLocation() method, 253

getMyLocation() method, 274

getNetworkInfo() method, 192

getOrientation() method, 177, 274

getOriginatingAddress() method, 200

getOverlays() method, 269

getPixel() method, 148

getPreferences() method, 222

getProvider() method, 252

getRotationMatrix() method, 176

getSensorList() method, 176

getSharedPreferences() method, 222

getStringExtra method, 48

getType() method, 245

getView() method, 240

Gist, Inc., 210

GNU project DeBugger (GDB), 315-316

Google Android Market. See Android Market

Google Asynchronous Javascript And XML
(AJAX), 205

Google Maps

adding markers on maps, 267-271
adding to applications, 265-266
adding views to maps, 271-274
configuring, 263-265

327Google Maps

���������������

ptg

Maps API key, 263
marking device’s current location on

map, 274
setting up proximity alerts, 274-275

Google TV, 8

GoogleSearch activity, 206-208

Graphviz Dot utility, 313

H
HandleMessage activity, 63-64

handleMessage() method, 63

handlers

countdown timers, 61-62
explained, 58
handling time-consuming

initializations, 62-64
scheduling runnable tasks from main

thread, 59-61
HandlerUpdateUi activity, 93-94, 112-114

hard keyboards, 11

hardware differences

screens, 8
sensors, 9-10
user input methods, 9

hardware interfaces

Bluetooth
accessing wireless networks, 191-

193
device vibration, 191
discovering Bluetooth devices, 187
explained, 185-186
opening Bluetooth sockets,

188-191
pairing with bonded Bluetooth

devices, 188
turning on, 186-187

camera

accessing, 169
customizing, 170-175

sensors
returning device’s rotational

attitude, 176-179
sensors accessible from Android

SDK, 176
temperature and light sensors,

179-180
telephony

dialing phone numbers, 185
listening for phone states, 183-185
TelephonyManager class, 181-182

HardwareTelephony activities, 184-185

height of UI elements, controlling, 86-88

Hierarchy Viewer, 309-311

history of Android, 1-2

HTC Dream, 6

HTC EVO 4G, 10

HTC smartphones, 6

HTTP GET, 204-208

HTTP POST, 209

Hummingbird processor, 6

I
IAdditionalService.aidl, 289

IAdditionService instance, 291

ibutton.xml file, 103-105

image buttons, adding to table layouts, 102-
105

ImageManipulation activity, 149-150

images

Android images, 3
animation

creating, 299-302
frame-by-frame animation, 298
Tween animation, 298-299

328 Google Maps

���������������

ptg

BitmapFactory class, 148
loading for manipulation, 148-153

implicit intents

ACTION_CALL implicit intent, 185
ACTION_DIALER implicit intent,

185
launching activities with, 44-46

initializations, handling time-consuming ini-
tializations, 62-64

initializeArrays() function, 63

initService() method, 291

insert() method, 245

insertdiary() method, 232

installing Android SDK, 14-15

integrating with Twitter, 210

AndroidManifest.xml file, 211
login.xml file, 211-212
main.xml file, 211-212
usertimelinerow.xml file, 213

intent-filter element, 29

intercepting physical key presses, 117-121

interfaces

CallBack, 172
LocationListener, 254-256
OnClickListener, 130
OnGestureListener, 130
SharedPreferences. See shared prefer-

ences
inter-process communication (IPC), 288-294

IPC (inter-process communication), 58, 288-
294

isRouteDisplayed() method, 265

ItemizedOverlay class, 267

J
Java

Java libraries, lack of support for, 2
Java Native Interface (JNI), 285

Java Virtual Machine (JVM), 285
referencing resources from, 28
type mapping between Java and

Android native components, 285
java-twitter, 210

jint type, 285

JNI (Java Native Interface), 285

JNIEnv pointer, 285

jobject pointer, 285

jtwitter, 210

JVM (Java Virtual Machine), 285

K
key presses, intercepting, 117-121

keyboards, 11

keytool command, 263

L
landscape mode, forcing, 34

last location, retrieving, 253-254

launching

activities from events, 37-40
activities with implicit intents, 44
secondary threads, 51-55
services based on broadcasted events,

70-72
Layout View (Hierarchy Viewer), 310-311

layouts

building in Eclipse Editor, 83-85
controlling width and height of UI

elements, 86-88
declaring programmatically, 90-91
setting relative layout and layout ID,

