Clean up the speed and appearance of your

Web applications with Ajax

Code and usable
Ajax applications
on companion

A Reference Web site

for the
Rest of Us!
FREE eTips at dummies.com-
Steve Holzner, PhD
Author of Physics For Dummies

Ajax

FOR

DUMMIES

by Steve Holzner, PhD

WILEY

Wiley Publishing, Inc.

Ajax

YO

DUMMIES

Ajax

FOR

DUMMIES

by Steve Holzner, PhD

WILEY

Wiley Publishing, Inc.

Ajax For Dummies®
Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005937352
ISBN-13: 978-0-471-78597-2

ISBN-10: 0-471-78597-0

Manufactured in the United States of America
109 87654321

1B/QY/QS/QW/IN

WILEY

www.wiley.com

About the Author

Steve Holzner is the award-winning author of nearly 100 computer books. His
books have sold more than 2 million copies and have been translated into 18
languages around the world. He specializes in online topics, especially Ajax,
and he has long done commercial Ajax programming.

Dedication

To Nancy, of course!

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form

located at www . dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial,
and Media Development

Senior Project Editor: Paul Levesque
Acquisitions Editor: Katie Feltman

Copy Editors: Virginia Sanders, Heidi Unger
Technical Editor: Vanessa Williams
Editorial Manager: Leah Cameron

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone,
Travis Silvers

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www . the5thwave . com)

Composition Services
Project Coordinator: Maridee Ennis

Layout and Graphics: Carl Byers, Andrea Dahl,
Barbara Moore, Lynsey Osborn

Proofreaders: Leeann Harney, Jessica Kramer,
TECHBOOKS Production Services

Indexer: TECHBOOKS Production Services

Special Help
Becky Huehls, Elizabeth Kuball

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

www.dummies.com

Contents at a Glance

INErOAUCHIONc..ccceeaaeeiaacanniacaeeeaccnreecaneeacanneeacnns 1
Part I: Getting Started.cueeeueeeaceeeaceneaareaeaneeenns 7
Chapter 1: AJax 10T ..ottt ettt ettt et ettt 9
Chapter 2: It’s All About JAVASCIIPLc.eovvieeiieiieiicieetecteeere e 21

Part II: Programming in Ajax..........cc.ccecceecceeceeannaannac 13

Chapter 3: Getting to KNOW AJaXccceceeieieiieieriinieseeeeeestestesiesreeseeeesessessessessasseesees 75
Chapter 4: Ajax in Depth.......cocooiiiiiiiiicccceceeee et 113
Part I11: Ajax Frameworkscccoueeeeceeeeseeeseecnees 151
Chapter 5: Introducing Ajax Frameworks..........ccccoceverenininienieeeeseseeeeeeeeene 153
Chapter 6: More Powerful Ajax Frameworkscccoveeieeiieciieiieciecieseeceeseeieenens 181
Chapter 7: Server-Side Ajax FrameworKsccocceviirieniiniinniniienienieseeseeneeieeieens 213
Part 1U: In-Depth Ajax Power.............cccoueceeeeieecneannns 235
Chapter 8: Handling XML int Ajax Applicationsccccceeeevieenieriieniienienieneesieeiens 237
Chapter 9: Working with Cascading Style Sheets in Ajax Applications................... 269
Chapter 10: Working with Ajax and PHP............cccoooiiiiiiieieee e 297
part U: The Part 0{ Tens IIl.ll.llIlIIIIIl.llllIIIIIII((II(IIIIII((II323
Chapter 11: Ten Ajax Design Issues You Should Know About...........cccccevvevieniennnnns 325
Chapter 12: Ten Super-Useful Ajax RESOUICES..........ccceeveeviieiiieiieeieeiesieceeseeieeiens 331

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaeeeeennasseeesnnnseeeesnnsaeeeens]

About This BOOK.........oociiiiieeiieceeeeeees et 1
Conventions Used in This BOOKccccccoeciieieiieniinieceeeeeeeeeeeeeie e 2
FOOlisSh ASSUMPTIONScccvieiiiiiiiieceeieeie ettt et eeens 2
How This BOok Is Organized............cccceeviiriiriienienienieeneesieeieeie e seesieeeeens 3
Part I: Getting Startedcoccoecvevienieniieiecececeeeee e 3
Part II: Programming in AjaXccoceevieneeneniienienieneeneesieeieeeeeeeees 3
Part III: Ajax FramewWOTrKScccceeviieeiieeiieeie et 3
Part IV: In-Depth Ajax POWeT.......cccoocieiiiviiiiieeeeeeeee e 4
Part V: The Part of TenS.......c.cccceeveviieriieiieciececteceeeee e 4
[cons Used in This BOOK........ccccueriiriiiiiniiiiiieieetest et eie e seeeveens 4
Where to GO from HEYE.........ccooovieuiiieeceeteeeeece ettt 5

Part I: Getting Started...............ccueceueeaeeicencaeesceecaneacee {

Chapter T: Ajax 10T i aae e 9
HOw D€ AJax WOTK?ccviiiiiiiiieiiecieeieeteeee ettt sveesae e eae e saeesse e 10
A USEI’S PEISPECHIVE. ...cctieiieiieiecieieeeeeee ettt 10

A developer’s PErsSpPeCtiVe.......cccoviiriereeneeiieniesieetee e 11
What Can You Do with AJax?.......ccceeieiiiniiiniinienienienteeeeeiesesie st 12
Searching in real time with live searches.........ccccccoevvevieiiecieciennenns 12
Getting the answer with autocompletecccooeeevieiiinineninenenen. 13
Chatting with friendsc.cccceeveriiiienieeceeeeeeeeeeeee e 14
Dragging and dropping with AjaX..........cccecervevieeeeeeecieneseseeeeeenes 15
Gaming With AJaX......ccecirviirrieniierieeeeccee et sae e 16
Getting instant login feedback.........ccccevevvieriiiniiininniiieeierieneee 17
Ajax-enabled POP-UP MENUS..........cccceeeiieeiiiieieeeiie e 18
Modifying Web pages on the fly..........ccocovininininnneiineeeeeeeee 19
Google Maps and AjJAXccccceeveereereereenieesieeeeeieseesseesseesseessesssessaenns 19
When Is Ajax @ GOOd ChOICE?cooueeiiieiiiiieieeiecieceeceeee e 20
Chapter 2: It's All About JavaScriptcccoiuinntn. 21
Taking a First Look at Ajax in ACtioncccceecvevievienieneccieciecieeeeeeee, 21
Taking a look at the code.........ccoovvviiiniiniiniiiniinieeeeeeeee 23
Delving deeper into JavaScript........ccoceveeveriiinieniiiniiieciecieeieneee 24
ENter JAVASCIIPT ...coviiiicieeieceeceteeee ettt et et 24
Creating @ SCrIP .ooveeuieieieieeee et 25
Accessing the Web page from JavaScript..........cccoceevevienieneeciennnen. 26

Oh, thOS€ SEMICOIONSvveeeeiiieiiieeeeeeeeeeeee ettt eeee e e e s e e e 28
Adding comments to your JavaScript.........cccceevervienienieneenieeniennen. 28

Using separate script files........ccocevivviiniiniieniiinienicccecesieeeeseee 29

xi i Ajax For Dummies

Examining SCriPt €ITOTScccuevieriiiiieniiiiieienie ettt eee e 30
Which browser are you using?c.ccecevevenenencenneenieneneeeeeeeenes 32
Making Something Happen: Browser Events.........cccococvoiiiinininencncnen. 33
Putting browser events to WOrKcccoovievniiiniiiiniiinniieniccee e, 35
Getting the quotation marks right.........ccccccoeviinviiniininniininicieneee 36
Dividing and Conquering: JavaScript Functionscccccecevvienviinienennne. 37
Understanding the problem.........ccccooceeviiiiniiiniiniiniieneeeeeneee 38
Putting together a functioncoceceevieneiinininceeeeeee 39
Calling the functionc.ccoceiiriiini e 40
Passing a single argument to a function...........cceceeeevieciiniienciennnne 44
Using <div> VEISUS cc.ecvieeeeeieeieieieienteesesseessesessessessessesseesens 45
Passing multiple arguments.............coccevviervieniienieniienenneeieeieseeseene 47
You Must Remember This: Storing Dataccecceevievieninninniniinienieneene 48
Simple data storage with the var statement..............ccccvveveevennennn. 49
Churning your data with operatorscccocvvenviiiiinenenenenenen. 50
Altering a variable’s data.........ccccceeveeeeieeeriineseeeeeeeee e 55
Storing JavaScript objects in a variableccoceviivieiiiniieniiineens 56
Oh, thOSE fUNCHIONS!coiieiiiieiieeeeeeeeeeeeee ettt s e e seaeee s 57
Picking and Choosing with the if Statementccoccocvvvvererenenenenenen. 59
Using the if statementccocoviririeieieeeee e 59
Using the else statementcccccooeriiiiiniiniineninneeeeeeeeeee 61
Determining browser type and Version............ccceceeeeceesieenvecsvennenne 62
It Just Gets Better: The for LOOPDccccevviiriiriienienieneeeciecieeeeeeeseee e 64
Over and Over with the while Loop!..........cccoieiiiiiiiieee e, 66
Pushing Some BUttONS........cocoviiniiniiiiniiniiietctceeeeeeeeee e 69
Displaying a message with a button click........ccocceeceiviniinninnnnnnns 69
Reading a text field with a button click.........cccocooveiiiininininnnen. 71

Part I1: Programming in Ajagccccceceeeiceesceeseencens 13

Chapter 3: Gettingto Know Ajaxcoviiiiinnnnn.. 75
WIHING SOME AJAXcviiiieiieeieieieieierieseee et eteae e e see e e e eseeessesnesnessnens 76
Creating the XMLHttpRequest object........cccoocvvireriecienienenieeeenene 79
Checking to make sure you have a
valid XMLHttpRequest ObjJecCtccccceevvieiierieeiienieeieeieeeeseeeeee, 83
Opening the XMLHttpRequest object.........c.ccocvevvierercenniinienieneene 84
When you're ready: Handling asynchronous downloads................ 85
You got the datal........cooveiieriiiniinite e 88
Deciding on relative versus absolute URLSccccccevvevieniinrnennen. 90
Other ways of getting XMLHttpRequest objects............cccceveevenennne 91
Interactive Mouseovers USiNG AJaXcccceeeveevveriereenieeneenieeieeieseeseesseennes 93
Getting Interactive with Server-Side Scripting..........ccoceeveeviervieniiencenennne. 94
Choosing a server-side scripting languagecccceeevvvervierceennnns 95

Table of Contents

Time for SOme XML.......coccooiiiiiiiiiiinenerteeeeeee et 97
Getting XML from a PHP SCript......cccoovevvieviieiieieceeeeeeeeveeeeeee 98
Setting up a Web page to read XMLcccoocevirienienenineneeceeeene 100
Handling the XML you read from the servercccccceevveevennnnee. 101
Extracting data from XMLcccceeeievviiniieniienieneceeieeeeeesee e 102
Listing the colors in the drop-down control............c.ceceevvervennnnne. 104

Passing Data to the Server with GETccccoviiviniiniininieneeeeee, 106

Passing Data to the Server with POST.........cccccooiviiiiiiiiiieeeee 109

Chapter4: AjaxinDepth............. ... it 113

Returning JavaScript from the Servercccoovevieeieciecieciecieeeeeeee, 114
When do you send back JavaScript from the server? 114
How does returning JavaScript Work?cccoevvevievievincienciennenne, 114
Returning a JavaScript Objectccccovvvvviiriincieniiieeeeeeeiee 118

Connecting to Google for a Live Searchccoceevevvervinvinieniienieneeen. 120
Handling the data Google sends youccecceveeviervienvienvieneeneenne. 121
Detecting KeysStrokes.........coocveeviiieiieiieiceeceeeeeeee e 122
Connecting to Google Suggestccccoveririneniiinenenenececeeene 123
Showing GOOZIE’S TESPONSE.......cccuevueeiirereerieneenieerieesieesieeaeeaesseeens 125

Calling a Different DOmaincccoecvervierieneenieniereeieeiesie e sre e 130

Reversing the Roles: Performing Validation on the Server..................... 131

Getting Some Amazing Data with HEAD Requests.........cccccoevevienieuennnen. 134
Returning all the header data you can get........cccceevveviiecieerennnne. 135
Finding the last-modified date........c.c.ccecveeieeienieiieiceeecee, 136
Does @ URL €XISt? ...cc.eeuiiiiiieiiriinenteteteesieeeeete et 139

Finding the Problem: Debugging Ajaxcccccevvrveriieevenienienienceseeenn 140
Setting up your browser for debugging..........ccccceeevviirvivrvienciennnnne. 140
Debugging with Greasemonkeycccccoecieviiveininninnennienieneee 142

Overload: Handling Multiple Concurrent Requests..........ccccoeeveercveuenene 143
Double the funcoeeiiiiiieeie e 144
Packing it all into an array........ccccceeceevieecieeienieeneeseeseeseese e 146
Getting the inside scoop on inner functions..........c.cccocevvvervennnnnne. 147

Part II1: Ajax Frameworkscccccceeeecveeseesenseeseanee 151

Chapter 5: Introducing Ajax Frameworks 153
A Little More AjaxX POWETccvieieiiieiieieeiecieseecteee ettt 154
Introducing the Ajax Gold Frameworkccoceeviecievincincienieceeeee, 157

Using GET £0 et tEXT c..ocviieiieiicececeeeeeeeee et 158
Using GET t0 get XMLccooiiiiiiiiinienienenteteeeeee e 162
Using POST to post data and get text........ccoceeververniinnensienieeneenne. 166
Using POST to post data and get XML.........ccccecievievieneneneeceieneens 170
Finding Ajax Frameworks in the Wild...........ccccoovevieiiniinciiieeieceeeee, 173
Easy Ajax with AJAXLIDccccveviriirieeieciecteeeeeeeeieeie e 174

Grabbing XML with libXmIRequest..........ccccoeceevieiirninniieienieneenne, 176

X

XIV Ajax For Dummies

Chapter 6: More Powerful Ajax Frameworks 181
Dragging and Dropping with Shopping Carts........ccccceeevvieviencienceeneennen. 182
Handling moOUSE EVENLScccceviierierierieeieneeneeieeie e 185
Handling mouse down eVents...........coccevvierieneenenniennienniensieneeseennes 187
Handling mouse-move eVents..........ccccceeeveerveeniieecieesieeeeeeeee e 189
Handling mouse uUp eVents.........cccccuveriieeiienieenieeeieecieeeee e 189
Updating the shopping Cartcccoceevvevciieiencieceeeeeeeeeee e 191
Looking at Some Heavier-Weight Frameworks..........c.ccccecvecverieneeneennen. 194
Getting XMLHttpRequest objects with XHConn................cceeu...e. 194

The Simple AJAX Code Kit: Sackcccoeeevvevieeciiieiecieeeeeee e, 196
Parsing XML with Interactive Website Framework........................ 198
Handling older browsers with HTMLHttpRequest......................... 199
Decoding XML with Sarissa.......ccccceceeviercierieniienieceeseeeeieee e 201
Creating visual effects with RiCOccccoecviviinvieniiiiiceee 204
Overcoming caching with the Http frameworkc.ccccceevennnnne. 211
Chapter 7: Server-Side Ajax Frameworks 213
Writing JavaScript by Using Ajax Frameworks...........ccccevevciervienieeneennen. 213
Sajax and PHPcocooiiiiiiiiiieeeceetecce e 214
Xajax and PHPc.oooiiiiieeeeeeeee et 218
LibAjax and PHPcccoooiiiiiieeeeeeeee e 221
JPSpan and PHP ...ttt 224
Accessing Java with Direct Web Remotingccccoevveveevieciincienceeneennen. 225
Setting up for Java on the Webcccociniiniininiiniieee, 225
Connecting to Java by using DWR........ccccecvviiniininniniinienieneee 225
Building Web Applications with Echo2ccccoooiinii 228
Handling Ajax and JavaServer Pages with Ajax Tagscccccoeeveecvenuennnne 229
Handling Java with SWATOccccoeoiieiiieieeeeeeeeeeeie e 231
Tracking Down the Many Other Frameworks Available.......................... 232
Developing amazing applications with WebORB............................ 232
RUDY 0N RailS ..coouiiiiiiiiiiiiicieeeccttetceeee e 233
BaCKDASE.eeiicieeeeeeee e e 234

DOJO ettt s e 234
ALIAS.INET ..ottt seaae e e saa e s e 234

Part 1V: In-Depth Ajax Powercccceecceeiceecaceeiecn 235

Chapter 8: Handling XML int Ajax Applications 237
Understanding Basic XML.........ccccociiieiiiiciieeiiecie e 238
WHhat’s i @ ta8? ..ccveoveeeeieieieeeeee ettt 238

Keeping XML documents well-formed...........ccccceevveviieneeniencrennnnne. 239

Making an XML document validcccceevervieneenenniennieenieeieeeene 240

Requesting XML Data in AjaX.....c.cccecerieneeneenennienienieniesieseesseseeesseennens 240

Table of Contents }(/

Extracting XML Data Using Properties.........ccccoceevervenienieniienieneeneenen. 243
Right on the NOdecc.ooviiiiiiiieeee e 243
Introducing the JavaScript properties..........ccccoceveveninenenicenenins 243
Navigating an XML document using JavaScript properties.......... 245
Extracting with nodeValuecccoccevviiviiniiniiiniiiececeeeeee 249
Handling white space in Mozilla and Firefoxccccccecevevnennncne 250
Removing white space in Mozilla and Firefoxc.ccccececeeiie. 254

Accessing XML Elements by Name..........ccccoccevirerieieenienieneneneeeeeeeenes 258

Accessing Attribute Values in XML Elements..........ccccccceeviecieecveceenneennen. 260

Validating XML Documents in Ajax Applications.........cccccceeeverciencveneennen. 263

Chapter 9: Working with Cascading Style Sheets in Ajax
Applicationsoiiiiiiiiiii i i i 269

An Ajax-Driven Menu SyStem..........ccceecuievieecieeiienienieneeieecie e sve e 271
Setting Up the StYles........coveiievieiieeecececeeeee e 272
Handling moOUSE EVENLScceceriueriinienieniereeeeie e 277
Displaying @ MENUcccceeeriiirrieriienienienienteneesie et seeesresee e ene 278
Hiding @ MENU.....cooiiriiiiiiiiiiieeeeeeteetee e 280
Getting a menu’s item from the server..........cccccceevveviveciiecieeceenneenne. 281
Handling the menu ite€mscccceevueeiirienienieeeeeeeeee e 282

Displaying Text That Gets Noticedcccoeeriiieineeiecienieeeceeeeeeeens 285
SEYHNG LEXE...eiiiiiiiiiirietee ettt s 287
Handling colors and backgroundsccccoecvevernirnienninnnienceeneenne 289
Positioning using Styles.........coccevvevvieniiiniieniiniieeeceeeeeeee e 292

Chapter 10: Working with Ajaxand PHP 297

Starting With PHP ..ot 298

Getting a Handle on Variablesccccecvevieiienienecieeieceeee e 301

Handling Your Data with Operators..........cccccccvevieviecieecieeieeieeieeeeseeeen 304

Making Choices with the if Statementcccooceevievieiiniineceeeeeee, 306

Round and Round with LOOPScccerviiriiniiiiiicicciecieseseeseseee e 307

Handling HTML CONtrols........ccccoeviriiriiinieniiienieeeeieeieeie et 310
Getting data from text fieldscoccevveriiniiniiniiceeee 311
Checking out data from check boxes.........cccccceevevieviievieeciecieenne, 312
Tuning in data from radio buttons...........cccceeceeevevieciieciecciecieee, 314

Sending Data to the SEIrVerccocievieienierieeceeeee e 316

ReAdING FIlESooiiiiiiieiieeeeeece ettt st s 317

WIHHING FIlES ..ottt s 319

Working with Databases.........ccocevieiiiiiiinniirieiiteeee e 320

Part U: The Part of Tens........ccccccveececiarececccaneecceaaasss 323

Chapter 11: Ten Ajax Design Issues You Should Know About 325
Breaking the Back Button and Bookmarksccceceeeierciiniieniieneeneennen. 325
GIVING VISUAL CUES.....eiitiiiiiiieieeiecientetetct ettt sttt s 326

Leaving the User in Controlcccocevieviiniininniiiniecieceeseeeteseese e 326

xvi

Ajax For Dummies

Remembering All the Different Browsers........cccccoccevvevvieriiiniienienceneennen. 327
Showing Users When Text Changes..........cccocovevieirienienieneneneneeeeeens 327
Avoiding a Sluggish BrOWSETccceeciieiiieiieeiecieceeeeeee e 328
Handling Sensitive Data..........cccceeciiriiriiinierieieceeeeieee e 328
Creating a Backup Plan..........ccoccovviiiiiiiniinieiceccceeeeee e 328
Showing Up in Search Enginesccccoeceeviiiiiniininneniienieniesieseeseeeen 328
Sidestepping a Browser’s Cachec.ccoceviiiieniineniieniienieniesteseeeeeen 329
Chapter 12: Ten Super-Useful Ajax Resources 331
The Original Ajax Pagecooceeviiriiiiiiniiieectcececeeee et 331
The Ajax Patterns Pageccoooovrieiiiiieieeeceeeeeeee e 332
The Wikipedia Ajax Page........cccceeviieiieieeieeeeeeseeeeeete et 332
AJAX MAEETS ..ceviiiiiiieieeieee ettt ettt ettt te e sae et e e be s e e sseesaean 332
XMLHttpRequest Object References..........cccocevcvevveneeniencieniiencieneeneeeen 333
AJAX BLOGS ..ottt st st s 333
Ajax EXAMPIES....cc.oiiiiiiiiiiiieietetctetee ettt 334
AJaX TULOTIALS ..ottt 334
Ajax DiSCUSSION GIOUPoouieuiiiiiiieiieieeteieese sttt 334
More Depth on XMLHttpPReqUEStcceocvieieeiieieiicieciece et 335

JRACK c.c.eeeeeaaeeeeeeeaeaeeeeeaeeaacneeeaeananneessaaanneeesesaanneees 33 T

Introduction

M aking Web applications look and feel like desktop applications is what
this book is all about — that’s what Ajax does. Although Web develop-
ment is getting more and more popular, users still experience the nasty part
of having to click a button, wait until a new page loads, click another button,
wait until a new page loads, and so on.

That’s where Ajax comes in. With Ajax, you communicate with the server
behind the scenes, grab the data you want and display it instantly in a Web
page — no page refreshes needed, no flickering in the browser, no waiting.
That’s a big deal, because at last it lets Web applications start to look like
desktop applications. With today’s faster connections, grabbing data from
the server is usually a snap, so Web software can have the same look and feel
of software on the user’s desktop.

And that, in a nutshell, is going to be the future of Web programming — now
the applications in your browser can look and work just like the applications
installed on your computer. No wonder Ajax is the hottest topic to come
along in years.

About This Book

This book gives you the whole Ajax story, from soup to nuts. It starts with a
tour of how Ajax is used today, taking a look at some cutting-edge applica-
tions (as well as some games). Then, because Ajax is based on using
JavaScript in the browser, there’s a chapter on how to use JavaScript (if you
already know JavaScript, feel free to skip that material).

Then the book plunges into Ajax itself, creating Ajax applications from
scratch, from the beginning level to the most advanced. And you’ll see how
to put many of the free Ajax frameworks, which do the programming for you,
to work. Because Ajax also often involves using XML, Cascading Style Sheets
(CSS), and server-side programming (using PHP in this book), there’s also a
chapter on each of these topics.

You can also leaf through this book as you like, rather than having to read it
from beginning to end. Like other For Dummies books, this one has been
designed to let you skip around as much as possible. You don’t have to read
the chapters in order if you don’t want to. This is your book, and Ajax is your
oyster.

2 Ajax For Dummies

Conventions Used in This Book

Some books have a dozen dizzying conventions that you need to know before
you can even start. Not this one. All you need to know is that new terms are
given in italics, like this, the first time they're discussed. And that when new
lines of code are introduced, they’re displayed in bold:

function getDataReturnText (url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

}

Note also that code that’s been omitted has been indicated with three verti-
cal dots. That’s all there is to the notation in this book.

Foolish Assumptions

[don’t assume that you have knowledge of JavaScript when you start to read
this book, but you do have to know JavaScript to understand Ajax. Chapter 2
presents all the JavaScript you’ll need in this book.

Also, Ajax often involves some server-side programming, and this book, as
most books on Ajax do, uses PHP for that. You won’t need to know a lot of
PHP here, and what PHP there is is pretty self-explanatory, because it’s a lot
like JavaScript. However, there’s a whole chapter on PHP, Chapter 10, and you
can always dip into it at any time.

However, you should have some HTML prowess — enough to create and
upload to your server basic Web pages. If you feel shaky on that point, take a
look at a good book on HTML, such as HTML 4 For Dummies, 5th Edition, by
Ed Tittel and Mary Burmeister (published by Wiley).

Introduction 3

How This Book Is Organized

Here are the various parts that are coming up in this book.

Part I: Getting Started

Chapters 1 and 2 get you started on your tour of Ajax. Here, you get an
overview of how Ajax is used today, and what it has to offer. There are many
applications available that use Ajax, and you see a good sampling in this part.
Then you get a solid grounding in JavaScript, the programming language Ajax
is built on. (If you're already a JavaScript Meister, feel free to skip this mater-
ial.) To use Ajax, you have to use JavaScript, and in this part, you build the
foundation that the rest of the book is based on.

Part II: Programming in Ajax

In Chapters 3 and 4, you delve into Ajax programming for real. Here, you see
how to grab data from the server — whether that data is plain text or XML —
and how to put that data to work. To illustrate how these techniques work,
you see plenty of examples using Ajax, Dynamic HTML to update Web pages
without needing a page refresh, and even advanced techniques like connect-
ing to Google behind the scenes for real-time same-page Web searches. At last
but not least, you find out how to support multiple Ajax requests to your
server at the same time.

Part 11I: Ajax Frameworks

Ajax can involve a lot of programming involved, and Part Il takes a look at
some of the many shortcuts that are available. Rather than reinventing the
wheel yourself, you can use the Ajax frameworks. These frameworks are free
and do most of the programming for you, so you'll definitely want to check
out this part. You can find all kinds of Ajax techniques, such as using Ajax for
drag-and-drop operations, pop-up menus, downloading images behind the
scenes, and more.

4

Ajax For Dummies

Part IV: In-Depth Ajax Power

Chapters 8 to 10 give you even more of the Ajax story. Chapter 8 is all about
working with XML in JavaScript, and that’s what you often do in Ajax. In this
chapter, you discover how to deal with XML documents that can get pretty
complex, extracting the data you want, when you want it.

Chapter 9 gives you the story on Cascading Style Sheets (CSS), which offer all
kinds of options (such as creating pop-up menus) to display the data you
fetch from the server using Ajax techniques. Because using Ajax means dis-
playing data in a Web page without a page reload, using CSS is a big part of
Ajax programming.

Chapter 10 is about another big part of Ajax programming — writing code for
the server so that you can send data back from the server to the browser.
Like most Ajax books and Ajax samples you can find on the Internet, this
book uses PHP on the server. You won’t need to know PHP to read this book,
but it’ll help when you start using Ajax yourself, so Chapter 10 gives you a
foundation in writing and working with PHP.

Part U: The Part of Tens

No For Dummies is complete without a Part of Tens. Chapter 11 is all about
ten Ajax design issues you're going to run into — and what to do about them.
For example, working with web pages interactively, as Ajax does, means that
the browser’s Back button isn’t going to work if the user wants to undo a
recent update. You'll find some of the solutions that have been attempted dis-
cussed in Chapter 11.

Chapter 12 introduces you to ten essential Ajax resources. Knowing where to
find these resources, and the Google groups and Ajax discussions on the
Internet, will let you join the worldwide Ajax community.

Icons Used in This Book

You'll find a handful of icons in this book, and here’s what they mean:

Tips point out a handy shortcut or help you understand something important
to Ajax programming.

Introduction 5

This icon marks something to remember, such as how you handle a particu-
larly tricky part of Ajax.

This icon means that what follows is technical, insider stuff. You don’t have
to read it if you don’t want to, but if you want to become an Ajax pro (and
who doesn’t?), take a look.

Although the Warning icon appears rarely, when you need to be wary of a
problem or common pitfall, this icon lets you know.

This icon lets you know that there are some pretty cool Web resources out
there just waiting for you to peruse. (In fact, one little corner of the Net,
www . dummies.com/go/ajax, has the code for this book available for free
download.)

Where to Go from Here

Alright, you're all set and ready to jump into Chapter 1. You don’t have to
start there; you can jump in anywhere you like — the book was written to
allow you to do just that. But if you want to get the full story from the begin-
ning, jump into Chapter 1 first — that’s where all the action starts. (If you're
familiar with what Ajax is and are already quick with JavaScript, you might
want to flip to Chapter 3 to start tinkering with the code that makes Ajax go.)

6 Ajax For Dummies

Part |
Getting Started

The 5th Wave By Rich Tennant

ORIGTTENNANT \

“I can’t veally explain it, but every time
1 animate someone swinging a gol€ club,
a little divot of code comes up missing
on the home page.”

In this part . . .

Flis part introduces you to Ajax. You get a guided tour
of the Ajax world here, and you get a chance to see
how Ajax is used today. A good sampling of Ajax applica-
tions are on view in Chapter 1, just waiting for you to
check them out for yourself so you can see what Ajax
has to offer. From autocomplete and live searches to
Google Maps, I pack a lot of Ajax in here. Next comes
Chapter 2, which provides the JavaScript foundation
that the rest of the book relies on. If you already know
JavaScript, feel free to skip that material, but otherwise,
take a look. Ajax is built on JavaScript, so you want to
make sure you've got all the JavaScript you need under
your belt before going forward.

Chapter 1
Ajax 101

In This Chapter

Introducing how Ajax works
Seeing Ajax at work in live searches, chat, shopping carts, and more

We aren’t getting enough orders on our Web site,” storms the CEO.
“People just don'’t like clicking all those buttons and waiting for a new

page all the time. It’s too distracting.”

“How about a simpler solution?” you ask. “What if people could stay on the
same page and just drag the items they want to buy to a shopping cart? No
page refreshes, no fuss, no muss.”

“You mean people wouldn’t have to navigate from page to page to add items
to a shopping cart and then check out? Customers could do everything on a
single Web page?”

“Yep,” you say. “And that page would automatically let our software on the
server know what items the customer had purchased — all without having to
reload the Web page.”

“Ilove it!” the CEO says. “What’s it called?”
“Ajax,” you say.

Welcome to the world of Ajax, the technology that lets Web software act like
desktop software. One of the biggest problems with traditional Web applica-
tions is that they have that “Web” feel — you have to keep clicking buttons to
move from page to page, and watch the screen flicker as your browser loads
a new Web page.

Ajax is here to take care of that issue, because it enables you grab data from
the server without reloading new pages into the browser.

’ 0 Part I: Getting Started

How Does Ajax Work?

With Ajax, Web applications finally start feeling like desktop applications to
your users. That’s because Ajax enables your Web applications to work
behind the scenes, getting data as they need it, and displaying that data as
you want. And as more and more people get fast Internet connections, work-
ing behind the scenes to access data is going to become all the rage. Soon,
it'll be impossible to distinguish dedicated desktop software from software
that’s actually on the Internet, far from the user’s machine. To help you
understand how Ajax works, the following sections look at Ajax from a user’s
and a programmer’s perspective.

A user’s perspective

To show you how Ajax makes Web applications more like desktop applica-
tions, I'll use a simple Web search as an example. When you open a typical
search engine, you see a text box where you type a search term. So say you
type Ajax XML because you’re trying to figure out what XML has to do with
Ajax. Then, you click a Search the Web button to start the search. After that,
the browser flickers, and a new page is loaded with your search results.

That’s okay as far as it goes — but now take a look at an Ajax-enabled version
of Yahoo! search. To see for yourself, go to http://openrico.org/rico/
yahooSearch.page. When you enter your search term(s) and click Search
Yahoo!, the page doesn’t refresh; instead, the search results just appear in the
box, as shown in Figure 1-1.

Al Rico - Live Grid - Yahoo Search - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
QBak » &)«] 2] | ' Zearch . Favorites 4% | v i] P 1
Address I-ﬂH.'n:,lll’nnemim(:_Jm-hr—.l\nnﬁ:s—.nh.;uue j Gu | Links *
-
mc AJAX SEARCH
UveGrd Demansiration Powered by Yahoo! Search
Saluct Samrch Catagory: m Images Videos
Search the Web: [ajaciddL Search vahao!
Search Results Resulks 1= 5 of abouk Z24122 for Ajaee KML
1 Afax: A New Approach to Web Applications il

essay by Jesse James Garrett from Adaptive Path.
hittp: £ fuva, adeptivepath.com/pubiications fessays farchives /000328 php -

|
2. FML.com: XML From the Inside Dut -- XL development, XML resources, XML specifications
Fig“re 1 _1 : + Try Atboa's XML Suibe 2005 FREE for 30 days - #1 with XML developers worldwide! ... that aid push-style development. ML-
Deewiant; Life after Ajax? by Micah Dubinko ..,
An Ajax- hkkp: # Ak, 2l com f -

enabled 30 HMAL.com: Life After Ajs?
iiczh Dubnko says that the way Ajax technologies are presently deployed wil eventually run into complesity barners, It's time,

Ya h 00 ' he claims, for more declarative, markup-based albemative strategies,
hittp: S A cml.com fpun./af 200E /06 /53 /deviant.himl _,ﬂ
search. ||l] v
&1 [[|® Intermet v

Chapter 1: Ajax 101

\\3

That’s the Ajax difference. In the first case, you got a new page with search
results, but to see more than ten results, a user has to keep loading pages. In
the second case, everything happens on the same page. No page reloads, no
fuss, no muss.

You can find plenty of Ajax on the http: //openrico.org Web site. If you're
inclined to, browse around and discover all the good stuff there.

A developer’s perspective

In the article “Ajax: A New Approach to Web Applications” (www.adaptive
path.com/publications/essays/archives/000385.php), Jesse James
Garrett, who was the first to call this technology Ajax, made important
insights about how it could change the Web. He noted that although innova-
tive new projects are typically online, Web programmers still feel that the
rich capabilities of desktop software were out of their reach. But Ajax is clos-
ing the gap.

So how does Ajax do its stuff? The name Ajax is short for Asynchronous
JavaScript and XML, and it’s made up of several components:

v Browser-based presentation using HTML and Cascading Style Sheets
(CSS)

v Data stored in XML format and fetched from the server

v Behind-the-scenes data fetches using XMLHt tpRequest objects in the
browser

v JavaScript to make everything happen

JavaScript is the scripting language that nearly all browsers support, which
will let you fetch data behind the scenes, and XML is the popular language
that lets you store data in an easy format. Here’s an overview of how Ajax
works:

1. In the browser, you write code in JavaScript that can fetch data from the
server as needed.

2. When more data is needed from the server, the JavaScript uses a special
item supported by browsers, the XMLHt tpRequest object, to send a
request to the server behind the scenes — without causing a page
refresh.

The JavaScript in the browser doesn’t have to stop everything to wait
for that data to come back from the server. It can wait for the data in the
background and spring into action when the data does appear (that’s
called asynchronous data retrieval).

11

12

Part I: Getting Started

3. The data that comes back from the server can be XML (more on XML in
Chapters 2 and 8), or just plain text if you prefer. The JavaScript code in
the browser can read that data and put it to work immediately.

That’s how Ajax works — it uses JavaScript in the browser and the
XMLHt tpRequest object to communicate with the server without page
refreshes, and handles the XML (or other text) data sent back from the
server. In Chapter 3, I explain how all these components work together in
more detail.

This also points out what you’ll need to develop Web pages with Ajax. You'll
add JavaScript code to your Web page to fetch data from the server (I cover
JavaScript in Chapter 2), and you’ll need to store data and possibly write
server-side code to interact with the browser behind the scenes. In other
words, you're going to need access to an online server where you can store
the data that you will fetch using Ajax. Besides just storing data on the
server, you might want to put code on the server that your JavaScript can
interact with. For example, a popular server-side language is PHP, and many
of the examples in this book show how you can connect to PHP scripts on
Web servers by using Ajax. (Chapter 10 is a PHP primer, getting you up to
speed on that language if you're interested.) So you're going to need a Web
server to store your data on, and if you want to run server-side programs as
well, your server has to support server-side coding for the language you want
to work with (such as PHP).

What Can You Do with Ajax?

The technology for Ajax has been around since 1998, and a handful of appli-
cations (such as Microsoft’s Outlook Web Access) have already put it to use.
But Ajax didn’t really catch on until early 2005, when a couple of high-profile
Web applications (such as Google Suggest and Google Maps, both reviewed
later in this chapter) put it to work, and Jesse James Garrett wrote his article
coining the term Ajax and so putting everything under one roof.

Since then, Ajax has exploded as people have realized that Web software can
finally start acting like desktop software. What can you do with Ajax? That’s
what the rest of this chapter is about.

Searching in real time with live searches

One of the truly cool things you can do with Ajax is live searching, where you
get search results instantly, as you enter the term you’re searching for. For
example, take a look at http://www.google.com/webhp?complete=1
&hl=en, the page which appears in Figure 1-2. As you enter a term to search

Chapter 1: Ajax 101

|
Figure 1-2:
A Google
live search.
|

for, Ajax contacts Google behind the scenes, and you see a drop-down menu
that displays common search terms from Google that might match what
you’re typing. If you want to select one of those terms, just click it in the
menu. That’s all there is to it.

You can also write an Ajax application that connects to Google in this way
behind the scenes. Chapter 4 has all the details.

¥) Google - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (]

<:;| - L:/\ - @ €3 @ |g| http:i’.-"M\w.googla.cnmf’wehhp?cnmpj © Go |Q,

@ Gotting Started L) Latest Headlines

Google

Suggest

Web Images Groups Mews Frooole Local maore »

Aduanced Search
Ereferences

ajax 2,290,000 results WIPRPUPPPRITIN
ajax amsterdam 502,000 results

ajax fo 710,000 results
ajax ontario 275000 resuits
ajax grips 8860 resuits
ajax football club 573,000 results
ajax public library 40,500 results
ajax football 454,000 results
ajax soCCer 437 D00 rasuits
ajax pickenng transit 10,700 resubts

As you type, Goog peults. Learn more

Dane '5 v

Getting the answer with autocomplete

Closely allied to live search applications are autocomplete applications,
which try to guess the word you’re entering by getting a list of similar words
from the server and displaying them. You can see an example at www . paper
mountain.org/demos/live, which appears in Figure 1-3.

As you enter a word, this example looks up words that might match in a dic-
tionary on the server and displays them, as you see in Figure 1-3. If you see
the right one, just click it to enter it in the text field, saving you some typing.

13

14

|
Figure 1-3:
An
autocomplet
e example.
|

Part I: Getting Started

¥ XMLHtpRequest Demo - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:z| - |_:/\ - @ (%] @]r’ http: assens. papermountain org/dermos/lve/ j © Go ||Q,

& Getting Started Ly Latest Headlines

TETOW PG o Sl LTS Do T

‘nawvigate the list of
‘suggestions. Tab, enter,

Eor clicking will replace the I
contents of the text field
twith the selected entry

ifrom the list.

Aarhus
Aaron
Ababa
aback
abaft
abandon
abandoned
abandoning

i Phasellus porta
i nonumrnay eros, Ut

{Time of last click

Dane

Chatting with friends

Because Ajax excels at updating Web pages without refreshing the displayed
page, it’s a great choice for Web-based chat programs, where many users can

chat together at the same time. Take a look at www.plasticshore.com/

projects/chat, for example, which you can see in Figure 1-4. Here, you just
enter your text and click the Submit button to send that text to the server. All

the while, you can see everyone else currently chatting — no page refresh

needed.

Chapter 1: Ajax 101 75

23 XHTML live chat based on the XMLHttpRequest Object - Microsoft Internet Explorer

File Edit View Favorites Tools Help | e

Qeeck =) » W] 7 Qi Dseach irmvortes & | iy] » [JE @ 3

Address Ie] bitkp:) s, plasticshare .comjprajectsfchat ﬂ Go lLinks e
-

your name: XHTML live Chat =
hPr alexander kohlhofer
|guesl_405 plasticshore.com —
Your message:
submit |

B cuest_s745 :
hghj

|
B cuest_s74s

Figure 1-4: | &

An Ajax- o
based chat ‘es;:_E._.T_-k.l_u_i.
application.

— [FEE

There are plenty of Ajax-based chat rooms around. Take a look at
http://treehouse.ofb.net/chat/?lang=en for another example.

Dragging and dropping with Ajax

At the beginning of this chapter, I mention a drag-and-drop shopping cart
example. As shown in Figure 1-5, when the user drags the television to the
shopping cart in the lower-right, the server is notified that the user bought a
television. Then the server sends back the text that appears in the upper left,
“You just bought a nice television.” You find out how to create this shopping
cart in Chapter 6.

10

Part I: Getting Started

|
Figure 1-5:
Drag-and-
drop
shopping.
|

¥) Ajax Drag and Drop - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (4]

<@ - - & L)) [htipshiacahostichDfdrag. himl = Ge [C

E Getting Started L5y Latest Headlines

Buy a television by dragging it to the shopping cart =

Tou just bought a nice television.

Done @ VA

Gaming with Ajax

Here’s a cute one — a magic diary that answers you back using Ajax tech-

niques, as shown in Figure 1-6. You can find it at http: //pandorabots.com/

pandora/talk?botid=c96£911b3e35f9el. When you type something,
such as “Hello,” the server is notified and sends back an appropriate
response that then appears in the diary, such as “Hi there!”

Or how about a game of chess, via Ajax? Take a look at www . jesperolsen.
net/PChess, where you can move the pieces around (and the software on

the server can, too) thanks to Ajax.

|
Figure 1-6:
An
interactive
Ajax-
enabled
diary.
|

Chapter 1: Ajax 101

A} http://pandorabots.com/pandora/talk? botid=c96f911b3e35@e - Microsoft Internet Explorer
File Edit View Favorites Tools Help aw
Bk v () v x] (2] 1 Hsearch SeFevortes @ (Or i B & @ 3
Address |g‘| http:}ipandorabots.comypandoraftalk?hotid=c96f 91 1 b2e35Fael j Go Links *

Tom Riddle's ' -} .1% 4, Hitherel s PO T

2 i T, £ oy i
Diary i/ . o
S f
i *‘t. {] o]

Knowr to workwith Internet
Explorer 6:0,and FireRox
1.0:1

"\

B i i b | Nl e P b 1=

‘ |
£] Done [T [[[intemet

Getting instant login feedback

Another Internet task that can involve many annoying page refreshes is log-
ging in to a site. If you type the wrong login name, for example, you get a new
page explaining the problem, have to log in on another page, and so on. How

about getting instant feedback on your login attempt, courtesy of Ajax?
That’s possible, too. Take a look at www . jamesdam.com/ajax_login/

login.html, which appears in Figure 1-7. I've entered an incorrect username

and password, and the application says so immediately. You’ll see how to
write a login application like this in Chapter 4.

17

’8 Part I: Getting Started

|
Figure 1-7:
Ajax makes
correcting
login
mistakes
easier.
|

|
Figure 1-8:
Ajax-
enabled
pop-up
menus.
|

¥ JamesDam.com = AJAX Login System Demo - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (%]
<:ZI - L:/\ - @ (%) @] Li htip:.n’.-"ww.jamesdam.com.-"ajax_log]nflogin.}’j D Go ||Q,
& Getting Started Ly Latest Headlines
Al
Username:
stave
Password:
Enter your usemame and password to log in. Invalid username and password combination.
Cornments:
=
Daone =R

Ajax-enabled pop-up menus

You can grab data from the server as soon as the user needs it using Ajax. For
example, take a look at the application in Figure 1-8, which I explain how to
build in Chapter 9. The pop-up menus appear when you move the mouse and
display text retrieved from the server using Ajax techniques. By accessing
the server, Ajax allows you to set up an interactive menu system that
responds to the menu choices the user has already made.

¥) Ajax-driven menus - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:3| » [_‘/\ . @ x) @ I_, hﬁp:(ﬂocalhosh"cj @ Go ||C‘L

& Getting Started |y Latest Headlines

Ajax-driven menus

Sandwichﬁs Pizzas
Tuna

Roast besf

Chicken

Dane 'g v

Chapter 1: Ajax 101

|
Figure 1-9:
An Ajax
rolodex.
|

Modifying Web pages on the fly

Ajax excels at updating Web pages on the fly without page refreshes, and
you can find hundreds of Ajax applications doing exactly that. For example,
take a look at the Ajax rolodex at http://openrico.org/rico/demos.
page?demo=ricoAjaxInnerHTML.html, shown in Figure 1-9. When you
click someone’s name, a “card” appears with their full data.

¥ Rico - Demos - Mozilla Firefox
File Edit View Go Bookmarks Tools Help [+]

QZI - E:> - @ @ @ |J hﬂp:i’.-"openric:o.orgfrico.fdemosj @ Go ||g,

& Getting Started L Latest Headlines

23 Ajax Rolodex

Holoman, Debbie =
Barnez, Pat

Dampier, Josn
Alvarez, Randy

Hardawvay, Kiml
Story, Leslie
Laitt, Chatlle
Patton, Sabrina f # (788) 555
Lopez, Juan T | Wiobile # {783) 555-2548

Motes: Has a cool stamp collection

22 Explanation
22 Code]
Dane '3

a

You can see another example at http: //digg.com/spy. This news Web site
uses Ajax techniques to update itself periodically by adding new article titles
to the list on the page.

Updating the HTML in a Web page by fetching data is a very popular Ajax
technique, and you see a lot of it in Chapters 3 and 4.

Google Maps and Ajax

One of the most famous Ajax application is Google Maps, at http: //maps.
google.com, which you can see at work in Figure 1-10, zooming in on South
Market Street in Boston.

19

20 Part I: Getting Started

|
Figure 1-10:
Using
Google
maps.
|

4l Google Maps - South Market Street, Boston MA - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Qeack =) -] 2] (| Heearch JoFmvares @ | (07 0w~ [J 3 D 3

Address ||G| Fittp:f fmaps. gooale .camf j Go |Links)

Maps Local Search Direclions

GQL)S[e |Suuth Market Street, Boston MA Search | B2
BETA

Maps

& Erint &) Email
& Link 1o this page

: 5 Market 5t
Boston, MA 02109

=]

@Dnna - l_l_l_l_l_lﬂ Intarnet

B

See that marker icon near the center of the map? The location for that marker
is passed to the browser from the server using Ajax techniques, and the Ajax
code in the browser positions the marker accordingly. Ajax at work again!

When Is Ajax a Good Choice?

The examples [show in the preceding section are just the beginning —
dozens more, including those you can write yourself, appear in later chap-
ters. Got a Web application that asks the user to move from page to page and

therefore needs to be improved? That’s a job for Ajax.

Chapter 2
It's All About JavaScript

In This Chapter

Understanding the Ajax and JavaScript connection

Writing JavaScript

Handling browser events

Writing JavaScript functions

Storing data in variables

Using JavaScript loops

Connecting JavaScript to buttons
Working with text fields from JavaScript

5) what is this Ajax thing, anyway? You’'ve heard that it’s a great way to
combine some of the Web languages you're familiar with (such as HTML,
XML, CSS, and JavaScript) to create a Web application that looks and works
like a seamless desktop application. But you want to know much more, and
you’ve come to the right place.

As you might have heard, Ajax is based on JavaScript. And because you need
a good foundation in JavaScript to use Ajax (and to follow many chapters in
this book), this chapter is all about working with this scripting language. This
book might show you how to do things you’ve never done before — even if
you’ve been using JavaScript for a while. So get ready for a crash course in
JavaScript. If you think you already have a solid grounding in JavaScript, feel
free to jump right into working with Ajax in Chapter 3.

Taking a First Look at Ajax in Action

Here’s an sample Ajax application that demonstrates what kind of JavaScript
you’ll be seeing throughout the book. Take a look at Figure 2-1; that Web page
displays a message The fetched data will go here. That text is going
to change when you click the Display Message button, and no new page fetch
will be required.

22

Part I: Getting Started

|
Figure 2-1:
A simple
Ajax
example.
|

|
Figure 2-2:
You can
fetch text
with Ajax.
|

4 Ajax at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

QBeck >) ~) 2) | Iseach crwvarss @] v L v B DS

Address |&] hitp:ffiocalhostichozjindes, htmi | EJee Links
=l

Fetching data with Ajax
Display Message

The fetched dutawill go here.

&] Done [[| [N3Localintranet

B

To replace the text by using Ajax methods, just click the button now. The
browser won't flicker. All you’ll see is the displayed text change to This
text was fetched using Ajax., as shown in Figure 2-2.

4 Ajax at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBeck >) ~) 2) | Iseach crwvarss @] v L v B DS

Address |&] httpifocalhast{chnz,index, htri | EJs Links >
|

Fetching data with Ajax

This text was fetched using Ajac

] Done l_l_l_l_’_|‘_{ Lacal intranet

B

That kind of a change is nothing unusual in Web development — as long as
the text was stored locally in a script built into the Web page, for example.
But that text wasn’t stored locally; it came from a simple text file named

data. txt, stored on the server. And the browser fetched that text by using
Ajax methods.

When you download the example code for this book from the companion
Web site, you'll find the examples stored in folders chapter by chapter. The
page you see in Figure 2-1 is index.html in the ch02 folder, and the data file
that holds the text fetched from the server is stored in the file data. txt,
which is also in the ch02 folder. To run this example, all you need to do is
upload the index.html and data. txt files to the same directory on your
Web server. Then navigate to index.html in your browser as you would any

Chapter 2: It's All About JavaScript 2 3

other Web page. The URL looks something like this: http://www.your
domain.com/yourname/index.html. If you already have an index.html
file, you might want to change the name of this one to something like ajax
example.html to avoid conflicts — the example will still run as before.

Taking a look at the code

So what does the JavaScript code for this example look like? Listing 2-1
shows you what’s in index.html. Notice that there’s a healthy amount of
JavaScript here. As you find out in Chapter 3, you have a number of different
ways of making JavaScript do what it has to do. So the code I show in Listing
2-1 is just one way to write it.

Listing 2-1: Getting Ajax to Work

<html>
<head>
<title>Ajax at work</title>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
}

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;
}
}
XMLHttpRequestObject.send (null) ;
}
}
</script>
</head>

<body>

(continued)

24

Part I: Getting Started

Listing 2-1 (continued)

<H1>Fetching data with Ajax</HI1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('http://localhost/ch0l/data.txt',
'targetDiv') ">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

The other file is data. txt, and here’s all the text it contains:
This text was fetched using Ajax.

That’s the code for your first Ajax example. If you want to be an ace number
one Ajax programmer (and who doesn’t?), you have to have a firm grasp on
the JavaScript. Many Web developers coming to Ajax for the first time don’t
know as much JavaScript as they’re going to need, so the rest of this chapter
is dedicated to helping you get that essential JavaScript foundation.

Delving deeper into JavaScript

This chapter doesn’t try to cover all there is to know about JavaScript, but it
does cover what you need to know before you turn to the following chapters
on Ajax programming. In this chapter, I explain all the JavaScript you need in
order to work your way through this book. For more information on
JavaScript, track down some of the tutorials on the Web, such as the one at
www .w3schools.com/js/js_intro.asp, or take a look at a good
JavaScript book, such as JavaScript For Dummies, 4th Edition, by Emily A.
Vander Veer (Wiley Publishing, Inc.).

Enter JavaScript

Despite its name, JavaScript has little to do with Java. It all began at Netscape
Communications Corporation in 1995 when a developer named Brendan Eich
was assigned to the task of making Navigator’s newly added Java support
more accessible to non-Java programmers. He called his creation LiveScript,
but ultimately renamed it JavaScript, even though it really didn’t resemble the
Java programming language at all.

Chapter 2: It's All About JavaScript

Examining the standards

So where are all these standards? You can find the JavaScript 1.5 user's guide at
http://web.archive.org/web/20040211195031/devedge.netscape.com/
library/manuals/2000/javascript/1.5/guide. And you can find the documenta-
tion for JScript 5.6 online as well at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/script56/html/js56jsoridScript.
asp. The ECMAScript specifications are also online:

v~ ECMAScript Language Specification, 3rd Edition: ht tp: / /www.ecma-international.
org/publications/standards/Ecma-262.htm

v ECMAScript Components Specification: http: //www.ecma-international .org/
publications/standards/Ecma-290.htm

v ECMAScript 3rd Edition Compact Profile Specification: ht tp: / /www.ecma-international .
org/publications/standards/Ecma-327.htm

JavaScript was fun and allowed all kinds of visual tricks, such as rollover
images and text, which change when the viewer rolls the mouse over them.
As JavaScript became more popular, Netscape’s chief competitor, Microsoft,
decided it could no longer ignore this new language. Microsoft decided to
create its own version of JavaScript, which it called JScript.

And so began the cross-browser wars that have made life for JavaScript pro-
grammers so interesting ever since. Programmers started to find that
although JScript looked just like JavaScript, some scripts would run in
Netscape and not in Internet Explorer, and vice versa.

Hoping to stave off some of the chaos, Netscape and Sun turned to the
European Computer Manufacturers Association (ECMA) to standardize
JavaScript, and the standardized version is called ECMAScript.

JavaScript is converging among browsers now, and at least the core part of
the language matches ECMAScript version 3.0. Some differences still exist, as
you see later in this book, but the situation is far better than it used to be.

Creating a script

It’s time to get started slinging JavaScript around. If you want to write
JavaScript, you put that JavaScript in a <script> element like this:

<html>
<head>
<title>A First Script</title>

25

26

Part I: Getting Started

<script language="javascript">

</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

This <script> element uses the language attribute to indicate that the lan-
guage of the enclosed script is JavaScript, as you see here.

Accessing the Web page from JavaScript

Suppose you want to write the message You're using JavaScripttoa
Web page by using JavaScript. How do you access the Web page from your
script?

In JavaScript, you access the Web page and the browser itself with a variety
of built-in objects. The available objects include document (which refers to
a Web page), window (which refers to the browser window), and history
(which refers to a history list that lets the browser navigate forward and
backward).

Each of these objects includes methods and properties. You can call a method
to make something happen (like writing to a Web page) and set the value of a
property to configure those objects (like setting the background color of a
Web page). Here are examples of a few useful object methods and the tasks
they perform:

v document .write: Writes text to the current Web page.

v history.go: Navigates the Web browser to a location in the browser’s
history.

v window.open: Opens a new browser window.
Here are a few of the useful properties you can set for these methods:

v document .bgcolor: Background color of the current page.
v document . fgcolor: Foreground color of the current page.
v document . lastmodified: Date the page was last modified.

v document . title: Title of the current page.

Chapter 2: It's All About JavaScript 2 7

v location.hostname: Name of the Internet service provider (ISP) host.

v navigator.appName: Name of the browser, which you can use to
determine what browser the visitor is using.

You now have the tools to write that welcome message. You use the document.
write method and embed your JavaScript in HTML. Here is a first example of
writing text to a Web page:

<html>
<head>
<title>A First Script</title>
<script language="javascript">
document .write("You're using JavaScript");
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

In this case, you are passing the text You're using JavaScript to the
document object’s write method. The write method will display that text
on the Web page, no worries.

Type the preceding HTML into a new file and save it as firstscript.html
or download firstscript.html from the ch02 folder on the companion
Web site. Open the file in your browser. As shown in Figure 2-3, this page uses
JavaScript to write a message to the Web page when that page loads.

Excellent — firstscript.html is a complete success, and everything’s off
to a good start.

¥ Getting started with JavaScript - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:ZI - |_;/ - @ X {ﬁ]_ http:iflocalhost/chD2frstscript. htrl j D Go |[L,,|,

& Getting Started Ly Latest Headlines

Tou're using JavaScript

Getting started with JavaScript

|
Figure 2-3:
Afirst

script.
Done =y

2 8 Part I: Getting Started

Oh, those semicolons

Technically speaking, each line of JavaScript should end with a semicolon (;)
just like in Java if you're at all familiar with that language. Notice the semi-
colon at the end of the bold line of JavaScript code shown in the following:

<html>
<head>
<title>A First Script</title>
<script language="javascript">
document .write("You're using JavaScript");
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

Including the semicolon is the correct way of doing things in JavaScript, and
that’s the way I do it in this book. However, browsers have become very for-
giving on this point. If you omit the semicolons at the end of lines, browsers
won’t have a problem with it.

Adding comments to your JavaScript

JavaScript supports a one-line comment with the double slash (//) marker,
which means that JavaScript doesn’t read anything on a line after //. So you
can add comments for people to read throughout your code, and they won’t
interrupt how your JavaScript runs. See the comment line added in bold in
the following code:

<html>
<head>
<title>A First Script</title>
<script language="javascript">
//Write the message to the Web page
document .write("You're using JavaScript");
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

Chapter 2: It's All About JavaScript 2 9

In fact, JavaScript also supports a second type of comment, which you can
use for multiple lines. This comment starts with /* and ends with * /. When
JavaScript sees /*, it ignores everything else until it sees * /. Here’s an
example:

<html>
<head>
<title>A First Script</title>
<script language="javascript">
/* Write the message
to the Web page */
document .write("You're using JavaScript");
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

Using separate script files

Here’s a very common practice in Ajax applications: If you want to store your
JavaScript code in a file outside the Web page you’ll use it in, store it in a file
with the extension . js. This can be a good idea when you’re dealing with
cross-browser issues, for example, because you can load one . js file for one
browser and another . js file for another browser.

\\J

For example, say that you put this line of JavaScript code into a file named
script.js:

document .write("You're using JavaScript");

Now you can refer to script.js in a new HTML file, usescript.html, by
using the <script> element’s src attribute, like this:

<html>
<head>
<title>A First Script</title>
<script language="javascript" src="script.js">
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

30

Part I: Getting Started

That’s all there is to it. Now when you load usescript.html, script.jsis
loaded automatically as well, and the code from that file is run. Many of the
Ajax applications [show you use external scripts, so understanding this
aspect of JavaScript is important.

Examining script errors

Believe it or not, sometimes the JavaScript that people write has errors in it
(perhaps not your scripts, but errors have been known to crop up in mine).
You can view the errors and get a short description of them from various
browsers. These errors can help you debug the problem — except, that is,
when the error message is so terse that it’s no help at all.

The following script has an error in it — can you spot it?

<html>
<head>
<title>A First Script</title>
<script language="javascript">
docment.write("You're using JavaScript");
</script>
</head>

<body>
<hl>A First Script</hl>
</body>
</html>

Yep, the object document is misspelled as docment, although that might not
be obvious at first reading. This JavaScript isn’t going to run. What happens
when you open this document, which I've named error.html, in a browser
such as Internet Explorer? You get the results you see in Figure 2-4. The
JavaScript didn’t do anything, and you see a small yellow triangle icon in the
lower-left corner. JavaScript programmers call this the yellow triangle of
death.

Double-clicking the yellow triangle of death opens the dialog box you see in
Figure 2-5, which explains the problem: Internet Explorer can’t understand
docment. Now that you know what the problem is, you can fix it.

How would Firefox handle the same problem? If you open error.html in
Firefox, the JavaScript won’t run, just as with Internet Explorer. But there’s
no yellow triangle of death here to click. Instead, you can choose Tools=>
JavaScript Console to open the Firefox JavaScript Console. This displays the
window shown in Figure 2-6.

|
Figure 2-4:
The yellow
triangle of
death
signifies an
error in your
JavaScript.
|

|
Figure 2-5:
You can get
the details
of the error
from
Internet
Explorer.
|

|
Figure 2-6:
The Firefox
JavaScript
Console.
|

4} Getting started with JavaScript - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

(QBack *)+ x 2] .. Seach - Favorites & row-d D3

Addrass [&] httpy localhestichiz/emrar. html x| EJs | Links »
[|

Getting started with JavaScript

2] Done l_’_’_’_’_|\3 Lacal intranet y

4} Internet Explorer B

Prablems with this 'Web page might prevent it from being displaved properly
/WY, or funclioning properky. In the: future, you can display this message by
~ double-clicking the wamning icon displaved in the status bar

| Always display this message when a page containg erars,

Hide: Dietails <<

Liner §

Char 7

Emar: ‘docment’ iz undefined

Code:0

URL: hittp: ! Aocalhost/chO2/esror himl

Erevious et

Chapter 2: It's All About JavaScript

¥) JavaScript Console

Al Erors Warnings Messages | Clear

] Evaluate

Error; docrment is not defined
@ Source File: http flocalhost/chi02/errar. hitml Line: &

31

32

Part I: Getting Started

\\3

You can read right away what the error is: docment isn’t defined. And now
that you know what the error is, you can fix it.

Which of these two popular browsers helps out the Ajax programmer the
best with the most complete explanation of each error? Firefox. As you
develop your own scripts, the Firefox JavaScript console can be an invaluable
aid to fixing any bugs that might crop up. The console will give you more
details on the errors than Internet Explorer would.

Which browser are you using?

Here’s a question that bears some examination: Which browser does the user
have? The JavaScript incompatibilities among browsers are small these days,
but some still exist — such as how you create the central object you need in
Ajax scripts, the XMLHt tpRequest object. So sometimes you need to know
which browser you’re dealing with to be able to do the right JavaScript trick.

This is where the navigator browser object comes in. This object holds all
kinds of details about the browser. Here are the relevant properties of this
object:

V¥ navigator.AppName: Provides the name of the browser application.
V¥ navigator.AppVersion: Provides the version of the browser.

V¥ navigator.UserAgent: Provides more details about the browser.

For example, here’s a script that displays these properties in a Web page,
browser.html — note the + sign, which you use to join text strings together
in JavaScript:

<html>
<head>
<title>
What's Your Browser?
</title>
</head>

<body>

<script language="javascript">
document .write("You're using: " + navigator.appName)
document .write ("

")
document .write("Version: " + navigator.appVersion)
document .write ("

")
document .write("Browser details: " + navigator.userAgent)

</script>

<hl>What's Your Browser?</hl>
</body>
</html>

Chapter 2: It's All About JavaScript 33

You can see what this HTML page looks like in Firefox in Figure 2-7, and in the
Internet Explorer in Figure 2-8. When you have this information, you can
make JavaScript do one thing for one browser and another thing for a differ-
ent browser. The detailed how-to is coming up in this chapter — watch for
the section, “Picking and Choosing with the if Statement.”

