
www.it-ebooks.info

http://www.it-ebooks.info/

Java 7 New Features
Cookbook

Over 100 comprehensive recipes to get you up-to-speed
with all the exciting new features of Java 7

Richard M. Reese

Jennifer L. Reese

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Java 7 New Features Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1160212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-562-7

www.packtpub.com

Cover Image by J.Blaminsky (jarek@jblaminsky.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Richard M. Reese

Jennifer L. Reese

Reviewers
Jacek Laskowski

Deepak Vohra

Acquisition Editor
Amey Kanse

Lead Technical Editor
Hyacintha D'Souza

Technical Editors
Ankita Shashi

Lubna Shaikh

Copy Editor
Leonard D'Silva

Project Coordinator
Michelle Quadros

Proofreader
Mario Cecere

Indexer
Rekha Nair

Graphics
Manu Joseph

Valentina D'silva

Production Coordinators
Arvindkumar Gupta

Melwyn D'sa

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Richard M. Reese is an associate professor teaching Computer Science at Tarleton
State University in Stephenville, Texas. Previously, he worked in the industry for over 16
years in the aerospace and telephone industries. He earned his Ph.D. in Computer Science
from Texas A&M University and served four years in the Air Force, primarily in the field of
communication intelligence.

Outside of the classroom, he enjoys tending to his vegetable garden, maintaining his
aquariums, and running with his dog, Zoey. He also enjoys relaxing with an episode
of Firefly and is ever hopeful for the return of the series.

He has written numerous publications and has also written the EJB 3.1 Cookbook.

Jennifer L. Reese holds a B.S. degree from Tarleton State University. She currently works
as a software engineer for Local Government Solutions in Waxahachie, Texas, developing
software for the county government. Prior to graduation, she worked for the Center for
Agribusiness Excellence at Tarleton, where she used Java in conjunction with GIS software
to analyze crop and weather data.

In her free time, she enjoys reading, cooking, and traveling, especially to any destination
with a beach. She is also a musician and appreciates a variety of musical genres.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

No book can be written without the help of others. To this end we are thankful for the support
of Karla, our wife and mother, whose patience and reviews have made this effort possible. In
addition, we would like to thank the editorial staff of Packt and our reviewers for their input
which has resulted in a much better book than it might otherwise have been.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Jacek Laskowski has over 15 years of IT experience, focusing on software development
and architecture design with open source and commercial product offerings. He's interested
in Service-Oriented Architecture (SOA) with Java Enterprise Edition (Java EE), Business Process
Management (BPMS), and Business Rule Management System (BRMS) solutions. He is a
seasoned technology professional with a strong software development and advisory track
record. His interests revolve around Java Enterprise Edition and supportive solutions like
Enterprise OSGi, Service Component Architecture (SCA), WS-BPEL, and WS-BPMN to name
a few.

He is a founder and leader of Warszawa Java User Group, and has been a speaker at local and
international conferences. He has been organizing Confitura (formerly Javarsovia), Warsjawa,
and Eclipse DemoCamp conferences for the Java community in Poland. He contributes to
open source projects—Apache OpenEJB and Apache Geronimo. He envisages himself using
functional languages in projects and the decision to learn Clojure (a little bit of JRuby, Scala,
F#, and Dart lately) influences his current self-learning activities. It's been quite recently that
he's got into Android, too.

Knowledge sharing is his passion. He mentors students, and is an author of IBM Redbooks
publications and has also contributed to a few other books as a technical reviewer. While
supporting business partners and customers with their use of IBM WebSphere BPM products,
he regularly runs courses and workshops. He is a member of the NetBeans Dream Team—
highly-skilled and motivated NetBeans users.

He actively blogs at http://blog.japila.pl and http://blog.jaceklaskowski.pl.
Follow @jaceklaskowski on twitter.

I'd like to thank my family—my wife, Agata, and my three kids, Iweta, Patryk,
and Maksym, for their constant support, encouragement, and patience.
Without you, I wouldn't have achieved so much. Love you all immensely.

www.it-ebooks.info

http://www.it-ebooks.info/

Deepak Vohra is a consultant and a principal member of the NuBean.com software
company. Deepak is a Sun Certified Java Programmer and Web Component Developer and
has worked in the fields of XML and Java programming and J2EE for over five years. Deepak
is the co-author of the Apress book Pro XML Development with Java Technology and was
the technical reviewer for the O'Reilly book WebLogic: The Definitive Guide. Deepak was
also the technical reviewer for the Course Technology PTR book Ruby Programming for the
Absolute Beginner, and the technical editor for the Manning Publications book Prototype and
Scriptaculous in Action. Deepak is also the author of the Packt Publishing books JDBC 4.0 and
Oracle JDeveloper for J2EE Development, Processing XML documents with Oracle JDeveloper
11g, and EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g.

www.it-ebooks.info

http://www.packtpub.com/processing-xml-documents-with-oracle-jdeveloper-11g/book
http://www.packtpub.com/processing-xml-documents-with-oracle-jdeveloper-11g/book
http://www.packtpub.com/ejb-3-0-database-persistence-with-oracle-fusion-middleware-11g/book
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Java Language Improvements 7

Introduction 7
Using string literals in switch statements 9
Using underscores in literals to improve code readability 13
Using the try-with-resources block to improve exception handling code 16
Creating a resource that can be used with the try-with-resources technique 20
Catching multiple exception types to improve type checking 24
Rethrowing exceptions in Java 7 29
Using the diamond operator for constructor type inference 31
Using the @SafeVarargs annotation 35

Chapter 2: Locating Files and Directories Using Paths 41
Introduction 41
Creating a Path object 44
Interoperability between java.io.File and java.nio.file.Files 49
Converting a relative path into an absolute path 50
Removing redundancies by normalizing a path 53
Combining paths using path resolution 56
Creating a path between two locations 61
Converting between path types 65
Determining whether two paths are equivalent 67
Managing symbolic links 70

Chapter 3: Obtaining File and Directory Information 75
Introduction 75
Determining the file content type 78
Obtaining a single attribute at a time using the getAttribute method 79
Obtaining a map of file attributes 82

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Getting file and directory information 84
Determining operating system support for attribute views 89
Maintaining basic file attributes using the BasicFileAttributeView 93
Maintaining POSIX file attributes using the PosixFileAttributeView 96
Maintaining FAT table attributes using the DosFileAttributeView 98
Maintaining file ownership attributes using the FileOwnerAttributeView 100
Maintaining a file's ACL using the AclFileAttributeView 101
Maintaining user-defined file attributes using the
UserDefinedFileAttributeView 106

Chapter 4: Managing Files and Directories 109
Introduction 109
Creating files and directories 110
Controlling how a file is copied 113
Managing temporary files and directories 118
Setting time-related attributes of a file or directory 120
Managing file ownership 124
Managing ACL file permissions 126
Managing POSIX attributes 132
Moving a file and a directory 139
Deleting files or directories 143
Managing symbolic links 145

Chapter 5: Managing Filesystems 149
Introduction 149
Getting FileStore information 150
Getting Filesystem information 153
Using the SimpleFileVisitor class to traverse filesystems 155
Deleting a directory using the SimpleFileVisitor class 160
Copying a directory using the SimpleFileVisitor class 162
Processing the contents of a directory by using the
DirectoryStream interface 165
Filtering a directory using globbing 168
Writing your own directory filter 171
Monitoring file events using WatchEvents 173
Understanding the ZIP filesystem provider 178

Chapter 6: Stream IO in Java 7 181
Introduction 181
Managing simple files 184
Using buffered IO for files 187
Random access IO using the SeekableByteChannel 190

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Managing asynchronous communication using the
AsynchronousServerSocketChannel class 196
Writing to a file using the 202
AsynchronousFileChannel class 202
Reading from a file using the 206
AsynchronousFileChannel class 206
Using the SecureDirectoryStream class 210

Chapter 7: Graphical User Interface Improvements 213
Introduction 213
Mixing heavyweight and lightweight components 217
Managing window types 219
Managing the opacity of a window 222
Creating a varying gradient translucent window 224
Managing the shape of a window 227
Using the new border types in Java 7 231
Handling multiple file selection in the FileDialog class 235
Controlling the print dialog box type 238
Using the new JLayer decorator for a password field 240

Chapter 8: Handling Events 247
Introduction 247
Managing extra mouse buttons and high resolution mouse wheels 248
Controlling a focus when displaying a window 252
Using secondary loops to mimic modal dialog boxes 255
Handling spurious thread wakeups 260
Handling applet initialization status with event handlers 262

Chapter 9: Database, Security, and System Enhancements 267
Introduction 267
Using the RowSetFactory class 270
Java 7 database enhancements 273
Using the ExtendedSSLSession interface 278
Using the platform MXBeans for JVM or system process load monitoring 283
Redirecting input and output from operating system's processes 287
Embedding a JNLP file in an HTML page 291

Chapter 10: Concurrent Processing 297
Introduction 297
Using join/fork framework in Java 299
Using the reusable synchronization barrier Phaser 303
Using the new ConcurrentLinkedDeque safely with multiple threads 312
Using the new LinkedTransferQueue class 319
Supporting multiple threads using the ThreadLocalRandom class 325

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 11: Odds and Ends 329
Introduction 329
Handling weeks in Java 7 332
Using the Currency class in Java 7 335
Using the NumericShaper.Range enumeration to support the display
of digits 336
JavaBean enhancements in Java 7 339
Handling locales and the Locale.Builder class in Java 7 342
Handling null references 346
Using the new BitSet methods in Java 7 352

Index 355

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
With the release of Java 7, numerous new features have been added that significantly improve
the developer's ability to create and maintain Java applications. These include language
improvements, such as better exception handling techniques, and additions to the Java core
libraries, such as new threading mechanisms.

This cookbook covers these new features using a series of recipes. Each recipe addresses
one or more new features and provides a template for using these features. This should make
it easier to understand the features along with when and how they can be used. Step-by-step
instructions are provided to guide the reader through the recipes and are followed by an
explanation of the resulting code.

The book starts with a discussion of the new language enhancements, which is followed by a
series of chapters, each addressing a specific area such as file and directory management.
The reader is assumed to be familiar with the features of Java 6. The book does not need to
be read in sequential order, which enables the reader to choose the chapters and recipes that
are of interest. However, it is recommended that the reader cover the first chapter, as many of
the features found there will be used in subsequent recipes. If other new Java 7 features are
used in a recipe, then cross references are provided to the related recipes.

What this book covers
Chapter 1, Java Language Improvements: In this chapter, we examine the various
language improvements introduced as part of Project Coin. These features include simple
improvements such as using underscores in literals and the use of strings with switch
statements. Also, more significant improvements such as the try-with-resources block and
the introduction of the diamond operator are detailed.

Chapter 2, Locating Files and Directories Using Paths: The Path class is introduced in this
chapter. It is used in this and other chapters and is the basis for much of the new file-related
additions to Java 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 3, Obtaining File and Directory Information: Many applications need access to
specific file and directory information. How to access this file information is addressed here,
including accessing such information as the basic file attributes, Posix attributes, and a file's
access control list.

Chapter 4, Managing Files and Directories: In this chapter, the basic mechanisms for
managing files and directories are covered, including such actions as creating and deleting
files. Also addressed are the use of temporary files and the management of symbolic links.

Chapter 5, Managing File Systems: Here a number of interesting topics, such as how to obtain
the filesystem and file store information, the classes used to traverse a file structure, how to
watch for file and directory events, and how to work with a ZIP file system are presented.

Chapter 6, Stream IO in Java 7: NIO2 is introduced. New techniques for performing
asynchronous IO are detailed along with new approaches for performing random access
IO and using a secure directory stream.

Chapter 7, Graphical User Interface Improvements: There have been several additions to
Java 7 to address the creation of a GUI interface. It is now possible to create windows with
different shapes and windows that are transparent. In addition, numerous enhancements
are explained such as the use of the JLayer decorator, which improves the ability to overlay
graphics on a window.

Chapter 8, Handling Events: In this chapter, new methods for working with various application
events are examined. Java 7 now supports extra mouse buttons and precision mouse wheels.
The ability to control a window's focus has been improved and secondary loops have been
introduced to mimic the behavior of modal dialog boxes.

Chapter 9, Database, Security, and System Enhancements: Various database improvements
such as the introduction of the new RowSetFactory class are illustrated along with how to take
advantage of new SSL support. In addition, other system improvements such as additional
support for MXBeans are demonstrated.

Chapter 10, Concurrent Processing: Several new classes have been added to support the
use of threads, including classes that support the fork/join paradigm, the phaser model, an
improved dequeue class, and a transfer queue class. The new ThreadLocalRandom class,
used to generate random numbers, is explained.

Chapter 11, Odds and Ends: This chapter demonstrates many other Java 7 improvements
such as new support for week, years, and currency. Also included in this chapter is the
improved support for dealing with null references.

What you need for this book
The software required for this book includes the Java Development Kit (JDK) 1.7 or later. Any
integrated development environment that supports Java 7 can be used to create and execute
the recipes. The examples in this book were developed using NetBeans 7.0.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Who this book is for
This book is designed to bring those who are familiar with Java up-to-speed on the new
features found in Java 7.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

 private void gameEngine(List<Entity> entities)
{
 final Phaser phaser = new Phaser(1);
 for (final Entity entity : entities)
{
 final String member = entity.toString();
 System.out.println(member + " joined the game");
 phaser.register();
 new Thread()
{
 @Override
 public void run()
{
 System.out.println(member +
 " waiting for the remaining
participants");
 phaser.arriveAndAwaitAdvance(); // wait for
remaining entities
 System.out.println(member + " starting run");
 entity.run();
}
}.start();
}
 phaser.arriveAndDeregister(); //Deregister and continue
 System.out.println("Phaser continuing");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 private void gameEngine(List<Entity> entities)
{
 final Phaser phaser = new Phaser(1);
 for (final Entity entity : entities)
{
 final String member = entity.toString();
 System.out.println(member + " joined the game");
 phaser.register();
 new Thread()
{
 @Override
 public void run()
{
 System.out.println(member +
 " waiting for the remaining
participants");
 phaser.arriveAndAwaitAdvance(); // wait for
remaining entities
 System.out.println(member + " starting run");
 entity.run();
}
}.start();
}
 phaser.arriveAndDeregister(); //Deregister and continue
 System.out.println("Phaser continuing");
}

Any command-line input or output is written as follows:

 Paths.get(new URI("file:///C:/home/docs/users.txt")),
Charset.defaultCharset()))

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

6

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Java Language
Improvements

In this chapter, we will cover the following:

 f Using string literals in switch statements

 f Using underscores in literals to improve code readability

 f Using the try-with-resources block to improve exception handling code

 f Creating a resource that can be used with the try-with-resources technique

 f Catching multiple exception types to improve type checking

 f Re-throwing exceptions in Java 7

 f Using the diamond operator for constructor type inference

 f Using the @SafeVarargs annotation

Introduction
Java 7 was released in July of 2011 and introduced a number of new features. In the
Java SDK documentation, you may see it referred to as Java 1.7. This chapter will focus
on those that have been grouped as part of the Project Coin (http://openjdk.java.
net/projects/coin/). Project Coin refers to the small language changes in Java 7 that
are designed to make programs more readable by removing extra text when possible. The
changes to the language do not involve modifying the Java Virtual Machine (JVM). These
new features include:

 f The use of strings in switch statements

 f The addition of binary literals and the ability to insert underscores into numeric literals

www.it-ebooks.info

http://openjdk.java.net/projects/coin/
http://openjdk.java.net/projects/coin/
http://www.it-ebooks.info/

Java Language Improvements

8

 f The use of a multi-catch block

 f The try-with-resources block

 f Improved type inferences using the diamond operator

 f Improvements in the use of methods with a variable number of arguments

Since the inception of Java, only integer values could be used to control a switch statement.
Strings can now be used and can provide a more convenient technique for controlling the
execution flow that is based on a string. The Using string literals in switch statements recipe
illustrates this feature.

Underscores can now be used with literals as examined in the recipe Using underscores
in literals to improve code readability. These can make a program more readable and
maintainable. In addition, binary literals can now be used. Instead of using a hexadecimal
literal, for example, the literal bit pattern can be used.

New to Java 7 are the improved try-catch block mechanisms. These include the ability to catch
more than one exception from a single catch block, and improvements in how exceptions can
be thrown. The Catching multiple exception types to improve type checking recipe looks into
these enhancements.

Another improvement in exception handling involves the automatic closure of resources.
In earlier versions of Java, when multiple resources were opened in a try block, it could
be difficult to effectively close the resources, when an exception occurs. Java 7 provides a
new technique as discussed in the Using the try-with-resources block to improve exception
handling code recipe.

To take advantage of this technique, a class representing a resource must implement the
new java.lang.AutoCloseable interface. This interface consists of a single method,
close which, when implemented, should release resources as needed. Many core Java
classes have been augmented to do this. The recipe: Creating a resource that can be
used with the try-with-resources technique illustrates how to do this for non-core classes.

Java 7 provides the capability to re-throw exceptions in a flexible manner. It provides a more
precise way of throwing exceptions, and more flexibility in how they can be handled in a try/
catch bock. The Re-throwing exceptions in Java 7 recipe illustrates this capability.

When generics were introduced in Java 1.5, it became easier to write code to address a
number of similar problems. However, its usage at times could become somewhat verbose.
The introduction of the diamond operator has eased this burden, and is illustrated in the
Using the diamond operator for constructor type inference recipe.

When a method uses a variable number of generic arguments, sometimes an invalid warning
is generated. The @SafeVarargs annotation has been introduced to flag a method as
safe. This issue is related to heap pollution and is discussed in the Using the @SafeVarargs
Annotation recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

In this and the other chapters, most of the code examples will be
written to execute from within a main method. While no specific
Integrated Development Environment (IDE) is needed to use the new
features of Java 7, the examples in this book were developed using
NetBeans 7.0.1 and Windows 7, unless otherwise noted. At minimum,
a version of the Java Development Kit (JDK) 1.7 or later is needed.
Also, note that the code examples provided do not include import
statements. These are not shown here to reduce the number of lines of
code. Most IDEs make it easy to insert these imports, but you need to
be careful that the correct imports are used.

Using string literals in switch statements
The ability to use string literals in switch statements is new to Java 7. Previously, only integer
values were the valid arguments in a switch statement. It is not uncommon to need to make
a decision based on a string value, and the use of a switch statement to perform this task
can simplify the series of if statements that would otherwise be needed. This can result in
more readable and efficient code.

Getting ready
A selection based on a string value may occur in an application. Once such a situation is
identified, do the following:

1. Create a String variable to be processed via the switch statement.

2. Create the switch block, using string literals for the case clauses.

3. Use the String variable to control the switch statement.

How to do it...
The example demonstrated here will use a switch statement to process an application's
command line arguments. Create a new console application. In the main method, we will use
the args argument to process the application's command line arguments. Many applications
allow command line arguments to customize or otherwise affect the operation of the
application. In this example, our application will support a verbose mode, logging, and provide
a help message regarding the valid command line arguments for the application.

1. In this example, create a class called StringSwitchExample that possesses three
instance variables to be set by the command line arguments, shown as follows:
public class StringSwitchExample {
 private static boolean verbose = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

10

 private static boolean logging = false;
 private static boolean displayHelp = false;
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2. Next, add the following main method, which will set these variables based on the
command line arguments provided:
 public static void main(String[] args) {
 for (String argument : args) {
 switch (argument) {
 case "-verbose":
 case "-v":
 verbose = true;
 break;
 case "-log":
 logging = true;
 break;
 case "-help":
 displayHelp = true;
 break;
 default:
 System.out.println("Illegal command line
argument");
}
}
 displayApplicationSettings();
}

3. Add the following helper method to display the application setting:
 private static void displayApplicationSettings() {
 System.out.println("Application Settings");
 System.out.println("Verbose: " + verbose);
 System.out.println("Logging: " + logging);
 System.out.println("Help: " + displayHelp);
}

4. Execute the application using the following command line:
java StringSwitchExample -verbose -log

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

11

5. If you are using an IDE, then there is usually a way to set the command line
arguments. For example, in NetBeans, right-clicking on the project name in the
Project window, and selecting Properties menu will open a Project Properties dialog
box. In the Run category, the Arguments textbox allows you to set the command line
arguments, as shown in the following screenshot:

6. When the application is executed, your output should appear as follows:

Application Settings

Verbose: true

Logging: true

Help: false

How it works...
The application setting variables are all initialized to false. A for-each loop iterates through
each command line argument. The switch statement uses a specific command line
argument to turn on an application setting. The switch statement behaves like the earlier
Java switch statements.

It is interesting to note that the Java Virtual Machine (JVM) currently
provides no direct support for switching with strings. The Java
compiler is responsible for converting strings in switch statements
to the appropriate byte code.

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

12

When the for loop completes, the displayApplicationSettings method is invoked. This
displays the current application setting, reflecting the configuration specified by the command
line arguments.

It is important to note, however, while a String variable may be passed to the switch
statements, as with the other data types used in switch statements, the strings used in the
case clauses must be string literals. The general rules regarding switch statements apply
when using string literals. Each statement within the switch block must have a valid non-null
label, no two labels may be identical, and only one default label may be associated with each
switch block.

There's more...
When using strings, you need to be careful about the following two issues:

 f Null values for strings

 f The case of the string

Using a string reference variable that is assigned a null value will result in a java.lang.
NullPointerException. See the Handling null references recipe in Chapter 11, Odds
and Ends, for more information on how to handle a NullPointerException. This is also
true when used with a switch statement. Also, the evaluation of a case expression is case
sensitive in a switch statement. In the previous example, if the command line argument is
different from what appears in the case expression, then the case is skipped. If we had used
the following command line instead, where we capitalized the word verbose:

java StringSwitchExample -Verbose -log

Then the verbose mode will no longer be used as indicated in the following output:

Application Settings

Verbose: false

Logging: true

Help: false

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Using underscores in literals to improve
code readability

Numerical literals can contain underscore characters (_) in Java 7. This is intended to improve
the readability of code by separating digits of a literal into significant groups at almost any
arbitrary place that meets the needs of the developer. The underscore can be applied to
primitive data types in any supported base (binary, octal, hexadecimal, or decimal), and to
both integer and floating-point literals.

Getting ready
The first step is to identify instances where it will be beneficial for the developer to format
literals in such a manner. Typically, you will want to identify longer numbers or numbers that
would have significant parts in their external form, such as debit card numbers. The basic
steps include:

1. Identify a literal to use with underscores.

2. Insert underscores at appropriate places within the literal to make the literal
more readable.

How to do it...
This example illustrates using underscores to clarify the inherent gaps found in most debit
card numbers, and demonstrates their use with floating point numbers.

1. Create a new console application and add the main method as follows:
 public static void main(String[] args) {
 long debitCard = 1234_5678_9876_5432L;
 System.out.println("The card number is: " + debitCard);
System.out.print("The formatted card number is:");
 printFormatted(debitCard);

 float minAmount = 5_000F;
 float currentAmount = 5_250F;
 float withdrawalAmount = 500F;

 if ((currentAmount - withdrawalAmount) < minAmount) {
 System.out.println("Minimum amount limit exceeded " +
minAmount);
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

14

2. Add a method to display the credit card number properly formatted for output,
as follows:
 private static void printFormatted(long cardNumber) {
 String formattedNumber = Long.toString(cardNumber);
 for (int i = 0; i < formattedNumber.length(); i++) {
 if (i % 4 == 0) {
 System.out.print(" ");
}
 System.out.print(formattedNumber.charAt(i));
}
 System.out.println();
}

3. Execute the application. The output will appear as follows:

The card number is: 1234567898765432

The formatted card number is: 1234 5678 9876 5432

Minimum amount limit exceeded 5000.0

Notice that in the first output line the displayed number does not contain underscores, but
our second line is formatted to use spaces where the underscores were. This is to illustrate
the difference between how the number looks internally, and how it needs to be formatted
for external display.

How it works...
The debit card example partitioned the number into four sections making it more readable.
A long variable was needed due to the length of the debit card number.

Next, a minimum limit was placed on the amount of money in a bank account. The variable
minAmount of type float was set to 5,000.00 using the underscores to denote the location
of the comma. Two more float called currentAmount and withdrawalAmount were
declared and set equal to 5,250.00 and 500.00, respectively. The code then determined
whether the withdrawalAmount could be subtracted from the currentAmount and still
maintain a balance above the minAmount. If not, a message to that effect was displayed.

In most applications involving currency, the java.util.Currency
class would be a more appropriate choice. The previous example used
floating point literals only to explain the usage of underscores.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

The only purpose of the underscore is to make the code more readable to the developer. The
compiler ignores the underscores during code generation and during any subsequent variable
manipulation. Consecutive underscores are treated as one and also ignored by the compiler.
If the output format of a variable is important, it will have to be handled separately.

There's more...
Underscores can be used for more than base 10 literals. In addition, underscores can be
misused. Here, we will address the following:

 f Simple underscore usage mistakes

 f Using underscores with hexadecimal literals

 f Using underscores with binary literals

Simple underscore usage mistakes
Underscores may generally be placed arbitrarily within the literals, but there are guidelines
limiting their use. It is invalid to place underscores at the beginning or end of a number,
adjacent to a decimal point when used in a float or double, prior to the D, F, or L suffix,
or where a string of digits is required.

The following are the examples of invalid underscore usages:

 long productKey = _12345_67890_09876_54321L;
 float pi = 3._14_15F;
 long licenseNumber = 123_456_789_L;

These will generate the syntax error, error: illegal underscore.

Using underscores with hexadecimal literals
Underscores can be particularly useful when dealing with binary data expressed in
hexadecimal or binary. In the following example, an integer value representing a command
to be sent to a data port was expressed as a hexadecimal and as a binary literal:

 int commandInHex = 0xE_23D5_8C_7;
 int commandInBinary = 0b1110_0010001111010101_10001100_0111;

These two numbers are the same. They are only expressed in different bases. Here, we used
base 2 and base 16. The base 16 representation may be more readable in this example. Base
2 literals will be discussed in more depth in the next section.

The underscores were used to more clearly identify parts of the command. The assumption
is that the first four bits of the command represent an operator, while the next 16 bits are an
operand. The next 8 bits and 4 bits could represent other aspects of the command.

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

16

Using underscores with binary literals
We can also use underscores with binary literals. For example, to initialize a device we may
need to send a specific 8 bit sequence to the data port. This sequence may be organized such
that the first two bits specify the operation (read, write, and so on), the next three bits may
specify a device resource, and the last three bits could represent an operand. We may encode
this sequence using a binary literal with underscores as follows:

byte initializationSequence = 0b10_110_010;

Use of the underscores clearly identifies each field. While it is not necessary to use the
variable initializationSequence, it allows us to use the sequence in more than one
place in a program. Another example defines a mask where, in this case, the first three bits
are eliminated during an AND operation as follows:

result = inputValue & 0b000_11111;

In a bitwise AND operation, each bit of the operands are Anded with each other. These
examples are illustrated as follows:

 byte initializationSequence = (byte) 0b01_110_010;
 byte inputValue = (byte) 0b101_11011;

 byte result = (byte) (inputValue & (byte) 0b000_11111);
 System.out.println("initializationSequence: " +
 Integer.toBinaryString(initializationSequence));
 System.out.println("result: " + Integer.
toBinaryString(result));

When this sequence is executed, we get the following output:

initializationSequence: 1110010

result: 11011

The byte cast operator was needed because binary literals default to type int. Also, notice
that the toBinaryString method does not display leading zeroes.

Using the try-with-resources block to
improve exception handling code

Prior to Java 7, the code required for properly opening and closing resources, such as a
java.io.InputStream or java.nio.Channel, was quite verbose and prone to errors.
The try-with-resources block has been added in an effort to simplify error-handling and
make the code more concise. The use of the try-with-resources statement results in all of its
resources being automatically closed when the try block exits. Resources declared with the
try-with-resources block must implement the interface java.lang.AutoCloseable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

This approach enables a better programming style as it avoids nested and excessive try-catch
blocks. It also ensures accurate resource management, which you may see referred to as
Automated Resource Management (ARM) in literature.

Getting ready
When working with resources that need to be opened and closed, the try-with-resource
block is implemented by:

1. Creating the try block and declaring the resources to be managed.

2. Using the resource within the try block.

How to do it...
1. Create a console application and add the following main method to it. Create a text

file in the working directory called users.txt and add a list of names to the file.
This example opens up that file and creates a backup, while demonstrating the use
of the try-with-resources technique, where a java.io.BufferedReader and
java.io.BufferedWriter objects are created with the try block:
 public static void main(String[] args) {
 try (BufferedReader inputReader = Files.newBufferedReader(
 Paths.get(new URI
 ("file:///C:/home/docs/users.txt")),
 Charset.defaultCharset());
 BufferedWriter outputWriter = Files.
newBufferedWriter(
 Paths.get(new URI("file:///C:/home/docs/
users.bak")),
 Charset.defaultCharset())) {
 String inputLine;
 while ((inputLine = inputReader.readLine()) != null) {
 outputWriter.write(inputLine);
 outputWriter.newLine();
}
 System.out.println("Copy complete!");
}
catch (URISyntaxException | IOException ex) {
 ex.printStackTrace();
}
}

2. Execute the application. The output should be as follows:

Copy complete!

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

18

How it works...
The resources to be managed are declared and initialized inside a set of parentheses
between the try keyword and the opening curly brace of the try block. In this case, two
resources are created. The first is a BufferedReader object associated with the users.
txt file and the second is a BufferedWriter object associated with the users.bak file.
The new IO techniques using the java.nio.file.Path interface are discussed in Chapter
6, Stream IO in Java 7.

The first file is then read line by line and written to the second file. When the try block is
exited, the two IO streams are automatically closed. A message is then displayed showing
that the copy operation is complete.

Notice the use of the vertical bar in the catch block. This is new to Java 7 and allows us to
catch multiple exceptions in a single catch block. The use of this operator is discussed in the
Catching multiple exception types to improve type checking recipe.

Bear in mind that the resources declared with a try-with-resources block are separated
by semicolons. Failure to do so will result in a compile-time error. Also, resources will be
attempted to be closed, regardless of whether the try block completes normally or not.
If the resource cannot be closed, an exception is normally thrown.

Regardless of whether resources are closed or not, the catch and finally blocks are always
executed. However, exceptions can still be thrown from these blocks. This is discussed in more
detail in the Creating a resource that can be used with the try-with-resources technique recipe.

There's more...
To complete our understanding of the try-with-resources technique, we need to address
two other topics as follows:

 f Understanding suppressed exceptions

 f Structuring issues when using the try-with-resources technique

Understanding suppressed exceptions
In support of this approach, a new constructor was added to the java.lang.Exception class
along with two methods: addSuppressed and getSuppressed. Suppressed exceptions are
those exceptions that are not explicitly reported. In the case of the try-with-resources try block,
exceptions may be thrown from the try block itself or when the resources created by the try block
are closed. When more than one exception is thrown, exceptions may be suppressed.

In the case of the try-with-resources block, any exceptions associated with a close operation
are suppressed when an exception is thrown from the block itself. This is demonstrated in the
Creating a resource that can be used with the try-with-resources technique recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

Suppressed exceptions can be retrieved using the getSuppressed method.
Programmer created exceptions can designate an exception as suppressed by using
the addSuppressed method.

Structuring issues when using the try-with-resources technique
It may not be desirable to use this technique when a single resource is used. We will show
three different implementations of a sequence of code to display the contents of the
users.txt file. The first, as shown in the following code, uses the try-with-resources block.
However, it is necessary to precede this block with a try block to capture the java.net.
URISyntaxException:

 Path path = null;
 try {
 path = Paths.get(new URI("file:///C:/home/docs/users.
txt"));
 }
catch (URISyntaxException e) {
 System.out.println("Bad URI");
}

 try (BufferedReader inputReader = Files.
newBufferedReader(path, Charset.defaultCharset())) {
 String inputLine;
 while ((inputLine = inputReader.readLine()) != null) {
 System.out.println(inputLine);
}
}
catch (IOException ex) {
 ex.printStackTrace();
}

This example is predicated upon the need to catch the URISyntaxException. This can be
avoided by creating the java.net.URI object inside of the get method as shown below.
However, it does make the code harder to read:

 try (BufferedReader inputReader = Files.newBufferedReader(
 Paths.get(new URI("file:///C:/home/docs/users.txt")),
Charset.defaultCharset())) {

 String inputLine;
 while ((inputLine = inputReader.readLine()) != null) {
 System.out.println(inputLine);
}
}
catch (IOException | URISyntaxException ex) {
 ex.printStackTrace();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

20

Notice the use of the multiple catch block as discussed in the Catching multiple exception
types to improve type checking recipe. Another approach is to avoid the URI object altogether
by using the get method with a String argument as follows:

 try {
 Path path = Paths.get("users.txt");
 BufferedReader inputReader =
 Files.newBufferedReader(path, Charset.
defaultCharset());
 String inputLine;
 while ((inputLine = inputReader.readLine()) != null) {
 System.out.println(inputLine);
}
}
catch (IOException ex) {
 ex.printStackTrace();
}

The methods that are used and the structure of the code affect the readability and
maintainability of the code. It may or may not be feasible to eliminate the use of the URI
object, or similar objects, in a code sequence. However, careful consideration of alternative
approaches can go a long way to improving an application.

See also
The Catching multiple exception types to improve type checking recipe and Creating a
resource that can be used with the try-with-resources technique recipe provide further
coverage of the exception handling in Java 7.

Creating a resource that can be used with
the try-with-resources technique

There are many resources in Java libraries, which can be used as part of the try-with-
resource technique. However, there may be times when you may wish to create your own
resources that can be used with this technique. An example of how to do this is illustrated in
this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

Getting ready
To create a resource that can be used with the try-with-resources technique:

1. Create a class that implements the java.lang.AutoCloseable interface.

2. Override the close method.

3. Implement resource-specific methods.

Any objects created with the try-with-resources block must implement the AutoCloseable
interface. This interface has a single method, that is, close.

How to do it...
Here, we will illustrate this approach by creating three classes:

 f One class that contains the main method

 f Two classes that implement the AutoCloseable interface

1. Create two classes called FirstAutoCloseableResource and
SecondAutoCloseableResource. Within these classes, implement a
manipulateResource and close method, shown as follows:
public class FirstAutoCloseableResource implements AutoCloseable {
 @Override
 public void close() throws Exception {
 // Close the resource as appropriate
 System.out.println("FirstAutoCloseableResource close
method executed");
 throw new UnsupportedOperationException(
 "A problem has occurred in
FirstAutoCloseableResource");
}

 public void manipulateResource() {
 // Perform some resource specific operation
 System.out.println("FirstAutoCloseableResource
manipulateResource method executed");
}
}

public class SecondAutoCloseableResource implements AutoCloseable {

 @Override
 public void close() throws Exception {
 // Close the resource as appropriate

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

22

 System.out.println("SecondAutoCloseableResource close
method executed");
 throw new UnsupportedOperationException(
 "A problem has occurred in
SecondAutoCloseableResource");
}

 public void manipulateResource() {
 // Perform some resource specific operation
 System.out.println("SecondAutoCloseableResource
manipulateResource method executed");
}
}

2. Next, add the following code to a main method. We use the try-with-resources
technique with the two resources, and then call their manipulateResource method:
 try (FirstAutoCloseableResource resource1 = new
FirstAutoCloseableResource();
 SecondAutoCloseableResource resource2 = new
SecondAutoCloseableResource()) {
 resource1.manipulateResource();
 resource2.manipulateResource();
}
catch (Exception e) {
 e.printStackTrace();
 for(Throwable throwable : e.getSuppressed()) {
 System.out.println(throwable);
}
}

3. When the code executes, the close methods throw an
UnsupportedOperationException shown as follows:

FirstAutoCloseableResource manipulateResource method executed

SecondAutoCloseableResource manipulateResource method executed

SecondAutoCloseableResource close method executed

FirstAutoCloseableResource close method executed

java.lang.UnsupportedOperationException: A problem has occurred in
SecondAutoCloseableResource

 at packt.SecondAutoCloseableResource.close(SecondAutoCloseableResour
ce.java:9)

 at packt.TryWithResourcesExample.displayAutoCloseableExample(TryWithRe
sourcesExample.java:30)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

 at packt.TryWithResourcesExample.main(TryWithResourcesExample.java:22)

 Suppressed: java.lang.UnsupportedOperationException: A problem has
occurred in FirstAutoCloseableResource

 at packt.FirstAutoCloseableResource.close(FirstAutoCloseableResourc
e.java:9)

 ... 2 more

java.lang.UnsupportedOperationException: A problem has occurred in
FirstAutoCloseableResource

How it works...
Within the resource classes, the manipulateResource methods were created to perform
some resource-specific operation. The resource classes were declared as part of the try block,
and the manipulateResource methods were called. This was illustrated in the first part of
the output. The output has been highlighted to clarify the process.

When the try block terminated, the close methods were executed. They were executed in an
opposite order than expected. This is the result of how the application program stack works.

Within the catch block, the stack was dumped. In addition, we used the getSuppressed
method to return and display the suppressed methods. Support for suppressed exceptions
was introduced in Java 7. These types of exceptions are discussed in the Using the try-with-
resource block to improve exception handling code recipe and later on in this recipe.

There's more...
Within the close method, one of the following three actions is possible:

 f Do nothing if there is nothing to close or the resource will always close

 f Close the resource and return without error

 f Attempt to close the resource, but throw an exception upon failure

The first two conditions are easy enough to handle. In the case of the last one, there are a few
things to bear in mind.

Always implement the close method and supply specific exceptions. This provides the user
with more meaningful feedback concerning the underlying problem. Also, do not throw an
InterruptedException. Runtime problems can occur if the InterruptedException
has been suppressed.

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

24

The close method is not required to be idempotent. An idempotent method is the one where
repeated execution of the method will not cause problems. As an example, reading from the
same file twice will not necessarily cause problems. Whereas, writing the same data twice to
the file may. The close method does not have to be idempotent, however, it is recommended
that it should be.

See also
The Using the try-with-resources block to improve exception handling code recipe covers the
use of this type of try block.

Catching multiple exception types to
improve type checking

Within a try block, multiple exceptions can be generated and thrown. A corresponding series
of catch blocks are used to capture and then deal with the exceptions. Frequently, the action
needed to deal with one exception is the same for other exceptions. An example of this is
when the logging of an exception is performed.

In Java 7, it is now possible to handle more than one exception from within a single catch
block. This ability can reduce the duplication of code. In earlier versions of Java, there was
often a temptation to address this issue by catching a higher-level exception class and
handling multiple exceptions from that block. There is less need for this approach now.

Getting ready
Using a single catch block to capture multiple exceptions is achieved by:

1. Adding a catch block

2. Including multiple exceptions within the catch blocks' parentheses, separated by
a vertical bar

How to do it...
In this example, we wish to deal with invalid input from the user by logging an exception.
This is a simple approach that will suffice to explain how multiple exceptions can be handled.

1. Create an application with two classes: MultipleExceptions and
InvalidParameter. The InvalidParameter class is used to handle invalid
user input, and the MultipleExceptions class contains the main method and
example code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

2. Create the InvalidParameter class as follows:
public class InvalidParameter extends java.lang.Exception {
 public InvalidParameter() {
 super("Invalid Parameter");
}
}

3. Next, create the MultipleExceptions class with a java.util.logging.
Logger object as follows:
public class MultipleExceptions {

 private static final Logger logger = Logger.getLogger("log.
txt");

 public static void main(String[] args) {
 System.out.print("Enter a number: ");
 try {
 Scanner scanner = new Scanner(System.in);
 int number = scanner.nextInt();
 if (number < 0) {
 throw new InvalidParameter();
}
 System.out.println("The number is: " + number);
}
catch (InputMismatchException | InvalidParameter e) {
 logger.log(Level.INFO, "Invalid input, try again");
}
}

4. Execute the program using a variety of input. Using a valid number, such as 12,
results in the following output:

Enter a number: 12

The number is: 12

5. Using invalid input like a non-numeric value, such as cat, or a negative number, such
as -5, will result in the following output:

Enter a number: cat

Invalid input, try again

Aug 28, 2011 1:48:59 PM packt.MultipleExceptions main

INFO: Invalid input, try again

Enter a number: -5

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

26

Invalid input, try again

Aug 28, 2011 1:49:20 PM packt.MultipleExceptions main

INFO: Invalid input, try again

How it works...
The logger was created and when an exception occurred, an entry was made in the logger file.
The output created by using NetBeans also displayed these log messages as they occur.

When an exception was thrown, the catch block was entered. Notice that the two exceptions
of interest here, java.util.InputMismatchException and InvalidParameter, occur
within the same catch statement and are separated with a vertical bar. Also, notice that there
is only a single variable, e, used to represent the exception.

This approach is useful when we need to handle a few specific exceptions, and need to handle
them in the same way. When a catch block handles more than one exception, the catch block
parameter is implicitly final. This means that it is not possible to assign new values to the
parameter. The following is illegal and its use will result in a syntax error:

}
catch (InputMismatchException | InvalidParameter e) {
 e = new Exception(); // multi-catch parameter e may not
be assigned
 logger.log(Level.INFO, "Invalid input, try again");
}

Besides being more readable and concise than using multiple catch blocks, the generated
bytecode is also smaller and does not result in the generation of duplicate code.

There's more...
The base class or classes of a set of exceptions impact when to use a catch block to capture
multiple exceptions. Also, assertions are useful in creating robust applications. These issues
are addressed as follows:

 f The use of a common exception base class and the java.lang.
ReflectiveOperationException

 f Using the java.lang.AssertionError class in Java 7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

The use of a common exception base class and the
ReflectiveOperationException
Catching multiple exceptions in the same catch block is useful when different exceptions
need to be handled in the same way. However, if the multiple exceptions share a common
base exception class, then it may be simpler to catch the base class exception instead.
This is the case with many IOException derived classes.

For example, the Files class' delete method may throw one of the following four
different exceptions:

 f java.nio.file.NoSuchFileException

 f java.nio.file.DirectoryNotEmptyException

 f java.io.IOException

 f java.lang.SecurityException

Of these, NoSuchFileException and DirectoryNotEmptyException are ultimately
derived from IOException. Thus, catching the IOException may be sufficient as
illustrated in the following code:

public class ReflectiveOperationExceptionExample {
 public static void main(String[] args) {
 try {
 Files.delete(Paths.get(new URI("file:///tmp.txt")));
}
catch (URISyntaxException ex) {
 ex.printStackTrace();
}
catch (IOException ex) {
 ex.printStackTrace();
}
}
}

In this example, notice that a URISyntaxException exception is potentially thrown by the
URI constructor. The recipe Deleting a file or directory, in Chapter 4, Managing Files and
Directories, details the use of the delete method.

In Java 7, a new exception, ReflectiveOperationException, has been added to the
java.lang package. It is the base class for the following exceptions:

 f ClassNotFoundException

 f IllegalAccessException

 f InstantiationException

 f InvocationTargetException

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

28

 f NoSuchFieldException

 f NoSuchMethodException

This exception class can ease the handling of reflection type exceptions. The use of the
multiple exceptions catching mechanism is more appropriate for those sets of exceptions
which have no common base class.

As a general rule, it is better to catch the exception that is as specific
to the problem as possible. For example, it is better to catch a
NoSuchFileException as opposed to the more broad Exception, when
dealing with a missing file. This provides more detail about the exception.

Using the AssertionError class in Java 7
Assertions are useful in building an application that is more robust. A good introduction to
this topic can be found at http://download.oracle.com/javase/1.4.2/docs/
guide/lang/assert.html. In Java 7, a new constructor was added that allows a message
to be attached to a user-generated assertion error. This constructor has two arguments.
The first is the message to be associated with the AssertionError and the second is a
Throwable clause.

In the MultipleExceptions class developed earlier in this recipe, we tested to see if the
number was less than zero, and if so we threw an exception. Here, we will illustrate the use of
the AssertionError constructor by throwing an AssertionError, if the number is greater
than 10.

Add the following code to the main method near the original test of the number:

 if(number>10) {
 throw new AssertionError("Number was too big",new
Throwable("Throwable assertion message"));
}

Execute the program and enter 12 again. Your results should be similar to the following:

Enter a number: 12

Exception in thread "main" java.lang.AssertionError: Number was too big

at packt.MultipleExceptions.main(MultipleExceptions.java:28)

Caused by: java.lang.Throwable: Throwable assertion message

... 1 more

Java Result: 1

www.it-ebooks.info

http://download.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://download.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://www.it-ebooks.info/

Chapter 1

29

Prior to Java 7, it was not possible to associate a message with a user-generated
AssertionError.

See also
The use of the Files class is detailed in Chapter 4, Managing Files and Directories.

Rethrowing exceptions in Java 7
When an exception is caught in a catch block, it is sometimes desirable to rethrow the
exception. This allows the exception to be processed by the current method and methods that
called the current method.

However, prior to Java 7 only a base class exception could be rethrown. When more than one
exception needed to be rethrown, you were restricted to declaring a common base class in the
method declaration. Now, it is possible to be more restrictive on the exceptions which can be
thrown for a method.

Getting ready
In order to rethrow exceptions in Java, you must first catch them. From within the catch block,
use the throw keyword with the exception to be thrown. The new rethrow technique in Java 7
requires that you:

 f Use a base class exception class in the catch block

 f Use the throw keyword to throw the derived class exception from the catch block

 f Modify the method's signature to throw the derived exceptions

How to do it...
1. We will modify the ReflectiveOperationExceptionExample class developed

in the Catching multiple exception types to improve type checking recipe. Modify
the main method to call the deleteFile method in the try block, as shown in the
following code:
public class ReflectiveOperationExceptionExample {

 public static void main(String[] args) {
 try {
 deleteFile(Paths.get(new URI("file:///tmp.txt")));
}
catch (URISyntaxException ex) {
 ex.printStackTrace();

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

30

}
catch (IOException ex) {
 ex.printStackTrace();
}
}

2. Add the deleteFile method, shown as follows:
 private static void deleteFile(Path path) throws
NoSuchFileException, DirectoryNotEmptyException {
 try {
 Files.delete(path);
}
catch (IOException ex) {
 if(path.toFile().isDirectory()) {
 throw new DirectoryNotEmptyException(null);

}
else {
 throw new NoSuchFileException(null);
}
}
}
}

3. Execute the application using a file that does not exist. The output should be
as follows:

java.nio.file.NoSuchFileException

 at packt.ReflectiveOperationExceptionExample.deleteFile(ReflectiveOperationE
xceptionExample.java:33)

 at packt.ReflectiveOperationExceptionExample.main(ReflectiveOperationExcept
ionExample.java:16)

How it works...
The main method called and handled exceptions generated by the deleteFile
call. The method declared that it can throw a NoSuchFileException and a
DirectoryNotEmptyException. Notice that the base class, IOException, was used
to catch exceptions. Within the catch block, a test was made to determine what caused the
exception, using the File class' isDirectory method. Once the root cause of the exception
was determined, the appropriate exception was thrown. The use of the Files class is detailed
in Chapter 4, Managing Files and Directories.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

By specifying precisely which exceptions can be thrown by the method, we can be clear
about what callers of the method can expect. In addition, it prevents the inadvertent
throwing of other IOException derived exceptions from the method. The drawback of this
example is that if another exception, such as a FileSystemException, is the root cause,
then we will have missed it. It will be caught in the deleteFile method, since it is derived
from the IOException. However, we have failed to handle it in the method or pass it to the
calling method.

See also
The previous three recipes provide additional coverage of exception handling in Java 7.

Using the diamond operator for constructor
type inference

The use of the diamond operator simplifies the use of generics when creating an object. It
avoids unchecked warnings in a program, and it reduces generic verbosity by not requiring
explicit duplicate specification of parameter types. Instead, the compiler infers the type.
Dynamically-typed languages do this all the time. While Java is statically typed, the use of the
diamond operator allows more inferences than before. There is no difference in the resulting
compiled code.

The compiler will infer the parameter types for the constructors. This is an example of the
convention over configuration (http://en.wikipedia.org/wiki/Convention_over_
configuration). By letting the compiler infer the parameter type (convention), we avoid
explicit specification (configuration) of the object. Java also uses annotations in many areas
to affect this approach. Type inference is now available, whereas it was only available for
methods before.

Getting ready
To use the diamond operator:

1. Create a generic declaration of an object.

2. Use the diamond operator, <>, to specify the type inference that is to be used.

How to do it...
1. Create a simple Java application with a main method. Add the following code

example to the main method to see how they work. For example, to declare a java.
util.List of strings, we can use the following:
List<String> list = new ArrayList<>();

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

32

2. The identifier, list, is declared as a list of strings. The diamond operator, <>, is used
to infer the List type as String. No warnings are generated for this code.

How it works...
When an object is created without specifying the data type, it is called a raw type. For
example, the following uses a raw type when instantiating the identifier, list:

List<String> list = new ArrayList(); // Uses raw type

When the code is compiled, the following warnings are generated:

Note: packt\Bin.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

An unchecked warning is generated. It is generally desirable to eliminate unchecked warnings
in an application. When the –Xlint:unchecked is used we get the following:

packt\Bin.java:26: warning: [unchecked] unchecked conversion

 List<String> arrayList = new ArrayList();

 ^

 required: List<String>

 found: ArrayList

1 warning

Before Java 7, we could address this warning by explicitly using a parameter type
as follows:

List<String> list = new ArrayList<String>();

With Java 7, the diamond operator makes this shorter and simpler. This operator becomes
even more useful with more complex data types, such as, a List of Map objects as follows:

List<Map<String, List<String>> stringList = new ArrayList<>();

There's more...
There are several other aspects of type inference that should be discussed:

 f Using the diamond operator when the type is not obvious

 f Suppressing unchecked warnings

 f Understanding erasure

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

Using the diamond operator when the type is not obvious
Type inference is supported in Java 7 and later, only if the parameter type for the constructor
is obvious. For example, if we use the diamond operator without specifying a type for the
identifier shown as follows, we will get a series of warnings:

List arrayList = new ArrayList<>();
arrayList.add("First");
arrayList.add("Second");

Compiling the program with –Xlint:unchecked, results in the following warnings:

... packt\Bin.java:29: warning: [unchecked] unchecked call to add(E) as a member of the
raw type ArrayList

 arrayList.add("First");

 where E is a type-variable:

 E extends Object declared in class ArrayList

... \packt\Bin.java:30: warning: [unchecked] unchecked call to add(E) as a member of the
raw type ArrayList

 arrayList.add("Second");

 where E is a type-variable:

 E extends Object declared in class ArrayList

2 warnings

These warnings will go away if the data type is specified as follows:

 List<String> arrayList = new ArrayList<>();

Suppressing unchecked warnings
While not necessarily desirable, it is possible to use the @SuppressWarnings annotation
to suppress unchecked exceptions generated by the failure to use the diamond operator.
The following is an example of this:

@SuppressWarnings("unchecked")
 List<String> arrayList = new ArrayList();

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

34

Understanding erasure
Erasure occurs when generics are used. The data type used in the declaration is not available
at run-time. This language design decision was made when Java 1.5 introduced generics, to
make the code backwards compatible.

Consider the following three methods. They differ only in the declaration of the
arrayList variable:

 private static void useRawType() {
 List<String> arrayList = new ArrayList();
 arrayList.add("First");
 arrayList.add("Second");
 System.out.println(arrayList.get(0));
 }

 private static void useExplicitType() {
 List<String> arrayList = new ArrayList<String>();
 arrayList.add("First");
 arrayList.add("Second");
 System.out.println(arrayList.get(0));
}

 private static void useImplicitType() {
 List<String> arrayList = new ArrayList<>();
 arrayList.add("First");
 arrayList.add("Second");
 System.out.println(arrayList.get(0));
}

When these methods are compiled, the type information available at compile-time is lost.
If we examine the compiled bytecode for these three methods, we will find that there is no
difference between them.

Using the following command will display the byte codes for the program:

javap -v -p packt/Bin

The generated code is identical for these three methods. The code for the
useImplicitType is shown as follows. It is identical to the other two methods;

 private static void useImplicitType();
 flags: ACC_PRIVATE, ACC_STATIC
 Code:
 stack=3, locals=1, args_size=0
 0: new #5 // class java/util/
ArrayList

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

 3: dup
 4: invokespecial #6 // Method java/util/
ArrayList."<in
it>":()V
 7: astore_0
 8: aload_0
 9: ldc #7 // String First
 11: invokevirtual #8 // Method java/util/
ArrayList.add:
(Ljava/lang/Object;)Z
 14: pop
 15: aload_0
 16: ldc #9 // String Second
 18: invokevirtual #8 // Method java/util/
ArrayList.add:
(Ljava/lang/Object;)Z
 21: pop
 22: getstatic #10 // Field java/lang/
System.out:Ljav
a/io/PrintStream;
 25: aload_0
 26: iconst_0
 27: invokevirtual #11 // Method java/util/
ArrayList.get:
(I)Ljava/lang/Object;
 30: checkcast #12 // class java/lang/
String
 33: invokevirtual #13 // Method java/io/
PrintStream.prin
tln:(Ljava/lang/String;)V
 36: return

Using the @SafeVarargs annotation
The @SafeVarargs and @SuppressWarnings annotations can be used to deal with various
warnings that are normally harmless. The @SuppressWarnings annotation, as its name
implies, will suppress specific types of warnings.

The @SafeVarargs annotation, introduced in Java 7, is used to designate certain methods
and constructors that use a variable number of arguments as safe. Methods can be passed
with a variable number of arguments. These arguments may be generics. If they are, then it
may be desirable to suppress harmless warnings using the @SafeVarargs annotation.

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

36

Getting ready
The @SafeVarargs annotation is used with constructors and methods. To use the
@SafeVarargs annotation, the following steps need to be followed:

1. Create a method or constructor that uses a variable number of generic parameters.

2. Add the @SafeVarargs annotation before the method declaration.

In Java 7, mandatory compiler warnings are generated with generic variable argument
methods or constructors. The use of the @SafeVarargs annotation suppresses warnings,
when these methods or constructors are deemed to be harmless.

How to do it...
1. To demonstrate the @SafeVarargs annotation, create an application with a method

called displayElements as follows. The method displays information about each
parameter and its value:
package packt;

import java.util.ArrayList;

public class SafeVargExample {
 public static void main(String[] args) {
}

 @SafeVarargs
 public static <T> void displayElements(T... array) {
 for (T element : array) {
 System.out.println(element.getClass().getName() + ": "
+ element);
}
}
}

The method uses a variable number of generic parameters. Java implements
a variable number of arguments as an array of objects, which only hold reifiable
types. A reifiable type is discussed in the How it works section.

2. Add the following code in the main method to test the method:
 ArrayList<Integer> a1 = new ArrayList<>();
 a1.add(new Integer(1));
 a1.add(2);
 ArrayList<Float> a2 = new ArrayList<>();
 a2.add(new Float(3.0));
 a2.add(new Float(4.0));
 displayElements(a1, a2, 12);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

37

3. Execute the application. The output should appear as follows:

java.util.ArrayList: [1, 2]

java.util.ArrayList: [3.0, 4.0]

java.lang.Integer: 12

4. Notice the use of the diamond operator, <>, in the declaration of the java.util.
ArrayList. This operator is new to Java 7, and is discussed in the recipe: Using the
diamond operator for constructor type inference.

How it works...
In Java, a method or constructor with a variable number of arguments is created using the
... notation as used in the displayElements method. In this case, the element type
is a generic.

The basic problem is the inability of generics and arrays to play well together. When generics
were added to the Java language in 1.5, they were implemented to make them backwards
compatible with earlier code. This meant that they were implemented using erasure. That is,
any type of information that was available at compile-time was removed at run-time. This data
is referred to as non-reifiable.

Arrays are reified. Information about an array's element type is retained and can be used at
run-time. Note that it is not possible to declare an array of generics. It is possible to create a
simple array of strings as follows:

 String arr[] = {"First", "Second"};

However, we cannot create an array of generics, such as the following:

 List<String> list1 = new ArrayList<String>();
 list1.add("a");
 List<String> list2 = new ArrayList<String>();
 list2.add("b");
 List<String> arr[] = {list1, list2}

This code will generate the following error message:

Cannot create a generic array of List<String>

A method that uses a variable number of arguments is implemented as an array of objects.
It can only deal with reifiable types. When a method using a variable number of arguments is
invoked, an array is created to hold these parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Java Language Improvements

38

Since we used a method with variable number of generic arguments, a run-time problem can
occur known as heap pollution. Heap pollution occurs when a variable of a parameterized
type is assigned a different type than that used to define it. At run-time, this will manifest itself
as an unchecked warning. At run-time, it will result in a java.lang.ClassCastException.
Use the @SafeVarargs annotation to designate a method as one that avoids heap pollution.

Methods that use a variable number of generic arguments will result in a compile-time
warning. However, not all methods that use a variable number of generic arguments will result
in a run-time exception. The @SafeVarargs is used to mark the safe methods as safe. If it
is possible for a run-time exception to occur, then the annotation should not be used. This is
further explored in the next section.

Notice that if the @SafeVarargs annotation was not used then the following warnings will
be generated:

warning: [unchecked] unchecked generic array creation for varargs parameter of type
ArrayList<? extends INT#1>[]

warning: [unchecked] Possible heap pollution from parameterized vararg type T

The first warning is applied against the displayElements invocation and the second
warning is applied against the actual method. There is nothing wrong with the code, so
suppression of these warnings is perfectly acceptable.

We could use the @SuppressWarnings("unchecked") annotation instead to suppress the
warning at the declaration of the method, but warnings are still generated with their usage.
Using @SafeVarargs suppresses warnings at both places.

There's more...
Also of interest is:

 f The use of @SafeVarargs annotation in the Java core libraries

 f An example of heap pollution

The use of @SafeVarargs annotation in Java core libraries
JDK 1.7 libraries have incorporated the @SafeVarargs annotation. These include
the following:

 f public static <T> List<T> java.util.Arrays.asList(T... a)

 f public static <T> boolean java.util.Collections.
addAll(Collection<? super T> c, T... elements)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

39

 f public static <E extends Enum<E>> java.util.EnumSet<E> EnumSet.
of(E first, E... rest)

 f protected final void javax.swing.SwingWorker.publish(V...
chunks)

These methods were tagged with the @SafeVarargs annotation to indicate that they will not
cause heap pollution. These methods are considered to be safe.

An example of heap pollution
Some methods should not be marked as safe, as illustrated with the following code adapted
from the javadoc description of the @SafeVarargs annotation (http://download.
oracle.com/javase/7/docs/api/index.html under the java.lang.SafeVarargs
annotation documentation).

Add the following method to your code:

 @SafeVarargs // Not actually safe!
 static void merge(List<String>... stringLists) {
 Object[] array = stringLists;
 List<Integer> tmpList = Arrays.asList(42);
 array[0] = tmpList; // Semantically invalid, but compiles
without warnings
 String element = stringLists[0].get(0); // runtime
ClassCastException
}

Test the method with the following code:

 List<String> list1 = new ArrayList<>();
 list1.add("One");
 list1.add("Two");
 list1.add("Three");
 List<String> list2 = new ArrayList<>();
 list2.add("Four");
 list2.add("Five");
 list2.add("Six");
 merge(list1,list2);

Execute the program. You should get the following error message:

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast
to java.lang.String

www.it-ebooks.info

http://download.oracle.com/javase/7/docs/api/index.html
http://download.oracle.com/javase/7/docs/api/index.html
http://www.it-ebooks.info/

Java Language Improvements

40

A list of strings was passed to the method and assigned to the identifier stringList. Next, an
array of objects was declared and assigned to the same object referenced by stringList. At
this point, the stringList and array referenced the same object, a java.util.List of
strings. The following illustrates the configuration of the memory at this point:

stringLists

array

tmpList

An array

[0]

[1]

42

“Four” “Five” “Six”

“One” “Three”“Two”

With the following assignment:

 array[0] = tmpList

The first element of the array is reassigned to tmpList. This reassignment is illustrated in the
following figure:

stringLists

array

tmpList

An array

[0]

[1]

42

“Four” “Five” “Six”

“One” “Three”“Two”

At this point, we have effectively assigned an Integer object to a String reference variable.
It has been assigned to the first element of the array referenced by both stringLists and
array. The dashed line shows the old reference, which has been replaced with the line.
When an attempt is made at run-time to assign this Integer object to a String reference
variable, the ClassCastException occurs.

This method results in heap pollution and should not be annotated with @SafeVarargs as it
is not safe. The assignment of tmpList to the first element of the array is permitted, since we
are simply assigning a List<Integer> object to an Object reference variable. This is an
example of upcasting, which is legal in Java.

See also
The previous recipe Using the diamond operator for constructor type inference explains an
improvement in the use of generics.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Locating Files and
Directories Using

Paths

In this chapter, we will cover the following:

 f Creating a Path object

 f Interoperability between java.io.File and java.nio.file.Files

 f Converting a relative path into an absolute path

 f Removing redundancies by normalizing a path

 f Combining paths using path resolution

 f Creating a path between two locations

 f Converting between path types

 f Determining whether two paths are equivalent

 f Managing symbolic links

Introduction
A filesystem is a way of organizing data on a computer. Normally, it consists of one or more
top-level directories, each of which contains a hierarchy of files. The top-level directory is
frequently referred to as the root. In addition, the filesystem is stored on a media, which is
referred to as the file store.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

42

Java 7 introduces a number of new classes and interfaces to make working with filesystems
easier and more efficient. These have largely supplemented older classes found in the
java.io package.