89-90
updating from separate threads, 92-94
widgets. See widgets

329layouts

���������������

ptg

LBS (Location-Based Services)

explained, 251
Google Maps

adding markers on maps, 267-271
adding to applications, 265-266
adding views to maps, 271-274
configuring, 263-265
Maps API key, 263
marking device’s current location

on map, 274
setting up proximity alerts, 274-275

listing enabled providers, 256-258
Location class, 251
LocationListener, 251
LocationManager, 251
retrieving last location, 253-254
translating addresses to locations,

261-262
translating locations to addresses,

258-260
updating location upon change,

254-256
LCD (liquid crystal displays), 8

LED (light-emitting diodes), 8

libraries

gesture libraries, 136-138
Open Graphics Library for Embedded

Systems (OpenGL ES), 140-145
license agreements

adding, 228-232
Android Market, 19

lifecycle

of activities, 30-33
forcing screen orientation, 34
forcing single task mode, 33-34
saving and restoring activity infor-

mation, 34-35
of broadcast receivers, 70
of services, 64-65

light sensors, 179-180

light-emitting diodes (LED), 8

Linux utilities, lack of support for, 2

liquid crystal displays (LCD), 8

LIS331DLH, 10

ListActivity, 43-44

ListActivityExample, 44-46

listenUsingRfcommWithServiceRecord()
method, 188

ListFiles activity, 151-152, 154

listing enabled providers, 256-258

lists, implementing, 43-44

LiveFolders database, 244

LM3530, 10

loading

files, 249-250
images, 148-153

loading.xml file, 63

loadLibrary() method, 286

loadURL() method, 204

Location class, 251

Location Control (DDMS), 305

Location-Based Services. See LBS (Location-
Based Services)

LocationListener, 251

LocationListener interface, 254-256

LocationManager, 251

locations. See LBS (Location-Based Services)

LogCat, 305, 307-309

M
magnetometers, 9

MainActivity activity, 127

makefiles, 285-286

manipulating raw audio, 158-163

Maps API key, 263

markers, adding to Google Maps, 267-271

330 LBS (Location-Based Services)

���������������

ptg

measureHeight() method, 278

measureWidth() method, 278

MediaPlayer, 154-157

MediaRecorder

playing audio, 154-157
recording audio, 157-158

MediaStore database, 244

menus

building, 121-125
defining in XML, 126-127
drop-down menus, creating, 110-112

MenuScreen activity, 37-38

methods. See specific methods

MODE_PRIVATE, 222

MODE_WORLD_READABLE, 222

MODE_WORLD_WRITEABLE, 222

Moment (Samsung), 6

Motorola app market, 22

Motorola smartphones, 6

multimedia

audio
adding media and updating paths,

165
choosing and playing back, 154-

157
explained, 154
manipulating raw audio, 158-163
recording, 157-158
SoundPool class, 163-164

images
BitmapFactory class, 148
loading for manipulation, 148-153

supported media types, 147-148
video, 165-167

playing, 166-167
recording, 166

multiple activities

buttons, 36-37
explained, 35-36
implementing list of choices, 43-44
launching activities for results using

speed to text, 41-43
launching activities from events, 37-40
launching activities with implicit

intents, 44-46
passing primitive data types between

activities, 46-49
TextView, 36-37

multiprocessing, 11

multitouch, 11, 133-136

MultiTouch activity, 133-135

music ring-tones, playing on button press,
51-55

my_search.xml file, 127

myanimation activity, 301-302

MyBandRActivity, 297-298

MyButton class, 279-282

MyDB activity, 233-234

MyDB() method, 232

MyDBhelper activity, 234-235

MyLocation activity, 253-255, 256-257, 259-
260, 261-262, 265-266, 269-273

MyMarkerLayer activity, 267-268

MyPreferences activity, 223

myServiceConnection class, 291

N
native components

developing, 284-287
explained, 283-284

native databases available as content
providers, 285

ndk.java, 286

331ndk.java

���������������

ptg

networking

integrating with Twitter, 210
AndroidManifest.xml file, 211
login.xml file, 211-212
main.xml file, 212-213
usertimelinerow.xml file, 213

