
www.it-ebooks.info

http://www.it-ebooks.info/

Instant Silverlight 5 Animation

Enrich your web page or Silverlight business application
with Silverlight animations

Nick Polyak

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Silverlight 5 Animation

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1160113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-714-0

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Nick Polyak

Reviewer
Thomas Martinsen

Acquisition Editor
Rukhsana Khambatta

Commissioning Editor
Meeta Rajani

Technical Editor
Jalasha D'costa

Project Coordinator
Shraddha Bagadia

Esha Thakker

Proofreader
Bernadette Watkins

Indexer
Rekha Nair

Graphics
Sheetal Aute

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Sheetal Aute

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Nick Polyak is a technology enthusiast who enjoys building software and learning
new technologies. For the past six years, Nick worked primarily on Silverlight/WPF
projects, and prior to that he worked with C++ and Java. Nick is looking forward to
harnessing the new capabilities coming with HTML5 and modern JavaScript libraries.

Nick got his Ph.D. from Rensselaer Polytechnic Institute in 1998. He did his research
in Wavelet based image processing and published a number of papers on the subject.

More recently Nick published several articles on codeproject.com some of which
(a Prism tutorial and an article on MVVM) became quite popular.

Nick is the owner of the AWebPros.com consulting company.

I would like to thank my wife and children for being patient with me
while I worked on this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Thomas Martinsen is a passionate developer with a focus on Windows
development. Thomas is a regular speaker at customer-oriented and
developer-oriented events, having worked as a consultant for more than
10 years.

Thomas is a partner in Bluefragments, a company with a focus on the newest
Microsoft technologies. Bluefragments is among the best Windows developers in
Denmark and has recently built a series of Windows 8 apps for the Windows Store.

For three years now, Thomas been awarded Microsoft MVP.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Building Blocks of Animation 	 7

Spinning control sample	 7
Defining a dependency property in C# code	 8
Defining visual presentation for spinning control	 10
Bindings	 13
Transforms	 13
Storyboards and animations	 14

Adding a rotation animation to our code	 14
A brief overview of different Silverlight animation classes	 17

Attached properties	 18
Summary	 20

Chapter 2: Animations in Business Logic Silverlight Applications	 21
Animating Silverlight controls	 21

Tools for animating controls	 21
Animating a built-in button	 22
Creating and animating custom button control	 28

Animating navigation panels	 29
Summary	 39

Chapter 3: Creating Animated Textures	 41
Background on Perlin noise	 41

A bit of history	 41
Perlin noise algorithm	 41

Multi-scale Perlin noise	 42
Basic Perlin noise	 43

Perlin noise algorithm implementation	 44
ImageProcessingLibrary	 46

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Cloud simulation	 47
Fire simulation	 50
Summary	 56

Chapter 4: 3D Animations in Silverlight	 57
Perspective transform	 57
Silverlight 5 three-dimensional functionality	 60

3D models	 60
Vertex and pixel shaders	 60

Compiling pixel shaders	 61
Enabling your Visual Studio 2010 SP1 or Visual Studio 2012 to create
and compile shaders	 62

Creating the moving triangle application	 67
The moving prism application	 74
The 3D related topics that were left out	 76
Summary	 76

Chapter 5: Building an Animated Banner	 77
What we aim to build	 77
The globe image	 78
Perspective transform	 78
Code description	 78

Referring to the globe image within an XAML file	 78
Creating rotating lines of text	 79
Animation storyboard	 83
Placing the Silverlight banner within an HTML file	 85

Summary	 86
Appendix A: Creating and starting a Silverlight project	 87
Appendix B: Changing the XAML formatting	 89
Appendix C: Installing snippets	 91
Appendix D: Using snippets	 93
Index	 95

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

What is Silverlight
Silverlight is a relatively new technology introduced by Microsoft in order to enable
the developers to build multi-platform client GUI applications that can run within or
outside of Internet browsers.

Why should I use Silverlight
Silverlight empowers developers with great new GUI capabilities, combined with
revolutionary GUI coding concepts that came to Silverlight from WPF. While some
think that HTML 5 gives the developers functionality that is almost as powerful
as Silverlight, the programming model of HTML 5 is indisputably old, while the
Silverlight/WPF programming model is ahead of that of any competing software.

Unlike the currently available versions of HTML, Silverlight is 98 percent
multi-platform (between Windows and Macs) and its list of non multi-platform
features is freely available. As long as you avoid using those features, any
application you build for Windows is guaranteed to run on Mac.

Silverlight is close to being 100 percent multi-browser (if there are any features that
do not perform the same on different browsers, I am not aware of them) and any
application you write using Internet Explorer is guaranteed to run within Firefox
on the same platform, while this might not be the case with HTML.

Silverlight has a very small footprint – in order to make Silverlight 5 run on your
machine you need to download and install only a 6 MB package.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Silverlight makes it very easy to deploy your application via the Internet, whether it
is a browser-based application or not.

Microsoft Phone uses Silverlight as its primary coding platform.

What is the downside of using Silverlight
Microsoft pedalled back on Silverlight as they decided that Silverlight might
undermine their Windows platform. The Windows 8 platform uses many Silverlight
concepts, but is strictly Windows oriented.

Apple does not allow plugins for their iPhone and iPad browsers, since plugins
undermine their Apple store application model. Microsoft followed suit and
Windows 8 browsers for tablets and phones will not support Silverlight as a
browser plugin. To the best of my knowledge, Windows 8 tablets will continue
to run Silverlight applications outside of browsers. The Windows 8 programing
model, however, is very similar to Silverlight and it should be easy to convert your
Silverlight application to Windows 8.

There is a lot of buzz around HTML 5 being able to do everything that Silverlight
does, and, undeniably, the HTML 5 application will run on the platforms so far
closed to Silverlight – iPads, iPhones, and Android systems. From my point of
view, while HTML 5 is a great technology, it does not address the questions that
have plagued the HTML/JavaScript technology from the outset – namely its
programming paradigms are not strong enough to support coding complex business
logic. Additionally, HTML 5 will not run on many of the existing desktop browsers,
so if someone wants to build a website available to everyone they usually have to
use HTML 4.

What this book covers
This book is about creating animations using Silverlight technology.

Chapter 1, Building Blocks of Animation, talks about the Silverlight concepts used
for animation: dependency and attached properties, bindings, transforms,
and storyboards.

Chapter 2, Animations in Business Logic Silverlight Applications, talks about
using VisualStateManager for custom control animations and animation
navigation transitions.

Chapter 3, Creating Animated Textures, talks about using Perlin noise for generating
random processes such as clouds and fire.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 4, 3D Animations in Silverlight, talks about using Perspective Transform for
simple 3D animations and also covers using a subset of the XNA functionality in
Silverlight for more complex animations.

Chapter 5, Building an Animated Banner, talks about creating a Silverlight animated
banner and integrating it into an HTML page.

What you need for this book
The following software should be installed in order for the reader to be able to run
the samples:

1.	 MS Visual Studio 2010 Professional (a trial version can be downloaded from
http://www.microsoft.com/en-us/download/details.aspx?id=2890 and
will run for a period of time without requiring the user to purchase a license).

2.	 MS Visual Studio 2010 SP1 can be downloaded free from
http://www.microsoft.com/en-us/download/details.aspx?id=23691.
It should only be installed after the installation of Visual Studio.

3.	 Silverlight 5 tools for Visual Studio 2010 SP1 can be downloaded free from
http://www.microsoft.com/en-us/download/details.aspx?id=28358.

Who this book is for
We assume that the reader already has basic knowledge of Silverlight or
WPF programming concepts. One should not use this book to learn Silverlight
or WPF basics.

Notes on the samples
We recommend that you create and build all the samples from scratch, using the
source code provided with the book just as a way to check your work.

WPF experts with no previous Silverlight experience might have difficulty creating,
starting, and understanding Silverlight applications, so there is Appendix A, Creating
and starting a Silverlight project, describing how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Silverlight only has a subset of WPF functionality, for example, it does not have
data and property triggers, and its event triggers can only react to a loaded
event. MS Expression Blend SDK provides functionality to mitigate these
deficiencies, as well as many other exciting features. Expression Blend SDK
DLLs are free and fully redistributable and are provided with the samples under
the MSExpressionBlendSDKDll folder. Expression Blend SDK does not require
Expression Blend (which we are not using anyways).

Follow the instructions within Appendix B, Changing the XAML formatting, if you want
to format your XAML file to have each XML attribute on a separate line as we do in
our sample code.

In order to format your C# code similar to the code in our samples, please install
and use the snippets provided under the Snippets folder (which is part of the
sample code that comes with the book). Information on installing and using
snippets is available in Appendix C, Installing snippets, and Appendix D,
Using snippets, respectively.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

public double RotationAngle
{
 get { return (double)GetValue(RotationAngleProperty); }
 set { SetValue(RotationAngleProperty, value); }
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes, for example, appear in the text like this:
"You can start the browser displaying our Silverlight banner within that HTML
page by right-clicking on the file within Solution Explorer and choosing View
in Browser".

Warnings or important notes appear in a box like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation
This chapter describes Silverlight/WPF concepts needed for creating animations,
namely dependency and attached properties, bindings, transforms, and storyboards.
We assume that the reader is already familiar with most of the concepts within this
section and uses it simply as a refresher, as well as a way to jump-start the samples
for the rest of the application.

In this chapter we will look at:

•	 Dependency properties: These are a special type of properties that can be
animated using the storyboards in Silverlight.

•	 Attached properties: These are very similar to dependency properties except
that they do not have to be defined in a class that uses them.

•	 Bindings: These bind two properties together so that when one changes the
other does as well.

•	 Transforms: These are used to modify the visual elements. Transforms are
often used for animations.

•	 Storyboards: These are objects that encapsulate information about
animations including what properties are animated and how.

Spinning control sample
We will start developing a simple control sample and gradually expand it to
demonstrate all the required concepts.

The resulting sample application is located under CODE\SpinningControlSample\
SpinningControlSample.sln, but we recommend that you build this sample from
scratch, based on the instructions within this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[8]

The goal of this sample is to develop a lookless control that has a RotationAngle
dependency property and later to provide a view for this control (for example,
as a rectangle), and to animate the RotationAngle so that the rectangle would be
seen as rotating.

Lookless controls are controls that do not contain any visual implementation details.
Such controls need a ControlTemplate in order to display them. This provides
a great advantage to developers/designers because it separates the control's
implementation details from its presentation.

Firstly, let's create a Silverlight Application project called SpinningControlSample.
Follow the instructions in Appendix A, Creating and Starting a Silverlight Project,
to create a browser-based, empty Silverlight solution. As mentioned in Appendix
A, the solution will actually contain two projects, SpinningControlSample and
SpinningControlSample.Web. The project with the .Web extension is just an ASP
project to embed the Silverlight page. We are not going to concentrate on it. The real
project of interest to us is SpinningControlSample.

Within the SpinningControlSample project, we create a new empty C# class,
SpinningControl.

Make the SpinningControl class inherit from the Control class as shown in
the following code snippet:

public class SpinningControl : Control
{

}

We are going to populate this class to provide the functionality that is
previously described.

Defining a dependency property in
C# code
Dependency properties (DPs) are a special type of properties introduced in WPF
and Silverlight. Just like the usual .NET properties, they describe a property of a
.NET object. Unlike the usual .NET properties, their storage does not take space
within the class that uses them. Rather, they are stored in some static collections,
indexed, and accessed by the corresponding objects.

Silverlight and WPF provide natural ways to animate the dependency properties
using Storyboard objects (which are described later in the chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Silverlight and WPF also have natural mechanisms to bind two dependency
properties together (or a usual property to a dependency property) so that changing
one of them will trigger the other to change.

Now let's define the RotationAngle dependency property of a type double within
this class. Put the cursor between the curly brackets defining the body of the class
and type propdp followed by a tab keystroke. Follow the instructions in Appendix
D, Using Snippets, to set up the name, type, and default value of the property.

 public class SpinningControl : Control
 {
 #region RotationAngle Dependency Property
 // Dependency Properties' getter and setter for accessing the
 //DP as
 // if it is a usual property
 public double RotationAngle
 {
 get { return (double)GetValue(RotationAngleProperty); }
 set { SetValue(RotationAngleProperty, value); }
 }

 // static field for storing and accessing the DPs by object
 //reference
 public static readonly DependencyProperty
RotationAngleProperty = DependencyProperty.Register
 (
 "RotationAngle", // DP name
 typeof(double), // DP type
 typeof(SpinningControl), // Class defining the DP
 new PropertyMetadata(0.0) // DP's default value
);
 #endregion RotationAngle Dependency Property
 }

You might have noticed that the RotationAngle property within the
SpinningControl class does not refer to any object field. Rather, it uses GetValue
and SetValue methods inherited from DependencyObject to get and set the
dependency objects correspondingly. The field values themselves are stored
within the RotationAngleProperty static class member, and individual objects
of the class SpinningControl get their RotationAngle property values from this
static field via their object reference (using the functionality embedded within the
DependencyObject class).

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[10]

This is one of the advantages of using the dependency properties – the
SpinningControl object that does not set the property does not need any extra
space for this property; it gets the default from the static RotationAngleProperty
structure defined once for all the objects of the same class. Take a look at the
following section within DP's definition:

public double RotationAngle
{
 get { return (double)GetValue(RotationAngleProperty); }
 set { SetValue(RotationAngleProperty, value); }
}

It provides a way to access the dependency property as a usual .NET property.
Many .NET calls to the DP, however, are not using these get and set accessors;
instead such calls use the DependencyObject class GetValue() and SetValue()
methods directly. Because of this, you should not add any code to these property
accessors – such a code simply won't be executed in many cases.

This is all we need to define a lookless control – just a class extending Control and
containing some non-visual properties (usually DPs), functions, and events. Such a
control is called lookless because it does not define any visual presentation for itself.
Visual presentation of a lookless control is defined by a control template, which
is usually represented by XAML code residing in some XAML resource file. The
advantage of lookless controls lies in the fact that you do not have to change the
control itself in order to achieve various different visual representations. All you
need to do is to change the template. Since it is the control itself and not its template
that is responsible for interacting with the rest of the application, by changing the
templates one can completely change the visual presentation of the application
without affecting any underlying logic. More on lookless controls can be found at
http://tinyurl.com/lookless.

For most of the samples within this book, I am using lookless controls since this
is the best practice, even though it is not related to the subject of animations.