¥) Checking your browser - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:ZI - |_;/\ - @ x| {ﬁ]4 http:iflocalhost/chO2fbroveser. html j D Go |L,,|,
& Getting Started Ly Latest Headlines

Your browser 15 Metscape

The wenizon iz 5.0 (Windows; en-TUS)
|

Figure 2.7: The detaills are MozillafS 0 (Windews; U; Windows IT 5.1; en-US; 1w 1.7.10) Gecko/20050716 Fireforf1.0.6

Determining
the browser
typein
Firefox.
|

Checking your browser

Daone =R

k] Checking your browser - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
QBack ~) - x| |2] o search - Favorkes T i] v i D 3
Address | €] httpijflocalhost{choz/browser Hrl x| E)so | Links >
|
Your browser is Microsoft Internet Explorer
The verizon is 4.0 (compatible; MEIE 6.0; Windows INT 5.1, 8V1; NET CLE 1.1.4322)
— The detals are Mozillaid 0 (compatble, MSTE 6.0, Windews ITT 5.1, SV1, NET CLE 1.1.4322)
Figure 2-8: .
ure 2% 11 Checking your browser
Determining
browser
typein
Internet
Explorer. E
] Done l_l_l_l_l_l_} Laocal intranet y
| 2

Making Something Happen:
Browser Events

Ajax applications often respond to user actions — button clicks, mouse
double clicks, page loads, and so on. How does the script know when to
respond to something that has happened? You can use browser events,

34

Part I: Getting Started

something you’re going to see a lot of in this book. When the user performs
some action that you can respond to, an event occurs, such as a mouse click.

So what events are available? Table 2-1 lists some common ones that you
might see in Ajax applications.

Table 2-1 JavaScript Events Common in Ajax

Event Occurs When . ..

onabort Occurs when the user aborts an action

onblur Occurs when an element loses the input focus

onchange Occurs when data in a control, such as a text field,
changes

onclick Occurs when the user clicks an element

ondblclick Occurs when the user double-clicks an element

ondragdrop Occurs when the user drags and drops an element

onerror Occurs when there’s been a JavaScript error

onfocus Occurs when an element gets the focus

onkeydown Occurs when the user presses down on a key

onkeypress Occurs when the user presses a key

onkeyup Occurs when the user releases a key

onload Occurs when the page loads

onmousedown Occurs when the user presses down a mouse button

onmousemove Occurs when the user moves the mouse

onmouseout Occurs when the user moves the cursor away from an
element

onmouseover Occurs when the user moves the cursor over an element

onmouseup Occurs when the user releases a mouse button

onreset Occurs when the user clicks a Reset button

onresize Occurs when the user resizes an element or page

onsubmit Occurs when the user clicks a Submit button

onunload Occurs when the browser unloads a page and moves to

another page

Chapter 2: It's All About JavaScript

Putting browser events to work

To make any of the browser events in Table 2-1 happen, you need to drop
them in a Web page’s HTML. For example, what if you want to change the
color of a Web page to pink when the user clicks that page? You can use the
events in Table 2-1 as attributes in various HTML elements; for example, the
Web page itself is represented with the <body> element, so you can use the
onmousedown attribute in the <body> tag with a little JavaScript to turn the
page pink.

What does all that mean? Here’s what that looks like in a page named
blusher.html — note that you can execute JavaScript simply by assigning
it to an event attribute such as the onmousedown attribute without having to
place that JavaScript in a <script> element; such scripts are called inline
scripts (the text of an inline script must be enclosed in quotes, as here):

<html>
<head>
<title>
JavaScript Event Example
</title>
</head>

<body onmousedown="document.bgcolor='pink'">
<hl>
Click this page to turn it pink!
</hl>
</body>
</html>

To turn the page pink with JavaScript, you have to set the Web page’s
bgcolor property, just as you'd use the <body> element’s bgcolor
attribute to set the page color in HTML. In JavaScript, you access the page by
using the document object, which supports a bgcolor property that will let
you set the page color on the fly. (To see which browser objects support
which properties, take a look at JavaScript manuals I refer to at the beginning
of the chapter.)

In this case, here’s the JavaScript executed when the user clicks the Web
page:

body onmousedown="document.bgcolor="'pink""

This sets the document . bgcolor property to the text 'pink'. (Note the
single quotation marks, which I elaborate on in the next section.) When you
click this page, it turns pink, as you can see in Figure 2-9 (where it appears in
glorious black and white). Not bad.

35

36

Part I: Getting Started

|
Figure 2-9:
Clicking the
page
changes its
color.
|

\\3

Will the browser understand the word pink? Sure will — all modern browsers
come with dozens of words standing for colors already built in. You can
assign all kinds of colors to document .bgcolor, not only pink but blue,
green, yellow, and even coral or cyan.

If you don’t want an event to trigger an inline script but instead want to call
JavaScript in a <script> element when something happened on the page,
such as a mouse click or a button press, you have to use JavaScript functions.
To find out how, see “Dividing and Conquering: JavaScript Functions,” later in
this chapter.

4} Using JavaScript events - Microsoft Internet Explorer
File Edit View Favorites Tools Help >
(QBack v () = x| 2 |) Search o Favorkes £ T i] v i D 3
Address |€] http:jflocalhost/cho2/blusher. htmi x| E)so | Links >
=
Clicking this page will turn it pink.
J-|
] Done l_l_l_l_l_l_} Laocal intranet y

Getting the quotation marks vight

You always have to enclose the values that you assign to a property in quota-
tion marks. Note the single quotation marks here! Because the whole inline
script is quoted with double quotation marks, you’d confuse JavaScript if you
entered

body onmousedown="document.bgcolor="pink""

When JavaScript comes to the second double quotation mark (at the begin-
ning of "pink™"), it thinks the inline script is done and it doesn’t know how to
proceed. To avoid that, you can enclose the text you assign to a property in
single quotation marks.

Chapter 2: It's All About JavaScript 3 7

If you want to change the color of the Web page in JavaScript in a <script>
element, not in an inline script, you wouldn’t have to enclose the whole line
of JavaScript in quotation marks, so you could use double quotation marks
around "pink", like this:

document .bgcolor="pink";
Or you could use single quotation marks if you like them better:

document .bgcolor="pink"';

Dividing and Conquering:
JavaScript Functions

When you use Ajax techniques, you often want to place text in a Web page
at a specific location after fetching that text from the server. Making that
happen correctly will address a couple of important JavaScript issues.

To make text appear is specific place, you need to make your JavaScript

run only when you want it to run. To do that, you can place that code into a
JavaScript function. In JavaScript, a function is a set of lines of code that are
run only when you specifically call that function — just what you want here.
(A function is just like the methods you've already seen — like the document
object’s write method — except that a function isn’t connected to an object.)

Functions are important for you as an Ajax programmer because unless you
pack your code into a function, it runs immediately when the HTML page
loads. And if you've put your <script> element into the <head> section of
the page, it’s even worse because your code won'’t be able to access elements
in the <body> section because they haven’t even loaded yet. To be able to
fetch data interactively when you want without reloading the whole page,
you need to use functions, so make sure you know how they work. This sec-
tion breaks down how you put together functions and then how to pass argu-
ments to functions.

You also find more on functions a little later in this chapter — they’re very
handy when the user clicks a button to make something happen, for example,
because button clicks are just other events that you can connect to functions.

38

Part I: Getting Started

Understanding the problem

To know when functions are necessary, it helps to know how inline scripts
can create problems. This is the script that you developed earlier in this
chapter to display a message:

<html>
<head>
<title>Getting started with JavaScript</title>
<script language="javascript">
document .write("You're using JavaScript");
</script>
</head>

<body>
<hl>Getting started with JavaScript</hl>
</body>
</html>

When this page loads in a browser, the JavaScript in the <script> element
in the <head> section is executed immediately. In this case, that means this
line is executed as soon as the browser reads it:

document .write("You're using JavaScript");

And that, in turn, means that the text You're using JavaScript appears
in the browser. After the <head> section is loaded, the <body> section of the
page is loaded, and the <h1> header text, "A First Script", then appears
on the page (refer to Figure 2-3).

That looks okay, but it’s a little upside down. The header needs to appear on
top, and the normal text underneath it. How could you make that happen?
Wouldn't it be nicer to execute the JavaScript after the header has already
appeared?

One way of getting the text under the header is to place the JavaScript in the
<body> section of the page instead of in the header. That might look like this,
for example:

<html>
<head>
<title>Getting started with JavaScript</title>
</head>

<body>
<hl>Getting started with JavaScript</hl>
<script language="javascript">
document .write("You're using JavaScript");
</script>
</body>
</html>

Chapter 2: It's All About JavaScript

This works — the text You're using JavaScript appears underneath the
header A First Script when you open this page in a browser. In other
words, knowing what part of a page loads first can make a difference — for
example, if you have JavaScript in the <head> section that refers to elements
in the <body> section, and if that JavaScript executes as soon as the page
loads, the script will fail because the <body> section hasn’t been loaded yet.

Although you can put <script> elements into the <body> section of a page,
things aren’t usually done that way. The modern JavaScript convention is to
put <script> elements only in the <head> section of a page. Okay, so what
do you do now? In this case, you don’t want your JavaScript executed before
the rest of the page loads.

The problem here is that when the page loads, the <head> section gets
loaded first, so the code in the <script> section is run immediately. That
places the You're using JavaScript text on the Web page first. Then the
<body> section is loaded, which puts the A First Script heading on the
Web page.

The bottom line is that you simply don’t get the control you need by using
the inline script. To make the JavaScript run only when you want, you need a
function.

Putting together a function

To illustrate how JavaScript functions typically work in Ajax applications, say
that you create a function named displayText, which works like this:

<html>
<head>
<title>Getting started with JavaScript</title>
<script language="javascript">

function displayText ()
{

}
</script>
</head>
<body>

<hl>Getting started with JavaScript</hl>

</body>
</html>

39

40 Part I: Getting Started

Note that you use the function keyword, follow the name of the function with
parentheses (the parentheses indicate what, if any, data is passed to the func-
tion — there will be none here), and enclose the lines of JavaScript you want
to execute — called the body of the function — in curly braces, { and }.

Now the JavaScript inside the displayText function will only be run when
you want it to be run. But with this extra flexibility comes more work. You
need to call the function and place the code that writes the message.

Calling the function

To call this function and run that code, you can use browser events. There’s
an event that’s perfect here — the onload event, which occurs after the page
has been loaded.

There’s an onload attribute for the <body> element that you can use like
this:

<html>
<head>
<title>Getting started with JavaScript</title>
<script language="javascript">

function displayText ()
{

}
</script>
</head>
<body onload="">

<h1>Using a div</hl>

<div id="targetDiv">
</div>

</body>
</html>

But what do you put into the quotation marks here? What inline script
can you use to call the displayText function? All you have to do to call

Chapter 2: It's All About JavaScript 4 ’

a function is to give its name, followed by a pair of parentheses (if you want
to pass data to the function, you put the data between the parentheses, as |
show you a little later):

<html>
<head>
<title>Getting started with JavaScript</title>

<script language="javascript">
function displayText ()
{

}
</script>
</head>

<body onload="displayText()">

</body>
</html>

Great. If you're familiar with using functions in code, you might intuitively
think you can place the code to write the message in the displayText ()
function, like this:

function displayText ()
{

document .write("You're using JavaScript");

}

Unfortunately, you can’t. The displayText function will be called after

the page is loaded, which is fine. But here’s the catch — when you call the
document .write method, the document is opened for writing, which clears
any text that’s already in the document now — and that means all that will
appear in the browser will be the text You're using JavaScript, because
the browser will have overwritten the header text, A First Script, as you
see in Figure 2-10.

Why doesn’t this happen when you place the <script> element inside the
<body> element? In that case, the document is still open for writing because
the <body> element is still loading when your JavaScript executes. But after
the page is loaded, the document is closed and has to be reopened if you
want to write to it again — and opening the document clears the text in it.

4 2 Part I: Getting Started

File Edit View Favorites Tools Help U

T
Back v) ~ (x| 2] ,|, Search ¢ Favorkes LT i @3
Address | €] hitp:jiocalhastchozjusediv.himl x| E)so | Links >
=

You're using JavaScrpt

Figure 2-10:
Overwriting
a page’s
text. J -
—— &) |_|_|_|_|_|13 Laocal intranet

B

So what should you do? The solution is to do what a lot of Ajax scripts do —
write to a specific part of the page after the page has been loaded. In this
case, you might do that by adding a <div> element to the page.

This <div> element will display the text You're using JavaScript after
the page has loaded (note that I give it the ID "targetDiv"):

<html>
<head>
<title>Using a div</title>
<script language="javascript">
function displayText ()
{

}
</script>
</head>
<body onload="displayText ()">

<h1>Using a div</hl>

<div id="targetDiv">
</div>

</body>
</html>

Chapter 2: It's All About JavaScript

So far, so good. But how do you access the <div> element from JavaScript?
This <div> has the ID "targetDiv", and you can use that ID to reach it. You
can reach this <div> by using the document object, which represents the
Web page, in JavaScript code. The document object has a very handy method
named getElementById, and if you pass the ID of the <div> to this method,
it will pass back to you a JavaScript object corresponding to the <div>.

That’s how it works in JavaScript — you can get a JavaScript object corre-
sponding to a Web page or any element in the page. After you get an object
corresponding to the <div>, you can use that object’s built-in methods and
properties to work with it. To paste text into the <div>, for example, you can
use the innerHTML property. If you want to write new text to the <div>
element, you can use the expression document .getElementById
('targetDiv') to get an object that corresponds to the <div> element,
and then you can use the innerHTML property of that object (like this:
document .getElementById('targetDiv') .innerHTML) to be able to
access the text inside the <div>.

Whew.

Here’s what it looks like in code — after the page loads, the JavaScript here
writes the text "You're using JavaScript" to the <div> element:

<html>
<head>
<title>Using a div</title>

<script language="javascript">
function displayText ()
{
document .getElementById('targetDiv').innerHTML =
"You're using JavaScript";
}

</script>

</head>

<body onload="displayText()">
<h1>Using a div</hl>

<div id="targetDiv">
</div>

</body>
</html>

43

4 4 Part I: Getting Started

Is all this going to work? Sure. You can see this page, usediv.html, at work
in Figure 2-11. Perfect.

CMBER
‘{9“\ This is a technique that Ajax applications use frequently — after you've used
Ajax techniques to fetch data from the server, you can display that data in a
<div> element.
43 Using a div - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
QBack ~) - x| |2] o search - Favorkes T i] v i D 3
Address | hitpijfiocalhastichozjusediv.himl x| E)so | Links >
=
Using a div
You're using JavaScrpt
|
Figure 2-11:
Writing to
a <div>
element. J -
] Done l_l_l_l_l_l_} Laocal intranet y

Passing a single argument to a function

When you use the document .write method, you pass the text to write to
that method like this: document .write("You're using JavaScript").
You can also pass data to the functions you write.

Here’s how to do it: Say that you want to pass the text to write to the
displayText function. It’s easy; when you call the function, just pass the
text you want to write in the parentheses following the name of the function,
like this: displayText ('You're using JavaScript'). The data you
pass to a function this way — in this case, that’s just the text "You're
using JavaScript" —is called an argument. So here, you're passing a
single argument to the displayText function.

Then you set up the function itself by giving a name to the passed data in the
parentheses like this, where [name that text simply text:

function displayText (text)
{

Chapter 2: It's All About JavaScript

MBER
é&
&

Now you can refer to the text passed to your function by name like this,
where the function is displaying that text in the <div> element:

function displayText (text)
{

document .getElementById("targetDiv") .innerHTML = text;
}

Here’s what it all looks like in place:

<html>
<head>
<title>Using a div</title>

<script language="javascript">
function displayText (text)
{
document .getElementById("targetDiv").innerHTML = text;
}

</script>

</head>

<body onload="displayText ('You're using JavaScript')">
<h1>Using a div</hl>

<div id="targetDiv">
</div>

</body>
</html>

This gives you the same results as before, where the text appears under the

heading (refer to Figure 2-11). When the page finishes loading, the display

Text function is called with the text of the message to write You're using
JavaScript, which is promptly sent to the target <div> element.

Not bad.

Using <div> versus

Elements like <div> are block elements in HTML (and XHTML), which means
they’re automatically set off on their own lines (much like a header, such as
<h1>). Sometimes, you might not want the data you fetch by using Ajax tech-
niques to appear on its own line — you might want it to appear on the same
line as other text, such as text that explains what your data means (for exam-
ple, "Record number: ", or something similar). To place text inline in real-
time, you can use a element instead of a <div>. You can find an
example, usespan.html, in the code you can download for this book.

b5

46 Part I: Getting Started

That example inserts text directly inline into the sentence: The new text

will appear here: .Here’s what it
looks like in the actual code.

<html>
<head>
<title>Using a span</title>

<script language="javascript">
function displayText ()
{
document .getElementById('targetSpan').innerHTML =
"You're using JavaScript";
}

</script>

</head>

<body onload="displayText()">
<h1>Using a span</hl>

The new text will appear here: "
".

</body>
</html>

You can see this in action in Figure 2-12, where the is doing its thing.

¥ Using a span - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:ZI - |_;/ - @ X {ﬁ]_ http:iflocalhost/chD2fusespan. htmi j D Go |[L,,|,
& Getting Started Ly Latest Headlines

Using a span
|
Figure 2-12: | The new text will appear here: "Tou're using JavaScript”.
Writing to

a <div>
element by
using a
function.

Daone =R
| =

Chapter 2: It's All About JavaScript

<MBER

\\J

Using Ajax is all about inserting fresh data into a page without having to
reload that page, and using the Dynamic HTML (DHTML) technique of insert-
ing text into a <div> or a is very popular. Want to display some new
data? Fetch it from the server, pop it into a <div>, and pow!, there you are.
The <div> element is the most popular, but don’t forget that it’s a block ele-
ment and so takes up its own line(s) in the browser. If you want to place new
text inline, consider .

Before you start sticking new text into a Web page left and right by using
<div>, and even more when you use , you have to consider how well
the user is going to realize you've changed things. That’s one of the Ajax
topics — and criticisms of Ajax — I discuss in Chapter 4: that the user might
not realize that anything’s changed. Because you have Dynamic HTML tech-
niques such as popping text into <div> and elements, the whole
page won’t change — just the element you're working with. Did the users
notice? Should you bring the change to their attention? This is one of the ele-
ments of Ajax style coming up in Chapter 4.

So far, so good. But there’s more to this story of using JavaScript functions.
The usediv.html and usespan.html examples just passed a single argu-
ment to the displayText function, but you aren’t limited to that — you can
pass multiple arguments to a function just as easily.

Passing multiple arguments

To see how you pass multiple arguments, take a look at the usearguments.
html example in the code available for download from the Web site associ-
ated with this book. The inline Javascript code in this example passes not
only the text to display, but also the name of the <div> to insert text into:

<html>
<head>
<title>Passing multiple arguments to a function</title>

<script language="javascript">
function displayText (text, divName)
{
document .getElementById(divName) .innerHTML = text;
}

</script>
</head>
<body onload="displayText ('You're using JavaScript', 'targetDiv')">

<hl>Passing multiple arguments to a function</hl>

b7

4 8 Part I: Getting Started

<div id="targetDiv">
</div>

</body>
</html>

As you can see, passing multiple arguments to a function is easy — just use
commas:

displayText ('You're using JavaScript',6 'targetDiv')

And when you set up the function, you give names to the data items you want
the function to be passed, separated by commas. And then you can refer to
those data items by using those names in the body of the function:

function displayText (text, divName)
{

document .getElementById (divName) .innerHTML = text;
}

You can see this page in action in Figure 2-13, where both arguments — the
text to display and the name of the <div> element to write the text to —
were successfully passed to the function. Cool.

;’3 Passing multiple arguments to a function - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
QBack ~) = x| 2] . | ' Search ; Favortes & | ~ N - & @ 3 |
Address |&] http:fflocalhostichozjusearguments. bl | EJee Links
| ;I

Figure 2-13: || Passing multiple arguments to a function

Passing Hello from JavaScript
both the

<div> name
and new
textto a

function. =
——] Done l_l_l_l_’_|\j Lacal intranet

B

Vou Must Remember This: Storing Data

Ajax applications can use JavaScript pretty intensively, and among other
things, that means handling data like the current price of music CDs, the
number of LCD monitors in stock, the temperature in San Francisco, and so
on. And in JavaScript, you can store data using variables.

Chapter 2: It's All About JavaScript

For example, say that you wanted to store that "You're using Java
Script" message in your script for easy handling. That way, you wouldn’t
have to pass that message to the displayText function each time you
want to display that text, as [explain earlier in this chapter. Instead, that
text would already be available to the displayText function.

Simple data storage with
the var statement

To store data like the "You're using JavaScript" text by using Java
Script, you use the JavaScript var (short for variable) statement. For exam-
ple, to store the message’s text in a variable named text, you could use this
line of JavaScript in your <script> element:

var text = "You're using JavaScript";

Then you could refer to that text by name from then on in your JavaScript
code. For example, when you want to display that text, you could do this:

<html>
<head>
<title>Using variables</title>
<script language="javascript">
var text = "You're using JavaScript";
function displayText ()
{
document .getElementById('targetDiv').innerHTML = text;
}
</script>
</head>
<body onload="displayText()">

<h1>Using variables</hl>

<div id="targetDiv">
</div>

</body>
</html>

49

50

Part I: Getting Started

That’s all it takes — you’ve created a variable named text and then made
use of that variable like this to display the text you've stored in it:

document.getElementById('targetDiv').innerHTML = text;

Very nice.

Churning your data with operators

Many programming languages make big distinctions between the type of data
you can store in variables, and they give you a different types of variables to
store different types of text — for example, one type of variable is for text
strings, another is for integers, and so on. But JavaScript isn’t that uptight —
you can store all kinds of data with the same var statement. For example, say
that you wanted to store numbers in two variables named, say, operandl
and operand2. You could do that like this:

var operandl = 2;
var operand2 = 3;

Then say you wanted to add these two values and store the result in a vari-
able named sum. JavaScript has a bunch of operators that will let you perform
operations like addition (the + operator) or subtraction (the - operator), and
you can see them in Table 2-2. (Don’t try to memorize what you see there —
come back to this table throughout the book as needed.) So here’s how you
might create a new variable named sum and store the sum of operandl and
operand? in it (note that this code doesn’t give the sum variable any initial
value when it’s first created):

var sum;
sum = operandl + operand?2;

Listing 2-2 shows what it would all look like on a Web page, usenumbers.
html in the code for this book, where JavaScript adds together the values in
operandl and operand2, stores them in the variable named sum, and dis-
plays that result.

Listing 2-2: Putting JavaScript Operators to Work

<html>
<head>
<title>Using numeric variables</title>

<script language="javascript">

|
Figure 2-14:
Working
with
numbers in
variables.

Chapter 2: It's All About JavaScript

var operandl = 2;
var operand2 = 3;
var sum = 0;
function displayText ()
{
sum = operandl + operand2;
document .getElementById('targetDiv').innerHTML =

operandl + " + " + operand2 + " = " + sum;
}
</script>
</head>

<body onload="displayText()">
<h1>Using numeric variables</hl>

<div id="targetDiv">
</div>

</body>
</html>

You can see this page in action in Figure 2-14, where the users learns that
2 + 3 = 5. They might have already have known the math, but they can’t help
but be impressed by your use of variables.

¥ Using numeric variables - Mozilla Firefox

File Edit View Go Bookmarks Tools Help (*]

<:ZI - |_;/\ - @ x| {ﬁ]4 http:L"Ioc:alhosi.-"chﬂ?.-"usenunj D Go ||C,,|,

& Getting Started Ly Latest Headlines

Using numeric variables

2+3=5

Daone =R

51

52

Part I: Getting Started

Table 2-2

JavaScript Operators

Operator

Description

Arithmetic Operators

+

Addition — Adds two numbers.

++

Increment — Increments by one the value in a vari-
able.

Subtraction, negation — Subtracts one number from
another. Can also change the sign of its operand
like this: ~-variableName.

Decrement — Decrements by one the value in a
variable.

Multiplication — Multiplies two numbers.

Division — Divides two numbers.

oP

Modulus — Returns the remainder left after dividing
two numbers using integer division.

String Operators

+

String addition — Joins two strings.

+=

Joins two strings and assigns the joined string to the
first operand.

Logical Operators

&&

Logical AND — Returns a value of true if both
operands are true; otherwise, returns false.

Logical OR — Returns a value of true if either
operand is true. However, if both operands are false,
returns false.

Logical NOT — Returns a value of false ifits
operand is true; true if its operand is false.

Bitwise Operators

&

Bitwise AND — Returns a 1in each bit position if
both operands’ bits are 1s.

Bitwise XOR — Returns a 1in a bit position if the bits
of one operand, but not both operands, are 1.

Bitwise OR — Returns a 1in a bit if either operand
has a 1in that position.

Chapter 2: It's All About JavaScript 5 3

Operator Description

Bitwise Operators

~ Bitwise NOT — Changes 1s to Os and Os to 1s in all
bit positions — that is, flips each bit.

<< Left shift — Shifts the bits of its first operand to the
left by the number of places given in the second
operand.

>> Sign-propagating right shift — Shifts the bits of the
first operand to the right by the number of places
given in the second operand.

>>> Zero-fill right shift — Shifts the bits of the first

operand to the right by the number of places given in
the second operand, and shifting in Os from the left.

Assignment Operators

Assigns the value of the second operand to the first
operand if the first operand is a variable.

Adds two operands and assigns the result to the first
operand if the first operand is a variable.

Subtracts two operands and assigns the result to the
first operand, if the first operand is a variable.

Multiplies two operands and assigns the result to the
first operand if the first operand is a variable.

Divides two operands and assigns the result to the
first operand if the first operand is a variable.

Calculates the modulus of two operands and assigns
the result to the first operand if the first operand is a
variable.

Executes a bitwise AND operation on two operands
and assigns the result to the first operand if the first
operand is a variable.

Executes a bitwise exclusive OR operation on two
operands and assigns the result to the first operand
if the first operand is a variable.

Executes a bhitwise OR operation on two operands
and assigns the result to the first operand if the first
operand is a variable.

(continued)

54

Part I: Getting Started

Table 2-2 (continued)

Operator

Description

Assignment Operators

<<

Executes a left-shift operation on two operands and
assigns the result to the first operand if the first
operand is a variable.

>>

Executes a sign-propagating right-shift operation on
two operands and assigns the result to the first
operand if the first operand is a variable.

>>>=

Executes a zero-fill right-shift operation on two
operands and assigns the result to the first operand
if the first operand is a variable.

Comparison Operator

Equality operator — Returns true if the two
operands are equal to each other.

Not-equal-to — Returns t rue if the two operands
are not equal to each other.

Strict equality — Returns true if the two operands
are both equal and of the same type.

Strict not-equal-to — Returns true if the two
operands are not equal and/or not of the same type.

Greater-than — Returns true if the first operand’s
value is greater than the second operand’s value.

Greater-than-or-equal-to — Returns true if the first
operand’s value is greater than or equal to the
second operand’s value.

Less-than — Returns true if the first operand’s
value is less than the second operand'’s value.

Less-than-or-equal-to operator — Returns true if
the first operand’s value is less than or equal to the
second operand'’s value.

Conditional operator— Executesanif. . .else
test.

Chapter 2: It's All About JavaScript

Operator Description

, Comma operator — Evaluates two expressions and
returns the result of evaluating the second expres-
sion.

delete Deletion — Deletes an object and removes it from
memory, or deletes an object’s property, or deletes
an elementin an array.

function Creates an anonymous function. (Used in Chapter 3.)

in Returns true if the property you're testing is sup-
ported by a specific object.

instanceof Returns true if the given object is an instance of
the specified type.

new Object-instantiation — Creates an new object form

the specified object type.

typeof Returns the name of the type of the operand.

void Used to allow evaluation of an expression without
returning any value.

Altering a variable’s data

You can change the data in a variable simply by assigning a new value to that
variable. For example, if you did this:

var operandl
var operand?2

23
35

But then changed the value in operand1l to 12 like this:

var operandl
var operand?2
operandl = 12;

55

56

Part I: Getting Started

Then operandl would hold 12 and operand2 would hold 3. If you added
them together and placed the result in a variable named sum:

var operandl = 2;
var operand2 = 3;

operandl = 12;

var sum;

sum = operandl + operand2;

then sum would hold 15. Note that you can use the var statement anywhere
in a script, but you should use it before you use the variable you're creating
with that statement.

Storing JavaScript objects in a variable

Besides text and numbers, you can store JavaScript objects, which support
methods and properties, in variables, too. In this book, the most important
(and the most famous) object is the XMLHt tpRequest object that Ajax uses
to communicate with a server behind the scenes.

A detailed explanation of how this works is coming up in the next chapter,
but here’s a preview. Creating an XMLHt tpRequest object works differently
in different browsers; here’s how you do it in Firefox and Netscape Navigator
(note the use of the operator named new here, which is how you create
objects in JavaScript):

var XMLHttpRequestObject;
XMLHttpRequestObject = new XMLHttpRequest () ;

Now that you have an XMLHt tpRequest object in the variable named
XMLHt tpRequestObject, you can use the methods and properties of that
object (which I detail in the next chapter) just as you’d use the built-in
JavaScript document object’s write method. For example, to use the
XMLHttpRequest object’s open method to start fetching data from a server,
you’d just call that method as XMLHt tpRequestObject . open:

var XMLHttpRequestObject;
XMLHttpRequestObject = new XMLHttpRequest () ;

XMLHttpRequestObject.open("GET", dataSource);

Chapter 2: It's All About JavaScript

JavaScript's data type guessing game

Because JavaScript doesn’t have different types of variables for different types of data, it has to
guess whether the data in a variable should be treated as, say, a number or as text. JavaScript
makes that guess based on the context in which you use the variable, and sometimes it guesses
wrong. For example, say that instead of storing the sum in a variable named sum, you simply did this
to display the result of adding operandl + operand2 (note the last line of this code):

document .getElementById('targetDiv') .innerHTML =
operandl + " + " + operand2 + " = "
+ operandl + operand?2;

The problem here is that everything else in this JavaScript statement treats data like text strings,
so JavaScript treats the operandl and operand?2 as strings — which means the + operator
here will be used to join those strings ("2 " and "3 ") together instead of adding the values as num-
bers. So you'll be surprised by the display "2 + 3 = 23" here, which doesn't look too mathemat-
ically correct. You need a variable such as sum here to make it clear to JavaScript that you're deal-
ing with numbers:
sum = operandl + operand2;
document .getElementById('targetDiv') .innerHTML =

operandl + " + " + operand2 + " = "
+ sum;

And this gives you the correct result.

Oh, those functions!

\‘&N\BEB When working with variables and functions in JavaScript, one of the most
& important things to know is this: Variables created inside a function will be
reset to their original values each time the script calls the function. Not knowing
that fact has stymied many JavaScript programmers. If you want to avoid
confusion, place the var statement to create the variables you want to use
outside the function.

Here’s an example — a hit page counter that increments each time you click
it. There are two counter variables here, one stored outside a function
(counterl), and one stored inside a function (counter?2). Because this page
uses the <body> element’s onclick attribute, each time the user clicks the
page, the displayText function is called and both counters are incre-
mented by one using the JavaScript ++ operator, which looks like this (see
Table 2-2 for the ++ operator):

counterl = counterl++;
counter2 = counter2++;

5 8 Part I: Getting Started

However, counterl was created outside the displayText function, and

counter? is inside that function:

var counterl = 0;

function displayText ()

{
var counter2 = 0;
counterl = counterl++;
counter2 = counter2++;

This means that each time displayText is called, the countexr?2 variable is
created anew and reset to the value given in the preceding code, 0. Even
though it’s incremented each time the function is called, it’ll never get past a
value of 1. The other variable, counter1, created outside any function, how-
ever, will be able to preserve its value between page clicks, so it’ll act as a
true counter. You can see all this on the Web page itself, usevariablesand

functions.html (see Listing 2-3).

Listing 2-3: Using Variables and Functions Together

<html>
<head>
<title>Using variables</title>

<script language="javascript">
var counterl = 0;
function displayText ()
{
var counter2 = 0;
counterl = counterl++;
counter2 = counter2++;

document .getElementById('targetDiv') .innerHTML
"First counter equals " + counterl + "
" +

"But the second counter is still stuck at " + counter2;

}

</script>
</head>

<body onclick = "displayText()">

<h1>Using variables (Click Me!)</hl>

<div id="targetDiv">
</div>

</body>
</html>

Chapter 2: It's All About JavaScript

What does it look like at work? You can see that in Figure 2-15, where I've
clicked the page six times. The counter variable that was created outside the
function holds the correct value — but the counter variable created inside
the function was reset to its original value each time the page was clicked, so
it always just displays a value of 1.

43 Using variables - Microsoft Interet Explorer

File Edit View Favorites Tools Help "

QBack ~) = x| 2] 'l, Search ~ ; Favorkes &’l ~ N - & @ 3

Address |&] http:{fiocalhost/chozjusevarisblesandfunctions. html | EJee Links
=l

Using variables (Click Me!)
L]
Firet counter equals &

Figure 2_1 5: But the second counteris still stuck at 1

Handling
variables
inside
functions. E
] Done l_l_l_l_’_|\j Lacal intranet

B

Picking and Choosing with
the if Statement

The JavaScript if statement lets you test whether a certain condition is

true (is the value in the temperature variable over 65 degrees?) and if so,
take appropriate action (picnic time!). The if statement also includes an
optional else clause that holds code to be executed if the test condition is
false. Here’s what the syntax of this statement looks like, formally speaking —
note that the code to execute is between curly braces, { and }, and that the
part in standard braces, [and 1, is optional:

if (condition) {
statementsl

}

[else {
statements2

}

Using the if statement

It’s time for an example. Is the value in the temperature variable over 65
degrees? If so, the example in Listing 2-4, temperature.html, displays the
message Picnic time!. To check the temperature, the code uses the >
(greater than) operator (see Table 2-2).

59

60 Part I: Getting Started

Listing 2-4: Working with the if Statement

<html>
<head>
<title>Using the if statement</title>

<script language="javascript">
function displayText ()
{
var temperature = 70;
if (temperature > 65) {
document .getElementById('targetDiv').innerHTML =

"Picnic time!";

}

</script>

</head>

<body onload="displayText()">
<h1>Using the if statement</hl>

<div id="targetDiv">
</div>

</body>
</html>

You can see the results in Figure 2-16, where, as you see, it’s picnic time.

43 Using the if statement - Microsoft Internet Explorer

n

File Edit View Favorites Tools Help U

QBack * () = (x| 2] .|) Search - Favorkes v i (¥ v “ @3

Address |-E:l hitp:fflocalhostichoz ftemperatire, himl _j Go Links *
g

Using the if statement

Time for a picnic!

|
Figure 2-16:
Using the if
statement. El
——] Done l_l_l_l_l_l_} Lacal intranet

B

Chapter 2: It's All About JavaScript

Using the else statement

You can also execute code if a condition is not true by using the if state-
ment’s optional else statement. For example, if it isn’t picnic time, you might
want to say "Back to work!" in temperature.html, and Listing 2-5
shows what that might look like with an else statement — note that I've
changed the temperature so the else statement will be executed.

Listing 2-5: Working with the else Statement

<html>
<head>
<title>Using the if statement</title>

<script language="javascript">
function displayText ()
{
var temperature = 62;
if (temperature > 65) {
document .getElementById('targetDiv') .innerHTML =
"Picnic time!";
}
else {
document .getElementById('targetDiv') .innerHTML
"Back to work!";

}
}
</script>
</head>
<body onload="displayText ()">

<h1>Using the if statement</hl>

<div id="targetDiv">
</div>

</body>
</html>

And you can see the results in Figure 2-17, where, regrettably, the tempera-
ture is low enough so that it’s time to go back to work. Ah well.

01

62

Part I: Getting Started

|
Figure 2-17:
Using the
else
statement.

) Using the if statement - Mozilla Firefox

File Edit View Go Bookmarks Tools Help (*]
<:ZI - |_;/\ - @ x| {ﬁ]4 http:Ia"loc:alhosi.-"chﬂ?.-"temper:j @ Go ||C,,|,

& Getting Started Ly Latest Headlines

Using the if statement

Back to work!

Daone =R

Determining browser type and version

Here’s another, more advanced, example that determines which browser the
user has and lets you execute code depending on browser type to display the
browser version. This example puts to use the if and else statements as
well as several built-in JavaScript functions that handle strings. In JavaScript,
text strings are considered objects, and they have some built-in properties
and methods that make life easier. Here’s what this example uses:

v~ The length property gives you the length of the string, in characters.

v The index0Of method searches for the occurrence of a substring and
gives you the location of the first match — or -1 if there was no match.
(The first character of a string is considered character 0.)

v The substring method lets you extract a substring from a larger string.
You can pass this method the start and end locations of the substring
that you want to extract.

This example searches the navigator.userAgent property, which, as |
introduce in “Which browser are you using?” earlier in this chapter, holds the
browser name and version, extracts that information, and displays it. (You
really don’t have to memorize the string functions here — I put together this
example because it’s often important in Ajax programming to know what
browser and version the user has.) Listing 2-6 shows what the code,
browserversion.html, looks like.

Chapter 2: It's All About JavaScript 63

Listing 2-6: Finding Out What Browser You're Working With

<html>
<head>
<title>
Determining your browser
</title>

<script language="javascript">
var versionBegin, versionEnd

function checkBrowser()
{
if (navigator.appName == "Netscape") {
if (navigator.userAgent.indexOf ("Firefox") > 0) {
versionBegin = navigator.userAgent.indexOf ("Firefox") +
"Firefox".length + 1;
versionEnd = navigator.userAgent.length;
document .getElementById("targetDiv") .innerHTML =
"You have Firefox " +
navigator.userAgent.substring(versionBegin, versionEnd);

if (navigator.appName == "Microsoft Internet Explorer") {
versionBegin = navigator.userAgent.indexOf ("MSIE ") +
"MSIE ".length;
if (navigator.userAgent.indexOf (";", versionBegin) > 0) {
versionEnd = navigator.userAgent.indexOf(";", versionBegin);
} else {
versionEnd = navigator.userAgent.indexOf(")", versionBegin)
+ 2;
}
document .getElementById("targetDiv") .innerHTML =
"You have Internet Explorer " +
navigator.userAgent.substring(versionBegin, versionEnd);

}
</script>
</head>

<body onload="checkBrowser () ">
<hl>Determining your browser</hl>
<div ID="targetDiv"></div>
</body>
</html>

64

Part I: Getting Started

|
Figure 2-18:

Determining
browser

type and
version.

You can see the results in Figure 2-18, where the user is using Firefox 1.0.6.
Using code like this, you can figure out what browser the user has — and
whether the browser he has doesn’t do what you want, put in some kind of
workaround.

¥ Determining your hrowser - Mozilla Firefox

File Edit View Go Bookmarks Tools Help (&

<::| = I_;,‘ = @) g}n |4 hﬁp:fﬂocalhosl.-"chDQ.-‘browser\uersion.himj O Go |Q,

@ Getting Started Ly Latest Headlines

Determining your browser

You have Frefox 1.0.6

Daone =)

One thing computers are good at is doing the same kind of task over and
over, and JavaScript helps out here with loops. I take a look at them in the fol-
lowing section to set the stage for working with buttons in Web pages that
the user can click.

It Just Gets Better: The for Loop

Say you have the test scores of 600 students in a class you were teaching on
Ajax and you want to determine their average test score. How could you do
it? You can loop over their scores — that is, get the first one, then the next
one, then the next one, and so on — by using a for loop. This is the most
common loop in JavaScript, and it works like this:

for ([initial-expression]; [condition]; [increment-expression]) {
statements

}

Programmers usually use the for loop with a loop index (also called a loop
counter) which is just a variable that keeps track of the number of times the
loop has executed. Here’s how it works:

1. In the initial-expression part, you usually set the loop index to a starting
value.

Chapter 2: It's All About JavaScript 6 5

2. In the condition part, you test that value to see if you still want to keep
on looping.

3. Then, the increment-expression lets you increment the loop counter.
How about an example to make all this clear? Say that you wanted to add the

numbers 1 to 100. Listing 2-7 shows how that might look in a an example,
for.html.

Listing 2-7: Putting the for Loop to Work

<html>
<head>
<title>Using the for statement</title>

<script language="javascript">

function displayText ()
{

var loopIndex;

var sum = 0;

for(loopIndex = 1; loopIndex <= 100; loopIndex++) {
sum += loopIndex;

}

document .getElementById('targetDiv').innerHTML =
"Adding 1 to 100 gives: " + sum;
}

</script>

</head>

<body onload="displayText()">
<h1>Using the for statement</hl>

<div id="targetDiv">
</div>

</body>
</html>

Note that this code uses two new operators (see Table 2-2 for both of them):
<= and +=. The <= operator is the less-than-or-equal operator. The += opera-

tor is a shortcut for the + and the = operator; in other words, these two lines
do the same thing:

sum = sum + loopIndex;
sum += loopIndex;

66

Part I: Getting Started

JavaScript lets you combine operators like + (addition) and - (subtraction)
with the = operator in handy shortcut versions like this: += and -=. Very
neat.

The for loop in this example adds all the numbers from 1 to 100 by progres-
sively incrementing the variable 1oopIndex and stopping when that index
reaches a value of 100. What’s the answer? You can see that in Figure 2-19 —
summing 1 to 100 gives you 5050.

;’3 Using the for statement - Microsoft Internet Explorer

File Edit View Favorites Tools Help s |
QBack » () ~ x] 2] (0|)search FFavokes £ (v o v [& D 3
Address | €] hitp:{fiocalhast/choz/for heml | EJee Links
=
Using the for statement
I || dding 1 to 100 gives: 5050
Figure 2-19:
Adding
numbers
with a for
loop. E
] Done l_l_l_l_’_|\j Lacal intranet y

Over and Over with the while Loop!

Another way of looping involves using the while loop. This loop simply
keeps going while its condition is true. Here’s what it looks like, formally
speaking:

while (condition) {
statements
}

Here’s an example that uses the while loop and one other aspect of
JavaScript — arrays — to push the envelope. In JavaScript, you can use an
array to hold data that you can reference by an index number. For example,
say that you wanted to store a list of everyday items. You could do that by
creating an array of six elements (each element works just like a normal vari-
able, and you can store a string, a number, or an object in each element) like
this:

var items = new Array(6);

Chapter 2: It's All About JavaScript 6 7

That’s how you create an array with a particular number of elements (in this
case, six) in it. Now you can access each element by using a number inside
square braces, [and], like this:

items[0] = "Shoe";
items[1] = "Sandwich";
items[2] = "Sand";
items[3] = "Rocks";
items[4] = "Treasure";
items[5] = "Pebbles";

Note that the five elements in the items array start at index 0 and go to
index 4. Now, items[0] holds "Shoe", items[1] holds "Sandwich", and
so on. The reason that arrays are so perfect to use with loops is that an array
is just a set of variables that you can access by number — and the number
can just be a loop index, which means that a loop can loop over all the data
in an array for you.

In this case, say that you want to search for the "Treasure" item in the
array. You can do that by looping over the elements in the array until you
find "Treasure". In other words, you want to keep looking and increment-
ing through the array as long as the current array element does not hold
"Treasure". In this case, you have to check whether an element in the array
holds "Treasure™", and you can use the JavaScript == (equal to) or ! = (not
equal to) operators for that. If, for example, items[3] holds "Treasure",
then the JavaScript expression items[3] == "Treasure" would be true,
and the expression items[3] != "Treasure" would be false. Because you
need to keep looping until you find "Treasure" here, you can do it this way:

var loopIndex = 0;

while (items[loopIndex] != "Treasure"){
loopIndex++;

}

At the end of this loop, the variable 1oopIndex will hold the index of the ele-
ment that holds "Treasure". But there’s a problem here — what if no ele-
ment contains "Treasure"? You should put a cap on the possible number of
values to search, saying, for example, that the loop should keep going if the
current array element doesn’t hold "Treasure" and that the current loop
index is less than 6. JavaScript has an operator && that means and, so you
can check both these conditions like this:

while(items[loopIndex] != "Treasure" && loopIndex < 5){
loopIndex++;

}

68 Part I: Getting Started

Whew, ready to go. You can see the code that searches for "Treasure" in
while.html, in Listing 2-8.

Listing 2-8: Putting the while Loop to Work

<html>
<head>
<title>Using the while statement</title>

<script language="javascript">
function findTreasure()

{
var loopIndex = 0, items = new Array(6);

items[0] = "Shoe";
items[1] = "Sandwich";
items[2] = "Sand";
items[3] = "Rocks";
items[4] = "Treasure";

items[5] = "Pebbles";
while(items[loopIndex] != "Treasure" && loopIndex < 6){

loopIndex++;

if (loopIndex < 6){
document .getElementById('targetDiv').innerHTML =
"Found the treasure at index " + loopIndex;

}
</script>

</head>
<body onload="findTreasure()">
<h1>Using the while statement</hl>

<div id="targetDiv">
</div>

</body>
</html>

Will JavaScript be able to find the treasure? Sure thing, as you can see in
Figure 2-20.

Chapter 2: It's All About JavaScript 6 9

43 Using the while statement - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
QBack * () = (x| 2] .|) Search - Favorkes o ws L E D3
Address |£] hitp:jflocalhost{chozjwhie. kil x| Edeo | Links >
=
Using the while statement
Found the treasure ab index 4
|
Figure 2-20:
Using the
while loop
on an array. .-
——] Done l_l_l_l_l_l_} Lacal intranet y

Pushing Some Buttons

Ajax applications usually wait for the user to do something before fetching
data from the server, and doing something means causing an event in the
browser, such as clicking a button. Many HTML controls can appear on a Web
page, such as list boxes, text fields, radio buttons, and so on, and you need to
know how to work with them in a general way. This next example shows how
to connect a button click to a JavaScript function.

To display an HTML control like a button, you need to use an HTML form.
And to connect that button to a JavaScript function, all you need to do is to
assign that button’s onclick attribute the name of that function to call that
function like this (the value HTML attribute sets the caption of the button):

<form>
<input type="button" onclick="showAlert ()" value="Click Me!">
</form>

Displaying a message with a button click

When the user clicks this button, the JavaScript function showAlert is
called. In that function, you might display a message box called an alert box
to indicate that the user clicked the button. Listing 2-9 shows what it looks
like in JavaScript, in a button.html file.

70 Part I: Getting Started

Listing 2-9: Handling Button Clicks

<html>
<head>
<title>Using buttons</title>

<script language="javascript">
function showAlert()
{
alert ("Thanks for clicking.")
}
</script>

</head>

<body>
<h1>Using buttons</hl>
<form>
<input type="button" onclick="showAlert()" value="Click Here">
</form>
</body>
</html>

You can see this page in a browser in Figure 2-21. When the user clicks a
button, the showAlert function is called, and it displays an alert box, as you
see in Figure 2-22. So this button is indeed connected to the JavaScript. Very
cool.

43 Using buttons - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBack ~) - [x] (2] 4|/ search cFavorkes @] v o wl - L D 3

Address | £] hitp:jjlocalhostichoz/butten. bl =] EJa | Links >
=

Using buttons

Click Here !

|
Figure 2-21:
Handling
button

clicks. &l
——] Done l_l_l_l_l_l_} Lacal intranet

RN

Chapter 2: It's All About JavaScript

Microsoft Internet Explorer

—
! _, Thanks far clicking.

Figure 2-22:

Displaying
an alert box.

|

Reading a text field with a button click

In this example, the JavaScript code that’s called when a button is clicked
reads the text in an HTML text field and then displays that text in a <div>
element. To do this, you need to add an HTML text field to the form like
this — note that the text field is given the ID "textField":

<form>
Enter some text: <input type="text" id="textField">

Then click the button: <input type="button"
onclick="handleText ()" value="Read the text">
</form>

To get access to the text in the text field in your code, you can refer to that
text like this: document .getElementById ('textField') .value. So you
can read the text from the text field when the user clicks the button, and then
display that text in a <div> element, as you see in Listing 2-10 in the file
textfield.html.

Listing 2-10: Reading Text from a Text Field

<html>
<head>
<title>Clicking buttons</title>

<script language="javascript">
function handleText ()
{
document .getElementById('targetDiv').innerHTML =
"You entered: " +
document .getElementById('textField').value;
}
</script>
</head>

<body>
<hl>Reading text</hl>

<form>

(continued)

/1

72

Figure 2-23:
Using a text
field.

|
Figure 2-24:
Reading text
from a text
field.

Part I: Getting Started

Listing 2-10: (continued)

Enter some text: <input type="text" id="textField">

Then click the button: <input type="button"

onclick="handleText ()" value="Read the text">
</form>

<div id="targetDiv">
</div>

</body>
</html>

That’s all there is to it. You can see what this page, textfield.html, looks
like in Figure 2-23, where the user has entered some text into the text field.

43 Clicking buttons - Microsoft Internet Explorer

File Edit View Favorites Tools
QBack ¥) ~ 1 2] -l/ Search
Address |&] http:f flocalhost/chozjtextfisld.bkml

Help e

-7 Favorites & |

H8e

Links *

[

Reading text
Enter some text: W

Then click the button: __Read the texd |

2] Done

l_l_l_l_l_l‘J Lacal intranet

When the user clicks the button, the JavaScript reads that text and displays it
in a <div> element, as you see in Figure 2-24. Not bad.

43 Clicking buttons - Microsoft Internet Explorer

File Edit View Favorites Tools Help
QBack ~) = x| 2] . |/ Search ; Favorkes 47 |
Address |&] http:f flocalhost/chozjtextfisld.bkml

|/
"

L P 3
H8e

T

Links *

[

Reading text

Enter some text: W
Then click the button; | Fiead the text

You entered: Very cocl.

] Done

l_l_l_l_’_|‘_{ Lacal intranet

B

Part i

Programming
In Ajax

The 5th Wave By Rich Tennant

C I X L)
“Great goulash, Stan, That reminds me, are
gou still scripting gour owin Web page?”

In this part . . .

Here’s where you get to dive into true Ajax program-
ming. All through this part, you use Ajax to grab text

and XML data from a server behind the scenes in a
browser, and you put that data to work. Dozens of exam-
ples are coming up in this part. You use Ajax and Dynamic
HTML to update Web pages on the fly — no page refresh
from the server need apply! I also show you some
advanced techniques at work here, such as connecting to
Google behind the scenes for realtime same-page Web
searches, or supporting multiple Ajax requests to the
same server at the same time.

Chapter 3
Getting to Know Ajax

In This Chapter
Developing an Ajax application
Getting XML from the server
Working with the XMLHt tpRequest object
Passing data to the server by using Ajax
Getting data from the server with the GET method
Getting data from the server with the POST method

IIL ook at that!” the CEO hollers. “No wonder users don’t like making
purchases on our site. The page is always flickering.”

“That’s because you're refreshing the page each time you get more data,” you
say calmly, coming out of the shadows.

“Who are you?” the CEO cries.

“A master Ajax programmer,” you reply. “And my rates are quite reasonable.
For a major corporation, anyway.”

“Can you solve that perpetual flickering?” asks the CEO.

“Certainly,” you say, “for a hefty price.”

“Anything!” the design team says.

You sit down at the computer and calmly take over. This, you think, is going
to be good. And the money’s not half bad either. All it’s going to take is a little
Ajax in the right places, and the problem is as good as solved.

This chapter is where you start coding some Ajax. You're going to start work-
ing with the XMLHt tpRequest object in depth here and in the next chapter.

This chapter gives you a working knowledge of Ajax — from the very begin-
nings all the way up to sending and receiving data to and from the server.

76 Part Il: Programming in Ajax

Writing Some Ajax

To illustrate Ajax, the code in Listing 3-1 asks the user to click a button,
fetches data from the server using Ajax techniques, and displays that data in
the same Web page as the button — without refreshing the page. Check out
the code first, and then check out the explanation that follows it.

Listing 3-1: A First Ajax Application

<html>
<head>
<title>Ajax at work</title>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send (null) ;

}
</script>
</head>

<body>
<H1>Fetching data with Ajax</HI1>
<form>
<input type = "button" value = "Display Message"

onclick = "getData('http://localhost/ch03/data.txt',
'targetDiv') ">

Chapter 3: Getting to Know Ajax 7 7

</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

This Ajax application appears in Figure 3-1. (In the code that you can down-
load from the Web site associated with this book, the application is the
index.html file in the ch03 folder).

'amax at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBack » () ~ x] 2] (0|)search FFavokes £ (v o v [& D 3

Address | €] hitp:ffiocalhosticho3jfindes, htmi | EJee Links
|

Fetching data with Ajax

Display Message [
|

Figure 3_1: The fetched dutawill go here.

A simple
Ajax
example. =l
——] Done l_l_l_l_’_h} Lacal intranet

B

When you click that button, the JavaScript in the page fetches some new text
and replaces the original text in the application with this new version, as you
see in Figure 3-2. No screen flicker, no page fetch, no fuss, no muss. Very nice
Of course, you can display data like this using simple JavaScript, but the dif-
ference here is that when you use Ajax, you're able to fetch the data from a
Web server.

So how does this page, index.html, do what it does? How does it use Ajax
to get that new text? The body of the page starts by displaying the original
text in a <div> element. Here is the <div> element in bold:

<body>
<H1>Fetching data with Ajax</HI1>
<form>
<input type = "button" value = "Display Message"

onclick = "getData('http://localhost/ch03/data.txt',
'targetDiv') ">

78 Part Il: Programming in Ajax

</form>
<div id="targetDiv">
<p>The fetched data will go here.</p>

</div>

</body>

'amax at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBack ~) = x| 2] ,l, Search ~ ; Favorkes &’l

T W @3
Address | €] hitp:ffiocalhosticho3jfindes, htmi

ﬂ Go Links *
=l
Fetching data with Ajax

|
Figure 3-2: This text was fetched using Ajac
Fetching
text by using
Ajax.

——] Done l_l_l_l_’_h} Lacal intranet

B

There’s also a button on this page, and when the user clicks that button, a
JavaScript method named getData is called, as you see here:

<body>

<Hl1>Fetching data with Ajax</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('http://localhost/ch03/data.txt',
'targetDiv')">
</form>

<div id="targetDiv">

<p>The fetched data will go here.</p>
</div>

</body>
As you see here, the getData function is passed two text strings: the name

of a text file, data. txt, to fetch from the server; and the name of the <div>

element to display the fetched text in. The data. txt file contains just this
text:

This text was fetched using Ajax.

Chapter 3: Getting to Know Ajax

That’s the text you want the browser to download from the server in the
background, as the user is working with the rest of the Web page. So what
does the JavaScript that does all the work look like? You get to find that out
in the following sections.

Creating the XMLHttp Request object

This example application is going to need an XMLHt tpRequest object to
start, so it begins with the code that will create that object; this code is out-
side any function, so it runs immediately as the page loads. You start every-
thing by creating a variable for this object, XMLHt tpRequestObject like
this:

<script language = "javascript">
var XMLHttpRequestObject = false;

This variable is initialized to the value false so that the script can check
later whether the variable was indeed created. Besides the false value,
JavaScript also supports a value named true — these two are Boolean
values that you can assign to variables. The Netscape (version 7.0 and later),
Apple Safari (version 1.2 and later), and Firefox browsers let you create
XMLHt tpRequest objects directly with code, like this:

XMLHttpRequestObject = new XMLHttpRequest();

How can you determine whether you're dealing with a browser where this
code will work? The XMLHttpRequest object is usually part of the browser’s
window object, so to check whether XMLHt tpRequest is ready to use, you
can use this if statement to check if XMLHt tpRequest objects — which,
again, you can access as window.XMLHttpRequest — are available this
way:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

If XMLHt tpRequest is there and available, you can create the XMLHttp
Request object you'll need this way:

79

80 Part Il: Programming in Ajax

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

On the other hand, if you're dealing with the Internet Explorer, you have to
work with the different way that browser has of handling this object-creation
process. You use an ActiveX object in the Internet Explorer (version 5.0 and
later) to create an XMLHt tpRequest object, so to check whether you’re deal-
ing with that browser, you can check whether ActiveX objects are available,
like so:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

If you're working with the Internet Explorer, you can create an
XMLHttpRequest object this way:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP");
}

Now you have an XMLHt tpRequest object in the variable named XMLHttp
RequestObject From this point on, the differences among the various
types of browsers disappear as far as the rest of this chapter goes. But a few
differences exist among browsers when it comes to this object, so what prop-
erties and methods are available in XMLHt tpRequestObject objects in
different browsers? You can see the properties of the Internet Explorer
XMLHt tpRequest object in Table 3-1, and its methods in Table 3-2. The
properties of this object for Mozilla, Netscape Navigator, and Firefox appear

Chapter 3: Getting to Know Ajax 8 ’

in Table 3-3, and Table 3-4 shows the methods. Apple hasn’t published a full
version of the properties and methods for its XMLHt tpRequest object yet,
but it has published a set of commonly used properties, which appear in
Table 3-5, and commonly used methods, which appear in Table 3-6.

Table 3-1 XMLHttpRequest Object Properties for Internet Explorer

Property Means Read/write
onreadystatechange Holdsthe name of the Read/write
event handler that should
be called when the value
of the readyState
property changes
readyState Holds the state of the request Read-only
responseBody Holds a response body, which is Read-only
one way HTTP responses can be
returned
responseStream Holds a response stream, a binary ~ Read-only
stream to the server
responseText Holds the response body as a string Read-only
responseXML Holds the response body as XML Read-only
status Holds the HTTP status code Read-only
returned by a request
statusText Holds the HTTP response status Read-only

text

Table 3-2 XMLHttpRequest Object Methods for Internet Explorer

Method Means

abort Aborts the HTTP request
getAllResponseHeaders Gets all the HTTP headers
getResponseHeader Gets the value of an HTTP header
open Opens a request to the server

send Sends an HTTP request to the server

setRequestHeader

Sets the name and value of an HTTP header

82 Part Il: Programming in Ajax

Table 3-3 XMLHttpRequest Object Properties for Mozilla,
Firefox, and Netscape Navigator

Property Means Read/write

channel Holds the channel used to perform Read-only
the request

readyState Holds the state of the request Read-only

responseText Holds the response body as a string Read-only

responseXML Holds the response body as XML Read-only

status Holds the HTTP status code Read-only
returned by a request

statusText Holds the HTTP response status text Read-only

Table 3-4 XMLHttpRequest Object Methods for Mozilla,
Firefox, and Netscape Navigator

Method Means

abort Aborts the HTTP request

getAllResponseHeaders Gets all the HTTP headers

getResponseHeader Gets the value of an HTTP header

openRequest Native (non-script) method to open a request

overrideMimeType Overrides the MIME type the server returns

Table 3-5 XMLHttpRequest Object Properties for Apple Safari

Property Means Read/write

onreadystatechange Holdsthe name of the event Read/write
handler that should be called when
the value of the readyState

property changes
readyState Holds the state of the request Read-only
responseText Holds the response body as a string Read-only

responseXML Holds the response body as XML Read-only

Chapter 3: Getting to Know Ajax 8 3

Property Means Read/write

status Holds the HTTP status code Read-only
returned by a request

statusText Holds the HTTP response Read-only
status text

Table 3-6 XMLHttpRequest Object Methods for Apple Safari

Method Means

abort Aborts the HTTP request
getAllResponseHeaders Gets all the HTTP headers
getResponseHeader Gets the value of an HTTP header

open Opens a request to the server

send Sends an HTTP request to the server
setRequestHeader Sets the name and value of an HTTP header

Checking to make sure you have
a valid XMLHttp Request object

Now that you've got the needed XMLHttpRequest object stored in the vari-
able XMLHt tpRequestObject, how do you actually fetch the text the appli-
cation wants when the user clicks the button? All that takes place in the
getData function in the <script> element, as shown here:

<script language = "javascript">

function getData(dataSource, divID)
{

}

</script>

84

Part Il: Programming in Ajax

In this function, the code starts by checking to make sure that there really is
a valid object in the XMLHt tpRequestObject variable with an if statement.
(Remember, if the object creation didn’t work, this variable will hold a value
of false — and because JavaScript treats anything that isn’t false as true,
if the variable contains a real object, the if statement’s condition will be
true.)

<script language = "javascript">

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {

}
}

</script>

Opening the XMLHttp Request object

At this point, you have an XMLHttpRequest object in the
XMLHttpRequestObject variable. You can configure the object to use the
URL you want by using this object’s open method. Here’s how you use the
open method (keep in mind that items in square braces, [and], are
optional):

open ("method", "URL"[, asyncFlag[, "userName"[, "password"]]])

Table 3-7 tells you what these various parameters mean.

Table 3-7 Parameters for the open Method

Parameter What It Means

method The HTTP method used to open the connection, such as
GET, POST, PUT, HEAD, or PROPFIND.

URL The requested URL.

asyncFlag A Boolean value indicating whether the call is asynchro-

nous. The default is true.

userName The user name.

password The password.

Chapter 3: Getting to Know Ajax 8 5

The URL you want to fetch data from is passed to the getData function as
the dataSource argument. To open a URL, you can use the standard HTML
techniques like GET, POST, or PUT. (When you create an HTML form, you use
these methods to indicate how to send data to the server.) When using Ajax,
you usually use GET primarily when you want to retrieve data, and POST
when you want to send a lot of data to the server, so this example uses GET
to open the data. txt file on the server this way:

<script language = "javascript">

function getData(dataSource, divID)

{
if (XMLHttpRequestObject) {

XMLHttpRequestObject.open("GET", dataSource);

}
}

</script>

This configures the XMLHt tpRequestObject to use the URL you’ve speci-
fied —http://localhost/ch03/data. txt in this example — but doesn’t
actually connect to that file yet. (If you want to try this example on your

own server, be sure to update that URL to point to wherever you’ve placed
data.txt.) Make sure that data. txt is in the same directory on your
server as index.html is.