SMS (short message service)
autosending SMSs based on

received SMSs, 197-203
sending SMSs through

SmsManager, 195-197
web content

customizing web browsers, 204
HTTP GET, 204-208
HTTP POST, 209

wireless networks, accessing, 191-193
New Android Project screen, 24

Nexus One, 6

notifications, showing in status bar, 76-78

O
objects. See classes

onActivityResult() function, 41

onBackPressed() method, 119

onBackup() method, 295

onBind() method, 66

OnClickListener interface, 130

onCreate() method, 24, 245

onCreateContextMenu() method, 124

onCreateOptionsMenu() method, 121

onDestroy() method, 65

onDown() method, 131

onDraw() method, 278

onDrawFrame() method, 142, 144

onFling() method, 131

onFocusChanged() method, 118

OnGestureListener interface, 130

onGesturePerformed() method, 137

onKeyDown() method, 118

onKeyLongPress() method, 118

onKeyUp() method, 118

online resources Unknown.47-Unknown.54

onLocationChanged() method, 254

onLongPress() method, 131

onMeasure() method, 277, 278

onPrepareOptionsMenu() method, 121

onRestore() method, 295

onRestoreInstanceState() function, 34

onSaveInstanceState() function, 34

onScroll() method, 131

onSearchRequested() method, 127

onSensorChanged() method, 179

onServiceDisconnected function, 291

onShowPress() method, 131

onSingleTapUp() method, 131

onSurfaceChanged() method, 142

onSurfaceCreated() method, 142

onTap() method, 267

onTick() method, 61

onTouch() method, 133

onTouchEvent() method, 118, 130

OnTouchListener, 133

onTrackballEvent() method, 118

Open Graphics Library for Embedded
Systems (OpenGL ES), 140-145

Open Handset Alliance, 1

open() method, 232

OpenGL ES (Open Graphics Library for
Embedded Systems), 140-145

OpenGlExample activity, 144-145

opening Bluetooth sockets, 188-191

Opto Semiconductor, 10

orientation of screen, forcing, 34

OrientationMeasurements activity, 178-179

332 networking

���������������

ptg

P
packages

explained, 28-30
renaming, 30

pairing with bonded Bluetooth devices, 188

passing primitive data types between
activities, 46-49

paths, updating, 165

pauseMP() method, 155

permission element, 287-288

permissions

ACCESS_COARSE_LOCATION
permission, 252

ACCESS_FINE_LOCATION
permission, 252

declaring and enforcing, 287-288
personal diary, creating, 239-242

phone numbers, dialing, 185

phone states, listening for, 183-185

PhoneStateListener class, 183-185

PhysicalKeyPress activity, 119-121

PictureCallback() method, 171

play_music() function, 51

PlayGame activity, 38-39, 48-49

playing

audio, 154-157
ring-tone songs on button press,

51-55
video, 166-167

populate() method, 269

portrait mode, forcing, 34

preferences, shared. See shared preferences

preferences framework, 222-225

preferences.xml file, 223

PressAndPlay activity, 54-55

primitive data types, passing between
activities, 46-49

priorities, setting, 57

ProcessResponse() method, 206

Profile Panel (Hierarchy Viewer), 312

ProgrammaticLayout activity, 91

progress bars

creating, 112-114
defined, 101

projects

creating, 24
directory structure, 26-28
renaming, 30

Properties View (Hierarchy Viewer), 310-311

protectionLevel attribute, 288

proximity alerts, setting up, 274-275

ps command, 313

publishing, 18

put() method, 222

Pyramid activity, 140-141

PyramidRenderer activity, 142-144

Q-R
query() method, 245

radio buttons

creating, 108-110
defined, 101

radio image, 3

raw audio, manipulating, 158-163

rbutton.xml file, 109

reacting to touch events, 128-130

RecognizerIntent activity, 41-43

recording

audio, 157-158
video, 166

recovery image, 3

registerForContextMenu() function, 124

registering audio files, 165

333registering audio files

���������������

ptg

registerReceiver() method, 70

relative layout, setting, 89-90

RelativeLayout view, 89-90

releaseService() method, 291

remote procedure calls (RPCs),
implementing, 289-294

renaming

classes, 30
packages, 30
projects, 30

Representational State Transfer (REST), 205

requestLocationUpdates() method, 254

requestRestore() method, 297

res/anim/ directory, 79

res/drawable/ directory, 79

resistive touchscreen technology, 9

res/layout/ directory, 79

resource directories

list of, 79
specifying alterate resources, 81-82

ResponderService activity, 200-203

res/raw/ directory, 79

REST (Representational State Transfer), 205

restoring activity information, 34

res/values/ directory, 79

res/xml/ directory, 79

retrieving

last location, 253-254
shared preferences, 222

returning device’s rotational attitude,
176-179

