|n fmanclal

markets

MARTIN WORNER



. Applied C# in Financial Markets |

Martin Worner

John Wiley & Sons, Ltd






. Applied C# in Financial Markets |



Wiley Finance Series

I Risk M
Yen Yee Chong

Understanding International Bank Risk
Andrew Fight

Global Credit Management: An Executive Summary
Ron Wells

Currency Overlay
Neil Record

Fixed Income Strategy: A Practitioner’s Guide to Riding the Curve
Tamara Mast Henderson

Active Investment Management
Charles Jackson

Option Theory
Peter James

The Simple Rules of Risk: Revisiting the Art of Risk Management
Erik Banks

Capital Asset Investment: Strategy, Tactics and Tools
Anthony F. Herbst
Brand Assets
Tony Tollington
Swaps and other Derivatives
Richard Flavell
Currency Strategy: A Practitioner’s Guide to Currency Trading, Hedging and Forecasting
Callum Henderson
The Investor’s Guide to Economic Fundamentals
John Calverley
Measuring Market Risk
Kevin Dowd
An Introduction to Market Risk Management
Kevin Dowd
Behavioural Finance
James Montier
Asset Management: Equities Demystified
Shanta Acharya
An Introduction to Capital Markets: Products, Strategies, Participants
Andrew M. Chisholm
Hedge Funds: Myths and Limits
Francois-Serge Lhabitant
The Manager’s Concise Guide to Risk
Jihad S. Nader
Securities Operations: A Guide to Trade and Position Management
Michael Simmons
Modeling, Measuring and Hedging Operational Risk
Marcelo Cruz
Monte Carlo Methods in Finance
Peter Jickel
Building and Using Dynamic Interest Rate Models
Ken Kortanek and Vladimir Medvedev
Structured Equity Derivatives: The Definitive Guide to Exotic Options and Structured Notes
Harry Kat
Advanced Modelling in Finance Using Excel and VBA
Mary Jackson and Mike Staunton
Operational Risk: Measurement and Modelling
Jack King
Advanced Credit Risk Analysis: Financial Approaches and Mathematical Models to Assess, Price and
Manage Credit Risk
Didier Cossin and Hugues Pirotte
Risk Management and Analysis vol. 1: Measuring and Modelling Financial Risk
Carol Alexander (ed.)

Risk Management and Analysis vol. 2: New Markets and Products
Carol Alexander (ed.)



. Applied C# in Financial Markets |

Martin Worner

John Wiley & Sons, Ltd



Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books @wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988
or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London WI1T 4LP, UK, without the permission in writing of the Publisher.
Requests to the Publisher should be addressed to the Permissions Department, John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed
to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-87061-3

Typeset in 11/13pt Times by TechBooks, New Delhi, India

Printed and bound in Great Britain by T.J. International Ltd, Padstow, Cornwall.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.


http://www.wileyeurope.com
http://www.wiley.com

Contents

List of Examples

List of Figures

List of Tables

Preface

1 Whatis .NET and how does C# fit in?
1.1 .NET framework and the common language runtime

2 The Basics of C#
2.1 Assignment, mathematic, logical and conditional
operators

2.1.1
2.1.2
2.13

2.14
2.15

Assignment operator

Mathematical operators

Calculate and re-assign operators += —=
Ke /:

Logical operators

Operator precedence

2.2 Data structures

2.2.1
222
223
224
225
226
227

Built-in types

Casting and type converting
Strings

StringBuilder

Regex

Arrays

Collections

ix

xiii

XV

xvii



vi

Contents

23

24

Control structures
2.3.1 if/else
2.3.2 switch

2.3.3 while

2.3.4 do/while
2.3.5 for loop
2.3.6 foreach loop
Summary

Object Oriented Programming

3.1

32

33

Introduction to classes

3.1.1 Exception handling

3.1.2 User defined exception class

3.1.3 Workshop: Exercise one

Inheritance and polymorphism

3.2.1 Applying inheritance and polymorphism
to finance

3.2.2 Interfaces

3.2.3 Multiple threading or asynchronous
programming

3.2.4 Workshop: Exercise two

Summary

Databases

4.1
42
43
4.4
4.5
4.6
4.7
4.8

ADO.NET object model
Connecting to the database
Connection pools
Database handler

Working with data
Transactions

Workshop: Exercise three
Summary

Input & Output

5.1
5.2
53
54

Streams

Serialisation

Workshop: Exercise four
Summary

XML

6.1

Schema validation

18
18
19
19
20
20
21
22

23
23
29
31
33
35

36
46

53
55
56

59
59
59
61
64
67
68
70
71

73
73
74
77
77

79
79



Contents

vii

6.2 XML and ADO.NET
6.3 Workshop: Exercise five
6.4 Summary

7 Building Windows Applications

7.1 Creating a new project in visual studio.NET

7.2 Managing projects with the Solution explorer and
class view

7.3 Working with components on forms
7.3.1 Model view control

7.4 Workshop Exercise six

7.5 Summary

8 Deployment
8.1 Assemblies
8.1.1 Metadata
8.1.2 Shared assemblies
8.2 Summary

Bibliography

Appendices
Appendix A Specification for an options calculator
Appendix B System design
Appendix C  Calculation models

Index

80
81
83

85
85

89
90
90
97
97

929
99
100
100
101

103
105
105
107
109

115






2.1
22
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12

2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221

222
2.23
224
2.25
2.26

List of Examples

Assignment of variables

Mathematical operators in use

Addition and assign

Prefix example in a loop structure

Equality operator

Equality operator in a control structure

Conditional and logical operators

Operator precedence

Precedence of logical operators

Precedence of logical operators with brackets
Excerpt from the Black Scholes formula

Excerpt from the Black Scholes formula broken down
into smaller parts

A variable not being declared leads to a compile error
Built-in types and their alias used interchangeably
Implicit conversion of a double to a string

Explicit casting a double

Data conversion from a string to a double

Declaring and initialising string variables

Converting strings to lower case to compare the values
Extracting the first letter of the put/call type
StringBuilder being used to build a string of

error messages

String manipulation using regular expressions
Initialising arrays

Multiple dimensioned array

An array of arrays being declared and initialised
Iterating through an array

[c BRI B le e WLV, RO, I S O8]

10
10
10
11
11
12

12
14
14
15
15
15



List of Examples

2.27
2.28
2.29

2.30
2.31
2.32
2.33
2.34

2.35
2.36
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

39
3.10

3.11
3.12
3.13

3.14
3.15
3.16

3.17
3.18

An enumerator being returned and being used
Accessing a Hashtable using an item

Hashtable returning an IDictionaryEnumerator in
order to iterate through the Hashtable.

An if/else example

An if statement being used without braces

switch statement used to evaluate the account category
while loop shown in context of an enumerator
do/while loop evaluating the line after the loop

being processed

For loop showing a number of connections being
initialised

foreach loop being used to iterate through a collection
to build a dynamic SQL query

A simple class declaration

Reference declarations

LogError class instantiated with the parameter being
passed as defined by the constructor

Default constructor

Constructor overloading

Having overloaded constructors shows how the
LogError class can be called with different arguments
Initialised instance variable _r is created and assigned a
value with the object

The getPrice method that takes no parameter
arguments and returns a double

A method with a list of parameters declared

A class with two methods that pass by value and reference
respectively

Property symbol with get and set declared

Working with the symbol property

try block around a database and a catch block to
handle errors

User defined exception class, TradeException
Throwing a TradeException

User defined Exception TradeException being
handled in a block of code

Abstract class declaration

Declaring a protected Hashtable to make it accessible
in Option and Future

16
17

17
18
18
19
20

20
21
21
23
24
24
25
25
25
26

26
27

27
29
29

30
31
32

33
38

38



List of Examples

Xi

3.19
3.20
3.21

3.22

3.23
3.24
3.25

3.26

3.27
3.28
3.29
3.30
3.31
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
5.1
52
53
54
5.5
5.6
6.1
6.2
6.3
6.4

Creating a virtual method

Option inherits from Derivative

Declaring the constructors and specifying that the con-
structor in the base class be used

Overriding the loadExtrasFromDB method from the
base class Derivative

Option specific properties

Future class derived from Derivative

Option class being instantiated and the properties
referenced

The complete source code for the Derivative, Option
and Future classes

Price interface

OptionsPrice and FuturePrice classes

Factory class Pricer

Pricer factory class used to return the price

Process started in a new Thread

Instantiating DataAdapter classes

References to the various data classes

Creating DataSets

Loading the DataSet with data

Database connection management class

Singleton ConnectPool class

Connection pool being used in the dbSelect method
A database handler class

Extracting data from a DataSet, Table, and

Row collection

An update method

Updating the database with a DataSet

Committing changes to the database

FileStream method

Log writer using the StreamWriter

Yield class demonstrating serialisation

Class Yield inheriting IDeserializationCallback
Implementation of OnDeserialization

Declaring the instance variable yCurve as non-serialised
Document schema as generated from a DataSet

XML handler class that writes a DataSet to XML
New XML document being created from a database
XML document root name property

39
39

39

40
40
40

41

42
47
47
52
52
54
60
60
60
60
61
63
63
64

67
68
69
70
73
74
75
76
76
77
79
81
81
81



Xii

List of Examples

7.1
7.2
7.3
7.4
7.5
7.6

Generated code from a class creation wizard
System generated form code

Default grid display method

Form constructor and the initialisation methods
Controller class

Position handler class

88
91
93
93
94
95



3.1
3.2
33
6.1
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8
8.1

List of Figures

Basic options calculation form

Validation error

Calculator with the models implemented
Example XML layout

Screenshot of the new project window

Class view panel and changing the name

Solution explorer and changing the file name
Adding a class from the class view panel

Class wizard

Adding a reference window

Class view showing the expanded list of methods,
properties, and interfaces

Futures and options main form showing the data grids
Deployment options in Visual Studio

34
36
56
82
86
86
87
87
88
89

90
97
99






List of Tables

1.1
2.1
22
23
24
25
2.6
3.1
32

33

34
3.5

3.6
3.7
4.1
4.2

4.3
6.1

The .NET framework at a glance

Simple mathematical operators

Calculate and re-assign operators

Prefix and postfix operators

Commonly used logical operators

Conditional operators

Operator precedence ranked

Access modifiers in methods

Comparison of the properties and behaviour of a Future
and an Option

A representation of the base class Derivative and the
classes Option and Future that inherit from them
Differences between abstract classes and interfaces
The relationship between the price interface, price
classes and the factory class

Thread states

Comparison of the model properties and behaviour
Singleton connection pool class and the abstract
DBConnection class

The hierarchical relationship between DataSet,
DataAdapter and the Tables, Rows, and Columns
Data schema for Exercise three

Data schema for Exercise five

0NN BB =

27

37

38
46

51
54
55

61
67

70
82






Preface

This book is designed to help experienced programmers into the C# lan-
guage. It covers all the relevant concepts of C# from a finance viewpoint.
In the preparation of this book a small standalone futures and options
trading application was written to cover all of the sections of C# that are
relevant to finance and the code from the application is used throughout
the book to illustrate the topics covered.

The key points covered are focused on building a Windows application
in a finance environment. With this in mind there are some sections of C#
that have been omitted, for example it is unlikely that C# would be used
to connect to exchanges thus in-depth coverage of sockets and TCP/IP
package handling has not been included.

The operators, data types and controls are covered to begin with as they
form the core section of programming. Object Oriented programming
is dealt with in depth from a practical approach and the commonly used
concepts are covered. The emphasis of the book is in applying C# to
finance and thus it does not cover each topic to its full depth as there are
aspects of C# rarely used in financial applications.

In addition to the Object Oriented section, ADO.NET and the simpler
I/O sections that may apply to a Windows application are covered along
with some basic XML as many financial applications share data using
XML.

Recognising that there are large legacy systems within each financial
house, written in C++, Java and mainframe, the C# projects that are
likely to be undertaken will have to fit in with these systems rather
than replace them. C# offers a powerful language in building robust
Windows applications that leverages off the Object Oriented concepts
without being too complex to manage.



Xviii Preface

Mobile computing, Web forms and ASP are not covered in this book,
as most applications will be written for the desktop. Although some
finance houses may use ASP and Microsoft-related Web technologies,
this is a topic for another book.

The workshops have been designed to cover the topics in the book
and let you have a try, and they aim to build on each other and result
in a simple options calculator that allows a trader to perform ‘what-if’
calculations and switch between models.

I would like to thank the team at theCitySecret Ltd for all their support
and encouragement; Jonathan Heitler for keeping me on track, Nick
Doan for helping on the modelling and mathematics and Jacky Pivert
for trying out all the workshop exercises.

The complete code for the sample Futures and Options trading ap-
plication used to illustrate the book can be downloaded at http://www
.wileyeurope.com/go/worner. Please follow the instructions on the
website on how to download the code.



1
What 1s NET and

how does C# fit in?

C# is one of the family of languages that make up .NET, the idea being
that VB programmers could pick up VB.NET easily and C++ or Java
developers could move into C# without too many problems. This meant,
potentially, that existing teams of VB and C++ or Java programmers
could develop code in a familiar language and the compilers organise
the code to run together.

Note that C# is case sensitive, thus Console.Write is not the same as
console.write.

1.1 .NET FRAMEWORK AND THE COMMON
LANGUAGE RUNTIME

The Common Language Runtime (CLR) is the end result of the source
code when compiled. However, to get to the CLR the C# source is first
compiled into Microsoft Intermediate Language (MSIL). The interme-
diate language is necessary as this allows the family of languages to all
work together (C#, VB.NET, etc.), so in theory developers can work in
C#, VB.NET and VC++ .NET simultaneously on the same project.

Once the .NET framework is installed for a platform then the compiled
code (CLR) can run on the given platform.

A key feature of the CLR is memory management; whereas in C++
the programmer must ensure that the memory is allocated and released,
CLR does it for you.

The class libraries are extensive in CLR with the addition of
ADO.NET from the .NET framework.

COM is not supported in .NET although there are some tools to inte-
grate ActiveX controls and DLLs.

Table 1.1 The .NET framework at a glance

VB.NET C# C++ J#
Microsoft Intermediate Language
Common Language Runtime







2
The Basics of C#

Before starting on the object oriented concepts and how these are applied
in finance it is worth spending some time looking at the basics of C#
and familiarising yourself with the operators, data types and control
structures.

First, you will look at the operators to assign, calculate and evaluate
conditions. Second, data types are examined, from the built-in types to
the objects that represent more sophisticated data. Finally, you will look
at how to apply data types and operators in control structures.

2.1 ASSIGNMENT, MATHEMATIC, LOGICAL AND
CONDITIONAL OPERATORS

In C#, as in other languages, there are operators to assign values to
variables, mathematical operators and operators to compare types. This
section covers the operators that are commonly used, and will look at
both the use and the precedence of the operators. Later in this section
you will see how these operators apply to control structures.

2.1.1 Assignment operator

The assignment operator = is an important operator as in most programs
values will need assigning to variables. Note the assignment operator
should not be confused with the equality operator ==.

The assignment operator assigns the value right of the operator to the
variable left.

Example 2.1: Assignment of variables
vartable = value;

string newvariable = "hello world";
int newnumber = 10;

As Example 2.1 shows the string newvariable has been assigned with
the value ‘hello world’.



4 Applied C# in Financial Markets

Table 2.1 Simple mathematical operators

Description Operator Example
Add + 10 + 2
Subtract - 10 - 2
Multiply * 10 * 2
Divide / 10 / 2

2.1.2 Mathematical operators

The basic mathematical operators are used to perform the simple math-
ematical computations as shown in Table 2.1.

In Example 2.2 the mathematical operators are shown, as they would
be used in a program. The operators may either be used on numbers or
variables as the examples illustrate.

Example 2.2: Mathematical operators in use
int add = 10+10;

double amt = _price * _qty;

double d2 = d1 - v;

double percent = _price/100;

2.1.3 Calculate and re-assign operators += —-= *= /=

The calculate and re-assign operators are used to perform a mathemat-
ical operation on a variable and assign the result. Table 2.2 shows the
common calculate and re-assign operators.

The calculate and re-assign operators are used instead of performing
a simple mathematical operation on a variable and then assigning that
variable to itself using the one combined operator. By using the calculate
and re-assign operator the variable performs the mathematical operation
and then assigns the results to itself. If, for example, a running total

Table 2.2 Calculate and re-assign operators

Description Operator Example

Add and re-assign += int res += 2
Subtract and re-assign -= int res -= 2
Multiply and re-assign *= int res *= 2
Divide and re-assign /= int res /= 2




The Basics of C# 5

quantity is required in the program (Example 2.3 illustrates the two
approaches) clearly the calculate and re-assign operation is easier to read
and requires less typing. Note that the two statements in Example 2.3
are interchangeable.

Example 2.3: Addition and assign
qty = qty + quantity;
qty += quantity;

In addition to the calculate and re-assign operators there are also two
special operators to add (++) or subtract (--) one from the given number
or variable. The placing of the operators is important as the order of
addition or subtraction and assignment is different. Prefix is when i++
returns the value of i and then increments itself by one, whereas the
postfix operator ++i adds one to i and then returns the value. Table 2.3
shows an example of the prefix and postfix operators in use.

Table 2.3 Prefix and postfix operators

Prefix increment operator Postfix increment operator
int pre = 1; int post = 1;
Console.Write(pre++) ; Console.Write(++post);
Console.Write(pre); Console.Write(post);
Output 1 OQutput 2

2 2

The prefix and postfix operators are often encountered in loops to
increment or decrement a variable, as a shorter way of writingi =i + 1;
you would write i ++. Example 2.4 shows the prefix operator being used
in a loop.

Example 2.4: Prefix example in a loop structure
for (int i=0;i<categories.Length;i++)
{

loadFromDB(categories[i]);
}

2.1.4 Logical operators

Logical operators are used in programs to compare two values and return
a Boolean value. Table 2.4 lists the commonly used logical operators and
gives examples of their use and results.



6 Applied C# in Financial Markets

Table 2.4 Commonly used logical operators

Operator Description Example Result
== equal to 100 == 100 True
>= greater or equal than >= 100 True
> greater than 100>100 False
<= less than or equal to 100<=100 True
< less than 100<100 False
1= not equal to 100 '= 100 False

A simple example is to use the equality operator to compare the value
of a string variable with a string, as shown in Example 2.5, with the
result being assigned to a Boolean variable.

Example 2.5: Equality operator
bool activeAccount = acctCat == "A";

A more realistic example, as seen in Example 2.6, is the evaluation
used in the context of an if statement. You will learn more about if

and control structures later in the section.

Example 2.6: Equality operator in a control structure

if (_rates.Count == 0)
{

getRatesFromFile();
}

In addition to the commonly used logical operators as shown in
Table 2.4, there are the operators to join a number of statements to-
gether known as conditional operators. In applied programming there
are many occasions where more than one condition must be evaluated,
and for this there are the AND, OR and NOT operators (Table 2.5).

To examine how the conditional operators work with the commonly
used operators consider the following as shown in Example 2.7. A

Table 2.5 Conditional operators

Operator Description
&& AND

I OR
! NOT




The Basics of C# 7

program goes through a list of bonds and adds the symbol to the portfolio
where the bond has a yield of less than 10% or does not have a currency
of JPY and a maturity of more than 5 years.