In this and subsequent chapters, we will demonstrate how a filesystem can be managed using
the directory structure, as shown in the following diagram:

Home

users.txt

status.txt

Space Machine A.mp3

Robot Brain A.mp3

Future Setting A.mp3

users.txt(linked)

Music Docs

The ovals represent a directory/folder, while rectangles represent files. Unix-based systems
and Windows systems differ in their support of a root node. Unix systems support a single root
node, while Windows systems permit more than one root node. The location of a directory or
file is described using a path. The elements, directories and files of the path are separated by
either a forward or backward slash. In Unix, a forward slash is used. In Windows, a backward
slash is used.

The music files were obtained from http://freepd.com/70s%20Sci%20Fi/. The
status.txt is intended to hold simple status information, while the users.txt is assumed
to hold a list of users. The users.txt file in the music directory is a symbolic link to the
actual file in the docs directory as reflected with the red line. These files will be used in
various examples throughout this chapter. Of course, you can use any file or file structure that
you wish.

Symbolic links are more common in Unix-based platforms. To create a symbolic link for the
users.txt file in the music directory, use the following command in the command console:
mklink users.txt c:\home\docs\users.txt. This requires administrator privileges
to execute.

www.it-ebooks.info

http://freepd.com/70s Sci Fi/
http://www.it-ebooks.info/

Chapter 2

43

This chapter is concerned with the management of paths as represented by the java.nio.
file.Path class. A Path object is used extensively by classes in the java.nio package
and is composed of several parts that are as follows:

 f A root which is the base of the path, such as a C drive

 f A separator used to separate the names that make up directories and files of
the path

 f The names of the intermediate directories

 f A terminal element, which can be a file or directory

These are discussed and illustrated in the Understanding paths recipe. The following are the
classes dealing with files and directories:

 f java.nio. file.Paths contains static methods for the creation of a Path object

 f java.nio. file.Path interface contains numerous methods for working
with paths

 f java.nio. file.FileSystems is the primary class used to access a filesystem

 f java.nio. file.FileSystem represents a filesystem, such as the /on a UNIX
system or the C drive on a Windows platform

 f java.nio. file.FileStore represents the actual storage device and provides
device-specific information

 f java.nio. file.attribute.FileStoreAttributeView provides access to
file information

The last two classes are discussed in more depth in later chapters. To gain access to a file
or directory, we will typically use the FileSystems class' getDefault method to retrieve a
reference to the filesystem accessible by the JVM. To get access to a specific drive, we can use
the getFileSystem method with a Uniform Resource Identifier (URI) object representing
the drive or directory of interest.

The FileSystems class provides techniques to create or access a filesystem. In this chapter,
we are interested in how the class supports the creation of Path objects. Once we have
reference to a file system object, we can obtain a Path object using any one of several methods:

 f getPath: This uses a system-dependent path to obtain a Path object. The Path
object is used to locate and access the file.

 f getPathMatcher: This creates a PathMatcher. It performs various matching
type operations on a file and is covered in the Getting filesystem information
recipe in Chapter 5.

 f getRootDirectories: This is used to obtain a list of root directories. This method
is illustrated in the Getting filesystem information recipe in Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

44

The creation and general use of Path objects is introduced in the Understanding paths
recipe. This knowledge is used in subsequent recipes and other chapters, so be sure to
understand the basic processes covered in this recipe.

You can still use the older java.io package elements. A path representing a java.
io.File object can be created using the File class's toPath method. This is discussed in
the Interoperability between java.io.File and java.nio.file.Files recipe and can be useful when
maintaining older code.

Paths can be either relative or absolute. These types of paths and techniques for dealing with
them are discussed in the Working with relative and absolute paths recipe.

Paths can contain redundancies and extraneous elements. Removal of these elements is
called normalization. The Removing redundancies in a path by normalizing the path recipe
examines the techniques available to simplify these types of paths.

Paths can be combined to form a new composite path. This is known as resolving a path and
is addressed in the Combining paths using path resolution recipe. This technique can be
useful for creating new paths, where parts of the path are available from different sources.

When a reference is needed for a file, that path is sometimes relative to the current location
or some other location. The Creating a path between two locations recipe illustrates the
creation of such a path. The process is called relativizing.

Not only are there relative and absolute paths, but there are also other ways of representing
a path such as with a java.net.URI object. When a Path object is created, it is not
necessary that the actual path exists. For example, the Path may be created to create
a new filesystem element. The Converting between path types recipe looks at methods
used to convert between these different types of paths.

Paths are system-dependent. That is, a path on one system such as UNIX is different from
one found on a Windows system. Comparing two paths found on the same platform may
or may not be the same. This is examined in the Determining whether two paths are
equivalent recipe.

Creating a Path object
A path to a directory or file is needed to identify that resource. The focus of this recipe is on
how to obtain a Path object for typical file and directory operations. Paths are used for most
of the recipes in this and many of the subsequent chapters that deal with files and directories.

There are several methods that create or return a Path object. Here, we will examine
those methods used to create a Path object and how to use its methods to further our
understanding of the path concept as used in Java.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

Getting ready
In order to create a Path object, we need to use either one of the following:

 f The FileSystem class' getPath method

 f The Paths class' get method

We will use the getPath method first. The get method is explained in the There's more
section of this recipe.

How to do it...
1. Create a console application with a main method. In the main method, add the

following code sequence that creates a Path object for the file status.txt.
We will use several Path class' methods to examine the path created as follows:
 Path path = FileSystems.getDefault().getPath("/home/docs/
status.txt");
System.out.println();
System.out.printf("toString: %s\n", path.toString());
System.out.printf("getFileName: %s\n", path.getFileName());
System.out.printf("getRoot: %s\n", path.getRoot());
System.out.printf("getNameCount: %d\n", path.getNameCount());
for(int index=0; index<path.getNameCount(); index++) {
System.out.printf("getName(%d): %s\n", index, path.
getName(index));
}
System.out.printf("subpath(0,2): %s\n", path.subpath(0, 2));
System.out.printf("getParent: %s\n", path.getParent());
System.out.println(path.isAbsolute());
}

2. Notice the use of the forward slashes in the path string. This approach will work on
any platform. However, on Windows you can also use back slashes shown as follows:
 Path path = FileSystems.getDefault().getPath("\\home\\
docs\\status.txt");

3. While either approach will work for a Windows platform, the use of forward slashes is
more portable.

4. Execute the program. Your output should appear as follows:

toString: \home\docs\status.txt

getFileName: status.txt

getRoot: \

getNameCount: 3

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

46

getName(0): home

getName(1): docs

getName(2): status.txt

subpath(0,2): home\docs

getParent: \home\docs

false

How it works...
The Path object was created using invocation chaining, starting with the FileSystems
class' getDefault method. This returns a FileSystem object representing the filesystem
available to the JVM. The FileSystem object normally refers to the working directory of the
current user. Next, the getPath method was executed using a string representing the file
of interest.

The rest of the code used various methods to display information about the path. As detailed
in the introduction of this chapter, we can display information about the parts of the path
using methods of the Path class. The toString method is executed against the path to
illustrate what you get by default.

The getFileName returned the file name of the Path object, and the getRoot returned
the root. The getNameCount method returned the number of intermediate directories plus
one for the filename. The for loop listed the elements of the path. In this case, there were two
directories and one file giving a count of three. The three elements make up the path.

While a simple for loop was used to display these names, we could have also used the
iterator method to list these names, as shown in the following code:

 Iterator iterator = path.iterator();
while(iterator.hasNext()) {
 System.out.println(iterator.next());
}

The Path object may consist of other paths. Subpaths can be retrieved using the subpath
method. The method possesses two arguments. The first represents an initial index and the
second argument specifies the last index exclusively. In this example, the first argument was
set to 0 indicating that the root level directory was to be retrieved. The last index was set to 2,
which means only the top two directories were listed.

The getParent method in this case also returned the identical path. However, notice that it
began with the backslash. This represents the path from the top level element following each
element except the last one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

There's more...
There are several issues that bear further consideration:

 f Using the Paths class' get method

 f The meaning of the parent path

Using the Paths class' get method
The Paths class' get method can also be used to create a Path object. This method uses a
variable number of String arguments to construct a path. In the following code sequence, a
path is created starting at the root of the current filesystem:

 try {
 path = Paths.get("/home", "docs", "users.txt");
 System.out.printf("Absolute path: %s", path.
toAbsolutePath());
}
catch (InvalidPathException ex) {
 System.out.printf("Bad path: [%s] at position %s",
 ex.getInput(), ex.getIndex());
}

The output using the toAbsolutePath method shows the path constructed. Notice the E
element. The code was executed on a Windows system where the current drive was the E
drive. The toAbsolutePath method is discussed in the Working with relative and absolute
paths recipe.

Absolute path: E:\home\docs\users.txt

If we do not use the forward slash in the path's String, then the path is created based on
the current working directory. Remove the forward slash and execute the program. Your output
should be similar to the following where, currentDirectory, is replaced with the one in use
when the code is executed:

Absolute path: currentDirectory\home\docs\users.txt

A more flexible approach is to use the resolve method as discussed in the Combining paths
using path resolution recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

48

The conversion of the input arguments to a path is system-dependent. If the characters
used in the creation of the path are invalid for the filesystem, then a java.nio.file.
InvalidPathException is thrown. For example, in most filesystems a null value is an
illegal character. To illustrate this, add a back slash 0 to the path string as shown in the
following code:

path = Paths.get("/home\0", "docs", "users.txt");

When executed, the output in part will appear as follows:

Bad path: [/home \docs\users.txt] at position 5

The InvalidPathException class' getInput method returns the concatenated string
used for creating the path. The getIndex method returns the position of the offending
character, which in this case is the null character.

The meaning of the parent path
The getParent method returns the parent path. However, the method does not access the
filesystem. This means that for a given Path object, there may or may not be a parent.

Consider the following path declaration:

path = Paths.get("users.txt");

This refers to the users.txt file found in the current working directory. The getNameCount
will return 1, and the getParent method will return null. In reality, the file exists in a directory
structure and has a root and a parent. Thus, the results of this method may not be useful in
some contexts.

The use of this method is roughly equivalent to the following use of the subpath method:

path = path.subpath(0,path.getNameCount()-1));

See also
The toRealPath method is discussed in the Working with relative and absolute paths recipe
and in the Removing redundancies in a path by normalizing the path recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

Interoperability between java.io.File and
java.nio.file.Files

Prior to the introduction of the java.nio package the classes and interfaces of the java.io
package were the only ones available to Java developers for working with files and directories.
While most of the capability of the java.io package has been supplemented by the newer
packages, it is still possible to work with the older classes, in particular the java.io.File
class. This recipe discusses how this can be accomplished.

Getting ready
To obtain a Path object using a File class, the following steps need to be followed:

1. Create a java.io.File object representing the file of interest

2. Apply the toPath method to it to obtain a Path object

How to do it...
1. Create a console application. Add the following main method where we create a

File object and a Path object representing the same file. Next, we compare the
two objects to determine whether they represent the same file or not:
public static void main(String[] args) {
try {
 Path path =
Paths.get(new URI("file:///C:/home/docs/users.txt"));
 File file = new File("C:\\home\\docs\\users.txt");
 Path toPath = file.toPath();
System.out.println(toPath.equals(path));
}
catch (URISyntaxException e) {
System.out.println("Bad URI");
}
}

2. When you execute the application, the output will be true.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

50

How it works...
Two Path objects were created. The first Path object was declared using the Paths class' get
method. It created a Path object to the users.txt file using a java.net.URI object. The
second Path object, toPath, was created from a File object using the toPath method.
The Path's equals method was used to demonstrate that the paths are equivalent.

Notice the use of the forward and backward slashes for the strings
used to represent the file. The URI string uses forward slashes,
which is operating system-independent. Whereas, the back slash
is used for a Windows path.

See also
The creation of a Path object is illustrated in the Understanding paths recipe. Also, the
creation of a URI object is discussed in the Working with relative and absolute paths recipe.

Converting a relative path into an absolute
path

A path can be expressed either as an absolute path or a relative path. Both are common and
are useful in different situations. The Path class and related classes support the creation of
both absolute and relative paths.

A relative path is useful for specifying the location of a file or directory in relationship to the
current directory location. Typically, a single dot or two dots are used to indicate the current
directory or next higher level directory respectively. However, the use of a dot is not required
when creating a relative path.

An absolute path starts at the root level and lists each directory separated by either forward
slashes or backward slashes, depending on the operating system, until the desired directory
or file is reached.

In this recipe, we will determine the path separator used for the current system and learn
how to convert a relative path to an absolute path. This is useful when handling user input for
filenames. Related to absolute and relative paths is the URI representation of a path. We will
learn how to use the Path class' toUri method to return this representation for a given path.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

Getting ready
The following methods are frequently used when dealing with absolute and relative paths:

 f The getSeparator method determines the file separator

 f The subpath method obtains a part or all parts/elements of a path

 f The toAbsolutePath method obtains the absolute path for a relative path

 f The toUri method obtains the URI representation of a path

How to do it...
1. We will address each of the previous methods one at a time. Start by creating

a console application using the following main method:
public static void main(String[] args) {
 String separator = FileSystems.getDefault().
getSeparator();
System.out.println("The separator is " + separator);
try {
 Path path = Paths.get(new URI("file:///C:/home/docs/
users.txt"));
System.out.println("subpath: " + path.subpath(0, 3));
path = Paths.get("/home", "docs", "users.txt");
System.out.println("Absolute path: " + path.toAbsolutePath());
System.out.println("URI: " + path.toUri());
}
catch (URISyntaxException ex) {
System.out.println("Bad URI");
}
catch (InvalidPathException ex) {
System.out.println("Bad path: [" + ex.getInput() + "] at position
" + ex.getIndex());
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

52

2. Execute the program. On a Windows platform, the output should appear as follows:

The separator is \

subpath: home\docs\users.txt

Absolute path: E:\home\docs\users.txt

URI: file:///E:/home/docs/users.txt

How it works...
The getDefault method returned a FileSystem object representing the filesystem currently
accessible to the JVM. The getSeparator method is executed against this object, returning a
backslash character indicating that the code was executed on a Windows machine.

A Path object was created for the users.txt file and the subpath method was executed
against it. This method is discussed in more detail in the Understanding paths recipe. The
subpath method always returns a relative path.

Next, a path was created using the get method. Since the forward slash was used with the
first argument, the path started at the root of the current filesystem. In this example, the path
provided is relative.

The URI representation of a path is related to absolute and relative paths. The Path class'
toUri method returns this representation for a given path. A URI object is used to represent
a resource on the Internet. In this case, it returned a string in the form of a URI scheme for files.

The absolute path can be obtained using the Path class' toAbsolutePath method. An
absolute path contains the root element and all of the intermediate elements for the path.
This can be useful when users are requested to enter the name of a file. For example, if the
user is asked to supply a filename to save results, the filename can be added to an existing
path representing a working directory. The absolute path can then be obtained and used
as necessary.

There's more...
Bear in mind that the toAbsolutePath method works regardless of whether the path
references a valid file or directory. The file used in the previous example does not need to
exist. Consider the use of a bogus file as shown in the following code. The assumption is
that the file, bogusfile.txt, does not exist in the specified directory:

 Path path = Paths.get(new URI("file:///C:/home/docs/
bogusfile.txt"));
 System.out.println("File exists: " + Files.exists(path));

 path = Paths.get("/home", "docs", "bogusfile.txt");
 System.out.println("File exists: " + Files.exists(path));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

When the program is executed, the output will appear as follows:

The separator is \

File exists: false

subpath: home\docs\bogusfile.txt

File exists: false

Absolute path: E:\home\docs\bogusfile.txt

URI: file:///E:/home/docs/bogusfile.txt

If we want to know whether this is a real path or not, we can use the toRealPath method as
discussed in the Removing redundancies in a path by normalizing the path recipe.

See also
Redundancies in a path can be removed using the normalize method as discussed in the
Removing redundancies in a path by normalizing the path recipe.

When symbolic links are used for files, then the path may not be the real path for the file.
The Path class' toRealPath method will return the real absolute path for the file. This is
demonstrated in the Removing redundancies in a path by normalizing the path recipe.

Removing redundancies by normalizing a
path

When the "." or ".." notation is used in defining a path, their use may introduce redundancies.
That is, the path described may be simplified by removing or otherwise altering the path.
This recipe discusses the use of the normalize method to affect this type of conversion. By
simplifying a path, it avoids errors and can improve the performance of the application. The
toRealPath method also performs normalization and is explained in the There's more ...
section of this recipe.

Getting ready
The basic steps used for removing redundancies in a path include the following:

 f Identifying paths that may contain redundancies

 f Using the normalize method to remove the redundancies

www.it-ebooks.info

file:///E:/home/docs/bogusfile.txt
file:///E:/home/docs/bogusfile.txt
http://www.it-ebooks.info/

Locating Files and Directories Using Paths

54

How to do it...
The directory structure from the introduction is duplicated here for convenience:

Home

users.txt

status.txt

Space Machine A.mp3

Robot Brain A.mp3

Future Setting A.mp3

users.txt(linked)

Music Docs

First consider the following paths:

/home/docs/../music/ Space Machine A.mp3
/home/./music/ Robot Brain A.mp3

These contain redundancies or extraneous parts. In the first example, the path starts at home
and then goes down a directory level to docs directory. The .. notation then leads back up
to the home directory. This then proceeds down the music directory and to the mp3 file. The
docs/.. element is extraneous.

In the second example, the path starts at home and then encounters a single period. This
represents the current directory, that is, the home directory. Next, the path goes down the
music directory and then encounters the mp3 file. The /. is redundant and is not needed.

1. Create a new console application and add the following main method:
public static void main(String[] args) {
 Path path = Paths.get("/home/docs/../music/Space
Machine A.mp3");
System.out.println("Absolute path: " + path.toAbsolutePath());
System.out.println("URI: " + path.toUri());
System.out.println("Normalized Path: " + path.normalize());
System.out.println("Normalized URI: " + path.normalize().toUri());
System.out.println();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

path = Paths.get("/home/./music/ Robot Brain A.mp3");
System.out.println("Absolute path: " + path.toAbsolutePath());
System.out.println("URI: " + path.toUri());
System.out.println("Normalized Path: " + path.normalize());
System.out.println("Normalized URI: " + path.normalize().toUri());
}

2. Execute the application. You should get the following output, though the root directory
may differ depending on the configuration of your system:

Absolute path: E:\home\docs\..\music\Space Machine A.mp3

URI: file:///E:/home/docs/../music/Space%20Machine%20A.mp3

Normalized Path: \home\music\Space Machine A.mp3

Normalized URI: file:///E:/home/music/Space%20Machine%20A.mp3

Absolute path: E:\home\.\music\ Robot Brain A.mp3

URI: file:///E:/home/./music/%20Robot%20Brain%20A.mp3

Normalized Path: \home\music\ Robot Brain A.mp3

Normalized URI: file:///E:/home/music/%20Robot%20Brain%20A.mp3

How it works...
Paths class' get method was used to create two paths using the redundant extraneous
paths discussed previously. The code that follows the get methods displayed the absolute
path and the URI equivalent to illustrate the actual path created. Next, the normalize
method was used and was then chained with the toUri method to further illustrate the
normalization process. Notice that the redundancy and extraneous path elements are gone.
The toAbsolutePath and toUri methods are discussed in the Working with relative and
absolute paths recipe.

The normalize method does not check to see if the files or path are valid. The method
simply performs a syntactic operation against the path. If a symbolic link was part of the
original path, then the normalized path may no longer be valid. Symbolic links are discussed
in the Managing symbolic links recipe.

There's more...
The Path class' toRealPath will return a path representing the actual path to
the file. It does check to see if the path is valid and will return a java.nio.file.
NoSuchFileException if the file does not exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

56

Modify the previous example to use the toRealPath method with a non-existent file as
shown in the following code:

try

 Path path = Paths.get("/home/docs/../music/
NonExistentFile.mp3");
System.out.println("Absolute path: " + path.toAbsolutePath());
System.out.println("Real path: " + path.toRealPath());

}
catch (IOException ex) {
System.out.println("The file does not exist!");
}

Execute the application. The result should contain the following output:

Absolute path: \\Richard-pc\e\home\docs\..\music\NonExistentFile.mp3

The file does not exist!

The toRealPath method normalizes the path. It also resolves any symbolic links, though
there were none in this example.

See also
The creation of a Path object is discussed in the Understanding paths recipe. Symbolic links
are discussed in the Managing symbolic links recipe.

Combining paths using path resolution
The resolve method is used to combine two paths, where one contains a root element and
the other is a partial path. This is useful when creating paths that can vary, such as those
used in the installation of an application. For example, there may be a default directory where
an application is installed. However, the user may be able to select a different directory or
drive. Using the resolve method to create a path allows the application to be configured
independent of the actual installation directory.

Getting ready
The use of the resolve method involves two basic steps:

 f Create a Path object that uses a root element

 f Execute the resolve method against this path with a second partial path

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

A partial path is one where only a part of the full path is provided and does not contain a
root element.

How to do it...
1. Create a new application. Add the following main method to it:

public static void main(String[] args) {
 Path rootPath = Paths.get("/home/docs");
 Path partialPath = Paths.get("users.txt");
 Path resolvedPath = rootPath.resolve(partialPath);
System.out.println("rootPath: " + rootPath);
System.out.println("partialPath: " + partialPath);
System.out.println("resolvedPath: " + resolvedPath);
System.out.println("Resolved absolute path: " + resolvedPath.
toAbsolutePath());
}

2. Execute the code. You should get the following output:

rootPath: \home\docs

partialPath: users.txt

resolvedPath: \home\docs\users.txt

Resolved absolute path: E:\home\docs\users.txt

How it works...
The following three paths were created:

 f \home\docs: This is the root path

 f users.txt: This is the partial path

 f \home\docs\users.txt: This is the resulting resolved path

The resolved path was created by using the partialPath variable as an argument to the
resolve method executed against the rootPath variable. These paths along with the
absolute path of the resolvedPath were then displayed. The absolute path included the
root directory, though this may differ on your system.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

58

There's more...
The resolve methods are overloaded, one using a String argument and the second using
a Path argument. The resolve method can also be misused. In addition, there is also an
overloadedresolveSibling method that works similar to the resolve method except
it removes the last element of the root path. These issues are addressed here.

Using a String argument with the resolve method
The resolve method is overloaded with one that accepts a String argument. The following
statement will achieve the same results as in the previous example:

 Path resolvedPath = rootPath.resolve("users.txt");

The path separator can also be used as follows:

 Path resolvedPath = rootPath.resolve("backup/users.txt");

Using these statements with the earlier code results in the following output:

rootPath: \home\docs

partialPath: users.txt

resolvedPath: \home\docs\backup\users.txt

Resolved absolute path: E:\home\docs\backup\users.txt

Notice that the resolved path is not necessarily a valid path as the backup directory may
or may not exist. The toRealPath method in the Removing redundancies in a path by
normalizing the path recipe can be used to determine if it is valid or not.

Improper use of the resolve method
There are three uses of the resolve method that can result in unexpected behavior:

 f Incorrect order of the root and partial paths

 f Using a partial path twice

 f Using the root path twice

If we reverse the order in which the resolve method is used, that is apply the root path
to the partial path, only the root path is returned. This is illustrated with the following code:

 Path resolvedPath = partialPath.resolve(rootPath);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

When the code is executed, we get the following results:

rootPath: \home\docs

partialPath: users.txt

resolvedPath: \home\docs

Resolved absolute path: E:\home\docs

Only the root path is returned here. The partial path is not appended to the root path.
Using the partial path twice as shown in the following code:

 Path resolvedPath = partialPath.resolve(partialPath);

will result in the following output:

rootPath: \home\docs

partialPath: users.txt

resolvedPath: users.txt\users.txt

Resolved absolute path: currentWorkingDIrectory\users.txt\users.txt

Notice the resolved path is incorrect and that the absolute path uses the current working
directory. Using the root path twice as shown below:

 Path resolvedPath = rootPath.resolve(rootPath);

results in the same output as when using the paths in the reverse order:

rootPath: \home\docs

partialPath: users.txt

resolvedPath: \home\docs

Resolved absolute path: E:\home\docs

Whenever an absolute path is used as the argument of the resolve method, that absolute
path is returned. If an empty path is used as an argument to the method, the root path
is returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

60

Using the resolveSibling
The resolveSibling method is overloaded taking either a String or a Path object.
With the resolve method, the partial path is appended to the end of the root path. The
resolveSibling method differs from the resolve method in that the last element
of the root path is removed before the partial path is appended. Consider the following
code sequence:

Path rootPath = Paths.get("/home/music/");

resolvedPath = rootPath.resolve("tmp/Robot Brain A.mp3");
System.out.println("rootPath: " + rootPath);
System.out.println("resolvedPath: " + resolvedPath);
System.out.println();

resolvedPath = rootPath.resolveSibling("tmp/Robot Brain A.mp3");
System.out.println("rootPath: " + rootPath);
System.out.println("resolvedPath: " + resolvedPath);

When executed we get the following output:

rootPath: \home\music

resolvedPath: \home\music\tmp\Robot Brain A.mp3

rootPath: \home\music

resolvedPath: \home\tmp\Robot Brain A.mp3

Notice the resolved path differs in the presence of the directory music. When the resolve
method is used, the directory is present. It is absent when the resolveSibling method is
used. If there is no parent path, or the argument of the method is an absolute path, then the
argument passed to the method is returned. If the argument is empty then the parent
is returned.

See also
The creation of a Path object is discussed in the Understanding paths recipe. Also, the
toRealPath method is explained in the Removing redundancies in a path by normalizing
the path recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

Creating a path between two locations
To relativize a path means to create a path based on two other paths such that the new path
represents a way of navigating from one of the original paths to the other. This technique finds
a relative path from one location to another. For example, the first path could represent an
application default directory. The second path could represent a target directory. A relative
path created from these directories could facilitate operations against the target.

Getting ready
To use the relativize method to create a new path from one path to another, we need to
do the following:

1. Create a Path object that represents the first path.

2. Create a Path object that represents the second path.

3. Apply the relativize method against the first path using the second path as
its argument.

How to do it...
1. Create a new console application and use the following main method. This method

creates two Path objects, and shows the relative path between them as follows:
public static void main(String[] args) {
 Path firstPath;
 Path secondPath;
firstPath = Paths.get("music/Future Setting A.mp3");
secondPath = Paths.get("docs");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();

firstPath = Paths.get("music/Future Setting A.mp3");
secondPath = Paths.get("music");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();

firstPath = Paths.get("music/Future Setting A.mp3");

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

62

secondPath = Paths.get("docs/users.txt");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();
}

2. Execute the application. Your results should be similar to the following:

From firstPath to secondPath: ..\..\docs

From secondPath to firstPath: ..\music\Future Setting A.mp3

From firstPath to secondPath: ..

From secondPath to firstPath: Future Setting A.mp3

From firstPath to secondPath: ..\..\docs\users.txt

From secondPath to firstPath: ..\..\music\Future Setting A.mp3

How it works...
In the first example, a relative path was created from the Future Setting A.mp3 file to the
docs directory. The music and docs directories are assumed to be siblings. The .. notation
means to move up one directory. This chapter's introduction illustrated the assumed directory
structure for this example.

The second example demonstrates creating a path from within the same directory. The path
from firstpath to secondPath is actually a potential error. Depending on how this is
used, we could end up in the directory above the music directory since the path returned is
.. meaning to move up one directory level. The third example is similar to the first example
except both of the paths contain file names.

The relative path created by this method may not be a valid path. This is illustrated by using
the potentially non-existent tmp directory, shown as follows:

firstPath = Paths.get("music/Future Setting A.mp3");
secondPath = Paths.get("docs/tmp/users.txt");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

The output should appear as follows:

From firstPath to secondPath: ..\..\docs\tmp\users.txt

From secondPath to firstPath: ..\..\..\music\Future Setting A.mp3

There's more...
There are three other cases that we need to consider:

 f Both paths are equal

 f One path contains a root

 f Both paths contain a root

Both paths are equal
When both paths are equal, the relativize method will return an empty path as illustrated
with the following code sequence:

firstPath = Paths.get("music/Future Setting A.mp3");
secondPath = Paths.get("music/Future Setting A.mp3");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();

The output is as follows:

From firstPath to secondPath:

From secondPath to firstPath:

While this is not necessarily an error, note that it does not return a single dot which is
frequently used to represent the current directory.

One path contains a root
If only one of the paths contains a root element, then it may not be possible to construct a
relative path. Whether it is possible or not is system-dependent. In the following example, the
first path contains the root element c:

firstPath = Paths.get("c:/music/Future Setting A.mp3");
secondPath = Paths.get("docs/users.txt");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

64

When this code sequence is executed on Windows 7, we get the following output:

Exception in thread "main" java.lang.IllegalArgumentException: 'other' is different type of
Path

From firstPath to secondPath: ..

From secondPath to firstPath: Future Setting A.mp3

 atsun.nio.fs.WindowsPath.relativize(WindowsPath.java:388)

 atsun.nio.fs.WindowsPath.relativize(WindowsPath.java:44)

 atpackt.RelativizePathExample.main(RelativizePathExample.java:25)

Java Result: 1

Notice the reference to other in the output. This refers to the argument of the
relativize method.

Both paths contain a root
The ability of the relativize method to create a relative path when both paths contain a
root element is also system-dependent. This situation is illustrated in the following example:

firstPath = Paths.get("c:/music/Future Setting A.mp3");
secondPath = Paths.get("c:/docs/users.txt");
System.out.println("From firstPath to secondPath: " + firstPath.
relativize(secondPath));
System.out.println("From secondPath to firstPath: " + secondPath.
relativize(firstPath));
System.out.println();

When executed on Windows 7, we get the following output:

From firstPath to secondPath: ..\..\docs\users.txt

From secondPath to firstPath: ..\..\music\Future Setting A.mp3

See also
The creation of a Path object is discussed in the Understanding paths recipe. Symbolic links
results are system-dependent and are discussed in more depth in the Managing symbolic
links recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

Converting between path types
The Path interface represents a path within a filesystem. This path may or may not be a
valid path. There are times when we may want to use an alternative representation of a path.
For example, a file can be loaded into most browsers using a URI for the file. The toUri
method provides this representation of a path. In this recipe we will also see how to obtain an
absolute path and a real path for a Path object.

Getting ready
There are three methods that provide alternative path representations:

 f The toUri method returns the URI representation

 f The toAbsolutePath method returns the absolute path

 f The toRealPath method returns the real path

How to do it...
1. Create a new console application. Within the main method, we will use each of the

previous methods. Add the following main method to the application:
public static void main(String[] args) {
try {
 Path path;
path = Paths.get("users.txt");
System.out.println("URI path: " + path.toUri());
System.out.println("Absolute path: " + path.toAbsolutePath());
System.out.println("Real path: " + path.toRealPath(LinkOption.
NOFOLLOW_LINKS));
}
catch (IOException ex) {
Logger.getLogger(ConvertingPathsExample.class.getName()).
log(Level.SEVERE, null, ex);
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

66

2. If not already present, add a users.txt file in the working directory of your
application. Execute the program. Your output should be similar to the following,
except the ... in this output should reflect the location of the users.txt file:

URI path: file:///.../ConvertingPathsExample/users.txt

Absolute path...\ConvertingPathsExample\users.txt

Real path: ...\ConvertingPathsExample\users.txt

How it works...
A users.txt file was added to the working directory of the Java application. This file should
contain a list of usernames. The get method returned a Path object representing this file.
Each of the three methods were then executed against this object.

The toUri and toAbsolutePath methods returned paths as expected for that method
type. The path returned is dependent on the application's working directory. The toRealPath
method should have returned the same output as the toAbsolutePath method. This is to
be expected, since the users.txt file was not created as a symbolic link. Had this been a
symbolic link, then a different path representing the actual path to the file would have
been displayed.

There's more...
Since it is possible that a Path object may not actually represent a file, the use of the
toRealPath method may throw a java.nio.file.NoSuchFileException if the file
does not exist. Use an invalid file name, shown as follows:

path = Paths.get("invalidFileName.txt");

The output should appear as follows:

URI path: file:///.../ConvertingPathsExample/invalidFileName.txt

Absolute path: ...\ConvertingPathsExample\invalidFileName.txt

Sep 11, 2011 6:40:40 PM packt.ConvertingPathsExample main

SEVERE: null

java.nio.file.NoSuchFileException: ...\ConvertingPathsExample\invalidFileName.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

Notice that the toUri and toAbsolutePath work regardless of whether the specified file
exists or not. In situations where we want to use these methods, we can test whether the file
exists or not using the Files class' exists method. The previous code sequence has been
modified to use the exists method shown as follows:

if(Files.exists(path)) {
 System.out.println("Real path: " + path.toRealPath(LinkOption.
NOFOLLOW_LINKS));
}
else {
 System.out.println("The file does not exist");
}

The java.nio.fil.LinkOption enumeration was added in Java 7. It is used to specify
whether symbolic links should be followed or not.

When executed, the output should appear as follows:

URI path: file:///.../ConvertingPathsExample/invalidFileName.txt

Absolute path: ...\ConvertingPathsExample\invalidFileName.txt

The file does not exist

Determining whether two paths are
equivalent

At times it may be necessary to compare paths. The Path class allows you to test the paths
for equality using the equals method. You can also use the compareTo method to compare
two paths lexicographically using an implementation of the Comparable interface. Finally, the
isSameFile method can be used to determine if two Path objects will locate the same file.

Getting ready
In order to compare two paths, you must:

1. Create a Path object that represents the first path.

2. Create a Path object that represents the second path.

3. Apply either the equals, compareTo, or isSameFile methods to the paths
as needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

68

How to do it...
1. Create a new console application and add a main method. Declare three Path object

variables such as path1, path2 and path3. Set the first two to the same file and
the third one to a different path. All the three files must exist. Follow this with calls to
three comparison methods:
public class ComparingPathsExample {

 public static void main(String[] args) {
 Path path1 = null;
 Path path2 = null;
 Path path3 = null;

 path1 = Paths.get("/home/docs/users.txt");
 path2 = Paths.get("/home/docs/users.txt");
 path3 = Paths.get("/home/music/Future Setting A.mp3");

 testEquals(path1, path2);
 testEquals(path1, path3);

 testCompareTo(path1, path2);
 testCompareTo(path1, path3);

 testSameFile(path1, path2);
 testSameFile(path1, path3);
}

2. Add three static methods as follows:
 private static void testEquals(Path path1, Path path2) {
 if (path1.equals(path2)) {
 System.out.printf("%s and %s are equal\n",
 path1, path2);
}
else {
 System.out.printf("%s and %s are NOT equal\n",
 path1, path2);
}
}

 private static void testCompareTo(Path path1, Path path2) {
 if (path1.compareTo(path2) == 0) {
 System.out.printf("%s and %s are identical\n",
 path1, path2);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

69

else {
 System.out.printf("%s and %s are NOT identical\n",
 path1, path2);
}
}

 private static void testSameFile(Path path1, Path path2) {
 try {
 if (Files.isSameFile(path1, path2)) {
 System.out.printf("%s and %s are the same file\n",
 path1, path2);
}
else {
 System.out.printf("%s and %s are NOT the same
file\n",
 path1, path2);
}
}
catch (IOException e) {
 e.printStackTrace();
}
}

3. Execute the application. Your output should be similar to the following:

\home\docs\users.txt and \home\docs\users.txt are equal

\home\docs\users.txt and \home\music\Future Setting A.mp3 are NOT equal

\home\docs\users.txt and \home\docs\users.txt are identical

\home\docs\users.txt and \home\music\Future Setting A.mp3 are NOT identical

\home\docs\users.txt and \home\docs\users.txt are the same file

\home\docs\users.txt and \home\music\Future Setting A.mp3 are NOT the
same file

How it works...
In the testEquals method, we determined whether the path objects were considered to be
equal. The equals method will return true if they are equal. However, the definition of equality
is system-dependent. Some filesystems will use the case, among other factors, to determine if
the paths are equal.

The testCompareTo method used the compareTo method to compare the paths
alphabetically. If the paths are identical, the method returns a zero. The method returns an
integer less than zero if the path is less than the argument and a value greater than zero if the
path follows the argument lexicographically.

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

70

The testSameFile method determines whether the paths locate the same file. The Path
objects are first tested to see if they are the same object. If they are, the method will return
true. If the Path objects are not equal, the method then determines whether the paths locate
the same file. The method will return false if the Path objects were generated by different
filesystem providers. A try block was used since the method may throw an IOException.

There's more...
The equals and compareTo methods will not successfully compare paths from different
filesystems. However, as long as the files are on the same filesystem, the files in question do
not have to exist and the filesystem is not accessed. The isSameFile method may require
access to the files if the path objects being tested are not found to be equal. In this case, the
files must exist otherwise the method will return false.

See also
The Files class' exists and notExists methods can be used to determine whether a file
or directory exists or not. This is covered in the Getting file and directory information recipe in
Chapter 3, Obtaining File and Directory Information.

Managing symbolic links
Symbolic links are used to create a reference to a file that actually exists in a different
directory. In the introduction, a file hierarchy was detailed that listed the file, users.txt,
twice; once in the docs directory and a second time in the music directory. The actual file
is located in the docs directory. The users.txt file in the music directory is a symbolic
link to the real file. To a user they appear to be different files. In reality, they are the same.
Modification of either file results in the real file being changed.

From a programmer's perspective, we are often interested in knowing which files are symbolic
links and which are not. In this recipe we will discuss the methods available in Java 7 to work
with symbolic links. It is important to understand how a method behaves when used with a
symbolic link.

Getting ready
While several methods may behave differently based on whether a Path object represents
a symbolic link or not, in this chapter only the toRealPath, exists, and notExists
methods take an optional LinkOption enumeration argument. This enumeration has only
a single element: NOFOLLOW_LINKS. If the argument is not used then the methods default
to following symbolic links.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

71

How to do it...
1. Create a new console application. Use the following main method where we create

several Path objects representing both the real and the symbolic users.txt file.
The behavior of several of this chapter's Path-related methods is illustrated.
 public static void main(String[] args) {
 Path path1 = null;
 Path path2 = null;

 path1 = Paths.get("/home/docs/users.txt");
 path2 = Paths.get("/home/music/users.txt");

 System.out.println(Files.isSymbolicLink(path1));
 System.out.println(Files.isSymbolicLink(path2));

 try {
 Path path = Paths.get("C:/home/./music/users.txt");
 System.out.println("Normalized: " + path.normalize());
 System.out.println("Absolute path: " + path.
toAbsolutePath());
 System.out.println("URI: " + path.toUri());
 System.out.println("toRealPath (Do not follow links):
" + path.toRealPath(LinkOption.NOFOLLOW_LINKS));
 System.out.println("toRealPath: " + path.
toRealPath());

 Path firstPath = Paths.get("/home/music/users.txt");
 Path secondPath = Paths.get("/docs/status.txt");
 System.out.println("From firstPath to secondPath: " +
firstPath.relativize(secondPath));
 System.out.println("From secondPath to firstPath: " +
secondPath.relativize(firstPath));
 System.out.println("exists (Do not follow links): " +
Files.exists(firstPath, LinkOption.NOFOLLOW_LINKS));
 System.out.println("exists: " + Files.
exists(firstPath));
 System.out.println("notExists (Do not follow links): "
+ Files.notExists(firstPath, LinkOption.NOFOLLOW_LINKS));
 System.out.println("notExists: " + Files.
notExists(firstPath));

}
catch (IOException ex) {
 Logger.getLogger(SymbolicLinkExample.class.getName()).
log(Level.SEVERE, null, ex);

www.it-ebooks.info

http://www.it-ebooks.info/

Locating Files and Directories Using Paths

72

}
catch (InvalidPathException ex) {
 System.out.println("Bad path: [" + ex.getInput() + "]
at position " + ex.getIndex());
}
}

2. The behavior of these methods can differ based on the underlying operating system.
When the code is executed on a Windows platform, we get the following output:

false

true

Normalized: C:\home\music\users.txt

Absolute path: C:\home\.\music\users.txt

URI: file:///C:/home/./music/users.txt

toRealPath (Do not follow links): C:\home\music\users.txt

toRealPath: C:\home\docs\users.txt

From firstPath to secondPath: ..\..\..\docs\status.txt

From secondPath to firstPath: ..\..\home\music\users.txt

exists (Do not follow links): true

exists: true

notExists (Do not follow links): false

notExists: false

How it works...
The path1 and path2 objects were created which referenced the real file and the symbolic
link respectively. The Files class' isSymbolicLink method was executed against these
objects indicating which path referenced the real file.

The Path object was created using an extraneous dot notation. The result of the normalize
method executed against the symbolic link returns a normalized path to the symbolic link. The
use of the toAbsolutePath and toUri methods results in a path to the symbolic link and
not the real file.

The toRealPath method possesses an optional LinkOption argument. We used this to
obtain a path to the real file. This method is useful when you need the real path, which is
often not returned by the other methods executed against a symbolic link.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

73

The firstPath and secondPath objects were used to explore how the relativize
method works with symbolic links. In these examples, the symbolic links were used. The last
set of examples used the exists and notExists methods. The use of symbolic links did not
affect the results of these methods.

See also
The use of symbolic files as they affect other filesystem methods is discussed in
subsequent chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Obtaining File and

Directory Information

In this chapter, we will cover the following:

 f Determining the file content type

 f Obtaining a single attribute at a time using the getAttribute method

 f Obtaining a map of file attributes

 f Getting file and directory information

 f Determining operating system support for attribute views

 f Maintaining basic file attributes using the BasicFileAttributeView

 f Maintaining POSIX file attributes using the PosixFileAttributeView

 f Maintaining FAT table attributes using the DosFileAttributeView

 f Maintaining file ownership attributes using the FileOwnerAttributeView

 f Maintaining a file's ACL using the AclFileAttributeView

 f Maintaining user-defined file attributes using the UserDefinedFileAttributeView

Introduction
Many applications need access to file and directory information. This information includes
such attributes as whether the file can be executed or not, the size of the file, the owner of the
file, and even its content type. In this chapter, we examine the various techniques available for
obtaining information regarding a file or directory. We have organized the recipes according to
the type of access desired.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

76

There are five general approaches to obtaining file and directory information using the java.
nio.file.Files class that are as follows:

 f Obtaining a single attribute at a time using the Files class' specific methods,
such as the isDirectory method. This is detailed in the Getting file and directory
information recipe.

 f Obtaining a single attribute at a time using the Files class' getAttribute method.
This is detailed in the Obtaining a single attribute at a time using the getAttribute
method recipe.

 f Returning a map of attributes using the readAttributes method using a String
to specify which attributes to return. This is explained in the Obtaining a map of file
attributes recipe.

 f Using the readAttributes method with a BasicFileAttributes derived
class to return an attribute class for that set of attributes. This is detailed in the
Maintaining basic file attributes using the BasicFileAttributeView recipe.

 f Using the getFileAttributes method to return a view that provides access to a
specific set of attributes. This is also detailed in the Using the BasicFileAttributeView
method to maintain basic file attributes recipe. It is found in the There's More...
section of the recipe.

Dynamic access to attributes is supported through several methods and allows the developer
to specify an attribute using a String. The Files class' getAttribute method typifies
this approach.

Java 7 introduces a number of interfaces that are based on a file view. A view is simply a way
of organizing information about a file or directory. For example, the AclFileAttributeView
provides methods related to the file's Access Control List (ACL). The FileAttributeView
interface is the base interface for other interfaces that provide specific types of file information.
Sub-interfaces found in the java.nio.file.attribute package include the following:

 f AclFileAttributeView: This is used to maintain the file's ACL and
ownership attributes

 f BasicFileAttributeView: This is used to access basic information about a file
and to set time-related attributes

 f DosFileAttributeView: This is designed to be used with the legacy Disk
Operating System (DOS) file attributes

 f FileOwnerAttributeView: This is used to maintain the ownership of a file

 f PosixFileAttributeView: This supports Portable Operating System Interface
(POSIX) attributes

 f UserDefinedFileAttributeView: This supports user-defined attributes for a file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

The relationships between the views are shown as follows:

The lower-level interfaces inherit from the
interfaces above them.

Attribute View

FileAttribute View

FileOwnerAttribute View BasicFileAttribute View UserDefinedAttribute View

AclFileAttribute View PosixFileAttribute View DosFileAttribute View

The readAttributes method's second parameter specifies the type of attributes to be
returned. Three attribute interfaces are supported and their relationship is illustrated in
the following figure. These interfaces provide a means of accessing their corresponding
view interfaces:

BasicFileAttributes

DosFileAttributes PosixFileAttributes

There is a recipe devoted to each of these views. The FileStoreAttributeView is not
discussed here, but is covered in the Getting FileStore information recipe found in Chapter 4,
Managing Files and Directories.

Files and the directory structure used for examples in this chapter are described in the
introduction to Chapter 2, Locating Files and Directories Using Paths.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

78

Determining the file content type
The type of a file can often be derived from its extension. However this can be misleading,
and files with the same extension may contain different types of data. The Files class'
probeContentType method is used to determine the content type of a file, if possible. This
is useful when the application needs some indication of what is in a file in order to process it.

Getting ready
In order to determine the content type, the following steps need to be completed:

1. Obtain a Path object that represents the file.

2. Use the Path object as the argument to the probeContentType method.

3. Use the results to process the file.

How to do it...
1. Create a new console application. Add three different types of files to the /home/

docs directory. Use the following for the main method. While you may use any files
that you choose, this example uses a text file, a Word document, and an executable
file as follows:
 public static void main(String[] args) throws Exception {
 displayContentType("/home/docs/users.txt");
 displayContentType("/home/docs/Chapter 2.doc");
 displayContentType("/home/docs/java.exe");
}

 static void displayContentType(String pathText) throws
Exception {
 Path path = Paths.get(pathText);
 String type = Files.probeContentType(path);
 System.out.println(type);
}

2. Execute the application. Your output should appear as follows. The type returned is
dependent on the actual files you used:

text/plain

application/msword

application/x-msdownload

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

How it works...
A java.nio.file.Path variable was created and assigned to each of the three
different files. The Files class' probeContentPath method was executed for each
of these files. The result returned was a String, which was displayed for illustration
purposes. The probeContentType method throws a java.io.IOException and we
handle this by having the displayConentType method and the main method throw a
base class exception. The probeContentPath method may also throw a java.lang.
SecurityException, but you are not required to handle it.

In the files used for this example, the first file was a text file. The returned type was text/plain.
The other two were a Word document and the executable java.exe file. The return types
were application/msword and application/x-msdownload respectively.

There's more...
The result of the method is a String as defined by the Multipurpose Internet Mail
Extension (MIME): RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. This permits the String to be parsed using the RFC
2045 grammar specifications. If the content type is not recognized, then null is returned.

A MIME type is composed of a type and a subtype with one or more optional parameters.
The type is separated from the subtype using a forward slash. In the previous output, the text
document type was text and its subtype was plain. The other two types were both of the type
application, but had different subtypes. Subtypes that begin with x- are non-standard.

The implementation of the probeContentType method is system-dependent. The method
will use a java.nio.file.spi.FileTypeDetector implementation to determine the
content type. It may examine the filename or possibly access file attributes to determine the
file content type. Most operating systems will maintain a list of file detectors. A detector from
this list is loaded and used to determine the file type. The FileTypeDetector class is not
extended, and it is not currently possible to determine which file detectors are available.

Obtaining a single attribute at a time using
the getAttribute method

If you are interested in getting a single file attribute, and you know the name of the attribute,
then the Files class' getAttribute method is simple and easy to use. It will return
information about the file based upon a String representing the attribute. The first part of
this recipe illustrates a simple use of the getAttribute method. Other available attributes
are listed in the There's More... section of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

80

Getting ready
To obtain a single file attribute value:

1. Create a Path object representing the file of interest.

2. Use this object as the first argument of the getAttribute method.

3. Use a String containing the name of the attribute as the method's second argument.

How to do it...
1. Create a new console application and use the following main method. In this method

we determine the size of the file as follows:
 public static void main(String[] args) {
 try {
 Path path = FileSystems.getDefault().getPath("/home/
docs/users.txt");
 System.out.println(Files.getAttribute(path, "size"));
}
catch (IOException ex) {
 System.out.println("IOException");
}
}

2. The output will be as follows, and will depend upon the actual size of the file used:

30

How it works...
A Path was created representing the users.txt file. This path was then used as the first
argument of the Files class' getAttribute method. When the code was executed the size
of the file was displayed.

There's more...
The Files class' getAttribute method possesses the following three arguments:

 f A Path object representing the file

 f A String containing the name of the attribute

 f An optional LinkOption to use when dealing with symbolic files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

The following table lists the valid attribute names that can be used with this method:

Attribute Name Data Type
lastModifiedTime FileTime
lastAccessTime FileTime
creationTime FileTime
size long
isRegularFile Boolean
isDirectory Boolean
isSymbolicLink Boolean
isOther Boolean
fileKey Object

If an invalid name is used then a runtime error occurs. This is the primary weakness of
this approach. For example, if the name is misspelled, we will get a runtime error. This
approach is shown as follows, where the attribute specified has an extra s at the end of the
attribute String:

 System.out.println(Files.getAttribute(path, "sizes"));

When the application is executed, you should get results similar to the following:

Exception in thread "main" java.lang.IllegalArgumentException: 'sizes' not recognized

 at sun.nio.fs.AbstractBasicFileAttributeView$AttributesBuilder.<init>(AbstractBasicFile
AttributeView.java:102)

 at sun.nio.fs.AbstractBasicFileAttributeView$AttributesBuilder.create(AbstractBasicFile
AttributeView.java:112)

 at sun.nio.fs.AbstractBasicFileAttributeView.readAttributes(AbstractBasicFileAttributeV
iew.java:166)

 at sun.nio.fs.AbstractFileSystemProvider.readAttributes(AbstractFileSystemProvider.
java:92)

 at java.nio.file.Files.readAttributes(Files.java:1896)

 at java.nio.file.Files.getAttribute(Files.java:1801)

 at packt.SingleAttributeExample.main(SingleAttributeExample.java:15)

Java Result: 1

A list of file attributes can be obtained as described in the Obtaining a map of file attributes
recipe. This can be used to avoid using an invalid name.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

82

Obtaining a map of file attributes
An alternative way of accessing file attributes is to use the Files class' readAttributes
method. There are two overloaded versions of this method, and they differ in their second
argument and their return data types. In this recipe, we will explore the version that returns
a java.util.Map object as it allows more flexibility in what attributes it can return. The
second version of the method is discussed in a series of recipes, each devoted to a specific
class of attributes.

Getting ready
To obtain a list of attributes in the form of a Map object, the following steps need to be done:

1. Create a Path object representing a file.

2. Apply the static readAttributes method against the Files class.

3. Specify the value of its arguments:

 � The Path object representing the file of interest

 � A String argument representing the attributes to be returned

 � An optional third argument specifying whether symbolic links should be
followed or not

How to do it...
1. Create a new console application. Use the following main method:

public static void main(String[] args) throws Exception {
 Path path = Paths.getPath("/home/docs/users.txt");
 try {
 Map<String, Object> attrsMap = Files.
readAttributes(path, "*");
 Set<String> keys = attrsMap.keySet();

 for(String attribute : keys) {
 out.println(attribute + ": "
 + Files.getAttribute(path, attribute));
}
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

2. Execute the application. Your output should appear similar to the following:

lastModifiedTime: 2011-09-06T01:26:56.501665Z

fileKey: null

isDirectory: false

lastAccessTime: 2011-09-06T21:14:11.214057Z

isOther: false

isSymbolicLink: false

isRegularFile: true

creationTime: 2011-09-06T21:14:11.214057Z

size: 30

How it works...
The example used the users.txt file in the docs directory. A Map object with a key type
of String and a value type of Object was declared and then assigned a value from the
readAttributes method. A java.util.Set object was created using the Map interface's
keySet method. This gives us access to both the keys and the values of the Map. In the for
each loop, each member of the set was used as an argument to the getAttribute method.
This corresponding attribute and its value were displayed for the file. The getAttribute
method is explained in the Obtaining a single attribute at a time using the getAttribute
method recipe.

In this example, we used the string literal, "*", as the second argument. This value instructs
the method to return all available attributes of the file. As we will see shortly, other string
values can be used to get different results.

The readAttributes method is an atomic filesystem operation. By default, symbolic links
are followed. To direct the method to not follow symbolic links, use the java.nio.file
package's LinkOption.NOFOLLOW_LINKS enumeration constant, shown as follows:

 Map<String, Object> attrsMap = Files.readAttributes(path,
"*", LinkOption.NOFOLLOW_LINKS);

There's more...
The interesting aspect of this method is its second argument. The syntax for the String
argument consists of an optional viewName and a colon followed by an attribute list. A
viewName is typically one of the following:

 f acl

 f basic

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

84

 f owner

 f user

 f dos

 f posix

Each of these viewNames corresponds to the name of a view interface.

The attribute list is a comma delimited list of attributes. The attribute list may contain zero or
more elements. If an invalid element name is used, it is ignored. Using an asterisk will return
all of the attributes associated with that viewName. If a viewName is not included, then all of
the basic file attributes are returned as illustrated earlier.

Using the basic view as an example, the following table illustrates how we can be selective
about which attributes we return:

String Attributes returned
"*" All of the basic file attributes
"basic:*" All of the basic file attributes
"basic:isDirectory,lastAccessTi
me"

Only the isDirectory and
lastAccessTime attributes

"isDirectory,lastAccessTime" Only the isDirectory and
lastAccessTime attributes

"" None - a java.lang.
IllegalArgumentException is generated

The attribute String is used in the same way with views other than basic.

There cannot be any embedded spaces in the attribute
String. For example, the String, "basic:isDirectory,
lastAccessTime", where there is a blank after the comma will
result in an IllegalArgumentException.

Getting file and directory information
It is frequently necessary to retrieve basic information about a file or directory. This recipe
examines how the java.nio.file.Files class provides the direct support. These methods
provide only partial access to file and directory information and are typified by methods such
as the isRegularFile method. A list of such methods are found in the There's more...
section of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

Getting ready
To use the methods of the Files class to display information is easy since most, if not all, of
these methods are static. This means that the methods can easily be executed against the
Files class name. To use this technique:

1. Create a Path object representing a file or directory.

2. Use the Path object as an argument to the appropriate Files class' method.

How to do it...
1. To demonstrate how to obtain file attributes, we will develop a method to display

the attributes of a file. Create a new console application that contains the following
main method. In the method, we create a reference to a file and then call a
displayFileAttribute method. It uses several methods to display information
about the path as follows:
 public static void main(String[] args) throws Exception {
 Path path = FileSystems.getDefault().getPath("/home/docs/
users.txt");
 displayFileAttributes(path);
}

 private static void displayFileAttributes(Path path) throws
Exception {
 String format =
 "Exists: %s %n"
 + "notExists: %s %n"
 + "Directory: %s %n"
 + "Regular: %s %n"
 + "Executable: %s %n"
 + "Readable: %s %n"
 + "Writable: %s %n"
 + "Hidden: %s %n"
 + "Symbolic: %s %n"
 + "Last Modified Date: %s %n"
 + "Size: %s %n";

 System.out.printf(format,
 Files.exists(path, LinkOption.NOFOLLOW_LINKS),
 Files.notExists(path, LinkOption.NOFOLLOW_LINKS),
 Files.isDirectory(path, LinkOption.NOFOLLOW_
LINKS),

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

86

 Files.isRegularFile(path, LinkOption.NOFOLLOW_
LINKS),
 Files.isExecutable(path),
 Files.isReadable(path),
 Files.isWritable(path),
 Files.isHidden(path),
 Files.isSymbolicLink(path),
 Files.getLastModifiedTime(path, LinkOption.
NOFOLLOW_LINKS),
 Files.size(path));
}

2. Execute the program. Your output should appear as follows:

Exists: true

notExists: false

Directory: false

Regular: true

Executable: true

Readable: true

Writable: true

Hidden: false

Symbolic: false

Last Modified Date: 2011-10-20T03:18:20.338139Z

Size: 29

How it works...
A Path to the users.txt file was created. This Path object was then passed to the
displayFileAttribute method, which displayed many of the attributes of the file.
The methods that return these attributes are summarized in the following table:

Method Description
exists Returns true if the files exist
notExists Returns true if the file does not exist
isDirectory Returns true if the Path represents a directory
isRegularFile Returns true if the Path represents a regular file
isExecutable Returns true if the file can be executed
isReadable Returns true if the file can be read

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

Method Description
isWritable Returns true if the file can be written to
isHidden Returns true if the file is hidden and not visible to the

unprivileged user
isSymbolicLink Returns true if the file is a symbolic link
getLastModifiedTime Returns the last time the file was modified
size Returns the size of the file

Several of these methods possess a second argument that specifies how to handle symbolic
links. When LinkOption.NOFOLLOW_LINKS is present, then symbolic links are not followed.
The second argument is optional. If it is left out then symbolic links are not followed. Symbolic
links are discussed in the Managing symbolic links recipe of Chapter 2, Locating Files and
Directories Using Paths.

There's more...
The following table summarizes the exceptions thrown, and whether the method is non-atomic.
Methods that may throw a SecurityException will do so if the calling thread is not permitted
to read the file.

When a method is said to be non-atomic, it means that other
filesystem operations may execute concurrently with that method.
Non-atomic operations can result in inconsistent results. That is, it
is possible that concurrent operations against the method's target
may result in possible modification of the state of the file while
these methods are executing. This should be considered when using
these methods.

The results of these methods marked as outdated are not necessarily valid upon their return.
That is, there is no guarantee that any subsequent access will succeed as the file may have
been deleted or otherwise modified.

Methods designated as Cannot be determined indicate that false may be returned if it is
not possible to otherwise ascertain the results. For example, the exists method will return
false if it cannot determine whether the file exists. It may exist, but the method was not able
to determine definitively if it exists or not:

Method SecurityException IOException Non-
atomic

Outdated Cannot be
determined

exists Yes Yes Yes
notExists Yes Yes Yes
isDirectory Yes Yes

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

88

Method SecurityException IOException Non-
atomic

Outdated Cannot be
determined

isRegularFile Yes Yes
isExecutable Yes Yes Yes Yes
isReadable Yes Yes Yes Yes
isWritable Yes Yes Yes Yes
isHidden Yes Yes
isSymbolicLink Yes Yes
getLastModifiedTime Yes Yes
size Yes Yes

Note that the notExists method is not the inverse of the exists method. With the use of
either method, it may not be possible to determine if the file exists or not. When this is the
case, both methods will return false.

The isRegularFile determines if the file is a regular file. Both the isDirectory,
isSymbolicLink, and the isRegularFile methods may return false if:

 f It is not one of those types

 f If the file does not exist or

 f If it is not possible to determine whether it is a file or a directory

For these methods, their corresponding methods in the BasicFileAttributes interface
may provide better results. These methods are covered in the Maintaining basic file attributes
using the BasicFileAttributeView recipe.

The isExecutable method checks to see if the file exists and if the JVM has access rights
to execute the file. If the file is a directory, then the method determines whether the JVM has
sufficient privileges to search the directory. It will return false if:

 f The file does not exist

 f The file is not executable

 f If it is not possible to determine whether it is executable

The meaning of hidden is system-dependent. On UNIX systems, a file is hidden if its name
begins with a period. On Windows, a file is hidden if the DOS hidden attribute is set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

Determining operating system support for
attribute views

An operating system may not support all the attribute views found in Java. There are three
basic techniques for determining which views are supported. Knowing which views are
supported allows the developer to avoid exceptions that can occur when trying to use a view
that is not supported.

Getting ready
The three techniques include using:

 f The java.nio.file.FileSystem class' supportedFileAttributeViews
method to return a set of all views supported.

 f The java.nio.file.FileStore class' supportsFileAttributeView method
with a class argument. If that class is supported, the method will return true.

 f The FileStore class' supportsFileAttributeView method with a String
argument. If the class represented by that String is supported, the method will
return true.

The first approach is the simplest and will be illustrated first.

How to do it...
1. Create a new console application with the following main method. In this method,

we will display all views supported on the current system as follows:
 public static void main(String[] args)

 Path path = Paths.get("C:/home/docs/users.txt");
 FileSystem fileSystem = path.getFileSystem();
 Set<String> supportedViews = fileSystem.
supportedFileAttributeViews();
 for(String view : supportedViews) {
 System.out.println(view);
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

90

2. When the application is executed on a Windows 7 system, you should get the
following output:

acl

basic

owner

user

dos

3. When the application is executed under Ubuntu, version 10.10, you should get the
following output:

basic

owner

user

unix

dos

posix

Notice that the acl view is not supported and a unix and posix view are supported. There
is not a UnixFileAttributeView available as part of the Java 7 release. However, this
interface can be found as part of the JSR203-backport project.

How it works...
A Path object was created for the users.txt file. The filesystem for this Path was
obtained next using the getFileSystem method. The FileSystem class possesses the
supportedFileAttributeViews method, which returns a set of strings representing the
views supported. A for each loop was then used to display each string value.