Defining visual presentation for spinning
control
Now we are going to add code to MainPage.xaml to display a SpinningControl
object. When you open the MainPage.xaml file, you will see the following XAML
code created for you by Visual Studio:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

<UserControl
 x:Class="SpinningControlSample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:i="http://schemas.microsoft.com/expression/2010/
interactivity"
 xmlns:se="http://schemas.microsoft.com/expression/2010/
interactions"
 xmlns:SpinningControlSample="clr-namespace:SpinningControlSample"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

Let's modify this class to display our SpinningControl object as a rectangle rotated
by an angle specified by its RotationAngle property:

<UserControl x:Class="SpinningControlSample.MainPage"
 ...
 d:DesignHeight="300"
 d:DesignWidth="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <!--Dependency Property RotationAngle is referred to within
 XAML in exactly the same way as the usual
 property (as in the line below)-->
 <SpinningControlSample:SpinningControl
x:Name="TheSpinningControl"
 RotationAngle="45">
 <SpinningControlSample:SpinningControl.Template>
 <!-- SpinningControl's template is set to create a
visual
 representation for the control. -->
 <ControlTemplate
 TargetType="SpinningControlSample:SpinningControl">
 <Rectangle Fill="Orange"
 Width="100"
 Height="30"
 RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[12]

 <!-- We use "Binding" to connect
 RotateTransform's Angle property
 to the RotationAngle Dependency
 Property. -->
 <RotateTransform
 Angle="{Binding
 Path=RotationAngle,
 Mode=OneWay,
 RelativeSource=
 {RelativeSource
 Mode=TemplatedParent}}"
/>
 </Rectangle.RenderTransform>
 </Rectangle>
 </ControlTemplate>
 </SpinningControlSample:SpinningControl.Template>
 </SpinningControlSample:SpinningControl>
 </Grid>
</UserControl>

If you build and run the SpinningControlSample solution, you will get a 45
degree rotated orange rectangle displayed in a browser window as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Note that we defined the template for our lookless control inline
(see the <SpinningControlSample:SpinningControl.Template> tag).

Bindings
Binding is a powerful Silverlight/WPF concept allowing two or more properties on
two objects to be tied together, so that when one of them changes, the other changes
as well. One of the binding's properties is called source property and the other target
property. Usually we assume that the target property changes when the source
does, but if the binding mode is two-way, the opposite is also true, that is, a change
in the source property will be triggered by a change in the target property. The
target property should always be a dependency property while the source property
can be a usual .NET one. More on bindings can be found at http://tinyurl.com/
wpfbindings.

The XAML code presented in the previous subsection uses binding to bind the
RotationAngle dependency property of the SpinningControl object to the Angle
property of the RotateTransform object:

<RotateTransform Angle="{Binding Path=RotationAngle,
 Mode=OneWay,
 RelativeSource={RelativeSource

Mode=TemplatedParent}}" />

In this case, the RotationAngle property of the SpinningControl object is the
source property of the binding, while the Angle property of the RotateTransform
object is its target property. The binding mode being set to OneWay specifies that the
target property changes whenever the source property does, but not vice versa. The
RelativeSource property of the binding, when set to TemplatedParent, specifies
that the binding's source property is chosen by the Path property taken with respect
to the control to which the template applies (in our case it is SpinningControl).

Transforms
Silverlight provides a powerful set of transforms to apply to the visual object.
The following is a full set of 2D transforms:

•	 TranslateTransform: This shifts an object in a 2D plane.
•	 ScaleTransform: This scales (or resizes) the object by the ScaleX factor

along the X-axis and the ScaleY factor along the Y-axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[14]

•	 SkewTransform: Skewing along the X-axis turns every vector orthogonal to
the X-axis by the same angle defined by AngleX, and expands its length so
that its Y coordinate stays the same. The AngleY parameter of the transform
is in charge of skewing along the Y-axis.

•	 RotateTransform: This rotates an object by the Angle parameter.
•	 MatrixTransform: This is a generic transform that can represent any linear

transformation and translation within a 2D plane.

We previously used RotateTransform to rotate the rectangle.

There is also the PlaneProjection transform imitating the moving of an object in a
3D space. We will describe this transform in detail later in the book.

Storyboards and animations
Storyboards are Silverlight entities that are used for describing the animations
of various dependency and attached properties. They consist of one or several
animation entities each one of which is dedicated to animating just one dependency
property. This section gives an overview of storyboard and animation functionality.

Adding a rotation animation to our code
We are about to make this rectangle rotate by changing the dependency property,
that is, RotationAngle using a storyboard.

The storyboard can be created as the page's resource by adding the following XAML
code above the <Grid x:Name="LayoutRoot" …> line:

<Storyboard
 x:Key="RotationStoryboard"
 Storyboard.TargetName="TheSpinningControl"
 Storyboard.TargetProperty="(SpinningControlSample:
 SpinningControl.RotationAngle)">
 <DoubleAnimation BeginTime="00:00:00"
 Duration="00:00:01"
 From="0"
 To="360"
 RepeatBehavior="Forever" />
</Storyboard>

Once this storyboard runs, it will change the RotationAngle property on the
visual element called TheSpinningControl from 0 to 360 over a period of 1
second and then continue repeating the same change forever, which will result
in a rotating rectangle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The only thing remaining is to start the storyboard based on some event.

We are going to add a button at the bottom of the window, which when clicked will
start the rotation. Here is the code we need to add to our XAML file under the </
SpinningControl> end tag in order to create the button:

<Button x:Name="StartRotationButton"
 Content="Start Rotation"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center"
 Margin="0,0,0,20"
 Width="100"
 Height="25">
</Button>

It would be easy to get the reference to the button, within the MainPage.xaml.cs
(code-behind) file and add a handler to the button's Click event to pull the storyboard
out of the page's resource and start it. However, we do not want to split the button
click action triggering a storyboard from the XAML code which defines both the
button and the storyboard. This is where MS Expression Blend SDK, mentioned in the
Preface, comes in handy.

MS Expression Blend SDK does not require having MS Expression Blend installed.
It is simply a number of free and redistributable DLLs that make Silverlight/WPF
programming easier.

One can download MS Expression Blend SDK using the URL specified in the Preface,
or simply use the two files, Microsoft.Expression.Interactions.dll and
System.Windows.Interactivity.dll, that come with our code. These files are
located in the MSExpressionBlendSDKDlls folder and you need to add references to
them in our SpinningControlSample project. MS Expression Blend SDK allows us
to connect the Click button event to the ControlStoryboardAction functionality
that starts the animation without any C# code. Also, we can disable the button once
it is clicked, by using MS Expression Blend SDK's ChangePropertyAction object.

Add the following namespace reference to the <UserControl… tag at the top of the
MainPage.xaml file:

<UserControl …
 …xmlns:i="http://schemas.microsoft.com/expression/2010/
interactivity"
 xmlns:se="http://schemas.microsoft.com/expression/2010/
interactions"
 …/>

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[16]

Now we can use i: and se: prefixes to access the MS Expression Blend functionality
within XAML.

To start the storyboard on a button click, add the following XAML code between the
button's start and end tags:

<i:Interaction.Triggers>
 <!-- MS Expression Blend SDK trigger will start on "Click"
 event of the button-->
 <i:EventTrigger EventName="Click">
 <!-- ChangePropertyAction below will disable the
StartRotationButton after it is clicked first time -->
 <se:ChangePropertyAction
 TargetObject="{Binding ElementName=StartRotationButton}"
 PropertyName="IsEnabled"
 Value="False" />

 <!-- ControlStoryboardAction will start the RotationStoryboard
-->
 <se:ControlStoryboardAction
 ControlStoryboardOption="Play"
 Storyboard="{StaticResource
RotationStoryboard}" />
 </i:EventTrigger>
</i:Interaction.Triggers>

You can run the sample now. Once you click the button, the orange rectangle in the
middle starts rotating and the button gets disabled:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

A brief overview of different Silverlight
animation classes
As we learned earlier, Silverlight Storyboards consist of one or more animation
objects. Each animation object controls an animation of one and only one
dependency property. Note that only dependency or attached properties can be
animated by Silverlight animations. There are two types of animation classes:

•	 Simple animations (that have properties to, from, and by): Such animations
change the dependency property linearly in time (unless easing is used).
The properties to and from specify the dependency property value in the
beginning and end of the iteration. Using the property by, you can specify by
how much the animation should change (obviously if you use the property
by, the other two properties are redundant – the animation will simply
increase the current value by the value specified in the property by). You can
also specify at what point an animation should start, and how long it should
last by using the BeginTime and Duration properties of the animation class.
Since the animations control DPs of different types, there is a specific built-in
animation class for every type that is likely to be animated. Animation names
usually start with the name of the type. The following Silverlight simple
animations are the most important ones:

i.	 DoubleAnimation: This animates a double DP (we used
it previously to animate the RotationAngle DP of the
SpinningControl object).

ii.	 ColorAnimation: This animates color transitions.
iii.	 PointAnimation: This animates Points, that is, pairs of

double values.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[18]

•	 Key frame animations: These animations also allow us to specify property
values at certain points between the beginning and the end of the iteration.
Correspondingly, key frame animations do not have to, from, and by
properties. Instead, such animations have the KeyFrames property – a
collection that can be populated with objects of the key frame class. Key
frame classes differ by the type of interpolation that they use in order to
interpolate the value between the key frame times. There are Discrete,
Linear, and Spline interpolations. The names of key frame classes are
composed of the interpolation type, animation type (corresponding to the
DP type), and KeyFrame suffix, for example, LinearDoubleKeyFrame. Key
frame animation class names start with the interpolation type followed
by the animation type and end with the UsingKeyFrames suffix. The most
important key frame animations are:

i.	 DoubleAnimationUsingKeyFrames

ii.	 ColorAnimationUsingKeyFrames

iii.	 PointAnimationUsingKeyFrames

Attached properties
One constraint on the dependency properties is that they have to be defined within
a class that uses them. In many cases, however, developers might want to add
properties to an object of a predefined class without extending the class. WPF
and Silverlight came up with a new concept that allows doing just that – attached
properties (APs). APs can be defined in some (usually static) class and can be used
to attach properties to any object derived from a DependencyObject.

An attached property sample can be found in the
SpinningWithAttachedPropertySample folder. To create your own sample,
create a new project and add a C# file/class to it called AttachedProperties.
Make this class static and use the propa snippet to create the RotateAngle
attached property in it:

#region RotationAngle attached Property
public static double GetRotationAngle(DependencyObject obj)
{
 return (double)obj.GetValue(RotationAngleProperty);
}

public static void SetRotationAngle(DependencyObject obj, double
value)
 {
 obj.SetValue(RotationAngleProperty, value);

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/system.windows.media.animation.doubleanimationusingkeyframes(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.animation.doubleanimationusingkeyframes(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.animation.coloranimationusingkeyframes(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.animation.coloranimationusingkeyframes(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.animation.pointanimationusingkeyframes(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/system.windows.media.animation.pointanimationusingkeyframes(v=vs.95).aspx
http://www.it-ebooks.info/

Chapter 1

[19]

}

public static readonly DependencyProperty RotationAngleProperty =
DependencyProperty.RegisterAttached
(
 "RotationAngle",
 typeof(double),
 typeof(AttachedProperties),
 new PropertyMetadata(0.0)
);
#endregion RotationAngle attached Property

You can see that unlike dependency properties, the attached properties have two
static accessor methods GetRotationAngle and SetRotationAngle.

Now we can animate this attached property within the MainPage.xaml file in a very
similar way to animating the dependency property. In the following section, we show
the regions of XAML code that are different from the dependency property code.

In our attached property animation project, we will define a Storyboard object in
exactly the same way as we did for the dependency property, the only difference is
that we cannot specify Storyboard.TargetProperty within XAML:

<UserControl.Resources>
 <Storyboard x:Key="RotationStoryboard"
 Storyboard.TargetName="TheRotatingRectangle">
 <DoubleAnimation BeginTime="00:00:00"
 Duration="00:00:01"
 From="0"
 To="360"
 RepeatBehavior="Forever" />
 </Storyboard>
</UserControl.Resources>

Unfortunately, Silverlight does not allow a storyboard to reference a custom attached
property in XAML. Due to this limitation, we are forced to add such a reference in
the C# code-behind.

The following is the XAML definition of a spinning Rectangle. The only
difference between this code and the DP-related code previously presented is
that we are using the full path within parentheses to point to the attached property
within the Binding definition:

<Rectangle x:Name="TheRotatingRectangle"
 Fill="Orange"
 Width="100"

www.it-ebooks.info

http://www.it-ebooks.info/

Building Blocks of Animation

[20]

 Height="30"
 RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <RotateTransform
 Angle="{Binding
 Path=(SpinningWithAP:AttachedProperties.
RotationAngle),
 Mode=OneWay,
 ElementName=TheRotatingRectangle}"/>
 </Rectangle.RenderTransform>
</Rectangle>

You can see that the visual element does not have to be a custom control, we can use
an attached property on an element built into Silverlight – Rectangle.

Finally, as was previously stated, due to a Silverlight limitation, we have to specify
the storyboard's TargetProperty within the C# code. We can do this in the
MainPage constructor as shown in the following snippet:

public MainPage()
{
 InitializeComponent();

 Storyboard rotationStoryboard =
 (Storyboard) this.Resources["RotationStoryboard"];

 Storyboard.SetTargetProperty
 (
 rotationStoryboard,
 new PropertyPath(AttachedProperties.RotationAngleProperty)
);
}

Summary
This chapter has defined the building blocks for future discussion, namely
dependency and attached properties, lookless controls, bindings, and storyboards.
It gives an example of using the MS Expression Blend SDK interactivity functionality.
All of these will be used throughout the book to build animations. It is assumed that
the reader already has some knowledge of the aforementioned subjects and uses this
chapter only as a refresher. For an in-depth treatment of these subjects, we provide
the reader with references within the text.

The next chapter will build on this material to cover creating animation is Silverlight
business applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic
Silverlight Applications

When you build a Silverlight application, animations can play a large role in spicing
it up, making it more user-friendly and intuitive. This chapter shows how to achieve
this by employing the following techniques:

•	 Using VisualStateManager to animate custom controls
•	 Animating navigation transitions

Animating Silverlight controls
Silverlight provides many built-in controls. It also empowers the developers to create
their own controls – so called custom controls. Even the built-in Silverlight controls
can be fully re-styled with all of their visual parts replaced by the designer. In the
following sections, you will see how to use the VisualStateManager concept in order
to provide custom animations for a built-in Silverlight button and later for a custom
button-like control.

Tools for animating controls
Here is some bad news and good news for the WPF developers: the bad
news – Silverlight does not have a built-in property or data triggers to trigger
a visual change within a style or a template; the good news – the MS Expression
Blend SDK functionality to a large degree mitigates this deficiency by providing
classes to replace missing triggers. DataTriggers can detect a change of property
within a control and fire, for example, ChangePropertyAction – which can trigger
some visual property change, or ControlStoryboardAction, which can start, stop,
or pause a storyboard, similar to the WPF triggers.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[22]

The trigger functionality is perfect when it comes to instantaneous visual change
(and DataTrigger/ChangePropertyAction combination is very useful for that),
but when it comes to animations, keeping track of all storyboards invoked on different
triggers (in order to stop them when a different trigger is fired) might be tedious.
The Silverlight team has come up with a functionality that helps with that.
It invokes and stops correct animations based on the visual states of the controls.
This functionality is called VisualStateManager and it will be explained and
extensively used throughout the following section.

Animating a built-in button
The code that we describe in this section is located under the
AnimatingButtonStates.sln solution.

A Silverlight button has the following mouse-driven states:

•	 Normal
•	 MouseOver
•	 Pressed

Note that there might be more states to a fully functioning button, for example, there
is also a Disabled state, but whether a button is disabled or not usually does not
depend on mouse movements or positions, it does not have to be animated, and we
do not describe it here. Our purpose in this section is not to create a fully functioning
button, but rather to demonstrate some generic concepts for re-styling a control and
providing custom animations for it.