Example 2.7: Conditional and logical operators
if (((Yield < 0.1)|[!'(CCY == "JPY"))&&(mat > 5)
portfolio.Add(symbol));

2.1.5 Operator precedence

In C#, as in most other programming languages, the operators have
different rules of precedence. These are that the comparative operators
work from left to right while the assign operators are right to left.

Consider the expression in Example 2.8 where there is a mathemat-
ical operator and an assign operator. What the programmer is trying to
achieve is to assign the results of the rate divided by the number of days
to a variable yield.

Example 2.8: Operator precedence
double yield = rate/number0fDays

The first operator that is performed is rate / numberOfDays, and the
result is then assigned to the variable yield. This has worked because the
operator precedence is such that the calculation operation is performed
before the assign operator.

Now consider Example 2.9 where there are two mathematical oper-
ators; the order in which the divide or the multiply are performed is
important to the result.

Example 2.9: Precedence of logical operators
double yield = rate/number0OfDays * 100

The mathematical operations are performed from left to right, with
the calculation of rate / number0fDays being executed before being
multiplied by 100. In Example 2.10, the same calculation is done but
this time the brackets take higher precedence, meaning that the number
of days multiplied by 100 is done before the division.

Example 2.10: Precedence of logical operators with brackets
double yield = rate /(numberOfDays * 100)



8 Applied C# in Financial Markets

The best way to perform complicated calculations is either to break
the calculation down into a number of steps or surround the blocks with
brackets; this reaps rewards when it comes to maintenance of the code.

In Example 2.11 the calculation shows a number of brackets that make
the code easier to understand.

Example 2.11: Excerpt from the Black Scholes formula
dl = (Math.Log(S8/X) + (r + v * v/2.0) * T) /
(v * Math.Sqrt(T));

An even better way to understand the line of code would be to break
the formula down into smaller parts. This has the added advantage of
being able to debug the individual lines and thus know what the interim
values are. Example 2.12 shows how the line of code from Example 2.11
could be simplified for debugging.

Example 2.12: Excerpt from the Black Scholes formula broken down
into smaller parts

L = Math.Log(S/X);

rv=r+v*v/ 2.0;

sq = v * Math.Sqrt(T);

di = (L + v * T)/sq;

Table 2.6 illustrates the ranking of operators in precedence with one
being ranked the highest.

Table 2.6 does not contain the complete list of operators, as there are
a number of operators that are seldom used in finance applications. For
a complete list refer to either MSDN or a C# reference manual.

Table 2.6 Operator precedence ranked

Rank Category Operator

1 Primary (z) a[z] z++ -
2 Unary + - ++z -z
3 Multiplicative x /%

4 Additive + -

5 Shift >> K

6 Relational <= < > >=

7 Equality == I=

8 Conditional AND &&

9 Conditional OR Il

10 Conditional ?:

11 Assignment = += -= *= /=




The Basics of C# 9

2.2 DATA STRUCTURES

C# is a strongly typed language, meaning that all variables used must be
declared. If a variable is initialised but not declared a compilation error
will occur. In Example 2.13, the variable yield is assigned to without
having been declared.

Example 2.13: A variable not being declared leads to a compile error
yield = 0;

The name ‘yield’ does not exist in the class or
namespace ‘TradingApplication.PositionModelHandler’

In C# there are a wide variety of types to represent data; in this section
data structures will be examined.

2.2.1 Built-in types

Built-in types in C# are aliases of predefined types. For example, bool
is an alias of System.Boolean.

All the built-in types with the exception of string and object are
known as simple types; string and object are known as built-in refer-
ence types. The built-in types and their alias may be used interchangeably
as is seen in Example 2.14.

Example 2.14: Built-in types and their alias used interchangeably
String myvar = "hello world";
string myvar = "hello world";

string as a built-in reference type has a number of methods and prop-
erties that are explored later in this section, whereas a simple built-in
type such as int has a very limited set of methods.

2.2.2 Casting and type converting

As C# is a strongly typed language, it is important that the data passed
around are correctly assigned or converted, otherwise it will lead to a
series of compile errors.

C# does lots of implicit conversions, such that a double may be
converted to a string, as seen in Example 2.15 where quantity is de-
clared a double but is implicitly converted to a string to pass into the
Console.Write.



10 Applied C# in Financial Markets

Example 2.15: Implicit conversion of a double to a string
Console.Write(" Quantity " + quantity + " adjusted by "
+ qty);

Explicit casting is done by including the type in brackets before the
returning value. In Example 2.16 the explicit cast is done to ensure that
a double returned from a dataset is assigned to a double.

Example 2.16: Explicit casting a double
double _price = (double)dr["price"];

If the explicit cast in Example 2.16 were omitted it would result in
a compile error Cannot implicitly convert type ‘object’ to
‘double’ .

While C# can perform a variety of implicit and explicit casts there
are situations where this is not possible. This is likely to happen
when trying to convert a string value to a numeric value. As show in
Example 2.17, when trying to assign a value from a text box on a Win-
dows form to a numeric value, a conversion is needed. The first step is
to ensure the Text value is a string by calling the ToString method and
then using the Parse method in the Double class to convert the data to
a double.

Example 2.17: Data conversion from a string to a double
if (this.txtQuantity.Text.ToString() .Length > 0)
{

qty = Double.Parse(this.txtQuantity.Text
.ToString());
}

The commonly used numeric classes Decimal, Double, Single and
Int32 all have a Parse method.

DateTime also includes a Parse method to convert the string repre-
sentation of a date into a DateTime equivalent.

2.2.3 Strings

As in other OO languages a string is an object and has a number of
methods and properties associated with it. Confusingly String and
string are one and the same thing, string being an alias for String,.



The Basics of C# 11

Example 2.18 shows a string being declared and a string being both
declared and assigned to.

Example 2.18: Declaring and initialising string variables
private string _symbol;
string baseCCY_. = "EUR";

The sections that follow cover some of the ways to manipulate string
data; not all of the sections covered are methods contained within the
string class but are included as they are relevant to manipulating text data.

Matching strings

There are a number of ways of comparing strings in C#, the methods
of Equal and CompareTo compare the string objects and the Unicode
numbers of chars respectively, but the way to compare the string values
is to use the equality (==) operator.

The safest way to compare two strings, if the case is not important, is to
convert the two strings to either upper or lower case and use the equality
operator to compare the values. In Example 2.19 the CallPutFlag is
converted to lower case and the value compared to lower case "c".

Example 2.19: Converting strings to lower case to compare the values

if (CallPutFlag.ToLower() == "c")

{
dBlackScholes = S * CumulativeNormalDistribution(dil)
- X * Math.Exp(-r * T) *
CumulativeNormalDistribution(d2);

Substring
string.Substring (start position, length)

There are times where extracting part values of a string is needed in
a program. The method needs a starting position of the string and the
length of the sub-string; if length is not given then it defaults to the
end of the string.

An example of this would be extracting the first letter of a put or call
type from a database retrieve as shown in Example 2.20. The letter is
used as an internal flag in the OptionsPrice class.



12 Applied C# in Financial Markets

Example 2.20: Extracting the first letter of the put/call type
dr["putCall"].ToString()) .Substring(0,1) .ToLower ()

2.2.4 stringBuilder

As the string object is immutable, each time the contents are modified a
new string object is created and returned. Where strings need concate-
nating, it is much more efficient to use the StringBuilder class.

In the error validation method illustrated in Example 2.21 the poten-
tial for a number of strings being concatenated is high, especially if the
user hits enter by accident and submits a trade to be booked before com-
pleting the required fields. In this case the error messages are appended
to a StringBuilder as each condition is validated. At the end of the
method if any of the validations fail then the error message is created by
calling the ToString method of the StringBuilder and an exception
is thrown. Exceptions are covered in Chapter 3.

Example 2.21: StringBuilder being used to build a string of error
messages
private void performValidations()
{
Boolean err = false;
StringBuilder msg = new StringBuilder();
msg.Append("Validation error has occurred \n:");
//Check trading Account
if (_tacct.Length == 0)
{
msg.Append ("Blank Trading account - mandatory
field\n");
err = true;
}
// Check customer account
if (_custacct.Length == 0)
{
msg.Append("Blank Customer account - mandatory
field \n");
err = true;
}
// Check quantity
if (qty < 0)
{



The Basics of C# 13

msg.Append ("Cannot have a negative quantity, use
buy or sell to correct \n");
err = true;
}
if (_bs.Length == 0)
{
msg.Append ("Must be either a buy or sell\n");
err = true;
}
if (_symbol.Length == 0)
{
msg. Append ("Symbol is required - mandatory field
\n'");
err = true;
}
if (err)
{
throw new TradeException(msg.ToString());
}

The StringBuilder constructor has a number of overload con-
structors to initialise the capacity of the StringBuilder. By initial-
ising the capacity it makes the appending of data more efficient as the
StringBuilder object is not having to re-allocate space. Capacity
is the property that contains the capacity of the StringBuilder, and
the method EnsureCapacity may also be used to ensure that the
StringBuilder has the minimum capacity of the value given. Un-
less size is very important the StringBuilder class seems to handle
the ‘growth’ of its capacity efficiently.

StringBuilder comes with a range of methods, to append, remove
and replace characters from the instance. The method most widely used
is Append to append data to the end of the instance; the data that can be
appended are either text or numeric types.

2.2.5 Regex

The Regular expression is included here as a string-related class that is
a very powerful way of pattern matching and manipulating strings. The
regular expressions are compatible with those in Perl 5.



14 Applied C# in Financial Markets

A simple demonstration of Regex is shown in Example 2.22. A
comma-separated file is read and the values need extracting into an
array. The Regular Expression instance is initialised with the regular
expression, in this case a comma. When the file is read, each line is
examined and using the Split method the values returned into an array.
The array in this example is then appended to a hashtable.

Example 2.22: String manipulation using regular expressions
Regex rExp = new Regex(",");
StreamReader sIn = new StreamReader(_path,true);
string line;
do
{
line = sIn.ReadLine();
if (line != null)
{
string[] ccFX = rExp.Split(line);
_rates.Add(ccFX[0],ccFX[1]);
}
} while (line != null);

2.2.6 Arrays

Arrays in C# are objects that are indexed. The indexing in C# is zero-
based, thus Array [0] is the first index reference in an array.

Initialising arrays

The declaration and initialisation either has an array size in square brack-
ets, or uses a series of values enclosed in {} brackets.

Example 2.23: Initialising arrays
string[] categories = new stringl[3];
string[] categories = {"trading","cust","hedge"};

The square brackets [] denote the type as being an array. Thus any
object type can have an array and the associated methods. Accessing a
simple array is done by referencing the element number array [int],
or by item array["item"] .



The Basics of C# 15

Multiple dimension arrays

Adding a comma to the square brackets in a single-dimensioned array
declaration introduces dimensions to the array. Example 2.24 shows a
two-dimensional array being declared to hold a 20 by 2 array.

Example 2.24: Multiple dimensioned array
double[,] deltaValue = new double[20,2];

The other way is to declare a multiple-dimension array as an array of
arrays (as opposed to the matrix example of the above). Example 2.25
shows two arrays being assigned to an array of arrays.

Example 2.25: An array of arrays being declared and initialised
double[][] priceArray = new double[2][];
priceArray[0] = new double[]{101.25,98.75,100.50};
priceArray[1] = new double[]{101.25,102.03};

To reference the elements of a multiple-dimension array, the comma is
used in the brackets with row followed by column:

array[row,column]
y

Array methods and properties

When working with arrays the most frequently used property is the
Length property. This gives the number of elements of the array, making
the iteration through the array possible. Example 2.26 shows how an
array is iterated through with Length being the array capacity.

Example 2.26: Iterating through an array
for (int i=0;i<categories.Length;i++)
{
loadFromDB(categories[i]);
¥

Arrays have the GetEnumerator method, which returns an
IEnumerator from the System.Collections namespace. This gives
the flexibility of using the enumerator methods to access the array, such
as the GetNext methods.

Enumerators and collections will be discussed in the next section.



16 Applied C# in Financial Markets

2.2.7 Collections

Collections are a set of objects grouped together; C# is no different to
other languages in providing interfaces for collections, such as enumer-
ating, comparing, and creating collections.

IEnumerable interface contains only the method GetEnumerator,
the purpose of which is to return an IEnumerator.

Collections such as arrays or hashtables in turn implement the
GetEnumerator method that returns an IEnumerator.

The GetEnumerator method passing an IEnumerator is used in
Example 2.27 to return a collection of foreign exchange rates; these
are then iterated through using the MoveNext method and the values
extracted using the Current property.

Example 2.27: An enumerator being returned and being used
private string[] getFXlist()
{
IEnumerator fx = _rates.GetEnumerator();
string[] fxrtn = new string[_rates.Count];
int i = 0;
while (fx.MoveNext())
{

fxrtn[i++] = (string)fx.Current;
}

return fxrtn;

MoveNext () returns a Boolean that returns false when there are no more
items to return. The Current property returns the current element in the
collection.

ArrayLists

ArrayLists are very useful when you do not know how many elements
you have, and offer the functionality of the usual fixed size array. Rather
than assigning an array with more elements than expected and trapping
any overflow errors the ArrayList size can dynamically grow.

There are a number of important methods; Add lets you dynami-
cally add to the ArrayList, the Capacity property is used to ei-
ther set the number of elements of the ArrayList or it returns the



The Basics of C# 17

number of elements, and finally there is GetEnumerator that returns an
enumerator.

The ArrayList is used in the ConnectionPool where an initial
number of connections to a database are created. If all the connections
are in use it is important to be able to create a new connection and
manage it in the pool. The ConnectionPool example (Example 4.10)
shows the ArrayList in use.

Hashtables

Hashtables are similar to Hashtables in Java, and Perl. They are used
to store paired values, with a key and a value, and offer a more flexible
way of accessing data from a collection.

The values can be any object, such as objects, Hashtables or strings.
The trick with Hashtables is having simple keys to extract or manipulate
the values.

C# provides access to the values by using the item property as shown
in Example 2.28, because Hashtable implements the IDictionary
interface.

Example 2.28: Accessing a Hashtable using an item
fxTable ["EUR"]

In Example 2.29 the Hashtable returns an IDictionary
Enumerator which is a special type of IEnumerator that is a read
only implementation with the properties of Key and Value returning the
dictionary keys and values.

Example 2.29: Hashtable returning an IDictionaryEnumerator in
order to iterate through the Hashtable.
FX fx0b = new FXQ);
Hashtable fxT = (Hashtable)fx0b.getRatesHash();
IDictionaryEnumerator fxE = fxT.GetEnumerator();
while (fxE.MoveNext())
{

this.lstFX.Items.Add(fxE.Key + " \t " + fxE.Value);
}

As shown in Example 2.28 the Add method is an important method to
build a Hashtable, in addition the Delete method is used to remove an



18 Applied C# in Financial Markets

entry from a Hashtable, and Clear removes all the elements from the
Hashtable.

2.3 CONTROL STRUCTURES

Having covered the data types and the common operators this section
ties the two aspects together. C# features all conditional statements and
loop controls that are central to writing applications. This section will
cover the common structures and show examples where applicable.

2.3.1 if/else

if (condition) [{] statement [ Jelse {statement }]

The condition tested is in brackets, with the next block executed. You
may use braces {2 if there are several lines of code that need executing.

In Example 2.30 the test is made on the variable X to see if it is greater
than zero; if so the cumulative normal distribution is subtracted from
one before being returned, otherwise it is returned as is.

Example 2.30: An if/else example

if (X <0)
{
return 1.0 - dCND;
}
else
{
return dCND;
¥

Note the braces {} can be ignored if a single statement follows an if
statement, such as the code shown in Example 2.31.

Example 2.31: An if statement being used without braces

if (ds != null)
((DataGrid) objectCollection["grid"]) .DataSource =
ds.Tables[0] .DefaultView;

In practice including the braces {} improves the readability of the code.



The Basics of C# 19

2.3.2 switch

switch (variable or statement)

case wvalue:
code body;
exit statement;
[default:
code body;
exit statement; ]

switch is used where there are a number of conditions that need eval-
uating and it takes the pain out of lots of nested if/else statements.
However, switch may only be used to evaluate a number of decisions
based on integral or string types.

In Example 2.32 the account category is being evaluated and depend-
ing on the category the appropriate SQL statement is being generated;
note in this example there is no default case being used.

Example 2.32: switch statement used to evaluate the account category
switch (category)
{
case "positions":
sql = positionsCategory(category);
break;
case "hedge":
sql = positionsCategory(category);
break;
case "trades":
sql = getTrades();
break

2.3.3 while
while (condition) {code body}

By using the while statement, as long as the condition remains true the
program will loop around the code body. The loop condition is evaluated



20 Applied C# in Financial Markets

before the code body has executed. In Example 2.33 while is used with
an enumerator with the MoveNext method, which will return true until
there are no more records to be processed.

Example 2.33: while loop shown in context of an enumerator
while (fxE.MoveNext())
{

this.1lstFX.Items.Add(fxE.Key + "\t " + fxE.Value);
}

234 do/while
do {code body} while (condition)

do/while is similar to while, the big difference being in evaluating the
condition. In do/while the condition is examined after the code body in
the loop has run, whereas while evaluates the condition before looping.
In Example 2.34 a file is being read until the line returned is null;
note that the ReadLine is executed before the check that line is null.

Example 2.34: do/while loop evaluating the line after the loop being
processed
do
{
line = sIn.ReadLine();
if (line !'= null)
{
string[] ccFX = rExp.Split(line);
_rates.Add(ccFX[0],ccFX[1]);
}
}

while (line != null);

2.3.5 for loop
for (initialise counter; exit condition; counter) {code body}
The block of code in a for loop iterates around with the counter being

initialised, the condition checking and the counter all being on the same
line.



The Basics of C# 21

In Example 2.35 the for loop begins at zero and loops around until
the condition I<_initialPool is met; the example shows the for loop
used in initialising a number of database connections.

Example 2.35: For loop showing a number of connections being ini-
tialised
private void initConnections()
{
for(int i=0;i<_initialPool;i++)
{
addConnection(i);

}

2.3.6 foreach loop

foreach (element in collection)
{

code body;
by

The foreach loop is used to iterate through either collections or arrays,
and goes through each element until the last one is reached. In writing a
foreach loop, the structure of the collection should remain unchanged
otherwise the loop could cause some unpredictable results. Example
2.36 shows a collection being created and the elements being iterated
through. The example is taken from a class that builds a dynamic string
of SQL.

Example 2.36: foreach loop being used to iterate through a collection
to build a dynamic SQL query
ICollection keys = hashFields.Keys;
foreach(string key in keys)
{
field.Append(key) ;
field.Append(",");
}



22 Applied C# in Financial Markets

24 SUMMARY

This section has dealt with the basics of programming in C#, covering
operators, data types and how they fit in with control structures.