There's more...
There are two other methods that we can use to determine which views are supported:

 f Using the supportsFileAttributeView method with a class argument

 f Using the supportsFileAttributeView method with a String argument

These two techniques are very similar. They both allow you to test for a specific view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

Using the supportsFileAttributeView method with a class
argument
The overloaded supportsFileAttributeView method accepts a class object representing
the view in question. Add the following code to the previous example's main method. In this
code, we determine which of the several views are supported:

 try {
 FileStore fileStore = Files.getFileStore(path);
 System.out.println("FileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 FileAttributeView.class));
 System.out.println("BasicFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 BasicFileAttributeView.class));
 System.out.println("FileOwnerAttributeView supported: " +
fileStore.supportsFileAttributeView(
 FileOwnerAttributeView.class));
 System.out.println("AclFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 AclFileAttributeView.class));
 System.out.println("PosixFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 PosixFileAttributeView.class));
 System.out.println("UserDefinedFileAttributeView
supported: " + fileStore.supportsFileAttributeView(
 UserDefinedFileAttributeView.class));
 System.out.println("DosFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 DosFileAttributeView.class));
}
catch (IOException ex) {
 System.out.println("Attribute view not supported");
}

When executed on a Windows 7 machine, you should get the following output:

FileAttributeView supported: false

BasicFileAttributeView supported: true

FileOwnerAttributeView supported: true

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

92

AclFileAttributeView supported: true

PosixFileAttributeView supported: false

UserDefinedFileAttributeView supported: true

DosFileAttributeView supported: true

Using the supportsFileAttributeView method with a String
argument
The overloaded supportsFileAttributeView method that accepts a String object
works in a similar fashion. Add the following code to the try block of the main method:

 System.out.println("FileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "file"));
 System.out.println("BasicFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "basic"));
 System.out.println("FileOwnerAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "owner"));
 System.out.println("AclFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "acl"));
 System.out.println("PosixFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "posix"));
 System.out.println("UserDefinedFileAttributeView
supported: " + fileStore.supportsFileAttributeView(
 "user"));
 System.out.println("DosFileAttributeView supported: " +
fileStore.supportsFileAttributeView(
 "dos"));

When executed on a Windows 7 platform, you should get the following output:

FileAttributeView supported: false

BasicFileAttributeView supported: true

FileOwnerAttributeView supported: true

AclFileAttributeView supported: true

PosixFileAttributeView supported: false

UserDefinedFileAttributeView supported: true

DosFileAttributeView supported: true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

Maintaining basic file attributes using the
BasicFileAttributeView

The java.nio.file.attribute.BasicFileAttributeView provides a series of
methods that obtain basic information about a file such as its creation time and size. The
view possesses a readAttributes method, which returns a BasicFileAttributes
object. The BasicFileAttributes interface possesses several methods for accessing
file attributes. This view provides an alternative means of obtaining file information than that
supported by the Files class. The results of this method may be more reliable at times than
those of the Files class.

Getting ready
There are two approaches for obtaining a BasicFileAttributes object. The first approach
is to use the readAttributes method that uses the BasicFileAttributes.class as
the second argument. The second approach uses the getFileAttributeView method and
is explored in the There's more... section of this recipe.

The Files class' readAttributes method is easiest to use:

1. Use a Path object representing the file of interest as the first argument.

2. Use BasicFileAttributes.class as the second argument.

3. Use the returned BasicFileAttributes object methods to access the
file attributes.

This basic approach is used for the other views illustrated in this chapter. Only the attribute
view class differs.

How to do it...
1. Create a new console application. Use the following main method. In the method, we

create a BasicFileAttributes object and use its methods to display information
about a file:
 public static void main(String[] args) {
 Path path
 = FileSystems.getDefault().getPath("/home/docs/users.txt");
 try {
 BasicFileAttributes attributes = Files.
readAttributes(path, BasicFileAttributes.class);

 System.out.println("Creation Time: " + attributes.
creationTime());

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

94

 System.out.println("Last Accessed Time: " +
attributes.lastAccessTime());
 System.out.println("Last Modified Time: " +
attributes.lastModifiedTime());
 System.out.println("File Key: " + attributes.
fileKey());
 System.out.println("Directory: " + attributes.
isDirectory());
 System.out.println("Other Type of File: " +
attributes.isOther());
 System.out.println("Regular File: " + attributes.
isRegularFile());
 System.out.println("Symbolic File: " + attributes.
isSymbolicLink());
 System.out.println("Size: " + attributes.size());
}
catch (IOException ex) {
System.out.println("Attribute error");
}
}

2. Execute the application. Your output should be similar to the following:

Creation Time: 2011-09-06T21:14:11.214057Z

Last Accessed Time: 2011-09-06T21:14:11.214057Z

Last Modified Time: 2011-09-06T01:26:56.501665Z

File Key: null

Directory: false

Other Type of File: false

Regular File: true

Symbolic File: false

Size: 30

How it works...
First, we created a Path object representing the users.txt file. Next, we obtained a
BasicFileAttributes object using the Files class' readAttributes method. The first
argument of the method is a Path object. The second argument specifies the type of object
that we want returned. In this case, it was a BasicFileAttributes.class object.

This was followed by a series of print statements that display specific attribute information
about the file. The readAttributes method retrieves all of the basic file attributes for a file.
Since it can throw an IOException, the code sequence was enclosed in a try block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

Most of the BasicFileAttributes interface methods are easy to follow, but a few
require further explanation. First, if the isOther method returns true, it means that the
file is not a regular file, directory, or a symbolic link. Additionally, although the file size is in
bytes, due to issues such as file compression and implementation of sparse files, the actual
size may be different. If the file is not a regular file, then the meaning of the return value is
system-dependent.

The fileKey method returns an object that uniquely identifies that file. In UNIX, the device
id or inode is used for this purpose. The file key will not necessarily be unique if the filesystem
and its files are changed. They can be compared using the equals method, and can be used
in collections. Again, the assumption is that the filesystem has not changed in a way that
affects the file key. The comparison of two files is covered in the Determining whether two
paths are equivalent recipe in Chapter 2, Locating Files and Directories Using Paths.

There's more...
An alternative approach to getting an object is to use the Files class'
getFileAttributeView method. It returns an AttributeView derived object
based on its second parameter. To get an instance of a BasicFileAttributeView object:

1. Use a Path object representing the file of interest as the first argument.

2. Use the BasicFileAttributeView as the second argument.

Instead of using the following statement:
BasicFileAttributes attributes = Files.readAttributes(path,
BasicFileAttributes.class);

We can replace it with the following code sequence:
BasicFileAttributeView view = Files.getFileAttributeView(path,
BasicFileAttributeView.class);
BasicFileAttributes attributes = view.readAttributes();

A BasicFileAttributeView object is returned using the
getFileAttributeView method. The readAttributes method then returns the
BasicFileAttributes object. This approach is longer, but we now have access to
three additional methods, which are shown as follows:

 � name: This returns the name of the attribute view

 � readAttributes: This returns a BasicFileAttributes object

 � setTimes: This is used to set the file's time attributes

3. We then use the name method shown as follows:
System.out.println("Name: " + view.name());

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

96

This results in the following output:

Name: basic

However, this does not provide us with much useful information. The setTimes method
is illustrated in the Setting time related attributes of a file or directory recipe in Chapter 4,
Managing Files and Directories.

Maintaining POSIX file attributes using the
PosixFileAttributeView

Many operating systems support the Portable Operating System Interface (POSIX) standard.
This provides a more portable way of writing applications that can be ported across operating
systems. Java 7 supports access to file attributes using the java.nio.file.attribute.
PosixFileAttributeView interface.

Not all operating systems support the POSIX standard. The Determining operating system
support for attribute views recipe illustrates how to determine whether a specific operating
system supports POSIX or not.

Getting ready
In order to obtain POSIX attributes for a file or directory, we need to do the following:

1. Create a Path object representing the file or directory of interest.

2. Obtain an instance of the PosixFileAttributeView interface using the
getFileAttributeView method.

3. Use the readAttributes method to obtain a set of attributes.

How to do it...
1. Create a new console application. Use the main method that follows. In this method,

we obtain attributes for the users.txt file as follows:
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("home/docs/users.txt");
 FileSystem fileSystem = path.getFileSystem();
 PosixFileAttributeView view = Files.
getFileAttributeView(path, PosixFileAttributeView.class);

 PosixFileAttributes attributes = view.
readAttributes();
 System.out.println("Group: " + attributes.group());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

 System.out.println("Owner: " + attributes.owner().
getName());

 Set<PosixFilePermission> permissions = attributes.
permissions();
 for(PosixFilePermission permission : permissions) {
 System.out.print(permission.name() + " ");
}
}

2. Execute the application. Your output should appear as follows. The owner names will
probably be different. In this case, it is richard:

Group: richard

Owner: richard

OWNER_READ OWNER_WRITE OTHERS_READ GROUP_READ

How it works...
A Path object was created for the users.txt file. This was used as the first argument
of the Files class' getFileAttributeView method. The second argument was
PosixFileAttributeView.class. A PosixFileAttributeView object was returned.

Next, an instance of the PosixFileAttributes interface was obtained using
the readAttributes method. The group and getName methods were used to
display the group and owner of the file. The permissions methods returned a set of
PosixFilePermission enumerations. These enumerations represent the permissions
assigned to the file.

There's more...
The PosixFileAttributes interface extends the java.nio.file.attribute.
BasicFileAttributes interface, and thus has access to all of its methods. The
PosixFileAttributeView interface extends the java.nio.file.attribute.
FileOwnerAttributeView and BasicFileAttributeView interfaces and inherits
their methods also.

The PosixFileAttributeView interface has a setGroup method that can be used to
configure the group owner of the file. The permissions of the file can be maintained using the
setPermissions method. Maintaining file permissions is discussed in the Managing POSIX
attributes recipe in Chapter 4, Managing Files and Directories.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

98

See also
The Maintaining basic file attributes using the BasicFileAttributeView recipe details the
attributes available through this view. The Maintaining file ownership attributes using the
FileOwnerAttributeView recipe discusses ownership issues. To determine whether POSIX is
supported by an operating system, look at the Determining operating system support for
attribute views recipe.

Maintaining FAT table attributes using the
DosFileAttributeView

The java.nio.file.attribute.DosFileAttributeView is concerned with the older
Disk Operating System (DOS) files. It has limited value on most computers today. However,
this is the only interface that can be used to determine if a file is marked for archive or is a
system file.

Getting ready
To use the DosFileAttributeView interface:

1. Use the Files class' getFileAttributeView method to obtain an instance of a
DosFileAttributeView.

2. Use the view's readAttributes method to return an instance of
DosFileAttributes.

3. Use the DosFileAttributes class' methods to obtain file information.

This view supports the following four methods:

 f isArchive: which is concerned with whether the file needs to be backed up or not

 f isHidden: returns true if the file is not visible to users

 f isReadOnly: returns true if the file can only be read

 f isSystem: returns true if the file is part of the operating system

How to do it...
1. Create a new console application and add the following main method. In this method,

we create an instance of the DosFileAttributes and then use its methods to
display information about the file:
 public static void main(String[] args) {
 Path path = FileSystems.getDefault().getPath("/home/docs/
users.txt");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

 try {
 DosFileAttributeView view = Files.
getFileAttributeView(path, DosFileAttributeView.class);
 DosFileAttributes attributes = view.readAttributes();

 System.out.println("isArchive: " + attributes.
isArchive());
 System.out.println("isHidden: " + attributes.
isHidden());
 System.out.println("isReadOnly: " + attributes.
isReadOnly());
 System.out.println("isSystem: " + attributes.
isSystem());

}
catch (IOException ex) {
 ex.printStackTrace();
}
}

2. Execute the program. Your output should appear as follows:

isArchive: true

isHidden: false

isReadOnly: false

isSystem: false

How it works...
A Path object representing the users.txt file was created. This object was used
as an argument to the Files class' getFileAttributeView method along with
DosFileAttributeView.class. An instance of the DosFileAttributeView interface
was returned. This was used to create an instance of the DosFileAttributes interface,
which was used with the four methods of the interface.

The DosFileAttributeView extends the BasicFileAttributes interface, and thus
inherits all of its attributes as detailed in the Maintaining basic file attributes using the
BasicFileAttributeView recipe.

See also
See the Maintaining basic file attributes using the BasicFileAttributeView recipe for more
information about its methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

100

Maintaining file ownership attributes using
the FileOwnerAttributeView

If we are only interested in accessing information about the owners of a file or directory, then
the java.nio.file.attribute.FileOwnerAttributeView interface provides methods
for retrieving and setting this type of information. The setting of file ownership is covered in
the Setting file and directory owner recipe of Chapter 4, Managing Files and Directories.

Getting ready
To retrieve the owner of a file:

1. Obtain an instance of the FileOwnerAttributeView interface.

2. Use its getOwner method to return a UserPrincipal object representing
the owner.

How to do it...
1. Create a new console application. Add the following main method to it. In this

method, we will determine the owner of the users.txt file as follows:
 public static void main(String[] args) {
 Path path = Paths.get("C:/home/docs/users.txt");
 try {
 FileOwnerAttributeView view = Files.
getFileAttributeView(path, FileOwnerAttributeView.class);
 UserPrincipal userPrincipal = view.getOwner();
 System.out.println(userPrincipal.getName());
}
catch (IOException e) {
 e.printStackTrace();
}
}

2. Execute the application. Your output should be similar to the following, except the PC
and usernames should be different.

Richard-PC\Richard

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

How it works...
A Path object was created for the users.txt file. Next, the Files class'
getFileAttributeView method was called using the Path object as the first argument.
The second argument was FileOwnerAttributeView.class, which results in a
FileOwnerAttributeView object for the file being returned.

The view's getOwner method was then invoked to return a UserPrincipal object.
Its getName method returns the name of the user, which was then displayed.

See also
See the Maintaining basic file attributes using the BasicFileAttributeView recipe for more
information about its methods.

Maintaining a file's ACL using the
AclFileAttributeView

The java.nio.file.attribute.AclFileAttributeView interface provides access
to ACL attributes of a file or directory. These attributes include the user principal, the type of
attribute, and flags and permissions for the file. The ability to use this interface allows the user
to determine what permissions are available and to modify these attributes.

Getting ready
To determine the attributes of a file or directory:

1. Create a Path object representing that file or directory.

2. Use this Path object as the first argument of the Files class'
getFileAttributeView method.

3. Use AclFileAttributeView.class as its second argument.

4. Use the AclFileAttributeView object, which was returned to access the list of
ACL entries for that file or directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

102

How to do it...
1. Create a new console application. In the main method, we will examine the ACL

attributes of the users.txt file. The getFileAttributeView method is used to
obtain a view and access the ACL entry list. Two helper methods are used to support
this example: displayPermissions and displayEntryFlags. Use the following
main method:
 public static void main(String[] args) {
 Path path = Paths.get("C:/home/docs/users.txt");
 try {
 AclFileAttributeView view = Files.
getFileAttributeView(path, AclFileAttributeView.class);
 List<AclEntry> aclEntryList = view.getAcl();
 for (AclEntry entry : aclEntryList) {
 System.out.println("User Principal Name: " +
entry.principal().getName());
 System.out.println("ACL Entry Type: " + entry.
type());
 displayEntryFlags(entry.flags());
 displayPermissions(entry.permissions());
 System.out.println();
}
}
catch (IOException e) {
 e.printStackTrace();
}
}

2. Create the method displayPermissions to display the list of permissions for the
file as follows:
 private static void displayPermissions(Set<AclEntryPermission>
permissionSet) {
 if (permissionSet.isEmpty()) {
 System.out.println("No Permissions present");
}
else {
 System.out.println("Permissions");
 for (AclEntryPermission permission : permissionSet) {
 System.out.print(permission.name() + " ");
}
 System.out.println();
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

3. Create the method displayEntryFlags method to display the list of ACL flags for
the file as follows:
 private static void displayEntryFlags(Set<AclEntryFlag>
flagSet) {
 if (flagSet.isEmpty()) {
 System.out.println("No ACL Entry Flags present");
}
else {
 System.out.println("ACL Entry Flags");
 for (AclEntryFlag flag : flagSet) {
 System.out.print(flag.name() + " ");
}
 System.out.println();
}
}

4. Execute the application. You should get an output similar to the following:

User Principal Name: BUILTIN\Administrators

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

WRITE_ATTRIBUTES EXECUTE DELETE READ_ATTRIBUTES WRITE_DATA READ_
ACL READ_DATA WRITE_OWNER READ_NAMED_ATTRS WRITE_ACL APPEND_DATA
SYNCHRONIZE DELETE_CHILD WRITE_NAMED_ATTRS

User Principal Name: NT AUTHORITY\SYSTEM

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

WRITE_ATTRIBUTES EXECUTE DELETE READ_ATTRIBUTES WRITE_DATA READ_
ACL READ_DATA WRITE_OWNER READ_NAMED_ATTRS WRITE_ACL APPEND_DATA
SYNCHRONIZE DELETE_CHILD WRITE_NAMED_ATTRS

User Principal Name: BUILTIN\Users

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

104

READ_DATA READ_NAMED_ATTRS EXECUTE SYNCHRONIZE READ_ATTRIBUTES
READ_ACL

User Principal Name: NT AUTHORITY\Authenticated Users

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

READ_DATA READ_NAMED_ATTRS WRITE_ATTRIBUTES EXECUTE DELETE
APPEND_DATA SYNCHRONIZE READ_ATTRIBUTES WRITE_NAMED_ATTRS WRITE_
DATA READ_ACL

How it works...
A Path was created to the users.txt file. This was then used along with
the AclFileAttributeView.class parameter as the arguments to
the getFileAttributeView method. This returned an instance of the
AclFileAttributeView.

The AclFileAttributeView interface has three methods: name, getAcl, and setAcl.
For this example, only the getAcl method was used, which returned a list of AclEntry
elements. Each entry represents a specific ACL for the file.

A for each loop was used to iterate through the list. The user principal's name and the entry
type were displayed. Next the displayEntryFlags and displayPermissions methods
were invoked to display more information about the entries.

These two methods are similar in construction. A check was made to determine if there are
any elements in the sets and the appropriate messages were displayed. Next, each element
of the sets was displayed on a single line to conserve vertical space on the output.

There's more...
The AclFileAttributeView is derived from the java.nio.file.attribute.
FileOwnerAttributeView interface. This provides access to the getOwner and
setOwner methods. These methods either return or set a UserPrincipal object
respectively for the file or directory.

There are three AclFileAttributeView methods:

 f The getAcl method, which returns a list of ACL entries as illustrated previously

 f The setAcl method, which allows us to add a new attribute to the file

 f The name method, which simply returns acl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

The getAcl method will return a list of AclEntrys. One of the elements of an entry is a
java.nio.file.attribute.UserPrincipal object. As we saw in the earlier example,
this represents the users who have access to the file. An alternate technique to access
a user is to use the java.nio.file.attribute.UserPrincipalLookupService
class. An instance of this class can be obtained using the FileSystem class'
getUserPrincipalLookupService method, shown as follows:

 try {
 UserPrincipalLookupService lookupService = FileSystems.
getDefault().getUserPrincipalLookupService();
 GroupPrincipal groupPrincipal = lookupService.lookupPrinci
palByGroupName("Administrators");
 UserPrincipal userPrincipal = lookupService.lookupPrincipa
lByName("Richard");
 System.out.println(groupPrincipal.getName());
 System.out.println(userPrincipal.getName());
}
 catch (IOException e) {
 e.printStackTrace();
}

There are two methods available to the service that can look for the users either by username
or by group name. In the previous code we used the Administrators group and the
user Richard.

Add this code to the previous example and change the names to reflect groups and users on
your system. When the code executes, you should receive output similar to the following:

BUILTIN\Administrators

Richard-PC\Richard

However, note that the UserPrincipal and java.nio.file.attribute.
GroupPrincipal objects' methods provide little more information than the names
of the users. User or group names may or may not be case-sensitive depending on
the operating system. If an invalid name is used, a java.nio.file.attribute.
UserPrincipalNotFoundException is thrown.

See also
Managing file ownership and permissions is discussed in Chapter 4, Managing Files and
Directories, in the Setting file and directory owner recipe. Also covered in Chapter 4 is the
setting of ACL attributes as illustrated in the Managing ACL file permissions recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

106

Maintaining user-defined file attributes using
the UserDefinedFileAttributeView

The java.nio.file.attribute.UserDefinedFileAttributeView interface permits
the attachment of a non-standard attribute to a file or directory. These types of attributes are
sometimes called extended attributes. Typically, a user-defined attribute stores metadata
about a file. This data is not necessarily understood or used by the filesystem.

These attributes are stored as a name/value pair. The name is a String and the
value is stored as a ByteBuffer object. The size of this buffer should not exceed
Integer.MAX_VALUE.

Getting ready
A user-defined attribute must first be attached to a file. This is accomplished by:

1. Obtaining an instance of a UserDefinedFileAttributeView object

2. Creating an attribute in the form of a String name and a ByteBuffer value

3. Using the write method to attach the attribute to a file

The process of reading a user-defined attribute is illustrated in the There's more... section of
this recipe.

How to do it...
1. Create a new console application. In the main method, we will create a user-defined

attribute called publishable and attach it to the users.txt file. Use the following
main method:
 public static void main(String[] args) {
 Path path = Paths.get("C:/home/docs/users.txt");
 try {
 UserDefinedFileAttributeView view = Files.
getFileAttributeView(path, UserDefinedFileAttributeView.class);
 view.write("publishable", Charset.defaultCharset().
encode("true"));
 System.out.println("Publishable set");

}
catch (IOException e) {
 e.printStackTrace();
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

2. Execute the application. Your output should appear as follows:

Publishable set

How it works...
First, we created a Path object representing the users.txt file. We then used
the Files class' getFileAttributeView method using the Path object, and
UserDefinedFileAttributeView.class for the second argument. This returns an
instance of the UserDefinedFileAttributeView for the file.

Using this object, we execute the write method against it using the attribute publishable,
and created a java.nio.ByteBuffer object containing the attribute value true. The
java.nio.Charset class' defaultCharset method returns a Charset object that uses
the locale and character set used by the underlying operating system. The encode method
took the String and returned a ByteBuffer for the attribute value. We then displayed a
simple message indicating the successful completion of the process.

There's more...
The read method is used to read an attribute. To get a user-defined attribute associated with
a file, the following steps need to be followed:

1. Obtain an instance of a UserDefinedFileAttributeView object.

2. Create a String for the attribute name.

3. Allocate a ByteBuffer to hold the value.

4. Use the read method to get the attribute value.

The following code sequence accomplishes this task for the previously attached
publishable attribute:

 String name = "publishable";
 ByteBuffer buffer = ByteBuffer.allocate(view.size(name));
 view.read(name, buffer);
 buffer.flip();
 String value = Charset.defaultCharset().decode(buffer).
toString();
 System.out.println(value);

A String for the attribute name was created first. Next, a ByteBuffer was created to hold
the attribute value to be retrieved. The allocate method allocates space as specified by the
UserDefinedFileAttributeView interface's size method. This method determines the
size of the attached attribute and returns the size.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining File and Directory Information

108

The read method is then executed against the view object. The buffer is populated with
the attribute value. The flip method resets the buffer. The buffer is converted to a String
object using the decode method, which uses the operating system's default character set.

Replace the user-defined attribute write sequence in the main method with this read
sequence. When the application is executed, you should get an output similar to the following:

true

There is also a delete method that is used to remove a user-defined attribute from a file
or directory. In addition, note that the use of a UserDefinedFileAttributeView object
requires a runtime permission of accessUserDefinedAttributes.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Managing Files
and Directories

In this chapter, we will cover the following:

 f Creating files and directories

 f Controlling how a file is copied

 f Managing temporary files and directories

 f Setting time-related attributes of a file or directory

 f Managing file ownership

 f Managing ACL file permissions

 f Managing POSIX attributes

 f Moving a file or directory

 f Deleting files and directories

 f Managing symbolic links

Introduction
It is often necessary to perform file manipulations such as creating files, manipulating their
attributes and contents, or removing them from the filesystem. The addition of the java.
lang.object.Files class in Java 7 simplifies this process. This class relies heavily on the
use of the new java.nio.file.Path interface, which is discussed in depth in Chapter 2,
Locating Files and Directories Using Paths. The methods of the class are all static in nature,
and generally assign the actual file manipulation operations to the underlying filesystem.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

110

Many of the operations described in this chapter are atomic in nature, such as those used
to create and delete files or directories. Atomic operations will either execute successfully to
completion or fail and result in an effective cancellation of the operation. During execution,
they are not interrupted from the standpoint of a filesystem. Other concurrent file operations
will not impact the operation.

To execute many of the examples in this chapter, the application needs
to run as administrator. To run an application as administrator under
Windows, right-click on the Command Prompt menu and choose
Run as administrator. Then navigate to the appropriate directory and
execute using the java.exe command. To run as administrator on a
UNIX system, use the sudo command in a terminal window followed by
the java command.

Basic file management is covered in this chapter. The methods required for the creation
of files and directories are covered in the Creating Files and Directories recipe. This recipe
focuses on normal files. The creation of temporary files and directories is covered in the
Managing temporary files and directories recipe, and the creation of linked files is covered
in the Managing symbolic links recipe.

The options available for copying files and directories are found in the Controlling how a
file is copied recipe. The techniques illustrated there provide a powerful way of dealing with
file replication. Moving and deleting files and directories are covered in the Moving a file or
directory and Deleting files and directories recipes, respectively.

The Setting time-related attributes of a file or directory recipe illustrates how to assign
time attributes to a file. Related to this effort are other attributes, such as file ownership
and permissions. File ownership is addressed in the Managing file ownership recipe. File
permissions are discussed in two recipes: Managing ACL file permissions and Managing
POSIX file permissions.

Creating files and directories
The process of creating new files and directories is greatly simplified in Java 7. The methods
implemented by the Files class are relatively intuitive and easy to incorporate into your code.
In this recipe, we will cover how to create new files and directories using the createFile and
createDirectory methods.

Getting ready
In our example, we are going to use several different methods to create a Path object that
represents a file or directory. We will do the following:

1. Create a Path object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

2. Create a directory using the Files class' createDirectory method.

3. Create a file using the Files class' createFile method.

The FileSystem class' getPath method can be used to create a Path object as can the
Paths class' get method. The Paths class' static get method returns an instance of a Path
based on a string sequence or a URI object. The FileSystem class' getPath method also
returns a Path object, but only uses a string sequence to identify the file.

How to do it...
1. Create a console application with a main method. In the main method, add the

following code that creates a Path object for the directory /home/test in the C
directory. Within a try block, invoke the createDirectory method with your Path
object as the parameter. This method will throw an IOException if the path is
invalid. Next, create a Path object for the file newFile.txt using the createFile
method on this Path object, again catching the IOException as follows:
 try {
 Path testDirectoryPath = Paths.get("C:/home/test");
 Path testDirectory = Files.createDirectory(testDirecto
ryPath);
 System.out.println("Directory created successfully!");
 Path newFilePath = FileSystems.getDefault().
getPath("C:/home/test/newFile.txt");
 Path testFile = Files.createFile(newFilePath);
 System.out.println("File created successfully!");
}
catch (IOException ex) {
 ex.printStackTrace();
}

2. Execute the program. Your output should appear as follows:

Directory created successfully!

File created successfully!

3. Verify that the new file and directory exists in your filesystem. Next, add a
catch block prior to the IOException after both methods, and catch a
FileAlreadyExistsException:
}
catch (FileAlreadyExistsException a) {
 System.out.println("File or directory already
exists!");
}
catch (IOException ex) {
 ex.printStackTrace();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

112

4. When you execute the program again, your output should appear as follows:

File or directory already exists!

How it works...
The first Path object was created and then used by the createDirectory method to create
a new directory. After the second Path object was created, the createFile method was
used to create a file within the directory, which had just been created. It is important to note
that the Path object used in the file creation could not be instantiated before the directory
was created, because it would have referenced an invalid path. This would have resulted in
an IOException.

When the createDirectory method is invoked, the system is directed to check for the
existence of the directory first, and if it does not exist, create it. The createFile method
works in a similar fashion. The method fails if the file already exists. We saw this when
we caught the FileAlreadyExistsException. Had we not caught that exception, an
IOException would have been thrown. Either way, the existing file would not be overwritten.

There's more...
The createFile and createDirectory methods are atomic in nature. The
createDirectories method is available to create directories as discussed next. All three
methods provide the option to pass file attribute parameters for more specific file creation.

Using the createDirectories method to create a hierarchy of
directories
The createDirectories method is used to create a directory and potentially other
intermediate directories. In this example, we build upon the previous directory structure by
adding a subtest and a subsubtest directory to the test directory. Comment out the
previous code that created the directory and file and add the following code sequence:

 Path directoriesPath = Paths.get("C:/home/test/subtest/
subsubtest");
 Path testDirectory = Files.createDirectories(directoriesP
ath);

Verify that the operation succeeded by examining the resulting directory structure.

See also
Creating temporary files and directories is covered in the Managing temporary files and
directories recipe. The creation of symbolic files is illustrated in the Managing symbolic
links recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

Controlling how a file is copied
The process of copying files is also simplified in Java 7, and allows for control over the manner
in which they are copied. The Files class' copy method supports this operation and is
overloaded providing three techniques for copying which differ by their source or destination.

Getting ready
In our example, we are going to create a new file and then copy it to another target file.
This process involves:

1. Creating a new file using the createFile method.

2. Creating a path for the destination file.

3. Copying the file using the copy method.

How to do it...
1. Create a console application with a main method. In the main method, add the

following code sequence to create a new file. Specify two Path objects, one for your
initial file and one for the location where it will be copied. Then add the copy method
to copy that file to the destination location as follows:
 Path newFile = FileSystems.getDefault().getPath("C:/home/
docs/newFile.txt");
 Path copiedFile = FileSystems.getDefault().getPath("C:/
home/docs/copiedFile.txt");
 try {
 Files.createFile(newFile);
 System.out.println("File created successfully!");
 Files.copy(newFile, copiedFile);
 System.out.println("File copied successfully!");
}
catch (IOException e) {
 System.out.println("IO Exception.");
}

2. Execute the program. Your output should appear as follows:

File created successfully!

File copied successfully!

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

114

How it works...
The createFile method created your initial file, and the copy method copied that file to
the location specified by the copiedFile variable. If you were to attempt to run that code
sequence twice in a row, you would have encountered an IOException, because the copy
method will not, by default, replace an existing file. The copy method is overloaded. Use the
copy method with the java.lang.enum.StandardCopyOption enumeration value of
REPLACE_EXISTING to allow the file to be replaced, as shown below.

The three enumeration values for StandardCopyOption are listed in the following table:

Value Meaning
ATOMIC_MOVE Perform the copy operation atomically
COPY_ATTRIBUTES Copy the source file attributes to the destination file
REPLACE_EXISTING Replace the existing file if it already exists

Replace the copy method call in the previous example with the following:

 Files.copy(newFile, copiedFile, StandardCopyOption.REPLACE_
EXISTING);

When the code executes, the file should be replaced. Another example of the use of the copy
options is found in the There's more... section of the Moving a file and directory recipe.

There's more...
If the source file and the destination file are the same, then the method completes, but no
copy actually occurs. The copy method is not atomic in nature.

There are two other overloaded copy methods. One copies a java.io.InputStream to a
file and the other copies a file to a java.io.OutputStream. In this section, we will examine,
in more depth, the processes of:

 f Copying a symbolic link file

 f Copying a directory

 f Copying an input stream to a file

 f Copying a file to an output stream

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

Copying a symbolic link file
When a symbolic link file is copied, the target of the symbolic link is copied. To illustrate this,
create a symbolic link file called users.txt in the music directory to the users.txt file in
the docs directory. This can be done either by using the process described in the Managing
symbolic links recipe in Chapter 2, Locating Files and Directories Using Paths, or using the
methods illustrated in the Managing symbolic links recipe in this chapter.

Use the following code sequence to perform the copy operation:

 Path originalLinkedFile = FileSystems.getDefault().
getPath("C:/home/music/users.txt");
 Path newLinkedFile = FileSystems.getDefault().getPath("C:/
home/music/users2.txt");
 try {
 Files.copy(originalLinkedFile, newLinkedFile);
 System.out.println("Symbolic link file copied
successfully!");
}
catch (IOException e) {
 System.out.println("IO Exception.");
}

Execute the code. You should get the following output:

Symbolic link file copied successfully!

Examine the resulting music directory structure. The user2.txt file has been added and
is not connected to either the linked file or the original target file. Modification of the user2.
txt does not affect the contents of the other two files.

Copying a directory
When a directory is copied, an empty directory is created. The files in the original directory are
not copied. The following code sequence illustrates this process:

 Path originalDirectory = FileSystems.getDefault().getPath("C:/
home/docs");
 Path newDirectory = FileSystems.getDefault().getPath("C:/home/
tmp");
 try {
 Files.copy(originalDirectory, newDirectory);
 System.out.println("Directory copied successfully!");
}
catch (IOException e) {
 e.printStackTrace();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

116

When this sequence is executed, you should get the following output:

Directory copied successfully!

Examine the tmp directory. It should be empty as any files in the source directory are
not copied.

Copying an input stream to a file
The copy method has a convenient overloaded version that permits the creation of a new file
based on the input from an InputStream. The first argument of this method differs from the
original copy method, in that it is an instance of an InputStream.

The following example uses this method to copy the jdk7.java.net website to a file:

 Path newFile = FileSystems.getDefault().getPath("C:/home/docs/
java7WebSite.html");
 URI url = URI.create("http://jdk7.java.net/");
 try (InputStream inputStream = url.toURL().openStream())

 Files.copy(inputStream, newFile);
 System.out.println("Site copied successfully!");
}
catch (MalformedURLException ex) {
 ex.printStackTrace();
}
catch (IOException ex) {
 ex.printStackTrace();
}

When the code executes, you should get the following output:

Site copied successfully!

A java.lang.Object.URI object was created to represent the website. Using the URI
object instead of a java.lang.Object.URL object immediately avoids having to create
a separate try-catch block to handle the MalformedURLException exception.

The URL class' openStream method returns an InputStream which is used as the first
parameter of the copy method. Notice the use of the try-with-resource block. This try block
is new to Java 7 and is illustrated in the Using the try-with-resource block to improve exception
handling code recipe in Chapter 1, Java Language Improvements.

The copy method was then executed. The new file can now be opened with a browser
or otherwise can be processed as needed. Notice that the method returns a long value
representing the number of bytes written.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

Copying a file to an output stream
The third overloaded version of the copy method will open a file and write its contents to an
OutputStream. This can be useful when the content of a file needs to be copied to a non-file
object such as a PipedOutputStream. It can also be useful when communicating to other
threads or writing to an array of bytes as illustrated here. In this example, the content of the
users.txt file is copied to an instance of a ByteArrayOutputStream. Its toByteArray
method is then used to populate an array as follows:

 Path sourceFile = FileSystems.getDefault().getPath("C:/home/
docs/users.txt");
 try (ByteArrayOutputStream outputStream = new
ByteArrayOutputStream()) {
 Files.copy(sourceFile, outputStream);
 byte arr[] = outputStream.toByteArray();
 System.out.println("The contents of " + sourceFile.
getFileName());
 for(byte data : arr) {
 System.out.print((char)data);
}
 System.out.println();
}
catch (IOException ex) {
 ex.printStackTrace();
}

Execute this sequence. The output will depend on the contents of your file, but should be
similar to the following:

The contents of users.txt

Bob

Jennifer

Sally

Tom

Ted

Notice the use of the try-with-resources block that handles the opening and closing of the file.
It is always a good idea to close the OutputStream when the copy operation is complete or
exceptions occur. The try-with-resources block handles this nicely. The method may block until
the operation is complete in certain situations. Much of its behavior is implementation-specific.
Also, the output stream may need to be flushed since it implements the Flushable interface.
Notice that the method returns a long value representing the number of bytes written.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

118

See also
See the Managing symbolic links recipe for more details on working with symbolic links.

Managing temporary files and directories
The process of creating temporary files and directories can be an essential part of many
applications. Temporary files may be used for intermediate data or as a temporary store
to be cleaned up later. The process of managing temporary files and directories can be
accomplished simply via the Files class. In this recipe, we will cover how to create temporary
files and directories using the createTempDirectory and createTempFile methods.

Getting ready
In our example, we are going to create a temporary directory and then create a temporary file
within the directory as follows:

1. Create Path objects representing the temporary file and directory.

2. Create a temporary directory using the createTempDirectory method.

3. Create a temporary file using the createTempFile method.

How to do it...
1. Create a console application with a main method. In the main method, create

a Path object rootDirectory using the getPath method. Invoke the
createTempDirectory method using rootDirectory as the first argument, and
an empty string as the second argument. Then use the toString method to convert
the returning Path object dirPath to a String and print it to the screen. Next,
add the createTempFile method using dirPath as the first argument with empty
strings as the second and third arguments. Use the toString method again to print
out this resulting path as follows:
 try {
 Path rootDirectory = FileSystems.getDefault().
getPath("C:/home/docs");
 Path tempDirectory = Files.createTempDirectory(rootDir
ectory, "");
 System.out.println("Temporary directory created
successfully!");

 String dirPath = tempDirectory.toString();
 System.out.println(dirPath);
 Path tempFile = Files.createTempFile(tempDirectory,"",
"");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

 System.out.println("Temporary file created
successfully!");

 String filePath = tempFile.toString();
 System.out.println(filePath);
}
catch (IOException e) {
 System.out.println("IO Exception.");
}

2. This code sequence will result in an output similar to the following:

Temporary directory created successfully!

C:\home\docs\7087436262102989339

Temporary file created successfully!

C:\home\docs\7087436262102989339\3473887367961760381

How it works...
The createTempDirectory method creates an empty directory and returns a Path object
representing the location of this new directory. Likewise, the createTempFile method
creates an empty file and returns a Path object representing this new file. In our previous
example, we used the toString method to see the path where our directory and file were
created. The previous numeric directory and filenames are assigned by the system and are
platform-specific.

This createTempDirectory method requires at least two parameters, namely, the Path
object directing the location for the new directory, and a String variable specifying the
directory prefix. In our previous example, we left the prefix blank. However, if we had wanted to
specify text to precede the filename assigned by the system, the second variable could have
been populated with this prefix string.

The createTempFile method works in a similar manner as the createTempDirectory
method, and had we wanted to assign a prefix to our temporary file, we could have used the
second parameter to specify the string. The third parameter of this method could have also
been used to specify a suffix, or file type, for our file, such as .txt.

It is important to note that, although in our example we specified the Path in which we
wanted our directory and file created, there is another version of each method in which the
initial argument, the Path object, could be omitted, and the directory and/or file would be
created in the system's default temporary directory. Additionally, these methods do not check
for the file or directory's existence before creating them, and will overwrite any existing file or
directory with the same temporary, system-assigned name.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

120

There's more...
File attribute names can also be passed to the overloaded createTempDirectory or
createTempFile methods. These attributes are optional, but can be used to specify how
the temporary files will be handled, such as whether the file should be deleted upon closing.
The creation of a file attribute is described in the There's more... section of the Managing
POSIX file permissions recipe.

The createTempDirectory and the createTempFile methods are intended to have a
limited existence. If it is desirable to delete these files or directories automatically, a shutdown
hook or the java.io.File class' deleteOnExit method can be used. These two techniques
will result in the deletion of the element when the application or the JVM terminates.

Setting time-related attributes of a file or
directory

The timestamp for a file can be critical for some applications. For example, the order in which
operations execute may be dependent on the time a file was last updated. There are three
dates supported by the BasicFileAttributeView:

 f The last modified time

 f The last access time

 f The creation time

They can be set using the BasicFileAttributeView interface's setTimes method. As we
will see in the There's more... section, the Files class can be used to set or get only the last
modified time.

Getting ready
In order to set the times using the setTimes method. We need to do the following:

1. Obtain a Path object, which represents the file of interest.

2. Obtain a BasicFileAttributeView object.

3. Create FileTime objects for the times needed.

4. Use these FileTime objects as arguments of the setTimes method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

How to do it...
1. Create a new console application using the following main method. We will update

the last modified time of our favorite file users.txt to the current time:
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("C:/home/docs/users.txt");
 BasicFileAttributeView view = Files.
getFileAttributeView(path, BasicFileAttributeView.class);
 FileTime lastModifedTime;
 FileTime lastAccessTime;
 FileTime createTime;

 BasicFileAttributes attributes = view.readAttributes();
 lastModifedTime = attributes.lastModifiedTime();
 createTime = attributes.creationTime();

 long currentTime = Calendar.getInstance().
getTimeInMillis();
 lastAccessTime = FileTime.fromMillis(currentTime);

 view.setTimes(lastModifedTime, lastAccessTime,
createTime);
 System.out.println(attributes.lastAccessTime());
}

2. Execute the application. Unless you have access to a time machine, or have
otherwise manipulated your system's clock, your output should reflect a time
later than the time shown as follows:

2011-09-24T21:34:55.012Z

How it works...
A Path was first created for the users.txt file. Next, an instance of the
BasicFileAttributeView interface was obtained using the getFileAttributeView
method. A try block was used to catch any IOExceptions that might be thrown by the
readAttributes or setTimes methods.

Within the try block, FileTime objects were created for each of the three types of time.
The lastModifedTime and createTime times were not changed for the file. These were
obtained using the corresponding methods of the BasicFileAttributes class, which was
obtained using the view method.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

122

The currentTime long variable was assigned the current time expressed in milliseconds.
Its value was obtained using the getTimeInMillis method executed against an instance
of the Calendar class. The three FileTime objects were then used as arguments to the
setTimes method, effectively setting these time values.

There's more...
There is more to the use of the FileTime class than presented so far. In addition, the
Files class provides alternative approaches for maintaining times. Here we will further
explore the following:

 f Understanding the FileTime class

 f Using the Files class' setLastModifiedTime to maintain the last modified time

 f Using the Files class' setAttribute method to set individual attributes

Understanding the FileTime class
The java.nio.file.attribute.FileTime class represents the time for use with several
of the java.nio package methods. To create a FileTime object, we need to use either of
the following two static FileTime methods:

 f The from method, which accepts a long number representing a duration and a
TimeUnit object representing a unit of time measurement

 f The fromMillis method, which accepts a long argument representing the number
of milliseconds based on the epoch

TimeUnit is an enumeration found in the java.util.concurrent package. It represents
a time duration as defined in the following table. It is used in conjunction with another
parameter whose combination represents a time duration:

Enumeration Value Meaning
NANOSECONDS One thousandth of a microsecond
MICROSECONDS One thousandth of a millisecond
MILLISECONDS One thousandth of a second
SECONDS A second
MINUTES Sixty seconds
HOURS Sixty minutes
DAYS Twenty four hours

The from method returns a TimeUnit object. Its value is computed by adding the first
long argument, whose unit of measure is specified by the second TimeUnit argument,
to the epoch.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

The epoch is 1970-01-01T00:00:00Z, which is the base time used for
specifying time on most computers. This base time represents midnight,
Coordinate Universal Time on January 1, 1970.

For example, the from method can be used to present a point in time, which is 1000 days
from the epoch using the following code sequence:

 FileTime fileTime = FileTime.from(1000, TimeUnit.DAYS);
 System.out.println(fileTime);

When executed you should get the following output:

1972-09-27T00:00:00Z

The fromMillis method is used to create a FileTime object, whose time is represented
by adding its argument to the epoch where the argument is a long number representing a
value in milliseconds. If we used the following fromMillis method instead of the from
method as follows:

 FileTime fileTime = FileTime.fromMillis(1000L*60*60*24*1000);

We will get the same results. Notice that the first argument is a long literal, which forces the
result of the expression to be a long number. If we did not promote our results to be long
values, we would have received an integer value, which would have resulted in overflow and
an incorrect date. The first argument of either method can be negative.

For more details regarding the use of time in Java, see
http://www3.ntu.edu.sg/home/ehchua/programming/
java/DateTimeCalendar.html.

Using the Files class' setLastModifiedTime to maintain the last
modified time
The Files class' getLastModifiedTime and setLastModifiedTime methods provide
an alternative approach for setting the last modified attribute of a file. In the following code
sequence, the setLastModifiedTime method uses the lastModifedTime object to set
the time as follows:

 Files.setLastModifiedTime(path, lastModifedTime);

The Files class' getLastModifiedTime returns a FileTime object. We could have this
method to assign a value to the lastModifedTime variable as follows:

 lastModifedTime = Files.getLastModifiedTime(path);

The method has an optional LinkOption argument that indicates whether symbolic links
should be followed or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

124

Using the Files class' setAttribute method to set individual
attributes
The setAttribute method provides a flexible and dynamic approach for setting certain file
attributes. To set the last modified time, we could have used the following code sequence:

 Files.setAttribute(path, "basic:lastAccessTime",
lastAccessTime);

The Obtaining a single attribute at a time using the getAttribute method recipe in Chapter 3,
Obtaining File and Directory Information, details the other attributes that can be set.

See also
The Managing symbolic links recipe discusses the use of symbolic links.

Managing file ownership
The owner of a file or directory can be modified after the file has been created. This is
accomplished by using the java.nio.file.attribute.FileOwnerAttributeView
interface's setOwner method, which can be useful when ownerships change and need to be
controlled programmatically.

A java.nio.file.attribute.UserPrincipal object is used to represent a user. A
Path object is used to represent a file or directory. Using these two objects with the Files
class' setOwner method enables us to maintain file ownerships.

Getting ready
In order to change the owner of a file or directory:

1. Obtain a Path object, which represents the file or directory.

2. Use the Path as the argument to the getFileAttributeView method.

3. Create a UserPrincipal object representing the new owner.

4. Use the FileOwnerAttributeView interface's setOwner method to change the
file's owner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

How to do it...
1. In this example, we will assume that the current owner of the users.txt file is

richard. We will change the owner to a user called jennifer. To do this, create a
new user on your system called jennifer. Create a new console application with the
following main method. In the method, we will use the FileOwnerAttributeView
and a UserPrincipal object to change the owner as follows:
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("C:/home/docs/users.txt");
 FileOwnerAttributeView view = Files.
getFileAttributeView(path, FileOwnerAttributeView.class);
 UserPrincipalLookupService lookupService = FileSystems.
getDefault().getUserPrincipalLookupService();
 UserPrincipal userPrincipal = lookupService.lookupPrincipa
lByName("jennifer");

 view.setOwner(userPrincipal);
 System.out.println("Owner: " + view.getOwner().getName());
}

2. In order to modify the ownership of a file, we must have appropriate privileges.
The introduction to this chapter explains how to get administrator privileges. When
the application is executed using Windows 7, the output should reflect the PC name
and the file's owners shown as follows. The PC name is separated from the owner
with a backslash:

Owner: Richard-PC\Richard

Owner: Richard-PC\Jennifer

How it works...
A Path was first created for the users.txt file. Next, an instance of the
FileOwnerAttributeView interface was obtained using the getFileAttributeView
method. Within the try block, a UserPrincipalLookupService object was created
using the default FileSystem class' getUserPrincipalLookupService method. The
lookupPrincipalByName method was passed the string jennifer, which returned a
UserPrincipal object representing that user.

The last step was to pass the UserPrincipal object to the setOwner method. It then used
the getOwner method to retrieve the current owner verifying the change.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

126

There's more...
Any interface derived from FileOwnerAttributeView can use the getOwner
or setOwner methods. These include the AclFileAttributeView and
PosixFileAttributeView interfaces. In addition, the Files class' setOwner
method can also be used to change ownership of a file.

Using the Files class' setOwner method
The Files class' setOwner method works in the same way as the FileOwnerAttributeView
interfaces' setOwner method. It differs in that it has two arguments, a Path object representing
the file and a UserPrincipal object. The following sequence illustrates the process of setting
the owner of the users.txt file to jennifer:

 Path path = Paths.get("C:/home/docs/users.txt");
 try {
 UserPrincipalLookupService lookupService = FileSystems.
getDefault().getUserPrincipalLookupService();

 UserPrincipal userPrincipal = lookupService.lookupPrincipa
lByName("jennifer");

 Files.setOwner(path, userPrincipal);
 System.out.println("Owner: " + view.getOwner().getName());
}
catch (IOException ex) {
 ex.printStackTrace();
}

Managing ACL file permissions
In this recipe, we will examine how ACL permissions can be set. The ability to set these
permissions is important for many applications. For example, when we need to control who
can modify or execute a file, we can affect this change programmatically. What we can change
is indicated by the AclEntryPermission enumeration values listed later.

Getting ready
To set a new ACL permission for a file:

1. Create a Path object for the file whose attributes we want to change.

2. Obtain an AclFileAttributeView for that file.

3. Obtain a UserPrincipal object for the user.

4. Obtain a list of ACL entries currently assigned to the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

5. Create a new AclEntry.Builder object holding the permission that we want
to add.

6. Add the permission to the ACL list.

7. Use the setAcl method to replace the current ACL list with a new one.

How to do it...
1. Create a new console application with the following main method. In this method, we

will initially simply display the current ACL list for the file users.txt as follows:
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("C:/home/docs/users.txt");
 AclFileAttributeView view = Files.
getFileAttributeView(path, AclFileAttributeView.class);
 List<AclEntry> aclEntryList = view.getAcl();

 displayAclEntries(aclEntryList);
 }

2. To illustrate the process of adding and deleting ACL attributes, we will use a series of
helper methods:

 � displayAclEntries: This displays the principal and entry type and then
calls the other two helper methods

 � displayEntryFlags: This displays the entry flags if present

 � displayPermissions: This displays the entry permissions if any

3. Add the methods as shown in the following code to your application:
 private static void displayAclEntries(List<AclEntry>
aclEntryList) {
 System.out.println("ACL Entry List size: " + aclEntryList.
size());
 for (AclEntry entry : aclEntryList) {
 System.out.println("User Principal Name: " + entry.
principal().getName());
 System.out.println("ACL Entry Type: " + entry.type());
 displayEntryFlags(entry.flags());
 displayPermissions(entry.permissions());
 System.out.println();
}
}

 private static void displayPermissions(Set<AclEntryPermission>
permissionSet) {
 if (permissionSet.isEmpty()) {
 System.out.println("No Permissions present");

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

128

}
else {
 System.out.println("Permissions");
 for (AclEntryPermission permission : permissionSet) {
 System.out.print(permission.name() + " ");
}
 System.out.println();
}
}

 private static void displayEntryFlags(Set<AclEntryFlag>
flagSet) {
 if (flagSet.isEmpty()) {
 System.out.println("No ACL Entry Flags present");
}
else {
 System.out.println("ACL Entry Flags");
 for (AclEntryFlag flag : flagSet) {
 System.out.print(flag.name() + " ");
}
 System.out.println();
}
}

4. The ACL list contains the ACL entries for a file. When the displayAclEntries
method is executed, it will display the number of entries as a convenience and then
each entry will be separated by a blank line. The following illustrates a possible list for
the users.txt file:

Owner: Richard-PC\Richard

ACL Entry List size: 4

User Principal Name: BUILTIN\Administrators

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

READ_DATA DELETE READ_NAMED_ATTRS READ_ATTRIBUTES WRITE_OWNER
DELETE_CHILD WRITE_DATA APPEND_DATA SYNCHRONIZE EXECUTE WRITE_
ATTRIBUTES WRITE_ACL WRITE_NAMED_ATTRS READ_ACL

User Principal Name: NT AUTHORITY\SYSTEM

ACL Entry Type: ALLOW

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

No ACL Entry Flags present

Permissions

READ_DATA DELETE READ_NAMED_ATTRS READ_ATTRIBUTES WRITE_OWNER
DELETE_CHILD WRITE_DATA APPEND_DATA SYNCHRONIZE EXECUTE WRITE_
ATTRIBUTES WRITE_ACL WRITE_NAMED_ATTRS READ_ACL

User Principal Name: BUILTIN\Users

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

READ_DATA SYNCHRONIZE EXECUTE READ_NAMED_ATTRS READ_ATTRIBUTES
READ_ACL

User Principal Name: NT AUTHORITY\Authenticated Users

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

APPEND_DATA READ_DATA DELETE SYNCHRONIZE EXECUTE READ_NAMED_
ATTRS READ_ATTRIBUTES WRITE_ATTRIBUTES WRITE_NAMED_ATTRS READ_ACL
WRITE_DATA

5. Next, use the UserPrincipalLookupService class' lookupService method
to return an instance of the UserPrincipalLookupService class. Use its
lookupPrincipalByName method to return a UserPrincipal object based on a
user's name. Add the following code after the displayAclEntries method is called:
 UserPrincipalLookupService lookupService =
FileSystems.getDefault().getUserPrincipalLookupService();
 UserPrincipal userPrincipal = lookupService.
lookupPrincipalByName("users");

6. Next, add the following code to create and set up an AclEntry.Builder object.
This will be used to add WRITE_ACL and DELETE permissions for the user. Add
the entry to the ACL list and use the setAcl method to attach it to the current file as
follows:
 AclEntry.Builder builder = AclEntry.newBuilder();
 builder.setType(AclEntryType.ALLOW);
 builder.setPrincipal(userPrincipal);
 builder.setPermissions(
 AclEntryPermission.WRITE_ACL,

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

130

 AclEntryPermission.DELETE);

 AclEntry entry = builder.build();
 aclEntryList.add(0, entry);
 view.setAcl(aclEntryList);

7. Execute the application. In order to modify some ACL attributes of a file, we must
have the appropriate privileges. The introduction to this chapter gives the details of
how to run the application as the administrator. Next, comment out the code that
adds the ACL entry and verify that the ACL entry has been made. You should see the
following entry added to the list:

ACL Entry List size: 5

User Principal Name: BUILTIN\Users

ACL Entry Type: ALLOW

No ACL Entry Flags present

Permissions

WRITE_ACL DELETE

How it works...
In the main method, we created the Path object, and then used it to obtain an instance of
the java.nio.file.attribute.AclFileAttributeView interface. The file represented
by the Path object was the users.txt file. The AclFileAttributeView object can be
used for several purposes. Here, we were only interested in using its getAcl method to return
a list of the ACL attributes associated with the file.

We displayed the list of current ACLs only to see what they were, and to eventually verify that
the attributes for the file have been changed. ACL attributes are associated with a user. In this
example, we created a UserPrincipal object that represented users.

A new ACL entry can be created using the build method of the java.nio.file.
attribute.AclEntry.Builder class. The static newBuilder method created an
instance of an AclEntry.Builder class. The setPrincipal method was executed to
set users as the principal for the attribute. The setPermissions method takes either a
set of AclEntryPermission objects or a variable number of AclEntryPermission
objects. In this example, we used a list consisting of two permissions separated by a comma:
AclEntryPermission.WRITE_ACL and AclEntryPermission.DELETE.

The AclEntry.Builder object was then added to the existing ACL for the file. The entry was
added at the beginning of the list. The last step was to use the setAcl method to replace the
old ACL list with this new one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

There's more...
To remove an ACL attribute, we need to obtain the current list and then identify the position of
the attribute that we want to remove. We can use the java.util.List interface's remove
method to remove that item. The setAcl method can then be used to replace the old list with
the new one.

ACL attributes are explained in more detail in the RFC 3530: Network File System (NFS)
version 4 Protocol. The following tables provide additional information and insight into
the ACL permissions that are available. The enumeration AclEntryType has the
following values:

Value Meaning
ALARM Results in an alarm being generated in a system-specific manner, when an attempt

is made to access the attributes specified
ALLOW Grants permissions
AUDIT Logs the access requested in a system-dependent way, when an attempt is made to

access the attributes specified
DENY Denies access

The AclEntryPermission enumeration values are summarized in the table that follows:

Value Meaning
APPEND_DATA Ability to append data to a file
DELETE Ability to delete the file
DELETE_CHILD Ability to delete a file or directory within a directory
EXECUTE Ability to execute a file
READ_ACL Ability to read the ACL attribute
READ_ATTRIBUTES Ability to read (non-ACL) file attributes
READ_DATA Ability to read the data of the file
READ_NAMED_ATTRS Ability to read the named attributes of a file
SYNCHRONIZE Ability to access files locally at the server with synchronous reads

and writes
WRITE_ACL Ability to write the ACL attribute
WRITE_ATTRIBUTES Ability to write (non-ACL) file attributes
WRITE_DATA Ability to modify the file's data
WRITE_NAMED_ATTRS Ability to write the named attributes of a file
WRITE_OWNER Ability to change the owner

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

132

The AclEntryFlag enumeration is applied to directory entries. There are four values
summarized as follows:

Value Meaning
DIRECTORY_INHERIT The ACL entry should be added to each new directory created
FILE_INHERIT The ACL entry should be added to each new non-directory file

created
INHERIT_ONLY The ACL entry should be added to each new file or directory

created
NO_PROPAGATE_INHERIT The ACL entry should not be placed on the newly created

directory, which is inheritable by subdirectories of the created
directory

Currently, there are no flags associated with the AclEntryType.AUDIT or
AclEntryType.ALARM.

Managing POSIX attributes
The POSIX attributes available include a group owner, a user owner, and a set of permissions.
In this recipe, we will investigate how to maintain these attributes. The management of these
attributes makes it easier to develop applications designed to execute on multiple operating
systems. While the number of attributes is limited, they may be sufficient for many applications.

There are three approaches that can be used to manage POSIX attributes:

 f The java.nio.file.attribute.PosixFileAttributeView interface

 f The Files class' set/get POSIX file permission methods

 f The Files class' setAttribute method

The approach used to gain access to the PosixFileAttributes object using the
PosixFileAttributeView interface is detailed in the Chapter 3 recipe Using the
PosixFileAttributeView to maintain POSIX file attributes. Here, we will illustrate how to use
the PosixFileAttributeView interface approach first, and demonstrate the last two
approaches in the There's more... section of this recipe.

Getting ready
To maintain POSIX permission attributes for a file we need to:

1. Create a Path object representing the file or directory of interest.

2. Obtain a PosixFileAttributes object for that file.

3. Get a set of permissions for that file using the permissions method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

4. Modify the set of permissions.

5. Replace the permission using the setPermissions method.

How to do it...
1. We will create an application that obtains a PosixFileAttributes object and

uses it to display the current permissions set for the users.txt file, and then add
the PosixFilePermission.OTHERS_WRITE permission to the file. Create a new
console application and add the following main method:
 public static void main(String[] args) throws Exception {
 Path path = Paths.get("home/docs/users.txt");
 FileSystem fileSystem = path.getFileSystem();
 PosixFileAttributeView view = Files.
getFileAttributeView(path, PosixFileAttributeView.class);

 PosixFileAttributes attributes = view.readAttributes();
 Set<PosixFilePermission> permissions = attributes.
permissions();
 listPermissions(permissions);

 permissions.add(PosixFilePermission.OTHERS_WRITE);
 view.setPermissions(permissions);

 System.out.println();
 listPermissions(permissions);
}

 private static void listPermissions(Set<PosixFilePermission>
permissions) {
 System.out.print("Permissions: ");
 for (PosixFilePermission permission : permissions) {
 System.out.print(permission.name() + " ");
}
 System.out.println();
}

2. Execute the application on a system that supports POSIX. When executed under
Ubuntu 11.04 you should get results similar to the following:

Permissions: GROUP_READ OWNER_WRITE OTHERS_READ OWNER_READ

Permissions: GROUP_READ OWNER_WRITE OTHERS_WRITE OTHERS_READ
OWNER_READ

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

134

How it works...
In the main method, we obtained a Path for the users.txt file and then used the
getFileAttributeView method to get an instance of the PosixFileAttributeView.
The readAttributes method was then used to obtain an instance of the
PosixFileAttributes object representing the file's POSIX attributes.

The listPermissions method was used to list the permissions for the file. This method
was executed once before and once after the new permission was added to the file. We did
this simply to show the change in permissions.

The PosixFilePermission.OTHERS_WRITE permission was added to the permission
set using the add method. The following table lists the PosixFilePermission
enumeration values:

Value Level Permission Granted
GROUP_EXECUTE Group Execute and search
GROUP_READ Read
GROUP_WRITE Write
OTHERS_EXECUTE Others Execute and search
OTHERS_READ Read
OTHERS_WRITE Write
OWNER_EXECUTE Owner Execute and search
OWNER_READ Read
OWNER_WRITE Write

In this example, we added a PosixFilePermission.OTHERS_WRITE permission.
In the next section, we will illustrate how to remove a permission.

There's more...
There are several other operations of interest including:

 f Removing a file permission

 f Modifying the POSIX ownership of a file

 f Using the Files class' set/get POSIX file permission methods

 f Using the Files class' setAttribute method

 f Using the PosixFilePermissions class to create PosixFilePermissions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

Removing a file permission
Removing a permission is simply a matter of:

 f Obtaining a set of permissions for the file

 f Using the Set interface's remove method to remove the permission

 f Reassigning the set to the file

This is illustrated in the following code sequence, where the PosixFilePermission.
OTHERS_WRITE permission is removed:

 Set<PosixFilePermission> permissions = attributes.
permissions();
 Permissions.remove(PosixFilePermission.OTHERS_WRITE);
 view.setPermissions(permissions);

Modifying the POSIX ownership of a file
The POSIX owners are specified at the group and user level. The PosixFileAttributes
method's group and owner will return objects representing the group and user owners of the
file. The setGroup and setOwner methods will set the corresponding memberships.