reverse geocoding, 258-260

reviews in Android Market, 21-22

RFCOMM, 188

ring-tone songs, playing on button press,
51-55

ring-tone text transfer language (RTTTL), 53

R.java class, 27-28

robustness, 13-14

Roewe 350, 7

<rotate> attributes, 299

rotational attitude, returning, 176-179

rpc activity, 292-294

RPCs (remote procedure calls),
mplementing, 289-294

rpcService activity, 289-290

run configuration, specifying, 303-304

runnable activities, creating, 55-57

runnable tasks from main thread,
scheduling, 59-61

runtime data, backing up, 294-296

S
Samsung smartphones, 6

saving

activity information, 34
files, 249-250

<scale> attributes, 299

scheduling runnable tasks from main
thread, 59-61

screen orientation, forcing, 34

screens, 8

SEARCH KEY, utilizing, 127

SearchDialogExample activity, 128

SearchRecentSuggestions database, 244

secondary threads, launching, 51-55

security, 287-288

seek bars

creating, 114-116
defined, 102

SeekBarEx activity, 114-115

self-contained services, creating, 65-69

sending SMSs through SmsManager,
195-197

334 registerReceiver() method

���������������

ptg

sendMuiltTextMessage() method, 200

sendMultipartTextMessage() method, 197

sendTextMesssage() method, 195

SENSOR_DELAY_FASTEST, 178

SENSOR_DELAY_GAME, 178

SENSOR_DELAY_UI, 178

SensorEventListener, 178

sensors, 9-10

returning device’s rotational attitude,
176-179

sensors accessible from Android
SDK, 176

temperature and light sensors,
179-180

separate database packages

creating, 232-235
utilizing, 236-239

services

creating, 65-69
explained, 64
lifecycle, 64-65
stopping, 65

setBuiltInZoomControls() method, 269

setContentView() function, 25

setDaemon() method, 57

setGravity() method, 75

setIcon() method, 121

setListAdapter() function, 43

setMeasuredDimension() method, 277

setOnItemClickListener() function, 43-44

setPixel() method, 148

setPriority() function, 57

setRequestMethod() method, 209

setText() method, 278

setTextColor() method, 278

setTextSize() method, 278

Setting database, 244

SFH7743, 10

Shanghai Automotive Industry Corporation, 7

shared preferences

changing UI based on stored data,
225-228

creating and retrieving, 222
End User License Agreement

(EULA), 228-232
explained, 221
preferences framework, 222-225

SharedPreferences interface. See shared
preferences

sharing threads between two
applications, 58

ShowMyButton activity, 282-283

ShowNotification activity, 77-78

ShutterCallback() method, 171

signing, 18

SimpleActivity activity, 68-71

SimpleBroadcastReceiver activity, 71

SimpleOnGestureListener class, 131

SimpleService activity, 66-67

SimpleService2 activity, 71-72

SimpleWidgetProvider activity, 73

single task mode, forcing, 33-34

size() method, 267

sleep() method, 55

smartphones running Android

hardware differences
screens, 8
sensors, 9-10
user input methods, 9

HTC models, 6
marking device’s current location on

map, 274
Motorola models, 6
Samsung models, 6
table of, 3-5

335smartphones running Android

���������������

ptg

SMS (short message service)

autosending SMSs based on received
SMSs, 197-203

sending SMSs through SmsManager,
195-197

SmsManager class, 195-197

SMSResponder activity, 198-200

sockets (Bluetooth), opening, 188-191

soft keyboards, 11

sort() method, 151

SoundPool class, 163-164

speech to text, launching activities for
results using speed to text, 41-43

spinner_entry.xml file, 110-111

SpinnerExample activity, 111

spinners, 101

spinner.xml file, 110

SQLite database

creating personal diaries, 239-242
creating separate database package,

232-235
explained, 232
utilizing separate database packages,

236-239
ST Microelectronics, LIS331DLH, 10

startdiscovery() method, 187

starting. See launching

startMethodTracing() function, 312

startMP() method, 155

StartScreen activity, 46-47

startTracking() method, 119

status bar, showing notifications in, 76-78

stop() method, 57

stopMethodTracing() method, 312

stopping services, 65

storage. See data storage

Streak, 7

String attribute, 80

strings, 12

strings.xml file, 40

supported media types, 147-148

surface acoustic wave touchscreen
technology, 9

surfaceChanged() method, 172

surfaceCreated() method, 172

surfaceDestroyed() method, 172

SyncStateContract database, 244

system image, 3

T
tables, adding image buttons to, 102-105

tablets, table of, 7

takePicture() method, 171

tasks, scheduling runnable tasks from main
thread, 59-61

telephony

dialing phone numbers, 185
listening for phone states, 183-185
TelephonyManager class, 181-182

