Beginning

JSF 2 apis
and JBOSS Seam

Begin using the new JavaServer™ Faces (JSF™) 2
APIs available in the new Java™ EE 6 platform

Kent Ka lok Tong

Apress:

Beginning JSF™ 2 APIs
and JBoss® Seam

Kent Ka lok Tong

Apress’

Beginning JSF™ 2 APIs and JBoss® Seam
Copyright © 2009 by Kent Ka lok Tong

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1922-4
ISBN-13 (electronic): 978-1-4302-1923-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written
without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Matt Moodie

Technical Reviewer: Jim Farley

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary
Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben
Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant

Copy Editors: Kim Wimpsett and Heather Lang

Associate Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor and Artist: Kinetic Publishing Services, LLC

Proofreader: Patrick Vincent

Indexer: Toma Mulligan

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

Contents at a Glance

Aboutthe AUTNOr. ix
About the Technical ReVieWer Xi
CHAPTER 1 Getting Started with JSF................ 1
CHAPTER 2 UsingForms 29
CHAPTER 3 ValidatingInput 67
CHAPTER 4 CreatinganE-shop............... 101
CHAPTER 5 Creating Custom Components 151
CHAPTER 6 Providing a Common Layout for Your Pages 173
CHAPTER 7 Building Interactive Pages with Ajax 183
CHAPTER 8 Using Conversations .. 215
CHAPTER 9 Supporting Other Languages.ccovivinn... 231
CHAPTER10 UsingJBossSeaml 253
INDEX 287

Contents

Aboutthe AUTNOr. ix
About the Technical ReVieWer Xi
CHAPTER 1 Getting Started with JSF.................................... 1
Introducing the “Hello world” Application............................ 1

Installing Eclipse 2

Installing JBoSSc. 3

Installing a JSF Implementation 7
InstallingWebBeans...................., 8

Creating the “Hello world!” Application with JSF...................... 9

Generating Dynamic Content................................. 17

Retrieving Data fromJavaCode 20

Exploring the Life Cycle of the WebBean 25

Using an Easier Way to Qutput Text........................... 25

Debugging a JSF Application. 25

SUMMArY. 27

CHAPTER2 UsingForms... 29
Developing a Stock Quote Application.............................. 29

Getting the Stock Quote Symbol 29

Displaying the ResultPage. 36

Displaying the Stock Value. 38

Marking Input As Required. ...l 40

InputtingaDatel 49

Conversion Errors and Empty Input. 55

Usinga ComboBOX ...t 60
UsingaSingleb2Bean..........................ii. 62
HookingUptheWebBeans 63

SUMMANY. ..o 66

CONTENTS

CHAPTER 3

CHAPTER 4

CHAPTER 5

Validating Input ... 67
Developing a Postage Calculator 67

What If the InputIsInvalid? 73

Null Input and Validators. 78

Validating the Patron Code.................................0. 80

Creating a Custom Validator for the Patron Code................ 82

Displaying the Error MessagesinRed 86

Displaying the Error Message Along with the Field 87

Validating a Combination of Multiple Input Values............... 96
SUMMAY. 100
CreatinganE-shop 101
Listingthe Products. 102
Making the Link to Show the Details 106
Displaying Headersinthe Columns 115
Implementing a Shopping Cart 116
Displaying the Content of the Shopping Cart 126
The Checkout Function............... 127
Getting the Credit Card Number of the CurrentUser................. 131
ForcingtheUsertoLogIn il 139
Implementing Logout 146
Protecting the Password., 148
SUMMAY. ... 149
Creating Custom Components 151
Displaying a Copyright Notice on Multiple Pages. 151
Allowing the Caller to Specify the Company Name 157
Creating a Product Editor................ L. 159
Passing a Method in a Parameter?. 162
Creatinga Box Component, 163
Accepting Two Pieces of XHTML Code 166
Creating a Reusable Component Library........................... 168
Creating a Component Library Without taglib.xml................... 170

SUMMAY. 172

CONTENTS vii

CHAPTER6 Providing a Common Layout for Your Pages............. 173
Using the Same Menu on Different Pages. 173
Using Global NavigationRules. 177
Using Two AbstractParts.................... ... i, 178
Creating Page-Specific NavigationCases.......................... 180
SUMMANY. .. 182
CHAPTER 7 Building Interactive Pages with Ajax..................... 183
Displayinga FAQ 183
Refreshing the Answer Only............... iii... 185
Hiding and Showing the Answer.................................. 189
Using Ajax to Hide or Show the Answer. 191
Giving a RatingtoaQuestiono 194
Updating the Ratingasthe User Types 199
Using a Dialog Box to GettheRating.............................. 200
Setting the Look and Feel with SKins. 204
Displaying Multiple Questions......................l 206
SUMMArY. ... 212
CHAPTER8 Using Conversations....................................... 215
Creating a Wizard to Submit Support Tickets....................... 215
Interference Between Browser Windows. 219
URL Mismatched?o i 225
SUMMANY. ..o 229
CHAPTER9 Supporting Other Languages.............................. 231
Displaying the Current Dateand Time............................. 231
Supporting Chinese. 232
Easier Way to AccessMap Elements.............................. 237
Internationalizing the Date Display................................ 238
Letting the User Change the Language Used 238
Localizingthe Full Stop. 243
Displayingalogocco i 246
Making the Locale Change Persistent 248
Localizing Validation Messages.250

SUMMArY. ... 251

CONTENTS

CHAPTER10 UsingJBossSeam ... 253
Installing Seam. 253
Re-creating the E-shop Project............... 254
Allowing the Userto Add Productscoointt. 257
Restricting Access to the Product-Editing Page..................... 265
Creatinga Shopping Cart................. ... i, 267
Turning the Shopping Cart into a Stateful SessionBean 273
Creating the CheckoutPage, 277
Using WebLogic, WebSphere, or GlassFish. 284
SUMMAY. 284

INDEX . .. 287

About the Author

KENT KA 10K TONG is the manager of the IT department of the Macau Productivity and Tech-
nology Transfer Center. With a master’s degree in computer science from the University of New
South Wales in Sydney, Australia, and having won the Macao Programming Competition
(Open Category) in 1992, Kent has been involved in professional software development, train-
ing, and project management since 1993. He is the author of several popular books on web
technologies including Essential JSF, Facelets and Seam, Enjoying Web Development with Tapestry,
Enjoying Web Development with Wicket, and Developing Web Services with Apache Axis 2.

About the Technical Reviewer

JIM FARLEY is a technology architect, strategist, writer, and manager. His career has touched
a wide array of domains, from commercial to nonprofit and from finance to higher education.
In addition to his day job, Jim teaches enterprise development at Harvard University. Jim is
the author of several books on technology and contributes articles and commentary to various
online and print publications.

Xi

CHAPTER 1

Getting Started with JSF

In this chapter you'll learn how to set up a development environment and create a “Hello
world!” application with JSF.

Introducing the “Hello world” Application

Suppose that you’d like to develop the application shown in Figure 1-1.

Eile Edit View History Bookmarks Tools Help

a® -0 A >-] [E=1 &

Hello world!

Figure 1-1. A simple “Hello world!” application with a single page

To do that, you’ll need to install some software (see Figure 1-2). First, you’ll need an
IDE to create your application. This book will use Eclipse, but other popular IDEs will do
just fine too. Next, you'll need to install JBoss, which provides a platform for running web
applications (there are also fine alternatives to JBoss). In addition, your application will
use JSF and Web Beans as libraries. So, you’ll need to download them too.

2 CHAPTER 1 GETTING STARTED WITH JSF

Eclipse

App1
Generates

N
'

JSF Web Beans

App2

JBoss

Figure 1-2. The software that you'll need

Installing Eclipse

You need to make sure you have the Eclipse IDE for Java EE Developers, as shown in
Figure 1-3 (note that the Eclipse IDE for Java Developers is not enough, because it doesn’t
include tools for developing web applications). You can go to http://www.eclipse.org

to download it. For example, you’ll need the eclipse-jee-ganymede-SR1-win32.zip file if
you use Windows. Unzip it into a convenient location, such as c:\eclipse. Then, create

a shortcut to run c:\eclipse\eclipse -data c:\workspace. This way, it will store your proj-

ects under the c:\workspace folder.

‘_' clipse Downloads - Mozi

Fle Edit Wiew History Bookmarks Tools Help

<:3 @ - @ @ 4?\ [u http:/fwww.eclipse.org/downloads/

Eclipse Downloads

Eclipse Packages Member Distros Projects

Ganymede Packages (based on Eclipse 3.4.1) - Compare Packages

|Eclipse IDE for Java EE Developers (162 MB)

To0ls for Java developers creating PEE and VVeb applicatons, Inclu
_ JEE Mylyn and others. More... r
S Downloads: 103,838 You need this one, NOT that one: _I

ng a Java IDE, t

The essential tools for any Java developer, including a Java IDE, a CVS client, XML Ei

i Ji |Eclipse IDE for Java Developers (85 MB)

Downloads: 66,625

Figure 1-3. Getting the right bundle of Eclipse

http://www.eclipse.org

CHAPTER 1 GETTING STARTED WITH JSF

To see whether it’s working, run it, and make sure you can switch to the Java EE per-
spective (it should be the default; if not, choose Window » Open Perspective » Other), as

shown in Figure 1-4.

(3 Open Perspective

.
[
:
I
3
;

[CVS Repository Exploring
[Database Debug

[Database Development
% Debug

% Hibernate

& ava

! Java Browsing

4’)ava Type Hierarchy

Figure 1-4. The Java EE

Installing JBoss

*. Java EE (default)

perspective

To install JBoss, go to http://www.jboss.org/jbossas/downloads to download a binary pack-
age of JBoss Application Server 5.x (or newer), such as jboss-5.0.1.GA.zip. Unzip it into

a folder such as c:\jboss. To test whether it is working, you can try to launch JBoss in
Eclipse. To do that, choose Windows » Preferences in Eclipse, and then choose Server »
Installed Runtime Environments. You'll see the window shown in Figure 1-5.

type filter texy

Data Management
FreeMarker Editor
Help

HQL editor
Install/Update

» Java

JavaScript

JBoss Tools

JPA

JSP Occurrences
Maven

Plug-in Development

Remote Systems
Run/Debug

~ Server

Audio
Launching

Runtime Environments

Figure 1-5. The installed runtime environments

Server Runtime Environments v D
» General = Add, remove, or edit server runtime environments.
» Ant Server runtime environments:

Name | Type

3

http://www.jboss.org/jbossas/downloads

4 CHAPTER 1 GETTING STARTED WITH JSF

Click Add, and choose JBoss » JBoss v5.0 (Figure 1-6).

New Server Runtime Environment g
Define a new server runtime environment

Download additional server adapters
Select the type of runtime environment:

type filter text

v = Apache I
» &= Basic
v =1BM
~ (=]Boss
f JBoss v3.2.3
f JBoss v4.0
& JBoss v4.2
+ = ObjectWeb
» = Oracle

ol

Publishes and runs J2EE 5 modules on a local server. Provides basic
server functionality.

[Create a new local server

® | [Next> | | cancel

Figure 1-6. The JBoss 5.0 runtime

Click Next. Specify c:\jboss as the application server directory (Figure 1-7).

New Server Runtime Environment

=5
New JBoss v5.0 Runtime é

Define a new JBoss v5.0 runtime

You can use Installed |RE preferences to create a new |RE
JRE: |Default JRE 2]

Application Server Directory: H Browse... l

@ | <Back | |[Einish || cancel

Figure 1-7. Specifying the JBoss application server directory

CHAPTER 1

GETTING STARTED WITH JSF

Click Finish. Next, you need to create a JBoss instance. In the bottom part of the
Eclipse window, you'll see a Servers tab (you'll see this tab only when you're in the Java
EE perspective); right-click anywhere on the tab, choose New » Server, and choose the

JBoss v5.0 server runtime environment (Figure 1-8).

NEE New Server e

= b4
Define a New Server é

Choose the type of server to create

Server's host name: [Iocalhost I

Download additional server adapters

Select the server type:
Itype filter text]

-

v = Boss
f JBoss v3.2.3 s
f JBoss v4.0
B JBoss v4.2

v+ = ObjectWeb

s = Aracla

Publishes and runs JEE 5 modules on a local server. Provides basic
server functionality.

[«[»IT

Server name: [JBoss v5.0 at localhost]

Server runtime environment: |25

Configure runtime environments...

Add...

Cancel

@

| Next> |[[Einish |

Figure 1-8. Choosing the JBoss runtime environment

Click Next until you see the screen in Figure 1-9, where you can add web applications

to the JBoss instance.

6 CHAPTER 1 GETTING STARTED WITH JSF

=N
Add and Remove Projects E

Modify the projects that are configured on the server

Move projects to the right to configure them on the server

Available projects: You can add selected projects Configured projects:
to that JBoss instance.

| |

mm—
-

-

-

If you had web application l Add All >> l
projects in Eclipse, you -
would see them listed here.

@ k < Back i l l Finish l l Cancel

Figure 1-9. Adding web applications

For the moment, you'll have none. Click Finish. Then you should see your JBoss
instance on the Servers tab (Figure 1-10).

To run it, click the green button here.

E Console [£: Problems Wﬁl Propertie < Yearch =0
% O & ® @
Server |State |Status

JBoss v5.0 at localhost

To stop it, click the red button here.

Figure 1-10. /Boss instance

CHAPTER 1 GETTING STARTED WITH JSF

Click the green icon as shown in Figure 1-10 to run JBoss. Then you will see some
messages on the Console tab, as shown here:

14:47:06,820 INFO [TomcatDeployment] deploy, ctxPath=/

14:47:06,902 INFO [TomcatDeployment] deploy, ctxPath=/jmx-console

14:47:06,965 INFO [HttpiiProtocol] Starting Coyote HTTP/1.1 on http-127.0.0.1-8080
14:47:06,992 INFO [AjpProtocol] Starting Coyote AJP/1.3 on ajp-127.0.0.1-8009
14:47:07,001 INFO [ServerImpl] JBoss (Microcontainer) [5.0.1.GA (build:

SVNTag=JBoss 5 0 1 GA date=200902231221)] Started in 26s:587ms

Note I your computer is not that fast, JBoss will take so long to start that Eclipse may think it has stopped
responding. In that case, double-click the JBoss instance, click Timeouts, set the timeout for starting to a longer
value such as 100 seconds, and then start JBoss again.

To stop JBoss, click the red icon (as shown earlier in Figure 1-10).

Installing a JSF Implementation

JSF stands for JavaServer Faces and is an API (basically, it's some Java interfaces). To use JSF,
you need an implementation (which means you need Java classes that implement those
interfaces). There are two main implementations: the reference implementation from Sun
and MyFaces from Apache. In this book, you'll use the former, but you could use MyFaces
with no practical difference.

So, go to https://javaserverfaces.dev.java.net to download a binary package of the
JSF 2.0 implementation, which is called Mojarra. The file is probably called something
like mojarra-2.0.0-PR2-binary.zip; unzip it into a folder, say c:\jsf.

https://javaserverfaces.dev.java.net

CHAPTER 1 GETTING STARTED WITH JSF

Installing Web Beans

To install Web Beans, go to http://www.seamframework.org/WebBeans to download it. Make
sure it is strictly newer than 1.0.0 ALPHA2; otherwise, get the nightly snapshot. The file is
probably called something like webbeans-ri-distribution-1.0.0-SNAPSHOT. zip; unzip it into
a folder such as c:\webbeans.

Next, you'll need to install Web Beans into JBoss. To do that, you'll need to run Ant 1.7.0
or newer. If you don’t have this tool, you can download it from http://ant.apache.org and
unzip it into a folder such as c:\ant.

Next, modify the c:\webbeans\jboss-as\build.properties file to tell it where JBoss is,
as shown in Listing 1-1. Make sure that there is no leading # character on that line!

Listing 1-1. Tell Web Beans Where JBoss Is

jboss.home=c:\jboss

Jjava.opts=...
webbeans-ri-int.version=5.2.0-SNAPSHOT
webbeans-ri.version=1.0.0-SNAPSHOT
jboss-ejb3.version=1.0.0

Open a command prompt, make sure you're connected to the Internet, and then
issue the commands shown in Listing 1-2.
Listing 1-2. Issue These Commands at the Command Prompt

c:\>cd \webbeans\jboss-as
c:\>set ANT_HOME=c:\ant
c:\>ant update

This will output a lot of messages. If everything is fine, you should see a “BUILD SUC-
CESSFUL” message at the end, as shown here:

[copy] Copying 2 files to /home/kent/jboss-
5.0.1.GA/server/default/deployers/webbeans.deployer/lib-int

[copy] Copying 8 files to /home/kent/jboss-
5.0.1.GA/server/default/deployers/webbeans.deployer

update:

BUILD SUCCESSFUL

http://www.seamframework.org/WebBeans
http://ant.apache.org

CHAPTER 1 GETTING STARTED WITH JSF

Creating the “Hello world!” Application with JSF

To create the “Hello world!” application, right-click in Package Explorer, and choose New
» Dynamic Web Project (Figure 1-11).

Preiec ' Hierar =
2 &|w
e 4 Project...
Show In Shift+Alt+W » & Application Client Project
P ! Connector Project
E
& # Dynamic Web Project
& Paste Ctrl+V & EJB Project
x = Enterprise Application Project
= Paste Ctrl+V |£9 Example...
Import » |79 Qther... Ctrl+N
w4 Export...
) Refresh F5

Figure 1-11. Creating a dynamic web project

Enter the information shown in Figure 1-12.

Dynamic Web Project 7

Create a standalone Dynamic Web project or add it to a new
or existing Enterprise Application.

Project name: lHeIIo] I

~Project contents:
Use default

I | l

- Target Runtime

The name doesn't really matter.

|JBoss v5.0 — Run this application in JBoss. 3 [New.]
Dynamic Web Module version
ﬁz.s |:H

~Configuration
lDefauIt Configuration for JBoss v5.0 \: HModify...]

A good starting point for working with JBoss v5.0 runtime.
Additional facets can later be installed to add new functionality to
the project.

EAR Membership
(D Add project to an EAR \

@ | | Next> |[Finsh || cancel

Figure 1-12. Entering the project information

10 CHAPTER 1 GETTING STARTED WITH JSF

Keep clicking Next until you finish. Finally, you should end up with the project struc-
ture shown in Figure 1-13.

\ Project Explorer & . “ Navigator]
=] v:v ié*}
+ & Hello
» #s Deployment Descriptor: Hello
» (Fsrc
» = |RE System Library [java-6-sun-1.6
» =)]Boss v5.0 [JBoss v5.0]
= Web App Libraries
=i EAR Libraries
» = build
+ = WebContent
» &= META-INF
~ = WEB-INF
e=lib

% web.xml

Figure 1-13. Project structure

To make JAR files from the JSF implementation available to your project, copy the
JAR files into JBoss, as shown in Figure 1-14.

isf jboss
lib server
default
deploy
jbossweb.sar
jst-libs
>

Figure 1-14. Copying the JAR files into the JBoss

CHAPTER 1 GETTING STARTED WITH JSF

To see the Web Beans classes available to you at compile time, right-click the project,
choose Build Path » Configure Build Path, and add c:\jboss\server\default\deployers\
webbeans.deployer\jsr299-api to the build path.

Next, you'll create the “Hello world!” page. To do that, right-click the WebContent
folder, and choose New » HTML. Enter hello as the file name, as in Figure 1-15.

(3} New HTML Page

[
k&

HTML Page

L

Create a new HTML Page.

