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Preface

We describe in this book, new methods for building intelligent systems using
type-2 fuzzy logic and soft computing techniques. In this book, we are extending
the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic.
Combining type-2 fuzzy logic with traditional SC techniques, we can build
powerful hybrid intelligent systems that can use the advantages that each tech-
nique offers. We consider in this book the use of type-2 fuzzy logic and traditional
SC techniques to solve problems in real-world applications.

This book is intended to be a reference for scientists and engineers interested in
applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent
control, intelligent manufacturing, robotics and automation. This book can also be
used as a reference for graduate courses like the following: soft computing,
intelligent pattern recognition, computer vision, applied artificial intelligence, and
similar ones. We consider that this book can also be used to get novel ideas for
new lines of research, or to continue the lines of research proposed by the authors
of the book.

In Chap. 1, we begin by offering a brief introduction of the potential use of
type-2 fuzzy logic in different real-world applications. We discuss the application
of type-2 fuzzy logic in problems of pattern recognition. We also describe the use
of type-2 fuzzy logic in problems of intelligent control of non-linear plants. We
also outline the application of type-2 fuzzy logic in real-world applications of
intelligent manufacturing, robotics and automation.

We describe in Chap. 2 the basic concepts, notation, and theory of type-2 fuzzy
logic, which is a generalization of type-1 fuzzy logic. Type-2 fuzzy logic enables
the management of uncertainty in a more complete way. This is due to the fact that
in type-2 membership functions we also consider that there is uncertainty in the
form of the functions, unlike type-1 membership functions in which the functions
are considered to be fixed and not uncertain.

We describe in Chap. 3 a brief overview of the basic concepts from bio-inspired
optimization methods needed for this work. In particular, the methods that are
covered in this chapter are: particle swarm optimization, genetic algorithms and
ant colony optimization.
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We offer in Chap. 4 a representative review of the works using a bio-inspired
optimization technique, like genetic algorithms (GAs), for automating the design
process of type-2 fuzzy systems. This overview has the goal of providing the
reader with an idea of the diversity of applications that have been achieved using
genetic algorithms for type-2 fuzzy system optimization.

We describe in Chap. 5 a representative review of works on optimizing type-2
fuzzy systems using different kinds of particle swarm optimization (PSO) algo-
rithms to illustrate the advantages of using this optimization technique for auto-
mating the design process of type-2 fuzzy systems.

We describe in Chap. 6 a representative and brief review of the works that have
used ant colony optimization (ACO) to illustrate the advantages of using this
optimization technique for automating the design process or parameters of type-2
fuzzy systems.

We describe in Chap. 7 some other works reported in the literature optimizing
type-2 fuzzy systems using different kinds of optimization algorithms (other than
GAs, PSO or ACO, which were covered in previous chapters). Most of these works
have had relative success according to the different areas of application. In this
chapter, we offer a representative and brief review of these types of works to
illustrate the advantages of using the corresponding optimization techniques for
automating the design process or parameters of type-2 fuzzy systems.

We describe in Chap. 8 as an illustration the optimization of the membership
functions’ parameters of an interval type-2 fuzzy logic controller in order to find
the optimal intelligent controller for an autonomous wheeled mobile robot. The
optimization method that was used is based on the chemical reaction paradigm.
Simulation results with the chemical optimization paradigm are very good and are
shown to outperform other optimization methods for the same control problem.

We describe in Chapter 9 a method for the design of a Type-2 Fuzzy Logic
Controller (FLC-T2) and a Type-1 Fuzzy Logic Controller (FLC-T1) using
Genetic Algorithms. The two controllers were tested with different levels of
uncertainty to regulate speed in a direct current motor. The controllers were
synthesized in Very High Description Language (VHDL) code for a Field Pro-
grammable Gate Array (FPGA), using the Xilinx System Generator of Xilinx ISE
and Matlab-Simulink. Comparisons were made between the FLC-T1 versus FLC-T2
in VHDL code and also with a Proportional Integral Differential (PID) Controller.
To evaluate the difference in performance of the three types of controllers, the
t-student statistical test was used with the type-2 controller resulting to be the best
one for this problem.

We describe in Chap. 10 a general overview of the area of type-2 fuzzy system
optimization. Also, possible future trends that we can envision based on the review
of this area are presented. It has been well-known for a long time, that designing
fuzzy systems is a difficult task, and this is especially true in the case of type-2
fuzzy systems. The use of GAs, ACO and PSO in designing type-1 fuzzy systems
has become a standard practice for automatically designing this sort of systems.
This trend has also continued to the type-2 fuzzy systems area, which has been
accounted for with the review of papers presented in the previous chapters. In this
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chapter a summary of the total number of papers published in the area of type-2
fuzzy system optimization is also presented, so that the increasing trend occurring
in this area can be better appreciated.

We end this preface of the book by giving thanks to all the people who have
help or encourage us during the writing of this book. First of all, we would like to
thank our colleague and friend Prof. Janusz Kacprzyk for always supporting our
work, and for motivating us to write our research work. We would also like to
thank our colleagues working in Soft Computing, which are too many to mention
each by their name. Of course, we need to thank our supporting agencies,
CONACYT and DGEST, in our country for their help during this project. We have
to thank our institution, Tijuana Institute of Technology, for always supporting our
projects. Finally, we thank our families for their continuous support during the
time that we spend in this project.

Mexico Prof. Dr. Oscar Castillo
Prof. Dr. Patricia Melin
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Chapter 1
Introduction

A review of the optimization methods used in the design of type-2 fuzzy systems,
which are relatively novel models of imprecision, is presented in this book. The
fundamental focus of the book is based on the basic reasons of the need for
optimizing type-2 fuzzy systems for different areas of application. Recently, bio-
inspired methods have emerged as powerful optimization algorithms for solving
complex problems. In the case of designing type-2 fuzzy systems for particular
applications, the use of bio-inspired optimization methods have helped in the
complex task of finding the appropriate parameter values and the right structure of
the fuzzy systems. In this book, we review the application of genetic algorithms,
particle swarm optimization and ant colony optimization, as three different para-
digms that help in the design of optimal type-2 fuzzy systems. We also provide a
comparison of results for the different optimization methods for the case of
designing type-2 fuzzy systems.

Uncertainty affects decision-making and emerges in a number of different
forms. The concept of information is inherently associated with the concept of
uncertainty [1, 2]. The most fundamental aspect of this connection is that the
uncertainty involved in any problem-solving situation is a result of some infor-
mation deficiency, which may be incomplete, imprecise, fragmentary, not fully
reliable, vague, contradictory, or deficient in some other way. Uncertainty is an
attribute of information [3]. The general framework of fuzzy reasoning allows
handling much of this uncertainty and fuzzy systems employ type-1 fuzzy sets,
which represent uncertainty by numbers in the range [0, 1]. When an entity is
uncertain, like a measurement, it is difficult to specify its exact value, and of
course a type-1 fuzzy set makes more sense than a traditional set [3, 4]. However,
it is not reasonable to use an accurate membership function for something
uncertain, so in this case what we need is another type of fuzzy sets, those which
are able to handle these uncertainties, the so called type-2 fuzzy sets [5, 6]. The
amount of uncertainty in a system can be reduced by using type-2 fuzzy logic

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
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because this logic offers better capabilities to handle linguistic uncertainties by
modeling vagueness and unreliability of information [7, 8].

Type-2 fuzzy models have emerged as an interesting generalization of fuzzy
models based upon type-1 fuzzy sets [5, 9]. There have been a number of claims
put forward as to the relevance of type-2 fuzzy sets being regarded as generic
building constructs of fuzzy models [10–12]. Likewise, there is a record of some
experimental evidence showing some improvements in terms of accuracy of fuzzy
models of type-2 over their type-1 counterparts [13–17]. Unfortunately, no
systematic and comprehensive design framework has been provided and while
improvements over type-1 fuzzy models were evidenced, it is not clear whether
this effect could always be expected. Furthermore, it is not demonstrated whether
the improvement is substantial enough and fully legitimized given the substantial
optimization overhead associated with the design of this category of models. There
have been a lot of applications of type-2 in intelligent control [18–25], pattern
recognition [26–30], intelligent manufacturing [15, 31, 32], time series prediction
[13, 33], and others [34–39]. However, no general design strategy for finding the
optimal type-2 fuzzy model has been proposed, and for this reason bio-inspired
algorithms have been used to try in find these optimal type-2 models.

In general, the methods for designing a type-2 fuzzy model based on experi-
mental data can be classified into two categories as illustrated in Fig. 1.1. The first
category of methods assumes that an optimal (in some sense) type-1 fuzzy model
has already been designed and afterwards a type-2 fuzzy model is constructed
through some sound augmentation of the existing model. The second class of
design methods is concerned with the construction of the type-2 fuzzy model
directly from experimental data. In both cases, an optimization method can help in
obtaining the optimal type-2 fuzzy model for the particular application.

Recently, bio-inspired methods have emerged as powerful optimization
algorithms for solving complex problems. In the case of designing type-2 fuzzy
systems for particular applications, the use of bio-inspired optimization methods
have helped in the complex task of finding the appropriate parameter values and
structure of the fuzzy systems. In this book, we consider a review on the appli-
cation of genetic algorithms, particle swarm optimization and ant colony optimi-
zation as three different paradigms that help in the design of optimal type-2 fuzzy

Fig. 1.1 Two categories of
approaches to the design of
interval type-2 fuzzy systems
(models): a methods based on
an augmentation of existing
type-1 fuzzy model, and
b methods aimed at the direct
development of type-2 fuzzy
models from data
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systems. We also mention some hybrid approaches and other optimization
methods that have been applied in the problem of designing optimal type-2 fuzzy
systems in different domains of application.

The rest of the book is organized as follows. In Chap. 2 some basic definitions
of type-2 fuzzy systems are presented. Chapter 3 describes some basic concepts
of bio-inspired optimization. Chapter 4 describes the application of genetic
algorithms for the optimization of type-2 fuzzy systems. In Chap. 5 a review of
different approaches for the application of particle swarm optimization in type-2
fuzzy systems design are presented. Chapter 6 presents an overview of ant colony
optimization methods applied in type-2 fuzzy systems design. Chapter 7 discusses
other approaches that have been used to optimize type-2 fuzzy systems. Chapter 8
describes in detail a particular application of type-2 fuzzy systems in the control of
an autonomous robot. Chapter 9 presents an overview of the area and future trends
of research in optimal type-2 fuzzy system design.
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Chapter 2
Type-2 Fuzzy Logic Systems

In this chapter, a brief overview of the basic concepts of type-2 fuzzy systems
is presented. This overview is intended to provide the basic concepts needed
to understand the methods and algorithms presented later in this book [1–3].
The basic concepts that are covered in this chapter are: type-2 fuzzy sets, mem-
bership functions, type-2 inference, type reduction and defuzzification.

We begin by defining type-2 fuzzy sets and their corresponding membership
functions. If for a type-1 membership function, as in Fig. 2.1, we blur it to the left
and to the right, as illustrated in Fig. 2.2, then a type-2 membership function is
produced. In this case, for a specific value x0; the membership function u0ð Þ; takes
on different values, which are not all weighted the same, so we can assign
membership grades to all of those points.

By doing this for all x [ X, we form a three-dimensional membership function—
a type-2 membership function—that characterizes a type-2 fuzzy set [2, 3]. A type-2

fuzzy set eA, is characterized by the membership function:

~A ¼ ðx; uÞ; l~Aðx; uÞ
� �

j8x 2 X; 8u 2 Jx � ½0; 1�
� �

ð2:1Þ

in which 0� l~Aðx; uÞ� 1: In fact Jx � ½0; 1� represents the primary membership of
x, and l~Aðx; uÞis a type-1 fuzzy set known as the secondary set. Hence, a type-2
membership grade can be any subset in [0,1], the primary membership, and
corresponding to each primary membership, there is a secondary membership
(which can also be in [0,1]) that defines the possibilities for the primary mem-
bership. Uncertainty is represented by a region, which is called the footprint of
uncertainty (FOU). When l~Aðx; uÞ ¼ 1; 8u 2 Jx � ½0; 1� we have an interval type-2
membership function, as shown in Fig. 2.3. The uniform shading for the FOU
represents the entire interval type-2 fuzzy set and it can be described in terms of an
upper membership function�l~AðxÞand a lower membership function l~A

ðxÞ.
A fuzzy logic system (FLS) described using at least one type-2 fuzzy set is

called a type-2 FLS. Type-1 FLSs are unable to directly handle rule uncertainties,

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
SpringerBriefs in Computational Intelligence, DOI: 10.1007/978-3-642-28956-9_2,
� The Author(s) 2012

7



because they use type-1 fuzzy sets that are certain (viz, fully described by single
numeric values). On the other hand, type-2 FLSs, are useful in circumstances
where it is difficult to determine an exact numeric membership function, and there
are measurement uncertainties [3].

A type-2 FLS is characterized by IF–THEN rules, where their antecedent or
consequent sets are now of type-2. Type-2 FLSs, can be used when the circumstances
are too uncertain to determine exact membership grades such as when the training

Fig. 2.2 Blurred type-1 membership function

Fig. 2.1 An example of a type-1 membership function
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data is affected by noise. Similarly, to the type-1 FLS, a type-2 FLS includes a
fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can see
in Fig. 2.4 for a Mamdani model. The output processor includes type-reducer and
defuzzifier; it generates a type-1 fuzzy set output (from the type-reducer) or a number
(from the defuzzifier) [2]. Now we explain each of the blocks shown in Fig. 2.4.