By default, the connection to this URL is made asynchronously, which means
that this statement doesn’t wait until the connection is made and the data is
finished downloading. (You can use an optional third argument, asyncFlag,
in the call to the open method to make the call synchronous, which means
that everything would stop until the call to that method finishes, but things
aren’t done that way in Ajax — after all, Ajax stands for Asynchronous
JavaScript and XML.)

So how can you be notified when the data you’re downloading is ready? Glad
you asked; check out the following section.

When you're ready: Handling
asynchronous downloads

The XMLHt tpRequest object has a property named onreadystatechange
that lets you handle asynchronous loading operations. If you assign the name

86

Part Il: Programming in Ajax

\\3

of a JavaScript function in your script to this property, that function will be
called each time the XMLHt tpRequest object’s status changes — as when
it’s downloading data.

You can use a shortcut to assign a Javascript function to the onreadystate
change property, a shortcut which you often see in Ajax scripts — you can
create a function on the fly (sometimes called an anonymous function
because it doesn’t have a name). To create a function on the fly, just use the
function statement and define the body of this new function in curly braces
this way:

<script language = "javascript">

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject .onreadystatechange = function()
{

}
}
</script>

This new, anonymous function will be called when the XMLLHt tpRequest
Object undergoes some change, as when it downloads data. You need to
watch two properties of this object here — the readyState property and
the status property. The readyState property tells you how the data load-
ing is going. Here are the possible values the readyState property can take
(note that a value of 4 means your data is all downloaded):

v 0 uninitialized

v 1 loading

v 2 loaded

v 3 interactive

v 4 complete

Chapter 3: Getting to Know Ajax 8 7

The status property holds the status of the download itself. (This is the
standard HTTP status code that the browser got for the URL you supplied.)
Here are some of the possible values the status property can hold (note
that a value of 200 means everything is just fine):

v 200 OK

v 201 Created

v 204 No Content

v 205 Reset Content

v 206 Partial Content

v 400 Bad Request

v 401 Unauthorized

v 403 Forbidden

v 404 Not Found

v 405 Method Not Allowed

v 406 Not Acceptable

v 407 Proxy Authentication Required

v 408 Request Timeout

v 411 Length Required

v 413 Requested Entity Too Large

v 414 Requested URL Too Long

v 415 Unsupported Media Type

v 500 Internal Server Error

v 501Not Implemented

v 502 Bad Gateway

v 503 Service Unavailable

v 504 Gateway Timeout

v 505 HTTP Version Not Supported

Q‘&N\BER To make sure the data you want has been downloaded completely and every-
& thing went okay, check to make sure the XMLHt tpRequestObject object’s

readyState property equals 4 and the status property equals 200. Here’s
how you can do that in JavaScript:

88

Part Il: Programming in Ajax

<script language = "javascript">

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

}
}

</script>

Very cool — if all systems are go at this point, the browser got your data from
the server (that is, the text inside the data. txt file that you pointed to with
the URL you passed to the open method). Now how do you get that data
yourself? Find out in the following section.

You got the data!

To get the data with the XMLHt tpRequest object, use one of the two usual
ways:

v If you retrieved data that you want to treat as standard text, you can
use the object’s responseText property.

v If your data has been formatted as XML, you can use the responseXML
property. In this example, data. txt simply contains text, so you use
the responseText property.

To make the downloaded text actually appear on your Web page which is
where you wanted it all along — you can assign that text to the <div> ele-
ment, whose ID is targetDiv in the Web page and whose name was passed
to the getData function. Here’s how it works:

<script language = "javascript">

Chapter 3: Getting to Know Ajax 8 9

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {

var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

}

</script>

Okay, you've set up your code to handle the response from the server when
that response is sent to you. But now how do you actually connect to the
server to get that response? You use the send method. When you're using the
GET method, you send a value of null (null is a built-in value in JavaScript —
it’s a special value that holds zero in JavaScript) as in the following code to
connect to the server and request your data using the XMLHt tpRequest
object that you've already configured:

<script language = "javascript">

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send(null);

}
</script>

90

Part Il: Programming in Ajax

That call to send is what actually downloads the data so that the anonymous
function can handle that data. Excellent. You've just completed your first, full-
fledged, Ajax application. This application fetches data behind the scenes
from the server and displays it in the page without any full page refreshes.
You can see it at work in Figures 3-1 and 3-2, which are shown earlier in this
chapter.

You did all this by creating an XMLHt tpRequest object and using its open
method to configure that object, and the send method to connect to the
server and get a response. And you recovered text from the server by using
the request object’s responseText property. Not bad for a first try.

Deciding on relative versus absolute URLs

This example fetched text from a file named data.txt, and that file is in the
same ch03 folder as index.html you’ll find available for download from the
Web site associated with this book. Here’s the URL that index.html uses to
point to that file, http://localhost/ch03/data. txt

<body>
<Hl1>Fetching data with Ajax</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('http://localhost/ch03/data.txt',
'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>

However, because data. txt is in the same directory as index.html, you
can refer to data. txt simply as data.txt, not http://localhost/ch03/
data.txt:

<body>
<H1>Fetching data with Ajax</HI1>
<form>
<input type = "button" value = "Display Message"
onclick = "getData('data.txt', 'targetDiv')">

</form>

<div id="targetDiv">

Chapter 3: Getting to Know Ajax

<p>The fetched data will go here.</p>
</div>

</body>

When you look at index.html in the browser, the directory index.html
where it is located on the server becomes the default directory as far as the
server is concerned. When index.html looks for data. txt, it isn’t neces-
sary to use the full URL, http://localhost/ch03/data.txt — instead,
you can say simply data. txt, and the server will search the same directory
where the page you're already looking at (index.html) is in for data. txt.
http://localhost/ch03/data. txt is an absolute URL, but just the name
data. txt is a relative URL (relative to the location of index.html — rela-
tive URLs can also include pathnames if appropriate).

Because the examples in this and the next few chapters are made up of HTML
files, PHP scripts, and other files that are all supposed to go into the same
directory on the server, I use relative URLs from now on. That way, you can run
the examples no matter what the URL to your server is — you don’t have to
rewrite a URL such as http://localhost/ch03/data.txt to point to your
server instead (such as http: //www. starpowder .com/frank/data. txt).

Make sure that, when you run the examples in this book, any PHP, text, or
other documents needed by a particular HTML file are in the same directory
on your server as that HTML file. The easiest way to do that is to keep all files
in the ch03 folder in the code for this book together in the same directory

on your server, all the files in the ch04 folder together in the same directory,
and so on.

Other ways of getting XMLHttpRequest
objects

The example spelled out in the preceding sections shows one way to get an
XMLHt tpRequest object and work with it. Other ways exist as well, letting
you work with more recent XMLHt tpRequest objects. It’s rare that you need
to use newer XMLHt tpRequest objects with Ajax, but if you want to, it’s
worth knowing how to do it.

For example, Internet Explorer has various versions of its XMLHt tpRequest
object available. You create the standard version of this object with the
Microsoft.XMLHTTP ActiveX object, but there’s a more recent version avail-
able: MSXML2 . XMLHTTP. The Microsoft .XMLHTTP ActiveX object offers all
the functionality you need for anything in this book, but if you want to work
with MSXML2 . XMLHTTP — Or even newer versions, such as MSXML2 . XML-
HTTP.3.0, MSXML2 . XMLHTTP. 4. 0, of now MSXML2 . XMLHTTP.5.0 — you
can do that.

91

92 Part Il: Programming in Ajax

Here’s an example showing how to work with a newer XMLHt tpRequest
object, using the JavaScript try/catch construct. If you try some code that
might fail in a try statement, and it does fail, the code in the associated
catch statement will be executed, allowing you to recover from the problem.
So you might try to get an MSXML2 . XMLHTTP ActiveX object first, and catch
any problems that might result this way:

var XMLHttpRequestObject = false;

try {
XMLHttpRequestObject = new ActiveXObject ("MSXML2.XMLHTTP") ;
} catch (exceptionl) {

If the browser couldn’t create an MSXML2 . XMLHTTP ActiveX object, you can
try for a standard Microsoft . XMLHTTP ActiveX object by using another
try/catch construct, as you see here:

var XMLHttpRequestObject = false;

try {

XMLHttpRequestObject = new ActiveXObject ("MSXML2 .XMLHTTP") ;
} catch (exceptionl) {

try {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP");
} catch (exception2) {

XMLHttpRequestObject = false;
}

And if neither of these work, you can use the Mozilla/Firefox/Netscape
Navigator/Safari way of doing things like this (note the use of the JavaScript !
operator here, which means “not,” as listed in Chapter 2 — in other words,

I XMLHt tpRequestObject is true if the XMLHt tpRequestObject doesn’t
exist):

var XMLHttpRequestObject = false;

try {
XMLHttpRequestObject = new ActiveXObject ("MSXML2.XMLHTTP") ;
} catch (exceptionl) {
try {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;
} catch (exception2) {
XMLHttpRequestObject = false;
}

Chapter 3: Getting to Know Ajax

}

if (!XMLHttpRequestObject && window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
}

Interactive Mouseovers Using Ajax

|
Figure 3-3:
Fetching
mouseover
text with
Ajax.
|

Here’s another Ajax example — one that’s a little more impressive visually.
This example, mouseover .html, appears in Figure 3-3. When you move the
mouse over one of the images on this page, the application fetches text for
that mouseover by using Ajax. Give it a try — just move the mouse around
and watch the text change to match.

& Interactive mouseovers - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (*]

<:ZI - I_;,\ - L%%‘I) Eﬁ]_ http:L"IocthoSi.-"chD?»"mousetj D Go ||‘._.L

& Getting Started Ly Latest Headlines

Interactive mouseovers

Sandwiches Pizzas Soupg

Soups: chicken, beef, or vegetable.

Daone =R

This one isn’t hard to implement. All you really have to do is to connect the
getData function (which fetches text data and displays it in the <div> ele-
ment whose name you pass) to the onmouseover event of each of the
images you see in Figure 3-3.

The text data for each image is stored in a different file — sandwiches. txt,
pizzas.txt, and soups. txt — so here’s how everything works:

<body>
<Hl>Interactive mouseovers</HI1>
<img src="Imagel.jpg"
onmouseover="getData('sandwiches.txt',

'targetDiv')">

<img src="Image2.jpg"

93

94 Part Il: Programming in Ajax

onmouseover="getData('pizzas.txt',
'targetDiv')">

<img src="Image3.jpg"
onmouseover="getData('soups.txt',
'targetDiv')">

<div id="targetDiv">
<p>Welcome to my restaurant!</p>
</div>

</body>

No problem at all. The rest is just the same as in the first example in this
chapter. Here’s the contents of sandwiches. txt:

We offer too many sandwiches to list!
And pizzas.txt:

Toppings: pepperoni, sausage, black olives.
And soups. txt:

Soups: chicken, beef, or vegetable.

So you can download text to match the image the mouse cursor is over. What
about downloading some pictures? Unfortunately, that’s no go. Can’t do it,
because you only have two choices with the XMLHt tpRequest object — text
or XML (which is also just text, although formatted following the XML rules).

There might be a way to download images and other binary data by using the
Internet Explorer XMLHt tpRequest object one day, because it has an interest-
ing property: responseStream. The responseStream property represents a
binary data stream from the server, and that will indeed let you send binary
data from server to the browser. The problem is that JavaScript doesn’t give
you any way to work with such a stream. Other Microsoft Web-enabled lan-
guages, such as Visual Basic, can work with this property, but not Internet
Explorer’s Jscript (yet).

Getting Interactive with
Server-Side Scripting

All the preceding examples in this chapter show you how to download static
text files behind the scenes by using Ajax methods, but you can also connect
to server-side applications. And doing that opens all kinds of possibilities

Chapter 3: Getting to Know Ajax 9 5

\\J

because you can send data to those server-side applications and get their
responses behind the scenes.

This is where the real power of Ajax comes in. You can create an application
that watches what the user is doing, and the application can get data from
the server as needed. Virtually all Ajax applications connect to some kind of
server program.

Choosing a server-side scripting language

I'm going to use two different server-side scripting languages in this book —
PHP and JavaServer Pages (JSP). The main issue here is Ajax, of course, so
you won’t have to know how to write PHP or JSP to follow along. However, if
you want to put your Ajax expertise to work in the real world, it’s useful to
have a working knowledge of these two languages because they’re probably
the easiest type of server-side programming around. Among the Ajax exam-
ples you’ll see on the Web that connect to server-side scripts, PHP is the
most popular choice. I start in this chapter by taking a look at connecting to
some PHP scripts using Ajax so that you can handle XML data and send data
to the server to configure the response you get back from the server.

Thousands of Web servers support PHP, so if you want to sign up for one,
they’re easy to find. Your current server might already support PHP, because
most do these days — just ask them. For testing purposes, you can also
install PHP on your own machine. You can get PHP for free at www.php .net,
complete with installation instructions (on Windows, installing can be as
easy as running . exe files).

Connecting to a script on a server

To start, how about converting the first example, index.html (Listing 3.1),
in this chapter to talk to a PHP script instead of just downloading a text file?
Instead of connecting to data. txt on the server, this next example, index?2 .
html, connects to a PHP script, data.php.

The text in data.txt is "This text was fetched using Ajax.", so
data.php will return the same text for this first example. Here’s what that
PHP file looks like (remember, you don’t have to know PHP or JSP to read
this book):

<?php
echo 'This text was fetched using Ajax.';
?>

96 Part Il: Programming in Ajax

If you install data . php on your own computer for testing purposes in a
folder named ch03, its relative URL is sample.php. You can modify
index.html into index2.html by connecting to that URL, like this:

<html>
<head>
<title>Ajax and PHP at work</title>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHTTP") ;

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send (null) ;
}
</script>
</head>

<body>

<Hl1>Fetching data with Ajax and PHP</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData(data.php', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

|
Figure 3-4:
Fetching
data from a
PHP script
with Ajax.

Time

|
Figure 3-5:
Fetching
data with
XML.

Chapter 3: Getting to Know Ajax 9 7

This time, the text the application fetches comes from a PHP script, not a text
file. You can see this application at work in Figure 3-4.When the user clicks
the button, JavaScript connects to data.php, and the returned text appears
on the Web page. Cool.

4} Ajax and PHP at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBack » () ~ x] 2] (0|)search FFavokes £ (v o v [& D 3

Address |&] hitp:ffiocalhosticho3findes2. heml | EJee Links
=l

Fetching data with Ajax and PHP

This text was fetched using Ajac

] Done l_l_l_l_’_|‘_§ Lacal intranet

for Some XML

Ajax applications can transfer data back and forth by using simple text, but,
after all, Ajax stands for Asynchronous JavaScript and XML. How about get-
ting some XML into this equation? Take a look at the new example in Figure
3-5, options.html, which gives the users various options for resetting
the color of the text on this Web page (the "Color this text." text).
Although you can’t see it in glorious black and white, the text is green here.

B

4} Using Ajax and XML - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

Qe v) -) 2 1|, sewh Faotss €] v L v 4D

Address |&] httpif flocalhost/cho3joptions. htl | EJee Links
=l

Using Ajax and XML

|v| Use color scheme 1 | Use color scheme 2

Color this text.

£] Done [[| [N3Localintranet

B

98

Part Il: Programming in Ajax

The various colors in the drop-down list in this application are fetched by
using Ajax methods and data formatted as XML. This application has two dif-
ferent color schemes.

Color scheme 1:

V¥ red
v green
» blue

And color scheme 2:

v black
v white

V¥ orange

The user can select between these two (admittedly rather arbitrary) schemes
just by clicking the buttons you see in Figure 3-5; when he clicks a button, the
colors for that color scheme are loaded into the drop-down list at left. The
user can select a color, and when he does, the "Color this text." textis
colored to match.

Getting XML from a PHP script

Now, how does the application in Figure 3-5 work again? Two PHP scripts
supply the colors in each color scheme, optionsl.php and options2.php.
These scripts send back their data by using XML from optionsl.php, like
this (this is the XML that optionsl.php ends up sending back to the
browser):

<?xml version="1.0"?>
<options>
<option>
red
</option>
<option>
green
</option>
<option>
blue
</option>
</options>

Chapter 3: Getting to Know Ajax

\\J

This is valid XML,; it starts with an XML declaration, <?xml version=
"1.0"?>, which all XML documents must have to be legal. All XML docu-
ments must also have a document element, which encloses all other elements.
You make up the names of your elements in XML, and here the document ele-
ment is the <options> element.

Don’t worry if you aren’t an XML pro. This is as much as you're going to have
to know about XML for most of this book — XML documents start with an XML
declaration, have one document element that contains all other elements, you
make up the names of the elements, and each element can contain text or
other elements. There’s more to XML, of course, especially when it comes to
handling it with JavaScript. For the full details on XML and how to work with it
in JavaScript, take a look at Chapter 8.

The <options> element encloses three <option> elements, each of which
contain text corresponding to a color: red, green, and blue here. This first
XML document is a simple one, but it gets the job done — the idea is to list
three different colors, and it does that.

How do you send this XML back from the server by using a PHP script? The
first thing you have to do is to set the content-type header in the document
you'’re creating to "text/xml". This informs the browser that this data is
XML data, and should be treated as such. (This is a necessary step — other-
wise the browser will not consider your data as XML.) Here’s how you do it:

<?

header ("Content-type: text/xml");

?>

Then you have to construct the rest of the XML document. Here’s how you
store the names of the colors in an array, and then loop over that array, send-
ing each color in an <option> element back to the browser:

<?
header ("Content-type: text/xml");
$options = array('red', 'green', 'blue');
echo '<?xml version="1.0"2?>';
echo '<options>';
foreach ($options as $value)
{
echo '<option>';
echo $value;
echo '</option>';
}
echo '</options>';
?>

99

1 00 Part Il: Programming in Ajax

Perfect. And here’s what options2 .php looks like, for the second color

scheme:
<?
header ("Content-type: text/xml");
Soptions = array('black', 'white', 'orange');

echo '<?xml version="1.0"?>"';
echo '<options>';
foreach (Soptions as S$value)
{
echo '<option>';
echo $value;
echo '</option>';
}
echo '</options>';
?>

Setting up a Web page to read XML

Now what about the important part of this application, the Ajax part? That
takes place in options.html. Two buttons let the user select between color
schemes, and those buttons call two functions, getOptions1 for color
scheme 1 and getOptions2 for color scheme 2, like this:

<body>
<hl1>Using Ajax and XML</hl>
<form>
<select size="1" id="optionList"

onchange="setOption() ">
<option>Select a scheme</option>

</select>
<input type = "button" value = "Use color scheme 1"
onclick = "getOptionsl()">
<input type = "button" value = "Use color scheme 2"
onclick = "getOptions2()">
</form>

<div id="targetDiv" width =100 height=100>Color this text.</div>
</body>
The getOptionsl function connects to the optionsl.php script like this:
var options;
function getOptionsl ()

{
if (XMLHttpRequestObject) {

Chapter 3: Getting to Know Ajax ’ 0 1

XMLHttpRequestObject.open("GET",
"optionsl.php", true);

Handling the XML you
read from the server

When the response from the server comes back as XML, not just text,
you read that response by using the responseXML property of the XML,
HttpRequest object, like so:

var options;

function getOptionsl ()
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET",
"optionsl.php", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

}
}
XMLHttpRequestObject.send (null) ;

}

The bold line of JavaScript in the preceding code stores the XML that
optionsl.php sent back in a variable named xmlDocument. How can
you handle that XML in JavaScript?

That turns out not to be hard. Just as you can use the built-in getElement
ById function to get an element by its ID value, so you can use the built-in
getElementsByTagName function to get all the elements with a certain

1 02 Part Il: Programming in Ajax

name. In this case, the elements with the data you want are the <option>
elements, so you can get them and store them all in a variable named
options like this:

var options;

function getOptionsl ()
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET",
"optionsl.php", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option");

XMLHttpRequestObject.send (null) ;

So far so good — you've stored the colors that were returned from the server
in the variable named options. Now how do you unpack the actual names of
those colors? Well, take a look at the following section.

Extracting data from XML

To extract information from XML, this example calls another function called
listOptions, which will unpack the colors and store them in the drop-
down list:

var options;

function getOptionsl ()
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET",
"optionsl.php", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&

Chapter 3: Getting to Know Ajax ’ 03

XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option") ;
listOptions();
}
}

XMLHttpRequestObject.send (null) ;
}
}

How does the 1istOptions function unpack the colors from the options vari-
able and store them in the drop-down HTML <select> control where the
user can select them? (The <select> controls display a drop-down list, such
as the one in this example.) Right now, the options variable contains this data:

<option>
red
</option>
<option>
green
</option>
<option>
blue
</option>

This data is actually stored as an array of <option> elements, which makes
things easier because you can loop over that array. (I introduce looping in
arrays in Chapter 2.) You can find the number of items in an array by using
the array’s length property, so here’s how to loop over all the <option> ele-
ments in the 1istOptions function:

function listOptions ()
{

var loopIndex;

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{

}

Good so far. As you loop, you can refer to each <option> element in the
options variable this way: options [loopIndex] — that picks out the cur-
rent <option> element each time through the loop. The first such element
looks like this:

<option>
red
</option>

1 04 Part Il: Programming in Ajax

How do you pick out the color from this XML element? JavaScript is set up to
handle elements like this by treating the text in this element as a child node of
the element — that is, as a node contained inside the element. To get that child
node, you can use the element’s firstChild property (Chapter 8 has all the
details on handling XML with JavaScript in depth), so here’s how you recover
the current <option> element’s text as an XML node: options [loopIndex] .
firstchild. This gives you a fext node — a node that contains only text,
believe it or not — that holds the text for the color red. How do you actually
extract the text corresponding to the color? You use the text node’s data prop-
erty, so (finally!) you can use this expression to extract the color from the cur-
rent <option> element: options[loopIndex].firstChild.data.

Whew. So now you can get the colors from each <option> element in the
options variable.

Listing the colors in the drop-down control

How do you store those colors in the drop-down <select> control the

one named optionList — so the user can select the color she wants? In
JavaScript, you can get an object that corresponds to the drop-down control
like this:

function listOptions ()
{
var loopIndex;
var selectControl = document.getElementById('optionList');

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{

}

To add the colors to the <select> control, you use the control’s options
property, which holds the items listed in the control. Each item you want to
add to the list is an option object that corresponds to an HTML <option>
element, so you can add all the colors to the <select> control like this:

function listOptions ()

{
var loopIndex;
var selectControl = document.getElementById('optionList');

for (loopIndex = 0; loopIndex < options.length; loopIndex++)

Chapter 3: Getting to Know Ajax ’ 05

selectControl.options[loopIndex] = new
Option(options[loopIndex].£firstChild.data);

}

And that’s it. Now the drop-down list displays the available colors for the
color scheme that the user chose.

You have to take one last step. When the user selects a color in the drop-
down list, the code has to color the displayed text to match. When the user
makes a selection in the drop-down list of colors, the list’s onchange event
occurs, which calls a function named setOption, as you see here:

<form>
<select size="1" id="optionList"
onchange="setOption()">
<option>Select a scheme</option>

</select>
<input type = "button" value = "Use color scheme 1"
onclick = "getOptionsl()">
<input type = "button" value = "Use color scheme 2"
onclick = "getOptions2()">
</form>

The setOption function’s job is to color the "Color this text." text,
stored in a <div> element named "targetDiv", to match the color the user
selected. Which color did the user select? You can determine the number of
the item the user selected using the <select> control’s selectedIndex
property. If the user selected the first item, this property will hold 0; if he
selected the second item, this property will hold 1; and so on. You can use
this property together with the options variable (which holds all the
<option> elements you got from the server) to determine what the appro-
priate color is to use. So here’s how to get the color the user selected (who-
ever said JavaScript is a lightweight language never had to deal with
expressions like this one):

options[document.getElementById('optionList') .selectedIndex].firstChild.data

How do you color the text in the targetDiv <div> element to match this
color? You can use the <div> element’s style property to recover its style
setting. And to access to the <div> element’s text color, you can refer to it
with the style attribute color. So here’s how you refer to the color of the text
in the targetDiv <div> element from JavaScript:

document .getElementById('targetDiv').style.color

1 06 Part Il: Programming in Ajax

That means that to set the color of the text in the targetDiv <div> element
to match the color the user selected in the setOption function, you can do
this:

function setOption()
{
document .getElementById('targetDiv').style.color =
options[document .getElementById
('optionList').selectedIndex].firstChild.data;
}

Yep, it looks complex, but as you get to know JavaScript, or if you're a
JavaScript guru already, this kind of stuff will become second nature. It just
takes some time. And that’s it — this example is a success.

But if you take a step back and assess the situation as an Ajax programmer,
you might want to know why you need two PHP scripts to handle the two dif-
ferent color schemes. Why can’t you just pass some data to a single PHP
script to indicate which color scheme we want? That’s a very good question.
You can indeed pass data to server-side scripts from JavaScript, and that’s an
important skill because Ajax applications often need to send data to the
server to get the response they need.

Passing Data to the Server with GET

No good reason exists for having two server-side PHP scripts, optionsl.php
and options?2.php, to pass back the colors in the two color schemes. All you
really need is one server-side script — options.php — but you have to tell it
which color scheme you’re interested in. And doing that means passing data
to the server.

Although these examples use PHP, the way Ajax passes data back to the
server is the same for just about any server-side programming language, from
PHP to Perl, from JSP to Python. So how do you pass data to a server-side
program in Ajax? One way of doing this is to use the GET method and URL
encoding. But one issue here is worth noting — if you use URL encoding and
the GET method, your data is pretty public. As it zings around the Internet, it
could conceivably be read by others. You can protect against that by using
the POST method instead of GET.

However, to use POST, you still need to understand GET. The following sec-
tions have all the details.

When you use the GET method of fetching data from the server, as all the
Ajax examples in this book have so far, data is sent from Web pages back to
the server by using URL encoding, which means that data is appended to the
actual URL that is read from the server.

Chapter 3: Getting to Know Ajax ’ 0 7

A\

For example, if you're using the GET method and you have a text field named
a that contains the number 5, a text field named b that contains the number
6, and a text field named c that contains the text "Now is the time", all
that data would be encoded and added to the URL you’re accessing. When
data is URL encoded, a question mark (?) is added to the end of the URL, and
the data, in name=data format, is added after that question mark. Spaces in
text are converted to a plus sign (+), and you separate pairs of name=data
items with ampersands (&). So to encode the data from the a, b, and c text
fields and send it to http: //www. servername.com/user/scriptname,
you’d use this URL:

http://www.servername.com/user/scriptname?a=5&b=6&c=Now+is+the+time

Note that the data you send this way is always text — even if you're sending
numbers, they’re treated as text.

The JavaScript escape function will encode data for appending to the end
of an URL, and it’ll handle things like converting spaces into + signs auto-
matically. For example, if you want to prepare the text from a text field for
appending to a URL, you would use code like this: var urlReadyText =
escape (textField.value) ;.

In this particular example, the goal is to tell a single online script, options.
php, which color scheme you want to use, scheme 1 or scheme 2. The idea
is to send the value "1" or "2" to options.php. How you recover those
values in your server-side script depends on what language you’re using. In
PHP, for example, you can recover those values by using an array named
$_GET (because you're using the GET method — if you were using the POST
method, you'’d use $_POST). So if you name the data you're sending to the
script scheme in a URL something like this

http://localhost/ch03/options.php?scheme=1

you can then recover the setting of the scheme argument in your PHP as
$_GET["scheme"].For scheme = "1", you want to send back the colors
'red', 'green', and 'blue’; for scheme = "2", you send back the values
'black', 'white', and 'orange'. Here’s what options.php looks like —
note the part that checks what scheme is being requested:

<?

header ("Content-type: text/xml");

if ($_GET["scheme"] == "1")
$options = array('red', 'green', 'blue');
if ($_GET["scheme"] == "2")
$options = array('black', 'white', 'orange');

echo '<?xml version="1.0"?>"';
echo '<options>';
foreach ($options as $value)

{

1 08 Part Il: Programming in Ajax

echo '<option>';

echo $value;

echo '</option>';
}
echo '</options>';
?>

Okay, this PHP script sends back two different XML documents, depending
on which color scheme you choose — 1 or 2. The next step is to design a new
HTML document, options2.html, that will call options2.php correctly. In
options2.html, the buttons the user can click to select the color scheme
will pass the number of the selected scheme, 1 or 2, to the getOptions func-
tion, like this:

<body>
<hl>Passing data using Ajax and XML</hl>
<form>
<select size="1" id="optionList"

onchange="setOption() ">
<option>Select a scheme</option>

</select>
<input type = "button" value = "Use color scheme 1"
onclick = "getOptions('l')">
<input type = "button" value = "Use color scheme 2"
onclick = "getOptions('2')">
</form>

<div id="targetDiv" width =100 height=100>Color this text.</div>
</body>
The getOptions function accepts that one argument, the scheme number:

function getOptions(scheme)

{

The first step is to URL encode the scheme number, setting the scheme argu-
mentto "1" or "2", as the options.php script will expect:

function getOptions (scheme)
{
var url = "options2.php?scheme=" + scheme;

Chapter 3: Getting to Know Ajax ’ 09

Excellent. Now all you’ve got to do is to open the URL by using the GET
method and then use the data from the server to fill the drop-down list:

function getOptions (scheme)
{

var url = "options2.php?scheme=" + scheme;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", url, true);

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option");
listOptions();
}

}

XMLHttpRequestObject.send(null);
}
}

And that’s it — options2.html will call options.php on the server, pass-
ing the number of the color scheme the user selected. And options.php will
send back the data for the colors in that scheme. Very nice. This works as it
should. Now you’re sending data to the server.

Passing Data to the Server with POST

When you pass data to a URL by using the POST method, it’s encoded inter-
nally (in the HTTP request sent to the server), which makes sending data
more secure than with GET (although not as secure as using a secure HTTPS
connection to the server).

In the following sections, you see how using the POST method works.

Passing data by using the POST method in Ajax is a little different than using
GET. As far as the PHP goes, you can recover data sent to a PHP script by
using POST with the $_POST array, not $_GET. Here’s what that looks like

in a new PHP script, options3.php:

<?
header ("Content-type: text/xml");
if ($_POST["scheme"] == "1")
$options = array('red', 'green', 'blue');
if ($_POST["scheme"] == "2")

$options = array('black', 'white', 'orange');

1 ’0 Part Il: Programming in Ajax

\\J

echo '<?xml version="1.0"?>";
echo '<options>';
foreach (Soptions as S$value)
{
echo '<option>';
echo S$value;
echo '</option>';
}
echo '</options>';
?>

I've heard of rare PHP installations where $_POST wouldn’t work with Ajax
applications when you use the POST method, in which case you have to use
SHTTP_RAW_POST_DATA instead. This technique gives you the raw data
string sent to the PHP script (such as "a=5&b=6&c=Now+is+the+time"),
and it’s up to you to extract your data from it.

How do you use the POST method in your JavaScript? It isn’t as easy as just
changing "GET" to "POST" when you open the connection to the server:

XMLHttpRequestObject.open ("POST", url); //Won't work by itself!

It isn’t as easy as that, because you don’t URL-encode your data when you
use POST. Instead, you have to explicitly send that data by using the
XMLHttpRequest object’s send method.

Here’s what you do. You set up the URL to open without any URL encoding
this way in the getOptions function, which is the function that communi-
cates with the server:

function getOptions (scheme)
{

var url = "options3.php";

}
Then you configure the XMLHt tpRequest object to use this URL. You do this

by using the open method and by specifying that you want to use the POST
method:

function getOptions (scheme)
{
var url = "options3.php";

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("POST", url);

Chapter 3: Getting to Know Ajax

To use the POST method, you should also set an HTTP header for the request
that indicates the data in the request will be set up in the standard POST way.
Here’s what that looks like:

function getOptions (scheme)
{
var url = "options3.php";

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-£form-urlencoded');

Then you can connect an anonymous function to the XMLHt tpRequest

object’s onreadystatechange property as before to handle asynchronous
requests, as shown here:

function getOptions (scheme)
{

var url = "options3.php";

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject .onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option");
listoptions();
}

111

1 ’2 Part Il: Programming in Ajax

And now comes the crux. Instead of sending a nul1l value as you would if you
were using the GET method, you now send the data you want the script to
get. In this case, that’s scheme = 1, like this:

function getOptions (scheme)
{

var url = "options3.php";

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option") ;
listOptions () ;
}

XMLHttpRequestObject.send ("scheme=" + scheme);

There you go. Now this new version of the Ajax application, options3.
html, will use the POST method to send its data to options3.php, which
will return its data in XML format. Very neat.

If you want to use XML to send your data to the server-side program, the
POST method works, too. That’s because you don’t have to explicitly encode
the data you send to the server yourself, appending it to the end of an URL.
(Some servers have limits on how long URLs can be.)

To send your data as XML, you set a Request header so that the content type
of your request will be "text/xml" instead of "application/x-www-
form-urlencoded":

XMLHttpRequestObject.setRequestHeader ("Content-Type", "text/xml")

Then you can send your XML directly to the server by using the send
method, which goes something like this:

XMLHttpRequestObject.send ("<doc><name>1imit</name><data>5</data></doc>") ;

Chapter 4

Ajax in Depth

In This Chapter

Returning JavaScript from the server

Returning JavaScript objects

Connecting to Google Suggest yourself

Creating a live search

Performing server-side validation

Handling head requests

Handling multiple XMLHttp requests at the same time

ll H ey!” says the highly-paid master Ajax programmer, “what’s all this
about? I'm just doing my normal Ajax programming here, and some
darn security message keeps popping up.”

“The browser’s giving you a security warning,” the CEO says. “It says your
application is trying to access another Web site.”

“Well, that’s very helpful news,” the highly-paid master Ajax programmer
says, “l know that.”

“You shouldn’t try to connect to another Web domain like Google from your
JavaScript — didn’t you read Chapter 4 in Ajax For Dummies?” you say
calmly, emerging from the shadows.

“Huh?” asks the master Ajax programmer.

“It’s okay,” you say, sitting down and taking over, “I'll show you how this
should work — for a substantial fee.”

You know Ajax adds power to your Web applications, but as this example
shows, unless you know the tricks, problems such as this one can drive your
users away. This chapter explains how you can best implement powerful
Ajax techniques, such as connecting to Google for instant searches, returning
JavaScript from the server, sending Http head requests to the server, debug-
ging Ajax, and handling multithreading issues. It’s all coming up in this chapter.

1 ’4 Part Il: Programming in Ajax

Returning JavaScript from the Server

NBER
Q&
&

In Chapter 3, I explain how to deal with text sent back to an Ajax application
from the server and how to work with simple XML sent back from the server
as well. But there’s another technique you sometimes see — the server can
send back JavaScript for you to execute. This isn’t as wacky as it sounds,
because you can use the built-in JavaScript function named eval to evaluate
text sent back to you from the server, and if that text is JavaScript, you're in
business.

When do you send back JavaScript
from the server?

You can sometimes see this technique used when an Ajax application sends
multiple requests to a server, and you don’t know which one will return first.
In such a case, programmers sometimes have the server return the actual
JavaScript to be executed that will call the correct function — one function
for one asynchronous request, another function for another.

[don’t recommend this technique except in one case — where you don’t have
any control over the server-side code, and you have to deal with the Java-
Script it sends you (as when connecting to Google Suggest, which I explain
later in this chapter). Otherwise, it’s not the best programming form to have
the server return code to execute — the server-side program shouldn’t have
to know the details of your JavaScript code, and getting code from outside
sources makes your application that much harder to debug and maintain.
Instead, | recommend that your call to the server return a value that can be
tested, and the JavaScript code in the browser can then call the correct
function.

On the other hand, this is a common Ajax technique that’s sometimes
unavoidable when you have to deal with a server over which you have no
control that returns JavaScript code, so you should get to know how this
works.

How does returning JavaScript work?

To show you how this technique works, here’s an example — javascript.
html in the code for this book. This example displays a button with the cap-
tion Fetch JavaScript, as you can see in Figure 4-1.

¥) Returning JavaScript - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (]

<:ZI - |_;/\ - @ x| {ﬁ]4 http:.f.-"loc:alhosi.-"chD4.-"javasc:rij D Go ||C,,|,
& Getting Started Ly Latest Headlines

Returning JavaScript

—

Figure 4-1: Fetch JavaScript
Fetching The fetched data will go here.
JavaScript
by using
Ajax.

Daone =R
| =

Here’s how to create the button in HTML in javascript.html:
<body>
<H1>Returning JavaScript</HI1>
<form>
<input type = "button" value = "Fetch JavaScript"
onclick = "getData('javascript.php')">
</form>
<div id="targetDiv">
<p>The fetched data will go here.</p>

</div>

</body>

Note that when the user clicks the button, a function named getData is
called with the relative URL to get the JavaScript from, javascript.php.

Here’s how the getData function calls that URL:

<html>
<head>
<title>Returning JavaScript</title>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");

Chapter 4: Ajax in Depth

115

1 ’6 Part Il: Programming in Ajax

function getData(dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", dataSource);

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

XMLHttpRequestObject.send(null);
}

The server-side script, javascript.php, is very simple. It sends back a line
of JavaScript that will call a function named alerter:

<?php
echo 'alerter()';
?>

So when javascript.html calls javascript.php behind the scenes, the
XMLHt tpRequest object will end up with the text "alerter () " inits
responseText property. You can execute that JavaScript easily — just pass
it to the JavaScript eval function in the getData function this way:

function getData (dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

eval (XMLHttpRequestObject.responseText) ;

XMLHttpRequestObject.send (null) ;
}

Chapter 4: Ajax in Depth

Excellent, all that’s left now is to add the alerter function to javascript.
html. That function just displays a friendly message, "Got the JavaScript
OK. ", on the page by writing that text to a <div> element:

function alerter()
{

var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = "Got the JavaScript OK.";
}

This is the function that will be called when the server-side script sends back
the line of JavaScript to be executed, "alerter () ". The <div> element
where the message is displayed looks like this in the <body> section of the
page:

<body>
<H1>Returning JavaScript</H1>

<form>
<input type = "button" value = "Fetch JavaScript"
onclick = "getData('javascript.php')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>

And that’s all there is to it. Now when the user clicks the button, this Ajax
application fetches JavaScript to execute from the server, and it executes that
JavaScript, calling a function that displays a success message, as you see in
Figure 4-2.

¥ Returning JavaScript - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (*]

<:ZI - |_;/\ - @ x| {ﬁ]4 http:.f.-"loc:alhosi.-"chD4.-"javasc:rij D Go ||C,,|,
& Getting Started Ly Latest Headlines

s | Returning JavaScript
Figure 4-2:
Successfully
fetChing Got the JavaScnpt OF.
JavaScript
by using
Ajax.
Daone =R

117

1 ’8 Part Il: Programming in Ajax

Returning a JavaScript object

You can do more than simply returning lines of JavaScript code to be exe-
cuted in an Ajax application — you can return JavaScript objects from the
server, as well.

But wait — can’t you only return text and text formatted as XML to an Ajax
application from the server? Yep, but you can format a JavaScript object as
text to be converted back into an object after you get your hands on it in
your JavaScript code.

Here’s an example, object .html in the code for this book, to show how that
works. (See this book’s Introduction for details about the code on this book’s
companion Web site.) Say you have function named adder, as in this example,
which adds two numbers and displays the sum in an alert box:

function adder (opl, op2)
{
var sum = opl + op2;
alert(opl + " + " + op2 + " = " + sum);

}

Then say you wanted to create an object that held the name of the function
to call, along with the two operands to pass to that function — this is the
kind of object a server-side program might pass back to you. In this case, the
object being passed back to your script might have these three properties:

v function: The function to call, such as "alerter".

v operandl: The first operand to pass to the alerter function, 2 in this
example.

v operand2: The second operand to pass to the alerter function, 3 in
this example.

You can create an object with these three properties from text in JavaScript.
The variable named text holds the text to use, and the variable named
jSObject holds the object that will be created:

var text = "{function: 'adder', operandl: 2, operand2: 3};";
var jSObject;

You can use the eval function to create the new object and assign it to the
jSObject variable this way:

eval ('jSObject = '+ text);

Chapter 4: Ajax in Depth ’ ’9

Then you can call the adder function by using the properties of the newly
created object:

<html>
<head>
<title>
Converting text to a JavaScript object
</title>

<script>
var text = "{method: 'adder', operandl: 2, operand2: 3};";
var jSObject;

eval ('jSObject = '+ text);

eval (jSObject.method + '(' + jSObject.operandl + ',' +
jSObject.operand2 + ');');

function adder (opl, op2)
{
var sum = opl + op2;
alert(opl + " + " + op2 + " = " + sum);
}
</script>
</head>

<body>
<hl>
Converting text to a JavaScript object
</hl>
</body>
</html>

You can see the results in Figure 4-3. Apparently, 2 + 3 = 5.

I
-
Figure 4-3: Microsoft Internet Explorer B3
Creating a "_\ PP
JavaScript L
object from
text.
I

That’s how you can pass back a JavaScript object from the server to an Ajax
application — pass back the text that you can convert into an object by using
the JavaScript eval function.

, 20 Part Il: Programming in Ajax

Connecting to Google for a Live Search

I'm not really an advocate of using JavaScript sent to you from the server in
Ajax applications, except in one case — if the server you’re dealing with gives
you no choice. And that’s the case with the example [show you in this sec-
tion: connecting directly to Google to implement a live search.

One of the famous Ajax applications is Google Suggest, which you can see at
work in Figure 4-4. To use Google Suggest, just navigate to it (as of this writ-
ing, its URL is www.google.com/webhp?complete=1&hl=en), and start
entering a search term. As you see in the figure, Google gives you suggestions
as you type — if you click a suggestion, Google searches for that term.

This application is one of the flagships of Ajax because the drop-down menu
you see in the figure just appears — no page refreshes needed. This kind of
live search application is what wowed people about Ajax in the first place.

As it turns out, you can implement the same kind of live search yourself,
tying directly into Google Suggest, as you see in the next example, google.
html in the code for this book, which appears in Figure 4-5. Just as when you
enter a search term in the Google page, you see a menu of clickable items in
this local version, which updates as you type.

How can you connect to Google Suggest yourself? Say that you placed the
search term you wanted to search for in a variable named term. You could
then open this URL:

http://www.google.com/complete/search?hl=en&js=true&qu=" + term;

;’3 Google - Microsoft Internet Explorer

File Edit View Favorites Tools Help *

QBack » () ~ x] 2] (0|)search iFavokes £ (v o v [& D 3

Address |§| Fittp:f e google. comfwebhpfoompletes 1ablsen :] Go Links *
Suggest 8

Web |manes Groups bews Frooole Local mores

Advanced Search
Preferences

Larquage Tools
ajax amsterdam 502,000 results
ajax fo 740,000 results
aja ortano 276000 results

— ASYOUDE, B0l 10y grips 8,860 rezutts 13- LEAMMOIE

Figure 4-4: :Jax fno;pall_club 573,000 razults
ya public library 40,500 results

G o0og le ajax football 454,000 rasults —
ajay soccar 437 000 rasults

Suggest aiay nickerinotranst 40700 ras

1N

— B T | e

Chapter 4: Ajax in Depth ’2 1

|
Figure 4-5:
Alocal
version of
Google
Suggest.

;'EGnn_qle live search - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

@Back v () - ¢ 2] | search cFavarites & | (v b w v [@D 3

Address | €] http:fflocalhost/chot/aocgie. heml x| E)ee | Links »
|

Google live search

Sea:chfmlﬁjax

ajax 3,840,000 results

ajax amsterdam 302,000 results

ajax fo 710,000 results

ajax ontaro 275,000 results

#JAX grps 3,260 results

ajax football chab 573,000 results
ajax public library 40,500 results

ajax foothall 454,000 results
ajax soccer 437,000 results

ajax pickering transit 10,700 results

] Done l_l_l_l_’_h} Lacal intranet

B

You get back a line of JavaScript from Google Suggest that calls a function
named sendRPCDone. Here are the parameters passed to that function:

sendRPCDone (unusedVariable, searchTerm, arrayTerm, arrayResults, unusedArray)
What does the actual JavaScript you get back from Google Suggest look like?

If you're searching for "ajax", this is the JavaScript you’ll get back from
Google as of this writing:

sendRPCDone (frameElement, "ajax", new Array("ajax", "ajax amsterdam",
"ajax fc", "ajax ontario", "ajax grips", "ajax football club", "ajax public
library", "ajax football", "ajax soccer", "ajax pickering transit"), new

Array("3,840,000 results", "502,000 results", "710,000 results", "275,000
results", "8,860 results", "573,000 results", "40,500 results", "454,000
results", "437,000 results", "10,700 results"), new Array(""));

You can handle this by putting together a function named sendRPCDone that
will display this data as you see in Figure 4-5 (shown earlier). Cool.

Handling the data Google sends you

What does the code look like in google.html? The text field where the user
enters text is tied to a function named getSuggest by using the onkeyup
event. As a result, getSuggest will be called every time the user types and
releases a key. (Note that the event object is passed to getSuggest by this

1 22 Part Il: Programming in Ajax

code, because that object holds information about which key was pressed,
and also note the <div> element where the suggestions will appear,
targetDiv.) Here’s what the code looks like:

<body>
<H1>Google live search</H1>

Search for <input id = "textField" type = "text"
name = "textField" onkeyup = "getSuggest (event)">

<div id = "targetDiv"><div></div></div>

</body>

Detecting keystrokes

The getSuggest function is supposed to be passed an event object that it
will refer to as keyEvent, which holds data about the key event that just
took place:

function getSuggest (keyEvent)
{

}
However, this method of passing the event object doesn’t work in the Internet
Explorer, which means get Suggest won'’t be passed anything in that browser.
You have to use the window. event object instead in the Internet Explorer.
So the first line of getSuggest is a typical line of JavaScript that uses the
JavaScript conditional operator (flip to Chapter 2 and check out Table 2-1)

to make sure you have an event object to work with. Here’s an example that
shows how to use this operator:

var temperature = condition ? 72 : 55;

If condition is true, the temperature variable will be assigned the value 72; if
condition is false, temperature will be assigned 55. In the get Suggest func-
tion, you can use the conditional operator to test whether keyEvent has a
non-zero value. If it doesn’t, you should use window. event instead:

function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;

Chapter 4: Ajax in Depth ’ 23

You can also determine which control the user was typing into, but that
depends on which browser the user has. In the Internet Explorer, you use the
srcElement property of the keyEvent object, but otherwise, you use the
target property to get the control the user was typing into:

function getSuggest (keyEvent)
{
function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

}

Excellent. You have all the data you need about the key event. Now you can
use the following code to check whether the event was a key up event:

function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == "keyup") {

}
}

If the event was a key up event, it’s time to read the struck key. If there is
some text in the text field, it’s time to connect to Google Suggest.

Connecting to Google Suggest

To connect to Google Suggest, you call a function named getData which
does exactly that — gets the live search data, like this:

function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == "keyup") {
if (input.value) {
getData("google.php?qu=" +

1 24 Part Il: Programming in Ajax

input.value);

If no text exists in the text field, the user deleted that text, so you can clear
the suggestions (which appear in a <div> element named targetDiv) as
follows:

function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == "keyup") {
if (input.value) {
getData("google.php?qu=" +
input.value) ;

}
else {
var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = "<div></div>";

How does the getData function work? This function calls the PHP script that
actually interacts with Google Select, and passes on the current search term
on to that script. This function is called with the relative URL to call, which is
this (where term holds the search term):

google.php?qu=" + term;
That URL is opened in the getData function this way:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");

Chapter 4: Ajax in Depth ’25

function getData (dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", dataSource);

Showing Google’s response

When you have the search data, you need to show the response from Google,

which will be JavaScript. The response is executed with the JavaScript eval
function:

function getData (dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
eval (XMLHttpRequestObject.responseText) ;

XMLHttpRequestObject.send (null) ;
}

This calls the sendRPCDone function. All that’s left in google.html is to set
up that function in this way:

function sendRPCDone (unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

1 26 Part Il: Programming in Ajax

You fill the <div> element, targetDiv, with data you get from Google in the
sendRPCDone function, using an HTML table to align the columns. Here’s
how to create the table and start looping over the suggestions Google
returned:

function sendRPCDone (unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

var data = "<table>";
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {

data += "</table>";
var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = data;

Next, you give each suggestion its own hyperlink which — when clicked —
searches Google, redirecting the browser to the Google Web site like this:

function sendRPCDone (unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

var data = "<table>";
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {
data += "<tr><td>" +
"<a href='http://www.google.com/search?q=" +
arrayTerm[loopIndex] + "'>" + arrayTerm[loopIndex] +
'</td><td>' + arrayResults[loopIndex] + "</td></tr>";

data += "</table>";
var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = data;

Chapter 4: Ajax in Depth ’2 7

The last touch: the targetDiv <div> element is given a light yellow back-
ground in the <style> element in the <head> section (you can find out
more on how to use styles with Ajax in Chapter 9):

<html>
<head>

<title>Google live search</title>

<style>

#targetDiv {
background-color: #FFEEAA;
width: 30%;

}

</style>

And that’s all it takes.

Because this Google example is a complicated one, Listing 4-1 shows the
whole code to help you put things in place:

Listing 4-1: Connecting to Google Suggest

<html>
<head>

<title>Google live search</title>

<style>

#targetDiv {
background-color: #FFEEAA;
width: 30%;

}

</style>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp") ;
}

function getData (dataSource)

{

(continued)

1 28 Part Il: Programming in Ajax

Listing 4-1 (continued)

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
eval (XMLHttpRequestObject.responseText) ;

XMLHttpRequestObject.send (null) ;

function getSuggest (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target
keyEvent.srcElement;

if (keyEvent.type == "keyup") {
if (input.value) {
getData("google.php?qu=" +
input.value) ;
}

else {

var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = "<div></div>";

function sendRPCDone (unusedVariable, searchTerm, arrayTerm,
arrayResults, unusedArray)

var data = "<table>";
var loopIndex;

if (arrayResults.length != 0) {
for (var loopIndex = 0; loopIndex < arrayResults.length;
loopIndex++) {
data += "<tr><td>" +
"<a href='http://www.google.com/search?q=" +
arrayTerm[loopIndex] + "'>" + arrayTerm[loopIndex] +

'</td><td>' + arrayResults[loopIndex] + "</td></tr>";

7

Chapter 4: Ajax in Depth ’ 29

}
data += "</table>";
var targetDiv = document.getElementById("targetDiv");
targetDiv.innerHTML = data;
}
</script>
</head>
<body>

<H1>Google live search</H1>

Search for <input id = "textField" type = "text"

name = "textField" onkeyup = "getSuggest (event)">
<div id = "targetDiv"><div></div></div>
</body>
</html>

Check out the PHP script, google.php, which is the script that actually does
the communicating with Google. This one takes a little PHP of the kind that
appears in detail in Chapter 10. This script is passed the term the user has
entered into the text field, and it should get some suggestions from Google,
which it does like this with the PHP fopen (file open) statement:

<?php
$handle = fopen("http://www.google.com/complete/search?hl=en&js=true&qu=" .

$_GET["qu"] , "r");

This gives you a PHP file handle, which you can use in PHP to read from the
Google URL. Here’s how that looks in PHP, where a while loop keeps reading
data from Google as long as the end of the data marker isn’t seen. You can
check if you've reached the end of the data with the feof function, which
returns true if the end of the data has been reached:

<?php
Shandle = fopen ("http://www.google.com/complete/search?hl=en&js=true&qu=" .
$_GET[“qu“], Hr“);
while (!feof($handle)){

1 30 Part Il: Programming in Ajax

?>

To get the data from Google, you can use the fgets (file get string) function,
and echo the fetched text, which sends that text back to the browser. Here’s
how you can make that happen:

<?php
Shandle = fopen ("http://www.google.com/complete/search?hl=en&js=true&qu=" .
$_GET["qu"], "r");
while (!feof ($handle)) {
$text = fgets($handle);
echo $text;
}
fclose($handle) ;
?>

And that’s all you need. Now this script, google.php, will read the sugges-
tion data from Google and send it back to your script.

Everything works as expected. (Note, however, that this example can execute
slowly; Google Suggest is still in beta version as [write this book.) But why
was it necessary to use a PHP script at all? Why couldn’t the Ajax part have
called Google directly to get the suggestions from Google? The answer is
coming up in the next section.

Calling a Different Domain

When an Ajax script tries to access a Web domain that it isn’t part of (such as
http://www.google.com), browsers these days get suspicious. They’'ve
surely been burned enough by malicious scripts. So if your Ajax application
is hosted on your own Web site and you try to access an entirely different
site in your code, you’ll probably see a security warning like the one that
appears in Figure 4-6.

If that kind of warning appears each time your Ajax application is going to
access data, you have a disaster. What user wants to keep clicking the Yes
button over and over?

So what’s the solution? You'll see various solutions thrown around in the Ajax
community, such as changing the security settings of the user’s browser.
Clearly, that’s a poor suggestion — how are you going to convince the general

Chapter 4: Ajax in Depth ’3 1

public to do that so they can use your script? Another suggestion you might
see is to mirror the site you're trying to access locally. That’s another poor
suggestion when it comes to working with a site like Google. (Can you imag-
ine your ISP’s response when you say you need an additional 10,000GB of
hard drive space — and that’s just for starters?)

|
Figure 4-6:
You get a
security
warning :
whenyou | e T poves ety s Do
try to confinue?
access a
different
domain by
using Ajax.

Internet Explorer E3

Yes

As far as Ajax goes, the fix to this problem isn’t really all that difficult, even
though browsers have become somewhat sticky in regards to security. The
fix is to let a server-side script, not your code executing in the browser,
access the different domain for you. That’s why it was necessary to have

google.html use google.php to access the Google URL. Here’s how it
does that:

<?php

$handle = fopen("http://www.google.com/complete/search?hl=en&js=true&qu=" .
$_GET[“qu“] , Ilrll) ;

“&\‘I\BER Accessing a Web domain different from the one the browser got your Ajax
& application from will cause the browser to display a security warning. To
avoid that, use sever-side code to access that different domain and send any
data back to you.

Reversing the Roles: Performing
Validation on the Server

As I explain in “Connecting to Google for a Live Search” earlier in this chapter,
you can literally check the user’s input character by character as they type.

132 Part Il: Programming in Ajax

This capability is important to Ajax. To save bandwidth, you might not want
to do that all the time, but it can come in handy. For example, you might want
to validate the user’s input as she’s typing.

Data validation is often done by JavaScript in the browser these days, but a
script in the browser can’t check certain things without contacting the
server, such as a database on the server or a list of usernames and pass-
words that you don’t want to download to the browser for obvious security
reasons. Instead, you can use Ajax for a little server-side validation.

The code for this book has an example for that — 1login.html and login.
php, which let a new user select a username. When you open login.html
and enter a tentative username, the code checks with 1ogin.php on the
server and makes sure the name the user entered isn’t already taken, as you
see in Figure 4-7.

;’3 Choose a username - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
QBack » () ~ x] 2] (0|)search iFavokes £ (v o v [& D 3
Address [&] hitp flocalhst/chos fiogin bl x| Edse | Links >
[|
Choose a username
Enteryou new usemame [steve
That username is taken,
|
Figure 4-7:
Performing
validation
onthe
server. E
2] Done l_l_l_l_l_l\J Laocal intranet 4

The following code shows what 1ogin.php looks like. As you can see, only
one taboo name exists: "steve". If you try to take that username, this PHP
script will return a value of "taken".

<?php
if ($S_GET["qu"] == "steve"){
echo "taken";
}
else {
echo "ok";
}

?>

Chapter 4: Ajax in Depth

The login.html file asks the user to enter the possible new username in a
text field, and every time there’s a new keystroke, the checkUsername func-
tion is called, as you see here:

<body>

<H1>Choose a username</H1>

Enter your new username <input id = "textField" type = "text"
name = "textField" onkeyup = "checkUsername (event) ">
<div id = "targetDiv"><div></div></div>
</body>

The checkUsername function passes control onto the getData function to
check the username the user has entered so far, like so:

function checkUsername (keyEvent)
{
keyEvent = (keyEvent) ? keyEvent: window.event;
input = (keyEvent.target) ? keyEvent.target :
keyEvent.srcElement;

if (keyEvent.type == "keyup") {
var targetDiv = document.getElementById("targetDiv");
targetDiv.innerHTML = "<div></div>";

if (input.value) {
getData("login.php?qu=" +
input.value);

And the getData function asks login.php if the user’s current suggested
username is taken. If it is, the code displays the message "That username
is taken. ". this way:

function getData (dataSource)
{
if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
if (XMLHttpRequestObject.responseText == "taken"){

133

134 Part IIl: Programming in Ajax

\\J

var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = "<div>That username is taken.</div>";
}
}
}

XMLHttpRequestObject.send (null) ;
}
}

You can see this server-side validation at work in Figure 4-7, which appears
earlier in the chapter. Now you’re using Ajax to check user input character by
character. Very cool.

Checking every character the user types is okay only for limited, specific
uses like the one in this example. You don’t want to overwhelm the server
with endless requests for data.

Getting Some Amazing Data
with HEAD Requests

In Chapter 3, I explain how to use the GET method when you primarily need
to fetch some data from the server, and the POST method when the idea was
primarily to send data to the server. Another option is to use HEAD requests,
which gets data about a document, and about the server.

How do you make a HEAD request? You just use HEAD as the method to get
data with. You can see an example, head.html, at work in Figure 4-8.

As you see in the figure, this example displays data on the server, last-modified
date of the document, the current date, the type of the document being
accessed, and so on. Here’s what that data looks like:

Server: Microsoft-IIS/5.1 Date: Tue, 09 Aug 2005 16:17:03 GMT
Content-Type: text/plain Accept-Ranges: bytes Last-Modified: Thu, 28 Jul
2005 16:29:44 GMT Etag: "94125909193c51:911" Content-Length: 38

This data represents the values of the Http headers that an Ajax script gets
when it tries to read a text file on the server, data. txt. If you sent a GET
request, you’d get the text inside data . txt. But if you send a HEAD request,
you get data about data . txt and the server. For example, the "Last-
Modified" Http header holds the text "Thu, 28 Jul 2005", which is the
date on which data. txt was last modified.

|
Figure 4-8:
Getting

head data
from the
server.
|

¥ Getting header information - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (*]

<:ZI - |_;/\ - @ x| {ﬁ]4 http:.ﬂ-"localhosi.-"chM.-"head.htj D Go ||C,,|,
& Getting Started Ly Latest Headlines

Getting header information

Server: Microsoft-IIS/5. 1 Date: Thu, 02 Sep 2005 16:32:39 GMT Content-Type: text/plam
Accept-Fanges: bytes Last-MModified: Thu, 28 Jul 2005 16:2%44 GMT Etag "94125903193c51:943"
Content-Length: 38

Daone =R

You can grab all this data or just the tidbits that you need. The following sec-
tions have the details.

Returning all the header data you can get

How do you get access to this kind of data? When the user clicks the button
you see in Figure 4-8 (shown earlier), the code calls the getData function
(responsible for interacting with the server) with the relative URL data. txt:

<form>
<input type = "button" value = "Display Message"
onclick = "getData('data.txt', 'targetDiv')">

</form>

The code in the getData function sends a HEAD request for that URL to the
server like this:

<html>
<head>
<title>Getting header information</title>

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");
}

function getData(dataSource, divID)

Chapter 4: Ajax in Depth ,35

136 Part Il: Programming in Ajax

{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("HEAD", dataSource);

}
</script>
</head>

When the data comes back from the server, the data will be in the XMLHttp
RequestObject object, and you can use that object’s getAl1Response
Headers method to get the list of all headers and header data that appears
in Figure 4-7. Here’s how:

function getData (dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("HEAD", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.getAllResponseHeaders();

}
XMLHttpRequestObject.send (null) ;

}

This example gets all the header data that’s available from the server, but
what if you wanted to extract only data from a specific header, such as the
"Last-Modified" header to determine when a file on the server was last
modified? It turns out there’s a method for that too.

Finding the last-modified date

How do you find the data for a specific header, such as the "Last-
Modified" header for a file on the server? Here’s how that works in a
new example, date.html, which you can see at work in Figure 4-9. This

Chapter 4: Ajax in Depth

example checks the date on which the target file on the server, date. txt,
was last modified, and displays that date, as you see in the figure.

etting date information - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

QBack * () ~ x] 2] (0|) Search GFavokes £ (v o< [D 3

Address | €] http:fflocalhost/chos/date.Hnl x| E)se | Links »
=l

Getting date information

data txt was last modified on Thiy, 28 Jul 2005 162944 GMT

|
Figure 4-9:
Getting the
date a file
was last
modified. |]

e

——] Done l_l_l_l_’_|‘_§ Lacal intranet

As in the previous example, this example gets all Http headers for the
data. txt file:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open("HEAD", dataSource);

}

</script>

But then, instead of using the getAl1ResponseHeaders method to get all
headers, you can use the getResponseHeader method to get only data for a
specific header, the "Last-Modified" header, like this:

XMLHttpRequestObject.getResponseHeader ("Last-Modified")

137

138 Part Il: Programming in Ajax

The code displays the text returned in that header on the Web page:

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("HEAD", dataSource) ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = "data.txt was last modified on " +
XMLHttpRequestObject .getResponseHeader (
"Last-Modified");

XMLHttpRequestObject.send (null) ;

As you see in the figure, that gives you a result like "data.txt was last
modified on Thu, 28 Jul 2005 16:29:44 GMT".What if you wanted
to convert that text to numbers that you can check to make sure a file is after
a specific date? You can use the JavaScript Date object for that. Just use the
text you get from the Last-Modified header this way to create a new Date
object named date:

var date = new Date (XMLHttpRequestObject.getResponseHeader ("Last-Modified"));

Now you can compare date to other Date objects by using JavaScript opera-
tors such as > to determine which date is later than the other. You can also
use the built-in Date object methods like getMonth to get the month of the
date object. Here’s a sampling of Date object methods:

alert ("Day (1-31): " + date.getDate());

alert ("Weekday (0-6, 0 = Sunday): " + date.getDay());
alert ("Month (0-11): " + date.getMonth());

alert ("Year (0-99-31): " + date.getYear());

alert (" Full year (four digits): " + date.getFullYear());
alert ("Day (1-31): " + date.getDate());

alert ("Day (1-31): " + date.getDate());

alert ("Hour (0-23): " + date.getHours());

alert ("Minutes (0-59): " + date.getMinutes());

alert ("Seconds (0-59): " + date.getSeconds());

Chapter 4: Ajax in Depth ’3 9

Does a URL exist?