In the example that follows, the owners for the users.txt file are displayed and then
changed. The UserPrincipal objects are created to support the set methods:

 Path path = Paths.get("home/docs/users.txt");
 try {
 FileSystem fileSystem = path.getFileSystem();
 PosixFileAttributeView view = Files.
getFileAttributeView(path, PosixFileAttributeView.class);

 PosixFileAttributes attributes = view.readAttributes();
 Set<PosixFilePermission> permissions = attributes.
permissions();

 System.out.println("Old Group: " + attributes.group().
getName());
 System.out.println("Old Owner: " + attributes.owner().
getName());
 System.out.println();

 UserPrincipalLookupService lookupService = FileSystems.
getDefault().getUserPrincipalLookupService();
 UserPrincipal userPrincipal = lookupService.lookupPrincipa
lByName("jennifer");
 GroupPrincipal groupPrincipal = lookupService.lookupPrinci
palByGroupName(("jennifer");

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

136

 view.setGroup(groupPrincipal);
 view.setOwner(userPrincipal);

 attributes = view.readAttributes();
 System.out.println("New Group: " + attributes.group().
getName());
 System.out.println("New Owner: " + attributes.owner().
getName());
 System.out.println();

}
catch (IOException ex) {
 ex.printStackTrace();
}

When executed your output should appear as follows:

Setting owner for users.txt

Old Group: richard

Old Owner: richard

New Group: jennifer

New Owner: jennifer

You may need to execute the code as an administrator, as detailed in the introduction.

Using the Files class' set/get POSIX file permission methods
This approach uses the Files class' setPosixFilePermissions and
getPosixFilePermissions methods. The getPosixFilePermissions method returns
a set of PosixFilePermissions for the file specified by its first argument. Its second
argument is a LinkOption, which is used to determine how symbolic link files are handled.
Links are not normally followed, unless the LinkOption.NOFOLLOW_LINKS is used. We
could use the following code sequence to list the permissions associated with a file:

 Path path = Paths.get("home/docs/users.txt");
 try {
 Set<PosixFilePermission> permissions = Files.
getPosixFilePermissions(path);
 System.out.print("Permissions: ");
 for (PosixFilePermission permission : permissions) {
 System.out.print(permission.name() + " ");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

 System.out.println();

}
catch (IOException ex) {
 ex.printStackTrace();
}

The setPermissions method takes a Path object representing the file and a set of
PosixFilePermission. Instead of using the previous method:

 view.setPermissions(path, permissions);

We can use the Files class' setPosixFilePermissions method:

 Files.setPosixFilePermissions(path, permissions);

The use of the Files class simplifies the process by avoiding the creation of a
PosixFileAttributes object.

Using the Files class' setAttribute method
The Files class' getAttribute method is detailed in the Obtaining a single attribute at a
time using the getAttribute method recipe found in Chapter 3. The setAttribute method
will set an attribute and has the following four arguments:

 f A Path object representing the file

 f A String containing the attribute to be set

 f An object representing the value of the attribute

 f An optional LinkOption value specifying how symbolic links are handled

The following illustrates adding the PosixFilePermission.OTHERS_WRITE permission
to the users.txt file:

 Path path = Paths.get("home/docs/users.txt");
 try {
 Files.setAttribute(path, "posix:permission,
PosixFilePermission.OTHERS_WRITE);
}
catch (IOException ex) {
 ex.printStackTrace();
}

The LinkOption value was not used in this example.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

138

Using the PosixFilePermissions class to create
PosixFilePermissions
The PosixFilePermissions class possesses three methods:

 f asFileAttribute, which returns a FileAttribute object that contains a set of
PosixFilePermissions

 f fromString, which also returns a set of PosixFilePermissions based on a
String argument

 f toString, which performs the inverse operation of the fromString method

All three methods are static. The first method returns a FileAttribute object, which can be
used with the createFile or createDirectory method as discussed in the Creating files
and directories recipe.

On Unix systems, file permissions are frequently expressed as a nine-character string. The
string is grouped in three character groups. The first set represents permission of the user, the
second represents permission of the group, and the last set represents the permission of all
others. Each of the three character groups represent the read, write, or execute permissions
granted for that set. An r in the first position grants read permission, a w in the second
position indicates write permission, and an x in the last position grants execute permission.
A - in any of these positions means that the permission is not set.

To illustrate these methods, execute the following code sequence:

 Path path = Paths.get("home/docs/users.txt");
 try {
 FileSystem fileSystem = path.getFileSystem();
 PosixFileAttributeView view = Files.
getFileAttributeView(path, PosixFileAttributeView.class);

 PosixFileAttributes attributes = view.readAttributes();
 Set<PosixFilePermission> permissions = attributes.
permissions();

 for(PosixFilePermission permission : permissions) {
 System.out.print(permission.toString() + ' ');
}
 System.out.println();

 FileAttribute<Set<PosixFilePermission>> fileAttributes =
PosixFilePermissions.asFileAttribute(permissions);
 Set<PosixFilePermission> fileAttributeSet =
fileAttributes.value();
 for (PosixFilePermission posixFilePermission :
fileAttributeSet) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

 System.out.print(posixFilePermission.toString() + ' ');
}

 System.out.println();
 System.out.println(PosixFilePermissions.
toString(permissions));
 permissions = PosixFilePermissions.fromString("rw-rw-r--");
 for(PosixFilePermission permission : permissions) {
 System.out.print(permission.toString() + ' ');
}
 System.out.println();

}
catch (IOException ex) {
}

Your output should be similar to the following:

OTHERS_READ OWNER_READ GROUP_READ OWNER_WRITE

OTHERS_READ OWNER_READ OWNER_WRITE GROUP_READ

rw-r--r--

OWNER_READ OWNER_WRITE GROUP_READ GROUP_WRITE OTHERS_READ

The first section of the code obtains a set of permissions for the users.txt file as detailed
earlier in this recipe. The permissions were then displayed. Next, the asFileAttribute
method was executed to return the FileAttribute for the file. The value method was
used to obtain a set of the attributes, which were then displayed. The two sets of permissions
were displayed but in a different order.

Next, the toString method was used to display this same set of permissions as a string.
Notice each character reflects a permission granted for the users.txt file.

The last code segment created a new set of permissions using the fromString method.
These permissions were then displayed to verify the conversion.

Moving a file and a directory
Moving a file or directory can be useful when reorganizing the structure of a user space. This
operation is supported by the Files class' move method. When moving a file or directory
there are several factors to consider. These include whether the symbolic link files are present,
whether the move should replace existing files, and whether the move should be atomic.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

140

A move may result in the renaming of the resource if the move occurs on the same file
store. The use of this method will sometimes use the Path interface's resolveSibling
method. This method will replace the last part of a path with its argument. This is useful when
renaming files. The resolveSibling method is detailed in the There's more... section of
the Combining paths using path resolution recipe in Chapter 2, Locating Files and Directories
Using Paths.

Getting ready
In order to move a file or directory:

1. Obtain a Path object, which represents the file or directory to move.

2. Obtain a Path object, which represents the destination of the move.

3. Determine the copy options to control the move.

4. Execute the move method.

How to do it...
1. Create a new console application using the following main method. We will move the

users.txt file to the music directory:
 public static void main(String[] args) throws Exception {
 Path sourceFile = Paths.get("C:/home/docs/users.txt");
 Path destinationFile = Paths.get
 ("C:/home/music/users.txt");
 Files.move(sourceFile, destinationFile);
}

2. Execute the application. Examine the contents of the docs and music directories.
The users.txt file should be absent from the docs directory, but present in the
music directory.

How it works...
The move method used these two Path objects and did not use a third optional argument.
This argument is used to determine how the copy operation works. When it is not used, the file
copy operation defaults to a simple copy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

The StandardCopyOption enumeration implements the CopyOption interface and
defines the types of copy operation supported. The CopyOption interface is used with the
Files class' copy and move methods. The following table lists these options. These options
are explained in more detail in the There's more... section:

Value Meaning
ATOMIC_MOVE The move operation is atomic in nature
COPY_ATTRIBUTES The source file attributes are copied to the new file
REPLACE_EXISTING The destination file is replaced if it exists

If the destination file already exists, then the FileAlreadyExistsException exception is
thrown. However, if the CopyOption.REPLACE_EXISTING is used as the third argument of
the move method, the exception is not thrown. When the source is a symbolic link, the link is
copied and not the target of the link.

There's more...
There are several variations and issues that need to be covered. These include:

 f Trivial uses of the move method

 f The meaning of the StandardCopyOption enumeration values

 f Using the resolveSibling method with the move method to affect a
rename operation

 f Moving a directory

Trivial uses of the move method
If the source file and the destination files are the same, the method will not have any effect.
The following code sequence will have no effect:

 Path sourceFile = ...;
 Files.move(sourceFile, sourceFile);

No exception will be thrown and the file will not be moved.

The meaning of the StandardCopyOption enumeration values
The StandardCopyOption enumeration values require a bit more explanation. A value of
the StandardCopyOption.REPLACE_EXISTING will replace the existing file if present. If
the file is a symbolic link, then only the symbolic link file is replaced, not its target.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

142

A value of StandardCopyOption.COPY_ATTRIBUTES will copy all of the attributes of the
file. A value of StandardCopyOption.ATOMIC_MOVE specifies that the move operation is
to be performed in an atomic fashion. All other enumeration values are ignored. However, if
the destination file already exists, then either the file will be replaced or an IOException will
be thrown. The result is implementation-dependent. If the move cannot be performed in an
atomic fashion, then an AtomicMoveNotSupportedException is thrown. An atomic move
may fail due to differences in the file store of the source and destination files.

If the following code sequence is executed on Windows 7:

 Path sourceFile = Paths.get("C:/home/docs/users.txt");
 Path destinationFile = Paths.get("C:/home/music/users.
 txt");
 Files.move(sourceFile, destinationFile,
StandardCopyOption.ATOMIC_MOVE);

Then an AccessDeniedException exception is thrown if the destination file already exists.
If the file does not exist, its execution will result in the following error message:

java.nio.file.AtomicMoveNotSupportedException: C:\home\docs\users.txt -> E:\home\
music\users.txt: The system cannot move the file to a different disk drive

Using the resolveSibling method with the move method to affect
a rename operation
The resolveSibling method will replace the last part of a path with a different string.
This can be used to affect a rename operation when using the move method. In the following
sequence, the users.txt file is effectively renamed:

 Path sourceFile = Paths.get("C:/home/docs/users.txt");
 Files.move(sourceFile, sourceFile.resolveSibling(sourceFile.
getFileName()+".bak"));

The file has been renamed to users.txt.bak. Notice that the source file path was used
twice. To rename the file and replace its extension, we can use an explicit name as follows:

 Files.move(sourceFile, sourceFile.resolveSibling("users.bak"));

A more sophisticated approach might use the following sequence:

 Path sourceFile = Paths.get("C:/home/docs/users.txt");
 String newFileName = sourceFile.getFileName().toString();
 newFileName = newFileName.substring(0, newFileName.indexOf('.'))
+ ".bak";
 Files.move(sourceFile, sourceFile.resolveSibling(newFileName));

The substring method returned a new filename starting with the first character and ending
with the character immediately preceding the period.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

Moving a directory
When a directory is moved on the same file store, then the directory and subdirectories are
moved. The following will move the docs directory, its files, and its subdirectories to the
music directory as follows:

 Path sourceFile = Paths.get("C:/home/docs");
 Path destinationFile = Paths.get("C:/home/music/docs");
 Files.move(sourceFile, destinationFile);

However, executing this code sequence, where the docs directory is to be moved to a similar
file structure on the E drive will result in a DirectoryNotEmptyException exception:

 Path sourceFile = Paths.get("C:/home/docs");
 Path destinationFile = Paths.get("E:/home/music/docs");
 Files.move(sourceFile, destinationFile);

Moving a directory across file stores will result in an exception if the directory is not empty.
If the docs directory had been empty in the previous example, the move method would have
executed successfully. If you need to move a non-empty directory across file stores, then this
will normally involve a copy operation followed by a delete operation.

Deleting files or directories
Deleting files or directories when they are no longer needed is a common operation. It will
save space on a system and result in a cleaner filesystem. There are two methods of the
Files class that can be used to delete a file or directory: delete and deleteIfExists.
They both take a Path object as their argument and may throw an IOException.

Getting ready
To delete a file or directory, the following needs to be done:

1. Obtain a Path object, which represents the file or directory.

2. Use either the delete or deleteIfExists methods to delete the element.

How to do it...
1. Create a new console application and use the following main method:

 public static void main(String[] args) throws Exception {
 Path sourceFile = Paths.get("C:/home/docs/users.txt");
 Files.delete(sourceFile);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

144

2. Execute the application. If the users.txt file existed in the directory when the
program ran, it should not be there after the program executes. If the file did not
exist, then your program output should appear similar to the following:

java.nio.file.NoSuchFileException: C:\home\docs\users.txt

How it works...
This method is simple to use. We created a Path object representing the users.txt
method. We then used it as an argument to the delete method. Since delete method
may throw an IOException, the code was enclosed in a try-catch block.

To avoid an exception that would be thrown if the file did not exist, we could have used
the deleteIfExists method instead. Replace the delete method invocation with
the following:

 Files.deleteIfExists(sourceFile);

Make sure that the file does not exist and then execute this code. The program should
terminate normally without any exceptions being thrown.

There's more...
If we try to delete a directory, the directory must first be empty. If the directory is not empty,
then a DirectoryNotEmptyException exception will be thrown. Execute the following
code sequence in lieu of the previous example:

 Path sourceFile = Paths.get("C:/home/docs");
 Files.delete(sourceFile);

Assuming that the docs directory is not empty, the application should throw a
DirectoryNotEmptyException exception.

The definition of an empty directory is dependent on the filesystem implementation. On some
systems where the directory only contains special files or symbolic links, the directory may be
considered to be empty.

If a directory is not empty and needs to be deleted, then it will be necessary to delete its
entries first using the walkFileTree method as illustrated in the Using the SimpleFileVisitor
class to traverse file systems recipe in Chapter 5, Managing File Systems.

If the file to be deleted is a symbolic link, only the link is deleted, not
the target of the link. Also, it may not be possible to delete a file if
the file is open or in use by other applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

Managing symbolic links
Symbolic links are files, which are not real files, but rather links to or points to the real file
typically called the target file. These are useful when it is desirable to have a file appearing to
be in more than one directory without actually having to duplicate the file. This saves space
and keeps all of the updates isolated to a single file.

The Files class possesses the following three methods for working with symbolic links:

 f The createSymbolicLink method, which creates a symbolic link to a target file
that may not exist

 f The createLink method creates a hard link to an existing file

 f The readSymbolicLink retrieves a Path to the target file

Links are typically transparent to the users of the file. Any access to the symbolic link is
redirected to the referenced file. Hard links are similar to symbolic links, but have more
restrictions. These types of links are discussed in more detail in the There's more... section
of this recipe.

Getting ready
In order to create a symbolic link to a file:

1. Obtain a Path object, which represents the link.

2. Obtain a Path object, which represents the target file.

3. Use these paths as the argument to the createSymbolicLink method.

How to do it...
1. Create a new console application. Add the following main method to the application.

In this application, we will create a symbolic link in the music directory to the actual
users.txt file in the docs directory.
 public static void main(String[] args) throws Exception {
 Path targetFile = Paths.get("C:/home/docs/users.txt");
 Path linkFile = Paths.get("C:/home/music/users.txt");
 Files.createSymbolicLink(linkFile, targetFile);
}

2. Execute the application. If the application does not have sufficient privileges, then an
exception will be thrown. An example of this when executed on Windows 7 is shown
as follows:

java.nio.file.FileSystemException: C:\home\music\users.txt: A required privilege
is not held by the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

146

3. Verify that a new file called users.txt exists in the music directory. Check the
properties of the file to verify that it is a symbolic link. On Windows 7, right-click on
the filename and select Properties. Next, select the Shortcut tab. It should appear
as shown in the following screenshot:

Notice that the target specified is the users.txt file in the docs directory.

How it works...
We created two Path objects. The first represented the target file in the docs directory.
The second represented the link file to be created in the music directory. Next, we used
the createSymbolicLink method to actually create the symbolic link. The entire code
sequence was enclosed in a try block to catch any IOExceptions that may be thrown.

The third argument of the createSymbolicLink method can be one or more
FileAttribute values. These are intended to be used to set attributes of the link file when
it is created. However, it is currently not fully supported. Future versions of Java will enhance
this capability. A FileAttribute can be created as detailed in the There's more... section
of the Managing POSIX file permissions recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

147

There's more...
Here we will look more carefully at the following issues:

 f Creating a hard link

 f Creating a symbolic link to a directory

 f Determining the target of a link file

Creating a hard link
Hard links have more restrictions placed upon them as opposed to symbolic links.
These restrictions include the following:

 f The target must exist. If not, an exception is thrown.

 f A hard link cannot be made to a directory.

 f Hard links can only be established within a single filesystem.

Hard links behave like a regular file. There are no overt properties of the file that indicate that
it is a link file, as opposed to a symbolic link file which has a shortcut tab. All of the attributes
of the hard link are identical to that of the target file.

Hard links are not used as frequently as soft links. Path class methods work with hard links
and do not require any special considerations. A hard link is created using the createLink
method. It accepts two arguments: a Path object for the link file and for the target file. In the
following example, we create a hard link in the music directory instead of a symbolic link:

 try {
 Path targetFile = Paths.get("C:/home/docs/users.txt");
 Path linkFile = Paths.get("C:/home/music/users.txt");
 Files.createLink(linkFile, targetFile);
}
catch (IOException ex) {
 ex.printStackTrace();
}

Execute the application. If you examine the properties of the link file, you observe that it is not
displayed as a symbolic link. However, modifying the contents of either file will cause the other
file to be modified also. They are effectively one and the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Files and Directories

148

Creating a symbolic link to a directory
Creating a symbolic link to a directory uses the same methods as it did for files. In the following
example, a new directory tmp is created, which is a symbolic link to the docs directory:

 try {
 Path targetFile = Paths.get("C:/home/docs");
 Path linkFile = Paths.get("C:/home/tmp");
 Files.createSymbolicLink(linkFile, targetFile);
}
catch (IOException ex) {
 ex.printStackTrace();
}

All of the files in the tmp directory are effectively the symbolic links to the corresponding files
in the docs directory.

Determining the target of a link file
The isSymbolicLink method, as discussed in the Managing symbolic links recipe in
Chapter 2, Locating Files and Directories Using Paths determines whether a file is a symbolic
link or not. The readSymbolicLink method accepts a Path object representing the link file
and returns a Path object representing the target of the link.

The following code sequence illustrates this, where the users.txt file in the music directory
is a symbolic link:

 try {
 Path targetFile = Paths.get("C:/home/docs/users.txt");
 Path linkFile = Paths.get("C:/home/music/users.txt");
 System.out.println("Target file is: " + Files.
readSymbolicLink(linkFile));
}
catch (IOException ex) {
 ex.printStackTrace();
}

However, if the users.txt link file is a hard link, as created with the createLink method,
we get the following exception when the code is executed:

java.nio.file.NotLinkException: The file or directory is not a reparse point.

A reparse point is an NTFS filesystem object that associates specific
data to an application with a file or directory. A filesystem filter can be
associated with the reparse point type. When the filesystem opens the
file, it will pass this information to the filesystem filter for processing. This
approach is a way of extending the functionality of the filesystem.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Managing Filesystems

In this chapter, we will cover the following:

 f Getting FileStore information

 f Getting FileSystem information

 f Using the SimpleFileVisitor class to traverse filesystems

 f Deleting a directory using the SimpleFileVisitor class

 f Copying a directory using the SimpleFileVisitor class

 f Processing the contents of a directory by using the DirectoryStream interface
as explained in the Filtering a directory using globbing recipe

 f Writing your own directory filter

 f Monitoring file events using WatchEvents

 f Understanding the ZIP filesystem provider

Introduction
A filesystem is one or more top-level root directories containing a hierarchy of files. A
filesystem is supported by a file store that is the provider for the storage of the files. This
chapter is concerned with obtaining information about these entities and typical filesystem
tasks, such as determining the contents of a directory or monitoring filesystem events.

A file store represents a unit of storage. For example, it might represent a device, such as a C
drive, a partition of a drive, or a volume. The java.nio.file.FileStore class supports
file stores and provides several methods to this end. The Getting FileStore information recipe
covers how to obtain basic information about a specific file store.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

150

A filesystem supports access to a hierarchy of directories and files. It is represented in Java
7 with the java.nio.file.FileSystem class. Obtaining general information about a
filesystem is covered in the Getting FileSystem information recipe. This includes how to obtain
a list of root directories for a filesystem and the underlying file stores.

Traversing a directory hierarchy is useful for many applications. The Using the SimpleFileVisitor
class to traverse filesystems recipe details the basic approach. This approach is used in
the Deleting a directory using the SimpleFileVisitor class and Copying a directory using the
SimpleFileVisitor class recipes.

When an operation is restricted to a single directory, the java.nio.file.
DirectoryStream interface provides a convenient technique for examining each element
in the directory as a java.nio.file.Path object. It is very easy to use a for each loop to
process these paths. This approach is explored in the Using the DirectoryStream interface to
process the contents of a directory recipe.

Sometimes we don't need the entire contents of a directory, but rather a subset of its
elements. Java 7 provides a few approaches to filtering the contents of a directory as
described in the Filtering a directory using globbing and Writing your own directory filter
recipes. Globbing is a pattern-matching technique that is similar to regular expressions but is
easier to use.

In the Monitoring file events using WatchEvents recipe we learn how Java 7 supports the
detection of file creation, modification, and deletion within a directory by external processes.
This can be very useful when it is necessary to know when changes to a directory are made.

With Java 7, it is now possible to treat the contents of a ZIP file as a filesystem. This makes it
easier to manage the contents of a ZIP file and to manipulate the files contained within the ZIP
file. This technique is demonstrated in the Understanding the zip filesystem provider recipe.

Getting FileStore information
Each filesystem supports a file storage mechanism. This may be a device, such as a C drive,
a partition of a drive, a volume, or some other way of organizing a filesystem's space. The
java.nio.file.FileStore class represents one of these storage divisions. This recipe
details the methods available to obtain information about the file store.

Getting ready
To obtain and use a FileStore object:

1. Obtain an instance of the java.nio.file.FileSystem in use.

2. Use the FileSystem class' getFileStores method to return the available
file stores.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

151

How to do it...
1. Create a new console application. In the main method, we will use several methods

of the FileStore class to demonstrate the support provided by this class. Let's start
by adding the first part of the main method, where we display an initial header and
get a FileSystem object. Also, define a long variable called kiloByte:
static final long kiloByte = 1024;

 public static void main(String[] args) throws IOException {
 String format = "%-16s %-20s %-8s %-8s %12s %12s %12s\n";
 System.out.printf(format,"Name", "Filesystem", "Type",
 "Readonly", "Size(KB)", "Used(KB)",
 "Available(KB)");
 FileSystem fileSystem = FileSystems.getDefault();

}

2. Next, we need to use the getFileStores method to retrieve the available file stores
and then display them. In the first part of the block, we use several FileStore
methods to get relevant information. In the last part, we display the information
as follows:
 for (FileStore fileStore : fileSystem.getFileStores()) {
 try {
 long totalSpace = fileStore.getTotalSpace() /
kiloByte;
 long usedSpace = (fileStore.getTotalSpace() -
 fileStore.getUnallocatedSpace()) /
kiloByte;
 long usableSpace = fileStore.getUsableSpace() /
kiloByte;
 String name = fileStore.name();
 String type = fileStore.type();
 boolean readOnly = fileStore.isReadOnly();

 NumberFormat numberFormat = NumberFormat.
getInstance();
 System.out.printf(format,
 name, fileStore, type, readOnly,
 numberFormat.format(totalSpace),
 numberFormat.format(usedSpace),
 numberFormat.format(usableSpace));
}
catch (IOException ex) {
 ex.printStackTrace();
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

152

3. Execute the application. Your output will differ from the following, but should reflect
the drives on your system:

Name Filesystem Type Readonly Size(KB) Used(KB)
Available(KB)

HP HP (C:) NTFS false 301,531,984 163,041,420 138,490,564

FACTORY_IMAGE FACTORY_IMAGE (D:) NTFS false 11,036,652 9,488,108
1,548,544

HP_PAVILION HP_PAVILION (E:) NTFS false 312,568,640 66,489,184
246,079,456

TOSHIBA TOSHIBA (H:) FAT32 false 15,618,080 3,160,768
12,457,312

How it works...
A format string was created to simplify the display of the file store information. This string was
used in both of the printf methods. Using the same string twice ensures consistent spacing
of the output. A simple title was displayed using this string.

A FileSystem object was obtained using the FileSystems class' getDefault
method. The getFileStores method was executed against this object to obtain a list
of FileStore objects.

Within the loop, a try block was used to catch exceptions that might have been thrown.
Several methods were invoked as detailed in the following table. An instance of the
NumberFormat class was created to format file store size information. The last printf
method displayed the file store information for each file store:

Method Meaning
getTotalSpace The total space available on the file store in bytes
getUnallocatedSpace The number of unallocated bytes
getUsableSpace The number of usable bytes available to the JVM
name An implementation-specific string representing the file store name
type An implementation-specific string representing the file store type
isReadOnly If the method returns true, then attempts to create a file or open

a file for writing will result in an IOException being thrown

The values returned by the getUnallocatedSpace or getUsableSpace methods can
change if an external operation uses or releases space on the file store.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

153

See also
The attribute views as supported by a FileStore are determined using one of the two
supportsFileAttributeView methods. These are illustrated in the There's more...
section of the Determining operating system support for attribute views recipe in Chapter 3,
Obtaining File and Directory Information.

Getting Filesystem information
A filesystem is composed of a hierarchy of directories and files. There is a limited amount of
information regarding a filesystem that is normally useful. For example, we may want to know
whether the filesystem is read-only or who the provider is. In this recipe we will examine the
methods available to retrieve filesystem attributes.

Getting ready
To access the method of a filesystem we need to:

1. Obtain a reference to a java.nio.file.FileSystem object.

2. Use the methods of this object to access filesystem information.

How to do it...
1. Create a new console application. Add the following code to the main method of the

application. This sequence displays several fileSystem attributes, including the
filesystem provider, file open status, whether the file is available to be read-only, the
root directories, and the names of the file stores:
 FileSystem fileSystem = FileSystems.getDefault();
 FileSystemProvider provider = fileSystem.provider();

 System.out.println("Provider: " + provider.toString());
 System.out.println("Open: " + fileSystem.isOpen());
 System.out.println("Read Only: " + fileSystem.
isReadOnly());

 Iterable<Path> rootDirectories = fileSystem.
getRootDirectories();
 System.out.println();
 System.out.println("Root Directories");

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

154

 for (Path path : rootDirectories) {
 System.out.println(path);
}

 Iterable<FileStore> fileStores = fileSystem.
getFileStores();
 System.out.println();
 System.out.println("File Stores");
 for (FileStore fileStore : fileStores) {
 System.out.println(fileStore.name());

}

2. Execute the application. Your output will depend upon the configuration of your
system. However, it should mimic the output that follows:

Provider: sun.nio.fs.WindowsFileSystemProvider@7b60e796

Open: true

Read Only: false

Root Directories

C:\

D:\

E:\

F:\

G:\

H:\

I:\

J:\

K:\

L:\

File Stores

HP

FACTORY_IMAGE

HP_PAVILION

TOSHIBA

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

155

How it works...
The getDefault method returned the default filesystem used by the JVM. Next, several
methods were invoked against this object:

 f The provider method returned the provider, that is, implementer of the filesystem.
In this case, it was a Windows filesystem provider that came bundled with the JVM.

 f The isOpen method indicated that the filesystem is open and ready for use.

 f The isReadOnly method returned false, meaning that we can read and write to
the system.

 f We used the getRootDirectories method to create an Iterable object that
permitted us to list each root directory.

 f The getFileStores method returned another Iterable object, which was used to
display the names of the file stores.

There's more...
While we do not normally need to close a filesystem, the close method can be used to
close the filesystem. Any subsequent methods executed against the filesystem will result in
a ClosedFileSystemException being thrown. Any open channels, directory streams,
and watch services associated with the filesystem will also be closed. Note that the default
filesystem cannot be closed.

The FileSystems class' getFileSystem method can be used to access a specific
filesystem. In addition, the overloaded newFileSystem method will create new filesystems.
The close method can be used with these instances.

Filesystems are thread-safe. However, if one thread attempts to close the filesystem while
another thread is accessing the filesystem object, the close operation may be blocked
until the access is complete.

Using the SimpleFileVisitor class to traverse
filesystems

When working with directory systems, a common need is to traverse the filesystem examining
each subdirectory within a file hierarchy. This task has been made easy with the java.nio.
file.SimpleFileVisitor class. This class implements methods that execute before and
after a directory is visited. In addition, callback methods are invoked for each instance a file is
visited in a directory and if an exception occurs.

The SimpleFileVisitor class or a derived class is used in conjunction with the java.
nio.file.Files class' walkFileTree method. It performs a depth first traversal, starting
at a specific root directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

156

Getting ready
To traverse a directory we need to:

1. Create a Path object representing the root directory.

2. Create an instance of a class derived from SimpleFileVisitor.

3. Use these objects as arguments to the Files class' walkFileTree method.

How to do it...
1. Create a new console application and use the following main method. Here, we will

traverse the home directory and list each of its elements as follows:
public static void main(String[] args) {
 try {
 Path path = Paths.get("/home");
 ListFiles listFiles = new ListFiles();
 Files.walkFileTree(path, listFiles);
}
catch (IOException ex) {
 ex.printStackTrace();
}
}

2. Add the following ListFiles class to your project. It illustrates the use of each of
the SimpleFileVisitor methods:
class ListFiles extends SimpleFileVisitor<Path> {
 private final int indentionAmount = 3;
 private int indentionLevel;

 public ListFiles() {
 indentionLevel = 0;
}

 private void indent() {
 for(int i=0 ; i<indentionLevel; i++) { {
 System.out.print(' ');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

}
}

 @Override
 public FileVisitResult visitFile(Path file,
BasicFileAttributes attributes) {
 indent();
 System.out.println("Visiting file:" + file.getFileName());
 return FileVisitResult.CONTINUE;
}

 @Override
 public FileVisitResult postVisitDirectory(Path directory,
IOException e) throws IOException {
 indentionLevel -= indentionAmount;
 indent();
 System.out.println("Finished with the directory: " +
directory.getFileName());
 return FileVisitResult.CONTINUE;
}

 @Override
 public FileVisitResult preVisitDirectory(Path directory,
BasicFileAttributes attributes) throws IOException {
 indent();
 System.out.println("About to traverse the directory: " +
directory.getFileName());
 indentionLevel += indentionAmount;
 return FileVisitResult.CONTINUE;
}

 @Override
 public FileVisitResult visitFileFailed(Path file, IOException
exc) throws IOException {
 System.out.println("A file traversal error ocurred");
 return super.visitFileFailed(file, exc);
}
}

3. Execute the application. Depending on the structure of your home directory, you may
get results different from the following:

About to traverse the directory: home

 About to traverse the directory: docs

 Visiting file:users.bak

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

158

 Visiting file:users.txt

 Finished with the directory: docs

 About to traverse the directory: music

 Visiting file:Future Setting A.mp3

 Visiting file:Robot Brain A.mp3

 Visiting file:Space Machine A.mp3

 Finished with the directory: music

Finished with the directory: home

Examine the backup directory to verify that it was created successfully.

How it works...
In the main method, we created a Path object for the home directory. Next, an instance
of the ListFiles class was created. These objects were used as the arguments of the
walkFileTree method. This method affected the traversal of the home directory and
invoked the methods of the ListFiles class as required.

The walkFileTree method started at a root directory, and performed a depth first traversal
of the directory hierarchy. Before a directory was traversed, the preVisitDirectory
method was invoked. Next, each element of the directory was processed. If it was a file, then
the visitFile method was invoked. Once all of the elements of the directory had been
processed, the postVisitDirectory method was invoked. If an exception had occurred,
then the visitFileFailed method would have been invoked.

Private helper methods were added, which made the output more readable. The
indentionAmount variable controlled the depth of each indention. The indentionLevel
variable was incremented and decremented as each subdirectory was visited. The indent
method preformed the actual indention.

There's more...
There are two overloaded walkFileTree methods. One takes a Path and a FileVisitor
object, which was illustrated previously. It will not follow links and will visit all levels of the
directory. The second method takes two additional arguments: one that specifies the number
of directory levels to be visited and a second one to configure the traversal. Currently, the
only configuration option available is FileVisitOption.FOLLOW_LINKS, which directs the
method to follow symbolic links.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

Symbolic links are not followed by default. If they are followed when specified by an argument
of the walkFileTree method, then care is taken to detect circular links. If a circular link is
detected, it is treated as an error condition.

The number of levels of directories to visit is controlled by an integer argument. A value of
0 will result in only the top-level directory being visited. A value of Integer.MAX_VALUE
means that all of the levels will be visited. A value of two means only the first two directory
levels are traversed.

The traversal will terminate when one of the following conditions occurs:

 f All files have been traversed

 f A visit method returns FileVisitResult.TERMINATE

 f A visit method terminates with an IOException, or other exception is
propagated back

Any unsuccessful action will generally result in the visitFileFailed method being invoked
and an IOException being thrown.

When a file is encountered, and if it is not a directory, then an attempt is made to read its
BasicFileAttributes. If successful, the attribute is passed to the visitFile method. If
unsuccessful, the visitFileFailed method is invoked, and it will throw an IOException
unless it is dealt with.

If the file is a directory and the directory can be opened, then the preVisitDirectory is
invoked and the elements of the directory and their descendants are visited.

If the file is a directory and the directory could not be opened, the visitFileFailed
method is invoked and it will throw an IOException. However, the depth-first search will
continue with the next sibling.

The following table summarizes the traversal process.

Element encountered Can be opened Fails to open
File visitFile is invoked visitFileFailed is

invoked
Directory preVisitDirectory is called

Directory elements are processed

postVisitDirectory is invoked

visitFileFailed is
invoked

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

160

For convenience, the enumeration constants for the enumeration FileVisitResult are
listed as follows:

Value Meaning
CONTINUE Continue the traversal
SKIP_SIBLINGS Continue without visiting the siblings of this file or directory
SKIP_SUBTREE Continue without visiting the entries in this directory
TERMINATE Terminate

See also
The Deleting a directory using the SimpleFileVisitor class and Copying a directory using the
SimpleFileVisitor class recipes utilize the approach described in this recipe to delete and copy
a directory respectively.

Deleting a directory using the
SimpleFileVisitor class

The ability to delete a directory is a requirement of some applications. This can be achieved
using the walkFileTree method and a java.nio.file.SimpleFileVisitor derived
class. This recipe builds on the foundation provided in the Using the SimpleFileVisitor class to
traverse filesystems recipe.

Getting ready
To delete a directory, we need to:

1. Create a Path object representing the root directory.

2. Create an instance of a class derived from SimpleFileVisitor as follows:

 � Override the visitFile method to delete the file

 � Override the postVisitDirectory method to delete the directory

3. Use these objects as arguments to the Files class' walkFileTree method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

161

How to do it...
1. Create a new console application. Here, we will delete the home directory and all of

its elements. Add the following code to the main method:
 try {
 Files.walkFileTree(Paths.get("/home"), new
DeleteDirectory());
}
catch (IOException ex) {
 ex.printStackTrace();
}

2. The DeleteDirectory class is shown as follows. As each file and directory is
deleted, a message is displayed to that effect:
public class DeleteDirectory extends SimpleFileVisitor<Path> {
 @Override
 public FileVisitResult visitFile(Path file,
BasicFileAttributes attributes)
 throws IOException {
 System.out.println("Deleting " + file.getFileName());
 Files.delete(file);
 return FileVisitResult.CONTINUE;
}

 @Override
 public FileVisitResult postVisitDirectory(Path directory,
IOException exception)
 throws IOException {
 if (exception == null) {
 System.out.println("Deleting " + directory.
getFileName());
 Files.delete(directory);
 return FileVisitResult.CONTINUE;
}
else {
 throw exception;
}
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

162

3. Back up the home directory and then execute the application. You should get the
following output depending on the actual directory structure:

Deleting users.bak
Deleting users.txt
Deleting docs
Deleting Future Setting A.mp3
Deleting Robot Brain A.mp3
Deleting Space Machine A.mp3
Deleting music
Deleting home

Verify that the directory was deleted.

How it works...
In the main method, we created a Path object representing the home directory. Next, we
created an instance of the DeleteDirectory class. These two objects were used as
arguments to the walkFileTree method, which started the traversal process.

When a file is encountered, the visitFile method was executed. In this method,
we displayed a message indicating that the file was being deleted, and then used the
Files class' delete method to delete the file. When a directory was encountered, the
postVisitDirectory method was invoked. A test was made to ensure that no errors had
occurred, and then a message was displayed indicating that the directory was being deleted
followed by the invocation of the delete method for that directory. Both of the methods
returned FileVisitResult.CONTINUE, which continues the deletion process.

See also
The Using the SimpleFileVisitor class to traverse filesystems recipe provides more detail
on the use of the walkFileTree method and the SimpleFileVisitor class. The
Copying a directory using the SimpleFileVisitor class recipe also provides a variation of
the use of this approach.

Copying a directory using the
SimpleFileVisitor class

The ability to copy a directory is a requirement of some applications. This can be achieved
using the walkFileTree method and a java.nio.file.SimpleFileVisitor derived
class. This recipe builds on the foundation provided in the Using the SimpleFileVisitor class to
traverse filesystems recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

163

Getting ready
To delete a directory, we need to:

1. Create a Path object representing the root directory.

2. Create an instance of a class derived from the SimpleFileVisitor as follows:

 � Override the visitFile method to copy the file

 � Override the preVisitDirectory method to copy the directory

3. Use these objects as arguments to the Files class' walkFileTree method.

How to do it...
1. Create a new console application. Here, we will copy the home directory and all of its

elements to a backup directory. Add the following code to the main method:
 try {
 Path source = Paths.get("/home");
 Path target = Paths.get("/backup");
 Files.walkFileTree(source,
 EnumSet.of(FileVisitOption.FOLLOW_LINKS),
 Integer.MAX_VALUE,
 new CopyDirectory(source, target));
}
catch (IOException ex) {
 ex.printStackTrace();

}

2. The CopyDirectory class is shown as follows. As each file and directory is deleted,
a message is displayed to that effect:
public class CopyDirectory extends SimpleFileVisitor<Path> {
 private Path source;
 private Path target;

 public CopyDirectory(Path source, Path target) {
 this.source = source;
 this.target = target;
}

 @Override
 public FileVisitResult visitFile(Path file,
BasicFileAttributes attributes) throws IOException {
 System.out.println("Copying " + source.relativize(file));
 Files.copy(file, target.resolve(source.relativize(file)));
 return FileVisitResult.CONTINUE;

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

164

}
 @Override
 public FileVisitResult preVisitDirectory(Path directory,
BasicFileAttributes attributes) throws IOException {
 Path targetDirectory = target.resolve(source.
relativize(directory));
 try {
 System.out.println("Copying " + source.
relativize(directory));
 Files.copy(directory, targetDirectory);
}
catch (FileAlreadyExistsException e) {
 if (!Files.isDirectory(targetDirectory)) {
 throw e;
}
}
 return FileVisitResult.CONTINUE;
}
}

3. Execute the application. The exact output is dependent on the source file structure
you used, but should be similar to the following:

Copying

Copying docs

Copying docs\users.bak

Copying docs\users.txt

Copying music

Copying music\Future Setting A.mp3

Copying music\Robot Brain A.mp3

Copying music\Space Machine A.mp3

How it works...
In the main method, we created Path objects for the home and backup directories. We used
these objects to create a CopyDirectory object. We used a two-argument CopyDirectory
constructor, so that its methods would have direct access to the two paths.

The walkFileTree method was invoked with the source Path. It was also passed as the
second argument, an EnumSet, which specified that symbolic links were not to be followed.
This argument required a set of options. The EnumSet class' static method created the set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

The third argument of the walkFileTree method was a value indicating how many levels to
follow. We passed a value of Integer.MAX_VALUE, which results in all of the levels of the home
directory being copied. The last argument was an instance of the CopyDirectory object.

When a file was encountered during the traversal, the CopyDirectory class' visitFile
method was invoked. A message was displayed indicating that the file was being copied,
followed by the use of the copy method to copy the source file to the target directory. The
relativize method was used to obtain a relative path to the source, which was used as
the argument of the resolve method. The result is a Path object representing the target
directory with the source filename. These methods are discussed in the Combining paths
using path resolution and Creating a path between two locations recipes in Chapter 2,
Locating Files and Directories Using Paths.

When a directory was encountered during the traversal, the preVisitDirectory method
was invoked. It works the same way as the visitFile method, except we copied a directory
instead of a file. Both of the methods returned FileVisitResult.CONTINUE, which
continues the copying process. It is still necessary to copy the individual files of a directory,
since the copy method only copies a single file.

Notice that the CopyDirectory class extended the SimpleFileVisitor class using Path
as the generic value. The walkFileTree method requires an object that implements the
Path interface. Thus we had to use Path or an interface that extended Path.

See also
The Using the SimpleFileVisitor class to traverse filesystems recipe provides more detail
on the use of the walkFileTree method and the SimpleFileVisitor class. The
Deleting a directory using the SimpleFileVisitor class recipe also provides a variation on
the use of this approach.

Processing the contents of a directory by
using the DirectoryStream interface

Determining the contents of a directory is a fairly common requirement. There are several
approaches to doing this. In this recipe, we will examine the use of the java.nio.file.
DirectoryStream interface in support of this task.

A directory will consist of files or subdirectories. These files may be regular files or possibly
linked or hidden. The DirectoryStream interface will return all of these element types.
We will use the java.nio.file.Files class' newDirectoryStream method to obtain a
DirectoryStream object. There are three overloaded versions of this method. The simplest
use of the method is illustrated first. The versions used to filter the contents of the directory
are shown in the Filtering a directory using globbing recipe and the Writing your own directory
filter recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

166

Getting ready
In order to use the DirectoryStream, we need to:

1. Obtain an instance of a DirectoryStream object.

2. Iterate through the DirectoryStream to process its elements.

How to do it...
1. Create a new console application and add the following main method. We create a

new DirectoryStream object and then use a for each loop to iterate through the
directory elements as follows:
 public static void main(String[] args) {
 Path directory = Paths.get("/home");
 try (DirectoryStream<Path> directoryStream = Files.
newDirectoryStream(directory)) {
 for (Path file : directoryStream) {
 System.out.println(file.getFileName());
}
}
catch (IOException | DirectoryIteratorException ex) {
 ex.printStackTrace();
}
}

2. Execute the application. Your output should reflect the contents of your home
directory and should be similar to the following:

docs

music

How it works...
A Path object was created for the home directory. This object was used with the
newDirectoryStream method, which returned a DirectoryStream object for the
directory. The DirectoryStream interface extends the Iterable interface. This allowed
the DirectoryStream object to be used with a for each statement, which simply printed the
name of each element of the home directory. In this case, there were only two subdirectories:
docs and music.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

Notice the use of the try-with-resource block. This is new to Java 7 and is discussed in the
Using the try-with-resource block to improve exception handling code recipe found in Chapter
1, Java Language Improvements. This guarantees that the directory stream will be closed.
If this type of try block was not used, then it is important to close the stream after it is no
longer needed.

The Iterable object used is not a general-purpose iterator. It differs in several important
aspects as follows:

 f It only supports a single Iterator

 f The hasNext method performs a read-ahead of at least one element

 f It does not support the remove method

The DirectoryStream interface has a single method, iterator, which returns an
Iterator type object. The first time the method is invoked, an Iterator object is returned.
Subsequent invocation of the method will throw an IllegalStateException.

The hasNext method will read ahead by at least one element. If the method returns true,
then the next invocation of its next method is guaranteed to return an element. The order
of the elements returned is not specified. Also, many operating systems have links to
themselves and/or their parent as represented by a "." or ".." in many shells. These
entries are not returned.

The iterator returned is sometimes referred to as weakly consistent. This means that
while the iterator is thread-safe, any updates to the directory after the iterator has
returned will not result in a change to the iterator.

There's more...
There are two overloaded newDirectoryStream methods, which allow the results of the
method to be filtered either by a globbing pattern or a DirectoryStream.Filter object.
A globbing pattern is a string containing a series of characters that define a pattern. The
pattern is used to determine which directory elements to return. A DirectoryStream.
Filter interface has a single method, accept, which returns a Boolean value indicating
whether the directory element should be returned or not.

See also
The Filtering a directory using globbing recipe illustrates the use of the globbing pattern. The
Writing your own directory filter recipe shows how to create and use a DirectoryStream.
Filter object to filter the contents of a directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

168

Filtering a directory using globbing
A globbing pattern is similar to a regular expression but it is simpler. Like a regular expression
it can be used to match specific character sequences. We can use globbing in conjunction
with the newDirectoryStream method to filter the contents of a directory. The use of this
method is demonstrated in the Using the DirectoryStream interface to process the contents
of a directory recipe.

Getting ready
To use this technique we need to:

1. Create a globbing string that meets our filtering requirements.

2. Create a java.nio.file.Path object for the directory of interest.

3. Use these two objects as arguments to the newDirectoryStream method.

How to do it...
1. Create a new console application and use the following main method. In this

example, we will list only those directory elements that start with java and end with
.exe. We will use the Java 7 bin directory. The globbing string uses the special
character, * to represent zero or more characters as follows:
 Path directory = Paths.get("C:/Program Files/Java/
jdk1.7.0/bin");
 try (DirectoryStream<Path> directoryStream = Files.newDire
ctoryStream(directory,"java*.exe")) {
 for (Path file : directoryStream) {
 System.out.println(file.getFileName());
}
}
catch (IOException | DirectoryIteratorException ex) {
 ex.printStackTrace();
}

2. Execute the application. The output should be similar to the following:

java-rmi.exe

java.exe

javac.exe

javadoc.exe

javah.exe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

javap.exe

javaw.exe

javaws.exe

How it works...
First, a Path object representing the bin directory was created. It was then used as the first
argument to the newDirectoryStream method. The second argument was the globbing
string. In this case, it matched a directory element which started with java and ended with
.exe. Any number of intermediate characters were allowed. A for each loop was then used to
display the filtered files.

There's more...
Globbing strings are based on patterns, which use special characters to match string
sequences. These are defined in the documentation for the Files class' getPathMatcher
method. Here, we will examine those strings in more depth. There are several special
characters summarized in the following table:

Special Symbols Meaning
* Matches zero or more characters of a name component without

crossing directory boundaries
** Matches zero or more characters crossing directory boundaries
? Matches exactly one character of a name component
\ The escape character used to match the special symbols
[] Matches a single character found within the brackets. A - matches

a range. A ! means negation. The *, ?, and \ characters match
themselves, and a - matches itself if it is the first character within the
brackets or the first character after the !.

{ } Multiple subpatterns can be specified at the same time. These patterns
are grouped together using the curly braces, but are separated within
the curly braces by commas.

Matching is typically performed in an implementation-dependent manner. This includes
whether matching is case sensitive or not. The ** symbol is not applicable here, since the
newDirectoryStream method returns individual elements. There is no opportunity here to
match sequences that cross directory boundaries. Other methods will use this capability.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

170

The following table presents several examples of potentially useful globbing patterns:

Globbing String Will Match
*.java Any filename that ends with .java
*.{java,class,jar} Any file that ends with .java, .class, or .jar
java*[ph].exe Only those files that start with java and are terminated with either

a p.exe or h.exe
j*r.exe Those files that start with a j and end with an r.exe

Now, let's discuss the use of the PathMatcher interface.

Using the PathMatcher interface to filter a directory
The java.nio.file.PathMatcher interface provides a method of matching a filename
using a glob. It has a single method matches, which accepts a Path argument. If the file
matches the glob pattern, then it returns true. Otherwise, it returns false.

In the following code sequence, we modify the previous example by creating a PathMatcher
object using the glob pattern: glob:java?.exe. Within the for loop, we use the matches
method to further filter a subset of the file that starts with java and is followed by a single
character and then ends with .exe:

 Path directory = Paths.get("C:/Program Files/Java/jdk1.7.0/
bin");
 PathMatcher pathMatcher = FileSystems.getDefault().
getPathMatcher("glob:java?.exe");
 try (DirectoryStream<Path> directoryStream =
 Files.newDirectoryStream(directory,"java*.exe")) {
 for (Path file : directoryStream) {
 if(pathMatcher.matches(file.getFileName())) {
 System.out.println(file.getFileName());
}
}
}
catch (IOException | DirectoryIteratorException ex) {
 ex.printStackTrace();
}

When you execute this sequence, you should get the following output:

javac.exe

javah.exe

javap.exe

javaw.exe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

Notice the use of the glob: prefix used with the matches method. Its use is required with this
method, but not with the newDirectoryStream method. Also, the matches method takes
a Path argument. However, notice that we used the String returned from the Path class'
getFileName method. Using the Path object only or using a String literal does not work.

Instead of using the glob: prefix, we can use regular expressions instead. To do this, use a reg:
prefix followed by a regular expression.

Normally, for a simple filtering of a directory, we would use the more restrictive glob pattern
as part of the newDirectoryStream method. We used it here for illustrative purposes.
However, if we wanted to perform more than one filtering operation as part of a loop, then
using a pattern as part of the newDirectoryStream method, and later with the use of one
or more matches method invocations is a viable strategy.

See also
The Writing your own directory filter recipe explores how to create more powerful filters to
match filenames based on attributes other than the filename.

Writing your own directory filter
A directory filter is used to control which directory elements are returned, when using the
java.nio.file.Files class' newDirectoryStream method. This is useful when we
need to limit the stream's output. For example, we may only be interested in those files that
exceed a certain size or were last modified after a certain date. The java.nio.file.
DirectoryStream.Filter interface, as described in this recipe will restrict the stream's
output. It is more powerful than using globbing as described in the Filtering a directory using
globbing recipe because decisions can be based on factors other than the filename.

Getting ready
To use this technique we need to:

1. Create a DirectoryStream.Filter object that meets our filtering requirements.

2. Create a Path object for the directory of interest.

3. Use these two objects as arguments to the newDirectoryStream method.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

172

How to do it...
1. Create a new console application and add the following sequence to the main

method. In this example, we will filter out only those directory elements that are
hidden. We will use the Windows system directory. However, any other appropriate
directory will work:
 DirectoryStream.Filter<Path> filter = new DirectoryStream.
Filter<Path>() {
 public boolean accept(Path file) throws IOException {
 return (Files.isHidden(file));
}
};

 Path directory = Paths.get("C:/Windows");
 try (DirectoryStream<Path> directoryStream = Files.newDire
ctoryStream(directory,filter)){
 for (Path file : directoryStream) {
 System.out.println(file.getFileName());
}
}
catch (IOException | DirectoryIteratorException ex) {
 ex.printStackTrace();
}

2. When executed, your output should list only those files that are hidden. The following
is one possible output:

SwSys1.bmp

SwSys2.bmp

WindowsShell.Manifest

How it works...
First, we created an anonymous inner class to define an object that implements the
DirectoryStream.Filter interface. In the accept method, the isHidden method was
used to determine whether the element file was hidden or not. The DirectoryStream.
Filter interface used its accept method to determine whether a directory element should be
returned or not. This method returned either a true or a false indicating whether the element
should or should not be returned by the newDirectoryStream method, respectively. Thus, it
filters out the undesirables, which in this case were non-hidden elements. A for each loop was
used to display the hidden elements. When the filter variable was declared, it was declared
using Path as its generic value. Interfaces that extended the Path interface could also be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

See also
This technique filters a single directory. If more than one directory needs to be filtered, then
the example used in the Using the SimpleFileVisitor class to traverse filesystems recipe can
be adapted to address multiple directories.

Monitoring file events using WatchEvents
When an application needs to be aware of changes in a directory, a watch service can listen
to the changes and then inform the application of these changes. The service will register
a directory to be monitored based on the type of event that is of interest. When the event
occurs, a watch event is queued and can subsequently be processed as dictated by the needs
of the application.

Getting ready
To monitor a directory for events, we need to do the following:

1. Create a java.nio.file.Path object representing the directory.

2. Create a new watch service using the java.nio.file.FileSystem class'
newWatchService method.

3. Determine which events we are interested in monitoring.

4. Register the directory and events with the watch service.

5. Process the events as they occur.

How to do it...
1. Create a new console application. We will add code to the main method to create a

watch service, determine the events we want to watch, register the docs directory with
the service, and then process the events. Let's start by creating the watch service and
a Path object for the directory. Add the following code to the main method:
 try {
 FileSystem fileSystem = FileSystems.getDefault();
 WatchService watchService = fileSystem.
newWatchService();
 Path directory = Paths.get("/home/docs");

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

174

2. Next, create an array of watch events to monitor for file creation, deletion, and
modification as follows:
 WatchEvent.Kind<?>[] events = {
 StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_DELETE,
 StandardWatchEventKinds.ENTRY_MODIFY};
 directory.register(watchService, events);

3. Add the following while loop to monitor and process any directory events:
 while (true) {
 System.out.println("Waiting for a watch event");
 WatchKey watchKey = watchService.take();

 System.out.println("Path being watched: " +
watchKey.watchable());
 System.out.println();

 if (watchKey.isValid()) {
 for (WatchEvent<?>
 event : watchKey.pollEvents()) {
 System.out.println("Kind: " +
 event.kind());
 System.out.println("Context: " +
 event.context());
 System.out.println("Count: " +
 event.count());
 System.out.println();
}

 boolean valid = watchKey.reset();
 if (!valid) {
 // The watchKey is not longer registered
}
}
}

}
catch (IOException ex) {
 ex.printStackTrace();
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

4. Execute the application. You should get the following output:

Waiting for a watch event

5. Using a text editor, create a new file called temp.txt and save it in the docs
directory. The application should then display output similar to the following. Your
output may differ if this is the first time you created the file in the directory. These
entries indicate that the file has been created and its contents are then saved:

Path being watched: \home\docs

Kind: ENTRY_CREATE

Context: temp.txt

Count: 1

Waiting for a watch event

Path being watched: \home\docs

Kind: ENTRY_MODIFY

Context: temp.txt

Count: 2

Waiting for a watch event

6. Next, save the file again. You should now get the following output:

Path being watched: \home\docs

Kind: ENTRY_MODIFY

Context: temp.txt

Count: 1

Waiting for a watch event

7. From file manager, delete the file. Your output should reflect its deletion:

Kind: ENTRY_DELETE

Context: temp1.txt

Count: 1

Waiting for a watch event

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

176

How it works...
The first thing we needed was a WatchService object. This was acquired by obtaining the
default filesystem and then applying the newWatchService method to it. Next, we created
a Path object representing the docs directory and an array of events that cover creation,
deletion, and modification type events.

An infinite loop was then entered to monitor and handle file events that occur in the docs
directory. The loop started by displaying a message indicating that it was waiting for events.
The WatchService class' take method was executed. This method will block until an
event occurs.

When an event occurred, it returned with a WatchKey object, which contained information
about the event. Its watchable method returned the object being watched, which was then
displayed for informational purposes.

The watch key was verified to be valid using the isValid method, and its pollEvents
method was used as part of a for each loop. The pollEvents method returned a list of all
pending events. The type, context, and count value associated with the event were displayed.

The context for the events that we monitored was the relative path between the target
directory and the entry that caused the event. The count value depends on the event and is
addressed in the next section.

The last activity reset the watch key. This was needed to put the key back into a ready state
until it is needed again. If the method returned false, then the key is no longer valid.

There's more...
The WatchService interface possesses methods to get a watch key and to close the service.
The poll and take methods retrieve the next watch key as we saw earlier. The poll method
will return null if there are none present. However, the take method will block until a watch
key is available. There is an overloaded poll method that takes additional arguments to
specify how long to wait for an event before returning. These arguments include a time out
value and a TimeUnit value. The use of the TimeUnit enumeration is discussed in the
Understanding the FileTime class section of the Setting time related attributes of a file or
directory recipe in Chapter 4, Managing Files and Directories.

The Path class' register method will register a file specified by the Path object that it is
executing against. The method takes arguments that:

 f Specify the watch service

 f The kind of events it is to monitor

 f Modifiers that determine how the Path object is registered

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

The WatchEvent.Modifier interface specifies how a Path object is to be registered with a
watch service. In this release of Java, there are no defined modifiers.

The java.nio.file.StandardWatchEventKinds class defines the standard event types.
The fields of this interface are summarized in the following table:

Kind Meaning Count
ENTRY_CREATE Directory entry created Always a 1
ENTRY_DELETE Directory entry deleted Always a 1
ENTRY_MODIFY Directory entry modified 1 or greater
OVERFLOW A special event to indicate that events may have been

lost or discarded
Greater than 1

When an event occurs, the watch service will return a WatchKey object representing the
event. This key is reused for multiple occurrences of the same event type. When an event of
that type occurs, the count associated with the event is incremented. If multiple events of
that type occur before the events are processed, the count value is incremented each time by
some amount. The amount is dependent on the type of event.

The use of the reset method in the previous example will re-queue the watch key and reset
the count to zero. For repeated events, the context is the same. Each directory entry will have
its own watch key for that event type.

An event can be canceled using the WatchKey interface's cancel method. This will
unregister the event with the watch service. Any pending events in the queue will remain in
the queue until removed. Watch events are also canceled if the watch service is closed.

The watch service is thread-safe. This implies that if multiple threads are accessing events,
then care should be taken when using the reset method. The method should not be used
until all of the threads using that event have completed processing the event.

The watch service can be closed using the close method. If multiple threads are
using this service, then subsequent attempts to retrieve a watch key will result in a
ClosedWatchServiceException.

A filesystem may be able to report events faster than the watch service can handle them.
Some implementations of a watch service may impose a limit of the number of events
queued. When events are intentionally ignored, then an event of the type OVERFLOW is used
to report this problem. Overflow events are automatically registered for a target. The context of
an overflow event is implementation-dependent.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Filesystems

178

Many aspects of the watch service are implementation-dependent including:

 f Whether a native event notification service is used or simulated

 f How timely the events are enqueued

 f The order in which events are handled

 f Whether short-lived events are even reported

Understanding the ZIP filesystem provider
Handling ZIP files is much simpler than it was prior to Java 7. The ZIP filesystem provider
introduced in this release handles ZIP and JAR files as though they were filesystems and, as a
result, you can easily access the contents of the file. You can manipulate the file as you would
do ordinary files, including copying, deleting, moving, and renaming the file. You also have
the ability to modify certain attributes of the file. This recipe will show you how to create an
instance of a ZIP filesystem and add directories to the system.

Getting ready
We must first create an instance of a java.net.URI object to represent our ZIP file, and
then create the new java.nio.file.FileSystem before we can do any manipulations of
the contents of the ZIP file. In this example, we will also use a java.util.HashMap to set an
optional property of the FileSystem as follows:.

1. Create a URI object to represent the ZIP file.

2. Create a HashMap object to specify the create property as true.

3. Create a FileSystem object using the newFileSystem method.

How to do it...
1. Create a console application with a main method. In the main method, add the

following code sequence. We will create a new filesystem within a ZIP file, and then
add a directory to it as follows:
 Map<String, String> attributes = new HashMap<>();
 attributes.put("create", "true");
 try {
 URI zipFile = URI.create("jar:file:/home.zip");
 try (FileSystem zipFileSys = FileSystems.
newFileSystem(zipFile, attributes);) {
 Path path = zipFileSys.getPath("docs");
 Files.createDirectory(path);
 try (DirectoryStream<Path> directoryStream =
 Files.
newDirectoryStream(zipFileSys.getPath("/"));) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

 for (Path file : directoryStream) {
 System.out.println(file.getFileName());
}
}
}
}
catch (IOException e) {
 e.printStackTrace();
}

2. Execute the program. Your output should appear as follows:

docs/

How it works...
The URI object specifies the location of your ZIP file by using a HashMap object, we specified
that if the ZIP file does not exist, it should be created. The FileSystem object, zipFileSys,
was created in the try-with-resources block, so the resource will automatically be closed, but
if you do not wish to use the nested try-with-resources block you must use the FileSystem
class' close method to close the resource manually. The try-with-resources block is detailed
in Chapter 1, Java Language Improvements, recipe: Using the try-with-resources block to
improve exception handling code.

To demonstrate how ZIP files can be manipulated as FileSystem objects, we invoked the
createDirectory method to add a folder within our ZIP file. At this point, we also had the
option to perform other FileSystem operations, such as copying files, renaming files, and
deleting files. We used a java.nio.file.DirectoryStream to navigate through our ZIP
file structure and print out our docs directory, but you can also navigate on your computer to
the location of the ZIP file to verify its creation.

See also
See the Using the DirectoryStream interface to process the contents of a directory recipe for
more information on the DirectoryStream class.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Stream IO in Java 7

In this chapter, we will cover:

 f Managing simple files

 f Using buffered IO for files

 f Random access IO using the SeekableByteChannel

 f Managing asynchronous communication using the
AsynchronousServerSocketChannel class

 f Writing to a file using the AsynchronousFileChannel class

 f Reading from a file using the AsynchronousFileChannel class

 f Using the SecureDirectoryStream class

Introduction
In Java 7, we found that there are numerous improvements to its IO capabilities. Most of these
are found in the java.nio package, which has been dubbed as NIO2. In this chapter, we
will focus on the new support for streaming and channel-based IO. A stream is a contiguous
sequence of data. Stream IO acts on a single character at a time, while channel IO works with
a buffer for each operation.

We start with the new techniques used to work with simple files. These are supported by the
Files class and are discussed in the Managing simple files recipe. Buffered IO is usually
more efficient and is explained in the Using buffered IO for files recipe.