Let's create a Silverlight project containing a single page with the button in its center.
The following is the resulting XAML code of the main page:

<UserControl
 x:Class="AnimatingButtonStates.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="LayoutRoot" Background="White">
 <Button Width="100"
 Height="25"
 Background="LightGray"
 Content="Press Me" />
 </Grid>
</UserControl>

We want to re-style this button completely, modifying it shape, border, colors,
and creating custom animations for the transition between states.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Now, we'll create a very simple custom template for the button by changing the
button code to the following code:

<!-- Here we provide custom button template -->
<Button> <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="TopLevelButtonGrid">
 <!--Button Border-->
 <Border x:Name="ButtonBorder"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 CornerRadius="5"
 Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding
BorderThickness}">
 </Border>

 <!-- button content is placed here-->
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
<Button>

If we run the code, as it is, we shall be able to see the button and its Press Me
content, but the button will not react visually to mouse over or press events.
That is because once we replace the button's template we will have to provide
our own solution to the visual changes for different button states.

Now, let's discuss how we want the button to look in the different states
and how we want it to handle the transitions between states.

When the mouse is over the button, we want a blue border to appear.
The animation to achieve this can be fast or even instantaneous.

When the button is pressed, we want it to scale down significantly and we want the
button to scale up and down several times, each time with lower amplitude before
achieving a steady pressed state.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[24]

Note that the control template developers and designers usually try to avoid
changing colors within animations (they are considered to be more complex and less
intuitive); instead, they try to achieve color-changing effects by changing opacities
of several template parts. So to change the border to blue on mouse over, let's create
another border element MouseOverBorder with blue BorderBrush, and non-zero
BorderThickness within the control template. At normal state, its opacity property
will be 0, and it will be completely transparent. When the state of the button changes
to MouseOver, the opacity of this border will change to 1.

After we add the MouseOverBorder element together with the visual state manager
functionality, the resulting template code will look as follows:

<Button>
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="TopLevelButtonGrid">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualStateGroup.Transitions>
 <!-- duration for the MouseOver animation is set
 here to 0.2 seconds -->
 <VisualTransition To="MouseOver"
 GeneratedDuration="0:0:0.2" />
 </VisualStateGroup.Transitions>
 <VisualState x:Name="Normal" />
 <VisualState x:Name="MouseOver">
 <VisualState.Storyboard>
 <Storyboard>
 <!--animation performed when the
 button gets into "MouseOver"
 State-->
 <DoubleAnimation Storyboard.
 TargetName="MouseOverBorder"
 Storyboard.TargetProperty="Opacity"
 To="1" />
 </Storyboard>
 </VisualState.Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <!--Button Border-->
 <Border x:Name="ButtonBorder"
 HorizontalAlignment="Stretch"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

 VerticalAlignment="Stretch"
 CornerRadius="5"
 Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 </Border>

 <!--MouseOverBorder has opacity 0 normally.
 Only when the mouse moves over the button,
 the opacity is changed to 1-->
 <Border x:Name="MouseOverBorder"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 CornerRadius="5"
 BorderBrush="Blue"
 BorderThickness="2"
 Opacity="0">
 </Border>

 <!-- button content is placed here-->
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
 </ControlTemplate>
 </Button.Template>
</Button>

Now, if we start the application, we'll see that the border of the button becomes blue,
if the mouse pointer is placed over it, and returns to its usual color when the mouse
pointer is moved away from the button, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[26]

The next step is to animate the pressed state.

To achieve this, we add a ScaleTransform object to the top-level grid of the
button's template:

<ControlTemplate TargetType="Button">
 <Grid x:Name="TopLevelButtonGrid"
 RenderTransformOrigin="0.5,0.5">
 <Grid.RenderTransform>
 <!-- scale transform is used to shrink the button
 when it is pressed -->
 <ScaleTransform x:Name="OnPressedScaleTransform"
 ScaleX="1"
 ScaleY="1" />
 </Grid.RenderTransform>
...

The purpose of the ScaleTransform object is to shrink the button once it is pressed.
Originally, its ScaleX and ScaleY parameters are set to 1, while the animation that
starts when the button is pressed changes them to 0.5.

This animation is defined within VisualState defined as Pressed:

<VisualStateGroup>
 ...
 <VisualState x:Name="Pressed">
 <VisualState.Storyboard>
 <Storyboard>
 <!-- animation performed when the
 button gets into "Pressed"
 State will scale down the button
 by a factor of 0.5 in both dimensions -->
 <DoubleAnimation Storyboard.TargetProperty="ScaleX"
 Storyboard.TargetName="TheScaleTransform"
 To="0.5" />
 <DoubleAnimation Storyboard.TargetProperty="ScaleY"
 Storyboard.TargetName="TheScaleTransform"
 To="0.5" />
 </Storyboard>
 </VisualState.Storyboard>
 </VisualState>
 ...
</VisualStateGroup>

VisualState defines the animation storyboard to be triggered once the button
switches to the Pressed state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

We can also add VisualStateTransition to the VisualStateGroup element's
Transition property:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualStateGroup.Transitions>
 ...
 <VisualTransition To="Pressed"
 GeneratedDuration="0:0:0.5">
 <VisualTransition.GeneratedEasingFunction>
 <!-- elastic ease will provide a few attenuating
 bounces before the pressed button reaches
 a steady state -->
 <ElasticEase />
 </VisualTransition.GeneratedEasingFunction>
 </VisualTransition>
 </VisualStateGroup.Transitions>
 ...
 </VisuateStateGroup>
</VisualStateManager.VisualStateGroups>

VisualTransition elements allow us to modify the animation behavior depending
on what the original and final states of the transition are. It has properties such as
From and To for the purpose of specifying the original and final states. In our case,
we set only its To property to Pressed, which means that it applies to transit from
any state to the Pressed state. VisualTransition sets the duration of the animation
to 0.5 second and adds the ElasticEase easing function to it, which results in the
button size bouncing effect.

Once we started talking about easing functions, we can explain in detail how they
work, and give examples of other easing functions.

Easing functions provide a way to modify Silverlight (and WPF)
animations. A good article describing easing functions can be found at
http://tinyurl.com/arbitrarypathanimations. The easing formula
presented in this article is:

v = (V2 – V1)/T * f(t/T) + V1

Here v is the resulting animation value, t is the time parameter, T is the time period
in question (either time between two frames in an animation with frames or time
between the To and From values in the case of a simple animation), V2 and V1 are the
animation values at the end and beginning of the animation correspondingly at the
absence of easing, and f is the easing function. In the previous formula, we assumed
a linear animation (not a spline one).

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[28]

There are a bunch of built-in easing functions that come together with the Silverlight
framework, for example, BackEase, BounceEase, CircleEase, and so on. For a
comprehensive list of built-in easing functions, please check the following website:
http://tinyurl.com/silverlighteasing. Most easing functions have parameters
described on this website. As an exercise you can change the easing function in the
previous VisualTransition XAML code, modify its parameters, and observe the
changes in button animation.

Creating and animating custom button control
In the previous subsection, we re-built a template for a built-in button using the
VisualStateManager functionality to provide custom animations between the
states. An attentive reader might have noticed, though, that the button states that
we used – Normal, MouseOver, and Pressed had come with the built-in button
functionality – we only provided ways to visualize the transitions between those
states, but did not define the states themselves.

In this subsection, we will build a custom control behaving exactly like the previous
button. We will show how to define the aforementioned visual states on a custom
control built from scratch.

The code corresponding to this subsection is located under the
AnimatingCustomButton.sln solution. Most of the code is the same as the one for
the built-in button. The only difference is that we use the CustomButton class in
place of Button that we used in the previous subsection. CustomButton is defined
within the CustomButton.cs file. You can see from the following code that it is
derived from the ContentControl class and not from the Button class. It defines two
Boolean dependency properties, IsPressed and IsMouseOver, corresponding to
the Pressed and MouseOver states. It defines the handlers for the mouse events that
set those properties to the correct values. It also has a function, SetVisualState,
that is called whenever the IsPressed or IsMouseOver property changes. It uses
the VisualStateManager.GoToState function to set the correct visual state on the
CustomButton control:

/// <summary>
/// this function sets the visual state
/// depending on the values of the properties
/// IsPressed and IsMouseOver
/// </summary>
void SetVisualState()
{
 string stateName = "Normal";

 if (IsPressed)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 stateName = "Pressed";
 else if (IsMouseOver)
 stateName = "MouseOver";

 VisualStateManager.GoToState(this, stateName, true);
}

Animating navigation panels
Almost any application provides a way to switch (navigate) between different
screens. Good navigation functionality should give the users ideas of whether it was
a forward or backward movement, and give hints of how to move to the previously
shown screens. This section describes ways of creating intuitive navigation
functionality using animations.

Let's assume that we are moving from screen to screen mostly in a bidirectional
way either forward (to the right) or backwards (to the left). Under a forward move,
it will make sense to show the new panel coming from the right and the old panel
disappearing on the left-hand side of the application. Under a backward movement,
the panels will move in the opposite direction. A more involved animation can result
in a page-like movement with the previous page being flipped away, and a new page
turned open for the view.

The NavigationAnimations.sln sample shows how to create such animations.
The sample is built around TransitioningContentControl – an open source
control provided by Microsoft Silverlight Toolkit specifically to help with navigation
animation. MS Toolkit is a bulky piece of software to install, so in order to help
you avoid installing all of it, we have provided an MSLayoutToolkit project under
the SAMPLES directory containing only the TransitioningContentControl
functionality. If you do not want to install the whole MS Toolkit, you have to
reference this project instead.

More information on using TransitioningContentControl for navigations
can be obtained in a phone article by Jeff Brand at http://tinyurl.com/
silverlighttransitions. The animation to imitate page flipping was borrowed
from that article and modified to flip the pages horizontally (Jeff's animation does
it vertically).

The NavigationAnimations sample is built as a pure Model-View-ViewModel
(MVVM) application. For detailed explanations about the MVVM pattern, please
read http://tinyurl.com/mvvmsimple.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[30]

The view models are represented by the classes ScreenVM and NavigationVM. The
ScreenVM class has just one integer property ScreenNumber, which is used for demo
purposes. We only allow our individual screens to differ from each other by a number:

public class ScreenVM
{
 public int ScreenNumber { get; set; }
}

The NavigationVM class contains a collection of TheScreens of ScreenVM objects.
We populate this collection within the class constructor with three screens – screen
numbers varying from 1 to 3:

public class NavigationVM
{
 ...
 public List<ScreenVM> TheScreens { get; private set; }

 public NavigationVM()
 {
 TheScreens = new List<ScreenVM>();

 AddScreen(1);
 AddScreen(2);
 AddScreen(3);

 ...
 }
 ...
}

The NavigationVM class implements the INotifyPropertyChanged interface.
INotifyPropertyChanged provides the PropertyChanged event. Silverlight
bindings register for this event and update the binding target value whenever
the event is fired, with the argument that matches the name of the binding
source property. Thus, all we need to do is refresh the binding target so as
to fire the PropertyChanged event within the code at proper moments.
The OnPropertyChanged function facilitates just that.

The CurrentScreenIdx property is used to point to the index of the current
screen within the TheScreens collection, as shown in the following snippet:

int _currentScreenIdx = 0;
int CurrentScreenIdx
{
 get

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

 {
 return _currentScreenIdx;
 }

 set
 {
 _currentScreenIdx = value;

	 ...
 }
}

The CurrentScreen property returns the ScreenVM object from the TheScreens
collection corresponding to CurrentScreenIdx:

public ScreenVM CurrentScreen
{
 get
 {
 if (CurrentScreenIdx < 0)
 return null;

 return TheScreens[CurrentScreenIdx];
 }
}

The TransitionName property allows the view model to change TransitionName
of the visual TransitionContentControl object. We will talk more about this when
describing the visual code.

The MoveToNext and MoveToPrevious functions simply change the current screen to
the next or the previous screen respectively. They also choose the correct transition to
be performed depending on whether we are moving forward or backwards:

public void MoveToNext()
{
 TransitionName = "LeftSwingTransition";
 CurrentScreenIdx++;
}

...

public void MoveToPrevious()
{
 TransitionName = "RightSwingTransition";
 CurrentScreenIdx--;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[32]

The CanMoveToNext and CanMoveToPrevious properties simply state if there is a
screen after or before the current screen:

public bool CanMoveToNext
{
 get
 {
 return CurrentScreenIdx < (TheScreens.Count - 1);
 }
}

public bool CanMoveToPrevious
{
 get
 {
 return CurrentScreenIdx > 0;
 }
}

We use these two properties to set forward and backwards buttons to enabled
or disabled in our view.

Note that Bindings to CurrentScreen, CanMoveToNext, and CanMoveToPrevous
properties are updated when CurrentScreenIdx changes via calls to
OnPropertyChanged:

/// <summary>
/// specifies the current screen's index
/// within TheScreens collection
/// </summary>
int _currentScreenIdx = 0;
int CurrentScreenIdx
{
 get
 {
 return _currentScreenIdx;
 }

 set
 {
 _currentScreenIdx = value;

 // fires PropertyChanged events to
 // the binding targets for all the properties
 // that might change due to CurrentScreenIdx
 // change
 OnPropertyChanged("CurrentScreen");
 OnPropertyChanged("CanMoveToNext");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

 OnPropertyChanged("CanMoveToPrevious");
 }
}

Now let's turn our attention to the view (the visual code).

All the visual XAML code is located within the MainPage.xaml file.

At the top of the logical tree (the tree of elements as they are arranged in the XAML
file), there is a LayoutRoot grid panel. Note that its DataContext property is
connected to the TheNavigationVM object defined as a resource within the same
MainPage.xaml file:

<Grid x:Name="LayoutRoot"
 Background="Yellow"
 DataContext="{StaticResource TheNavigationVM}">

DataContext propagates down the logical tree to every element defined within the
tree (unless there are some elements that change it or unless we have ItemsControl
within the tree – which is not the case in our code). DataContext provides a default
binding source so that the binding can be defined only by Path.

The layout of the application is very simple, most of the window is occupied by
the screen viewer – represented by TransitioningContentControl, while
there are navigation buttons at the bottom of the screen; the one on the right – for
moving forward, the one on the left – for moving backwards, as is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[34]

The forward and backwards buttons call the NavigationVM class' MoveToNext
and MoveToPrevious methods, respectively, to change the current screen
object. The buttons' IsEnabled properties are bound to the CanMoveToNext and
CanMoveToPrevious properties, respectively, so that the forward button is disabled
when the CurrentScreen points to the last screen of the NavigationVM object and the
backwards button is disabled when CurrentScreen points to the first screen.

The centrepiece of the view is TransitioningContentControl from MS Layout
Toolkit since it is in charge of navigation animations. TransitioningContentControl
triggers navigation animation when its Content property changes.