Sometimes, you might want to check to make sure a Web resource exists
before trying to download it. If that Web resource is a long one, you might not
want to download the whole thing just to check whether it’s there. You can
use HEAD requests to check whether a Web resource exists, and use up a lot
less bandwidth doing so.

The example in the code for the book, exists.html, shows how this works
by checking whether or not the data.txt file exists. The following example
works by doing a HEAD request on that file, and checking the return Http
status code — 200 means everything’s fine and the file is there, ready for
use, but 404 means nope, file isn’t there:

<script language = "javascript">
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("HEAD", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4)
if (XMLHttpRequestObject.status == 200)
obj.innerHTML = "URL exists";

~—~

}

else if (XMLHttpRequestObject.status == 404) {
obj.innerHTML = "URL does not exist";

}

XMLHttpRequestObject.send (null) ;

}

</script>

1 4 0 Part Il: Programming in Ajax

A\

You might want to use a technique like the one in this example to check if
your server-side program is there and ready to use — and if it isn’t available
(which might mean your server is down), use a JavaScript alternative
instead, this way:

if (XMLHttpRequestObject.readyState == 4) {
if (XMLHttpRequestObject.status == 200) {
keepGoing () ;

}
else if {(XMLHttpRequestObject.status == 404) {
callAJavascriptFunctionInstead();
}
}

Finding the Problem: Debugging Ajax

WING/
&

When it comes to debugging JavaScript, Firefox is far superior to Internet
Explorer. Firefox has its entire JavaScript console (which you open by choos-
ing Tools=>JavaScript Console), and which actually tells you what the prob-
lems are (as opposed to the unenlightening "Object expected" error you
see for almost any problem in the Internet Explorer).

But what about debugging Ajax issues specifically? Is there any tool that lets
you watch what’s going on with requests to the server and responses from
the server? Such tools are starting to appear.

One example is Julien Couvreur’s XMLHt tpRequest debugger, which is a
Greasemonkey script. Greasemonkey is an extension to Firefox that lets you
add dynamic HTML to change what a particular page does. In the sections
that follow, I explain how you set up and use this debugger to polish your
Ajax code.

This is not to say that Greasemonkey is worry-free — some security issues
have appeared. For example, such issues were discovered in Greasemonkey
version 0.3.4, which is no longer available. So be careful when using this
product.

Setting up your browser for debugging

You can get Greasemonkey from the Mozilla people and set up the debugging
script by following these steps:

1. Open up Firefox and go to http://greasemonkey.mozdev.org.

2. Click the Install Greasemonkey link.

Chapter 4: Ajax in Depth ’4 1

After Greasemonkey is installed, you see a monkey icon in the lower-
right corner in Firefox (skip ahead to Figure 4.12 if you want to see that
icon). Clicking that icon toggles Greasemonkey on and off. You can get
more information on using Greasemonkey at http://greasemonkey.
mozdev.org/using.html.

w

. Go to http://blog.monstuff.com/archives/000252.html to get
Julien Couvreur’s XMLHt tpRequest debugger script.

-

. To install a script like this in Greasemonkey, right-click the link to the
script and select the Install User Script menu item.

This opens the dialog box you see in Figure 4-10, which installs the script.

[

. You can select which URLs the script should be valid for by entering
them in the Included Pages box.

When you access such pages, your XMLHt tpRequest information will
appear in the debugger script.

(=2}

. Click OK when you’re done.

XmiHttpRequestDebugging

Alloves you to debug XmiHttpReguest calls with an in-browser
ul

¢ Included pages

http: fpick. some. domains™ Add. ..
Edit

Remove

~ Excluded pages

Add

— Remove

Figure 4-10:
Installing a
Greasemon Press OK to confirm these
. settings and install the user Ok Cancel
key seript. | aripe.
|

After the initial setup, you can also manage the XMLHt tpRequest
Debugging script in Firefox by choosing Tools=>Manage User Scripts
to open the dialog box you see in Figure 4-11. In that dialog box, you
can add or remove pages you want to track, just as when you first
installed the script.

1 4 2 Part Il: Programming in Ajax

|
Figure 4-11:
Managing a
Greasemon
key script.
|

\\J

Manage User Scripts [=]

XmiHttpRequestDebugging

Allows you to debug XmlHttpRequest calls with an
in-broweser Ul

- Included pages

http:#pick.some. domains/™ Add. ..
hittpc A google. comdwebhp...
http:iflocalhost/

hittpeiflocalhost/chO3~ Remoye
httpc#localhost/chl3foptions3.....

i

- Excluded pages

Add.

Edit

Remove

i

% Enabled Eit | Uninstal |

Ok | Cancel |

Debugging with Greasemonkey

The debugging part comes in when you navigate to one of the pages you
included in Step 5 of the preceding section. For example, if you've included
the Google Suggest page (http://www.google.com/webhp?complete=
l&hl=en), navigate to that page in Firefox and start entering a search term,
the XMLHt tpRequestDebugging script displays what’s going on in Ajax
terms, as shown in Figure 4-12.

In this case, the user has typed s, then ¢, then e in the text field. Each time
the user types a character, an Ajax request is sent to the server, and you
can track those in the window that the script displays at right, as shown in
Figure 4-12.

The script lets you watch every GET request and where it was sent (for
example, "GET /complete/search?hl=en&js=true&qu=s"), as well

as the response that came back from the server (for example, "Status:
completed (200 OK)").That kind of window into what’s happening in Ajax
terms can be very useful when debugging — you can watch, interactively,
what your code is sending to the server, and what the server is sending back.

Chapter 4: Ajax in Depth ,43

¥) Google - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (&

<:3| - |_;> - @ X @ |Q hitp:f.r‘mw.gnogle.comfwahj D Go ILL

@ Getting Started Ly Latest Headlines

XmlHttpRequest debugzing —
capture auto-scroll clear help minimize hide
- GET icompleteisearch?bl=enfje=trusdou

minimize body [edittreplay
S |Status: completed (200 O] [expor]

headers response callback [replay]

Web Images Group| |OET fcompletelsearch?bl=endjs=truedigu=st

imize hody [editéreplad
=20 Status: completed (200 0K [expor]
Google Se headers resp callback [replay]
GET loompletelssarch?hl=end .
le wi = [minimize body [editérepla
Figure 412: As you type, Google will offer sugaestion Status: completed (200 OK) [expor]
Debugging headers r callback [replay
Feedback - Dij
XMLHttp
#2005 Google -
Request !
object use. | =]
— |/ Do 3 4

Overload: Handling Multiple
Concurrent Requests

Looking over the user’s shoulder, you notice they’re clicking different buttons
awfully fast in your Ajax application. “Hey,” you say, “don’t do that.”

“Why not?” the user asks.

“Because if you do, you might confuse the application. You might make it
start a new request before the previous one has had time to come back from
the server.”

“l understand,” says the user, who doesn’t understand at all. As you watch,
the user goes back to clicking buttons just as fast as before.

So far, the Ajax applications you’'ve seen here have all used a single XMLHttp
Request object, and that hasn’t been a big problem. But in the real world,
your Ajax applications might have many buttons to click, many images to roll
the mouse over, many text fields to check — and that means that your Ajax
application might have several requests in to the server at nearly the same
time.

1 44 Part Il: Programming in Ajax

|
Figure 4-13:
Using two
XMLHttp
Request
objects.
|

That can be an issue if you're using the same XMLHt tpRequest object for all
your Ajax work. What if the XMLHt tpRequest object is waiting for a response
from the server when the user clicks another button and forces the same
XMLHttpRequest object to start a new request? The XMLHt tpRequest
object will no longer be waiting for the previous request’s response; now it’ll
be waiting for the current request’s response.

And that’s a problem. When your Ajax application has only one XMLHt tp
Request object to work with, but multiple requests can occur at the same
time, a new request will destroy the object’s ability to handle responses to
the previous ones. Yipes.

What’s the solution? Well, you have a couple options, and they’re coming up.

Double the fun

One solution is to simply have multiple XMLHt tpRequest objects that you
work with, one per request you send to the server. There’s an example of
that in the code for this book, double.html, which you can see at work in
Figure 4-13.

¥) Using two XMLHTTPRequest objects - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (*]

<:ZI - I_L) - @ x| @ I_, h1tp:.-’ﬂucalhost.-‘chﬂ‘t.-’douhlej D Go ||(__1L
@ Getting Started |y Latest Headlines

Using two XMLHTTPRequest objects
Display Message | 1Di

Thus text was also fetched using Aja.

Dane 'g Vi

This example fetches text from data.txt ("This text was fetched
using Ajax.")and data2.txt ("This text was also fetched
using Ajax."), and uses two buttons and two separate XMLHt tpRequest
objects to do it. Here’s what that looks like in the code:

Chapter 4: Ajax in Depth ’45

<html>
<head>
<title>Ajax at work</title>

<script language = "javascript">
var XMLHttpRequestObject = false;
var XMLHttpRequestObject2 = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
XMLHttpRequestObject2 = new XMLHttpRequest();

else if (window.ActiveXObject) ({

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");
XMLHttpRequestObject2 = new ActiveXObject ("Microsoft.XMLHttp");

-~

function getData(dataSource)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv");
XMLHttpRequestObject.open("GET", dataSource);

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send(null);

function getData2(dataSource, divID)
{
if (XMLHttpRequestObject2) {
var obj = document.getElementById("targetDiv");
XMLHttpRequestObject2.open("GET", dataSource);

XMLHttpRequestObject2.onreadystatechange = function()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;

XMLHttpRequestObject2.send(null);

</script>

1 46 Part Il: Programming in Ajax

</head>
<body>
<H1>Fetching data with Ajax</HI1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('data.txt')">
<input type = "button" value = "Display Message 2"
onclick = "getData2('data2.txt')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

This is a simple solution that handles multiple requests in many instances.
But even this isn’t really good enough on some occasions. What if the user
clicks the same button more than once? You might be stuck trying to send a
new request before the old one has returned from the server. And this only
handles two XMLHt tpRequest objects. What if you needed dozens?

FALAA AL

The best way of handling multiple concurrent requests is with multiple
XMLHt tpRequest objects, one per request. You can, for example, create an
array of such objects and add new objects to the array by using the built-in
JavaScript push function each time there’s a new request. You can see a way
of doing this in the example named objectarray.html in the code for this
book. This example declares an array of XMLHt tpRequest objects:

var XMLHttpRequestObjects = new Array();

And then when the application needs a new XMLHt tpRequest object, it just
uses the push function to add one to the array:

if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push (new XMLHttpRequest());
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push (new
ActiveXObject ("Microsoft.XMLHttp")) ;

The Final Goal
Replace

The Final Goal
Replace

The Final Goal
Squiggly

The Final Goal
Strikeout

The Final Goal
HighLight

The Final Goal
HighLight

Chapter 4: Ajax in Depth

That’s how it works. There’s a lot more to it than this, of course; you can see
the full code in objectarray.html. Creating an array of XMLHt tpRequest
objects like this works and lets you handle multiple XMLHt tp requests with-
out getting them mixed up. But it turns out to be a pretty lengthy way of
doing things and, in fact, there’s an easier way — using JavaScript inner
functions.

Getting the inside scoop on inner functions

In JavaScript, an inner function is just a function defined inside another
function. Here’s an example, where the function named inner is an inner
function:

function outer (data)
{

var operandl = data;

function inner (operand2)
{
alert (operandl + operand2)
}
}

Here’s what happens: Say you call the outer function with a value of 3 like
this: outer (3). That sets the variable operand1l in this function to 3. The
inner function has access to the outer function’s data — even after the call to
the outer function has finished. So if you were now to call the inner function,
passing a value of 6, that would set operand? in the inner function to 6 —
and operandl is still set to 3. So the result of calling the inner function
would be 3 + 6 = 9, which is the value that would be displayed by the
JavaScript alert function here.

Now here’s the fun part. Every time you call the outer function, a new copy of
the function is created, which means a new value will be stored as operandl.
And the inner function will have access to that value. So if you make the shift
from thinking in terms of operandl and start thinking in terms of the vari-
able XMLHt tpRequestObject, you can see that each time a function like
this is called, JavaScript will create a new copy of the function with a new
XMLHt tpRequest object, and that object will be available to any inner
functions.

That’s perfect here because the code you've been developing in this and the
previous chapter already uses an (anonymous) inner function to handle
onreadystatechange events in the getData function. Currently, the way it
works is that first, the XMLHt tpRequest object is created, and then it’s used
inside the anonymous inner function this way:

147

1 48 Part Il: Programming in Ajax

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject ("Microsoft.XMLHttp");
}

function getData(dataSource, divID)
{
if (XMLHttpRequestObject) {
var obj = document.getElementById(divID);
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML = XMLHttpRequestObject.responseText;

XMLHttpRequestObject.send (null) ;

So to use a new XMLHttpRequest object for each request, all you have to do
is to use your mastery of inner functions to move the part of the code where
the XMLHt tpRequest object is created inside the getData function, because
the getData function is the outer function that encloses the anonymous
inner function. That’ll create a new XMLHt tpRequest object to be used by
the anonymous inner function each time getData is called — and each time
getData is called, a new copy of getData will be created. That’s what you
want — a new XMLHt tpRequest object for each new request.

Here’s what that looks like in an example in the book’s code, multiobject.
html, where the XMLHt tpRequest object creation part has been moved
inside the outer function, getData. (Note that this example also deletes each
XMLHt tpRequest object as it finishes with it. That isn’t necessary, but it’s a
good idea to avoid cluttering up memory with extra XMLHt tpRequest
objects.)

<html>
<head>
<title>Using multiple XMLHttpRequest objects</title>

<script language = "javascript">

function getData (dataSource)

{

Chapter 4: Ajax in Depth ’ 4 9

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHttp");

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
document .getElementById("targetDiv") .innerHTML =
XMLHttpRequestObject.responseText;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send (null) ;

}
</script>
</head>

<body>

<H1>Using multiple XMLHttpRequest objects</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('data.txt')">
<input type = "button" value = "Display Message 2"
onclick = "getData('data2.txt')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

And there you go. This application can handle multiple concurrent XML Http
requests, such as when the user is clicking multiple Ajax-enabled buttons in

’50 Part Il: Programming in Ajax

|
Figure 4-14:
Using two
XMLHttp
Request
objects.
|

rapid succession. Each time the getData function is called, a new copy of
that function is created — and a new XMLHt tpRequest object is created,
which the anonymous inner function has access to, even after the call to
getData (the outer function) has finished. And because each request gets its
own XMLHt tpRequest object, there won’t be any conflicts.

Very cool. You can see multiobject.html at work in Figure 4-14.

43 Using multiple XMLHttpReqguest ohjects - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
ek ()~ «] 2] ,l, Search __._Fuvnri:usf"l LT i P 3
Address | €] httpifflocalhost{cho#jmuliobiect htrl x| E)se | Links »
|
Using multiple XMLHttpRequest objects
Display Message || Display Message 2 d
This text was also fetched using Ajac
E
] Done l_l_l_l_’_hj Local intranet -

Part I
Ajax Frameworks

" and then one day it hit Tarzan,
Tiond of Sungle—w\«em foture in that?”

In this part . . .

Fe preceding part, Part I, makes it pretty clear that
considerable programming can be involved in writing
everything from the ground up. But instead of reinventing
the wheel every time, you can put some of the many Ajax
frameworks to work. An Ajax framework can do most

of the programming for you, from the JavaScript to the
server-side programming in languages such as PHP or
JavaServer pages. Part Il puts many of the available Ajax
frameworks to work for you, giving you a shortcut when it
comes to writing your own code. [share all kinds of handy
tricks in this part, such as using Ajax for drag-and-drop
operations, pop-up menus, downloading images behind
the scenes, and more.

Chapter 5
Introducing Ajax Frameworks

In This Chapter

Confronting Ajax design issues

Downloading images by using Ajax and Dynamic HTML
Working with the Ajax Gold framework

Getting XML using the AJAXLib framework

Using the 1ibXmlRequest framework to grab XML

' he Ajax programming team under your supervision isn’t getting much
done, and you decide to drop in to see what’s going on.

“Do we always have to develop all our Ajax code from scratch?” the program-
mers ask. “We keep forgetting how to spell onreadystatechange and other
stuff, and it’s slowing us down.”

“Hm,” you say. “No, you can use one of the many Ajax frameworks available
to make developing Ajax code a lot easier, because those frameworks have
done all the programming for you. You typically need to call only a few
functions.”

“Wow,” the programmers chorus. “How can we get a framework?”

“Just read this chapter,” you say. “Ajax frameworks are usually JavaScript
files that you simply include in your own scripts. That’s all you need.” And
you show the programming crew a list of available Ajax frameworks.

“Gee,” they say, “there sure are a lot of frameworks out there! It’s going to
take us a long time to figure out which one to use.”

You sigh.

This chapter starts the book’s look at the available Ajax frameworks, includ-
ing one I developed especially for this book (Ajax Gold). These frameworks
are mostly free, and they’re typically JavaScript libraries of functions you can
call to use Ajax techniques without having to remember how all the coding
goes.

154 Part lll: Ajax Frameworks

A\

Some of the examples in this chapter use Ajax frameworks that are available
for free online. Before you try to run a particular example, make sure that the
files you need for the associated framework are in the same folder on your
server as the example you're trying to run. For copyright reasons, the code
for the Ajax frameworks that [discuss in this and the next chapter can’t be
included in the downloadable code for this book, so pick up that code at the
supplied URL for a framework before you try to run an example that uses that
framework. (The Ajax Gold framework, developed especially for this book,
does come in the book’s downloadable code.)

A Little More Ajax Power

Now that you’re about to start developing your own ready-to-distribute Ajax
applications, it’s important to bear in mind that Ajax is all about response
time. You can get pretty fancy with some of the Ajax frameworks, so be sure
you test your applications to make sure they have that Ajax feel as they do
everything from writing JavaScript on the fly on the server to downloading
dozens of images by using Ajax.

How’s that? Downloading images? Isn’t Ajax just about text and XML? Yes,
Ajax itself is all about downloading only text or XML, but the browser can
download images and display them without a page refresh by using Dynamic
HTML. And if you start downloading images or other binary objects, being
careful about response time is worthwhile.

How does downloading images by using Ajax with Dynamic HTML work? Your
Ajax script might, for example, download the name or URL of the image you
should display, and you can construct an HTML tag on the fly to make
the browser download the image.

The image.html example in the code for the book demonstrates how this
works. This example has two buttons, as you see in Figure 5-1. When the user
clicks the first button, the application displays Imagel. jpg, as you see in
the figure, and when the user clicks the second button, the application dis-
plays Tmage?2 . jpg. (Both image files are in the ch05 folder of the code avail-
able for download from the Web site associated with this book.)

This application works by using Ajax to fetch the name of the image to load
from one of two image files — imageName. txt or imageName?2 . txt — and
which one is fetched from the server depends on which button the user
clicked. Here’s imageName . txt:

Imagel.jpg

and here’s imageName?2 . txt:

Image2.jpg

Chapter 5: Introducing Ajax Frameworks ’ 5 5

images with Ajax and Dynamic HTML - Microsoft Internet Explorer

File Edit View Favorites Tools Help "
QBack » () v [« (2])] P search JiFavortes €] (0 o W~ [D3
i Address [&] hitp: localhst/chos mage bl x| Edse Links >
Figure 5-1: =
Using Ajax || Downloading images with Ajax and Dynamic HTML

and

Dynamic Display Image 1 | Display Message 2 |
HTML to
download
images .m 1

without
apage
refresh. Bl
——] Done l_l_l_l_’_|‘_§ Lacal intranet

B

When the user clicks a button, the text of the corresponding . txt file is
fetched from the server, and that text is used to create an element,
which is then inserted into the targetDiv <div> element, where the
browser will evaluate it and download the image without a page refresh.
Listing 5-1 shows what that looks like in image.html.

Listing 5-1: Using Ajax to Grab Images from Web Servers

<html>
<head>
<title>Downloading images with Ajax and Dynamic HTML</title>

<script language = "javascript">

function getDataReturnText (dataSource, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;

(continued)

156 Part lll: Ajax Frameworks

Listing 5-1 (continued)

delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send (null) ;

function callback(text)
{
document .getElementById("targetDiv") .innerHTML =
"";

</script>
</head>

<body>
<H1>Downloading images with Ajax and Dynamic HTML</HI1>

<form>
<input type = "button" value = "Display Image 1"
onclick =
"getDataReturnText ('imageName.txt', callback)">
<input type = "button" value = "Display Message 2"
onclick =
"getDataReturnText ('imageName2.txt', callback)">
</form>

<div id="targetDiv">
<p>The fetched image will go here.</p>
</div>

</body>
</html>

The results appear in Figure 5-1, where, through a combination of Ajax and
Dynamic HTML, you're downloading images without a page refresh. The
design issue here is to make sure that when you’re downloading data like this
by writing HTML tags dynamically, you don’t slow response time significantly.
You can use the technique not only for images but also other binary data
objects (such as PDF files, Microsoft Word documents, or Excel spread-
sheets) when you use the Internet Explorer <object> element. If you use
this technique, be careful about degrading performance.

Chapter 5: Introducing Ajax Frameworks ’ 5 7

Introducing the Ajax Gold Framework

Ajax frameworks let you use other people’s code to use Ajax. These frame-
works range from the very simple to the very complex.

But you've already been creating your own Ajax code in this book, so before
taking a look at other people’s efforts, how about putting that code to work in
an Ajax library written specifically for this book? That library is the Ajax Gold
library, and like other Ajax frameworks, it’s a JavaScript file — in this case,
ajaxgold. js (available in the ch05 folder in the code available for down-
load from the Web site associated with this book). You can use the prewritten
functions in this library to make Ajax calls simple as pie. All you have to do is
include ajaxgold.js in your Web page’s <head> section like this:

<script type = "text/javascript" src = "ajaxgold.js"></script>

Now you’ve got the full power of this library at your command — and it’ll
implement the Ajax techniques you want to use. For example, say that when
the user clicks a button, you want to fetch text by using the GET method from
the server. You can use the Ajax Gold function getDataReturnText to do
that — all you have to do is pass it the URL that will return the text you want
like this: http://localhost/ch05/data. txt or
http://localhost/ch05/data.php.

How do you handle the text when it comes back from the server? You pass
the getDataReturnText the name of a function that you've written that
you want to have called with that text — such a function is named a callback
function.

Here’s an example. Say that when the user clicks a button, you want the script
to fetch the text in the file data . txt, and when that text has been fetched,
you want that text to be sent to a function you've named callbackl. Here’s
how you could set up the button to make all that happen:

<form>
<input type = "button" value = "Display Message"
onclick =
"getDataReturnText ('data.txt', callbackl)">
</form>

You don’t include quotation marks around the name of the function, because
you aren’t passing the name of the function here, but actually the function
itself.

158 Part lll: Ajax Frameworks

Then all you have to do is add the function you've named callbackl to your
<script> element. That function will be passed the text that was fetched
from the URL you indicated. In this example, you might just display that text
in a <div> element this way in the callbackl function:

function callbackl (text)
{
document.getElementById("targetDiv") .innerHTML =
"Function 1 says " + text;
}

So as you can see, easy as pie. If you want to use Ajax to get text from a URL,
just call the Ajax Gold function getDataReturnText, passing it the URL and
the function that should be called to handle the received text like this:

getDataReturnText (url, callbackFunction);

No problem. Now you’re using Ajax and you don’t even have to write any Ajax
code. That’s what Ajax frameworks are all about.

Four functions are built into ajaxgold. js, and they’re designed to let you
get either text or XML from a URL by using either the GET or POST method:

V¥ getDataReturnText (url, callback): Uses the GET method to get
text from the server.

V¥ getDataReturnXml (url, callback): Uses the GET method to get
XML from the server.

v postDataReturnText (url, data, callback):Usesthe POST
method to send data to server, gets text back from the server.

V¥ postDataReturnXml (url, data, callback): Uses the POST
method to send data to server, gets XML back from the server.

You can find more details on these functions and how to use them in the fol-
lowing sections.

Using GET to get text

The first function in the Ajax Gold library is getDataReturnText, which
uses the GET method to get text from the server. The getDataReturnText
function and the getDataReturnxml function, which gets XML from the
server, are the two most commonly used. You can find a description of each
function in ajaxgold. js, and here’s the description for
getDataReturnText:

Ajax Gold JavaScript Library supports these functions for using Ajax
(most commonly used: getDataReturnText and getDataReturnXml) :

Chapter 5: Introducing Ajax Frameworks

getDataReturnText (url, callback)
** Uses the GET method to get text from the server. **
Gets text from url, calls function named callback with that text.
Use when you just want to get data from an URL, or can easily
encode the data you want to pass to the server in an URL, such as
"http://localhost/script.php?a=1&b=2&c=hello+there".
Example: getDataReturnText ("http://localhost/data.txt", doWork) ;

Here, the URL is a string, and doWork is a function in your own
script.

How does this function work? You pass a URL to this function so that the
script can fetch text from the URL as well as a callback function which then
receives the text the browser fetched from the server. Here’s how it looks:

function getDataReturnText (url, callback)
{

This function starts by creating an XMLHt tpRequest object:

function getDataReturnText (url, callback)
{

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

And if the browser created the XMLHt tpRequest object successfully, the

code primes that object by passing the URL that the user wants to get data
from to the open method. Here’s what happens:

function getDataReturnText (url, callback)
{
var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

159

1 60 Part lll: Ajax Frameworks

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", url);

Then the code sets up the anonymous inner function (discussed in Chapter 4)
to handle events from the XMLLHt tpRequest object, like this:

function getDataReturnText (url, callback)

{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
} else if (window.ActiveXObject) ({
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

Finally, the browser fetches the URL, and the code passes null as the data,
which is what usually happens with the GET method. Here’s how:

function getDataReturnText (url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

Chapter 5: Introducing Ajax Frameworks ’ 6 1

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send(null);
}

Okay, it’s time to put this new function, getDataReturnText, to work. If you
want to give it a try, open the HTML document testGetDataReturnText.
html in the code for this book ms as always, available for download from

the Web site associated with this book. You can see this example at work in
Figure 5-2. There are two buttons here, and they read text from two different
files on the server. After the browser has fetched that text, it’s displayed as
you see in the figure.

2l Getting text with Ajax Gold - Microsoft Internet Explorer

2

File Edit View Favorites Tools Help U
QBack * () ~ x] 2] (0|) Search GFavokes £ (v o< [D 3
Address | €] httpifflocalhost/cho5 testGetDat aRetirnText. html x| E)se | Links »
|
Getting text with Ajax Gold
Display Message || Display Message 2 |
Function 2 says This text was also fetched using Ajac
|
Figure 5-2:
Using Ajax
Gold to
fetch text. E
——] Done l_l_l_l_’_h} Lacal intranet y

Everything starts by making sure the Ajax Gold library is loaded and available
to your JavaScript, using this line in the <head> section of your Web page:

<script type = "text/javascript" src = "ajaxgold.js"></script>

1 62 Part lll: Ajax Frameworks

Each of the two buttons calls its own URL, and has its own callback function
to handle the text fetched from its URL. Here’s how you can implement that
when creating the buttons, simply by using the getDataReturnText function:

<form>
<input type = "button" value = "Display Message"
onclick =
"getDataReturnText ('data.txt', callbackl)">
<input type = "button" value = "Display Message 2"
onclick =
"getDataReturnText ('data2.txt', callback2)">
</form>

The two callback functions just handle the fetched text and display it in the
<div> element (named targetDiv), like so:

<script type = "text/javascript" src = "ajaxgold.js"></script>

<script language = "javascript">
function callbackl (text)
{
document .getElementById("targetDiv") .innerHTML
"Function 1 says " + text;

function callback2 (text)
{
document .getElementById("targetDiv") .innerHTML =
"Function 2 says " + text;

}
</script>

And that’s all there is to it.

Using GET to get XML

What if you didn’t want to fetch text, but wanted to get XML instead? In that
case, you can use the Ajax Gold getDataReturnXml function, which you can
find described this way in ajaxgold. js:

getDataReturnXml (url, callback)
** Uses the GET method to get XML from the server. **
Gets XML from URL, calls function named callback with that XML.
Use when you just want to get data from an URL, or can easily

Chapter 5: Introducing Ajax Frameworks , 63

encode the data you want to pass to the server in an URL, such as
"http://localhost/script.php?a=1&b=2&c=hello+there".

Example: getDataReturnXml ("http://localhost/data.txt", doWork);
Here, the URL is a string, and doWork is a function in your

own script.

This function is the same as the getDataReturnText function you just saw,
but fetches XML instead of text. In other words, this function uses the

XMLHt tpRequestObject object’s responseXML property, not
responseText, as you see in Listing 5-2.

Listing 5-2: The getDataReturnXml Function

function getDataReturnXml (url, callback)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", url);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseXML) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send (null) ;
}

What about putting the getDataReturnXml function to work reading some
XML? For example, what about rewriting the Chapter 3 example that grabbed
XML for the two different color schemes from the scripts options1.php and
options2.php? No problem at all — you can see the Ajax Gold version,
testGetDataReturnXml .html, in Figure 5-3.

, 64 Part lll: Ajax Frameworks

4} Getting XML with Ajax Gold - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

QBack * () ~ x] 2] (0|) Search GFavokes £ (v o< [D 3

Address | &] hitpylocalhast{cHos festaetDat aReturnar, hirl x| Edse Links >
|

Getting XML with Ajax Gold

|bme vI Use color scheme 1 | Use color scheme 2
red

igreen xL.

|
Figure 5-3:
A simple
Ajax
example. E
——] Done l_l_l_l_’_|‘_§ Lacal intranet

B

The PHP scripts in this example return XML like this:

<? xml version = "1.0" ?>
<options>
<option>
red
</option>
<option>
green
</option>
<option>
blue
</option>
</options>

Writing this example by using the Ajax Gold function getDataReturnXml is
simplicity itself. You want to fetch XML from optionsl.php or options?2.

php when the user clicks a button, and call a function, say getOptionsl or
getOptions?2, that will handle that XML when it’s fetched. Easy. Here’s how

that looks:
<input type = "button" value = "Use color scheme 1"
onclick =
"getDataReturnXml ('optionsl.php', getOptionsl)">
<input type = "button" value = "Use color scheme 2"
onclick =

"getDataReturnXml ('options2.php', getOptions2)">

Chapter 5: Introducing Ajax Frameworks ’ 6 5

The getOptionsl and getOptions?2 functions are passed the XML that
the PHP scripts send back, and all they have to do is store the <option>
elements in an array and pass that array on to the 1istOptions function
developed in Chapter 3, which will list the available options in the applica-
tion’s drop-down list control. Check this out:

function getOptionsl (xml)

{
options = xml.getElementsByTagName("option");
listOptions(options);

}

function getOptions2 (xml)

{
options = xml.getElementsByTagName ("option");
listOptions(options);

}

As in the original version of this example, the 1istOptions function lists the
color options in the drop-down list control:

function listOptions ()
{
var loopIndex;
var selectControl = document.getElementById('optionList');

for (loopIndex = 0; loopIndex < options.length; loopIndex++)
{
selectControl.options[loopIndex] = new
Option(options[loopIndex].firstChild.data);

}

And there you have it — after the users make a selection from the color
scheme they’ve chosen, the text in the page is colored to match.

function setOption|()
{
document.getElementById('targetDiv').style.color =
options[document .getElementById
("optionList') .selectedIndex].firstChild.data;
}

So as you can see, using getDataReturnXml is very easy — just pass the
URL and the callback function that should be called with the XML you get. No
trouble at all. If you want to send data to the server while using the GET
method, just encode that data as part of the URL you’re accessing.

1 66 Part lll: Ajax Frameworks

Using POST to post data and get text

In the Ajax Gold library, you can post data to the server and get text back
using the postDataReturnText function. Here’s how:

postDataReturnText (url, data, callback)

All you have to do is to pass the URL you want to reach on the server, the
data you want to post, and the callback function that will be passed the
text recovered from the server. Here’s the description for
postDataReturnText that appears in ajaxgold. js:

postDataReturnText (url, data, callback)
** Uses the POST method to send data to server, gets text back. **
Posts data to url, calls function callback with the returned text.
Uses the POST method, use this when you have more text data to send
to the server than can be easily encoded into an URL.
Example: postDataReturnText ("http://localhost/data.php",

"parameter=5", doWork) ;

Here, the URL is a string; the data sent to the server
("parameter=5") is a string;and doWork is a function in
your own script.

How does this function work? You pass it three arguments: the URL to fetch,
the data to post, and the callback function that you want called with the
returned text. Here’s what postDataReturnText looks like in action:

function postDataReturnText (url, data, callback)

{

You start by getting a local XMLHt tpRequest object to handle the POST
operations:

function postDataReturnText (url, data, callback)

{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

Chapter 5: Introducing Ajax Frameworks

Then you open the XMLHt tpRequest object for use with the POST method
and use the setRequestHeader method so the server will know that the
data you're sending is encoded in the request in the standard way for the
POST method:

function postDataReturnText (url, data, callback)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded');

To complete the preparations, you set up the anonymous inner function that
will handle the text that comes from the server. The inner function will also
call the callback function with that text:

function postDataReturnText (url, data, callback)

{

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

167

1 68 Part lll: Ajax Frameworks

And you’re set — all you have to do now is to send the request and wait con-
fidently for the returned text to show up. Here’s how you start off your
request:

function postDataReturnText (url, data, callback)

{

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseText) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}

XMLHttpRequestObject.send(data);
}

How might you use postDataReturnText? Here’s an example,
testPostDataReturnText.html in the code available for download from
the Web site associated with this book. This example posts data to a small
PHP script named echo . php, which simply echoes back the data sent in a
parameter named message:

<?
echo ($S_POST["message"]);
?>

The testPostDataReturnText.html example posts the data
message=Good afternoon. to echo.php by using the Ajax Gold
postDataReturnText function when the user clicks a button. Here’s how it

does that:
<input type = "button" value = "Get the message"
onclick = "postDataReturnText ('echo.php', 'message=Good afternoon.',
display)">

When the browser posts the data message=Good afternoon. to echo.
php, that script will send back the text Good afternoon., and the callback
function display will show that text in a <div> element. Listing 5-3 shows
how to post data using Ajax Gold.

Chapter 5: Introducing Ajax Frameworks ’ 69

Listing 5-3: Posting Data to a Web Server with Ajax Gold

<html>
<head>

<title>Posting data and returning text with Ajax Gold</title>
<script type = "text/javascript" src = "ajaxgold.js"></script>
<script language = "javascript">
function display(text)
{
document .getElementById('targetDiv').innerHTML = text;

}

</script>
</head>

<body>

<hl>Posting data and returning text with Ajax Gold</hl>

<form>
<input type = "button" value = "Get the message"
onclick = "postDataReturnText ('echo.php', 'message=Good afternoon.',
display)">
</form>

<div id="targetDiv">The fetched text will go here.</div>
</body>

</html>

You can see the results in Figure 5-4. When the user clicks the button, the post
DataReturnText function posts the data "message=Good afternoon."
to echo.php and calls the display function with the text returned from the
server ("Good afternoon."), and that text appears in the <div> element
on the Web page, as you see in Figure 5-4.

Cool. Now you’re posting data to Web servers and handling the returned
text — all without any Ajax programming on your part when you put the
Ajax Gold library to work.

170

Part Ill: Ajax Frameworks

|
Figure 5-4:
Posting

data and
handling the
returned
text.
|

) Posting data and returning text with Ajax Gold - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (]

<:ZI - |_;/\ - % X @ |4 ht't|J:J".-'Iocalhost.-"c:hDS.-"testPnstDataReturrj D Go |M,
@ Getting Started |y Latest Headlines

Posting data and returning text with Ajax Gold

Good afternoon

Daone =R

Using POST to post data and get XML

What if you want to post data and get XML back? The postDataReturnXml
function in the Ajax Gold library lets you post data to a server using Ajax
techniques. In return, you get XML. Here’s how you use it:

postDataReturnXml (url, data, callback)

To use this function, you pass it the URL you want to access, the data you
want to post, and the callback function that you want passed the XML
returned from the server. Here’s the description of postDataReturnXml
from ajaxgold.js:

postDataReturnXml (url, data, callback)
** Uses the POST method to send data to server, gets XML back. **
Posts data to url, calls function callback with the returned XML.
Uses the POST method, use this when you have more text data to send
to the server than can be easily encoded into an URL.
Example: postDataReturnXml ("http://localhost/data.php",

"parameter=5", doWork) ;

Here, the URL is a string; the data sent to the server
("parameter=5") is a string; and doWork is a function in
your own script.

As you’d expect, this function works very much like its counterpart,
postDataReturnText, except that it returns XML, not text. In other words,
where postDataReturnText uses the responseText property of the
XMLHttpRequest object, postDataReturnXml uses the responseXML

property:

function postDataReturnXml (url, data, callback)

{
var XMLHttpRequestObject = false;

Chapter 5: Introducing Ajax Frameworks

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("POST", url);
XMLHttpRequestObject.setRequestHeader ('Content-Type',
'application/x-www-form-urlencoded') ;

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
callback (XMLHttpRequestObject.responseXML) ;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send(data);

How about putting postDataReturnxml to work? Take a look at textpost
DataReturnXml.html for an example that does that. This example modifies
the color scheme application to handle posted data, using options3.php.
Posting "scheme=1" will return color scheme one, and posting "scheme=2"
will return color scheme two:

<?

header ("Content-type: text/xml");

if ($_POST["scheme"] == "1")
$options = array('red', 'green', 'blue');
if ($_POST["scheme"] == "2")

$options = array('black', 'white', 'orange');
echo '<?xml version="1.0"2>';
echo '<options>';
foreach ($options as $value)
{

echo '<option>';

echo $value;

echo '</option>';
}
echo '</options>';
?>

1 72 Part lll: Ajax Frameworks

The textpostDataReturnXml.html example posts the data "scheme=1"
or "scheme=2" to options3.php (depending on which color scheme the
user selects), using the Ajax Gold postDataReturnXml function:

<input type = "button" value = "Use color scheme 1"
onclick = "postDataReturnXml('options3.php', 'scheme=1', getOptions)">
<input type = "button" value = "Use color scheme 2"

onclick = "postDataReturnXml ('options3.php', 'scheme=2', getOptions)">

And when options3.php returns its XML for the appropriate color scheme,
the postDataReturnXml calls the getOptions function to handle that XML:

<html>
<head>

<title>Posting data and returning XML with Ajax Gold</title>
<script type = "text/javascript" src = "ajaxgold.js"></script>
<script language = "javascript">

var options;

function getOptions(xml)

{

options = xml.getElementsByTagName("option");
listOptions();

function listOptions ()
{
var loopIndex;
var selectControl = document.getElementById('optionList');

for (loopIndex = 0; loopIndex < options.length; loopIndex++
{

-~

selectControl.options[loopIndex] = new
Option(options[loopIndex].firstChild.data);

function setOption()
{
document.getElementById('targetDiv').style.color =
options[document .getElementById
("optionList').selectedIndex].firstChild.data;

</script>
</head>

<body>

Chapter 5: Introducing Ajax Frameworks

<hl>Posting data and returning XML with Ajax Gold</hl>

<form>
<select size="1" id="optionList"
onchange="setOption()">
<option>Select a scheme</option>
</select>
<input type = "button" value = "Use color scheme 1"
onclick = "postDataReturnXml ('options3.php', 'scheme=1', getOptions)">

<input type = "button" value = "Use color scheme 2"
onclick = "postDataReturnXml ('options3.php', 'scheme=2', getOptions)">
</form>

<div id="targetDiv" width =100 height=100>Color this text.</div>
</body>
</html>
You can see this example at work in Figure 5-5. When the user clicks a button,
this application uses postDataReturnXml to post data to the server, which

returns a color scheme by using XML. And that color scheme appears in the
drop-down list box, as you can see in Figure 5-5.

43 Posting data and returning XML with Ajax Gold - Microsoft Internet Explorer
File Edit View Favorites Tools Help >
Qosk v) v) 2) b, sewch ravees €| v L)~ 5D D
Address |§‘| hittp:f flocalhost/chis ftestPastDataR eburiEml. beml ﬂ Go | Links *
|
Posting data and returning XML with Ajax Gold
. - Use color scheme 1 QJ Use color scheme 2 |
Color thus text.
|
Figure 5-5:
Assimple
Ajax
example. E
] Done l_l_l_l_’_|\j Lacal intranet y
| 2

Finding Ajax Frameworks in the Wild

The Ajax Gold JavaScript library written for this book (and covered in the
previous sections) is one example of an Ajax framework that lets you put Ajax
to work in Web pages without actually having to write any Ajax code yourself.

Many other Ajax frameworks are available as well, and I cover two of them in
the following sections.

173

1 74 Part lll: Ajax Frameworks

Easy Ajax with AJAXLib

AJAXLib is a very simple Ajax framework that you can pick up for free at
http://karaszewski.com/tools/ajaxlib. The actual framework is
named ajaxlib.js.

How do you use it? It’s easy — you just call its 1oadXMLDoc function, passing
that function the URL it should fetch XML from, as well as the callback
function you want called with that XML, and a true/false argument that
you set to true if you want extra white space removed from the fetched XML
automatically.

PHP scripts can return XML (such as options1.php from Chapter 3, which
returns three colors) in an XML document. Here’s an example:

<?
header ("Content-type: text/xml");
$options = array('red', 'green', 'blue');
echo '<?xml version="1.0"?>';
echo '<options>';
foreach ($options as $value)
{
echo '<option>';
echo $value;
echo '</option>';
}
echo '</options>';
?>

How about trying to read the XML from optionsl.php by using AJAXLib? To
include ajaxlib. js in a new page — textAjaxlib.html, to be precise —
you use this line:

<html>
<head>
<title>Testing ajaxlib</title>

<script type = "text/javascript" src = "ajaxlib.js"></script>

Now you can use AJAXLib’s 1oadxMLDoc function to load the XML received
from optionsl.php and to call a function named decodeXML in your code
with the XML like this:

<html>
<head>

<title>Testing ajaxlib</title>

<script type = "text/javascript" src = "ajaxlib.js"></script>

Chapter 5: Introducing Ajax Frameworks ’ 75

</head>
<body>

<H1>Testing ajaxlib</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "loadXMLDoc ('optionsl.php', decodexml, false)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

All that’s left is to decode the XML. For example, in this case, you might dis-
play the first color received from optionsl.php, which is "red". I show
you how in Listing 5-4.

Listing 5-4: Putting AJAXLib to Work

<html>
<head>
<title>Testing AJAXLib</title>

<script type = "text/javascript" src = "ajaxlib.js"></script>
<script language = "javascript">

function decodeXml ()

{
var options = resultXML.getElementsByTagName ("option");
var loopIndex;
var div = document.getElementById('targetDiv');
div.innerHTML = "The first color is " +
options[0].firstChild.data;
}
</script>
</head>
<body>

(continued)

1 76 Part lll: Ajax Frameworks

Listing 5-4 (continued)

<H1>Testing AJAXLib</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "loadXMLDoc ('optionsl.php', decodeXml, false)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

You can see the results in Figure 5-6, where you see that the first color
retrieved in the XML from optionsl.php is indeed red.

4} Testing AJAXLib - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
QBack ~) - x| 2] ,l, Search Favorkes {’l T i (W] & @ 3
Address | €] http:fflocalhost{chos testajaudb. html x| E)se | Links »
=l
Testing AJAXLib
—
Figure 5-6: || |\ i coioric s ;
Using
AJAXLib to
get XML
from the
server. E
——] Done l_l_l_l_’_|\j Lacal intranet y

Not bad, now you’ve put the AJAXLib framework to work. This framework is a
very simple one, offering only the 10adxXMLDoc function, but it gets things
started with Ajax frameworks.

Grabbing XML with libXmlRequest

You can get the Ajax 1ibXmlRequest framework for free at www.white
frost.com/reference/2003/06/17/1ibXmlRequest.html. This frame-
work has two main methods, the getXMI and postXML methods, which use
the GET and POST methods to retrieve XML from the server. This library fea-
tures pooling of XMLHt tpRequest objects, so the browser doesn’t create too
many such objects — which can be a drain on memory — and also lets you
cache the response XML you get from the server.

Chapter 5: Introducing Ajax Frameworks , 77

Here are the main functions in this library, from the 1ibXmlRequest
documentation:

v getXml (sPath): A synchronous GET request; returns null or an XML
document object.

v getXml (sPath, fHandler, 1):An asynchronous GET request; returns
1 if the request was made and invokes handler fHandler when the XML
document is loaded.

v postXml (sPath, vData): A synchronous POST request; returns null
or an XML document object. Note that this function expects the server
will respond with well-formed XML. If the server doesn’t respond with
well-formed XML, the response XML object will be null.

vV postXml (sPath, vData, fHandler, 1):An asynchronous POST
request. This returns 1 if the request was made, and invokes handler
' fHandler' when the XML document is loaded. Note that this function
expects the server to respond with well-formed XML. If the server doesn’t
respond with well-formed XML, the response XML object will be null. The
responseText isn’t queried.

You call the callback function, named fHandler here, with two parame-
ters, and the second parameter is a JavaScript object that holds the XML data
that you want. This object supports two properties:

v 1d: The request ID if you've supplied one.

v xdom: The XML object that holds your data.
You can also control caching (see Chapter 6 for more on avoiding browser
caching of data) and pooling with these functions, which the
libXxmlRequest documentation explains in this way:

v setCacheEnabled([true | falsel):Enables caching.

v getCacheEnabled (): Returns true if caching is enabled.

V setPoolEnabled([true | falsel):Enables pooling.

V¥ getPoolEnabled (): Returns true if pooling is enabled.

v getXmlHttpArray (): Returns an array of pool objects.

v clearCache (): Clears cached XML DOM references.

V¥ testXmlHttpObject (): Tests whether an Xm1Ht tpObject can be cre-
ated; returns true if so.

1 78 Part lll: Ajax Frameworks

The 1ibxmlRequest library also gives you some utility functions that help
you work with the XML you get from the server:

v newXmlDocument (sNodeName) : Returns a new XML document object
with the specified root node name.

v serialize (oNode): Returns the string representation of a node.

V¥ selectNodes (xmlDocument, sXpath, oNode):Returns an array of
results based on the specified XPath for a given XML document.

V¥ selectSingleNode (xmlDocument, sXpath, oNode):Returns a
single XML node based on the specified XPath — the special XML lan-
guage that lets you specify the location of an exact node or set of nodes
in an XML document — for a given XML document. Note: The node refer-
ence is required for this implementation to work with Mozilla.

V¥ removeChildren (node): Removes all children from an HTML or XML
DOM node.

V¥ setInnerXHTML (target_node, source_node, preserve): Copies
the source_node (XML or HTML) structure into target_node (HTML).

V¥ transformNode ([xml_dom | xml_path], [xsl_dom | xsl_path]
{, node_reference, xml_request_id, xsl_request_id,
bool_cache_xsl}): Transforms nodes using XSL. (See Chapter 8 for
more on transforming XML.)

Note that in this library, you must preface the name of all these functions
with the text org.cote.js.xml. to call them; for example, if you want to
call the getxml function, you call org.cote.js.xml.getXml.

How about an example putting this library to work? Take a look at
libXmlRequest.html — available for download from the Web site associ-
ated with this book — which connects to the 1ibXxmlRequest library like
this:

<html>
<head>
<title>Testing libXmlRequest</title>

<script type = "text/javascript" src = "libXmlRequest.js"></script>

As in the previous example, you can retrieve XML from options1.php here
too. You can do that with the 1ibXmlRequest org.cote.js.xml.getXml
function this way, passing the location from which to get the XML (that’s the
relative URL optionsl.php here), the callback function (decodexMI, as in

Chapter 5: Introducing Ajax Frameworks

the previous example), and a 1 to indicate you want this to be an asynchro-
nous data fetch:

<html>
<head>

<title>Testing libXmlRequest</title>

<script type = "text/javascript" src = "libXmlRequest.js"></script>

</head>
<body>

<HI1>Testing libXmlRequest</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "org.cote.js.xml.getXml('optionsl.php', decodeXml, 1)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

The decodexXML function handles the XML, much as in the previous example —
but in this case, this callback function is passed two arguments. The second of
these arguments is a JavaScript object with a property named xmldom that
holds the XML data you want. Listing 5-5 shows how you can recover the
<option> elements from the XML data by using that property.

Listing 5-5: Putting libXmIRequest to Work

<html>
<head>
<title>Testing libXmlRequest</title>

<script type = "text/javascript" src = "libXmlRequest.js"></script>
<script language = "javascript">

function decodeXml(a, b)

{

var options = b.xdom.getElementsByTagName ("option");

var loopIndex;

(continued)

179

1 80 Part lll: Ajax Frameworks

|
Figure 5-7:
Using libXml
Request to
get XML
from the
server.
|

Listing 5-5 (continued)

var div = document.getElementById('targetDiv');

div.innerHTML = "The first color is " +
options[0].firstChild.data;

}
</script>
</head>

<body>
<H1>Testing libXmlRequest</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "org.cote.js.xml.getXml('optionsl.php', decodeXml, 1)">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

What does this look like in action? You can see the answer in Figure 5-7, where
the getxml function did its thing and grabbed the XML. The 1ibXmlRequest
framework gives you a way of getting XML from the server by using the GET
and POST methods, and also provides you with some added functions to
handle that XML when you get it.

) Testing lihXmlIRequest - Mozilla Firefox
File Edit View Go Bookmarks Tools Help =]

<:II - I_L,\ - @) @ |4 ht't|J:;".-'Iocalhost.-"c:hDSﬁes{IithlQequest.}j D Go |L‘L
@ Getting Started |y Latest Headlines

Testing libXmlRequest

The first color 13 red

Daone)

Chapter 6

More Powerful Ajax Frameworks

In This Chapter
Dragging and dropping with online shopping carts

Using the XHConn framework

Using the Sack framework

Handling older browsers with HTMLHt tpRequest
Handling XML with Sarissa
Working with Rico

A\

Fle CEO comes to you and says, “We need an easier way for customers to
purchase televisions from our Web site. Too many customers don’t like

the multistage process of moving from page to page with a shopping cart to
buy things. We’re losing money.”

“Okay,” you say, “how about using Ajax?”
“Great idea!” says the CEO. “How?”

“Well, you could let the users just drag and drop the articles they want to
purchase into a shopping cart visually. That way they could buy as many tele-
visions as they want without leaving the same page.”

“Great!” says the CEO. “Now we can finally get our $19,995 televisions
moving.”

“$19,995 for a television?” you ask. “Hmm. I think I know the reason you’re
not moving televisions, and it has nothing to do with shopping carts.”

Some of the examples in this chapter use Ajax frameworks that are available
for free online. Before you try to run a particular example, make sure that the
files needed for the associated framework is in the same folder on your
server as the example you're trying to run. For copyright reasons, the code
for the Ajax frameworks that I discuss in this and the previous chapter can’t
be included in the downloadable code for this book, so pick up that code at
the supplied URL for a framework before you try to run an example that uses
that framework.

’ 82 Part lll: Ajax Frameworks

Dragging and Dropping
with Shopping Carts

One of the popular uses for Ajax is to let users drag and drop items, such as
when they want to put the items into a shopping cart, and to update the
server with those new items in the shopping cart.

You can build drag-and-drop applications with a number of the Ajax frame-
works in this chapter, and they’re good for that kind of purpose. However, for
the most part, you still have to write the drag-and-drop part of the code your-
self. For that reason, I start this chapter with a homegrown drag-and-drop
application to make life a little easier if you want to implement this for yourself.

You can see the Ajax application, drag.html, in Figure 6-1. The code for the
application is included in the code for this book. (See the Introduction for
details about downloading the code from this book’s companion Web site.)

In this case, the user sees a television (represented by a <div> element in
this case, but it could as easily be an image using an element), and a
shopping cart (also represented by a <div> element in this example). The
user can drag the television with the mouse, as you see in Figure 6-2.

¥ Ajax Drag and Drop - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (]

<:EI - |_‘> - @ :_-I @ |J http:fAocalhost/chOB/drag. html j D Go [LL

@ Gotting Started L) Latest Headlines

Buy a television by dragging it to the shopping cart

|
Figure 6-1:
Adrag-
and-drop
shopping
cart that
uses Ajax.
[2 4

Chapter 6: More Powerful Ajax Frameworks ’ 83

|
Figure 6-2:
Dragging
the TV to the
shopping
cart.
|

¥) Ajax Drag and Drop - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (]

<:Z| - [_> - @ :J @ |_| http:fAocalhost/chOB/drag. html j D Go IQ,

@ Gotting Started L) Latest Headlines

Buy a television by dragging it to the shopping cart

Done @ VA

When the user drops the television in the shopping cart, the application uses
Ajax to communicate with the server, and it displays the text you see in
Figure 6-3 — You just bought a nice television.

That’s how this example works — the user can drop items into the shopping
cart, and the server will be notified immediately of the new shopping cart
contents, no need for the user to click buttons and go from page to page. (If
you’re going to use this kind of code for the front end of a real shopping cart
application, you’ve obviously got to spiff up the images and the appearance
of this application, but it shows how to get drag and drop working and how
to connect dragging and dropping to Ajax.) Handling mouse events like drag-
ging and dropping differs significantly from browser to browser, and knowing
how to handle the major browsers when creating Ajax applications like this
one is very useful.

’ 84 Part lll: Ajax Frameworks

¥ Ajax Drag and Drop - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:EI - |_;> - @ :_-I @ |J http:fAocalhost/chOB/drag. html j D Go [LL

@ Gotting Started L) Latest Headlines

Buy a television by dragging it to the shopping cart

You just bought a nice television

|
Figure 6-3:
Buying a
new
television.

Dane

I 2 4

This example starts by displaying the television and shopping cart, using
<div> elements. Note that the television <div> element also connects its
onmousedown event handler to a function named handleDown, which means
that when the mouse is over the television and the user is pressing down the
mouse button, the handleDown function is called, like this:

<body>

<hl1>Buy a television by dragging it to the shopping cart</hl>
<div id="targetDiv"></div>

<div id="television"

style="1left:200px; top:100px; width:80px; height:80px;"
onmousedown="handleDown (event) ; ">Television</div>

<div id="target"

style="left:300px; top:300px; width:200px; height:100px;">
Shopping Cart</div>

</body>

To color the television and the shopping cart, you can apply CSS styles (see
Chapter 9 for the details on how to use CSS styles with Ajax elements). You
can connect a style to an HTML element by using a <style> element, and
prefacing the element’s ID with a # sign. The next bit of code shows how to
set up the television and shopping cart by using styles.

Chapter 6: More Powerful Ajax Frameworks ’ 8 5

<head>
<title>Ajax Drag and Drop</title>

<style type="text/css">
#television {
position:absolute;
z-index:200;
background: #FF0000;
color:#0000FF;
}

#target {
position:absolute;
background: #00FF00;
color:#000000;

}

</style>

Note the television <div> is given a z-index value of 200 in this <style> ele-
ment, which will makes sure it stays on top of other elements like the shop-
ping cart when the user drags it. That seem wacky to you? You can find the
details on how this kind of styling works in Chapter 9.

Handling mouse events

Now it’s time to start working with the mouse when the user drags the televi-
sion — and this is where the difference between browsers comes in. Handling
events like mouse presses and movements always takes a little work when
you want to target more than one browser.

In browsers like Firefox, this line in the television <div> element will cause
the handleDown function to be called with an object named event that will
contain the details of the mouse’s present position:

<div id="television"
style="left:200px; top:100px; width:80px; height:80px;"
onmousedown="handleDown (event) ;">
Television</div>

In Internet Explorer, on the other hand, the handleDown function will be
called without being passed an event object. You use the window object’s
event object instead. To find the X and Y location of the mouse in the tele-
vision <div>, you use the pageX and pageY properties of the event
object in Firefox, but clientX and clientY in Internet Explorer. And to find
which element the mouse clicked, you use the target property in Firefox,
but srcElement in Internet Explorer.

1 86 Part lll: Ajax Frameworks

That’s all pretty crazy, so this example starts by supporting its own type of
event, named MouseEvent. That way, the rest of the code can work with this
type of event and not always have to keep checking which browser is being
used.

You pass the event object you got when the mouse event occurred (the
event object will be null in Internet Explorer, because event handler func-
tions aren’t passed an event object) to the MouseEvent function, and it’ll
create a new JavaScript object with these main properties:

v x: The x location of the mouse.
v y: The y location of the mouse.

v target: The HTML element that the mouse is in.

Here’s the code that creates the MouseEvent object that the rest of the
application can use without having to worry about what browser is involved.
Note the use of the keyword this here, which is how you refer to the current
object in JavaScript:

<script type="text/javascript">

function MouseEvent (e)
{
if(e) {
this.e = e;
} else {
this.e = window.event;

}

if (e.pageX) {

this.x = e.pageX;
} else {

this.x = e.clientX;
}

if (e.pageY) {

this.y = e.pageY;
} else {

this.y = e.clientY;
}

if (e.target) {
this.target = e.target;
} else {
this.target = e.srcElement;
}
}

Chapter 6: More Powerful Ajax Frameworks ’ 8 7

Handling mouse down events

When the user presses the mouse to start the drag operation, the
handleDown function will be called:

<div id="television"
style="left:200px; top:100px; width:80px; height:80px;"
onmousedown="handleDown (event) ; ">
Television</div>

The handleDown function is passed an event object in Firefox, but not in
Internet Explorer, and the first thing to do is to create a new MouseEvent
object this way:

function handleDown (e)

{

var e = new MouseEvent(e);

}
Now you can use the MouseEvent object’s properties, such as the target
property, which is the HTML element where the mouse was in. (That’s the

television <div> in this case, but in a general shopping cart application, it
could be any of the items you’re offering for sale.)

Now that the mouse is down, the user might be starting to drag an item, so
the next step is to make the browser “listen” for moveMove events, which
happen when the user drags an item, and mouseUp events, which occur
when the user drops a dragged item. To make the browser listen for those
events, you have to use listener functions. How you connect such functions to
the current document depends on which browser you’re using, so this exam-
ple adds a new function, addListener, to connect the mouseMove event to
a function named handleMove, and the mouseUp event to a function named
handleUp:

function handleDown (e)

{
var e = new MouseEvent (e);
addListener ("mousemove", handleMove);
addListener ("mouseup”, handleUp);

1 88 Part lll: Ajax Frameworks

The addListener function connects events to functions you want called
when those events occur, and how you do that depends on which browser
the user has. Here’s what this function looks like:

function addListener (type, callback)
{
if (document.addEventListener) {
document .addEventListener (type, callback, false);
} else if (document.attachEvent) {
document.attachEvent ("on" + type, callback, false);
}
}

After calling the addListener function for the mouseMove and mouseUp
events, your code will be called when those events occur. So far, so good.

When the user moves the mouse, you have to move the HTML element
they’re dragging. To do that, you should record the location at which the
mouse was pressed inside that element. The reason for doing so is that when
the user moves an element, you want to make the element’s new location
match the new mouse location. To move an element by using styles, you can
position its top-left corner to match the new mouse location, but if the user
pressed the mouse somewhere inside the element, you have to keep in mind
that the upper-left corner doesn’t necessarily correspond to the mouse loca-
tion in the element. To account for that, you can store the X and Y offset of
the mouse with respect to the upper-left corner of the dragged element, like
this:

<script type="text/javascript">

var offsetX, offsetY;

function handleDown (e)
{
var e = new MouseEvent (e);
addListener ("mousemove", handleMove) ;
addListener ("mouseup", handleUp) ;
offsetX = e.x - parselnt(television.style.left);
offsetY = e.y - parselnt(television.style.top);
document .getElementById("targetDiv").innerHTML = "";
}

Note also that the last line here clears the text in the <div> element that dis-
plays the message You just bought a nice television.

Congratulations, you've set up everything to handle the rest of the dragging
operations, starting with mouse-move events, which I cover in the following
section.

Chapter 6: More Powerful Ajax Frameworks ’ 8 9

Handling mouse-move events

When the user drags the mouse, your handleMove function will be called. In
that function, you should move the television <div> to match the new
location of the mouse (after taking into account the offset of the mouse inside
the <div>). The handleMove function starts by creating a new MouseEvent
object so it can decode where the mouse is:

function handleMove (e)

{
var e = new MouseEvent(e);

}
Now you can move the dragged HTML element to its new location by using
dynamic styles this way:

function handleMove (e)
{
var e = new MouseEvent (e);
var X = e.x - offsetX;
e.target.style.left = x + "px";
var y = e.y - offsetY;
e.target.style.top = y + "px";
}

That’s fine. Now you're dragging the item the user has selected. But what about
when he drops that item? Check out the next section for more information.