Operators cover a variety of functionality. At the most simple there
are the assignment operator and the common mathematical operators.
There are also the operators that perform a mathematical operation and
assign the result, and the special prefix and postfix operators used in
incrementing and decrementing values in an integer by one. The logical
operators are widely used in control structures where there are condi-
tional statements, and are often used with conditional operators to join
them together.

Taking all the operators together the order of precedence was looked
at from the point of understanding which operators are ranked higher and
how this impacts the results. In looking at precedence, the importance
of brackets and breaking down complicated calculations as good prac-
tice was emphasised, allowing code to be read more easily and making
debugging simpler.

C#is astrongly typed language like C++ and Java. There are a number
of built-in types that are aliased to the classes in the system workspace as
the core of C#. Casting and type converting were examined, as there are
frequently cases where data need moving and objects may return data
as different types. Numeric data have the Parse method to help parse
text data into numeric data; this is widely used where data are captured
in Window forms.

string and StringBuilder are ways of containing string data and
the various methods were examined. It is important when to use string
and StringBuilder as string is immutable while StringBuilder
is mutable.

In looking at string manipulation, the use of regular expressions was
discussed with the Regex class.

Arrays and collections were examined as a useful set of data
types widely used in programs. The distinction between Arrays and
ArrayLists was discussed. With collections the importance of enu-
merators was examined as a means of iterating through collections and
how to access the data within the iteration loop.

Having looked at the operators and data types, the control structures
were introduced. This showed how the operators and data types are ap-
plied in these structures as well as introducing the structures themselves.

Armed with the basics of C#, the more powerful aspects of it are now
examined with application to financial software.



3

. Object Oriented Programming |

The most powerful aspect of C# is the Object Oriented features and
in this section you will explore these features and how they are ap-
plied to a financial application. The Object Oriented concepts are il-
lustrated with code taken from a small futures and options application
sample. The Windows application was written from a practical perspec-
tive to demonstrate the various concepts covered from the viewpoint of
a derivatives application. The full source code is available to download
athttp://www.wileyeurope.com/go/worner.

Programmers learning C# in finance will perhaps have backgrounds
in C++, Java or Visual Basic. Perhaps the understanding of objects and
classes is a given to most developers, even so a quick overview may be
beneficial before getting into the details of Object Oriented programming
in C# applied to finance.

A class is a description of an object; it describes the properties and
the methods that are encapsulated within it. An object in the program-
ming world is an entity that contains properties and has some defined
behaviour known as methods.

A class becomes an object when it is instantiated; a class cannot be
accessed directly, it must be declared and initialised.

The real power of classes is that the logic is encapsulated and may be
extended, reused. C# has a large range of in-built classes which means
that the developer can begin building the business logic without having
to develop a large toolkit to support Windows applications.

3.1 INTRODUCTION TO CLASSES

[attributes] [modifiers (access)] class identifier
[: list of base classes and/or interfaces]{}

There are a number of basic requirements for creating a class; Example
3.1 shows how a simple class is declared.

Example 3.1: A simple class declaration
using System;
{



24 Applied C# in Financial Markets

public class LogError
{

/7.

}

X

The first step is to include any references needed in the class; in C#
these are referred to as assemblies. The references are actually DLL, EXE
or project files that are linked to the working project. The keyword using
followed by the reference name is the way to include them; in Example
3.2 the system reference with the basic classes and the references to the
Data, Text, and Odbc classes are included.

Example 3.2: Reference declarations
using System;

using System.Data;

using System.Text;

using Microsoft.Data.0dbc;

In addition to the references, C# has the concept of grouping classes
and interfaces into namespaces. This grouping means that the classes
and public properties are available to one another within the namespace.
Note that if a project is created with no namespace then a default one
gets created anyway.

Looking at how the class is constructed in Example 3.1, the class is
defined with a modifier type, in this case public. The allowable access
modifiers for a class are either public or internal. Public means that
the class is accessible to all assemblies, internal is accessible only to
the files within the assembly to which the class belongs.

Then comes the keyword class followed by the class name (in Ex-
ample 3.1 this is LogError) and the braces {} are set to denote the scope
of the class.

In creating a class, the next step is to define a constructor, some
methods and properties where applicable. The constructor is how the
object is called when it is being instantiated. Example 3.3 shows how
the LogError class is instantiated and the parameter e passed as the
constructor specifies.

Example 3.3: LogError class instantiated with the parameter being
passed as defined by the constructor
LogError eL = new LogError(e);



Object Oriented Programming 25

In declaring the constructor it must have the same name as the class; if
one is not declared then the default constructor is created by the compiler
with no arguments and no code to execute, as Example 3.4 shows.

Example 3.4: Default constructor
public LogError()

{

3

In Example 3.5 there are two constructors; this is known as constructor
overloading. Overloading is used where there may be a number of dif-
ferent arguments to call the same object; in this case the LogError is
created with either an exception or a string.

Constructor overloading comes into its own when a core class needs
modifying in the way it is called; rather than change every class that
references, a new constructor is written.

Example 3.5: Constructor overloading

public LogError (Exception e)

{
Console.WriteLine(e.StackTrace);
Console.WriteLine(e.Message);

}

public LogError(string err)

{

Console.WritelLine(err);

}

Example 3.6 shows how the LogError object is created with the
different constructors, one having a string passed, the other an exception.

Example 3.6: Having overloaded constructors shows how the
LogError class can be called with different arguments

String eMsg = "Error Message";

LogError elL2 = new LogError(eMsg);

catch (System.DivideByZeroException e)
{

LogError el = new LogError(e);

}

In addition to the constructor, it is possible to initialise some variables
as the object is created. In Example 3.7 the instance variable _r is created



26 Applied C# in Financial Markets

and assigned a value as the object is created. It has been given the
keyword const to indicate that the value may not change; the other
variables have been declared but not initialised and may be modified.
Initialising a variable at the object’s creation is useful for setting default
values, which may be overridden as part of the class behaviour.

Example 3.7: Initialised instance variable _r is created and assigned a
value with the object
public class OptionsPrice : Iprice

{

// declare private variables

private const double r = 0.04; // risk free
rate

private double _S; // Stock price

private double _T; // Days to expiry

private double X; // Strike

private double _v; // volatility

private string _callPut;

private string _symb;

The next stage in creating a class is to give it some behaviour. Setting
the behaviour of a class is done by adding methods. A method is a means
for a class to define some behaviour.

[modifiers (access)] return-type name (parameters) { }

At a minimum, a method must have a return type declared, or be void
if nothing is returned, and a method name. In Example 3.8 a method
getPrice is declared; it takes no parameter arguments, it calls another
method with some instance variables and returns a double. Note if the
return type is not void then the keyword return is required with the correct
return type. The data type can be any valid built-in type or a defined type
within the project; this may be either an object in the project or an object
in a referenced assembly.

Example 3.8: The getPrice method that takes no parameter argu-
ments and returns a double
public double getPrice()
{
_price = BlackScholes(_callPut, S, X, T, r, v);
return _price;

}



Object Oriented Programming 27

Table 3.1 Access modifiers in methods

Access type Description

public visible by all classes

private only available within the class

protected accessible to the class and to classes derived from the class
internal accessible to the current project

Example 3.8 was declared with the access type as public. Table 3.1
shows the other access types and what they mean.

Example 3.9 shows an example of a method that is declared with a
number of parameters; this is then called as shown in Example 3.8.

Example 3.9: A method with a list of parameters declared
private double BlackScholes(string CallPutFlag, double
S,double X,double T, double r, double v)

Parameters are passed by value by default; to pass by reference the
keywords ref or out are used. The difference in passing by value and
by reference is that when a variable is passed as a parameter by value a
copy is being passed and it can be changed within the object without the
variable in the calling method being changed. The ref keyword means
that the parameter is passed by reference so that any changes that occur to
the parameter within the program will be reflected in the calling method
and the variable. The out keyword is very similar to ref only in that
the variable must be declared and initialised when used in conjunction
with ref, whereas out does not need the variable initialised.

There are some performance improvements if large objects are passed
by reference, thus avoiding creating a copy of the large object. However,
it may be clearer in the code to have getter and setter methods or
properties to return the data rather than ‘by reference’ updating.

Example 3.10: A class with two methods that pass by value and refer-
ence respectively
public class ValueAndReference
{
public ValueAndReference()
{
}
public float getInterestByVal(float coupon,
float days,float months)



28 Applied C# in Financial Markets

{
float result = coupon * months / days;
days = 365;

months = 15;

return result;

}

public float getInterestByRef(ref float
coupon,ref float days,ref float months)

{

float result = coupon * months / days;

days = 365;

months = 15;

return result;

private void doSomething()
{
float coupon = 0.033F;
float days = 360F;
float months = 30F;

ValueAndReference T = new ValueAndReference();

float intVal = T.getInterestByVal(coupon,days,months) ;
Console.WriteLine("Coupon = " + coupon + " Days = "
+ days + " months = " + months);

float intRef = T.getInterestByRef (ref coupon,ref
days,ref months);

Console.WriteLine("Coupon = " + coupon + " Days = "
+ days + " months = " + months);

}

Output:

Coupon = 0.033 Days = 360 months = 30

Coupon = 0.033 Days = 365 months = 15

The other important feature of a class is being able to define proper-
ties; this encapsulates the class data. Properties are ways of setting and



Object Oriented Programming 29

retrieving data, and they may be defined independently to set and return
data.

Example 3.11 shows the property name with a getter and setter
type being declared.

Example 3.11: Property symbol with get and set declared
public string symbol
{
get{ return (string) derivAttrib["symbol"]; }
set{ _derivAttrib["symbol"] = value;}
}

Accessing the property is shown in Example 3.12; it is assigned to or
returned from like an instance variable.

Example 3.12: Working with the symbol property
Option o = new Option();

o0.symbol = _symb;

Console.Write("Symbol set to : " + o.symbol);

This is a shortened way of creating a get and set method to set
and retrieve data. Example 3.12 shows a simplistic property; the set
method would usually have some data validation steps to ensure data
integrity.

The alternative to properties is to write a get and set method; this
would be accessed as a regular method when called.

The basics of writing a class have now been covered. Later in this
chapter, we will explore how classes fit together with inheritance and
polymorphism and how it is applied to finance.

3.1.1 Exception handling

try

{

}

catch(Exception e)
{

}

finally

{

}



30 Applied C# in Financial Markets

In all applications the ability to handle exceptions is fundamental, as
there are circumstances in a program when the ‘unexpected’ happens.
In C# there are a wide variety of built-in system exceptions; in addition,
exception classes can be written to handle specific errors.

An exception is handled in a try/catch block. The try block around
a block of code denotes the code where the exception is being handled.
The catch keyword is used with the braces {} to handle the exception.
The catch statement may be used to handle as many exceptions as are
required, for example there may be a need to handle divide by zero
exceptions, and in the case of numeric overflow two catch statements
are required.

In addition to catch there is the finally keyword, the purpose of
which is to execute the block of code regardless of whether there has
been an exception or not. The finally block is useful, for example, in
closing open database connections or files.

In Example 3.13 the try/catch blocks handle database errors; note
in this example that the finally statement is always called to release
the connection back to the pool.

Example 3.13: try block around a database and a catch block to
handle errors
public DataSet dbSelect(string sqlstr)
{
ConnectPool ¢ = ConnectPool.GetInstance();
OdbcConnection con = c.getConnection();
DataSet DSet = new DataSet();
try
{
_dbAdapter.SelectCommand = con.CreateCommand() ;
_dbAdapter.SelectCommand.CommandText = sqlstr;
_dbAdapter.Fill(DSet) ;
}
catch (OdbcException dbE)
{
LogError elLog = new LogError(dbE);
eLog.writeErr(sqlstr);
DSet = null;
}
finally
{
c.releaseConnection();



Object Oriented Programming 31

}
return DSet;

}

3.1.2 User defined exception class

In addition to the wealth of exception classes there are times when a
customised error needs to be generated and caught to deal with a specific
set of conditions.

In the futures and options application there is a trade booking section;
before a trade is booked there is a check to ensure that the mandatory
fields are completed. If any of the mandatory field values are missing
then an exception needs throwing to alert the user that there are missing
fields. In generating the exception the keyword throw is used.

Note the user defined exception classes derive from the
ApplicationException and NOT the SystemException class. The
three constructors shown in Example 3.14 must be present in user-
defined exceptions.

In Example 3.14 the exception is a very simple implementation of
a user defined exception class using the functionality of the base class
ApplicationException.

Example 3.14: User defined exception class, TradeException
public class TradeException : System.Application
Exception
{
// Default constructor
public TradeException() : base("Trade Exception
Thrown")
{
}
// Custom constructor that receives a string
public TradeException(string msg) : base(msg)
{
}
// Constructor that receives string and Exception
public TradeException(string message,Exception exp)
: base(message,exp)
{
}



32 Applied C# in Financial Markets

Example 3.15 shows how the TradeException is thrown if one of
the checks are not met.

Example 3.15: Throwing a TradeException
private void performValidations()
{
Boolean err = false;
StringBuilder msg = new StringBuilder();
msg.Append("Validation error has occurred:");
// Check trading Account
if (_tacct.Length == 0)
{
msg.Append("Blank Trading account - mandatory
field \n");
err = true;
}
// Check customer account
if (_custacct.Length == 0)
{
msg.Append ("Blank Customer account - mandatory
field \n");
err = true;
}
// Check quantity
if (qty < 0)
{
msg.Append ("Cannot have a negative quantity, use
buy or sell to correct \n");
err = true;
}
if (_bs.Length == 0)
{
msg.Append ("Must have either a buy or sell\n");
err = true;
}
if (_symbol.Length == 0)
{
msg.Append ("Symbol is required - mandatory
field \n");
err = true;



Object Oriented Programming 33

if (err)
{
throw new TradeException(msg.ToString());
}
}

Example 3.16 shows how the TradeException is handled on the
form with the exception being caught using the try and catch blocks.

Example 3.16: User defined Exception TradeException being
handled in a block of code
try
{
Trade tr = new Trade(tacct,custacct,qty,price,bs,
symbol,ccy,fx);
¥
catch (TradeException except)
{
MessageBox.Show(except.Message) ;
¥
finally
{
// Refresh the grids
pHandler.reloadData("all");
// Clear the input box
clearFields();

3.1.3 Workshop: Exercise one

This workshop is the first in a series of workshops that are built on
throughout the book. The idea is that by building on the workshops the
end result is a relevant application; an options calculator was chosen for
its simplicity in terms of building an application. Each workshop takes
the application a step further as well as giving you the chance to put into
practice some of the concepts you have just learnt.

The specification has been written and can be found in Appendix A;
in addition, a diagrammatic representation of the options calculator can
be seen in Appendix B. The actual models implemented in creating the
workshops can be seen in Appendix C, along with details of how to
download the source files.



34 Applied C# in Financial Markets

The first part of the workshop is to create a new Windows application
project. By default a Windows form is added to the project. Add the
following components on the form.

Text boxes and labels
Strike price
Stock Price
Volatility
Risk Free rate
Result (set to read-only and use it to display the
price).
DateTime Picker
Expiry Date
Radio buttons
Put and call
Black Scholes and Implicit Finite-Difference
Button
Calculate

These form the input boxes required by the models to return a price.
Further components will be added onto the form as the exercises progress
through the book.

= Options Calculator D@gl

Help

Strike Price
Stock Price |
Wilatility

Risk Free rate I— F';E a’CCa«l':llll
i " put
Expiry Date 22 Seplember 2003 ¥
WYaluation Model

* Black Schales

" Implicit Finite-Difference

Calculate

Figure 3.1 Basic options calculation form



Object Oriented Programming 35

Create a new class that will encapsulate these input fields called op-
tion. Overload the constructor so that the constructor can take the input
parameters from the form as either text data directly from the form text
boxes or numeric data where the data have already been converted to
numeric data where applicable. Create the input parameters as read-only
properties.

For this exercise create a method called getMessage which returns a
string.

The final step is to add the event onclick to the calculate button, and
then in the code block create an option object passing the parameters
collected from the form. Call the getMessage method putting the output
to a MessageBox.

Try running the project, entering some values and clicking the cal-
culate button. If it all compiles and runs, the result of clicking the cal-
culate button should be a pop-up message returning the string from
getMessage.

You may have noticed that a system exception occurs if no values are
entered into the text boxes. There should be some validation in place to
trap the errors and inform the users that an error has occurred and what
steps they need to take to correct it.

At the absolute minimum some try/catch blocks need putting
around the parsing of the text to a numeric field. The better approach
is to perform the numeric parse in the option class and throw an
OptionException, catching it in the form. OptionException is not
a system exception and will need writing.

As we have learnt, an application exception must have the three con-
structors created to handle the various ways. Create a new class and
name it OptionException; base it around Example 3.14.

In the option class, where the numeric parsing is done, add some
validation. If there are any validation errors then an OptionException
needs throwing.

In the form class, place a try/catch block around the option object
to catch the OptionException and in the catch block alert the user to
the validation error, as shown in Figure 3.2.

3.2 INHERITANCE AND POLYMORPHISM

In C#, as in other Object Oriented languages, the ability to inherit from
other classes and interfaces introduces program reuse from a practical
approach. The methods and properties of one class can be used by other
classes that inherit from it. What this means in applied programming is



36 Applied C# in Financial Markets

L] Options Calculator Q@gl

Help
Stike Price

Wolatiity Yalidation error(s) have occured

Rizk Free rate Yolatility is a required Field
Strike Price is a required field
Risk free rate is a required Field

Expiry D ate 72 Sep_terr Stock price is a required field

WYaluation Model
* Black Schaoles

" Implicit Finite-Difference

Calculate

Figure 3.2 Validation error

that a set of common features are built into a base class and the specific
elements of functionality are built into the inherited class.

There are cases where each of the derived classes will need to have
their own customised method where the base class method is overridden.
This is known as polymorphism.

In the next section the application of inheritance and polymorphism
through base classes and interfaces is explored. An example will be
looked at through design to implementation. Note in C# that it is only
possible to inherit from one base class, otherwise known as single in-
heritance.

3.2.1 Applying inheritance and polymorphism to finance

The best way to understand how inheritance and polymorphism are
applied is to work through an example.

While derivative products have a number of shared attributes and
behaviour there are some features specific to each product.

In the futures and options trading application, the futures and op-
tions products are encapsulated into objects to hold the data needed and
provide methods to incorporate their behaviour.

There are several approaches to this. A class can written for each
product type encapsulating the properties and methods; the downside of



Object Oriented Programming 37

this approach is that there are common behaviours and properties that
would be duplicated in each class.

A better way is by using inheritance, and polymorphism. Looking at a
future and an option in detail we can compare the features of each prod-
uct and create a grid of common features and specific properties and be-
haviour. As seen in Table 3.2 there is much in common with the two types
of derivatives and some specific properties unique to the instrument.

In designing the product classes a base class is created to encapsulate
the common properties and methods; the Future and Option classes
inherit the base class and then are extended to encapsulate the specific
properties of each product.

Futures and options may share many attributes, but they do have some
specific data that are peculiar to the product type. Thus the base class
will have a method to retrieve the common data from the database and
supply a method to load the product specific data required by both the
Future and Option class. This then allows the Futures and Options
classes to implement their specific retrieval, thus exhibiting polymorphic
behaviour.