Here is the how TransitioningContentControl is defined within XAML code:

<!-- TransitioningContentControl is in charge of the navigation
animations -->
<msLayoutToolkit:TransitioningContentControl
 x:Name="TheTransitioningContentControl"
 Template="{StaticResource TransitioningContentControlTemplate}"
 Transition="{Binding Path=TransitionName}"
 Content="{Binding Path=CurrentScreen}"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch">
 <msLayoutToolkit:TransitioningContentControl.ContentTemplate>
 <!-- ContentTemplate of the TransitioningContentControl
 Converts the non-visual Content into a visual
 control. In our case it converts the ScreenVM object
 into a panel containing
 the Text "This is screen # " followed by
 the ScreenNumber -->
 <DataTemplate DataType="this:ScreenVM">
 <Grid Background="AliceBlue">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock Text="This is screen # "
 FontSize="100"/>
 <TextBlock Text="{Binding ScreenNumber}"
 FontSize="100"/>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </msLayoutToolkit:TransitioningContentControl.ContentTemplate>
</msLayoutToolkit:TransitioningContentControl>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Note that the TransitionName property of TransitioningContentControl is
bound to the TransitionName property of the NavigationVM data context object.
This property controls the type of animation that we are playing. When we press the
forward button, the forward animation should be played, and pressing the backwards
button should cause the backwards animation to play.

The Content property of TransitioningContentControl is set to the
CurrentScreen property of its NavigationVM data context object. CurrentScreen is
represented by a non-visual object of type ScreenVM.

The ContentTemplate property of TransitioningContentControl is needed to
convert the non-visual content into a visual object:

<DataTemplate DataType="this:ScreenVM">
 <Grid Background="AliceBlue">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock Text="This is screen # "
 FontSize="100"/>
 <TextBlock Text="{Binding ScreenNumber}"
 FontSize="100"/>
 </StackPanel>
 </Grid>
</DataTemplate>

As you can see, this data template results in huge text: This is screen #, followed by
the screen number in the middle of the screen.

The core of the TransitioningContentControl animation functionality resides in
its control template defined within the UserControl.Resources section at the top
of the file. The template's name is TransitioningContentControlTemplate and as
you can see, it is quite large. So let's try to dissect it here.

The outer border is just a frame for containing the rest of the control – not a very
consequential part.

Within that outer border, we can see the Visual State definitions that actually
define the transition animation storyboards and a grid panel containing two
ContentPresenter objects with the names PreviousContentPresenterSite
and CurrentContentPresenterSite.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[36]

During the navigation animation, the PreviousContentPresenterSite
content presenter represents the old content that is being replaced while
CurrentContentPresenterSite represents the new content replacing
the old one. Note that outside of the navigation animation, only the
CurrentContentPresenterSite content is visible, we do not care
what the other ContentPresenter contains:

<Grid>
 <!-- during the navigation animation this ContentPresenter
 contains the old content that's being replaced.
 	 Outside the navigation boundaries, this ContentPresenter
 is not visible and we simply do not care what it
 contains-->
 <ContentPresenter
 x:Name="PreviousContentPresentationSite"
 Content="{x:Null}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="{TemplateBinding
HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding
VerticalContentAlignment}">
 ...
 </ContentPresenter>

 <!-- during the navigation animation this ContentPresenter
 contains the new content that's replacing the old one.
 Outside the navigation boundaries, this ContentPresenter
 is visible contain the same content as the
 TransitionContentControl's Content property -->
 <ContentPresenter
 x:Name="CurrentContentPresentationSite"
 Content="{x:Null}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 HorizontalAlignment="{TemplateBinding
HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding
VerticalContentAlignment}">
 ...
 </ContentPresenter>
</Grid>

When the content of the TransitioningContentControl object changes,
the storyboard of the visual state whose name matches the string in the
TransitioningContentControl object's TransitionName property,
will be called to manage the transition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

There are the following visual states within the template: Normal,
RightSlideTransition, LeftSlideTransition, RightSwingTransition, and
LeftSwingTransition. Any of the TransitioningContentControl object's
template should have a Normal state, which kicks in when there are no animations
going on. All it usually does is sets PreviousContentPresenterSite to be invisible.

The slide animations are in charge of the sliding navigation, while the swing
animations are in charge of the page-like navigation.

To use slide animations, change the NavigationVM class' MoveToNext and
MoveToPrevious functions to set TransitionName, the View Model property to
LeftSlideTransition and RightSlideTransition, respectively, before modifying
CurrentScreenIdx:

public void MoveToNext()
{
 TransitionName = "LeftSlideTransition";
 CurrentScreenIdx++;
}

public void MoveToPrevious()
{
 TransitionName = "RightSlideTransition";
 CurrentScreenIdx--;
}

To use the page-like navigation, change TransitionName to be set to
LeftSwingTransition and RightSwingTransition in the same places.

public void MoveToNext()
{
 TransitionName = "LeftSwingTransition";
 CurrentScreenIdx++;
}

public void MoveToPrevious()
{
 TransitionName = "RightSwingTransition";
 CurrentScreenIdx--;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Animations in Business Logic Silverlight Applications

[38]

The following is a screenshot of the window in the midst of LeftSlideTransition
with screen 1 being replaced by screen 2:

And the following is the screenshot of page-like LeftSwingTransition navigation:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Summary
Using button state animations as an example, we saw in this chapter how to change
the transition animations on a control, whether it is a Silverlight built-in control or a
custom control.

We have also seen how to animate the navigation between pages in a Silverlight
application and described TransitionContentControl in detail.

The next chapter will describe generating and animating random fields imitating
natural processes, such as clouds or fire.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures
Silverlight provides functionality for creating powerful animation including
imitation of different natural processes, for example, clouds, fire, and so on. This
chapter presents implementation of the Perlin noise algorithm in Silverlight and
presents samples for using Perlin noise to generate clouds and fire visual effects.

Background on Perlin noise
Here we provide a background on Perlin noise and explain the Perlin noise
algorithm in detail.

A bit of history
Perlin noise is probably the most popular algorithm for generating random textures.
Perlin noise was invented in 1985 by Ken Perlin, a professor at NYU and among
other things was used for creating animations for several movies including Oscar
winning Tron and many others. Here is the URL to a talk by Ken Perlin, detailing
what has been achieved using Perlin noise: http://www.noisemachine.com/talk1/
index.html.

The big advantage of using Perlin noise is that even though it is random, the pixels
next to each other are still correlated – just the way they are in natural textures.

Perlin noise algorithm
Noise is a function that maps any point in a one, two, three, or more dimensional
space into a real number. Usually we are only interested in noise that cannot grow
infinitely high or low, so without the loss of generality we can assume that our noise
maps a point into a real number within a finite range.

www.it-ebooks.info

http://www.noisemachine.com/talk1/index.html
http://www.noisemachine.com/talk1/index.html
http://www.it-ebooks.info/

Creating Animated Textures

[42]

There are two parts to the Perlin noise calculation algorithm (the meaning of these
parts will be explained shortly):

•	 Calculating noise at one octave (frequency): We call it basic Perlin noise.
This is the core of the Perlin noise algorithm and is well explained at
http://tinyurl.com/basicperlintheory.

•	 Calculating multi-scale Perlin Noise: This is done by summing up the noises
produced by the first part calculated at different octaves (or frequencies)
multiplied by appropriate amplitude factors. This part is common to fractal
noise techniques not only to Perlin noise. Good explanations of this part can
be found at http://tinyurl.com/multiscaleperlin.

Let's start by explaining the second part and after that, we will dive into the first.

Multi-scale Perlin noise
There is a notion of frequency in basic Perlin noise calculation – the higher
frequencies produce a more refined noise, while the lower frequencies produce
a more slowly changing one. We can write the basic Perlin noise function as
BasicPerlinNoise<frequency>(x) – here frequency is just a function parameter,
not a template and x is a pixel in a one-dimensional space. The description of
Multi-scale Perlin noise previously mentioned simply states that the total Perlin
noise is calculated according the following formula:

MultiscalePerlinNoise (x) =
(BasicPerlinNoise<frequency>(x) + BasicPerlinNoise<2*frequency
>(x) * persistence + BasicPerlinNoise<2 * 2 * frequency>(x) *
persistence * persistence + …) * amplitude

Or using summation notations:

MultiscalePerlinNoise (x) =

amplitude * persistenceOctave *
BasicPerlinNoise<frequency * 2Octave>(x)

In other words, we take basic Perlin noise at some frequency, then take basic Perlin
noise at double the original frequency and multiply it by a persistence factor,
continue doing it until we reach the number of octaves we want, sum up the results,
and multiply it by the amplitude factor.

As was stated in the previous section, this procedure of summing up noises at
different frequencies is not unique for Perlin noise but is also used for other fractal
noises. Its purpose is to make noise look more natural as many natural processes are
changing at different frequencies, not at a single one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

Basic Perlin noise
Now we are going to explain how to produce basic Perlin noise. First let's talk about
one-dimensional noise as the simplest case and later we will generalize it to multiple
dimensions.

To construct basic Perlin noise, divide the one-dimensional noise domain into
intervals of some length L. Assign random one-dimensional unit gradient vectors
to every point at which two intervals meet. Since all the gradient vectors are of unit
length, there can be only one of two vectors assigned at each point – the one pointing
to the left or the one pointing to the right.

Axis X with gradient ectors in red

XAGradA B GradB

At every point within the interval, calculate the noise via the following algorithm:

1.	 Assume that we want to calculate noise at point X lying between interval
points A and B. Assume that gradient vectors at points A and B are GradA
and GradB.

2.	 We calculate the gradient vector influences Ax and Bx at point X by
taking inner products of the corresponding gradient vectors with
vectors AX and BX:
Ax = <GradA, AХ>
Bx= <GradB, BX>

Just a reminder – the inner vector product equals to the
product of the norms of the vectors multiplied by the cosine
of the angle between them. In orthonormal terms, it is
equivalent to the dot product.

3.	 Now calculate the noise value at X by averaging values Ax and Bx
proportionate to its distance from X. The averaging function is usually not
linear, but a smooth function with zero derivatives at points A and B.

Usually for convenience sake without loss of generality, it is assumed that the
one-dimensional domain is split into intervals of length 1. A and B are some integer
points with B = A + 1 and X is a real point between them. It is also assumed that
the output noise result lies within the 0 to 1 interval (if we need larger intervals or
negative values, we can also shift and scale the output to obtain the result we need).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[44]

Frequency, used to create multi-scale noise, is inversely proportional to the number
of real pixels within the integer interval of the algorithm. The more pixels we have
between two adjacent integer locations, the smoother the noise is going to be.

We can easily generalize the result for two and more dimensions. For an explanation
of the two-dimensional noise, we refer to http://tinyurl.com/basicperlintheory.

Perlin noise algorithm implementation
Our Perlin noise Silverlight implementation is based on those described at
http://tinyurl.com/perlinalgo and http://tinyurl.com/perlinalgosl
with some performance improvements.

The code is located under the PerlinNoise.csproj project (it is a Silverlight shared
library – not an executable) within the PerlinNoiseImpl.cs file. To open the project
one can open for example: the PerlinClouds.sln solution.

We implemented 3D Perlin noise since Perlin himself stated that only 3D noise
results should feature in realistic images. Basic Perlin noise is produced by the
function GetBasicPerlinNoise while Multi-scale Perlin noise is produced by the
GetMultiscalePerlinNoise function that uses GetBasicPerlinNoise to produce
the resulting multi-scale noise based on the following formula:

MultiscalePerlinNoise (x) =

amplitude * persistenceOctave *
BasicPerlinNoise<frequency * 2Octave>(x)

The code is well documented and explained by the comments within it.

The following are some explanations regarding the GetBasicPerlinNoise function:

•	 The GetBasicPerlinNoise function calculates 3D basic Perlin noise.
Its input arguments x, y, and z correspond to the point coordinates within
3D space. The function returns a noise value at this point:
float GetBasicPerlinNoise(float x, float y, float z)

•	 As we discussed in the previous section, the function approximates the value
at each point based on the values at integer lattice, so we round down the
values x, y, and z to the nearest smaller integers:
int intX = (int)x;
int intY = (int)y;
int intZ = (int)z;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The noise value at (x, y, z) point will be determined by the gradient value
at the points of the integer cube starting at (intX, intY, intZ) point and
ending at (intX+1, intY+1, intZ+1) point.
At this point, we are only interested in distances between (x, y, z) point
and the vertices of the integer cube, so we can move the coordinate origin
into (intX, intY, intZ) point and change x, y, and z values accordingly:

x -= intX;
y -= intY;
z -= intZ;

•	 We assign gradients to the points of the cube based on the random
gradients array:
// the names of the variables below correspond to
// location of the gradient for example.
// gradXYZ is a gradient at point XYZ
// gradX1Y1Zy is a gradient at point X + 1, Y + 1, Z + 1
int gradXY = gradients[X] + Y;
int gradXYZ = gradients[gradXY] + Z;

int gradXY1Z = gradients[gradXY + 1] + Z;

int gradX1Y = gradients[X + 1] + Y;
int gradX1YZ = gradients[gradX1Y] + Z;
int gradX1Y1Z = gradients[gradX1Y + 1] + Z;

int gradXYZ1 = gradients[gradXYZ + 1];
int gradX1YZ1 = gradients[gradX1YZ + 1];
int gradXY1Z1 = gradients[gradXY1Z + 1];
int gradX1Y1Z1 = gradients[gradX1Y1Z + 1];

•	 We calculate the inner products between each gradient vector and the vector
from the corresponding vertex to (x, y, z) point:
// note that when here we use X + 1 point and pass x-1 as X
argument.
// this is because the vector from X + 1 point to x is given by x
- 1
// formula.
float innerProductX1YZ =
 InnerProduct(gradients[gradX1YZ], x - 1, y, z);
float innerProductXY1Z =
 InnerProduct(gradients[gradXY1Z], x, y - 1, z);
float innerProductX1Y1Z =
 InnerProduct(gradients[gradX1Y1Z], x - 1, y - 1, z);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[46]

float innerProductXYZ1 =
 InnerProduct(gradXYZ1, x, y, z - 1);
float innerProductX1YZ1 =
 InnerProduct(gradX1YZ1, x - 1, y, z - 1);
float innerProductXY1Z1 =
 InnerProduct(gradXY1Z1, x, y - 1, z - 1);
float innerProductX1Y1Z1 =
 InnerProduct(gradX1Y1Z1, x - 1, y - 1, z - 1);

•	 Finally we use the interpolation function Fade and the approximation
function Lerp to determine the nose value at (x, y, z) point.

As we are dealing with three dimensions, we are using cubes instead of intervals. We
find the random gradient at the cube vertices by using an array called gradients of
random integers from 0 to 255 according to the following formula suggested by Perlin:

G[x, y, z] = gradients[x + gradients[y + gradients[z]]]

Here x, y, and z are integers from 0 to 255 (in order to adapt this formula for any set
of integers, one can pass the integer values mod 256 to the formula).

Note that gradients array has length of 512 and has a set of random numbers
between 0 and 255 repeated twice within it. This is to avoid the extra mod operations
since, for example, y + gradient[z] can be greater than 255, but cannot be greater
than 511.

ImageProcessingLibrary
We also use a project called ImageProcessingLibrary for generating moving
images. It consists of several utility classes facilitating changing and retrieving colors:

•	 DoubleColor is a central class within the project. It contains information
about R, G, B, and A bytes of a color using double precision variables
(instead of bytes) to store them. Having these values stored as doubles makes
it easier to manipulate them. The class also provides conversion functions
between itself and the System.Windows.Media.Color class. It also provides
a function to convert an object of the DoubleColor type to int.