2.1 Fuzzifier

The fuzzifier maps a numeric vector x = (x1,…,xp)T 2 X1xX2x…xXp : X into a
type-2 fuzzy set ~Ax in X [3], an interval type-2 fuzzy set in this case. We use type-
2 singleton fuzzifier, in a singleton fuzzification, the input fuzzy set has only a

Fig. 2.3 Interval type-2 membership function

Fig. 2.4 Type-2 fuzzy logic system
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single point on nonzero membership. ~Ax is a type-2 fuzzy singleton if l~Ax
ðxÞ ¼ 1=1

for x = x0 and l~Ax
ðxÞ ¼ 1=0 for all other x = x0.

2.2 Rules

The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the
latter the antecedents and the consequents is represented by type-2 fuzzy sets. So
for a type-2 FLS with p inputs (linguistic variables) x1 2 X1,…,xp [ Xp and one
output y [ Y, Multiple Input Single Output (MISO), if we assume there are
M rules, the lth rule in the type-2 FLS can be written down as follows (where the
F’s and G are appropriate fuzzy sets for each rule):

Rl : IF x1 is ~Fl
1and � � � and xp is ~Fl

p;THEN y is ~Gl l ¼ 1; . . .;M ð2:2Þ

2.3 Inference

In the type-2 FLS, the inference engine combines rules and gives a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. It is necessary to compute the
join t, (unions) and the meet P (intersections), as well as the extended sup-star
compositions (sup star compositions) of type-2 relations. If ~Fl

1 � � � � � ~Fl
p ¼ ~Al;

then (2.2) can be re-written as follows

Rl : ~Fl
1 � � � � � ~Fl

p ! ~Gl ¼ ~Al ! ~Gl l ¼ 1; . . .;M ð2:3Þ

Rl is described by the membership function lRlðx; yÞ ¼ lRlðx1; . . .; xp; yÞ;
where

lRlðx; yÞ ¼ l~Al!~Glðx; yÞ ð2:4Þ

can be written as:

lRlðx; yÞ ¼ l~Al!~Glðx; yÞ ¼ l~Fl
1
ðx1ÞP � � �Pl~Fl

p
ðxpÞPl~GlðyÞ

¼ ½Pp
i¼1l~Fl

i
ðxiÞ�Pl~GlðyÞ ð2:5Þ

In general, the p-dimensional input to Rl is given by the type-2 fuzzy set
~Axwhose membership function becomes

l~Ax
ðxÞ ¼ l~x1

ðx1ÞP � � �Pl~xpðxpÞ ¼ Pp
i¼1l~xiðxiÞ ð2:6Þ

where ~Xiði ¼ 1; . . .; pÞ are the labels of the fuzzy sets describing the inputs.
Each rule Rl determines a type-2 fuzzy set ~Bl ¼ ~Ax � Rl such that:
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l~BlðyÞ ¼ l~Ax�Rl ¼ tx2X l~Ax
ðxÞ u lRlðx; yÞ

h i

y 2 Y l ¼ 1; . . .;M ð2:7Þ

This dependency is the input/output relation shown in Fig. 2.3, which holds
between the type-2 fuzzy set that activates a certain rule in the inference engine
and the type-2 fuzzy set at the output of that engine [3].

In the FLS, we used interval type-2 fuzzy sets and intersection under product
t-norm, so the result of the input and antecedent operations, which are contained in
the firing set up

i¼1l
eFii

ðx0i � Flðx0Þ; is an interval type-1 set,

Flðx0Þ ¼ f lðx0Þ; f lðx0Þ
h i

� f l; f
l

h i

ð2:8Þ

where

f lðx0Þ ¼ l~Fl
1
ðx01Þ 	 � � � 	 l~Fl

p
ðx0pÞ ð2:9Þ

and

f
lðx0Þ ¼ l~Fl

1
ðx01Þ 	 � � � 	 l~Fl

p
ðx0pÞ ð2:10Þ

here * stands for the product operation.

2.4 Type Reducer

The type-reducer generates a type-1 fuzzy set output, which is then converted in a
numeric output through running the defuzzifier. This type-1 fuzzy set is also an
interval set, for the case of our FLS we used center of sets (cos) type reduction,
Ycos, which is expressed as [3]

YcosðxÞ ¼ ½yl; yr�

¼
Z

y12½yl
1;y

1
r � � � �

Z

yM2½yM
l ;y

M
r �

Z

f 12½f 1�f 1� � � �
Z

f M2½f M ;f
M �1=

PM
i¼1 f iyi

PM
i¼1 f i

ð2:11Þ

This interval set is determined by its two end points, yl and yr, which corresponds
to the centroid of the type-2 interval consequent set ~Gi;

C~Gi ¼
Z

h12Jy1 � � �
Z

hN2JyN 1=

PN
i¼1 yihi
PN

i¼1 hi

¼ ½yi
l; y

i
r� ð2:12Þ

before the computation of Ycos (x), we must evaluate equation (2.12), and its two
end points, yl and yr. If the values of fi and yi that are associated with yl are denoted
fl
i and yl

i, respectively, and the values of fi and yi that are associated with yr are
denoted fr

i and yr
i , respectively, from equation (2.13), we have [3]
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yl ¼
PM

i¼1 f i
l yi

l
PM

i¼1 f i
l

ð2:13Þ

yr ¼
PM

i¼1 f i
r yi

r
PM

i¼1 f i
r

ð2:14Þ

The values of yl and yr define the output interval of the type-2 fuzzy system, which
can be used to verify if training or testing data are contained in the output of the
fuzzy system. This measure of covering the data is considered as one of the design
criteria in finding an optimal interval type-2 FS. The other optimization criteria, is
that the length of this output interval should be as small as possible.

2.5 Defuzzifier

From the type-reducer, we obtain an interval set Ycos, to defuzzify it we use the
average of yl and yr, so the defuzzified output of an interval singleton type-2 FLS
is [3]

yðxÞ ¼ yl þ yr

2
ð2:15Þ

To the moment, most of the interval type-2 fuzzy systems that have been developed
for the applications follow the architecture of Fig. 2.4 and the definitions presented
in this Chapter. In this sense, what has been presented constitutes a good basis for
understanding the rest of the chapters of this book.
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Chapter 3
Bio-Inspired Optimization Methods

In this chapter a brief overview of the basic concepts from bio-inspired
optimization methods needed for this work is presented. In particular, the methods
that are covered in this chapter are: particle swarm optimization, genetic
algorithms and ant colony optimization.

3.1 Particle Swarm Optimization

Particle swarm optimization is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995, inspired by social
behavior of bird flocking or fish schooling [1]. PSO shares many similarities with
evolutionary computation techniques such as the GA [2].

The system is initialized with a population of random solutions and searches for
optima by updating generations. However, unlike the GA, the PSO has no
evolution operators such as crossover and mutation. In the PSO, the potential
solutions, called particles, fly through the problem space by following the current
optimum particles [1]. Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution (fitness) it has achieved so far
(The fitness value is also stored). This value is called pbest. Another ‘‘best’’ value
that is tracked by the particle swarm optimizer is the best value, obtained so far by
any particle in the neighbors of the particle. This location is called lbest. When a
particle takes all the population as its topological neighbors, the best value is a
global best and is called gbest [3].

The particle swarm optimization concept consists of, at each time step,
changing the velocity of (accelerating) each particle toward its pbest and lbest
locations (local version of PSO). Acceleration is weighted by a random term, with
separate random numbers being generated for acceleration toward pbest and lbest
locations [4, 5]. In the past several years, PSO has been successfully applied in
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many research and application areas. It is demonstrated that PSO gets better results
in a faster, cheaper way when compared with other methods [1, 3, 6]. Another
reason that PSO is attractive is that there are few parameters to adjust. One
version, with slight variations, works well in a wide variety of applications.
Particle swarm optimization has been considered for approaches that can be used
across a wide range of applications, as well as for specific applications focused on
a specific requirement [7–9].

The basic algorithm of PSO has the following nomenclature:

xi
z— Particle position

vi
z—Particle velocity

wij—Inertia weight
pi

z—Best ‘‘remembered’’ individual particle position
pg

z —Best ‘‘remembered’’ swarm position
c1; c2—Cognitive and Social parameters
r1; r2—Random numbers between 0 and 1

The equation to calculate the velocity is:

vi
zþ1 ¼ wij vi

zþ c1 r1 pi
z� xi

z

� �

þ c2 r2 pg
z � xi

z

� �

ð3:1Þ

and the position of the individual particles is updated as follows:

xi
zþ1 ¼ xi

zþ vi
zþ1 ð3:2Þ

The basic PSO algorithm is defined as follows:

1) Initialize

a) Set constants zmax; c1; c2

b) Randomly initialize particle position xi
0 2 D in Rn for i ¼ 1; . . .; p

c) Randomly initialize particle velocities 0� vi
0� vmax

0 for i ¼ 1; . . .; p
d) Set Z = 1

2) Optimize

a) Evaluate function value f i
k using design space coordinates xi

k

b) If f i
z � f i

best then f i
best ¼ f i

z ; p
i
z ¼ xi

z

c) If f i
z � f g

best then f g
best ¼ f i

z ; p
g
z ¼ xi

z

d) If stopping condition is satisfied then go to 3
e) Update all particle velocities vi

z for i ¼ 1; . . .; p
f) Update al particle positions xi

z for i ¼ 1; . . .; p
g) Increment z
(h) Goto 2(a)

(3) Terminate
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3.2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetic processes [10]. The basic
principles of GAs were first proposed by John Holland in 1975, inspired by the
mechanism of natural selection, where stronger individuals are likely the winners
in a competing environment [11–13]. GA assumes that the potential solution of
any problem is an individual and can be represented by a set of parameters. These
parameters are regarded as the genes of a chromosome and can be structured by a
string of values in binary form. A positive value, generally known as a fitness
value, is used to reflect the degree of ‘‘goodness’’ of the chromosome for the
problem, which would be highly related with its objective value. The pseudocode
of a GA is as follows:

1. Start with a randomly generated population of n chromosomes (candidate
solutions to a problem).

2. Calculate the fitness of each chromosome in the population.
3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population, the
probability of selection being an increasing function of fitness. Selection is
done with replacement, meaning that the same chromosome can be selected
more than once to become a parent.

b. With probability (crossover rate), perform crossover to the pair at a ran-
domly chosen point to a form two offspring.

c. Mutate the two offspring at each locus with probability (mutation rate), and
place the resulting chromosomes in the new population.

4. Replace the current population with the new population.
5. Go to step 2.

The simple procedure just described above is the basis for most applications of
GAs found in the literature.

3.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a probabilistic technique that can be used for
solving problems that can be reduced to finding good paths along graphs. This
method is inspired on the behavior presented by ants in finding paths from the nest
or colony to the food source.
The S-ACO is an algorithmic implementation that adapts the behavior of real ants
to solutions of minimum cost path problems on graphs [14]. A number of artificial
ants build solutions for a certain optimization problem and exchange information
about the quality of these solutions making allusion to the communication system
of real ants [15].
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Let us define the graph G = (V, E), where V is the set of nodes and E is the
matrix of the links between nodes. G has nG ¼ Vj j nodes. Let us define LK as the
number of hops in the path built by the ant k from the origin node to the destiny
node. Therefore, it is necessary to find:

Q ¼ qa; . . .; qf q12 Cj
� �

ð3:3Þ

where Q is the set of nodes representing a continuous path with no obstacles;
qa; . . .;qf are former nodes of the path and C is the set of possible configurations of
the free space. If xk(t) denotes a Q solution in time t, f(xk(t)) expresses the quality
of the solution. The S-ACO algorithm is based on Eqs. (3.4–3.6):

pk
ij tð Þ ¼

sk
ij

P

j2Nk
ij

sa
ij tð Þ

0

8

>

>

>

<

>

>

>

:

if j 2 Nk
i

if j 62 Nk
i

ð3:4Þ

sij tð Þ  1� qð Þsij tð Þ ð3:5Þ

sijðt þ 1Þ ¼ sijðtÞ þ
X

nk

k¼1

sijðtÞ ð3:6Þ

Equation (3.4) represents the probability for an ant k located on a node i selects the
next node denoted by j, where, Nk

i is the set of feasible nodes (in a neighborhood)
connected to node i with respect to ant k, sijis the total pheromone concentration of
link ij, and a is a positive constant used as a gain for the pheromone influence.

Equation (3.5) represents the evaporation pheromone update, where q 2 ½0; 1� is
the evaporation rate value of the pheromone trail. The evaporation is added to the
algorithm in order to force the exploration of the ants, and avoid premature
convergence to sub-optimal solutions [16]. For q ¼ 1 the search becomes
completely random [17].

Equation (3.6), represents the concentration pheromone update, where Dsk
ij

is the amount of pheromone that an ant k deposits in a link ij in a time t.
The general steps of S-ACO are the following:

1. Set a pheromone concentration sij to each link (i,j).
2. Place a number k = 1, 2,…, n in the nest.
3. Iteratively build a path to the food source (destiny node), using Eq. (3.4) for

every ant.

• Remove cycles and compute each route weight f xk tð Þ
� �

. A cycle could be
generated when there are no feasible candidates nodes, that is, for any i and
any k, Nk

i ¼ ;,then the predecessor of that node is included as a former node
of the path.

16 3 Bio-Inspired Optimization Methods



4. Apply evaporation using Eq. (3.5).
5. Update of the pheromone concentration using Eq. (3.6)
6. Finally, finish the algorithm in any of the three different ways:

• When a maximum number of epochs has been reached.
• When it has found an acceptable solution, with f(xk (t)) \ e.
• When all ants follow the same path.