Enter or select the parent folder:
HellofWebContent

& & o

- & Hello

= settings
+ & build
= src
» & JSFTest

+ = Servers

File name: [hello I

Next > 1 [Finish l [Cancel

=
e

Figure 1-15. Creating the “Hello world!” page

Click Next, and choose the template named New XHTML File (1.0 Strict), as in
Figure 1-16.

1

CHAPTER 1 GETTING STARTED WITH JSF

L | New HTML Page [N= S)
Select HTML Template
- . <O
Select a template as initial content in the HTML page.

Use HTML Template

Templates are 'New HTML' templates found in the HTML Templates
preference page.

D

Name | Description

New HTML File (4.01 strict) html 4.01 strict
New HTML File (4.01 transitioneé html 4.01 transitional
New XHTML File (1.0 frameset) xhtml 1.0 frameset

New XHTML File (1.0 strict) xhtml 1.0 strict

New XHTML File (1.0 transition: xhtml 1.0 transitional
[« [4]¢]
Preview

4

<?xml version="1.0* encoding="#${encoding}" 7= L£]
<! DOCTYPE html PUBLIC "-//W3C//OTD XHTML 1.0 Strict//EN" "http://www.w3.org
<html xmlns="http://www.w3.0rg/1988/xhtml">

<head=

<meta http-equiv="Content-Type" content="text/html; charset=${encoding}" /=
<title=Insert title here</title= H
</head=
<body>
${cursor}
</body=>
</html>

] ' D)

@ < Back Finish Cancel
l I I

Figure 1-16. Using the XHTML strict template

Click Finish. This will give you a file named hello.html. This XHTML file will serve as
the “Hello world!” page. However, JSF by default assumes that XHTML files use the .xhtml
extension, so rename the file as hello.xhtml (see Figure 1-17).

CHAPTER 1 GETTING STARTED WITH JSF

Hename Kesource

New name: |hello.xhtml

l Preview > l I OK I l Cancel l

Figure 1-17. Renaming the file

Open the file, and input the content shown in Listing 1-3.

Listing 1-3. Content of hello.xhtml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Hello world!

</body>

</html>

Next, modify the web.xml file in the WebContent/WEB-INF folder as shown in Figure 1-18.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

14

CHAPTER 1 GETTING STARTED WITH JSF

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd" id="WebApp_ ID"
version="2.5">
<display-name>Hello</display-name>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>
</welcome-file-11ist> v, can give it any name
<servlet> [youd like. This “servlet” is the JSF engine.
<servlet-name>JSF</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
</servlet>

<serv1et-mapp1ng> You will access the application

<servlet-name>JSF</servlet-name> using a URL like this. This way,
<url-pattern>/faces/*</url-pattern> JBoss will send the request to
. the JSF engine for handling.
</serv1et-mapp1ng>|
</web-app>
This "servlet" is the JSF engine.
. . . . 27?7
You can give it any name http://localhost:8080/Hello/faces/???
you "d like. The Project Name

[
Hello

WebContent

Figure 1-18. web. xm1

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://localhost:8080/Hello/faces/???

CHAPTER 1 GETTING STARTED WITH JSF

Next, create a file called faces-config.xml in the WebContent/WEB-INF folder. This is the
configuration file for JSF, as shown in Listing 1-4. Without it, JSF will not initialize. Because
you have no particular configuration to set, it contains only an empty <faces-config>
element.

Listing 1-4. faces-config.xml

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-facesconfig 2_0.xsd"
version="2.0">

</faces-config>

To register your application with JBoss, right-click the JBoss instance on the Servers
tab, and choose Add and Remove Projects; then you'll see Figure 1-19.

="
Add and Remove Projects E

Modify the projects that are configured on the server

Move projects to the right to configure them on the server

Available projects: Configured projects:

m
;

e

® [[|| Finish | cancel

Figure 1-19. Adding projects to the JBoss instance

15

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-�instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

16

CHAPTER 1 GETTING STARTED WITH JSF

Choose your Hello project to add to the JBoss instance.

Now, start JBoss, and try to access http://localhost:8080/Hello/hello.xhtml in
a browser. Note that this URL does not include the /faces prefix and thus will not be han-
dled by the JSF engine. Instead, JBoss will directly read the hello.xhtml page and return its
content (see Figure 1-20). We're doing this just to check whether the basic web applica-
tion is working.

HTTP Request
Browser GET /Hello/hello.xhtml

http://localhost:8080/Hello/hello.xhtml

Y

JBoss

Read and return the
content of this file

Hello

LWebContent

hello.xhtml

Figure 1-20. Directly accessing the content of hello.xhtml

If everything is working, the browser should either prompt you to save the file (Firefox)
or display the “Hello world!” page (Internet Explorer).

To access it through the JSF engine, use http://localhost:8080/Hello/faces/hello.xhtml
instead, as shown in Figure 1-21. Simply put, JSF will take path /hello.xhtml (the view ID)
from the URL and use it to load the XHTML file.

http://localhost:8080/Hello/hello.xhtml
http://localhost:8080/Hello/hello.xhtml
http://localhost:8080/Hello/faces/hello.xhtml

CHAPTER 1 GETTING STARTED WITH JSF

1: Read this path.

HTTP Request ,—L\

I I
GET /Hello/faces/hello.xhtml

Browser

http://localhost:8080/Hello/hello.xhtml
JBoss

A 4

2: Pass the path /hello.xhtml to JSF.

4: Parse the .xhtml file and \ 4
create an object to represent
the page (the “Page Object”).

JSF
5: Generate HTML code.

3: Treat /hello.xhtml as a relative

path from WebContent to read the

file. This path is called the “view

ID” in JSF.

Page Object Hello
LWebContent
Y
hello.xhtml

Figure 1-21. Accessing the hello. xhtml file through JSF

You'll see “Hello world!” displayed in the browser.

Generating Dynamic Content

Displaying static text is not particularly interesting. Next, you’ll learn how to output some
dynamic text. Modify hello.xhtml as shown in Figure 1-22. The page object created is also
shown in the figure.

17

http://localhost:8080/Hello/hello.xhtml

CHAPTER 1 GETTING STARTED WITH JSF

<?xml version="1.0" encoding="UTF-8" 2>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" l';ﬁéss“;‘c’ﬁi.TML
xmlns:h="http://java.sun.com/js-F/html">—————namesgacgcmtamstags
<head> like <outputText>: ——

<meta httprequiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>

</head>

<body> |

Hello -wextd<h:outputText value="John"></h:outputText>!
</body> |

</html> This tag will create a U

The page object is called Output component.

“h” is a shorthand for the the “component view root”

JSF HTML namespace. It
is called a “prefix.”

Page Object
(View Root)

Such a hierarchical data—
structure is called the

“JSF component tree” or
the “JSF view.”

Ul Output

Value:John

Figure 1-22. JSF component tree

The component tree generates HTML code, as shown in Figure 1-23. In JSF, the pro-
cess is called encoding.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 1 GETTING STARTED WITH JSF

View Root

0

Static Code Block 1
. " " R " . Static Code
<?xml version="1.0" encoding="UTF-8" ?> Block 1
<IDOCTYPE html ...>
<html ...>
<body>
|_Hello|<h:outputText value="John"></h: outputText>’!_‘ Value: John
</body>
</html> Static Code
Static Code Block 2 Block 2
View Root 1: Output the
static code
Static Code unchanged.
Block 1
. 2: Output
. the value.
Value: John
> John |‘
Static Code
Block 2 Q
3: Output the stuff unchanged.

Figure 1-23. /SF component tree generating HTML code

Now access the page again in the browser. Do you need to start JBoss again? No. By
default Eclipse will update the web application in JBoss every 15 seconds after you make
changes to the source files. If you can’t wait, you can right-click the JBoss instance and
choose Publish to force it to do it immediately. Anyway, the HTML page should look like
Figure 1-24.

19

20

CHAPTER 1 GETTING STARTED WITH JSF

Eile Edit View History Bookmarks Tools Help

._; [@[htp |~ |[C-]-@)

HellgJohn!

Figure 1-24. Generated HTML code

Note that there is no space between “Hello” and “John.” This is because JSF ignores
the spaces surrounding JSF tags. You can easily fix this problem, but let’s ignore it for
now; we'll fix it later in the chapter.

Retrieving Data from Java Code

Next, you'll let the UI Output component retrieve the string from Java code. First, create
the Java class GreetingService in the hello package. Input the content shown in Listing 1-5.

Listing 1-5. GreetingService. java

package hello;

public class GreetingService {
public String getSubject() {
return "Paul”;

So, how do you get the UI Output component to call the getSubject() method in the
class? Figure 1-25 shows how it works. Basically, in each HTTP request, there is a table
of objects, and each object has a name. (Each object is called a web bean.) If you set the
value attribute of the UI Output component to something like #{foo}, which is called
an EL expression, at runtime it will ask the JSF engine for an object named foo. The JSF
engine will in turn ask the Web Beans manager for an object named foo.

CHAPTER 1 GETTING STARTED WITH JSF

Name | Object
—| foo
bar Object 2

HTTP request

3: Look up a web bean named “foo.”

Web Beans
Manager

View Root 2: Give me an object named “foo.”

T

U Output

1: Give me an object named “foo.”

value: #{foo}

Figure 1-25. Accessing a web bean

For your current case, what if Object] were a GreetingService object (let’s ignore
how to create one of those for the moment)? Then the UI Output component can already
reach the GreetingService object. How can the output call the getSubject() method on it?
To do that, modify the value attribute of the outputText tag as shown in Listing 1-6.

21

22

CHAPTER 1 GETTING STARTED WITH JSF

Listing 1-6. Accessing the subject Property of a GreetingService Object

<html ...>
<body>
Hello <h:outputText value="#{foo.subject}"></h:outputText>!

</body>
</html>

Now, let’s return to the question of how to put a GreetingService object into the web
bean table. To do that, modify the GreetingService class as shown in Figure 1-26.

The web beans-related
annotations are defined in
those packages.

package hello; |

import |javax.annotation.Named;
import [javax.context.RequestScoped;

,—The name of the web bean.

@Named("foo") Put the web bean into the table
@RequestScoped in the request.

public class GreetingService {
public String getSubject() {
return "Paul”;
}

}

Figure 1-26. Declaring a web bean class

How does it work? When the Web Beans manager looks for a web bean named foo
in the request (see Figure 1-27), there is none because initially the table is empty. Then
it will check each class on the CLASSPATH to find a class annotated with @Named and with
a matching name. Here, it will find the GreetingService class. Then it will create an
instance of the GreetingService class, create a new row using the name foo, and add it to
the web bean table.

CHAPTER 1 GETTING STARTED WITH JSF

Name | Object

Greeting
0 Service
HTTP request Name | Object
5:Add anewentryto |0 .
the table. 3: Create an

instance.

1: Look up a web bean
named “foo.” Not found. 2: Look, there is a class with a

Web Beans matching @Named annotation.

Manager

@Named ("foo")
) > @RequestScoped
4: Where to store it? . . .
Look, store it into the public class GreetingService {
request. public String getSubject() {
return "Paul”;

}

Figure 1-27. How the Web Beans manager creates the web bean

Note that in order for the Web Beans manager to create an instance of the class, it needs
to have a no-argument constructor. For the JSF engine to get its subject property, it needs to
have a corresponding getter, in other words, getSubject(). In summary, the class needs to be
aJava bean.

When you need to use Web Beans, you must enable the Web Beans manager by
creating a configuration file for it. So, create an empty file named beans.xml in the
WebContent/WEB-INF folder.

Because you have no configuration for it, leave it empty.

23

24

CHAPTER 1 GETTING STARTED WITH JSF

Now run the application, and it will work as shown in Figure 1-28.

Eile Edit View History Bookmarks Tools Help
~ [
x

=]
o
=4
o
4
[l
4
e~

HelloPaul!

Figure 1-28. Successfully getting the value from a web bean

Now let’s fix that space issue we talked about earlier; just add a space to the value
attribute of the outputText tag, as shown in Figure 1-29.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html ...>

This part will be evaluated at

<html ...> runtime and is called an “eval

e expression.”

<body>

Hello <h:outputText value=" #{foo.subject}"></h:outputText>!
</body>

</html>

Add a space here. It is treated as
static text and will be output as is.
It is called a “literal expression.”

In general, you can have multiple
literal expressions and multiple
eval expressions in a single EL
expression like:

<h:outputText value="... #{...}" ... #{...} ...>

Figure 1-29. Adding a space to the value attribute

Run the application again, and it will work.

CHAPTER 1 GETTING STARTED WITH JSF

Exploring the Life Cycle of the Web Bean

Will the web bean stay there forever? No; the web bean table is stored in the HTTP request,
so as HTML code is returned to the client (the browser), the HTTP request will be destroyed
and so will the web bean table and the web beans in it.

Note If you have worked with servlets and JSP before, you may wonder whether it’s possible to store
web beans in the session instead of the request. The answer is yes; you'll see this in action in the subse-
quent chapters.

Using an Easier Way to Output Text

You've seen how to use the <h:outputText> tag to output some text. In fact, there is an
easier way to do that. For example, you could modify hello.xhtml as shown in Listing 1-7.

Listing 1-7. Using an EL Expression Directly in the Body Text

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE html ...>

<html ...>

<body>

Hello #{foo.subject}!

</body>
</html>

Run the application, and it will continue to work.

Debugging a JSF Application

To debug your application in Eclipse, you can set a breakpoint in your Java code, as
shown in Figure 1-30, by double-clicking where the breakpoint (the little filled circle)
should appear.

25

26 CHAPTER 1 GETTING STARTED WITH JSF

package hello;
®import javax.annotation.Named;

@Named (" foo")
@RequestScoped
public class GreetingService {
= public String getSubject() {
return "Paul";

¥

Figure 1-30. Setting a breakpoint

Then click the Debug icon in the Server window (Figure 1-31). Now go to the browser
to load the page again. Eclipse will stop at the breakpoint (Figure 1-32). Then you can step
through the program and check the variables and whatever else. To stop the debug ses-
sion, just stop or restart JBoss in normal mode.

This will start JBoss in
debug mode. If it is
already running, it will
be restarted.

E Console |[2: Problems !t Servers 2 . = Propertie |+ Search| = 8
B 0 & @
Server |State |Status

& |Boss v5.0 at localhost

Figure 1-31. Launching JBoss in debug mode

CHAPTER 1 GETTING STARTED WITH JSF

File Edit Source Refactor Navigate Search Project Run Window H
rE&|srorar|de o e[[frdreere |

3D R %Wz

#Debug % - i Servers| % 0= @ & # ¥ 78
~ i Daemon Thread [http-127.0.0.1-8080-1] (Suspended (breaz
= NativeMethodAccessorimpl.invokeO(Method, Object, Obje
= NativeMethodAccessorimpl.invoke(Object, Object[]) line: ;-
= DelegatingMethodAccessorlmpl.invoke(Object, Object[]) li
= Method.invoke(Object, Object...) line; 597
= ClientProxyMethodHandler.invoke(Object, Method, Methc

(o]

—_—— .t ~- - -t - e~ AN

@ I ()

package hello;
@import javax.annotation.Named;[]

@Named (" foo")
@RequestScoped
public class GreetingService {
= public String getSubject(} {
return "Paul"ﬂ
}

Figure 1-32. Stopping at a breakpoint

Summary

In this chapter, you learned that you can run one or more web applications on top of
JBoss. If a web application uses the JSF library, it is a JSF application. In a JSF application,
a page is defined by an .xhtml file and is identified by its view ID, which is the relative
path to it from the WebContent folder.

You also learned that an .xhtml file consists of tags. Each tag belongs to a certain
namespace, which is identified by a URL. To use a tag in an . xhtml file, you need to intro-
duce a shorthand (prefix) for the URL and then use the prefix to qualify the tag name. The

JSF tags belong to the JSF HTML namespace.
To create a JSF component in the component tree, you use a JSF tag such as

<h:outputText> in the .xhtml file. The root of the component tree is the view root. The
component tree will generate HTML code to return to the client. The process of gener-
ating markup in JSF is called encoding.

To output some text, you can use the <h:outputText> tag, which will create a UI Out-
put component. That component will output the value of its value attribute. That value
can be a static string or an EL expression.

27

28

CHAPTER 1 GETTING STARTED WITH JSF

As an alternative to the <h:outputText> tag, you can directly put the EL expression into
the body text.

In addition, this chapter also covered EL expressions, which typically look like #{foo.p1}.
If you use an EL expression, the JSF engine will try to find an object named foo. It will in turn
ask the Web Beans manager to do it, and the Web Beans manager will look up the web beans
in the web bean table in the HTTP request or create it appropriately. Then the JSF engine will
call getP1() on the web bean, and the result is the final value of the EL expression.

Finally, you learned that web beans are JavaBeans created and destroyed automatically
by the Web Beans manager. To enable web beans, you need to have a META-INF/web-beans . xml
file on your CLASSPATH. To define a Java class as a web bean class, the class needs to be a Java-
Bean; in other words, it has a no-argument constructor and provides getters and/or setters
for certain properties. Then it must be annotated with the @Named annotation to be given
aname.

CHAPTER 2

Using Forms

In this chapter, you'll learn how to use forms to get input from users and store it in a web
bean for processing.

Developing a Stock Quote Application

Suppose that you’d like to develop the application shown in Figure 2-1. That is, if the user
enters a stock symbol and clicks the button, then the application will display the stock value.

L Insert title here - Mozilla FirefL=0 080 L3¢

L Insert title here - Mozilla Firef =1 {8 (3¢ J |

Eile Edit View History Bookmarks Tools Help Eile Edit View History Bookmarks Tools Help
©0 AW |[-E 00 2[B! [
[MSFT] Stock value is: 2375924.
Eubmit Query >
2: Qicking the
button will display
1: Input a stock symbal. the result page.

Figure 2-1. A stock quote application

Getting the Stock Quote Symbol

Let’s create the example application now. In Eclipse, copy the Hello project, and paste it
as a new project called Stock. Then choose Window » Show View » Navigator, and locate
the org.eclipse.wst.common.component file shown in Figure 2-2.

29

30 CHAPTER 2 USING FORMS

[Project Explorer &= i =
e > 8BS BT

v ¥ Hello
v &/ |SFTest
» = Servers
- i Stock

+ = .settings

[.jsdtscope

org.eclipse.jdt.core.prefs

org.eclipse.jst.common. project.facet.core
[org.eclipse.wst.common.project.facet.co
B org.eclipse.wst.jsdt.ui.superType.contair
B org.eclipse.wst.jsdt.ui.superType.name

» & build

» & src

» = WebContent

[.classpath

[.project

Figure 2-2. Locate this configuration file.

Open the file, and modify it as shown in Listing 2-1. Eclipse “forgot” to update the
project name there, so you need to do it yourself.

Listing 2-1. Update the Content with the New Project Name

<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="1.5.0">
<wb-module deploy-name="Stock">
<wb-resource deploy-path="/" source-path="/WebContent"/>
<wb-resource deploy-path="/WEB-INF/classes" source-path="/src"/>
<property name="context-root" value="Stock"/>
<property name="java-output-path"/>
</wb-module>
</project-modules>

CHAPTER 2 USING FORMS

Save this file, and close the Navigator view. Then rename the hello.xhtml file as
getsymbol.xhtml. Modify the new getsymbol.xhtml file as shown in Figure 2-3.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ...> U View Root
<html ...>

t Before the page is rendered, the <h:form>

<body> tag will create a U Form component. U Form

<h:form> >
<h:inputText></h:inputText> >
<h:commandButton></h:commandButtony Itwill createa U Input

</h:form>

</body>
</htnl>

It will createaU
Gommand component.