•	 The ColorUtils class provides a bunch of extension methods facilitating
changing colors (adding two colors, multiplying a color by a scalar, blending
two colors, and so on).

•	 The ColorMap class provides a way to set a map between the colors we want
to use and real numbers from within the 0 to 1 range.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Cloud simulation
Here we apply the Perlin noise and image manipulation algorithms previously
described to obtain a simulation of the moving clouds.

The code is located under the PerlinClouds project.

One can see that the MainPage.xaml file is very simple; it contains only an image
to be filled with the clouds.

<UserControl
 x:Class="PerlinClouds.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">

 <Grid Width="500"
 Height="400"
 Background="White">
 <!-- image to be filled with moving clouds -->
 <Image x:Name="PerlinNoiseImage"
 Stretch="UniformToFill" />
 </Grid>
</UserControl>

The code-behind located in the MainPage.xaml.cs file is more interesting – this
is where we use all of the functionality from the libraries to generate the image.

The constructor of the MainPage class sets the noise parameters, creates the
WriteableMap object to be populated by the noise pixels as the image source,
and sets ColorMap for the sky and clouds:

public MainPage()
{
 InitializeComponent();

 // create PerlinNoiseImpl object
 _perlinNoiseImpl = new PerlinNoiseImpl();

 // set perlin noise multiscale parameters
 _perlinNoiseImpl.Amplitude = 1.2f;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[48]

 _perlinNoiseImpl.NumberOctaves = 5;
 _perlinNoiseImpl.Frequency = 0.006f;
 _perlinNoiseImpl.Persistence = 0.4f;

 //create writeable bitmap, ie. the source
 // for the image within which one can modify the pixels
 _writeableBitmap = new WriteableBitmap(200, 150);

 // make the writeable bitmap to be the source
 // for the image
 PerlinNoiseImage.Source = _writeableBitmap;

 // create a colormap for fast blending of sky and cloud colors
 _colorMap = new ColorMap(skyColor, cloudColor);

 // recalculate the image every time it is rendered
 // by silverlight
 CompositionTarget.Rendering += CompositionTarget_Rendering;
}

The function that actually generates the image is CompositionTarget_Rendering.
It is called every time Silverlight renders the window. The function changes the
noise parameters to create an illusion of moving clouds, calculates the noise value for
each image pixel within WriteableBitmap, and forces the image refresh by calling
writeableBitmap.Invalidate(). The following is how the function looks:

void CompositionTarget_Rendering(object sender, EventArgs e)
{
 // set offsets - make the clouds move and change
 for (int octaveIdx = 0;
 octaveIdx < _perlinNoiseImpl.NumberOctaves;
 octaveIdx++)
 {
 // the clouds move mainly along X axis
 _perlinNoiseImpl.OctaveOffsets[octaveIdx].XOffset += 1;
 // and a little a long y axis
 _perlinNoiseImpl.OctaveOffsets[octaveIdx].YOffset += 0.2f;

 // changes along z axis provide a visual effect corresponding
 // to the clouds changing shapes as they move
 _perlinNoiseImpl.OctaveOffsets[octaveIdx].ZOffset += 0.5f;
 }

 int z = 0;
 int pixelIndex = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

 for (int y = 0; y < _writeableBitmap.PixelHeight; y++)
 {
 for (int x = 0; x < _writeableBitmap.PixelWidth; x++)
 {
 // for each pixel x, y, get the perlin noise value
 // between 0 and 1.
 float normalizedPixel =
 _perlinNoiseImpl.GetMultiscalePerlinNoise(x, y, z);

 // use the value between 0 and 1 to obtain the color value
 // from the color map
 _writeableBitmap.Pixels[pixelIndex] =
 _colorMap.GetIntColor(normalizedPixel);

 pixelIndex++;
 }
 }

 // refresh image
 _writeableBitmap.Invalidate();
}

From Perlin noise, we obtain a number between 0 and 1 and then we use _colorMap
to get a blended color based on the number.

For optimal results, please make sure the ImageProcessing and PerlinNoise
libraries are compiled with the optimization flag on, and run the application outside
of a VS 2010 debugger.

The following is a static image of the clouds:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[50]

Fire simulation
Here we want to simulate a bonfire rising up from the ground. This differs from
simulating clouds in the following respects:

•	 Fire has a shape with the highest flame concentrated near the center while
the sides of the fire are usually lower.

•	 Fire has colors changing from bright yellowish to orange, to red from the
bottom to the top.

•	 The fire pattern is different from the clouds in terms of its texture. Perlin
called noise producing fire texture – turbulence flow. The Multi-scale Perlin
noise algorithm for calculating turbulence flow is different in the sense that it
sums up the absolute values of basic Perlin noise at different octaves
(see http://www.noisemachine.com/talk1/22.html).

The fire simulation code is located under project PerlinFire within the
PerlinFire.sln solution. Just like the cloud project, it refers to PerlinNoise
and ImageProcessing projects.

Here is the XAML code for the PerlinFire project:

<UserControl
 x:Class="PerlinFire.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d">

 <!-- Grid panel, providing black background -->
 <Grid x:Name="LayoutRoot"
 Background="Black"
 Width="500"
 Height="300">

 <!-- fire image -->
 <Image x:Name="TheFireImage"
 Width="300"
 Height="300"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom" />
 </Grid>
</UserControl>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

It is as simple as the XAML code for cloud simulation. The grid panel provides
the black background, while the image shows the fire itself.

Most of the interesting code is located within the MainPage.xaml.cs
code-behind file.

Just like in the case of the Perlin cloud generator, the MainPage constructor sets the
noise attributes. As you can see, it also sets the PostProcessingFunction parameter
for the noise. This function will take an absolute value of basic Perlin noise at
different octaves before summing it up to obtain multi-scale Perlin noise:

public MainPage()
{
 InitializeComponent();

 // perlin noise generator
 _perlinNoiseImpl = new PerlinNoiseImpl();

 // set perlin noise parameters
 _perlinNoiseImpl.Amplitude = 0.6f;
 _perlinNoiseImpl.NumberOctaves = 5;
 _perlinNoiseImpl.XFrequency = 0.013f;
 _perlinNoiseImpl.YFrequency = 0.013f;
 _perlinNoiseImpl.ZFrequency = 0.013f;
 _perlinNoiseImpl.Persistence = 0.8f;

 // set the post processing function to Math.Abs
 // since that will produce the turbulent flow.
 _perlinNoiseImpl.PostProcessingFunction = (f) => Math.Abs(f);

 TheFireImage.Loaded += MainPage_Loaded;
}

A lot on initialization is done within the MainPage_Loaded method:

void MainPage_Loaded(object sender, RoutedEventArgs e)
{
 // for performance sake make the image
 // with 1 image pixels per 16 Silverlight pixels.
 _width = (int)TheFireImage.Width / 4;
 _height = (int)TheFireImage.Height / 4;

 // create the writeable map
 _writeableBitmap =
 new WriteableBitmap

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[52]

 (
 _width,
 _height
);

 // create the array for containing the static image
 _gradientImage = new DoubleColor[_width * _height];

 TheFireImage.Source = _writeableBitmap;
 Color color1 = Color.FromArgb(0x00, 0x00, 0x00, 0x00); //
transparent
 Color color2 = Color.FromArgb(0xFF, 0xC5, 0x01, 0x06); // red
 Color color3 = Color.FromArgb(0xFF, 0xF5, 0xF1, 0x00); // yellow
 Color color4 = Color.FromArgb(0xFF, 0xFF, 0xF6, 0xF7); // whitish

 // set the color map for the static image
 _gradientColorMap = new ColorMap(_height);
 _gradientColorMap.AddChunkWithNormalizedOffset(color1, 0);
 _gradientColorMap.AddChunkWithNormalizedOffset(color2, 0.5);
 _gradientColorMap.AddChunkWithNormalizedOffset(color3, 0.9);
 _gradientColorMap.AddChunkWithNormalizedOffset(color4, 1);

 // set the color map for the dynamically changing part
 _noiseColorMap = new ColorMap(_height);
 _noiseColorMap.AddChunkWithNormalizedOffset(color3, 0);
 _noiseColorMap.AddChunkWithNormalizedOffset(color2, 0.3);
 _noiseColorMap.AddChunkWithNormalizedOffset(color1, 1);

 int bitmapIdx = 0;

 // set the static _gradientImage and _writeableMap
 // to contain the static image
 for (int y = 0; y < _height; y++)
 {
 for (int x = 0; x < _width; x++)
 {
 float normalizedY = ((float)y) / ((float)_height);
 _gradientImage[bitmapIdx] =
 (DoubleColor)_gradientColorMap.GetColor(normalizedY);

 _writeableBitmap.Pixels[bitmapIdx] =
 _gradientColorMap.GetIntColor(normalizedY);

 bitmapIdx++;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

 }
 }

 _writeableBitmap.Invalidate();

 CompositionTarget.Rendering += CompositionTarget_Rendering;
}

The method that refreshes the image and produces the fire simulation effect is
CompositionTarget_Rendering. It changes the noise parameters to imitate the fire
movements, calculates the multi-scale Perlin noise, blends it with the background
gradient image, and shapes it to converge at the top:

void CompositionTarget_Rendering(object sender, EventArgs e)
{
 // set offsets - make the fire move up and change
 for (int octaveIdx = 0;
 octaveIdx < _perlinNoiseImpl.NumberOctaves;
 octaveIdx++)
 {
 // move the fire up Y axis
 _perlinNoiseImpl.OctaveOffsets[octaveIdx].YOffset += 1f;

 // Changes fire creating turbulence
 _perlinNoiseImpl.OctaveOffsets[octaveIdx].ZOffset += 0.5f;
 }

 int bitmapIdx = 0;

 int midPointX = _width / 2;

 for (int y = 0; y < _height; y++)
 {
 for (int x = 0; x < _width; x++)
 {
 // get the normalized Perlin noise pixel
 // between 0 and 1.
 float normalizedPixel =
 _perlinNoiseImpl.GetMultiscalePerlinNoise(x, y, 0);

 // blends the top of the fire into the background
 // (remember that y = 0 corresponds to the top
 // of the fire picture because of the way the
 // Silverlight coordinates are).
 float factorY = ((float)y) / ((float)_height);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[54]

 // distance from the middle point of the fire
 // along axis X
 int distanceFromMidPointX = Math.Abs(midPointX - x);

 // factorX is 0 at the sides of the fire, 1 at
 // the mid point of
 // the fire along X axis and changes linearly from the
 // sides to the mid point. It helps the fire to get a
 "cone"
 // shape with the middle being "taller" than the sides.
 float factorX =
 If - (float)distanceFromMidPointX / (float)midPointX;

 float totalFactor = factorY * factorX;

 // we blend static image located in _gradientImage
 // and dynamic image obtained from _noiseColorMap
 // and multiply the result by the total factor
 _writeableBitmap.Pixels[bitmapIdx] =
 (_gradientImage[bitmapIdx].
 Blend((DoubleColor)_noiseColorMap.
 GetColor(normalizedPixel), 0.4f)).
 	 Times(totalFactor).ToInt();
 bitmapIdx++;
 }
 }

 // refreshes the image
 _writeableBitmap.Invalidate();
}

These methods are well documented and you should read the comments in the
code. The following, however, is a short but important overview of what is going
on within the code:

•	 Using _gradientColorMap, we can create a static image of fire gradients
changing from the bottom to the top:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

•	 Using Perlin noise and _noiseColorMap, we can create a dynamic turbulent
image of moving fire. The following is how it looks at some instance without
the static image:

•	 When we blend these two images with blend factor 0.4, the following is what
we get:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Animated Textures

[56]

•	 Finally we use scaling factors – factorY to blend the top of the fire into the
black background and factorX to reduce the fire on the sides changing
its shape from rectangular to cone-like. The following is what we get after
applying it:

Reminder
For optimal results, please compile the PerlinNoise and
ImageProcessing libraries with the optimization flag on, and
run the application outside of the studio's debugger. Enjoy!

Summary
In this chapter, we introduced Perlin noise – which is currently the most popular
algorithm for simulating random textures and processes. We gave detailed
explanations for basic Perlin noise and multi-scale Perlin noise calculations, and
presented implementation of the Perlin noise algorithms in Silverlight. Finally,
we provided code and explanations for Perlin noise cloud and fire simulations.

In the next chapter we will talk about three-dimensional animation capabilities
in Silverlight starting with projection transform and ending with the description
of the XNA subset available in Silverlight.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight
Silverlight provides perspective transform for creating simple 3D effects. Silverlight
also allows using part of the XNA framework functionality with support for 3D
models, effects, and creating vertex and pixel shaders, giving the developers a lot
of power. Both these methods are described in this chapter.

Perspective transform
Perspective transform (also sometimes called projection transform) enables
the developers to position or move Silverlight (2D) objects within 3D space.
It is invaluable for creating simple but effective 3D animations, for example,
for Silverlight banners.

Let's explain perspective transform while describing the corresponding sample
located under the SAMPLES\CODE\ProjectionSample folder. This sample allows
you to investigate all of the parameters of the perspective transform.

Perspective transform in Silverlight is achieved by setting the Projection property
of a Silverlight object to contain the PlaneProjection object, whose parameters
define the parameters of perspective transform. These parameters include three
rotation angles corresponding to rotation around each axis X, Y, and Z, 3D
coordinates of the center of rotation, global offset, specifying 3D translation in the
viewer's coordinates and local offset, specifying the 3D translation in the coordinates
that rotate together with the object.

All the properties of the PlaneProjection object are dependency properties
and can be animated using Silverlight animations and storyboards.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[58]

Our sample demonstrates what happens when any of the parameters of the
PlaneProjection object changes. Here is what you get when you run it and
move some Slider controls:

The sliders are connected (via Silverlight bindings) to different properties of
the PlaneProjection transform applied to a Grid object containing some text.
As a result, the Grid object moves in 3D space.

All of the relevant code is located in the MainPage.xaml file. The following is the part
of the code that defines a Grid panel with text and its PlaneProjection transform:

<!-- bluish grid with text that is changed by
 the Projection transform -->
<Grid x:Name="TheRotatingGrid"
 Width="500"
 Height="250"
 Background="AliceBlue">

 <!-- Some text to spice up the otherwise
 empty Grid Panel-->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Top"
 FontSize="30"
 Text="This is the rotating panel" />
 <!-- projection transform -->
 <Grid.Projection>
 <PlaneProjection x:Name="ThePlaneProjection" />
 </Grid.Projection>
</Grid>

Under the Grid object, there are the Slider controls for changing different
properties of the Grid object's PlaneProjection transform. Here is how the Slider
control's Value property connects to RotationX of the PlaneProjection transform:

<Slider Minimum="0"
 Maximum="360"
 Name="RotationX"
 Value="{Binding Path=Projection.RotationX,
 ElementName=TheRotatingGrid,
 Mode=TwoWay}" />

Overall the PlaneProjection transform has 12 properties:

•	 RotationX, RotationY, and RotationZ control rotations along the X, Y,
and Z axes correspondingly

•	 CenterOfRotationX, CenterOfRotationY, and CenterOfRotationZ control
the location of the center of rotation

•	 GlobalOffsetX, GlobalOffsetY, and GlobalOffsetZ shift the location
of the transformed element along the X, Y, and Z axes of the viewer
(their orientation won't change with rotation)

•	 LocalOffsetX, LocalOffsetY, and LocalOffsetZ shift the location of
the transformed element along the X, Y, and Z axes of the transformed
element – in the beginning local axes are the same as the global ones,
but the local axes rotate in 3D space together with the element

Perspective transform is fully integrated into Silverlight and will perform on
multiple platforms (it will run on Mac), but can be used only for creating simple
3D objects and animation. Complex 3D models with lighting require Silverlight 5
three-dimensional functionality described in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[60]

Silverlight 5 three-dimensional
functionality
Silverlight 5 introduced real 3D capabilities via access to a simplified version of
XNA. Using this functionality one can build real complex 3D models of triangles,
and create vertex and pixel shaders utilizing the full power of GPU to display them.