3.4 General Remarks About Optimization of Type-2 Fuzzy
Systems Using Bio-Inspired Methods

The problem of designing type-2 fuzzy systems can be solved with any of the
above mentioned optimization methods. The main issue in any of these methods is
deciding on the representation of the type-2 fuzzy system in the corresponding
optimization paradigm. For example, in the case of GAs, the type-2 fuzzy systems
must be represented in the chromosomes. On the other hand, in PSO the fuzzy
system is represented as a particle in the optimization process. In the ACO method,
the fuzzy system can be represented as one of the paths that the ants can follow in a
graph. Also, the evaluation of the fuzzy system must be represented as an objective
function in any of the methods. In this paper, we offer a comprehensive review of
the most representative works in optimization of type-2 fuzzy systems that have
been done around the world.
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Chapter 4
Overview of Genetic Algorithms Applied
in the Optimization of Type-2
Fuzzy Systems

There have been many works reported in the literature optimizing type-2 fuzzy
systems using different kinds of genetic algorithms. Most of these works have had
relative success according to the different areas of application. In this chapter, we
offer a representative review of these types of works to illustrate the advantages of
using a bio-inspired optimization technique for automating the design process of
type-2 fuzzy systems. This overview has the goal of providing the reader with an
idea of the diversity of applications that have been achieved using genetic
algorithms for type-2 fuzzy system optimization.

In a paper by Park et al. [1] a design methodology of interval type-2 fuzzy
neural networks (IT2FNN) was introduced to optimize the network using a
real-coded genetic algorithm. IT2FNN is the combination between the fuzzy
neural network (FNN) and interval type-2 fuzzy set with uncertainty. The ante-
cedent part of the network is composed of the fuzzy division of input space and the
consequence part of the network is represented by polynomial functions.
The parameters such as the apexes of membership function, uncertainty parameter,
the learning rate and the momentum coefficient are optimized using a Genetic
Algorithm (GA). The proposed network is evaluated with the performance
between the approximation and the generalization abilities.

In a work by Chua and Tan [2] a method for genetically evolving type-2 fuzzy
rule based classifiers was proposed. This work was aimed at investigating if type-2
fuzzy classifiers can deliver a better performance when there exists an imprecise
decision boundary caused by improper feature extraction method. A GA is used to
tune the fuzzy classifiers under Pittsburgh scheme. The proposed fuzzy classifiers
were successfully applied to an automotive application whereby the classifier
needs to detect the presence of human in a vehicle. Results revealed that a type-2
classifier has the edge over type-1 classifier when the decision boundaries are
imprecise and the fuzzy classifier itself has not enough degrees of freedom to
construct a suitable boundary. Conversely, when decision boundaries are clear, the
advantage of type-2 framework may not be significant anymore. In any case, the

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
SpringerBriefs in Computational Intelligence, DOI: 10.1007/978-3-642-28956-9_4,
� The Author(s) 2012
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performance of a type-2 fuzzy classifier is at least comparable with a type-1 fuzzy
classifier. When dealing with real world classification problem where the uncer-
tainty is usually difficult to be estimated, type-2 fuzzy classifier can be a more
rational choice.

In a paper by Cazarez et al. [3] a genetic-type-2 fuzzy approach was proposed
to optimize the parameters of the Membership Functions (MFs) of a Type-2 Fuzzy
Logic System (FLS) applied to control. The chromosome was designed to
represent the parameters of the MFs of a pre-established Type-2 FLS. A case of
study was proposed to evaluate the optimization process, which was to achieve the
output regulation problem of a servomechanism with backlash. The problem is
the design of a type-2 fuzzy logic controller which was optimized by a GA to
obtain the closed-loop system in which the load of the driver is regulated to a
desired position. Simulations results illustrate the effectiveness of the optimized
closed-loop system.

In the work of Lopez et al. [4] a new method for response integration in
ensemble neural networks with type-2 fuzzy logic using genetic algorithms for
optimization was proposed. In this paper, pattern recognition with ensemble
neural networks for the case of fingerprints was considered. An ensemble neural
network of three modules was used. Each module was a local expert on person
recognition based on its biometric measure (pattern recognition for fingerprints).
The response integration method of the ensemble neural networks has the goal of
combining the responses of the modules to improve the recognition rate of the
individual modules. Using GAs to optimize the membership functions the results
of the type-2 fuzzy systems were improved. In this paper the results of a type-2
approach for response integration were shown to outperform the type-1 logic
approach.

In the work of Cai et al. [5] a novel fuzzy-neural network combining a Type-2
Fuzzy Logic System (FLS) and a Genetic Algorithm (GA) based on a Takagi–
Sugeno–Kang fuzzy neural network (GA-TSKfnn), is presented. The rational for
this combination is that type-2 fuzzy sets are better able to deal with rule uncer-
tainties, while the optimal GA-based tuning of the T2GA-TSKfnn parameters
achieves better classification results. However, a general T2GA-TSKfnn is com-
putationally very intensive due to the complexity of the type-2 to type-1 reduction.
Therefore, an interval T2GA-TSKfnn implementation to simplify the computa-
tional process was adopted. Simulation results were provided to compare the
T2GA-TSKfnn against other fuzzy neural networks. These results show that the
proposed system is able to achieve a higher classification rate when compared
against a number of other traditional neuro-fuzzy classifiers.

In the work of Wagner and Hagras, [6, 7] a genetic algorithm for evolving
type-2 fuzzy logic controllers for real world autonomous robots was presented.
The type-2 Fuzzy Logic Controller (FLC) has started to emerge as a promising
control mechanism for autonomous mobile robots navigating in real world envi-
ronments. This is because such robots need control mechanisms such as type-2
FLCs which can handle the large amounts of uncertainties present in real world
environments. However, manually designing and tuning the type-2 Membership
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Functions (MFs) for an interval type-2 FLC to give a good response is a difficult
task. This work describes a genetic algorithm to evolve the type-2 MFs of interval
type-2 FLCs for mobile robots that will navigate in real world environments. The
GA based system converges after a small number of iterations to type-2 MFs
which give a very good performance. A series of real world experiments in which
the evolved type-2 FLCs controlled a real robot in an outdoor arena was per-
formed. The evolved type-2 FLCs dealt with the uncertainties present in the real
world to give a very good performance that has outperformed their type-1 coun-
terparts as well as the manually designed type-2 FLCs.

In the work of Qiu et al. [8] statistical genetic interval valued fuzzy systems for
prediction in clinical trials are presented. In recent years, statistical tools and
computational intelligence methods have played important roles in many areas.
After statistically optimizing interval-valued fuzzy membership functions in the
type-2 fuzzy logic system, genetic algorithms were applied to optimize them. The
proposed method was used to predict survival times for patients in clinical trials.
The results show that the new GA-based method was more accurate than tradi-
tional type-1 and type-2 methods.

In the work by Tan and Wu [9] the design of type reduction strategies for type-2
fuzzy logic systems using genetic algorithms was presented. While a type-2 fuzzy
system has the capability to model more complex relationships, the output of a
type-2 fuzzy inference engine is a type-2 fuzzy set that needs to be type-reduced
before defuzzification can be performed. Unfortunately, type-reduction is usually
achieved using the computationally intensive Karnik–Mendel iterative algorithm.
In order for type-2 fuzzy systems to be useful for real-time applications, the
computational burden of type-reduction needs to be relieved. This work was aimed
at designing computationally efficient type-reducers using a genetic algorithm. The
proposed type-reducer is based on the concept known as equivalent type-1 fuzzy
systems (ET1FSs), a collection of type-1 FSs that replicates the input–output
relationship of a type-2 fuzzy system. By replacing a type-2 fuzzy system with a
collection of ET1FSs, the type-reduction process then simplifies to deciding which
ET1FS to employ in a particular situation. The strategy for selecting the ET1FS is
evolved by a GA. Results were presented to demonstrate that the proposed type-
reducing algorithm has lower computational cost and may provide better perfor-
mance than FLSs that employ existing type-reducers.

In the work by Wu and Tan [10] genetic learning and performance evaluation of
interval type-2 fuzzy logic controllers was presented. Type-2 fuzzy sets, which are
characterized by membership functions that are themselves fuzzy, have been
attracting interest. This paper focuses on advancing the understanding of interval
(FLCs). First, a type-2 FLC was evolved using genetic algorithms. The type-2 FLC
was then compared with another three GA evolved type-1 FLCs that have different
design parameters. The objective was to examine the amount by which the extra
degrees of freedom, provided by antecedent type-2 fuzzy sets, was able to improve
the control performance. Experimental results show that better control can be
achieved using a type-2 FLC with fewer fuzzy sets/rules so one benefit of type-2
FLC was a lower trade-off between modeling accuracy and interpretability.
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The work by Wu and Tan [11] focuses on evolving type-2 fuzzy logic
controllers genetically and examining whether they are better able to handle
modeling uncertainties. The study was conducted by utilizing a type-2 FLC,
evolved by a genetic algorithm, to control a liquid-level process. A two stage
strategy is employed to design the type-2 FLC. First, the parameters of a type-1
FLC are optimized using the GA. Next, the footprint of uncertainty was evolved by
blurring the fuzzy input set. Experimental results show that the type-2 FLC copes
well with the complexity of the plant, and can handle the modeling uncertainty
better than its type-1 counterpart.

In the work by Wang et al. [12] a type-2 fuzzy logic system cascaded with
neural network, Type-2 Fuzzy Neural Network (T2FNN), was presented to handle
uncertainty with dynamical optimal learning. A T2FNN consists of a type-2 fuzzy
linguistic process as the antecedent part, and the two-layer interval neural network
as the consequent part. A general T2FNN is computational-intensive due to the
complexity of type-2 to type-1 reduction. Therefore, the interval T2FNN is
adopted in this work to simplify the computational process. The dynamical optimal
training algorithm for the two-layer consequent part of interval T2FNN was first
developed. The stable and optimal left and right learning rates for the interval
neural network, in the sense of maximum error reduction, can be derived for each
iteration in the training process (back propagation). It can also be shown that both
learning rates cannot be both negative. Further, due to variation of the initial MF
parameters, i.e., the spread level of uncertain means or deviations of interval
Gaussian MFs, the performance of back propagation training process may be
affected. To achieve better total performance, a genetic algorithm was designed to
search optimal spread rate for uncertain means and optimal learning for the
antecedent part. Several examples are fully illustrated. Excellent results are
obtained for the truck backing-up control and the identification of nonlinear
system, which yield more improved performance than those using type-1 FNN.

In the work by Innocent et al. [13] the exploratory use of type 2 fuzzy sets to
represent the perceptions of lung scan images by experts in order to predict pul-
monary emboli using type 2 fuzzy relations is presented. A genetic algorithm was
used to find suitable parameters for the fuzzy sets so that a good classification was
achieved. Preliminary results with a limited data set demonstrating the potential
power of the approach were presented.

In the work by Cervantes and Castillo [14] a genetic design of a fuzzy system
for the longitudinal control of an F-14 airplane was presented. The longitudinal
control is carried out only by controlling the elevators of the airplane. To carry out
such monitoring it is necessary to use the stick, the rate of elevation and the angle
of attack. These three variables are the inputs into the fuzzy inference system,
which is of Mamdani type, and the output the values of the elevators are obtained.
Simulation results of the longitudinal control are obtained using a plant in Sim-
ulink and those results were compared against the PID controller. Genetic algo-
rithms were used to optimize parameters of type-2 and type-1 fuzzy systems to find
the best fuzzy controller under noisy conditions. The type-2 fuzzy controller
outperforms the type-1 when the level of noise is sufficiently high.
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In the work by Sanchez and Melin [15] a Modular Neural Network (MNN) for
iris, ear and voice recognition was presented. The proposed MNN architecture
consists of three modules, one for each biometric measure: iris, ear and voice.
Each module is divided into other three sub modules. Each sub module contains
different information, which consists of the database divided in three parts. The
integration of each biometric measure was considered separately. Later, the inte-
gration of the modules was performed with a fuzzy logic integrator. Also, the
optimization of the modular neural networks and the fuzzy integrators was per-
formed using genetic algorithms, and comparisons were made between optimized
results and the results without optimization. The use of type-2 fuzzy logic was
considered in the fuzzy response integrators, and the result was that that higher
recognition rates under noisy conditions were achieved with a significant
improvement over type-1 fuzzy logic.

In the work of Martinez et al. [16], a tracking controller for the dynamic model
of a unicycle mobile robot by integrating a kinematic and a torque controller based
on type-2 fuzzy logic theory and genetic algorithms was proposed. Genetic opti-
mization enables finding the optimal parameters of the type-2 fuzzy controller for
the mobile robot. Computer simulations are presented confirming the performance
of the tracking controller and its application to different navigation problems.

In the work of Hidalgo et al. [17], type-2 fuzzy inference systems as integration
methods in modular neural networks for multimodal biometry were proposed.
In this work a comparative study between fuzzy inference systems as methods of
integration in modular neural networks for multimodal biometry was presented.
These methods of integration are based on techniques of type-1 and type-2 fuzzy
logic. Also, the fuzzy systems are optimized with simple genetic algorithms with
the goal of having optimized versions of both types of fuzzy systems. First, the use
of type-1 fuzzy logic and later the approach with type-2 fuzzy logic were
considered. The fuzzy systems were developed using genetic algorithms to handle
fuzzy inference systems with different membership functions, like the triangular,
trapezoidal and Gaussian; since these algorithms can generate fuzzy systems
automatically. Then the response integration of the modular neural network was
tested with the optimized fuzzy systems of integration. The comparative study of
the type-1 and type-2 fuzzy inference systems was made to observe the behavior of
the two different integration methods for modular neural networks for multimodal
biometry.