Handling mouse up events

When the user drops the item he’s dragging, the hand1leUp function will be
called, and the first order of business is to create a MouseEvent object to get
the location at which the user dropped the dragged HTML element. Here’s
how:

function handleUp (e)
{

var e = new MouseEvent(e);

1 90 Part Ill: Ajax Frameworks

Now that the user has released the mouse button, any dragging operation
that was going on is over, so you can stop responding to mouse events until
the next mouse down event. To stop responding to mouseMove and mouseUp
events, you can remove the listener functions you connected to those events
earlier by using a new function, removelListener, like so:

function handleUp (e)

{
var e = new MouseEvent (e) ;
removeListener ("mousemove", handleMove);
removeListener ("mouseup", handleUp);

}
Here’s what the removeListener function looks like in this example:

function removeListener (type, callback)
{
if (document.removeEventListener) {
document .removeEventListener (type, callback, false);
} else if (document.detachEvent) {
document .detachEvent ("on" + type, callback, false);
}
}

But did the user drop the television in the shopping cart? You need the loca-
tion and dimensions of the shopping cart to check. The ID of the shopping
cart <div> element is "target", so you can get an object that corresponds
to the shopping cart on the screen this way:

function handleUp(e)

{
var e = new MouseEvent (e) ;
removeListener ("mousemove", handleMove) ;
removeListener ("mouseup", handleUp);

var target = document.getElementById("target");

You can get the X and Y location of the upper-left corner of the shopping cart
with the left and top styles of the shopping cart <div> element, and its width
and height with the width and height styles. Those styles are stored as
text, however, and you need them to be numbers to see whether the user
dropped the television in the shopping cart. The way to make JavaScript turn
a text string like "220" into the corresponding number, 220, is to use the
JavaScript parseInt (parse integer) function, so here’s how to get the loca-
tion and dimensions of the shopping cart:

Chapter 6: More Powerful Ajax Frameworks ’ 9 1

function handleUp (e)

{
var e = new MouseEvent (e);
removeListener ("mousemove", handleMove) ;
removeListener ("mouseup", handleUp);

var target = document.getElementById("target");
var X = parselnt(target.style.left);

var y = parselnt(target.style.top):;

var width = parselnt(target.style.width);

var height = parselnt(target.style.height);

Great . . . so did the user drop the television in the shopping cart? You can
check whether the final location of the mouse was inside the shopping cart in
this way:

function handleUp (e)

{
var e = new MouseEvent (e);
removeListener ("mousemove", handleMove) ;
removeListener ("mouseup", handleUp) ;

var target = document.getElementById("target");
var x = parselnt (target.style.left);

var y = parselnt (target.style.top);

var width = parselnt (target.style.width);

var height = parselnt(target.style.height);

if(e.x > X && e.X < x + width &&
e.y >y & e.y < y + height){

If this i f statement is executed, the user dropped the TV in the shopping
cart, and it’s time to let the server know about it (see the next section).

Updating the shopping cart

Okay, a new item is in the shopping cart, and you should update the server-
side program with that information. You can do that in the normal Ajax way,
getting an XMLHt tpRequest object this:

1 92 Part Ill: Ajax Frameworks

function handleUp(e)

{
var e = new MouseEvent (e) ;
removeListener ("mousemove", handleMove) ;
removeListener ("mouseup", handleUp);

var target = document.getElementById("target");
var x = parselnt (target.style.left);

var y = parselnt (target.style.top);

var width = parselnt (target.style.width);

var height = parselnt (target.style.height);

if(e.x > x && e.x < x + width &&
e.y >y && e.y < y + height) {

var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", "text.txt");

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

XMLHttpRequestObject.send(null);

The Ajax code just retrieves the text in the file text . txt, which is "You
just bought a nice television.", and displays that text in a <div>
named targetDiv:

Chapter 6: More Powerful Ajax Frameworks

\\3

function handleUp (e)

{
var e = new MouseEvent (e);
removeListener ("mousemove", handleMove) ;
removeListener ("mouseup", handleUp) ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", "text.txt");

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
document .getElementById("targetDiv") .innerHTML =
XMLHttpRequestObject.responseText;
delete XMLHttpRequestObject;
XMLHttpRequestObject = null;

}

XMLHttpRequestObject.send (null) ;
}
}
}

The text that this Ajax code fetches from the server appears on the Web page
(refer to Figure 6-3).

There it is — the wave of the future as far as shopping carts go. The users no
longer have to push a lot of buttons and move from page to page, and then
back to the shopping pages, just to add something to a shopping cart. All
they have to do now is to drag the item to the cart, and Ajax does the rest.
Very nice. When you’ve built your user interface by using drag-and-drop tech-
niques like this, the Ajax frameworks in this chapter will handle the Ajax
operations for you.

In this case, only one page was involved, which is going to be impractical if
you’re Amazon.com with millions of books to offer. But the principle still
holds: Each book’s page can include a shopping cart icon, in the upper-left
corner for example, and all you'd have to do is to drag the book’s picture
there to add it to the shopping cart, which would instantly update itself by
displaying the items in the cart.

193

1 94 Part lll: Ajax Frameworks

Looking at Some Heavier-
Weight Frameworks

The available Ajax frameworks make developing your own applications a
snap, and plenty of them are out there. In Chapter 5, I introduce what Ajax
frameworks can do. In the sections that follow, I continue that survey by
pointing you to some of the more powerful frameworks, among the many that
are available. When it comes time to write your own Ajax applications, these
frameworks can save you a lot of time. The following sections are intended to
help you understand how they work so that you can decide which frame-
works you want to use.

Getting XMLHttpRequest
objects with XHConn

XHConn is an Ajax framework with a twist: It passes you the entire

XMLHt tpRequest object instead of just the data from that object. You can
get the data yourself by using the XMLHt tpRequest object’s responseText
and responseXML properties. You can pick up XHConn for free at
http://xkr.us/code/javascript/XHConn. You can use GET or POST
with XHConn.

How do you use XHConn? XHConn gives you a JavaScript object that will do
all the work for you. You start by creating that object:

var xhconn = new XHConn() ;

To use this new object, you call its connect method. Here are the arguments
you pass to the connect method:

URL The URL of the server-side resource you want to connect
to.

method The HTTP method you want to use to connect; "GET" or
"POST"

variables The URL-encoded variables you want to send to the server,

given as a string. For example,
"color=red&number=3....".

function The function that is called after the data is downloaded.
This function is passed the XMLHt tpRequest object.

So here’s how you might use the XHConn object:

xhconn.connect ("data.php", "POST", "color=red&number=3", handlerFunction) ;

Listing 6-1 shows an example, testXHConn.html, which you can download
with the code for this book. This example puts XHConn to work by fetching
the text from a file named xhconn. txt (also in the code for this book),
which has these contents:

This data was fetched using XHConn.

This example creates an XHConn object, sets up a function to be called when
the data (xhconn. txt in this example) has been fetched, and displays the
fetched data.

Listing 6-1: Using the XHConn Ajax Framework

<html>
<head>
<script type = "text/javascript" src = "XHConn.js"></script>
<script language = "javascript">

function testXHConn()
{

var myConn = new XHConn();

if (!myConn) {
alert ("XHConn creation failed.");

}

var fnWhenDone = function (XMLHTTPRequestObject)
{
document .getElementById("targetDiv") .innerHTML
= XMLHTTPRequestObject.responseText;

myConn.connect ("xhconn.txt", "GET",
"n, fnWhenDone) ;
}
</script>
</head>

<body>
<hl> Testing XHConn</hl>

<form>
<input type = "button" value = "Display Message"
onclick = "testXHConn()">
</form>

<div id="targetDiv">

(continued)

Chapter 6: More Powerful Ajax Frameworks ’ 9 5

1 96 Part Ill: Ajax Frameworks

Listing 6-1 (continued)

<p>The fetched data will go here.</p>

</div>
</body>
</html>
\\3 . . .
When you want to run this example, make sure that xhconn. js is located in
the same directory on your server as this example’s code. The results appear
in Figure 6-4, where XHConn was successful in grabbing some text for you.
A hitp:/flocalhost'chl6/testXHConn.html - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
QBak * () » x] 2] 0| Search GFavorkes £ (v L w] - 093
Address | €] httpif flocalhost/chos testaHConn. hkml x| E)se | Links »
=
Testing XHConn
This data was fetched using XHC onn.
|
Figure 6-4:
Using
XHConn to
fetch data. E
——] Done l_l_l_l_’_|\j Lacal intranet y

The Simple AJAX Code Kit: Sack

Here’s another useful, and simple-to-use Ajax framework — Sack, which
stands for Simple AJAX Code Kit. You can get Sack for free at http://
twilightuniverse.com/projects/sack.

When you create a Sack object, you can configure it (setting the method to
"GET", for example) by using the setvVar method. Then you can fetch your
data with the runaJaX method.

The idea here is that you create a Sack object, set the parameters you want,
and call runAjax to perform the Ajax operation. Say, for example, that you
wanted to use Sack to fetch the following text, stored in a file named

sack. txt on the server:

This data was fetched using Sack.

Chapter 6: More Powerful Ajax Frameworks ’ 9 7

Here’s how that would work in an example in the code for the book, named
testSack.html, which shows one way of working with Sack. After you create
a new Sack object, you configure various properties of that object to indicate
that the text file you want to read is sack. txt, the HTTP method you want to
use is the GET method, and the HTML element in your Web page you want to
display the fetched text in is the element with the ID "targetDiv":

sackObject = new sack();

var vars = "";
sackObject.requestFile = "sack.txt";
sackObject.method = "GET";
sackObject.element = "targetDiv";

sackObject.runAJAX (vars) ;

You can see the entire code for this example in Listing 6-2.

Listing 6-2: Using the Sack Ajax Framework

<html>
<head>
<title>Testing Sack</title>

<script type = "text/javascript" src = "tw-sack.js"></script>
<script language = "javascript">

function getData(dataSource, divID)

{
sackObject = new sack();
var vars = "";
sackObject.requestFile = "sack.txt";
sackObject .method = "GET";
sackObject.element = "targetDiv";
sackObject.runAJAX (vars);

}

</script>
</head>

<body>
<H1>Testing Sack</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('sack.txt', 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

1 98 Part Ill: Ajax Frameworks

|
Figure 6-5:
Using Sack
to fetch
data.
|

And the results appear in Figure 6-5, where Sack is fetching data for you by
using Ajax. Sack is a nice framework that’s easy to use.

¥ Testing Sack - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<:ZI - |_;/\ - @ _I {ﬁ]4 http:iflocalhost/chOBAest Sack. html j © Go ||C,L

& Getting Started Ly Latest Headlines

Testing Sack

Thus data was fetched using Sack.

Dane

Parsing XML with Interactive Website
Framework

The Interactive Website Framework (IWF) is a multipurpose Ajax framework
that includes a custom XML parser and other features. You can get IWF for
free at http://sourceforge.net/projects/iwft.

This framework allows multiple XMLHt tp requests at the same time, and pre-
vents caching by sending unique URLs to the server. Its custom XML parser
can make it easier to handle XML, so that you can extract data from an XML
document using syntax like this in JavaScript:

var dressing = doc.food.sandwich[0].dressing;

instead of something like this (see Chapter 8 for the details on extracting
XML data from XML documents by using JavaScript like this):

var dressing = doc.documentElement.firstChild.getAttribute ("dressing");
IWF gives you many built-in tools, such as functions that let you move ele-

ments around a Web page to support drag-and-drop operations or functions
that let you grab XML data and insert it into an HTML element on a Web page.

Chapter 6: More Powerful Ajax Frameworks ’ 99

|
Figure 6-6:
Using IWF
to move
page
elements.
|

You can also use IWF to perform other actions, such as moving elements
around a Web page with a function named iwfMoveTo. An example of that,
iwfajax.html, comes with IWF, and you can see it at work in Figure 6-6.
When you click the various hyperlinks, a small orange box moves around in
the page, as you see in Figure 6-6.

4} hitp:/localhostiwfliwfitesters/ivefajax.html - Microsoft Internet Explorer

File Edit View Favorites Tools Help s
OBk ~) - 11) | Jseach cFeveres €] - L]~ E D3

Address | €] hitp:fiocalhastfinfjif feesters/inf sjax. html | E)se | Links >

-

Tester for iwfajax.js

Undock oratige from il ontent
Tlowe prfllontant
Eeset infontent

1eset orange box

H GET |GET wia anchor

HTTP FOST | POST <wia anchor

This should move
Show WF Log _|

2] javascript: wtblignTo("moverne”, formSubmitResults”, “tc" ’_ ’_ ’_ ’_ ’_ |‘J Local intranet

B

Handling older browsers with
HTMLHttpRequest

The HTMLHt tpRequest Ajax framework, which you can pick up for free at
www. twinhelix.com/javascript/htmlhttprequest, supports not only
Ajax, but also uses hidden IFrame elements to mimic Ajax in older browsers
that don’t support XMLHt tpRequest objects.

You can see a demo of HTMLHt tpRequest at www. twinhelix.com/
javascript/htmlhttprequest/demo, as shown in Figure 6-7. There’s
some standard Ajax stuff here. When you click the tabs in this demo, text is
loaded into the area under the tabs, as you can see in Figure 6-7.

200 Part lll: Ajax Frameworks

|
Figure 6-7:
Using
HTMLHttp
Request to
load text.
|

|
Figure 6-8:
Using
HTMLHttp
Request to
multiply
numbers.

¥ HTMLHttpReqguest Demonstration - Mozilla Firefox

File Edit View Go Bookmarks Tools Help (&]

<:ZI - |_:> - @ (%) @]*5\1 http:.l’.-"\v\:\cwv.t\:\linhelix.com.-']avascrlpt.-'himlhttpj D Go ||Q|,
@ Getting Started Ly Latest Headlines

HTMLHttpRequest v1.0beta2

by Angus Turnbull - http: Saes tainbelic.com. Updated: 11 June 2005,

Introduction

b

Welcome to HTMLHttpRequest!

The content you're reading has been loaded asynchronously in the background and inserted into 3 <DIV> in the
document. You can use this script to make any element behave as a container, loading partial HTML content
and the output of GET and POST form reguests unmaodified, without any script in the loaded files!

Build your AJAX application

hittp:#fenese. twinheli fi ipt/htmihttprequest/demafcontent/introduction. htm| =)

Another demo on the same page passes a math operation, such as multiplica-
tion, and two operands to the server, which performs the operation. You can
see that at the bottom of the page in Figure 6-8, where HTMLHt tpRequest
tells you that 2 x 6 = 12.

If you're working with older browsers that don’t support XMLHt tpRequest
objects, take a look at this framework.

¥) HTMLHttpRequest Demonstration - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (&

<:z| = |_;> - @ ‘_I @ |59 ht'tp:f’.-‘uww.iwinhellx.com.-ﬁavascript.l’htmll'rmj © Go M,

@ Getting Started Ly Latest Headlines

Welcome to HTMLHttpRequest!

The content you're reading has been loaded asynchronously in the background and inserted inta a <DIV= in
the document. You can use this script to make any element behave as a container, loading partial HTML
content and the output of GET and POST farm requests unmodified, withowt any script in the loaded files!

Build your AJAX application

This script is therefore ideal for dynamically updating areas of your page via script control or user initiation, and = o

Second demonstration: form submittal. Here's & calculator that POSTs its equation back 1o the server via & normal form.
Mote that this works only when run from a webserver, not a local file. Also: Posting is currently EXPERIMENTAL and

might not work in all browesers; in paricular, Opera 8.00 containg a broken XMLHttpRequest implementation. POSTs will
fallback to a normal browser POST where unsupported.

a7 e

=l
hittp:ffnneew. twinhali fi i Ihttprequest/demascontentfintroduction. html '5 y

Chapter 6: More Powerful Ajax Frameworks 2 0 1

\\J

|
Figure 6-9:
Using
Sarissa to
extract data
from XML.

Decoding XML with Sarissa

Sarissa is a JavaScript library (although it calls JavaScript by its formal name,
ECMAScript) that specializes in working with XML — and recently, that’s
included some Ajax power.

Sarissa lets you

v Create or load XML documents and manipulate them.
v Use XML'’s XPath (see Chapter 8) to extract data from XML documents.

v Use XSLT to transform XML (also see Chapter 8) into other forms, such
as HTML.

v Use XMLHt tpRequest objects to download XML using Ajax.
You can get Sarissa at http://sourceforge.net/projects/sarissa.

Sarissa is useful because it can help you easily deal with the XML you down-
load. Here’s an example, testSarissa.html in the code for this book. This
example reads in this XML file, sarissa.xml, and extracts the text from the
element named :

<?xml version="1.0" 2>
<ajax>
<response>
Hello from Sarissa.
</response>
</ajax>

You can see this example at work in Figure 6-9. When the user clicks the
button, sarissa.xml is downloaded, and Sarissa extracts the text in the
 element, which is displayed. That’s great, because using JavaScript
to handle the XML you download can be an involved process (as I explain in
Chapter 8).

4} Testing Sarissa - Microsoft Internet Explorer
File Edit View Favorites Tools Help >
QBack * () = x] 2] (0| Search iFavortes & (v ool = [& D 3
Address | &] http:f flocalhostichos testSarissa bl ~| EJ Links »
=
Testing Sarissa
Display Message \
Thig XML fetched and decoded by Sarissa: Hello from Sanssa,
|
] Done l_l_l_l_l_l\j Lacal intranet y

202 Part lll: Ajax Frameworks

This example works by creating a Sarissa DomDocument object that will hold
the XML:

var domDocument = Sarissa.getDomDocument () ;

To indicate that you want to download data asynchronously, you set the
DomDocument object’s async property to true:

var domDocument = Sarissa.getDomDocument () ;

domDocument .async = true;

Next, you set up the callback function using the DomDocument object’s
onreadystatechange property:

var domDocument = Sarissa.getDomDocument () ;

domDocument .async = true;

domDocument .onreadystatechange = function myHandler()

{

When the XML has been fetched, you can use the Sarissa method select

SingleNode to extract the element. You do that by passing an XML
XPath expression (see Chapter 8) to selectSingleNode; in this case, that’s
"/ /span", which will match the element anywhere in the document:

var domDocument = Sarissa.getDomDocument () ;
domDocument .async =

true;

domDocument . onreadystatechange

{

= function myHandler ()

if (domDocument.readyState == 4) {

var element = domDocument.selectSingleNode("//span");

Chapter 6: More Powerful Ajax Frameworks 2 03

This variable, element, now contains an object holding the XML ele-
ment. To extract the text in that element, you can use Sarissa’s serialize
method, which converts XML objects into text. The text then gets displayed
in a <div> element named targetDiv:

var domDocument = Sarissa.getDomDocument () ;
domDocument .async = true;

domDocument .onreadystatechange = function myHandler ()
{
if (domDocument.readyState == 4) {
var element = domDocument.selectSingleNode("//span");
document .getElementById("targetDiv") .innerHTML =
"This XML fetched and decoded by Sarissa: " +
Sarissa.serialize(element);

All that’s left is to load the XML file asynchronously, which you do with the
Sarissa 1oad method, include the Sarissa JavaScript files, and set up the rest
of the Web page. Check out Listing 6-3.

Listing 6-3: Using the Sarissa Ajax Framework

<html>

<head>
<title>Testing Sarissa</title>

<script type = "text/javascript" src = "sarissa.js"></script>
<script type = "text/javascript" src = "sarissa ieemu xpath.js">
</script>

<script language = "javascript">

function getData (dataSource, divID)

{

var domDocument = Sarissa.getDomDocument () ;
domDocument .async = true;

domDocument .onreadystatechange = function myHandler ()
{
if (domDocument.readyState == 4) {
var element = domDocument.selectSingleNode("//span");
document .getElementById("targetDiv") .innerHTML =
"This XML fetched and decoded by Sarissa: " +
Sarissa.serialize(element.firstChild);

(continued)

204 Part lll: Ajax Frameworks

Listing 6-3 (continued)

}
domDocument .load ("sarissa.xml");
}
</script>
</head>
<body>

<H1>Testing Sarissa</H1>

<form>
<input type = "button" value = "Display Message"
onclick = "getData('data.txt', 'targetDiv')">

</form>

<div id="targetDiv">
<p>The fetched data will go here.</p>
</div>

</body>
</html>

And the results appear in Figure 6-9 (shown earlier).

Creating visual effects with Rico

Rico is a popular JavaScript framework that offers a number of cool visual
effects, such as dragging and dropping. For example, check out the demo
page, shown in Figure 6-10, which you can find at

http://openrico.org/rico/demos.page?demo=ricoDragAndDropSimple.html

Rico also has a control it calls a LiveGrid, which can display and sort data in a
table that it fetches behind the scenes. You can see a Rico LiveGrid control at
work in Figure 6-11, which shows part of http://openrico.org/rico/
livegrid.page, displaying a table of movie titles. If you click a column
header, the table sort itself automatically, based on that header.

Figure 6-12 shows another LiveGrid example, http://openrico.org/rico/
yvahooSearch.page, which uses Ajax methods to perform a Yahoo! search.
When you click the button, the search results appear in the table without a
page refresh.

0s - Micros:
File Edit View Favorites

Tools

Help

(JBack v) v x] 2] | search ¢ Favorkes £ |

e W

L& @3

Chapter 6: More Powerful Ajax Frameworks 2 0 5

Address Iﬂ_‘l bttp:) fopenrico.org/ricaf demos page?demo=ricoDragAndDropSimple bl

x| EJeo Links ?

Demos
Hide demo parel
AJAX DEMOS DRAG & DROP DEMOS ~ CINEMATIC DEMOS BEHAYIOR DEMOS
Inner Hml Sirnple Animate Position Accordion
Javascript Updater Custom Dragzable Animate Size Weather Widget
Custom Drop Zone Animate Size & Position LiveGrid - Data Table
Animate Fade LiveGrid - Search =
Round a Shape
Color Example
Rounded Corner Examples
I
SIMPLE DRAG & DROP EXAMPLE
Figure 6-10: Drag Me
Dragging
and
dropping
with Rico. El
— [T T T @ intemet 4
File Edit View Favorites Tools Help aw
QBack) = (%] (2] | Psearch SiFavokes €| C0r o wlx K @ 3
Address Ii&j http:f fopenrico.org/ricaflivegrid.page j Go | Links *
Lisking movies 1 - 10 of 950 -l
2 Title Genre Rating Votes Year
1 | Shichinin no samurai Action {b 5.9 31947 1954 i’
2 | The Lord of the Rings: The Return of the King | Action 8.8 103911 2003
3 | Buono, il brutta, il cattiva, I Action 8.7 Z0840 1966
4 | The Lord of the Rings: The Fellowship of the Ring Action 8.7 157964 2001
5 | Raiders of the Lost Ark Action 8.6 94133 1981
[} Star Wars Action 8.6 135001 1977
7 | Star Wars: Episode ¥ - The Empire Strikes Back Action 8.6 104167 1980
I)
& | The Lord of the Rings: The Two Towers Action 8.6 115175 2002
Flgure 6-11: 5 | Apocalypse Now Action 8.5 64552 1979
ARico 10 | Ran Action 8.4 ne17 1985 o
LiveGrid. =
— |/€]00m T[T [intemet %

206 Part lll: Ajax Frameworks

|
Figure 6-12:
A Rico live
search of
Yahoo!.

4} Rico - Live Grid - Yahoo Search - Microsoft Internet Explorer

File Edit View Favorites Tools
Bk ¥ ()~ 4 2]
Address |§| http:fjopenico.orgfricojyahooSearch, pags

:R_IC’O AJAX SEARCH

LiveGrid Demonstration

Select Search Category: m | mages

Search the Web: |aja:x

Help »
¢ |/ Search - Favorkes {fl -

Links *

=]

H8e

Powered by Yahoo! Search

Wideos

Search Yahoo! |

Search Results Results 1- § of about 83199 for ajax

1. AFC Ajax

official site. Club nformation, match reparts, news, and much more.
http: S fwww, ajanl -

. Ajax: A New Approach to Veb Applications
aszay by Jesse James Garrett from Adaptive Path,
hitp: £ adaptivepath, com fpublications fessays farchives AO00335.php -

s

4

4 |
] Done ’_’_’_’_’_|‘ Internet

Besides these techniques, Rico offers other visual effects, such as making ele-
ments fade in and out of view, and an “accordion” control that can display sev-
eral panes of text which you can slide open or closed with a draggable bar.

Displaying data in an HTML element

The Rico library files, prototype.js, rico.js,util.js, include support
for directly fetching text and XML data by using Ajax. For example, say that
you wanted to recover the text in an XML document named rico.xml, which
looks like this:

<?xml version = "1.0" ?>
<ajax-response>
<response type="element" id="targetDiv">
This data fetched using RICO methods.
</response>
</ajax-response>

In this case, the XML <response> element indicates that its content should
be displayed in an HTML element named "targetDiv". To make that
happen, you use the Rico library files. You can connect the name of a request
("requestl" in this example) to the XML document that’s using the Rico
ajaxEngine object’s registerRequest method, and indicate in which
HTML element to display the fetched data with the registerAjaxElement
method in an example named testRico.html. You can see how all this
works in the following code:

Chapter 6: More Powerful Ajax Frameworks 2 0 7

<script language="javascript">

function init()

{
ajaxEngine.registerRequest ("requestl”, "rico.xml");
ajaxEngine.registerAjaxElement ("targetDiv");
}
</script>

<body onload="init()">

</body>

After you've set up the request, you can execute that request with
ajaxEngine object’s sendRequest method when the user clicks a button to
fetch the data this way:

<html>
<head>
<title>Testing Rico</title>

<script src="prototype.js"></script>
<script src="rico.js"></script>
<script src="util.js"></script>

<script language="javascript">

function init()

{
ajaxEngine.registerRequest ("requestl", "rico.xml");
ajaxEngine.registerAjaxElement ("targetDiv") ;

function getData()
{

ajaxEngine.sendRequest ("requestl", "");

</script>
</head>

<body onload="init () ">

208 Part lll: Ajax Frameworks

|
Figure 6-13:
Using Rico
to write to
an HTML
element.
|

<hl>Testing RICO</hl>

<form>
<input type="button" value="Display Message" onclick="getData()">
</form>

<div id="targetDiv">The fetched data will go here.</div>
</body>
</html>

You can see the results of testRico.html in Figure 6-13, where the code
used Rico methods to fetch the text, "This data was fetched using
RICO methods." from rico.xml on the server.

¥ Testing Rico - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (%]

- - &)) [0 htipiiocakhosichiBhssiRico html] © Go [[GL
& Getting Stated L, Latest Headlines

Testing RICO

Thus data was fetched using RICO methods.

Dane =N

Letting JavaScript objects handle your data

Rico also lets you fetch XML data and handle that data by using JavaScript
objects, which is handy if you want to put that data to use rather than simply
display it. For example, say that you had an XML document, rico2.xml, and
you wanted to recover the text assigned to the day attribute of the
<response> element (which is "Friday"):

<?xml version = "1.0" ?>
<ajax-response>
<response type="object" id="displayHandler" day="Friday">
<gspan>Here is some text.
</response>
</ajax-response>

Chapter 6: More Powerful Ajax Frameworks 2 0 9

You can do this task by using a JavaScript object to handle the fetched data
by using Rico. The <response> element in the preceding code indicates you
want to use an object named displayHandler, which is what you'll do here.

Rico is set up so that the JavaScript object you use to handle data should
have a method named ajaxUpdate, which is passed the XML data. This
example uses a JavaScript object of a type named DisplayHandler that
supports an ajaxUpdate method. The goal in this method is to recover the
text assigned to the <response> element’s day attribute and to display that
data, which works like this (see Chapter 8 for more on handling XML by using
JavaScript this way):

<script language="javascript">
function DisplayHandler () {}

DisplayHandler.prototype =
{
ajaxUpdate: function(ajaxResponse)
{
var attrs = ajaxResponse.attributes;
document .getElementById("targetDiv") .innerHTML =
"Today is " + attrs.getNamedItem("day").value;

Now you can create the displayHandler object and set up the request so
that it’ll fetch the data in rico2.xml. Next, you use a Rico method named
registerAjaxObject to register the JavaScript object whose ajaxUpdate
method should be called with the XML data:

<html>
<head>

<script language="javascript">

function init()

{
displayHandler = new DisplayHandler();
ajaxEngine.registerRequest ("requestl”, "rico2.xml");
ajaxEngine.registerAjaxObject (

2 ’0 Part lll: Ajax Frameworks

"displayHandler", displayHandler);

</script>
</head>

<body onload="init()">

Now when the user clicks a button, the ajaxEngine sendRequest method
is called to fetch the data, as you see here:

<html>
<head>
<title>Testing RICO with JavaScript objects</title>

function init()
{
displayHandler = new DisplayHandler () ;
ajaxEngine.registerRequest ("requestl", "rico2.xml");
ajaxEngine.registerAjaxObject (
"displayHandler", displayHandler);

function getData()
{

ajaxEngine.sendRequest ("requestl", "");
</script>
</head>

<body onload="init () ">
<hl>Testing RICO with JavaScript objects</hl>

<form>
<input type="button" value="Display message" onclick="getData()">
</form>

<div id="targetDiv">The fetched data will be displayed here.</div>

</body>
</html>

Chapter 6: More Powerful Ajax Frameworks 2 ’ 1

When the data is fetched, it’ll be passed to the displayHandler object’s
ajaxUpdate method, which will extract and display the text assigned to the
day attribute in rico2.xml, as shown in Figure 6-14.

¥ Testing RICO with JavaScript objects - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:3| - [:> - E‘@j X {ﬁ]4 http:#’.-"loc:alhosi.-"clﬂﬁ.-"iestlj © Go ||GL

@ Getting Started Loy Latest Headlines

m—— | Testing RICO with JavaScript objects
Figure 6-14:
Using Rico Display message!
tohandle | 1,5, i Friday

XML data by
using a
JavaScript
object.
—— /{200 @ 4

This example is a success. Passing data to a JavaScript object like this can be
a useful technique when you want to process the data you fetch from the
server before displaying it.

Overcoming caching with
the Http framework

Got problems with caching? Internet Explorer caches the data it gets from the
server, so you'll often see that same data over and over, even if you change
the actual data the server sends back. One solution is to use Firefox for devel-
opment, instead of Internet Explorer. But you're going to have to deal with
Internet Explorer at some point, and if you still have caching issues when
development is done, you might take a look at the Http framework, which you
can get for free at http://adamv.com/dev/javascript/http_request.

This framework supports forced caching in Firefox as well as forced non-
caching in Internet Explorer.

You can see an example at http://adamv.com/dev/javascript/
files/time, which displays the current time (in milliseconds), as shown in
Figure 6-15. Internet Explorer caches the response from the server by default,
so clicking the top Get Time button always gives you the same time. But the
Http package can avoid caching (which it does by appending unique data to
the end of an URL each time you call the URL). For example, when you click
the second button from the top in the figure, the time is updated for each
button click, even in Internet Explorer.

2 ’2 Part lll: Ajax Frameworks

4} XmiHttpRequest Demo: Current Time - Microsoft Internet Explorer

File Edit View Favorites Tools Help -
QBack » o) = x| 2] 0| lsearch GFavokes & |0 L M- LA D 3

Address]ﬂ http:ffadanmy.comfdey fjavascript Files time j Go Links *
XmlHttpRequest Demo

Cache.Get

E Fequest time from server, using the browser's internal cachmng methods
i IE & will cache the results and always show the first time requested.
+ Firefoe 1 0 will always nof cache the results.
I ! ;
' Cuarent time: 1126202405 46

Figure 6-15: || ~~ e
Avoiding Cache.GetINoCache

caching [;oo e :

. 1 Reguest time from server with uniqus URLs to prevent caching. !

with the 1 &ll browsers should get new times every request, :

Hitp || | _Gettime | et time: 1126202409 15
framework. =l
] Done ’_’_’_’_’_|ﬂ Internet -

This is a useful package when data caching becomes an issue, but you can
often handle this issue yourself just by appending unique data to the end of
an URL, as already discussed.

Chapter 7
Server-Side Ajax Frameworks

In This Chapter
Writing JavaScript with PHP and Sajax or Xajax
Accessing Java with Direct Web Remoting (DWR)
Building Web applications with Echo2

Finding out about even more frameworks

ll H m,” says the CEQ, “all those JavaScript-oriented Ajax frameworks
are very nice — “

“Great,” you say. “So we’re in business?”

“Well, I have a question,” says the CEO. “As [was saying, those JavaScript—
oriented Ajax frameworks are very nice, but you still have to develop the
server-side code too.”

“Sure,” you say, “unless you just want to fetch data from a simple data file.”

“Aren’t there any Ajax packages that let you develop just the server-side code
and automatically create the JavaScript for you?”

“Glad you asked,” you say. “In fact, that’s what this whole chapter is all
about.”

Writing JavaScript by Using
Ajax Frameworks

Working with Ajax often means using JavaScript in the browser and a lan-
guage like PHP or JavaServer Pages on the server. In earlier chapters, | show
you Ajax packages that let you develop the browser-side part of the applica-
tion. But some Ajax packages are designed to be used on the server — and
they can write JavaScript for you. That’s what you see in this chapter.

2 ’4 Part lll: Ajax Frameworks

|
Figure 7-1:
Using Sajax
to add
numbers.
|

Although some server-side frameworks are based on exotic server-side lan-
guages, most of the ones you see use the popular PHP (see Chapter 10 for
more on PHP) and Java languages, especially JavaServer Pages. Those are
the ones I stick to here, starting with Sajax. Note that many of the following
frameworks do much the same thing: let you work with Ajax by using server-
side programming. When you see how these packages work in this chapter,
you'll know which one is right for you.

Sajax and PHP

Sajax is an Ajax framework (available for download from www.modern
method.com/sajax) that lets you create Ajax JavaScript on the server
by using various server-side languages.

How does Sajax work? You can use it on the server to create the JavaScript
that will support Ajax in your browser. Currently, Sajax lets you connect to
ASP, ColdFusion, lo, Lua, Perl, PHP, Python, and Ruby on the server.

For example, you can use it to create a JavaScript function in a Web page,
connecting that function to a PHP method on the server, which in turn han-
dles your data and then sends its data to another JavaScript function back
in the browser. So when the user opens the PHP page, Sajax generates all
the JavaScript to handle Ajax operations in the created Web page.

For example, take a look at the addition example, addem. php — available for
download from the Web site associated with this book — which appears in
Figure 7-1. When you enter two values and click the Calculate button, the
page uses Ajax to add the values on the server and display the result without
a page refresh.

4} Adding numbers with Sajax - Microsoft Internet Explorer

File Edit View Favorites Tools Help Uy

Qeack - O - [2 G| wix @3

Address| j Go Links *
|

Search ~ Favortes & | o

Using Sajax to add numbers
F
F
e

Calculatz

l_l_’_’_’_|‘_§ Laocal intranet

] Done

B

Chapter 7: Server-Side Ajax Frameworks 2 ’ 5

How does it work? In this example, addem. php, you start by including
Sajax.php:

<?
require ("Sajax.php") ;

Then you define a PHP function named addem to add two numbers (this is
the PHP function that will run on the server):

<?
require ("Sajax.php") ;

function addem($opl, $op2)
{

return $opl + $op2;
}

?>

You'll be able to call this function from the JavaScript in a Web page, except
that you refer to it as x_addem. In other words, if you define a PHP function
named addem, you can call it in JavaScript as x_addem by using Sajax.

Next, set up Sajax by calling sajax_init, and export the addem function:

<?
require ("Sajax.php") ;

function addem($Sopl, S$op2)
{

return $opl + $op2;
}

sajax_init();
sajax_export ("addem") ;

?2>

Exporting the addem function means that you’ll be able to access the addem
function in JavaScript (as x_addem). Finally, the code calls the sajax__
handle_client_request method to connect the addem function to Sajax
and start setting up the JavaScript that will appear in the browser:

2 ’6 Part lll: Ajax Frameworks

<?
require("Sajax.php");

function addem($opl, $op2)
{
return $opl + $op2;

sajax_init();
sajax_export ("addem") ;
sajax_handle client_request();

?>

Sajax generates much of the JavaScript needed in this example, and it does
that with the PHP function sajax_show_javascript, which you execute by
using PHP inside an HTML <script> element so the generated JavaScript
will be inside that <script> element:

<script>
<?
sajax_show_javascript();
?>

This example also includes the HTML for the controls you see in Figure 7-1:
three text fields and a button. The text fields for the two operands to add are
named opl and op2, and the text field where the answer will appear is named
result.

<body>
<center>
<hl>Using Sajax to add numbers</hl>
<input type="text" name="opl" id="opl" value="7" size="3">

<input type="text" name="op2" id="op2" value="8" size="3">

<input type="text" name="result" id="result" value="" size="3">

<input type="button" name="check" value="Calculate"
onclick="do_addem(); return false;">
</center>
</body>

Chapter 7: Server-Side Ajax Frameworks 2 ’ 7

Note that the button here is tied to a JavaScript function named do_addem,
which calls x_addem, the generated JavaScript function that connects back
to the PHP function addem on the server. When the user clicks the button to
perform the multiplication, the operands are read from the first two text
fields, and the x_addem function is called, which passes the operands to the
PHP function named addem back on the server.

<script>
<?
sajax_show_javascript () ;
?>

function do_addem()
{
var opl, op2;

opl = document.getElementById("opl").value;
op2 = document.getElementById("op2").value;
x_addem(opl, op2, show results);

}

</script>

Note that the x_addem function not only passes the operands back to the
addem function on the server, but also takes the name of a JavaScript func-
tion that will be called with the results of the multiplication. In this example,
that callback function is named show_results, as you can see in the pre-
ceding code.

This callback function, show_results, is passed an argument from the PHP
addem function and displays it in the third text field, which is named result.
Here’s what the code looks like:

<script>
<?
sajax_show_javascript () ;
?>

function show_results(result)
{

document .getElementById("result").value = result;
}

function do_addem/()

{
var opl, op2;

opl = document.getElementById("opl").value;
op2 = document.getElementById("op2").value;
x_addem(opl, op2, show_results);

}

</script>

2 ’8 Part lll: Ajax Frameworks

|
Figure 7-2:
Using Xajax
to add
numbers.
|

As you can see, Sajax lets you create JavaScript on the server and tie that
JavaScript to server-side functions by using Ajax. Very cool. You might also
take alook at http://cyberdummy.co.uk/test/dd.php, which uses
Sajax for drag-and-drop operations.

Xajax and PHP

Xajax, which you can get for free at http: //xajax.sf.net, is an Ajax
framework that lets you use server-side methods to create Ajax JavaScript for
use in a browser. Xajax uses PHP on the server, and you can get an idea about
how it works by taking a look at my handy addem.php example — available
for download from the Web site associated with this book — which will add
two numbers. You can see this example at work in Figure 7-2.

4} Adding numbers with Xajax - Microsoft Internet Explorer
File Edit View Favorites Tools Help Uy
QBack * () = x] 2] 0| Search <Favoites & | I+ o W] v & 93
Address | €] http:jlocalhost{xsjax]sddem.php x| Edso | Links >
Adding numbers with Xajax
7
4
i
15
Calculate |

] Done l_l_’_’_’_|‘_§ Laocal intranet y

Much like the Sajax example in the preceding section, this Xajax example
uses a PHP function named addem, which adds the values passed to it and
assigns the result a variable named "result". Here’s what the PHP code
looks like:

function addem($Sopl, S$Sop2)

{
SobjResponse = new xajaxResponse () ;
SobjResponse->addAssign("result", "value", Sopl + Sop2);
return $objResponse->getXML () ;

}

Chapter 7: Server-Side Ajax Frameworks 2 ’ 9

Then the code creates an new object named $xajax.

function addem($opl, $op2)

{
SobjResponse = new xajaxResponse();
SobjResponse->addAssign ("result", "value", Sopl + Sop2);
return $objResponse->getXML () ;

}

$xajax = new xajax("addem.server.php");

And the code registers the addem function with the $xajax object.

function addem(opl, SSop2)

{
SobjResponse = new xajaxResponse () ;
SobjResponse->addAssign("result", "value", Sopl + Sop2);
return $objResponse->getXML () ;

}

$xajax = new xajax("addem.server.php");
$xajax->registerFunction("addem");

Then the code calls the Xajax method processRequests, which is much
like the Sajax sajax_handle_client_request method, to prepare for the
JavaScript generation.

function addem($opl, $op2)

{
SobjResponse = new xajaxResponse();
SobjResponse->addAssign("result", "value", $opl + Sop2);
return $objResponse->getXML () ;

$xajax = new xajax("addem.server.php");
Sxajax->registerFunction ("addem") ;
$xajax->processRequests();

220 Part lll: Ajax Frameworks

In the HTML part of this example, the code uses an Xajax method named
printJavascript to create the JavaScript that Xajax will use.

<html>
<html>
<head>
<title>Adding numbers with Xajax</title>
<?php $xajax->printJavascript(); ?>
</head>

The HTML part also sets up the HTML controls shown in Figure 7-2 and calls
a generated function named xajax_addem that will call the PHP function
addem on the server:

<body>
<center>

<h1>Adding numbers with Xajax</hl>
<input type="text" name="opl" id="opl" value="7" size="3" />

+

<input type="text" name="op2" id="op2" value="8" size="3" />

<input type="text" name="result" id="result" value="" size="3" />

<input type="button" value="Calculate"
onclick="xajax addem(document.getElementById('opl').value,document
.getElementById('op2').value);return false;" />

</center>
</body>

How is the result of the addition displayed in the third text field, named
"result"? The PHP addem function uses an Xajax method named
addAssign to assign the answer to the value property of the "result"
text field:

function addem($Sopl, S$Sop2)

{
SobjResponse = new xajaxResponse () ;
$objResponse->addAssign("result", "value", $opl + $op2);
return $objResponse->getXML () ;

}

And that’s it. The data the user enters is sent to the server by using Ajax
techniques, and the result is displayed without a page refresh, as you see in
Figure 7-2. If you're interested in generating JavaScript on the server this way,
take a look at both Sajax and Xajax.

Chapter 7: Server-Side Ajax Frameworks 2 2 1

|
Figure 7-3:
Using
LibAjax to
multiply
numbers.
|

LibAjax and PHP

Here’s another PHP-based Ajax server-side framework: LibAjax, which you
can get for free from http://sourceforge.net/projects/libajax.
The documentation appears at http://libajax.sourceforge.net/
documentation.html. To demonstrate how LibAjax works, I show you
an addition example here as well, which you can see in Figure 7-3.

Keep in mind that the files for the script I highlight here extract to a php
folder by default. The code for this chapter (available for download from
the Web site associated with this book) assumes that addem.php and
libajax.php are in the same directory, so be sure that you do in fact
place these files in the same directory.

4} Adding numbers with LibAjax - Microsoft Internet Explorer

File Edit View Favorites Tools Help Uy
QBack * () = x] 2] 0| Search <Favoites & | I+ o W] v & 93
Address | €] hitpijjlocalhostilibajax/addem.php x| Edso | Links >

-

Adding numbers with LibA jax

F____
,a;
15=
Calculatz

w L

] Done

l_l_’_’_’_|‘_§ Laocal intranet

How does this example — addem. php, downloadable from the Web site asso-
ciated with this book — work? In the PHP, you start by creating a new
LibAjax object (named, in this case, $ajax) this way:

<?php
require_once("libajax.php") ;
Sajax = new ajax();

This example then uses a PHP function named addem that adds the operands
passed to it:

function addem($opl, $op2)
{

print Sopl + $op2;
}

222 Part lll: Ajax Frameworks

Then you configure the $ajax object to select the HTML method, GET or
POST, to send data with, and you export the addem function to make that
function available in JavaScript.

Sajax->mode = "POST";
Sajax->export = array("addem");

Now you can access the addem function from JavaScript. If you have other
PHP functions to export, you can list them with commas, like this:

array("addem", "subtractem");

After exporting the addem function, you call the LibAjax client_request
method to set up the callback from JavaScript to the PHP code.

Sajax->mode = "POST";
Sajax->export = array("addem");
$ajax->client_request();

?>

LibAjax automatically writes the JavaScript for you when you call the
Sajax->output () method:

<html>
<head>
<title>Adding numbers with LibAjax</title>
<script type="text/javascript">
<?php $ajax->output(); ?>

Okay so far. Now what about reading actual data from the user, as shown in
Figure 7-3? In this example, [use HTML text fields named op1, op2, and
result for that:

<body>
<center>
<h1>Adding numbers with LibAjax</hl>
<form>
<input type="text" name="opl" id="opl" value="7" size="5">

+

<input type="text" name="op2" id="op2" value="8" size="5">

Chapter 7: Server-Side Ajax Frameworks 2 2 3

<input type="text" name="result" id="result" value="" size="5">

<input type="button" name="check" value="Calculate" onclick="addem();
return false;">
</form>
</center>
</body>
</html>

When the user clicks the button, a JavaScript function named addem is
called. That function is the interface to the server-side PHP function named
addem (which you call in JavaScript by calling the generated function
ajax_addem). In the JavaScript addem function, the code starts by getting
the two operands to multiply, like this:

function addem()

{
var opl = document.getElementById("opl").value;
var op2 = document.getElementById("op2").value;

}

Then the code calls ajax_addem, which calls the PHP addem function on the
server. The two operands, opl and op2, are passed to ajax_addem, along
with a callback function that will handle the answer sent back from the
server-side code.

function addem()

{
var opl = document.getElementById("opl").value;
var op2 = document.getElementById("op2").value;
ajax addem(opl, op2, addem init);

}

The callback function is passed with the result and displays it in the result
text field.

That’s how LibAjax works — you export a PHP function and can call it by
prefacing the name of the function in your JavaScript code with "ajax_".
The last argument passed to ajax_addem is the name of a callback function
that the PHP code on the server will call in the JavaScript in the browser, and
in this case, that’s a function named addem_init. The addem_init function

224 Part lll: Ajax Frameworks

|
Figure 7-4:
Using
JPSpan for
auto-
completion.

simply takes the value passed to it and displays it in the third text field,
which is named "result". Here’s how the code appears in this example:

function addem_init (result)
{
document .getElementById("result") .value = result;

}

And that’s all it takes. All you have to do is write a server-side PHP function
(such as phpFunction), export it, and call the client_reqguest method;
then you can call that function from JavaScript as ajax_phpFunction.
When you call ajax_phpFunction, you pass the arguments you want to
pass to phpFunction, as well as a JavaScript function to call with the result.
In that JavaScript function, you can handle the result as you see fit, such as
displaying it in a text field, as in the preceding example.

JPSpan and PHP

Another Ajax framework based in PHP is JPSpan, which you can get from
http://sourceforge.net/projects/jpspan. The documentation is at
http://jpspan.sourceforge.net/api.

JPSpan is a relatively complicated framework and uses considerable code
to get things running, but it offers a great deal of Ajax support. You can see
an autocompletion example (available in the JPSpan download) at work in

Figure 7-4, where the application responds to the user’s keystrokes by giving
possible matches to a country name.

AR JPSpan test page - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

QBack » () ~ x] 2] (0|) Search GFavates & (v o< [D 3
Address |§_| Fitkpif flacalhosticho? fipspan/ipspan-0.4. 3fexamples/ autocamplebe2 html ﬂ GO Links *

-

Dependant Autocomplete Selection via JpSpan Example
Step 1

Select a country:
IUS
Austna

Belar

Brunei Dar -salam

Cypr

Mauriti

F.osian Federation
R sion Federation

_Glear |
] Done l_l_l_’_’_|\j Lacal intranet

3

Chapter 7: Server-Side Ajax Frameworks 2 2 5

Accessing Java with Direct
Web Remoting

\\J

Direct Web Remoting (DWR) uses Java on the server (as do the following
frameworks in this chapter) instead of PHP. You can pick up DWR at http://
getahead.1ltd.uk/dwr for free and read the documentation at http://
getahead.1ltd.uk/dwr/documentation. Also check out the introduction
at http://getahead.ltd.uk/dwr/intro.html.

Direct Web Remoting is an Ajax framework for calling Java methods directly
from JavaScript code. Because DWR uses Ajax, you can access the full power
of Java (not otherwise available to you in a browser) behind the scenes on
the server and display your results in the server. That’s great because Java is
a far more powerful language, with a lot more built into it, than JavaScript.

Setting up for Java on the Web

To work with DWR and other Java-based Ajax frameworks, you need a Web
server that supports Java. Many such servers exist on the Internet. In fact,
your ISP might already support Java, or you can find ISPs by searching for
“Java hosting” with Google. Java-based Web servers support applications that
use JavaServer Pages (JSP) and Java servlets (Java server-side programs),
and the server-side code you write to connect to your Ajax code will be made
up of JSP or servlets.

One popular Java-based server is Apache Tomcat, which you can get for free
at http://jakarta.apache.org/tomcat. You can install this server on
your own machine and test your applications instantly. Installation is easy; to
start the server on a Windows machine, simply open Apache Tomcat and
click the Start button.

Connecting to Java by using DWR

DWR is an open-source code library that does much of what the PHP pack-
ages do — it lets JavaScript code call Java functions back on the server.

DWR has two parts: code you use in the browser to connect to Java back on
the server and code you can use in the browser to make displaying the data
you fetched easier. The main part of the DWR code is the part that lets you
call Java functions on the server. Like the other frameworks you've seen in

226 Part lll: Ajax Frameworks

|
Figure 7-5:
Getting text
with Ajax
and DWR.
|

this chapter, you can call server-side functions, and DWR will handle the
details of connecting your code to those functions. And when your data has
been fetched, DWR will call the callback function you’ve given it with that
data.

After you've fetched the data you want, you might also consider using the
DWR JavaScript libraries that let you use dynamic HTML to display that data
and create interactive Web pages.

You can see an example in Figure 7-5 from the DWR Web site at http: //
getahead.ltd.uk/dwr/examples/text. This simple Ajax example checks
the server type and details, and uses Ajax to fetch that data and display it on
a Web page, as you see in Figure 7-5.

¥) Dynamic Text | Getahead - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<:ZI - I_> - @ I:I @ http:ffgetahead. itd. uk/dwr/examples/text j D Go ||g,

@ Gotting Started Ly Latest Headlines

Getahead

Harse = DWR » Docursentatian = Examples

| DWR | DacTrés | o | Mark |

DWR Handbook
B Getting Started
* Examples

Live Sites
Dynamic Text
Dynamic Form

Dynamically Updating Text

Dynamic Text
5 uli by joe

This is a simple demonstration of how to
dynamically update a web-page with text

I Editin
fetched from a web server o 'lable?:diting
8 Dynamic
Demo nddress. Enftry
8 Populating
. P Selection Lists
JUery server: |i N 8 Dynamic
Server Information: Apache Tomcat/5.5.9 running on JOK 1.5 using alilaion
v I B8 Simple Chat
DWHR 1,0RC3 o Handling XML w
| | »
Dona 20

You can find other DWR examples on the DWR Web site as well. For example,
in Figure 7-6, you can see a DWR chat application, at http://getahead.
1td.uk/dwr/examples/chat, that uses Ajax to fetch data and display it in
a text-area control. All you have to do is enter your text, which is sent to the
server, by clicking the Send button. Your text, along with the text others have
entered, appears in the text area.

You can see another DWR example in Figure 7-7, where a list box is filled with
values by using Ajax techniques to fetch data from the server. If you click the
check box in this example, the application fetches some numbers to fill the
list box with, as you can see in Figure 7-7.

Chapter 7: Server-Side Ajax Frameworks 2 2 7

ple Chat | Getahead - Mozilla Fire:

File Edit View Go Bookmarks Tools Help (4]

@ - E> - @ @ @ http:#fgetahead ltd uk/dwr/examplesichat j © Go |[CL

E Getting Started |5y Latest Headlines

- o o - . q
Simple Chat Application Simple Chat R L B
. N mitted by joe o i
Tris demo was explained in detall in an article at P :. R I STV, . mi‘fw“
Java.net, check-out the write-up. @ Dynamic Form
This example displays a very simple multi-user chat application. The entire - f::l’::dmm
app is less than S0 lines of server-side Java and less than 100 lines of HTML. o Dynamic
The pointisn't how fancy this Chat application is, but maore how simple it is, - ::::::::w
which means it's easy to use DWHR for your own web applications. Selection Lists
o Dynamic
Walidation
teste o Simple Chat
bla bla bla 8 Handling XML |
. a8 Source
d P Browser
z Documantaion
b Server
a Documentation
aq b Other
| : Porumentation
. 8 Security
Figure 7-6: a
An A]ax :'<:;dl e MNavigation
chat session — O Uoma
People
using DWR. Message: | Send | b Jou =
Done D 4

¥) Populating Selection Lists | Getahead - Mozill
File Edit View Go Bookmarks Tools Help (4]

@ - E:> - @ @ @ http:#fgetahead. ltd. uk/dwriexamples/lists j D Go (G,

E Getting Started |5y Latest Headlines

Getahead

Harse = DWR » Docursentatian = Bxaraple

| | Search|

| DWR | DocTrde | Jod | Mark |

DWR Handbook
DV"“ mil:ally POPI.I Iati“g a Populating Selection) (e e] ||

. . A v BImED
Selection List e .
This is a simple worked example of populating a GILEHER e Tl * e
drop-down selection list with values read from a o Table Editing
p— T ; . [R— o Dynamic
server, This method is useful in creating 'drill-down' menus, Addess Enty
o Populating
| Selaction Lists
Demo
. 8 Dynamic
-7 alidation
Flg“"'_) 1-T: Big Numbers: M a :imp:r_h*
Populating a Pick a Number: [0 8 Handling XML
o Source
list box with b Browser
. How it worl 2000 Documentaion
Ajax and N 3000) | e
The update| 14000 called when the page loads and when you click on the Documentation
DWR. | ool ’ b Other =

Dane @ -

228 Part lll: Ajax Frameworks

\\3

|
Figure 7-8:
Editing a
table with
Ajax and
DWR.

Here’s another DWR example, which you can see at http: //getahead.
1td.uk/dwr/examples/table. This example lets you edit the contents of a
table (your edits of the table are stored by using cookies in your browser),
and the table is redisplayed by using Ajax techniques. You can see this exam-
ple at work in Figure 7-8 — just click Edit in a row of the table, edit the row’s
data in the HTML controls below the table, and click Save. Everything is
updated by using Ajax, so no page refreshes are required. Very handy.

If you want to connect Java to your Ajax applications, take a look at DWR.
It’s powerful and extensive. It does take some work to install it (see the
directions at http://getahead.ltd.uk/dwr/getstarted).

Here’s a shortcut: Download the dwr . war file (see http: //getahead.1td.
uk/dwr/download) and then put it in the main directory of your Java-based
Web server (in Apache Tomcat, that’s the webapps directory). The Web
server will expand dwr . war into a working DWR installation for you.

¥ Tahle Editing | Getahead - Mozilla Firefox
File Edit View Go Bookmarks Tools Help (&
<:ZI - |_:> - @ | @ http:#fyetahead. ltd. uk/dwriexamplesitable j DO Go ([Cl,
@ Getting Stated Ly Latest Headlines
Dynamically Editing a Table Table Editing T =
This demo stores the list of people in your session e = IRl
’ B Dynamic Text
so the editing relies on Cookies, DWR can use 8 Dynamic Form
application, session and request scope to store beans By
' B8 Table Editing
o Dynamic
Demo Address Entry .
B Populating
. Selection Lists
Name Address Salary |Actions B Dynamic
Validation
Fred 1 Red Street 100000 Edit Delate @ simple Chat
8 Handling XML
Shiela 12 Yelow Road | 200000 Edit Deleta B Source
4 » Browser
D tais
im | 42 Brown Lane | 20000 Delete | Gt
Documentation
Edit Person b Other
Documentation
ID: _ B Security
wame Jim Nawvigation
“alary: [20000 B Home
Address: |42 Brown Lane pGecEl
b Joe
Save | Clear b Mark =
Daone =R

Building Web Applications with Echo2

Echo2 is a framework you can use to create applications, and it’s recently
been upgraded to support Ajax. Echo2 is a package for creating Web-based
applications that work much like the applications you’d find on a desktop
computer. In version 2, the creators of the Echo package have made dramatic

Chapter 7: Server-Side Ajax Frameworks 2 2 9

improvements in performance and capabilities. When you use EchoZ2, you
don’t even need to know anything about HTML, HTTP, or even JavaScript.

Building full applications with Echo2 is beyond the scope of this book, but
you can take a look at an online demo at http://demo.nextapp.com/
Email/app, a Web-based e-mail program that appears in Figure 7-9.

This application uses Ajax to download the text for various e-mail messages.
All you have to do is select an e-mail message in the top box at right, and the
text of that message appears in the box beneath it, as you see in the figure.

2} NextApp Echo2 Web Mail Example - Microsoft Internet Explorer
File Edit View Favorites Tools Help o

QBack v () v ¢ 2] | search iFavortes & |0y o M- D3
Address |§| http:f fdemo.nextapp com/Emailf app j Go Links *

MextApp Echo2 4@ Page af 3 & 4

el t From Subject Date il
Duis Hendrerit Brevitas

Tristique Esse

Tation, Ea Vel Exputo

Wisi, Accumsan

Cui, Pala Quibus Macto

Iusto Iriure

Jus Sed Pagus Qui

Suscipit Aliquip Pramo

Irene Whitley May 3, 2005 5:18:29 AM

Folder Abigail Carroll May 5, 2005 10:09:20 AM
Florence Bishop May 8, 2005 12:24:47 AM

Jacquelyn Odom May 8, 2005 5:39:00 PM

Tammy Thornton <Tammy. Thornton@nextapp.comz, Kerri Harvey
<Kerr.Harvey@nextapp.com:

Bonita Mcfadden <Bonita, Mcfadden@nextapp.coms, Ida Ortiz

To:

co! <lda. Ortiz@nextapp.com:=, Sally Estrada
<Sally Estrada@nextapp.coms
I [l==H Joe Smith <joe.smith@nextapp.com:s
- . aout Subject: |Jus Sed Pagus Qui Suscipit Aliquip Premo
Figure 7-9: el
AW b I Ingenium ¥ymwo venio swet oppeto bis pneurn. Fefero quas ut
e mal importunus 3i 3it. Iriure iusto, ut erat abluo illum causa
client using modo .
EChOZ. Eros wvelit ut augue eu hendreric., Nobis duis aliguip minim '|"|
— |€]00m [T [[e temet %

Handling Ajax and JavaServer Pages
with Ajax Tags

Here’s another interesting framework — the Ajax Tag Library, which you can
get at http://ajaxtags.sourceforge.net. This Ajax framework relies
on JSP tags on the server to create the JavaScript you’'ll need. In JSP, you can
create your own custom tags to tell the server what you want to do, and you
tie those tags to Java code that the server runs before it sends the page back
to the browser.

230 Part lll: Ajax Frameworks

This library comes with built-in JSP tags that you can use to implement stan-
dard Ajax applications. Here’s the list of the tags:

v Autocomplete: Gets a list of possible items that match the text the user
has entered in a field for autocompletion.

v~ Callout: Displays a pop-up balloon connected to a particular element in
a Web page.

v Select/dropdown: Sets the contents of a drop-down control based on
the user’s selection in another drop-down control.

1 Toggle: Lets you switch images between two different sources.

v~ Update Field: Updates the text in a field based on the data the user
enters in another field.

For example, you can see an autocomplete demo at work at http://ajax
tags.no-ip.info. You can enter the first letter of a name of car in the text
field, and an autocomplete menu appears, as you see in Figure 7-10. A second
text field, which also supports autocomplete, lets you enter the make of a car.

4} http://ajaxtags.no-ip.info/ - Microsoft Internet Explorer

File Edit View Favorites Tools Help s
Qeack ~) -~ [« 2] (0] Hsearch FiFevotes €100 0w - [J @ 3

Address |§| http:/fajaxtags. noeip.info) j Go | Links #*
input field. .) 5|

The user may then use the cursor and ENTER keys or the mouse to make 3 selection from that
lizt of labels, which is then populated into the text field, This JSP tag also allows for 2 second
field to be populated with the value or 1D of the item in the dropdown.

You'll notice that an image is used to indicate a busy state while the XMLHttpRequest object is
making it's request to the server-side. This is a bit of JavaScript/CSS trickery--check the source
for how it's done.

Enter Car Model

failable values start with letters: 4", 'CY, 'E', P, MR T

Name:
— |1t
Figure 7-10: Mustang
Wazda 3
An auto- Wazda B
complete |
using Ajax
tags. 1
= ’_’_’_’@’_|‘ Intarnet P

Here’s how it works: You construct a JSP page that uses the Ajax Tag Library
to support various Ajax functionality, such as autocompletion, populating
a <select> control, or displaying text fetched by using Ajax in an HTML

Chapter 7: Server-Side Ajax Frameworks 23 1

element. Then you write the Java support on the server to supply the XML
that holds the data you want to present. For in-depth details on the Ajax Tags
Library, take a look at the usage guide at http://ajaxtags.sourceforge.
net/usage.html.

Handling Java with SWATO

Another Java-based Ajax framework is SWATO, which you can get from
https://swato.dev.java.net. You can find an introduction to SWATO
at https://swato.dev.java.net/doc/html/quickstart.html.

SWATO comes with built-in components for common Ajax operations, such as
an autocomplete text field, a live form, live lists, and so on. In Figure 7-11, you
can see the autocompletion control in an example that comes with SWATO.

SWATO is an interesting framework. It relies on plain old Java objects (called

POJOs by Java programmers) on the server, so the server-side programming
can be a little less involved.

¥) SWATO Auto Suggest Demo - Mozilla Firefox

File Edit View Go Bookmarks Tools Help @

<:Z| - |_:> - @ %) @]4 http:#flocalhost: 8080/ swatafauto_suggest. html j D Go (G,

@ Gotting Staned) Latest Headlines

4]
SWATO!

Auto Suggest Demo | Live Form Demo -» Project Home | Documentation | Wiki | Mailing List

Auto Suggest Demo

Try to choose a language and then type a country name in the textbox below.

{*Mote: After you choosen your language,try double-click on the textbox.)

Language: [English 'I

Country: |Ul
— United Arab Emirates
Figure 7-11: United Kingdom
Autocom- | T |urouay
plete using Ukraine
SWATO United States =

Daone =R
| =

232 Part Ill: Ajax Frameworks

Tracking Down the Many Other
Frameworks Available

Plenty of other Ajax frameworks are out there, in a variety of languages. |
briefly cover some of them in the following sections. More and more Ajax
power is coming online all the time — the future looks bright indeed!

Developing amazing applications
with WebORB

You can find WebORB at www . themidnightcoders.com/weborb/
aboutweborb.htm. WebORB specializes in creating rich Internet applica-
tions that are professional-level quality. Using WebORB, you can integrate
Ajax and other technologies such as Flash into your application seamlessly.

WebORB can connect to various languages on the server, from .NET to Java.
In Figure 7-12, you can see a shopping-cart example from www. themidnight
coders.com/examples/session-activation.htm.

;'E\MEIJORD Presentation Server AJAX Client Examples - Application Activation for Server objects - Micro...