The java.nio.channels package's ByteChannel interface is a channel that can
read and write bytes. The SeekableByteChannel interface extends the ByteChannel
interface to maintain a position within the channel. The position can be changed using seek
type random IO operations. This capability is discussed in the Random access IO using the
SeekableByteChannel recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

182

Java 7 has added support for asynchronous channel functionality. The asynchronous nature
of these operations is that they do not block. An asynchronous application can continue
executing without the need to wait for an IO operation to complete. When the IO completes,
a method of the application is called. There are four new java.nio.channels package
asynchronous channel classes:

 f AsynchronousSocketChannel

 f AsynchronousServerSocketChannel

 f AsynchronousFileChannel

 f AsynchronousChannelGroup

The first two are used together in a server/client environment and are detailed in the
Managing asynchronous communication using the AsynchronousServerSocketChannel
class recipe.

The AsynchronousFileChannel class is used for file manipulation operations that need
to be performed in an asynchronous manner. The methods supporting the write and read
operations are illustrated in the Writing to a file using the AsynchronousFileChannel class and
Reading from a file using the AsynchronousFileChannel class recipes, respectively.

The AsynchronousChannelGroup class provides a means of grouping asynchronous
channels together in order to share resources. The use of this class is shown in the There's
more section of the Reading from a file using the AsynchronousFileChannel class recipe.

The java.nio.file package's SecureDirectoryStream class provides support
for more secure access to directories. The use of this class is explained in the Using the
SecureDirectoryStream recipe. However, the underlying operating system must provide local
support for this class.

The users.txt file is used for several examples found in this chapter. The contents of the
users.txt file are assumed to initially contain the following:

 f Bob

 f Mary

 f Sally

 f Tom

 f Ted

Should your file's content differ, then the output of the examples will vary accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

183

Several of the recipes in this chapter open a file. Some of these open methods that will
use an enumeration argument to specify how the file should be opened. The java.
nio.file package's OpenOption interface specifies how the file is opened and the
StandardOpenOption enumeration implements this interface. The values of the
enumeration are summarized in the following table:

Enumeration Meaning
APPEND Bytes are written to the end of the file
CREATE Creates a new file if it does not exist
CREATE_NEW Creates a new file only if the file does not exist
DELETE_ON_CLOSE Deletes the file when it is closed
DSYNC Every update to a file is written synchronously
READ Open for read access
SPARSE Sparse file
SYNC Every update to the file or metadata is written synchronously
TRUNCATE_EXISTING Truncates the length of a file to 0 when opening a file
WRITE Opens the file for write access

While not discussed here, the java.nio.channels package's NetworkChannel
interface was introduced in Java 7. This represents a channel to a network socket.
Several classes including the AsynchronousServerSocketChannel and
AsynchronousSocketChannel classes that are discussed in this chapter implement it. It
has a bind method that binds a socket to a local address, allowing the retrieval and setting
of various query socket options. It permits the use of operating system-specific options, which
could be used for high performance servers.

The java.nio.channels package's MulticastChannel is also new to Java 7. It is used to
support multicast operations for a group. It is implemented by the DatagramChannel class.
Methods of this interface support the joining and leaving of members from a group.

The Sockets Direct Protocol (SDP) is a network protocol, which supports stream connections
using InfiniBand (IB). The IB technology supports point-to-point bi-directional serial links
between high-speed peripherals, such as disks. A significant part of IB is its ability to move
data from the memory of one computer directly to the memory of another computer.

SDP is supported in Java 7 on Solaris and Linux operating systems. Several classes in the
java.net and java.nio.channels packages support it transparently. However, SDP
must be enabled before it can be used. Details on how to enable IB and then create a SDP
configuration file are found at http://download.oracle.com/javase/tutorial/sdp/
sockets/index.html.

www.it-ebooks.info

http://download.oracle.com/javase/tutorial/sdp/sockets/index.html
http://download.oracle.com/javase/tutorial/sdp/sockets/index.html
http://www.it-ebooks.info/

Stream IO in Java 7

184

Managing simple files
Some files are small and contain simple data. This is usually true for text files. When it is
feasible to read or write the entire contents of the file at one time, there are a few Files
class methods that will work quite well.

In this recipe, we will examine techniques for processing simple files. Initially, we will
examine how to read the contents of these types of files. In the There's more section,
we will demonstrate how to write to them.

Getting ready
To read the entire contents of a file at once:

1. Create a java.nio.file.Path object representing the file.

2. Use the java.nio.file.Files class' readAllBytes method.

How to do it...
1. Create a new console application. We will read and display the contents of the

users.txt file found in the docs directory. Add the following main method to
the application:
public static void main(String[] args) throws IOException {
 Path path = Paths.get("/home/docs/users.txt");
 byte[] contents = Files.readAllBytes(path);

 for (byte b : contents) {
 System.out.print((char)b);
 }
}

2. Execute the application. Your output should reflect the contents of the file. Here is
one possible output:

Bob

Mary

Sally

Tom

Ted

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

185

How it works...
We started by creating a Path object, which represents the users.txt file. The Files class'
readAllBytes method was executed using the path object as its argument. The method
returned an array of bytes.

Next, a for statement was used to iterate through the array. Each byte was cast to a char
and then displayed.

There's more...
The method will automatically close the file once all of the bytes have been read or should an
exception occur. In addition to an IOException that might occur, an OutOfMemoryError
may be thrown, if it is not possible to create an array of sufficient size to hold the contents of
the file. Should this happen, then an alternative approach should be used.

We are also concerned with:

 f Writing to a simple file

 f Reading all of the lines of a file returned as a list

Writing to a simple file
In the following example, we are going to take the contents of the users.txt file and add a
new name to the list. Using the previous code, comment out the for loop that prints out the
values of contents. Then, after invoking the readAllBytes method on the Path object, create
a new path object directed to a new, non-existent text file. Then declare a String variable
called name and invoke the getBytes method on the string to return a new byte array.

Path newPath = Paths.get("/home/docs/newUsers.txt");
byte[] newContents = "Christopher".getBytes();

Next, we are going to use the Files class write method to create a new file with the same
contents as our users.txt file, and then append our String name to this list. In the
first invocation of the write method, we use newPath to specify where the file should
be created, the contents byte array to specify what information should be used, and the
StandardOpenOption.CREATE argument to specify that the file should be created if it does
not exist. In the second invocation of the write method, we again use newPath, but then we
use the byte array newContents and the StandardOpenOption.APPEND to specify that
the name should be appended to the existing file.

Files.write(newPath, contents, StandardOpenOption.CREATE);
Files.write(newPath, newContents, StandardOpenOption.APPEND);

If you open the newUsers.txt file, you will see the list of names from your users.txt file,
appended by the name you specified using the newContents byte array.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

186

There is also an overloaded write method that uses the same Path object for its first
parameter and uses the Iterable interface to iterate over a CharSequence as its
second parameter. The third parameter of this method defines the Charset to use. The
StandardOpenOptions are available as optional parameters as shown in the previous
version. The open options were listed in the introduction to this chapter.

Reading all of the lines of a file returned as a list
In instances where you have a simple file you wish to read from, it can be efficient to use the
readAllLines method. The method takes two arguments, namely, a Path object and a
Charset. The method may throw an IOException. In the following example, we use the
path to our users.txt file and the Charset class' defaultCharset method to execute
the readAllLines method. The method returns a list of strings, which we print out within
a for loop.

try {
 Path path = Paths.get("/home/docs/users.txt");
 List<String> contents = Files.readAllLines(path,
 Charset.defaultCharset());
 for (String b : contents) {
 System.out.println(b);
 }
} catch (IOException e) {
 e.printStackTrace();
}

Your output should look similar to this:

Bob
Mary
Sally
Tom
Ted

Notice that the strings returned from the readAllLines method does not include the end of
line character.

The readAllLines method recognizes the following line terminators:

 f \u000D followed by \u000A (CR/LF)

 f \u000A, (LF)

 f \u000D, (CR)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

187

See also
In this chapter:

 f Using buffered IO for files: This recipe examines how buffered IO is handled in
Java 7

 f Writing to a file using the AsynchronousFileChannel class: This recipe illustrates how
IO to a file can be performed in an asynchronous fashion

 f Reading from a file using the AsynchronousFileChannel class: This recipe illustrates
how IO to a file can be performed in an asynchronous fashion

Using buffered IO for files
Buffered IO provides a more efficient technique for accessing files. Two methods of the java.
nio.file package's Files class return either a java.io package BufferedReader or
a BufferedWriter object. These classes provide an easy to use and efficient technique for
working with text files.

We will illustrate the read operation first. In the There's more section, we will demonstrate how
to write to a file.

Getting ready
To read from a file using a BufferedReader object:

1. Create a Path object representing the file of interest

2. Create a new BufferedReader object using the newBufferedReader method

3. Use the appropriate read method to read from the file

How to do it...
1. Create a new console application using the following main method. In this method,

we will read the contents of the users.txt file and then display its contents.
public static void main(String[] args) throws IOException {
 Path path = Paths.get("/home/docs/users.txt");
 Charset charset = Charset.forName("ISO-8859-1");
 try (BufferedReader reader = Files.newBufferedReader(path,
 charset)) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

188

2. Execute the application. Your output should reflect the contents of the users.txt
file, which should be similar to the following:

Bob
Mary
Sally
Tom
Ted

How it works...
A Path object representing the users.txt file was created followed by the creation of a
Charset. The ISO Latin Alphabet No. 1 was used for this example. Other character sets can
be used, depending on the platform used.

A try-with-resource block was used to create the BufferedReader object. This type of try
block is new to Java 7 and is detailed in the Using the try-with-resource block to improve
exception handling code recipe in Chapter 1, Java Language Improvements. This will result in
the BufferedReader object automatically being closed when the block completes.

The while loop reads each line of the file. and then displays each line to the console. Any
IOExceptions is thrown as needed.

There's more...
When a byte is stored in a file, its meaning can differ depending upon the intended
encoding scheme. The java.nio.charset package's Charset class provides a mapping
between a sequence of bytes and 16-bit Unicode code units. The second argument of the
newBufferedReader method specifies the encoding to use. There is a standard set of
character sets supported by the JVM, as detailed in the Java documentation for the
Charset class.

We also need to consider:

 f Writing to a file using the BufferedWriter class

 f Unbuffered IO support in the Files class

Writing to a file using the BufferedWriter class
The newBufferedWriter method opens or creates a file for writing and returns a
BufferedWriter object. The method requires two arguments, a Path object and a
specified Charset, and can use an optional third argument. The third argument specifies an
OpenOption as detailed in the table found in the Introduction. If no option is specified, the
method will behave as though the CREATE, TRUNCATE_EXISTING, and WRITE options were
specified, and will either create a new file or truncate an existing file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

189

In the following example, we specify a new String object containing a name to add to our
users.txt file. After declaring our Path object, we use a try-with-resource block to open
a new BufferedWriter. In this example, we are using the default system charset and
StandardOpenOption.APPEND to specify that we want to append the name to the end
of our users.txt file. Within the try block, we first invoke the newline method against
our BufferedWriter object to ensure that our name goes on a new line. Then we invoke
the write method against our BufferedWriter object, using our String as the first
argument, a zero to denote the beginning character of the String, and the length of our
String to denote that the entire String should be written.

String newName = "Vivian";
Path file = Paths.get("/home/docs/users.txt");
try (BufferedWriter writer = Files.newBufferedWriter(file,
 Charset.defaultCharset(), StandardOpenOption.APPEND)) {
 writer.newLine();
 writer.write(newName, 0, newName.length());
}

If you examine the contents of the users.txt file, the new name should be appended to the
end of the other names in the file.

Un-buffered IO support in the Files class
While un-buffered IO is not as efficient as buffered IO, it is still useful at times. The Files
class provides support for the InputStream and OutputStream classes through its
newInputStream and newOutputStream methods. These methods are useful in instances
where you need to access very small files or where a method or constructor requires an
InputStream or OutputStream as an argument.

In the following example, we are going to perform a simple copy operation where we copy
the contents of the users.txt file to a newUsers.txt file. We first declare two Path
objects, one referencing the source file, users.txt, and one specifying our destination file,
newUsers.txt. Then, within a try-with-resource block, we open both an InputStream and
an OutputStream, using the newInputStream and newOutputStream methods. Within
the block, we read in the data from our source file and write it to the destination file.

Path file = Paths.get("/home/docs/users.txt");
Path newFile = Paths.get("/home/docs/newUsers.txt");
try (InputStream in = Files.newInputStream(file);
OutputStream out = Files.newOutputStream(
 newFile,StandardOpenOption.CREATE,
 StandardOpenOption.APPEND)) {
 int data = in.read();
 while (data != -1){
 out.write(data);
 data = in.read();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

190

Upon examining the newUsers.txt file, you should see that the content matches that of the
users.txt file.

See also
In this chapter:

 f Managing simple files: This recipe shows how non-buffered IO is handled in Java 7

 f Writing to a file using the AsynchronousFileChannel class: This recipe illustrates how
IO to a file can be performed in an asynchronous fashion

 f Reading from a file using the AsynchronousFileChannel class: This recipe illustrates
how IO to a file can be performed in an asynchronous fashion

Random access IO using the
SeekableByteChannel

Random access to a file is useful for more complex files. It allows access to specific
positions within the file in a non-sequential fashion. The java.nio.channels
package's SeekableByteChannel interface provides this support, based on channel IO.
Channels provide a low-level approach for bulk data transfers. In this recipe we will use a
SeekableByteChannel to access a file.

Getting ready
To obtain a SeekableByteChannel object:

1. Create a Path object representing a file.

2. Get a SeekableByteChannel object using the Files class' static
newByteChannel method.

How to do it...
1. Create a new console application using the following main method. We will define a

bufferSize variable to control the size of the buffer used by the channel. We will
create a SeekableByteChannel object and use it to display the first two names in
the users.txt file.
public static void main(String[] args) throws IOException {
 int bufferSize = 8;
 Path path = Paths.get("/home/docs/users.txt");

 try (SeekableByteChannel sbc = Files.newByteChannel(path)) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

191

 ByteBuffer buffer = ByteBuffer.allocate(bufferSize);

 sbc.position(4);
 sbc.read(buffer);
 for(int i=0; i<5; i++) {
 System.out.print((char)buffer.get(i));
 }
 System.out.println();

 buffer.clear();
 sbc.position(0);
 sbc.read(buffer);
 for(int i=0; i<4; i++) {
 System.out.print((char)buffer.get(i));
 }
 System.out.println();

 }
}

Make sure that the users.txt file contains the following:

Bob
Mary
Sally
Tom
Ted

2. Execute the application. The output should display the first two names in
reverse order:
Mary
Bob

How it works...
We created a bufferSize variable to control the size of the buffer, used by the channel.
Next, a Path object was created for the users.txt file. This path was used as the argument
to the newByteChannel method, which returned a SeekableByteChannel object.

We moved the read position in the file to the fourth position. This placed us at the beginning
of the second name in the file. The read method was then used, which read approximately
eight bytes into buffer. The first five bytes of the buffer were then displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

192

We repeated this sequence, but moved the position to zero, that is, the beginning of the file.
A read operation was performed again, and then we displayed the first four characters, which
were the first name in the file.

This example used explicit knowledge of the size of the names in the file. Normally, this
knowledge is not available unless obtained by some other technique. We used this knowledge
here simply to demonstrate the nature of the SeekableByteChannel interface.

There's more...
The read method will start reading from the current position in the file. It will read until either
the buffer is filled or the end of file is reached. The method returns an integer, indicating how
many bytes were read. A -1 is returned when the end of stream is reached.

The read and write operations may be accessing the same SeekableByteChannel
object used by multiple threads. As a result, an AsynchronousCloseException or a
ClosedByInterruptException exception may be thrown when another thread closes
the channel or otherwise interrupts the current thread.

There is a size method that returns the size of the stream. A truncate method is available
that discards all bytes past a specific position in the file. This position is passed as a long
argument to the method.

The Files class' static newByteChannel method can take a second argument, which
specifies the option used when opening the file. These are detailed in the There's more
section, Writing to a file using the BufferedWriter class, of the Using buffered IO for files recipe.

In addition, we need to consider:

 f Processing the contents of the entire file

 f Writing to a file using the SeekableByteChannel interface

 f Querying the position

Processing the contents of the entire file
Add the following code to the application. The purpose is to demonstrate how to
process the entire file in a sequential fashion and to gain an understanding of various
SeekableByteChannel interface methods.

// Read the entire file
System.out.println("Contents of File");
sbc.position(0);
buffer = ByteBuffer.allocate(bufferSize);
String encoding = System.getProperty("file.encoding");
int numberOfBytesRead = sbc.read(buffer);
System.out.println("Number of bytes read: " + numberOfBytesRead);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

193

while (numberOfBytesRead > 0) {
 buffer.rewind();
 System.out.print("[" + Charset.forName(encoding).
 decode(buffer) + "]");
 buffer.flip();
 numberOfBytesRead = sbc.read(buffer);
 System.out.println("\nNumber of bytes read: " + numberOfBytesRead);
}

Execute the application. Your output should be similar to the following:

Contents of File
Number of bytes read: 8
[Bob
Mar]
Number of bytes read: 8
[y
Sally]
Number of bytes read: 8
[
Tom
T]
Number of bytes read: 2
[edTom
T]
Number of bytes read: -1

We started by repositioning the read to the beginning of the file, using the position
method. The encoding string for the system was determined for the system by accessing
the system property: file.encoding. We kept track of how many bytes are read with
each read operation and displayed this count.

In the while loop, we displayed the contents of the buffer by enclosing it in a set of brackets.
This made it easier to see what was read in. The rewind method sets the position within the
buffer to 0. This is not to be confused with the position within the file.

To display the actual buffer, we need to apply the forName method to obtain a Charset
object, and then use the decode method against it to convert the bytes in the buffer into
Unicode characters. This was followed by the flip method, which sets the limit of the buffer
to the current position and then sets the position in the buffer to 0. This sets up the buffer for
subsequent reads.

You may want to adjust the bufferSize value to see how the application behaves with
different values.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

194

Writing to a file using the SeekableByteChannel interface
The write method takes a java.nio package's ByteBuffer object and writes it to the
channel. The operation starts at the current position in the file. For example, if the file was
opened with an append option, the first write will be at the end of the file. The method returns
the number of bytes written.

In the following example, we will append three names to the end of the users.txt file. We
use the StandardOpenOption.APPEND as the open option for the newByteChannel
method. This will move the cursor to the end of the file and begin writing at that position. A
ByteBuffer is created with three names separated by the system line separator property.
Using this property makes the code more portable. The write method is then executed.

final String newLine = System.getProperty("line.separator");
try (SeekableByteChannel sbc = Files.newByteChannel(path,
 StandardOpenOption.APPEND)) {
 String output = newLine + "Paul" + newLine + "Carol" + newLine +
 "Fred";
 ByteBuffer buffer = ByteBuffer.wrap(output.getBytes());
 sbc.write(buffer);
}

The initial contents of the users.txt file should be:

Bob
Mary
Sally
Tom
Ted

Add the code sequence to the application and execute the program. Examine the contents of
the users.txt file. It should now appear as follows:

Bob
Mary
Sally
Tom
Ted
Paul
Carol
Fred

Query the position
The overloaded position method returns a long value indicating the position within the
file. This is complemented by a position method that takes a long argument and sets the
position to that value. If the value exceeds the size of the stream, then the position is set to
the end of the stream. The size method will return the size of the file used by the channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

195

To demonstrate the use of these methods, we will duplicate the example in the previous
section. This means we will position the file cursor to the end of the users.txt file and then
write three different names on separate lines.

In the following code sequence, we use the size method to determine how big the file is, and
then use this value as the argument to the position method. This moves the cursor to the
end of the file.

Next, a ByteBuffer is created thrice, and written to the file each time using a different
name. The position is displayed for informational purposes.

Path path = Paths.get("/home/docs/users.txt");

final String newLine = System.getProperty("line.separator");
try (SeekableByteChannel sbc = Files.newByteChannel(path,
 StandardOpenOption.WRITE)) {
 ByteBuffer buffer;
 long position = sbc.size();
 sbc.position(position);
 System.out.println("Position: " + sbc.position());

 buffer = ByteBuffer.wrap((newLine + "Paul").getBytes());
 sbc.write(buffer);
 System.out.println("Position: " + sbc.position());
 buffer = ByteBuffer.wrap((newLine + "Carol").getBytes());
 sbc.write(buffer);
 System.out.println("Position: " + sbc.position());
 buffer = ByteBuffer.wrap((newLine + "Fred").getBytes());
 sbc.write(buffer);
 System.out.println("Position: " + sbc.position());
}

The contents of the users.txt file should initially contain:

Bob
Mary
Sally
Tom
Ted

Add this sequence to the application and execute the program. Examine the contents of the
users.txt file. It should now appear as follows:

Bob
Mary
Sally

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

196

Tom
Ted
Paul
Carol
Fred

See also
In this chapter

 f There's more section of the Random access IO using the SeekableByteChannel
recipe: This recipe briefs you on the options used to open a file

 f Writing to a file using the BufferedWriter class of the Using buffered IO for
files recipe.

Managing asynchronous communication using
the AsynchronousServerSocketChannel
class

Java 7 supports asynchronous communications between a server and a client. The java.
nio.channels package's AsynchronousServerSocketChannel class supports server
operations for streaming IO in a thread-safe manner. Communication is conducted using an
AsynchronousSocketChannel object that acts as a client. Together we can use these
classes to build a server/client application that communicates in an asynchronous fashion.

Getting ready
Both a server and a client need to be created. To create a server:

1. Use the static AsynchronousServerSocketChannel class' open method to get
an instance of a AsynchronousServerSocketChannel object

2. Bind the channel to a local address and port number

3. Use the accept method to accept a connection request from a client

4. Process messages as they are received

To create a client:

1. Create an AsynchronousSocketChannel object using the static open method

2. Create an instance of an InetSocketAddress object for the server

3. Connect to the server

4. Send messages as needed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

197

How to do it...
We will create two applications: one on the server and one on the client. Together, they
will support a simple server/client application, which will explain how asynchronous
communication is performed using an AsynchronousSocketChannel.

1. Create a new console application that will be on the server and add the following
main method. The server will simply display any messages sent to it. It opens a
server socket and binds it to an address. It will then use the accept method
with a CompletionHandler to process any requests from a client.

public static void main(String[] args) {throws Exception
 final AsynchronousServerSocketChannel listener =
 AsynchronousServerSocketChannel.open();
 InetSocketAddress address = new InetSocketAddress("localhost",
 5000);
 listener.bind(address);

 listener.accept(null, new
 CompletionHandler<AsynchronousSocketChannel, Void>() {

 public void completed(AsynchronousSocketChannel channel, Void
 attribute) {
 try {
 System.out.println("Server: completed method executing");
 while(true) {
 ByteBuffer buffer = ByteBuffer.allocate(32);
 Future<Integer> readFuture = channel.read(buffer);
 Integer number = readFuture.get();
 System.out.println("Server: Message received: " + new
 String(buffer.array()));
 }

 } catch (InterruptedException | ExecutionException ex) {
 ex.printStackTrace();
 }
 }

 public void failed(Throwable ex, Void atttribute) {
 System.out.println("Server: CompletionHandler exception");
 ex.printStackTrace();
 }
 });
 while(true) {
 // wait – Prevents the program from

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

198

 // terminating before the client can connect
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
}

2. Next, create a second console application that will act as a client. It will use the open
method to create an AsynchronousSocketChannel object and then connect to the
server. A java.util.concurrent package's Future object's get method is used to
block until the connection is complete, and then a message is sent to the server.
public static void main(String[] args) {throws Exception
 try {
 AsynchronousSocketChannel client =
 AsynchronousSocketChannel.open();
 InetSocketAddress address = new InetSocketAddress("localhost",
 5000);

 Future<Void> future = client.connect(address);
 System.out.println("Client: Waiting for the connection to
 complete");
 future.get();

 String message;
 do {
 System.out.print("Enter a message: ");
 Scanner scanner = new Scanner(System.in);
 message = scanner.nextLine();
 System.out.println("Client: Sending ...");
 ByteBuffer buffer = ByteBuffer.wrap(message.getBytes());
 System.out.println("Client: Message sent: " + new
 String(buffer.array()));
 client.write(buffer);
 } while(!"quit".equals(message)) {

 }
}

You will need to execute both the applications. Depending on your environment, you
may need to execute one of the applications in a command window and the second
in your IDE. This will be the case if you can have only one instance of your IDE running
at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

199

3. Execute the server application first. Next, execute the client application. It should
prompt you for a message and then send the message to the server where it will be
displayed. Your output should have the following general output. The client and the
server output are shown in separate columns in the following table:

Client Server
Client: Waiting for the connection to complete

Enter a message: First message

Client: Sending ...

Client: Message sent: First message
Server: completed method executing

Server: Message received: First message
Enter a message: Most excellent message

Client: Sending ...

Client: Message sent: Most excellent message
Server: Message received: Most excellent
message

Enter a message: quit

Client: Sending ...

Client: Message sent: quit
Server: Message received: quit

java.util.concurrent.ExecutionException: java.
io.IOException: The specified network name
is no longer available.

...

Notice that when the client application was terminated, an ExecutionException
occurred in the server. Normally, we would handle this exception more gracefully in a
production application.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

200

How it works...
Let's examine the server application first. An AsynchronousServerSocketChannel object
was created using the open method. The bind method was then used to associate the socket
with a socket address, determined by the system and a port number of 5000.

Next, the accept method was invoked to accept a connection. The first argument specified
a null value, which was used for attachments. Later, we will see how to use an attachment.
The second argument was a CompletionHandler object. This object was created as an
anonymous inner class, and its methods will be called when a communication request made
by a client makes a communication request.

In the completed method, we displayed a message indicating that the method is executing.
We then entered an infinite while loop where we allocated 32 bytes to a buffer, and then
attempted to read from a client. The read method returned a Future object that we
subsequently used the get method against. This effectively blocked the execution until the
client sent a message. The message was then displayed.

Notice that the get method returned a generic Future object of type Integer. We could
have used this to determine how many bytes were actually read. It was used here simply to
block until the IO was complete. The failed method would have been called if an exception
had occurred with the channel communication.

The infinite while loop at the end of the try block prevents the server from terminating.
This is acceptable here for simplicity's sake, but normally, we would handle this in a more
graceful fashion.

In the client application, we used the open method to create an
AsynchronousSocketChannel object. A network address corresponding to the server
was created and then used with the connect method to connect to the server. This method
returned a Future object. We used this object with the get method to block until a
connection with the server was established.

Notice that the connect method returned a Future object of the type Void. The Void class
is found in the java.lang package and is a wrapper class for void. It was used here as
nothing was effectively returned by the connect method.

A while loop was entered, which terminated when the user entered quit. The user was
prompted for a message, and then a ByteBuffer object was created using the message.
The buffer was then written to the server.

Notice the use of multiple exceptions in the catch blocks of both applications. This is a new
Java 7 language improvement and is discussed in the Catching multiple exception types to
improve type checking recipe in Chapter 1, Java Language Improvements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

201

There's more...
The bind method is overloaded. Both versions' first argument is a SocketAddress object,
corresponding to a local address. A null value can be used, which will automatically assign a
socket address. The second bind method accepts an integer value for the second argument.
This configures the maximum number of pending connections allowed in an implementation-
dependent manner. A value less than or equal to zero will use an implementation-specific
default value.

There are two aspects of this communication technique that we should address:

 f Using the Future object in a server

 f Understanding the AsynchronousServerSocketChannel class options

Using the Future object in a server
The AsynchronousServerSocketChannel class' accept method is overloaded. There
is a no argument method that accepts a connection and returns a Future object for the
channel. The Future object's get method will return an AsynchronousSocketChannel
object for the connection. The advantage of this approach is that it returns an
AsynchronousSocketChannel object, which can be used in other contexts.

Instead of using the accept method, which uses a CompletionHandler, we can use the
following sequence to do the same thing. Comment out the previous accept method and add
the following code:

try {
 Future<AsynchronousSocketChannel> future = listener.accept();
 AsynchronousSocketChannel worker = future.get();

 while (true) {
 // Wait
 stem.out.println("Server: Receiving ...");
 ByteBuffer buffer = ByteBuffer.allocate(32);
 Future<Integer> readFuture = worker.read(buffer);
 Integer number = readFuture.get();
 ystem.out.println("Server: Message received: " + new
 String(buffer.array()));
 }
} catch (IOException | InterruptedException | ExecutionException ex) {
 ex.printStackTrace();
}

Execute the applications again. You should get the same output as before.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

202

Understanding the AsynchronousServerSocketChannel class
options
The supportedOptions method returns a set of options used by the
AsynchronousServerSocketChannel class. The getOption method will return the value
of the option. Add the following code after the use of the bind method in the previous example:

Set<SocketOption<?>> options = listener.supportedOptions();
for (SocketOption<?> socketOption : options) {
 System.out.println(socketOption.toString() + ": " +
 listener.getOption(socketOption));
}

Execute the code. The default values will be displayed and should be similar to the following:

SO_RCVBUF: 8192
SO_REUSEADDR: false

The options can be set using the setOption method. This method takes the name of the
option and a value. The following illustrates how to set the receive buffer size to 16,384 bytes:

listener.setOption(StandardSocketOptions.SO_RCVBUF, 16384);

The StandardSocketOptions class defines socket options. Only the SO_REUSEADDR and
SO_RCVBUF options are supported for the AsynchronousServerSocketChannel channel.

See also
 f In this chapter: There's more section, of the Reading from a file using the

AsynchronousFileChannel class recipe: This recipe explains the use of attachments
with a completion handler and the use of the AsynchronousChannelGroup class

Writing to a file using the
AsynchronousFileChannel class

The java.nio.channels package's AsynchronousFileChannel class permits file IO
operations to be performed in an asynchronous manner. When an IO method is invoked, it will
return immediately. The actual operation may occur at some other time (and potentially using
a different thread). In this recipe, we will explore how the AsynchronousFileChannel
class performs asynchronous write operations. Read operations will be demonstrated in the
Reading from a file using the AsynchronousFileChannel class recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

203

Getting ready
To perform a write operation:

1. Create a Path object representing the file to be read from.

2. Use this path with the open method to open a file channel.

3. Use the write method to write data to the file, optionally using a completion handler.

How to do it...
In this example, we will perform a series of write operations against a file. There are two
overloaded write methods. Both take as their initial arguments a java.nio package's
ByteBuffer, containing the data to be written and a second argument specifying the
position to write to in the file.

The two arguments' write method returns a java.util.concurrent package's
Future<Integer> object, which can also be used to write to a file, as demonstrated in the
There's more section. The second write method has a third argument, an attachment, and
a fourth argument, a CompletionHandler object. The completion handler is executed when
the write operation completes.

1. Create a new console application. Use the following main method. We open a file
called asynchronous.txt for writing. A completion handler is created and used
with the write method. Two write operations are performed. Thread information is
displayed to explain the asynchronous nature of the operation and how completion
handlers work.
public static void main(String[] args) {throws Exception
 try (AsynchronousFileChannel fileChannel =
 AsynchronousFileChannel.open(Paths.get(
 "/home/docs/asynchronous.txt"),
 READ, WRITE,
 StandardOpenOption.CREATE)) {
 CompletionHandler<Integer, Object> handler =
 new CompletionHandler<Integer, Object>() {

 @Override
 public void completed(Integer result, Object attachment) {
 System.out.println("Attachment: " + attachment +
 " " + result + " bytes written");
 System.out.println("CompletionHandler Thread ID: " +
 Thread.currentThread().getId());
 }

 @Override

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

204

 public void failed(Throwable e, Object attachment) {
 System.err.println("Attachment: " +
 attachment + " failed with:");
 e.printStackTrace();
 }
 };

 System.out.println("Main Thread ID: " +
 Thread.currentThread().getId());
 fileChannel.write(ByteBuffer.wrap("Sample".getBytes()), 0,
 "First Write", handler);
 fileChannel.write(ByteBuffer.wrap("Box".getBytes()), 0,
 "Second Write", handler);

 }
}

2. Execute the application. Your application may not behave as you expect. Due to
the asynchronous nature of the operations, the order of execution of the various
elements may vary from execution to execution. The following is one possible output:

Main Thread ID: 1
Attachment: Second Write 3 bytes written
Attachment: First Write 6 bytes written
CompletionHandler Thread ID: 13
CompletionHandler Thread ID: 12

Re-executing the application may give a different order of execution. This behavior is
explained in the following section.

How it works...
We started by creating an AsynchronousFileChannel object using a Path object
for the asynchronous.txt file in the docs directory. The file was opened for read
and write operations, and was supposed to be created if it did not already exist. A
CompletionHandler object was created. This was used in this example to confirm the
execution of the write operations.

The write method was executed twice. The first time the string, Sample, was written to
the file, starting at position 0 in the file. The second write operation wrote the string, Box, to
the file, also starting at position 0. This resulted in an overwrite, with the contents of the file
containing the string, Boxple. This was intentional, and illustrates the use of the position
argument of the write method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

205

The ID of the current thread was displayed at various points in the code. It shows one thread
used for the main method, and two other threads used for the content handlers. When the
write method was executed, it was performed in an asynchronous fashion. The write
method executes and immediately returns. The actual write may occur at a later time. Upon
completion of the write operation, a successful completion results in the content handler's
completed method executing. This displays the ID for its thread, and a message showing the
attachment and the number of bytes written. If an exception occurs, the failed method will
be executed.

As you can see from the output, a separate thread was used to execute the completion
handler. The completion handler was defined to return an Integer value. This value
represents the number of bytes written. The attachment can be any object needed. In this
case, we used it to show which write method has completed. The asynchronous nature of
the write operations resulted in an unpredictable execution order of the content handlers.
However, the write methods did execute in the anticipated order.

Notice the use of the try-with-resource block. This Java 7 feature is explored in the Using
the try-with-resource block to improve exception handling code recipe in Chapter 1, Java
Language Improvements.

There's more...
The two arguments' write method returns a Future<Integer> object. Later, in the
program, we can use its get method, which blocks until the write operation has completed.
Comment out the previous example's write operations, and replace them with the following
code sequence:

Future<Integer> writeFuture1 =
 fileChannel.write(ByteBuffer.wrap("Sample".getBytes()), 0);
Future<Integer> writeFuture2 =
 fileChannel.write(ByteBuffer.wrap("Box".getBytes()), 0);

int result = writeFuture1.get();
System.out.println("Sample write completed with " + result + " bytes
 written");
result = writeFuture2.get();
System.out.println("Box write completed with " + result + " bytes
 written");

Execute the application. The output should be similar to the following:

Main Thread ID: 1
Sample write completed with 6 bytes written
Box write completed with 3 bytes written

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

206

The write methods returned a Future object. The get method was blocked until the write
operation was completed. We used the result to display a message indicating which write
operation executed and how many bytes were written.

There are considerably more aspects of asynchronous file channel IO that could be
addressed. Other aspects that may be of interest include:

 f Forcing the updates to a channel to be written

 f Locking parts or all of a file for exclusive access

 f Using AsynchronousChannelGroup to manage related asynchronous operations

See also
 f In this chapter Reading from a file using the AsynchronousFileChannel class:

This recipe demonstrates how to perform asynchronous reads, and the use of
the AsynchronousChannelGroup class.

Reading from a file using the
AsynchronousFileChannel class

Asynchronous read operations are also possible using either of two overloaded read
methods. We will demonstrate how this is accomplished using a java.nio.channels
package's AsynchronousChannelGroup object. This will provide us with a way of observing
these methods in action and provide an example of an AsynchronousChannelGroup.

Getting ready
To perform a write operation:

1. Create a Path object representing the file to be read from.

2. Use this path with the open method to open a file channel.

3. Use the read method to read data from the file.

How to do it...
1. Create a new console application. In the main method, create an instance of a java.

util.concurrent package's ScheduledThreadPoolExecutor object of size
three. We will use the ScheduledThreadPoolExecutor class primarily because it is
easy to create. A size of three will help illustrate how threads are managed.
ExecutorService pool = new ScheduledThreadPoolExecutor(3);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

207

2. Next, add a try-with-resource block and create an AsynchronousFileChannel object
for the file items.txt. Use an open option of StandardOpenOption.READ, and the
previously created pool object.
try (AsynchronousFileChannel fileChannel =
 AsynchronousFileChannel.open(
 Paths.get("/home/docs/items.txt"),
 EnumSet.of(StandardOpenOption.READ), pool)) {

3. Next, display the main thread ID and then create a CompletionHandler object,
which we will use to display the results of the asynchronous read operation.
System.out.println("Main Thread ID: " +
 Thread.currentThread().getId());
CompletionHandler<Integer, ByteBuffer> handler =
 new CompletionHandler<Integer, ByteBuffer>() {

 @Override
 public synchronized void completed(Integer result, ByteBuffer
 attachment) {
 for (int i = 0; i < attachment.limit(); i++) {
 System.out.print((char) attachment.get(i));
 }
 System.out.println("");
 System.out.println("CompletionHandler Thread ID: "
 + Thread.currentThread().getId());
 System.out.println("");
 }

 @Override
 public void failed(Throwable e, ByteBuffer attachment) {
 System.out.println("Failed");
 }
};

4. Next, add code to create an array of ByteBuffer objects. Allocate 10 bytes for each
buffer, and then use a buffer as the first argument of the read method and as the
attachment. Using it as the attachment, allows us to access the result of the read
operation in the completion handler. The starting read position is specified in the
second argument, and is set up to read every 10-byte segment of the file.

final int bufferCount = 5;
ByteBuffer buffers[] = new ByteBuffer[bufferCount];
for (int i = 0; i < bufferCount; i++) {
 buffers[i] = ByteBuffer.allocate(10);
 fileChannel.read(buffers[i], i * 10, buffers[i], handler);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

208

5. Add a call to the awaitTermination method to allow the read operations to
complete. Then display the buffers a second time.
pool.awaitTermination(1, TimeUnit.SECONDS);

System.out.println("Byte Buffers");
for (ByteBuffer byteBuffer : buffers) {
 for (int i = 0; i < byteBuffer.limit(); i++) {
 System.out.print((char) byteBuffer.get(i));
 }
 System.out.println();
}

6. Use the following as the content of the items.txt file, where each entry is a 10-byte
sequence consisting of an item and a quantity:
Nail 34Bolt 12Drill 22Hammer 24Auger 24

7. Execute the application. Your output should be similar to the following:

Main Thread ID: 1
Nail 34
CompletionHandler Thread ID: 10

Drill 22
CompletionHandler Thread ID: 12

Bolt 12
CompletionHandler Thread ID: 11

Auger 24
CompletionHandler Thread ID: 12

Hammer 24
CompletionHandler Thread ID: 10

Byte Buffers
Nail 34
Bolt 12
Drill 22
Hammer 24
Auger 24

Notice the use of three IDs for the completion handler threads. These correspond to
the three threads created as part of the thread pool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

How it works...
A java.util.concurrent package's ExecutorService was created with a thread pool
of size three to demonstrate the use of a thread group and to force the reuse of threads. The
items.txt file contained data of equal lengths. This simplified the example.

In the content handler, upon successful completion, the completed method was executed.
The attachment contained the buffer read, which was then displayed along with the content
handler's thread ID. Notice the use of the synchronized keyword for the completed
method. While not always required for the method, it was used here, so that the output would
be more readable. The removal of the keyword would result in an interleaving of the buffer's
output, making it unreadable.

Notice the non-deterministic behavior of the completion handler threads. They did not execute
in the order that the corresponding read methods were executed. Repeated execution of the
application should produce differing output.

Knowing that the input file contained only five items, we created five ByteBuffer objects
each of size 10. The read method was executed five times using a different buffer.

The awaitTermination method was executed, which effectively paused the application for
a second. This allowed the completion handler's threads to complete. The buffers were then
displayed a second time to verify the operation.

There's more...
Whenever an asynchronous channel is created, it is assigned to a channel group. By defining
your own group, you can exercise better control over the threads used in the group. When a
channel is created using an open method, it belongs to a global channel group.

An asynchronous channel group provides techniques needed for the completion of
asynchronous IO operations that are bound to a group. Each group has a thread pool.
These threads are used for the IO operations and CompletionHandler objects.

In the previous example, we used the open method to associate a thread pool with the
asynchronous operations. An asynchronous channel group can also be created using one
of the following static AsynchronousChannelGroup methods:

 f withFixedThreadPool: A fixed size pool that uses a ThreadFactory to create
new threads. The size of the pool is specified by its first argument.

 f withCachedThreadPool: This pool uses an ExecutorService to create new
threads. The second argument specifies a suggested number of initial threads for
the pool.

 f withThreadPool: This also uses an ExecutorService, but without an initial
size specified.

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

210

An asynchronous channel group provides the ability to perform an orderly shutdown of a
group. Once the shutdown is initiated:

 f Its attempts to create a new channel result in a ShutdownChannelGroupException

 f Threads running completion handlers are not interrupted

A group terminates when:

 f All of its channels are closed

 f All completion handlers have run to completion

 f All group resources have been released

Other methods of interest include:

 f The isShutdown method, which will determine if a group is shutdown or not.

 f The isTerminated method, which will determine if a group has been terminated.

 f The shutdownNow method, which will force the shutdown of a group. All channels
are closed but content handlers are not interrupted.

See also
In this chapter:

 f Writing to a file using the AsynchronousFileChannel class: This recipe demonstrates
how to perform asynchronous writes

Using the SecureDirectoryStream class
The java.nio.file package's SecureDirectoryStream class is designed to be used
with applications that depend on tighter security than that provided by other IO classes. It
supports race-free (sequentially consistent) operations on a directory, where the operations
are performed concurrently with other applications.

This class requires support from the operating system. An instance of the class is obtained
by casting the return value of the Files class' newDirectoryStream method to a
SecureDirectoryStream object. If the cast fails, then the underlying operating system
does not support this type of stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

211

Getting ready
To get and use a SecureDirectoryStream object:

1. Create a Path object representing the directory of interest.

2. Use the Files class' newDirectoryStream method, and cast the result to a
SecureDirectoryStream.

3. Use this object to affect SecureDirectoryStream operations.

How to do it...
1. Create a new console application. In the main method, add the following

code. We will create a Path object for the docs directory and then obtain a
SecureDirectoryStream object for it. This will be used to view the POSIX
permissions for the directory.
public static void main(String args[]) throws IOException {
 Path path = Paths.get("home/docs");
 SecureDirectoryStream<Path> sds = (SecureDirectoryStream)
 Files.newDirectoryStream(path);
 PosixFileAttributeView view =
 sds.getFileAttributeView(PosixFileAttributeView.class);
 PosixFileAttributes attributes = view.readAttributes();
 Set<PosixFilePermission> permissions = attributes.permissions();

 for (PosixFilePermission permission : permissions) {
 System.out.print(permission.toString() + ' ');
 }
 System.out.println();
}

2. Execute the application on a system that supports the SecureDirectoryStream
class. The following output was obtained by running the application on an
Ubuntu system:

GROUP_EXECUTE OWNER_WRITE OWNER_READ OTHERS_EXECUTE GROUP_READ
OWNER_EXECUTE OTHERS_READ

www.it-ebooks.info

http://www.it-ebooks.info/

Stream IO in Java 7

212

How it works...
A Path object for the docs directory was obtained and then used as the argument of
the Files class' newDirectoryStream method. The result of the method was cast to
a SecureDirectoryStream class. The getFileAttributeView method was then
executed to obtain a view, which was used to display the POSIX file permissions for the
directory. The use of the PosixFileAttributeView class is discussed in the Using the
PosixFileAttributeView to maintain POSIX file attributes recipe, in Chapter 3, Obtaining File
and Directory Information.

There's more...
Other methods supported by the SecureDirectoryStream class include the ability to delete a
file or directory, a move method to move a file to a different directory, and the creation of a
SeekableByteChannel to access a file.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Graphical

User Interface
Improvements

In this chapter, we will cover the following:

 f Mixing heavyweight and lightweight components

 f Managing window types

 f Managing the opacity of a window

 f Creating a varying gradient translucent window

 f Managing the shape of a window

 f Using the new border types in Java 7

 f Handling multiple file selection in the FileDialog class

 f Controlling the print dialog box type

 f Using the new JLayer decorator for a password field

Introduction
The ability to develop applications that have a Graphical User Interface (GUI) interface has
been enhanced in Java 7. Some of these are minor improvements and are discussed in this
introduction. Others, such as using the javax.swing.JLayer decorator class are more
involved and are discussed in separate recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

214

It is now possible to mix heavyweight and lightweight components in an application without
adding special code to make it work as desired. This improvement is largely transparent to
users of Java 7. However, the essence of this approach, and special situations that might arise
from their use, are detailed in the Mixing heavyweight and lightweight components recipe.

To ease the development of applications, three basic window types have been introduced.
These should simplify the creation of certain types of applications and are discussed in the
Managing window types recipe.

The overall appearance of an application may include such characteristics as its opacity and
shape. The Managing the opacity of a window recipe illustrates how to control a window's
opacity and the Creating a varying gradient translucent window recipe looks into creating
gradients for such windows. Controlling the shape of a window, such as making it round or
some irregular shape, is detailed in the Managing the shape of a window recipe.

The translucency-related capabilities were added originally as part of the Java 6 Update
10 release. However, they were implemented as part of the private com.sun.awt.
AWTUtilities class. This capability has been moved to the java.awt package.

Javax.swing.JComponents have borders whose appearance can be controlled. In Java 7,
several new borders have been added. These are illustrated in the Using the new border types
in Java 7 recipe.

Improvements have also been made in the use of the file dialog and print dialog boxes. These
enhancements are discussed in the Handling multiple file selection in the FileDialog class and
Controlling the print dialog box type recipes, respectively.

The ability to draw over a JComponent has been added. This allows the use of special effects,
which were not easily achieved in earlier versions of Java. The Using the new JLayer decorator
for a password field recipe illustrates this process and also demonstrates how to create a
watermark for windows.

All the recipes of this chapter use a JFrame-based application. The following is the code
used to develop a minimal window-based application, upon which the recipe's examples
are based. An ApplicationDriver class is used to start and display the JFrame-derived
ApplicationWindow class. The ApplicationDriver class is shown as follows:

public class ApplicationDriver {

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 ApplicationWindow window = new ApplicationWindow();
 window.setVisible(true);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

}
});

}
}

The invokeLater method uses an inner class to create and then display the
ApplicationWindow. This window is set up in its constructor. It is a simple window that
has an Exit button, which we will use to close the application and enhance in later recipes:

public class ApplicationWindow extends JFrame {

 public ApplicationWindow() {
 this.setTitle("Example");
 this.setSize(200, 100);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton exitButton = new JButton("Exit");
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});
 this.add(exitButton);
}
}

When this code is executed, the output should appear as shown in the following screenshot:

There are a number of minor improvements introduced in Java 7. For example, the
protected static java.awt.Cursor array has been deprecated. Instead, use the
getPredefinedCursor method. This method takes an integer argument and
returns a Cursor object.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

216

A new HSV tab was introduced to the java.swing.JColorChooser dialog box. It appears
as shown in the following screenshot:

Also in Java 7, it is possible to customize a dragged JApplet's title and to specify whether it
should be decorated or not. This is accomplished from a script tag as follows:

<script src="http://javascript source file"></script>
<script>
 var attributes = { code:'AppletName', width:100, height:100 };
 var parameters = {jnlp_href: 'appletname.jnlp',
 java_decorated_frame: 'true',
 java_applet_title: 'A Custom Title'
 };
 deployJava.runApplet(attributes, parameters, '7'7);
</script>

The java_decorated_frame parameter is set to true to specify that the window should be
decorated. The title of the window is specified using the java_applet_title parameter.

This example is adapted from http://download.oracle.com/javase/tutorial/
deployment/applet/draggableApplet.html. More details on how to create draggable
applets can be found at that site.

www.it-ebooks.info

http://download.oracle.com/javase/tutorial/deployment/applet/draggableApplet.html
http://download.oracle.com/javase/tutorial/deployment/applet/draggableApplet.html
http://www.it-ebooks.info/

Chapter 7

217

A couple of miscellaneous changes need to be noted. The Nimbus Look and Feel has
been moved from the com.sun.java.swing package to the javax.swing package.
The isValidateRoot method has been added to the Applet class to indicate that the
container is a valid root. Lastly, a new Java2D graphics pipeline based upon the X11 XRender
extension has been added to provide better access to Graphical Processing Units (GPU).

Mixing heavyweight and lightweight
components

Java provides two basic sets of components for developing GUI applications: Abstract Window
Toolkit (AWT) and Swing. AWT is dependent upon the native systems' underlying code, and
these components are therefore referred to as heavyweight components. Swing components,
on the other hand, operate fully independent of the native system, are completely
implemented in Java code, and are thus referred to as lightweight components. In previous
versions of Java, it was inefficient and troublesome to mix heavyweight and lightweight
components. In Java 6 Update 12, and continuing into Java 7, the JVM handles the mixing
of heavyweight and lightweight components.

Getting ready
If you are working with code that implements both heavyweight and lightweight components,
there is no need to make any changes to the code, as Java 7 automatically handles the
components. We are going to modify code from the beginning of this chapter to demonstrate this:

1. Create a new application using the code examples from the introduction section.

2. Modify the code to use both heavyweight and lightweight examples.

3. Run the application using an older version of Java and then again using Java 7.

How to do it...
1. Create a new window application as specified in the introduction to this chapter.

Add the following section of code to the ApplicationWindow constructor:
 JMenuBar menuBar = new JMenuBar();
 JMenu menu = new JMenu("Overlapping Menu");
 JMenuItem menuItem = new JMenuItem("Overlapping Item");
 menu.add(menuItem);
 menuBar.add(menu);
 this.setJMenuBar(menuBar);
 this.validate();

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

218

2. Next, modify the declaration of the Exit button so that you are now using a
heavyweight Button rather than a lightweight JButton as follows:
Button exitButton = new Button("Exit");

3. Execute the application. You need to run the application using a version of Java prior
to Java 6 Build 10 or the overlapping issue will not display. When the window opens,
click on the menu and notice that, although the menu item overlaps the Exit button,
the button shows through and covers the menu text. The following is an example of
the overlap:

4. Now, run the application again using Java 7. When you click on the menu this
time, you should notice the overlapping issue has been resolved, as shown in the
following screenshot:

How it works...
The JVM handles the mixing of components automatically. In this example, we created
a scenario to illustrate the overlapping problem, and then showed how it was resolved in
the latest Java releases. However, it is a good practice to call the validate method on the
top-level frame to ensure that all shapes are redrawn properly. There is also the potential
that previous work-arounds for mixing components may need to be removed.

There's more...
The following are some specific areas to consider, when using mixed components with Java 7:

 f Advanced swing events may not work correctly, particularly those events maintained
by a javax.swing.InputMap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

219

 f Partially transparent lightweight components that are intended to allow heavyweight
components to be seen through them are not supported. The heavyweight items will
not be displayed beneath translucent pixels.

 f Heavyweight components must be created as part of the frame's or applet's process.

 f If the mixing of heavyweight and lightweight components has already been handled
in your application and the Java 7 additions have caused problems, you can use the
private sun.awt.disableMixing system property to turn off mixing support.

Managing window types
The JFrame class supports a setType method, which configures the general appearance of a
window to one of the three types. This can simplify the setting of a window's appearance. In this
recipe we will examine these types and their appearance on Windows and Linux platforms.

Getting ready
To set the window type, use the setType method with one of the three window types, as
found in the java.awt.Window class:

 f Type.NORMAL: This represents a normal window and is the default value for windows

 f Type.POPUP: This is a temporary window intended to be used for small areas, such
as tool tips

 f Type.UTILITY: This is also a small window for objects, such as a palette

How to do it...
1. Create a new window application as specified in the introduction to this chapter.

Add the following statement before the Exit button is created:
 this.setType(Type.POPUP);

2. Execute the application. On a Windows system, the window should appear as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

220

How it works...
The use of the method is simple enough. The Type enumeration is found in the java.
awt package. On Windows, the windows appear as shown in the following screenshots.
The normal and popup styles have the same appearance. The utility type is missing the
minimize and maximize buttons:

The following screenshot shows an example of the window type Type.NORMAL:

The following screenshot shows an example of the window type Type.POPUP:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

221

The following screenshot shows an example of the window type Type.UTILITY:

On Ubuntu, the windows appear as shown in the following screenshots. The normal and utility
have the same appearance, while the popup type is missing its buttons:

The following screenshot shows an example of the window type Type.NORMAL:

The following screenshot shows an example of the window type Type.POPUP:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

222

The following screenshot shows an example of the window type Type.UTILITY:

Managing the opacity of a window
The opacity of a window refers to how transparent the window is. When a window is
completely opaque, then nothing behind the window on the screen can be seen. A partially
opaque window allows the background to bleed through. In this recipe we will learn how to
control the opacity of a window.

Getting ready
To control the opacity of a window, use the JFrame class' setOpacity method with a float
value representing how opaque the window should be.

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

Replace the invokeLater method invocation with the following code:
 JFrame.setDefaultLookAndFeelDecorated(true);

 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 ApplicationWindow window = new
ApplicationWindow();
 window.setOpacity(0.75f);
 window.setVisible(true);
}
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

223

2. Execute the application. The window should appear as follows:

Notice how the window behind this application can be seen. In this case, the background
is the code for the application.

How it works...
The setOpacity used 0.75f to set the opacity of the window. This results in it being 75
percent transparent, as can be seen by the code bleed through.

The range of values for opacity is 0.0f through 1.0f. A value of 1.0f represents a completely
opaque window, and a value of 0.0f represents a completely transparent window. If the
opacity is set to 0.0f, the mouse may or may not be enabled. This is determined by the
underlying system. To set a value less than 1.0f:

 f Translucency must be supported

 f The window must be undecorated

 f The window cannot be in full screen mode

To determine whether translucency is supported or not is covered in the next section.
The getOpacity method can be used to determine what the current level of opacity is.

There's more...
To determine if the platform supports opacity, we need to use an instance of the java.awt.
GraphicsDevice class. The java.awt.GraphicsEnvironment class contains a list of
GraphicsDevice objects for the current platform. A GraphicsDevice normally refers to
the screens available, but can include printers or image buffers. Each GraphicsDevice
may also contain a set of GraphicsConfiguration objects that specify the configurations
possible for a device, such as its resolution and what color model it supports.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

224

In the following code sequence, we get an instance of the GraphicsEnvironment object
and then use its getDefaultScreenDevice method to get a GraphicsDevice object. The
isWindowTranslucencySupported method is used against the GraphicsDevice object
to determine if transparency is supported:

 GraphicsEnvironment graphicsEnvironment =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 GraphicsDevice graphicsDevice = graphicsEnvironment.
getDefaultScreenDevice();

 if (!graphicsDevice.isWindowTranslucencySupported(
 GraphicsDevice.WindowTranslucency.TRANSLUCENT)) {
 System.err.println(
 "Translucency is not supported on this platform");
 System.exit(0);
}

The GraphicsDevice.WindowTranslucency enumeration represents the types of
transparency that may be supported by the platform. Its values are summarized in the
following table. The alpha value refers to the level of transparency:

Value Meaning

PERPIXEL_TRANSLUCENT
Represents the system support for some of the pixels to be
set with potentially different alpha values

PERPIXEL_TRANSPARENT
Represents the system support for all of the pixels to be set to
either 0.0f or 1.0f

TRANSLUCENT
Represents the system support for all of the pixels to be set
with an alpha value

See also
The Using the new JLayer Decorator for a password field recipe addresses how to draw over
the top of a JComponent.

Creating a varying gradient translucent
window

There are instances when an application window can be aesthetically enhanced by the
addition of special graphics features. Java 7 supports the use of gradient translucent
windows, and the translucency can be both visually interesting as well as functional.

This recipe will demonstrate using both the transparency feature as well as a color gradient
on a window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

225

Getting ready
In order to create a translucent, gradient color window, you need to:

1. Perform a check to ensure that the system environment supports per-pixel translucency.

2. Set the background color, such that the window initially is completely transparent.

3. Create a java.awt.GradientPaint object to specify the color and position of
the gradient.

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

Add the following code to the ApplicationDriver class, before the start of
the thread:
 GraphicsEnvironment envmt =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 GraphicsDevice device = envmt.getDefaultScreenDevice();

 if (!device.isWindowTranslucencySupported
 (WindowTranslucency.PERPIXEL_TRANSLUCENT)) {
 System.out.println("Translucent windows are not supported
on your system.");
 System.exit(0);
}
 JFrame.setDefaultLookAndFeelDecorated(true);

2. Next, replace the body of the ApplicationWindow constructor with the following
code sequence:
 this.setTitle("Gradient Translucent Window");
 setBackground(new Color(0, 0, 0, 0));
 this.setSize(500, 700);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel() {
 @Override
 protected void paintComponent(Graphics gradient) {
 if (gradient instanceof Graphics2D) {
 final int Red = 120;
 final int Green = 50;
 final int Blue = 150;
 Paint paint = new GradientPaint(0.0f, 0.0f,
 new Color(Red, Green, Blue, 0),

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

226

 getWidth(), getHeight(),
 new Color(Red, Green, Blue, 255));
 Graphics2D gradient2d = (Graphics2D) gradient;
 gradient2d.setPaint(paint);
 gradient2d.fillRect(0, 0, getWidth(), getHeight());
}
}
};
 this.setContentPane(panel);
 this.setLayout(new FlowLayout());

 JButton exitButton = new JButton("Exit");
 this.add(exitButton);
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});

3. Execute the application. Your window should resemble the following:

How it works...
First, we added code to the ApplicationDriver class to test whether per-pixel
translucency was supported by the system. In our example, if it were not supported, the
application would exit. This is discussed in more detail in the There's more... section of the
Managing the opacity of a window recipe.

Gradients should not be used on decorated windows. We called the
setDefaultLookAndFeelDecorated method to ensure that the default look and
feel is used. When executed on Windows 7, this results in an undecorated window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

227

In the ApplicationDriver class, we first set the background color of the window. We
used (0, 0, 0, 0) to specify the saturation levels of each color, red, green, and blue,
and the alpha value, as zero. Color values can be any integer between 0 and 255, but we
want to start our window without any color. The alpha value of zero means our window will
be completely transparent.

Next, we created a new JPanel. Within the JPanel, we overrode the paintComponent
method and created a new GradientPaint object. There are four constructors for the
GradientPaint class. We chose to use the one requiring floating numbers for the X and
Y coordinates of the points referenced in the gradient, and the Color objects to specify
the color of the gradient. You also have the option of passing Point2D objects rather than
floating point numbers.

The first points specified, either by floating point number or Point2D objects, represent the
start of the gradient. The second two, in our example, determined by the getWidth and
getHeight methods, determine the ending points of the gradient. The result in our example
was a gradient that started out light in the upper-left-hand corner, and became progressively
darker as it moved down and to the right.

Finally, we cast the gradient as a Graphics2D object and called the setPaint and
fillRect method to paint our gradient across the window.

See also
The use of the GraphicsDevice object to determine the level of transparency support
is discussed in more detail in the There's more... section of the Managing the opacity of
a window recipe.

Managing the shape of a window
There are times in application development when it can be fun and useful to create
specially-shaped windows. This feature is now available in Java as of version 7. In this
recipe we will develop a stop sign shape window to ensure that the user wants to continue
some operation.

Getting ready
To create a specially-shaped window, you must:

1. Verify that per-pixel translucency is supported on the given system.

2. Create a component listener to catch componentResized events.

3. Create an instance of a shape and pass it to the setShape method.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

228

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

In the main method, prior to starting the thread, test to ensure that shaped windows
are supported on the system by adding the following code:
 GraphicsEnvironment envmt =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 GraphicsDevice device = envmt.getDefaultScreenDevice();

 if (!device.isWindowTranslucencySupported(
 WindowTranslucency.PERPIXEL_TRANSLUCENT)) {
 System.out.println("Shaped windows not supported");
 System.exit(0);
}

2. Create a new class called StopPanel that is derived from JPanel and add the
following constructor to it:
 public StopPanel() {
 this.setBackground(Color.red);
 this.setForeground(Color.red);
 this.setLayout(null);

 JButton okButton = new JButton("YES");
 JButton cancelButton = new JButton("NO");
 okButton.setBounds(90, 225, 65, 50);
 cancelButton.setBounds(150, 225, 65, 50);

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});
 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});

 this.add(okButton);
 this.add(cancelButton);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

229

3. You also need to implement a paintComponent method for the StopPanel class.
It is responsible for displaying text to our window. The following is one way to
implement this method:
 @Override
 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2d = (Graphics2D) g;
 int pageHeight = this.getHeight();
 int pageWidth = this.getWidth();
 int bigHeight = (pageHeight+80)/2;
 int bigWidth = (pageWidth-305)/2;
 int smallHeight = (pageHeight+125)/2;
 int smallWidth = (pageWidth-225)/2;

 Font bigFont = new Font("Castellar", Font.BOLD, 112);
 Font smallFont = new Font("Castellar", Font.PLAIN, 14);

 g2d.setFont(bigFont);
 g2d.setColor(Color.white);
 g2d.drawString("STOP", bigWidth, bigHeight);
 g2d.setFont(smallFont);
 g2d.drawString("Are you sure you want to continue?",
smallWidth, smallHeight);
}

4. Within the ApplicationWindow class, create a new instance of a StopPanel
before the Exit button is created. Next, create a new instance of a Shape. In our
example, we created a Polygon object by using the getPolygon method as follows:
this.add(new StopPanel());
 final Polygon myShape = getPolygon();

5. Then add a componentListener in front of the code to create the Exit button to
catch the componentResized event. Within the listener, invoke the setShape
method against the Shape object. We will also set the foreground and background
colors at this point:
 this.addComponentListener(new ComponentAdapter() {
 @Override
 public void componentResized(ComponentEvent e) {
 setShape(myShape);
 ((JFrame) e.getSource()).setForeground(Color.red);
 ((JFrame) e.getSource()).setBackground(Color.red);
}
});

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

230

6. Add a call to the setUndecorated method and set the property to true:
 setUndecorated(true);

7. Next, add the getPolygon method to the class. This method creates an octagon
using the two arrays of integers in conjunction with the addPoint method of the
Polygon class:
 private Polygon getPolygon() {
 int x1Points[] = {0, 0, 100, 200, 300, 300, 200, 100};
 int y1Points[] = {100, 200, 300, 300, 200, 100, 0, 0};
 Polygon polygon = new Polygon();
 for (int i = 0; i < y1Points.length; i++) {
 polygon.addPoint(x1Points[i], y1Points[i]);
}
 return polygon;
}

8. When the application is executed, you should see an octagonal window formatted like
the following one:

How it works...
Our initial test to verify per-pixel translucency allowed us to tailor the application to the needs
of the system it is running on. In our example, if the property was not supported we simply
exited the application, though in a real-world environment you would probably want to open a
less sophisticated window. Detecting the operating system support is discussed in more detail
in the There's more... section of the Managing the opacity of a window recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

231

The StopPanel class implemented the JPanel interface and allowed us to add the custom
text and buttons we used in our window. Because we were using a special shape for our
window, we chose to call the setLayout method with a null argument, which in turn
allowed us to use the setBounds methods to explicitly place our buttons where we wanted
them on the window. It is important to note that although the window is displayed as an
octagon, or whatever other shape you choose, in actuality the window is still a rectangle,
as specified by the setSize method. Therefore, buttons and other objects may be placed
on the window, but not visible if they are outside the bounds set by your shape.