In Table 4.1 a summary of the previously presented contributions, where GAs
have been applied to optimize type-2 fuzzy systems, is presented. The comparison
shown in Table 4.1 is based on the following criteria: author names, year of
publication, reference number, domain of the problem, if a comparison with type-1
fuzzy logic is provided, if a comparison with other optimization methods is
presented, and why type-2 fuzzy logic was used by the authors. From Table 4.1 it
can be noted that most of the applications have been in designing optimal type-2
fuzzy systems (with genetic algorithms) for intelligent control and pattern
recognition, with fewer applications in prediction and classification.
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Chapter 5
Particle Swarm Optimization
in the Design of Type-2 Fuzzy Systems

There have been several works reported in the literature optimizing type-2 fuzzy
systems using different kinds of PSO algorithms. Most of these works have had
relative success according to the different areas of application. In this chapter, we
offer a representative review of these types of works to illustrate the advantages of
using the PSO optimization technique for automating the design process of type-2
fuzzy systems.

In the work of Al-Jaafreh and Al-Jumaily [1], a training method for a type-2 fuzzy
system using PSO was presented. This work presents the improvement and imple-
mentation for two recent intelligent techniques; Type-2 Fuzzy System (T2 FS) and
particle swarm optimization and presents a new method to optimize parameters of
the primary membership functions of T2 FS using PSO to improve the performance
and increase the accuracy of the T2 FS model. The implementation of the suggested
method on mean blood pressure estimation has a very successful rate.

In the work of Zhao et al. [2], a PSO type-reduction method for geometric
interval type-2 fuzzy logic systems based on the particle swarm optimization
algorithm was presented. With the PSO type-reduction, the inference principle of
geometric interval FLS operating on the continuous domain is consistent with that
of traditional interval type-2 FLS operating on the discrete domain. With com-
parative experiments, it is proved that the PSO type-reduction exhibits good
performance, and is a satisfactory complement for the theory of geometric interval
type-2 fuzzy logic systems.

In the work of Cao et al. [3], the PSO algorithm was used to derive an Adaptive
Fuzzy Logic Controller (AFC) based on interval fuzzy membership functions
for vehicle non-linear active suspension systems. The interval membership
functions were utilized in the AFC design to deal with not only non-linearity and
uncertainty caused from irregular road inputs and immeasurable disturbance, but
also the potential uncertainty of expert’s knowledge and experience. The adaptive
strategy was designed to self-tune the active force between the lower bounds and
upper bounds of interval fuzzy outputs. A case study based on a quarter active

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
SpringerBriefs in Computational Intelligence, DOI: 10.1007/978-3-642-28956-9_5,
� The Author(s) 2012

27



suspension model demonstrated that the proposed adaptive fuzzy controller
significantly outperforms conventional fuzzy controllers of an active suspension
and a passive suspension.

In the work of Kim et al. [4], the design of optimized type-2 fuzzy neural
networks using PSO was presented. In order to develop reliable on-site Partial
Discharge (PD) pattern recognition algorithm, Type-2 Fuzzy Neural Networks
(T2FNNs) optimized by means of particle swarm optimization were introduced.
T2FNNs exploit type-2 fuzzy sets which have a characteristic of robustness in the
diverse area of intelligence systems. Considering the on-site situation where it is
not easy to obtain voltage phases to be used for Phase Resolved Partial Discharge
Analysis, the PD data sets measured in the laboratory were artificially changed into
data sets with shifted voltage phases and added noise in order to test the proposed
algorithm. Also, the results obtained by the proposed algorithm were compared
with that of conventional neural networks as well as the existing radial basis
function neural networks. The T2FNNs proposed in this study appeared to have
better performance when compared to conventional neural networks.

In the work by Martinez et al. [5], bio-inspired optimization methods were
applied to design type-2 fuzzy logic controllers to minimize the steady state error
of linear plants. In particular, the optimal type-2 fuzzy controllers obtained
with genetic algorithms and PSO were compared using benchmark plants.
The bio-inspired methods were used to find the parameters of the membership
functions of the type-2 fuzzy system to obtain the optimal controller. Simulation
results were presented to show the feasibility of the proposed approaches. Both
GAs and PSO were able to achieve optimal design for the benchmark plants.

In the work of Jeng et al. [6], a novel Takagi–Sugeno–Kang type fuzzy neural
network that uses general type-2 fuzzy sets, called General Type-2 Fuzzy Neural
Network (GT2FNN), was proposed for function approximation. The problems of
constructing a GT2FNN include type reduction, structure identification, and
parameter identification. An efficient strategy was proposed by using a-cuts to
decompose a general type-2 fuzzy set into several interval type-2 fuzzy sets to solve
the type reduction problem. Incremental similarity based fuzzy clustering and linear
least squares regression were combined to solve the structure identification problem.
Regarding the parameter identification, a hybrid learning algorithm which combines
PSO and a recursive least squares estimator was proposed for refining the antecedent
and consequent parameters, respectively, of the fuzzy rules.

In the work by Martinez et al. [7], the optimization of type-2 fuzzy logic
controllers using PSO was presented. The PSO method was applied to find the
parameters of the membership functions of an interval type-2 fuzzy logic
controller in order to minimize the steady state error for linear systems. PSO was
used to find the optimal interval type-2 fuzzy controller to achieve regulation of
the output and stability of the closed-loop system. For this purpose, the values of
the cognitive, social and inertia parameter in the PSO algorithm were changed.
Simulation results, with the optimal type-2 fuzzy controller implemented in
Simulink, show the potential applicability of the proposed approach. The PSO
algorithm achieved good results with fast execution times.

28 5 Particle Swarm Optimization in the Design of Type-2 Fuzzy Systems



In the work by Khanesar et al. [8], a novel, diamond-shaped type-2 fuzzy
membership function was introduced. The proposed type-2 fuzzy membership
function has certain values on 0 and 1, but it has some uncertainties for the other
membership values. It has been shown that the type-2 fuzzy system using this type
of membership function has some noise reduction property in the presence of noisy
inputs. The appropriate parameter selection to be able to achieve noise reduction
property was also considered. A hybrid method consisting of PSO and gradient
descent algorithm was used to optimize the parameters of the proposed type-2
fuzzy system. PSO is a derivative-free optimizer, and the possibility of the
entrapment of this optimizer in local minimums is less than the gradient descent
method. The proposed type-2 fuzzy system and the hybrid parameter estimation
method were then tested on the prediction of a noisy, chaotic dynamical system.
The simulation results show that the type-2 fuzzy predictor with the proposed
novel membership functions shows a superior performance when compared to the
other existing type-2 fuzzy systems in the presence of noisy inputs.

In this work of Bingül and Karahan [9], two-degrees of freedom planar robot
was controlled by fuzzy logic controller tuned with a particle swarm optimization.
For a given trajectory, the parameters of Mamdani-type-Fuzzy Logic Controller
(the centers and the widths of the Gaussian membership functions in inputs and
output) were optimized by the particle swarm optimization with three different
cost functions. In order to compare the optimized fuzzy logic controller with
different controllers, the PID controller was also tuned with particle swarm opti-
mization. In order to test the robustness of the tuned controllers, the model
parameters and the given trajectory were changed and the white noise was added
to the system. The simulation results show that fuzzy logic controller tuned by
particle swarm optimization is better and more robust than the PID tuned by
particle swarm optimization for robot trajectory control.

In the work by Oh et al. [10], the design methodology of an optimized fuzzy
controller with the aid of particle swarm optimization (PSO) for ball and beam
system was introduced. The ball and beam system is a well-known control engi-
neering experimental setup which consists of servo motor, beam and ball. This
system exhibits a number of interesting and challenging properties when being
considered from the control perspective. The ball and beam system determines the
position of ball through the control of a servo motor. The displacement change of
the position of ball leads to the change of the angle of the beam which determines
the position angle of a servo motor. The fixed membership function design of
type-1 based fuzzy logic controller (FLC) leads to the difficulty of rule-based
control design when representing linguistic nature of knowledge. In type-2 FLC as
the expanded type of type-1 FL, we can effectively improve the control charac-
teristic by using the footprint of uncertainty (FOU) of the membership functions.
Type-2 FLC exhibits some robustness when compared with type-1 FLC. Through
computer simulation as well as real-world experiment, we apply optimized type-2
fuzzy cascade controllers based on PSO to ball and beam system. To evaluate
performance of each controller, we consider controller characteristic parameters
such as maximum overshoot, delay time, rise time, settling time, and a steady-state
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error. In the sequel, the optimized fuzzy cascade controller is realized and also
experimented with through running two detailed comparative studies including
type-1/type-2 fuzzy controller and genetic algorithms/particle swarm optimization.

In Table 5.1 a summary of the previously presented contributions, where PSO
has been applied to optimize type-2 fuzzy systems, is presented. The comparison
shown in Table 5.1 is based on the following criteria: author names, publication
year, reference number, domain of the problem, if a comparison with type-1 fuzzy
logic is provided, if a comparison with other optimization methods is presented, and
why type-2 fuzzy logic was used by the authors. From Table 5.1 it can be noted that
most of the applications of PSO in designing optimal type-2 fuzzy systems have
been in the area of intelligent control, with fewer applications in pattern recognition
and time series prediction. It can also be noted that the number of papers using PSO
is lower than the ones using GAs, mentioned in the previous section.
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Chapter 6
Ant Colony Optimization Algorithms for
the Design of Type-2 Fuzzy Systems

There have also been several works reported in the literature optimizing type-2
fuzzy systems using different kinds of Ant Colony Optimization (ACO) algo-
rithms. Most of these works have had relative success according to the different
areas of application. In this chapter, we offer a representative and brief review of
these types of works to illustrate the advantages of using the ACO optimization
techniques for automating the design process or parameters of type-2 fuzzy
systems.

In the work of Juang et al. [1], a Reinforcement Self-Organizing Interval
Type-2 Fuzzy System with Ant Colony Optimization (RSOIT2FS-ACO) method
was proposed. The antecedent part in each fuzzy rule of the RSOIT2FS-ACO uses
interval type-2 fuzzy sets in order to improve system robustness to noise. The
consequent part of each fuzzy rule was designed using the ACO technique.
The ACO approach selects the consequent part from a set of candidate actions
according to ant pheromone trails. The RSOIT2FS-ACO method was applied to a
truck-backing control. The proposed RSOIT2FS-ACO was compared with
other reinforcement fuzzy systems to verify its efficiency and effectiveness.
A comparison with type-1 fuzzy systems verifies the robustness of using type-2
fuzzy systems to noise.

In the work of Martinez-Marroquin et al. [2], the application of a simple ACO
as an optimization method for the membership functions’ parameters of a fuzzy
logic controller was proposed. The application of ACO enables finding the optimal
intelligent controller for an autonomous wheeled mobile robot. In the ACO
implementation, each interval type-2 fuzzy controller was represented as a tra-
jectory on a graph. Simulation results show that ACO outperforms a GA in the
optimization of interval type-2 fuzzy logic controllers for a particular autonomous
wheeled mobile robot.

In the work of Juang and Hsu [3], a reinforcement ant optimized fuzzy controller
(FC) design method, called RAOFC, was proposed. The method was applied it
to wheeled mobile robot wall-following control under reinforcement-learning
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environments. The inputs to the designed FC are range-finding sonar sensors, and the
controller output is a robot steering angle. The antecedent part in each fuzzy rule
uses interval type-2 fuzzy sets in order to increase FC robustness. No a priori
assignment of fuzzy rules was necessary in RAOFC. An online aligned interval
type-2 fuzzy clustering (AIT2FC) method was proposed to generate rules
automatically. The AIT2FC not only flexibly partitions the input space but also
reduces the number of fuzzy sets in each input dimension, which improves controller
interpretability. The consequent part of each fuzzy rule is designed using Q-value
aided ant colony optimization (QACO). The QACO approach selects the consequent
part from a set of candidate actions according to ant pheromone trails and Q-values,
both of whose values are updated using reinforcement signals. Simulations and
experiments on mobile-robot wall-following control show the effectiveness and
efficiency of the proposed RAOFC.

In the work of Castillo et al. [4], the application of ACO and PSO for the
optimization of an interval type-2 fuzzy logic controller for an autonomous
wheeled mobile robot was presented. The obtained simulation results were
statistically compared with the obtained previous work results achieved with GAs
in order to determine the best optimization technique for this particular robotics
problem. Both PSO and ACO were able to outperform GAs for this particular
application. However, in comparing ACO and PSO, the best results were achieved
with ACO. In this case, the authors claim that ACO is best suited for this particular
robotic problem.

In the work of Juang and Hsu [5], a new reinforcement-learning method using
Online Rule Generation and Q-value-aided Ant Colony Optimization (ORGQACO)
for fuzzy controller design was proposed. The fuzzy controller is based on an
interval type-2 fuzzy system (IT2FS). The antecedent part in the designed IT2FS
uses interval type-2 fuzzy sets to improve controller robustness to noise. The
ORGQACO concurrently designs both the structure and parameters of an IT2FS.
An online interval type-2 rule generation method for the evolution of system
structure and flexible partitioning of the input space was proposed. Consequent part
parameters in an IT2FS are designed using Q-values and the reinforcement local–
global ant colony optimization algorithm. This algorithm selects the consequent
part from a set of candidate actions according to ant pheromone trails and Q-values,
both of which are updated using reinforcement signals. The ORGQACO
design method was applied to the following three control problems: (1) truck-
backing control; (2) magnetic-levitation control; and (3) chaotic-system control.
The ORGQACO was compared with other reinforcement-learning methods to
verify its efficiency and effectiveness. Comparisons with type-1 fuzzy systems
verify the noise robustness property of using an IT2FS.