The Add to Database, addToDB, method can be defined in the base
class and written in such a way that it can handle the insertion to the
product tables for both products.

Table 3.3 shows the relationship between the base class and the
Future and Option classes. The base class Derivative contains
the common properties and methods. The Option and Future classes
contain their own implementation of the loadExtrasFromDB method,
which loads product-specific properties from the database.

Table 3.2 Comparison of the properties and behaviour of a Future and an Option

Property/behaviour Future Option
Name X X
Days to expiry X X
Strike price X X
Symbol X X
Underlying price X X
Underlying symbol X X
Delta X X
Contract size X

Put or Call X
US or Euro style X
Volatility X
Add to database X X
Retrieve from database X X




38 Applied C# in Financial Markets

Table 3.3 A representation of the base class Derivative and
the classes Option and Future that inherit from them

Derivative

Derivative (string)
Derivative (Hashtable)

Delta
expiryDays
name
strike
symbol
ulPrice
ulSymbol

addToDB (string)
loadDataFromDB ()
loadExtrasFromDB ()

Option Future

Option (string) Future (string)
Option (Hashtable) Future (Hashtable)
loadExtrasFromDB () loadExtrasFromDB ()

Having looked at how to approach the creation of the objects and the
relationship between them we will now examine how it is done in C#.

Declaring the Derivative class as an abstract class means that the
class cannot be instantiated directly and may only be used as a base
class. Example 3.17 shows how the class is declared abstract.

Example 3.17: Abstract class declaration
public abstract class Derivative
{
}

The next step is to declare a Hashtable to hold the data as shown in
Example 3.18; in a simple class this would be held in a private instance
variable. As this is a base class this variable must be visible in the
inherited classes and is thus declared protected, which means it cannot
be accessed outside the derived class.

Example 3.18: Declaring a protected Hashtable to make it accessible
in Option and Future

// Declare private variables

protected Hashtable derivAttrib = new Hashtable();



Object Oriented Programming 39

The method loadExtrasFromDB () is implemented differently in the
Future and Option classes to accommodate the different attributes of
these products. The ability to implement different functionality in the
same method is known as overriding. The method is declared as virtual,
as illustrated in Example 3.19 to allow overriding. This must be done as
all methods are defaulted to non-virtual and thus may not be overridden.

Example 3.19: Creating a virtual method
protected virtual void loadExtrasFromDB(){}

The constructors and common properties are then created in the base
class Derivative; this can be seen in Example 3.26 where a full listing
of the Derivative, Option and Future classes is shown.

Having written the Derivative class the Option class must now be
written. The class is declared with the colon followed by Derivative,
as shown in Example 3.20, meaning that the class inherits from
Derivative.

Example 3.20: Option inherits from Derivative
public class Option : Derivative

{

by

The next step is writing the constructors for the class Option. Inher-
iting from Derivative means that it must implement the same con-
structors as Derivative; note that Derivative did not have a default
constructor. Example 3.21 shows the Option class declaring the two
constructors, with the base keyword specifying that the base constructor
be called when the object Option is instantiated.

Example 3.21: Declaring the constructors and specifying that the con-
structor in the base class be used

public Option(string symbol) :base(symbol)

{

}

public Option(Hashtable h):base(h)

{

}

The loadExtrasFromDB method is overridden in the Option class,
the override keyword indicating that the method is being overridden,



40 Applied C# in Financial Markets

thus displaying polymorphic behaviour. The extra fields are appended
into the Hashtable that contains the class data.

Example 3.22: Overriding the 1loadExtrasFromDB method from the

base class Derivative

protected override void loadExtrasFromDB()

{
string sql = "select putCall,euroUSType from
tblProduct where pSymbol = ‘" + base.symbol + "’";
DBHandler db = new DBHandler();

DataSet ds = db.dbSelect(sql);

DataRow dr = ds.Tables[0] .Rows[0];
_derivAttrib.Add("putCall", (dr["putCall"].ToString())

.Substring(0,1). ToLower());

_derivAttrib.Add("usEuro", (dr["euroUSType"].ToString
()) .Substring(0,1). ToLower());

The extra properties that are required for the Option are added in the
usual way of declaring properties as shown in Example 3.23.

Example 3.23: Option specific properties

public string putCallType{ get {return (string)
_derivAttrib["putCall"];}}

public string usEuro{ get {return (string)
_derivAttrib["usEuro"];}}

The next class to be written is the Futures class which is similar
in structure to the Options class as it derives the methods and proper-
ties from the base class Derivative. The big difference is the proper-
ties implemented and the overridden method loadExtrasFromDB. The
Future class has the same implementation of the constructors using the
keyword base.

Example 3.24: Future class derived from Derivative
public class Future : Derivative
{

public Future(string symbol) :base(symbol)

{

}

public Future(Hashtable h):base(h)



Object Oriented Programming 41

{

}

public string contract{ get{return
(string) derivAttrib["contract"];}}

protected override void loadExtrasFromDB()
{
string sql = "select contractSize from tblProduct
where pSymbol = ‘" + base.symbol + "’";
DBHandler db = new DBHandler();
DataSet ds = db.dbSelect(sql);
Console.Write(sql);
DataRow dr = ds.Tables[0] .Rows[0];
_derivAttrib.Add ("contract",(int)dr["contractSize"]);

Now both classes are built with the inherited methods and properties
of the Derivative class. When the Option and Future objects are
instantiated the properties and methods are available from both the base
class of Derivative and the derived classes Option and Future. Ex-
ample 3.25 shows the Option class being instantiated and the properties
used.

Example 3.25: Option class being instantiated and the properties ref-
erenced
public void setParams(string symbol)

{

_symb = symbol;

Option o = new Option(_symb);

_T = o.expiryDays;

X = o.strike;

_callPut = o.putCallType;

_S = o0.ulPrice;

}

The full listing of the Derivative, Option and Future classes is
shown in Example 3.26.



42 Applied C# in Financial Markets

Example 3.26: The complete source code for the Derivative, Option
and Future classes
public abstract class Derivative
{
// Declare private variables
protected Hashtable _derivAttrib = new Hashtable();
//
public Derivative(string _symbol)
{
symbol = _symbol;
loadDataFromDB() ;
loadExtrasFromDB() ;
}
public Derivative(Hashtable hashFields)
{
StringBuilder field = new StringBuilder();
StringBuilder vals = new StringBuilder();
StringBuilder sql = new StringBuilder();
sql.Append ("INSERT INTO tblProduct ");
field.Append(" (");
vals.Append(" VALUES (");
ICollection keys = hashFields.Keys;
ICollection values = hashFields.Values;
foreach(string key in keys)
{
field.Append (key) ;
field.Append(",");
}
field.Remove(field.Length - 1,1); // remove the
last comma
field.Append(")");
foreach(string val in values)
{
vals.Append(val) ;
vals.Append(",");
}
vals.Remove(vals.Length -1,1); // chop the last
comma
vals.Append(")");
sql.Append(field.ToString());
sql.Append(vals.ToString());



Object Oriented Programming 43

addToDB(sql.ToString());
}

public string name

{
get{ return (string) derivAttrib["name"];}
set{_derivAttrib["name"] = value;}

}

public string symbol
{
get{ return (string)_derivAttrib["symbol"l; }
set{_derivAttrib["symbol"] = value;}
}
public string ulSymbol
{
get {return (string)_derivAttrib["ul"];}
}
public double delta
{
get {return (double) _derivAttrib["delta"];}
}
public double strike
{
get
{return (double) _derivAttrib["strike"];}
}

public double expiryDays
{
get {return (double) derivAttrib["expDays"];}
}
public double ulPrice
{
get
{return (double) _derivAttrib["ulPrice"];}
}

private void loadDataFromDB(){
string sql = "select underlySymbol,delta,strike,
expiry from tblProduct " + " where pSymbol =" +



44 Applied C# in Financial Markets

(string) derivAttrib["symbol"] + "’";
DBHandler db = new DBHandler();
DataSet ds = db.dbSelect(sql);
DataRow dr ds.Tables[0] .Rows [0] ;
DateTime expire = (DateTime)dr["expiry"];
DateTime today = new DateTime();
today = DateTime.Now;
TimeSpan t = expire.Subtract(today);
_derivAttrib.Add("ul", (string)dr ["underlySymbol"]);
_derivAttrib.Add("delta", (double)dr["delta"]);
_derivAttrib.Add("strike", (double)dr["strike"]);
_derivAttrib.Add("expDays", (double)t.TotalDays);
// get the underlyer information
sql = "select price from tblPrices where pSymbol =
‘" + (string)dr["underlySymbol"] + "’";
ds = db.dbSelect(sql);
if (ds.Tables[0].Rows.Count > 0)
{

dr = ds.Tables[0].Rows[0];

_derivAttrib.Add("ulPrice", (double)dr["price"]);

}
else
{
_derivAttrib.Add("ulPrice",0.00);

}

private void addToDB(string sql)

{
DBHandler db = new DBHandler();
string res = db.dbInsert(sql);
if (res.Length>0)
{

LogError 1Err = new LogError(res);

3

}

protected virtual void loadExtrasFromDB(){}

public class Option : Derivative



Object Oriented Programming 45

public Option(string symbol) :base(symbol)

{

}

public Option(Hashtable h):base(h)

{

}

public string putCallType{ get {return (string) _deriv
Attrib["putCall"];}}

public string usEuro{ get {return (string)
_derivAttrib ["usEuro"];}}

protected override void loadExtrasFromDB()
{
string sql = "select putCall,euroUSType from
tblProduct where pSymbol = ‘" + base.symbol
+ nomy
DBHandler db = new DBHandler();
DataSet ds = db.dbSelect(sql);
DataRow dr = ds.Tables[0] .Rows[0];
_derivAttrib.Add("putCall", (dr["putCall"].ToString
()) .Substring(0,1) .ToLower());

_derivAttrib.Add("usEuro", (dr ["euroUSType"].ToString

()) .Substring(0,1) .ToLower());
}

public class Future : Derivative

{

public Future(string symbol) :base(symbol)
{

}

public Future(Hashtable h):base(h)

{

}

public string contract{ get{return

(string) _derivAttrib["contract"];}}

protected override void loadExtrasFromDB()



46 Applied C# in Financial Markets

string sql = "select contractSize from tblProduct
where pSymbol = ‘" + base.symbol + "’";

DBHandler db = new DBHandler();

DataSet ds = db.dbSelect(sql);

Console.Write(sql);

DataRow dr = ds.Tables[0] .Rows[0];
_derivAttrib.Add("contract",(int)dr["contractSize"]);

3.2.2 Interfaces

[access] interface name {code body}

Interfaces describe the behaviour of a class as a set of methods, proper-
ties, and events. In defining an interface all the methods and properties
are guaranteed in the implementation.

interfaceisakeyword used to define the interface in a similar way to
how a class is defined. An abstract class is similar to an interface, except
it uses the abstract keyword in place of the interface keyword, and
for example an abstract class may contain non-virtual methods whereas
an interface may only describe the methods. For a list of the important
differences, see Table 3.4. The big difference is that when it comes to
implementation you may only inherit one class, whereas you can inherit
multiple interfaces.

Implementing interfaces

In this section interfaces are examined from a practical viewpoint and
from the perspective of using inheritance in a financial application. In the

Table 3.4 Differences between abstract classes and interfaces

Description Abstract class Interface
Keyword abstract interface
May contain non-overridable methods? Yes No
Inheritance Single Multiple
Instance variables Yes No
Constructors Yes No

Include private or protected methods Yes No




Object Oriented Programming 47

last section we looked at the derivative products Options and Futures.
As we have seen they have many common properties and behaviour but
each product has specific features. Not surprisingly pricing futures and
options are different but they do share some behaviour; the options are
priced using the Black Scholes model and the futures get their prices
from an exchange feed.

Both options and futures need some parameters to be able to get the
price from either the model or a price feed, and they both have a way of
returning the price. This behaviour is defined in an interface as shown
in Example 3.27 in defining Iprice. Convention in C# is that interfaces
are named with a capital I before the name to denote the type to be an
interface.

Example 3.27: Price interface
public interface Iprice

{

void setParams(string symb);
double getPrice();

}

Two classes are created that inherit from Iprice and implement the
methods setParams and getPrice. The syntax for inheriting from an
interface is exactly the same as that from a base class, which is a colon,
followed by the interface name.

There is no limit on the number of interfaces inherited, but each prop-
erty and method defined must be implemented.

When implementing the methods the method name must match but
there is no override keyword as in inheriting from a base class.

Example 3.28 shows how the two classes OptionsPrice and
FuturePrice implement the methods setParams and getPrice. The
OptionsPrice class has two private methods to compute the price in
addition to implementing the methods as required by the interface.

Example 3.28: OptionsPrice and FuturePrice classes
public class OptionsPrice : Iprice
{
// declare private variables
private const double r = 0.04; // risk free rate
private double _S; // Stock price
private double _T; // Days to expiry
private double X; // Strike



48 Applied C# in Financial Markets

private double _v; // volatility
private double _price;
private string _callPut;
private string _symb;
//
public OptionsPrice()
{
¥
public void setParams(string symbol)
{
_symb = symbol;
Option o = new Option(_symb);

_T = o.expiryDays;

X = o.strike;

_callPut = o.putCallType;
S = o0.ulPrice;

v = 0.vol;

}
public double getPrice()
{

_price = BlackScholes(_callPut, S, X, T, r, v);
return _price;
}
private double BlackScholes(string CallPutFlag,
double S, double X, double T, double r, double v)

{
double d1 = 0.0;
double d2 = 0.0;
double dBlackScholes = 0.0;
try
{

dl = (Math.Log(S / X) + (x + v *x v / 2.0) *T) /
(v * Math.Sqrt(T));
d2 = d1 - v * Math.Sqrt(T);
if (CallPutFlag.ToLower() == "c")
{
dBlackScholes = S * CumulativeNormal
Distribution(dl) - X
* Math.Exp(-r * T) * CumulativeNormal
Distribution(d2);



Object Oriented Programming 49

}

else if (CallPutFlag.ToLower() == "p")

{
dBlackScholes = X * Math.Exp(-r * T) *
CumulativeNormalDistribution(-d2) - S *
CumulativeNormalDistribution(-dl);

}

3
catch (System.DivideByZeroException e)
{
LogError eL = new LogError(e);
X
return dBlackScholes;
3
private double CumulativeNormalDistribution(double X)

{

I

double L

double K = ;

double dCND = 0.0;

const double al 0.31938153;

const double a2 -0.356563782;

const double a3 = 1.781477937;

const double a4 -1.821255978;

const double ab 1.330274429;

const double pi = Math.PI;

try {

L = Math.Abs(X);

K=1.0/ (1.0 + 0.2316419 * L);

dCND = 1.0 - 1.0 / Math.Sqrt(2 * pi ) *
Math.Exp(-L * L / 2.0) * (al * K + a2 * K * K
+ a3 * Math.Pow(K, 3.0)+ a4 * Math.Pow(K, 4.0)
+ ab * Math.Pow(K, 5.0));

0.0
0.0

b
catch (System.DivideByZeroException e)
{
LogError eL = new LogError(e);
3
if (X < 0)

{



50 Applied C# in Financial Markets

return 1.0 - dCND;
}
else
{
return dCND;
}

public class FuturesPrice : Iprice
{

// Declare private variables

private string _symbol;

private double _price;

//

public FuturesPrice()

{

}

public void setParams(string symbol)

{
_symbol = symbol;

}

public double getPrice()

{
// would normally subscribe to a price feed.
DBHandler db = new DBHandler();
string sql = "select price from tblPrices where
pSymbol = ‘" + _symbol + "’";
DataSet ds = db.dbSelect(sql);
DataRow dr ds.Tables[0] .Rows [0];
_price = (double)dr["price"];
return _price;

There are now two pricing classes, one for Futures and one for
Options, with the same methods and constructors with a different im-
plementation specific to the instrument type.

By using an interface to define pricing a level of consistency has been
introduced to the price classes. This has obvious advantages for the
maintenance of the code, particularly where the price objects are used.



Object Oriented Programming 51

A more obvious solution is to group the price objects and use the
methods setParams and getPrice as generic methods irrespective of
product type. This simplifies the code further as there is no need to
evaluate which product is being called for a price. This is accomplished
by creating a factory class that is designed to return the price for the
instrument type.

Table 3.5 shows how the factory class Pricer sits on top of the pricing
classes, which in turn inherit from the pricing interface.

The Pricer class as illustrated in Example 3.29 is designed to load the
relevant pricing object and, taking advantage of the uniform behaviour
of the classes, implements the setParams and getPrice methods.

The Pricer constructor is given the class name of the pricing class.
The next step is then to use the class name to dynamically load the
class. It is important that Pricer has no knowledge of the price classes,
thus making it easy to add new pricing classes without having to modify
Pricer. Indeed when building the application there was a need to return
the price for the underlying stock, thus a StockPrice class was written.
The Pricer class needed no modifications.

Table 3.5 The relationship between the price interface, price classes and
the factory class

Pricer

Pricer (classname, symbol)

getPrice()
setParams (symbol)

f

OptionsPrice FuturePrice StockPrice
getPrice() getPrice() getPrice()
setParams (symbol) setParams setParams

BlackScholes (string, (symbol) (symbol)

double, double, double,

double, double)
CumulativeNormal
Distribution (double)

f

Iprice

getPrice()
setParams (symbol)




52 Applied C# in Financial Markets

The classes are loaded dynamically by using the Ref lection names-
pace, where the metadata attributes can be accessed as needed at runtime.
A Type object is created using the GetType method, which searches the
namespace for the item requested.

Using the Type object’s method InvokeMember with the Create
Instance keyword, the price object is returned.

Having loaded the requested class, the methods are then available to
set the parameters, setParams, and the important getPrice method to
retrieve the price.

Example 3.29: Factory class Pricer
public class Pricer
{
// declare private variables
private Iprice _price;
//
public Pricer(string className)
{
Type priceType = Type.GetType("TradingApplication.
" + className) ;
_price = (Iprice)priceType.InvokeMember (className,
BindingFlags.CreateInstance, null, null, null);
}
public void setParams(string symb)
{
_price.setParams(symb) ;
}
public double getPrice()
{
return price.getPrice();

}

Example 3.30 shows how the Pricer object is called; the variable
‘price type’ is held on the product table and contains the class name
needed to correctly price the product. The class name is stored to the
field priceType on the creation of the product.

Example 3.30: Pricer factory class used to return the price
string price = "0";
string priceType = dr(["priceType"].ToString();



Object Oriented Programming 53

Pricer p = new Pricer(priceType);
p.setParams (dr ["pSymbol"].ToString());
price = p.getPrice() .ToString();

The factory class is a much-simplified way of getting a price for a
collection of products, the other benefit being that if a further product
type were to be added to the application, only the specific class would
need to be written to handle it and the Pricer would always know how
to return the correct reference.

3.2.3 Multiple threading or asynchronous programming

Those with C++ and/or Java experience may be familiar with the con-
cepts of multi-threading. The big advantage of multiple threading or
concurrent programming is that a number of requests can be issued at
once leaving the main process to continue without having to wait for
each request to process sequentially.