Figure 2-3. getsymbol.xhtml

What do the components such as Ul Form do? During rendering, these components
will generate HTML elements, as shown in Figure 2-4.

The U Form will generate the
U View Root action value so that this component
‘ tree will be invoked on form

submission.

<form action="...">

r—————><input type="text" value="???" />
— <input type="submit" />
</form>

U Form

But what is the value

U Command) ——! initially displayed to
the user?

Figure 2-4. Rendering of form-related components

31

32 CHAPTER 2 USING FORMS

What is the initial symbol value displayed to the user? You can link a web bean to Ul
Input component (see Figure 2-5). That is, on rendering, the Ul Input component will
evaluate the EL expression and use the result as the initial value.

sym: MSFT
U View Roct 2: When it needs to get the initial value to

display, it reads the "sym" property. Let's
suppose that the value is "MSFT."

U Form 3: It puts the "MSFT" as the initial value.
MSFT

<form ...> v
<input type="text" value="222" />

value: #{b1.sym} <input type="submit" />

</form>

1: Set the value to an B expression. Here,

it points to the "sym" property of a web
bean "b1."

Figure 2-5. Linking a property of a web bean to a Ul Input component

Note that after rendering the page, the HTTP request is gone and so is the b1 bean

(see Figure 2-6).

b1 is accessed and thus created
on demand. Finally, when the

est 1 response has been sent, b1 is
Feau destroyed
Browser
http://localhost... |
Response 1 ':@

HIML Code

Figure 2-6. The b1 bean will be gone after rendering.

http://localhost/

CHAPTER 2 USING FORMS

Suppose that the user changes the value from “MSFT” to “IBM” and then submits the
form. What will happen? Figure 2-7 shows the process. Note that this b1 bean is not the
original; it is newly created and associated with the new request representing the form

X

: BVI
m 2: It tries to store the value "IBVI"

back into the "sym" property of
b1. This will create a new bi.

G

value: #{p1.sym}

D

submission.
Request 1
Browser CET the Page
™
I
1: The user changes it to
IBVI and submits the form. 4—1
HTML Code
Request 2
1BV

Figure 2-7. The form submission process

But what is the HTTP response? By default, the same page will render again. There-
fore, it will display “IBM” as the value again because the b1 bean just created is still there

(see Figure 2-8).

33

34 CHAPTER 2 USING FORMS

3: During
rendering, read
the "sym"
Request 1 | o property again.
Browser GET the Page sym: |BM
1BM 2: Store the
> value "IBM"
1: The user changes it to back into b1.
IBM and submits the form. ¢
Response 1
> .
HTML Code value: #{b1.sym}
Request 2
IBM —

<———— 4 Generate the
Response 2 response.

HTML Code

Figure 2-8. The rendering process after form submission
Now, to implement these ideas, modify getsymbol.xhtml as shown in Listing 2-2.

Listing 2-2. getsymbol. xhtml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ...>

<html ...>

<body>

<h:form>
<h:inputText value="#{b1.sym}"></h:inputText>
<h:commandButton></h:commandButton>

</h:form>

</body>
</html>

CHAPTER 2 USING FORMS

Of course, you need to define the b1 web bean. To do that, create a class called
QuoteRequest in a stock package (see Listing 2-3). Note that the sym property is initial-
ized to MSFT, and some messages are printed in various methods to show the order of
the events. You can also delete the hello package.

Listing 2-3. Defining the b1 Web Bean

package stock;

@Named("b1")

@RequestScoped

public class QuoteRequest {
private String sym = "MSFT";

public QuoteRequest() {
System.out.println("Creating b1");

}

public String getSym() {
System.out.println("getting sym");
return sym;

}
public void setSym(String sym) {

n

System.out.println("setting sym to: " + sym);

this.sym = sym;

Now, start JBoss, and access the page at http://localhost:8080/Stock/faces/getsymbol.
xhtml. You should see the messages in the console that are shown in Listing 2-4.

Listing 2-4. Messages Showing the Rendering Process

Creating b1
getting sym

Change the symbol to “IBM,” and then submit the form. You should see the messages
shown in Listing 2-5. From these messages you can see that a new b1 bean is created.
Then for some reason the sym property is read (it is because the UI Input component is
checking whether the new value is really different from the old one and, if so, notifying
some interested parties). Next, the UI Input component stores IBM into it, and finally it is
read again to generate the HTML code.

35

http://localhost:8080/Stock/faces/getsymbol

36

CHAPTER 2 USING FORMS
Listing 2-5. Messages Showing the Form Submission Process

Creating b1
getting sym
Creating b1
getting sym
setting sym to: IBM
getting sym

Displaying the Result Page

For the moment, when handling the form submission, you're simply letting JSF redisplay
the current page containing the form. This is no good. You'd like to display a result page
showing the stock price instead. To do that, create a stockvalue.xhtml file in the WebContent
folder. For the moment, the content is hard-coded (see Listing 2-6).

Listing 2-6. Result Page

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Stock value is: 123.

</body>

</html>

The question is, how do you tell JSF to display the result page? This is done using
a navigation rule (see Figure 2-9).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 2 USING FORMS

Each such branch is
called a "navigation

case. —

The View ID of the

Qurrent Page

/getsymbol.xttml
The View IDof the —— The whde thing is
Next Page

called a "navigation

) > |/stockvalue.xhtml rue."
If Qutcome is K

The View ID of the
Next Page

If Qutcome is ... - other view ID

Figure 2-9. Navigation rule

To create the navigation rule, modify faces-config.xml as shown in Listing 2-7.

Listing 2-7. Navigation Rule in faces-config.xml

<faces-config ...>
<navigation-rule>
<from-view-id>/getsymbol.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/stockvalue.xhtml</to-view-id>
</navigation-case>
...You could have more <navigation-case> elements here...
</navigation-rule>
</faces-config>

Now that you've defined the navigation rule and cases (only one, actually), the
next step is to set the outcome to ok. To do that, modify getsymbol.xhtml as shown in
Listing 2-8.

37

CHAPTER 2 USING FORMS

Listing 2-8. Setting the action Attribute of Ul Command Component

<?xml version="1.0" encoding="UTF-8" ?>

<h:form>
<h:inputText value="#{b1.sym}"></h:inputText>
<h:commandButton action="ok"></h:commandButton>
</h:form>
</body>
</html>

Then, the Ul Command component reads its action attribute and uses the value to
set the outcome, as shown in Figure 2-10.

Outcome

ok

2: Look into the request yy
. to see the button was
Browser 1: HTTP Request clicked? Yes!
Button Cllcked('
> 3: Set the outcome
to "ok."
action: "ok"
<

5: HTTP Response 5: Load it.
HTML Code ;
stockvalue 4: Use the current
Page view ID and the

outcome to find the
next view ID.

Navigation Rules

Figure 2-10. Using the action attribute to control the outcome

Now, run the application, and it should work.

Displaying the Stock Value

For the moment, you're hard-coding the stock value. Next, you’ll calculate a dynamic
value. In a real implementation, you would look up the stock price probably from an
online service. For simplicity in this example, you’ll just use the hash code of the symbol

CHAPTER 2 USING FORMS

as the stock value. To do that, modify stockvalue.xhtml so that it gets the stock value from
the b1 bean (see Listing 2-9).

Listing 2-9. Getting the Stock Value from a Web Bean

<body>
Stock value is: #{bi1.stockValue}.
</body>

For this to work, define a getter in the b1 bean, as shown in Listing 2-10.

Listing 2-10. Providing the Stock Value from the b1 Bean

public class QuoteRequest {
private String sym = "MSFT";

public QuoteRequest() {
System.out.println("Creating b1");

}

public String getSym() {
System.out.println("getting sym");
return sym;

}
public void setSym(String sym) {

n

System.out.println("setting sym to: " + sym);
this.sym = sym;

}

public int getStockValue() {

return Math.abs(sym.hashCode());

Run the application, and the stock value should change depending on the symbol.
How does it do that? See Figure 2-11. Basically, when the HTTP request arrives, the Ul
Input and UI Command components are each given the opportunity to handle the request
such as reading values from it, checking whether a value is provided, validating the value
as needed, and finally storing the value into a web bean (see Figure 2-11). Let’s call this
phase the Input Processing phase. In this phase for the Ul Command component, after
finding that the button was clicked, it will not immediately set the outcome. Instead, it
schedules a listener to be executed in the next phase.

39

40

CHAPTER 2 USING FORMS

Assuming that there is no error of any kind, JSF will enter the next phase in which
all scheduled listeners will be executed. In this example, the listener scheduled by the Ul
Command component will execute to set the outcome. Then JSF will check the outcome
and use the navigation rules to determine the next view ID of the next page. This phase is
called the Invoke Application phase.

In the next phase, JSF uses the next view ID to load the page and let it render. This
phase is called the Render Response phase.

a

Y
ok
: 2: Store the values)
i 1: Read the values, check them into web beans. ;
HITP recuest ' if they are provided, validate 5 4 Setthe
i them. : ot
i‘—| come

3: Schedule alistener to be §
executed. :

Invoke

Input Processing — Aoplication

Response

Figure 2-11. JSF handles a request in phases.

Marking Input As Required

What if the user deletes the initial symbol displayed and then submits the form? You’ll
get an empty string. For this stock quote application, this should be treated as an error;
in other words, the user should be forced to enter something. To do that, you just need to
mark the UI Input component as required (see Figure 2-12).

CHAPTER 2 USING FORMS M

4 Log an ermor message. —— [Symbd is required

3: The symbd has a
2:HITPRequest ~ non-emply value?
No.

smed <]
- ()

required true

1: Mark it as required.

<h:inputText value="#{bl.sym}" required="true"></h:inputText>

Figure 2-12. Marking input as required

However, if the Ul Command component still sets the outcome to ok, JSF will go
ahead and display the stock result. This is obviously not what you want. You’d like to do
the following:

1. Redisplay getsymbol.xhtml.

2. Have it display the error message.

In order to do step 1, you need to first understand how JSF handles the request when
there is any error in the Input Processing phase, such as when no value is provided but
the UI Input component is marked as required (see Figure 2-13). Obviously, the UI Input
component has no value to set into the web bean. Because the Ul Command component
doesn’t know about the error, it will still schedule the listener. JSF will note the error, skip
the Invoke Application phase, and go directly to the Render Response phase. Then the
outcome will not have been set and will remain at its initial value of null. JSF will treat it
as a signal to not change the current view ID and thus will redisplay the current page.

42 CHAPTER 2 USING FORMS

Y
null

: 2: Wl not store
i 1: There is an error while any values into the
! reading the values and web bean.

HTTP Request

¢ valicating them.

3: Schedlle a listener to be §

Invoke

Input Processing Application

Response

Figure 2-13. Skipping the Invoke Application phase if there is any error when processing input

What if you had two UI Input components and one failed? Would the other one store
the value into a web bean (see Figure 2-14)?

CHAPTER 2 USING FORMS

3: Wil not store
any values into the

1: There is an error while
: reading the values and web been.

HITPRequest + \aiicating them

4: Wl it store the
value into the web
bean?

. : Invoke
Input Processing : Application

Response

Figure 2-14. What would happen if just one Ul Input component failed?

You certainly hope that it wouldn’t. To achieve this effect, the part of updating the
web beans is always split from the Input Processing phase to form a new phase called
Update Domain Values (see Figure 2-15). That is, if there is any error when processing the
input, the entire Update Domain Values phase will be skipped.

43

44 CHAPTER 2 USING FORMS

1: There is an error while

i reading the values and
HIMPRequest ' \alicating them. ; ;

2: Noerror.

Normally (e.g., no error),
i goto the Update Domain :
Values phase. :
. iy Update _ Invoke
Input Processing " | Domain\alues |} | Application
Render
Response

3: G drectly tothe
Render Response
phase if there is any
error.

Figure 2-15. Skipping the Update Domain Values phase if there is any error when
processing input

Finally, in order to display the error messages recorded, modify getsymbol.xhtml as
shown in Figure 2-16. That is, the Ul Messages component will render the error messages
recorded.

CHAPTER 2 USING FORMS 45

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE ...>

<html ...>

oo 1: Before the page is rendered, the

<body> <h:messages> tag will createa U
Messa ent.

<h:messages/> 998 compon

<h:form>

<h:inputText ...></h:inputText>
<h:commandButton action="ok"></h:commandButton>

</h:form>
</body>
</html> 2: It will render the error messages
asalist.
<>

error message 1</1i>
error message 2</1i>

Figure 2-16. Displaying error messages

Now run the application, and submit the form with an empty symbol. The application
will display an error message, as shown in Figure 2-17.

46

CHAPTER 2 USING FORMS

The whdle path is called the client ID of
the U Input

Insert {itle here - Mozilla Firefox

File Edit Wiew Hig

@®» -0

ory Bookmarks

% [| http:/flocalhe | - l [v| Ql

Tools Help

e j id3:j id4: Ullnput validation
Error: Value is required.

[MSFT | submit Query

The ID of the
U View Root U Form
— ()
The ID of the

U Input

UForm)~

Figure 2-17. Error messages are displayed.

As you can see in Figure 2-17, the client ID of the UI Input component is the ID path
from the form to the component concerned. In general, client IDs are mainly used as the
values of the id or name attributes of the HTML elements generated. If you view the source
of the HTML page, you’ll see how various client IDs are used (see Listing 2-11).

Listing 2-11. Client IDs Used As id or name Attributes

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE html ...>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"></meta>

http://www.w3.org/1999/xhtml

CHAPTER 2 USING FORMS

<title>Insert title here</title>

</head>

<body>

<form name="j_id3" id="j_id3" method="post" action="/Stock/faces/getsymbol.xhtml"
enctype="application/x-www-form-urlencoded">

<input type="hidden" name="j id3"></input>

<input type="text" name="j_id3:j_id4" value="MSFT"></input>

</form>

</body>

</html>

So, displaying the client ID is quite confusing to users. Instead, you should display
a user-friendly description for the UI Input component. To do that, modify getsymbol.
xhtml as shown in Listing 2-12.

Listing 2-12. Specifying the Label

<body>

<h:messages />

<h:form>
<h:inputText value="#{bl.sym}" required="true"

label="Stock symbol"></h:inputText>

<h:commandButton action="ok"></h:commandButton>

</h:form>

</body>

</html>

Run the code again, and it will display the label instead of the client ID (see Figure 2-18).

,% [| http:/flocalhe | - l [v| Q{l

e Stock symbol: Ullnput
validation Error: Value is
required.

[MSI—‘I’ [Submit Query]

Figure 2-18. Labels displayed in error messages

47

48 CHAPTER 2 USING FORMS

If you don’t like this error message, you can provide your own. To do that, create
a text file named messages.properties in the stock package (the file name is not really sig-
nificant as long as it has a .properties extension). Figure 2-19 shows the content to input.

This is called the "resource key."

javax.faces.component.UIInput.REQUIREDEYou must input {0}!

JSF will fill in the label (" Stock symbdl”).

Figure 2-19. Specifying the error message for missing input

JSF will not load the file automatically; you must tell it to do so. Therefore, modify
faces-config.xml as shown in Figure 2-20.

<faces-config ...>

<application>
<message-bundle>stock.messages</message-bundle>

</application> |] The Base Rlename without

<navigation-rule> The Package the .properties Extension

<from-view-id>/getsymbol.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/stockvalue.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Figure 2-20. Telling JSF to load a properties file

Now JSF will load messages from this file and use them to override the default mes-
sages. Run the application, and it should work (see Figure 2-21).

CHAPTER 2

L@ Insert title here - Mozilla Firetox <2=

Eile Edit View History Bookmarks Tools Help

@ > v @ ? |http:HIOcth: | - l [v| 'ff‘gl

¢ You must input Stock symbol!

[MSI—‘I’ [Submit Query]

Figure 2-21. Custom error messages in effect

USING FORMS

Note that this error message will apply to all UT Input components in your applica-
tion. If you'd like this error message to apply only to a single UI Input component, you
can do that by using the code in Listing 2-13. This will override the message provided by
the UI Input component (either the default text or the text loaded from a .properties file).

Note that you can’t use placeholders like {0} in this string.

Listing 2-13. Specifying the Error Message for a Single UI Input Component

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE ...>

<html ...>

<body>

<h:messages/>

<h:form>
<h:inputText value="#{b1l.sym}" required="true" label="Stock symbol"

requiredMessage="Input is missing!"></h:inputText>

<h:commandButton action="ok"></h:commandButton>

</h:form>

</body>
</html>

Run the application, and it will display the error message you specified.

Inputting a Date

You've learned how to let the user input a string (the symbol). What if you need to input
aDate object? For example, say you'd like to allow the user to query the stock value on

a particular date, as shown in Figure 2-22.

49

50 CHAPTER 2 USING FORMS

Insert title here - Mozilla Firefox <2>

Eile Edit View History Bookmarks Tools Help

©

[MSFr] onl9/25/2008 |

Figure 2-22. Inputting a date

How does that differ from inputting a string? During rendering (the Render Response
phase), the UI Input component now needs to convert a Date object into a string (see

Figure 2-23).

1: Read a Date object

froma web bean.
2: Convert the Date object intoa
string.

\
<input type="text" value="9/25/2008"/>

Figure 2-23. Converting a Date object into a string in the Render Response phase

When the user submits the form, in the Input Processing phase the UI Input com-
ponent needs to convert the string back to a Date object (see Figure 2-24). Then in the
Update Domain Values phase, it will store the Date object into a web bean.

HTTP Request

d "9/25/2008"

! 1: Read the value (string) and
i convert it to a Date dbject.

convertedt —

y. 2008
m 9
d 25

2: Store into a web

CHAPTER 2

USING FORMS

Input Processing

Update
Domain Values

Invoke

Application

Response

Figure 2-24. Converting a string into the Date object in the Input Processing phase

The UI Input component knows about a few common types such as java.lang.Integer
and java.lang.Double and can convert between a value of such types and a string. Unfortu-
nately, it doesn’t know how to convert between a java.util.Date and a string. To solve this
problem, you need to tell it to use a Date converter, as shown in Figure 2-25.

"9/25/2008"

"8/26/2008"

Figure 2-25. Using a Date converter

Q3%

2008

25

Q3%

2008

26

51

52

CHAPTER 2 USING FORMS

To implement this idea, modify getsymbol.xhtml as shown in Figure 2-26.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
R ——This is the JSF Core taglib. The converter is not related to HTML in
<h:form> any way so it belongs to the Core taglib.
<h:inputText value="#{bl.sym}" required="true" label="Stock symbol"
fequiredMessage="Input is missing!"></h:inputText>

on
[j————>-<h:inputText value="#{b1.quoteDate}" required="true" label="Quote date">
«f:convertDateTime/> , ,
</h:inputText> ﬁ;:gifnsgq&mymﬂEb1
<h:commandButton action="ok"></h:commandButton>
</h:form>
</body> 1: Create a Date converter.
</html>

2: What is the JSF component
that you created? Oh, it's that

U Input.

Date converter

3: Add the Date converter toiit.

Figure 2-26. Specifying a Date converter for a Ul Input component

Add the quoteDate property to the b1 bean, as shown in Listing 2-14. You’ll simply
append the Date to the symbol before getting the hash code so that the calculated stock
price will depend on both the Date and the symbol.