In Table 6.1 a summary of the previously presented contributions, where ACO
has been applied to optimize type-2 fuzzy systems, is presented. Table 6.1 shows
that at the moment all the works have been done in the area of type-2 fuzzy logic
controller design using different ACO methods. The comparison shown in
Table 6.1 is based on the following criteria: author names, year of publication,
reference number, domain of the problem, if a comparison with type-1 fuzzy logic
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is provided, if a comparison with other optimization methods is presented, and
why type-2 fuzzy logic was used by the authors. It can also be noted that at the
moment, the number of papers mentioning the use of ACO is lower than the ones
using PSO or GAs.

In conclusion, the use of ant colony algorithms for optimizing type-2 fuzzy
systems is not so widespread yet, however we expect that in the future not only it
will be used more in control it will also be used in pattern recognition, classifi-
cation and time series prediction. The reason that we believe this to be true is that
ACO has achieved very good results in the works reported in the literature, so this
will hopefully encourage other researchers to work in this area.
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Chapter 7
Other Methods for Optimization
of Type-2 Fuzzy Systems

In this chapter we describe some other works reported in the literature optimizing
type-2 fuzzy systems using different kinds of optimization algorithms (other than
GAs, PSO or ACO, which were covered in previous chapters). Most of these works
have had relative success according to the different areas of application. In this
chapter, we offer a representative and brief review of these types of works to
illustrate the advantages of using the corresponding optimization techniques for
automating the design process or parameters of type-2 fuzzy systems.

In the work by Aliev et al. [1], type-2 fuzzy neural networks with fuzzy
clustering and differential evolution are presented. Type-2 fuzzy logic systems
developed with the aid of evolutionary optimization forms a useful modeling tool
subsequently resulting in a collection of efficient ‘‘If–Then’’ rules. Type-2 fuzzy
neural networks take advantage of capabilities of fuzzy clustering by generating
type-2 fuzzy rule base, resulting in a small number of rules and then optimizing
membership functions of type-2 fuzzy sets present in the antecedent and conse-
quent parts of the rules. The clustering itself is realized with the aid of differential
evolution. Several examples, including a benchmark problem of identification of
nonlinear system, are considered. The reported comparative analysis of experi-
mental results was used to quantify the performance of the developed networks.

In the work by Hidalgo et al. [2, 3], a method for the optimization of type-2
fuzzy systems based on the level of uncertainty, considering three different cases
to reduce the complexity problem of searching the solution space, was presented.
The proposed method produces the best fuzzy inference systems for particular
applications with the help of a genetic algorithm. The application of a genetic
algorithm to find the optimal type-2 fuzzy system is performed by dividing the
search space in three subspaces. The division is performed by considering three
different cases in the design of type-2 fuzzy systems: (1) equal membership
functions, (2) equal membership functions in each variable, and (3) different
membership functions for all the linguistic values. Comparative results and
analysis for the benchmark problems were produced with good success.
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In the work by Mohammadi et al. [4], an evolutionary tuning technique for
type-2 fuzzy logic controller was presented. Uncertainty is an inherent part in
control systems used in real world applications. Various instruments used in such
systems produce uncertainty in their measurements and thus influence the integrity
of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems
cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in
type-2 fuzzy systems can handle such uncertainties in a better way because they
provide more parameters and more design degrees of freedom. There are mem-
bership functions which can be parameterized by a few variables and when
optimized, the membership optimization problem can be reduced to a parameter
optimization problem. This work deals with the parameter optimization of the
type-2 fuzzy membership functions using a new proposed reinforcement learning
algorithm in a nonlinear system. The results of the proposed method referred to as
Extended Discrete Action Reinforcement Learning Automata algorithm were
compared to the results obtained by the Discrete Action Reinforcement Learning
Automata and Continuous Action Reinforcement Learning Automata algorithms.
The Performance of the proposed method on initial error reduction and error
convergence issues were also investigated by computer simulations.

In the work by Hidalgo et al. [5, 6], an evolutionary method for the optimization
of type-2 fuzzy systems based on the level of uncertainty was proposed.
The proposed evolutionary method produces the best fuzzy inference systems
(based on the membership functions) for particular applications. The optimization
of membership functions of the type-2 fuzzy systems is based on the level of
uncertainty considering three different cases to reduce the complexity problem of
searching the solution space. The method for optimizing type-2 fuzzy systems was
applied to find the optimal integration method for Modular Neural Networks
(MNN) in pattern recognition.

In the work of Castillo et al. [7], a method for designing optimal interval type-2
fuzzy logic controllers using evolutionary algorithms was presented. Interval type-2
fuzzy controllers can outperform conventional type-1 fuzzy controllers when the
problem has a high degree of uncertainty. However, designing interval type-2 fuzzy
controllers is more difficult because there are more parameters involved. In this work,
interval type-2 fuzzy systems were approximated with the average of two type-1
fuzzy systems, which has been shown to give good results in control if the type-1
fuzzy systems can be obtained appropriately. An evolutionary algorithm is applied to
find the optimal interval type-2 fuzzy system as mentioned above. The human
evolutionary model is applied for optimizing the interval type-2 fuzzy controller for a
particular non-linear plant and results were compared against an optimal type-1
fuzzy controller. A comparative study of simulation results of the type-2 and type-1
fuzzy controllers, under different noise levels, was also presented. Simulation results
show that interval type-2 fuzzy controllers obtained with the evolutionary algorithm
outperform type-1 fuzzy controllers.

In the work by Garcia [8], a case study of the US Dollar-Colombian Peso
Exchange Rate by using a First order Interval Type-2 TSK Fuzzy Logic System
was presented. This case study is especially interesting because it presents a
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volatile behavior, which is a complex problem for classical analysis. The results
were verified by statistical tests, such as Bayesian, Akaike, Hannan-Quin criteria,
Goldfeld-Quant, Ljung-Box, ARCH, Runs and Turning Points which provide
appropriate criterions to test the solution. Some methodological aspects about the
hybrid implementation combining evolutionary optimization and first order
Interval Type-2 TSK FLS were presented.

In the work by Muñoz et al. [9], the development of fuzzy response integrators
for a MNN and its Optimization with a Hierarchical Genetic Algorithm (HGA)
was presented. The optimization of the integrators consists of optimizing their
membership functions, fuzzy rules, type of model (Mamdani or Sugeno), and type
of fuzzy logic (type-1 or type-2). The MNN architecture consists of three modules;
face, fingerprint and voice. Each of the modules is divided again into three sub
modules. The same information is used as input to train the sub modules. In this
work the use of HGAs as optimization techniques for the fuzzy integrators is
shown to be a good option to solve the MNN integration problems.

In the work by Menolascina et al. [10], a method for induction of fuzzy rules
based on artificial immune systems was proposed. Fuzzy Rule Induction (FRI) is
one of the main areas of research in the field of computational intelligence.
Recently FRI has been successfully employed in the field of data mining in
bioinformatics. Thanks to its flexibility and potentialities FRI allowed researchers
to extract rules that can be easily modeled in natural language and submitted to
experts in the field that can validate their accuracy or consistency. The process of
FRI can result to be highly complex from a computational complexity point of
view and, for this reason, several alternative approaches to accomplish this process
have been proposed ranging from iterative and simultaneous algorithms to GAs
and ACO based approaches. This work focuses on a specific application of type-1
(T1) and type-2 (T2) fuzzy systems to data mining in bioinformatics in which FRI
is carried out using a novel and promising computational paradigm, namely
Artificial Immune Systems (AIS).

In the work by Poornaselvan et al. [11], the main objective was to focus on an
agent based approach to flight control in ground/runway. The idea was to provide
an autonomous control on flight once the airplane comes to runway. In all airports
there is a particular structure for the runway, like main runways, sub runways,
different tracks. An interval type 2 fuzzy controller can be applied to the auton-
omous vehicle in order to handle uncertainty in a better way. Ant colony opti-
mization technique can be used for an optimized path planning in traffic
environment with more number of flights. A hybrid ant colony optimization was
used to handle real time dynamic environment and path planning. Both Agent
based and type-2 fuzzy logic together with the ACO technique were used to
achieve another level of intelligence.

In the work by Castillo et al. [12], an evolutionary computing based approach for
the optimization of type-2 fuzzy systems was presented. In particular, the appli-
cation of HGAs for fuzzy system optimization in intelligent control was proposed.
The problem of optimizing the number of rules and membership functions using an
evolutionary approach was considered. The HGA enables the optimization of the
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fuzzy system design for a particular application. The proposed approach was
illustrated with the case of intelligent control in a medical application. Simulation
results for this application show that an optimal set of rules and membership
functions for the fuzzy system can be obtained with this approach.

In the work by Astudillo et al. [13], an optimization method based on the
chemical reaction paradigm was proposed. The new optimization method was
inspired on a nature based paradigm: the reaction methods existing on chemistry,
and the way the elements combine with each other to form compounds, in other
words, quantum chemistry. The proposed optimization method was tested with
benchmark mathematical functions and also with the design of type-2 fuzzy
controllers with excellent results.

In the work by Castillo et al. [14], the use of HGAs for type-2 fuzzy system
optimization in anesthesia control was proposed. In particular, the problem of
optimizing the number of rules and membership functions using an evolutionary
approach was proposed. The HGA enables the optimization of the type-2 fuzzy
system design for the particular application of anesthesia control. Simulation
results for this application show that an optimal set of rules and membership
functions for the type-2 fuzzy controller can be obtained in an efficient manner.

The work by Astudillo et al. [15], focuses on the control of wheeled mobile
robot under bounded torque disturbances. A hybrid tracking controller for
the mobile robot was developed by considering its kinematic model and
Euler–Lagrange dynamics. The procedure consists in minimizing the stabilization
error of the kinematic model through a genetic algorithm approach while attenu-
ation to perturbed torques is made through type-2 fuzzy logic control via back-
stepping methodology. Type-2 fuzzy logic was proposed to synthesize the
controller for the overall system, which is claimed to be a robust tool for related
applications. The theoretical results were illustrated through computer simulations
of the closed-loop system.

In the work by Sepulveda et al. [16], a method for optimizing type-2 fuzzy logic
controllers based on the human evolutionary model is proposed. The automatic
design of optimal type-2 fuzzy controllers is performed using an efficient
evolutionary algorithm based on human characteristics. The human evolutionary
model produces interval type-2 fuzzy controllers, for benchmark non-linear plants,
that are shown to perform better than the ones obtained with other well known
optimization algorithms.

In Table 7.1 a summary of the contributions where other optimization methods
(different than GAs, PSO and ACO) have been applied to design type-2 fuzzy
systems is presented. The comparison shown in Table 7.1 is based on the domain
of the problem, if a comparison with type-1 fuzzy logic is provided, if a
comparison with other optimization methods is presented, and why type-2 fuzzy
logic was used by the authors. From Table 7.1 it can be noted that most of the
applications have been developed in the intelligent control area with only a few
applications in pattern recognition, and time series prediction.

In this chapter a review of different optimization methods (other than GAs, PSO
and ACO) that have been applied to the optimization of type-2 fuzzy systems is
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presented. Other optimization methods, like simulated annealing, bee optimization,
harmony search, tabu search, etc., are not mentioned in this review because to the
moment there are no works reported in the literature on optimizing type-2 fuzzy
systems with these optimization methods. However, we expect that in the near
future these methods and most likely others that may arise, would be applied to the
problem of type-2 fuzzy system optimization.
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Chapter 8
Simulation Results Illustrating
the Optimization of Type-2 Fuzzy
Controllers

In this chapter we describe as an illustration the optimization of the membership
functions’ (MF) parameters of a type-2 fuzzy logic controller (FLC) in order to
find the optimal intelligent controller for an autonomous wheeled mobile robot.
The complete details of the robot, the fuzzy controller and simulation results can
be found in [1].

The model considered is that of a unicycle mobile robot (see Fig. 8.1) that has
two driving wheels fixed to the axis and one passive orientable wheel that is placed
in front of the axis and normal to it [2].

The two fixed wheels are controlled independently by the motors, and the
passive wheel prevents the robot from overturning when moving on a plane.

It is assumed that the motion of the passive wheel can be ignored from
the dynamics of the mobile robot, which is represented by the following set of
equations [3]:

_q ¼
cos h 0
sin h 0

0 1
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�

�

�

�

�

�
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�

�

ð8:1Þ

MðqÞ _vþ Vðq; _qÞvþ GðqÞ ¼ s ð8:2Þ

Where q ¼ ½x; y; h�T is the vector of generalized coordinates which describes
the robot position, (x,y) are the Cartesian coordinates, which denote the mobile
center of mass and h is the angle between the heading direction and the x-axis

(which is taken counterclockwise form); v ¼ ½v;w�T is the vector of velocities,
v and w are the linear and angular velocities respectively; s 2Rr is the input vector,
MðqÞ 2Rn�n is a symmetric and positive-definite inertia matrix, Vðq; _qÞ 2Rn�n is
the centripetal and Coriolis matrix, GðqÞ 2Rn is the gravitational vector. Equation
(8.1) represents the kinematics or steering system of a mobile robot.

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
SpringerBriefs in Computational Intelligence, DOI: 10.1007/978-3-642-28956-9_8,
� The Author(s) 2012
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Notice that the no-slip condition imposed a non holonomic constraint described
by (8.3), that it means that the mobile robot can only move in the direction normal
to the axis of the driving wheels.

_y cos h� _x sin h ¼ 0 ð8:3Þ

8.1 Tracking Controller of Mobile Robot

The control objective will be established as follows: Given a desired trajectory
qd(t) and the orientation of the mobile robot we must design a controller that
applies an adequate torque s such that the measured positions q(t) achieve the
desired reference qd(t) represented as (8.4):

lim
t!1

qdðtÞ � qðtÞk k ¼ 0 ð8:4Þ

To reach the control objective, we are based on the procedure of [2], we are
deriving a s(t) of a specific vc(t) that controls the steering system (8.1) using a
FLC. A general structure of tracking control system is presented in Fig. 8.2.