An example taken from the futures and options application is that the
FX rates are loaded from a file which, depending on the network and the
size of the file, could slow the application down. The best way would
therefore be to kick off a new thread to read the file and load the rates
to a list box, allowing the main form to continue loading.

This section will look at the concepts of multiple threading. Given
that much of the C# work typically done in finance is more likely to be
in creating Windows applications, the scope for asynchronous program-
ming outside the event driven forms will be limited. It is important to
understand how it works, however, as much of the underlying code of
the forms and components work using multi-threaded processes.

Threads and monitor

The two key classes in multiple threading are Thread and Monitor.
Threads exist in several states and are tracked by the methods of the
Monitor class such as Wait and Pulse.

Thread states

The lifecycle of a thread is broken down into a number of states, as
shown in Table 3.6.

A thread is created with the new keyword but can only be started with
the method Start. At this point the Thread then enters the Started
or Runnable state. The started or runnable thread is then assigned a



54 Applied C# in Financial Markets

Table 3.6 Thread states

Unstarted Started Running WaitSleepJoin

Suspended
> > >

Stopped
Blocked

processor by the operating system. Once it starts running it executes a
ThreadStart process; this specifies the action taken by the Thread
during its lifecycle.

In Example 3.31 a Thread is initialised with a ThreadStart call-
ing the fillFXBox method. Once initialised the Thread has the
IsBackground property set to run the thread in the background; the
Thread is set to background so that if the application crashes the CLR
ensures that the Thread is aborted. The Thread is then started using the
Start method.

Example 3.31: Process started in a new Thread

private void initializeFX()

{

Thread fxthread = new Thread(new
ThreadStart (fil1FXBox)) ;
fxthread.IsBackground = true;
fxthread.Start();

}

Monitor class

One of the issues in a multi-threaded program is that there may be sec-
tions of code that may only be accessed by one process at a time, for
example, performing database transactions where some sort of lock-
ing will be needed to ensure data integrity. By placing lock(object
reference) {3} around a block of code enables Monitor to action its
methods of Enter, Exit, Pulse and PulseAll.

Monitor locks are placed around methods as an alternative to us-
ing a ‘lock block’. Once the block of code is being executed within
the monitor block, then any subsequent calls must wait until the
Monitor.Exit (this) releases the lock.

Pulse moves the next Thread back to the Started state; PulseAll
moves all waiting Threads back to the started state.



Object Oriented Programming 55

Thread priorities

There are five values ranging from AboveNormal to BelowNormal. The
Thread scheduler ensures the highest priority runs at all times.

3.2.4 Workshop: Exercise two

To recap on what we are trying to accomplish; the exercises take you
through building an options calculator that allows a trader to enter a
number of parameters and choose the valuation model. We have begun
by creating a Windows application with a basic form, an option class and
an option exception class. We now come to the ‘guts’ of the application,
which calls the models to value the option. For further details on the
specification and the system design please refer to Appendices A and B.

In this exercise both approaches of inheritance will be examined
from a base class and from an interface. The code for the models can
be seen in Appendix C where there are also details on how to download
the class files.

Beginning with the design, the models take some input parameters and
return a price. Write an interface Imodel to accept a list of parameters
and return a price. This encapsulates the behaviour that was described.

Now write the base class Model for the models; as we have learnt base
classes are very powerful when used to process common behaviour and
set common properties. The two models need comparing as illustrated
in Table 3.7, which will ensure that we can easily understand how they
overlap and what is specific to the individual model.

The way a price is derived and returned when the models are called
will vary, so we will make it a virtual class, which is overridden in the
model implementation classes.

The input parameters as seen in Table 3.7 are the same and can be
standardised in the form of an ArrayList that is fed into the individual

Table 3.7 Comparison of the model properties and behaviour

Black Scholes Implicit Finite-Difference
Return a price X X
Volatility input X X
Risk free rate input X X
Stock price input X X
Put or call X X
Time to expiry X X




56 Applied C# in Financial Markets

model classes, thus the model classes can inherit the base method of
setParameters.

The next step is to implement the Imodel interface with a
BlackScholesModel and an ImplicitFiniteDifferenceModel
class. Once this is done we need to implement the two models using
the base class Model.

Using Table 3.3, which shows the main differences between the ab-
stract and the interface classes, as a guide compare the two versions of
the model classes, the ones written using the interface Imodel and the
others with the base class Model.

Now that the classes are created, they need linking to the Windows
application by adding the code to call the models from the calculate
button on the form and write the results to the read-only text box created.

3.3 SUMMARY

In this section we have looked at Object Oriented programming and how
itis applied in finance. The basic class structure has been looked at, along
with how constructors are written and overloaded with the advantage of
being able to create an object and pass different parameters to initialise
it as required.

E Options Calculator g@@] |

Help

Strike Price 500
Stock Price (325
Yolatility 023

Risk Free rate ,UU4— P[EE 4 Etl':ll"
* ca
i " put
SRl 22 December 2003 ~
Yaluation M odel
™ Black Schaoles 42 1457731985041

* |mplicit Finite-Difference

Calculate

Figure 3.3 Calculator with the models implemented



Object Oriented Programming 57

Methods and properties have been explained and how the methods and
properties are accessed, through the access modifiers, and it was shown
how to hide variables and methods by using the private or protected
keywords.

We have explored the importance of inheritance and polymorphism
with a practical example of creating products. The base Derivative
class encapsulated the common features of the futures and options al-
lowing them to share functionality and properties. In addition to imple-
menting the specific behaviour of the futures and options, the concept
of polymorphism was introduced; this is where a virtual method de-
fined in the base class is implemented for each product type using the
override keyword.

Interfaces were then introduced as a way of guaranteeing a class
structure when implemented; by defining a structure it helps greatly
in readability of the code and makes maintenance of code easier.

In implementing the Iprice interface the two classes OptionPrice
and FuturesPrice have differing levels of complexity in classes but
a unified set of methods as defined by the interface. With the unified
methods, this meant that a factory class could be created to manage the
classes and provide a single point of access irrespective of the product
type. The factory class used the Reflection namespace to get class
information in runtime and create the necessary instances.

Finally, multi-threading or asynchronous programming was exam-
ined. Much of the Windows applications written use threading exten-
sively as through it the forms are event driven. The application of thread-
ing in the context of doing file retrieves was looked at and how to create
and kick off an object in a new thread.

The use of inheritance, with base classes and interfaces, form the core
of Object Oriented programming in C#. The advantages are in reusable
objects which in turn cuts down on the amount of code written and makes
maintenance easier. The ease of modifying existing applications is key
to finance applications, which need to keep up with the evolving nature
of the industry.






4

Databases

In finance, the need to retrieve or update a database is a key part of most
applications. For those familiar with ADO, the big change from ADO to
ADO.NET is that ADO.NET is a disconnected data architecture. With a
disconnected data architecture the data retrieved are cached on the local
machine and the database is only accessed when you need to refresh or
alter the data. In the futures and options trading system, the requirement
to access the database is constant, from reading product information to
booking trades and positions.

ADO.NET includes classes to handle SQL server and OLE com-
pliant databases such as Access, but to work with ODBC compliant
databases such as Sybase, you will need to download the ODBC .NET
Data Provider from the Microsoft website.

41 ADO.NET OBJECT MODEL

DataAdapter and DataSet objects are the two key objects for man-
aging data. The two objects split the logic of handling data into sec-
tions; DataSet manages the client end and DataAdapter manages the
DataSet with the data source. Data Adapter is responsible for the syn-
chronisation, where applicable, and has the methods to interact with the
database directly.

DataSet is notjustrepresentation of data retrieved from a table; it also
handles relationships DataRelations, Constraints, and Tables
collections. The data cannot be directly accessed through the DataSet;
instead a DataTable is returned that contains a collection of Rows and
a collection of Columns.

Note: DataSets can also be used to create ‘data source-less’ tables,
which can be handy for client-side temporary data or working with XML
documents.

4.2 CONNECTING TO THE DATABASE

There are several DataAdapter classes: the SqlDataAdapter for
use with Microsoft’s SQL server; the 0leDbDataAdapter for OLE



60 Applied C# in Financial Markets

compatible databases (both these are included with Visual Studio .NET);
and the OdbcDataAdapter used with ODBC compliant databases.

All are instantiated in the same way as shown in Example 4.1 where
a connection is made to a Microsoft SQL server and one to a Sybase
database.

Example 4.1: Instantiating DataAdapter classes
SqlDataAdapter sqlDA = new SqlDataAdapter
(sqlCommand, sqlConnection) ;

OdbcDataAdapter sybaseDA = new
OdbcDataAdapter (sqlCommand, sqlConnection) ;

The relevant references to the database type classes must be included at
the top of the class as shown in Example 4.2.

Example 4.2: References to the various data classes
using System.Data.SqlClient;

using System.Data.(0leDb;

using Microsoft.Data.(Odbc;

sqlConnection is the string used to configure the connection to the
database; this varies between providers as to the information that is
required to connect to the databases.

sqlCommand is used to pass a string of SQL, such as a stored procedure
name or sql select statement.

Once the DataAdapter has been created, the next step is to create a
DataSet as a container for the data retrieved as shown in Example 4.3.

Example 4.3: Creating DataSets
DataSet sqlDS = new DataSet();
DataSet sybaseDS = new DataSet();

Once the DataSets have been created using the Fill method of the
DataAdapter, object rows of data are added to the DataSet as specified
in the sqlCommand illustrated in Example 4.4.

Example 4.4: Loading the DataSet with data
sqlDA.Fill(sqlDS);
sybaseDA.Fill(sybaseDS) ;

Table 4.2 in section 4.5 illustrates how the various classes intercon-
nect.



Databases 61

4.3 CONNECTION POOLS

The overheads of connecting to a database are often higher than running
a short query. With this in mind there are advantages to keeping a num-
ber of database connections alive in a connection pool and returning a
connection when needed.

An abstract class creates and manages the pool and a singleton class
returns a connection. Table 4.1 shows the relation between the abstract
class and the singleton.

Table 4.1 Singleton connection pool
class and the abstract DBConnection class

Connection Pool

getInstance

f

DBConnection

getconnection
releaseconnection

The constructor of the abstract class DBConnection (see Example
4.5) creates a number of connections and adds them to an ArrayList
of connections. There are two public methods: to get a connection and
to release a connection back to the pool.! If the request for a connection
is received and there are no more connections available then a new
connection is initialised and added to the ArrayList. The ability to add
connections when needed is important as the calling objects depend on
getting a connection.

Example 4.5: Database connection management class
public abstract class DBConnection
{
private ArrayList_connectionPool = new
ArrayList(Q);

!'This is a very simple example; in practice the initial number of connections and the DSN name would not
be hard-coded but derived from a file. This can be extended to handle a number of different databases and the
methods to get and return a connection would need expanding.



62 Applied C# in Financial Markets

private int_nextAvailable = O;
private const int_initialPool = 3;
//
public DBConnection()
{
initConnections();
}
public OdbcConnection getConnection()
{
_nextAvailable++;
if (_connectionPool.Capacity <=_nextAvailable)
{
addConnection(_nextAvailable);
}
OdbcConnection con = (OdbcConnection)_
connectionPool [ nextAvailable];
if (con.State.ToString() == "Closed")
con.0Open();
return con;
}
public void releaseConnection()
{
_nextAvailable-—;
}
private void initConnections()
{
for(int i=0;i<_initialPool;i++)
{
addConnection(i);
}
3
private void addConnection(int i)
{
string dsn = "DSN=TradingApp";
_connectionPool.Add(new 0OdbcConnection(dsn));

With the base class having been written, the next step is to wrap it
around a singleton class as shown in Example 4.6 and this is how the
connection pool holds the connections.



Databases 63

With a default or public constructor, if a new instance of the connection
is created then the connections to the database are created each time thus
defeating the purpose of a pool. With a singleton the constructor is made
private and the only way to get a connection is through the Get Instance
method, which returns a ConnectPool object that is held or creates one
as required. Note the class access modifier is set to sealed to prevent
this class being inherited and the constructor or methods overridden.

Example 4.6: Singleton ConnectPool class
sealed class ConnectPool
TradingApplication.DBConnection
{
private ConnectPool()
{
}
public static ConnectPool GetInstance()
{
if (con == null)
{
con = new ConnectPool();
}
return con;
}
private static ConnectPool con;

3

The ConnectPool is created and deployed as shown in Example 4.7.
The ConnectPool object is created using the method GetInstance,
the connection returned and at the end of the method the connection is
released in the finally block.

Example 4.7: Connection pool being used in the dbSelect method
public DataSet dbSelect(string sqlstr)
{
ConnectPool ¢ = ConnectPool.GetInstance();
OdbcConnection con = c.getConnection();
DataSet DSet = new DataSet();
try
{
_dbAdapter.SelectCommand = con.CreateCommand () ;
_dbAdapter.SelectCommand.CommandText = sqlstr;
_dbAdapter.Fill(DSet);



64 Applied C# in Financial Markets

}
catch (OdbcException dbE)
{
LogError eLog = new LogError(dbE);
elog.writeErr(sqlstr);
DSet = null;
}
finally
{
c.releaseConnection();
}
return DSet;

4.4 DATABASE HANDLER

As the database components lend themselves to a good deal of flexibility,
the downside is that it can be a little complicated. There are components
to drag and drop onto a form to handle data as well as the classes to
communicate directly with the database.

By wrapping up the functionality into a class, as shown in Example
4.8, the database calls can be simplified. There are four methods, select,
insert, update and delete, with the select method returning the
data as DataSet.

Example 4.8: A database handler class
public class DBHandler
{
// Declare private variables
private OdbcDataAdapter_dbAdapter = new
OdbcDataAdapter () ;
private System.Data.DataSet_dbDataSet = new
System.Data.DataSet () ;
//

public DBHandler ()
{
}

public DataSet dbSelect(string sqlstr)
{



Databases 65

ConnectPool ¢ = ConnectPool.GetInstance();

OdbcConnection con = c.getConnection();

DataSet DSet = new DataSet();

try

{
_dbAdapter.SelectCommand = con.CreateCommand() ;
_dbAdapter.SelectCommand.CommandText = sqlstr;
_dbAdapter.Fill(DSet) ;

}
catch (OdbcException dbE)
{
LogError elLog = new LogError(dbE);
elog.writeErr(sqlstr);
DSet = null;
}
finally
{
c.releaseConnection();
}
return DSet;
}
public string dbInsert(string sqlstr)
{

ConnectPool ¢ = ConnectPool.GetInstance();

OdbcConnection con = c.getConnection();

string retVal ="";

try

{
_dbAdapter.InsertCommand = con.CreateCommand() ;
_dbAdapter.InsertCommand.CommandText = sqlstr;
_dbAdapter.InsertCommand.ExecuteNonQuery() ;

}

catch (OdbcException dbE)

{
LogError logE = new LogError(dbE);
logE.writeErr(sqlstr);
retVal = dbE.Message;

}

finally

{

c.releaseConnection();



66

Applied C# in Financial Markets

}

}

return retVal;

public string dbDelete(string sqlstr)

{

ConnectPool ¢ = ConnectPool.GetInstance();
OdbcConnection con = c.getConnection();
string retVal ="";
try
{
_dbAdapter.DeleteCommand = con.CreateCommand() ;
_dbAdapter.DeleteCommand.CommandText = sqlstr;
_dbAdapter.DeleteCommand.ExecuteNonQuery() ;
X
catch (OdbcException dbE)
{
LogError logE = new LogError(dbE);
retVal = dbE.Message;
}
finally
{
c.releaseConnection();
}

return retVal;

public string dbUpdate(string sqlstr)

{

ConnectPool ¢ = ConnectPool.GetInstance();
OdbcConnection con = c.getConnection();
string retVal ="";
try
{
_dbAdapter.UpdateCommand = con.CreateCommand() ;
_dbAdapter.UpdateCommand.CommandText = sqlstr;
_dbAdapter.UpdateCommand.ExecuteNonQuery () ;
3
catch (OdbcException dbE)
{
LogError logE = new LogError (dbE);
retVal = dbE.Message;



Databases 67

}
finally
{
c.releaseConnection();
¥
return retVal;

}

4.5 WORKING WITH DATA

Those of you familiar with ADO will need to move away from the
RecordSet concept of .moveFirst, .moveNext and .movelLast as
this is done differently in ADO.NET.

Rather than iterate through the DataSet object directly there is a
series of collections that need accessing; the hierarchy is illustrated in
Table 4.2. The DataSet has a collection of Tables; these in turn contain
acollection of Rows and Columns. The Rows collection can be referenced
by item or by number.

Table 4.2 The hierarchical relationship between DataSet, DataAdapter and the
Tables, Rows, and Columns

sglDataAdapter
OleDataAdapter
OdbcDataAdapter
DataSet
Tables
Rows
Columns

Example 4.9 shows how a DataSet is created, the DataRow extracted
and the item read and stored into a string.

Example 4.9: Extracting data from a DataSet, Table, and Row col-
lection
DataSet ds = pHandler.getDataByAcctCategory
("trading");



68 Applied C# in Financial Markets

DataRow dr = ds.Tables[0].Rows[this.gridPositionTrade
.CurrentRowIndex] ;
string cat = dr["category"].ToString();

Because the architecture is disconnected DataTables can either be
created or derive from a query. DataColumns represent the columns of
data and form a collection contained in the DataColumnCollection.

DataRelations represents relationships between tables through
DataColumn objects. The DataSet object has a relations property
which returns a DataRelationCollection. The DataRelation sup-
plies a rich array of functionality but it does depend on well-defined
indexed relational data.

4.6 TRANSACTIONS

In this section we look at how the DataAdapter keeps the records syn-
chronised with the database. There are a number of methods that you may
use to update or insert arecord. The DataAdapter has InsertCommand,
UpdateCommand and DeleteCommand to process the updates, inserts or
deletes.

C# has a number of methods to update the database. For proto-typing,
dragging and dropping components onto a Windows form and linking
them directly to a grid will create a quick way of viewing and updating a
database. However, for scalability and use within Enterprise applications
the direct method of accessing the database is preferred, as the solution
will be more compact.

This section will concentrate on the direct approach of creating a
command or calling a stored procedure and executing it.

Looking at an update transaction in detail, as shown in Example
4.10, the UpdateCommand method of the DataAdapter is initialised
with the CreateCommand from the ODBC data connection. The next
step is to assign the CommandText property the string of SQL or the
name of the stored procedure and any required parameters. Finally, the
ExecuteNonQuery method is called.

Example 4.10: An update method

public string dbUpdate(string sqlstr)

{
ConnectPool ¢ = ConnectPool.GetInstance();
OdbcConnection con = c.getConnection();



Databases 69

string retVal ="";

try

{
_dbAdapter.UpdateCommand = con.CreateCommand() ;
_dbAdapter.UpdateCommand.CommandText = sqlstr;
_dbAdapter.UpdateCommand .ExecuteNonQuery () ;

}

catch (OdbcException dbE)

{
LogError logE = new LogError(dbE);
retVal = dbE.Message;

}

finally

{
c.releaseConnection();

}

return retVal;

}

As discussed earlier there are several methods to update data in
C#, from using the visual drag and drop on forms to hand-coding
the direct communication to the data source. There is a ‘middle’
way of manipulating the data in a DataSet as C# provides a way
of updating the data using the DataSet class and the GetChanges
method. DataSet also contains the HasErrors property to ensure data
integrity.