The paintComponent method was used to customize the text on the window. Within this
method, we set the size, style, and location of the text, and called the drawString method
to actually paint it to the screen.

To actually create an octagonal window, we created our getPolygon method and manually
drew the polygon. However, if you wanted to use a window with a shape already defined by a
class implementing the Shape interface, you would not need to create a separate method. You
simply pass the Shape object to the setShape method. If the setShape method's argument is
null, the window will resize to the default for the given system, typically a rectangle.

It is important to execute the setShape method within a componentResized event. This
ensures that anytime the window is redrawn, the setShape method will be called and the
shape will be maintained. It is also important to call the setUndecorated method because,
at the present time, decorations will be lost with specially-shaped windows. Also, the window
may not be in full-screen mode.

See also
The use of the GraphicsDevice object to determine the level of transparency support
is discussed in more detail in the There's more... section of the Managing the opacity of a
window recipe.

Using the new border types in Java 7
Borders are used for the outline of swing components. In Java 7, several new border options
are available. In this recipe we will develop a simple application to demonstrate how to create
borders and how these borders appear.

Getting ready
To create and use a border:

1. Create a new border using a javax.swing.BorderFactory method.

2. Use the border object as an argument of the setBorder method applied against
a JComponent object.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

232

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

Modify the ApplicationWindow class to replace the following lines:
 JButton exitButton = new JButton("Exit");
 this.add(exitButton);

2. With the following code:
 JPanel panel = new JPanel();
 panel.setBorder(BorderFactory.
createRaisedSoftBevelBorder());
 this.setLayout(new FlowLayout());

 JButton exitButton = new JButton("Exit");
 panel.add(exitButton);
 this.add(panel);

3. Execute the application. The window should appear as follows:

How it works...
The setBorder method changed the border of the JPanel to a raised soft-beveled border.
The BorderFactory method possesses a number of static methods to create borders.
The following table summarizes the new borders available in Java 7:

Method Visual effect
The default border

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

233

Method Visual effect
createRaisedSoftBevelBorder()

createLineBorder(Color.BLACK, 1, true)

The first argument is the color of the border. The
second is its thickness, while the third argument
specifies whether the corners should be rounded or
not.

createLoweredSoftBevelBorder()

createSoftBevelBorder(BevelBorder.
LOWERED)

This has the same effect as
createLoweredSoftBevelBorder()

createSoftBevelBorder(BevelBorder.
RAISED)

This has the same effect as
createRaisedSoftBevelBorder()

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

234

Method Visual effect
createSoftBevelBorder(BevelBorder.
LOWERED, Color.lightGray, Color.yellow)

The first argument is the type of border: RAISED or
LOWERED. The second argument is the color of the
outer highlighted area

The third argument is the color of the inner edge

createSoftBevelBorder(BevelBorder.
RAISED,Color.lightGray, Color.yellow)

The same arguments as
createSoftBevelBorder

createSoftBevelBorder(BevelBorder.
LOWERED, Color.lightGray, Color.
lightGray, Color.white, Color.orange)

The arguments are used for the inner and outer
edges of the highlighted and shadowed areas of
the border

createStrokeBorder(new
BasicStroke(1.0f))

A second overloaded method takes a Paint object
as a second argument, and is used to generate a
color

createDashedBorder(Color.red)

createDashedBorder(Color.red, 4.0f,
1.0f)

The second argument is the relative length of a dash
line and the third parameter is the relative length of
a space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

235

Method Visual effect
createDashedBorder(Color.red, 2.0f,
10.0f, 1.0f, true)

The second parameter specifies the thickness of
the line. The third and fourth parameters specify
the length and spacing respectively, while the last
Boolean parameter determines whether the ends are
rounded or not.

The border can be changed for any JComponent class. However, the appearance is not
always acceptable. As we did in this example, it is sometimes better to change the border
on an enclosing JPanel object.

Handling multiple file selection in the
FileDialog class

The ability to select two or more files or directories in a file dialog box is achieved using the
Ctrl and/or Shift keys in conjunction with the mouse. In Java 7, the file dialog box enables
or disables this capability using the java.awt.FileDialog class' setMultipleMode
method. This simple enhancement is illustrated in this recipe.

Getting ready
To enable or disable the selection of multiple files in a print dialog box:

1. Create a new FileDialog object.

2. Use its setMultipleMode method to determine its behavior.

3. Display the dialog box.

4. Use the return value to determine which files were selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

236

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

Modify the ApplicationWindow class to add a button to display a file dialog box
as shown in the following code. In an anonymous inner class, we will display the
dialog box:
 public ApplicationWindow() {
 this.setTitle("Example");
 this.setSize(200, 100);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setLayout(new FlowLayout());

 final FileDialog fileDialog = new FileDialog(this,
"FileDialog");
 fileDialog.setMultipleMode(true);

 JButton fileDialogButton = new JButton("File Dialog");
 fileDialogButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 fileDialog.setVisible(true);
}
});

 this.add(fileDialogButton);

 JButton exitButton = new JButton("Exit");
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});

 this.add(exitButton);
}

2. Execute the application. The application window should appear as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

237

3. Select the File Dialog button and the following dialog box should appear. Navigate to
a directory and select a few files. In the window that follows, two files of the /home/
music directory have been selected:

How it works...
The fileDialog class' setMultipleMode method was executed with an argument of
true. This enabled multiple selections of files. An anonymous inner class was created to
handle the selection of the file button event. In the actionPerformed method, the dialog
box was made visible.

There's more...
To determine which files were selected, we can use the fileDialog class' getFiles
method. Add the following code after the fileDialog class' setVisible method:

 File files[] = fileDialog.getFiles();
 for (File file : files) {
 System.out.println("File: " + file.getName());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

238

The method returns an array of File objects. Using a for each loop, we can display the name
of each file selected. Execute the application and select a few files. The output for the selected
music files should appear as follows:

File: Future Setting A.mp3

File: Space Machine A.mp3

Controlling the print dialog box type
The standard print dialog that comes as part of the java.awt.PrintJob class allows the
use of both a common and a native dialog box. This provides the ability to better tailor the
application to a platform. The specification of the dialog box type is simple.

Getting ready
To specify the print dialog type and to use the print dialog, the following steps need to
be followed:

1. Create a javax.print.attribute.PrintRequestAttributeSet object.

2. Assign the dialog type desired to this object.

3. Create a PrinterJob object.

4. Use the PrintRequestAttributeSet object as an argument to the PrinterJob
class' printDialog method.

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction.

Modify the ApplicationWindow class to add a button to display a print dialog
shown as follows. In an anonymous inner class, we will display a printer dialog box:
 public ApplicationWindow() {
 this.setTitle("Example");
 this.setSize(200, 100);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setLayout(new FlowLayout());

 JButton printDialogButton = new JButton("Print Dialog");
 printDialogButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 final PrintRequestAttributeSet attributes = new
HashPrintRequestAttributeSet();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

239

 attributes.add(DialogTypeSelection.COMMON);
 PrinterJob printJob = PrinterJob.getPrinterJob();
 printJob.printDialog(attributes);
}
});
 this.add(printDialogButton);

 JButton exitButton = new JButton("Exit");
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});
 this.add(exitButton);
}

2. Execute the application and select the Print button. The dialog box that appears
should use the common appearance type, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

240

How it works...
A new Print button was created allowing the user to display a print dialog box. In
the anonymous inner class used to handle the button's action event, we created a
PrintRequestAttributeSet object based on the javax.print.attribute.
HashPrintRequestAttributeSet class. This permitted us to add the
DialogTypeSelection.NATIVE attribute to the set. The DialogTypeSelection class is
new to Java 7 and provides two fields: COMMON and NATIVE.

Next, we created a PrinterJob object and executed the printDialog method against
this object. The print dialog box was then displayed. If we had used the NATIVE type instead,
shown as follows:

 attributes.add(DialogTypeSelection.NATIVE);

Then the print dialog would appear as follows on a Windows platform:

Using the new JLayer decorator for a
password field

Java 7 supports the decoration of GUI components, such as textboxes and panels. Decoration is
the process of drawing on top of the component to give it a special appearance. For example, we
may want to watermark an interface to show that it is a beta version, or possibly to provide an
indication of an error with a graphical X in a text field that is not otherwise possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

241

The javax.swing.JLayer class provided a way of tying components of a display, the
drawing of extra graphics over the components, and the interception of the events together.
The handling of the events and the display is delegated to a javax.swing.plaf.LayerUI
derived object. When an event occurs, a method to handle the event will be executed. When
the component is drawn, the LayerUI derived object's paint method will be executed
displaying graphics as needed.

In this recipe we will learn how Java supports this capability. In the first section, we will
demonstrate how to display an error message for a password field. In the There's more...
section, we will show how to create a watermark for a window.

Getting ready
To decorate a component:

1. Create the components to be decorated.

2. Create a LayerUI derived class that implements the decoration graphics operations.

3. Create a JLayer object based on the component and the LayerUI derived class.

4. Add the JLayer object to the application.

How to do it...
1. Create a new standard GUI application as described in the chapter's introduction. Use

the following ApplicationWindow. In its constructor, we will perform the essential
steps using a getPanel method to return our password JPanel object. When the
user enters a password, the window will be decorated with a message indicating that
the password is too short, until at least six characters are entered:
 public ApplicationWindow() {
 this.setTitle("Example");
 this.setSize(300, 100);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 LayerUI<JPanel> layerUI = new PasswordLayerUI();
 JLayer<JPanel> jlayer = new JLayer<JPanel>(getPanel(),
layerUI);

 this.add(jlayer);
}

 private JPanel getPanel() {
 JPanel panel = new JPanel(new BorderLayout());

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

242

 JPanel gridPanel = new JPanel(new GridLayout(1, 2));
 JLabel quantityLabel = new JLabel("Password");
 gridPanel.add(quantityLabel);
 JPasswordField passwordField = new JPasswordField();
 gridPanel.add(passwordField);
 panel.add(gridPanel, BorderLayout.CENTER);

 JPanel buttonPanel =
 new JPanel(new FlowLayout(FlowLayout.LEFT));
 JButton okButton = new JButton("OK");
 buttonPanel.add(okButton);
 JButton cancelButton = new JButton("Cancel");
 buttonPanel.add(cancelButton);
 panel.add(buttonPanel, BorderLayout.SOUTH);

 return panel;
}

2. Next, create the PasswordLayerUI class as shown in the following code.
The paint method will perform the actual decoration. The remaining methods
are used to enable keyboard events and handle them as they occur:
class PasswordLayerUI extends LayerUI<JPanel> {

 private String errorMessage = "Password too short";

 @Override
 public void paint(Graphics g, JComponent c) {
 FontMetrics fontMetrics;
 Font font;
 int height;
 int width;

 super.paint(g, c);
 Graphics2D g2d = (Graphics2D) g.create();
 int componentWidth = c.getWidth();
 int componentHeight = c.getHeight();

 // Display error message
 g2d.setFont(c.getFont());
 fontMetrics = g2d.getFontMetrics(c.getFont());
 height = fontMetrics.getHeight();
 g2d.drawString(errorMessage,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

243

 componentWidth / 2 + 10, componentHeight / 2 +
height);

 g2d.dispose();
}

 @Override
 public void installUI(JComponent component) {
 super.installUI(component);
 ((JLayer) component).setLayerEventMask(AWTEvent.KEY_EVENT_
MASK);
}

 @Override
 public void uninstallUI(JComponent component) {
 super.uninstallUI(component);
 ((JLayer) component).setLayerEventMask(0);
}

 protected void processKeyEvent(KeyEvent event, JLayer layer) {
 JTextField f = (JTextField) event.getSource();
 if (f.getText().length() < 6) {
 errorMessage = "Password too short";
}
else {
 errorMessage = "";
}
 layer.repaint();
}

}

3. Execute the application. Enter a few characters in the textbox. Your window should
appear similar to the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphical User Interface Improvements

244

4. Enter at least six characters. At that point the decoration should disappear as follows:

How it works...
In the ApplicationWindow, we created an instance of the PasswordLayerUI class. We
used this object along with the JPanel returned by the getPanel method to create JLayer
object. The JLayer object was then added to the window.

Notice the use of generics for the LayerUI and JLayer objects. This was used to ensure
that the elements are all compatible. We used JPanel because that was the composite
component we were decorating.

The JLayer class provided a way of tying the password box, the display of the error message,
and the interception of the key events together. The handling of the key events and the display
of the error message was delegated to the PasswordLayerUI object. When a key was
pressed, the processKeyEvent method was executed. When the component was drawn, the
paint method was executed displaying the error message by the password box.

In the PasswordLayerUI class, we declared a private String variable to hold our error
message. It was declared at this level, because it was used in more than one method.

The paint method does the actual decorating. It was passed a Graphics object
representing the area that we can draw to, and a JComponent component, which in this case
was a JPanel. In the paint method, we used both the component's font and we also created
a new font for the error message. The height and width of the component and the error
string were calculated and used to position the error string that was displayed.

The installUI and uninstallUI methods were concerned with performing any
initialization required to perform decoration. In this case, they were used to enable keyboard
events to be intercepted and processed by the class. The setLayerEventMask method was
used with the AWTEvent.KEY_EVENT_MASK argument to enable the processing of keyboard
events. The processKeyEvent method performed the actual processing of keyboard events.
In this method, the length of the password text field contents was used to determine which
error message was to be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

245

There's more...
This example could conceivably be performed using a label instead. However, this example
was intended to provide a simple demonstration of how to use decorations. The creation of
other decorations, such as a watermark is not as easily performed without the use of JLayer
and LayerUI classes.

Add the following code before the dispose method. This sequence will add a watermark to
the window indicating that this is a beta version of the interface. The Castellar font is used
to provide a more stenciled look to the text. A Composite object is used to change the alpha
value for the string. This effectively controls the transparency of the string displayed. The
getComposite method is used to get the current composite for the window, and is then used
to determine the rule being used. The rule along with an alpha value of 0.25f is used to allow
the watermark to fade into the background as follows:

 // Display watermark
 String displayText = "Beta Version";
 font = new Font("Castellar",Font.PLAIN, 16);
 fontMetrics = g2d.getFontMetrics(font);
 g2d.setFont(font);
 width = fontMetrics.stringWidth(displayText);
 height = fontMetrics.getHeight();

 Composite com = g2d.getComposite();
 AlphaComposite ac = AlphaComposite.getInstance(
 ((AlphaComposite)com).getRule(),0.25f);
 g2d.setComposite(ac);
 g2d.drawString(displayText,
 (componentWidth - width) / 2,
 (componentHeight - height) / 2);

When executed, your application should appear similar to the following screenshot. Notice
that the watermark is in all caps. This is the result of using the Castellar font, which is
an all-capital letter font patterned after the letters used on a Roman column dedicated
to Augustus.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Handling Events

In this chapter, we will cover the following:

 f Managing extra mouse buttons and high resolution mouse wheels

 f Controlling focus when displaying a window

 f Using secondary loops to mimic modal dialog boxes

 f Handling spurious thread wakeups

 f Handling applet initialization status with event handlers

Introduction
There have been several additions to Java 7 that address events or are related to events. This
includes the handling of mouse events where enhanced support is provided for the detection
of mouse buttons and for using high resolution mouse wheels, as we will see in the Managing
extra mouse buttons and high resolution mouse wheels recipe.

When a window is made visible with either the setVisible or toFront methods, we now
have the ability to control whether they should gain focus or not. Some windows may be
displayed for informational or status purposes and do not necessarily need or warrant focus.
How to control this behavior is explained in the Controlling AutoRequestFocus recipe.

The reader should be familiar with the behavior of modal dialog boxes. Essentially, the modal
dialog box will not return focus to the main window until it is closed. There are times when it
is desirable to mimic this behavior without using a dialog box. For example, the selection of a
button that performs a relatively long running calculation may benefit from this behavior. The
Using secondary loops to mimic modal dialog boxes recipe examines how this can be done.

While not common, spurious interrupts can occur when using the wait method. The java.
awt.event.InvocationEvent class' isDispatched method can be used to handle
spurious interrupts as detailed in the Handling spurious thread wakeups recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

248

Applets have also been enhanced with regards to their ability to communicate with JavaScript
code. The Handling Applet initialization status with event handlers recipe describes how
JavaScript code can be made aware of and take advantage of knowing when an applet loads.

Other minor event-related improvements in Java 7 that don't warrant recipes include the
availability of accessing extended key codes and the implementation of the java.awt.
iamg.ImageObserver interface for the JSlider class.

The KeyEvent class has been augmented with two new methods: getExtendedKeyCode
and getExtendedKeyCodeForChar. The first method returns a unique integer for a key,
but unlike the getKeyCode method, its value depends on how the keyboard is currently
configured. The second method returns the extended key code for a given Unicode character.

The imageUpdate method has been added to the JSlider class. This permits the class to
monitor the status of an image being loaded, though this capability is probably best used with
classes that are derived from JSlider.

Managing extra mouse buttons and high
resolution mouse wheels

Java 7 has provided more options for handling mouse events. The java.awt.Toolkit
class' areExtraMouseButtonsEnabled method allows you to determine whether more
than the standard set of buttons is supported by the system. The java.awt.event.
MouseWheelEvent class' getPreciseWheelRotation method can be used to control
action on high resolution mouse wheels. In this recipe we will write a simple application to
determine the number of mouse buttons enabled and test the mouse wheel rotation.

Getting ready
First, create a new application using the starter classes ApplicationWindow and
ApplicationDriver found in the introduction of Chapter 7, Graphical User Interface
Improvements:

1. Implement the MouseListener and MouseWheelListener interfaces to capture
mouse events.

2. Use the areExtraMouseButtonsEnabled and getPreciseWheelRotation
methods to determine specific information about the mouse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

249

How to do it...
1. First, we will set up basic information about the JFrame we are creating, using the

following code example:
public class ApplicationWindow extends JFrame {

 public ApplicationWindow() {
 this.setTitle("Example");
 this.setSize(200, 100);
 this.setLocationRelativeTo(null);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());
 JButton exitButton = new JButton("Exit");
 this.add(exitButton);

}
}

2. Next, we want to gather some information about the mouse. We execute the
getNumberOfButtons method to determine how many buttons are present on our
mouse. Then we use the areExtraMouseButtonsEnabled method to determine
how many buttons on our mouse are available to us. We print this information to the
console as follows:
 int totalButtons = MouseInfo.getNumberOfButtons();
 System.out.println(Toolkit.getDefaultToolkit().
areExtraMouseButtonsEnabled());
 System.out.println("You have " + totalButtons + " total
buttons");

3. Next, we enable our listeners:
 this.addMouseListener(this);
 this.addMouseWheelListener(this);

 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});

4. In the mousePressed event method, simply print out the button number pressed
using the getButton method as follows:
 public void mousePressed(MouseEvent e) {
 System.out.println("" + e.getButton());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

250

5. Implement the remainder of the MouseListener interface methods. In the
mouseWheelMoved event method, use both the getPreciseWheelRotation
and the getWheelRotation methods to print out specific information about the
movement of the mouse wheel:
 public void mouseWheelMoved(MouseWheelEvent e) {
 System.out.println("" + e.getPreciseWheelRotation() +
 " - " + e.getWheelRotation());
}

6. Execute the application. You should see a JFrame window similar to the following:

7. When you click in the window, you will see varying output in your console depending
upon your mouse, which button you click, and in which direction you move your
mouse wheel. Here is one possible output:

true

You have 5 total buttons

1

2

3

4

5

0.75 - 0

1.0 - 1

1.0 - 1

1.1166666666666667 - 1

-1.0 - 0

-1.0 - -1

-1.2916666666666667 - -1

-1.225 - -1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

251

How it works...
The getNumberOfButtons method returned the total number of buttons on our mouse. In
the previous example, there were five buttons, but if the application was executed on a system
with no mouse, it would have returned a -1. In our mousePressed method, we printed the
name of the button clicked, as returned by the getButton method.

We executed the areExtraMouseButtonsEnabled method to determine that extra buttons
are, in fact, supported and allowed to be added to an EventQueue. If you want to change
the value of this, you must do so before the Toolkit class is initialized as explained in the
There's more... section.

Because multiple mouse buttons were enabled, our output displayed the number for all
five mouse buttons. In most instances, the mouse wheel is also considered a button and is
included in the count.

The last several lines of the previous console output are indications of movement of the
mouse wheel. The first one, 0.75 - 0, is an indication that the mouse wheel was moved
backwards, or toward the user. This is evident by the return value of 0.75 from the
getPreciseWheelRotation method and the 0 from the getWheelRotation method. The
last line of output, -1.225 - -1, is conversely an indication of forward mouse wheel movement,
or away from the user. This is indicated by a negative return value by both methods.

This application was executed using a high resolution mouse wheel. A lower resolution mouse
wheel will only return integer values.

There's more...
There are two ways of controlling whether extra mouse buttons are enabled or not. The first
technique is to start the application with the following command line and set the sun.awt.
enableExtraMouseButtons property to either true or false:

java -Dsun.awt.enableExtraMouseButtons=false ApplicationDriver

The –D option used a false value specifying that the extra mouse buttons were not to be
enabled. The second approach is to set the same property before the Toolkit class is
initialized. This can be accomplished with the following code:

System.setProperty("sun.awt.enableExtraMouseButtons", "true");

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

252

Controlling a focus when displaying a
window

The setAutoRequestFocus method has been added to the java.awt.Window class and
is used to specify whether a window should receive focus when it is displayed using either the
setVisible or toFront methods. There may be times when a window is made visible, but
we don't want the window to have focus. For example, if the window being displayed contains
status information, making it visible will be sufficient. Giving it focus may not make sense and
may frustrate the user by forcing them to change focus back to the original window.

Getting ready
To control the focus when a window is made visible, we will invoke the setAutoRequestFocus
method with true if it should receive focus and a false value otherwise.

How to do it...
1. To demonstrate this technique we will create two windows. One will be used to hide

and then display a second window. By using the setAutoRequestFocus method in
the second window, we can control whether it receives focus or not.

2. Start by creating a new project with the following driver. In the driver, we will create
the first window as follows:
public class ApplicationDriver {

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 ApplicationWindow window = new
ApplicationWindow();
 window.setVisible(true);
}
});

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

253

3. Next, add the ApplicationWindow class. In this class, we add two buttons to hide
and reveal the second window and a third one to exit the application as follows:
public class ApplicationWindow extends JFrame {

 private SecondWindow second;

 public ApplicationWindow() {
 this.setTitle("Example");
 this.setBounds(100, 100, 200, 200);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());

 second = new SecondWindow();
 second.setVisible(true);

 JButton secondButton = new JButton("Hide");
 this.add(secondButton);
 secondButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 second.setVisible(false);
});

 JButton thirdButton = new JButton("Reveal");
 this.add(thirdButton);
 thirdButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 second.setVisible(true);
}
});

 JButton exitButton = new JButton("Exit");
 this.add(exitButton);
 exitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
}
});
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

254

4. Add the SecondWindow class next. This simple window does nothing but use the
setAutoRequestFocus method to control how it behaves:
public class SecondWindow extends JFrame {

 public SecondWindow() {
 this.setTitle("Second Window");
 this.setBounds(400, 100, 200, 200);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setAutoRequestFocus(false);
}
}

5. Execute the application. Both windows should appear with the focus on the first
window, as shown in the following screenshot:

6. The second window appears as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

255

7. Select the Hide button. The second window should disappear. Next, select the Reveal
button. The second window should reappear and should not have focus. This is the
effect of the setAutoRequestFocus method, when used with a value of false.

8. Stop the application and change the argument of the setAutoRequestFocus
method to true. Re-execute the application and hide and then reveal the second
window. When it is revealed, the second window should receive focus.

How it works...
The application driver displayed the application window. In the ApplicationWindow class,
the second window was created and displayed. Also, the three buttons were created and inner
classes were created to affect each of their operations. The setAutoRequestFocus method
was passed a value of false to specify that focus was not to be retained when the window
was displayed.

There's more...
This approach may be useful for applications that run from the system tray.

Please note that the isAutoRequestFocus method is available
to determine the value of the autoRequestFocus value.

Using secondary loops to mimic modal
dialog boxes

The java.awt.EventQueue class' SecondaryLoop interface provides a convenient
technique for mimicking the behavior of a modal dialog box. A modal dialog box has two
behaviors. The first one is from the user's perspective. The user is not permitted to interact
with the main window, until the dialog box is complete. The second perspective is from the
program execution standpoint. The thread in which the dialog box is called is blocked until
the dialog box is closed.

A SecondaryLoop permits the execution of some task while blocking the current thread,
until the secondary loop is complete. It may not have a user interface associated with it. This
can be useful when the user selects a button that, while it does not display a dialog box, does
involve a long running calculation. In this recipe we will demonstrate how to use a secondary
loop and examine its behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

256

Getting ready
To create and use a secondary loop, the following steps need to be followed:

1. Get an instance of the default java.awt.Toolkit for the application.

2. Use this to obtain a reference to the system event queue.

3. Create a SecondaryLoop object using the event queue.

4. Use the SecondaryLoop interface's enter method to start the loop.

5. Implement the desired behavior in the secondary loop.

6. Use the SecondaryLoop interface's exit method to terminate the loop.

How to do it...
1. Create a new application with the following ApplicationDriver class. It simply

displays the application's window as follows:
public class ApplicationDriver {

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override
 public void run() {
 ApplicationWindow window = new
ApplicationWindow();
 window.setVisible(true);
}
});

}
}

2. Add the following ApplicationWindow class. It creates two buttons, which will be
used to demonstrate the behavior of secondary loops:
public class ApplicationWindow extends JFrame implements
ActionListener {

 private JButton firstButton;
 private JButton secondButton;

 public ApplicationWindow() {
 this.setTitle("Example");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

257

 this.setBounds(100, 100, 200, 200);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());

 firstButton = new JButton("First");
 this.add(firstButton);
 firstButton.addActionListener(this);

 secondButton = new JButton("Second");
 this.add(secondButton);
 secondButton.addActionListener(this);
}

}

3. Next, add the following actionPerformed method. A SecondaryLoop object is
created and, depending on the button selected, WorkerThread objects are created
as follows:
 @Override
 public void actionPerformed(ActionEvent e) {
 Thread worker;
 JButton button = (JButton) e.getSource();
 Toolkit toolkit = Toolkit.getDefaultToolkit();
 EventQueue eventQueue = toolkit.getSystemEventQueue();
 SecondaryLoop secondaryLoop = eventQueue.
createSecondaryLoop();

 Calendar calendar = Calendar.getInstance();
 String name;

 if (button == firstButton) {
 name = "First-"+calendar.get(Calendar.MILLISECOND);
}
else {
 name = "Second-"+calendar.get(Calendar.MILLISECOND);
}
 worker = new WorkerThread(secondaryLoop, name);
 worker.start();

 if (!secondaryLoop.enter()) {
 System.out.println("Error with the secondary loop");
}
else {
 System.out.println(name + " Secondary loop returned");
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

258

4. Add the following WorkerThread class as an inner class. Its constructor saves the
SecondaryLoop object and a message is passed to it. The message will be used to
help us interpret the results. The run method displays the messages before and after
it sleeps for two seconds:
 class WorkerThread extends Thread {

 private String message;
 private SecondaryLoop secondaryLoop;

 public WorkerThread(SecondaryLoop secondaryLoop,
 String message) {
 this.secondaryLoop = secondaryLoop;
 this.message = message;
}

 @Override
 public void run() {
 System.out.println(message + " Loop Sleeping ... ");
 try {
 Thread.sleep(2000);
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
 System.out.println(message + " Secondary loop
completed with a result of " +
 secondaryLoop.exit());
}
}

5. Execute the application. The following window should appear. It has been resized here:

6. Next, select the First button. The following console output should illustrate the
execution of the secondary loop. The number following First- will probably differ from
your output:
First-433 Loop Sleeping ...

First-433 Secondary loop completed with a result of true

First-433 Secondary loop returned

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

259

7. While a secondary loop blocks the current thread, it does not prevent the window
from continuing to execute. The window's UI thread is still active. To demonstrate this,
restart the application and select the First button. Before two seconds have elapsed,
select the Second button. The console output should be similar to the following:

First-360 Loop Sleeping ...

Second-416 Loop Sleeping ...

First-360 Secondary loop completed with a result of true

Second-416 Secondary loop completed with a result of true

Second-416 Secondary loop returned

First-360 Secondary loop returned

This illustrates two aspects of secondary loops. The first is that the application can still
interact with the user, and the second is the behavior of two secondary loops executing at the
same time. Specifically, if a second secondary loop is started before the first one is complete,
the first one will not resume until the nested (second) one is terminated.

Notice that the application still responds to user input. Also, notice that the Second-416 loop
started execution after the First-360. However, while the First-360 completed before the
Second-416, as you would expect, the First-360 loop did not return and resume the execution
of the blocked thread, until after the Second-416 loop returned. We will witness the same
behavior if the First button is selected twice within two seconds.

How it works...
In the ApplicationWindow, we created two buttons. The buttons were added to
the application and then associated with the application's implementation of the
ActionListener interface. We used the First button to illustrate the execution of a
secondary loop.

In the actionPerformed method, we used the Toolkit class' getSystemEventQueue
method to get an instance of the EventQueue. This queue was then used with the
createSecondaryLoop method to create a secondary loop.

In order to keep track of potential multiple secondary loops, we created an instance of the
Calendar class and created a unique name derived from either First- or Second- suffixed with
the current time in milliseconds. While this technique would not guarantee unique names, it is
unlikely that two loops will have the same name and this is sufficient for our example.

Depending on which button was pressed, an instance of WorkerThread was created using
secondaryLoop object and a unique name. The worker thread was then started and the
enter method was executed against secondaryLoop.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

260

At this point, the secondary loop will execute and the current thread will be blocked. In
the WorkerThread class, a message was displayed indicating which secondary loop was
executed. It was then suspended for two seconds followed by a second message indicating
that the secondary loop completed along with the exit method return value.

The actionPerformed method's thread was then unblocked and a last message was
displayed indicating that the secondary loop completed Notice that this thread blocked until
the secondary loop completed.

This mimicked the behavior of a modal dialog box from the application's perspective. The
thread where the secondary loop was created is blocked until the loop is completed. While
other threading approaches could have been used to achieve a similar result, this approach
is convenient and easy to use.

There's more...
It is not possible to use the same SecondaryLoop object to start a new loop if one is already
active. Any attempt to do so will result in the enter method returning a value of false.
However, once the loop has completed, the loop can be reused for other loops. This means
the enter method can subsequently be executed against the same SecondaryLoop object.

See also
See the Using the new JLayer Decorator for a password field recipe in Chapter 7,
Graphical User Interface Improvements. This recipe can be useful if you need to create
a timer-hour hourglass type animation that could be displayed over the button indicating a
long running process.

Handling spurious thread wakeups
When multiple threads are used, one thread may need to wait until the completion of one or
more other threads. When this is necessary, one approach is to use the Object class' wait
method to wait for the other threads to complete. These other threads need to use either the
Object class' notify or notifyAll methods to permit the thread that is waiting to continue.

However, spurious wakeup calls can occur in some situations. In Java 7, the java.awt.
event.InvocationEvent class' isDispatched method has been introduced to address
this problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

261

Getting ready
To avoid spurious wakeup calls:

1. Add a synchronized block.

2. Create a while loop based on the results of an application-specific condition and the
isDispatched method.

3. Use the wait method in the body of the loop.

How to do it...
1. Due to the nature of spurious interrupts, it is not feasible to create a demonstration

application that will consistently demonstrate this behavior. The recommended way of
handling a wait is illustrated as follows:
synchronized (someObject) {
 Toolkit toolkit = Toolkit.getDefaultToolkit();
 EventQueue eventQueue = toolkit.getSystemEventQueue();
 while(someCondition && !eventQueue.isDispatchThread()) {
 try {
 wait();
}
catch (InterruptedException e) {
}
}
 // Continue processing
}

2. This approach will eliminate spurious interrupts.

How it works...
First, we used a synchronized block for the object we are working with. Next, we obtain an
instance of the EventQueue. The while loop will test an application-specific condition to
determine if it should be in a wait state. This could be simply a Boolean variable indicating
that a queue is ready to be processed. The loop will continue executing while the condition
is true and the isDispatched method returns false. This means if the method returns
true, then the event was actually dispatched from the event queue. This will also occur with
the EventQueue.invokeAndWait method.

A thread may wake up from a wait method for no reason at all. The notify or notifyAll
methods may not have been called. This can occur due to conditions external to the JVM that
are usually low-level and subtle.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

262

In earlier versions of the Java Language Specification, this issue was not mentioned.
However, in Java 5 the wait method documentation included a discussion of this issue.
Clarification of this issue is found in the third edition of the Java Language Specification,
section 17.8.1 Wait, found at http://java.sun.com/docs/books/jls/third_
edition/html/memory.html#17.8.1.

Handling applet initialization status with
event handlers

JavaScript code is able to call applet methods. However, this is not possible until the applet
has been initialized. Any attempt to communicate with the applet will be blocked until
the applet is loaded. In order to determine when the applet has been loaded, Java 7 has
introduced a load status variable, which is accessible from JavaScript code. We will explore
how to set up an HTML file to detect and respond to these events.

Getting ready
To use the loading status of an applet:

1. Create JavaScript functions to handle applet load events.

2. Deploy the applet, setting the parameter java_status_events to true.

How to do it...
1. Create a new application for the Java applet. In the java.applet.Applet class'

init method, we will create a Graphics object to display a simple blue rectangle
and then sleep for two seconds. This delay will simulate the loading of the applet:
public class SampleApplet extends Applet {
 BufferedImage image;
 Graphics2D g2d;

 public void init() {
 int width = getWidth();
 int height = getHeight();
 image = new BufferedImage(width, height, BufferedImage.
TYPE_INT_RGB);
 g2d = image.createGraphics();
 g2d.setPaint(Color.BLUE);
 g2d.fillRect(0, 0, width, height);
 try {
 Thread.sleep(2000);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

263

catch (InterruptedException ie) {
 ie.printStackTrace();
}
}

 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this);
}
}

2. Package the applet in a SampleApplet.jar file. Next, create an HTML file as follows.
The first part consists of declaring a title and creating the determineAppletState
function to check on the load status of the applet as follows:
<HTML>
<HEAD>
<TITLE>Checking Applet Status</TITLE>
<SCRIPT>
 function determineAppletState() {
 if (sampleApplet.status == 1) {
 document.getElementById("statediv").innerHTML =
"Applet loading ...";
 sampleApplet.onLoad = onLoadHandler;
}
else if (sampleApplet.status == 2) {
 document.getElementById("statediv").innerHTML =
 "Applet already loaded";
}
else {
 document.getElementById("statediv").innerHTML =
 "Applet entered error while loading";
}
}

 function onLoadHandler() {
 document.getElementById("loadeddiv").innerHTML =
 "Applet has loaded";
}

</SCRIPT>
</HEAD>

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Events

264

3. Follow this with the body of the HTML file. It uses an onload event to call the
determineAppletState function. This is followed by a header field and two
division tags. The divisions will be used for display purposes as follows:
<BODY onload="determineAppletState()">
<H3>Sample Applet</H3>
<DIV ID="statediv">state</DIV>
<DIV ID="loadeddiv"></DIV>

4. Complete the HTML file with a JavaScript sequence that configures and executes
the applet as follows:
<DIV>
 <SCRIPT src="http://www.java.com/js/deployJava.js"></SCRIPT>
 <SCRIPT>
 var attributes = {id:'sampleApplet', code:'SampleApplet.
class', archive:'SampleApplet.jar', width:200,

height:100};
 var parameters = {java_status_events: 'true'};
 deployJava.runApplet(attributes, parameters, '7'7);
 </SCRIPT>
</DIV>
</BODY>
</HTML>

5. Load the applet into a browser. Here, it is loaded into Chrome as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

265

How it works...
The SampleApplet possessed two methods: init and paint. The init method created
a BufferedImage object, which it used to display a blue square whose size is determined
by the area allocated to the applet. Initially, the load was delayed for two seconds using the
sleep method to simulate a slow loading applet. The paint method simply displayed the
image. When the status is loading, the onLoadHandler was specified as the function to
invoke when the applet completes loading. When this function is executed, a message to
that effect was displayed in the loadeddiv division element.

In the body tag of the HTML file, the determineAppletState function was specified as the
function to execute when the HTML was loaded into the browser. This ensured that the load
status was checked when the HTML file was loaded.

The variable and attributes associated the sampleApplet ID with the SampleApplet class.
The archive file containing the class and the size of the applet were also specified. In order to
take advantage of this capability, the applet needed to be deployed with the java_status_
events parameter set to true.

The function determineAppletState used the load status variable, status to display
the status of the load process. Messages displayed in HTML division elements showed the
sequence of operations.

The deployJava.js is part of the Java Deployment Toolkit and is used to detect the
presence of a JRE, install one if necessary, and then run an applet. It can also be used for
other Web Start programs. In this case, it was used to execute the applet using the attributes
and parameters along with the version of JRE to use, that is Java 7.

More information about executing Java applications deployment using
deployJava.js is found at http://download.oracle.com/
javase/7/docs/technotes/guides/jweb/index.html.

There are three applet status values as detailed in the following table:

Status Value Meaning
LOADING 1 The applet is loading
READY 2 The applet has loaded

www.it-ebooks.info

http://download.oracle.com/javase/7/docs/technotes/guides/jweb/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/jweb/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/jweb/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Database, Security,

and System
Enhancements

In this chapter, we will cover the following:

 f Using the RowSetFactory class

 f Java 7 database enhancements

 f Using the ExtendedSSLSession interface

 f Using the platform MXBeans for JVM or system process load monitoring

 f Redirecting input and output from operating systems processes

 f Embedding a JNLP file in an HTML page

Introduction
This chapter covers database, security, and system type enhancements that have been
made to Java 7. Some of these enhancements are minor and will be addressed in this
introduction. Others are more significant and are detailed in this chapter's recipes. Due to
the rather specialized nature of some topics, such as those typified by some of the security
enhancements, they will be mentioned but not explained here.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

268

Multiple enhancements have been made to JDBC in Java 7, which now supports JDBC 4.1.
Some of the improvements depend on third party driver support not available in early driver
versions. When this happens, you may receive an AbstractMethodException. When
testing the database recipes for this chapter, ensure that you are working with a driver that
supports the JDBC 4.1 functionality. Drivers can be found at http://developers.sun.
com/product/jdbc/drivers.

The Using the RowSetFactory recipe deals with the use of the javax.sql.rowset.
RowSetFactory interface and the javax.sql.rowset.RowSetProvider class, which
permits the creation of any row sets as supported by a given JDBC driver. There are a number
of other improvements in database's support included in Java 7. These are addressed in the
Java 7 database enhancements recipe, and include such issues as determining the name of
the current schema and providing access to hidden columns. The Derby database engine will
be used for the database examples. If you prefer to use other databases and tables, you can
do so by adjusting the code for the different databases.

In addition to these database recipes, the try-with-resource statement can be used with any
object that implements the java.sql package's Connection, ResultSet, or Statement
interfaces. This language improvement simplifies the process of opening and closing
resources. The general use of the try-with-resource statement is detailed in the Using the
try-with-resource block to improve exception handling code recipe, in Chapter 1, Java
Language Improvements. An example of using this with a ResultSet-derived class
is shown in the Using the RowSetFactory class recipe.

The Statement interface has been enhanced with two new methods. The first method,
closeOnCompletion, is executed to specify that the Statement object will be closed when
result sets that use the connection are closed. The second method, isCloseOnCompletion,
returns a Boolean value indicating whether the statement will be closed when this criteria is met.

Network enhancements to Java 7 include the addition of two methods to the java.net.
URLClassLoader class:

 f close: This method will close the current URLClassLoader, so that it is no longer
able to load classes or resources. This addresses a problem found on Windows, as
detailed at http://download.oracle.com/javase/7/docs/technotes/
guides/net/ClassLoader.html

 f getResourceAsStream: This method returns an InputStream for the resource
specified by its String argument

Assistance is also provided to support stream connections using the InfiniBand (IB). This
technology uses Remote Direct Memory Access (RDMA) to move data directly between
the memories of different computers. This support is provided through the Sockets Direct
Protocol (SDP) network protocol. The specialized nature of this technology precludes
further discussion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

The Using the platform MXBeans for JVM or system process load monitoring recipe, examines
the improvements made in the support of MXBeans. This includes different methods for
accessing these management type beans.

The java.lang.ProcessBuilder class has improved redirect capabilities as introduced by
the ProcessBuilder.Redirect class. This topic is explored in the Redirecting input and
output from operating systems processes recipe.

Java 7 has also improved the way applets can be embedded in an HTML page. The
Embedding a JNLP file in an HTML page recipe provides a demonstration of this technique.

The Java Secure Socket Extension (JSSE) is used to secure Internet communications
using Secure Sockets Layer (SSL) and Transport Layer Security (TLS). JSSE assists in data
encryption, authentication, and maintaining message integrity. In Java 7, several enhancements
have occurred. The Using the ExtendedSSLSession interface recipe uses SSL, and is used to
illustrate the use of the ExtendedSSLSession interface and new security features.

Security enhancements include the incorporation of Elliptic Curve Cryptography (ECC)
algorithms. This class of encryption algorithms is more resistant to brute force attacks.
A portable implementation of the algorithm has been provided.

New exception classes have been added or enhanced to enhance security. The
new java.security.cert.CertificateRevokedException, when thrown,
means that an X.509 certificate has been revoked. The java.security.cert.
CertPathValidatorException class has been enhanced with the addition of a new
constructor that takes a CertPathValidatorException.Reason object. This object
implements the CertPathValidatorException.BasicReason enumeration that
enumerates the reason for the exception. The CertPathValidatorException class's
getReason method returns a CertPathValidatorException.Reason object.

Java 7 also supports TLS 1.1 and 1.2 specifications and improves upon this support. The Sun
JSSE provider supports TLS 1.1 and TLS 1.2 as defined in RFC 4346 (http://tools.ietf.
org/html/rfc4346) and RFC 5246 (http://tools.ietf.org/html/rfc5246)
respectively. These include support to protect against cipher block chaining attacks and new
cryptographic algorithms.

In addition, there are a few other TKS-related enhancements:

 f The SSLv2Hello protocol has been removed from the list of protocols that are
enabled by default.

 f A flaw relating to TLS renegotiation has been fixed in Java 7. Details regarding this
flaw can be found at http://www.oracle.com/technetwork/java/javase/
documentation/tlsreadme2-176330.html.

 f During TLS 1.1/1.2 handshaking, Java 7 has improved the process of version
number checking.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/documentation/tlsreadme2-176330.html
http://www.oracle.com/technetwork/java/javase/documentation/tlsreadme2-176330.html
http://www.oracle.com/technetwork/java/javase/documentation/tlsreadme2-176330.html
http://www.it-ebooks.info/

Database, Security, and System Enhancements

270

Weak cryptographic algorithms can be disabled using the jdk.certpath.
disabledAlgorithms property for the Sun provider. By default, the MD2 algorithm is
disabled. This property is specified in the jre/lib/security/java.security file.
The default setting is shown as follows:

jdk.certpath.disabledAlgorithms=MD2

It is also possible to specify not only the algorithm, but restrictions on the key size.

Algorithm restrictions can also be placed at the TLS level. This is accomplished using the
jdk.tls.disabledAlgorithms security property in the jre/lib/security/java.
security file. An example is as follows:

jdk.tls.disabledAlgorithms=MD5, SHA1, RSA keySize < 2048

Currently, this property is specific to the Oracle JSSE implementation and may not be
recognized by other implementations.

The Server Name Indication (SNI) JSSE extension (RFC 4366) enables TLS clients to connect
to virtual servers, that is, multiple servers with different network names that use the same
supporting network address. This is enabled to true by default, but can be set to false for
systems where the extension is not supported.

The jsse.enableSNIExtension system property is used to control this setting. It can be
set using the –D java command option shown as follows:

java -D jsse.enableSNIExtension=true ApplicationName

It is also possible to set this property using the setProperty method shown as follows:

System.setProperty("jsse.enableSNIExtension", "true");

Note that the property name may change in the future.

Using the RowSetFactory class
Row sets can now be created using the new javax.sql.rowset package's
RowSetFactoryInterface interface and the RowSetProvider class. This permits the
creation of any type of row set supported by JDBC. We will use the Derby database to illustrate
the process of creating row sets. The COLLEAGUES table will be used. A description of how to
create this table is found at http://netbeans.org/kb/docs/ide/java-db.html. The
SQL code to create the table is as follows:

CREATE TABLE COLLEAGUES (
 "ID" INTEGER not null primary key,
 "FIRSTNAME" VARCHAR(30),
 "LASTNAME" VARCHAR(30),
 "TITLE" VARCHAR(10),

www.it-ebooks.info

http://netbeans.org/kb/docs/ide/java-db.html
http://netbeans.org/kb/docs/ide/java-db.html
http://www.it-ebooks.info/

Chapter 9

271

 "DEPARTMENT" VARCHAR(20),
 "EMAIL" VARCHAR(60)
);

INSERT INTO COLLEAGUES VALUES (1,'Mike','Johnson','Manager','Engineeri
ng','mike.johnson@foo.com');
INSERT INTO COLLEAGUES VALUES
(2, 'James', 'Still', 'Engineer', 'Engineering', 'james.still@foo.
com');
INSERT INTO COLLEAGUES VALUES
(3, 'Jerilyn', 'Stall', 'Manager', 'Marketing', 'jerilyn.stall@foo.
com');
INSERT INTO COLLEAGUES VALUES
(4, 'Jonathan', 'Smith', 'Manager', 'Marketing', 'jonathan.smith@foo.
com');

Getting ready
To create a new row set:

1. Create an instance of the RowSetFactory.

2. Use one of the several create methods to create a RowSet object.

How to do it...
1. Create a new console application. In the main method, add the following code

sequence. We will create a new javax.sql.rowset.JdbcRowSet object and use
it to display some of the fields in the COLLEAGUES table. Start by setting up String
variables to establish connectivity to the database and create a RowSetFactory
object as follows:
 String databaseUrl = "jdbc:derby://localhost:1527/
contact";
 String username = "userName";
 String password = "password";

 RowSetFactory rowSetFactory = null;
 try {
 rowSetFactory = RowSetProvider.newFactory("com.sun.
rowset.RowSetFactoryImpl", null);
}
catch (SQLException ex) {
 ex.printStackTrace();
 return;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

272

2. Next, add a try block to catch any SQLExceptions, and then use the
createJdbcRowSet method to create the row set. Next, display the selected
elements of the table.
 try (JdbcRowSet rowSet = rowSetFactory.
createJdbcRowSet();) {

 rowSet.setUrl(databaseUrl);
 rowSet.setUsername(username);
 rowSet.setPassword(password);
 rowSet.setCommand("SELECT * FROM COLLEAGUES");
 rowSet.execute();

 while (rowSet.next()) {
 System.out.println(rowSet.getInt("ID") + " - "
 + rowSet.getString("FIRSTNAME"));
}
}
catch (SQLException ex) {
 ex.printStackTrace();
}

3. Execute the application. The output should appear as follows:

1 - Mike

2 - James

3 - Jerilyn

4 - Jonathan

How it works...
String variables were created for the database URL, username, and password. The
RowSetFactory object was created using the static newFactory method. Any exceptions
generated will result in the termination of the application.

In the try-with-resources block, the createJdbcRowSet method was used to create an
instance of the JdbcRowSet class. The URL, username, and password were then assigned
to the row set. The select command retrieved all of the fields from the COLLEAGUES table.
The query was then executed.

Next, a while loop was used to display the ID and the first name for each row of the row set.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

There's more...
There may be more than one RowSetFactory implementation available. The newFactory
method will look for a RowSetFactory class in the following order:

1. The one specified in the system property, javax.sql.rowset.RowSetFactory,
if defined.

2. Using the ServiceLoader API.

3. The platform default instance.

In addition to the creation of a JdbcRowSet row set, other methods are available to create
different types of row sets as listed in the following table:

Method Row set created
createCachedRowSet CachedRowSet

createFilteredRowSet FilteredRowSet

createJdbcRowSet JdbcRowSet

createJoinRowSet JoinRowSet

createWebRowSet WebRowSet

A RowSetFactory can also be created using the overloaded newFactory method that
takes two arguments, shown as follows:

 rowSetFactory = RowSetProvider.newFactory("com.sun.rowset.
RowSetFactoryImpl", null);

This approach provides more control to the application, enabling it to specify the provider
to use. When there are multiple providers found in the class path, this can be useful. The
first argument specifies the class name of the provider and the second argument specifies
the class loader to use. Using null as the second argument specifies that the context class
loader is to be used.

Java 7 database enhancements
There are numerous small enhancements to the database support provided by Java 7. This
recipe addresses these enhancements and provides examples where practical. Due to the
immaturity of many JDBC 4.1 drives, not all of the code examples will be completely functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

274

Getting ready
Most of the examples start by:

1. Creating a connection to a Derby database.

2. Using the connection methods to access needed functionality.

How to do it...
1. Create a new console application. In the main method, add the following

code sequence. It will establish a connection to the database and determine
if auto-generated keys will always be returned and what the current schema is:
 try {
 Connection con = DriverManager.getConnection(
 "jdbc:derby://localhost:1527/contact",
"userName", "password");

 System.out.println("Schema: " + con.getSchema());

 System.out.println("Auto Generated Keys: " + metaData.
generatedKeyAlwaysReturned());

}
catch (SQLException ex) {
 ex.printStackTrace();

}

2. When executed, your output should appear similar to the following:

Auto Generated Keys: true

Schema: SchemaName

How it works...
The Statement interface's getGeneratedKeys method was introduced in Java 1.4 and
returns any auto-generated keys for that statement. The java.sql.DatabaseMetaData
interface's generatedKeyAlwaysReturned method returned a Boolean value, indicating
that auto-generated keys will always be returned.

It is possible to set and get the schema for a connection using the Connection interface's
setSchema and getSchema methods. The getSchema method was executed, which
returned the schema name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

There's more...
Three other topics bear further discussion:

 f Retrieving pseudo-columns

 f Controlling the type value of the OUT parameter

 f Other database enhancements

Retrieving pseudo-columns
Databases will often use hidden columns to represent a unique key for every row of a
table. These hidden columns are sometimes called pseudo-columns. In Java 7, two new
methods have been added to address pseudo-columns. The DatabaseMetaData interface's
getPseudoColumns method will retrieve a ResultSet. The method asks for the following:

 f Catalog: This needs to match the catalog name used in the database. If no catalog is
used, then use an empty string. A null value means that the catalog name will not be
used when searching for the columns.

 f Schema pattern: This needs to match the schema name used in the database. If no
schema is used then use an empty string. A null value means that the schema name
will not be used when searching for the columns.

 f Table name pattern: This needs to match the table name used in the database

 f Column name pattern: This needs to match the column name used in the database

The ResultSet returned will have the following organization as shown in the following table:

Column Type Meaning
TABLE_CAT String The name of the catalog which may be null
TABLE_SCHEM String The name of the schema which may be null
TABLE_NAME String The name of the table
COLUMN_NAME String The name of the column
DATA_TYPE int SQL type (java.sql.Types)
COLUMN_SIZE int The size of the column
DECIMAL_DIGITS int The number of fractional digits. A null value means

there are no fractional digits.
NUM_PREC_RADIX int The radix
COLUMN_USAGE String Specifies how the column is used as defined by the

new PsuedoColumnUsage enumeration
REMARKS String Comment regarding the column
CHAR_OCTET_LENGTH int The maximum number of characters for a char column

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

276

Column Type Meaning
IS_NULLABLE String YES: Column can contain null

NO: Column cannot contain nulls

"": Unknown

The hidden columns represent a unique key, which provides a fast way of accessing a row.
Derby does not support hidden columns. However, the following code sequence illustrates
how this can be accomplished:

 try {
 Connection con = DriverManager.getConnection(
 "jdbc:derby://localhost:1527/contact", "userName",
"password");
 DatabaseMetaData metaData = con.getMetaData();
 ResultSet resultSet = metaData.getPseudoColumns("",
"schemaName", "tableName", "");

 while (rs.next()) {
 System.out.println(
 resultSet.getString("TABLE_SCHEM ")+" - "+
 resultSet.getString("COLUMN_NAME "));
}

}
catch (SQLException ex) {
 ex.printStackTrace();
}

Derby will return an empty ResultSet consisting of the columns listed previously.

Controlling the type value of the OUT parameter
The java.sql.CallableStatement has two overloaded getObject methods that return
an object, which is given a column name or index. Support is currently limited. However, the
basic approach is illustrated as follows:

 try {
 Connection conn = DriverManager.getConnection(
 "...", "username", "password");
 String query = "{CALL GETDATE(?,?)}";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

 CallableStatement callableStatement = (CallableStatement)
conn.prepareCall(query);

 callableStatement.setInt(1,recordIdentifier);
 callableStatement.registerOutParameter(1, Types.DATE);
 callableStatement.executeQuery();

 date = callableStatement.getObject(2,Date.class));

}
catch (SQLException ex) {
 ex.printStackTrace();
}

The query string contains a call to a stored procedure. This procedure is assumed to use an
integer value as the first parameter to identify a record in a table. The second argument is to
be returned and is of the type Date.

Once the query is executed, the getObject method will return the specified column using
the data type specified. The method will convert the SQL type to the Java data type.

Other database enhancements
The java.sql package's Driver interface has a new method, which returns the parent
logger for the driver. This is illustrated with the following code sequence:

 try {
 Driver driver = DriverManager.getDriver("jdbc:derby://
localhost:1527");
 System.out.println("Parent Logger" + driver.
getParentLogger());
}
catch (SQLException ex) {
 ex.printStackTrace();
}

However, when executed, the current version of the driver will generate the following exception:

Java.sql.SQLFeatureNotSupportedException: Feature not implemented: getParentLogger.

Derby does not use the java.util.logging package, so it throws this exception. The
javax.sql.CommonDataSource interface has also added the getParentLogger method.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

278

In addition, when a series of database operations are performed in conjunction with an
Executor, three methods are available to support those operations, which are as follows:

 f abort: This method will abort an open connection using the Executor passed to
the method

 f setNetworkTimeout: This method specifies the timeout period in milliseconds to
wait for the response to a request. It also uses an Executor object.

 f getNetworkTimeout: This method returns the number of milliseconds that the
connection will wait for database requests

The last two methods are optional and are not supported by Derby.

Using the ExtendedSSLSession interface
The javax.net.ssl package provides a series of classes used to effect secure
socket communication. Improvements introduced in Java 7 include the addition of the
ExtendedSSLSession interface, which can be used to determine the specific local and peer
supported signature algorithms that are used. In addition, when an SSLSession is created,
an endpoint identification algorithm can be used to ensure that the host computer's address
matches that of the certificate. This algorithm is accessible through the SSLParameters class.

Getting ready
To demonstrate the use of the ExtendedSSLSession interface, we will:

1. Create an SSLServerSocket-based EchoServer application to accept messages
from a client.

2. Create a client application, which uses a SSLSocket instance to communicate with
the server.

3. Use the EchoServer application to obtain an instance of the
ExtendedSSLSession interface.

4. Use a SimpleConstraints class to demonstrate the use of algorithm constraints.

How to do it...
1. Let's start by creating a class called SimpleConstraints, which is adapted from

the Java PKI Programmer's Guide (http://download.oracle.com/javase/7/
docs/technotes/guides/security/certpath/CertPathProgGuide.
html). We will use this to associate algorithm constraints to the application. Add the
following class to your project:
public class SimpleConstraints implements AlgorithmConstraints {
 public boolean permits(Set<CryptoPrimitive> primitives,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

 String algorithm, AlgorithmParameters parameters) {
 return permits(primitives, algorithm, null, parameters);
}

 public boolean permits(Set<CryptoPrimitive> primitives, Key key) {
 return permits(primitives, null, key, null);
}

 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, Key key, AlgorithmParameters parameters) {
 if (algorithm == null) algorithm = key.getAlgorithm();

 if (algorithm.indexOf("RSA") == -1) return false;

 if (key != null) {
 RSAKey rsaKey = (RSAKey)key;
 int size = rsaKey.getModulus().bitLength();
 if (size < 2048) return false;
}

 return true;
}
}

2. To create the EchoServer application, create a new console application. Add the
following code to the main method. In this initial sequence, we create and start up
the server:
 try {
 SSLServerSocketFactory sslServerSocketFactory =
 (SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();
 SSLServerSocket sslServerSocket =
 (SSLServerSocket) sslServerSocketFactory.
createServerSocket(9999);
 System.out.println("Waiting for a client ...");
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.
accept();

}
catch (Exception exception) {
 exception.printStackTrace();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

280

3. Next, add the following code sequence to set up algorithm constraints for the
application. It also returns the name of the end point algorithm:
 SSLParameters parameters = sslSocket.
getSSLParameters();
 parameters.setAlgorithmConstraints
 (new SimpleConstraints());

 String endPoint = parameters.
getEndpointIdentificationAlgorithm();
 System.out.println("End Point: " + endPoint);

4. Add the following code to display local supported algorithms:
 System.out.println("Local Supported Signature
Algorithms");
 if (sslSocket.getSession() instanceof
ExtendedSSLSession) {
 ExtendedSSLSession extendedSSLSession =
 (ExtendedSSLSession) sslSocket.
getSession();
 String algorithms[] =
 extendedSSLSession.
getLocalSupportedSignatureAlgorithms();
 for (String algorithm : algorithms) {
 System.out.println("Algorithm: " + algorithm);
}
}

5. The following sequence displays peer-supported algorithms:
 System.out.println("Peer Supported Signature
Algorithms");
 if (sslSocket.getSession() instanceof
ExtendedSSLSession) {
 String algorithms[] = ((ExtendedSSLSession)
sslSocket.getSession()).getPeerSupportedSignatureAlgorithms();
 for (String algorithm : algorithms) {
 System.out.println("Algorithm: " + algorithm);
}
}

6. Add the following code to buffer the input stream coming from a client application:
 InputStream inputstream = sslSocket.getInputStream();
 InputStreamReader inputstreamreader = new
InputStreamReader(inputstream);
 BufferedReader bufferedreader = new BufferedReader
(inputstreamreader);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

7. Finish the method by adding code to display the input from the client:
 String stringline = null;
 while ((stringline = bufferedreader.readLine()) !=
null) {
 System.out.println(string);
 System.out.flush();
}

8. To execute the server, we need to create key store. This is accomplished from the
command prompt by executing the following command:
keytool -genkey -keystore mySrvKeystore -keyalg RSA

9. Provide a password and other information requested by the program. Next, navigate
to the echo server's location and enter the following command:
java -Djavax.net.ssl.keyStore=mySrvKeystore

Djavax.net.ssl.keyStorePassword=password package.EchoServer

10. The password above, is the password that you used to create the key store, and
package, is your EchoServer's package, if any. When the program executes, you get
the following output:

Waiting for a client ...