There are some shortcomings, however, to the new functionality provided. They are
as follows:

•	 It is not multiplatform – it will only run on Windows (though it is
multi-browser).

•	 If run within a browser, the client will be required to allow the blocked display
drivers for that website and this might be a nuisance if you want your 3D
animations to be widely available.

•	 The 3D code is essentially not part of the Silverlight framework. It is
standalone functionality and the developer needs to spend some extra
time and effort in order to make it interact properly with the rest of the
Silverlight application.

3D models
3D models usually consist of triangles of different sizes. If the model looks
smooth, this means that its triangles are small enough for the user not to notice
the singularities.

The vertices of all the triangles that belong to a model are called the model vertices.

Vertex and pixel shaders
Vertex and pixel shaders are snippets of code that execute in a highly parallelized
fashion on the GPU (Graphics Processing Unit). They are required to display 3D
Silverlight models (unless you use some pre-built shaders as part of the built-in
3D effects).

Vertex shader functionality takes the vertices of the model from the application and
transforms them into the pixel's shader input data. It is executed in parallel for each
vertex within the model.

The pixel shader actually creates and displays the pixels based on the information
obtained from the vertex shader. Pixel shaders are usually executed in parallel
for all the pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

The following diagram shows interaction between the C# application, the vertex
shaders, and the pixel shaders:

Vertex Shader
Processes Vertex info and creates information to

be passed to the pixel shader

Pixel Shader
Based on information from the Vertex Shaders

creates pixels

Application, Vertex Shader, Pixel Shader Relationship

C# Application
At every drawing cycle the application

Creates the 3-D model,

Specifies which Vertex and Pixel
shaders to use
Sets parameters for Vertex and
Pixel shaders

The shaders are written in HLSL (High Level Shader Language) and are
located in separate files. We are not going to describe the HLSL in detail, providing
instead some insights into its basic functionality that will allow the reader to build
some 3D applications and to acquire some foundation for a deeper study. For
those who want to study HLSL at a higher level, I recommend, for example,
http://tinyurl.com/crash-course-in-hlsl.

Vertex shader source code is usually placed in files with the extension .hlsl.vs,
while pixel shader source code is placed in files with the extension .hlsl.ps.

Compiling pixel shaders
In order to be able to compile the shaders, you need to download and install DirectX
SDK from http://www.microsoft.com/en-us/download/details.aspx?id=6812.

At the installation path you'll find the shader compiler fxc. On a 32-bit Windows
system it should be located under C:\Program Files\Microsoft DirectX SDK
(June 2010)\Utilities\bin\x86 folder, while on a 64-bit system it is located
under C:\Program Files (x86)\Microsoft DirectX SDK (June 2010)\
Utilities\bin\x86. In order to make the fxc shader compiler available to any
application, add the path containing the compiler to the System PATH variable by
going through the following steps:

1.	 Open Control Panel | System.
2.	 Click on Advanced system settings on the left-hand side of the window.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[62]

3.	 Click on the Environment Variables button on the opened panel.
4.	 Choose the Path variable from among the system variables.
5.	 Click on the Edit button at the bottom.
6.	 Add a separation semicolon ; followed by the path to the compiler

to a Variable value.
7.	 Click on the OK button on the Edit System Variable window.
8.	 Again click on the OK button on the Environment Variables window.

Vertex and pixel shader source code is compiled into .vs and .ps binary files ,
respectively, which can be used by the C# application. The shader compilation can
be configured to happen when the application runs, but it will consume a lot of CPU
resources and slow down the initialization state. It is better to compile the shader
code when during the C# application compilation, and add the resulting binary files
as application resources.

Enabling your Visual Studio 2010 SP1 or Visual
Studio 2012 to create and compile shaders
The shader compiler fxc can be used from the command line. After the shader
compilation, the binary files can be added to the application as the resources and the
whole application can be re-built. This method of compilation, however, requires
switching between the command line and the studio every time a shader changes,
making the development less productive. In my experience, it is worthwhile to
go through a bit of extra pain once and then use the studio to create, modify, and
compile the shaders.

Adding shader compilation to your Visual Studio 2010
SP1 project
The following is what you should do in order to be able to compile the shaders from
within VS 2010 SP1:

•	 Download and install Visual Studio 2010 SP1 SDK from
http://www.microsoft.com/en-us/download/details.aspx?id=21835

•	 Download and install HLSL Shader Build Task from
http://code.msdn.microsoft.com/HLSL-Shader-Build-Task-285e9b53

The previous steps will allow you to compile the shader files once you add these to
a project and set their Build Action property to VertexShader or PixelShader.
In order for the VS 2010 to be able to assign VertexShader and PixelShader build
actions, you need to add the following code to the corresponding project file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

 <ItemGroup Condition="'$(BuildingInsideVisualStudio)'=='true'">
 <AvailableItemName Include="VertexShader">
 <Visible>false</Visible>
 </AvailableItemName>
 <AvailableItemName Include="PixelShader">
 <Visible>false</Visible>
 </AvailableItemName>
 </ItemGroup>
 <UsingTask TaskName="ShaderBuildTask.ShaderCompile"
 AssemblyName="ShaderBuildTask, Version=1.0.3072.18169,
Culture=neutral, PublicKeyToken=44e467d1687af125" />
 <Target Name="VertexShaderCompile"
 Condition="'@(VertexShader)' != '' "
 BeforeTargets="BeforeBuild">
 <ShaderCompile Sources="@(VertexShader)"
 ShaderProfile="vs_2_0"
 IntermediateOutputPath="$(IntermediateOutputPath)">
 <Output TaskParameter="Outputs" ItemName="Resource" />
 </ShaderCompile>
 </Target>
 <Target Name="PixelShaderCompile"
 Condition="'@(PixelShader)' != '' "
 BeforeTargets="BeforeBuild">
 <ShaderCompile Sources="@(PixelShader)"
 ShaderProfile="ps_2_0"
 IntermediateOutputPath="$(IntermediateOutputPath)">
 <Output TaskParameter="Outputs"
 ItemName="Resource" />
 </ShaderCompile>
 </Target>

The code can be added right above the following lines:

 <!-- This property group is only here to support building this
project using the
 MSBuild 3.5 toolset. In order to work correctly with this older
toolset, it needs
 to set the TargetFrameworkVersion to v3.5 -->
 <PropertyGroup Condition="'$(MSBuildToolsVersion)' == '3.5'">

Once you add this code to the .csproj file after reloading the project, you will see
VertexShader and PixelShader build action options for any file within that project.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[64]

Now, to create a shader within a project whose project file was modified as
previously described, you need to go through the following steps:

1.	 Create a new file under the project using a Text File template for it.
2.	 Rename the file to have a proper name and extension (for a vertex shader file

the extension should be vs.hlsl while for a pixel shader file, the extension is
ps.hlsl).

3.	 Visual Studio 2010 creates the new file as a Unicode file. Unfortunately,
the fxc compiler breaks on the Unicode files. We need to change the file
encoding. To do this within the studio perform the following steps:

i.	 Open the file, for example, by double-clicking on it within the
Solution Explorer window. Then go to the File menu and choose
the Save <filename> As option. Do not change the name of the
file. Instead go to the Save button at the bottom of the window
and press on the arrow on the right-hand side of it:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

ii.	 Choose the Save with Encoding … option.
iii.	 Choose US-ASCII in the encoding dialog.
iv.	 Press OK.

Finally, the shader file is ready to be written into and compiled.

Adding shader compilation to your Visual Studio
2012 project
Shader compilation under VS 2012 is different from shader compilation under VS
2010. In some respects it is easier – you do not have to download and install anything
to run a shader compilation (everything that's needed comes together with the
VS 2012). In other respects it is a bit more difficult – there has not yet been created
anything similar to HLSL Shader Build Task for Silverlight and for every shader file
we are forced to add the compiled shader files as a resource to the VS 2012 project.
In VS 2012, the fxc compiler comes together with the studio, so you do not have
to add DirectX SDK. The compiler is located under C:\Program Files\Windows
Kits\8.0\bin\x86 for 32-bit machines and in C:\Program Files\Windows
Kits\8.0\bin\x64 for 64-bit machines.

Please add the folder containing the fxc compiler to the PATH variable as was
described in the previous subsection.

VS 2012 also contains an MS build task for building the shader files. Unfortunately,
this task is only available for C++ projects and is not available for Silverlight ones.

The following are the points to keep in mind in order to ensure that your VS 2012
project builds the shader files and adds the results as resources to the project:

•	 Make sure that the fxc compiler is in the PATH variable by adding the
corresponding folder to the PATH variable.

•	 VS 2012 should be re-started after the fxc folder is added to the PATH.
•	 Create the vertex and pixel shader files (in our case their names are shader.

vs.hlsl and shader.ps.hlsl respectively) within the project just like you
would for VS 2010. Set their Build Action property to None.

•	 Change the encoding for the shader.vs.hlsl and shader.ps.hlsl files in
exactly the same way as was described for VS 2010.

•	 Add new items shader.vs and shader.ps to the project. For example,
you can create them as text files.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[66]

•	 Change their Build Action property to Resource.
•	 Right-click on the project name within Solution Explorer and choose

Properties. Within the opened Properties panel, choose the Build Events
option on the left-hand side. Add the following two lines to the Pre-build
event command line editable area:
fxc /nologo /E"main" /T vs_2_0 /Fo "$(ProjectDir)shader.vs" /Od
/Zi $(ProjectDir)SHADER.VS.HLSL

fxc /nologo /E"main" /T ps_2_0 /Fo "$(ProjectDir)shader.ps" /Od
/Zi $(ProjectDir)SHADER.PS.HLSL

Now if you put the correct shader code in the shader.vs.hlsl and shader.ps.hlsl
files, and then build the project, the empty shader.vs and shader.ps files will
be overridden with the compiled shader code and added to the resulting .dll file
as resources.

Also note that (unlike VS 2010), VS 2012 provides syntax highlighting for shader
file content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

Creating the moving triangle application
Here we show how to build triangle 3D animation. The code for this sample is
located under the SAMPLES\CODE\MovingTriangle folder.

Try running this sample! During the first run, most likely you'll get the following
warning message: Please enable your graphics drivers and reload the application.
In order to be able to run the 3D application, you need to do the following:

1.	 Right mouse click onto this warning message (or anywhere around it).
2.	 Click on Silverlight.
3.	 Choose the Permissions tab, find and select the URL corresponding to the

application (usually if you view it on the same machine, you'll be able to tell
the correct URL by the port number).

4.	 Click on the Allow button at the bottom of the dialog box.
5.	 Click on the OK button.
6.	 Now restart the application if you are running it in the debugger, or restart

the browser to refresh the application if you are running the application on
a website.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[68]

When you run the application successfully, you will see a tricolored triangle rotating
in 3D around the Y-axis:

Now, let's look at the code.

First, to use the 3D functionality we need to enable GPU acceleration, by modifying
the MovingTriangleTestPage.aspx file to contain the following parameter setting
under its silverlightControlHost tag:

<param name="EnableGPUAcceleration" value="true" />

We also need to add a bunch of .dll references to Silverlight .NET DLLs containing
.Xna in its name. Here is the list of the DLLs you should add:

•	 Microsoft.Xna.Framework
•	 Microsoft.Xna.Framework.Graphics
•	 Microsoft.Xna.Framework.Graphics.Extensions
•	 Microsoft.Xna.Framework.Graphics.Shaders
•	 Microsoft.Xna.Framework.Math
•	 System.Windows.Xna

All the 3D processing takes place within a Silverlight control called DrawingSurface,
and all of it takes place within the C# files (not in XAML), so that the only thing we
need to add to XAML for 3D display is the DrawingSurface tag. The following is
how our MainPage.xaml file looks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

<UserControl x:Class="MovingTriangle.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 mc:Ignorable="d">

 <Grid x:Name="LayoutRoot" Background="White">
 <!-- DrawingSurface control can host
 3-D models -->
 <DrawingSurface x:Name="TheDrawingSurface" />

 <!-- the warning text to be shown
 in case the client did not set permissions
 to run 3-D applications from this URL -->
 <TextBlock
 x:Name="GraphicsDriversNeedToBeEnabledText"
 Text="Please enable your graphics drivers and reload the
application"
 FontSize="20"
 Visibility="Collapsed"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
</UserControl>

Aside from the DrawingSurface XML tag, all the code dealing with 3D is located
either within the MainPage.xaml.cs file or within the shaders.

The C# code is also quite simple. As you can see there are two important
functions dealing with 3D – Initial3DSetup and TheDrawingSurface_Draw.
The Initial3DSetup function takes care of things that need to be done only
once during the application run:

•	 It creates the model:
// create some XNA colors for the vertices
Color red = new Color(255, 0, 0, 255);
Color blue = new Color(0, 0, 255, 255);
Color green = new Color(0, 255, 0, 255);

// create the positions for triangle's vertices as
// 2-D vectors
Vector3 top = new Vector3(0, 2, 0);
Vector3 bottomLeft = new Vector3(-1, -1, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[70]

Vector3 bottomRight = new Vector3(1, -1, 0);

// create an array of vertices to be passed to the
// vertex buffer. Adding different
// colors to each of the vertices
VertexPositionColor[] vertices =
 new VertexPositionColor[]
{
 new VertexPositionColor(top, red),
 new VertexPositionColor(bottomRight, green),
 new VertexPositionColor(bottomLeft, blue),
};

•	 It sets the vertex buffer:
// create the vertex buffer of length 3
_vertexBuffer =
 new VertexBuffer
 (
 _graphicsDevice,
 VertexPositionColor.VertexDeclaration,
 vertices.Length,
 BufferUsage.WriteOnly
);

// set the vertex buffer to contain the array of the vertices
_vertexBuffer.SetData(0, vertices, 0, vertices.Length, 0);

•	 It gets the compiled shader code from the application resources into
the _vertexShader and _pixelShader class fields:
// pull the vertex shader code out of the resource file shader.vs
created
// at the compilation state from shader.hlsl.vs source code file
// and set the _vertexShader variable to contain it
using (Stream vertexShaderStream =
 Application.GetResourceStream
 (
 new Uri
 (
 @"MovingTriangle;component/shader.vs",
 UriKind.Relative
)).Stream)
{
 _vertexShader =
 VertexShader.FromStream(_graphicsDevice,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

vertexShaderStream);
}

// pull the pixel shader code out of the resource file shader.ps
created
// at the compilation state from shader.hlsl.ps source code file
// and set the _vertexShader variable to contain it
using (Stream pixelShaderStream =
 Application.GetResourceStream
 (
 new Uri
 (
 @"MovingTriangle;component/shader.ps",
 UriKind.Relative
)).Stream)
{
 _pixelShader =
 PixelShader.FromStream(_graphicsDevice,
pixelShaderStream);
}

The function TheDrawingSurface_Draw is set to be the event handler for the
TheDrawingSurface.Draw event, fired to redraw the 3D model within the
DrawingSurface control.