Listing 2-14. Providing a quoteDate Property

@Named("b1")
@RequestScoped
public class QuoteRequest {
private String sym = "MSFT";
private Date quoteDate = new Date();

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

CHAPTER 2 USING FORMS

public QuoteRequest() {
System.out.println("Creating b1");

}

public String getSym() {
System.out.println("getting sym");
return sym;

}

public void setSym(String sym) {
System.out.println("setting sym to:

+ sym);
this.sym = sym;

}

public Date getQuoteDate() {
return quoteDate;

}

public void setQuoteDate(Date quoteDate) {
this.quoteDate = quoteDate;

}

public int getStockValue() {
return Math.abs((sym+quoteDate.toString()).hashCode());

Now run the application, and it should work (see Figure 2-27). Note that you're creat-
ing a new Date object and assigning it to the quoteDate property for each request, so the Ul
Input component will display the current date on render.

<«

[MSFT]orﬂo:tzs,zooa]

Figure 2-27. Quote date working

Why does it show “Oct 26, 2008” instead of say “10/26/2008” or “26/10/2008”2 This is
controlled by two factors: the preferred language set in the browser and the style used by
the converter. Table 2-1 shows some examples.

53

CHAPTER 2 USING FORMS

Table 2-1. How the Date Format Is Determined

Preferred Language Short Style Medium Style Long Style Full Style

U.S. English 10/26/2008 Oct 26, 2008 October 26,2008 Sunday, October 26
2008

U.K. English 26/10/2008 26 Oct, 2008

If you don’t set the style, it will use the medium style. To tell the converter to use, say,
the short style, you can use the code shown in Listing 2-15.

Listing 2-15. Specifying the Date Style

<h:form>
<h:inputText value="#{bl.sym}" required="true" label="Stock symbol"
requiredMessage="Input is missing!"></h:inputText>
on
<h:inputText value="#{b1.quoteDate}" required="true" label="Quote date">
<f:convertDateTime dateStyle="short"/>
</h:inputText>
<h:commandButton action="ok"></h:commandButton>
</h:form>

Now, run the application, and it should look like Figure 2-28. Obviously, the user now
has to input the date using this short style too.

Insert title here - Mozilla Firefox <2>

Eile Edit View History Bookmarks Tools Help

@5 - 0© A [|http:HIocthost:SOSOIStockf |v] [v| '3?{]

[MSFr] on{lonsma]

Figure 2-28. Quote date displayed in short style

You can also change the preferred language in the browser. For example, in Firefox,
you can set the preferred language by selecting Tools » Options » Content » Languages
» Choose. For this to work, you still need to tell JSF that you support that language in
faces-config.xml. For example, in Listing 2-16, you're telling JSF that English (en), French

CHAPTER 2 USING FORMS

(fr), German (de), and Chinese (zh) are supported and that English is the default. What does
default mean here? If an unsupported language such as Italian is requested, English will be
used instead.

Listing 2-16. Configuring the Supported Languages in faces-config.xml

<faces-config ...>
<application>
<message-bundle>stock.messages</message-bundle>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>fr</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>zh</supported-locale>
</locale-config>
</application>
<navigation-rule>
<from-view-id>/getsymbol.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/stockvalue.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Now, change your preferred language to, say, French, and run the application again.
It will display the date in French.

You may wonder what will happen if you don’t configure the supported languages
in faces-config.xml at all. In that case, if your OS account (which runs JBoss) is set to use,
say, Japanese, then JSF will assume that you support Japanese only.

Conversion Errors and Empty Input

Having to convert a string into a Date object introduces some new issues:

¢ What if the string is, say, “abc” and thus can’t be converted?

e What if the user doesn’t input anything (empty string) and submits the form?

For the first issue, the Date converter will log an error, as shown in Figure 2-29. This is
exactly like the case when input is required but nothing was provided.

55

56

CHAPTER 2 USING FORMS

abc is not a valid date

1: Read the value (string)
+ but fails convert ittoa
HTTP Requiest i Date object.

war |

2: Log an error message

Figure 2-29. Conversion failure

However, there is a slight difference here from the previous scenario. When the Ul
Input component renders again in the Render Response phase, it would like to redisplay
the raw input entered by the user (“abc”) instead of retrieving it from the web bean again.
This is so the user can correct it. To do that, at the beginning of the Input Processing
phase all UI Input components will always store the raw input string into themselves first
(see Figure 2-30). This processing is split from the Input Processing phase to form a new
phase called Apply Request Values. The rest of the Input Processing phase deals with data

. Update Invoke
Input Processing Dormain \alues Appication
Render
Response

conversion and validation and is called the Process Validations phase.

CHAPTER 2 USING FORMS

abcis not a valid date
Y

4: Log
H ' an
Bauest 1: Read the value (string). enror.
d namu : E

\—12: Store the raw string.
Y :

Converted: null <

3: Try toconvertittoa

i Date ojject but fails.
Fgcﬁeyst —» Process Update Invoke
Values Validations Domain Values Application
Render _
Response

Figure 2-30. The Apply Request Values phase and the Process Validations phase

Note I've made up the term Input Processing phase; in the official JSF specification, there is no such
term. You'll find only the phases shown in Figure 2-30.

Now run the application, and enter abc as the date. You'll see something like Figure 2-31.

58

CHAPTER 2 USING FORMS

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

¢%-086

A [-‘_‘; | hitp:/flocalhost:B080/Stoc | -] [v| 'ﬂ?‘{l

e The quote date is invalid

[MSFT | onabe

Figure 2-31. “abc” can’t be converted, and it is redisplayed.

Again, if you don’t like the error message, you can override it in the messages.properties
file (see Figure 2-32).

When the line is too long, you can use a
backslash to tell Java to continue to the
next line.

You may specify TIME here when you use
the converter it to convert a time.

javax.faces.component.UIInput.REQUIRED=You must input {0}!
javax.faces.converter.DateTimeConverter.DATE={0} is an invalid {2}. \
Try something like {1}

An example string that JSFwill fill in the user input (“abc").
isvalidsuch as
"12/20/08"

The Label ("quote date")

Figure 2-32. Customizing error messages using a .properties file

You may wonder how I found out what placeholders are supported by the Date con-
verter. This is documented in the Javadoc of the DateTimeConverter class (see Figure 2-33).

CHAPTER 2 USING FORMS

« & DateTimeConverter (JavaServer Faces (2.0)) - Mozilla Firefox <2>

File Edit View History Bookmarks Tools Help

<,;| @ - @ é% % [@‘ﬁ\e:Mhomelkenthccklessent\ | - l lv‘ ‘-C?{]
DATE_ID

public static final String DATE_ID

The message identifier of the FacesMessage to be created if the
conversion to pate fails. The message format string for this
message may optionally include the following placeholders:

+ {0} replaced by the unconverted value.

+ {1} replaced by an example value.

» {2} replaced by a string whose value is the label of the
input component that produced this message.

See Also:
Constant Field Values

A

Figure 2-33. Finding out what placeholders are supported

Using a .properties file will affect all UI Input components. If you’d like to set

a .properties file just for this UI Input component, you can do so using the code shown in
Listing 2-17.

Listing 2-17. Specifying the Conversion Error Message for a Single Ul Input Component

<h:form>
<h:inputText value="#{bl.sym}" required="true" label="Stock symbol"
requiredMessage="Input is missing!"></h:inputText>
on
<h:inputText value="#{b1.quoteDate}" required="true" label="Quote date"
converterMessage="The quote date is invalid">
<f:convertDateTime dateStyle="short"/>
</h:inputText>
<h:commandButton action="ok"></h:commandButton>
</h:form>
</body>
</html>

We've covered conversion errors, but what about empty input? Because an empty
string can’t be converted to a Date, will it be treated as a conversion error? No. The UI Input
component will assume all input is optional, and an empty string is treated as “no input.”
In that case, it converts the empty string into null (if the property type is not a string)
and stores it in the property of the web bean. As mentioned earlier, if the property type is
a string, no conversion is needed, and it will store just an empty string in the property.

Again, if the input is not optional, you can simply set the required attribute to true
(as you did in Figure 2-12).

59

60

CHAPTER 2 USING FORMS

Using a Combo Box

Suppose that you'd like to change the application so that the user will choose from a combo
box of stock symbols instead of typing one in (see Figure 2-34).

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

GN N [|http:i’!lccalhost:80801‘51:\ ‘v”v| @)

[MSFT|+| onl1/25/09 Submit query

IBM
RHAT

Figure 2-34. Using a combo box

To do that, modify getsymbol.xhtml as shown in Figure 2-35.

It provides the selected
symboal.
<h:form> |
requiredMessage=—"Tnputis—missingl™> It provides the list of available symbas.
FhinpatText> | You'll create the b2 bean next.

<h: selectOneMenu value="#{b1.sym}" quu1red "true" label="Stock symbol"
requ1redMessage- Input is m1551ng| >
<f: selfectItems value="#{b2. symbols}"/> —
</h:selectOneMenu>
on
<h:inputText value="#{bi.quoteDate}" .../>
<h:commandButton action="ok"></h:commandButton>

</h:form>
Create

It has got nothing to
do with HTML, soiit
belongs to the Core
taglib.
2 Qreate U Select

o One

Figure 2-35. Using a Ul Select One component

CHAPTER 2 USING FORMS

For it to work, create a new class to serve as the b2 bean. Let’s call it StockService (see
Figure 2-36).

package stock;

import java.util.Arraylist;
import java.util.List;
import javax.faces.model.SelectItem;
import javax.annotation.Named;
import javax.context.ApplicationScoped;
This dass is provided by JSF. It
@Named("b2") represents an item for the user's
@RequestScoped selection.
public class StockService {

private List<SelectItem> symbols;
This string will be displayed to
the user.

public StockService() {
symbols = new Arraylist<SelectItem>();
symbols.add(new SelectItem("MSFT"));
symbols.add(new SelectItem("IBM"));
symbols.add(new SelectItem("RHAT"));

}
public List<SelectItem> getSymbols() {

return| symbols;
}

} It can retum a List or an array.

Figure 2-36. StockService class

Run the application, and it should work. However, you may wonder why you need
to provide it with a List<SelectItem> instead of just a List<String>. Say, for example, that
instead of displaying short codes such as “MSFT” to the user, you'd like to display a lon-
ger description such as “Microsoft.” Internally all your processing will still use “MSFT,”
though. To do that, modify the code as shown in Figure 2-37.

61

62

CHAPTER 2 USING FORMS

ackage stock;
@Component
@Named("b2") Sy .
@RequestScoped . This string wil be stored
public class StockService { into the web bean.

private List<SelectItem> symbols;

This string will be : s

public StockService() { dsplayed tothe user, (&
symbols = new ArraylList<SelectItem>(); IBM
symbols.add(new SelectItem("MSFT", "Microsoft")); Red Hat

symbols.add(new SelectItem("IBM", "IBM"));
symbols.add(new SelectItem("RHAT", "Red Hat"));

}
public List<SelectItem> getSymbols() {

return symbols;
}

}

Figure 2-37. Using a short ID and a long description

Using a Single b2 Bean

At the moment, you're creating a new b2 bean for each request. However, because the
list of symbols should be global, a single instance should be enough for all requests from
all users. To do that, you need to know that in addition to the web bean table in each
request, there is a web bean table for the whole application (see Figure 2-38).

1: Look up the web bean

. here (if you're handling
Name |Object request 1).

Name Object
| > [

2: If not found, look it up |-

here.

Application

HTTP Request 1

Name Object

HTTP Request 2

Figure 2-38. A web bean table for the whole application

CHAPTER 2 USING FORMS 63

To put the b2 bean into the application table, modify the StockService class as shown
in Listing 2-18.

Listing 2-18. Using the Application Scope

package stock;

import javax.faces.model.SelectItem;
import javax.context.ApplicationScoped;
import javax.annotation.Named;

@Named ("b2")
@ApplicationScoped
public class StockService {
private List<SelectItem> symbols;

public StockService() {
symbols = new Arraylist<SelectItem>();
symbols.add(new SelectItem("MSFT", "Microsoft"));
symbols.add(new SelectItem("IBM", "IBM"));
symbols.add(new SelectItem("RHAT", "Red Hat"));

}

public List<SelectItem> getSymbols() {
return symbols;

}
}

Run the application, and it will continue to work.
Hooking Up the Web Beans

For the moment, the stock value calculation is done in the QuoteRequest class (see
Listing 2-19).

Listing 2-19. Stock Value Calculation in QuoteRequest Class

@Named("b1")

@RequestScoped

public class QuoteRequest {
private String sym = "MSFT";
private Date quoteDate = new Date();

64

CHAPTER 2 USING FORMS

public int getStockValue() {
return Math.abs((sym+quoteDate.toString()).hashCode());

In a real implementation, you will need to hook up to a database or connect to
a network service provider to get the stock value. This kind of work is best done in the
StockService class. So, to make the code more realistic, let’s move the calculation logic
into the StockService class (see Listing 2-20).

Listing 2-20. Moving the Stock Value Calculation into the StockService Class

@Named ("b2")
@ApplicationScoped
public class StockService {
private List<SelectItem> symbols;

public StockService() {
symbols = new Arraylist<SelectItem>();
symbols.add(new SelectItem("MSFT", "Microsoft"));
symbols.add(new SelectItem("IBM", "IBM"));
symbols.add(new SelectItem("RHAT", "Red Hat"));

}

public List<SelectItem> getSymbols() {
return symbols;

}

public int getStockValue(QuoteRequest r) {
return Math.abs((x.getSym() + r.getQuoteDate().toString()).hashCode());

Then the code in the QuoteRequest class should call the StockService to get the stock
value. But how do we get access to it (see Listing 2-21)?

CHAPTER 2 USING FORMS

Listing 2-21. How Can b1 Get Access to b2?

@Named("b1")
@RequestScoped
public class QuoteRequest {
private String sym = "MSFT";
private Date quoteDate = new Date();

public QuoteRequest() {
System.out.println("Creating b1");

}

public int getStockValue() {
StockService stkSrv = ?2?;
return stkSrv.getStockValue(this);

To solve this problem, you can tell web beans to inject b2 into b1 (see Figure 2-39).
You may wonder why the annotation is called @Current instead of something like @Inject.
For the moment, you don’t need to worry about it.

import javax.inject.Current;
import javax.annotation.Named;
import javax.context.RequestScoped;

v ("2 okt |
@RequestScoped field after constructing this .
public class QuoteRequest { webbean. é;i%;;ﬁﬁfws
private String sym = "MSFT"; Web Beans) —
private Date quoteDate = new Date(); | 3:Is your case
@Current StockService? No.
2: What is the class of

. v,
private StockService stkSrv; tre web beer you a6
looking for?

public QuoteRequest() {
System.out.println("Creating b1");
}

public int getStockValue() {
StockService sthkSyv— 2225
return stkSrv.getStockValue(this);
}

Figure 2-39. Injecting b2 into b1

Run the application, and it should continue to work.

65

66

CHAPTER 2 USING FORMS

Summary

In this chapter, you learned about how to use forms to get input from users. To handle

a form submission, JSF will go through the following phases: Apply Request Values (store
the raw input strings), Process Validations (convert the strings into objects and validate
them), Update Domain Values (store the converted values into web beans), Invoke Appli-
cation (set the outcome and determine the view ID of the next page), and Render Response
(render the next page).

If there is any error in the Process Validations phase, it will jump right to the Render
Response phase so that the web beans are not updated, the outcome is not set, and the
current page is redisplayed.

To let the user edit a string in a text field, use the UI Input component, and set its
value attribute to link it to the property of a web bean. To let the user choose an entry
from a combo box, use the Ul Select One component. You can also set its value attribute
to link it to the property of a web bean. In addition, you need to provide a list of SelectItem
items to it. Each SelectItem contains an object (the value) and its string presentation (the
label).

For a UI Input component, if the type of the property is not a string or a built-in type
such as Integer or Double, you need provide a converter to the UI Input component. If
there is a conversion error, it will log an error message.

The UI Input component assumes that the input is optional and will convert an empty
string into null (or leave it unchanged if the type of the property is string). If the input is
mandatory, you need set the required attribute to true. Then it will log an error if no input
is provided.

To display error messages, use the Ul Messages component.

To let the user click a button, use a Ul Command component. Specify the outcome
in its action attribute. JSF will use the current view ID to look up the right navigation rule
and use the outcome to look up the right navigation case to find the next view ID. The UI
Command component will schedule a listener to set the outcome in the Invoke Applica-
tion phase so that if there is any conversion or validation error, it will not set the outcome
and the original page will be redisplayed.

You can customize the error messages using a message bundle (that is, one or more
.properties files). This will affect the whole application. To customize it for a particular
component, simply set the right attribute of the component.

Finally, you learned that you can inject one web bean into a field of another using
@Current. Web beans will use the type of the field to locate the web bean to be injected.

CHAPTER 3

Validating Input

In the previous chapter, you learned some basic ways of input validation: forcing the

user to input something for a mandatory field and enforcing the format of the input (it
can be converted into, say, a date properly). That is, you learned how to make sure that
there is a converted value. In this chapter, you’ll learn how to further validate that con-

verted value.

Developing a Postage Calculator

Suppose that you’d like to develop an application to calculate the postage for sending a

package from one place to another. The user will enter the weight of the package in kilo-
grams (see Figure 3-1). Optionally, he can enter a “patron code” identifying himself as a
patron to get a certain discount. After clicking OK, the calculator will display the postage

(Figure 3-1).

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

e -0 A [ntpimocaine | | [[Cl - webe)

Weight: s |
Patron code: Ipl |

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ W - 0 : Q ||http:ﬂlocalho |vl|v‘webt@]

The postage is: 45.

Figure 3-1. A postage calculator

To do that, create a new JSF project named Postage as usual (for example, copy an
existing project and then do some manual updates). Then create a getrequest.xhtml file.
To get the required tabular layout shown in Figure 3-1, you could use an HTML <table>

element, as shown in Listing 3-1.

68

CHAPTER 3 VALIDATING INPUT

Listing 3-1. Using the HTML <table> to Get the Desired Tabular Layout

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:form>
<table>
<tr>
<td>Weight:</td>
<td><h:inputText .../></td>
</tr>
<tr>
<td>Patron code:</td>
<td><h:inputText .../></td>
</tr>
<tr>
<td></td>
<td><h:commandButton .../></td>
</tr>
</table>
</h:form>
</body>

However, a design objective of JSF is to make it easier to support markups other than
HTML (for example, simplified markup for low-powered mobile devices). Therefore, you
can use an <h:panelGrid> tag instead of the HTML <table>, as shown in Figure 3-2. At
runtime, this tag will create a UI Panel component, and more important, it will create
another object (the HTML renderer). When the UI Panel needs to render itself, it will ask
the renderer to do it. In this case, the HTML renderer will read the properties of the Ul
Panel and generate the corresponding HTML code such as a <table> element. The idea is
that if you needed to generate, say, WML output, you could reuse the UI Panel but give
ita WML renderer.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 3 VALIDATING INPUT 69

The <h:panelGrid> tag will create

a U Panel component and give it <table>
an HIML "renderer.” A L

component will ask its renderer to Fenderer </table>

output the markup.

........... " Some Cther presrarmeneneneaene e
L Penderer oo > Non-HTML
- (On cther occasions, you i markup
<h:form> may give it ancther :

renderer sothat it outputs
non-HTML markup.

<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText .../>
<h:outputText value="Patron code:"/>
<h:inputText .../>
<h:outputText value=""/>
<h:commandButton .../>

</h:panelGrid>

</h:form>

Figure 3-2. A component using a renderer

The HTML renderer will output the child components of the UI Panel sequentially, as
shown in Figure 3-3.