Example 4.11 shows how to update the database by passing the
DataSet to the DataAdapter.

Example 4.11: Updating the database with a DataSet
dataAdaptDet.Update(ds,"Positions");

The Update method is not the final step as the AcceptChanges or
RejectChanges methods must be called. Failure to do so means
the DataSet will always have the changes flagged and when the
DataAdapter is called it will try and commit them. This allows for error
handling, as shown in Example 4.12, by placing the methods around a
try/catch block, and calling the RejectChanges if a database error
is thrown.



70 Applied C# in Financial Markets

Example 4.12: Committing changes to the database
try
{
dataAdaptDet.Update(ds,"Positions");
ds.AcceptChanges();
}
catch (OdbcException dbE)
{
ds.RejectChanges();
MessageBox.Show(" Update not successful " +
dbE.Message) ;

4.7 WORKSHOP: EXERCISE THREE

By completing the first two exercises you have a working options cal-
culator that allows a trader to input the required parameters to value an
option and then choose the model.

By introducing databases we now have a way to read from and
write to a database, thus reading products created by another process
and publishing prices to the database for possible use by another ap-
plication.

In this chapter we have examined in detail how connections are made
and how they can be handled with a pool, and how the database interac-
tion may be wrapped up in a class.

At this point it may be useful to refer back to Example 4.6 for the
connection class, Example 4.7 for the connection pool, and Example 4.9
for the database handling class. These are available to download, details
of which are shown in Appendix C.

In this exercise we will concentrate on using these classes in the con-
text of our options calculator application. You will learn how to extract
the details of an option from a pull-down list from the database, and
pre-load some of the parameters such as stock price and volatility. The
exercise will familiarise you with the disconnected data environment,
and the interaction between DataAdapter and DataSet . See Table 4.3.

First, create the connection and database handler classes. Then create a
combo box on the form that displays the option description. On selection
of an option, populate the stock price, volatility, risk-free rate, and put
or call type fields.



Databases 71

Table 4.3 Data schema for Exercise three

tblOption

symbol string
name string
strike string
volatility double
underlyingPrice double
riskFreeRate double
putCall string

To handle the data retrieval it is better to encapsulate the behaviour
into a class, then assigning values to the form components should be
done in the form methods.

The complete code for the models and the sample calculator can be
downloaded at http://www.wileyeurope.com/go/worner. Please
follow the instructions on the website on how to download the code.

4.8 SUMMARY

Databases are at the centre of every finance application, and begin-
ning with the overview of ADO.NET and connecting to the databases
we have seen how the architecture is built around a disconnected data
model.

There are two sets of Data Adapter classes that are included in the
Visual Studio .NET IDE, one specifically for Microsoft’s SQL server,
the other for compatible relational databases. However, to use other
databases through an ODBC, the ODBC .NET Data Provider needs
downloading and adding to the project.

Connecting to databases may take up more resources and time than
running a reasonably short query to a database. By creating a pool
of connections the connections are held and managed by a singleton
class.

The database handler class was looked at to simplify the data access
methods; by encapsulating the steps needed to retrieve and modify data
in a single class the various steps required are hidden.

Working with a disconnected data model, ADO.NET is different to
the ADO model of moving through datasets. The collections Rows and
Columns are held in the DataSet class.



72 Applied C# in Financial Markets

Transactions were examined along with how the DataSet synchro-
nises with the database. Although there are automated ways provided in
C# that are useful for prototyping, there are a series of methods to update
the database directly that are more suitable for Enterprise applications.
Using the UpdateCommand, InsertCommand, and DeleteCommand
properties of the DataAdapter object the database transactions are man-
aged, and are well suited for either generated SQL statements or stored
procedures.



5
Input & Output

Financial applications often need to handle or generate flat files orig-
inating from vendors, exchanges or legacy systems. This section will
introduce you to the simpler forms of I/O — from reading files to writing
from files — and covers more complex I/O topics such as serialisation.
However, the more advanced topics such as socket connections and
TCP/IP will not be covered here.

In C# there is a rich set of methods for handling files and passing data
around in various formats, and those familiar with C++ or Java should
find it is straightforward.

When you move data around you are streaming data, and the .NET
framework does lots by providing abstracted files, directories, buffered,
and unbuffered streams.

5.1 STREAMS

Stream is the abstract class on which other classes are built to handle
reading or writing bytes to or from some storage.

FileStream is based on the abstract Stream class and performs the
read and write around a file as shown in Example 5.1.

Example 5.1: FileStream method
private void Filer()
{
byte[] data = new Byte[10];
FileStream fs = new FileStream("fx.txt",
FileMode.OpenOrCreate) ;
if (fs.Length == 0)
{
for(int i=0;i<10;i++)
{
datal[i] = (byte)i;
}



74 Applied C# in Financial Markets

fs.Write(data,0,10);
}
fs.Close();
}

The simple FileStreamis not massively efficient as it writes one byte
at a time. The BufferedStream handles byte data through an internal
buffer that the operating system manages and thus is more efficient.

With the BufferedStream the input and output is a Stream and
the BufferedStream is written to and read from. Once finished, the
BufferedStream must be flushed and then closed. The Flush method
ensures that the data are actually written out to the file.

The FileStream and BufferedStream both deal with data at a
byte level which gets a little unwieldy; not surprisingly, there are
StreamReader and StreamWriter classes that are designed to handle
text files. They support the methods ReadLine and WriteLine which
are more suited to handling text.

Example 5.2 shows how the StreamWriter class is used in a simple
logging method; in this case the file is opened with the Boolean flag set
to true denoting that the file is to be appended to. The error message is
written and the stream closed.

Example 5.2: Log writer using the StreamWriter

private void logWriter(string errMsg)

{
StreamWriter logger =new StreamWriter(_logFile,true);
logger.WriteLine (errMsg) ;
logger.Close();

}

5.2 SERIALISATION

With streams we have seen how to write and read binary and text to and
from files. Although these have a place for simple data, where you need
more flexibility in storing more complex data, C# provides the means to
do this using serialisation.

Serialisation converts the objects to binary when writing out and pro-
vides the means to reconstitute them when reading in. This means that
you can store your data as objects and read them back in as objects.

Looking at serialisation from a practical perspective, a series of points
of a yield curve need storing as an object, but before they are stored any



Input & Output 75

missing points need computing. The class, as shown in Example 5.3,
is marked with the [Serializable] attribute; Serialization and
Deserialization are used with the binary formatters.

Example 5.3: Yield class demonstrating serialisation
[Serializablel
public class Yield
{
public Yield(decimall[] curves,string CCY)
{
yield = curves;
yCurve = new decimal[yield.Length];
file = CCY + "curve.txt";
CookCurves() ;
Serialize();
}
private void CookCurves()
{
for(int i=0;i<yield.Length;i++)
{
try
{
if (yield[i]==0)
yCurve[i] = yield[I-1]+(yield[i-1] -
yield[i+1])/2;
else
yCurve[i] = yield[il;
}
catch (DivideByZeroException)
{
yCurve[i] = 0;
}
}
}
private void Serialize()
{
FileStream fs = new FileStream(file,FileMode
.Open) ;
BinaryFormatter bf = new BinaryFormatter();
bf.Serialize(fs,this);
fs.Close();



76 Applied C# in Financial Markets

public static Yield DeSerialize()
{
FileStream fs = new FileStream(file,FileMode
.Open) ;
BinaryFormatter bf = new BinaryFormatter();
return (Yield) bf.Deserialize(fs);
¥
public decimal[] getYield()
{
return yCurve;
}
private decimal[] yield;
private decimal[] yCurve;
private static string file;

In addition to Example 5.3, it is possible to mark some data
[NonSerialized] and implement IDeserializationCallBack to
perform some action on the object before it is returned to the
caller.

Looking at Example 5.3 you could make yCurve NonSerialized
and get the object to call CookCurve on retrieval and not before the data
are stored. To do this you would do the following.

Change the class to inherit the interface IDeserialization
Callback as shown in Example 5.4.

Example 5.4: Class Yield inheriting IDeserializationCallback
[Serializable]
public class Yield : IDeserializationCallback

Implement the interface as shown in Example 5.5.

Example 5.5: Implementation of OnDeserialization
public virtual void OnDeserialization(object sender)
{
CookCurves();
}



Input & Output 77

Change the private member yCurve to NonSerialized as shown in
Example 5.6.

Example 5.6: Declaring the instance variable yCurve as non-serialised
[NonSerialized] private decimal[] yCurve;

The benefit of doing this is to reduce the data stored, although there is
the extra overhead of calling the CookCurve method on deserialisation.
The solution implemented depends on the availability of disk-space to
write larger files set against the amount of processing power needed to
run the CookCurve method each time the object is retrieved.

5.3  WORKSHOP: EXERCISE FOUR

Continuing with the options calculator as done in the other workshops
we now look at reading and writing to files.

This workshop will be divided into two parts: the first section creates
a class that handles errors and appends the error messages to a file;
the second section will deal with reading a spreadsheet and parsing the
values.

Create a class called LogError and overload the constructors so that
it can take an exception or a string, then add a method to write the string
or exception message/stack trace to a text file.

Where the CumulativeNormalDistribution is derived from the
Black Scholes model there are a number of constants used to create
the distribution curve; these define the shape of the normal distribution
curve. As a modification to the calculator, we will introduce a read from
a spreadsheet where the traders can change the shape of the curve by
altering the numbers.

Either create a new class CumulativeNormalDistribution or
modify the method in the Black Scholes model class to read a CSV
file and use regular expressions to put the elements into an array.

The complete code for the models and the sample calculator can be
downloaded at http://www.wileyeurope.com/go/worner. Please
follow the instructions on the website on how to download the code.

5.4 SUMMARY

In handling files this section has looked at the low-level writing and
reading bytes to the StreamReaders and StreamWriters that make it
easier to deal with text files.



78 Applied C# in Financial Markets

With serialisation it becomes simple to pass objects around and we
have looked at the point at which objects are serialised, and which sec-
tions can be marked as nonserialisable. Although there is no right answer,
there is the flexibility of being able to utilise disk space or memory in
the solution implemented. The topic of serialising objects was examined
in the context of serialising and deserialising yield curves.

The section has covered a small but relevant part of I/O handling; there
are more advanced I/O features that have not been covered as these are
best looked at through MSDN, or a good C# reference book.



XML

XML can be thought of as a way of defining data in a document made up
of a series of defined tags in a hierarchical structure. XML is widespread
in financial applications as a means of passing information between dif-
ferent systems. C# contains a rich library of XML related classes, de-
signed to be able to read, write and more importantly to manipulate XML
documents. As the XML passed around financial applications are strictly
defined, they usually have DTDs or XML schemas associated with them.

6.1 SCHEMA VALIDATION

The purpose of schema validation is to ensure that the data contained in
an XML document conform to the definition set out in the schema, as
opposed to validating the syntax of the document tags.

The System.Xml.Schema namespace contains ways of creating or
reading in Xm1Schemas; the XmlValidatingReader and the associated
methods and properties then allow the document to be read and the nodes
validated.

Example 6.1 shows the generated schema from the XMLHandler class
that writes out a DataSet to XML.

Example 6.1: Document schema as generated from a DataSet
<?xml version="1.0" standalone="yes" 7>
<xs:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xs:element name="NewDataSet" msdata:IsDataSet="true"
msdata:Locale="en-GB">
<xs:complexType>
<xs:choice max0Occurs="unbounded">
<xs:element name="Table">
<xs:complexType>
<xs:sequence>
<xs:element name="category" type="xs:string"
minOccurs="0" />



80

Applied C# in Financial Markets

</

</xs

</xs:
</xs:
</xs:
</xs:
</xs:

C# has integrated ADO.NET tightly with XML. Within ADO.NET the
DataSet class has the ability to read from and write to XML. The first
step is to populate a DataSet as seen in Chapter 4. The two methods
eXmlSchema, and WriteXml write out the schema and data to XML

Writ

<xs:element name="putCall" type="xs:string"
minOccurs="0" />

<xs:element name="pName" type="xs:string"
minOccurs="0" />

<xs:element name="pSymbol" type="xs:string"
minOccurs="0" />

<xs:element name="Acct" type="xs:int"
minOccurs="0" />

<xs:element name="accountName" type="xs:string"
minOccurs="0" />

<xs:element name="CCY" type="xs:string"
minOccurs="0" />

<xs:element name="Amount" type="xs:decimal"
minOccurs="0" />

<xs:element name="Qty" type="xs:double"
minOccurs="0" />

<xs:element name="LongShort" type="xs:string"
minOccurs="0" />

<xs:element name="FXrate" type="xs:double"
minOccurs="0" />

<xs:element name="BaseCCY" type="xs:string"
minOccurs="0" />

<xs:element name="OpenPosition" type="xs:double"
minOccurs="0" />

<xs:element name="priceType" type="xs:string"
minOccurs="0" />

Xs:sequence>

:complexType>

element>

choice>

complexType>

element>

schema>

6.2 XML AND ADO.NET

files respectively.



XML 81

Example 6.2 is taken from the XMLHandler class in the futures and
options application, where the trades are exported into an XML file for
use by a Risk Management system.

Example 6.2: XML handler class that writes a DataSet to XML
public XMLHandler (DataSet ds)
{
ds.WriteXml(_file);
ds.WriteXmlSchema(_schema) ;

This is a useful way to ship data into an XML file directly from a
database; however, the structure of the XML document depends entirely
on the structure of the data source. As XML documents are designed to
be passed between differing systems, it is unlikely that the tag names
and the structure match the underlying DataSet.

Another approach is to create a new XML document from a DataSet
as shown in Example 6.3.

Example 6.3: New XML document being created from a database
XmlDataDocument xmlDoc = new XmlDataDocument(ds);

Armed with the Xm1DataDocument you can now access all the ele-
ments and get to all the properties and item data. In C# you can access
all the properties of the XML document such as the root name (shown
in Example 6.4).

Example 6.4: XML document root name property
xmlDoc.DocumentElement . Name;

There is also the ability to read through the nodes and manipulate the
data.

One of the main benefits of working with ADO.NET and XML is the
ability to create a DataSet taking advantage of the disconnected data
architecture, and then use the XML write functionality.

6.3 WORKSHOP: EXERCISE FIVE

In Exercise three the option information was read from a database and
the values written to the form components. In this exercise an option
structure is imported from an XML file.



82 Applied C# in Financial Markets

The XML file needs the following elements:

Table 6.1 Data schema for Exercise five

name string
strike string
volatility double
underlyingPrice double
riskFreeRate double
putCall string

<?xml version="1.0"?>

<structuredProduct>

<option>
<name>Abbey Natl s500</name>
<strike>500</strike>
<vol>0.23</vol>
<stock>527</stock>
<rfr>0.04</rfr>
<expiry>Oct</expiry>
<putCall>C</putCall>

</option>

<option>
<name>Ftse 100 Index Option</name>
<strike>4125</strike>
<vol>o0.25</vol>
<stock>4252</stock>
<rfr>0.04</rfr>
<expiry>Oct</expiry>
<putCall>C</putCall>

</option>

</structuredProduct>

Figure 6.1 Example XML layout

Create a class to handle the XML file and read and add a component
onto the form to allow the user to load the data, similar to Exercise three
(the database example).



XML 83

Load the XML file into a DataSet and use the Tables and Rows
collections to hold and access the data.

It is worth noting that this exercise on using XML and ADO.NET
is about learning how they fit together. If you compare the database
exercise with this one, you should be able to see an abstract class or
interface emerging.

The complete code for the models and the sample calculator can be
downloaded at http://www.wileyeurope.com/go/worner. Please
follow the instructions on the website on how to download the code.

6.4 SUMMARY

XML has changed the ways that differing systems can pass data be-
tween each other. The classes in C# provide a rich set of tools to read,
manipulate, and write to XML documents.

The XML structure is well defined and as we have seen in this section
there are classes to validate data in the XML documents using the DTDs
and schemas.

In its simplest form a DataSet can be written out to an XML doc-
ument; the generated document can also have the schema written out
using the WriteXmlSchema method.

The link between DataSets and XML means that there are several
ways to use the in-built functionality to extract data from a data source
and convert them to XML.

www.xml.org is a good reference site to find out more about XML
structure, DTDs and schemas.

In Exercise five you will have tried out XML and ADO.NET as a way
of holding the XML data for use within the options calculator.






7

. Building Windows Applications |

This section looks at building Windows applications. The easiest way
to do this is using the Visual Studio.NET IDE. There are alternatives to
using the Visual Studio.NET IDE such as Eclipse with a C# plug-in, or
even with Notepad, but it would not be too productive.

7.1 CREATING A NEW PROJECT IN VISUAL
STUDIO.NET

The first step is to create a new project, through the menu option File,
New, Project, as shown in Figure 7.1

Select the Visual C# projects and the Windows application. At this
point it is worth giving the project a sensible name and point the location
to where you would like the source code and objects stored.

The Windows application automatically creates a form entitled
Form1. It may not be too obvious where to change the class name and
where to change the file name.

By clicking the class view and selecting Form1, you may change the
Property (Name), as shown in Figure 7.2.

In C#, unlike Java, the file name does not need to match the class
name, so although you have changed the class name the file name will
still be Form1.cs. To change the file name, click on the Solution explorer
and select the form as show in Figure 7.3.

Now that the basic project has been created, the files are in the desired
location and Form1 named to something sensible, the project is ready
for development, and classes can be added.

There are a number of ways to add a class to the project; through the
menu Add New Item a screen drops down that allows you to select the
item you wish to add including class. In addition, by right clicking on
the project name in class view, as shown in Figure 7.4, there is an option
to add a class.

By clicking this, a class wizard is launched as illustrated in
Figure 7.5.



86 Applied C# in Financial Markets

Add New Project g
Project Types: Templates: £ ﬂ
(L] Visual Basic Projects 1 -‘
([ wvisual C# Projects %ﬁ'
[ visual C++ Projects Setup Project Web Setup  Merge Module
e | 5etup and De nent Praj Project Project

+-[_7] other Projects

+.,‘f’: =

Setup Wizard  Cab Project

Create a Windows Installer project to which files can be added.

Mame: | Setupl

Location: | C:\Traininghcsharp_book_application ﬂ Browse. ..