Telephony Actions control (DDMS), 305

Telephony Status control (DDMS), 305

TelephonyApp activity, 181-182

TelephonyManager class, 181-182

television, Google TV, 8

temperature sensors, 9, 179-180

testfactorial activity, 311-312

text entry, 98-100

text manipulation

creating forms, 100-101
providing text entry, 98-100
setting and changing text attributes,

95-98
TextView attributes, 94-95

336 SMS (short message service)

���������������

ptg

TextView, 36-37, 94-95

TFT (thin-film transistor) LCDs, 8

threads

canceling, 57-58
creating runnable activities, 55-57
explained, 51-52
handlers

countdown timers, 61-62
explained, 58
handling time-consuming initial-

izations, 62-64
scheduling runnable tasks from

main thread, 59-61
launching secondary threads, 51-55
setting thread priorities, 57
sharing between two applications, 58
updating layouts from separate threads,

92-94
time-consuming initializations, handling,

62-64

Timeline Panel (Hierarchy Viewer), 312

timers

background timer, 60-61
countdown timer, 61-62

Toast, creating alerts with, 74-75

top command, 313

touch events, reacting to, 128-130

TouchExamples activity, 129

touchscreen technology, 9, 11. See also UI
techniques

listening for fling gestures, 130-132
multitouch, 133-136
reacting to touch events, 128-130

TraceView, 311-313

trackballs, 9

trackpad, 9

<translate> attributes, 299

translating

addresses to locations, 261-262
locations to addresses, 258-260

Tree View (Hierarchy Viewer), 310-311

TRTTTL (ring-tone text transfer language), 53

turning on Bluetooth, 186-187

Tween animation, 298-299

Twitter, integrating with, 210

AndroidManifest.xml file, 211
login.xml file, 211-212
main.xml file, 211-212
usertimelinerow.xml file, 213

Twitter Client, 210

Twitter4J, 210

TwitterCookBook activity, 214-215

type mapping between Java and Android
native components, 285

U
UI techniques

3D images, drawing, 140-145
buttons

adding, 36-37
adding to table layouts, 102-105
defined, 101

check boxes
creating, 105-109
defined, 101

controlling width and height of UI
elements, 86-88

drop-down menus, creating, 110-112
event handlers/event listeners

building menus, 121-125
defining menus in XML, 126-127
explained, 117
intercepting physical key presses,

117-121

337UI techniques

���������������

ptg

listening for fling gestures, 130-132
multitouch, 133-136
reacting to touch events, 128-130
utilizing SEARCH key, 127

layouts
building in Eclipse Editor, 83-85
declaring programmatically, 90-91
setting relative layout and layout

ID, 89-90
updating from separate threads,

92-94
progress bars

creating, 112-114
defined, 101

radio buttons
creating, 108-110
defined, 101

resource directories
list of, 79
specifying alterate resources, 81-82

seek bars
creating, 114-116
defined, 102

spinners, 101
text manipulation

creating forms, 100-101
providing text entry, 98-100
setting and changing text

attributes, 95-98
TextView attributes, 94-95

TextView, 36-37
UI attributes, 80
UI libraries

gesture libraries, 136-138
Open Graphics Library for

Embedded Systems (OpenGL
ES), 140-145

ViewGroups, 82
views

explained, 82
RelativeLayout, 89-90

uniform resource identifiers (URIs), 44

Uniform Resource Identifiers (URIs), 244

update() method, 245

UpdateAndList activity, 215-219

updates, managing in Android Market, 21-22

updating

layouts from separate threads, 92-94
location upon change, 254-256
paths, 165

upgrading Android SDK, 14-15

URIs (uniform resource identifiers), 44, 244

user input methods, 9

UserDictionary, 244

usertimelinerow.xml file, 213

V
vibrate() method, 191

vibration

Bluetooth devices, 191
vibration-pause sequences, 191

Vibrator class, 191

video, 165-167

playing, 166-167
recording, 166

ViewGroups, 82

views

adding to Google Maps, 271-274
custom views, 277-283
explained, 82
RelativeLayout, 89-90
TextView. See TextView
WebView object, 204