Here, we do not have space to explain the 3D processing in much detail. However,
before we dive into the TheDrawingSurface_Draw function, it is good to provide
some basics on what is going on.

In 3D processing, the transform applied to the models is usually split into the
following three parts:

•	 Model transform: This corresponds to the rotations and translations of the
3D model itself

•	 Camera (or view) transform: This describes the position of the camera
•	 Projection transform: This describes how the 3D model maps into the

2D image

The total transform is the product of all these three transforms. In our case, to rotate
the image, we change the model transform as time progresses, and keep camera and
projection transforms the same.

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[72]

The following is the body of the TheDrawingSurface_Draw function with comments:

// prevents the back side of the shape from being "culled"
// otherwise the back side of the triangle won't be seen
_graphicsDevice.RasterizerState = new RasterizerState
 {
 CullMode = CullMode.None
 };

_graphicsDevice.Clear // clear the image buffer
(
 ClearOptions.DepthBuffer | ClearOptions.Target,
 new Color(0, 0, 0, 0),
 10f,
 0
);

// set the vertex buffer of the graphics device
// to contain our _vertexBuffer class variable
_graphicsDevice.SetVertexBuffer(_vertexBuffer);
_graphicsDevice.SetVertexShader(_vertexShader);// set the vertex
shader
_graphicsDevice.SetPixelShader(_pixelShader);// set the pixel shader

// make the rotation angle dependent on total time passes
// in order to rotate the model
float rotationAngle =
 (float) (MathHelper.PiOver4 * e.TotalTime.TotalSeconds);
// create the model transform

// rotate the model by changing the model's transform
Matrix modelTransform =
 Matrix.CreateRotationY(rotationAngle);

// set the camera view to be 10 units away from the model on Z axis.
Matrix viewTransform =
 Matrix.CreateLookAt(new Vector3(0, 0, 5), Vector3.Zero, Vector3.
Up);

// set the properties of projection transform that maps 3-D view
// into 2-D image (in fact we are setting the view frustum properties)
Matrix projectionTransform =
 Matrix.CreatePerspectiveFieldOfView
 (
 MathHelper.PiOver2, // field view is 90 degrees

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

 1, // aspect ratio
 1, // near plane 1 unit away
 10 // far plane is 10 units away
);

// result transform is the product of all three transforms above
Matrix resultTransform =
 modelTransform *
 viewTransform *
 projectionTransform;

// set the vertex shader's 1st parameter to be the transform matrix
_graphicsDevice.SetVertexShaderConstantFloat4(0, ref resultTransform);

_graphicsDevice.DrawPrimitives// force the redrawing of the
SurfaceControl
(
	 PrimitiveType.TriangleList,
	 0,
	 _vertexBuffer.VertexCount/3
);

e.InvalidateSurface();// force the "Draw" event to be called again

For this example, the simplest shaders are used. The following is the
VertexShader code:

// transformation matrix provided by the application
float4x4 totalTransformMatrix;

// vertex data structure that
// is input to the vertex shader
struct VertexData
{
 float3 Position : POSITION;
 float4 Color : COLOR;
};

// data structure containing
// the output from the vertex shader
struct VertexShaderOutput
{
 float4 Position : POSITION;
 float4 Color : COLOR;
};

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[74]

// main shader function
VertexShaderOutput main(VertexData vertex)
{
 VertexShaderOutput output;

 // apply the transformation to
 // the vertex position.
 output.Position = mul(float4(vertex.Position,1),
totalTransformMatrix);

 // pass the color through to the next stage
 output.Color = vertex.Color;
 return output;
}

And the following is the PixelShader code:

// output from the vertex shader serves as input
// to the pixel shader
struct VertexShaderOutput
{
 float4 Position : POSITION;
 float4 Color : COLOR;
};

// main shader function
float4 main(VertexShaderOutput vertex) : COLOR
{
 return vertex.Color;
}

The moving prism application
We can spice up the model a little bit by creating a rotating prism, instead of the
rotating triangle. The MovingPrismApplication project is located under the
SAMPLES\CODE\ MovingPrismApplication folder.

When running MovingPrismApplication, do not forget to set the driver permissions
for that application, just as you did for MovingTriangle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

The following is a screenshot of the moving prism:

The only differences from the MovingTriangle project are the following:

•	 The fourth vertex is being created shifted along the Z-axis from the rest
of the vertices:
// the 4th vertext to create the prism
Vector3 zVertex = new Vector3(0, 0, 1);

•	 The vertices array contains 12 vertices instead of 3; each three consecutive
vertices corresponding to a side of the prism:

// create an array of vertices
// corresponding to the triangles
// corresponding to the sides of the prism.
// the same vertices will be repeated
// for different sides if needed
VertexPositionColor[] vertices =
 new VertexPositionColor[]
{
 new VertexPositionColor(top, red),
 new VertexPositionColor(bottomRight, green),
 new VertexPositionColor(bottomLeft, blue),
 new VertexPositionColor(top, red),
 new VertexPositionColor(bottomRight, green),
 new VertexPositionColor(zVertex, black),
 new VertexPositionColor(bottomLeft, green),
 new VertexPositionColor(top, red),

www.it-ebooks.info

http://www.it-ebooks.info/

3D Animations in Silverlight

[76]

 new VertexPositionColor(zVertex, black),
 new VertexPositionColor(bottomRight, green),
 new VertexPositionColor(bottomLeft, blue),
 new VertexPositionColor(zVertex, black),
};

The 3D related topics that were left out
There is much more that can be said about 3D processing, but unfortunately due to
time and space constraints, I'll have to leave it out for now. The following is a list
of some other 3D topics that should be learned by those who want to have a good
mastery of the subject:

•	 By using shaders that are more complex, you can create numerous 3D effects,
including lighting, moving objects along some trajectories, and many others.
I would recommend studying the HLSL and 3D math in order to be able to
do that.

•	 Most developers prefer to create effects absorbing the complexity of
interacting with specific vertex and pixel shaders. The purpose of the effect
object is to pass parameters to the shaders and invoke the shaders when
needed. Creating custom effects deserves a topic of its own.

•	 There is a bunch of built-in effects available from Silverlight XNA libraries.
Studying these effects can also be of great help.

•	 Usually the complex 3D models are not created in code, but built by external
tools and imported into Silverlight. Importing such a model is another topic
for suggested study.

Summary
In this chapter, we have discussed different ways of creating 3D animations
in Silverlight – using projection transform and using the Silverlight 3D
XNA functionality.

The next chapter will provide examples of creating animated banners
using Silverlight.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner
In this chapter, we will apply what we learned to build an animated banner.
We will provide a detailed description of the code for creating a text in 3D space
and rotating it in order to create a cool animation effect. We will also show how to
embed a Silverlight banner into an HTML page .

What we aim to build
The following is a screenshot of the animated banner we will attempt to build
in this chapter:

This is a banner from my website awebpros.com. Note that the text appears to wrap
around the globe in three dimensions. Moreover, if you run the demo (or visit my
website) you will see that after the page is loaded, lines of the text blink and rotate
around the globe also in three dimensions. In the rest of the chapter we will describe
how this was achieved.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner

[78]

The globe image
The globe image is downloaded from the Microsoft ClipArt website:
http://tinyurl.com/msofficeglobe.

Perspective transform
We will use perspective transform, which was described in the previous
chapter, to create the 3D rotation effects. Unlike the XNA functionality,
it is fully multi-platform – running on Mac computers as well, and is
sufficient to create powerful 3D animations.

Code description
The code for the demo is located under the AnimatedBanner project.

Referring to the globe image within
an XAML file
As was previously mentioned, I downloaded the globe image from the Microsoft
ClipArt website and added it to the project as a resource.

The following code will show you how to add the image to the MainPage.xaml file:

<Image x:Name="image"
 Source="Globe.png"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="0,0,10,0"
 Width="270">
 <Image.Projection>
 <!-- GlobalOffsetZ for a still image
 controls its Z-depth. I had to play
 with this parameter to create an
 illusion of letters going behind
 the Globe during the rotation-->
 <PlaneProjection GlobalOffsetZ="30" />
 </Image.Projection>
</Image>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

Creating rotating lines of text
The rotating text lines consist of individual TextBlock elements corresponding to
each letter within them. The Projection property of each of the TextBlock elements
is set to place the corresponding letter at the appropriate location within 3D space.

Horizontal rotation is achieved by changing the RotationY parameter of the
perspective transform, while the distance from the center of rotation is controlled by
the LocalOffsetZ parameter.

In order to achieve the effect of the text going behind the globe image during
the rotation, we can tweak its LocalOffsetZ parameter as well as the parameter
controlling the Z-Depth of the globe image (since the image is still, it can be either
its GlobalOffsetZ or LocalOffsetZ parameter).

In order for the letters to go behind and in front of the image during the rotation,
both TextBlocks corresponding to the letters and the image have to belong to the
same panel. Because of this, we cannot implement the lines of text arranged in a
circular 3D fashion as a separate Silverlight control. Indeed, controls always have
their own visual tree so that all of its subcomponents belong to some top-level
component, and in that case, the individual letters would belong to some visual
component within the text control, and not to the same panel as the image does.
Therefore, in order to automate the text creation without creating a special control,
we build a class RotatedTextFactory. Its purpose is to create TextBlocks and
add them to a Panel control, arranging them around the Y-axis in 3D space. It also
manages various parameters of the TextBlocks and 3D rotations.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner

[80]

There are two attached properties defined within the AttachedProperties static class
that manage the 3D position of each individual TextBlock corresponding to one letter.
The OriginalShift property controls the original position of the letter, while the
Shift property controls the position during the animation, that is, in order to rotate a
letter we simply change its individual Shift property. (See Chapter 1, Building Blocks
of Animation, for information about the attached properties). Both OriginalShift and
Shift are angular measures in degrees (the same as the RotateY property).

The reason we want to have these two properties instead of simply modifying
RotateY is that we use the Shift property to rotate multiple letters at the same time,
by the same angle, while OriginalShift is used to arrange the letters sequentially
as a text.

You can see that the OriginalShift attached property callback sets the RotationY
property to OriginalShift:

static void OnOriginalShiftChanged
(
 object sender,
 DependencyPropertyChangedEventArgs e
)
{
 PlaneProjection planeProjection = (PlaneProjection)sender;

 planeProjection.RotationY = (double)e.NewValue;
}

And the Shift attached property callback sets the RotationY property to
OriginalShift + Shift:

static void OnShiftChanged
(
 object sender,
 DependencyPropertyChangedEventArgs e
)
{
 PlaneProjection planeProjection = (PlaneProjection)sender;

 double originalShift = GetOriginalShift(planeProjection);
 double shift = (double)e.NewValue;

 planeProjection.RotationY = originalShift + shift;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

Now back to the RotatedTextFactory class, which contains the core functionality
of the sample. As was previously mentioned, this class creates the TextBlock object
for each letter in a line of text, inserts these objects into a Panel control, and arranges
them to rotate around the Y-axis. The Panel control is specified by the ThePanel
property of the class. It is a dependency property so that we can bind it to the real
panel within our XAML file.

The Text property of the class holds the line of text to display. The LocalOffsetZ
property controls the distance from the center of rotation. The function
RecalculateOriginalShifts sets the OriginalShift property of each TextBlock
element to position them next to one another in order to form the words.

D

The previous diagram shows how to arrive at a formula for arranging the letters next
to one another. It shows the look from above. Point O is the center of rotation. So,
|AO| = |CO| = LocalOffsetZ. There are two letters shown: the horizontal center
of Letter1 is located at point A and the center of Letter2 is located at point C. |AB|
is the half width of Letter1 and |CD| is the half width of Letter2. AOB and DOC are
right-angled triangles so we see that:

tan(α) = |AO|/|AB| = ((width of Letter1) / 2) / LocalOffsetZ;

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner

[82]

In a similar fashion, we can derive that:

tan(ß) = |AC|/|CD| = ((width of Letter2) / 2) / LocalOffsetZ

So we can see that:

γ = α + ß = tan-1(((width of Letter1) / 2) / LocalOffsetZ) + tan-1((
(width of Letter2) / 2) / LocalOffsetZ)

This is exactly the formula applied to each letter to recalculate the mutual
shift between the two adjacent TextBlock elements within the function
RecalculateOriginalShifts. To calculate the OriginalShift function's delta for
the current letter, it takes half of the width of the previous letter, half of the width
of the current letter, applies the formulas above to them by calling the function
HalfAngleFromElementWidth, and sums up the results.

The property LocalOffsetY controls the vertical shift of the line of text
(each of our three lines of text have this property set to a different value).

The TextStyle property of the RotatedTextFactory class gives the user
full control over the properties of the TextBlock objects via its styles.

Since the FontSize parameter is most likely to change from line to line, we also
provide a separate a FontSize property within the RotatedTextFactory class
(in order to avoid creating different Styles for different lines in case only the
FontSize property changed).

The RotatedTextFactory class not only manages creation of the text line, but
also controls its rotation around the Y-axis with the help of its Shift property.
Changing Shift on the RotatedTextFactory object will rotate the whole line of
text by changing the Shift attached property on each of the individual TextBlock
objects within the line of text. Shift is a dependency property within the
RotatedTextFactory class because we want to be able to animate it.

The RotatedTextFactory objects are defined as XAML resources of LayoutRoot
Grid within the MainPage.xaml file:

<!--"AWebPros.com" text to rotate-->
<this:RotatedTextFactory x:Key="AWebProsTextFactoryKey"
 x:Name="AWebProsTextFactory"
 Text="AWebPros.com"
 TextStyle="{StaticResource TheTextStyle}"
 ThePanel="{Binding ElementName=LayoutRoot}"
 FontSize="35"
 LocalOffsetY="-50"
 LocalOffsetZ="125"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

 StartShift="55" />

<!--"We help people" text to rotate-->
<this:RotatedTextFactory x:Key="WeHelpTextFactoryKey"
 x:Name="WeHelpTextFactory"
 Text="We help people"
 TextStyle="{StaticResource TheTextStyle}"
 ThePanel="{Binding ElementName=LayoutRoot}"
 FontSize="30"
 LocalOffsetY="0"
 LocalOffsetZ="140"
 StartShift="40" />

<!--"to deliver!" text to rotate-->
<this:RotatedTextFactory x:Key="ToDeliverTextFactoryKey"
 x:Name="ToDeliverTextFactory"
 Text="to deliver!"
 TextStyle="{StaticResource TheTextStyle}"
 ThePanel="{Binding ElementName=LayoutRoot}"
 FontSize="30"
 LocalOffsetY="50"
 LocalOffsetZ="120"
 StartShift="30" />

Their properties were tweaked in order to position the lines of text correctly. Once
the RotatedTextFactory objects are created and their properties are set, they create
the corresponding text and place it within the LayoutRoot panel automatically.