File Edit View Favorites Tools Help s
(Back v () v %] 2 | Search < Favorkes £ w93
Address |ﬂ Fittp:] fewove themidrightcoders, comjesamplesysession-activation. htm ﬂ Elﬁo Links *

|»

gf?gi?fsf:fjimatm Server Session Activation Example
Instructions:
‘A ailable Froes panel bsis all the products vou
Ayailable Fruits: Shiopping Cart can aid to & cart, The cart is mainkainad in 3
server-side object. The ‘Shepping Can’ panel is &
wisual representation of the abject’s 'contents.
Salect an Rern in the Ist and dick tha "add'
buson to add the item to the cart.

Notes:

Kiwi 1 In this erarmple, WebORE Rich Chent Sysem
makes an imeocation on a rerote object with
IMango 1 session activation. £z a result, WebCRE creates

o instance of the dss for each browsar
sesgian, Any fime an ke is added to the
shapping cart, the backend objest matains the
state and represents a separate shopping cat For
aach dignt,

Implementation:

Whan browsar loads the pags, it eracutas the
oriead handler function. The function binds te &
server-side object and requesis abject’s session
activation via WabOR2's URL. When uzer dicks
the ‘Add button, it issues an ssynchronous
I remote method inwocation to add the selected
itern to the shopping cart, Server respand: with
the narme of the item just added to the cat.

Figure 7-12: When tha dient pragrarn racaives the respansa,
gure Rith Client System invekes the callback mecfied
wia the Azync object passed into the addltern =
WebORB cal, Tha calback updares the pags with tha
nesw item added to the can
atwork. -]

3

£] Done l_l_’_’_,_|- Intarnat

Chapter 7: Server-Side Ajax Frameworks 233

Figure 7-13:
A Ruby on
Rails auto-

complete
example.
|

All you have to do in this example is select an item in the <select> control
at left and click the Add button. Thanks to Ajax, the selected item appears in
the shopping cart at right without the need for a page refresh.

Ruby on Rails

Ruby on Rails (www. rubyonrails.org) is an Ajax-enabled framework
heavyweight. Instead of PHP or Java, it uses its own proprietary language
on the server. It has all kinds of built-in support for Ajax.

When it comes to acting like a server-side Ajax framework, Ruby on Rails
functions much like the other frameworks shown in this chapter, except that
it uses its own language on the server. As is normal for Ajax applications, you
can send data asynchronously to the server by using an XMLHt tpRequest
object. After the data you've requested is sent back to you in the browser,
JavaScript generated by Rails will let you handle that data easily — for exam-
ple, you can display that data by using a <div> element.

You can see a Ruby on Rails demo that uses Ajax at www.papermountain.
org/demos/1ive, as shown in Figure 7-13. For example, take a look at the
autocomplete demo at left in the figure, where the user has typed he and the
application has suggested various words.

2} XMLHttpRequest Demo - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
Qoak ») - 1) 2l 5| Jseach Favores €] v]~)i D3
Address |§| hittp:f fww. papermourkain.org/demos/live j Go | Links #*
|
Autocomplete Live Search Live Action
Type the firet few lotters of Type the first few letters of a | +Click the link to retrieve the
an english word in the text word in the text field and current time from the server,
field and pauge for a second, 1 | pause for a second
Tou can use the arrow keys | Update time
and mouse Lo navigate the :I— H
fist of suggestions. Tab, H . .
enter, or clicking will replace & ¢ ' Time of last click
the contents of the text field | “===============ssmsssmm——- 4
with the selected entry from
the list.
he|
he =
head o sit amet,
headache piscing elit. —
headaches fraligulaa
headed © fumsannibh
header hatetsa
headers E. Phasellus
headgear eros. Ot
heading ficula, wisi
headings orttitor,
) ala, not
headland Fre
headlands gt s.ed " LI
€ [T T[T [emteme y

234 Part Ill: Ajax Frameworks

Backbase

Another Ajax-enabled framework is Backbase, at www . backbase. com. Like
WebORB, Backbase specializes in developing rich Internet applications.

Dojo

Dojo is another useful framework, and you can get it at www.dojotool
kit.org. Dojo calls itself a user-interface toolkit, and it’s been updated to
include a great deal of Ajax support. It’s an open-source package, so you
can modify its code if you want to.

Atlas. NET

Frameworks such as Microsoft’s ASP.NET (the .NET version of Microsoft’s
Active Server Pages [ASP] package) are adding more support for Ajax.
Microsoft has announced work on the Atlas Client Script Framework, which
will integrate Ajax support into ASP.NET and which will work with all modern
browsers. Atlas looks like a significant Ajax package, but the details are just
starting to emerge. For now, one of the better places to keep tabs on Atlas is
http://beta.asp.net/default.aspx?tabindex=7&tabid=47, but
stay tuned — Atlas is sure to make a splash.

Part IV
In-Depth Ajax
Power

The 5th Wave By Rich Tennant
SRAFTERINANT

\\?
PR%RAMM‘NG lo| 1

—_— -
>mt af

tallznﬁz .
ons 1 Ll

Befoywe Igo onto explam more advanced.

res like the ‘Zap-Rowdy- Students-
Who-Donrt-Pag-Attention’ furnction, we'll
begin With somme basics!”

In this part . . .

rlis part gives you more Ajax power, starting with
Chapter 8, which is all about working with XML in
JavaScript. When you work with Ajax, the results from the
server often are in XML, and knowing how to navigate
through that XML and extract the data you want is — in
Ajax terms — an invaluable skill. Chapter 9 continues with
coverage of cascading style sheets (CSS), which ties in
with Ajax by letting you handle realtime displays, such as
pop-up menus or drag-and-drop. (Remember: Ajax is all
about working with the current Web page without reload-
ing that page, and CSS is a big part of that.) Ajax also
involves working with code on the server, and Chapter 10
gives you a PHP primer to let you write server-side code.
(You don’t need to know PHP to read this book, but know-
ing PHP will help when you start using Ajax yourself, so
Chapter 10 is there to give you a foundation for the topic.)

Chapter 8

Handling XML in Ajax
Applications

In This Chapter
Understanding basic XML
Navigating XML documents using JavaScript
Grabbing XML elements en masse
Extracting the values of XML attributes
Validating the XML you get from the server

ll H m,” says the crack Ajax programmer. “I need some help.”

“Glad to be of service,” you say. “What can [help you with?”

“I've got my XML from the server okay, but now I can’t deal with it. How the
heck do I navigate from element to element? How do I get the data I need out
of this XML?”

“No problem,” you say. “Just read this chapter.” And you present the sur-
prised Ajax programmer with your bill.

Ajax is all about getting data — often XML data — from the server. How do
you handle that XML back in the browser? JavaScript has some strong XML-
handling capabilities, as you discover in this chapter. Knowing how to work
with XML in JavaScript is essential for any Ajax programmer because the
server sends you XML, and you need to know how to extract data from

that XML.

238 Part IV: In-Depth Ajax Power

Understanding Basic XML

To work with XML in Ajax, you need to understand a few basics about the lan-
guage and how it works. One key feature of XML is that you're not restricted
to a pre-determined set of tags, as in languages like HTML. You can create
your own. In addition to tags, you also need to understand what makes an
XML document well-formed and valid. I explain what you need to know in the
sections that follow.

What's in a tag?

You create your own tags, such as a <people> tag, that hold a series of
names. Although you make up the tag names yourself, a handful of rules
govern what names are legal. Tag names can’t start with a number, can’t
contain spaces, and can’t contain a few other illegal characters, such as
quotation marks. Here are some illegal tags:

<5fish>
<wow that was a big lunch>
<"no way!">

Each XML element starts with an opening tag and ends with a closing tag,
unless the element is an empty element, in which case there’s only one tag —
no closing tag, and no content of any kind, as you’d usually see between an
opening and closing tag. Here’s an example of an empty element — note the
XML way of closing an empty element, with the markup />:

<supervisor />

Starting tags can also contain attributes, and the values you assign to those
attributes must be quoted text. Also, you must assign a value to each
attribute you use. Here are some examples (in the first example, <witness>
is the tag, name = is the attribute, and “Karen Jones” is the value):

<witness name = "Karen Jones">
<movie title = "Mr. Blandings Builds His Dream House">
<sandwich type = "ham" dressing = "mayo>

Even empty elements can contain attributes, as in this example:
<language english="yes" />

For the full story on XML, take a look at XML for Dummies, 4th Edition, by
Lucinda Dykes and Ed Tittel. If you want to see the formal XML specification,
as published by the World Wide Web Consortium (the people responsible for
the XML specs) take a look at www.w3 .org/tr/rec-xml.

Chapter 8: Handling XML in Ajax Applications 23 9

Keeping XML documents well-formed

One criteria for XML documents is that they are well-formed. The main rules
for a well-formed XML document are that an XML document must

v Start with an XML declaration.
1 Have a document element that contains all the other elements.

v Have no nesting errors (that is, elements can’t overlap, such as
<a>This is not good.).

The XML parsers, which read XML in the browsers, won’t be able to read
XML if it isn’t well-formed.

The XML declaration that starts every XML document gives the version
of XML you’re using. (Currently, only 1.0 and 1.1 are legal values for the
version.)

<?xml version="1.0"?>

Elements can contain other elements in XML, and the document element in
an XML document contains all the other elements in the XML document, if
there are any. Here’s an example of a document element:

<?xml version="1.0"?>
<events>

</events>

For elements in an XML document to be nested properly, you must nest
each child element within its parent. In the following example XML docu-
ment, guests.xml, notice how the guests at a gala ceremony are nested
within the <people> tag:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>

24 0 Part IV: In-Depth Ajax Power

MBER
é&
&

<last_name>Edwards</last_name>

</person>

<person attendance="absent">
<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>

<person attendance="present">
<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>

</people>
</event>
</events>

Making an XML document valid

To make an XML document valid, you have to supply rules for its syntax. For
example, should a <person> element always be inside a <people> element?
What attributes can an <event> element have?

All the syntax rules can be specified using an XML document type definition
(DTD, see www.w3.org/tr/rec-xml) or an XML schema (see www.w3 .
org/XML/Schema). How you create DTDs and schema is beyond the scope
of this book. But some browsers, such as Internet Explorer, let you validate
XML if you supply a DTD or a schema, and you’ll see how that works later in
this chapter.

Checking to make sure an XML document was created correctly by the
server-side software is a useful thing to do in Ajax applications.

Requesting XML Data in Ajax

In this section, you take a look at how Ajax works with XML to pass data. Say
that you've stored details about a gala event in an XML document named
guests.xml. You want to recover the name of Cary Grant, who was the third
guest at the affair, in an Ajax application named guests.html, as you see in
Figure 8-1. (Both guests.html and guests.xml are available in the code
for this book, which you’ll just happen to find available for download at the
Web site associated with this book.) When the user clicks the Get the Main
Guest button in your Ajax application, the page reads in guests.xml,
extracts the third guest’s name, and displays it.

Chapter 8: Handling XML in Ajax Applications 24 1

-'Eﬂ_u_ﬁ\iax and XML - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
QBack v () v [x] 2] (0] Search Favortes &4 [Ov o w] v [G D 3
Address]ﬂ hittp:f flocalhostchi0B /guests. hkml ﬂ o | Links #®
]|
Using Ajax and XML
e
Figure 8-1:)
Fetchmg Who was the main guest?
data using
XML. E
——] Done |_|_|_|_|_|!J Lacal intranet y

When the user clicks the Get the Main Guest button, what actually happens is
that a function named getGuest is called:

<body>

<h1>Using Ajax and XML</hl>

<form>
<input type = "button" value = "Get the main guest"

onclick = "getGuest()">
</form>

<div id="targetDiv" width="100" height="100">
Who was the main guest?
</div>

</body>

The getGuest function gets guests.xml from the server. The guests.xml
file looks like this:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>
<last_name>Edwards</last_name>
</person>
<person attendance="absent">
<first_name>Sally</first_name>

24 2 Part IV: In-Depth Ajax Power

<last_name>Jackson</last_name>

</person>

<person attendance="present">
<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>

</people>
</event>
</events>

The getGuest function then passes the XML document in the XMLHt tp
Request objects’ responseXML property to another function, display
Guest. (You'll use the displayGuest function later to extract the guest’s
name.)

<script language = "javascript">

function getGuest ()
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest () ;
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", "guests.xml", true);

XMLHttpRequestObject .onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
displayGuest (xmlDocument) ;
}

XMLHttpRequestObject.send (null) ;

Okay, you've got the XML data. Now you need to extract the third guest’s
name in the displayGuest function in order to display it. There are a
couple ways to do this, all useful; I'll take a look at using the node properties
like firstChild and lastSibling here first, followed by accessing ele-
ments using methods — instead of properties — next.

Chapter 8: Handling XML in Ajax Applications 243

Extracting XML Data Using Properties

|
Figure 8-2:
JavaScript
sees XML
as nodes.
|

When you extract data using properties, you use the properties to navigate
through the nested tags and locate the data you want to extract. At least
that’s the simple explanation. In practice, differences in the browsers make
the process a bit more complicated. In the following sections, I explain all
the details.

Right on the node

To extract Cary Grant’s first and last names from your XML file with the help
of a little JavaScript, keep in mind that — in JavaScript — XML is treated as a
collection of nodes. For example, take a look at this simple XML document:

<?xml version="1.0" ?>
<document>
<greeting>
Hello From XML
</greeting>
<message>
Welcome to the wild and woolly world of XML.
</message>
</document>

Here, the <document> node has two subnodes: the <greeting> and
<message> nodes. These subnodes are child nodes of the <document> node
and sibling nodes of each other. Both the <greeting> and <message> ele-
ments themselves have one subnode — a text node that holds character data.
Figure 8-2 shows what this document looks like when you look at it as a tree
of nodes.

<document>

<greeting> <message>

Hello From XML Welcome to the wild and woolly world of XML.

Introducing the JavaScript properties

JavaScript has built-in properties you can use to work with the nodes in XML
documents, like the one that’s returned in the XMLHt tpRequest object’s
responseXML property. Table 8-1 lists these properties.

2 44 Part IV: In-Depth Ajax Power

Table 8-1 JavaScript Properties for Working in XML
Property What It Finds
attributes Attributes by this node
childNodes Array of child nodes
documentElement The document element
firstChild First child node
lastChild Last child node
localName Local name of the node
name Name of the node
nextSibling Next sibling node
nodeName Name of the node
nodeType Node type
nodevValue Value of the node
previousSibling Previous sibling node

You find out how to use these properties in JavaScript in the next section.
Note in particular that the nodeType property holds the type of a node —
knowing a node’s type is important when you want to extract and work with
specific nodes:

v 1 Element

v 2 Attribute

v 3 Text node

4 CDATA (XML character data) section

v 5 XML entity reference

v 6 XML entity node

v 7 XML processing instruction

v 8 XML comment

v 9 XML document node

v 10 XML Document Type Definition (DTD)

v 11 XML document fragment

v 12 XML Notation

So how does this work in practice? It’s time to start slinging some code.

Chapter 8: Handling XML in Ajax Applications 245

Navigating an XML document
using JavaScript properties

Using the example I introduced in “Requesting XML Data in Ajax,” earlier in
this chapter, this section explains how you put XML and JavaScript together
to extract the third guest, Cary Grant, from guests.xml.

To start, the displayGuest function is passed to the XML document,
xmldoc. (This is just the XML from the XMLHt tpRequest object’s
responseXML property.)

function displayGuest (xmldoc)

{

}
This XML document has a document element named <events>:

<?xml version="1.0"?>
<events>

</events>

You can get an object corresponding to the document element with the
JavaScript documentElement property:

function displayGuest (xmldoc)

{

var eventsNode;

eventsNode = xmldoc.documentElement;

}
The eventsNode now holds an object corresponding to the <events> ele-

ment — and that document element contains all the other elements. For exam-
ple, the child element of the <events> element is the <event> element:

<?xml version="1.0"?>
<events>
<event type="informal">

246 Part IV: In-Depth Ajax Power

</event>
</events>

You can get an object corresponding to the <event> element with the
eventsNode object’s firstChild property this way:

function displayGuest (xmldoc)
{
var eventsNode, eventNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;

Now you have an object corresponding to the <event> element. The next
step is to get closer to the name of the third guest, which is enclosed in the
<people> element:

<?xml version="1.0"?>
<events>
<event type="informal">

<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

</people>
</event>
</events>

The lastChild property comes to the rescue again, as you use the event
Node object’s 1astChild property to get an object corresponding to the
<people> element:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;

Chapter 8: Handling XML in Ajax Applications 24 7

peopleNode = eventNode.lastChild;

Now you need to get the third, and last, <person> element inside the
<people> node:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>
<last_name>Edwards</last_name>
</person>
<person attendance="absent">
<first_name>Sally</first_name>
<last_name>Jackson</last_name>
</person>
<person attendance="present">

</person>
</people>
</event>
</events>

The lastChild property comes in handy once again to get an object corre-
sponding to the correct <person> element:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;

248 Part IV: In-Depth Ajax Power

All that’s left is to recover the first name and last name of the third guest:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>
<last_name>Edwards</last_name>
</person>
<person attendance="absent">
<first_name>Sally</first_name>
<last_name>Jackson</last_name>
</person>
<person attendance="present">
<first_name>Cary</first_name>
<last_name>Grant</last_name>
</person>
</people>
</event>
</events>

You can get an object corresponding to the <first_name> and <last_name>
elements with the firstChild and nextSibling properties:

function displayGuest (xmldoc)

{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

That’s great. Now you have JavaScript objects corresponding to the
<first_name> and <last_name> elements. All you have to do now
is extract the text in those elements:

<first_name>Cary</first_name>
<last_name>Grant</last_name>

|
Figure 8-3:
Displaying
the third
guest’s
name in
Internet
Explorer.

Chapter 8: Handling XML in Ajax Applications

That text is considered a text node, and the text node is the first child of the
<first_name> and <last_name> elements. That means that in JavaScript,
you can recover the text node with the expressions firstNameNode.
firstChild and lastNameNode. firstChild.

How do you get the text out of those text nodes once you’ve gotten them?
You can use the text node’s nodevalue property.

Extracting with nodeValue

So here’s how to get the third guest’s first and last names, and display them
in a <div> element named targetDiv:

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The main guest was " +
firstNameNode.firstChild.nodeValue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv");
target.innerHTML=displayText;

And that’s it — you can see the results in Figure 8-3 in Internet Explorer.

k1 Using Ajax and XML - Microsoft Internet Explorer

File Edit View Favorites Tools Help s

Qbick » O -) &) |, sewch rravartes @] v v B DD

Address |Bj hittp:f flocalhostchi0B /guests. hkml ﬂ Go Links *
|

Using Ajax and XML

Get the main guest "{

The main guest was Cary Grant

] Done

l_l_l_l_l_l\j Lacal intranet

3

249

250 Part IV: In-Depth Ajax Power

A\

That looks great, but there’s only one problem — this brilliant solution doesn’t
work in Mozilla-based browsers such as Firefox. The problem is white space,
and the sections that follow explain how to create code that works in any
browser.

At a total loss as to what specific XML is inside an XMLHt tpRequest object’s
responseXML property? Use the responseXML property’s xml property to
get the XML as text, which you can take a look at directly. For example, to dis-
play the XML in an XMLHt tpRequest object in an alert box, you could do
this in the Internet Explorer:

alert (XMLHttpRequestObject.responseXML.xml) ;

Handling white space
in Mozilla and Firefox

Mozilla-based browsers treat all the white space in an XML document (includ-
ing the spaces used to indent the elements, as you see in our example,
guests.xml) as text nodes. Take a look at the guests.xml XML document
for this example:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>

In Internet Explorer, this document is made up of a document element named
<events> whose first child is the <event> element. The first child of the
<event> element is the <event_title> element, its second child is
<event_number>, and so on.

But the story is different in Firefox (and other Mozilla-based browsers).
There, the document element is <events> alright, but the <events> ele-
ment’s first child node is the text node that includes the return character
after the <events> tag, as well as the indentation space right before the
<event> tag. In other words, any white space — tabs, returns, spaces, and
so on — between tags is considered a legal text node and as such is not
ignored. So in Mozilla terms, this XML looks like:

<?xml version="1.0"?>
<events>
[text node]<event type="informal">

Chapter 8: Handling XML in Ajax Applications 25 1

¢MBER
é@

[text node]<event_title>15th award ceremony</event_title>
[text node]<event_ number>1207</event_number>

[text node]<subject>gala event</subject>

[text node]<date>7/4/2006</date>

So when you access the firstChild property of the <events> element,
you don’t get the <event> element — you get the white space text node that
follows the <events> tag. All this means that in Mozilla-based browsers, you
have to take the white space into account when navigating XML documents.

So how does that work in code? Here’s an example — guestsmozilla.
html — that shows you how to navigate white space text nodes. For exam-
ple, to find the name of the third guest, you start at the document element
<events> in Firefox:

<?xml version="1.0"?>
<events>

</events>

To get that document element, you use the XML document’s document
Element property, just as you do in Internet Explorer:

function displayGuest (xmldoc)
{

var eventsnode;

eventsnode = xmldoc.documentElement;

The next element to get is the <event> element:

<?xml version="1.0"?>
<events>
<event type="informal">

</event>
</events>

252 Part IV: In-Depth Ajax Power

Although it would be nice to grab that <event> element this way:

eventnode = eventsnode.firstChild;

That code really just grabs the first child of the <events> element, which

in Firefox is the white space text node between the <events> tag and the
<event> tag. So you have to skip over the text node and get to the <event>
element using the nextSibling property because the <event> element is
a sibling of that white space text node to skip over.

eventnode = eventsnode.firstChild.nextSibling;

The next step is to get an object corresponding to the <people> element:

<?xml version="1.0"?>
<events>
<event type="informal">

<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

</people>
</event>
</events>

It might look like the <people> element is the last child of the <event> ele-
ment, but that’s not true in Firefox. The last child is the text node after the
</people> tag and before the </event> tag:

<?xml version="1.0"?>
<events>
<event type="informal">

<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>

</people>
[text node]</event>
</events>

Chapter 8: Handling XML in Ajax Applications 253

So instead of using this to get an object corresponding to the <people>
element:

peoplenode = eventnode.lastChild;

you have to move backwards one level to skip over the true last child — the
white space text node — to get an object corresponding to the <people> ele-
ment. You can do that with the previousSibling property:

peoplenode = eventnode.lastChild.previousSibling;

As you can see, taking into account all those white space text nodes means
you have to navigate around them using the nextSibling and previous
Sibling properties. Here’s how that works out in code in the example
guestsmozilla.html:

function displayGuest (xmldoc)
{
var eventsnode, eventnode, peoplenode;
var firstnamenode, lastnamenode, displaytext;

eventsnode = xmldoc.documentElement;

eventnode = eventsnode.firstChild.nextSibling;

peoplenode = eventnode.lastChild.previousSibling;

personnode = peoplenode.firstChild.nextSibling
.nextSibling.nextSibling.nextSibling.nextSibling;

firstnamenode = personnode.firstChild.nextSibling;

lastnamenode = firstnamenode.nextSibling.nextSibling;

displaytext = "The main guest was: " +
firstnamenode.firstChild.nodeValue + ' '
+ lastnamenode.firstChild.nodeValue;

var target = document.getElementById("targetDiv");
target.innerHTML=displaytext;

This certainly works, but it’s annoying. Not only do you have to navigate the
XML document while skipping over white space nodes, but you have to use
different JavaScript code for Internet Explorer and Firefox. Isn’t there some
kind of fix that will repair this two-browser problem? There sure is.

254 Part IV: In-Depth Ajax Power

\\3

Removing white space
in Mozilla and Firefox

You can preprocess an XML document in Mozilla-based browsers like Firefox
by simply removing all the white space text nodes. After you've done that,
you can navigate through XML in Firefox and other Mozilla browsers using
the exact same code as you would in Internet Explorer.

For example, you might put together a function named, say, removewhite
space, for use in Mozilla-based browsers and pass XML objects such as the
one returned in an XMLHt tpRequest object to this function to remove white
space.

Here’s a function that strips white space for you. You pass it an XML object
and it starts by looping over all the child nodes (which are found with the
childNodes property, which holds an array of child nodes):

function removeWhitespace (xml)
{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

}
}
At this point in the loop, the current child node is stored in the variable
named currentNode. What kind of a node is the current node? If it’s an ele-
ment node (which means that currentNode .nodeType equals 1), perhaps
it has its own child nodes that need to have white space stripped out as well.
In that case, you can pass the current node to the removeWhitespace func-

tion again. (Calling the same function from inside the function is called recur-
sion, in case you’ve never heard of it, and it’s a handy technique.)

function removeWhitespace (xml)
{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

if (currentNode.nodeType == 1) {

Chapter 8: Handling XML in Ajax Applications 255

removeWhitespace (currentNode) ;

}

}

On the other hand, if the current node is a text node (which means that
currentNode .nodeType equals 3), perhaps it’s a white space node, in
which case it should be removed.

How do you check if the current node only contains white space? You can
check the text in the current node, which is currentNode.nodevValue,
using a regular expression that matches only white space. Regular expres-
sions let you test the content of a text string, and they’re supported in
JavaScript. (A full discussion on regular expressions is beyond the scope
of this book; if you want all the details, take a look at http://perldoc.
perl.org/perlre.html.)

Here’s how you can test for white space text nodes and remove them. (Note
in particular the 1oopIndex-- expression, which uses the JavaScript --
operator to decrement 1oopIndex after the statement containing that
expression is executed, to take into account the removed node.)

function removeWhitespace (xml)

{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];

if (currentNode.nodeType == 1) {
removeWhitespace (currentNode) ;
}

if (((/*\s+$/.test(currentNode.nodevValue))) &&
(currentNode.nodeType == 3)) {
xml.removeChild (xml.childNodes [loopIndex--]);

}

Now you can call this function to strip white space out of XML documents if
you’re working in Mozilla-based browsers like Firefox.

After you strip the white space from documents in Mozilla-based browsers,
you can use the same navigational code as you’d use in Internet Explorer. For
example, Listing 8-1 shows what the final version of guests.html (the Web

256 Part IV: In-Depth Ajax Power

page that finds the third guest, Cary Grant) looks like, updated to work in
both Internet Explorer and Firefox — note how it strips white space out of
the XML document in Firefox.

Listing 8-1: Extracting a Guest’s Name from an XML Document

<html>
<head>

<title>Using Ajax and XML</title>
<script language = "javascript">

function getGuest ()
{
var mozillaFlag = false;
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
XMLHttpRequestObject.overrideMimeType ("text/xml") ;
mozillaFlag = true;
else if (window.ActiveXObject) {
XMLHttpRequestObject = new

ActiveXObject ("Microsoft.XMLHTTP") ;

—

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "guests.xml", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;
if (mozillaFlag) {
removeWhitespace (xmlDocument) ;
}
displayGuest (xmlDocument) ;

}

XMLHttpRequestObject.send (null) ;

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;

var firstNameNode, lastNameNode, displayText;

Chapter 8: Handling XML in Ajax Applications 25 7

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

displayText = "The main guest was " +
firstNameNode.firstChild.nodevalue + ' '
+ lastNameNode.firstChild.nodeValue;

var target = document.getElementById("targetDiv");

target.innerHTML=displayText;

function removeWhitespace (xml)
{

var loopIndex;

for (loopIndex = 0; loopIndex < xml.childNodes.length;
loopIndex++) {

var currentNode = xml.childNodes[loopIndex];
if (currentNode.nodeType == 1) {

removeWhitespace (currentNode) ;

if (((/*\s+$/.test(currentNode.nodeValue))) &&
(currentNode.nodeType == 3)) {
xml . removeChild (xml.childNodes [loopIndex--]);

}
</script>
</head>
<body>

<h1>Using Ajax and XML</hl>

<form>
<input type = "button" value = "Get the main guest"
onclick = "getGuest()">
</form>

<div id="targetDiv" width =100 height=100>
Who was the main guest?
</div>

</body>

</html>

258 Part IV: In-Depth Ajax Power

|
Figure 8-4:
Displaying
the third
guest’s
name in
Firefox.
|

You can see this page at work in Figure 8-4 in Firefox.

So now you can use the same navigational code to extract data in Internet
Explorer and Firefox.

¥ Using Ajax and XML - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

- '/ - x| 7} _| http:ifocalhost/ch0S/quests. html +| © Go |[C,
5 L

& Getting Started Ly Latest Headlines

The main guest was Cary Grant

Daone Bl

That’s fine, but isn’t there an easier way? [mean, you have to know all the
details about the exact structure of the XML document you’re dealing with —
which element is a child of what parent element and so on — and it’s some-
what awkward to have to navigate step by step throughout a document. Can’t
you just fetch the data you want?

Accessing XML Elements by Name

You can fetch just the data you want. So far, the code has used properties like
nextSibling and nextChild to navigate XML documents. But you can also
get individual elements by searching for them by name using the JavaScript
getElementsByTagName method. (Note that it’s still important to know
how to use properties like firstChild and nextSibling and so on in
order to extract the data you want from the elements you retrieve.)

If you're just interested in extracting specific elements from an XML docu-
ment, getElementsByTagName could be your ticket. In the guests.xml
document, the name of the third guest is enclosed in <first_name> and
<last_name> elements:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>

Chapter 8: Handling XML in Ajax Applications 259

<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>
<last_name>Edwards</last_name>
</person>
<person attendance="absent">
<first_name>Sally</first_name>
<last_name>Jackson</last_name>
</person>
<person attendance="present">
<first_name>Cary</first_name>
<last_name>Grant</last_name>
</person>
</people>
</event>
</events>

How can you pick the <first_name> and <last_name> elements out and
extract the text from them? All you need to do is to pass the names of these
elements, "first_name" and "last_name" to the getElementsByTag
Name method, which will return an array of elements with those names:

function displayGuest (xmldoc)

{
firstnamenodes = xmldoc.getElementsByTagName ("first_name");
lastnamenodes = xmldoc.getElementsByTagName("last_name");

This example is interested in getting the third guest’s first and last name.

The first guest’s first name would be firstnamenodes[0], the second’s
firstnamenodes[1], and so on. That means you can extract the first and
last names of the third guest this way in a new application, guests2.html in
the code available for download from the Web site associated with this book.

function displayGuest (xmldoc)

{
firstnamenodes = xmldoc.getElementsByTagName ("first_name");
lastnamenodes = xmldoc.getElementsByTagName ("last_name") ;

var displayText = "The main guest was: " +
firstnamenodes[2].firstChild.nodevValue + ' '
+ lastnamenodes[2].firstChild.nodeValue;

var target = document.getElementById("targetDiv");
target.innerHTML=displayText;

260 Part IV: In-Depth Ajax Power

You can see this new example, guests?2.html, in Figure 8-5 in Internet
Explorer. Very cool.

That gives you a good handle on working with the XML elements you fetch
using JavaScript and Ajax techniques from a server. That’s fine for recovering

data from XML elements — but what about recovering the values of XML
attributes?

k1 Using Ajax and XML - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
QBack v) v 1] 2] (| seach T Favarites €) | (v o] v+ [& @ 3
— Address |Bj hittp:f flocalhostchidB /guests2.himl ﬂ o | Links #®
Figure 8-5: : . =
. Using Ajax and XML
Extracting
data rom
XML _
elements jp || ThCRen st s Cay G
Internet
Explorer. E
——] Done l_l_l_l_l_l\j Lacal intranet y

Accessing Attribute Values
in XML Elements

XML elements can have attributes, of course, and reading the value of XML
attributes can be important in Ajax applications because attribute values
hold data. The guests.xml document contains some attributes, including
an attribute named attendance:

<?xml version="1.0"?>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<date>7/4/2006</date>
<people>
<person attendance="present">
<first_name>Sam</first_name>
<last_name>Edwards</last_name>
</person>
<person attendance="absent">

<first_name>Sally</first_name>
<last_name>Jackson</last_name>

</person>

<person attendance="present">
<first_name>Cary</first_name>
<last_name>Grant</last_name>

</person>

</people>
</event>
</events>

How would you read the value of the at tendance attribute — specifically,
Cary Grant’s at tendance attribute?

Here’s how it works in a new example named attributes.html in the code
for this book. You first navigate through the document to get a JavaScript
object corresponding to the elements you're interested in. (You can use
getElementsByTagName here instead, of course.)

function displayGuest (xmldoc)

{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

The element that contains the attribute of interest is the <person> element.
To get the attendance attribute from that element, you can use the element
node’s attributes property, which contains a named node map of attrib-
utes. What the heck is a named node map? It’s an object that lets you access
items by name, such as when you want to access the attendance attribute.
How’s that work? First, you get the attributes’ named node map, which I'll call
attributes.

function displayGuest (xmldoc)
{
var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;

Chapter 8: Handling XML in Ajax Applications 26 1

262 Part IV: In-Depth Ajax Power

eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;
attributes = personNode.attributes

Then you can get an attribute node corresponding to the attendance
attribute using the named node map method, getNamedItem, this way:

function displayGuest (xmldoc)

{

var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;

eventNode = eventsNode.firstChild;

peopleNode = eventNode.lastChild;

personNode = peopleNode.lastChild;

firstNameNode = personNode.firstChild;

lastNameNode = firstNameNode.nextSibling;

attributes = personNode.attributes

attendancePerson = attributes.getNamedItem("attendance");

Almost there. You've gotten a node object corresponding to the attendance
attribute. To get the value that was assigned to Cary Grant’s attendance
attribute (which is "present"), you just need to use that node object’s
nodeValue attribute. So here’s how this example recovers Cary Grant’s
name and attendance and displays that data:

function displayGuest (xmldoc)

{

var eventsNode, eventNode, peopleNode;
var firstNameNode, lastNameNode, displayText;

eventsNode = xmldoc.documentElement;
eventNode = eventsNode.firstChild;
peopleNode = eventNode.lastChild;
personNode = peopleNode.lastChild;
firstNameNode = personNode.firstChild;
lastNameNode = firstNameNode.nextSibling;

|
Figure 8-6:
Extracting
an XML
attribute’s
value in
Ajax.
|

Chapter 8: Handling XML in Ajax Applications 263

attributes = personNode.attributes
attendancePerson = attributes.getNamedItem("attendance");

var displayText = firstNameNode.firstChild.nodeValue
+ ' ' + lastNameNode.firstChild.nodeValue
+ " was " + attendancePerson.nodeValue;

var target = document.getElementById("targetDiv");
target.innerHTML=displayText;
}

You can see the results in Figure 8-6, where this example shows how to
extract the value that’s been assigned to an attribute in the XML sent back to
an Ajax application.

¥ Using Ajax and XML - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:II - |_;/\ - % | {ﬁ]_ http:fflocalhost/chOS/attibutes. html j D Go |£,L
& Getting Started Ly Latest Headlines

Using Ajax and XML

(Getthe main Eusst's afiendance: |

Cary Grant was present

Daone Bl

Validating XML Documents
in Ajax Applications

In major Ajax applications, where you want to make sure you get things right,
you may want to check the validity of the XML you receive. As discussed at
the beginning of this chapter, XML documents can be both well-formed and
valid. Well-formed means that the XML document can be read by an XML
parser of the type that the major browsers, like Internet Explorer and Firefox,
support. If an XML document isn’t well-formed, the parser can’t read it, and
the situation is hopeless. Valid is up to you — you can specify the syntax of
an XML document and then check if the document adheres to your syntax
rules.

264 Part IV: In-Depth Ajax Power

What kind of syntax rules can you specify? You can specify which elements
are legal in your document and which attributes are legal. You can say which
element is a child of which other element. You can say which attributes are
legal in which elements. And so on. If your Ajax application is working on
important data, it’s a good idea to make sure the XML you’re working with

is valid and that whatever created that data didn’t mess it up somehow.

There are two ways to validate XML documents, as already mentioned in this
chapter: DTDs and XML schema. DTDs are simpler, but schema give you a lot
more power. (You can set, for example, the range of possible numeric values
assigned to an attribute when you’re using a schema, but not a DTD.) You
might want to validate your XML on the server before sending it back to an
Ajax application, and many languages (such as Java 1.4 and now 1.5) provide
complete support for both DTD and XML schema validation.

Sometimes, however, it’s not up to you to generate and then check the XML
sent to you — you have to deal with what you get. In these cases, you can val-
idate XML in a browser using JavaScript — if the browser is Internet Explorer.

Here’s an example, validator.html, that validates XML in Internet
Explorer only. (Firefox’s XML parser doesn’t perform XML validation.) This
example adds a DTD to guests.xml. (Internet Explorer also validates using
XML schema.) Here’s what the DTD that specifies the syntax of guests.xml
looks like in a new document, guestsdtd.xml. (For all the details on how
DTDs work, see www.w3 .org/tr/rec-xml.)

<?xml version="1.0"?>
<!DOCTYPE events [
<!ELEMENT events (event*)>
<1ELEMENT event (event_title, event_number, subject, date, people*)>
<!ELEMENT event_title (#PCDATA)>
<!ELEMENT event_number (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT first name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT people (person*)>
<1ELEMENT person (first_name,last_name)>
<!ATTLIST event
type CDATA #IMPLIED>
<!ATTLIST person
attendance CDATA #IMPLIED>
1>
<events>
<event type="informal">
<event_title>15th award ceremony</event_title>
<event_number>1207</event_number>
<subject>gala event</subject>
<datel>7/4/2006</datel>
<people>

<person attendance="present">
<first_name>sam</first_name>
<last_name>edwards</last_name>

</person>

<person attendance="absent">
<first_name>sally</first_name>
<last_name>jackson</last_name>

</person>

<person attendance="present">
<first_name>cary</first_name>
<last_name>grant</last_name>

</person>

</people>
</event>
</events>

This document now comes with a DTD, which specifies the syntax for the
XML in the document. How can you use this document to test its validity? If
you look closely, you'll see that there’s an error here: The opening <date>
tag actually has been replaced by a <datel> tag.

<datel>7/4/2006</datel>

To get Internet Explorer to catch this error, you can parse the XML you get
from the server to check it. Here’s how it works: Create a new Internet
Explorer XML parser object, configure it to validate XML, and load in the
XML you've received from the server this way in Internet Explorer:

function getGuest ()
{
var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "guestsdtd.xml", true);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;
parser.load (XMLHttpRequestObject .responseXML) ;

Chapter 8: Handling XML in Ajax Applications 265

266 Part IV: In-Depth Ajax Power

If the parser object’s parseError property is zero after it loads the XML,
there is no problem. Otherwise, you’ve got an error, which you can check
this way:

function getGuest ()

{

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;
parser.load (XMLHttpRequestObject.responseXML) ;

if (parser.parseError.errorCode != 0) {

}
else {

displayGuest (xmlDocument) ;
}

XMLHttpRequestObject.send (null) ;
}

If there was an error, this example will use the error object in the parse
Error property to display the details of the error. The error object supports
these properties: url (the name of the file that caused the problem), 1ine
(the line on which the problem occurred), 1inepos (the position in the line of
the problem), srcText (text explaining the error), reason (the reason for the
error), and errorCode (the error’s numeric code). This example, validator.
html, uses those properties to display the details of the problem:

function getGuest ()
{
var XMLHttpRequestObject = false;

XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open ("GET", "guestsdtd6.xml", true);

Chapter 8: Handling XML in Ajax Applications 26 7

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
var xmlDocument = XMLHttpRequestObject.responseXML;

var parser = new ActiveXObject ("MSXML2.DOMDocument") ;
parser.validateOnParse = true;

parser.load (XMLHt tpRequestObject . responseXML) ;

var target = document.getElementById("targetDiv");

if (parser.parseError.errorCode != 0) {
target.innerText = "Error in " +
parser.parseError.url +
" line " + parser.parseError.line +
" position " + parser.parseError.linepos +
".\nError source: " + parser.parseError.srcText +
"\n" + parser.parseError.reason +
"\n" + "Error: " +
parser.parseError.errorCode;
}

else {

displayGuest (xmlDocument) ;
}

XMLHttpRequestObject.send (null) ;

And that’s all it takes. You can see the results in Figure 8-7, where Internet
Explorer did indeed locate the error, and the application displays the full
error details. Not bad.

d XML - Microsoft Internet Explorer

File Edit View Favorites Tools Help "
QBack ~) - 1] (2] | search JcRavees €] v L - i @3 '
Address | €] hitp:{iocalhostichos validator. htmi x| EJee | Links »
— B
] Using Ajax and XML
Figure 8-7:
Handiing
an XML

. . Errorin line 23 position 10
validation || Ewor sousse: <datet>7i4r006</datel>

H Element content iz ivvalid according to the DTDVS chema
errorin Expecting date,

Internet Etror: -1072898028

Explorer. B
——] Done l_l_l_l_l_l\j Local intranet

3

268 Part IV: In-Depth Ajax Power

Chapter 9

Working with Cascading Style
Sheets in Ajax Applications

In This Chapter

Creating an Ajax-driven drop-down menu system

Getting newly displayed text noticed
Working with text styles
Setting colors and backgrounds

Positioning elements using styles

llu h oh,” says the crack Ajax programmer. “This isn’t working.”

“What’s the problem?” you — the highly-paid Ajax consultant — ask.

“I can’t get this menu application to work. I can get the data for the menu
items from the server using Ajax alright, but I can’t make the menus appear
and disappear. What gives?”

“What style property are you using to make them appear and disappear?”
you ask.

“Style property?” the crack Ajax programmer asks.
“Hoo boy,” you say, “better let me take over for a while.”

Because Ajax does its thing without page refreshes, Ajax applications are
very fond of changing the current page dynamically. That is, Ajax applications
can’t rely on restructuring the page when it next appears — it’s already in
front of the user. That means that you've got to work your magic right there
while the user watches. For this reason, Ajax programmers are very fond of
dynamic HTML (DHTML) and cascading style sheets (CSS).

2 70 Part IV: In-Depth Ajax Power

DHTML lets you rewrite the HTML in a page on the fly. You've already seen
plenty of examples of using DHTML in this book, as in this line of JavaScript,
which rewrites the contents of a <div> element to display some text:

targetDiv.innerHTML = "You just won a new car.";

You can also work with the existing elements in a Web page by working with
their styles. Using CSS, you can move elements around a page, color them,
configure their fonts and borders, make them visible or invisible, set their
background images, and more.

That’s what this chapter is about — using CSS and Ajax together for maxi-
mum effect.

CSS and Ajax are perfect together. You can see them working in unison
throughout this book. For example, the drag-and-drop example in Chapter 6
uses CSS to let the user move around the television he’s buying. It does that
by setting up a <div> with the ID television:

<body>
<hl1>Buy a television by dragging it to the shopping cart</hl>
<div id="targetDiv"></div>

<div id="television"
style="left:200px; top:100px; width:80px; height:80px;"
onmousedown="handleDown (event) ; ">Television</div>

<div id="target"
style="left:300px; top:300px; width:200px; height:100px;">
Shopping Cart</div>

</body>

In a <style> element in the Web page’s <head> section, the <div> ele-
ment’s position style property is set to absolute and its z-index property is
set to a high number to make sure it will move over all other elements in the
page, not under them:

<html>
<head>
<title>Ajax Drag and Drop</title>

<style type="text/css">
#television {
position:absolute;
z-index:200;
background: #FF0000;
color:#0000FF;

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 7 1

</style>

Style properties such as position and z-index are what you see in this
chapter. Because you set the television <div> element’s style to absolute,
you can move it in JavaScript using the <div> element’s left and top style
properties, which let you set the top left position of the <div> element.
Here’s what it looks like in code when the user drags the television:

function handleMove (e)

{
var e = new MouseEvent (e) ;
var x = e.x - offsetX;
e.target.style.left = x + "px";
var y = e.y - offsetY;
e.target.style.top = y + "px";

Being able to work with the elements in a Web page in real time is great for
Ajax, especially because you don’t get the chance to rearrange things with a
page refresh.
¥ For the full, formal details on CSS, see the CSS specification at www.w3 .org/
tr/css21 and check out CSS Web Design For Dummies, by Richard Mansfield
(Wiley Publishing, Inc.).

An Ajax-Driven Menu System

One of the most common types of style-intensive Ajax applications around
displays a menu system to the user as the user moves the mouse around the
page. Take a look at Figure 9-1, which shows an example, menus .html, at
work. When the user moves the mouse over one of the images on the page
the (such as the Sandwiches or Pizza image in this example), the application
displays a menu with text fetched using Ajax from the server. After the user
selects an item, that item is displayed in the Web page, as shown in Figure 9-2.

In the following sections, I show you how to write this application.

2 72 Part IV: In-Depth Ajax Power

4} Ajax-driven menus - Microsoft Internet Explorer

File Edit View Favorites Tools Help Uy
GBad& =) 7 <] (z2] ¢ |, Search ¢ Favorikes & | v g ,ﬂ - & 93
Address | €] hitp:jocalhastchos/menus.html x| Edso | Links >
=
Ajax-driven menus
Sandwiches Pizzas
|
Tuna
Figure 9-1: Roast heef
An Ajax- Chicken
driven menu
system. |
] Done l_l_’_’_’_|‘_§ Laocal intranet y

4} Ajax-driven menus - Microsoft Internet Explorer

File Edit View Favorites Tools Help f':'
@Back *)+ %] 2] 0| semch i Favorites £ | I+ o W] = Fole 1§
Address [&] nttp:jiacalhost/chosjmenus. bl | B | Links »
=l
Ajax-driven menus
Sandwiches Pizzas
I
rwesz | YOU Selected Tuna.
Making a
menu
selection. -]
——] Done l_l_l_l_l_l‘Janal intranet y

Setting up the styles

The menus . html application gives you a good handle on how styles are used
in Ajax applications. Here’s how you create the controls in the Web page in this
application. (Note the style attribute, which sets the style of each element.)

<body onclick = "hide()" onmousemove = "check (event)">
<H1>Ajax-driven menus</HI1>

<img id = "imagel" src="imagel.jpg"
style="left:30; top:50; width:200; height:40;">
<div id = "menuDivl" style="left:30; top:100; width:100;
height: 70; visibility:hidden;"><div></div></div>
<img id = "image2" style="left:270; top:50; width:200;

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 73

height:40;" src="image2.jpg">
<div id = "menuDiv2" style="left:270; top:100; width:100;
height: 70; visibility:hidden;"><div></div></div>
<div id = "targetDiv"></div>
</body>

Each style pair, such as visibility:hidden, makes up a style rule. The
first part of the pair is the style property you're setting, and the second
part of the pair is the value you're assigning the property. In this case, you're
doing the following:

v Giving the visibility property the value hidden to make the <div>
elements, which will display the menus hidden to start like this:
visibility:hidden.

v Using the 1eft property (left-edge position of the element) like this:
left:270.

v Using the top property (top position of the element) like this: top:100.
v Using the width property (width of the element) like this: width:100.

v Using the height property (height of the element) like this:
height:70.

When you use the HTML style attribute as this code does, you're using
inline styles. You assign a style property a value in each rule, and separate
each rule from the others with a semicolon:

<img id = "imagel" src="imagel.jpg"
style="left:30; top:50; width:200; height:40;">

Besides using inline styles with the style attribute, you can also assign
styles using a <style> element, which is usually placed in the <head> sec-
tion of a page. Such styles are called embedded styles. Here, you specify the
element you want to set up styles for, and enclose the style rules you want to
use — separated by semicolons — inside curly braces. Here’s an example
that sets the styles for the <body> element, setting the foreground (text)
color, the background color, and the font to use. (Note that the colors are
specified the same way that you specify colors in HTML.)

<style>

body {
color: #000000;
background-color: #FFFFFF;
font-family: times;

}

274

Part IV: In-Depth Ajax Power

You can also specify the type of the styles you're using, with the type attribute,
which you set to "text/css" for CSS styles. That’s the default, however, so
you can omit the type attribute:

<style type="text/css">
body {
color: #000000;
background-color: #FFFFFF;
font-family: times;

Some elements, such as the <a> anchor element, let you style specific aspects
of the element. For example, the <a> element lets you style the color of links
(you refer to a link as a: 1ink), the color of links already visited (a:visited),
and the color of links when clicked (a:active) like this:

<style>
body {background: white; color: black}
a:link {color: red}
a:visited {color: blue}
a:active {color: green}
</style>

What if you want to set the styles for multiple <div> elements? How can you
tell them apart in the <style> element? The example here, menus.html,
contains a number of <div> elements that you can supply styles for in a
<style> element:

<body onclick = "hide()" onmousemove = "check (event)">
<HI1>Ajax-driven menus</H1>

<img id = "imagel" src="imagel.jpg"
style="left:30; top:50; width:200; height:40;">

<div id = "menuDivl" style="left:30; top:100; width:100;
height: 70; visibility:hidden;"><div></div></div>

<img id = "image2" style="left:270; top:50; width:200;
height:40;" src="image2.jpg">

<div id = "menuDiv2" style="left:270; top:100; width:100;
height: 70; visibility:hidden;"><div></div></div>

<div id = "targetDiv"></div>

</body>

Note that each such <div> element has a different ID value. To assign a style
to a tag with a particular ID, you give that ID preceded by a sharp sign (#) like
this in the <style> element:

<html>
<head>

<title>Ajax-driven menus</title>

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 75

<style>

#menuDivl {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}

#menuDiv2 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

}

#targetDiv {
color: #990000;
font-size: 36pt;
font-weight: bold;
font-family: arial;
font-style: italic;
}

</style>

This styles the two <div> elements that will display the menus, menuDivl
and menuDiv2, this way:

v Sets a particular text color (the color property) this way: color:
#222222

1 Sets a particular background color (the background-color property)
this way: background-color: #77CCFF

v Sets bold text (with the font-weight property) this way: font-
weight: bold

v Sets a specific font type (with the font-family property) this way:
font-family: arial

v Sets these <div> elements at a particular location (by setting the
position property to absolute) this way: position: absolute

v Makes these <div> elements hidden by default (with the visibility
property) this way: visibility: hidden

v Uses a hand icon for the mouse cursor when the mouse is over these
menus (this style works in Internet Explorer only) this way: cursor:
hand

276

Part IV: In-Depth Ajax Power

This <style> element also styles the target <div> element where the result
text will be displayed targetDiv.

External style sheets

Another way of handling styles (whichmenus . htm1 doesn't use) is to use an external style sheet.
For example, you could put the style rules from the <style> elementinto an external file named,
say, style.css, which would have these contents:

#menuDivl {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

#menuDiv2 {
color: #222222;
background-color: #77CCFF;
font-weight: bold;
font-family: arial;
position: absolute;
visibility: hidden;
cursor: hand;

You connect an external style sheet to a Web page with the <1ink> element, setting the rel
attribute to "stylesheet" and the href attribute to the URL of the style sheet like this:

<html>
<head>
<title>
Using An External Style Sheet
</title>

<link rel="stylesheet" href="style.css">
</head>
<body>
<center>
<hl>

Using An External Style Sheet
</hl>

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 7 7

<P>
This page uses an external style sheet.
</center>

</body>
</html>

This code includes the new style sheet, style.css, in the page and applies the styles defined
in it as appropriate. That's how to set up an external style sheet. (Remember: The example
menus . html sets up its styles using a <style> element and inline styles, not an external style
sheet.)

Handling mouse events

After you've set up the embedded styles that this example will use, how do
you actually use those styles to make this example work? Everything starts
with the mouse in this case because when the user moves the mouse over
an image, the code is supposed to display a menu of clickable items.

This example works by watching where the mouse is; if it's over an image,
the code should display a menu (if that menu isn’t already displayed). To

track the mouse, the <body> tag’s onmousemove event is connected to a

JavaScript function named check:

<body onclick = "hide()" onmousemove = "check (event)">

The check function checks to see where the mouse is and starts by creating
a browser-independent mouse object (e).

function check(evt)
{

var e = new MouseEvent (evt) ;

That object is created using a JavaScript function named MouseEvent, which
creates a cross-browser mouse event object (similar to the handling of drag
and drop operations in Chapter 6):

function MouseEvent (e)
{
if(e) {
this.e = e;
} else {

2 78 Part IV: In-Depth Ajax Power

You can use the new mouse event object to determine where the mouse is

this.e = window.event;

if (e.pageX) {
this.x = e.pageX;
} else {
this.x = e.clientX;

if (e.pageY) {
this.y = e.pageY;
} else {
this.y = e.clientY;

if (e.target) {
this.target = e.target;
} else {

this.target = e.srcElement;

currently.

Displaying a menu

If the mouse is inside an image, the code should display a menu. Here’s how
the code checks to see if the mouse is inside the first image, whose ID equals
imagel:

function check (evt)

{

var e = new MouseEvent (evt) ;

var img;

img = document.getElementById("imagel");
if(e.x > parselnt(img.style.left) && e.y >
parselnt (img.style.top) &&
e.X < (parselnt(img.style.left) +
parselnt (img.style.width))
&& e.y < (parseInt(img.style.top) +
parselnt (img.style.height))){

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 79

If the mouse is inside this image, imagel, the application gets the data for
the first menu from the server, which it does by calling a new JavaScript func-
tion named getData and passing a value of 1 (indicating that it wants the
data for the first menu):

function check(evt)

{
var e = new MouseEvent (evt) ;
var target = null;
var img;

img = document.getElementById("imagel") ;
if (e.x > parseInt(img.style.left) && e.y >
parseInt (img.style.top) &&
e.X < (parselnt(img.style.left) +
parselnt (img.style.width))
&& e.y < (parselnt (img.style.top) +
parselnt (img.style.height))){
getData(l);

Similarly, if the mouse is inside the second image, the application should get
the data for the second menu:

function check(evt)

{
var e = new MouseEvent (evt) ;
var img;

img = document.getElementById("image2");
if (e.x > parselnt(img.style.left) && e.y >
parselnt (img.style.top) &&
e.x < (parselnt(img.style.left) +
parselnt (img.style.width))
&& e.y < (parselInt(img.style.top) +
parselnt (img.style.height))){
getData(2);

280 Part IV: In-Depth Ajax Power

Hiding a menu

At this point, the code has checked to see if it should display a menu. But
what if the mouse is outside any image and also outside either menu <div>
element? In that case, you can hide the menus using a JavaScript function
named hide:

function check (evt)

{
var e = new MouseEvent (evt) ;
var target = null;
var img;

target = document.getElementById("menuDivl");
img = document.getElementById("imagel");

if (target.style.visibility == "visible"){
if (e.x < parselnt(target.style.left) || e.y <

parselnt (img.style.top) ||
e.x > (parselnt(img.style.left) +
parselnt (img.style.width))
|| e.y > (parseInt(target.style.top) +
parselnt (target.style.height))) {
hide();

target = document.getElementById("menuDiv2");
img = document.getElementById("image2");

if (target.style.visibility == "visible"){
if (e.x < parseInt(target.style.left) || e.y <
parselInt (img.style.top) ||
e.x > (parselnt(img.style.left) +
parselnt (img.style.width))
|| e.y > (parseInt(target.style.top) +
parselnt (target.style.height))) {
hide();

The hide function hides the menus if they’re currently visible using the
menu <div> element’s visibility style property this way:

function hide()
{

var menuDivl = document.getElementById("menuDivl");

if (menuDivl.style.visibility == "visible"){

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 8 1

menuDivl.innerHTML = "<div></div>";
menuDivl.style.visibility = "hidden";

}

var menuDiv2 = document.getElementById("menuDiv2");

if (menuDiv2.style.visibility == "visible"){
menuDiv2.innerHTML = "<div></div>";
menuDiv2.style.visibility = "hidden";

}

Getting a menu’s item from the server

The preceding sections handle the mouse and show and hide the menu
<div> elements. Now how about stocking them with some data? In this
example, when the check function calls the getData function, it passes the
number of the menu it wants to get the data for — menu 1 or menu 2. The
menu items for menu 1 are stored in a file named items1. txt:

Tuna, Roast beef, Chicken
and the items for menu 2 are stored in a file named items2 . txt:
Pepperoni, Sausage, Olive

Here’s how the correct menu’s text is downloaded in the getData function in
this example:

function getData (menu)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft .XMLHTTP") ;

var dataSource = (menu == 1) ? "itemsl.txt" : "items2.txt";

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {

282 Part IV: In-Depth Ajax Power

}
}
XMLHttpRequestObject.send(null);

}
}

When a menu’s text is downloaded and ready to go, this code calls another
function (show) to show the actual menu items.

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
show(menu, XMLHttpRequestObject.responseText);

Handling the menu items

The show function is passed the menu number to show and the items that
should appear in that menu. This is where the menu items in each menu are
constructed. Those items will be placed in an HTML table for easy display in
the menu <div> elements.

The show function is passed the number of the menu to work with, and

the items appear in that menu in a format like this: "Tuna, Roast beef,
Chicken". How can you turn that text into an array that you can use to
build the menu itself? Very easily, as it turns out — you can use the built-in
JavaScript function, split, which splits a string on the text you pass to this
function. So, if you pass a quoted comma to this function, it splits a comma-
separated string into substrings automatically:

<script language = "javascript">
var arrayltems;

function show(menu, items)
{
arrayItems = items.split(", ");

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 83

If you pass this function the string "Tuna, Roast beef, Chicken", after
the split function is done, the arrayItems[0] will contain "Tuna",
arrayItems[1] will contain "Roast beef", and arrayItems[2] will con-
tain "Chicken". Very handy.

The next step is displaying those items in a menu <div> element, which is
done by constructing an HTML table. The code starts constructing that table

by looping over the menu items and storing the text for the table in a variable
named data:

function show(menu, items)

{
var data = "<table width = '100%'>";
var loopIndex;
arrayltems = items.split(",");

if (arrayItems.length != 0) {
for (var loopIndex = 0; loopIndex < arrayltems.length;
loopIndex++) {

}
}

data += "</table>";

}
When the user clicks a menu item, the code needs to respond, so it ties the

onclick event attribute of each table cell to a function named display,
passing that function the index of the item that was clicked:

function show(menu, items)

{
var data = "<table width = '100%'>";
var loopIndex;
arrayltems = items.split(",");

if (arrayIltems.length != 0) {
for (var loopIndex = 0; loopIndex < arrayltems.length;
loopIndex++) {

var text = "display(" + loopIndex + ")";
data += "<tr><td "
+ "onclick='" + text + "'>" +

arrayItems[loopIndex] +
"</td></tr>";

284 Part IV: In-Depth Ajax Power

data += "</table>";

}
Now that the menu items have all been assembled into the HTML table and
are ready to go, all that’s left is to actually display the menu by setting its
visibility styleto "visible" if it’s currently hidden. (The code doesn’t

change the visibility style if the menu is already visible — this prevents
flickering on the screen.)

function show(menu, items)
{
var data = "<table width = '100%'>";
var loopIndex;
arrayltems = items.split(",");
var target;

data += "</table>";

if (menu == "1"){
target = document.getElementById("menuDivl");
}

if (menu == "2"){
target = document.getElementById("menuDiv2");
}

if (target.style.visibility == "hidden") {
target.innerHTML = data;
target.style.visibility = "visible";
}
}

And there you have it. All that’s left is to add the display function, which is
called when the user makes a menu selection. This function is passed the index
of the item selected, and displays that item in a styled <div> element named
targetDiv (refer to Figure 9-2). The text for the current menu items is stored
in the arrayItems array, and the display function only needs to fetch the
text for the clicked menu item from that array. Here’s how it does that:

function display (index)
{

var targetDiv = document.getElementById("targetDiv");

targetDiv.innerHTML = "You selected "
+ arrayItems[index] + ".";

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 8 5

And that finishes this application, menus . html. This application uses CSS
styles to display and hide clickable menus as needed, loading those menus
with items fetched from the server using Ajax. When the user moves the

mouse over an image, a menu pops up and the user can select menu items;

when the user moves the mouse away from the image or menu, the menu
closes. Very cool.

Displaying Text That Gets Noticed

|
Figure 9-3:
Displaying
red text

to get
attention.

Ajax critics sometimes say that a problem with Ajax is that things can change
in a Web page without the user noticing. One way to address that is to use CSS
styles to make the changes stand out. For example, take a look at Figure 9-3.
The fetched text in that figure appears in red for half a second, then changes

to black (as it appears in the figure). And when that happens, it’s hard not to
notice it.

4 Ajax at work - Microsoft Internet Explorer

File Edit View Favorites Tools Help "

Qpack v)+ x) 2) o seach iravortes & | v L ow]v [A @D 3

Address [£] nttp:jiacalhost/chosjemphasizer itml | B | Links »

E

Fetching data with Ajax

This text will be displayed i red for half a seconud, then go back to bemg black

] Done l_l_l_l_l_l_} Lacal intranet

B

You can use styles, along with a little JavaScript, to make this effect happen.
JavaScript has a built-in function named setTimer that can call your code
after a certain amount of time has passed. In this example, the text fetched
from the server is displayed in red at first, and then changes back to black.
That color change is done using styles, as you might expect. How does this
example work? The setTimer function is instructed to call another function,
dimmer, which will change the color of the text to black after half a second:

<script language = "javascript">
function getData(dataSource, divID)
{
var XMLHttpRequestObject = false;

if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();

286 Part IV: In-Depth Ajax Power

} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject ("Microsoft.XMLHTTP") ;

if (XMLHttpRequestObject) {
var obj = document.getElementById("targetDiv");
XMLHttpRequestObject.open ("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function()
{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.style.color = "#FF0000";
obj.innerHTML = XMLHttpRequestObject.responseText;
setTimeout (dimmer, 500);

XMLHttpRequestObject.send (null) ;

function dimmer()
{
var obj = document.getElementById("targetDiv");
obj.style.color = "#000000";
}
</script>

Give this one a try — the fetched text stands out nicely when it first appears
in red.

In fact, the setTimer function is a handy one for many uses. For example,
here’s how you can scroll text in the status bar at the bottom of the browser
to catch the user’s attention (this won’t work in Firefox):

<script language="JavaScript">
var text = "Hello from Ajax! Hello from Ajax! "
function scroller()
{
window.status = text
text = text.substring(l, text.length) + text.substring(0, 1)
setTimeout ("scroller ()", 150)
}
</script>

As you can see, being a master of CSS styles can be very important to Ajax
programmers. But there are so many styles available that it’s hard to wade
through all the CSS documentation. For that reason, in the following sections,
[show you some of the most popular style properties for Ajax programmers.