The <table> should have
two columns. | |
[aid1 |%>| Qild2 | Itsful, sogo
: to the next
E row.
<h:form> [s |[aid4 |
<h:panelGrid columns="2"> Ii]
anid1 [<h:outputText value="Weight:"/> | E

anid2 [<h:inputText .../> |

Child3 |<h:outputText value="Patron code:"/>|

Chid4 [<h:inputText .../> |

anild5 [<h:outputText value=""/> |

omd6|<h:commandButton S |

</h:panelGrid>
</h:form>

Figure 3-3. The HTML renderer lays out the child components in a <table> sequentially.

70

CHAPTER 3 VALIDATING INPUT

Next, you need to link a web bean to the two <h:inputText> tags. To do that, create
a class called Request in the postage package as shown in Listing 3-2. You're making it a
request-scoped web bean named r. To allow Web Beans to create it, you need a construc-
tor that takes no argument. To calculate the postage, you're injecting a PostageService
web bean into it. Finally, you need getters and setters for the properties to be edited.

Listing 3-2. The Request Class

package postage;

@Named("r")
@RequestScoped
public class Request {
private int weight;
private String patronCode;
@Current
private PostageService postageService;

public Request() {

}

public Request(int weight, String patronCode) {
this.weight = weight;
this.patronCode = patronCode;

}

public int getWeight() {
return weight;

}

public void setWeight(int weight) {
this.weight = weight;

}

public String getPatronCode() {
return patronCode;

}

public void setPatronCode(String patronCode) {
this.patronCode = patronCode;

}

public int getPostage() {
return postageService.getPostage(this);

CHAPTER 3 VALIDATING INPUT

Listing 3-3 shows the PostageService class. In the constructor you hard-code some
patrons and their respective discounts. For example, p1 has 10 percent off. When calculat-
ing the postage, you assume that the postage is $10 per kilogram.

Listing 3-3. The PostageService Class

package postage;

import java.util.HashMap;
import java.util.Map;
import javax.context.ApplicationScoped;

@®ApplicationScoped
public class PostageService {
private Map<String, Integer> patronCodeToDiscount;

public PostageService() {
patronCodeToDiscount = new HashMap<String, Integer>();
patronCodeToDiscount.put("p1", 90);
patronCodeToDiscount.put("p2", 95);
}
public int getPostage(Request 1) {
Integer discount = (Integer) patronCodeToDiscount
.get(r.getPatronCode());
int postagePerkg = 10;
int postage = r.getWeight() * postagePerKg;
if (discount != null) {
postage = postage * discount.intValue() / 100;

}

return postage;

A very important point in Listing 3-3 is that you are not giving it a name using @Name.
Because the Request bean will inject it using its type (the PostageService class) and there is
no EL expression referring to it using a name (yet), you don’t need to name it.

Next, link the request properties and the UI Input components as shown in Listing 3-4.

n

2 CHAPTER 3 VALIDATING INPUT

Listing 3-4. Linking the Request Properties and the Ul Input Components

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}"/>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}"/>
<h:outputText value=""/>
<h:commandButton/>
</h:panelCrid>
</h:form>

Next, create the result page. Let’s call it showpostage.xhtml. Listing 3-5 shows the
content.

Listing 3-5. showpostage. xml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

The postage is: #{r.postage}.

</body>

</html>

Set the outcome in the <h:commandButton> tag as shown in Listing 3-6.

Listing 3-6. Setting the Outcome

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}"/>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 3 VALIDATING INPUT

<h:outputText value=""/>
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

Define the navigation rule as shown in Listing 3-7.

Listing 3-7. Navigation Rule

<faces-config ...>
<navigation-rule>
<from-view-id>/getrequest.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/showpostage.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Right-click the JBoss instance, and choose Add and Remove Projects to add the
project. Then, run the application by going to http://localhost:8080/Postage/faces/
getrequest.xhtml. It should work.

What If the Input Is Invalid?

At the moment, if the user enters a negative number as the weight (such as -5), the calcu-
lator will return a negative postage. This is no good. Instead, you'd like the application to
tell the user that the weight is invalid.

Similarly, for the moment, if the user enters a nonexisting patron code such as p3, the
calculator will simply treat it as “no discount” because the patron code is not found in the dis-
count map. Ideally, it should tell him that this patron code is not found (see Figure 3-4).

Insert title here - Mozilla Firefox 2 Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help File Edit View History Bookmarks Tools Help

g [| http:#localho ‘ -] l - |webt@] 4;\ @ - @ [| http:flocalho ‘ -] l - |webt@]

«» -0
Weight: [5 l e Patron code is invalid
Patron code: p3 l -
Weight: 5 |

Patron code: p3 |

Figure 3-4. Catching unknown patron codes

73

http://localhost:8080/Postage/faces/

74

CHAPTER 3 VALIDATING INPUT

Note that because the patron code is optional, if the user doesn’t enter anything, this
will not be treated as an error. This is a very important rule in validation: if some input
is optional and it is indeed not provided, you must not perform any validation because
there is simply no value to validate.

To validate the user input, you can add one or more validator objects to a UI Input
component (see Figure 3-5). When the form is submitted, as mentioned eatlier, in the Apply
Request Values phase the UI Input component will store the raw input string (-5) locally. In
the Process Validations phase, it will convert it into an object (an integer, -5, here). Then it
will ask each of its validators (if any) in turn to validate the converted value (-5 here). If a vali-
dator fails, it will log an error message and tell the JSF engine to jump to the Render Response
phase directly, without updating the web beans or setting the outcome.

Negative not accepted
[

5: Logan error.

Fequest 1: Read the value (string).i
Visignt: *-5" ' — Valicator 1 [— !

@ 4 heckthe |
converted :
value (-5). :

2: Store tr::e raw string. \—l
: Y

Raw: wg | —
Gt 5) <

53: Convert ittoan
¢ Integer.
Appdly : Process : Update : Invoke
Request — — :
th‘es " \alidations 5 Domein\Alues | | | Application
Render
Response v

Figure 3-5. How validators work

CHAPTER 3 VALIDATING INPUT

In order to create such a validator, modify getrequest.xhtml as shown in Listing 3-8.
This <f:validatelongRange> tag will create a “long range validator,” which will assume the
converted value is a long and will check whether it is in a specified range. Here, you're
setting the minimum value to 0 so that anything less than 0 is an error. You could set the
maximum value too, but there is no need for the current case. Note that the long range
validator has nothing to do with the markup, so it is in the Core tag lib.

Listing 3-8. Creating a Long Range Validator

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}">
<f:validatelLongRange minimum="0"/>
</h:inputText>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}"/>
<h:outputText value=""/>
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

To display the error message, you need an <h:messages> tag, and you need to set the
label as shown in Listing 3-9. Why set the label? As explained in the previous chapter, if
you don't set the label, the error message will display the client ID, which is daunting to
the user.

Listing 3-9. Displaying the Error Message

<h:messages/>
<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}" label="weight">
<f:validatelongRange minimum="0"/>

</h:inputText>

75

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

76

CHAPTER 3 VALIDATING INPUT

<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}"/>
<h:outputText value=""/>
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

Now run the application again, and it should work (see Figure 3-6).

Insert title here - Mozilla Firefox) Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

4;\ E> - @ @ g [|http:h‘|oca\ho ‘v] I-|webt@] 4;\ @ - @ @ g [|http:h‘|nca\ho ‘v] I-|webt@]

Eile Edit View History Bookmarks Tools Help

Weight.: ['5 l e weight: Validation Error: Value
Patron code: | | is less than allowable

minimum of '0'.

Weight: -5 |
Patron code: | |

Figure 3-6. Negative weight caught as an error

Just like the error messages for missing required input or conversion errors, you can cus-
tomize the error message using a message bundle. For example, create Postage.properties in
the postage package, as shown in Figure 3-7.

The Label ("weight" The Minimum Value
here) (O here)

javax.faces.validator.LongRangeValidator .MINIMUM={1} must be at least {0}!

For a Validator
The Name of The situation: when
the Validator the value is less than
the minimum value.

Figure 3-7. Customizing validator error messages

You may wonder how I found out what placeholders are supported by the long range
validator. This is documented in the Javadoc of the LongRangeValidator class.

CHAPTER 3 VALIDATING INPUT

Specify the message bundle in faces-config.xml as shown in Listing 3-10.

Listing 3-10. Specifying the Message Bundle

<faces-config ...>
<application>
<message-bundle>postage.Postage</message-bundle>
</application»
<navigation-rule>
<from-view-id>/getrequest.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/showpostage.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Make sure the application is reloaded. Then run the app, and it should work (Figure 3-8).

Insert title here - Mozilla Firefox

Eile Edit View History Bookmarks Tools Help

@ S 0 % [|http:ﬁ|0ca|ho | - l [v |webt‘@l

e weight must be at least 0!

Weight: -5]
Patron code: |]

Figure 3-8. Customized error message displayed

This will affect all uses of the long range validator, though. If you'd like to customize
it for a single UI Input only, you can do it as shown in Listing 3-11.

Listing 3-11. Specifying the Validation Error Message for a Single Component

<h:form>

<h:panelGrid columns="2">
<h:outputText value="Weight:"/>

78

CHAPTER 3 VALIDATING INPUT

<h:inputText value="#{r.weight}" label="weight"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>

</h:inputText>

<h:outputText value="Patron code:"/>

<h:inputText value="#{r.patronCode}"/>

<h:outputText value=""/>

<h:commandButton action="ok" value="0K"/>

</h:panelGrid>
</h:form>

In addition to this validator, there are similar ones for checking doubles and another
for checking the lengths of strings. They are shown in Listing 3-12, and their resource keys
are shown in Listing 3-13. The first tag creates a LengthValidator enforcing the length of a
string to be between 3 and 20. The second tag creates a DoubleRangeValidator enforcing a
double to be between 0 and 999999. What if you’d like to validate an integer? You'll sim-
ply use the long range validator. What if you’d like to validate a float? You'll simply use the
double range validator.

Listing 3-12. Double Validator and String Validator

<f:validatelength minimum="3" maximum="20"/>
<f:validateDouble minimum="0" maximum="999999"/>

Listing 3-13 shows their resource keys.

Listing 3-13. Resource Keys for the Other Validators

javax.faces.validator.LengthValidator.MINIMUM=. ..
javax.faces.validator.LengthValidator.MAXIMUM=...
javax.faces.validator.DoubleRangeValidator .MINIMUM=. ..
javax.faces.validator.DoubleRangeValidator .MAXIMUM=. ..

Null Input and Validators

If the user doesn’t input anything as the weight, what will the long range validator do?
Recall the rule regarding validation: if there is no input, you must skip the validation
because there is simply no value to validate. JSF does that automatically. In this case, if
the user doesn’t input the weight, it will be converted to null, and all validation will be
skipped. This is no good, because the weight should be mandatory. To fix it, simply mark
it as required (see Listing 3-14).

CHAPTER 3 VALIDATING INPUT

Listing 3-14. Marking the Weight As Required

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>
</h:inputText>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}"/>
<h:outputText value=""/>
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

Then not inputting the weight will result in Figure 3-9.

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help -
@ b @ & [|http:ﬁ|0ca|ho | - l [v |webt‘@l

e weight: Ullnput validation [
Error: Value is required.

Weight: [IRE

Patron code: |]

!

Figure 3-9. The weight is mandatory.

79

80

CHAPTER 3 VALIDATING INPUT

Validating the Patron Code

Now the weight field is working fine. How do you validate the patron code? No built-in val-
idator is suitable. In that case, you can specify a validator method as shown in Figure 3-10.

<h:form>
<h:panelGrid columns="2">

<h:outputText value="Weight:"/>

<h:inputText value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelLongRange minimum="0"/>

</h:inputText>

<h:outputText value="Patron code:"/>

<h:inputText value="#{r.patronCode}" validator="#{r.validatePatron}"/>

<h:outputText value=""/> This L expression will evaluate to
<h:commandButton action="ok" value="OK"/> aMethod object representing this
</h:panelGrid> method. The U Gommand will
then use this method as a
</h:form> valicator.

public class Request {

public void validatePatron(...) {

}

Figure 3-10. Using a validator method

So, create that validatePatron() method as shown in Figure 3-11. In short, the
method will be passed the component and the converted value, and it is free to perform
whatever check it desires. If the converted value is considered invalid, it should throw a
ValidatorException and provide a FacesMessage.

CHAPTER 3 VALIDATING INPUT

The converted value (here the
patron code). It must be non-

empty, otherwise this code would
public class Request { not have been called
private int weight; The companent being valicated
private String patronCode; (the U Input here).

@In

private PostageServicg postageService; Itrepresentsthe JSFengine.

public void validatePqtron(FacesContext context, UIComponent component,
’7 Object convertedValue) throws ValidatorException {
String patronCode = (Strifg) convertedValue; You'll create this method
Alvdidgtor — if (IpostageService.patronExists(patronCode)) { "¢
methods must - .
take this ValidatorException(new FacesMessage(
signature. FacesMessage.SEVERITY_ERROR,
"Patron code is invalid",
"Patron code:" + patronCode + " is invalid"));
} }
If it doesn't exist, throw a Amessage ins three pi
} ValidatorException. of irrforrratim :eve?teypzlel\?g

WARN, ERRCR ...), a summary
message and a detail message. By
default, the U Messages will
display the summary messages.

Figure 3-11. Implementing a validator method
Create the patronExists() method in the PostageService class as shown in Listing 3-15.

Listing 3-15. Implementing the patronExists() Method

public class PostageService {
private Map<String, Integer> patronCodeToDiscount;

public PostageService() {
patronCodeToDiscount = new HashMap<String, Integer>();
patronCodeToDiscount.put("p1", 90);
patronCodeToDiscount.put("p2", 95);

}

public boolean patronExists(String patronCode) {
return patronCodeToDiscount.containsKey(patronCode);

Now run the application, and it should work (see Figure 3-12).

82

CHAPTER 3 VALIDATING INPUT

File Edit View History Bookmarks Tools Help File Edit View History Bookmarks Tools Help

%- [|http:h‘|oca\hc ‘ -] lv |webt‘@] 4;1 @ v 0 %- [|http:h‘|oca\hc ‘ -] lv |webt‘@]

«w -0
Weight: [5 l e Patron code is invalid
Patron code: p3 |
Weight.: [5 l
Patron code: p3 |

Figure 3-12. Unknown patron code caught

Creating a Custom Validator for the Patron Code

Suppose that you have multiple pages on which the user can input the patron code. Some
such pages may not store information to the Request bean at all. In that case, you can no
longer use the patronExists() method in the Request class as the validator method. To
solve this problem, it would be great if you had a validator for the patron code as shown
in Figure 3-13.

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:x="http://foo.com">

This namespace represents your

<h:messages/>| owntaglib.

<h:form>
<h:panelGyid columns="2">
<h:outputText value="Weight:"/>
<h:inputText value="#{r.weight}" ...>
<f:validatelongRange minimum="0"/> _
</h:ipputText> Don't need it anymore.
<h:outputText value="Patron code:"/> |
<h:inputText value="#{r.patronCode}"—validater="d{r-validatePatron}">

<X:validatePatron/>
</h:inputText> | Thistagwill create your own patron code
<h:outputText value=""/> \alidator
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

Figure 3-13. Using a custom validator for the patron code

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://foo.com

CHAPTER 3 VALIDATING INPUT

To create such a tag (and the taglib), create a META-INF folder in your Java source folder,
and then create a file foo.taglib.xml in it. (The file name is not important as long as it ends
with .taglib.xml.) Figure 3-14 shows the content. In short, it defines a namespace to iden-
tify your tag lib, define a <validatePatron> tag, and link it to the validator whose ID is foo.v1.

Define a Facelet tag lib which is just like the
JSF Core tag lib or the JSF HTML tag lib. What
is a Facelet? If an xhtml file contains JSF tags ,

then it is a Facelet.
tisa Ataglibis identified by a URL. Here you use

this URL for your tag lib.

<IDOCTYPE [facelet-taglib| PUBLIC
"-//Sun Microsystems, [Inc.//DTD Facelet Taglib 1.0//EN" The XL clermerts used here o
"http://java.sun.com/dtd/facelet-taglib 1 0.dtd"> [dfineyarowntag eg,
<facelet-taglib xmlns="hfttp://java.sun.com/JSF/Facelet" > <facdet-tagliz> and<tag>) are
<namespace>http://foo.com</namespace> allin this Facelet namespace.
<tag> The tag being defined is <validatePatron>.
<tag-name>validateLatron</tag—name>
<validator>
<validator-id>foo.vi</validator-id>
</validator> This tag is a valicator. That s, it will
</tag> create a validator.
</facelet-taglib>

This tag will create a validator whose ID

Define one tag here. You could define many isfoov1. In JSF. the validators are
tagsinatag i, cefined like Ihis:—l
Id Class

foo.v1 [com.foo.PatronValidator

Figure 3-14. Defining your own validator tag

Note In Mojarra 2.0.0.PR2, there is a bug preventing * .taglib.xml files in the META-INF folder on the
classpath to be discovered. To work around it, put the whole META-INF folder into WebContent and then
explicitly specify the tag lib in web.xm1, as shown in Listing 3-16.

Listing 3-16. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>

<servlet>
<servlet-name>JSF</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

83

http://java.sun.com/dtd/facelet-taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

84 CHAPTER 3 VALIDATING INPUT

</servlet>

<servlet-mapping>
<servlet-name>JSF</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</param-name>
<param-value>/META-INF/foo.taglib.xml</param-value>

</context-param»

</web-app>

To define the foo.v1 validator, modify faces-config.xml as shown in Listing 3-17.

Listing 3-17. Defining a JSF Validator

<faces-config ...>
<application>
<message-bundle>postage.Postage</message-bundle>
</application>
<navigation-rule>
<from-view-id>/getrequest.xhtml</from-view-id>
<navigation-case>
<from-outcome>ok</from-outcome>
<to-view-id>/showpostage.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<validator>
<validator-id>foo.vi</validator-id>
<validator-class>postage.PatronValidator</validator-class>
</validator>
</faces-config>

Create the PatronValidator class in the postage package. Listing 3-18 shows the con-
tent. Note that you must implement the Validator interface provided by JSF, and the
validate() method must carry exactly the same signature as that of a validator method.

Listing 3-18. Creating the Validator Class

package postage;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;

CHAPTER 3 VALIDATING INPUT

import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class PatronValidator implements Validator {
@verride
public void validate(FacesContext context, UIComponent component,
Object convertedvalue)
throws ValidatorException {

Fill in the code in the method as shown in Figure 3-15. You may wonder why you use
an EL expression to get access to the PostageService object instead of injection. This is
because the PatronValidator object will be created by JSF, not by Web Beans. Because JSF
knows nothing about injection, no injection will be performed.

public class PatronValidator implements Validator {

@0verride
public void validate(FacesContext context, UIComponent component,
Object convertedvalue) The application contains various helpers that
throws ValidatorException { can be customized. Here, you'll use it to

String patronCode = (String) convertedValue; evaluatean B expression.
Application app = context.getApplication();
PostageService ps = (PostageService) app.evaluateExpressionGet(context,
"#{ps}", PostageService.class); o
if (!ps.patllronExists(patronCode)) { Eiu;?goa&?ff;nm&@eg]
throw néw ValidatorException(new FacesMessage(can be settoo, youneedtobe explicit
FacesMessage.SEVERITY_ERROR, about you'dlike to get or set it.
"Patron code is invalid",
"Patron code:" + patronCode +

is invalid"));

}
} Need to specify a name for the The result should belong to
} PostageService bean so that it this dass. JSF will try to
can be looked upinan B convert the result to this class
expression. if required.