Project will be created at 3 Traininglcsharp_book_applicationtSetup1,

QK | Cancel | Help |

Figure 7.1 Screenshot of the new project window

Class View - bookillustration

AR k=
= ¥ bockilustration
= {} bookillustration

+ % R

Properties a
| Forml CodeClass Ll

e | AG
;

e
Access pubhc

Isabstract False

Figure 7.2 Class view panel and changing the name



Building Windows Applications

87

Solution Explorer - bookillustration

EENHIE
a Solution 'bookillustration’ (1 project)
= [ bookillustration
#- () References
App.ico
[#) assemblyInfo.cs
i=fForml.cs

‘:'“@C--»?@r-.- s

Properties o

=
| Forml.cs File Properties j
=l

Build Action Compile
Custom Tool

Custom Tool Namesp:

File Name 0

Figure 7.3 Solution explorer and changing the file name

= % Buid
Rebuild

g AddClass.. |  Add r|
! l Set as StartUp Project
E 5 Debug »

Save bookillustration

fdd Solution to Source Contral...
Sart Alphabetically

Sort By Type

Sort By Access

Group By Type

Iﬂ'i?ff‘*&@ﬁm

Properties

Figure 7.4 Adding a class from the class view panel



88 Applied C# in Financial Markets

C# Class Wizard - bookillustration g]

Welcome to the C# Add Class Wizard

This wizard adds a C# class ko your project. O[g

Class Dptions Class name: Mamespace:
| | bookillustration j
Eas 55
2 File name: Access:
Inheritance | J [ public |
Class modifiers:
* MNone
" Abstract
" Sealed

Comment (ff notation not required):

Finish Cancel Help

Figure 7.5 Class wizard

This wizard is handy as it allows the class name, file name, the Access
modifier, and the comments to be added. In addition the Base Class
option and Inheritance list the classes and interfaces available.

On clicking Finish the basic class structure is created, with the base
class and/or interfaces placed in the correct place and the necessary code
generated.

The generated code looks like Example 7.1.

Example 7.1: Generated code from a class creation wizard
namespace TradingApplication
{
/// <summary>
/// Base class for the hedging functionality
/// </summary>
public abstract class Hedger
{
public Hedger()
{
//
// TODO: Add constructor logic here



Building Windows Applications 89

//

7.2 MANAGING PROJECTS WITH THE SOLUTION
EXPLORER AND CLASS VIEW

There are two views important to managing projects in Visual Stu-
dio.NET, and to the uninitiated their precise roles may not be too obvious.

The Solution explorer is used to manage the files and references. To
exclude files, rename files or indeed delete them from the project, select
the file and right click; there is a menu that offers an array of options
to do this, as shown in Figure 7.6. This is also the place to include
references in the project because this is where the DLL files are selected
and included as references.

Finally, the Solution explorer is the place to select either the code or
the designer when working with forms. By right clicking on the form
the options appear in a drop down menu.

X
Erowse, ..
[== ]

Add Reference

MET | com | prajects |

Compaonent Marne | Wersion | Path |A

IEExecRemoke 1.0.3300.0 COWINDOWS MicrosoftMET... Select
IEHast 1.0,3300.0 CHWINDOWS Micrasoft,MET. .

TIEHosE 1.0,3300.0 Cyw INDOW S Microsof b MET..

ISymiw'rapper 1.0,3300.0 CWINDOWS Microsof b MET...

Managed C# Compiler 7.0.3300.0 i TNDO S Microsof tMET..

Microsoft visual Basic \MET Co... 7.0,3300.0 CW INDOWS Microsaft MET..
Microsoft Wisual Basic MET Co... 7.0.3300.0 CA W INDOWS Microsoft MET..
IMicrosoft Wisual Basic (MET Runtime [0.3300.0 CW INDOMWS Microsoft MET. .

. dll 1 i ! ograr Fil "
MMicrosoft, J5cripk 7.0.3300.0 Cyw INDOW S Microsof b MET. .

Microsoft. mshkml 7.0,3300.0 C:\Program Files\Microsoft. M.,
Mirrnenft . stdfnrmat F.N.33E00.0  \Proaram Filesi Mirrnsnft 1. ¥

Component Mame Tvpe Source |

Cancel Help

Figure 7.6 Adding a reference window



90 Applied C# in Financial Markets

Class Viaw - TradingApplication

2l - 15
- ¢ FuturesPrice A
- ¢ Bases and Interfaces
+ =0 Jprice
+ ¢ Object
=My FukuresPrice()
= getPrice()
=M setParams{string)
o# _symbol
2 Fx
0:\ Hedge
=3 Jprice
=0 Iproduct el

L IRRC IRRE IRNE

Figure7.7 Class view showing the expanded list of methods, properties, and interfaces

The class view, shown in Figure 7.7, shows the project and the classes
within the project. The view is a hierarchical representation that shows
the methods and properties of the class, and where relevant the base
class and interfaces.

7.3 WORKING WITH COMPONENTS ON FORMS

The IDE contains a rich set of components that can be dragged on the
form, and the IDE will generate a heap of code.

In writing the futures and options application, the DataGrid was used
as a means of displaying data retrieved. Classes were written to handle
the data and update the grids rather than dragging and dropping the
various OBDC components. For Enterprise applications it is easier to
manage the ‘hand-written’ classes and know what is happening between
the grid and the database.

7.3.1 Model view control

In designing the futures and options application there was an attempt
to group the functionality into layers, so that the ‘business logic’ was
separated from the data being displayed and the logic that controlling
the components was encapsulated into a class.



Building Windows Applications 91

Three DataGrid components were placed on the form on top of each
other to represent three views of the data, the positions of the instruments,
individual trades, and hedge positions.

The IDE generates the following code in the #region Windows Form
Designer generated code as illustrated in Example 7.2.

Example 7.2: System generated form code

this.gridPositionDeriv = new System.Windows
.Forms.DataGrid();

this.gridPositionsCust = new System.Windows
.Forms.DataGrid();

this.gridPositionsHedge = new System.Windows
.Forms.DataGrid();

((System.ComponentModel . ISupportInitialize)
(this.gridPositionDeriv)) .BeginInit();

((System.ComponentModel . ISupportInitialize)
(this.gridPositionsTrades)) .BeginInit();

((System.ComponentModel.ISupportInitialize)
(this.gridPositionsHedge)) .BeginInit();

//

// gridPositionDeriv

//

this.gridPositionDeriv.AlternatingBackColor =
System.Drawing.SystemColors.ScrollBar;

this.gridPositionDeriv.BackColor = System.Drawing
.Color.FromArgb(((System.Byte) (255)),
((System.Byte) (192)), ((System.Byte) (128)));

this.gridPositionDeriv.DataMember = "";

this.gridPositionDeriv.HeaderForeColor =

System.Drawing.SystemColors.ControlText;

this.gridPositionDeriv.Location = new System
.Drawing.Point (16, 24);

this.gridPositionDeriv.Name "gridPositionDeriv";

this.gridPositionDeriv.Size = new System.Drawing
.Size (768, 168);

this.gridPositionDeriv.TabIndex = O;

this.gridPositionDeriv.Click += new System
.EventHandler (this.clickedDeriv);

//



92 Applied C# in Financial Markets

// gridPositionsTrades
//
this.gridPositionsTrades.AlternatingBackColor =
System.Drawing.SystemColors.ScrollBar;
this.gridPositionsTrades.BackColor = System.Drawing
.Color.FromArgb(((System.Byte) (255)), ((System.Byte)
(192)), ((System.Byte) (128)));
this.gridPositionsTrades.DataMember = "";
this.gridPositionsTrades.HeaderForeColor = System
.Drawing.SystemColors.ControlText;
this.gridPositionsTrades.Location = new System
.Drawing.Point (16, 24);
this.gridPositionsTrades.Name
"gridPositionsTrades";
this.gridPositionsTrades.Size = new System.Drawing
.Size (760, 168);
this.gridPositionsTrades.TabIndex = 1;
this.gridPositionsTrades.Click += new System
.EventHandler (this.clickedTrades);
//
// gridPositionsHedge
//
this.gridPositionsHedge.BackgroundColor
.Drawing.Color.Gainsboro;
this.gridPositionsHedge.DataMember = "";
this.gridPositionsHedge.HeaderForeColor
.Drawing.SystemColors.ControlText;
this.gridPositionsHedge.Location = new System.Drawing
.Point (16, 24);
this.gridPositionsHedge.Name = "gridPositionsHedge";
this.gridPositionsHedge.ReadOnly =
((bool) (configurationAppSettings.GetValue
("gridPositionsHedge.ReadOnly", typeof(bool))));
this.gridPositionsHedge.Size = new System.Drawing
.S5ize (768, 168);
this.gridPositionsHedge.TabIndex = 2;
this.gridPositionsHedge.Click += new System
.EventHandler (this.clickedHedge) ;
((System.ComponentModel.ISupportInitialize)
(this.gridPositionDeriv)) .EndInit();

System

System



Building Windows Applications 93

((System.ComponentModel.ISupportInitialize)
(this.gridPositionsTrades)) .EndInit();
((System.ComponentModel.ISupportInitialize)
(this.gridPositionsHedge)) .EndInit();

The first step was to write a method to initialise the grids and hide all
but the default view, as shown in Example 7.3, and set the DataGrids to
read-only as the grids are designed to only display data. The modification
of the data is done elsewhere on the form and has its own set of classes
that handle the transactions.

Example 7.3: Default grid display method
private void defaultPositionDisplay()

{
// hide the alternate views
gridPositionsHedge.Visible = false;
gridPositionsTrade.Visible = false;
gridPositionsDeriv.Visible = true;
// Ensure Read Only
gridPositionsHedge.ReadOnly = true;
gridPositionsTrade.ReadOnly = true;
gridPositionsDeriv.ReadOnly = true;
// Now load the components
pvcTrades.addView(gridPositionsDeriv,"grid");
pvcCust.addView(gridPositionsTrade, "grid");
pvcHedge.addView(gridPositionsHedge, "grid") ;
// Create listeners
pHandler.addListener (pvcTrades) ;
pHandler.addListener (pvcCust) ;
pHandler.addListener (pvcHedge) ;
pHandler.reloadData("all");

}

The detail on how the model components and listeners are written is
not too important at this stage. The defaultPositionDisplay method
is then called in the form’s constructor as shown in Example 7.4.

Example 7.4: Form constructor and the initialisation methods
public Form TraderBlotter()
{

//



94 Applied C# in Financial Markets

// Required for Windows Form Designer support
//

InitializeComponent () ;
defaultPositionDisplay() ;

initializeFX();

Note the InitializeComponent is a generated method that is re-
quired and should not be removed.

The controller, as shown in Example 7.5, handles the updates to the
grids and calls the PositionModelHandler, whichreturns aDataSet.
The DataSet is then assigned to the DataGrid.

Example 7.5: Controller class
public class PositionViewController : IviewController
{
// Declare private variables
private Hashtable_objectCollection = new
Hashtable();
private string cat;
//
public PositionViewController(string category)
{
_cat = category;
}
public void addView(object component,string key)
{
_objectCollection.Add(key, component) ;
}
public void viewUpdated(object itemUpdated)
{
PositionModelHandler pmh =
(PositionModelHandler)itemUpdated;
DataSet ds = pmh.getDataByAcctCategory(_cat);
if (ds !'= null)
{
((DataGrid) objectCollection["grid"])
.DataSource = ds.Tables[0] .DefaultView;



Building Windows Applications 95

The PositionModelHandler class, shown in Example 7.6, caches

the data required for the grids and has a method to reload the data, as
well as the method to return specific data from the cache.

Example 7.6: Position handler class
public class PositionModelHandler

{

// private variables
private Hashtable dataCache = new Hashtable();
private object[]_listeners = new object[10];
private int_listenerCount = O;
//
public PositionModelHandler ()
{
goThroughListeners() ;
}
public DataSet getDataByAcctCategory(string cat)

{
return (DataSet)_dataCache[cat];

3
public void reloadData(string t)
{
if(t == "all")
{
initializeDS();
}
else
{
loadFromDB(t) ;
}
}

public void addListener(IviewController o)

{
// change from has to some other collection
_listeners[_listenerCount] = o;
_listenerCount++;

}

private void initializeDS()

{
string[] categories = {"trading","cust","hedge"};
for (int i=0;i<categories.Length;i++)



96 Applied C# in Financial Markets

{
loadFromDB(categories[i]);
}
}
private void loadFromDB(string category)
{
_dataCache.Remove (category) ;
Positions pos = new Positions();
_dataCache.Add(category,pos.
getPositionsByCategory(category));
goThroughlListeners();
}
private void goThroughListeners()
{
for(int i=0;i<_listeners.Length-1;i++)
{
IviewController ivc =
(IviewController)_listeners[i];
if (ivc !'= null)
{
ivc.viewUpdated(this);
}

A call to reloadData("all") will call the Positions class. This
handles all the business logic of retrieving the data, passes a DataSet
and informs the listeners that the data have been updated.

Figure 7.8 shows the data grids in action; the process of booking a
ticket will trigger the reloading of the grids through the position con-
troller.

The model view control (MVC) is a powerful mechanism to separate
the business logic and the actual display logic. In this standalone appli-
cation the implementation of the MVC is perhaps overcomplicated, but
it is very scalable.

Let us take the trading application in a more realistic implementa-
tion, that is to say it is deployed on many desktops. There would be a
mechanism that handles the trade booking and notifies the other running
applications that a change has been made. Then the class that handles
the messaging would update the listeners, thus notifying them that they
need to do some processing.



Building Windows Applications 97

38 Trader Blotter EEX

LUtiitizs  About

| categany | puical pHame | pSprizal Accl 7 | accouniMame| CCV | Amount -
3 OFT cal Vodaphonz Sept 05 250p Cal wodseptl 2260 23023033 Ewro Book GBE O

OFT FUT ET Dei 03 200 FUT ETOCT 03300 53023033 Ewrc Book EUR 137

FUT [} FTSE100 Dec 4000 fre=a1 [0 dzc 400D 23023033 Ewro Book GB:x  -E00

OFT CALL (G5 2288 53023033 Euwc Book CHE 0

OFT FUT Erilizh Gz 300 OCT 2003 booct3002003.atk 53023033 Ewro Book EUR 150

OFT CALL Eiilizh Petraleun 300 OCT /03 beOct03300.0TC 53023039 Ewrc Book GEBP 0O =
g ™ — : s R LIJ

 Trades View
* Foslions  Tiadsz " Hedge Fasiion: |

[oFr Vodaphone Sept 03 250p Call

. vodsept03250
T | — DG E—

Figure 7.8 Futures and options main form showing the data grids

7.4 WORKSHOP EXERCISE SIX

Throughout this book there have been workshops proceeding towards
building a simple options calculator. These exercises were designed to
draw together many of the concepts examined and try and join them
together.

In this exercise, to implement a Model View control would be over-
engineering a simple application.

The options calculator is almost complete; the final step is to add a
menu item. Write a Help menu with an About sub-menu that launches a
small form with a simple ‘about message’. This should familiarise you
with the menu component.

The complete code for the models and the sample calculator can be
downloaded at http://www.wileyeurope.com/go/worner. Please
follow the instructions on the website on how to download the code.

7.5 SUMMARY

The Visual Studio.NET IDE is a very powerful IDE with many fea-
tures. Those not familiar with the Visual Studio IDEs may find it a
little tricky to get started with the IDE. A little care must be taken ini-
tially as the projects are quickly created in ‘default’ locations and the
source files can quickly become Form1.cs, and Form?2.cs which is not so
meaningful.



98 Applied C# in Financial Markets

Creating a Windows application is straightforward and once you have
worked with the Solution explorer and the class view managing projects
is made easy.

Looking through the example of the futures and options application
and how the DataGrid was implemented demonstrated how the busi-
ness logic and the refresh process can be separated from the DataGrid
component on the form.



8
Deployment

Having looked at building applications, the key step of all applications
is then creating a release version and deploying it.

Now for the good news — you do not need to be a maestro at registry
settings or worry about conflicting DLLs.

Deployment in Visual Studio is done by adding a new project of the
type ‘Setup and Deployment’. You then get a number of choices of what
type of setup is available, as shown in Figure 8.1.

By adding a Setup type to your project you have full control on what
is shipped, registry settings, which assemblies (DLLs are shipped) and
it allows you to customise the setup.

8.1 ASSEMBLIES

The base unit of .NET is an assembly; this is a collection of files that are
either DLLs or EXEs. The DLLs are collections of classes and methods

Add New Project (%]

Project Types: Templates:

[ wisual Basic Projects 1 -‘
(27 Misusl C# Projects

(0 Visual C-+ Projects Setup Project  Web Setup  Merge Module
Setup and Deployment Projects Project Projeck

+-(_] Cther Projects
% =

Setup Wizatd  Cab Project

Create a Windows Installer project to which files can be added.

Hame: | Setupa

Location: | CTraining'csharp_book_application j Browse, ..

Praject will be created at i\ Trainingycsharp_book_application!,Setupl.

OF | Cancel | Help |

Figure 8.1 Deployment options in Visual Studio



100 Applied C# in Financial Markets

that are used in the program and are only called when needed. Assemblies
contain versioning, security and deployment information; this is held in
metadata and thus negates the need for complex registry entries.

To create Multi-Module assemblies you will need to get your hands
dirty with a Makefile as Visual Studio does not have the tools to do this
directly from a C# project. There is a makefile wizard if you open up a
blank C++ project.

8.1.1 Metadata

This is the information that is stored with an assembly that describes its
methods, types and other related information. The manifest describes the
assembly contents and a list of referenced assemblies. Each assembly
contains version information.

8.1.2 Shared assemblies

In the olden days of PC development, applications created were very
sensitive to newer versions of DLLs. Often an application that had been
running perfectly happily suddenly stopped; the cause was commonly
due to a newer version of a shared DLL that had been installed. In .NET
this is avoided by strong names and version control.

Strong names need a unique name and have a public encryption key
associated with them. To create a strong name, go to the command
window in Visual Studio (view — other windows):

sn -k <file>.snk will create a key

In the AssemblyInfo class file add the filename to the
AssemblyKeyFile:

[assembly: AssemblyKeyFile("c:\tradingApp.snk")]
[assembly: AssemblyKeyName("")]

The next step is to sign the assembly:
Sn -T <assembly.dll>

Now put the shared assembly into the Global Assembly Cache (GAC)
(drag and drop into the %SystemRoot’\assembly directory).Orrun

Gacutil /i <assembly.d11>



Deployment 101

Now the assembly is in the shared location you can reference it in
your projects.

8.2 SUMMARY

Deploying applications in the .NET framework is easier thanks to strong
name and versioning and it means that intimate knowledge of registry
settings is no longer required.

The ability to add a new deployment project and configure each of
the install steps allows a good deal of flexibility and guarantees the
applications will be installed correctly.






Bibliography

Deital, H.M., Deital, P.J., Listfield, J.A., Nieto, T.R., Yaeger, C.H. and Zlatkina, M.
(2003). C# for Experienced Programmers. Prentice Hall, New Jersey.

Haug, E.G. (1997). The Complete Guide To Option Pricing Formulas. McGraw Hill,
New York.

Liberty, J. (2002). Programming C#, 2nd Ed. O’Reilly, Sebastopol, CA, USA.

MSDN: http://msdn.microsoft.com/

Stiefel, M. and Oberg, R.J. (2002). Application Development using C# and .Net. Prentice
Hall, New Jersey.

Wilmott, P., Howison, S., Jeff Dewynne, J. (1995). The Mathematics of Financial
Derivatives. Cambridge University Press, Cambridge.