Fig. 8.1 Wheeled mobile
robot

Fig. 8.2 Tracking control
structure
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8.2 Control of the Kinematic Model

We are based on the procedure proposed by Astudillo et al. [2] and to solve the
tracking problem for the kinematic model vc(t). Suppose that the desired trajectory
qd satisfies (8.5):

_qd ¼
cos hd 0
sin hd 0
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ð8:5Þ

Using the robot local frame (the moving coordinate system x–y in Fig. 8.1), the
error coordinates can be defined as (8.6):

e ¼ Teðqd � qÞ;
ex

ey

eh
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cos h sin h 0
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ð8:6Þ

And the auxiliary velocity control input that achieves tracking for (8.1) is given
by (8.7):

vc ¼ fcðe; vdÞ;
vc

wc

�

�

�

�

�

�

�

�

¼ vd þ cos eh þ k1ex

wd þ vdk2ey þ vdk3 sin eh

�
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�

�

�

�

�

ð8:7Þ

Where k1, k2 and k3 are positive gain constants.
The first approach in the optimization for the fuzzy controller of the mobile

robot is to apply our proposed method to obtain the values of ki (i = 1, 2, 3) for
optimal behavior of the controller.

Once we have found these gain constraints, the second step is to find the values
of the MF of the fuzzy controller.

8.3 The Fuzzy Logic Tracking Controller

The purpose of the FLC is to find a control input s such that the current velocity
vector v is able to reach the velocity vector vc this is denoted as (8.8):

lim
t!1

vc � vk k ¼ 0 ð8:8Þ

The inputs variables of the FLC correspond to the velocity errors obtained of
(8.6) (denoted as ev and ew: linear and angular velocity errors respectively), and 2
outputs variables, the driving and rotational input torques s (denoted by F and
N respectively).

The initial MF are defined by 1 triangular and 2 trapezoidal functions for each
variable involved. In future work the shape of the MF will be selected by the
algorithm as part of the optimization.
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Figure 8.3 depicts the MFs in which N, C, P represent the fuzzy sets (Negative,
Zero and Positive respectively) associated to each input and output variable.

Table 8.1 shows the upper and lower limits of the used MF.
The rule set of the FLC contain nine rules, which govern the input–output

relationship of the FLC and this adopts the Mamdani-style inference engine. We
use the center of gravity method to realize defuzzification procedure. In Table 8.2,
we present the rule set whose format is established as follows:

Rule i : If ev is G1 and ew is G2 then F is G3 and N is G4 ð8:9Þ

Where G1..G4 are the fuzzy set associated to each variable and i = 1… 9.

Fig. 8.3 Membership functions of the input/output variables

Table 8.1 Upper and lower
limits of the membership
functions

Membership function Point Lower limit Upper limit

Trapezoidal a -1000 -1000
b -1000 -1000
c -800 -300
d -300 250

Triangular a -800 -200
b -50 50
c 200 800

Trapezoidal a -250 300
b 300 800
c 1000 1000
d 1000 1000

Table 8.2 Fuzzy rule set ev=ew N C P

N N/N N/Z N/P
Z Z/N Z/Z Z/P
P P/N P/Z P/P
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8.4 Control of an Autonomous Mobile Robot Using Type-2
Fuzzy Logic

The tracking controller obtained by means of fuzzy logic was considered as a base
to design a type-2 FLC.

The membership function types and parameters of the primary MF are the same
that resulted in the type-1 fuzzy controller.

The parameters that the chemical reaction paradigm will attempt to find are
those for the secondary membership function.

Once these parameters are found, the objective is to test the performance of the
FLCs (type-1 and type-2) by applying a perturbance to the tracking controller
system that is given by:

Perturbation ¼ e sin xt ð8:10Þ

Where t = time, in an interval of 1–10 s, e = 0.001 and x = 1.
Figure 8.4 shows the optimization behavior of the ACO method. Figure 8.5

shows the MF of the FLC obtained by the simple ACO algorithm. Figure 8.6
shows both the desired trajectory and obtained trajectory for the robot.

In this application a trajectory tracking controller was designed based on the
dynamics and kinematics of the autonomous mobile robot through the application
of ACO for the optimization of MF for the type-1 and type-2 fuzzy controllers with
good results obtained after simulations. The optimal type-2 fuzzy controller was
able to outperform the best type-1 fuzzy controller. Also, simulation results in this
application provided sufficient statistical information to say that ACO outperforms
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Fig. 8.4 Optimization behavior for the S-ACO on Type-2 FLC optimization
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(on average) PSO and the GA, but PSO outperforms the GA. In any case, the three
optimization methods are able to optimize the fuzzy controllers (to a certain level)
and the difference is in the achieved tracking errors, which are lower for the ACO
optimization method [1].

8.5 Results of the CRA Applied to the Fuzzy Control
of an Autonomous Mobile Robot

8.5.1 Finding k1, k2, k3

The first approach in the optimization for the fuzzy controller of the mobile robot
was to apply our proposed method to obtain the values of ki (i = 1, 2, 3) for
optimal behavior of the controller.
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Fig. 8.5 Membership functions: a linear velocity error, b angular velocity error optimized by the
ACO algorithm
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Several tests of the chemical optimization paradigm were made to test the
performance of the tracking controller. The test parameters can be observed in
Table 8.3. For statistical purposes, every experiment was executed 35 times.

The decomposed rate was considered to be an important parameter in this
algorithm. Unlike previous bio-inspired optimization algorithms [4, 5] where the
best individuals are selected to perform a genetic operation, this method applies
the decomposition and composition reaction method to the worst compounds/
elements of the pool, keeping the compounds/elements with better performance

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

Axes X

A
xe

s 
Y

Robot Simulation

Robot trajectory

Desired trajectory

Fig. 8.6 Obtained trajectories with type-2 FLC optimization

Table 8.3 Parameters of the
chemical reaction
optimization

A B C D E

1 2 10 2 0.3
2 5 10 3 0.3
3 2 10 2 0.4
4 2 10 3 0.4
5 5 10 2 0.4
6 5 10 3 0.4
7 5 10 2 0.5
8 10 10 2 0.5

A, Identification number for each experiment; B, Initial ele-
ments—Initial pool of compounds randomly created; C, Trials—
Number of iterations per experiment; D, Decomposition rate—
Percentage of compounds to be decomposed; E, Decomposed
elements—Number of elements resulted from applying the
decomposition reaction
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through all the iterations, unless new elements/compounds with better performance
are generated.

Following this criteria, for a pool containing 5 compounds, the quantity of
compounds to compose and/or decompose is 2, if the decomposition rate is 0.4.

Table 8.4 shows the results after applying the chemical optimization paradigm.
Note that there was no need to increase the initial pool size of compounds,—

which were randomly generated—, and this is because of the combination of the
decomposition rate and the number of elements that every compound was
decomposed.

That is, whenever some compound with poor fitness was found, it was a can-
didate to be decomposed in the next iteration. The decomposition was made by
generating a random set of numbers between 0 and 1, and applying this factor to
the original compound.

The value of the resultant elements must satisfy the following Eq. (8.11):

X ¼
X

n

i¼1

xi ð8:11Þ

Where X is the original compound, x is the resultant elements of the decom-
position and i is the decomposition factor.

Figure 8.7 shows the behavior of the algorithm and the position errors in
Simulink for the experiment No. 3, respectively, which was the best overall result
so far, considering the average error and the positions error in x, y and theta.

In a previous work made by the authors [6], the gain constant values were found
by means of genetic algorithms. Table 8.5 shows the best result of the experiments
made and the obtained values for the gain constants using GAs.

Figure 8.8 shows the result in Simulink for the experiment with the best overall
result, applying GAs as optimization method.

Table 8.4 Experimental Results of the proposed method

A B C D k1 k2 k3

1 0.0086 1.1568 3 519.86 46.52 8.85
2 4.79e-004 0.1291 5 205.81 31.05 31.05
3 0.0025 0.5809 7 36.06 328.61 88.68
4 0.0012 0.5589 8 2.76 206.18 0.37
5 0.0035 0.0480 2 185.19 29.92 5.11
6 8.13e-005 0.0299 3 270.35 53.68 15.02
7 0.0066 0.1440 4 29.25 15.94 0.027
8 0.0019 0.1625 8 51.93 3.69 0.001

A, Identification number for each experiment; B, Best error found; C, Mean of errors; D, Total
trials of the experiment
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Fig. 8.7 a Convergence of the elements in experiment No. 3. b Final position errors achieved in
experiment No. 3

Table 8.5 Best results using
GAs

Error k1 k2 k3

0.006734 43 493 19

8.5 Results of the CRA Applied to the Fuzzy Control 53



8.5.2 Optimizing the Membership Function Parameters
of the Fuzzy Controller

Once we have found optimal values for the gain constants, the next step is to find
the optimal values for the input/output MF of the fuzzy controller. Our goal is that
in the simulations, the linear and angular velocities reach zero.

The conditions for the simulations are shown in Eqs. (8.12–8.14). The
expression of the desired trajectory is shown in Eq. (8.15), and Fig. 8.9 shows the
control system designed in Simulink�.
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Fig. 8.8 a Convergence of the elements in experiment No. 1, using GAs. b Final position errors
achieved in experiment No. 3, using GAs
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M qð Þ ¼ 0:3749 �0:0202
�0:0202 0:3749

� �

ð8:12Þ

D ¼ 10 0
0 10

� �

ð8:13Þ

Cðq; _qÞ ¼ 0 0:1350 _h
0:1350 _h 0

� �

ð8:14Þ

Fig. 8.9 Control system in Simulink�

Table 8.6 Parameters of the
first set of simulations

Parameters Value

Elements 10
Trials 15
Selection method Stochastic universal

sampling
K1 36
K2 328
K3 88
Error 0.077178
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vd tð Þ ¼ vd tð Þ ¼ 0:25� 0:25cos 2pt
5

� �

wd tð Þ ¼ 0

� �

ð8:15Þ

Table 8.6 shows the parameters used in the first set of simulations and Fig. 8.10
shows the behavior of the algorithm throughout the experiment.

Figure 8.11 shows the obtained input MF found by the proposed optimization
algorithm.

Figure 8.12 shows the obtained output MF found by the proposed optimization
algorithm.

Figure 8.13a shows the obtained trajectory when simulating the mobile control
system including the obtained input and output MF; Fig. 8.13b shows the best
trajectory reached by the mobile when optimizing the input and output MF using
genetic algorithms.

8.6 Optimizing the Membership Function Parameters
of the Type-2 Fuzzy Controller

The tracking controller obtained by means of fuzzy logic was considered as a base
to design a type-2 FLC.

The membership function types and parameters of the primary MF are the same
that resulted in the type-1 fuzzy controller.

Fig. 8.10 Best simulation of experiment No. 1

56 8 Simulation Results Illustrating the Optimization of Type-2 Fuzzy Controllers



The parameters that the chemical reaction paradigm will attempt to find are
those for the secondary membership function. Table 8.7 shows the parameters
used in the first set of simulations.

Figure 8.14 shows the behavior of the algorithm throughout the experiment.
Figures 8.15 and 8.16 show the obtained input and output MF found by the

proposed optimization algorithm.
Figure 8.17 shows the obtained trajectory when simulating the mobile control

system including the obtained input and output type-2 MF.

Fig. 8.11 Resulted input membership functions: a lineal and b angular velocities
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In summary the proposed chemical optimization algorithm is able to obtain
optimal parameter values for the fuzzy controller of the autonomous mobile robot.
Comparison with alternative optimization methods also shows that the chemical
optimization method is a good choice for this type of problems.

Fig. 8.12 Resulted output membership functions: a right and b left torque
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Fig. 8.13 a Obtained trajectory when applying the chemical reaction algorithm. b Obtained
trajectory using genetic algorithms

Table 8.7 Parameters of the
first set of simulations

Parameters Value

Elements 10
Trials 10
Selection method Stochastic universal sampling
K1 36
K2 328
K3 88
Error 2.7736
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Fig. 8.14 Best simulation of experiment No. 1

Fig. 8.15 Resulting input membership functions: a linear and b angular velocities
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Fig. 8.16 Resulting output membership functions: a right and b left torque

Fig. 8.17 Obtained trajectory when applying the chemical reaction algorithm
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Chapter 9
Genetic Optimization of Interval Type-2
Fuzzy Systems for Hardware
Implementation on FPGAs

This chapter proposes a method for the design of a Type-2 Fuzzy Logic Controller
(FLC-T2) and a Type-1 Fuzzy Logic Controller (FLC-T1) using Genetic Algorithms.
The two controllers were tested with different levels of uncertainty to Regulate Speed
in a Direct Current Motor (ReSDCM). The controllers were synthesized in Very High
Description Language (VHDL) code for a Field Programmable Gate Array (FPGA),
using the Xilinx System Generator (XSG) of Xilinx ISE and Matlab-Simulink.
Comparisons were made between the FLC-T1 versus FLC-T2 in VHDL code and
also with a Proportional Integral Differential (PID) Controller, to ReSDCM. To
evaluate the difference in performance of the three types of controllers, the t-student
statistical test was used.

9.1 Introduction

Fuzzy logic systems are used successfully in many application areas, and these
include control, classification, etc. [1, 2].

These systems based on rules incorporate linguistic variables, linguistic terms
and fuzzy rules. The acquisition of these rules is not an easy task for the expert and
is of vital importance in the operation of the controller.