@ApplicationScoped
@Named("ps")
public class PostageService {
private Map<String, Integer> patronCodeToDiscount;

public boolean patronExists(String patronCode) {
return patronCodeToDiscount.containsKey(patronCode);
}

}

Figure 3-15. Performing validation in validator class

85

CHAPTER 3 VALIDATING INPUT

Finally, delete the validatePatron() method in the Request class because it is no lon-
ger used. Run the application, and it should continue to work.

For the moment, you're embedding the error messages directly in the Java code. If you
need to support multiple languages, you may want to put them into the Postage.properties
file and then load the error messages in Java code, as shown in Figure 3-16.

post You could create a
ae French versionanda

I—Postage.p'operti&s German version, for
...........................) e.

. . . Load the Postage. properties file
public v01q validate(FacesContext context,. UIComponen‘F component, inthe package. o i the
Object convertedValue) throws ValidatorException { locale is, say, French, then the

String patronCode = (String) convertedValue; Postage:_fr.properties will be
Application app = context.getApplication(); used instead,
PostageService ps = (PostageService) app.evaluateExpressionGet(context,
"#{ps}", PostageService.class);
if (!ps.patronExists(patronCode)) {hﬁ”‘f&@”ﬁﬁ?wme‘”
Locale locale = context.getViewRoot().getLocale();
Proidethe ResourceBundle b = ResourceBundle.getBundle("postage.Postage"”, locale);
f{r&?m String summary = b.getString("foo.v1.UNKNOWN PATRON"),
| String detail = MessageFormat.format(b. getstnng("foo v1.UNKNOWN_PATRON detail"),
patronCode); |
throw new ValidatorException(new FacesMessage(
FacesMessage.SEVERITY ERROR, summary, detail));

}
} Load the Load the
summary detail
message. message.

foo.v1.UNKNOWN_PATRON=Patron unknown!
fo0o.v1.UNKNOWN_PATRON_detail=Patron {0} is unknown! «———
javax.faces.validator.LongRangeValidator .MINIMUM={1} must be at least {0}!

Figure 3-16. Providing error messages in a . properties file

Run the application, and it should work.

Displaying the Error Messages in Red

Suppose that you'd like the error messages to be in red. To do that, modify getrequest.
xhtml as shown in Figure 3-17.

CHAPTER 3 VALIDATING INPUT

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ...> These styles are called 'S
<html ...> Define some styles. styles." CSS stands for
<head> Cascading style sheet.
<metq http-equiv="Cpntent-Type" content="text/html; charset=UTF-8" />
<style type="text/css">

li.c1 { color: red } ——DsfineaCSSdassnamed"cl." When cl is appliedto
</style> an element, that element should appear in red
<title>Insert title here</title>
</head>
<body>
<h:messages errorClass="c1"/>
<h:form>

</h: form> The U Messages will apply c1 to each message (<lis).
</body>
</html>

<1i class="c1">...</1i>
<1i>...</1i>

The body will appear in red.

Figure 3-17. Assigning CSS class to error messages

Now run the application, and it will work.

This example shows how <h:messages> accepts CSS classes. In fact, many other JSF
tags do the same. For example, the <h:dataTable> accepts CSS classes for its headers and
columns. Look up the tag documentation to find out the details.

Displaying the Error Message Along with the Field

You may wonder what the purpose of the detail message in a FacesMessage is. It is
intended to be displayed along with the field (see Figure 3-18).

87

88 CHAPTER 3 VALIDATING INPUT

Insert title here - Mozilla Firefox <2>

Elle Edit View History Bookmarks Tools Help

@ w - 0 @ % I|http:ﬂ\oca\host:BUEU!Po5tage}‘fe:eﬂfgetrequeﬁt.xhtm | v] [‘l gﬂ]

e weight cannot be negative!

Weight: o weight cannot be negative!

Patron code: |]

Figure 3-18. Detail message displayed along with the field

To do that, you need to understand how JSF stores the error message. For example,
if the weight is negative, the error message is associated with the client ID of the weight
component, as shown in Figure 3-19.

Client id [Severity Summary Detail
fiw ERROR weight is negative

Let's assume this is whatever dient ID generated
by JSF for the weight component.

<form id="+" ...4
<input id="f:w" ...>

</form>

Figure 3-19. Client ID and error message stored together

To display the detail error message associated with client ID f:w (if any), you can use
the <h:message> tag (not the plural <h:messages>), as shown in Listing 3-19. It will create a
UI Message component that will output the detail error message.

Listing 3-19. Using the <h:message> Tag

<h:messages errorClass="c1"/>
<h:form>

<h:panelGrid columns="2">
<h:outputText value="Weight:"/>

CHAPTER 3 VALIDATING INPUT

<h:inputText value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>

</h:inputText>

<h:message for="f:w"/>

<h:outputText value="Patron code:"/>

<h:inputText value="#{r.patronCode}">
<x:validatePatron/>

</h:inputText>

<h:outputText value=""/>

<h:commandButton action="ok" value="0K"/>

</h:panelGrid>
</h:form>

However, by default JSF will generate client IDs any way it likes. To guarantee that it
will be f:w, you need to modify the code as shown in Listing 3-20.

Listing 3-20. Specifying Client IDs

<h:messages errorClass="c1"/>
<h:form id="f">
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:inputText id="w" value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>
</h:inputText>
<h:message for="f:w"/>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}">
<x:validatePatron/>
</h:inputText>
<h:outputText value=""/>
<h:commandButton action="ok" value="OK"/>
</h:panelGrid>
</h:form>

Run the application, and it should basically work, but the layout will be incorrect (see
Figure 3-20).

89

CHAPTER 3 VALIDATING INPUT

Insert title here - Mozilla Firefox <2>

e weight cannot be negative!

‘Weight: . |o
;WElgh_t cannot be Patron code:
:negative!

The detail message appears
here.

Figure 3-20. Detail message displayed but layout is incorrect

This is because <h:panelGrid> lays out the child components sequentially (in two col-
umns, as specified) and the UI Message is also a child component (see Figure 3-21).

Weight Eror

<h:panelGrid columns="2">

<h:outputText value="Weight:"/>

<h:inputText 1d="w" ...>
<f:validatelLongRange minimum="0"/>

</h:inputText>

<h:message for="f:w"/>

<h:outputText value="Patron code:"/>

<h:inputfext value="#{r.patronCode;">
<x:validatePatron/>

</h:inputText>

<h:outputText value=""/>

<h:commandButton action="ok"/>

</h:panelCrid>

Figure 3-21. The UI Message component is also a child component.

CHAPTER 3 VALIDATING INPUT

To solve this problem, you can use another component to group the UI Input com-
ponent and the UI Message component together (see Figure 3-22).

Use ancther
component to group
them together.

Figure 3-22. Grouping multiple components into one

How do you do that? Could you use an <h:panelGrid> tag to group them together? In
that case, it will create a UI Panel with a renderer that renders the children in an HTML
table (see Figure 3-23). Let’s call this renderer the HTML grid renderer. However, for the
current case, you don’t really need to arrange them in an HTML table; all you need is to
arrange them one by one sequentially without adding any extra markup for the UI Panel
(see Figure 3-23 again). To do that, you can give the UI Panel a so-called group renderer.

<table>

<tr>
HVL Gid <td>[MARKUP OF CHILD1]</td>

e

Renderer <td>[MARKUP OF CHILD2]</td>

</table>

Gap [MARKUP OF CHILD1] [MARKUP OF CHILD2] ...
Renderer

Figure 3-23. Group renderer vs. grid renderer

To create a UI Panel and give it a group renderer, you can use the <h:panelGroup> tag
as shown in Listing 3-21.

91

CHAPTER 3 VALIDATING INPUT

Listing 3-21. Using the <h:panelGroup> Tag

<h:messages errorClass="c1"/>
<h:form id="f">
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:panelGroup>
<h:inputText id="w" value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>
</h:inputText>
<h:message for="f:w"/>
</h:panelGroup>
<h:outputText value="Patron code:"/>
<h:inputText value="#{r.patronCode}">
<x:validatePatron/>
</h:inputText>
<h:outputText value=""/>
<h:commandButton action="ok" value="0K"/>
</h:panelGrid>
</h:form>

Then the page will look fine (see Figure 3-24).

Insert title here - Mozilla Firefox <2>

File Edit View History Bookmarks Tools Help

@ % - @ % @ I|http:ﬂ\uca\hust:BUSU!Pustaga)‘faces,‘getraquest.xhtm | v] [vl Q]

e weight cannot be negative!

Weight: o weight cannot be negative!

Patron code: |]

Figure 3-24. Input field and error message sticking together

You may have noticed that the detail message is the same as the summary message.
This is because you're setting the error message using the validatorMessage attribute (see
Listing 3-22). This will set both the summary and detail messages.

CHAPTER 3 VALIDATING INPUT

Listing 3-22. Using validatorMessage Will Set Both the Summary and Detail Messages

<h:form id="f">
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:panelGroup>
<h:inputText id="w" value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>

If you were still using the message bundle, you could provide the detail message (see
Listing 3-23). That is, just add the string detail to the resource key. In addition, if the
value is too long, you can type a backslash and continue on the next line.

Listing 3-23. Providing a Detail Message in a Message Bundle

javax.faces.validator.LongRangeValidator .MINIMUM={1} must be at least {0}!
javax.faces.validator.LongRangeValidator .MINIMUM detail={1} is invalid. It must \
be at least {0}!

Run the application again, and it should work (see Figure 3-25).

Insert title here - Mozilla Firefox

Fle Edit Wiew History Bookmarks Iools Help

@ % v @ @ @ [".': |httpu‘,‘luca\hust:SUSUchstageﬁaceslgetrequast‘xhtr ‘ -] Iﬂvl Q]

e weight must be at least 0!

Weight: [-5]weight is invalid. It must be at least 0!

Patron code: | |

Figure 3-25. Detail message displayed

93

CHAPTER 3 VALIDATING INPUT

For the <h:message> tag, you are specifying the client ID of :w. In fact, you can specify
a so-called relative client ID instead (see Figure 3-26).

IDis not specified. The dient D
is automatically generated by
JSF

Qient ID: Xyz|

Weight Input

w

2 2 n \ n
<input id="xyz:w" ...>

R

for: w Relative Qient ID

—

| xyzw |— Ful Qient ID

The U Message will use
it tolook up the detail

message. Client id [Severity [Summary Detail
XyZW ERROR weight is negative

Figure 3-26. Using a relative client ID

Therefore, you can simplify the code a little bit by deleting the ID for the <h:form> tag
and using a relative ID for the <h:message> tag (see Listing 3-24).

Listing 3-24. Using Relative Client ID in getrequest.xhtml

<h:messages errorClass="c1"/>
<h:form>

<h:panelGrid columns="2">

CHAPTER 3 VALIDATING INPUT

<h:outputText value="Weight:"/>
<h:panelGroup>

noon

<h:inputText id="w" value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelongRange minimum="0"/>

</h:inputText>

<h:message for="w"/>
</h:panelGroup>

</h:panelGrid>
</h:form>

Run the application, and it will continue to work. Finally, you can make the detail
message appearing in red as shown in Listing 3-25.

Listing 3-25. Specifying CSS Class for UI Message

<style type="text/css">
li.c1 { color: red }
span.cl { color: red }
</style>

<h:messages errorClass="c1"/>
<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:panelGroup>

non

<h:inputText id="w" value="#{r.weight}" label="weight" required="true"
validatorMessage="weight cannot be negative!">
<f:validatelLongRange minimum="0"/>

</h:inputText>

<h:message for="w" errorClass="c1"/>

</h:panelGroup>

</h:panelGrid>
</h:form>

95

96

CHAPTER 3 VALIDATING INPUT

Validating a Combination of Multiple Input Values

Suppose that for a particular patron p1, you will never ship a package that is weighted
more than 50 kilograms. Because this involves both the weight and the patron code (two
components), you can’t make a validator and assign it to a single component. One way to
do it is to perform the checking in an action method. To do that, modify getrequest.xhtml
as shown in Listing 3-26.

Listing 3-26. Invoking an Action Method for Validation

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:" />
<h:panelGroup>

</h:panelGroup>
<h:outputText value="Patron code:" />
<h:inputText value="#{r.patronCode}">
<x:validatePatron />
</h:inputText>
<h:outputText value="" />
<h:commandButton action="#{r.onOK}" value="OK" />
</h:panelGrid>

</h:form>

</body>

</html>

Implement the onOK() method as shown in Figure 3-27. In short, it performs the
checking, and if it fails, it will log an error message and return null as the outcome so that
the current page is redisplayed.

CHAPTER 3 VALIDATING INPUT

public class Request {
private int weight;

private String patronCode; , ,
Validate the request. This method

bl Stri OK() { is defined below.

public String on

if (1isvalid()) {Q

FacesContext context = FacesContext.getCurrentInstance();

context.addMessage("f:w", new FacesMessage(.
FacesMessage.SEVERITY_ERROR, Record the error for this
. component

n . n . . You |l have to set
weight too heavy for the patron", null)); . dientIDof the U Form
return null; explicitly.
} Re-display the current page.
return "ok"; If you spedify null as the detai
message, it will be treated as
equal to the summary.

}
public boolean isValid() {
if (patronCode.equals("p1") &3 weight > 50) {
return false;
}

return true;

}

Figure 3-27. The onOK () method

Explicitly set the client ID of the UI Form component as shown in Listing 3-27.

Listing 3-27. Setting the Client ID of UI Form

<h:messages errorClass="c1"/>
<h:form id="f">
<h:panelGrid columns="2">
<h:outputText value="Weight:"/>
<h:panelGroup>
<h:inputText id="w" value="#{r.weight}" label="weight" required="true
validatorMessage="weight cannot be negative!">

<f:validatelongRange minimum="0"/>
</h:inputText>

<h:message for="w"/>
</h:panelGroup>

</h:panelGrid>
</h:form>

97

98

CHAPTER 3 VALIDATING INPUT

Run the app, and it should work. However, if the Request class is intended to be
independent of the Ul technology so that it can be reused in different types of Uls, then
itis now a problem because it is referring to JSF-specific classes such as FacesContext
and FacesMessage. If this bothers you, you can move this Ul-specific code into a so-called
action listener to perform the validation (see Listing 3-28). Here you're specifying that the
Java class of the action listener is postage.RequestValidatinglListener. You'll create this
class next. JSF will call all action listeners before calling the action method (if any) in the
Invoke Application phase. Now you don’t need the onOK() action method anymore, so go
ahead and delete it.

Listing 3-28. Using an Action Listener

<h:form>
<h:panelGrid columns="2">
<h:outputText value="Weight:" />

<h:panelGroup>

</h:panelGroup>
<h:outputText value="Patron code:" />
<h:inputText value="#{r.patronCode}">
<x:validatePatron />
</h:inputText>
<h:outputText value="" />
<h:commandButton action="ok" value="0K">
<f:actionListener type="postage.RequestValidatinglListener"/>
</h:commandButton>
</h:panelGrid>
</h:form>
</body>
</html>

Create this RequestValidatinglListener class in the postage package. Listing 3-29 shows
the content. It has to implement the ActionListener interface provided by JSF and provide
a processAction() method. In that method it acquires the current request by evaluating
an EL expression. If the request is invalid, it tells JSF to stop any further processing on this
event by throwing an AbortProcessingException. In that case, all further action listeners (if
any) and the action method will be skipped, and thus the outcome will not be set.

CHAPTER 3 VALIDATING INPUT

Listing 3-29. The RequestValidatinglistener Class

public class RequestValidatinglistener implements ActionListener {
public void processAction(ActionEvent event)
throws AbortProcessingException {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
Request req = (Request) app.evaluateExpressionGet(context, "#{r}",
Request.class);
if (lreq.isvalid()) {
context.addMessage("f:w", new FacesMessage(
FacesMessage.SEVERITY_ERROR,
"weight too heavy for the patron”,
null));
throw new AbortProcessingException();

Note that the properties of the Request object will have been updated in the Update
Domain Values phase while the action listener is executed in the Invoke Application
phase. Now, run the application, and it should continue to work (see Figure 3-28).

Insert title here - Mozilla Firetox

File Edit View History Bookmarks Tools Help

©

g [|http:;‘;‘localhost:8080!Postageﬁacesigetre | - l [- Q]

e weight too heavy for the patron

R 1 | weight too heavy for
Weight: the patron
Patron
code: P |

Submit Query

Figure 3-28. The whole Request object is validated.

99

100

CHAPTER 3 VALIDATING INPUT

Summary

In this chapter, you learned how to validate user input. To validate the user input in a sin-
gle UI Input component, you can add one or more validators to it. They will be invoked
one by one in the Process Validations phase to check the converted value. If any one fails,
it will log an error for that component (or rather, for its client ID) and tell the JSF engine
to jump to the Render Response phase directly.

As you learned, JSF provides a few predefined validators for checking the range of a
long, the range of a double, or the length of a string. To customize their error messages,
use a message bundle or provide the message directly in the validator tag.

To perform custom validation, you learned that you can create a custom validator by
providing a Java class and a validator ID. In addition, you need to define a Facelet tag that
will create the validator. If the validation involves two or more components, you can add
an action listener to a Ul Command. It will be executed in the Invoke Application phase.
As such, the beans will have been updated so you can check their properties.

I also covered how to specify a JSF message. Specifically, a JSF message contains a
severity level, a summary, and a detail. Usually you will display the summary using a Ul
Message component and display the detail using a Ul Message component along with
each Ul Input component.

To customize the appearance of the HTML output, you can define CSS style classes
and let the components refer to them.

A UT Panel component lays out its child components according to its renderer. It can
lay them out in a table (<panelGrid>) or just arrange them one by one (<panelGroup>).

Finally, you learned that if a web bean is never looked up by name, you don’t need to
use @Named on it.

CHAPTER 4

Creating an E-shop

In this chapter, you'll learn how to create an e-shop. This involves displaying a list of
products (using a loop), implementing a shopping cart for each user, supporting user
login and logout, and requiring authenticated access for the checkout page.

Suppose that you'd like to create the e-shop as shown in Figure 4-1. Initially, the page
lists all the products. Clicking a product link will display the detail page for the product.

File Edit View History Bookmarks Tools Help File Edit View History Bookmarks Tools Help
SICIES RN =yt = @t |- |C-|v
i —>
dickingalink will
display a detail page ; :
for the product.
Three products are listed here. You could display some details of
The first product has an ID of p01, the product in this area, but for
its name is “Pencil,” and its price is $1.2. simplicity, you will do nothing.

Figure 4-1. Your e-shop

101

102 CHAPTER 4 CREATING AN E-SHOP

Listing the Products

OK, let’s do it. Create a new dynamic web project named Shop. Then create a catalog.xhtml
page. How will you list the products? The problem here is that supposedly the products are
loaded from a database; thus, you don’t know the number of products in advance, so you
can’t lay them out in advance using <h:panelGrid>, as shown in Listing 4-1.

Listing 4-1. You Don’t Know How Many Products to Lay Out

<h:panelGrid...>

PRODUCT 1

PRODUCT 2

PRODUCT 3 -> But how do you know there are only three products?
</h:panelGrid>

To perform a loop at runtime, you can use <h:dataTable>, as shown in Figure 4-2. In
short, it will loop over each element of the list. For each element, it will render all the col-
umns specified inside. Figure 4-3 shows the component tree that will be created.