11. We now need to create a client console application called EchoClient. In the main
method, add the following code where we create a connection to the server and then
send the input from the keyboard to the server:
 try {
 SSLSocketFactory sslSocketFactory =
 (SSLSocketFactory) SSLSocketFactory.
getDefault();
 SSLSocket sslSocket = (SSLSocket)
 sslSocketFactory.createSocket("localhost",
9999);

 InputStreamReader inputStreamReader =
 new InputStreamReader(System.in);
 BufferedReader bufferedReader =
 new BufferedReader(inputStreamReader);

 OutputStream outputStream = sslSocket.
getOutputStream();
 OutputStreamWriter outputStreamWriter =
 new OutputStreamWriter(outputStream);
 BufferedWriter bufferedwriter =

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

282

 new BufferedWriter(outputStreamWriter);

 String line = null;
 while ((line = bufferedReader.readLine()) != null) {
 bufferedwriter.write(line + '\n');
 bufferedwriter.flush();
}
}
catch (Exception exception) {
 exception.printStackTrace();
}

12. Copy the key store file to the client application's directory. In a separate command
window, execute the following command:
java -Djavax.net.ssl.trustStore=mySrvKeystore

-Djavax.net.ssl.trustStorePassword=password package.EchoClient

13. The password above, is the password that you used to create the key store, and
package, is your EchoServer's package, if any. When the program executes, enter
the word cat, and then press the Enter key. In the server command window, you
should see an end point name, which may be null, a list of local supported
signature algorithms, and cat similar to the following:

End Point: null

Local Supported Signature Algorithms

Algortihm: SHA512withECDSA

Algortihm: SHA512withRSA

Algortihm: SHA384withECDSA

Algortihm: SHA384withRSA

Algortihm: SHA256withECDSA

Algortihm: SHA256withRSA

Algortihm: SHA224withECDSA

Algortihm: SHA224withRSA

Algortihm: SHA1withECDSA

Algortihm: SHA1withRSA

Algortihm: SHA1withDSA

Algortihm: MD5withRSA

Peer Supported Signature Algorithms

cat

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

283

14. As you enter more input lines, they should be reflected in the server command
window. To terminate the program, enter a Ctrl + C in the client command window.

How it works...
The SimpleConstraints class allows only RSA algorithms and then with keys that use
2048 bits or more. This was used as an argument to the setAlgorithmConstraints
method. The class implemented the java.security.AlgorithmConstraints interface,
which represents the restrictions of the algorithm.

A SSLServerSocketFactory instance was created followed by the creation of a
SSLServerSocket. The accept method was executed against the socket, which blocks
until a client connects to it.

Next, the SimpleConstraints was set followed by the use of the
getEndpointIdentificationAlgorithm method, which returned an empty string.
For this example, no endpoint identification algorithm was used.

The local and peer supported signature algorithms were listed. The remaining code was
concerned with reading and then displaying the string sent by a client.

The EchoClient application is simpler. It created an instance of the SSLSocket class
and then used its getOutputStream method to write the user's input to the echo server.

Using the platform MXBeans for JVM or
system process load monitoring

Java Management Extensions (JMX) is a standard way of adding a management interface
to an application. A managed bean (MBean) provides the management services for the
application and is registered with a javax.management.MBeanServer, which holds and
administers the MBean. A javax.management.MXBean is a type of MBean, which permits
clients to access the bean without the need to access specific classes.

The java.lang.management package's ManagementFactory class has added several
new methods to gain access to an MBean. These can then be used to access process and
load monitoring.

Getting ready
To access an MXBean:

1. Use the getPlatformMXBean method with the MXBean type needed for
the application.

2. Use the MXBean methods as required.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

284

How to do it...
1. Create a new console application. Use the main method that follows. In this

application, we will obtain an MXBean for the runtime environment and display
basic information about it:
 public static void main(String[] args) {
 RuntimeMXBean mxBean = ManagementFactory.
getPlatformMXBean(RuntimeMXBean.class);

 System.out.println("JVM Name: " + mxBean.getName());
 System.out.println("JVM Specification Name: " + mxBean.
getSpecName());
 System.out.println("JVM Specification Version: " + mxBean.
getSpecVersion());
 System.out.println("JVM Implementation Name: " + mxBean.
getVmName());
 System.out.println("JVM Implementation Vendor: " + mxBean.
getVmVendor());
 System.out.println("JVM Implementation Version: " +
mxBean.getVmVersion());

}

2. Execute the application. Your output should be similar to the following:

JVM Name: 5584@name-PC

JVM Specification Name: Java Virtual Machine Specification

JVM Specification Version: 1.7

JVM Implemenation Name: Java HotSpot(TM) 64-Bit Server VM

JVM Implemenation Vendor: Oracle Corporation

JVM Implemenation Version: 21.0-b17

How it works...
We used the ManagementFactory class' static getPlatformMXBean method with an
argument of RuntimeMXBean.class. This returned an instance of a RuntimeMXBean.
Specific methods of this instance were then applied and their values were displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

285

There's more...
The ManagementFactory introduced several new methods in Java 7:

 f getPlatformMXBean: This is an overloaded method that returns a
PlatformManagedObject-derived object supporting a particular management
interface using a Class argument

 f getPlatformMXBeans: This is an overloaded method that returns a
PlatformManagedObject-derived object supporting a particular management
interface using an MBeanServerConnection object and a Class argument

 f getPlatformManagementInterfaces: This method returns a set of Class
objects for PlatformManagedObject-derived objects on the current Java platform

In addition, a new interface was added to the java.lang.management package. The
PlatformManagedObject interface serves as the base interface for all MXBeans.

Using the getPlatformMXBeans method
The getPlatformMXBeans method is passed the MXBean type and returns a list of the
platform MXBeans that implements the MXBean type. In the following example, we obtain a
list for the OperatingSystemMXBean. Several attributes of the MXBean are then displayed:

 List<OperatingSystemMXBean> list =
ManagementFactory.getPlatformMXBeans(OperatingSystemMXBean.class);
 for (OperatingSystemMXBean bean : list) {
 System.out.println("Operating System Name: " + bean.
getName());
 System.out.println("Operating System Architecture: " +
bean.getArch());
 System.out.println("Operating System Version: " + bean.
getVersion());
}

When executed, you should get an output similar to the following. The exact output is
dependent on the operating system and hardware used to execute the application:

Operating System Name: Windows 7

Operating System Architecture: amd64

Operating System Version: 6.1

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

286

Obtaining the platform's management interfaces
The ManagementFactory class' static getPlatformManagementInterfaces method
returns a set of Class objects representing the platform-supported MXBeans. However,
this method generated a ClassCastException on both the Windows 7 and the Ubuntu
platforms when running the JDK 7.01 release. Future versions should correct this problem.

The jconsole application that is available as part of the JDK, provides an alternative technique
for determining which MXBeans are available. The following is the console displaying the
attributes for the operating system, specifically the ProcessCpuLoad attribute:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

287

Redirecting input and output from operating
system's processes

The java.lang.ProcessBuilder class has several new methods that are useful for
redirecting the input and output of external processes executed from a Java application. The
nested ProcessBuilder.Redirect class has been introduced to provide these additional
redirect capabilities. To demonstrate this process, we are going to send command-line
arguments from a text file to a DOS prompt and record the output in another text file.

Getting ready
In order to control input and output from external processes, you must:

1. Create a new ProcessBuilder object.

2. Direct the input and output of the process to the appropriate locations.

3. Execute the process via the start method.

How to do it...
1. First, create a new console application. Create three new file instances to represent

the three files involved in our process execution: input, output, and errors as follows:
 File commands = new File("C:/Projects/ProcessCommands.txt");
 File output = new File("C:/Projects/ProcessLog.txt");
 File errors = new File("C:/Projects/ErrorLog.txt");

2. Create the file ProcessCommands.txt using the path specified for the file and
enter the following text:

cd C:\

dir

mkdir "Test Directory"

dir

3. Make sure that there is a carriage return after the last line.

4. Next, create a new instance of a ProcessBuilder, passing the string "cmd" to
the constructor to specify the external process that we want to launch, which is the
operating system command window. Call the redirectInput, redirectOutput,
and redirectError methods with no arguments and print out the default locations:
 ProcessBuilder pb = new ProcessBuilder("cmd");
 System.out.println(pb.redirectInput());
 System.out.println(pb.redirectOutput());
 System.out.println(pb.redirectError());

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

288

5. Then we want to call the overloaded form of the previous methods, passing
the respective file to each one. Once again, call the no argument form of each
method executed using the toString method to verify that the IO sources have
been changed:
 pb.redirectInput(commands);
 pb.redirectError(errors);
 pb.redirectOutput(output);
 System.out.println(pb.redirectInput());
 System.out.println(pb.redirectOutput());
 System.out.println(pb.redirectError());

6. Finally, call the start method to execute the process as follows:
 pb.start();

7. Run the application. You should see output similar to the following:

PIPE

PIPE

PIPE

redirect to read from file "C:\Projects\ProcessCommands.txt"

redirect to write to file "C:\Projects\ProcessLog.txt"

redirect to write to file "C:\Projects\ErrorLog.txt"

8. Examine each of the text files. Your output file should have text similar to this:

Microsoft Windows [Version 6.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\Jenn\Documents\NetBeansProjects\ProcessBuilderExample>cd C:\

C:\>dir

 Volume in drive C has no label.

 Volume Serial Number is 927A-1F77

 Directory of C:\

03/05/2011 10:56 <DIR> Dell

11/08/2011 16:04 <DIR> Miscellaneous

11/08/2011 11:08 <DIR> MOVE

10/31/2011 10:57 <DIR> MUSIC

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

289

11/08/2011 19:44 <DIR> Projects

10/27/2011 21:09 <DIR> temp

10/28/2011 10:46 <DIR> Users

11/08/2011 17:11 <DIR> Windows

 0 File(s) 0 bytes

 34 Dir(s) 620,819,542,016 bytes free

C:\>mkdir "Test Directory"

C:\>dir

 Volume in drive C has no label.

 Volume Serial Number is 927A-1F77

 Directory of C:\

03/05/2011 10:56 <DIR> Dell

11/08/2011 16:04 <DIR> Miscellaneous

11/08/2011 11:08 <DIR> MOVE

10/31/2011 10:57 <DIR> MUSIC

11/08/2011 19:44 <DIR> Projects

10/27/2011 21:09 <DIR> temp

10/28/2011 10:46 <DIR> Test Directory

10/28/2011 10:46 <DIR> Users

11/08/2011 17:11 <DIR> Windows

9. Execute the program again and examine the contents of your error log. Because your
test directory had already been created with the first process execution, you should
now see the following error message:

A subdirectory or file Test Directory already exists.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

290

How it works...
We created three files to handle the input and output of our process. When we created the
instance of the ProcessBuilder object, we specified the application to launch to be the
command window. The information required to perform actions within the application was
stored in our input file.

When we first called the redirectInput, redirectOutput, and redirectError
methods, we did not pass any arguments. These methods all return a ProcessBuilder.
Redirect object, which we printed. This object represents the default IO source, which
in all three cases was Redirect.PIPE, one of the ProcessBuilder.Redirect.Type
enumerations. A pipe takes the output of one source and sends it to another.

The second form of the methods that we used involved passing a java.io.File instance
to the redirectInput, redirectOutput, and redirectError methods. These methods
return a ProcessBuilder object as well, but they also have the function of setting the IO
source. In our example, we then called the no argument form of each method once more to
verify that the IO had been redirected.

The first time the program was executed, your error log should have been empty, assuming
you used valid file paths for each File object, and you have write permissions on your
computer. The second execution was intended to display how the capture of errors can be
directed to a separate file. If the redirectError method is not invoked, the errors will
inherit the standard location and will be displayed in your IDE's output window. See the
There's More... section for information about inheriting standard IO locations.

It is important to note that the start method must be called after the redirect methods.
Starting the process before redirecting input or output will cause the process to disregard
your redirects and the application will execute using the standard IO locations.

There's more...
In this section, we will examine the use of the ProcessBuilder.Redirect class and the
inheritIO method.

Using the ProcessBuilder.Redirect class
The ProcessBuilder.Redirect class provides another way to specify how the IO data is
redirected. Using the previous example, add a new line prior to calling the start method:

pb.redirectError(Redirect.appendTo(errors));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

291

This form of the redirectError method allows you to specify that the errors should be
appended to the error log text file rather than overwritten. If you execute the application with
this change, you will see two instances of the error when the process tries to create the Test
Directory directory again:

A subdirectory or file Test Directory already exists.

A subdirectory or file Test Directory already exists.

This is an example of using the overloaded form of the redirectError method, passing a
ProcessBuilder.Redirect object instead of a file. All three methods, redirectError,
redirectInput, and redirectOutput, have this overloaded form.

The ProcessBuilder.Redirect class has two special values, namely, Redirect.
PIPE and Redirect.INHERIT. Redirect.PIPE is the default way external process IO is
handled, and simply means that the Java process will be connected to the external process
via a pipe. The Redirect.INHERIT value means that the external process will have the
same input or output location as the current Java process. You can also redirect the input
or output of data using the Redirect.to and Redirect.from methods.

Using the inheritIO method to inherit the default IO locations
If you execute an external process from a Java application, you can set the location of
the source and destination data to be the same as that of the current Java process.
The ProcessBuilder class' inheritIO method is a convenient way to accomplish
this. If you have a ProcessBuilder object pb, executing the following code:

pb.inheritIO()

Then it has the same effect as executing the following three statements together:

 pb.redirectInput(Redirect.INHERIT)
 pb.redirectOutput(Redirect.INHERIT)
 pb.redirectError(Redirect.INHERIT)

In both cases, the input, output, and error data will be located in the same places as the
current Java process' input, output, and error data.

Embedding a JNLP file in an HTML page
Java 7 provides a new option to speed up the deployment of an applet in a web page. Prior to
7, when applets were launched using the Java Network Launch Protocol (JNLP), the JNLP file
must first be downloaded from the network before the applet can be launched. With the new
release, the JNLP file can be embedded directly into the HTML code, reducing the amount
of time the applet needs to launch. In this example, we are going to build a basic applet and
launch it using a JNLP-embedded HTML page.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

292

Getting ready
To speed up applet launch in Java 7, you must:

1. Create a new Applet.

2. Create and encode a JNLP file.

3. Add the reference to the JNLP file to an HTML page.

How to do it...
1. First create an applet to use in an HTML window. The following is a simple applet

that can be used for the purposes of this recipe. This applet has two input fields,
subtotal and taxRate, and a calculate button is used to calculate the
grand total:
public class JNLPAppletExample extends Applet {

 TextField subtotal = new TextField(10);
 TextField taxRate = new TextField(10);
 Button calculate = new Button("Calculate");
 TextArea grandTot = new TextArea("Total = $", 2, 15, TextArea.
SCROLLBARS_NONE);

 @Override
 public void init() {
 this.setLayout(new GridLayout(3,2));
 this.add(new Label("Subtotal = "));
 this.add(subtotal);
 this.add(new Label("Tax Rate = "));
 this.add(taxRate);
 this.add(calculate);
 grandTot.setEditable(false);
 this.add(grandTot);
 calculate.addActionListener(new CalcListener());
}

 class CalcListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {
 double subTot;
 double tax;
 double grandTot;

 subTot = validateSubTot(subtotal.getText());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

293

 tax = validateSubTot(taxRate.getText());
 grandTot = calculateTotal(subTot, tax);
 JNLPAppletExample.this.grandTot.setText("Total = $" +
grandTot);
}
}

 double validateSubTot(String s) {
 double answer;
 Double d;
 try {
 d = new Double(s);
 answer = d.doubleValue();
}
catch (NumberFormatException e) {
 answer = Double.NaN;
}
 return answer;
}

 double calculateTotal(double subTot, double taxRate) {
 double grandTotal;
 taxRate = taxRate / 100;
 grandTotal = (subTot * taxRate) + subTot;
 return grandTotal;
}
}

2. Next, create a JNLP file called JNLPExample.jnlp. The following is a sample JNLP
file to accompany our previous applet. Notice that within the resources tag a JAR file
is referenced. This JAR file, containing your applet, must be in the same location as
your JNLP file and the HTML file, which we will create in a moment:
<?xml version="1.0" encoding="UTF-8"?>
<jnlp href="JNLPExample.jnlp">
 <information>
 <title>Embedded JNLP File</title>
 <vendor>Sample Vendor</vendor>
 </information>
 <resources>
 <j2se version="7" />
 <jar href="JNLPAppletExample.jar"
 main="true" />
 </resources>
 <applet-desc

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

294

 name="Embedded JNLP Example"
 main-class="packt.JNLPAppletExample"
 width="500"
 height="500">
 </applet-desc>
 <update check="background"/>
</jnlp>

3. After you have created the JNLP file, it must be encoded. There are several resources
available online to convert the JNLP file to BASE64, but the one used for this example
was http://base64encode.org/. Use the UTF-8 charset. Once you have your
encoded data, you will use this in the creation of an HTML file. Create an HTML
file shown as follows. Notice that the BASE64-encoded string highlighted has been
shortened for purposes of brevity, but your string will be much longer:
<HTML>
<HEAD>
<TITLE>Embedded JNLP File Example</TITLE>
</HEAD>
<BODY>
<H3>Embedded JNLP Applet</H3>
<script src="http://www.java.com/js/deployJava.js"></script>
<script>
 var jnlpFile = "JNLPExample.jnlp";
 deployJava.createWebStartLaunchButtonEx(jnlpFile);
</script>
<script>
 var attributes = {} ;
 var parameters = {jnlp_href: 'JNLPExample.jnlp',

 jnlp_embedded: 'PD94bWw…'};

 deployJava.runApplet(attributes, parameters, '7');
</script>
</BODY>
</HTML>

4. Also, notice the first script tag. To avoid using a codebase attribute, we are utilizing
another new feature of Java 7 by using a Development Toolkit script.

www.it-ebooks.info

http://base64encode.org/
http://base64encode.org/
http://www.it-ebooks.info/

Chapter 9

295

5. Load your application in a browser window. You may need to enable JavaScript
depending upon your current browser settings. Your applet should load quickly
and appear similar to the following screenshot:

How it works...
Embedding the JNLP file in the HTML page allowed the applet to be loaded immediately,
rather than having to be downloaded from the server first. The JNLP file had to have a
relative path in the href attribute and the codebase should not be specified. By leaving
the codebase attribute blank, it was determined by the URL of the applet's web page.

The resources tag specified the location of your JAR file and the version of Java to use. The
path for your JAR file was assumed to be the default working directory as was the location of
your JNLP file. Also included in your JNLP file was a description of your applet, surrounded by
the applet-desc tag. The name of your applet and the name of your main class file was
specified in this tag.

The HTML file contained information necessary to load the applet without having to download
the applet information from a server. We first specified that we are going to load the
application using a JavaScript call. Then, in our first script tag, we added a section to allow us
to call the applet without a codebase. This is advantageous because the application can be
loaded and tested in different environments without changing the codebase attribute. It is,
instead, inherited from the web page that the application is running from.

www.it-ebooks.info

http://www.it-ebooks.info/

Database, Security, and System Enhancements

296

There are two functions of the Deployment Toolkit that can be used to
deploy Java applets in a web page without a codebase attribute: the
launchWebStartApplication and createWebStartLaunchButtonEx. We
chose to use the createWebStartLaunchButtonEx for this recipe, but the
launchWebStartApplication option is also discussed as follows. In both instances, the
client must have the Java SE 7 release to launch the applet, and if they do not, they will be
directed to the Java website to download the most recent version.

The createWebStartLaunchButtonEx function created a launch button for the
application. Within the script tag, the jnlpFile variable specified the name of the
JNLP file and was relative to the applet's web page. This filename is then passed to the
deployJava.createWebStartLaunchButtonEx function.

Alternatively, the launchWebStartApplication function could be embedded in an HTML
link. The function is invoked within an href tag, shown as follows:

<script src="http://www.java.com/js/deployJava.js"></script>
<a href="javascript:deployJava.launchWebStartApplication('JNLPExample.
jnlp');">Launch
</script>

The second script tag within your HTML file contained information about your JNLP file.
The jnlp_href variable stored the name of the JNLP file. The JNLP file's encoded form was
specified by the jnlp_embedded parameter. The BASE64 encoder encoded binary data for
instances where the data needs to be stored and transferred across textual mediums, such
as e-mail and XML files.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Concurrent
Processing

In this chapter, we will cover the following:

 f Using join/fork framework in Java 7

 f Using the reusable synchronization barrier Phaser

 f Using the ConcurrentLinkedDeque class safely with multiple threads

 f Using the LinkedTransferQueue class

 f Supporting multiple threads using the ThreadLocalRandom class

Introduction
Support for concurrent applications has been improved in Java 7. Several new classes have
been introduced that support the parallel execution of tasks. The ForkJoinPool class is
used for applications, which use the divide-and-conquer technique to solve a problem. Each
subproblem is forked (split) as a separate thread and later joined, if necessary to provide
a solution. The threads used by this class are normally subclasses of the java.util.
concurrent.ForkJoinTask class and are lightweight threads. The use of this approach is
illustrated in the Using join/fork framework in Java recipe.

In addition, the java.util.concurrent.Phaser class has been introduced to support the
execution of a collection of threads in a series of phases. A group of threads are synchronized,
so that they all execute and then wait for the completion of the others. Once they have all
completed, they can be re-executed for a second phase or subsequent phase. The Using the
reusable synchronization barrier Phaser recipe illustrates the use of this class in a game
engine setting.

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

298

The Using the java.util.concurrent.ConcurrentLinkedDeque class safely with multiple threads
and Using the java.util.concurrent.LinkedTransferQueue class recipes introduced two new
classes designed to work safely with multiple threads. Examples of their use in support of
the producer/consumer framework are illustrated.

The java.util.concurrent.ThreadLocalRandom class is new and provides better
support for random number generation used between multiple threads. It is discussed in
the Supporting multiple threads using the ThreadLocalRandom class recipe.

Two new constructors have been added to the java.util.
ConcurrentModificationException class. They both accept a Throwable object
used to specify the cause of the exception. One of the constructors also accepts a string
that provides a detail message regarding the exception.

Java 7 has improved the use of class loaders by modifying the locking mechanism to avoid
deadlocks. In multi-threaded custom class loaders prior to Java 7, certain custom class
loaders were prone to deadlocks, when they used a cyclic delegation model.

Consider the following scenario. Thread1 tries to use a ClassLoader1 (locking ClassLoader1)
to load class1. It then delegates the loading of class2 to ClassLoader2. At the same time,
Thread2 uses ClassLoader2 (locking ClassLoader2) to load class3, and then delegates the
loading of class4 to ClassLoader1. Since both class loaders are locked and both the threads
need both loaders, a deadlock situation occurs.

The desired behavior of a concurrent class loader is to load different classes from the same
instance of the class loader concurrently. This requires locking at a finer level of granularity,
such as locking a class loader by the name of the class being loaded.

Synchronization should not be done at the class loader level. Instead, a lock should be made
on a class level, where the class loader allows only a single instance of the class to be loaded
at a time by that class loader.

Some class loaders are capable of loading classes concurrently. This type of class loader is
called parallel capable class loaders. They are required to register themselves during their
initialization process using the registerAsParallelCapable method.

If the custom class loader uses an acyclic hierarchal delegation model, no changes are
needed in Java. In a hierarchal delegation model, delegation is first made to its parent class
loader. Class loaders that do not use the hierarchical delegation model should be constructed
as parallel capable class loaders in Java.

To avoid deadlock for custom class loaders:

 f Use the registerAsParallelCapable method in the class initialization
sequence. This indicates that all instances of the class loader are multi-thread safe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

299

 f Make sure that the class loader code is multi-thread safe. This involves:

 � Using an internal locking scheme, such as the class name locking scheme
used by java.lang.ClassLoader

 � Removing any synchronization on the class loader lock

 � Ensuring that critical sections are multi-thread safe

 f It is recommended that the class loader overrides the findClass(String) method

 f If the defineClass methods are overridden, then ensure that they are only called
once per class name

More detail about this problem can be found at http://openjdk.java.net/groups/
core-libs/ClassLoaderProposal.html.

Using join/fork framework in Java
The join/fork framework is an approach that supports breaking a problem into smaller and
smaller pieces, solving them in parallel, and then combining the results. The new java.
util.concurrent.ForkJoinPool class supports this approach. It is designed to work
with multi-core systems, ideally with dozens or hundreds of processors. Currently, few desktop
platforms support this type of concurrency, but future machines will. With fewer than four
processors, there will be little performance improvement.

The ForkJoinPool class is derived from the java.util.concurrent.
AbstractExecutorService making it an ExecutorService. It is designed to work with
ForkJoinTasks, though it can be used with normal threads. The ForkJoinPool class
differs from other executors, in that its threads attempt to find and execute subtasks created
by other currently running tasks. This is called work-stealing.

The ForkJoinPool class can be used for problems where the computation on the
subproblems is either modified or returns a value. When a value is returned, a java.
util.concurrent.RecursiveTask derived class is used. Otherwise, the java.util.
concurrent.RecursiveAction class is used. In this recipe we will illustrate the use of
the RecursiveTask derived class.

Getting ready
To use the fork/join framework for a task that returns a result for each subtask:

1. Create a subclass of RecursiveTask that implements the computation needed.

2. Create an instance of the ForkJoinPool class.

3. Use the ForkJoinPool class' invoke method with the instance of the subclass
of the RecursiveTask class.

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

300

How to do it...
This application is not intended to be implemented in the most efficient manner, but is used to
illustrate the fork/join task. As a result, on systems with a small number of processors, there
may be little or no performance improvement.

1. Create a new console application. We will use a static inner class that is derived from
RecursiveTask to compute the sum of squares of the integers in the numbers
array. First, declare the numbers array as follows:
 private static int numbers[] = new int[100000];

2. Add the SumOfSquaresTask class as follows. It creates a subrange of array
elements and either uses an iterative loop to compute their sum of squares
or breaks the array into smaller pieces based on a threshold size:
 private static class SumOfSquaresTask extends
RecursiveTask<Long> {

 private final int thresholdTHRESHOLD = 1000;
 private int from;
 private int to;

 public SumOfSquaresTask(int from, int to) {
 this.from = from;
 this.to = to;
}

 @Override
 protected Long compute() {
 long sum = 0L;
 int mid = (to + from) >>> 1;

 if ((to - from) < thresholdTHRESHOLD) {
 for (int i = from; i < to; i++) {
 sum += numbers[i] * numbers[i];
}
 return sum;
}
else {
 List<RecursiveTask<Long>> forks =
 new ArrayList<>();
 SumOfSquaresTask task1 =
 new SumOfSquaresTask(from, mid);
 SumOfSquaresTask task2 =
 new SumOfSquaresTask(mid, to);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

301

 forks.add(task1);
 task1.fork();
 forks.add(task2);
 task2.fork();

 for (RecursiveTask<Long> task : forks) {
 sum += task.join();
}
 return sum;
}
}
}

3. Add the following main method. For comparison purposes, the sum of squares is
computed using a for loop and then using the ForkJoinPool class. The execution
time is calculated and displayed as follows:
 public static void main(String[] args) {
 for (int i = 0; i < numbers.length; i++) {
 numbers[i] = i;
}

 long startTime;
 long stopTime;

 long sum = 0L;
 startTime = System.currentTimeMillis();
 for (int i = 0; i < numbers.length; i++) {
 sum += numbers[i] * numbers[i];
}
 System.out.println("Sum of squares: " + sum);
 stopTime = System.currentTimeMillis();
 System.out.println("Iterative solution time: " + (stopTime
- startTime));

 ForkJoinPool forkJoinPool = new ForkJoinPool();
 startTime = System.currentTimeMillis();
 long result = forkJoinPool.invoke(new SumOfSquaresTask(0,
numbers.length));
 System.out.println("forkJoinPool: " + forkJoinPool.
toString());
 stopTime = System.currentTimeMillis();
 System.out.println("Sum of squares: " + result);
 System.out.println("Fork/join solution time: " + (stopTime
- startTime));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

302

4. Execute the application. Your output should be similar to the following. However, you
should observe different execution times depending on your hardware configuration:

Sum of squares: 18103503627376

Iterative solution time: 5

Sum of squares: 18103503627376

Fork/join solution time: 23

Notice that the iterative solution is faster than the one using the fork/join strategy.
As mentioned earlier, this approach is not always more efficient, unless there are
a large number of processors.

Running the application repeatedly will result in different results. A more aggressive testing
approach would be to execute the solution repeatedly under possibly different processor
loading conditions and then take the average of the result. The size of the threshold will
also affect its performance.

How it works...
The numbers array was declared as a 100,000 element integer array. The
SumOfSquaresTask class was derived from the RecursiveTask class using the generic
type Long. A threshold of 1000 was set. Any subarray smaller than this threshold was solved
using iteration. Otherwise the segment was divided in half and two new tasks were created,
one for each half.

The ArrayList was used to hold the two subtasks. This was strictly not needed and actually
slows down the computation. However, it would be useful if we decided to partition the array
into more than two segments. It provides a convenient way of recombining the elements when
the subtasks are joined.

The fork method was used to split up the subtasks. They entered the thread pool and will
eventually be executed. The join method returned the results when the subtask completed.
The sum of the subtasks was added together and then returned.

In the main method, the first code segment computed the sum of squares using a for
loop. The start and stop time were based on the current time measured in milliseconds. The
second segment created an instance of the ForkJoinPool class, and then used its invoke
method with a new instance of the SumOfSquaresTask object. The arguments passed to the
SumOfSquaresTask constructor, instructed it to start with the first element of the array and
end with the last. Upon completion, the execution time was displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

303

There's more...
The ForkJoinPool class has several methods that report on the state of the pool, including:

 f getPoolSize: This method returns the number of threads that are started but are
not completed

 f getRunningThreadCount: This method returns an estimate of the number of
threads that are not blocked but are waiting to join other tasks

 f getActiveThreadCount: This method returns an estimate of the number of
threads executing tasks

The ForkJoinPool class' toString method returns several aspects of the pool.
Add the following statement immediately after the invoke method is executed:

 out.println("forkJoinPool: " + forkJoinPool);

When the program executes, you will get an output similar to the following:

forkJoinPool: java.util.concurrent.ForkJoinPool@18fb53f6[Running, parallelism = 4, size =
55, active = 0, running = 0, steals = 171, tasks = 0, submissions = 0]

See also
The Using the reusable synchronization barrier Phaser recipe offers a different approach for
executing multiple threads.

Using the reusable synchronization barrier
Phaser

The java.util.concurrent.Phaser class is concerned with the synchronization of
threads that work together in cyclic type phases. The threads will execute and then wait for
the completion of the other threads in the group. When all of the threads are completed, one
phase is done. The Phaser can then be used to coordinate the execution of the same set of
threads again.

The java.util.concurrent.CountdownLatch class provided a way of doing this, but
required a fixed number of threads, and is executed once by default. The java.util.
concurrent.CyclicBarrier, which was introduced in Java 5, also used a fixed number
of threads, but is reusable. However, it is not possible to advance to the next phase. This is
useful when a problem is characterized by a series of steps/phases that advance from one
phase to the next based on some criteria.

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

304

With the introduction of the Phaser class in Java 7, we now have a concurrency abstraction
that combines the features of CountDownLatch and CyclicBarrier and adds support
of a dynamic number of threads. The term, phase, refers to the idea that the threads can be
coordinated to execute in distinct phases, or steps. All of the threads will execute and then
wait for the others to complete. Once they have completed, they will then begin anew and
complete a second or subsequent phase of operation.

A barrier is a type of block that prevents a task from proceeding further until some condition
is met. A common condition is when all of the related threads have completed.

The Phaser class provides several features, which makes it useful:

 f Parties can be added and removed from the thread pool dynamically

 f There is a unique phase number associated with each phase

 f The Phaser can be terminated causing any waiting threads to return immediately

 f Exceptions that occur do not affect the state of the barrier

The register method increments the number of parties that are participating. The
termination of a phaser occurs when the internal count reaches zero or as determined
by some other criteria set.

Getting ready
We will develop an application that mimics the operation of a game engine. The first version
will create a series of tasks representing participants in a game. We will use the Phaser class
to coordinate their interaction.

To use the Phaser class to synchronize the start of a set of tasks:

1. Create a collection of Runnable objects that will participate in the phaser.

2. Create an instance of the Phaser class.

3. For each participant:

 � Register the participant

 � Create a new thread using the participants' Runnable object

 � Use the arriveAndAwaitAdvance method to wait for the other tasks
to be created

 � Execute the thread

4. Use the Phaser object's arriveAndDeregister to start the execution of
the participants.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

305

How to do it...
1. Create a new console application with a class called GamePhaserExample. We

will create a simple hierarchy of inner classes that represent the participants in a
game. Add the Entity class as the base abstract class, defined as follows. While not
absolutely necessary, we'll be using inheritance to simplify the development of these
types of applications:
 private static abstract class Entity implements Runnable {

 public abstract void run();

}

2. Next, we will create two derived classes: Player and Zombie. These classes
implement the run method and a toString method. The run method uses the
sleep method to simulate the work performed. As expected, zombies are slower
than humans:
 private static class Player extends Entity {
 private final static AtomicInteger idSource =
 new AtomicInteger();
 private final int id = idSource.incrementAndGet();

 public void run() {
 System.out.println(toString() + " started");
 try {
 Thread.currentThread().sleep(
 ThreadLocalRandom.current().nextInt(200,
 600));
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
 System.out.println(toString() + " stopped");
}

 @Override
 public String toString() {
 return "Player #" + id;
}
}

 private static class Zombie extends Entity {
 private final static AtomicInteger idSource = new
AtomicInteger();

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

306

 private final int id = idSource.incrementAndGet();

 public void run() {
 System.out.println(toString() + " started");
 try {
 Thread.currentThread().sleep(
 ThreadLocalRandom.current().nextInt(400,
 800));
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
 System.out.println(toString() + " stopped");
}

 @Override
 public String toString() {
 return "Zombie #" + id;
}
}

3. To make the example clearer, add the following main methoid to the
GamePhaserExample class:
 public static void main(String[] args) {
 new GamePhaserExample().execute();
}

4. Next, add the following execute method where we create a list of participants and
then call the gameEngine method:
 private void execute() {
 List<Entity> entities = new ArrayList<>();
 entities = new ArrayList<>();
 entities.add(new Player());
 entities.add(new Zombie());
 entities.add(new Zombie());
 entities.add(new Zombie());
 gameEngine(entities);

}

5. The gameEngine method follows. A for each loop creates a thread for
each participant:
 private void gameEngine(List<Entity> entities) {
 final Phaser phaser = new Phaser(1);
 for (final Entity entity : entities) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

307

 final String member = entity.toString();
 System.out.println(member + " joined the game");
 phaser.register();
 new Thread() {
 @Override
 public void run() {
 System.out.println(member +
 " waiting for the remaining
 participants");
 phaser.arriveAndAwaitAdvance();
 // wait for remaining entities
 System.out.println(member + " starting run");
 entity.run();
}
}.start();
}
 phaser.arriveAndDeregister();
 //Deregister and continue
 System.out.println("Phaser continuing");
}

6. Execute the application. The output is non-deterministic, but should be similar
to the following:

Player #1 joined the game

Zombie #1 joined the game

Zombie #2 joined the game

Player #1 waiting for the remaining participants

Zombie #1 waiting for the remaining participants

Zombie #3 joined the game

Phaser continuing

Zombie #3 waiting for the remaining participants

Zombie #2 waiting for the remaining participants

Zombie #1 starting run

Zombie #1 started

Zombie #3 starting run

Zombie #3 started

Zombie #2 starting run

Zombie #2 started

Player #1 starting run

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

308

Player #1 started

Player #1 stopped

Zombie #1 stopped

Zombie #3 stopped

Zombie #2 stopped

Notice that the Phaser object waits until all of the participants have joined the game.

How it works...
The sleep method was used to simulate the work involved by that entity. Notice the use of
the ThreadLocalRandom class. Its nextInt method returned a random number between
the values specified in its parameters. When using concurrent threads, this is the preferred
way of generating random numbers as detailed in the Supporting multiple threads using the
ThreadLocalRandom class recipe.

An instance of the AtomicInteger class was used to assign unique IDs to each object
created. This is a safe way of generating numbers in threads. The toString method
returns a simple string representation of the entity.

In the execute method, we created an ArrayList to hold the participants. Notice the use of
the diamond operator in the creation of the ArrayList. This Java 7 language improvement is
explained in the Using the diamond operator for constructor type inference recipe in Chapter
1, Java Language Improvements. One player and three zombies were added. The zombies
always seem to outnumber the humans. The gameEngine method was then called.

A Phaser object was created with an argument of one and that represented the first
participant. It is not an entity and simply served as a mechanism to help control the phaser.

In the for each loop, the number of parties in the phaser was incremented by one using
the register method. A new thread was created using an anonymous inner class.
In its run method, the entity was not started until all of the participants arrived. The
arriveAndAwaitAdvance method resulted in the notification that a participant has
arrived, and that the method should not return until all of the participants have arrived
and the phase has finished.

At the start of each iteration of the while loop, the number of registered participants was
one larger than the number of participants who have arrived. The register method
incremented this internal count by one. The internal count was then two more than the
number that had arrived. When the arriveAndAwaitAdvance method is executed, the
number of participants who are waiting now will be one more than those who had registered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

309

After the loop terminated, there was still one more registered party than participants who had
arrived. However, when the arriveAndDeregister method executed, the internal count
of the number of participants who had arrived matched the number of participants, and the
threads started. In addition, the number of registered parties was decreased by one. When all
of the threads terminated, the application terminated.

There's more...
It is possible to register a group of parties using the bulkRegister method. This method
takes a single integer argument specifying the number of parties to register.

Under some conditions, it may be desirable to force the termination of the phaser. The
forceTermination method is used for this purpose.

During the execution of a phaser, there are several methods that will return information about
the state of the phaser as detailed in the following table. If the phaser has terminated, then
these methods will have no effect:

Method Description
getRoot Returns the root Phaser. Used with a tree of Phasers
getParent Returns the parent of the Phaser
getPhase Returns the current phase number
getArrivedParties The number of parties that have arrived at this current phase
getRegisteredParties The number of registered parties
getUnarrivedParties The number of parties that have not yet arrived at this current

phase

A tree of phasers can be constructed, where a phaser is created as a branch of the task.
The getRoot method is useful in this situation. The phaser construct is discussed at
http://www.cs.rice.edu/~vs3/PDF/SPSS08-phasers.pdf.

Using a phaser to repeat a series of tasks
We can also use the Phaser class to support a series of phases where tasks are executed,
a possible intermediate action is performed, and then the series of tasks are repeated again.

To support this behavior, we will modify the gameEngine method. The modification
will include:

 f The addition of an iterations variable

 f The overriding of the Phaser class' onAdvance method

 f Using a while loop within each task's run method controlled by the
isTerminated method

www.it-ebooks.info

http://www.cs.rice.edu/~vs3/PDF/SPSS08-phasers.pdf
http://www.cs.rice.edu/~vs3/PDF/SPSS08-phasers.pdf
http://www.it-ebooks.info/

Concurrent Processing

310

Add a variable called iterations and initialize it to 3. This is used to specify how many
phases we will use. Also, override the onAdvance method shown as follows:

 final int iterations = 3;

 final Phaser phaser = new Phaser(1) {
 protected boolean onAdvance(int phase, int
registeredParties) {
 System.out.println("Phase number " + phase + "
completed\n")
 return phase >= iterations-1 || registeredParties ==
0;
}
};

Each phase is uniquely numbered and starts at zero. A call to the onAdvance passes the
current phase number and the current number of parties registered to the phaser. The default
implementation of this method returns true when the number of registered parties becomes
zero. This results in the phaser being terminated.

The implementation of this method resulted in the method returning true only if the phase
number exceeded the iterations value, that is, minus 1, or there are no registered parties
using the phaser.

Modify the run method as highlighted in the following code:

 for (final Entity entity : entities) {
 final String member = entity.toString();
 System.out.println(member + " joined the game");
 phaser.register();
 new Thread() {

 @Override
 public void run() {
 do {
 System.out.println(member + " starting run");
 entity.run();
 System.out.println(member +
 " waiting for the remaining
participants during phase " +
 phaser.getPhase());
 phaser.arriveAndAwaitAdvance(); // wait for
remaining entities
}
while (!phaser.isTerminated());
}
}.start();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

311

The entity is allowed to run first, and then it waits for the other participants to complete and
arrive. As long as the phaser has not been terminated as determined by the isTerminated
method, the next phase will be executed when everyone is ready.

The last step is to use the arriveAndAwaitAdvance method to advance the phaser to
the next phase. Again, as long as the phaser has not terminated, the phaser will advance
to the next phase when every participant has arrived. Use the following code sequence to
accomplish this:

 while (!phaser.isTerminated()) {
 phaser.arriveAndAwaitAdvance();
}
 System.out.println("Phaser continuing");

Execute the program using only one player and one zombie. This will reduce the amount
of output and should be similar to the following:

Player #1 joined the game

Zombie #1 joined the game

Player #1 starting run

Player #1 started

Zombie #1 starting run

Zombie #1 started

Player #1 stopped

Player #1 waiting for the remaining participants during phase 0

Zombie #1 stopped

Zombie #1 waiting for the remaining participants during phase 0

Phase number 0 completed

Player #1 starting run

Player #1 started

Zombie #1 starting run

Zombie #1 started

Player #1 stopped

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

312

Player #1 waiting for the remaining participants during phase 1

Zombie #1 stopped

Zombie #1 waiting for the remaining participants during phase 1

Phase number 1 completed

Zombie #1 starting run

Player #1 starting run

Zombie #1 started

Player #1 started

Player #1 stopped

Player #1 waiting for the remaining participants during phase 2

Zombie #1 stopped

Zombie #1 waiting for the remaining participants during phase 2

Phase number 2 completed

Phaser continuing

See also
See the Using a random number generator isolated to the current thread recipe for further
information about generating random numbers for multiple threads.

Using the new ConcurrentLinkedDeque
safely with multiple threads

The java.util.concurrent.ConcurrentLinkedDeque class, which is a member of
the Java Collections Framework, offers the ability for multiple threads to safely access the
same data collection concurrently. The class implements a double-ended queue, known as
a deque, and allows for the insertion and removal of elements from both ends of the deque.
It is also known as a head-tail linked list and, like other concurrent collections, does not allow
the usage of null elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

313

In this recipe we will demonstrate a basic implementation of the ConcurrentLinkedDeque
class and illustrate the use of some of the most common methods.

Getting ready
To use a ConcurrentLinkedDeque in a producer/consumer framework:

1. Create an instance of a ConcurrentLinkedDeque.

2. Define the element to place into the deque.

3. Implement a producer thread to generate elements to be placed in the deque.

4. Implement a consumer thread to remove elements from the deque.

How to do it...
1. Create a new console application. Declare a private static instance of a

ConcurrentLinkedDeque using a generic type of Item. The Item class is
declared as an inner class. Include get methods and constructors, as shown
in the following code, using two attributes, description and itemId:
 private static ConcurrentLinkedDeque<Item> deque = new
ConcurrentLinkedDeque<>();

 static class Item {

 privateublic final String description;
 privateublic final int itemId;

 public Item() {
 "this(Default Item";, 0)
}

 public Item(String description, int itemId) {
 this.description = description;
 this.itemId = itemId;
}
}

2. Then create a producer class to generate elements of the type Item. For this
recipe's purposes, we are only going to generate seven items and then print out a
statement to demonstrate that the item has been added to the deque. We use the
ConcurrentLinkedDeque class' add method to add the elements. After each
addition, the thread sleeps briefly:
 static class ItemProducer implements Runnable {
 @Override
 public void run() {
 String itemName = "";

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

314

 int itemId = 0;
 try {
 for (int x = 1; x < 8; x++) {
 itemName = "Item" + x;
 itemId = x;
 deque.add(new Item(itemName, itemId));
 System.out.println("New Item Added:" +
itemName + " " + itemId);
 Thread.currentThread().sleep(250);
}
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
}
}

3. Next, create a consumer class. To ensure that the deque will have elements in it by
the time the consumer thread tries to access it, we make the thread sleep for one
second prior to retrieving elements. Then we use the pollFirst method to retrieve
the first element in the deque. If the element is not null then we pass the element to
a generateOrder method. In this method, we print out information about the item:
static class ItemConsumer implements Runnable {

 @Override
 public void run() {
 try {
 Thread.currentThread().sleep(1000);
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
 Item item;
 while ((item = deque.pollFirst()) != null) {
{
 generateOrder(item);
}
}

 private void generateOrder(Item item) {
 System.out.println("Part Order");
 System.out.println("Item description: " + item.
getDescriptiond());
 System.out.println("Item ID # " + item.getItemIdi());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

315

 System.out.println();
 try {
 Thread.currentThread().sleep(1000);
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
}
}

4. Finally, in our main method, we start both threads:
 public static void main(String[] args) {
 new Thread(new ItemProducer());.start()
 new Thread(new ItemConsumer());.start()
}

5. When you execute the program, you should see output similar to the following:

New Item Added:Item1 1

New Item Added:Item2 2

New Item Added:Item3 3

New Item Added:Item4 4

Part Order

Item description: Item1

Item ID # 1

New Item Added:Item5 5

New Item Added:Item6 6

New Item Added:Item7 7

Part Order

Item description: Item2

Item ID # 2

Part Order

Item description: Item3

Item ID # 3

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

316

Part Order

Item description: Item4

Item ID # 4

Part Order

Item description: Item5

Item ID # 5

Part Order

Item description: Item6

Item ID # 6

Part Order

Item description: Item7

Item ID # 7

How it works...
When we started both threads, we gave the producer thread a head start to populate our
deque with items. After a second, the consumer thread began retrieving elements. The use of
the ConcurrentLinkedDeque class allowed both threads to safely access elements of the
deque at the same time.

In our example, we made use of the methods add and pollFirst to add and remove
elements of the deque. There are a number of methods available, many of which operate
in essentially the same fashion. The There's more... section provides more detail about the
various options for accessing the deque elements.

There's more...
We will cover several topics including:

 f Problems with asynchronous concurrent threads

 f Adding elements to the deque

 f Retrieving elements from the deque

 f Accessing a specific element of the deque

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

317

Problems with asynchronous concurrent threads
Due to the fact that multiple threads may be accessing the collection at any given moment,
the size method is not always going to return an accurate result. This is also true when using
the iterator or descendingIterator methods. Additionally, any bulk data operations,
such as addAll or removeAll, are not always going to achieve the desired results. If one
thread is accessing an item in the collection and another thread tries to pull all items, the bulk
action is not guaranteed to function atomically.

There are two toArray methods available for retrieving all elements of the deque and storing
them in an array. The first returns an array of objects representing all of the elements of the
deque and can be cast to the appropriate data type. This is useful when the elements of the
deque are of different data types. The following is an example of how to use the first form of
the toArray method using our previous thread example:

Item[] items = (Item[]) deque.toArray();

The other toArray method requires an initialized array of a specific data type as an
argument and returns an array of elements of that data type.

Item[] items = deque.toArray(new Item[0]);

Adding elements to the deque
The following table lists some of the methods available for adding elements to the deque.
The methods that are grouped together in the following table perform essentially the same
function. This variety of similar methods is the result of the ConcurrentLinkedDeque class
implementing slightly different interfaces:

Method name Adds an element to
add(Element e)
offer(Element e)
offerLast(Element e)
addLast(Element e)

End of the deque

addFirst(Element e)
offerFirst(Element e)
push(Element e)

Front of the deque

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

318

Retrieving elements from the deque
The following are some of the methods available for retrieving elements from the deque:

Method name Error action Function
element() Throws exception if deque is empty Retrieves but does not remove the

first element of the dequegetFirst()

getLast()

peek() Returns null if deque is empty
peekFirst()

peekLast()

pop() Throws exception if deque is empty Retrieves and removes first
element of dequeremoveFirst()

poll() Returns null if deque is empty
pollFirst()

removeLast() Throws exception if deque is empty Retrieves and removes last
element of deque

pollLast() Returns null if deque is empty

Accessing a specific element of the deque
The following are some of the methods available for accessing specific elements of a deque:

Method name Function Comments
contains(Element e) Returns true if

the deque contains
at least one
element that equals
Element e

remove(Element e) Removes the first
occurrence of an
element in the
deque that equals
Element e

If the element does not
exist in the deque, the
deque is unchanged.
Throws exception if e
is null

removeFirstOccurrence(Element e)

removeLastOccurrence(Element e) Removes the last
occurrence of an
element in the
deque that equals
Element e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

319

Using the new LinkedTransferQueue class
The java.util.concurrent.LinkedTransferQueue class implements the java.
util.concurrent.TransferQueue interface and is an unbounded queue that follows a
First In First Out model for the queue elements. This class provides blocking methods and
non-blocking methods for retrieving elements and is an appropriate choice for concurrent
access by multiple threads. In this recipe we will create a simple implementation of a
LinkedTransferQueue and explore some of the methods available in this class.

Getting ready
To use a LinkedTransferQueue in a producer/consumer framework:

1. Create an instance of a LinkedTransferQueue.

2. Define a type of element to place into the queue.

3. Implement a producer thread to generate elements to be placed in the queue.

4. Implement a consumer thread to remove elements from the queue.

How to do it...
1. Create a new console application. Declare a private static instance of a

LinkedTransferQueue using a generic type of Item. Then create the inner class
Item and include get methods and constructors, as shown in the following code,
using two attributes, description and itemId as follows:
 private static LinkedTransferQueue<Item>
 linkTransQ = new LinkedTransferQueue<>();

 static class Item {
 public final String description;
 public final int itemId;

 public Item() {
 this("Default Item", 0) ;
}

 public Item(String description, int itemId) {
 this.description = description;
 this.itemId = itemId;
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

320

2. Next, create a producer class to generate elements of the type Item. For this
recipe's purposes, we are only going to generate seven items and then print out a
statement to demonstrate that the item has been added to the queue. We will use
the LinkedTransferQueue class' offer method to add the elements. After each
addition, the thread sleeps briefly and we print out the name of the item added. We
then use the hasWaitingConsumer method to determine if there are any consumer
threads waiting for items to become available:
 static class ItemProducer implements Runnable {
 @Override
 public void run() {
 try {
 for (int x = 1; x < 8; x++) {
 String itemName = "Item" + x;
 int itemId = x;
 linkTransQ.offer(new Item(itemName, itemId));
 System.out.println("New Item Added:" +
 itemName + " " + itemId);
 Thread.currentThread().sleep(250);
 if (linkTransQ.hasWaitingConsumer()) {
 System.out.println("Hurry up!");
}
}
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
}
}

3. Next, create a consumer class. To demonstrate the function of the
hasWaitingConsumer method, we make the thread sleep for one second prior to
retrieving elements to ensure there is no waiting consumer at first. Then, within a
while loop, we use the take method to remove the first item in the list. We chose
the take method because it is a blocking method and will wait until the queue has an
available element. Once the consumer thread is able to take an element, we pass the
element to the generateOrder method, which prints out information about the item:
 static class ItemConsumer implements Runnable {
 @Override
 public void run() {
 try {
 Thread.currentThread().sleep(1000);
}
catch (InterruptedException ex) {
 ex.printStackTrace();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

321

}
 while (true) {
 try {
 generateOrder(linkTransQ.take());
}
catch (InterruptedException ex) {
 ex.printStackTrace();
}
}
}

 private void generateOrder(Item item) {
 System.out.println();
 System.out.println("Part Order");
 System.out.println("Item description: " +
 item.description());
 System.out.println("Item ID # " + item.itemId());

}
}

4. Finally, in our main method, we start both threads:
 public static void main(String[] args) {
 new Thread(new ItemProducer()).start();
 new Thread(new ItemConsumer()).start();
}

5. When you execute the program, you should see output similar to the following:

New Item Added:Item1 1

New Item Added:Item2 2

New Item Added:Item3 3

New Item Added:Item4 4

Part Order

Item description: Item1

Item ID # 1

Part Order

Item description: Item2

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

322

Item ID # 2

Part Order

Item description: Item3

Item ID # 3

Part Order

Item description: Item4

Item ID # 4

Hurry up!

New Item Added:Item5 5

Part Order

Item description: Item5

Item ID # 5

Hurry up!

Part Order

Item description: Item6

Item ID # 6

New Item Added:Item6 6

Hurry up!

Part Order

Item description: Item7

Item ID # 7

New Item Added:Item7 7

Hurry up!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

323

How it works...
When we started both threads, we gave the producer thread a head start to populate our
queue with items by sleeping for one second in the ItemConsumer class. Notice that the
hasWaitingConsumer method returned false initially because the take method had
not yet been executed by the consumer thread. After a second, the consumer thread began
retrieving elements. With each retrieval, the generateOrder method printed out information
about the element retrieved. After all elements in the queue were retrieved, notice a final
Hurry up! statement, indicating there is still a consumer waiting. In this example, because the
consumer is using a blocking method within a while loop, the thread will never terminate.
In a real life situation, the thread should be terminated in a more graceful manner, such as
sending a terminate message to the consumer thread.

In our example, we used the methods offer and take to add and remove elements
of the queue. There are other methods available and these are discussed in the There's
more... section.

There's more...
Here we will discuss the following:

 f Problems with asynchronous concurrent threads

 f Adding elements to the queue

 f Retrieving elements from the deque

Problems with asynchronous concurrent threads
Due to the fact that multiple threads may be accessing the collection at any given moment,
the size method is not always going to return an accurate result. Additionally, any bulk data
operations, such as addAll or removeAll, are not always going to achieve the desired
results. If one thread is accessing an item in the collection and another thread tries to pull
all items, the bulk action is not guaranteed to function atomically.

Adding elements to the queue
The following are some of the methods available for adding elements to the queue:

Method name Adds element to the Comments
add(Element e) End of the queue Queue is unbounded, so the method will

never return false or throw an exception
offer(Element e) Queue is unbounded, so the method will

never return false
put(Element e) Queue is unbounded, so the method will

never block

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

324

Method name Adds element to the Comments
offer(Element

 e, Long t,

 TimeUnit u)

End of the queue

Wait for t time units of
type u before giving up

Queue is unbounded, so the method will
always return true

Retrieving elements from the deque
The following are some of the methods available for retrieving elements from the deque:

Method name Function Comments
peek() Retrieves, but does not

remove the first element of
the queue

Returns null if the queue is
empty

poll() Removes the first element
of the queue

Returns null if the queue is
empty

poll(Long t, TimeUnit u) Removes element from
front of the queue, waiting
time t (in units u) before
giving up

Returns null if the time limit
is up before an element is
available

remove(Object e) Removes element from
the queue that equals
Object e

Returns true if the
element is found and
removed

take() Removes the first element
of the queue

Throws an exception if
interrupted while blocking

transfer(Element e) Transfers an element to the
consumer thread, waiting if
necessary

Will insert an element at the
end of the queue and wait
for the consumer thread to
retrieve it

tryTransfer(Element e) Transfers an element
immediately to the
consumer

Returns false if the
consumer is not available

tryTransfer(Element e,
Time t, TimeUnit u)

Transfers an element to the
consumer immediately, or
within time specified by t (in
units u)

Returns false if the
consumer is not available
when the time limit has
elapsed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

325

Supporting multiple threads using the
ThreadLocalRandom class

The java.util.concurrent package has a new class, ThreadLocalRandom, which
supports functionality similar to the Random class. However, the use of this new class, with
multiple threads, will result in less contention and better performance as compared to
their use with the Random class. When multiple threads need to use random numbers, the
ThreadLocalRandom class should be used. The random number generator is local to the
current thread. This recipe examines how to use this class.

Getting ready
The recommended way of using this class is to:

1. Use the static current method to return an instance of the ThreadLocalRandom
class.

2. Use the methods of the class against this object.

How to do it...
1. Create a new console application. Add the following code to the main method:

 System.out.println("Five random integers");
 for(int i = 0; i<5; i++) {
 System.out.println(ThreadLocalRandom.current().
 nextInt());
}

 System.out.println();
 System.out.println("Random double number between 0.0 and
35.0");
System.out.println(ThreadLocalRandom.current().nextDouble(35.0));

 System.out.println();
 System.out.println("Five random Long numbers between
 1234567 and 7654321");
 for(int i = 0; i<5; i++) {
 System.out.println(
 ThreadLocalRandom.current().nextLong(1234567L,
 7654321L));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrent Processing

326

2. Execute the program. Your output should appear similar to the following:

Five random integers

0

4232237

178803790

758674372

1565954732

Random double number between 0.0 and 35.0

3.196571144914888

Five random Long numbers between 1234567 and 7654321

7525440

2545475

1320305

1240628

1728476

How it works...
The nextInt method was executed five times with its return value being displayed. Notice
that the method returns 0 initially. The ThreadLocalRandom class extends the Random
class. However, the setSeed method is not supported. If you try to use it, it will throw an
UnsupportedOperationException.

The nextDouble method was then executed. This version of the overloaded method returned
a number between 0.0 and 35.0. The nextLong method was executed five times using two
parameters, which specified its starting (inclusive) and ending (exclusive) range values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

327

There's more...
The methods of this class return uniformly distributed numbers. The following table
summarizes its methods:

When a range is specified, the start value is inclusive
and the end value is exclusive.

Method Parameters Returns
current None The thread's current instance
next Integer value representing

the number of bits for the
return value

An integer in the range specified by the number
of bits

nextDouble double A double number between 0.0 and its
argument

double, double A double number between its arguments
nextInt int, int An integer number between its arguments
nextLong long A long number between 0 and its argument

long, long A long number between its arguments
setSeed long Throws

UnsupportedOperationException

See also
Examples of its use are found in the Using the reusable synchronization barrier Phaser recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Odds and Ends

In this chapter, we will cover the following:

 f Handling weeks in Java 7

 f Using Currency in Java 7

 f Using the NumericShaper.Range enumeration to support the display of digits

 f JavaBean improvements in Java 7

 f Handling locales and the Locale.Builder class in Java 7

 f Handling null references

 f Using the new BitSet methods in Java 7

Introduction
This chapter will address many new additions to Java 7 that do not fit into the previous
chapters. Many of these enhancements have potentially widespread application, such as the
java.lang.Objects class and java.util.Locale class improvements as discussed
in the Handling locales and the Locale.Builder class in Java 7 recipe. Others are more
specialized, such as the improvements made to the java.util.BitSet class, which is
covered in the Using the new BitSet methods in Java 7 recipe.

There have been a number of improvements in the handling of weeks and currency. The
calculation of the current week and the number of weeks per year is impacted by the locale.
In addition, it is now possible to determine the currencies available on a platform. These
issues are illustrated in the Handling weeks in Java 7 and Using Currency on Java 7 recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

330

A new enumeration has been added that eases the display of digits in different languages.
The use of the java.awt.font.NumericShaper class for this endeavor is discussed in
the Using the NumericShaper.Range enumeration to support the display of digits recipe.
Improvements in the support of JavaBeans are discussed in the JavaBean improvements in
Java 7 recipe.

There are also a number of enhancements, which do not warrant separate recipes. The rest
of this introduction is devoted to these topics.

Unicode 6.0
Unicode 6.0 is the newest revision of the Unicode standard. Java 7 supports this release with
the addition of thousands of more characters and numerous new methods. In addition, regular
expression pattern matching supports Unicode 6.0 using either \u or \x escape sequences.

Numerous new character blocks were added to the Character.UnicodeBlock class. The
Character.UnicodeScript enumeration was added in Java 7 to represent the character
scripts defined in the Unicode Standard Annex #24: Script Names.

More information regarding Unicode Standard Annex #24: Script
Names can be found at http://download.oracle.com/
javase/7/docs/api/index.html.

Several methods have been added to the Character class in support of the Unicode
operations. The following illustrates their use with the string 朝鲜圆, which is the display
name for North Korean Won in Chinese based on the locale, and the simplified script as
used in mainland China. Add the following code sequence to a new application:

 int codePoint = Character.codePointAt("朝鲜圆", 0);
 System.out.println("isBmpCodePoint: " + Character.
isBmpCodePoint(codePoint));
 System.out.println("isSurrogate: " +
Character.isSurrogate('朝'));
 System.out.println("highSurrogate: " + (int)Character.
highSurrogate(codePoint));
 System.out.println("lowSurrogate: " + (int)Character.
lowSurrogate(codePoint));
 System.out.println("isAlphabetic: " + Character.
isAlphabetic(codePoint));
 System.out.println("isIdeographic: " + Character.
isIdeographic(codePoint));
 System.out.println("getName: " + Character.
getName(codePoint));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

331

When executed, your output should appear as follows:

isBmpCodePoint: true

isSurrogate: false

highSurrogate: 55257

lowSurrogate: 57117

isAlphabetic: true

isIdeographic: true

getName: CJK UNIFIED IDEOGRAPHS 671D

Since the character is not a Unicode surrogate code, the highSurrogate and
lowSurrogate method results are not useful.

More information regarding Unicode 6.0 can be found at
http://www.unicode.org/versions/Unicode6.0.0/.

Primitive types and the compare method
Java 7 introduced new static methods for comparing primitive data types Boolean, byte,
long, short, and int. Each wrapper class now has a compare method, which takes two
instances of the data type as arguments and returns an integer representing the result of the
comparison. For example, you would have previously needed to use the compareTo method
to compare two Boolean variables, x and y as follows:

Boolean.valueOf(x).compareTo(Boolean.valueOf(y))

You can now use the compare method as follows:

Boolean.compare(x,y);

While this is new to Java for the Boolean data type, the compare method was previously
available for doubles and floats. Additionally in 7, the parse, valueof, and decode
methods, used for converting strings to numeric values, will accept a leading plus (+) sign with
data types Byte, Short, Integer, Long, and BigInteger, in addition to Float, Double,
and BigDecimal, which previously accepted the sign.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

332

Global logger
The java.util.logging.Logger class has a new method, getGlobal, used for
retrieving the global logger object named GLOBAL_LOGGER_NAME. The static field global of
the Logger class is prone to deadlocks when the Logger class is used in conjunction with
the LogManager class, as both classes will wait on each other to complete initialization. The
getGlobal method is the preferred way to access the global logger object, in order to
prevent such deadlock.