The process of adjusting these linguistic terms and rules is usually done by trial
and error, which implies a difficult task, and for this reason there have been
methods proposed to optimize those elements that over time have taken impor-
tance, such as genetic algorithms [3–5].

There is a great interest in research and development of fuzzy systems, espe-
cially those based on type-2 fuzzy logic due to their advantages in the management
of uncertainty, which is why there are great expectations regarding their use in
control systems as a possible way to compensate for errors due to instrumentation
systems, among others. However, these systems require large computing resources

O. Castillo and P. Melin, Recent Advances in Interval Type-2 Fuzzy Systems,
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that difficultly can be provided by a personal computer, so that the investigation of
different alternatives for their implementation is a topic of current research such as
fuzzy control implemented in programmable logic devices.

9.2 Preliminaries

9.2.1 FPGA

An FPGA is a semiconductor device that contains in its interior components such
as gates, multiplexers, etc. These are interconnected with each other, according to
a given design. These devices use the VHDL programming language, which is an
acronym that represents the combination of VHSIC (Very High Speed Integrated
Circuit) and HDL (Hardware Description Language) [6].

The design of an FPGA implementation is done by specifying the logic function
to develop, either by computer aided design (CAD) or through a hardware
description language. Having defined the function to perform, the design is
transferred to the FPGA. This process programs the configurable logic blocks
(CLBs) to perform a specific function (there are thousands of configurable logic
blocks in the FPGA). The configuration of these blocks and their interconnections
flexibility are the reasons why the FPGA can implement very complex designs.
The interconnections enable connecting the CLBs. Finally, it has configuration
memory cells (CMC, Configuration Memory Cell) distributed throughout the chip,
which store all the information necessary for programming the mentioned
programmable elements. These cells usually consist of a RAM configuration and
are initialized in the process of loading the configuration. The programmable
elements of an FPGA are:

1. Configurable Logic Blocks (CLBs)
2. In/Out Blocks (IOBs)
3. Programmable Interconnection

– By fuse technology and be of OTP.
– By antifuses or by type SRAM cells.

Figure 9.1 shows these basic elements.
Depending on the manufacturer we can find different solutions. FPGAs

currently available on the market, depending on the structure adopted by the
logical blocks that are defined, can be classified as belonging to four major fam-
ilies Xilinx, Orca, Actel and Altera [6]. FPGAs currently available on the market,
depending on the structure adopted by the logical blocks that are defined, can be
classified as belonging to four major families shown in Fig. 9.2.

Figure 9.3 shows the Spartan chip Basic elements.
FPGAs are good platforms for fast prototyping of digital hardware. FPGAs

can be programmed into the system, without shutting down the system.
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This functionality allows modification and tuning of rules and-or fuzzifiers to
achieve better control performance. The implementation of type-2 fuzzy systems
onto FPGAs has been investigated by several researchers [6], but it is still a subject
of current research.

The FPGAs can be used to implement specific architectures to accelerate a
particular algorithm. Applications that require a great number of simple operations
are suitable for implementation on FPGAs. A processing element can be designed
to perform this operation and several instances of it can be used to perform parallel
processing [6].

Any hardware implementation of an electronic system requires a complex
methodology to test and validate every stage in the design process to guarantee its

Fig. 9.1 FPGA basic
elements

Fig. 9.2 Block logic a symmetrical array (Xilinx), b sea of gates (ORCA), c row based
(ACTEL), and d hierarchical PLD (Altera and Xilinx)
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correct functionality; this is particularly true when the designer decides to use a
HDL to make a design.

These systems based on rules incorporate linguistic variables, linguistic terms
and fuzzy rules. The acquisition of these rules is not an easy task for the expert and
is of vital importance in the operation of the controller. There are methods to
optimize those elements, such as the genetic algorithm (GA) [4].

9.2.2 Genetic Algorithms

A Genetic Algorithm (GA) [4, 7] is a stochastic optimization algorithm inspired by
the natural theory of evolution. From a principle proposed by Holland [8], the GA
has been used successfully to manage wide variety problems such as control,
search, etc. [9].

GAs are search algorithms based on the mechanics of natural selection. The
combination of survival of the fittest among string structures with a structured yet
randomized information exchange to form a search algorithm with some of the
innovative flair of human search provides a good optimization method. In every
generation, a new set of artificial creatures is created using bits and pieces of the
fittest of the old individuals; an occasional new part is also tried for good measure.

Fig. 9.3 CHIP Spartan of Xilinx basic elements
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The GA is inspired by the mechanism of natural selection where stronger
individuals are likely to be the winners in a competing environment. Here the GA
uses a direct analogy of such natural evolution. Through the genetic evolution
method, an optimal solution can be found and represented by the final winner of
the genetic game. Figure 9.4 shows the corresponding GA cycle.

The GA has applications in a wide variety of fields to develop solutions to
complex problems, including optimization of fuzzy systems, offering them
learning and adaptation capabilities in this case, they are commonly called genetic
fuzzy systems or fuzzy system hybrids.

A GA allows a population composed of many individuals to evolve under
specified selection rules to a state that maximizes the ‘‘fitness’’ (i.e. minimizes the
cost function).

9.2.3 Type-1 Fuzzy Inference System

Type-1 Fuzzy inference systems (FIS-T1) have recently been used more fre-
quently, because they tolerate imprecise information and can be used to model
nonlinear functions of arbitrary complexity. A fuzzy inference system (FIS)
consists of three stages: Fuzzification, Inference and Defuzzification [7].
In Fig. 9.5 the fuzzy system information processing is shown.

We describe below these stages.

1. Fuzzification: Is the interpretation of input values (numeric) by the fuzzy
system, and the obtained output are fuzzy values. Let x2X be a linguistic
variable and Ti(x) a fuzzy set associated with a linguistic value Ti. The trans-
lation of a numeric value x corresponds to a linguistic value associated with a
degree of membership, x ? lTi(x), and this is known as Fuzzification. The
membership degree lTi(x) represents a value of membership to a fuzzy set [7].

2. Inference: Is basically like the brain of the system, here the rules of the if–then
form that describe this behavior are used [7]. For example: If x1 is A1 and …
and xn is An Then y is B, where x1, …, xn are the inputs, A1, …, An, B are
linguistic terms and yis the output.

Fig. 9.4 GA cycle
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3. Defuzzification: Consists in obtaining a numeric value for the output. This stage
basically selects a point that is the most representative of the action to perform
[7]. There are several methods to calculate the Defuzzification, such as the
Center of Height (COA), Center of Gravity (COG), etc. The COG is shown in
(9.1).

y ¼
PN

i¼1 hilðiÞ
PN

i¼1 lðiÞ
ð9:1Þ

where h1 is the maximum height of the consequent from rule i to rule N [7].

9.2.4 Type-2 Fuzzy Inference Systems

An FIS-T1 uses exact membership functions, while type-2 fuzzy inference systems
(FIS-T2) are described by membership functions with uncertainty.

Uncertainty is an attribute of information, which may be incomplete, inaccu-
rate, vague, weak, contradictory, and so on [7].

The FIS-T2 consists of four stages: Fuzzification, Inference, Type Reduction
and Defuzzification. We describe below these stages. The fuzzification maps a
numeric value into a type-2 fuzzy set Ax in X. Ax is a singleton fuzzy set if
lAx = 1/1 for x = x0 and lAx = 1/0 for all others x0. The Inference stage consists
of two blocks, the rules and the inference engine, it works the same way as for
type-1 fuzzy systems, and except the antecedents fuzzy sets and the consequent are
represented by type-2 fuzzy sets. The process consists of combining the rules and
map the input to the output (type-2 fuzzy sets), using the Join and Meet operations.
The Type Reductor is used to convert all type-2 fuzzy sets to type-1 fuzzy intervals

Fig. 9.5 Type-1 fuzzy systems
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on the output. There are several methods to calculate the reduced set, such as joint
center, center of sums (COS), height, among others [7]. The Defuzzification stage
consists in obtaining a numeric value for the output. Using the COS type reductor,
the defuzzification is an average value since the range is given by [yl,yr].

In Fig. 9.6, the FIS-T2 information processing is shown.
An FIS-T2 can be implemented on a general purpose computer, or by a specific

use of a microelectronics realization such as the FPGA.
This paper proposes a method for genetic optimization of the triangular and

trapezoidal membership functions (MF) of a type-2 fuzzy logic controller (FLC-T2)
for hardware applications such as the FPGA. This method involves taking only
certain points of the membership functions in order to give greater efficiency to the
algorithm. The GA has been tested in a FLC-T2 and FLC-T1 to regulate the speed
of a direct current motor using the Matlab platform and Xilinx System Generator
(XSG) [6]. Comparisons were made between the FLC-T1 versus FLC-T2 in VHDL
code and FLC-T2 versus PID Controller, to regulate the velocity of a DC motor, to
evaluate the difference in performance of three types of controllers, using the
t-student statistical test.

9.3 Genetic Optimization of Type-1 and Type-2 Membership
Functions for the Regulation of Speed of a DC Motor

We optimized the type-1 membership functions (MF-T1) and type-2 membership
functions (MF-T2) for ReSDCM, and below we explain the process of optimi-
zation for each case.
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9.3.1 Genetic Optimization of MF-T1 for ResDCM

The FLC-T1 is coded in VHDL, for the fuzzification stage, the degree of mem-
bership is obtained instantly, using a method to calculate the slopes [5, 7], the
inference is working with the max–min composition [4] and the defuzification with
the method of heights. The FLC-T1 has two inputs one output. Each input and
output contains three membership functions, two trapezoidal one triangular.
Figure 9.7 shows the triangular and trapezoidal membership functions (MF) that
are used.

For optimization of the FLC using GAs, you must define the chromosome that
represents the information of the individual, which in this case is related to the
universe of discourse and the linguistic terms. Figure 9.8 shows the chromosome
of the GA.

In Table 9.1, we show the boundary parameters of the chromosome.
Figure 9.9 shows the input of the FLC with fixed and variable parameters. Each

input and output has a size of 8 bits.
The blue points are fixed, the red dots are the parameter a2, the green dots are

fixed (b1) and the yellow dots are the parameter a1.
In Fig. 9.10 the parameter ranges of the membership functions are shown,

where a1 and a2 correspond to the membership functions 1 and 3, respectively, for
FLC inputs and output.

In Fig. 9.11 the VHDL code for the triangular FM-T1 for the fuzzification stage
is shown.

In Fig. 9.12 the VHDL code for the trapezoidal FM-T1 for the fuzzification
stage is shown.

In Fig. 9.13 the block diagram of FLC-T1 in VHDL code for Matlab-XSG is
shown.

In Fig. 9.13 the first blue block represents the stage of fuzzification that is
connected to the stage of inference and in turn to the defuzzification stage. The
FLC-T1 has a single output and as inputs: reset, error and change of error, 22
parameters of the FM-T1 for the inputs(error and change of error) and 3 param-
eters of the FM-T1 for output(signal of control).

9.3.2 Genetic Optimization of MF-T2 for ReSDCM

We implemented the FLC-T2 using the average method [10] in the FPGA. The
FLC-T2 is coded in VHDL, the FLC for the fuzzification stage, is able to instantly
calculate the degree of membership, using a method to calculate the slopes [6], the
inference is working with the max–min composition and the defuziffication with
the method of heights [7].

Figure 9.14 shows the block diagram of the average FLC-T2 for ReSDCM, the
system inputs are the error (x1), and change of error (x2). The system has only one
output (y).
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Fig. 9.8 GA chromosome
for the type-1 fuzzy system

Fig. 9.7 Parameters of the membership functions: a MF trapezoidal, b MF triangular

Table 9.1 Boundary parameters of the chromosome

Ïnput 1 Input 2 Output

Parameters 0 \ a2 \ 128
b1 = 128
128 \ a1 \ 255

0 \ a2 \ 128
b1 = 128
128 \ a1 \ 255

0 \ a2 \ 128
b1 = 128
128 \ a1 \ 255

Fig. 9.9 Points of the
membership functions input
and output

Fig. 9.10 Range of parameters membership functions
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The FLC-T2 has two inputs and one output, each input and output contains
three membership functions, two trapezoidal one triangular. Figure 9.15 shows the
triangular and trapezoidal membership functions (MF) that are used.

For the optimization of the FLC-T2 using GAs, you must define the chromo-
some that represents the information of the individual, which in this case is related

Fig. 9.11 VHDL code for triangular FM-T1

Fig. 9.12 VHDL code for trapezoidal FM-T1
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to the universe of discourse and the linguistic terms. Figure 9.16 shows the
chromosome used for the GA.

In Table 9.2, we show the boundary parameters of the chromosome for this
case.

Figure 9.17 shows the input of the FLC-T2 with fixed and variable parameters.
Each input and output has a size of 8 bits.

The blue points are fixed, the red dots represent the parameter a2, the green dots
are fixed (b1) and the yellow dots represent the parameter a1.

In Fig. 9.18 the block diagram of the average FLC-T2 in VHDL code for
Matlab-XSG is shown.

Figure 9.18 corresponds to the FLC-T2, the top part simulates the FLC-T1 and
the bottom another FLC-T1, the result is the average of these two fuzzy systems.

Fig. 9.13 Block diagram of the FLC-T1 in VHDL code for Matlab-XSG
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Each FLC is independent, but they share the same inputs with different FMs, this is
used to simulate the uncertainty of the real the system.