338 UI techniques

���������������

ptg

W
web browsers, customizing, 204

web content

customizing web browsers, 204
HTTP GET, 204-208
HTTP POST, 209

WebSettings class, 204

WebView object, 204

widget_info.xml file, 74

widget_layout.xml file, 74

widgets

App Widgets. See App Widgets
buttons

adding to table layouts, 102-105
defined, 101

check boxes
creating, 105-109
defined, 101

drop-down menus, creating, 110-112
progress bars

creating, 112-114
defined, 101

radio buttons
creating, 108-110
defined, 101

seek bars
creating, 114-116
defined, 102

spinners, 101
width of UI elements, controlling, 86-88

Winterstein, Daniel, 210

Wire-frame View (Hierarchy Viewer),
310-311

wireless networks, accessing, 191-193

X-Y-Z
XML files

AndroidManifest.xml file, 28-30
defining menus in XML, 126-127
referencing resources from, 28

Yamamoto, Yusuke, 210

339Yamamoto, Yusuke

���������������

	Table of Contents
	1 Overview of Android
	The Evolution of Android
	The Dichotomy of Android
	Devices Running Android
	HTC Models
	Motorola Models
	Samsung Models
	Tablets
	Other Devices

	Hardware Differences on Android Devices
	Screens
	User Input Methods
	Sensors

	Features of Android
	Multiprocess and App Widgets
	Touch, Gestures, and Multitouch
	Hard and Soft Keyboards

	Android Development
	How to Use the Recipes in This Book
	Designing Applications Well
	Maintaining Forward Compatibility
	Robustness

	Software Development Kit
	Installing and Upgrading
	Software Features and API Level
	Emulator and Android Device Debug
	Using the Android Debug Bridge
	Signing and Publishing

	Android Market
	End-User License Agreement
	Improving App Visibility
	Differentiating an App
	Charging for an App
	Managing Reviews and Updates
	Alternatives to the Android Market

	2 Application Basics: Activities and Intents
	Android Application Overview
	Recipe: Creating a Project and an Activity
	Directory Structure of Project and Autogenerated Content
	Android Package and Manifest File
	Renaming Parts of an Application

	Activity Lifecycle
	Recipe: Utilizing Other Lifecycle Functions
	Recipe: Forcing Single Task Mode
	Recipe: Forcing Screen Orientation
	Recipe: Saving and Restoring Activity Information

	Multiple Activities
	Recipe: Using Buttons and TextView
	Recipe: Launching Another Activity from an Event
	Recipe: Launching an Activity for a Result Using Speech to Text
	Recipe: Implementing a List of Choices
	Recipe: Using Implicit Intents for Creating an Activity
	Recipe: Passing Primitive Data Types Between Activities

	3 Threads, Services, Receivers, and Alerts
	Threads
	Recipe: Launching a Secondary Thread
	Recipe: Creating a Runnable Activity
	Recipe: Setting a Thread’s Priority
	Recipe: Canceling a Thread
	Recipe: Sharing a Thread Between Two Applications

	Messages Between Threads: Handlers
	Recipe: Scheduling a Runnable Task from the Main Thread
	Recipe: Using a Countdown Timer
	Recipe: Handling a Time-Consuming Initialization

	Services
	Recipe: Creating a Self-Contained Service

	Adding a Broadcast Receiver
	Recipe: Starting a Service When the Camera Button Is Pressed

	App Widgets
	Recipe: Creating an App Widget

	Alerts
	Recipe: Using Toast to Show a Brief Message on the Screen
	Recipe: Using an Alert Dialog Box
	Recipe: Showing Notification in Status Bar

	4 User Interface Layout
	Resource Directories and General Attributes
	Recipe: Specifying Alternate Resources

	Views and ViewGroups
	Recipe: Building Layouts in the Eclipse Editor
	Recipe: Controlling the Width and Height of UI Elements
	Recipe: Setting Relative Layout and Layout ID
	Recipe: Declaring a Layout Programmatically
	Recipe: Updating a Layout from a Separate Thread