JavaDocs improvements
There have been significant improvements in JavaDocs as of Java 7. From a structural
standpoint, the generation of the HTML pages is now accomplished by using the HTMLTree
classes to create a document tree, which results in more accurate HTML generation and fewer
invalid pages.

There have also been external changes to the JavaDocs, some of which were in order to
comply with the new Section 508 accessibility guidelines. These are developed to ensure
screen readers, used for translating web-based text into audible output, are able to accurately
translate an HTML page. Primarily, this has resulted in the addition of more captions and
headings on the tables. JavaDocs now also use a CSS stylesheet to simplify changes to the
appearance of the pages.

JVM performance enhancements
The performance of the Java HotSpotTM virtual machine has been improved. Most of
these improvements are not under the control of the developer and are specialized
in nature. The interested reader will find more details about these enhancements at
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-
enhancements-7.html.

Handling weeks in Java 7
Some applications are concerned with the number of weeks in a year and the current week of
the year. It is common knowledge that there are 52 weeks in a year, but 52 weeks multiplied
by 7 days per week equals 364 days per year, not the actual 365 days. A week number
is used to refer to the week of the year. But how is that calculated? Java 7 has introduced
several methods to support determining the week of the year. In this recipe we will examine
these methods, and see how week-related values are calculated. The ISO 8601 standard
provides methods for representing dates and time. The java.util.GregorianCalendar
class supports this standard, except as described in the following section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

333

Getting ready
To use these week-based methods we need to:

1. Create an instance of the Calendar class.

2. Use its methods as appropriate.

How to do it...
Some implementations of the abstract java.util.Calendar class do not support week
calculations. To determine if the Calendar implementation supports week calculations,
we need to execute the isWeekDateSupported method. It returns true if the support
is provided. To return the number of weeks for the current calendar year, use the
getWeeksInWeekYear method. To determine the week for the current date, use the get
method with the WEEK_OF_YEAR as its argument.

1. Create a new console application. Add the following code to the main method:
 Calendar calendar = Calendar.getInstance();

 if(calendar.isWeekDateSupported()) {
 System.out.println("Number of weeks in this year: " +
calendar.getWeeksInWeekYear());
 System.out.println("Current week number: " + calendar.
get(Calendar.WEEK_OF_YEAR));
 }

2. Execute the application. Your output should appear as follows, but the values will be
dependent upon the date the application was executed:

Number of weeks in this year: 53

Current week number: 48

How it works...
An instance of the Calendar class was created. This is normally an instance of the
GregorianCalendar class. An if statement was controlled by the isWeekDateSupported
method. It returned true, which resulted in the execution of the getWeeksInWeekYear and
get methods. The get method was passed in the field WEEK_OF_YEAR, which returned the
current week number.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

334

There's more...
The date can be set using the setWeekDate method. This method has three arguments
specifying the year, week, and day. It provides a convenient technique for setting the date
based on weeks. The following illustrates this process by setting the year to 2012, the week
to the 16th week of the year, and the day to the third day of the week:

 calendar.setWeekDate(2012, 16, 3);
 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG, DateFormat.LONG).format(calendar.
getTime()));

When this code is executed, we get the following output:

April 17, 2012 12:00:08 PM CDT

The way that the first and last week of the year is calculated is locale-dependent. The
GregorianCalendar class' WEEK_OF_YEAR field ranges from 1 to 53, where 53 represents
a leap week. The first week of the year is:

 f The earliest seven day period

 f Starting on the first day of the week (getFirstDayOfWeek)

 f That contains at least the minimal days in a week (getMinimalDaysInFirstWeek)

The getFirstDayOfWeek and getMinimalDaysInFirstWeek methods are
locale-dependent. For example, the getFirstDayOfWeek method returns an integer
representing the first day of the week for a locale. In the U.S., it is SUNDAY, but in France
it is MONDAY.

The first and last week of a week year may have different calendar years. Consider the
following code sequence. The calendar is set to the first day of the first week of 2022:

 calendar.setWeekDate(2022, 1, 1);
 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG, DateFormat.LONG).format(calendar.
getTime()));

When executed, we get the following output:

December 26, 2021 12:15:39 PM CST

This shows that the week actually starts in the previous year.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

335

In addition, the TimeZone and SimpleTimeZone classes have an observesDaylightTime
method that returns true if the time zone observes daylight saving time. The following code
sequence creates an instance of a SimpleTimeZone class and then determines if daylight
saving time is supported. The time zone used is for Central Standard Time (CST):

 SimpleTimeZone simpleTimeZone = new SimpleTimeZone(
 -21600000,
 "CST",
 Calendar.MARCH, 1, -Calendar.SUNDAY,
 7200000,
 Calendar.NOVEMBER, -1, Calendar.SUNDAY,
 7200000,
 3600000);
 System.out.println(simpleTimeZone.getDisplayName() + " - " +
 simpleTimeZone.observesDaylightTime());

When this sequence is executed, you should get the following output:

Central Standard Time – true

Using the Currency class in Java 7
The java.util.Currency class introduced four new methods for retrieving information
about available currencies and their properties. This recipe illustrates the use of the
following methods:

 f getAvailableCurrencies: This method returns a set of currencies available

 f getNumericCode: This method returns the ISO 4217 numeric code for the currency

 f getDisplayName: This overloaded method returns a string representing the display
name of the currency. One method is passed a Locale object. The string returned is
specific for that locale.

Getting ready
The getAvailableCurrencies method is static, so it should be executed against the class
name. The other methods execute against an instance of the Currency class.

How to do it...
1. Create a new console application. Add the following code to the main method:

 Set<Currency> currencies =
 Currency.getAvailableCurrencies();
 for (Currency currency : currencies) {

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

336

 System.out.printf("%s - %s - %s\n",
 currency.getDisplayName(),
 currency.getDisplayName(Locale.GERMAN),
 currency.getNumericCode());
}

2. When the application is executed, you should get output similar to the following.
However, the first part of each may differ depending on the current locale.

North Korean Won - Nordkoreanischer Won - 408

Euro - Euro - 978

Dutch Guilder - Holländischer Gulden - 528

Falkland Islands Pound - Falkland-Pfund - 238

Danish Krone - Dänische Krone - 208

Belize Dollar - Belize-Dollar – 84

How it works...
The code sequence begins with the generation of a Set of the Currency objects representing
the current system's configuration. The overloaded getDisplayName methods were executed
against each element of the set. The Locale.GERMAN argument was used to illustrate the use
of this method. The last value displayed was the numeric code for the currency.

Using the NumericShaper.Range
enumeration to support the display of digits

In this recipe we will demonstrate the use of java.awt.font.NumericShaper.Range
enumeration to support the display of digits using the java.awt.font.NumericShaper
class. Sometimes it is desirable to display numeric digits using a different language than is
currently being used. For example, in an English language tutorial regarding the Mongolian
language, we may want to explain the numeric system in English, but display numbers
using the Mongolian digits. The NumericShaper class provides this support. The new
NumericShaper.Range enumeration has simplified this support.

Getting ready
To display digits using the NumericShaper.Range enumeration:

1. Create a HashMap to hold display attribute information.

2. Create a Font object to define the font to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

337

3. Specify the range of Unicode characters to display the text.

4. Create a FontRenderContext object to hold information about how to measure the
text to be displayed.

5. Create an instance of TextLayout and use it in the paintComponent method to
render the text.

How to do it...
We will illustrate the use of the NumericShaper.Range enumeration to display Mongolian
digits. This is a simplified version of the example found at http://download.oracle.
com/javase/tutorial/i18n/text/shapedDigits.html.

1. Create an application that extends the JFrame class, which is shown as
follows. We will illustrate the use of the NumericShaper class in the
NumericShaperPanel class:
public class NumericShaperExample extends JFrame {

 public NumericShaperExample() {
 Container container = this.getContentPane();
 container.add("Center", new NumericShaperPanel());

 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 this.setTitle("NumericShaper Example");
 this.setSize(250, 120);

}

 public static void main(String[] args) {
 new NumericShaperExample();.setVisible(true)
}
}

2. Next, add the NumericShaperPanel class to the project as follows:
public class NumericShaperPanel extends JPanel {

 private TextLayout layout;

 public NumericShaperPanel() {
 String text = "0 1 2 3 4 5 6 7 8 9";
 HashMap map = new HashMap();
 Font font = new Font("Mongolian Baiti", Font.PLAIN, 32);
 map.put(TextAttribute.FONT, font);
 map.put(TextAttribute.NUMERIC_SHAPING,

www.it-ebooks.info

http://download.oracle.com/javase/tutorial/i18n/text/shapedDigits.html
http://download.oracle.com/javase/tutorial/i18n/text/shapedDigits.html
http://www.it-ebooks.info/

Odds and Ends

338

 NumericShaper.getShaper(NumericShaper.Range.
 MONGOLIAN));
 FontRenderContext fontRenderContext =
 new FontRenderContext(null, false, false);
 layout = new TextLayout(text, map, fontRenderContext);
}

 public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;
 layout.draw(g2d, 10, 50);
}
}

3. Execute the application. Your output should appear as follows:

How it works...
In the main method, an instance of the NumericShaperExample class was created. Within
its constructor, an instance of the NumericShaperPanel class was created and added to
the center of the window. The title, default close operation, and size of the window were set.
Next, the window was made visible.

In the constructor of the NumericShaperPanel class, a text string was created along with a
HashMap to hold the essential features of the display. This map was used as an argument to
the TextLayout constructor along with the string to be displayed and the map. The text was
displayed in Mongolian using the Mongolian Baiti font and with the MONGOLIAN range. We
used this font to demonstrate the new methods of the NumericShaper class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

339

The NumericShaper class has added new methods to make it easier to display numeric
values in a different language. The getShaper method is overloaded with one version
accepting a NumericShaper.Range enumeration value. The value specifies the language
to use. The NumericShaper.Range enumeration has been added to represent a range of
Unicode characters for digits in a given language.

In the paintComponent method, the Graphics2D object was used as an argument of the
draw method to render the string to the window.

There's more...
The getContextualShaper method is used to control how digits are displayed when used
with a different script. This means if Japanese script is used before digits, then Japanese
digits are displayed. The method takes a set of NumericShaper.Range enumeration values.

The shape method also uses a range to specify the script to use for an array of char
given a start and an end index in the array. The getRangeSet method returns a set of
NumericShaper.Range used by the NumericShaper instance.

JavaBean enhancements in Java 7
JavaBean is a way of building reusable components for Java applications. They are Java classes
that follow certain naming conventions. There have been several JavaBean enhancements
added in Java 7. Here we will focus on the java.beans.Expression class, which is useful
in executing methods. The execute method has been added to facilitate this capability.

Getting ready
To use the Expression class to execute a method:

1. Create an array of arguments for the method, if needed.

2. Create an instance of the Expression class specifying the object that the method
is to be executed against, the method name, and any arguments needed.

3. Invoke the execute method against the expression.

4. Use the getValue method to obtain the results of the method execution,
if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

340

How to do it...
1. Create a new console application. Create two classes: JavaBeanExample, which

contains the main method and a Person class. The Person class contains a single
field for a name along with constructors, a getter method, and a setter method:
public class Person {
 private String name;

 public Person() {
 this("Jane", 23);
}

 public Person(String name, int age) {
 this.name = name;
}

 public String getName() {
 return name;
}

 public void setName(String name) {
 this.name = name;
}
}

2. In the main method of the JavaBeanExample class, we will create an instance
of the Person class, and use the Expression class to execute its getName and
setName methods:
 public static void main(String[] args) throws Exception {
 Person person = new Person();
 String arguments[] = {"Peter"};
 Expression expression = new Expression(null, person,
 "setName", arguments);

 System.out.println("Name: " + person.getName());
 expression.execute();
 System.out.println("Name: " + person.getName());

 System.out.println();
 expression = new Expression(null, person,
 "getName", null);
 System.out.println("Name: " + person.getName());
 expression.execute();
 System.out.println("getValue: " +
 expression.getValue());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

341

3. Execute the application. Its output should appear as follows:

Name: Jane

Name: Peter

Name: Peter

getValue: Peter

How it works...
The Person class used a single field, name. The getName and setName methods were
used from the main method, where a Person instance was created. The Expression class'
constructor has four arguments. The first argument was not used in this example, but can be
used to define a return value for the method executed. The second argument was the object
that the method would be executed against. The third argument is a string containing the
name of the method, and the last argument was an array containing the parameters used by
the method.

In the first sequence, the setName method was executed using an argument of Peter. The
output of the application shows that the name was initially Jane, but was changed to Peter
after the execute method was executed.

In the second sequence, the getName method was executed. The getValue method returns
the results of the execution of the method. The output shows that the getName method
returned Peter.

There's more...
There have been other enhancements to the classes of the java.bean package. For
example, the toString method has been overridden in the FeatureDescriptor and
PropertyChangeEvent classes to provide a more meaningful description.

The Introspector class provides a way of learning about the properties, methods, and
events of a Java Bean without using the Reflection API, which can be tedious. The class has
added a getBeanInfo method, which uses the Inspector class' control flags to affect the
BeanInfo object returned.

The Transient annotation has been added to control what is included. A true value for the
attribute means that the annotated feature should be ignored.

A new constructor has been added to the XMLDecoder class that accepts an
InputSource object. Also, the createHandler method has been added, which returns
a DefaultHandler object. This handler is used to parse XML archives created by the
XMLEncoder class.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

342

A new constructor has been added to the XMLEncoder class. This permits writing out
JavaBeans to an OutputStream using a specific charset with a specific indention.

Handling locales and the Locale.Builder
class in Java 7

The java.util.Locale.Builder class has been added to Java 7 and provides an easy
way of creating a locale. The Locale.Category enumeration is also new and makes using
different locales for display and formatting purposes easy. We will first look at the use of the
Locale.Builder class and then examine other locale improvements and the use of the
Locale.Category enumeration in the There's more... section.

Getting ready
To build and use a new Locale object:

1. Create an instance of the Builder class.

2. Use the relevant methods of the class to set up the attributes needed.

3. Use the Locale object as needed.

How to do it...
1. Create a new console application. In the main method, add the following code. We

will create a new locale based on Eastern Armenian using Latin script as found in
Italy. The locale is demonstrated by displaying the date for the third day of the 16th
week in 2012 using the setWeekDate method. This method is discussed in more
detail in the Handling Weeks in Java 7 recipe:
 Calendar calendar = Calendar.getInstance();
 calendar.setWeekDate(2012, 16, 3);

 Builder builder = new Builder();
 builder.setLanguage("hy");
 builder.setScript("Latn");
 builder.setRegion("IT");
 builder.setVariant("arevela");

 Locale locale = builder.build();
 Locale.setDefault(locale);

 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.LONG).format(calendar.getTime()));
 System.out.println("" + locale.getDisplayLanguage());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

343

2. A second example builds a locale based on Chinese using the Simplified script,
which is used in mainland China:
 builder.setLanguage("zh");
 builder.setScript("Hans");
 builder.setRegion("CN");

 locale = builder.build();
 Locale.setDefault(locale);

 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.LONG).format(calendar.getTime()));
 System.out.println("" + locale.getDisplayLanguage());

3. When executed, the output should appear as follows:

April 17, 2012 7:25:42 PM CDT

Armenian

2012年4月17日 下午07时25分42秒

中文

How it works...
The Builder object was created. Using this object, we applied methods to set the language,
script, and region for the locale. The build method was then executed and a Locale object
was returned. We used this locale to display the date and the display language for the locale.
This was performed twice. First, for the Armenian language, and then for Chinese.

There's more...
It is important to be able to label a piece of information to indicate the language being used.
A tag is used for this purpose. A standard set of tags is defined by the IETF BCP 47 standard.
Java 7 conforms to this standard and has added several methods to handle tags.

The standard supports the concept of extensions to a tag. These extensions can be used to
provide more information about the locale. There are two types:

 f Unicode locale extension

 f Private use extension

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

344

The Unicode locale extensions are defined by the Unicode Common Locale Data Repository
(CLDR) (http://cldr.unicode.org/). These extensions are concerned with non-language
information, such as currency and dates. The CLDR maintains a standard repository of locale
information. Private use extensions are used to specify platform-specific information, such as
that related to operating systems or programming languages.

More information regarding the IETF BCP 47 standard can be found at
http://tools.ietf.org/rfc/bcp/bcp47.txt.

An extension consists of a key/value pair. The key is a single character and the value follows
the following format:

 SUBTAG ('-' SUBTAG)*

A SUBTAG consists of a series of alphanumeric characters. For Unicode locale extensions, the
value must be at least two characters, but not more than 8 characters in length. For private
use extensions, 1 to 8 characters are permitted. All extension strings are case-insensitive.

The key for Unicode locale extension is u, and for private use extensions it is x. These
extensions can be added to a locale to provide additional information, such as the calendar
number types to use.

The keys that can be used are listed in the following table:

Key code Description
ca Calendar algorithm for determining dates
co Collation type—the ordering used in a language
ka Collation parameters—used to specify the ordering
cu Currency type information
nu Numbering system
va Common variant type

Examples of key and types are found in the following table:

Key/Type Meaning
nu-armnlow Armenian lowercase numerals
ca-indian Indian calendar

www.it-ebooks.info

http://cldr.unicode.org/
http://cldr.unicode.org/
http://tools.ietf.org/rfc/bcp/bcp47.txt
http://tools.ietf.org/rfc/bcp/bcp47.txt
http://www.it-ebooks.info/

Chapter 11

345

Several methods have been added to use these extensions. The getExtensionKeys
method returns a set of Character objects of all keys used with the locale. Likewise, the
getUnicodeLocaleAttributes and getUnicodeLocaleKeys methods return a set of
strings listing the attributes and the Unicode keys available. The methods return an empty
set if there are no extensions available. If the key is known, the getExtension method or
getUnicodeLocaleType methods will return a string containing the value for that key.

For a given locale, the getScript, getDisplayScript, and toLanguageTag methods
return the script, a displayable name for the script, and a well-formed BCP 47 tag for the
locale respectively. The getDisplayScript method will also return a displayable name
for the script, given a locale as an argument.

The next section discusses the use of the setDefault method to control the display of
information using two different locales at the same time.

Using the Locale.Category enumeration to display information
using two different locales
The Locale.Category enumeration has been added to Java 7. It has two values, DISPLAY
and FORMAT. This permits the default locale to be set for format type resources (dates,
numbers, and currency) and for display resources (GUI aspects of an application). For
example, part of an application may set the format to accommodate one locale, such as
JAPANESE while displaying related information in another, such as GERMAN.

Consider the following example:

 Locale locale = Locale.getDefault();
 Calendar calendar = Calendar.getInstance();
 calendar.setWeekDate(2012, 16, 3);

 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.LONG).format(calendar.getTime()));
 System.out.println(ocale.getDisplayLanguage());

 Locale.setDefault(Locale.Category.FORMAT, Locale.JAPANESE);
 Locale.setDefault(Locale.Category.DISPLAY, Locale.GERMAN);

 System.out.println(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.LONG).format(calendar.getTime()));
 System.out.println(locale.getDisplayLanguage());

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

346

When this code sequence is executed, you should get output similar to the following.
The initial date and display language may differ depending on your default locale.

April 17, 2012 7:15:14 PM CDT

English

2012/04/17 19:15:14 CDT

English

The default locale was retrieved and the setWeekDate method was used to set a date. This
method is discussed in more detail in the Using Weeks in Java 7 recipe. Next, the date and
the display language are printed. The display was repeated, except that the default locale
is changed using the setDefault method. The display resources were changed to use
Locale.JAPANESE, and the format type resources were changed to Locale.GERMAN.
The output reflected this change.

Handling null references
A fairly common exception is the java.lang.NullPointerException. This occurs when
an attempt is made to execute a method against a reference variable, which contains a value
of null. In this recipe we will examine various techniques that are available to address this
type of exception.

The java.util.Objects class has been introduced and provides a number of static
methods that address situations where null values need to be handled. The use of this
class simplifies the testing for null values.

The There's more... section examines the use of empty lists, which could be used instead of
returning null. The java.util.Collections class has three methods that return empty lists.

Getting ready
To use the Objects class to override the equals and hashCode methods:

1. Override the methods in the target class.

2. Use the Objects class' equals method to avoid explicit code to check for null
values in the equals method.

3. Use the Objects class' hashCode method to avoid the need for explicit code
to check for null values in the hashCode method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

347

How to do it...
1. Create a new console application. We will create an Item class to demonstrate

the use of the Objects class. In the Item class, we will override the equals and
hashCode methods. These methods were generated by the NetBeans' insert code
command. We use these methods, because they illustrate the Objects class'
methods and are well structured. Start by creating the class as follows:
public class Item {
 private String name;
 private int partNumber;

 public Item() {
 this("Widget", 0);
}

 public Item(String name, int partNumber) {
 this.name = Objects.requireNonNull(name);
 this.partNumber = partNumber;
}

 public String getName() {
 return name;
}

 public void setName(String name) {
 this.name = Objects.requireNonNull(name);
}

 public int getPartNumber() {
 return partNumber;
}

 public void setPartNumber(int partNumber) {
 this.partNumber = partNumber;
}
}

2. Next, override the equals and hashCode methods as follows. They provide code to
check for null values:
 @Override
 public boolean equals(Object obj){
 if (obj == null) {
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

348

 if (getClass() != obj.getClass()) {
 return false;
}
 final Item other = (Item) obj;
 if (!Objects.equals(this.name, other.name)) {
 return false;
}
 if (this.partNumber != other.partNumber) {
 return false;
}
 return true;
}

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 47 * hash + Objects.hashCode(this.name);
 hash = 47 * hash + this.partNumber;
 return hash;
}

3. Finish the class by adding a toString method:
 @Override
 public String toString() {
 return name + " - " + partNumber;
}

4. Next, add the following to the main method:
 Item item1 = new Item("Eraser", 2200);
 Item item2 = new Item("Eraser", 2200);
 Item item3 = new Item("Pencil", 1100);
 Item item4 = null;

 System.out.println("item1 equals item1: " +
 item1.equals(item1));
 System.out.println("item1 equals item2: " +
 item1.equals(item2));
 System.out.println("item1 equals item3: " +
 item1.equals(item3));
 System.out.println("item1 equals item4: " +
 item1.equals(item4));

 item2.setName(null);
 System.out.println("item1 equals item2: " +
 item1.equals(item2));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

349

5. Execute the application. Your output should appear as follows:

item1 equals item1: true

item1 equals item2: true

item1 equals item3: false

item1 equals item4: false

Exception in thread "main" java.lang.NullPointerException

 at java.util.Objects.requireNonNull(Objects.java:201)

 at packt.Item.setName(Item.java:23)

 at packt.NullReferenceExamples.main(NullReferenceExamples.java:71)

As we will see shortly, the NullPointerException is the result of trying to assign
a null value to an Item's name field.

How it works...
In the equals method, a test was first made to determine if the object passed was null.
If it was, then false is returned. A test was made to ensure that the classes were of the
same type. The equals method was then used to see if the two name fields were equal
to each other.

The Objects class' equals method behaves as summarized in the following table.
The meaning of equality is determined by the equals method of the first argument:

First argument Second argument Returns
Not null Not null true if they are the same object, otherwise false

Not null null false

falsenull Not null
null null true

The last test compared the two integer partNumber fields for equality.

In the Item class' hashCode method, the Objects class' hashCode method was applied to
the name field. This method will return 0 if its argument is null otherwise it returns the hash
code for the argument. The partNumber was then used to compute the final value for the
hash code.

Notice the use of the requireNonNull method in the two argument constructors and
the setName method. The method checks for a non-null argument. If the argument is null,
it then throws a NullPointerException. This effectively catches a potential error earlier
in the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

350

The requireNonNull method is overloaded with a second version accepting a second
string argument. This argument changes the message generated, when an exception occurs.
Replace the body of the setName method with the following code:

 this.name = Objects.requireNonNull(name, "The name field
requires a non-null value");

Re-execute the application. The exception message will now appear as follows:

Exception in thread "main" java.lang.NullPointerException: The name field requires a
non-null value

There's more...
There are several other Objects class methods that may be of interest. In addition, the
second section will examine the use of empty iterators to avoid null pointer exceptions.

Additional Objects class methods
The Objects class' hashCode method is overloaded. A second version takes a variable
number of objects as arguments. The method will generate a hash code using this sequence
of objects. For example, the Item class' hashCode method could have been written as:

 @Override
 public int hashCode() {
 return Objects.hash(name,partNumber);
}

The deepEquals method compares two objects deeply. This means it compares more than
just the reference values. Two null arguments are considered to be deeply equal. If both
arguments are arrays, then the Arrays.deepEqual method is invoked. Equality of objects
is determined by the equals method of the first argument.

The compare method is used to compare the first two arguments returning either a negative
value, a zero, or a positive value depending on the relationship between the arguments.
Typically, returning a 0 indicates that the arguments are the same. A negative value means
that the first argument is less than the second argument. A positive value indicates that the
first argument is greater than the second argument.

The method will return a zero if its arguments are identical, or if both arguments are null.
Otherwise, the return value is determined using the Comparator interface's compare method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

351

The Objects class' toString method is used to guarantee that a string is returned even if
the object is null. The following sequence illustrates the use of this overloaded method:

 Item item4 = null;
 System.out.println("toString: " + Objects.toString(item4));
 System.out.println("toString: " + Objects.toString(item4,
 "Item is null"));

When executed, the first use of the method displays the word null. In the second version,
the string argument is displayed as follows:

toString: null

toString: Item is null

Using empty iterators to avoid null pointer exceptions
One approach to avoid a NullPointerException is to return a non-null value, when the list
could not be created. It could be beneficial to return an empty Iterator instead.

In Java 7, the Collections class has added three new methods that return an Iterator, a
ListIterator, or an Enumeration, all of which are empty. By returning empty, they can be
used without incurring a null pointer exception.

To demonstrate the use of an empty list iterator, create a new method that returns a generic
ListIterator<String> as shown in the following code. An if statement is used to return
either a ListIterator or an empty ListIterator:

 public static ListIterator<String> returnEmptyListIterator() {
 boolean someConditionMet = false;
 if(someConditionMet) {
 ArrayList<String> list = new ArrayList<>();
 // Add elements
 ListIterator<String> listIterator = list.listIterator();
 return listIterator;
}
else {
 return Collections.emptyListIterator();
}
}

Use the following main method to test the behavior of the iterator:

 public static void main(String[] args) {
 ListIterator<String> list = returnEmptyListIterator();
 while(())String item: list {
 System.out.println(item);
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

352

When it executes, there should be no output. This indicates that the iterator is empty.
If we had returned null instead, we would have received a NullPointerException.

The Collections class' static emptyListIterator method returns a ListIterator,
whose methods work as listed in the following table:

Method Behavior
hasNext
hasPrevious

Always returns false

next
previous

Always throws NoSuchElementException

remove
set

Always throws IllegalStateException

add Always throws UnsupportedOperationException

nextIndex Always returns 0

previousIndex Always returns -1

The emptyIterator method will return an empty iterator with the following behavior:

Method Behavior
hasNext Always returns false
next Always throws NoSuchElementException
remove Always throws IllegalStateException

The emptyEnumeration method returns an empty enumeration. Its hasMoreElements will
always return false, and its nextElement will always throw a NoSuchElementException
exception.

Using the new BitSet methods in Java 7
The java.util.BitSet class gained several new methods with the latest release of Java.
These are designed to simplify the manipulation of large sets of bits and provide easier
access to information about bit location. Bit sets can be used for priority queues
or compressed data structures. This recipe demonstrates some of the new methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

353

Getting ready
To use the new BitSet methods:

1. Create an instance of a BitSet.

2. Execute methods against the BitSet object as needed.

How to do it...
1. Create a new console application. In the main method, create an instance of a

BitSet object. Then declare an array of long numbers and use the static valueOf
method to set our BitSet object to the value of this long array. Add a println
statement, so we see the way our long numbers are represented in the BitSet:
 BitSet bitSet = new BitSet();
 long[] array = {1, 21, 3};
 bitSet = BitSet.valueOf(array);
 System.out.println(bitSet);

2. Next, use the toLongArray method to convert the BitSet back to an array of long
numbers. Use a for loop to print out the values in the array:
 long[] tmp = bitSet.toLongArray();
 for (long number : tmp) {
 System.out.println(number);
}

3. Execute the application. You should see the following output:

{0, 64, 66, 68, 128, 129}

1

21

3

How it works...
After creating our BitSet object, we created an array containing three long numbers,
which serve as a representation of the sequence of bits that we wish to use in our BitSet.
The valueOf method takes this representation and converts it to the sequence of bits.

www.it-ebooks.info

http://www.it-ebooks.info/

Odds and Ends

354

When we printed out the BitSet, we saw the sequence {0, 64, 66, 68, 128, 129}. Each
number in this BitSet represents the index of the bit that was set in our sequence of bits.
For example, the 0 represents the long number 1 in our array, as the index of the bit used to
represent the one was at position 0. Likewise, bits 64, 66, and 68 were set to represent our
long number 21. The 128th and 129th bits in the sequence were set to represent our long
number 3. We reversed the process in the next section, when we used the toLongArray
method to return our BitSet to its original form.

In our example, we used an array of long numbers. Similar valueOf methods exist for byte,
LongBuffer, and ByteBuffer arrays. When using a LongBuffer or ByteBuffer array,
the buffers are not modified by the valueOf method, and the BitSet cannot be converted
back to the buffer. Instead, the BitSet must be converted by using the toLongArray
method, or the similar toByteArray method that converts a BitSet into an array of bytes.

There's more...
There are two new methods useful for locating a set or clearing bits in a BitSet. The method
previousSetBit takes an integer representing a specific index as its argument and
returns an integer representing the closest bit in the BitSet that is set. For example, add
the following code sequence to our previous example (using BitSet represented by long
numbers {1, 21, 3}):

System.out.println(bitSet.previousSetBit(1));

This would result in an output of integer 0. This is because we passed an argument of
index 1 to the previousSetBit method and the closest previous bit set in our BitSet
was at index 0.

The previousClearBit method operates in a similar fashion. If we were to execute the
following code in our previous example:

System.out.println(bitSet.previousClearBit(66));

We would get output of integer 65. The bit sitting at index 65 is the closest clear bit to our
argument 66. Both methods will return a -1 if no such bit exists in the BitSet.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
? 169
[] 169
{ } 169
* 169
** 169
\ 169
-D java command option 270
-D option 251
@SafeVarargs annotation 8, 36

about 35, 36
heap pollution, example 39, 40
using, in Java core libraries 38
working 37

@SuppressWarnings annotation 35

A
abort method 278
Abstract Window Toolkit. See AWT
accept method 283
Access Control List (ACL) 76
AclEntryPermission enumeration values

APPEND_DATA 131
DELETE 131
DELETE_CHILD 131
EXECUTE 131
READ_ACL 131
READ_ATTRIBUTES 131
READ_DATA 131
READ_NAMED_ATTRS 131
SYNCHRONIZE 131
WRITE_ACL 131
WRITE_ATTRIBUTES 131
WRITE_DATA 131
WRITE_NAMED_ATTRS 131

WRITE_OWNER 131
AclEntryType value

ALARM 131
ALLOW 131
AUDIT 131
DENY 131

AclFileAttributeView
using, for file’s ACL maintainance 101-103
working 104, 105

ACL permissions, file
setting 126-130
working 130-132

actionPerformed method 237, 259, 260
addFirst() method 317
addLast() method 317
add() method 317
allocate method 107
AND operation 16
applet initialization status

handling with event handlers 262-265
loading status, using 262-264

ApplicationDriver class 214
ApplicationWindow class 238, 253, 255, 256
areExtraMouseButtonsEnabled method 248-

251
ARM 17
Arrays.deepEqual method 350
arriveAndAwaitAdvance method 308, 311
arriveAndDeregister method 309
AssertionError class

using, in Java 7 28, 29
AsynchronousChannelGroup class 182, 206
AsynchronousFileChannel class

about 182
file, reading from 206-208
file, writing to 202-204
working 204-210

www.it-ebooks.info

http://www.it-ebooks.info/

356

AsynchronousServerSocketChannel class
asynchronous communication, managing

196-199
Future object, using in server 201
options, using 202
working 200

AtomicInteger class 308
Automated Resource Management. See ARM
awaitTermination method 209
AWT 217

B
basic file attributes

maintaining, BasicFileAttributeView used 93
BasicFileAttributeView

using, for basic file attribute maintainance 93
working 94, 95

BCP 47 tag 345
BitSet methods, in Java 7

using 352, 353
working 353, 354

border types, Java 7
BorderFactory method 232
creating 231
setBorder method, working 232
using 231-235

buffered IO
using 187
using, for files 187, 188
working 188

bulkRegister method 309

C
calculate button 292
Calendar class 259
Castellar font 245
catch block 24
Central Standard Time (CST) 335
CertPathValidatorException class 269
channel IO 181
CLDR 344
close method 23, 268
closeOnCompletion method 268
codebase attribute 296
compare method 331

compareTo method 69, 70, 331
completed method 200, 209
componentResized event 231
com.sun.awt.AWTUtilities class 214
ConcurrentLinkedDeque

asynchronous concurrent threads, issues 317
elements, accessing from deque 318
elements, adding to deque 317
elements, retrieving from deque 318
using, with multiple threads 312-316
working 316

ConcurrentLinkedDeque class 313, 317
connect method 200
constructor type inference

diamond operator, using 31
diamond operator, using when type is not

obvious 33
erasure 34
unchecked warnings, suppressing 33
working 32

contains() method 318
CopyDirectory class 163
createCachedRowSet method 273
createDashedBorder(Color.red, 2.0f, 10.0f,

1.0f, true) 235
createDashedBorder(Color.red, 4.0f, 1.0f)

method 235
createDashedBorder(Color.red) method 234
createDirectories method

using, to create hierarchy of directories 112
createDirectory method 112, 179
createFile method 114
createFilteredRowSet method 273
createJdbcRowSet method 272, 273
createJoinRowSet method 273
createLineBorder(Color.BLACK, 1, true)

method 233
createLink method 147
createLoweredSoftBevelBorder() method 233
create methods 271
createRaisedSoftBevelBorder() method 233
createSecondaryLoop method 259
createSoftBevelBorder(BevelBorder.LOW-

ERED, Color.lightGray, Color.yellow)
234

createSoftBevelBorder(BevelBorder.LOW-
ERED) method 233

www.it-ebooks.info

http://www.it-ebooks.info/

357

createSoftBevelBorder(BevelBorder.
RAISED,Color.lightGray, Color.yellow
234

createSoftBevelBorder(BevelBorder.RAISED)
method 233

createStrokeBorder(new BasicStroke(1.0f))
method 234

createSymbolicLink method 146
createTempDirectory method 119, 120
createTempFile method 119
createTempFile methodS 120
createWebRowSet method 273
creationTime attribute 81
Ctrl + C 283
Currency class, using in Java 7

getAvailableCurrencies method 335
getDisplayName method 335
getNumericCode method 335
steps 335, 336

current method 327

D
database enhancements, Java 7

about 273, 274
database enhancements 277
OUT parameter type value, controlling 276
pseudo-columns, retrieving 275, 276
working 274

decode method 108
deepEquals method 350
defaultCharset method 107, 186
defineClass methods 299
DeleteDirectory class 161
deleteIfExists method 143, 144
delete method

about 27
using 108

deployJava.createWebStartLaunchButtonEx
function 296

deployJava.js 265
deque 312
Derby database engine 268
descendingIterator methods 317
determineAppletState function 265
diamond operator

using 31

working 32
directories

about 118
copying, SimpleFileVisitor class used 162-

165
creating 110-112
deleting 143, 144
deleting, SimpleFileVisitor class used 160,

161, 162
filtering, globbing used 168, 169
filtering, PathMatcher used 170, 171
hierarchy creating, createDirectories method

used 112
managing 118-120
move method, working 140
moving 139-143
StandardCopyOption enumeration values 141
time-related attributes, setting 120
working 112

directory information
gathering 84-86
working 86-88

DirectoryNotEmptyException 27
DirectoryStream class 179
DirectoryStream interface

using, for directory content process 165
Disk Operating System. See DOS
displayElements method 37
displayFileAttribute method 85, 86
displayPermissions method 102
DOS 76
DosFileAttributeView

isArchive method 98
isHidden method 98
isReadOnly method 98
isSystm method 98
using, for FatTable attribute maintainance 98
working 99

draggable applets 216
drawString method 231
Drivers

location 268

E
ECC 269
element() method 318

www.it-ebooks.info

http://www.it-ebooks.info/

358

Elliptic Curve Cryptography. See ECC
emptyIterator method 352
emptyListIterator method 352
Enter key 282
enter method

using, for modal dialog boxes mimic 260
ENTRY_CREATE 177
ENTRY_DELETE 177
ENTRY_MODIFY 177
enumeration

values 183
erasure 34
event handlers

applet initialization status, handling 262-265
exception handling code

improving, try-with-resource block used 16,
17

execute method 339
exists method 86
ExtendedSSLSession interface

using 278-283

F
failed method 200
FAT table attributes

maintaining, DosFileAttributeView used 98
file

StandardCopyOption enumeration values 141
unbuffered IO 189, 190
writing, BufferedWriter class used 188

file attributes
accessing 82
obtaining, in Map object form 82-84

file content type
about 78
determining 78
working 79

FileDialog class
file selection, determining 237
multiple file selection, disabling 235
multiple file selection, enabling 235
multiple file selection, handling 235, 236
setMultipleMode method, working 237

file information
gathering 84-86
working 86-88

fileKey attribute 81
fileKey method 95
FileOwnerAttributeView

using, for file ownership attribute maintain-
ance 100

working 101
file ownership

Files class’ setOwner method, using 126
managing 124, 125

file ownership attributes
maintaining, FileOwnerAttributeView used

100
files

ACL permissions, managing 126-130
ACL permissions, working 130-132
copying, to output stream 117
copy process, controlling 113
creating 110-112
deleting 143, 144
directory, copying 115
input stream, copying to file 116
move method, working 140
moving 139, 140
symbolic link file, copying 115
time-related attributes, setting 120
working 112-114

file’s ACL
maintaining, AclFileAttributeView used 101-

103
FileStore information

format string, creating 152
obtaining 150-152

filesystem 41
managing 42, 149, 150
music files location 42

FileSystem information
getDefault method, working 155
obtaining 153, 154

filesystems
traversing, SimpleFileVisitor class used

155-158
FileSystems class 43
FileTypeDetector class 79
First button 259
First In First Out model 319
forceTermination method 309
ForkJoinPool class 297

www.it-ebooks.info

http://www.it-ebooks.info/

359

getActiveThreadCount method 303
getPoolSize method 303
getRunningThreadCount method 303

forName method 193
from method 122
fromMillis method 123

G
gameEngine method 309
generatedKeyAlwaysReturned method 274
generateOrder method 323
getAcl method 105
getArrivedParties method 309
getAttribute method

about 76, 80
arguments 80
single attribute, obtaining 79, 80
working 80, 81

getAvailableCurrencies method 335
getBeanInfo method 341
getComposite method 245
getDefault method 52, 152
getDisplayName method

about 335
Currency class, using in Java 7 335

getDisplayName methods 336
getDisplayScript method 345
getEndpointIdentificationAlgorithm method

283
getExtensionKeys method 345
getExtension method 345
getFileAttributes method 76
getFileAttributeView method 93, 95, 96, 99,

102, 104, 124, 212
getFileStores method 150, 151, 155
getFileSystem method 155
getFirst() method 318
getGeneratedKeys method 274
getGlobal method 332
getInput method 48
getKeyCode method 248
getLast() method 318
getLastModifiedTime 123
getLastModifiedTime method 87
getName method 341
getNetworkTimeout method 278

getNumberOfButtons method 249, 251
getNumericCode method 335
getObject method 277
getOpacity method 223
getOutputStream method 283
getOwner method 101
getPanel method 244
getParentLogger method 277
getParent method 48, 309
getPathMatcher method 43
getPath method 43
getPhase method 309
getPlatformManagementInterfaces methods

285
getPlatformMXBean method

about 283, 285
using 285

getPlatformMXBeans methods 285
getPolygon method 230
getPreciseWheelRotation method 251 248
getPredefinedCursor method 215
getPseudoColumns method 275
getRangeSet method 339
getReason method 269
getRegisteredParties method 309
getResourceAsStream method 268
getRootDirectories method 43, 155
getRoot method 309
getSeparator method 51, 52
getShaper method 339
getSuppressed method 23
getTimeInMillis method 122
getTotalSpace method 152
getUnallocatedSpace method 152
getUnarrivedParties method 309
getUnicodeLocaleKeys methods 345
getUnicodeLocaleType methods 345
getUsableSpace method 152
getUserPrincipalLookupService method 105
getWheelRotation method 250, 251
glob 170
global logger object 332
globbing

about 150
using, for directory filteration 168, 169
working 169

globbing pattern 167

www.it-ebooks.info

http://www.it-ebooks.info/

360

Globbing String
*.java 170
*.{java,class,jar} 170
j*r.exe 170
java*[ph].exe 170

GradientPaint class 227
Graphical User Interface (GUI) 213

H
hard link

creating 147
hasNext method 167, 352
hasPrevious method 352
hasWaitingConsumer method 323
heap pollution 38
heavyweight

mixing, with lightweight components 217
mixing, with lighweight components 217- 219

helper methods
displayAclEntries 127
displayPermissions 127

Hide button 255
high resolution mouse wheels 248
highSurrogate and lowSurrogate method 331

I
IDE 9
idempotent method 24
IETF BCP 47 343
imageUpdate method 248
InfiniBand (IB) 183, 268
inheritIO method

about 291
using, for default IO locations inheritance 291

input
redirecting, from operating system’s process-

es 287-290
installUI method 244
Integrated Development Environment. See

IDE
InvalidParameter class 24
invokeLater method 215
invoke method 302
isAutoRequestFocus method 255
isCloseOnCompletion method 268
isDirectory attribute 81

isDirectory method 76, 86
isDispatched method 247, 260, 261
isExecutable method 86, 88
isHidden method 87
ISO 8601 332
isOpen method 155
isOther attribute 81
isReadable method 86
isReadOnly method 152, 155
isRegularFile attribute 81
isRegularFile method 84, 86
isSameFile method 70
isShutdown method 210
isSymbolicLink attribute 81
isSymbolicLink method 72, 87, 148
isTerminated method 210, 309
isValidateRoot method 217
isValid method 176
isWritable method 87

J
Java

AWT 217
join/fork framework 299
Swing 217

Java 1.5 8
Java 1.7 7
Java2D graphics 217
Java 6 Build 10 218
Java 6 Update 10 release 214
Java 7

AssertionError class, using 28, 29
BitSet methods, using 352
border types, creating 231
border types, using 231, 232
Builder object 343
components, mixing with 218, 219
Currency class, using 335
database enhancements 273, 274
exceptions, rethrowing 29, 30
exceptions, working 30
JavaBean enhancements 339
Locale.Builder class, handling 342
locales, handling 342
weeks, handling 332-334

java.awt.font.NumericShaper class 330

www.it-ebooks.info

http://www.it-ebooks.info/

361

java.awt.Window class 219, 252
JavaBean enhancements, in Java 7

about 339
Expression class, using 339
using 340, 341
working 341, 342

java command 110
java_decorated_frame parameter 216
Java Deployment Toolkit 265
Java Development Kit. See JDK
JavaDocs

improvements 332
java.io.File and java.nio.file.Files interoper-

ability
about 49
Path object, obtaining 49
setting 49
working 50

java.lang.ProcessBuilder class 269, 287,
288, 289

Java Language Specification 262
Java Management Extensions. See JMX
java.net.URLClassLoader class 268
Java Network Launch Protocol. See JNLP
java.nio.channels package

asynchronous channel classes 182
java.nio.file.Files class

file and directory Information, obtaining 76
java.nio. file.FileStore class 43
java.nio.file.FileStore class 150
java.nio. file.FileSystem class 43
java.nio. file.FileSystems class 43
java.nio. file.Path class 43
java.nio.file.Path class 43
java.nio. file.Paths class 43
java.nio.file.SimpleFileVisitor class 155
java.nio.file.StandardWatchEventKinds class

177
Java PKI Programmer Guide 278
Java Secure Socket Extension. See JSSE
java_status_events parameter 265
java.util.BitSet class 329
java.util.Collections class 346
java.util.concurrent.CountdownLatch class

303
java.util.concurrent.ForkJoinPool class 299

java.util.concurrent.ForkJoinTask class 297
java.util.ConcurrentModificationException

class 298
java.util.concurrent.Phaser class 297
java.util.concurrent.ThreadLocalRandom class

298
java.util.Currency class 14
java.util.GregorianCalendar class 332
java.util.logging.Logger class 332
Java Virtual Machine. See JVM
javax.sql.rowset.RowSetProvider class 268
jconsole application 286
JDBC 4.1 268
JdbcRowSet class 272
JdbcRowSet row set 273
JDK 9
JLayer class 244
JMX 283
jnlp_embedded parameter 296
JNLP file

embedding, in HTML page 291-296
working 295, 296

join/fork framework, using in Java
about 299
ArrayList, working 302
fork method, working 302
main method, working 302
steps 299-302

JSSE 269
jsse.enableSNIExtension system property

270
JVM

about 7, 8
advantage 8
features 7

JVM performance enhancements 332

K
key code

ca 344
co 344
cu 344
ka 344
nu 344
va 344

KeyEvent class 248

www.it-ebooks.info

http://www.it-ebooks.info/

362

L
lastAccessTime attribute 81
lastModifiedTime attribute

arguments 81
launchWebStartApplication function 296
lightweight

mixing, with heavyweight components 217-
219

LinkedTransferQueue class
asynchronous concurrent threads, issues

323
elements, adding to queue 323
elements, retrieving from deque 324
using 319-322
working 323

listPermissions method 134
literals

invalid underscore usages, examples 15
underscores usage, mistakes 15
underscores, using 13-15
working 14, 15

Locale.Category enumeration
using, for information display 345

LogManager class 332

M
main method 51, 274, 284
managed bean. See MBean
ManagementFactory class 283
ManagementFactory, Java 7

methods 285
manipulateResource methods 23
MBean 283
method

exists 86
getTotalSpace 152
getUnallocatedSpace 152
getUsableSpace 152
isDirectory 86
isExecutable 86
isReadable 86
isReadOnly 152
isRegularFile 86
isWritable 87
name 152
notExists 86

type 152
MIME 79
mouse events

handling 248-251
MouseListener 248
mousePressed event method 249
mousePressed method 251
move method

uses 141
using, with resolveSibling method 142
working 140

MultipleExceptions class 25, 28
multiple exception types

AssertionError class , using in Java 7 28
caching 24, 25
catch block, working 26
common exception base class, using 27, 28
ReflectiveOperationException, using 27

Multipurpose Internet Mail Extension. See
MIME

MXBean
accessing 283, 284
working 284

N
name method 152
NetBeans 7.0.1 9
newBufferedWriter method 188
newBuilder method 130
newByteChannel method 191
newDirectoryStream method 171, 210
newFactory method 273
newFileSystem method 155, 178
new JLayer decorator

component, decorating 241, 242
using 240-244
working 244

nextDouble method 327
nextIndex method 352
nextInt method 308, 326, 327
nextLong method 326, 327
next method 327, 352
Nimbus Look and Feel 217
NIO2 181
non-atomic method 87
non-reifiable data 37

www.it-ebooks.info

http://www.it-ebooks.info/

363

normalization 44
normalize method 53
notExists method 86
notExists methods 70
NTFS file system 148
null references

deepEquals method 350
empty iterators, using 351, 352
equals method, working 349, 350
handling 346-349
hashCode method 350

NumericShaper.Range enumeration
working 338, 339

NumericShaper.Range enumeration
using, for digit display 336-338

O
offerFirst() method 317
offerLast() method 317
offer method 317
onAdvance method 310
operating system support

determining, for attribute views 89, 90
supportsFileAttributeView method, using with

class argument 91, 92
supportsFileAttributeView method, using with

String argument 92
Oracle JSSE implementation 270
output

redirecting, from operating system’s process-
es 287-290

OVERFLOW 177
overloadedresolveSibling method 58
own directory filter

working 172, 173
writing 171, 172

P
paintComponent method 231, 339
parent path 48
PasswordLayerUI class 242-244
path

\home\docs 57
\home\docs\users.txt 57
combining, path resolution used 56, 57

creating, between two location 61-63
normalizing, by reducing redundancy 53-55
resolveSibling, using 60
String argument with resolve method, using

58
users.txt 57

path, creating between two location
cases 63, 64
relativize method, using 61, 62
working 62, 63

path equivalency
determining 67-69
testEquals method, working 69, 70

PathMatcher interface
using, for directory filteration 170, 171

Path object
about 44
components 43
creating 45
get method, using 47
parent path 48
working 46

path resolution
using, for path combination 56, 57

path types
alternative path representations, methods 65
converting between 65
users.txt file, working 66, 67

peekFirst() method 318
peekLast() method 318
peek() method 318, 324
Phaser class

features 304
platform MXBeans

using, for JVM 283-286
using, for system process load monitoring

283-286
pollEvents method 176
pollFirst() method 314, 318
pollLast() method 318
poll() method 318, 324
pop() method 318
Portable Operating System Interface (POSIX)

76
POSIX attributes

file permission, removing 135, 136
 Files class’ setAttribute, using 137

www.it-ebooks.info

http://www.it-ebooks.info/

364

 Files class’ set/get POSIX file permission
methods, using 136, 137

managing 132, 133
working 134

POSIX file attributes
maintaining, PosixFileAttributeView used 96,

97
PosixFileAttributes method 135
PosixFileAttributeView

using, for POSIX file maintainance 96, 97
working 97

PosixFileAttributeView class 212
PosixFilePermissions

creating, PosixFilePermissions class used
138, 139

postVisitDirectory method 158, 162
previousClearBit method 354
previousIndex method 352
previous method 352
previousSetBit method 354
print dialog box type

about 238
on Windows platform 240
specifying 238, 239
using 238, 239
working 240

printDialog method 240
probeContentType method 79
ProcessBuilder.Redirect class

about 269-291
using 290, 291

ProcessCpuLoad attribute 286
processKeyEvent method 244
Project Coin 7
provider method 155
pseudo-columns 275
push() method 317

R
RDMA 268
readAllLines method 186
readAttributes method 76, 77, 93, 95, 97
Read operations 202
readSymbolicLink method 148
real files 145
redirectError method 291

redundancies
directory structure 54
removing, steps 53

reg
 prefix 171

registerAsParallelCapable method 298
register method 176, 304
reifiable data 36
relative path

converting, into absolute path 50-52
getDefault method, working 52
working 52, 53

relativize method 64, 165
relativizing 44
Remote Direct Memory Access. See RDMA
removeFirst() method 318
removeFirstOccurrence() method 318
removeLast() method 318
removeLastOccurrence() method 318
remove() method 318, 324, 352
requireNonNull method 349, 350
reset method 177
resolve method

limitation 58, 59
using, with String argument 58

resolveSibling method 60, 142
Reveal button 255
RFC 3530:Network File System (NFS) version

4 Protocol 131
RowSetFactory class 273

about 270
new row set, creating 271
using 270-272
working 272, 273

RowSetProvider class 270

S
ScheduledThreadPoolExecutor class 206
script tag 216
SDP 183, 268
secondaryLoop

about 255
creating 256-258
using 256-258
using, for modal dialog boxes mimic 255

SecondWindow class 254

www.it-ebooks.info

http://www.it-ebooks.info/

365

section 17.8.1 Wait 262
Section 508

improvements 332
SecureDirectoryStream class

about 182, 210, 211
working 212

SeekableByteChannel
entire file contents, processing 192, 193
file, writing 194
position method 194, 195
using, for IO random access 190-192

Server Name Indication. See SNI
setAttribute method 124
setAutoRequestFocus method 252-255
setDefaultLookAndFeelDecorated method

226
setDefault method 345
setGroup method 97
setLastModifiedTime 123
setLayout method 231
setMultipleMode method 235
setNetworkTimeout method 278
setOption method 202
setOwner methods 126
setPermissions method 137
setProperty method 270
setSeed method 326, 327
setShape method 227, 231
setType method 219
setUndecorated method 230, 231
setVisible 247, 252
setWeekDate method 346
shaped window

creating 227-230
working 230, 231

shutdownNow method 210
SimpleConstraints class 278, 283
simple files

about 184
file lines, reading 186
managing 184
working 185
writing to 185

SimpleFileVisitor class 165
using, for directory copy 162-165
using, for directory deletion 160-162
using, for filesystem traverse 155-158

working 158, 159, 160
size attribute 81
size method 87
sleep method 305
SNI 270
Sockets Direct Protocol. See SDP
SSL 269
SSLParameters class 278
SSLv2Hello protocol 269
StandardCopyOption enumeration values 141
StandardSocketOptions class 202
stream 181
Stream IO 181
string literals

using, important points 12
using, in switch statements 9-12

subpath method 48, 52
substring method 142
sudo command 110
SumOfSquaresTask class 300-302
sun.awt.enableExtraMouseButtons property

251
Sun JSSE provider 269
Sun provider 270
supportsFileAttributeView method 91, 92
Swing 217
switch statements

string literals, using 9-12
symbolic links

about 70
hard links 147, 148
link file target, determining 148
managing 71, 72, 145, 146
working 72, 73, 146

symbolic links 42
synchronization barrier Phaser

Phaser class, using 304
sleep method, working 308
using 303-306
using, for task series repetation 309-312

T
take() method 324
target file 145
temporary files

about 118

www.it-ebooks.info

http://www.it-ebooks.info/

366

managing 118-120
testCompareTo method 69
testSameFile method 70
The default border method 232
ThreadLocalRandom class

about 308
multiple threads, supporting 325, 326
working 326, 327

thread wakeups
calls, avoiding 261
handling 260
working 261

time-related attributes, directory
FileTime class 122
setAttribute method, using 124
setLastModifiedTime, using 123
setting 120
working 121

time-related attributes, file
FileTime class 122
setAttribute method, using 124
setLastModifiedTime, using 123
setting 120
working 121

TLS 269
tmpList 40
toAbsolutePath method 51, 52, 66, 72
toArray method 317
toBinaryString method 16
toByteArray method 354
toFront method 252
toLongArray method 353
Toolkit class 251
toRealPath method 48, 53, 72
toString method

about 305, 351
using 118

toUri method 51, 72
transfer method 324
Transport Layer Security. See TLS
tryTransfer() method 324
try-with-resource block

close method, actions 23
issues, structuring 19, 20
manipulateResource method, using 23
resource, creating 20-22
suppressed exceptions 18

using, for exception handling code improve-
ment 16, 17

working 18
type method 152

U
ubpath method 51
Ubuntu 11.04 133
underscores

invalid underscore usages, examples 15
misuse examples 15
using, in literals 13, 14
using, with binary literals 16
using, with hexadecimal literals 15
working 14

Unicode 6.0 330, 331
Unicode Common Locale Data Repository. See

CLDR
Unicode Standard Annex #24: Script Names

330
Uniform Resource Identifier (URI) 43
uninstallUI method 244
upcasting

example 40
user defined file attributes

maintaining, UserDefinedFileAttributeView
used 106-108

UserDefinedFileAttributeView
using, for user defined file attribute maintain-

ance 106-108
working 107

users.txt file
contents 182

V
validate method 218
valueOf method 353
view relationship 77
visitFileFailed method 158, 159
visitFile method 162, 165

W
wait method 260, 261
walkFileTree method 144, 158, 165
WatchEvents

www.it-ebooks.info

http://www.it-ebooks.info/

367

using, for file event monitor 173-175
working 176, 177

weakly consistent 167
Web Start programs 265
week number 332
window

color gradient, using 224-227
displaying, focus controlling 252-255
shape, managing 227
transparency feature, using 224-227

window opacity
about 222, 223
working 223, 224

window types
about 219
example, Type.NORMAL 221
example, Type.POPUP 220, 221
example, Type.UTILITY 221, 222
managing 219
working 220

withCachedThreadPool 209
withFixedThreadPool 209
withThreadPool 209
WorkerThread class 258, 260
work-stealing 299
write method 107
write operations 202

X
X.509 certificate 269

Z
zip filesystem provider

about 178
working 179

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Java 7 New Features Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning jQuery, Third
Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web development
with simple JavaScript techniques

1. An introduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. Revised and updated version of this popular
jQuery book

Ext JS 4 First Look
ISBN: 978-1-84951-666-2 Paperback: 340 pages

A practical guide including examples of the new features
in Ext JS 4 and tips to migrate from Ext JS 3

1. Migrate your Ext JS 3 applications easily to Ext JS
4 based on the examples presented in this guide

2. Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

3. Driven by examples and explanations of how
things work

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

JBoss ESB Beginner’s Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source JBoss
Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations

2. Learn how services can communicate with each
other and the benefits to be gained from loose
coupling

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples

Liferay Portal Systems
Development
ISBN: 978-1-84951-598-6 Paperback: 546 pages

Build dynamic, content-rich, and social systems on top
of Liferay

1. Use Liferay tools (CMS, WCM, collaborative API
and social API) to create your own Web sites and
WAP sites with hands-on examples

2. Customize Liferay portal using JSR-286 portlets,
hooks, themes, layout templates, webs plugins,
and diverse portlet bridges

3. Build your own websites with kernel features
such as indexing, workflow, staging, scheduling,
messaging, polling, tracking, auditing, reporting
and more

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Java Language Improvements
	Introduction
	Using string literals in switch statements
	Using underscores in literals to improve code readability
	Using the try-with-resources block to improve exception handling code
	Creating a resource that can be used with the try-with-resources technique
	Catching multiple exception types to improve type checking
	Rethrowing exceptions in Java 7
	Using the diamond operator for constructor type inference
	Using the @SafeVarargs annotation

	Chapter 2: Locating Files and Directories Using Paths
	Introduction
	Creating a Path object
	Interoperability between java.io.File and java.nio.file.Files
	Converting a relative path into an absolute path
	Removing redundancies by normalizing a path
	Combining paths using path resolution
	Creating a path between two locations
	Converting between path types
	Determining whether two paths are equivalent
	Managing symbolic links

	Chapter 3: Obtaining File and Directory Information
	Introduction
	Determining the file content type
	Obtaining a single attribute at a time using the getAttribute method
	Obtaining a map of file attributes
	Getting file and directory information
	Determining operating system support for attribute views
	Maintaining basic file attributes using the BasicFileAttributeView
	Maintaining POSIX file attributes using the PosixFileAttributeView
	Maintaining FAT table attributes using the DosFileAttributeView
	Maintaining file ownership attributes using the FileOwnerAttributeView
	Maintaining a file's ACL using the AclFileAttributeView
	Maintaining user-defined file attributes using the UserDefinedFileAttributeView

	Chapter 4: Managing Files and Directories
	Introduction
	Creating files and directories
	Controlling how a file is copied
	Managing temporary files and directories
	Setting time-related attributes of a file or directory
	Managing file ownership
	Managing ACL file permissions
	Managing POSIX attributes
	Moving a file and a directory
	Deleting files or directories
	Managing symbolic links

	Chapter 5: Managing Filesystems
	Introduction
	Getting FileStore information
	Getting Filesystem information
	Using the SimpleFileVisitor class to traverse filesystems
	Deleting a directory using the SimpleFileVisitor class
	Copying a directory using the SimpleFileVisitor class
	Processing the contents of a directory by using the DirectoryStream interface
	Filtering a directory using globbing
	Writing your own directory filter
	Monitoring file events using WatchEvents
	Understanding the ZIP filesystem provider

	Chapter 6: Stream IO in Java 7
	Introduction
	Managing simple files
	Using buffered IO for files
	Random access IO using the SeekableByteChannel
	Managing asynchronous communication using the AsynchronousServerSocketChannel class
	Writing to a file using the AsynchronousFileChannel class
	Reading from a file using the AsynchronousFileChannel class
	Using the SecureDirectoryStream class

	Chapter 7: Graphical User Interface Improvements
	Introduction
	Mixing heavyweight and lightweight components
	Managing window types
	Managing the opacity of a window
	Creating a varying gradient translucent window
	Managing the shape of a window
	Using the new border types in Java 7
	Handling multiple file selection in the FileDialog class
	Controlling the print dialog box type
	Using the new JLayer decorator for a password field

	Chapter 8: Handling Events
	Introduction
	Managing extra mouse buttons and high resolution mouse wheels
	Controlling focus when displaying a window
	Using secondary loops to mimic modal dialog boxes
	Handling spurious thread wakeups
	Handling applet initialization status with event handlers

	Chapter 9: Database, Security, and System Enhancements
	Introduction
	Using the RowSetFactory class
	Java 7 database enhancements
	Using the ExtendedSSLSession interface
	Using the platform MXBeans for JVM or system process load monitoring
	Redirecting input and output from operating system's processes
	Embedding a JNLP file in an HTML page

	Chapter 10: Concurrent Processing
	Introduction
	Using join/fork framework in Java
	Using the reusable synchronization barrier Phaser
	Using the new ConcurrentLinkedDeque safely with multiple threads
	Using the new LinkedTransferQueue class
	Supporting multiple threads using the ThreadLocalRandom class

	Chapter 11: Odds and Ends
	Introduction
	Handling weeks in Java 7
	Using the Currency class in Java 7
	Using the NumericShaper.Range enumeration to support the display of digits
	JavaBean enhancements in Java 7
	Handling locales and the Locale.Builder class in Java 7
	Handling null references
	Using the new BitSet methods in Java 7

	Index