The GA is of multiobjective type [4] for both the FLC-T1 and FLC-T2, which
means that to determine the best individual, three evaluations are performed:

(a) Minimum overshoot

o1 ¼ maxðyðtÞÞ � r ð9:2Þ
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Table 9.2 Boundary parameters of the chromosome type-2

Ïnput 1 Input 2 Output

Parameters U (PU) 0 \ a2U \ 128
b1U = 128
128 \ a1U \ 255

0 \ a2U \ 128
b1U = 128
128 \ a1U \ 255

0 \ a2U \ 128
b1U = 128
128 \ a1U \ 255

Parameters L (PL) PU && a2U [ a2L

b1L = 128
PU && a2L [ a2U

PU && a2U [ a2L

b1L = 128
PU && a2L [ a2U

PU && a2U [ a2L

b1L = 128
PU && a2L [ a2U

(8bits))(x

(8bits)x
0

1a2a
1b

128 255

255

Fig. 9.17 Points of the input
and output of type-2
membership functions input
and output

Fig. 9.18 Block diagram of
FLC-T2 in VHDL for
Matlab-XSG
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(b) Minimum undershoot

o2 ¼ minðyðtÞÞ � rj j ð9:3Þ

(c) Minimum output steady state error (sse)

sse ¼
X

1000

t¼201

yðtÞ � r ð9:4Þ

Where y(t) is the output of the system and r is reference.
The FLC linguistic terms were optimized with the GA, but the fuzzy rules are

not changed. The process of the GA is described below: Generate the initial
population, Fitness Evaluation (o1, o2, sse), Selection, Crossover, Mutation,
Reinsert and Simulation using the XSG plataform in Matlab- Simulink [5].
Figure 9.19 shows the GA process for the FLC-T1 and FLC-T2.

9.4 Test and Results of the FLC-T1 and FLC-T2
for ReSDCM in FPGAs

In this section the FLC-T1 and FLC-T2 are analyzed; each was given a level of
uncertainty and a comparison was made between them. The results were evaluated
using the t-student statistical rest.

To test the FLC-T2 and FLC-T1 the speed control was simulated using a
mathematical model (obtained from a DC motor Pittman GM9236S025-R1 of
12 V) of the plant in Matlab-Simulink, as shown in Fig. 9.20.

The FLC-T1 and FLC-T2 have the following inputs, error (e(t)) and change of
error (e0(t)), and the output is the control signal (y(t)).

The inputs are calculated as follows:

e tð Þ ¼ r tð Þ � y tð Þ ð9:5Þ

e0 tð Þ ¼ e tð Þ � e t � 1ð Þ ð9:6Þ

where t is the sampling time.
The reference signal r(t), is given by:

rðtÞ ¼ 15 t [ 0
0 t� 0

�

ð9:7Þ

Each input and output of the FIS-T2 and FIS-T1 has three linguistic terms. For
the linguistic variables of error and change of error, the terms are {NB, Z, PB}, in
this case NB is Negative Big, Z is Zero and PB is Positive Big. For the linguistic
variable control signal, the terms are {BD, H, BI}, in this case BD is Big

76 9 Genetic Optimization of Interval Type-2 Fuzzy Systems



Decrement, H is Hold and BI is Big Increment. Table 9.3 shows the rule matrix of
both the FLC-T1 and FLC-T2.

A series of experiments for the FLC-T2 were performed and are listed on
Table 9.4.

In experiment No. 18 the best FLC-T2 was found because this has the lower
error value. Below are the FLC-T2 characteristics for experiment 18.

Figure 9.21 shows the FM-T2 of the error input due to the behavior of the GA
for the best FLC-T2.

Figure 9.22 shows the FM-T2 of the change of error input for the FLC-T2.

Fig. 9.19 Optimization GA
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or 

FLC-T1
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d/dt
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Z
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Fig. 9.20 Model of FLC-T2 and FLC-T1

Table 9.3 Rule
matrix

Table 9.4 FLC-T2 results for different experiments

No. Generations Crossover (XOVSP) Selection (SUS) Mutation Error Time (s)

1 30 0.75 0.75 0.1 01282 16.416
2 30 0.75 0.75 0.1 0.1282 16.778
3 30 0.75 0.75 0.1 0.1282 16.252
4 16 0.8 0.9 0.1 0.0603 10.157
5 25 0.7 0.75 0.1 0.0785 19.086
6 20 0.7 0.75 0.1 0.0785 16.879
7 11 0.5 0.75 0.1 0.1172 11.468
8 40 0.7 0.75 0.1 0.0785 20.858
9 24 0.75 0.75 0.1 0.0603 19.571
10 11 0.55 0.75 0.05 0.1689 21.694
11 40 0.69 0.75 0.1 0.75 22.217
12 30 0.75 0.6 0.05 0.1897 38.8286
13 11 0.75 0.75 0.05 0.1897 15.347
14 11 0.75 0.85 0.05 0.1897 29.4589
15 24 0.75 0.85 0.1 0.0603 34.0213
16 17 0.85 0.85 0.2 0.0832 17.4676
17 18 0.85 0.85 0.13 0.1198 19.7046
18 18 0.85 0.8 0.09 0.0345 15.6772
19 17 0.8 0.8 0.1 0.0603 28.3152
20 11 0.75 0.6 0.1 0.1172 14.0033
21 30 0.69 0.75 0.1 0.078 20.2698
22 30 069 075 01 00781 200744
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Figure 9.23 shows the FM-T2 of the output due to the behavior of the GA for
the FLC-T2.

Figure 9.24 shows the motor velocity due to the behavior of the GA for FLC-T1
versus FLC-T2.

Fig. 9.21 Behavior of GA for FLC-T2 for input e(t)

Fig. 9.22 Behavior of GA for FLC-T2 for input e0(t)

Fig. 9.23 Behavior of GA for FLC-T2 for output y(t)
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Fig. 9.24 Behavior of GA for FLC-T1 versus FLC-T2 for velocity motor

Fig. 9.25 Behavior of GA for FLC-T2 for error convergence

Fig. 9.26 Different motor velocities for the FLC-T2
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Table 9.5 FLC-T1, FLC-T2 versus PID results for ReSDCM

No. FLC Uncertainty level factor Error

1 T2 0 0.0120
T1 0 0.1497
PID 0 1.42e-4

2 T2 0.001 0.0456
T1 0.001 0.1497
PID 0.001 0.0014

3 T2 0.005 0.0456
T1 0.005 0.1492
PID 0.005 0.0070

4 T2 0.008 0.0456
T1 0.008 0.1455
PID 0.008 0.0112

5 T2 0.05 0.0255
T1 0.05 0.0975
PID 0.05 0.0700

6 T2 0.08 0.0014
T1 0.08 0.0699
PID 0.08 0.112

7 T2 0.1 0.0053
T1 0.1 0.0536
PID 0.1 0.1400

8 T2 0.2 0.0585
T1 0.2 0.0354
PID 0.2 0.2799

9 T2 0.3 0.0014
T1 0.3 0.0551
PID 0.3 0.4199

10 T2 0.4 0.0255
T1 0.4 0.0750
PID 0.4 0.5598

11 T2 0.5 0.0120
T1 0.5 0.0700
PID 0.5 0.6998

12 T2 0.6 0.0893
T1 0.6 0.0978
PID 0.6 0.8398

13 T2 0.7 0.0389
T1 0.7 0.1044
PID 0.7 0.9797

14 T2 0.8 0.1095
T1 0.8 0.1242
PID 0.8 1.1197

15 T2 0.9 0.1767

(continued)
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Figure 9.25 shows the convergence error due to the behavior of the GA for the
FLC-T2.

Figure 9.26 shows the different motor velocities for the FLC-T2.
In Table 9.5, we show the comparison between the FLC-T1, FLC-T2 versus the

PID controller for different levels of uncertainty. We note that the FLC-T2 is better
at different levels of uncertainty (noise), while the noise free FLC-T1 has similar
behavior to the FLC-T2, while in this case the PID is better.

Table 9.5 (continued)

No. FLC Uncertainty level factor Error

T1 0.9 0.1439
PID 0.9 1.2597

16 T2 1 0.2372
T1 1 0.1689
PID 1 1.3996

Table 9.6 FLC-T1, FLC-T2
versus PID results for
velocity regulation in a dc
motor

Controllers comparison t-student

FLC-T1 versus PID 3.13
FLC-T2 versus PID 3.5
FLC-T2 versus FLC-T1 2.41

Fig. 9.27 Behavior of FLC-T2 comparison with FLC-T1 and PID controllers for velocity motor
with uncertainty level (x = 1)
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We analyze statistically the performance of the three controllers using the t-
student test. Table 9.6 shows the statistical results of the three controllers.

As shown in Table 9.6, the FLC-T2 has on average a better performance
compared with the FLC-T1 and PID, with a degree of confidence of more than 95
percent.

Figure 9.27 shows the velocity of the FLC-T2 in comparison with the FLC-T1
and PID controllers with a particular level of uncertainty (x = 1).

As shown in Fig. 9.27, it is very difficult to determine which controller has
better performance, for that reason we decided to use the test t-student statistical
test shown in Table 9.6 which tells us that the FLC-T2 is better when compared to
the FLC-T1 and PID controllers, for this appplication.

9.5 Summary

We described the genetic optimization of FLC-T1 and FLC-T2 for the ReSDCM,
where three triangular and trapezoidal membership functions for the two inputs
and one output are used in the optimization. The GA only optimizes parameters of
the membership functions, but the rules are not optimized because we are inter-
ested in the speed of the algorithm. The objective function of the GA considers
three characteristics: overshoot, undershoot and steady state error, so that makes it
a multiobjective GA.

The FLC-T1 and FLC-T2 are encoded on VHDL code for implementation in
the FPGA.

The best FLC-T2 was obtained in 18 generations with 85% crossover (single
point crossover) and 80% selection (universal selection) and 9% Mutation rate,
with an error of convergence of 0.0345, in a time of 15.67772 min with a speed of
40 rpm.

The PID controller tuning was performed with Ziegler-Nichols method and the
obtained values of the constants are kp = 0.5, ki = 0.2 and kd = 0.025.

Comparisons were made between the FLC-T1 versus FLC-T2 in VHDL code
and FLC-T2 versus PID Controller, for ReSDCM, to evaluate the difference in
performance of the three types of controllers, using the t-student statistical test,
giving better results for the FLC-T2. Matlab-Simulink and XSG were used to
perform the simulations in all cases.
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Chapter 10
General Overview of the Area
and Future Trends

In this chapter a general overview of the area of type-2 fuzzy system optimization
is presented. Also, possible future trends that we can envision based on the review
of this area are presented. It has been well-known for a long time, that designing
fuzzy systems is a difficult task, and this is especially true in the case of type-2
fuzzy systems. The use of GAs, ACO and PSO in designing type-1 fuzzy systems
has become a standard practice for automatically designing this sort of systems.
This trend has also continued to the type-2 fuzzy systems area, which has been
accounted for with the review of papers presented in the previous chapters. In the
case of designing type-2 fuzzy systems the problem is more complicated due to
the higher number of parameters to consider, making it of upmost importance the
use of bio-inspired optimization techniques for achieving the optimal designs of
this sort of systems. In this chapter a summary of the total number of papers
published in the area of type-2 fuzzy system optimization is presented, so that the
increasing trend occurring in this area can be better appreciated. Also, the distri-
bution of papers according to the used optimization technique is presented, so that
a general idea of how these different techniques are contributing to the automatic
design of optimal type-2 fuzzy systems is obtained.

Figure 10.1 shows the total number of papers published per year describing the
application of optimization methods for designing type-2 fuzzy systems in the
areas of control, pattern recognition, classification, and time series prediction.
From Fig. 10.1 it can be noted that the number of papers published have been
increasing each year (in 2011 there appears to be a decline because the information
of this year is not complete at the moment of preparing the paper). It is expected
that this increasing trend will continue in the future because type-2 fuzzy systems
have been recently used more frequently in the applications (and are becoming
more popular), and this will require designing more complex type-2 fuzzy systems,
which in turn will need even better optimization techniques to achieve solutions
more efficiently. It is also worth mentioning that at the moment most of the type-2
fuzzy systems considered in the applications only use interval type-2 fuzzy
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sets due to the higher degree of difficulty in managing and processing generalized
type-2 fuzzy sets, but when these generalized type-2 fuzzy sets become more of a
standard the design problem would require even more powerful optimization
techniques.

Figure 10.2 shows the distribution of the published papers in optimizing type-2
fuzzy systems according to the different bio-inspired optimization techniques
previously mentioned. From Fig. 10.2 it can be noted that the use of GAs have
been decreasing recently, on the other hand the use of PSO, ACO and other
methods have been increasing. The reason for the increase in use of PSO and ACO
may be due to recent works in which either PSO or ACO have been able to
outperform GAs for different applications. Regarding the question of which
method would be the most appropriate for optimizing type-2 fuzzy systems, there
is no easy answer. At the moment, what we can be sure of is that the techniques
mentioned in this paper and probably newer ones that may appear in the future,
would certainly be tested in the optimization of type-2 fuzzy systems because the
problem of designing automatically these types of systems is complex enough to
require their use.

Fig. 10.1 Total publications
per year for the 2006–2011
periodof time

Fig. 10.2 Distribution
of publications per area
and year
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There are other bio-inspired or nature-inspired techniques that at the moment
have not been applied to the optimization of type-2 fuzzy systems that may be
worth mentioning. For example, membrane computing, harmony computing,
electromagnetism based computing, and other similar approaches have not been
applied (to the moment) in the optimization of type-2 fuzzy systems. It is expected
that these approaches and similar ones could be applied in the near future in the
area of type-2 fuzzy system optimization. Of course, as new bio-inspired and
nature-inspired optimization methods are being proposed at any time in this
fruitful area of research, it is expected that newer optimization techniques would
also be tried in the near future in the automatic design of optimal type-2 fuzzy
systems.
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