You specify a List of product here.
If it contains, say, 10 products, the
data table will loop 10 times.

e A<h:coumn> tag represents a
<body> colum in the table. Here, it
<h:dataTable value="a list of product"> represents the " product id"
. column.
<h:column>
<h:outputText value="some id"/>
</h:column> The rendering order
= is shown below.
<h:column>
Thisisthe — <h:outputText value="some name"/> 17T —— Ahw
amecaum. | /j:column> F
= 2 —t —
<h:column>
Thisisthe — <h:outputText value="some price"/> 3
frice cdlurm. </h:column>

</h:dataTable> The tags inside <h:column> will
</body> output the cell content.
</html>

10

Figure 4-2. Looping with <h:dataTable>

CHAPTER 4 CREATING AN E-SHOP 103

U Data

(o)
G

Qo
G

Figure 4-3. Component tree created by <h:dataTable> and <h:column>

To implement this idea, you need to provide a List of products using a web bean. So,
create a Catalog class in the shop package, as shown in Listing 4-2. Because the catalog
is a global thing, use the application scope. In addition, instead of loading the products
from a database, for simplicity you’ll simply hard-code them into a List.

Listing 4-2. The Catalog Class

package shop;

@Named("catalog")
@ApplicationScoped
public class Catalog {

private List<Product> products;

public Catalog() {
products = new ArraylList<Product>();
products.add(new Product("p1", "Pencil", 1.20));
products.add(new Product("p2", "Eraser", 2.00));
products.add(new Product("p3", "Ball pen", 3.50));
}
public List<Product> getProducts() {
return products;

104 CHAPTER 4 CREATING AN E-SHOP

Define the Product class in the same package (Listing 4-3).

Listing 4-3. The Product Class

package shop;

public class Product {
private String id;
private String name;
private double price;

public Product(String id, String name, double price) {
this.id = id;
this.name = name;
this.price = price;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public double getPrice() {
return price;

Provide the List to the dataTable (Listing 4-4).

Listing 4-4. Providing the List to the dataTable

<h:dataTable value="#{catalog.products}">
<h:column>
<h:outputText value="some id"/>
</h:column>
<h:column>
<h:outputText value="some name"/>
</h:column>
<h:column>
<h:outputText value="some price"/>
</h:column>
</h:dataTable>

CHAPTER 4 CREATING AN E-SHOP

Now, the UI Data component will render the Product objects one by one (one row
for each Product). However, how can the UI Output component in the columns access
the information in the current Product object? You can do that with the var attribute, as
shown in Listing 4-5. In short, the UI Data will use p as a looping variable to point to each
element in turn. This variable is implemented as an attribute (a name-value pair) in the
request.

So, you can finally access the attribute just like a web bean (Listing 4-5).

Listing 4-5. Accessing an Attribute Like a Web Bean

<h:dataTable value="#{catalog.products}" var="p">
<h:column>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>
<h:outputText value="#{p.name}"/>
</h:column>
<h:column>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

Note that an attribute is not a web bean. When evaluating an EL expression, JSF will
try to look up an attribute first, before looking up a web bean. Now when you run the
application, the products will be displayed (see Figure 4-4).

« L Insert title here - Mozilla Firefox =1 (8. L3

Eile Edit View History Bookmarks Tools Help

€% -002E -G

pl Pencil 1.2
p2 Eraser 2.0
p3 Ball pen 3.5

Figure 4-4. Products are displayed.

105

106 CHAPTER 4 CREATING AN E-SHOP
To make the grid visible, modify the page as shown in Listing 4-6.

Listing 4-6. Setting the Width of the Border

<h:dataTable value="#{catalog.products}" var="p" border="1"s
<h:column>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>
<h:outputText value="#{p.name}"/>
</h:column>
<h:column>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

When you run the application now, the table border will now display.

Making the Link to Show the Details

Now, let’s create the link to show the product details. For this, you'll use the
<h:commandLink> tag, as shown in Figure 4-5.

<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<h:outputText value="#{p.id}"/>

</h:column> It will generate the <a> tag.
<h:column>
<h:commandLink> <a>...
‘<h:outputText value="#{p.name}"/> ‘ A

</h:commandLink>

</h:column>
. The content of the <h:commandLink>
<h:column> " . i element will generate the conttent of the <a>
<h:outputText value="#{p.price}"/> gement Ateratively, you couidspedfy the
</h:column> content using the valueattributezj

</h:dataTable>

<h:commandLink value="#{p.hame}"/>

Figure 4-5. Using <h: commandLink>

CHAPTER 4 CREATING AN E-SHOP

Note that the behavior of the <h:commandLink> tag is the same as the <h:commandButton>
tag because they both will create a Ul Command component. The only difference is that
the former will render the Ul Command as a link, while the latter will render a button (see
Figure 4-6). An important consequence of this is that the <h:commandLink> tag will submit
a form just like <h: commandButton>, and thus it must appear inside a form.

Just like when it is rendered as a button, a
Ul Command will submit the surrounding
form when it is clicked. This is done using
Java?cﬂpt

Link | ——| ...
Renderer

Renderer

| Button | —» <j_nput type:"submit" cee>

Figure 4-6. <h:commandLink> vs. <h:commandButton>

Therefore, you need to modify the code as shown in Listing 4-7.
If you were using <h:commandButton>, you would set the outcome using the action
attribute. Because <h:commandLink> has exactly the same behavior, you do the same thing.

Listing 4-7. Setting the Outcome of <h:commandLink>

<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>
<h:form>
<h:commandLink action="detail"»
<h:outputText value="#{p.name}"/>
</h:commandLink>
</h:form>
</h:column>
<h:column>

107

108 CHAPTER 4 CREATING AN E-SHOP

<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

For it to work, create a detail.xhtml page as shown in Listing 4-8. Note that for sim-
plicity it contains static content only at the moment.

Listing 4-8. Detail Page

<?xml version="1.0" encoding="UTF-8" 2>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

This is the detail

</body>

</html>

Create a navigation case in faces-config.xml, as shown in Listing 4-9.

Listing 4-9. Navigation Case to Show the Detail Page

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>
<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>detail</from-outcome>
<to-view-id>/detail.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

When you run the application now, the detail link should be working (see Figure 4-7).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 4 CREATING AN E-SHOP 109

o 4 Insert title here - Mozilla Firefox =, (B L3¢ o 4 Insert title here - Mozilla Firefox =, (B L3¢

Eile Edit View History Bookmarks Tools Help < - Eile Edit View History Bookmarks Tools Help < -

€ -00 26 [-]C-]- G K RN ORI EMED

\%‘M ., | This is the detail
.

Figure 4-7. Detail link working

The next question is, how do you get access to the selected product in the detail page?
As afirst step, let’s create an action listener to print the ID of the selected product to the
console (we covered action listeners in Chapter 3). To do that, modify catalog.xhtml as
shown in Listing 4-10.

Listing 4-10. Using an Action Listener to Handle the Click

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>
<h:form>
<h:commandLink action="detail">
<f:actionListener type="shop.OnDetailActionListener"/>
<h:outputText value="#{p.name}"/>
</h:commandLink>
</h:form>
</h:column>
<h:column>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

110

CHAPTER 4 CREATING AN E-SHOP

How does the action listener get access to the selected product? When the UI Data
loops through the rows (see Figure 4-8), conceptually it will create an environment object
surrounding the UT Command created by <h:commandLink>. The environment object con-
tains the current row index. When the UI Command needs to output its client ID, it will
send its client ID through that environment, which will append the row index to the client
ID for display on the page.

<tr>...<a id%“foo:o“#......</tr>
<tr>.........</tr>
<tr>.........</tr>

Row Idx: 0 | [Row ldx: 1 Row ldx: 2

2: Append the row index
to the client ID.

.............. M

1: Output my client ID$

id: "foo"

Figure 4-8. Row-specific environment appending row index to client ID

When the user clicks a link (see Figure 4-9), in the Apply Request Values phase the Ul
Data will loop through each row again. For each row, it will again create an environment
object surrounding the Ul Command. When the Ul Command checks whether it was
clicked, it sends its client ID to the environment object. That environment object again
will append the row index to get the final client ID before checking it against the client ID
in the request. If it is matched, the Ul Command will schedule the execution of the action
listener through the environment object.

The environment object will attach to the action listener waiting for execution. When
itis executed, the environment object will first set the p attribute in request scope accord-
ing to its row ID, before calling the action listener. Finally, to clean up, it will remove the
p attribute.

CHAPTER 4 CREATING AN E-SHOP

Name | Value

Action
Listener
TB: Execute.

v f Row Idx: 0 | [Rowldx: 1 || ... : Row ldx: 0
clicked: foo:0 : I :

2: Append the row index @
to get foo:0 and then

compare. Matched!

: : . : 5: Set the value
{1tlsmy T Cemememneaat 5 according to the row

> 1 client ID, foo, index.
! clicked? 3: Execute of the action
: listener in the Invoke

Application phase.
4: Execute.

Apply Request Values Invoke Application

Figure 4-9. How UI Data handles form submissions

Therefore, in your action listener, you can readily access the selected Product object

from the p attribute. So, create the OnDetailActionlListener class in the shop package (see
Listing 4-11).

Listing 4-11. Accessing the Current Product in Your Action Listener

package shop;

public class OnDetailActionlListener implements ActionlListener {

@verride

public void processAction(ActionEvent ev) throws AbortProcessingException {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
Product p = (Product) app.evaluateExpressionGet(context, "#{p}",

Product.class);

System.out.println(p.getId());

11

112

CHAPTER 4 CREATING AN E-SHOP

When you run the application now, it should print the product ID to the console.
Now, the next step is to display the detail of the Product in the detail page. Can the detail
page find the Product in the p attribute? No, it can’t, because the attribute will have been
removed. To solve this problem, you can use your action listener to store the Product
object into a web bean. To do that, create a ProductHolder class in the shop package, as
shown in Listing 4-12.

Listing 4-12. Using a Web Bean to Hold the Current Product Object

package shop;

@Named("ph")

@RequestScoped

public class ProductHolder {
private Product currentProduct;

public Product getCurrentProduct() {
return currentProduct;

}

public void setCurrentProduct(Product currentProduct) {
this.currentProduct = currentProduct;

Then modify your action listener as shown in Listing 4-13.

Listing 4-13. Using a Web Bean to Hold the Current Product Object

public class OnDetailActionListener implements ActionListener {
@0verride
public void processAction(ActionEvent ev) throws AbortProcessingException {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
Product p = (Product) app.evaluateExpressionGet(context, "#{p}",
Product.class);

CHAPTER 4 CREATING AN E-SHOP

ProductHolder ph = (ProductHolder) app.evaluateExpressionGet(
context,
"#{ph}",
ProductHolder.class);

ph.setCurrentProduct(p);

Alternatively, recall that an EL expression not only can be queried to get the value
but also can be used to set the value. Therefore, you could modify the code as shown in
Figure 4-10.

public class OnDetailActionListener implements ActionListener {

@0verride
public void processAction(ActionEvent ev) throws AbortProcessingException {

FacesContext context = FacesContext.getCurrentInstance();

Application app = context.getApplication();

Product p = (Product) app.evaluateExpressionGet(context, "#{p}",
Product.class);

RO+ —Vat+Ha3te e o e 5]
" " 5 The expression factory The HL context provides
ProductHel deas.e]ass) . can create B the variable bindngs
’ expression objects. and etc.

N)
ELContext elContext = context.getELContext(); |
ValueExpression ve = app.getExpressionFactory().createValueExpression(
elContext, "#{ph.currentProduct}", Product.class);
ve.setValue(elContext, p); ‘

} ‘ Qven this string-foom The value of the EL expression
} Storethe value of pinto B_expression, create should be Product. This is
the EL expression an EL expression used for possible type
(ph.currentProduct). object. conversion.

Figure 4-10. Taking advantage of the modifiability of EL expressions

Modify the detail.xhtml page to display the product name as shown in Listing 4-14.

113

14 CHAPTER 4 CREATING AN E-SHOP

Listing 4-14. Displaying the Product Name

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<h1>#{ph.currentProduct.name}</h1>

</body>

</html>

When you run the application and click the link for a certain product, its details
should be displayed (see Figure 4-11).

« 4 Insert title here - Mozilla Firefox | = B 3¢

« 4 Insert title here - Mozilla Firefox = [B 3¢

File Edit View History Bookmarks Tools Help - File Edit View History Bookmarks Tools Help -

€® -060 4[B! |G- €% -00 4@ |G-

Pencil M
Eraser @

Ball pen ’ﬁ‘

Eraser

\J

Figure 4-11. Detail page displaying the correct product name

Because it is very common to store the value of one EL expression into another in an
action listener, JSF provides a built-in action listener to do that. To use it, modify catalog.
xhtml, as shown in Listing 4-15.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 4

Listing 4-15. Displaying the Product Name

<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>
<h:form>
<h:commandLink action="detail">
<f:setPropertyActionListener
value="#{p}" target="#{ph.currentProduct}"/>
<h:outputText value="#{p.name}"/>
</h:commandLink>
</h:form>
</h:column>
<h:column>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

CREATING AN E-SHOP

Delete the OnDetailActionListener class. Run the application now, and it will continue

to work.

Displaying Headers in the Columns

Next, you'd like to display headers as shown in Figure 4-12.

o 4 Insert title here - Mozilla Firefox =, (B L3¢

Eile Edit View History Bookmarks Tools Help

e ® -0062 0 |G-

‘ Name HPriceJ[

p1fPencil 1.2 | gchooum
@m 2.0 has a header.

E‘ Ball pen||3.5

Figure 4-12. Column headers

115

116 CHAPTER 4 CREATING AN E-SHOP

To do that, modify catalog.xhtml as shown in Figure 4-13.

Afacet a special type of child component. Each
facet has a name. How to use a facet is entirely
up to the parent (or grandparent). Here, the U
Data will render a facet named "header” (if
any) for the header row and will ignore it for the
normal rows.

<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<f:facet name="header"> ‘

<h:outputText value="Id"/> ‘

</f:facet> Header Fow | L. e
<h:outputText value="#{p.id}"/> 1
</h:column>
<h:column> 2
<f:facet name="header"s 3
<h:outputText value="Name"/> ‘
</f:facet>
<h:form>
<h:commandLink action="detail">
<f:setPropertyActionListener .../>
<h:outputText value="#{p.name}"/> 1q
</h:commandLink>

</h:form>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Price"/>‘
</f:facet>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>

Figure 4-13. Using header facets

When you run the application now, it will display the headers.

Implementing a Shopping Cart

Now, let’s allow the user to add products to the shopping cart (see Figure 4-14).

CHAPTER 4 CREATING AN E-SHOP

« L Insert title here - Mozilla Firefox = (8 2« « L Insert title here - Mozilla Firefox = (8 2«

Eile Edit View History Bookmarks Tools Help < Eile Edit View History Bookmarks Tools Help
QO AE [-0 AE! [-]C-]a

Shopping cart: p2

Eraser |

The IDs of the products inthe

— srppingcartar deplae

\/

Figure 4-14. Adding a product to the shopping cart

To do it, modify detail.xhtml as shown in Figure 4-15.

<body>
<h1>#{ph.currentProduct.name}</h1>
<h:form»
<h:commandButton

value="Add to cart"

action="#{ph.addToCart}"/>
</h:form> Usually it i just the outoome, but here you
</body> specify amethod it should take no argument
</html> and return a string which is the outcome.

public class ProductHolder {

public String addToCart() {

}

Figure 4-15. Using a business method as the action

Define this addToCart () method in the ProductHolder class as shown in Listing 4-16. In
the code, you first inject the shopping cart by marking it with the @Current annotation (see
the “Dependency Injection” sidebar for details). The @Current annotation is the default
binding type for web beans (you must specify a binding type for field injection, even if it
is the default binding type). A combination of the binding type and the object’s type is
used to select the web bean to inject.

117

118 CHAPTER 4 CREATING AN E-SHOP

In the addToCart() method, you simply print out the product ID to verify that it is
working. Then you add the product ID to the shopping cart. Finally, you return the string
“added” as the outcome.

Listing 4-16. The addToCart () Method

@Named("ph")

@RequestScoped

public class ProductHolder {
private Product currentProduct;
@Current
private Cart cart;

public String addToCart() {
System.out.println("Adding "+currentProduct.getId());
cart.add(currentProduct.getId());
return "added";

You'll implement the Cart class next.

DEPENDENCY INJECTION

Java applications consist of Java interfaces and classes, which make up the application components
that interact with each other to accomplish the application’s job. These component objects depend on
each other, so an object is dependent if it uses other objects to do its job. It then follows that the other
objects used by the dependent object are called the object’s dependencies.

An object pulls its dependencies if it is responsible for providing its dependencies from its environ-
ment. The object may do this by instantiating dependencies or by looking up an outside object for them.
Pulling dependencies is the traditional way of using objects in Java.

In contrast, another object could be responsible for providing dependencies and pushing them into
the object. This approach is called dependency injection, and the dependencies are injected by a third
party to the dependent object. In the case of web beans, the web bean implementation pushes their
dependencies into them, and this is how one web bean gains a reference to another web bean.

CHAPTER 4 CREATING AN E-SHOP

You need to have the shopping cart as a web bean. What scope should it be in? If you
put it into the request scope, it will be gone when the request is finished. If you put it into
the application scope, all users will share the same shopping cart. To solve this problem,
you need to understand that whenever a new user starts using your application, the web
container will allocate memory for that session. When will a session be deleted? If the
user doesn’t send any request in a certain period, such as 30 minutes, the web container
will delete the session. This timeout can be configured. The session can also be destroyed
programmatically.

Because of the per-user nature of sessions, it is the best place to store per-user tem-
porary data, such as the shopping cart. How to do that? Initially there is an empty web
bean table in each session. To put a shopping cart into the session, create the Cart class as
in Listing 4-17. The @SessionScoped says that, once created, the Cart object should be put
into the session. But why does it need to implement Serializable? This is because the web
container may need to save the content of the session to disk or send it to another com-
puter over the network if you have a cluster. In that case, it needs to convert all the objects
in the session into bytes. This requires that all their classes implement Serializable.

Listing 4-17. Putting the Shopping Cart into Session

package shop;

@SessionScoped
public class Cart implements Serializable {

Implement the rest of the Cart class as shown in Listing 4-18.

119

120

CHAPTER 4 CREATING AN E-SHOP

Listing 4-18. Implementing the Rest of the Cart Class

@SessionScoped
public class Cart implements Serializable {
private List<String> productIds;

public Cart() {
productIds = new ArraylList<String>();

}

public void add(String pid) {
productIds.add(pid);

}

The addToCart () method of the ProductHolder class returns the outcome “added.” You
need to define a navigation case for it to display the next page in faces-config.xml (see
Listing 4-19).

Listing 4-19. Displaying the Next Page After Adding a Product to the Cart

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>
<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>detail</from-outcome>
<to-view-id>/detail.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/detail.xhtml</from-view-id>
<navigation-case>
<from-outcome>added</from-outcome>
<to-view-id>/cart.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

CHAPTER 4 CREATING AN E-SHOP

Create the cart.xhtml page as shown in Listing 4-20. For simplicity, it contains static
content only for the moment.

Listing 4-20. A Page Displaying the Content of the Shopping Cart

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Shopping cart

</body>

</html>

Run the application. Unfortunately, it will throw a NullPointerException at the line
highlighted in Listing 4-21.

Listing 4-21. NullPointerException When Accessing the Current Product

@Named("ph")

@RequestScoped

public class ProductHolder {
private Product currentProduct;
@Current
private Cart cart;

public String addToCart() {
System.out.println("Adding "+currentProduct.getId());
cart.add(currentProduct.getId());
return "added";

Why? The short answer is that it’s because the ph bean is in the request scope. On
form submission it will be gone, and a new one will be created. Thus, the current product
will be null. For a more detailed explanation, see Figure 4-16.