Animation storyboard
The MainPage.xaml file also contains the storyboard to make the top line blink
(by changing the opacity of its text) and to make all the lines move around the
globe by animating the Shift property of the RotatedTextFactory objects:

<Storyboard x:Name="BlinkAndRotateStoryboard"
 FillBehavior="Stop"
 RepeatBehavior="3x">

 <!-- make the top text line blink 3 times by changing its opacity
-->
 <DoubleAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Storyboard.TargetName="AWebProsTextFactory"
 Storyboard.TargetProperty="RotatedTextFactory.TextOpacity"

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner

[84]

 RepeatBehavior="3x">
 <SplineDoubleKeyFrame KeyTime="00:00:00.2000000"
 Value="0" />
 <SplineDoubleKeyFrame KeyTime="00:00:00.4000000"
 Value="1" />
 </DoubleAnimationUsingKeyFrames>

 <!-- Rotate the lines of text one after another-->
 <Storyboard BeginTime="00:00:01.2">
 <!-- rotate the top line -->
 <DoubleAnimation
 Duration="0:0:1"
 By="-360"
 BeginTime="0:0:0"
 Storyboard.TargetProperty="(RotateTextFactory.Shift)"
 Storyboard.TargetName="AWebProsTextFactory" />

 <!-- rotate the middle line -->
 <DoubleAnimation
 Duration="0:0:1"
 By="-360"
 BeginTime="0:0:1"
 Storyboard.TargetProperty="(RotateTextFactory.Shift)"
 Storyboard.TargetName="WeHelpTextFactory" />

 <!-- rotate the bottom line-->
 <DoubleAnimation
 Duration="0:0:1"
 By="-360"
 BeginTime="0:0:2"
 Storyboard.TargetProperty="(RotateTextFactory.Shift)"
 Storyboard.TargetName="ToDeliverTextFactory" />
 </Storyboard>
</Storyboard>

We made each of the lines of text rotate consecutively one after another by setting
the BeginTime properties of each individual DoubleAnimation to start after the
previous line animation is finished.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

Now, we want to trigger the storyboard after all the text is loaded and all the
letters are arranged around the globe. This can be a little tricky since the function
RecalculateOriginalShifts that arranges the letters is called multiple times (for
example, after each letter becomes visible). Still we call LettersRearrangedEvent
from within that function. The event handler for this event is set within the
MainPage.xaml.cs file – it stops the previous instance of the storyboard and starts
another instance of it, so that only the last instance of the storyboard has a chance to
continue and complete:

void RestartStoryboard()
{
 // stop the previous instance of the storyboard run
 _rotateStoryboard.Stop();

 // start a new instance of the storyboard run
 _rotateStoryboard.Begin();
}

Placing the Silverlight banner within an
HTML file
We want the HTML parameters to control the size of the Silverlight animation.
To achieve this, we will place the entire Silverlight LayoutRoot Grid inside the
Silverlight Viewbox control (as you can see in the MainPage.xaml file).

Now let's focus our attention on the AnimatedBanner.Web project created for us
by Visual Studio. This project contains the file AnimatedBannerTestPage.html,
that provides a sample of embedding our Silverlight control within HTML code.

You can start the browser displaying our Silverlight banner within that HTML
page by right-clicking on the file within Solution Explorer and choosing View
in Browser.

Most of this file consists of the code for handling Silverlight errors. This code is not
needed once your Silverlight application is debugged.

The following is the part of the code that is actually needed for embedding the
Silverlight control into an HTML page:

<div id="form1" style="height: 300px; width: 300px">
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2"
 	 width="100%" height="100%">

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Animated Banner

[86]

 <param name="source" value="ClientBin/AnimatedBanner.xap"
/>
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="5.0.61118.0" />
 <param name="autoUpgrade" value="true" />
 <ahref="http://go.microsoft.com/fwlink/?LinkID=149156
&v=5.0.61118.0"
 style="text-decoration: none">
 <img src="http://go.microsoft.com/
fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight"
 style="border-style: none" />

 </object>
 </div>
</div>

The value of the parameter source is pointing to the location of the Silverlight
.xap file ClientBin/AnimatedBanner.xap containing the Silverlight application.
The hyperlink within the form points to a page to be shown to the client, in case a
Silverlight plugin is not installed on the client's machine.

Try changing the height and width parameters within the top line and refreshing the
page. You will see that the size of the Silverlight banner is being changed accordingly.
This is because we placed the banner within the Silverlight Viewbox control.

By default the Silverlight banner is placed inline, that is, after the previous text.
In our case, we have no text on the page so the banner will be located in the top-left
corner. We can modify the location by tweaking the HTML parameters – for example
setting the parameter float on the top-level div tag to right will move the banner
to the top-right corner.

Summary
In this chapter, we applied what we learned in the previous chapters in order to
build a cool 3D animated banner and embed it within an HTML page.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and starting
a Silverlight project

The following steps will aid you in creating and starting a Silverlight project:

1.	 Open Visual Studio 2010.
2.	 Choose File | New | Project menu item.
3.	 Choose Silverlight Application as a project type, choose the location in

which you want to have this project, and choose the project name to be
SpinningControlSample.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[88]

4.	 Press the OK button
5.	 On the oncoming screen, press the OK button again.

You have just created a Silverlight application project. In fact, you can see two
projects created – an ASP project hosting the Silverlight application called
SpinningControlSample.Web (which we touch only very lightly in this book)
and the Silverlight 5 project SpinningControlSample.

One can run the application within Visual Studio debugger, by choosing Debug |
Start Debugging menu item.

The Silverlight 5 project, SpinningControlSample, is where all the Silverlight work
takes place. Building this project produces a Silverlight application deployment file
called SpinningControlSample.xap. During the build, this XAP file is copied under
the ClientBin folder of the ASP project.

The ASP project SpinningControlSample.web is only used for testing Silverlight
applications. It provides ASP and HTML test files SpinningControlSample.aspx
and SpinningControlSample.html. One can start the Silverlight application by
right-clicking on any of these two files within the Solution Explorer window and
choosing the Run in Browser option.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[89]

Changing the XAML
formatting

This appendix shows how to change the XAML formatting to print each XAML
attribute on a separate line. This makes the XAML file more readable and this is
the formatting we use in our source code.

1.	 Open the Options window by going to the Tools | Options menu item.
2.	 Choose Text Editor | XAML | Formatting | Spacing within the left pane.
3.	 Make sure you have the Position each attribute on a separate line and

Position first attribute on same line as start tag options selected as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[91]

Installing snippets
Please follow the following steps to install the Visual Studio 2010 snippets provided
with these samples in the Snippets folder:

1.	 Open Visual Studio 2010.
2.	 Choose Tools | Code Snippet Manager menu item.
3.	 Once you have the Code Snippet Manager window, select the

NetFX30 folder within a folder tree on the left-hand side as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[92]

4.	 Select the location folder at the top of the Code Snippet Manager window;
right-click on the selection and choose Copy.

5.	 Paste the copied location into a Windows Explorer.
6.	 Copy all the snippet files from the Snippet folder of these sample code into

the snippet location on your computer. If a dialog box pops up asking if you
really want to override some existing files, click on Yes.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[93]

Using snippets
Here we give an example of snippet usage by showing how to create a dependency
property within C# code using propdp snippet. (Creating dependency and attached
properties in code would be a pain without snippets).

We are going to create a dependency property RotationAngle of type double
within the SpinningControl class.

Within that RotationAngle.cs file, move the cursor to the place you want the
dependency property to be at and type propdp<tab>.

The snippet will expand into the following text:

 #region MyProperty Dependency Property
 public int MyProperty
 {
 get { return (int)GetValue(MyPropertyProperty); }
 set { SetValue(MyPropertyProperty, value); }
 }

 public static readonly DependencyProperty MyPropertyProperty =
 DependencyProperty.Register
 (
 "MyProperty",
 typeof(int),
 typeof(MainPage),
 new PropertyMetadata(0)
);
 #endregion MyProperty Dependency Property

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[94]

The changeable strings are selected in orange. Once you change a selectable string,
for example, MyProperty to RotationAngle and press Tab, the matching strings will
change throughout the entire snippet and the next selectable string will be selected.
You should change MyProperty to RotationAngle, int to double, and 0 to 0.0.
Once you are done, press Enter to exit the snippet-editing mode. The following is
how the resulting code should look:

 #region RotationAngle Dependency Property
 public double RotationAngle
 {
 get { return (double)GetValue(RotationAngleProperty); }
 set { SetValue(RotationAngleProperty, value); }
 }

 public static readonly DependencyProperty
RotationAngleProperty =
 DependencyProperty.Register
 (
 "RotationAngle",
 typeof(double),
 typeof(SpinningControl),
 new PropertyMetadata(0.0)
);
 #endregion RotationAngle Dependency Property

Congratulations! You have just created your first dependency property using
propdp snippet.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D related topics 76
_gradientColorMap 54
_noiseColorMap 55

A
animated banner

screenshot 77
animation classes, Silverlight

key frame animations 18
simple animations 17

APs 7, 18, 19
attached properties . See APs

B
backwardsbutton 34
binding

about 7, 13
source property 13
target property 13

C
C# Code

dependency property, defining 8, 10
cloud

simulating 47, 49
code

animation storyboard 83, 85
Silverlight banner, placing within HTML

file 85, 86
text rotating lines, creating 82, 83

Code Snippet Manager window 92
control sample

developing 7, 8
CurrentScreen property 31

D
DataContext property 33
dependency property

about 7
defining, in C# Code 8, 10

disabled state 22
DLLs

Microsoft.Xna.Framework 68
Microsoft.Xna.Framework.Graphics 68
Microsoft.Xna.Framework.Graphics.

Shaders 68
Microsoft.Xna.Framework.Maths 68
System.Windows.Xna 68

E
easing functions 27

F
fire

simulating 50-55
forward button 34

G
GetBasicPerlinNoise function 44
global image

downloading 78

www.it-ebooks.info

http://www.it-ebooks.info/

[96]

H
High Level Shader Language. See HLSL
HLSL 61

I
ImageProcessingLibrary

about 46
ColorMap 46
ColorUtils 46
DoubleColor 46

Initial3DSetup function 69
installing

snippets 92

L
LeftSlideTransition navigation 38
lookless control 8

M
MainPage class 47
MainPage_Loaded method 51
Model-View-ViewModel. See MVVM
MoveToNext function 31
MoveToPrevious function 31, 37
moving prism application

about 74
MovingTriangle project, comparing with 75

moving triangle application
creating 67-74

MVVM 29

N
navigation panels

about 29
animating 29-38

NavigationVM class 30

O
OnPropertyChanged function 30

P
Perlin noise algorithm

basic 44
implementing 44-46

persistence factor 42
pixel shaders

compiling 61
PostProcessingFunction parameter 51
Projection property 79
propdp snippet 94

R
RecalculateOriginalShifts function 85
RotatedTextFactory class 82
Run in Browser option 88

S
shaders

compilation, adding to Visual Studio 2010
SP1 62-65

compilation, adding to Visual Studio 2012
project 65

creating, Visual Studio 2010 SP1 enabled 62
Silverlight

animation classes 17
transforms 13

Silverlight controls animation
about 21
built-in button, animating 22-27
custom button, animating 28, 29
custom button, creating 28, 29
tools 21

snippets
installing 92
using 93, 94

storyboards
rotation animation, adding 14-16

T
TargetProperty 20
Text property 81
TheDrawingSurface_Draw function 72

www.it-ebooks.info

http://www.it-ebooks.info/

[97]

V
vertex

about 60
interaction, with C# application 60

visual presentation
defining 10-13

X
XAML formatting

changing 89

three-dimensional functionality, Silverlight
about 60
3D model 60
pixel shaders 60
shortcomings 60
vertex 60

transforms 7, 13
TransitioningContentControl animation

functionality 35
turbulence flow 50

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Instant Silverlight 5 Animation

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft Silverlight 5 Data and
Services Cookbook
ISBN: 978-1-849683-50-0 Paperback: 662 pages

Over 100 practical recipes for creating rich,
data-driven, business applications in Silverlight 5

1.	 Design and develop rich data-driven business
applications in Silverlight and Windows Phone
7 following best practices using this book and
eBook

2.	 Rapidly interact with services and handle
multiple sources of data within Silverlight and
Windows Phone 7 business applications

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-849693-18-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2.	 Learn the main new features of HTML5 and
use CSS3’s stunning new capabilities including
animations, transitions and transformations

3.	 Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Canvas Cookbook
ISBN: 978-1-849691-36-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience
with HTML5 Canvas

1.	 The quickest way to get up to speed with
HTML5 Canvas application and game
development

2.	 Create stunning 3D visualizations and games
without Flash

3.	 Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications.

HTML5 Games Development by
Example: Beginner’s Guide
ISBN: 978-1-849691-26-0 Paperback: 352 pages

Create six fun games using the latest HTML5,
Canvas, CSS, and JavaScript techniques

1.	 Learn HTML5 game development by building
six fun example projects

2.	 Full, clear explanations of all the essential
techniques

3.	 Covers puzzle games, action games,
multiplayer, and Box 2D physics

4.	 Use the Canvas with multiple layers and sprite
sheets for rich graphical games

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building Blocks of Animation
	Spinning control sample
	Defining a dependency property in C# code
	Defining visual presentation for spinning control
	Bindings
	Transforms
	Storyboards and animations
	Adding a rotation animation to our code
	A brief overview of different Silverlight animation classes

	Attached properties
	Summary

	Chapter 2: Animations in Business Logic Silverlight Applications
	Animating Silverlight controls
	Tools for animating controls
	Animating a built-in button
	Creating and animating custom button control

	Animating navigation panels
	Summary

	Chapter 3: Creating Animated Textures
	Background on Perlin noise
	A bit of history
	Perlin noise algorithm
	Multi-scale Perlin Noise
	Basic Perlin noise

	Perlin noise algorithm implementation

	ImageProcessingLibrary
	Cloud simulation
	Fire simulation
	Summary

	Chapter 4: 3D Animations in Silverlight
	Perspective transform
	Silverlight 5 three-dimensional functionality
	3D models
	Vertex and pixel shaders
	Compiling pixel shaders
	Enabling your Visual Studio 2010 SP1 or Visual Studio 2012 to create and compile shaders

	Creating the moving triangle application
	The moving prism application
	The 3D related topics that were left out
	Summary

	Chapter 5: Building an Animated Banner
	What we aim to build
	The globe image
	Perspective transform
	Code description
	Referring to the globe image within
an XAML file
	Creating rotating lines of text
	Animation storyboard
	Placing the Silverlight banner within an
HTML file

	Summary

	Appendix A: Creating and starting a Silverlight project
	Appendix B: AppendChanging the XAML formatting
	Appendix C: Installing snippets
	Appendix D: Using snippets
	Index