	Text Manipulation
	Recipe: Setting and Changing Text Attributes
	Recipe: Providing Text Entry
	Recipe: Creating a Form

	Other Widgets: From Buttons to Seek Bars
	Recipe: Using Image Buttons in a Table Layout
	Recipe: Using Check Boxes and Toggle Buttons
	Recipe: Using Radio Buttons
	Recipe: Creating a Drop-Down Menu
	Recipe: Using a Progress Bar
	Recipe: Using a SeekBar

	5 User Interface Events
	Event Handlers and Event Listeners
	Recipe: Intercepting a Physical Key Press
	Recipe: Building Menus
	Recipe: Defining Menus in XML
	Recipe: Utilizing the SEARCH Key
	Recipe: Reacting to Touch Events
	Recipe: Listening for Fling Gestures
	Recipe: Using Multitouch

	Advanced User Interface Libraries
	Recipe: Using Gestures
	Recipe: Drawing 3D Images

	6 Multimedia Techniques
	Images
	Recipe: Loading an Image for Manipulation

	Audio
	Recipe: Choosing and Playing Back Audio Files
	Recipe: Recording Audio Files
	Recipe: Manipulating Raw Audio
	Recipe: Using Sound Resources Efficiently
	Recipe: Adding Media and Updating Paths

	Video

	7 Hardware Interface
	Camera
	Recipe: Customizing the Camera

	Other Sensors
	Recipe: Getting a Device’s Rotational Attitude
	Recipe: Using the Temperature and Light Sensor

	Telephony
	Recipe: Utilizing the Telephony Manager
	Recipe: Listening for Phone States
	Recipe: Dialing a Phone Number

	Bluetooth
	Recipe: Turning on Bluetooth
	Recipe: Discovering Bluetooth Devices
	Recipe: Pairing with Bonded Bluetooth Devices
	Recipe: Opening a Bluetooth Socket
	Recipe: Using Device Vibration
	Recipe: Accessing the Wireless Network

	8 Networking
	Using SMS
	Recipe: Autosend an SMS Based on a Received SMS

	Using Web Content
	Recipe: Customizing a Web Browser
	Recipe: Using an HTTP GET
	Recipe: Using HTTP POST

	Social Networking
	Recipe: Integrating with Twitter

	9 Data Storage Methods
	Shared Preferences
	Recipe: Creating and Retrieving Shared Preferences
	Recipe: Using the Preferences Framework
	Recipe: Changing the UI Based on Stored Data
	Recipe: Adding a EULA

	SQLite Database
	Recipe: Creating a Separate Database Package
	Recipe: Using a Separate Database Package
	Recipe: Creating a Personal Diary

	Content Provider
	Recipe: Creating a Custom Content Provider

	File Saving and Loading

	10 Location-Based Services
	Location Basics
	Recipe: Retrieving Last Location
	Recipe: Updating Location Upon Change
	Recipe: Listing All Enabled Providers
	Recipe: Translating a Location to Address (Reverse Geocoding)
	Recipe: Translating an Address to Location (Geocoding)

	Using Google Maps
	Recipe: Adding Google Maps to an Application
	Recipe: Adding Markers on a Map
	Recipe: Adding Views to a Map
	Recipe: Marking the Device’s Current Location on a Map
	Recipe: Setting up a Proximity Alert

	11 Advanced Android Development
	Android Custom View
	Recipe: Customizing a Button

	Android Native Components
	Recipe: Developing a Native Component

	Android Security
	Recipe: Declaring and Enforcing Permissions

	Android Inter-Process Communication
	Recipe: Implementing a Remote Procedure Call

	Android Backup Manager
	Recipe: Creating a Backup of Runtime Data
	Recipe: Backing Up Files to the Cloud
	Recipe: Triggering Backup and Restore

	Android Animation
	Recipe: Creating an Animation

	12 Debugging
	Eclipse Built-in Debug Tools
	Recipe: Specifying a Run Configuration
	Recipe: Using the DDMS
	Recipe: Debugging Through Breakpoints

	Android SDK Debug Tools
	Recipe: Using the Android Debug Bridge
	Recipe: Using LogCat
	Recipe: Using the Hierarchy Viewer
	Recipe: Using TraceView

	Android System Debug Tools
	Recipe: Setting up GDB Debugging

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