Appendices

APPENDIX A
Specification for an options calculator

The requirement is for an options calculator that takes the input required
for calculating the price of an option and then on clicking the calculate
button displays the price, thus allowing the options trader to quickly do
‘what-if’ calculations. In addition, the trader will be given the choice
between the Black Scholes and the Implicit Finite-Difference models to
value the options.

There is a combo box to select the option parameters from a
database or the user may manually enter the parameters to retrieve a
price.

The calculator has the ability to import the pricing parameters of
the option to value from another system — the connection is done using
XML - and again uses a combo box to select which option to load.

The cumulative normal distribution has some values imported from
a comma-separated file; this allows traders the flexibility to change the
distribution curve.

A diagram showing the system design is in Appendix B and the
details of the model implementations in C# are shown in Appendix C.






APPENDIX B

System design

|

Parameters

/

Load from XML

Option |

—

Load from
Database

—

Black Scholes

Implicit Finite-
Difference

. —r—

Normal . i

Distribution Tmodel

returnCurve

loadFromFile .
returnPrice

Model

loadModelParams loadModelParams

returnPrice







APPENDIX C

Calculation models

The two models represent different ways of valuing options. The mer-
its of valuing options using the two models will not be discussed here
as it is the subject of many financial mathematics books. The com-
plete code for the models and workshop solution can be downloaded
athttp://www.wileyeurope.com/go/worner. Please follow the in-
structions on the website on how to download the code.

Black Scholes
Listing of the C# code.

public class BlackScholesModel : OptionsCalculator

. IModel
{

// declare private variables

private
private
private
private
private
private

double_r; // risk free rate
double_S; // Stock price
double_T; // Days to expiry
double X; // Strike
double_v; // volatility
string_callPut;

public BlackScholesModel()

{
}

public void setPricingParameters(ArrayList list)



110 Applied C# in Financial Markets

{
_callPut = (string)list[0];
S = (double)list[1];
X = (double)list[2];
_T = (double)list[3]/365;
_r = (double)list[4];
_v = (double)list[5];
}
public double calculateOption()
{
return BlackScholes(_callPut,_S, X, T,.r,_v);
}

private double BlackScholes(string CallPutFlag,
double S, double X,
double T, double r, double v)

{

double di 0.0;

double d2 0.0;

double dBlackScholes = 0.0;

dl = (Math.Log(8 / X) + (xr + v *v / 2.0) *T) /
(v * Math.Sqrt(T));

d2 = dl - v * Math.Sqrt(T);

if (CallPutFlag.ToLower() == "c")
{
CumulativeNormalDistribution CND1 = new
CumulativeNormalDistribution(dl);
CumulativeNormalDistribution CND2 = new

CumulativeNormalDistribution(d2);
dBlackScholes = S * CNDl.curve() - X *
Math.Exp(-r * T) *

CND2.curve();

}
else if (CallPutFlag.ToLower() == "p")
{
CumulativeNormalDistribution CND1 = new
CumulativeNormalDistribution(-d1);
CumulativeNormalDistribution CND2 = new

CumulativeNormalDistribution(-d2) ;
dBlackScholes = X * Math.Exp(-r * T) *
CND2.curve() - S *



Appendices

111

CND1.curve();

3

return dBlackScholes;

}

Implicit Finite-Difference

Listing of the C# code.

public class IFDModel:IModel

{

// Financial Parameters

private
private
private
private
private
private

private
private
private
private
private
private
//

private
private
private
private
//

private
private
private

//

// Stock Price

double _strike; // Strike Price

double _S;
double _T;
double _v;

// Time to Expiry
// Volatility

string _pc; // Put Call flag
double _rfr; // rfr

// Mathematical Parameters

const double _xMin = -2;
const double _xMax = 1;
const int _xSteps = 300;
const int _tSteps = 50;
const double _tMin = O;

(_xMax-_xMin)/(double) xSteps;

double _tMax;
double _dt;
double dx =
double _alpha;

double _k,_tau;

double[] _vals = new double[_xSteps];
double[] _bVals = new double[ xSteps];
double[] Y = new double[ xSteps];

public IFDModel()

{
3

public double calculateOption()



112 Applied C# in Financial Markets

{
return valueOption();
}
public void setPricingParameters(ArrayList list)
{
// Load financial variables
_pc = (string)list[0];
S = (double)list[1];
_strike = (double)list[2];
_T = ((double)list[3])/365;
_rfr = (double)list[4];
_v = (double)list[5];
// Initialize Mathematical variables
k = 2* rfr/(v*_v);
_tMax = Math.Pow(_v,2)*.T/2;
dt = (_tMax-_tMin)/(double) _tSteps;
_alpha = _dt/(.dx*_dx);

}
private double valueOption()
{
// Initialize
_tau = _tMin;
for (int xs=0;xs<_xSteps;xs++)
{

_vals[xs] = payoff(xs);
}
// decompose the matrix
decompose() ;
// step back from expiry to current time
for (int t=1; t<_tSteps; t++)
{
_tau += _dt;
// copy vals
for(int z=0;z< xSteps-1;z++)
{
_bVals[z] = _vals[z];
}
// boundry conditions
if (_pc.ToLower() == "p")
{
_vals[0] = _strike*(1-Math.Exp(_xMin))*



Appendices

113

}

Math.Exp(_xMin* _rfr* _tau/Math.Pow(_v,2))/
mapper (_xMin) ;
_vals[ xSteps-1]
¥
else
{
_vals[ xSteps-1] = _strike*Math.Exp(_xMax)/
mapper (_xMax) ;
_vals[0]= O;
}
// Adjust values next to the boundry
_bVals[1] += _alpha* vals[0];
_bVals[ xSteps-2] += _alpha* vals[ xSteps-1];
//

solver();

0;

double result = 0.00;

double x = Math.Log(_S/_strike);

int index = (int) ((x-_xMin)/.dx +0.5);
result = mapper(x)*_vals[index];

//

return result;

private void solver()

{

double[] holdArray = new double[ xSteps];

holdArray[1] = _bVals[1];

for(int i=2; i< xSteps-1; i++)

{
holdArray[i] = _bVals[i] + _alpha*holdArray

[i-11/-Y[i-11;

}

_vals[ xSteps-2] = holdArray[ xSteps-2]/.Y
[xSteps-2];

for (int i=_xSteps-3;i>0; --1i)
{
wvals[i] = (holdArray[i]+_alpha* vals
[i+11)/.Y[il;



114 Applied C# in Financial Markets

private void decompose()
{
double a2 = _alpha*_alpha;
_Y[1] = 1+2*_alpha;
for(int i=2; i< _xSteps-1;i++)
{
_Y[i] = 1+2*_alpha - a2/ Y[i-1];
}

private double payoff(int i)
{
double X
double u
double po;
//
if (_pc.ToLower() == "p")
{
po
}

else

xMin + i*.dx;
_strike*Math.Exp(X);

Math.Max (_strike-u,0)/mapper (X) ;

po = Math.Max(u-_strike,0)/mapper (X);
}
return po;

}

private double mapper (double x)

{
double s = _strike*Math.Exp(x);
return_strike*Math.Exp((1-_k)*x/2 -( k+1)*(k+1)*
_tau/4);



Index

abstract class 38, 46, 61
AcceptChanges 69
Access 59
access modifiers 267
ActiveX 1
Add method 17-18
Add to Database method 37
ADO 59
RecordSet 67
ADO.NET 1, 59, 67, 71, 80-1,
83
DataAdapter 59-60
DataSet 59, 60, 64-5
ODBC 59, 60
OLE 59
SQL Server 59, 60
aliases 10
ApplicationException 31
array of arrays 15

ArrayList 16-17, 22, 55, 61
arrays 14-15, 22
initialising 14
Length property 15
methods and properties 15
multiple dimension 15
assemblies 24, 99-101
metadata 100
shared 100-1
AssemblyKeyFile 100
assignment operator 3, 7, 22

B

Black Scholes model 8, 47, 77, 105,
109-10

BufferedStream 74

built-in data types 9

built-in reference data types 9

C

C++1,22,23,53

calculate and re-assign operators 4-5

Capacity property 13, 16

case sensitivity 1

casting 9-10, 22

catch 29-30, 301, 35

class
abstract 38
behaviour setting 26
constructor overloading 25
declaration 23—4
definition 23
exception handling 29-31
factory 51, 52-3, 57
instance variable 267



116 Index

class (continued)

method 26

modifier type 24

namespaces 24

numeric 10

references 24

singleton 61, 62-3

user defined 31-3
Clear method 18
collections 16-18
COM 1
Common Language Runtime (CLR) 1
comparative operators 7
conditional operators 6, 7, 22
connection pools 61-4

singleton class 61, 62-3
ConnectionPool 17, 634
const 26
constructors

definition 24

default 25

overloading 25
control structures 18-21, 22

do/while 20

for 20-1

foreach 21

if/else 18,19

switch 19

while 19-20
CookCurve method 76, 77
Createlnstance 52
CumulativeNormalDistribution

class 77

Current property 15, 16

D

data structures 9-18
DataAdapter 59, 60, 68, 69-70, 71, 72
DeleteCommand 68, 72
ExecuteNonQuery 68-9
InsertCommand 68, 72
sqlCommand 60
sqlConnection 60
UpdateCommand 68-9, 72
database handler 64—7
DataColumns 68, 69—70
DataGrid 90, 91-3, 98
DataRelations 59, 68
DataRows 67-8
DataSet 59, 60, 64, 67-8, 71, 94
AcceptChanges 69
DataColumns 68, 69-70

DataRows 67-8
DataTables 68
GetChanges 69
HasErrors 69
RejectChanges 69-70
Rows 67-8
DataTables 68
delete method 17-18, 64
DeleteCommand 68, 72
deployment 99-101
assembly 99-100
Global Assembly Cache 100
Makefile 100
public encryption key 100
registry settings 99
setup and deployment 99
shared assemblies 100-1
strong names 100
Derivative class 37, 39, 57
abstract class declaration 38
overriding 40
source code 42-6
Deserialization 75-6
DLLs 1,24
do/while loop 20
Double class 10

E

EnsureCapacity method 13

enumeration of collections 16

equality operator 6

error validation 12

exception class, user defined

312

exception handling 29-31
ApplicationException 31
catch 29-30, 30-1, 35
finally 29-30
SystemException 31
TradeException 32-3
try 29-30, 30-1, 35

EXE 24, 99

ExecuteNonQuery 68-9

explicit cast 10

F

factory class 51, 52-3, 57
filename 85, 87
FileStream 734
finally 29-30

for loop 20-1

foreach loop 21



Index 117

Future class 38, 39
derived from Derivative class 40—1
price interfaces 47, 50—1
properties and behaviour 37
source code 42-6

G

GetChanges method 69
GetEnumerator method 15
GetInstance method 63
getMessage method 35
GetNext method 15
getPrice method 26-7, 47, 51
getter method 27, 29

Global Assembly Cache 100

H

HasErrors 69
hashtables 17-18, 38-9

I

IDeserializationCallback
76

IDictionary 17

IEnumerator 15, 16

if/else loop 18, 19

Imodel interface 55-6

immutability 12, 22

implicit cast 9-10

Implicit Finite Difference model 105,
111-14

inheritance 35-56

initialised variable 26

insert method 64

InsertCommand 68, 72

interfaces 4653

internal access modifier 27

InvokeMember 52

Iprice 47-8,57

IsBackground 54

item property 17

J
Java 1, 17, 22, 23,53

L

Length 15

lock 54

LogError class 24-5, 77
logical operators 5-7, 22

M

Makefile 100
mathematical operators 4, 7, 22
matrix 15
memory management 1
metadata 50, 52, 100
method
definition 23, 26
with parameters 27
by reference and value 27-9
return 26
virtual 39
see also under specific methods
Microsoft Intermediate Language
(MSIL) 1
model view control (MVC) 96, 97
MoveNext method 16, 20
MSDN 8
multiple dimension arrays 15
multiple threading 53-5
IsBackground 54
lock 54
Monitor 534
Pulse 54
PulseAll 54
Runnable 534
Start 54
Thread 53-4, 55
ThreadStart 54

N

namespaces 24, 52, 57
NET 1,71
NonSerialized 76
Null 20

o

Object, definition 23

ODBC.NET 71

OLE 59

operator precedence 7-8, 22
comparative operators 7
logical operators 7-8
mathematical operators 7
ranking 8

operators
assignment 3, 7, 22
calculate and re-assign 4-5

*=4



118 Index

operators (continued)

=4
postfix 5, 22
prefix 5, 22

comparative 7
conditional 6, 7, 22
16
&& 6
6
equality 6
logical 5-7, 22
=6

mathematical 4, 7, 22
*4
/4
+4
-4
Options class 38
constructors 39
inheriting from Derivative class
39
price interfaces 47, 50-1
properties and behaviour 37, 40, 41
source code 42—6
OptionException 35
options calculator 33-5, 77, 105
out 27
override 3940, 57

P

parameters 27

by reference 27

by value 27
Parse method 10, 24
Perl 17
polymorphism 35-56
postfix operators 5, 22
prefix operators 5, 22
Pricer factory class 51, 52-3
private access modifier 27
property 28-9
protected access modifier 27
public 27
public access modifier 27
public encryption key 100
Pulse 53, 54
PulseAll 54

R

ReadLine 20, 74

ref 27

reference class declaration 24
references 24

Reflection namespace 52, 57

Regular expression (Regex class) 13-14,

22
Split 14
RejectChanges method 69-70
return 26
Rows 67-8
Runnable thread 534

S

sealed 63
select method 64
Serialisation 74—7, 78
Deserialization 75-6
IDeserializationCallback 76
NonSerialized 76
Serializable 75-6
Serialization 75
Serializable 75-6
Serialization 75
setParams method 47, 51
setter method 27, 29
‘Setup and Deployment” 99
simple class declaration 234
single 36
Singleton class 61
Solution explorer 89-90
SQL 21, 59, 60
sqlCommand 60
sqlConnection 60
streams 73—4
StreamReader 74, 77
StreamWriter 74, 77
string 10-12, 22
matching 11
StringBuilder 12-13, 22
Append 13
Capacity 13, 16
substring 11-12
switch 19
Sybase 59, 60
SystemException class 31

T

ThreadStart 54
ToString method 10



Index 119

TradeException 32-3

try 29-31, 35

type conversions 9-10, 22
explicit cast 10
implicit cast 9-10

type object 52

U

update method 64
UpdateCommand 68-9, 72

\%

validation error 35, 36
variable declaration 9
VB.NET 1
virtual method 39, 57
Visual Base 23
Visual Studio.NET 71, 85-9
class view 85
references 89
solution explorer 85

W

while loop 19-20

Windows applications 34-5, 85-90
controller class 94-5
default grid display method 93
form constructor/initialisation

934

model view control 90-7
position handler class 95-6
system generated form code 91-3

WriteLine 74

WriteXml 80

WriteXmlSchema 80, 83

X

XML 79-83

DataSet 79-80, 80-1, 83

DTDs 79, 83

schema validation 79-80
XmlDataDocument 81
XMLHandler 81



	applied_c_in_financial_markets_01_3773.pdf
	Page_Cover.pdf
	Page_C1.pdf
	Page_C2.pdf
	Page_i.pdf
	Page_ii.pdf
	Page_iii.pdf
	Page_iv.pdf
	Page_v.pdf
	Page_vi.pdf
	Page_vii.pdf
	Page_viii.pdf
	Page_ix.pdf
	Page_x.pdf
	Page_xi.pdf

	applied_c_in_financial_markets_02_5555.pdf
	Page_xii.pdf
	Page_xiii.pdf
	Page_xiv.pdf
	Page_xv.pdf
	Page_xvi.pdf
	Page_xvii.pdf
	Page_xviii.pdf
	Page_1.pdf
	Page_2.pdf
	Page_3.pdf
	Page_4.pdf
	Page_5.pdf
	Page_6.pdf

	applied_c_in_financial_markets_03_1086.pdf
	Page_7.pdf
	Page_8.pdf
	Page_9.pdf
	Page_10.pdf
	Page_11.pdf
	Page_12.pdf
	Page_13.pdf
	Page_14.pdf
	Page_15.pdf
	Page_16.pdf
	Page_17.pdf
	Page_18.pdf
	Page_19.pdf

	applied_c_in_financial_markets_04_6237.pdf
	Page_20.pdf
	Page_21.pdf
	Page_22.pdf
	Page_23.pdf
	Page_24.pdf
	Page_25.pdf
	Page_26.pdf
	Page_27.pdf
	Page_28.pdf
	Page_29.pdf
	Page_30.pdf
	Page_31.pdf
	Page_32.pdf

	applied_c_in_financial_markets_05_3209.pdf
	Page_33.pdf
	Page_34.pdf
	Page_35.pdf
	Page_36.pdf
	Page_37.pdf
	Page_38.pdf
	Page_39.pdf
	Page_40.pdf
	Page_41.pdf
	Page_42.pdf
	Page_43.pdf
	Page_44.pdf
	Page_45.pdf

	applied_c_in_financial_markets_06_979.pdf
	Page_46.pdf
	Page_47.pdf
	Page_48.pdf
	Page_49.pdf
	Page_50.pdf
	Page_51.pdf
	Page_52.pdf
	Page_53.pdf
	Page_54.pdf
	Page_55.pdf
	Page_56.pdf
	Page_57.pdf
	Page_58.pdf

	applied_c_in_financial_markets_07_2188.pdf
	Page_59.pdf
	Page_60.pdf
	Page_61.pdf
	Page_62.pdf
	Page_63.pdf
	Page_64.pdf
	Page_65.pdf
	Page_66.pdf
	Page_67.pdf
	Page_68.pdf
	Page_69.pdf
	Page_70.pdf
	Page_71.pdf

	applied_c_in_financial_markets_08_9213.pdf
	Page_72.pdf
	Page_73.pdf
	Page_74.pdf
	Page_75.pdf
	Page_76.pdf
	Page_77.pdf
	Page_78.pdf
	Page_79.pdf
	Page_80.pdf
	Page_81.pdf
	Page_82.pdf
	Page_83.pdf
	Page_84.pdf

	applied_c_in_financial_markets_09_1777.pdf
	Page_85.pdf
	Page_86.pdf
	Page_87.pdf
	Page_88.pdf
	Page_89.pdf
	Page_90.pdf
	Page_91.pdf
	Page_92.pdf
	Page_93.pdf
	Page_94.pdf
	Page_95.pdf
	Page_96.pdf
	Page_97.pdf

	applied_c_in_financial_markets_10_406.pdf
	Page_98.pdf
	Page_99.pdf
	Page_100.pdf
	Page_101.pdf
	Page_102.pdf
	Page_103.pdf
	Page_104.pdf
	Page_105.pdf
	Page_106.pdf
	Page_107.pdf
	Page_108.pdf
	Page_109.pdf
	Page_110.pdf
	Page_111.pdf
	Page_112.pdf
	Page_113.pdf
	Page_114.pdf
	Page_115.pdf
	Page_116.pdf
	Page_117.pdf
	Page_118.pdf
	Page_119.pdf