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 8 7

Styling text
Here are some of the popular style properties you can use with text:

v font-family: Specifies the actual font, such as Arial or Helvetica. If
you want to list alternative fonts in case the target computer is missing
your first choice, specify the fonts as a comma-separated list, like this:
font-family: Arial, Helvetica.

v font-style: Specifies how the text is to be rendered. Set to normal,
italic, or oblique.

v font-weight: Refers to the boldness or lightness of the glyphs used to
render the text, relative to other fonts in the same font family. Set to
normal, bold, bolder, lighter, 100, 200, 300, 400,500, 600, 700,
800, or 900.

v line-height: Indicates the height given to each line.
v font-size: Refers to the size of the font.

V¥ text-decoration: Underlines text. Set to none, underline,
overline, line-through, or blink.

V¥ text-align: Centers text. Set to 1eft, right, or center.
Here’s an example, font .html, putting font properties to work:

<html>
<head>
<title>
Setting Font Styles
</title>
<style type="text/css">
body {font-style: italic; font-variant: normal; font-weight: bold;
font-size: 12pt; line-height: 10pt; font-family: arial, helvetica;
text-align: center;}
</style>
</head>

<body>
<hl>Setting Font Styles</hl>

This text has been styled with CSS styles.
</body>
</html>

You can see what font .html looks like in a browser in Figure 9-4.

288 Part IV: In-Depth Ajax Power

4} Setting Font Styles - Microsoft Internet Explorer
File Edit View Favorites Tools Help f?
Qeack ») » 4 2] | S seach i Favortes £ | 0w o wl e [5 @ 3 .
Address [&] http:/ focalhostic 0 fort. html =l B |Links »
— Setting Font Styles =
Figure 9-4: This text has been styied with CSS styles.
Styling text
with font
properties. .-
] Done l_l_’_’_’_|\j Lacal intranet y

Styling text is one of the most common things to use CSS styles for, but know-
ing which style property does what isn’t always easy. This next example
clears some of the fog by using these text properties:

v font-style to make text italic

V¥ font-weight to make text bold

v font-size to set the font size

v font-family to set the font face

v text-decoration to underline the text

V¥ text-align to center the text
Here’s what the example, text .html, looks like:

<html>
<head>
<title>
Styling Text
</title>

<style>
p {font-size: 18pt; font-style: italic; font-family:

Arial, Helvetica; text-align: center;}
</style>
</head>

<body>
<center>
<hl>
Styling Text
</hl>
</center>
<p>

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 8 9

This text is in italics. Some of it is
bold,
and some is

underlined.
</body>
</html>

You can see text.html in a browser in Figure 9-5, which displays the text
using italics, bold, and underlining. Not bad.

4} Styling Text - Microsoft Internet Explorer
File Edit View Favorites Tools Help f?
QBack v () v x| 2] | seach iFavertes € | v Lowlv [l @ D 3
Address [&] hitp:jlocalhost{chosftext hirn | EJeo Links »
=
— Styling Text
Figure 9-5: . C s .
Styling text This text is in italics. Some of it is bO’d, and some fs
with font underlined.

properties. =

] Done l_l_l_l_l_l_} Lacal intranet y

Handling colors and backgrounds

Here are some of the popular style properties that you use to set color and
backgrounds:
v color: Sets the foreground color. Set to a color, such as #FFFFFF.

v background-color: Sets the background color. Set to a color, such as
#FFFFFF.

v background-image: Sets the background image. Set to a URL.

v background-repeat: Specifies whether the background image should
be tiled. Set to repeat, repeat-x, repeat-y, or no-repeat.

V¥ background-attachment: Specifies whether the background scrolls
with the rest of the document. Set to scroll or fixed.

v background-position: Sets the initial position of the background. Set
to top, center, bottom, left, or right.

290 Part IV: In-Depth Ajax Power

Here’s an example, colors.html. In this case, I'm styling both the back-
ground and foreground of a document to make some text stand out:

<html>
<head>
<title>
Styling foregrounds and backgrounds
</title>
</head>

<body style="background-color: #AADDDD">

<div align="left">
CEO

HTML Styles, Inc.

0z, North Carolina
</div>

<p>
Dear Leo:
<div align="center" style="color: #FF0000; background-color:
#FFFFFF; font-style: italic;">
Like my new text?
</div>

<div align="right">

<p>

President

CSS Styles, Inc.

Emerald City, Pennsylvania
</div>

</body>
</html>

You can see what colors.html looks like (in glorious black and white) in
Figure 9-6. As you can see in that figure, the text in the middle does indeed
stand out (and in real life it stands out even more because it’s red).

Want an easy way to set colors? Besides setting colors the usual HTML way
(for example, #AAFFAR), you can also use a special function, rgb, when setting
colors in CSS style sheets. You pass the red, green, and blue values (0-255)
you want in your new color to this function — for example, rgb (255, 0, 0)
would be pure red. Here’s an example showing how to set foreground and
background colors using rgb:

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 9 1

4} Styling foregrounds and backgrounds - Microsoft Internet Explorer

File Edit View Favorites Tools Help f?
(PBack *) ¢ x| 2] ;| Seach | Favortes £ i w)i @3
Address [£] hiep:iiocalhestjchosjcolors htrl | EJee Links »
CEQ
I || HTML Styles, Inc.
) Oz, Horth Carolina
Figure 9-6:
S | DearLeo:
ty Ing Like my new fext?
foregrounds .
Fresident
and back- 0S5 Styles, Inc.
Emerald City, P frania
grounds. s
] Done l_l_l_l_l_l\j Lacal intranet y
| 4

<table border="2" width="400" height="200" style="text-align:center">
<tr>
<th style="background-color: rgb(255, 0, 0)">Tic</th>
<th style="background-color: rgb(255, 0, 0)">Tac</th>
<th style="background-color: rgb(255, 0, 0)">Toe</th>
</tr>
<tr>
<td style="background-color: rgb(0, 0, 255)">X</td>
<td style="background-color: rgb(0, 0, 0); color:
rgb (255, 255, 255)">
0
</td>
<td style="background-color: rgb(0, 255, 0)">X</td>
</tr>
<tr>
<td style="background-color: rgb(0, 0, 0); color:
rgb (255, 255, 255)">
0
</td>
<td style="background-color: rgb(255, 255, 255)">X</td>
<td style="background-color: rgb(0, 0, 0); color:
rgb (255, 255, 255)">
0
</td>
</tr>
<tr>
<td style="background-color: rgb(255, 255, 0)">X</td>
<td style="background-color: rgb(0, 0, 0); color:
rgb (255, 255, 255)">
0
</td>
<td style="background-color: rgb(0, 255, 255)">X</td>
</tr>
</table>

292 Part IV: In-Depth Ajax Power

|
Figure 9-7:
Styling
foregrounds
and back-
grounds.
|

\\J

This example, colortable.html, appears in Figure 9-7 — also in glorious
black and white. To see what it really looks like, open it up in your browser —
there are plenty of colors here.

4} Styling colors - Microsoft Internet Explorer

File Edit View Favorites Tools Help "
Qeack ») - x| @ | P sewch Tiravarites & | v Lol () E D3
Address | &] http:fflocalhostichnseolortabe. el =| EJ | Links »
Styling colors
|
&) Done l_l_l_l_l_l‘J Lacal intranet y

You can also assign standard colors by name to the color and background-
color properties. For example, you can assign values like red, green,

and even coral, magenta, and cyan to the color properties color and
background-color.

Positioning using styles

Among the favorite CSS styles used by Ajax developers are those that deal
with positioning elements in a Web page — good for pop-up menus, drag-and-
drop, auto-complete boxes, Google-search boxes, and more. You can find
numerous examples of positioning elements throughout this book.

Positioning is commonly used by Ajax programmers when updating a page.
Using styles, you can position items in absolute or relative terms. I cover
both in the following sections.

Absolute positioning

In absolute positioning, you position elements so that the browser measures x
and y distances from the upper-left corner of its client area (the content dis-
play part of the browser, excluding menu bars, status bars, scroll bars, and so
on). In other words, the elements are fixed in place in the browser window.
Measurements are in pixels by default. Positive x increases to the right, and
positive y increases downward. Here are the CSS style properties you use
when positioning elements in an absolute way:

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 93

V¥ position: Set to absolute for absolute positioning.

v top: Offset of the top of the element on the screen. By default, this mea-
surement is taken to be in pixels. You can append "px" to the end of
this value to make sure the browser interprets the measurement as
pixels, as in "50px".

v bottom: Offset of the bottom of the element in the browser’s client area.
By default, this measurement is taken to be in pixels. You can append
"px" to the end of this value to make sure the browser interprets the
measurement as pixels, as in "50px".

v left: Offset of the left edge of the element in the browser’s client area.
By default, this measurement is taken to be in pixels. You can append
"px" to the end of this value to make sure the browser interprets the
measurement as pixels, as in "50px".

v right: Offset of the right edge of the element in the browser’s client
area. By default, this measurement is taken to be in pixels. You can
append "px" to the end of this value to make sure the browser inter-
prets the measurement as pixels, as in "50px".

v z-order: Sets the stacking order of the item with respect to other
elements.

Here’s an example, absolute.html. In this case, I set position to absolute,
and then specified the top and left properties for three <div> elements, each
of which holds both an image and text:

<html>

<head>
<title>
Absolute Positioning
</title>
</head>

<body>

<hl align="center">
Absolute Positioning
</hl>

<div style="position:absolute; left:50; top:60;">

Image 1

</div>

<div style="position:absolute; left:200; top:90;">

Image 2

294

Part IV: In-Depth Ajax Power

|
Figure 9-8:
Using
absolute
positioning.
|

</div>

<div style="position:absolute; left:350; top:120;">

Image 3

</div>

</body>

</html>

You can see the results in Figure 9-8, where the three images are positioned
as they should be.

4} Absolute Positioning - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
@Back *)+ x| 2] 3| Seawch ' Favortes £ LT i D 3
Address | &] http:/flocalhostichns absabte. htrrl =| EJ | Links »
=
Absolute Positioning

Image 2
Image 3

Image 2

Image 3

£] Done [T [[NdLocalintranet

Y

You can also specify how elements in a Web page stack on top of each other
using the z-order property. Elements with a higher z-order setting appear
on top of elements with a lower z-order setting. For example, say that you
set the z- index of the second image to 200, a high value:

<div style="position:absolute; left:200; top:90; z-index:200">

Image 2

</div>

Now Image 2 is on top of the other images in the page, as you can see in
Figure 9-9. If you drag that image around, it always rides on top of the other
images in the page.

Chapter 9: Working with Cascading Style Sheets in Ajax Applications 2 9 5

4} Absolute Positioning - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
@Back *)+ x| 2] 3| Seawch ' Favortes £ LT i D 3
Address | &] http:/flocalhostichns absabte. htrrl =| EJ | Links »
=
Absolute Positioning
|
Image 1
— Tmage 2
Flgur_e 9-9: [mage 3
Setting z- Image |
index to Imege 2 |
customize Image 3
overlapping. B
—— &) Done l_l_l_l_l_l\j Lacal intranet y

Relative positioning

You can also position elements in a Web page with respect to others,
called relative positioning. Here are the properties you set to use relative
positioning:

V¥ position: Set to relative for relative positioning.

v top: Offset of the top of the element from where it would otherwise be
placed. By default, this measurement is taken to be in pixels. You can
append "px" to the end of this value to make sure the browser inter-
prets the measurement as pixels, as in "50px".

v bottom: Offset of the bottom of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append "px" to the end of this value to make sure the browser
interprets the measurement as pixels, as in "50px".

v left: Offset of the left edge of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append "px" to the end of this value to make sure the browser
interprets the measurement as pixels, as in "50px".

v right: Offset of the right edge of the element from where it would other-
wise be placed. By default, this measurement is taken to be in pixels.
You can append "px" to the end of this value to make sure the browser
interprets the measurement as pixels, as in "50px".

v z-order: Sets the stacking order of the item with respect to other
elements.

296 Part IV: In-Depth Ajax Power

You use relative positioning in a browser to change the position of an ele-
ment from where the browser would otherwise normally place it. In other
words, relative positioning changes the position of elements with respect to
the normal “flow.”

Here’s an example, relative.html. In this case, 'm moving some text up 5
pixels and other text down 5 pixels from the normal position at which the
browser would place that text:

<html>
<head>
<title>
Relative Positioning
</title>
</head>
<body>
<hl align="center">
Relative Positioning
</hl>
Do you like
roller
coasters as much as I
do?
</body>
</html>

You can see the results in Figure 9-10. As you see, some of the text is higher
by 5 pixels than it would be if placed in the normal flow, and some of the text
is lower by 5 pixels.

4} Relative Positioning - Microsoft Intermet Explorer

File Edit View Favorites Tools Help "
Back *)+ x] 2] | Semch ' Favoites £ > o (] D -3
Address [£] hiep:locahestichosirelative. bl =] EJe | Links »

Relative Positioning
|

Figure 9'10: Do yrou fike roller coasters 25 much as I do?
Using
relative
positioning
with text. i
— S [[| [SdLocalintranet

B

Chapter 10
Working with Ajax and PHP

In This Chapter
Understanding the basic PHP syntax

Extracting data from HTML controls
Sending data to the server

Reading and writing files on the server
Handling databases with PHP

' he CEO says, “No, we can’t just have static data returned from the server.
We need to send data to the server from our Ajax code and have cus-
tomized data returned from the server. How can we do it?”

You, the highly-paid Ajax consultant, step up and say, “No problem. How
about using PHP on the server to handle your data interactively?”

“Sounds great,” says the CEO. “I hope your rates are reasonable?”
“Nope,” you say.
“Darn,” says the CEO.

Ajax applications often interact with programming code on the server, and
these days, the most frequent choice is PHP. Ajax programmers typically
don’t need a great deal of in-depth coding on the server, but if you want to
write your own PHP scripts, knowing the basics is important — and that’s
what this chapter gives you: the PHP basics.

Because Ajax involves server-side programming, this chapter focuses on work-
ing with PHP on the server. If you can handle JavaScript, you can handle PHP. In
fact, much of the syntax is very similar, so you've already got a big leg up.

Note that this chapter is just a PHP primer — I couldn’t possibly fit all of PHP
in these pages. If you need more than what you see here, check out PHP 5 For
Dummies, by Janet Valade (Wiley Publishing, Inc.).

298 Part IV: In-Depth Ajax Power

Starting with PHP

\\J

Technically speaking, you should enclose your PHP scripts, which are stored
in files with the extension .php (like checkprice.php) inside <? and 2> like
this:

<?
. Your PHP goes here....

?>

One of the attractive things about PHP is that you can intersperse HTML and
PHP at will. A PHP-enabled server will execute the PHP code inside the

Here’s an example that runs the built-in PHP function phpinfo, which cre-
ates an HTML table that tells you about your PHP installation.

Note that both HTML and PHP are interspersed in this example, phpinfo.
php, and note that as in the JavaScript you see throughout this book, you end
each PHP statement with a semicolon (;).

<html>
<head>
<title>
A first PHP page
</title>
</head>

<body>
<hl>
A first PHP page
</hl>
<?
phpinfo () ;
?>
</body>
</html>

What does this look like at work? You can see the results in Figure 10-1. The
details will vary according to your PHP installation, but the idea is the same:
The phpinfo function displays the table you see in the figure, and the
header,2 first PHP page, comes from the HTML you’ve placed in
phpinfo.php.

|
Figure 10-1:
Getting the
details of

a PHP
installation.
|

Chapter 10: Working with Ajax and PHP 299

4 A first PHP page - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
@Back * £ = x| 2] .|) seach ' Favorites £ > o] v o9 -3
Address [£] hipiflocathostjch1ofphpirfo. php ~| EJa Links »
=
A first PHP page
PHP Version 5.0.4 ?
D
System Windene NT DMB400 5.1 build 2800
Euild Date lar 31 2005 02:494:34
Configure Command cscript/nologe configure j="-enable-snapshotbuil @' "with-gd=shared"
Server AP| CGIFastCE]
Virtual Directory Support enabled
| Configurstion File (phpini | Fath COMINDOWSiphpini | st
1 v
] Done |_|_|_|_|_|13 Laocal intranet y

What about sending some of your own text back to the browser using PHP?
For that, you can use the PHP echo statement. All you do is pass the text you
want to send back to the browser to the echo statement as in this example,

echo.php:

<html>
<head>
<title>

Using the echo statement

</title>
</head>

<body>
<hl>

Using the echo statement

</hl>
<?

echo "Hello from PHP.";

?>
</body>
</html>

You can see the results in Figure 10-2, where the echo statement is doing its
thing and sending text back to the browser, just as planned.

The echo statement sends text back to the browser, but sometimes in Ajax you
don’t want to send just text — you want to send XML. To make sure that the
text sent back to the browser is treated as XML by the browser, use the PHP
header statement and set the HTTP Content-Type header to text /xml.

300 Part IV: In-Depth Ajax Power

) Using the echo statement - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:ZI . I_V\ - @ x| E_ﬁ]_ http:#flocalhost/ch10fecho. php j D Go ||C.L

> Getting Started Lo Latest Headlines

Using the echo statement

Helle from PHP
|
Figure 10-2:
Using the
PHP echo

statement.
Done

—— =

Here’s an example, xml . php, that I show you later in this chapter, in the
“Round and round with loops” section, where [cover looping over arrays.
This example sends XML back to the browser:

<?
header('Content-Type: text/xml');
$data = array('This', 'is', 'XML.');
echo '<?xml version="1.0" ?>';
echo '<document>';
foreach ($data as $value)
{
echo '<data>';
echo $value;
echo '</data>';
}
echo '</document>';
?2>

The preceding example sends this XML back to the browser:

<?xml version="1.0" ?>

<document>
<data>This</data>
<data>is</data>
<data>XML.</data>

</document>

Browsers like Internet Explorer display XML in a special way, as you can see
in Figure 10-3, where Internet Explorer is indeed convinced that the text in
this example, xm1 . php, is bona fide XML.

Chapter 10: Working with Ajax and PHP 3 ()]

4} hitp:i/localhost’'ch10/xml.php?h=13 - Microsoft Internet Explorer
File Edit View Favorites Tools Help s
(QBack v () = x| 2 | search < Favorkes ¥ i v ¥ Fale 15
Address | hitpijfiocalhastichi0fsml.php | EJeo Links
L [|
<?aml version="1,0" 7=
- <documents
«<data=This«</dataz
«dataxis<fdatazx
«<data=XML.</datas
<fdocuments
|
Figure 10-3:
Sending
XML to the
browser
from PHP. E
] Done l_l_l_l_l_l_} Laocal intranet y
| 2

You can also comment your PHP code. There are three types of comments in
PHP. The first kind of comment lets you write multi-line comments, beginning
with /* and ending with */ like this:

<?
/* Start by displaying a
message to the user */

echo "Hello from PHP.";
?>

The other two types of comments are one-line comments, just as you see in
JavaScript, designed to hold text that fits on a single line (the comment ends
automatically at the end of the line). To start these comments, you can use
either // or #:

<?
// Start by displaying a
message to the user

echo "Hello from PHP.";

Getting a Handle on Variables

How about storing some data in variables? As in JavaScript, variables in PHP
can hold numbers, strings, or objects. In PHP, variable names start with a

302 Part IV: In-Depth Ajax Power

A\\S

dollar sign ($) character, and you don’t have to declare them. For example,
to set the variable named $peaches to 1, all you have to do is this:

Speaches = 1;

You can display the value in this variable this way with the echo statement:
echo "Number of peaches: ", $peaches, "
";

There are two things to note here:

v You can pass multiple items to the echo statement if you separate the
items with commas.

v You're sending HTML back to the browser, so to skip to the next line,
you use HTML like
.

Using variables in PHP is much like using them in JavaScript. So here’s a PHP
example, variables.php, that assigns a value to Speaches and then changes
the value in that variable by adding 5 to it:

<html>
<head>
<title>
Assigning values to variables
</title>
</head>
<body>
<hl>
Assigning values to variables
</hl>
<?

echo "Setting number of peaches to 1l.
";

$peaches = 1;

echo "Number of peaches: ", $peaches, "
";

echo "Adding 5 more peaches.
";

$peaches = $peaches + 5;

echo "Number of peaches now: ", $peaches, "
";
?>

</body>
</html>

The results are in Figure 10-4. As you can see, working with variables in PHP
is very similar to working with variables in JavaScript.

|
Figure 10-4:
Working
with
variables

in PHP.

g values to variables - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:3| - LV\ - @ x| @ I_, hitp:ilocalhost/chiOfvanables. php j D Go ||GL

& Getting Started |y Latest Headlines

Assigning values to variables

Setting number of peaches to 1.
Mumber of peaches: 1
Adding 5 more peaches

Mumber of peaches now: 6

Daone =R

Besides assigning numbers to variables, you can also assign text strings, as
here:

$string = "Hello from PHP.";

In JavaScript, you join strings with the + operator, but in PHP, you use the dot
(.) operator instead:

$string = "Hello " . "from " . "PHP.";
PHP also comes with many string functions built in. Here’s a sampling:

v trim: Trims spaces from the beginning and end of a string
v substr: Extracts substrings from a string

v strpos: Finds the location of a substring in a string

v uctirst: Capitalizes the first character of a string

v substr_replace: Replaces text in a string

v strtoupper: Converts a whole string to uppercase

Here’s an example that puts these string functions to work:

<?
echo trim(" No problem."), "
";
echo substr("No problem.", 3, 7), "
";
echo "'problem' starts at position ", strpos("No problem.", "problem"),
"
";
echo ucfirst("no problem."), "
";
echo "'No problem.' is ", strlen("No problem."), " characters long.
";
echo substr_replace("No problem.", "problems.", 3, 8), "
";
echo strtoupper ("No problem."), "
";

?>

Chapter 10: Working with Ajax and PHP ~ 3() 3

304 Part IV: In-Depth Ajax Power

Here are the results of this script, line by line (with the "
" at the end of
each line stripped away):

No problem.

problem

'problem' starts at position 3

No problem.

'No problem.' is 11 characters long.
No problems.

ABC

NO PROBLEM.

Want to work with arrays? No problem at all. Just use the PHP array state-
ment. Here’s an example:

S$data = array(15, 18, 22);

And you access any item in an array like this:
echo $datal0]; //displays 15
echo $data[l]; //displays 18

echo $data[2]; //displays 22

In PHP, you can also refer to items in an array with a text index if you prefer,
like this:

Sdata["temperature"] = 81;
echo $datal"temperature"]; //displays 81

Handling Your Data with Operators

PHP has plenty of operators to handle your data, and most of them are the
same as the operators in JavaScript. Here’s a sampling of PHP operators:

¥ new

Chapter 10: Working with Ajax and PHP 305

|
¥ 2
V:

oP

+= —= *= /: .= = &= |: N=

These operators work as you’d expect. Here’s an example, operators.html,
which puts a few of these operators to work:

<html>
<head>
<title>
Assigning values to variables
</title>
</head>
<body>
<hl>
Assigning values to variables
</hl>
<?
echo "2 + 3 =", 2 + 3, "
";
echo "2 -3 =", 2 - 3, "
";
echo "2 * 3 =", 2 * 3, "
";
echo "2 /3 =", 2/ 3, "
";
?>
</body>
</html>

The results of this example appear in Figure 10-5, where as you can see, the
PHP operators have done their thing.

g values to variables - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @
<:ZI - I_IV\ - @ _I @ I_, ht'tp:|".-"Iocalhosta"chiﬂ.-’nperaiors.phpj © Go ||GL
. P Getting Started L Latest Headlines
Assigning values to variables
|
- 2+3=5
Figure 10-5: | , s_
Working | 2*3=¢
with 2/ 3= 0666666666667
operators
in PHP.
Daone =R
|

306 Part IV: In-Depth Ajax Power

The list of PHP operators earlier in this section is given in terms of operator
precedence in PHP, with higher-precedence operators first. Operator prece-
dence indicates which operator will be executed first if there’s a conflict. For
example, what will the following statement display?

echo 2 + 3 * 4;

Will the 2 be added to the 3 and then multiplied by 4 to give you 20? Or will
the 3 be multiplied by 4 and then added to 2 to give you 14? In PHP, the multi-
plication operator, *, has higher precedence than the addition operator, +, so
the * is executed first. So, 2 + 3 * 4 becomes 2 + 12, which gives you 14.

Making Choices with the if Statement

Just about all high-level programming languages, including PHP, have an if
statement. You use if statements to make choices at runtime. Here’s an
example, if.php, which tests whether the value in a variable named
Stemperature is less than 80 degrees:

<html>
<head>
<title>
Using the if statement
</title>
</head>
<body>
<hl>
Using the if statement
</hl>
<?
$temperature = 75;
if ($temperature < 80) {
echo "Pleasant weather.";
}
?>
</body>
</html>

In this case, $temperature holds a value of 75, so the statement echo
"Pleasant weather."; is executed. The result is shown in Figure 10-6.

Chapter 10: Working with Ajax and PHP 30/

_’Eﬂu the if statement - Microsoft Internet Explorer
File Edit View Favorites Tools Help a |
QBack * () ~ x] 2] (0| search iFavortes & (v o] < [@D 3
Address |&] http:fflocalhost{ch10/F.php | EJee | Links >
=l
Using the if statement
—— Pleasant weather,
Figure 10-6:
Using the if
statement in
PHP. E
£] Done [[[NdLocalintranet P

PHP also has an else statement, which works just as it does in JavaScript:

<body>
<hl>
Using the if statement
</hl>
<?

Stemperature = 95;

if (Stemperature < 80) {
echo "Pleasant weather.";
}

else {

echo "Too hot.";

}

?>
</body>

Because the temperature variable here contains a value of 95, you're going
to see "Too hot." from this code.

Round and Round with Loops

PHP also supports several 1oop statements. The for loop works just as it
does in JavaScript; in fact, the only real difference is that you have to give the
loop index variable an initial $, following the PHP way of naming variables.
(For more on the for loop in JavaScript, see Chapter 2.) Here’s an example,
for.php:

308 Part IV: In-Depth Ajax Power

<html>
<head>
<title>
Using the for loop
</title>
</head>

<body>
<hl>
Using the for loop
</hl>
<?
for ($loopCounter = 0; $loopCounter < 4; $loopCounter++) {
echo "You're going to see this four times.
";

?>

</body>
</html>

You can see this example do its thing in Figure 10-7.

¥ Using the for loop - Mozilla Firefox

File Edit View Go Bookmarks Tools Help @

<:ZI - I_IV\ - @ _I @ I_, http:ilocalhost/chi0dfor. php j © Go ||GL

& Getting Started |y Latest Headlines

Using the for loop
|
. . Tou're going to see this four tmes.
Flgure 10-7: YTou're going to see this four tmes.

Using Tou're going to see this four trnes.
the for You're going to see this four tumes.

statement
in PHP.

Daone =R
| 2

PHP also has a while loop that keeps looping while its condition is true.
Here’s an example that displays the message You're going to see this
four times, just as the previous for loop example did:

<html>
<head>
<title>
Using the while loop
</title>
</head>

<body>
<hl>

Chapter 10: Working with Ajax and PHP 3 ()9

Using the while loop
</hl>
<?

$loopIndex = 1;

while ($loopIndex <= 4){
echo "You're going to see this four times.
";
$loopIndex++;

?>
</body>
</html>

PHP also has a do. . .while loop that checks its condition at the end of the
loop, not the beginning, which is useful if the condition you want to test isn’t
even set until the body of the loop is executed. This loop also displays the
message four times:

<?
$loopIndex = 1;

do {
echo "You're going to see this four times.
";
$loopIndex++;
} while ($loopIndex <= 4)
?>

PHP also has a foreach loop, which lets you automatically loop over arrays
and other multiple-item objects. This loop is handy because you don’t have
to explicitly know how many items there are in an array to loop over it — all
you have to do is give a name of a variable that will be filled with the current
array item each time through the loop. This example, xm1 . php, sends XML
back to the server, using a foreach loop to create the XML document:

<?
header ('Content-Type: text/xml');
$data = array('This', 'is', 'XML.');
echo '<?xml version="1.0" ?>';
echo '<document>';
foreach ($data as $value)
{
echo '<data>';
echo $value;
echo '</data>';
}
echo '</document>';
?>

Very cool.

3 ’ 0 Part IV: In-Depth Ajax Power

Handling HTML Controls

When a Web page is sent to the server, you can extract the data from HTML
controls yourself in a PHP script. To send data to the server when a Submit
button is clicked, you’ll need to set the following attributes of the HTML form
containing the text field:

v action: This attribute is assigned the URL to which the form data will
be sent. You can omit this attribute, in which case its default is the URL
of the current PHP document.

» method: Specifies the method for sending data to the server. If you set it
to GET (the default) this method sends all form name/value pair infor-
mation in a URL that looks like: URL ?name=value&name=value&name=
value. If you use the POST method, the contents of the form are encoded
as with the GET method, but they are sent in hidden environment
variables.

For example, this Web page, text .html, asks the user to enter his nickname
in a text field named "nickname", and then it posts that data to a PHP script

named phptext .php.

<html>
<head>
<title>
Sending data in text fields
</title>
</head>
<body>
<center>
<hl>
Sending data in text fields
</hl>
<form method="post" action="phptext.php">
Enter your nickname:
<input name="nickname" type="text">

<input type="submit" value="Submit">
</form>
</center>
</body>

</html>

Chapter 10: Working with Ajax and PHP 3]]

You can see this page at work in Figure 10-8, where it’s asking for the user’s
nickname.

_’ESemIinq data in text fields - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
@Back * € = x| 2| | seach i Favortes £ | v L w| = 893
Address [&] http:/flocalhostichintext bt = B)e Links >
| =]
Figure 10-8: Sending data in text fields
A Web page
Wlth a text Enter your 1\ic]mame-|5le\l'e
field asking
for the
user’s
nickname. E
——] Done l_l_l_l_l_l\j Local intranet y
Getting data from text fields
How do you read the data in an HTML control like you read the nickname
text field in the preceding PHP example?

v If you sent data to the server by using the GET method, you can
recover that data from the PHP $_GET array like this: $_GET["nick
name"], where nickname is the name you gave to the text field (with
the HTML name attribute).

v If you sent the data by using the POST method, you can access the data
in the text field as $_POST ["nickname"].

P There’s another PHP array named $_REQUEST that lets you get that data

regardless of whether you used the GET method or the POST method.
Continuing with the example, here’s how to use $_REQUEST to recover
the text the user entered into the nickname text field:

<html>
<head>
<title>
Reading data from text fields using PHP
</title>
</head>

<body>
<center>

<hl>
Reading data from text fields using PHP
</hl>

3 ’ 2 Part IV: In-Depth Ajax Power

Your nickname is
<?
echo $_REQUEST["nickname"];
?>
</center>
</body>
</html>

That’s all you need. Now this page, phptext.php, can read the text that was
entered into the text field, as shown in Figure 10-9.

4} Reading data from text fields using PHP - Microsoft Internet Explorer

File Edit View Favorites Tools Help "
@Back * o)+ x| 2] | seach Favortes £ |+ . M - 893
Address [&] hitp:focahostichi 0 jphpest.php | Ede Links »
=
Reading data from text fields using PHP
|
Figure 10_9: Your nicknams is Steve
Reading
data froma
text field in
PHP. E
——] Done l_l_l_l_l_l\j Lacal intranet y

Checking out data from check boxes

The technique in the preceding section works for text fields and text areas,
but what about check boxes? Here’s an example, checkboxes .html, which
asks the user what toppings she wants on her pizza:

<html>
<head>
<title>Sending data in checkboxes</title>
</head>

<body>

<center>

<hl>Sending data in checkboxes</hl>

<form method="POST" action="checkboxes.php">
What do you want on your pizza?
<input name="pepperoni" type="checkbox" value="Pepperoni">
Pepperoni
<input name="olives" type="checkbox" value="Olives">
Olives

Chapter 10: Working with Ajax and PHP 3] 3

<input type="submit" value="Submit">
</form>
</center>
</body>
</html>

You can see the two check boxes in a browser in Figure 10-10. The user just
selects one or both and then clicks Submit to send her selection to the
server.

¥ Sending data in checkboxes - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @
<:ZI - I_IV\ - @ _I @ I_, ht'tp:|".-"Iocalhosta"chiﬂ.-’checkboxes.hj © Go ||GL
. P Getting Started L Latest Headlines
|
1 - - -
Figure 10-10: Sending data in checkboxes
Using check
oxes 1o as at do you want on your ? erom [¥i Olves
b t k Wh ki your pizza? W Pepperoni b Ol
the user
Submit
what she Kbt
wants on
her pizza.
—— /{2002 B 4

You can determine whether a check box has been checked with the PHP
isset function, which returns true if the parameter corresponding to an
HTML control has been set, and false otherwise.

If a check box has been checked, you can get the text that has been assigned
to the check box’s value attribute (that’s "pepperoni" or "olives™" in this
example) using the $_GET, $_POST, or $_REQUEST arrays. Here’s what it
looks like in PHP code, phpcheckboxes . php, where you can recover the
names of the toppings the user requested:

<html>
<head>
<title>
Reading data from checkboxes using PHP
</title>
</head>

<body>
<center>
<hl>Reading data from checkboxes using PHP</hl>
You want:

3 ’ 4 Part IV: In-Depth Ajax Power

<?
if (isset($_REQUEST["pepperoni"]))
echo $_REQUEST["pepperoni"], "
";
if (isset($_REQUEST["olives"]))
echo $_REQUEST["olives"], "
";
?>
</center>
</body>
</html>

And as shown in Figure 10-11, this PHP script has indeed been able to deter-
mine what the user wants on her pizza. Not bad.

¥ Reading data from checkboxes using PHP - Mozilla Firefox
File Edit View Go Bookmarks Tools Help @

<:ZI * I_L,‘- * L—_@,—" _I @ I 1 http:|".-"Iocalhosta"chiﬂ.-’;hpcheckhoxtj © Go ||(_1L
& Getting Started |y Latest Headlines

Reading data from checkboxes using PHP

|
Figure 10-11: You want:
Determining Pepperond
Olives
what the
user wants
on her pizza.
|

Dane =N

Tuning in data from radio buttons

How do you recover data from radio buttons? Here, you group radio buttons
together, so they act as a set, by giving two or more buttons the same name,
as you see in radios.html. Here, the name given to the radio buttons is
"radios":

<html>
<head>
<title>Sending data in radio buttons</title>
</head>
<body>
<center>
<hl>Sending data in radio buttons</hl>
<form method="POST" action="phpradios.php">
Do you want fries with that?
<input name="radios" type="RADIO" value="Yes">

Chapter 10: Working with Ajax and PHP

Yes

<input name="radios" type="RADIO" value="No">
No

<input type="SUBMIT" value="Submit">

</form>

</center>
</body>
</html>

You can see radios.html at work in Figure 10-12.

k1 Sending data in radio buttons - Microsoft Internet Explorer
File Edit View Favorites Tools Help "
@Back * € = x| 2| | seach i Favortes £ | v L w| = 893
Address [&] http:jfiocalhostich10jradis. bl =] EJ Links »
=
Sending data in radio buttons
Do ywowwant fries with that? © Yes & HNo
|
Figure 10-12:
Using radio
buttons. E
——] Done l_l_l_l_l_l\j Lacal intranet y

To recover the radio button that was selected in the radio button group, you
use the name of the group with $_REQUEST, instead of having to work with
each individual control as with check boxes. You can see how this works in
phpradios.php:

<html>
<head>
<title>Reading data from radio buttons using PHP</title>
</head>
<body>
<center>
<hl>Reading data from radio buttons using PHP</hl>
<?
echo "You selected: ", $_REQUEST["radios"];
?>
</center>
</body>
</html>

The results appear in Figure 10-13, where the PHP was able to get the user’s
selection from the radio buttons.

315

3 ’ 6 Part IV: In-Depth Ajax Power

_’3 Reading data from radio buttons using PHP - Microsoft Internet Explorer
File Edit View Favorites Tools Help i
@Back * o)+ x| 2] | seach Favortes £ |+ . M - 893
Address [—i}'[hitkp:f localhostich10fphpradios. php Z| EJ G | Links »
=
Reading data from radio buttons using PHP
Figure 10_13: You selected: Ho
Recovering
the setting
of radio
buttons. &l
£] Done [[[NdLocalintranet P

Sending Data to the Server

In Ajax, you don’t usually rely on form submission to send data to the server.
How do you send data to the server yourself? The usual way is to add your
data to the end of the URL and use the GET method (as shown in Chapter 3).
In that example, the code encodes the data to send to the server using a
parameter named scheme:

function getOptions (scheme)
{
var url = "options2.php?scheme=" + scheme;

if (XMLHttpRequestObject) {
XMLHttpRequestObject.open("GET", url, true);

XMLHttpRequestObject.onreadystatechange = function()

{
if (XMLHttpRequestObject.readyState == 4 &&

XMLHttpRequestObject.status == 200) {

var xmlDocument = XMLHttpRequestObject.responseXML;
options = xmlDocument.getElementsByTagName ("option");
listOptions();
}

XMLHttpRequestObject.send (null) ;
}

In PHP on the server, you can recover the data in the scheme parameter as
$_GET["scheme"]. Here’s how options2.php put the recovered value to
work in Chapter 3:

Chapter 10: Working with Ajax and PHP

<?
if (isset ($_GET["scheme"])) {
header ("Content-type: text/xml");

if ($_GET["scheme"] == "1")
$options = array('red', 'green', 'blue');
if (§_GET["scheme"] == "2")

$options = array('black', 'white', 'orange');
echo '<?xml version="1.0"?>"';
echo '<options>';
foreach ($options as $value)
{
echo '<option>';
echo $value;
echo '</option>';
}
echo '</options>';

}

?>

Using the GET method this way makes sending data to the server easy.

Reading Files

PHP lets you work with files on the server, and that’s a big help to save data —
everything from guest books to current lawn mower prices. To read from a
file, you can use the PHP fopen function to open that file on the server. Here’s
how you typically use this function:

fopen (filename, mode)

Here, filename is the name of the file you’re opening, and mode indicates
how you want to open the file:

v 'r': Open the file for reading only.

v 'r+': Open the file for reading and writing.

v 'w': Open the file for writing only and truncate the file to zero length. If
the file does not exist, PHP will attempt to create it.

v 'w+': Open the file for reading and writing and truncate the file to zero
length. If the file does not exist, PHP will attempt to create it.

v 'a': Open the file for appending only. If the file does not exist, PHP will
attempt to create it.

v 'a+': Open the file for reading and writing, starting at the end of the file.
If the file does not exist, PHP will attempt to create it.

317

3 ’ 8 Part IV: In-Depth Ajax Power

v 'x': Create and open the file for writing only. If the file already exists,
the fopen call will not create the file and will return FALSE.

v 'x+': Create and open the file for reading and writing. If the file already
exists, the fopen call will not create the file and will return FALSE.

The fopen function returns a file handle, which stands for the file from then
on in your code. You pass this file handle to various functions to read from
the file, or write to it, and so on. For example, there are a variety of ways to
read data from a file using PHP functions such as fgets, which reads a line of
text from a file. To read a line of text, you pass it a file’s handle. Say you have
afile, file. txt, on the server that has these contents:

This
text
comes
from
the
server.

How would you read this text? You can open file. txt with fopen and read
successive lines with fgets in a loop. You can determine when you’ve
reached the end of the file with the feof function, which returns true when
you’re at the end of the file. Here’s how the text in file. txt can be read and
displayed by PHP in phpreadfile.php.

<html>
<head>
<title>
Reading text from a file using PHP
</title>
</head>
<body>
<hl>
Reading text from a file using PHP
</hl>
<?
$handle = fopen("file.txt", "r");
while (!feof($handle)){
$text = fgets($handle);
echo $text, "
";
}
fclose($handle);
?>
</body>
</html>

Note the expression ! feof (Shandle). This expression uses the PHP “not”
operator, !, which reverses true to false and false to true. So ! feof (Shandle)
is true while you haven’t reached the end of the file yet.

Chapter 10: Working with Ajax and PHP

A\

|
Figure 10-14:
Reading a
file on the
server.
|

NBER
s&
&

Note also the use of fclose at the end of the code to close the file. When
you're done with a file, you should close it with fclose. (Closing a file is the
complementary operation to opening it.) You can see phpreadfile.php at
work in Figure 10-14.

¥ Reading text from a file using PHP - Mozilla Firefox
File Edit View Go Bookmarks Tools Help =]

<:II - I_L,‘ - @ I @ |4 hitp:/localhost/chl Diphpreadile.php j D Go ILL
Gotting Started [, Latest Headlines

Reading text from a file using PHP

Ths
text
comes
from
the

SEIVEr.

Dane =Y

This example uses fgets to read strings of text from a file on the server. PHP
offers other ways to do that as well, such as fgetc (which reads individual
characters) and fread (which reads data byte by byte).

Writing Files

WING/
&

You can also write to a file on the server using PHP and the fwrite function.
For example, say that you wanted to create the file file. txt on the server,
with the same content I use in the previous sections. You can start by putting
the text that you want in this file in a variable named $text.

Stext = "This\ntext\ncomes\nfrom\nthe\server.";

Note the \n codes here: Each such code stands for a newline character that
breaks the text up into separate lines, just as the original text for this file.

To be able to write files on the server, you first have to make sure you have
permission to do so. If you aren’t authorized to write to files, you can’t use
examples like this one.

319

320 Part IV: In-Depth Ajax Power

To write to file. txt, you just have to open that file for writing (passing a
mode of "w" to fopen), and then use fwrite to write to the file the text you
want. The fwrite function returns true if it is successful and FALSE other-
wise. Here’s what creating the file looks like in phpfilewrite.php:

<html>
<head>
<title>
Writing a file using PHP
</title>
</head>
<body>
<center>
<hl>
Writing a file using PHP
</hl>
<?
$handle = fopen("file.txt", "w");
$text = "This\ntext\ncomes\nfrom\nthe\server.";
if (fwrite($handle, $text) == FALSE) {
echo "Could not create file.txt.";
}
else {
echo "Created file.txt OK.";
}
fclose($handle);
?>
</center>
</body>
</html>

Opening a file with "w" truncates it to zero length first (before you start writ-
ing) so the current contents are lost. In addition to creating files this way, you
can also open them for appending, using fopen mode "a", which means any-
thing you add to the file will be added to the end of the file.

Working with Databases

PHP excels at connections to various database systems, which can be good
for Ajax programmers who want to retrieve data from the server.

PHP has many built-in functions to work with various database systems; one
popular choice is MySQL (www .mysgl . com). PHP comes with built-in func-
tions like mysqgl_connect (to connect to a MySQL database server),

Chapter 10: Working with Ajax and PHP 3 2]

mysqgl_select_db (to select a database to work with), mysgl_query (to
send an SQL query to the database), mysgl_fetch_array (to convert the
results of a query to an array), and so on.

Although a full treatment of working with PHP and databases is beyond the
scope of this book, here’s an example to get you started. Say you have a data-
base named products, and a table inside that database named pencils,
which lists the type and number of pencils you have in stock.

Here’s how you can fetch the products database and the pencils table
inside it, displaying the values in the type and number fields in the table’s
rows in an HTML table:

<?

?>

$connection = mysql_connect ("localhost","root","");
$db = mysql_select_db("products", $connection);

$query = "SELECT * FROM pencils";
$result = mysql_query($query);

echo "<table border='1'>";

echo "<tr>";

echo "<th>Type</th><th>Number</th>";
echo "</tr>";

while ($row = mysql_fetch_array($result))
{
echo "<tr>";
echo "<td>", $row['mame'], "</td><td>", $row['number'],
ne/td>";
echo "</tr>";
}

echo "</table>";

mysql_close($connection);

If you're interested in finding out more about working with databases in PHP,
check out PHP 5 For Dummies, by Janet Valade (Wiley Publishing, Inc.).

322 Part IV: In-Depth Ajax Power

PartV
The Part of Tens

The 5th Wave By Rich Tennant
CRIGTTENNANTL

What I'tm Jooki ibr age dgnamxc Web applm’aons
and content, not Web innvendoes and intent .

In this part . . .

No For Dummies book would be a For Dummies

book without a few Part of Tens chapters. Here,
Chapters 11 and 12 give you useful Ajax info in a handy
top-ten-list format. Chapter 11 lists Ajax design issues that
you’ll encounter sooner or later, and what to do about
them. Chapter 12 takes another route by providing you
with a list of ten essential Ajax resources online, from the
seminal Ajax sites to Google Ajax groups to Ajax blogs. If
you’ve got a problem with your Ajax coding, these are the
sites to go to. Take a look — I think you’ll discover that
the Ajax online community is a pretty friendly place.

Chapter 11

Ten Ajax Design Issues You

Should Know About

In This Chapter
Handling the Back button

Thinking about security

Storing search terms in Ajax pages

Watching out for caching

\\J

A jax is a new ball of wax when it comes to Web applications, and as

such, new rules about how the interface should and shouldn’t work

are emerging. Those rules have not been formalized yet, but the Ajax commu-
nity is discussing them. Before launching into creating your own Ajax applica-
tions, thinking about the design issues I explain in this chapter is a good idea.

You can also find more information on the best practices for Ajax program-
ming (also called Ajax patterns) at http://ajaxpatterns.org. Chapter 12
introduces the Ajax patterns site in more detail, along with several other
helpful Ajax resources.

Breaking the Back Button
and Bookmarks

When you have control over what’s going on in a Web page and you’re using
JavaScript to make things turn on and off in a page — or even to alter the
page’s entire appearance — the browser’s Back button won’t work anymore.
The Back button works from the browser’s history object, which stores the
successive pages that have been loaded into the browser. But if you aren’t
loading new pages — which is what Ajax is all about — the history object
doesn’t know about them.

326 Part V: The Part of Tens

\\J

This is one to keep in mind as you design your Ajax applications. If necessary,
provide your own local Back button using JavaScript. If you want to let the
user move backwards to previous window states, you have to keep track of
what’s been going on and let the user navigate as they want to.

There have been attempts at fixing this problem, although they’re usually
pretty complex to implement. One of the best is Mike Stenhouse’s effort at
www.contentwithstyle.co.uk/articles/38, which works by playing
around with URLs to make the browser store pages in its history object.

Giving Uisual Cues

Ajax works mostly behind the scenes, and that can be hard on the user. If
you’re loading a lot of data, for example, or waiting for the server, a visual
cue, such as a rotating hourglass image, is a good idea because a cue helps
users understand they need to be patient and their connections are in fact
working. You can display animated images using small . gi f files and use
dynamic styles to make those images appear or disappear in JavaScript:

document .getElementById("imagel") .style.visibility= "visible";
document.getElementById("imagel") .style.visibility= "hidden";

The user might expect some visual cues in the normal way of browsers, such
as a control that shows a blue line slowly creeping from left to right, or any-
thing you can come up with that will help the user match expectations.

Leaving the User in Control

\\3

Ajax applications can seem to take on a life of their own because they oper-
ate behind the scenes. And they can communicate with the server even when
the user doesn’t want them to — as when the user makes a typing error. You
can imagine how you’d feel if you’d just entered a typo and it was immedi-
ately stored in a database by an application that didn’t ask you if you wanted
to store anything.

So, to give your applications a good feel, here are a few tips for putting users
in control:

v Don’t whisk data away for storage until the user really wants to store it.

v Remember that, ideally, your application is supposed to respond to
events caused only by the user. Users can find too much server-side vali-
dation disconcerting because it creates the impression that you're cor-
recting them at every keystroke. Don’t forget that one of the design

Chapter 11: 10 Ajax Design Issues You Should Know About 32 7

principles of graphical user interfaces (GUIs) is that the user should be
in control, that they should direct the action.

»* And don’t forget to offer the user a way of undoing errors.

Remembering All the Different Browsers

As with any Web application, it’s worthwhile to keep in mind that there are
many different browsers around, and your Ajax application should be tested
in the ones you want to support.

As of this writing, Internet Explorer and Firefox make up about 96 percent of
browser use, and the rest (Opera, Safari, and so on) are each in the 1 percent
or less category.

And don’t forget that not all browser will support JavaScript, or will have
JavaScript turned on — and for those users, you should have a backup plan.

Showing Users When Text Changes

A powerful Ajax technique is to change the data displayed in a page using
<div>, , or other HTML elements or by using HTML controls like text
fields. Ajax applications can change the data in a page after consulting with
the server — but without consulting with the user. For example, you may have
altered the data in a table of data when the data on the server has changed.

That means that the user might not notice that the data has changed. So be
careful about how much you change in a Web page and where because the
user might miss it.

Once again, visual cues can help here — if you’'ve changed some text, you
might give it, or the control it appears in, a different background color. For
example, here’s how to turn the text in a <div> element red using the color
style property:

document.getElementById("targetDiv") .style.color = "red";

Want to change the background color instead? Use the background-color
style property instead:

document .getElementById("targetDiv") .style.background-color = "red";

328 Part V: The Part of Tens

Avoiding a Sluggish Browser

Ajax applications can be large, and when they start using up resources like
memory and CPU speed, you've got to be careful. A large application can use
up a huge amount of memory, especially if you’re not careful about getting rid
of large objects that have been created.

Sometimes, developers use Ajax just because it’s a new thing. Be careful
about that tendency, too. Ajax solves many problems, but if you don’t have to
use it, there’s no reason to. And also, don’t forget that your Ajax applications
might not work in all browsers — such as those where JavaScript has been
turned off. You should provide some kind of backup plan in that case.

Handling Sensitive Data

With Ajax, it’s easy to send data without the user knowing what’s going on. In
fact, that’s part of the whole client/server connection thing that makes Ajax
so popular. But it’s also true that the user may not want to send the data
you’re sending.

It’s best to be careful about sensitive data. The Internet is not necessarily a
secure place for sensitive data, after all, and if you start sending social secu-
rity numbers or credit card numbers without the user’s permission, you
could wind up in trouble. So give the users the benefit of the doubt — ask
before you send sensitive data.

Creating a Backup Plan

Ajax relies on being connected to a server but don’t forget that not everyone
is online all the time. And your own server may go down, so your users may
be working from cached pages. If you can’t connect to a page online, you
should have some kind of backup. And that goes for users who have
browsers that don’t support JavaScript, too.

Showing Up in Search Engines

Google searches billions of Web pages for the text that its users search for —
but if the text you display is loaded into a page based on user actions, not on
browser refreshes, Google isn’t able to see that text. So bear in mind that if
you want to make your page searchable on search engines like Google, you've

Chapter 11: 10 Ajax Design Issues You Should Know About 329

got to give your page the search terms they need. (You can store your key-
words in a <meta> tag in the browser’s <head> section, for example, which is
where search engines expect to find them. See www. searchenginewatch.
com/webmasters/meta.html for more information on that.)

Sidestepping a Browser’s Cache

a\\J

Okay, enough with the things to be careful about. How about getting some
programming going on here?

Browsers such as Internet Explorer cache Web pages. That means that if
someone accesses a URL using Ajax more than once, the browser may give
them a copy of the page from its cache, as opposed to actually going back to
the server and getting a new copy of the page. And that can be a problem if
the data on the server has changed.

If you change the data on the server but still see the same data as before in
your Ajax application, you may be a victim of caching.

If you want your Ajax applications to avoid caching, you can try setting vari-
ous headers when you send data back from the server; that would look like
this in PHP:

header ("Cache-Control", "no-cache");
header ("Pragma", "no-cache");
header ("Expires", "-1");

However, this method turns out to be unreliable with Internet Explorer. One
practical way to help your applications avoid caching is to alter the URL the
application is requesting from the server. For example, you might append a
meaningless value named t — which your server-side program ignores — to
the end of the URL like this:

var myUrl = "data.php?name=steve" + "&t=" + new Date().getTime();

This appends the current time, measured in milliseconds, to the end of the
URL. Because this URL has never been accessed before, it hasn’t been
cached, and you can be sure that your application is getting the latest data
from the server.

One of the Ajax frameworks that lets you turn caching on and off like this
is request. js, which you can pick up at http: //adamv.com/dev/
javascript/http_request. See Part Il for more on Ajax frameworks.

330 Part V: The Part of Tens

Chapter 12
Ten Super-Useful Ajax Resources

In This Chapter

The original Ajax article that started it all

Some super Ajax sites

Ajax tutorials

Ajax discussion groups
XMLHttpRequest object reference pages

Fere’s plenty of Ajax help on the Internet, ready to give you all sorts of
information and advice. You can find a good list of Ajax resources in this
chapter, including the Web address for the original article by Jesse James
Garrett of Adaptive Path that started the whole Ajax juggernaut going. You
can also get wrapped up in any of the Ajax blogs and discussion groups that I
introduce here.

Don’t forget, this being the Internet, that URLs can change without notice.
And also keep in mind that the Ajax phenomenon is still exploding — more
sites, frameworks, and discussions are appearing all the time. Keep in touch
with the Ajax community online — there are great days ahead.

The Original Ajax Page

www.adaptivepath.com/publications/essays/archives/000385.php

Yep, this is the big one, the original Ajax page where Jesse James Garrett
coined the term Ajax. This article, named “Ajax: A New Approach to Web
Applications,” even includes a nice picture of Jesse. Although some people
have noted that all the technologies involved in Ajax were in use before this
article came out, the article, nevertheless, focused vast amounts of attention
on Ajax and what it could do.

332 Part V: The Part of Tens

A\

Adaptive Path says, “Since we first published Jesse’s essay, we've received an
enormous amount of correspondence from readers with questions about
Ajax.” You can find a question and answer section at the end of the page
where Jesse answers some of those questions.

The Ajax Patterns Page

http://ajaxpatterns.org

The Ajax Patterns page is a great Ajax resource. Patterns refers to best pro-
gramming practices, and there’s a lot of discussion on this site about the
topic.

In addition, this site has a great page of links to Ajax examples (http://
ajaxpatterns.org/Ajax_Examples) and to the various Ajax frameworks
available (http://ajaxpatterns.org/Ajax_Frameworks). In PartIII, I
explain many ways in which you put these frameworks to use.

In my view, the interactive discussion and huge number of resources help
make this the best Ajax site available anywhere, bar none. Take a look!

The Wikipedia Ajax Page

\\J

http://en.wikipedia.org/wiki/AJAX

Wikipedia’s Ajax page is also a great resource. Wikipedia is a free, online
encyclopedia, and this page has an in-depth discussion with many links on
what Ajax is (and isn’t).

This page has one of the best all-around Ajax overviews you're going to find
anywhere, including not only a discussion of what Ajax is good for, but a dis-
cussion of problems — in other words, both the pros and cons.

And you can also find many links to Ajax resources of all kinds, from Ajax

examples to Ajax frameworks.

Ajax Matters

www.ajaxmatters.com/r/welcome

Chapter 12: Ten Super-Useful Ajax Resources 333

Ajax Matters is another power-packed Ajax site, currently updated all the
time, on all things about Ajax. It’s great for all-around Ajax topics of any kind.
Here’s a quick list of what you can find:

v Headlines on new product releases

v Links to books, example sites that use Ajax, and resources that Ajax
developers need, such as JavaScript references

v Frameworks
»* Articles

v Discussions

XMLHttpRequest Object References

Where are the official references showing how to use XMLHttpRequest
objects in the various browsers? You can find the official references for each
browser, listing object methods and properties at the following sites:

v Internet Explorer: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/xmlsdk/html/
7924f6be-c035-411f-acd2-79de7a711b38.asp

v Mozilla (including Firefox) and Apple Safari: http://developer.
apple.com/internet/webcontent/xmlhttpreqg.html

Ajax Blogs
A handful of Ajax blogs out there have a lot of great Ajax commentary. Here’s
a list of some of the better ones:
V¥ http://ajaxblog.com
V¥ www.ajaxian.com
V¥ http://weblogs.asp.net/mschwarz/archive/2005/11.aspx

¥ www.robsanheim.com/category/software/ajax

334 Part V: The Part of Tens

Ajax Examples

A\\S

Sometimes, nothing helps more than seeing what you want to do already
done in an example. And there are plenty of examples available for you. For
instance, a very simple example showing how to get started with Ajax is
available at

www . openajax.net/wordpress/simple-ajax
You can find two of the best lists of Ajax examples at these URLs:

v The fiftyfoureleven.com list of Ajax examples is at
www.fiftyfoureleven.com/resources/programming/xmlhttprequest/examples
v Ajax Pattern’s list of examples is at

http://ajaxpatterns.org/Ajax_Examples

Ajax Tutorials

There are a number of Ajax tutorials available on the Internet, but most of
them deal with using specific Ajax-enabled frameworks, such as Ruby on
Rails. Here are some good general-purpose Ajax tutorials not tied to a specific
framework:

v A “30-second” Ajax tutorial
http://marc.theaimsgroup.com/?1=php-general&m=112198633625636&w=2
v This tutorial uses PHP:
www . phpbuilder.com/columns/kassemi20050606.php3

v This tutorial builds a tree of nodes, whose text is downloaded as
needed:

http://www.codeproject.com/aspnet/ajax_treeview.asp

Ajax Discussion Group

http://groups.google.com/group/ajax-world

If you're looking for interactive Ajax help, check out the active Google group
discussion on Ajax.

Chapter 12: Ten Super-Useful Ajax Resources 33 5

This group is a good place to go to ask questions and receive answers about
Ajax. No matter how complex the question, there’s probably someone on this
group that can offer a few suggestions.

More Depth on XMLHttp Request

http://jibbering.com/2002/4/httprequest.html

Here’s a site that has more information on how to use XMLHttpRequest
objects and goes into more depth than the usual Ajax page.

You can find many sites that give you the Ajax basics, but sites like this one,
which go deeper into the topic, are very useful when you’re ready to move
on from the preliminary discussions. This site includes how to use Head
requests and much more.

336 Part V: The Part of Tens

Index

® Symbols

+ (addition) operator, function of, 52

+= (addition sign, equal sign) operator,
function of, 53

&= (ampersand, equal sign) operator,
function of, 53

*= (asterisk, equal sign) operator,
function of, 53

*/ (asterisk, slash), writing PHP script
comments and, 301

/= (backslash, equal sign) operator,
function of, 53

& (bitwise AND) operator, function of, 52

~ (bitwise NOT) operator, function of, 53

| (bitwise OR) operator, function of, 52

A (bitwise XOR) operator, function of, 52

A= (caret, equal sign) operator,
function of, 53

, (comma) operator, function of, 55

, (comma), passing multiple arguments
to JavaScript functions, 47-48

?: (conditional) operator, function of, 55

— (decrement) operator, function of, 52

/ (division) operator, function of, 52

$ (dollar sign), indicating PHP script
variables, 301-302

// (double slash) marker, adding
comments to JavaScript with, 28-29

= (equal sign) operator, function of, 53

== (equality) operator, function of, 54

> (greater-than) operator, function of, 54

>>= (greater-than sign, greater-than sign,
equal sign) operator, function of, 54

>>>= (greater-than sign, greater-than
sign, greater-than sign, equal sign)
operator, function of, 54

<? (greater-than sign, question mark),
enclosing PHP script in, 298

>= (greater-than-or-equal-to) operator,
function of, 54
++ (increment) operator, function of, 52
+= (joining strings) operator,
function of, 52
<< (left shift) operator, function of, 53
< (less-than) operator, function of, 54
<<= (less-than sign, less-than sign, equal
sign) operator, function of, 54
>? (less-than sign, question mark),
enclosing PHP script in, 298
<= (less-than-or-equal-to) operator,
function of, 54
&& (logical AND) operator, function
of, 52
! (logical NOT) operator, function of, 52
| I (logical OR) operator, function of, 52
* (multiplication) operator, function
of, 52
\n (newline character), in PHP
script, 319
I= (not-equal-to) operator, function of, 54
(O (parentheses), passing single argu-
ment to JavaScript function and,
44-45
%= (percent sign, equal sign) operator,
function of, 53
(quotation marks)
passing JavaScript functions and, 157
using in JavaScript, 36-37
; (semicolon)
ending JavaScript lines with, 28
ending PHP script lines with, 28
(sharp sign), assigning styles and, 274
>> (sign-propagating right shift)
operator, function of, 53
/* (slash, asterisk), writing PHP script
comments and, 301
=== (strict equality) operator,
function of, 54

(134

338

Ajax For Dummies

+ (string addition) operator, function
of, 52

- (subtraction) operator, function of, 52

-= (subtraction sign, equal sign)
operator, function of, 53

| = (vertical line, equal sign) operator,
function of, 54

>>> (zero-fill right shift) operator,
function of, 53

o/ o

abort method
Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
absolute positioning, of Web page
elements, 292-295
absolute URLs, versus relative, 90-91
action attribute, setting in PHP
script, 310
actions, responding to, 33
Adaptive Path Web site, 331-332
addem function
creating JavaScript for use in browsers
with Xajax and, 218-220
in Sajax, 215-217
in Xajax, 218-220
addition (+) operator, function of, 52
addition sign, equal sign (+=) operator,
function of, 53
“Ajax: A New Approach to Web
Applications” (Garrett), 11, 331-332
Ajax blogs, 333
Ajax discussion group, 334-335
Ajax Gold Framework
overview, 157-158
posting data to and retrieving text from
server with POST method, 166-170
posting data to and retrieving XML
from server with POST method,
170-173
using GET method to retrieve text,
158-162
using GET method to retrieve XML,
162-165

Ajax Gold library
describing getDataReturnText
function, 158-159
describing getDataReturnXml
function, 162-163
describing postDataReturnText
function, 166-170
describing postDataReturnXML
function, 170
overview, 157
verifying loading and availability of,
161-162
Ajax Matters Web site, 332-333
Ajax Patterns Web site, 332
Ajax Tags Library, handling JavaServer
Pages with, 229-231
AJAXLib framework, using, 174-176
alert box, overview, 69-71
ampersand, equal sign (&=) operator,
function of, 53
anonymous functions
creating, 55
handling asynchronous downloads and,
86, 111
Apache Tomcat (Java-based server), 225
Apple Safari
alternate ways of retrieving XMLHt tp
Request object in, 92-93
Web sites for XMLHt tpRequest
objects references, 333
XMLHt tpRequest object methods
for, 83
XMLHttpRequest object properties
for, 82-83
applications, autocomplete, 13-14
arguments
passing multiple to JavaScript function,
47-48
passing single to JavaScript functions,
44-45
arithmetic operators, functions of, 52
arrays
overview, 66-67
retrieving data from text fields in PHP
script and, 311-312
storing extracted XML data, 103

Index

turning text into, 282-283
while loop and, 67-69
working with multiple XMLHt tp
Request objects and, 146-147
ASP.NET, 234
assignment operators, functions of,
53-54
asterisk, equal sign (*=) operator,
function of, 53
asterisk, slash (*/), writing PHP script
comments and, 301
asyncFlag parameter, for open
method, 84
asynchronous downloads, handling,
85-88
Atlas Client Script Framework, 234
attributes property, function of, 244
autocomplete
capabilities, 13-14
with JPSpan framework, 224
with Ruby on Rails framework, 233
using Ajax Tags Library, 230
Autocomplete JSP tag, 230

ol e

back button, Ajax disabling browser,
325-326

Backbase framework, 234

background-attachment property,
function of, 289

background-color property,
function of, 289

background-image property,
function of, 289

background-position property,
function of, 289

backgrounds, setting with cascading
style sheets, 289-292

backslash, equal sign (/=) operator,
function of, 53

backup plans, for working offline, 328

bgcolor property, setting, 35-36

binary data objects, downloading with
Ajax and Dynamic HTML, 156

bitwise AND (&) operator, function of, 52
bitwise NOT (~) operator, function of, 53
bitwise operators, functions of, 52-53
bitwise OR () operator, function of, 52
bitwise XOR (*) operator, function of, 52
block elements, overview, 45
blogs, Ajax, 333
bookmarks, Ajax disabling browser,
325-326
bottom property
absolute positioning function of, 293
relative positioning function of, 295
boxes
alert, 69-71
populating list with Direct Web
Remoting, 227
positioning for, 292
using PHP script with check, 312-314
browser events
calling JavaScript functions and, 40-44
common JavaScript in Ajax
applications, 34
working with, 35-36
browsers. See also specific browsers
accessing from JavaScript, 26-27
Ajax disabling back button in, 325-326
Ajax disabling bookmarks in, 325-326
avoiding cache in, 329
avoiding sluggish, 328
awareness of various, 327
calling different Web domains and,
130-131
creating Ajax JavaScript for use in with
Xajax, 218-220
data validation in, 132
determining if code will work with, 79
determining type with conditions,
62-64
downloading images with Ajax and
Dynamic HTML, 154-156
handling drag-and-drop events, 183
handling mouse events, 185
handling older with HTMLHt tpRequest
framework, 199-200
identifying JavaScript errors and, 30-32

339

340

Ajax For Dummies

browsers. See also specific browsers
(continued)
JavaScript working with various, 32-33
listening for mouse move events, 187
retrieving text with Ajax, 21-22
sending text to with PHP script, 299
sending XML to with PHP script,
299-300
setting up for debugging, 140-142
buttons. See also HTML controls
displaying messages by clicking, 69-71
reading text fields by clicking, 71-72
retrieving data from server and
displaying by clicking, 76-78

oo

caching
avoiding, 329
controlling with 1ibXmlRequest
framework library, 177
Http framework handling, 211-212
Interactive Website Framework
preventing, 198
callback functions
defined, 157
in 1ibXmlRequest framework
library, 177
posting data to and retrieving text from
server with, 166-167
retrieving text from URLs, 162
working with Sajax and, 217
Callout JSP tag, 230
caret, equal sign (*=) operator,
function of, 53
cascading style sheets (CSS)
absolute positioning, 292-295
Ajax programmers’ fondness of, 269
coloring shopping cart and items with
styles, 184-185
making Web page changes stand out,
285-286
overview, 270-271
relative positioning, 295-296

setting colors and backgrounds with,
289-292
styling text with, 287-288
channel property, Firefox and
Navigator, 82
chatting
Ajax-based, 14-15
with Direct Web Remoting, 227
check boxes, using with PHP script,
312-314
checkUsername function, data
validation and, 133
childNodes property, function of, 244
clearCache () function, in 1ibXml
Request framework library, 177
color property, function of, 289
colors
browsers understanding, 36
setting with cascading style sheets,
289-292
comma (,) operator, function of, 55
comma (,), passing multiple arguments
to JavaScript functions, 47-48
comments
adding to JavaScript, 28-29
in PHP script, 301
companion Web site, downloading
examples from, 22-23
comparison operators, functions of, 54
conditional (?:) operator, function of, 55
conditions
determining browser type in JavaScript
with, 62-64
testing in JavaScript, 59
using JavaScript if statement and,
59-60
using PHP script else statement and,
307
using PHP script i f statement and,
306-307
Couvreur, Julien (XMLHt tpRequest
debugger developer), 140
CSS (cascading style sheets)
absolute positioning, 292-295
Ajax programmers’ fondness of, 269

Index 34 1

coloring shopping cart and items with
styles, 184-185

making Web page changes stand out,
285-286

overview, 270-271

relative positioning, 295-296

setting colors and backgrounds with,
289-292

styling text with, 287-288

CSS Web Design For Dummies

(Mansfield), 271

o) e

data

accessing complete Http header,
135-136

accessing with HEAD requests, 134-135

altering variable, 55-56

changing without new page fetch, 21-22

displaying extracted XML in Internet
Explorer, 249-250

displaying in HTML element using Rico
framework, 206-208

extracting XML, 102-104

extracting XML using properties,
243-250

handling Google-sent, 121-122

handling sensitive, 328

handling with JavaScript objects using
Rico framework, 208-211

hiding menu, 280-281

JavaScript guessing treatment of, 56

listing in drop-down control, 104-106

passing to server with GET method,
106-109

passing to server with POST method,
109-112

posting to server and retrieving text,
166-170

posting to server and retrieving XML,
170-173

requesting XML in Ajax, 240-242

retrieving from check boxes with PHP
script, 312-314

retrieving from radio buttons with PHP
script, 314-316
retrieving from server, 9
retrieving from server and displaying,
76-78
retrieving from text fields in PHP script,
311-312
retrieving menu, 278-279
retrieving with XMLHt tpRequest
object, 88-90
showing response from Google search,
125-130
data storage
of extracted XML data, 103
in PHP script variables, 301-304
using JavaScript variables, 48-49
var statement, 49-50
data validation, on servers, 131-134
databases, working with PHP script with,
320-321
data.txt file
accessing complete, 135-136
accessing last modified date from Http
headers, 136-138
accessing with HEAD requests, 134-135
verifying existence of, 139-140
date object, sampling of methods
for, 138
dates, accessing last modified from Http
headers, 136-138
debugging
with Greasemonkey, 142-143
overview, 140
setting up browsers for, 140-142
decodeXML function, retrieving XML
and, 178-179
decrement (=) operator, function of, 52
delete operator, function of, 55
developers, Ajax advantages to, 11-12
DHTML (Dynamic HTML)
Ajax programmers’ fondness of, 269
downloading images with, 154-156
inserting text with, 47
usefulness of, 270

342

Ajax For Dummies

Direct Web Remoting (DWR) framework,
accessing Java with, 225-228
directories, downloading LibAjax
example and, 221
display function, displaying user menu
selection, 284-285
<div> element
displaying text after page has loaded
and, 42-43
versus element, 45-47
division (/) operator, function of, 52
document object, accessing <div>
element with, 43
documentElement property
function of, 244
handling white space in Mozilla-based
browsers and, 251
navigating XML documents with in
Internet Explorer, 245
documents, XML
handling white space in with Mozilla
Firefox, 250-253
making valid, 240
navigating with JavaScript properties,
245-249
overview, 99
removing white space from in Mozilla-
based browsers, 254-258
requesting data from in Ajax, 240-242
validating in Ajax applications, 263-267
well-formed, 239-240, 263
document .write method, passing
arguments to JavaScript functions,
44-45
Dojo framework, 234
dollar sign ($), indicating PHP script
variables, 301-302
double slash (//) marker, adding
comments to JavaScript with, 28-29
do. . .while loop, in PHP script, 309
drag-and-drop operations, using Sajax
for, 218
drag-and-drop shopping
capabilities, 15-16
enabling, 9

handling mouse down events for,
187-188
handling mouse events for, 185-186
handling mouse up events for, 189
handling mouse-move events for, 189
overview, 182-185
drop-down control
listing data in, 104-106
storing data in, 103-104
DTD (XML document type definition)
overview, 240
validating XML documents and,
264-267
DWR (Direct Web Remoting) framework,
accessing Java with, 225-228
Dykes, Lucinda (XML For Dummies, 4th
Edition), 238
Dynamic HTML (DHTML)
Ajax programmers’ fondness of, 269
downloading images with, 154-156
inserting text with, 47
usefulness of, 270

oF o

Echo2 framework, building Web
applications with, 228-229
ECMA (European Computer
Manufacturers Association),
standardizing JavaScript, 25
ECMAScript Components
Specification, 25
ECMAScript, creating, 25
ECMAScript Language Specification,
3rd Edition, 25
ECMAScript 3rd Edition Compact Profile
Specification, 25
Eich, Brendan (JavaScript creator), 24
elements
absolute positioning of Web page,
292-295
accessing XML by name, 258-260
cascading style sheets and, 270-271
displaying data in HTML using Rico
framework, 206-208

Index

relative positioning of Web page,
295-296
setting styles for, 272-277
XML document, 239-240
else statement
determining browser type with
JavaScript, 62-64
JavaScript, 59
PHP script, 59
using JavaScript, 61-62
embedded styles, using, 273
equal sign (=) operator, function of, 53
equality (==) operator, function of, 54
errors, examining JavaScript, 30-32
escape function, appending text to URL
and, 107
European Computer Manufacturers
Association (ECMA), standardizing
JavaScript, 25
eval function
executing Google search response, 125
executing server-side JavaScript
and, 116-117
returning objects from server with, 118
events
calling JavaScript functions and
browser, 40-44
common JavaScript browser, in Ajax
applications, 34
handling mouse, 185-186
handling mouse down, 187-188
handling mouse up, 189-191
handling mouse-move, 189
working with browser, 35-36
examples, downloading from companion
Web site, 22-23
exporting
PHP functions in LibAjax
framework, 222
PHP functions in Sajax framework, 215
external style sheets, using, 276-277

ofF e

fclose function, closing files with, 319

file extensions, storing JavaScript code
outside Web pages and, 29-30
file handle, PHP script
reading from Google URL with, 129
reading server files with, 318
files
reading server with PHP script, 317-319
storing code outside Web pages in,
29-30
writing to server with PHP script,
319-320
Firefox
advantages of with JavaScript, 32
alternate ways of retrieving XMLHt tp
Request object in, 92-93
caching in, 211-212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space
in, 250-253
identifying JavaScript errors in, 30-31
removing XML document white space
in, 254-258
Web sites for XMLHt tpRequest
objects references, 333
XML validation and, 264
XMLHt tpRequest object methods
for, 82
XMLHttpRequest object properties
for, 82
firstChild property
function of, 244
handling white space in Mozilla-based
browsers and, 251
navigating XML documents with in
Internet Explorer, 246, 248
font-family property, function of, 287
font-size property, function of, 287
font-style property, function of, 287
font-weight property, function of, 287
fopen function, reading files with,
317-319
for loop
in JavaScript, 64-66
in PHP script, 307-308

343

344 Ajax For Dummies

foreach loop, in PHP script, 309
frameworks

accessing Java with Direct Web
Remoting, 225-228

Ajax Gold, 157-158

availability/usefulness of, 153-154

avoiding caching with, 329

Backbase, 234

building Web applications with Echo2
framework, 228-229

creating Ajax JavaScript for use in
browsers with Xajax, 218-220

creating JavaScript for use in browsers
with LibAjax, 221-224

creating JavaScript functions in Web
pages with Sajax, 214-218

decoding XML with Sarissa, 201-204

developing Web applications with
WebORB, 232-233

displaying data in HTML element with
Rico, 206-208

Dojo, 234

finding, 173

handling caching with Http, 211-212

handling data with JavaScript objects
using Rico, 208-211

handling Java with SWATO, 231

handling JavaServer Pages with Ajax
Tags Library, 229-231

HTMLHttpRequest, 199-200

libXmlRequest, 176-180

Microsoft Atlas Client Script, 234

parsing XML with Interactive Website
Framework, 198-199

posting data to and retrieving text from

server with Ajax Gold, 166-170
posting data to and retrieving XML
from server with Ajax Gold, 170-173
retrieving code for, 181
retrieving text with Ajax Gold, 158-162

retrieving XML with Ajax Gold, 162-165

Rico, 204-206
Sack, 196-198
server-side, 213-214

using AJAXLib, 174-176
using JPSpan, 224
using Ruby on Rails, 233
XHConn, 194-196
function operator, function of, 55
functions. See also specific functions
accessing JavaScript with PHP in
Sajax, 215
calling JavaScript, 40-44
calling JavaScript in a <script>
element, 36
calling JavaScript itself from inside
itself, 254
creating JavaScript, 39-40
creating JavaScript in Web pages using
Sajax, 214-218
creating JavaScript on the fly, 86
JavaScript, 37
JavaScript in 1ibXmlRequest
framework library, 177
JavaScript listener, 187-188
passing multiple arguments to
JavaScript, 47-48
passing single arguments to
JavaScript, 44-45
PHP, creating JavaScript for use in
browsers with LibAjax and, 221-224
PHP, creating JavaScript for use in
browsers with Xajax and, 218-220
quotation marks and JavaScript, 157
returning objects from server and
JavaScript, 118-119
variables created inside JavaScript,
57-59
working with inner JavaScript, 147-150
fwrite function, writing to server files
with, 319-320

oG o

gaming, capabilities, 16-17

Garrett, Jesse James (“Ajax: A New
Approach to Web Applications”),
11, 331-332

Index 345

GET method
passing data to server with, 106-109
retrieving data from text fields with
PHP script and, 311
sending data to servers with PHP script
and, 316-317
using to retrieve text, 158-162
using to retrieve XML, 162-165
getAllResponseHeaders method
accessing complete Http header data
with, 136
Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
getCacheEnabled () function, in
libXmlRequest framework
library, 177
getData function
accessing complete Http header data
with, 135-136
calling URL, 115-116
checking for validity of
XMLHt tpRequest object, 83-84
connecting to Google Suggest
with, 123-125
creating interactive mouseovers
with, 93-94
data validation and, 133-134
retrieving menu data with, 279
retrieving menu item with, 281-282
getDataReturnText function
described, 158-159
using to retrieve text, 159-162
getDataReturnxml function
described, 162-163
using to retrieve XML, 163-165
getElementsByTagName function,
reading XML from server and,
101-102
getElementsByTagName method,
accessing XML elements by name
with, 258-260
getResponseHeader method
accessing last modified date from Http
headers with, 137-138

Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
getSuggest function
handling Google-sent data and, 121-122
in Internet Explorer, 122
getXML method, in 1ibXmlRequest
framework library, 176
getXMLHttpArray () function, in
libXmlRequest framework
library, 177
getXML (sPath, fHandler, 1)
function, in 1ibXmlRequest
framework library, 177
getXML (sPath) function, in 1ibXml
Request framework library, 177
Google
Ajax discussion group on, 334-335
connecting to for live searches, 12-13
finding servers supporting Java
with, 225
handling data sent by, 121-122
live searching and, 12-13
showing response data from, 125-130
Google Maps, Ajax enabling, 19-20
Google Suggest
connecting to, 123-125
overview, 120-121
Greasemonkey
overview, 140
setting up, 140-142
using, 142-143
greater-than (>) operator, function of, 54
greater-than sign, greater-than sign,
equal sign (>>=) operator, function
of, 54
greater-than sign, greater-than sign,
greater-than sign, equal sign (>>>=)
operator, function of, 54
greater-than sign, question mark (>?),
enclosing PHP script in, 298
greater-than-or-equal-to (>=) operator,
function of, 54

3406

Ajax For Dummies

oH o

HEAD requests
accessing complete Http header data
with, 135-136
accessing last modified date from Http
headers with, 136-138
checking existence of URLs with,
139-140
overview, 134-135
headers
accessing complete data about Http,
135-136
accessing last modified date from Http,
136-138
getting text to appear under, 38-39
Http, 134-135
hide function, hiding menu data with,
280-281
HTML controls
displaying messages with button clicks,
69-71
handling in PHP script, 310-311
overview, 69
reading text fields with button clicks,
71-72
retrieving data from text fields in PHP
script, 311-312
setting up with Xajax, 220
using check boxes in PHP script,
312-314
using radio buttons in PHP script,
314-316
working with Sajax and, 216-217
HTML elements, displaying data in using
Rico framework, 206-208
HTML (HyperText Markup Language),
interspersing with PHP script, 298
HTMLHt tpRequest framework, handling
older browsers with, 199-200
Http framework, handling caching with,
211-212

Http headers
accessing complete data about,
135-136
accessing last modified date from,
136-138
overview, 134-135
hyperlink, giving to Google
suggestions, 126
HyperText Markup Language (HTML),
interspersing with PHP script, 298

o]e

if statement
determining browser type with
JavaScript, 62-64
JavaScript, 59
PHP script, 306-307
using JavaScript, 59-60
IFrame elements, handling older
browsers and, 199
images
downloadability with mouseovers, 94
downloading with Ajax and Dynamic
HTML, 154-156
downloading, XMLHt tpRequest object
and, 94
dragging to shopping carts, 193
positioning, 293-295
in operator, function of, 55
increment (++) operator, function of, 52
inline scripts
calling JavaScript functions and, 40-41
events triggering, 35-36
understanding problems with, 38-39
inline styles, using, 273
inner functions
posting data to and retrieving text from
server with, 167
working with, 147-150
instanceof operator, function of, 55
interactive mouseovers, creating, 93-94

Interactive Website Framework (IWF),
parsing XML with, 198-199
Internet Explorer
alternate ways of retrieving
XMLHttpRequest object in, 91-92
caching in, 211-212
creating XMLHt tpRequest object and,
80-81
debugging JavaScript and, 140
displaying extracted XML data in,
249-250
getSuggest function and, 122
handling Google-sent data through,
122-123
handling mouse events, 185
identifying JavaScript errors in, 30
Web sites for XMLHt tpRequest
objects references, 333
XML validation in, 264-267
XMLHt tpRequest object methods
for, 81
XMLHttpRequest object
properties for, 81
IWF (Interactive Website Framework),
parsing XML with, 198-199

o]o

Java
accessing with Direct Web Remoting,
225-228
SWATO framework and, 231
using JSP tags with, 229-231
Java servlets, finding, 225
Java-based Web servers, finding, 225
JavaScript
accessing Web page from, 26-27
adding comments to, 28-29
background of, 24-25
for changing data without new page
fetch, 21-22
common browser events in Ajax
applications, 34

connecting to other Web domains
from, 113

creating for use in browsers with
LibAjax, 221-224

creating for use in browsers with Xajax,
218-220

creating <script> element, 25-26

enabling retrieving data from server, 12

functioning of returning, 114-117

identifying errors in, 30-32

response from Google in, 125

Sajax generating, 216

seeing XML as nodes, 243

sending back from server to
execute, 114

server-side frameworks and, 213-214

standards, 25

storing code outside Web pages, 29-30

using quotation marks in, 36-37

using semicolons in, 28

working with browser events, 35-36

working with various browsers, 32-33

JavaScript For Dummies, 4th Edition

(Vander Veer), 24
JavaScript functions. See also specific

functions

calling, 40-44

calling in a <script> element, 36

calling itself from inside itself, 254

creating, 39-40

creating in Web pages using Sajax,
214-218

creating on the fly, 86

in 1ibXmlRequest framework
library, 177

listener, 187-188

overview, 37

passing multiple arguments to, 47-48

passing single arguments to, 44-45

quotation marks and, 157

returning objects from server and,
118-119

variables created inside, 57-59

working with inner, 147-150

Index 34 7

348 Ajax For Dummies

JavaScript 1.5 user’s guide, 25
JavaServer Pages (JSP)

finding servers to support, 225

handling with Ajax Tags, 229-231
joining strings (+=) operator,

function of, 52

JPSpan framework, using, 224
JScript 5.6 documentation, 25
JSP tags, Ajax Tags library and, 229-231

o o

keystrokes
Google reading, 121-123
JPSpan application responding to
user’s, 224
keywords, creating JavaScript functions
and, 40

o/ o

languages, selecting server-side
scripting, 95
lastChild property
function of, 244
navigating XML documents with
Internet Explorer, 246-247
left property
absolute positioning function of, 293
relative positioning function of, 295
left shift (<<) operator, function of, 53
less-than (<) operator, function of, 54
less-than sign, less-than sign, equal sign
(<<=) operator, function of, 54
less-than sign, question mark (<?),
enclosing PHP script in, 298
less-than-or-equal-to (<=) operator,
function of, 54
LibAjax framework, creating JavaScript
for use in browsers with, 221-224
libraries
accessing Java with Direct Web
Remoting, 225-228
Ajax Gold, 157-158
availability/usefulness of, 153-154

avoiding caching with, 329

Backbase, 234

building Web applications with Echo2
framework, 228-229

creating Ajax JavaScript for use in
browsers with Xajax, 218-220

creating JavaScript for use in browsers
with LibAjax, 221-224

creating JavaScript functions in Web
pages with Sajax, 214-218

decoding XML with Sarissa, 201-204

describing getDataReturnText
function in Ajax gold, 158-159

describing getDataReturnxXml
function in Ajax Gold, 162-163

describing postDataReturnText
function in Ajax Gold, 166-170

describing postDataReturnxML
function in Ajax Gold, 170

developing Web applications with
WebORB, 232-233

displaying data in HTML element with
Rico, 206-208

Dojo, 234

finding, 173

functions in 1ibXmlRequest, 177-178

handling caching with Http, 211-212

handling data with JavaScript objects
using Rico, 208-211

handling Java with SWATO, 231

handling JavaServer Pages with Ajax
Tags Library, 229-231

HTMLHt tpRequest, 199-200

libXmlRequest, 176-180

Microsoft Atlas Client Script, 234

parsing XML with Interactive Website
Framework (IWF), 198-199

posting data to and retrieving text from
server with Ajax Gold, 166-170

posting data to and retrieving XML
from server with Ajax Gold, 170-173

retrieving code for, 181

retrieving text with Ajax Gold, 158-162

retrieving XML with Ajax Gold, 162-165

Rico, 204-206

Sack, 196-198
server-side, 213-214
using AJAXLib, 174-176
using JPSpan, 224
using Ruby on Rails, 233
verifying loading and availability of in
Ajax Gold, 161-162
XHConn, 194-196
libXmlRequest framework, using,
176-180
line-height property, function of, 287
list boxes, populating with Direct Web
Remoting, 227
listener functions, mouse move events
and, 187-188
listOptions function, extracting data
from XML and, 102-104
live searching
capabilities, 12-13
connecting to Google for, 120-121
executing, 123-125
Google reading keystrokes for, 121-123
Rico framework performing Yahoo!,
204, 206
showing Google’s response, 125-130
LiveGrid (Rico), 204
loadxXMLDoc function, retrieving XML
with, 174-176
logical AND (&&) operator,
function of, 52
logical NOT () operator, function of, 52
logical OR (I 1) operator, function of, 52
login, instant feedback from, 17-18
loop counter
using for loop with, 64-66
while loop and, 66—69
loop index
using for loop with, 64-66
while loop and, 66-69
loops
do...while in PHP script, 309
extracting data from XML and, 103
for in JavaScript, 64-66
for in PHP script, 307-308
foreach in PHP script, 309

Google returned suggestions and,
126, 129

handling menu items with, 283-284

removing white space from Mozilla-
based browsers and, 254-255

while in JavaScript, 66-69

while in PHP script, 308-309

ol o

Mansfield, Richard (CSS Web Design For
Dummies), 271
menu systems
displaying menus, 278-279
handling menu items, 282-285
handling mouse events for, 277-278
hiding menu data, 280-281
overview, 271
retrieving menu’s item from server,
281-282
setting up styles for, 272-277
messages, displaying with button clicks,
69-71
method attribute, setting in PHP
script, 310
method parameter, for open method, 84
methods. See also specific methods
overview, 26
sampling of for date object, 138
XMLHttpRequest object, for Firefox
and Navigator, 82
XMLHttpRequest object, for Internet
Explorer, 81
XMLHttpRequest object, for Safari, 83
Microsoft ASP.NET, 234
Microsoft Atlas Client Script
Framework, 234
Microsoft Internet Explorer
alternate ways of retrieving
XMLHttpRequest object in, 91-92
caching in, 211-212
creating XMLHt tpRequest object and,
80-81
debugging JavaScript and, 140

Index 34 9

350 Ajax For Dummies

Microsoft Internet Explorer (continued)
displaying extracted XML data in,
249-250
getSuggest function and, 122
handling Google-sent data through,
122-123
handling mouse events, 185
identifying JavaScript errors in, 30
Web sites for XMLHt tpRequest
objects references, 333
XML validation in, 264-267
XMLHttpRequest object methods
for, 81
XMLHt tpRequest object properties
for, 81
mirroring, Web sites, 131
mouse events
down, 187-188
drag-and-drop shopping and, 185-186
move, 189
retrieving menu data and, 278-279
setting styles for menu systems and,
277-278
up, 189-191
mouseovers, creating interactive, 93-94
Mozilla Firefox
alternate ways of retrieving
XMLHttpRequest object in, 92-93
caching in, 211-212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space
in, 250-253
removing XML document white space
in, 254-258
Web sites for XMLHt tpRequest
objects references, 333
XML validation and, 264
XMLHt tpRequest object methods
for, 82
XMLHttpRequest object properties
for, 82
Mozilla Greasemonkey
overview, 140
setting up, 140-142
using, 142-143

Mozilla-based browsers
alternate ways of retrieving XMLHt tp
Request object in, 92-93
caching in, 211-212
debugging JavaScript and, 140
handling mouse events, 185
handling XML document white space
in, 250-253
removing XML document white space
in, 254-258
Web sites for XMLHt tpRequest
objects references, 333
XML validation and, 264
XMLHt tpRequest object methods
for, 82
XMLHttpRequest object properties
for, 82
multiplication (*) operator,
function of, 52
MySQL database, working with PHP
script with, 320-321

o\ o

name, accessing XML elements by,
258-260
name property, function of, 244
named node map, of XML attributes,
261-262
navigator browser object, working
with various browsers and, 32-33
nesting errors, in XML documents, 239
Netscape Communications Corporation,
creating JavaScript and, 24-25
Netscape Navigator
alternate ways of retrieving
XMLHttpRequest object in, 92-93
XMLHttpRequest object methods
for, 82
XMLHt tpRequest object properties
for, 82
new operator, function of, 55
newline character (\n), in PHP
script, 319

Index

newXMLDocument (sNodeName)
function, in 1ibXmlRequest
framework library, 178
nextSibling property
function of, 244
navigating XML documents with
Internet Explorer, 248
nodeName property, function of, 244
nodes
JavaScript properties for working with,
243-244
navigating XML documents and,
248-249
removing white space, 254-258
white space as, 250-251
XML treated as collection of, 243
nodeType property, function of, 244
not-equal-to (!=) operator, function of, 54

o () o

objects. See also XMLHt tpRequest
objects
accessing Web page and browser with,
26-27
binary data, 156
date, 138
document, 43
handling data with using Rico
framework, 208-211
handling Google-sent data and, 121-123
navigator browser, 32-33
plain old Java, 231
returning from server, 118-119
Sack, 196-198
storing in variables, 56
XHConn, 194-196
XMLHt tpRequestObject, 136
onabort event, occurrence of, 34
onblur event, occurrence of, 34
onchange event, occurrence of, 34
onclick event, occurrence of, 34
ondblclick event, occurrence of, 34
ondragdrop event, occurrence of, 34
onerror event, occurrence of, 34

onfocus event, occurrence of, 34
onkeydown event, occurrence of, 34
onkeypress event, occurrence of, 34
onkeyup event, occurrence of, 34
onload event, occurrence of, 34
onmousedown event, occurrence of, 34
onmousemove event, occurrence of, 34
onmouseout event, occurrence of, 34
onmouseover event, occurrence of, 34
onmouseup event, occurrence of, 34
onreadystatechange property
handling asynchronous downloads
with, 85-88
Internet Explorer, 81
passing data to server with POST
method and, 111
Safari, 82
onreset event, occurrence of, 34
onresize event, occurrence of, 34
onsubmit event, occurrence of, 34
onunload event, occurrence of, 34
open method
Internet Explorer, 81
parameters for, 84-85
Safari, 83
openRequest method, Firefox and
Navigator, 82
operator precedence, PHP script, 306
operators. See also specific operators
arithmetic, 52
assignment, 53-54
bitwise, 52-53
comparison, 54-55
logical, 52
PHP script, 304-306
string, 52
variables and, 50-51
overrideMimeType method, Firefox
and Navigator, 82

oo

page fetch, changing data without new,
21-22
parameters, for open method, 84-85

351

352 Ajax For Dummies

parentheses (()), passing single argu-
ment to JavaScript function and,
44-45
password parameter, for open
method, 84
percent sign, equal sign (%=) operator,
function of, 53
permission, writing to server files
and, 319
PHP file handle
reading from Google URL with, 129
reading server files with, 318
PHP 5 For Dummies (Valade), 297, 321
PHP functions. See also specific functions
accessing JavaScript functions with in
Sajax, 215
creating JavaScript for use in browsers
with LibAjax and, 221-224
creating JavaScript for use in browsers
with Xajax and, 218-220
PHP script
communicating with Google, 129-130
connecting to on server, 95-97
getting XML from, 98-100
handling HTML controls in, 310-311
LibAjax framework and, 221-224
operators, 304-306
overview, 298-300
passing data to server with GET
method and, 106-109
passing data to server with POST
method and, 109-112
reading files on servers with, 317-319
retrieving data from text fields in,
311-312
Sajax framework and, 214-218
sending data to servers with, 316-317
using check boxes with, 312-314
using radio buttons with, 314-316
variables in, 301-304
working with databases with, 320-321
writing comments in, 301
writing to server files with, 319-320
Xajax framework and, 218-220

pictures
downloadability with mouseovers, 94
downloading, XMLHt tpRequest object
and, 94
dragging to shopping carts, 193
plain old Java objects (POJO), SWATO
and, 231
pop-up menus, capabilities, 18
position property
absolute positioning function of, 293
relative positioning function of, 295
positioning
absolute, 292-295
relative, 295-296
POST method
passing data to server with, 109-112
posting data to and retrieving text from
server with, 166-170
posting data to and retrieving XML
from server with, 170-173
retrieving data from text fields with
PHP script and, 311
postDataReturnText function
described, 166-170
posting data to and retrieving text from
server with, 166-170
postDataReturnXML function
described, 170
posting data to and retrieving XML
from server with, 170-173
postXML method, in 1ibXmlRequest
framework library, 176
postXML (sPath, vData, fHandler,
1) function, in 1ibXmlRequest
framework library, 177
postXML (sPath, wvData) function,
in 1ibXmlRequest framework
library, 177
previousSibling property, function
of, 244
properties. See also specific properties
absolute positioning, 293
common color and background, 289
navigating XML documents with,
245-249

overview, 26-27

popular text style, 287

relative positioning, 295

setting bgcolor, 35-36

style, 273

for working with XML, 243-244

XMLHt tpRequest object, for Firefox
and Navigator, 82

XMLHttpRequest object, for Internet
Explorer, 81

XMLHttpRequest object, for Safari,
82-83

oQo

quotation marks (")
passing JavaScript functions and, 157
using in JavaScript, 36-37

o R e

radio buttons, using with PHP script,
314-316
readyState property
Firefox and Navigator, 82
handling asynchronous downloads
and, 86
Internet Explorer, 81
Safari, 82
recursion, defined, 254
relative positioning, of Web page
elements, 295-296
relative URLs, versus absolute, 90-91
removeChildren (node) function,
in 1ibXmlRequest framework
library, 178
removeWhitespace function, 254
requests
Interactive Website Framework and
multiple, 198-199
server handling multiple concurrent,
143-144
working with arrays for multiple,
146-147
working with inner functions for
multiple, 147-150

responseBody property, Internet
Explorer, 81
responseStream property, Internet
Explorer, 81
responseText property
Firefox and Navigator, 82
Internet Explorer, 81
retrieving data with XMLHt tpRequest
object and, 88-90
Safari, 82
responseXML property
Firefox and Navigator, 82
Internet Explorer, 81
reading XML from server and, 101-102
Safari, 82
Rico framework
displaying data in HTML element,
206-208
handling data with JavaScript objects
using, 208-211
overview, 204-206
Rico LiveGrid, 204
right property
absolute positioning function of, 293
relative positioning function of, 295
Ruby on Rails framework, using, 233
runAJAX method, retrieving data with,
196-197

oS e

Sack framework, using, 196-198
Safari
alternate ways of retrieving
XMLHttpRequest object in, 92-93
Web sites for XMLHt tpRequest
objects references, 333
XMLHt tpRequest object methods
for, 83
XMLHttpRequest object properties
for, 82-83
Sajax framework, creating JavaScript
functions in Web pages with, 214-218
Sarissa framework, decoding XML with,
201-204
script, connecting to on server, 95-97

Index 353

354

Ajax For Dummies

<script> element
in <body> versus <header> section of
Web page, 38-39
creating, 25-26
JavaScript functions calling JavaScript
in, 36
search engines, text retrievable by,
328-329
searching
Ajax versus standards, 10-11
connecting to Google for live, 10-11
executing live, 123-125
Google reading keystrokes for live,
121-123
live, 12-13
Rico framework performing Yahoo! live,
204, 206
showing live response, 125-130
security, Greasemonkey and, 140
security warnings, calling different Web
domains and, 113, 130
Select/dropdown JSP tag, 230
selectNodes (XMLDocument,
sXpath, oNode) function,
in 1ibxmlRequest framework
library, 178
selectSingleNode (XMLDocument,
sXpath, oNode) function, in
libXmlRequest framework
library, 178
semicolon (})
ending JavaScript lines with, 28
ending PHP script lines with, 28
send method
Internet Explorer, 81
passing data to server with POST
method and, 110-112
Safari, 83
sendRPCDone function, Google search
response and, 125-126
serialize (oNode) function, in
libXmlRequest framework
library, 178
servers
accessing Java with Direct Web
Remoting and, 225
connecting to script on, 95-97

multiple concurrent requests to,
143-144

passing data to with GET method,
106-109

passing data to with POST method,
109-112

performing data validation on, 131-134

posting data to and retrieving text
from, 166-170

posting data to and retrieving XML
from, 170-173

reading files on with PHP script,
317-319

reading XML from, 101-102

retrieving data from, 9

retrieving data from for display, 76-78

retrieving data from with Ajax, 21-22

retrieving images from, 154-156

retrieving menu’s item from, 281-282

returning objects from, 118-119

sending back JavaScript to execute, 114

sending data to with PHP script,
316-317

working with arrays for multiple
requests, 144-146

working with inner functions for
multiple requests, 147-150

working with multiple
XMLHttpRequest objects, 144-146

writing to files on with PHP script,
319-320

server-side frameworks

accessing Java with Direct Web
Remoting, 225-228

Backbase, 234

building Web applications with Echo2
framework, 228-229

creating Ajax JavaScript for use in
browsers with Xajax, 218-220

creating JavaScript for use in browsers
with LibAjax, 221-224

creating JavaScript functions in Web
pages with Sajax, 214-218

developing Web applications with
WebORB, 232-233

Dojo, 234

handling Java with SWATO, 231

Index 355

handling JavaServer Pages with Ajax
Tags Library, 229-231
Microsoft Atlas Client Script, 234
overview, 213-214
using JPSpan, 224
using Ruby on Rails, 233
server-side script
accessing different Web domains
with, 131
functioning of returning, 114-117
from Google Suggest, 120-121
lack of control over, 114
overview, 94-95
server-side scripting languages,
selecting, 95
setCacheEnabled (<true | false>)
function, in 1ibXmlRequest
framework library, 177
setInnerXHTML (target_node,
source_node, preserve)
function, in 1ibXmlRequest
framework library, 178
setOption function, listing data in
drop-down control, 104-106
setPoolEnabled () function, in
libxXxmlRequest framework
library, 177
setPoolEnabled (<true | false>)
function, in 1ibXmlRequest
framework library, 177
setRequestHeader method
Internet Explorer, 81
Safari, 83
setTimer function, making Web page
changes stand out with, 285-286
sharp sign (#), assigning styles and, 274
shopping carts
dragging items to, 189
dropping items in, 183, 189-191
selecting items for, 187-188
updating, 191-193
show function, handling menu items
with, 282-285
sign-propagating right shift (>>)
operator, function of, 53

slash, asterisk (/*), writing PHP script
comments and, 301
 element, versus <div> element,
45-47
specifications, JavaScript and
ECMAScript, 25
split function, turning text into arrays
with, 282-283
standards, JavaScript and
ECMAScript, 25
status property
Firefox and Navigator, 82
handling asynchronous downloads and,
86-87
Internet Explorer, 81
Safari, 83
statusText property
Firefox and Navigator, 82
Internet Explorer, 81
Safari, 83
storing
code outside Web pages, 29-30
data in PHP variables, 301-304
data using variables, 48-49
data with var statement, 49-50
extracted XML data, 103
objects in variables, 56
strict equality (===) operator,
function of, 54
string addition (+) operator,
function of, 52
string functions, PHP script, 303-304
string operators, JavaScript, 52
strpos function, function of, 303
strtoupper function, function of, 303
style rule, making up, 273
style sheets, using external, 276-277. See
also cascading style sheets (CSS)
style types, specifying, 274
styles
making Web page changes stand out,
285-286
setting up for menu system, 272-277
working with element, 270-271
substr function, function of, 303

356

Ajax For Dummies

substr_replace function,
function of, 303
subtraction (-) operator, function of, 52
subtraction sign, equal sign (-=)
operator, function of, 53
SWATO framework, handling Java
with, 231
syntax rules, specifying XML document,
263-264

oJ o

tables, editing contents with Direct Web
Remoting, 228
tags
JSP in Ajax Tags Library, 229-231
XML, 238
test scores, determining average, 64-66
testXmlHttpObject () function,
in 1ibXxmlRequest framework
library, 177
text
displaying after page has loaded, 42-43
displaying changes in to users, 327
formatting objects as, 118-119
making Web page changes in stand out,
285-286
placing inline in real time, 45-47
retrievable by search engines, 328-329
retrieving after posting data to server,
166-170
retrieving with Direct Web
Remoting, 226
retrieving with mouseovers, 93-94
sending to browser with PHP
script, 299
styling options, 287-288
turning into arrays, 282-283
using GET method to retrieve, 158-162
text appearing in specific locations, 37
text fields, reading with buttons clicks,
71-72
text node, navigating XML documents
and, 249
text-align property, function of, 287

text-decoration property, function
of, 287

Tittel, Ed (XML For Dummies, 4th
Edition), 238

Toggle JSP tag, 230

top property

absolute positioning function of, 293
relative positioning function of, 295

transformNode ([xml_dom |
xml_path], [xsl_dom |
xsl_path] {, node_reference,
xml_request_id,
xsl_request_id,
bool_cache_xsl}),in
libxXmlRequest framework
library, 178

trim function, function of, 303

try/catch construct, alternate ways of
retrieving XMLHt tpRequest object
and, 92

tutorials, Web sites for, 334

typeof operator, function of, 55

olf o

ucfirst function, function of, 303
Update Field JSP tag, 230
updating
shopping carts, 191-193
Web pages on-the-fly, 19
URL encoding, passing data to server
with GET method and, 106-109
URL parameter, for open method, 84
URLs
checking existence of, 139-140
passing text from, 159-162
using relative versus absolute, 90-91
userName parameter, for open
method, 84
users
Ajax advantages to, 10-11
dropping items into shopping carts, 183
giving control to, 326-327
showing text changes to, 327
validating input of, 131-134

Index 357

oo

Valade, Janet (PHP 5 For Dummies),
297, 321
validating
users input, 131-134
XML documents in Ajax applications,
263-267
Vander Veer, Emily (JavaScript For
Dummies, 4th Edition), 24
var statement, storing data with, 49-50
variables
altering data of JavaScript, 55-56
created inside JavaScript functions,
57-59
creating for XMLHt tpRequest
object, 79
JavaScript guessing treatment of data
in, 56
JavaScript operators and, 50-51
storing data with JavaScript, 48-49
storing objects in JavaScript, 56
using PHP script, 301-304
vertical line, equal sign (| =) operator,
function of, 54
visibility style property
displaying menu data, 284
hiding menu data, 280-281
visual cues
displaying text changes to users
with, 327
using, 326
visual effects, creating with Rico
framework, 204-206
void operator, function of, 55

o[/ o

Web applications
Ajax improving, 9
building with Echo2 framework,
228-229
developing with WebORB framework,
232-233

Web domains
calling different, 130-131
connecting to other from
JavaScript, 113
Web pages
absolute positioning of elements in,
292-295
accessing JavaScript from, 26-27
caching, 329
connecting external style sheets to,
276-277
creating JavaScript functions in using
Sajax, 214-218
displaying data fetched from server on,
76-78
inserting XML data into HTML elements
on, 198
making changes stand out in, 285-286
making text appear in specific locations
on, 37
moving elements around with
Interactive Website Framework, 199
problems with sections loading
priority, 38-39
relative positioning of elements in,
295-296
setting up to read XML, 100-101
updating on-the-fly, 19
Web sites
Adaptive Path, 331-332
for Ajax blogs, 333
for Ajax examples, 334
Ajax Matters, 332-333
Ajax Patterns, 332
for Ajax Tags Library, 229
for AJAXLib framework, 174
for Apache Tomcat (Java-based
server), 225
for Backbase framework, 234
for Dojo framework, 234
downloading examples from
companion, 22-23
for HTMLHt tpRequest framework, 199
for Http framework, 211
for Interactive Website Framework, 198

358 Ajax For Dummies

Web sites (continued)
for JavaScript and ECMAScript
specifications, 25
for JPSpan framework, 224
for LibAjax server-side framework, 221
for 1ibXmlRequest framework, 176
for Microsoft Atlas Client Script
Framework, 234
for Rico framework, 204
for Ruby on Rails framework, 233
for Sack framework, 196
for Sajax server-side framework, 214
for Sarissa framework, 201
for tutorials, 334
for WebORB framework, 232
Wikipedia Ajax Page, 332
for Xajax server-side framework, 218
for XHConn framework, 194
for XMLHt tpRequest objects, 335
for XMLHt tpRequest objects
references, 333
WebORB framework, developing Web
applications with, 232-233
while loop
using JavaScript, 66—-69
using PHP script, 308-309
white space
handling in Mozilla and Firefox, 250-253
removing from XML documents in
Mozilla-based browsers, 254-258
Wikipedia Ajax Page, 332

o X o
Xajax framework, creating Ajax JavaScript
for use in browsers with, 218-220
XHConn framework, using, 194-196
XML
data, requesting in Ajax, 240-242
decoding with Sarissa framework,
201-204
displaying extracted data in Internet
Explorer, 249-250
extracting data from, 102-104

getting from PHP script, 98-100
JavaScript and, 11-12
JavaScript properties for working with,
243-244
listing data in drop-down control,
104-106
overview, 97-98
parsing with Interactive Website
Framework, 198-199
passing data to server with POST
method, 109-112
posting data to servers and retrieving,
170-173
reading from server, 101-102
retrieving with 1ibXmlRequest
framework, 176-180
retrieving with 1oadxMLDoc function,
174-176
sending to browser with PHP script,
299-300
setting up Web pages to read, 100-101
tags, 238
treated as nodes, 243
using GET method to retrieve, 162-165
XML attributes, accessing in XML
elements, 260-263
XML declarations, starting XML
documents, 239
XML document type definition (DTD)
overview, 240
validating XML documents and,
264-267
XML documents
handling white space in with Mozilla
Firefox, 250-253
making valid, 240
navigating with JavaScript properties,
245-249
overview, 99
removing white space from in Mozilla-
based browsers, 254-258
requesting data from in Ajax, 240-242
validating in Ajax applications, 263-267
wellformed, 239-240, 263

Index 359

XML elements
accessing attribute values in, 260-263
accessing by name, 258-260
in XML documents, 239-240
XML For Dummies, 4th Edition (Dykes,
Tittel), 238
XML parsers
Interactive Website Framework
custom, 198
reading well-formed XML documents,
239, 263
validating XML documents and,
264-266
XML schema
overview, 240
validating XML documents and, 264
XMLHttpRequest debugger
(Couvreur), 140
XMLHt tpRequest objects
alternate ways of retrieving, 91-93
checking for validity of, 83-84
creating, 79-81
handling older browsers that don’t
support, 199-200
in 1ibXmlRequest framework
library, 176
methods for Firefox and Navigator, 82
methods for Internet Explorer, 81
methods for Safari, 83
opening, 84-85
passing data to server with POST
method and, 110-112
passing URL with, 159-160

properties for Firefox and Navigator, 82

properties for Internet Explorer, 81

properties for Safari, 82-83

references, 333

retrieving data with, 88-90

Web site resource for, 335

working with arrays for multiple
requests, 146-147

working with inner functions for
multiple requests, 147-150

working with multiple, 144-146

XHConn framework treating, 194

XMLHttpRequestObject object, access-

ing complete Http header data
with, 136

oyo

Yahoo! live search, Rico framework and,
204, 206

yellow triangle of death, JavaScript
errors and, 30

o/ o

zero-fill right shift (>>>) operator,
function of, 53
z-order property
absolute positioning function of, 293
relative positioning function of, 295
using with absolute positioning,
294-295

BUSINESS, CAREERS & PERSONAL FINANCE

A

Grant Writing

erence for the Rest of UsT

0-7645-5331-3 *t

A Reference for the Rest of Usl’

0-7645-5307-0

HOME & BUSINESS COMPUTER BASICS

Also available:

v Accounting For Dummies t
0-7645-5314-3

”Business Plans Kit For Dummies t
0-7645-5365-8

v Cover Letters For Dummies
0-7645-5224-4

v*Frugal Living For Dummies
0-7645-5403-4

v Leadership For Dummies
0-7645-5176-0

»Managing For Dummies
0-7645-1771-6

»Marketing For Dummies
0-7645-5600-2

v*Personal Finance For Dummies *
0-7645-2590-5

»Project Management For Dummies
0-7645-5283-X

v»Resumes For Dummies
0-7645-5471-9

1~Selling For Dummies
0-7645-5363-1

»*Small Business Kit For Dummies *t
0-7645-5093-4

0-7645-4074-2 0-7645-3758-X

Also available:

v ACT! 6 For Dummies
0-7645-2645-6

v“iLife ‘04 All-in-One Desk Reference
For Dummies
0-7645-7347-0

»iPAQ For Dummies
0-7645-6769-1

»Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

v»Macs For Dummies
0-7645-5656-8

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

»Microsoft Money 2004 For Dummies
0-7645-4195-1

1~ Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

*Outlook 2003 For Dummies
0-7645-3759-8

v»*PCs For Dummies
0-7645-4074-2

+»TiVo For Dummies
0-7645-6923-6

v*Upgrading and Fixing PCs For Dummies
0-7645-1665-5

v»Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

for the Rest of UsI”

0-7645-5295-3

0-7645-5232-5

INTERNET & DIGITAL MEDIA

Also available:

v*Bass Guitar For Dummies
0-7645-2487-9

vDiabetes Cookbook For Dummies
0-7645-5230-9

1»”Gardening For Dummies *
0-7645-5130-2

v Guitar For Dummies
0-7645-5106-X

vHoliday Decorating For Dummies
0-7645-2570-0

r*Home Improvement All-in-One
For Dummies
0-7645-5680-0

vKnitting For Dummies
0-7645-5395-X

vPiano For Dummies
0-7645-5105-1

»Puppies For Dummies
0-7645-5255-4

v Scrapbooking For Dummies
0-7645-7208-3

v”Senior Dogs For Dummies
0-7645-5818-8

»#Singing For Dummies
0-7645-2475-5

1#30-Minute Meals For Dummies
0-7645-2589-1

Digital
Photography

0-7645-1664-7

0-7645-6924-4

* Separate Canadian edition also available
t Separate U.K. edition also available

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Also available:

#2005 Online Shopping Directory
For Dummies
0-7645-7495-7

»CD & DVD Recording For Dummies
0-7645-5956-7

»*eBay For Dummies
0-7645-5654-1

”Fighting Spam For Dummies
0-7645-5965-6

1”Genealogy Online For Dummies
0-7645-5964-8

»Google For Dummies
0-7645-4420-9

v”Home Recording For Musicians
For Dummies
0-7645-1634-5

»”The Internet For Dummies
0-7645-4173-0

»”iPod & iTunes For Dummies
0-7645-7772-7

vPreventing Identity Theft For Dummies
0-7645-7336-5

”Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

vRoxio Easy Media Creator For Dummies

FWILEY

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

A Reference for the Rest of UsI

0-7645-5146-9

0-7645-5418-2

TRAVEL

Also available:

v Adoption For Dummies
0-7645-5488-3

vBasketball For Dummies
0-7645-5248-1

»*The Bible For Dummies
0-7645-5296-1

vBuddhism For Dummies
0-7645-5359-3

v Catholicism For Dummies
0-7645-5391-7

v*Hockey For Dummies
0-7645-5228-7

v Judaism For Dummies
0-7645-5299-6

v*Martial Arts For Dummies
0-7645-5358-5

v#Pilates For Dummies
0-7645-5397-6

v”Religion For Dummies
0-7645-5264-3

v Teaching Kids to Read For Dummies
0-7645-4043-2

v*Weight Training For Dummies
0-7645-5168-X

v”Yoga For Dummies
0-7645-5117-5

A Trrvel Guida for e Rest of Lsr

0-7645-5438-7

A Travwl Guite for the Rest of Usi™

0-7645-5453-0

GRAPHICS, DESIGN & WEB DEVELOPMENT

Also available:

v Alaska For Dummies
0-7645-1761-9

v Arizona For Dummies
0-7645-6938-4

v*Cancun and the Yucatan For Dummies
0-7645-2437-2

v Cruise Vacations For Dummies
0-7645-6941-4

v Europe For Dummies
0-7645-5456-5

Ireland For Dummies
0-7645-5455-7

v”Las Vegas For Dummies
0-7645-5448-4

vLondon For Dummies
0-7645-4277-X

vNew York City For Dummies
0-7645-6945-7

v#Paris For Dummies
0-7645-5494-8

RV Vacations For Dummies
0-7645-5443-3

vWalt Disney World & Orlando For Dummies
0-7645-6943-0

PHP & MySQL

0-7645-4345-8 0-7645-5589-8

Also available:

v Adobe Acrobat 6 PDF For Dummies
0-7645-3760-1

#Building a Web Site For Dummies
0-7645-7144-3

vDreamweaver MX 2004 For Dummies
0-7645-4342-3

»FrontPage 2003 For Dummies
0-7645-3882-9

»HTML 4 For Dummies
0-7645-1995-6

lllustrator cs For Dummies
0-7645-4084-X

NETWORKING, SECURITY, PROGRAMMING & DATABASES

Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

vPhotoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

vPhotoshop cs Timesaving Techniques
For Dummies
0-7645-6782-9

»PHP 5 For Dummies
0-7645-4166-8

v*PowerPoint 2003 For Dummies
0-7645-3908-6

”QuarkXPress 6 For Dummies
0-7645-2593-X

A R'el‘elrerrce
Rest of Us!

A Rreference
ar the,
Rest of Us!

0-7645-6852-3

Also available:

A+ Certification For Dummies
0-7645-4187-0

v Access 2003 All-in-One Desk
Reference For Dummies
0-7645-3988-4

»*Beginning Programming For Dummies
0-7645-4997-9

v C For Dummies
0-7645-7068-4

v Firewalls For Dummies
0-7645-4048-3

»Home Networking For Dummies
0-7645-42796

v”Network Security For Dummies
0-7645-1679-5

»Networking For Dummies
0-7645-1677-9

v TCP/IP For Dummies
0-7645-1760-0

v»VBA For Dummies
0-7645-3989-2

v”Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

v*Wireless Home Networking For Dummies
0-7645-3910-8

HEALTH & SELF-HELP

Also available:

v Alzheimer’s For Dummies
0-7645-3899-3

1 Asthma For Dummies
0-7645-4233-8

v Controlling Cholesterol For Dummies
0-7645-5440-9

v”Depression For Dummies
0-7645-3900-0

1 Dieting For Dummies
0-7645-4149-8

v~Fertility For Dummies
0-7645-2549-2

Low-%
Dieting

DUMMIES

E: i 2
A Refirance for the Rest of Usr 1 200

0-7645-2566-2

0-7645-6820-5 *t

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

vFibromyalgia For Dummies
0-7645-5441-7

v Improving Your Memory For Dummies
0-7645-5435-2

v»Pregnancy For Dummies t
0-7645-4483-7

»”Quitting Smoking For Dummies
0-7645-2629-4

v*Relationships For Dummies
0-7645-5384-4

v Thyroid For Dummies
0-7645-5385-2

Also available:

v~ Algebra For Dummies
0-7645-5325-9

v#British History For Dummies
0-7645-7021-8

vCalculus For Dummies
0-7645-2498-4

»English Grammar For Dummies
0-7645-5322-4

v Forensics For Dummies
0-7645-5580-4

*The GMAT For Dummies
0-7645-5251-1

»”Inglés Para Dummies
0-7645-5427-1

ok Spanish — the fun and ey w1

e Qrigins of Tolkien's

Middle-earth

A Reference
for the,

Rest of Us!

A Refévence for the Rest af Usr 2, 020

0-7645-4186-2

0-7645-5194-9

v“Italian For Dummies
0-7645-5196-5

v~Latin For Dummies
0-7645-5431-X

v“Lewis & Clark For Dummies
0-7645-2545-X

v”Research Papers For Dummies
0-7645-5426-3

»*The SAT | For Dummies
0-7645-7193-1

vScience Fair Projects For Dummies
0-7645-5460-3

»#U.S. History For Dummies
0-7645-5249-X

Find Dummies Books & Articles

Dummies :Home

?: Register for eTips™
. l Subrcribe to our
Trew nvertettars.

— | Get smart @ dummies.com’

¢ Find a full list of Dummies titles

HES

‘T Everyday Computing
A
%J Advanced Computing
LT The Internet

&z.__. . .
iy Health, Mind & Spirit

= | Making & Managing
¥ Money

%1 Sports & Leisure

%J Travel

kr Beyond the Classroom

DUMMIE‘SCO | TheOnline R

Win a trip to Cozumel, Mexico .
Ertter 10 win a lwruriows vacation for two 2
o Presidente InterContinental Cozumel Resort & Spa,

Focus on the Academy Awards

* Look into loads of FREE on-site articles
* Sign up for FREE eTips e-mailed to you weekly

* See what other products carry the Dummies name
@ Taking Your Best Shed for Yaur Film
@ Audifioning for an Acting Aole: What in
xpect
@ Craftirg Your Characier's Dialogue in
G o fypraciers Do i

@ Eine-Tuning Yeur Axling Performancs o Fim

00 * Shop directly from the Dummies bookstore

* Enter to win new prizes every month!

Onlire Dating For
Lurenies

Promotions

af a store near you €

Ahou Duweies | RegeleriareTips | Conlodls
st 200M 2 T by ¥ Buisbing, o AN g5 e pesservid, Flesei s 1 B Pulie

* Separate Canadian edition also available
t Separate U.K. edition also available

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

From hobbies to health,
discover a wide
variety of fun products

DVDs/Videos * Music CDs * Games
Consumer Electronics * Software
Craft Kits * Culinary Kits - and More!

Check out the Dummies Specialty Shop at www.dummies.com for more information! Wl LEY

	Table of Contents
	Introduction
	Part : Getting Started
	C 1 : Ajax 101
	How Does Ajax Work?
	A user’s perspective
	A developer’s perspective
	What Can You Do with Ajax?
	Searching in real time with live searches
	Getting the answer with autocomplete
	Chatting with friends
	Dragging and dropping with Ajax
	Gaming with Ajax
	Getting instant login feedback
	Ajax-enabled pop-up menus
	Modifying Web pages on the fly
	Google Maps and Ajax
	When Is Ajax a Good Choice?

	C 2 : It’s All About JavaScript
	Taking a First Look at Ajax in Action
	Taking a look at the code
	Delving deeper into JavaScript
	Enter JavaScript
	Creating a script
	Accessing the Web page from JavaScript
	Oh, those semicolons
	Adding comments to your JavaScript
	Using separate script files
	Examining script errors
	Which browser are you using?
	Making Something Happen:

Browser Events
	Putting browser events to work
	Getting the quotation marks right
	Dividing and Conquering:

JavaScript Functions
	Understanding the problem
	Putting together a function
	Calling the function
	Passing a single argument to a function
	Using <div> versus
	Passing multiple arguments
	You Must Remember This: Storing Data
	Simple data storage with

the var statement
	Churning your data with operators
	Altering a variable’s data
	Storing JavaScript objects in a variable
	Oh, those functions!
	Picking and Choosing with

the if Statement
	Using the if statement
	Using the else statement
	Determining browser type and version
	It Just Gets Better: The for Loop
	Over and Over with the while Loop!
	Pushing Some Buttons
	Displaying a message with a button click
	Reading a text field with a button click

	Part II : Programming in Ajax
	C 3 : Getting to Know Ajax
	Writing Some Ajax
	Creating the XMLHttpRequest object
	Checking to make sure you have a valid XMLHttpRequest object
	Opening the XMLHttpRequest object
	When you’re ready: Handling asynchronous downloads
	You got the data!
	Deciding on relative versus absolute URLs
	Other ways of getting XMLHttpRequest Objects
	Interactive Mouseovers Using Ajax
	Getting Interactive with

Server-Side Scripting
	Choosing a server-side scripting language
	Connecting to a script on a server
	Getting XML from a PHP script
	Setting up a Web page to read XML
	Handling the XML you

read from the server
	Extracting data from XML
	Listing the colors in the drop-down control
	Passing Data to the Server with GET
	Passing Data to the Server with POST

	C 4 : Ajax in Depth
	Returning JavaScript from the Server
	When do you send back JavaScript

from the server?
	How does returning JavaScript work?
	Returning a JavaScript object
	Connecting to Google for a Live Search
	Handling the data Google sends you
	Detecting keystrokes
	Connecting to Google Suggest
	Showing Google’s response
	Calling a Different Domain
	Reversing the Roles: Performing

Validation on the Server
	Getting Some Amazing Data

with HEAD Requests
	Returning all the header data you can get
	Finding the last-modified date
	Does a URL exist?
	Finding the Problem: Debugging Ajax
	Debugging with Greasemonkey
	Overload: Handling Multiple

Concurrent Requests
	Double the fun
	Packing it all into an array
	Getting the inside scoop on inner functions
	Part III : Ajax Frameworks

	C 5 : Introducing Ajax Frameworks
	A Little More Ajax Power
	Introducing the Ajax Gold Framework
	Using GET to get text
	Using GET to get XML
	Using POST to post data and get text
	Using POST to post data and get XML
	Finding Ajax Frameworks in the Wild
	Easy Ajax with AJAXLib
	Grabbing XML with libXmlRequest
	Grabbing XML with libXmlRequest

	C 6 : More Powerful Ajax Frameworks
	Dragging and Dropping

with Shopping Carts
	Handling mouse events
	Handling mouse down events
	Handling mouse-move events
	Handling mouse up events
	Updating the shopping cart
	Looking at Some Heavier-

Weight Frameworks
	Getting XMLHttpRequest

objects with XHConn
	The Simple AJAX Code Kit: Sack
	Parsing XML with Interactive Website

Framework
	Handling older browsers with

HTMLHttpRequest
	Decoding XML with Sarissa
	Creating visual effects with Rico
	Overcoming caching with

the Http framework

	C 7 : Server-Side Ajax Frameworks
	Writing JavaScript by Using

Ajax Frameworks
	Sajax and PHP
	Xajax and PHP
	LibAjax and PHP
	JPSpan and PHP
	Accessing Java with Direct

Web Remoting
	Setting up for Java on the Web
	Connecting to Java by using DWR
	Building Web Applications with Echo2
	Handling Ajax and JavaServer Pages

with Ajax Tags
	Handling Java with SWATO
	Tracking Down the Many Other

Frameworks Available
	Developing amazing applications

with WebORB
	Ruby on Rails

	Part IV : In-Depth Ajax

Power
	C 8 : Handling XML in Ajax

Applications
	Understanding Basic XML
	What’s in a tag?
	Keeping XML documents well-formed
	Making an XML document valid
	Requesting XML Data in Ajax
	Extracting XML Data Using Properties
	Right on the node
	Introducing the JavaScript properties
	Navigating an XML document

using JavaScript properties
	Extracting with nodeValue
	Handling white space

in Mozilla and Firefox
	Removing white space

in Mozilla and Firefox
	Accessing XML Elements by Name
	Accessing Attribute Values

in XML Elements
	Validating XML Documents

in Ajax Applications

	C 9 : Working with Cascading Style

Sheets in Ajax Applications
	An Ajax-Driven Menu System
	Setting up the styles
	Handling mouse events
	Displaying a menu
	Hiding a menu
	Getting a menu’s item from the server
	Handling the menu items
	Displaying Text That Gets Noticed
	Styling text
	Handling colors and backgrounds
	Positioning using styles

	C 10 : Working with Ajax and PHP
	Starting with PHP
	Getting a Handle on Variables
	Handling Your Data with Operators
	Making Choices with the if Statement
	Round and Round with Loops
	Handling HTML Controls
	Getting data from text fields
	Checking out data from check boxes
	Tuning in data from radio buttons
	Sending Data to the Server
	Reading Files
	Writing Files
	Working with Databases

	Part V : The Part of Tens
	C 11 : Ten Ajax Design Issues You

Should Know About
	Breaking the Back Button

and Bookmarks
	Giving Visual Cues
	Leaving the User in Control
	Remembering All the Different Browsers
	Showing Users When Text Changes
	Avoiding a Sluggish Browser
	Handling Sensitive Data
	Creating a Backup Plan
	Showing Up in Search Engines
	idestepping a Browser’s Cache

	C 12 : Ten Super-Useful Ajax Resources
	The Original Ajax Page
	The Ajax Patterns Page
	The Wikipedia Ajax Page
	Ajax Matters
	XMLHttpRequest Object References
	Ajax Blogs
	Ajax Examples
	Ajax Tutorials
	Ajax Discussion Group
	More Depth on XMLHttpRequest

	Index