121

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

122

CHAPTER 4

Browser

CREATING AN E-SHOP

catalog.xhtml

U Data

-—

5: The setPropertyActionListener

creates the "ph" bean and puts the
current Product into it.
catalog.xhtml
I setPropertyActionListener
detail xhtrm

T Feqet
1: The user enters the -
URL and press Fnter. 2: Request is sent.
Browser
-
3: Response is sent.
4: The user dicks the
link.
Request
Browser
Eraser -—
6: Response is sent.
Add to cart
7: The user dicks the
button.
Request

Figure 4-16. How the ph bean is lost

To solve this problem, you can store the product ID into the web page (see Figure 4-17).

detail. xhtrrl

8: Try to call addToCart()
inthe "ph" bean, but itis
already gone and a new
one will be created!

CHAPTER 4 CREATING AN E-SHOP

Request

>

1: A product link is clicked.

Browser

Eraser

{ pid: p1 4 Response is sent.

Add to cart

5: The user clicks the
button. The product ID is
included in the request.

Request

v

<
<

detail.xhtml

3: Read the product ID.

2: Bind a Ul Input to the
product id in "ph" that will
render itself as a hidden
field in the HTML form.

Ul Input 7

Ul Command

detail.xhtml

6: Store the product ID into
"ph" in the Update
Domain Values phase.

Eraser

Ul Input

Ul Command

7: Call the action

Figure 4-17. Using a hidden Ul Input to restore the product ID

method in the
Invoke Application
phase.

To create such a Ul Input, use the <h:inputHidden> tag. It behaves exactly the same as
<h:inputText> except that the former will render as an HTML hidden input, while the lat-
ter will render as an HTML text input (see Figure 4-18).

123

124

CHAPTER 4 CREATING AN E-SHOP

Hdden

nput | — | <input type="hidden"
Renderer value="...">

Te)(t : n n

nput | — | <input type="text
Renderer value="...">

Figure 4-18. <h:inputHidden> vs. <h:inputText>

To use it, modify detail.xhtml as shown in Listing 4-22. It is used just like the
<h:inputText> tag.

Listing 4-22. Using the <h:inputHidden> Tag

<body>
<h1>#{ph.currentProduct.name}</h1>
<h:form>
<h:inputHidden value="#{ph.productId}"/>
<h:commandButton
value="Add to cart"
action="#{ph.addToCart}"/>
</h:form>
</body>
</html>

Modify the ProductHolder class to provide this property as shown in Listing 4-23. To
find the Product object given a product ID, you need to inject the catalog. In addition, in
getProductId(), why could the current product be null? The issue is, before calling the
setter on form submission, UI Input will try to get the existing value first to see whether
the new value is indeed different. So when the getter is called, the current product could
indeed be null.

Listing 4-23. Using the <h: inputHidden> Tag

@Named("ph")
@RequestScoped

CHAPTER 4 CREATING AN E-SHOP

public class ProductHolder {
private Product currentProduct;
@Current
private Cart cart;
@Current
private Catalog catalog;

public String getProductId() {
return currentProduct != null ? currentProduct.getId() : null;
}
public void setProductId(String pid) {
currentProduct = catalog.getProduct(pid);
}
public String addToCart() {
System.out.println("Adding "+currentProduct.getId());
cart.add(currentProduct.getId());
return "added";

Define the getProduct() method in the Catalog class as shown in Listing 4-24.

Listing 4-24. Providing the getProduct() Method in the Catalog Class

@Named("catalog")
@ApplicationScoped
public class Catalog {

private List<Product> products;

public Catalog() {
products = new ArraylList<Product>();
products.add(new Product("p1", "Pencil", 1.20));
products.add(new Product("p2", "Eraser", 2.00));
products.add(new Product("p3", "Ball pen", 3.50));
}
public List<Product> getProducts() {
return products;
}
public Product getProduct(String pid) {
for (Product p : products) {
if (p.getId().equals(pid)) {
return p;

125

126

CHAPTER 4 CREATING AN E-SHOP

}

return null;

Now run the application, and try to add a product to the shopping cart. It should
print the product ID to the console and then display the cart page.

Displaying the Content of the Shopping Cart

How do you display the product IDs on the cart page? Obviously, you need to loop through
the product IDs stored in the shopping cart. Can you use <h:dataTable>? Unfortunately, it
will always output an HTML <table>, which is not what’s desired here. To loop but without
adding its own markup, you can use the <ui:repeat> tag. It works almost exactly like the
<h:dataTable> tag. For example, modify cart.xhtml as shown in Listing 4-25. <ui:repeat>
will simply loop through the list and render its children in each iteration. Because it out-
puts no markup by itself, it has nothing to do with HTML, so it is not in the JSF HTML tag
lib. Note that <h:outputText> is outputting a space after the product ID.

Listing 4-25. Using <ui:repeat> to Display the Product IDs

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Shopping cart:

<ui:repeat value="#{cart.productIds}" var="pid">
<h:outputText value="#{pid} "/>

</ui:repeat>

</body>

</html>

Provide the getProductIds() method in the Cart class as shown in Listing 4-26.
Because you need to refer to it by name, you need to give it a name too.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

CHAPTER 4 CREATING AN E-SHOP

Listing 4-26. Providing the getProductIds() Method and a Name in the Cart Class

@Named("cart")

@SessionScoped

public class Cart implements Serializable {
private List<String> productIds;

public Cart() {
productIds = new Arraylist<String>();

}
public void add(String pid) {
productIds.add(pid);

public List<String> getProductIds() {
return productIds;

When you run the application and add some products to the cart, their IDs will be

displayed (see Figure 4-19).

« L Insert title here - Mozilla Fig=_ (8. 3¢

Eile Edit View History Bookmarks Tools He
0802

Shopping cart:p2 pl

Figure 4-19. Content of shopping cart displayed

The Checkout Function

So far, you have implemented the catalog page, the detail page, and the shopping cart

page.

Next, you'd like to allow the user to check out (see Figure 4-20). That is, this new page,
the confirm page, will display the total charge and the credit card number of the user.

127

128

CHAPTER 4 CREATING AN E-SHOP

catalog
cetail v
Eraser
Add to cart
cart confirm
. You'll pay $23.4 using credit card
Gontent: p1 p2 1111 2222 3333 444,
Checkout ||

Figure 4-20. The checkout function

For the total charge, you can get the product IDs from the shopping cart, so it is easy.
But how to get the credit card number of the user? Let’s hard-code it for the moment.
Now, create the confirm.xhtml page as shown in Listing 4-27.

Listing 4-27. The confirm.xhtml Page

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

You'll pay #{confirmService.total} with credit card #{confirmService.creditCardNo}.

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 4 CREATING AN E-SHOP 129

For it to work, create the ConfirmService class in the shop package as shown in
Listing 4-28.

Listing 4-28. The ConfirmService Class

package shop;

@Named ("confirmService")
@RequestScoped
public class ConfirmService {
@Current
private Cart cart;
@Current
private Catalog catalog;

public double getTotal() {
double total = 0;
for (String pid : cart.getProductIds()) {
total += catalog.getProduct(pid).getPrice();
}
return total;
}
public String getCreditCardNo() {
return "1111 2222 3333 4444";

Create the Checkout button in cart.xhtml, as shown in Listing 4-29.

Listing 4-29. Checkout Button in the cart.xhtml Page

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"”
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html

130 CHAPTER 4 CREATING AN E-SHOP

Shopping cart:

<ui:repeat value="#{cart.productIds}" var="pid">
<h:outputText value="#{pid} "/>

</ui:repeat>

<h:form>
<h:commandButton value="Confirm" action="confirm"/>

</h:form>

</body>

</html>

Define the navigation case in faces-config.xml as shown in Listing 4-30.

Listing 4-30. Navigation Case for the confirm.xhtml Page

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>
<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>detail</from-outcome>
<to-view-id>/detail.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/detail.xhtml</from-view-id>
<navigation-case>
<from-outcome>added</from-outcome>
<to-view-id>/cart.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/cart.xhtml</from-view-id>
<navigation-case>
<from-outcome>confirm</from-outcome>
<to-view-id>/confirm.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

CHAPTER 4

CREATING AN E-SHOP

When you run the application and try to check out, it should display the total amount
and the hard-coded credit card number (Figure 4-21).

w L Inserttitle here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@D -0 A [

BB

Shopping cart:pl p2 p3

—

o 4 Insert title here - Mozilla Firefox S=_ {51

File Edit View History Bookmarks Tools Help <

X

- O

A @l -] [E-]

@y

You'll pay 6.7 with credit card
1111 2222 3333 4444.

Figure 4-21. Confirming page working (with a hard-coded credit card number)

Getting the Credit Card Number of the Current User

So, how do you get the credit card number of the current user? Suppose that the user
accounts are stored in a secure database such as the one Amazon.com uses to remember
your card details (see Figure 4-22). If the user logs in, then you can use the user ID to load
the data into a User object and put it into the session for later use.

Your Application

login
3: Storeitintothe
seosn zaveh
-
s i
A
id: ul
passwa: pl
1: The user card: 1234
clicks the Login
button.
Database
Id Password [Credit card no.
1234

ul pl

Figure 4-22. Loading the user’s data on login

" Session1 Session 2

2: The action method
loads the user's data
into a User object in
memory.

131

132

CHAPTER 4 CREATING AN E-SHOP

To implement this idea, you’ll make a Login link on the catalog page to show the login
page (see Figure 4-23). On a successful login, the user will be returned to the catalog page.

catalog login

1

\J
I

= =
detail v
Eraser
Add to cart
cart confirm
] You'll pay $23.4 using credit card
Gontent: p1 p2 1111 2222 3333 444,
Checkout |

Figure 4-23. Page flow involving the login page
So, modify catalog.xhtml as shown in Listing 4-31.

Listing 4-31. Login Link

<body>
<h:dataTable value="#{catalog.products}" var="p" border="1">
<h:column>
<f:facet name="header">
<h:outputText value="Id"/>
</f:facet>
<h:outputText value="#{p.id}"/>
</h:column>
<h:column>

<f:facet name="header">

CHAPTER 4 CREATING AN E-SHOP

<h:outputText value="Name"/>
</f:facet>
<h:form>
<h:commandLink action="detail">
<f:setPropertyActionListener .../>
<h:outputText value="#{p.name}"/>
</h:commandLink>
</h:form>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Price"/>
</f:facet>
<h:outputText value="#{p.price}"/>
</h:column>
</h:dataTable>
<h:form>
<h:commandLink action="login" value="Login"/>
</h:form>
</body>
</html>

Define the navigation case in faces-config.xml as shown in Listing 4-32.

Listing 4-32. Navigation Case for the Login Page

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>
<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>detail</from-outcome>
<to-view-id>/detail.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/detail.xhtml</from-view-id>
<navigation-case>
<from-outcome>added</from-outcome>

133

134 CHAPTER 4 CREATING AN E-SHOP

<to-view-id>/cart.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/cart.xhtml</from-view-id>
<navigation-case>
<from-outcome>confirm</from-outcome>
<to-view-id>/confirm.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>login</from-outcome>
<to-view-id>/login.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Create login.xhtml as shown in Listing 4-33.

Listing 4-33. Login Page

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<h:messages/>

<h:form>
<h:inputText value="#{loginRequest.username}" />
<h:inputText value="#{loginRequest.password}" />
<h:commandButton value="Login" action="#{loginRequest.login}" />

</h:form>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 4 CREATING AN E-SHOP

Create the LoginRequest class in the shop package as shown in Listing 4-34. You'll create
the (session-scoped) UserHolder web bean later in this chapter. It is like the ProductHolder
bean except that it contains the current User object. For simplicity, instead of looking up
the database, you'll just hard-code a known user here. If the username and password are
correct, you'll put the User object into the UserHolder web bean (and thus into the session).
If the username or password is incorrect, you’ll log an error message. In that case, you’ll
return null as the outcome, which tells JSF to not change the view ID, that is, redisplay the
current page (the login page).

Listing 4-34. The LoginRequest Class

package shop;

@Named("loginRequest")

@RequestScoped

public class LoginRequest {
private String username;
private String password;
@Current
private UserHolder userHolder;

public String getUsername() {
return username;
}
public String getPassword() {
return password;
}
public void setUsername(String username) {
this.username = username;
}
public void setPassword(String password) {
this.password = password;
}
public String login() {
if (username.equals("u1") &8 password.equals("p1")) {
userHolder.setCurrentUser(new User("u1", "p1", "1234"));
return "loggedIn";
} else {
FacesContext context = FacesContext.getCurrentInstance();
context.addMessage(null, new FacesMessage(
FacesMessage.SEVERITY ERROR, "Login failed", null));
return null;

135

136

CHAPTER 4 CREATING AN E-SHOP

For convenience, you are providing the user’s details rather than pulling them from
a database.

Create the UserHolder class in the shop package as shown in Listing 4-35. Note that it is
a session-scoped web bean and thus needs to implement Serializable.

Listing 4-35. The UserHolder Class

package shop;

@SessionScoped
public class UserHolder implements Serializable {
private User currentUser;

public User getCurrentUser() {
return currentUser;

}

public void setCurrentUser(User currentUser) {
this.currentUser = currentUser;

Create the User class in the shop package as shown in Listing 4-36. Note that because
it will be dragged into the session by the UserHolder web bean, it needs to implement
Serializable too.

Listing 4-36. The User Class

package shop;

public class User implements Serializable {
private String username;
private String password;
private String creditCardNo;

public User(String username, String password, String creditCardNo) {
this.username = username;
this.password = password;
this.creditCardNo = creditCardNo;

CHAPTER 4 CREATING AN E-SHOP

}
public String getCreditCardNo() {
return creditCardNo;

Define the navigation case for a successful login as shown in Listing 4-37. Note that
on a successful login it will always return to the catalog page.

Listing 4-37. Navigation Case for Successful Login

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>

<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>
<from-outcome>loggedIn</from-outcome>
<to-view-id>/catalog.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

When you run the application now, the login page should be working (see Figure 4-24).

L, Insert title here - Mozilla Firefox B, 2k

L, Insert title here - Mozilla Firefox =, 2k

Elle Edit View History Bookmarks Tools Help - El\e Edit View History Bookmarks Tools Help <

¢ 0086 LA A B) G-Ta

.‘ Name HPrice‘ l .
.|Pen011 ||1 2 | l Login |
E‘ Eraser (2.0

E‘ Ball pen|3.5
Login -

\/

Figure 4-24. Login page working

137

138

CHAPTER 4 CREATING AN E-SHOP

Then, modify ConfrimService so that it retrieves the credit card number from the cur-
rent User object (see Listing 4-38).

Listing 4-38. Retrieving the Credit Card Number of the Current User

@Named("confirmService")
@RequestScoped
public class ConfirmService {
@Current
private Cart cart;
@Current
private Catalog catalog;
@Current
private UserHolder uh;

public double getTotal() {
double total = 0;
for (String pid : cart.getProductIds()) {
total += catalog.getProduct(pid).getPrice();
}
return total;
}
public String getCreditCardNo() {
return uh.getCurrentUser().getCreditCardNo();

Run the application, log in, and then go to the confirm page. It should display “1234”
as the credit card number (Figure 4-25) because that was hard-coded in Listing 4-34,
which means it is working.

CHAPTER 4 CREATING AN E-SHOP

« L Insert title here - Mozilla Firefox =1 (B L3

Eile Edit View History Bookmarks Tools Help
€% -002 W@ |G-

You'll pay
11.899999999999999 with
credit card 1234.

Figure 4-25. Checkout page displaying the user’s credit card number

Forcing the User to Log In

The example is working fine if the user logs in and then tries to check out. But what if the
user tries to check out without logging in first? Then the current User object will be null
and the code highlighted in bold in Listing 4-39 will be null.

Listing 4-39. Problems If the User Hasn't Logged In

@Named("confirmService")
@RequestScoped
public class ConfirmService {
@Current
private Cart cart;
@Current
private Catalog catalog;
@Current
private UserHolder uh;

public double getTotal() {
double total = 0;
for (String pid : cart.getProductIds()) {
total += catalog.getProduct(pid).getPrice();

}

return total;

}
public String getCreditCardNo() {

return uh.getCurrentUser().getCreditCardNo();

139

140 CHAPTER 4 CREATING AN E-SHOP

To handle this scenario, the ideal behavior is to send the user to the login page and
then, after a successful login, return the user to the confirm page (see Figure 4-26).

catalog login

ul

\J

Fkkkkk

ogin If he came from m
the catalog page
A
detail v If he was trying
to check out
Eraser
Add to cart
cart confirm v
You'll pay $23.4 using credit card
Content: p1 p2 If not yet 1111 2222 3333 444,
logged in
Checkout > [0K
eckou If already
logged in

Figure 4-26. Page flow forcing the user to log in

To achieve this effect, you will provide a firewall protecting the Render Response
phase, as shown in Figure 4-27. The firewall will check whether JSF is trying to render the
confirm.xhtml page but there is no current User object. If JSF is trying this, the firewall will

change the view ID to /login.xhtml; if it’s not, the firewall lets JSF continue the processing
as usual.

CHAPTER 4 CREATING AN E-SHOP 14

asuodsay Jepuad

g %
§.
view id = =/confirm && a
current User==nulll § I
&
=)
Firewall i

Figure 4-27. Firewall protecting the Render Response phase

Such a firewall can be implemented as a phase listener in JSF. It will get notified
whenever JSF is entering a certain phase. So, create a ForceLoginPhaselListener class in
the shop package, as shown in Figure 4-28.

142 CHAPTER 4 CREATING AN E-SHOP

package shop;

import javax.faces.application.Application;

import javax.faces.application.ViewHandler;

import javax.faces.component.UIViewRoot; . .

import javax.faces.context.FacesContext; :hv:slle_b\(le\lr(:ia(:Leght:'aesf:';eltattljlsfltse|r=eilt(;:r;?l;
import javax.faces.event.PhaseEvent; interested in the Render Response phase:
import javax.faces.event.Phaseld;

public class ForceLogiJPhaseListener implements Phaselistener {
public Phaseld getPhaseld() {
return PhaseId.RENDER RESPONSE;

. . i ?
public void beforePhase(PhaseEvent event) { About to render the confirm page?

FacesContext context = FacesContext.getCurrentInstance();

String viewId = context.getViewRoot().getViewId();

if (viewId.equals("/confirm.xhtml")) { No User object

Application app = context.getApplication(); (47 (not logged in)?

UserHolder uh = (UserHolder) app.evaluateExpressionGet(context,
"#{uh}", UserHolder.class);

if (uh.getCurrentUser() == null) {

ViewHandler viewHandler = app.getViewHandler();
UIViewRoot viewRoot = viewHandler.createView(context,

"/login.xhtml");

context.setViewRoot (viewRoot); View handler is the XHTML

} parser that creates the
} This is the view ID. component trees from
} XHTML files.
public void afterPhase(PhaseEvent event) { agthe view handier to
} create the component tree
} from the login.XHTML file.

Tell JSF to render this
view.

Figure 4-28. ForcelLoginPhasel istener

You need to register this phase listener with JSF in faces-config.xml (see Listing 4-40).

Listing 4-40. Registering the ForceloginPhaselistener

<faces-config ...>
<lifecycle>
<phase-listener>shop.ForceLoginPhaselListener</phase-listener>
</lifecycle>

CHAPTER 4 CREATING AN E-SHOP

<navigation-rule>
<from-view-id>/catalog.xhtml</from-view-id>
<navigation-case>
<from-outcome>detail</from-outcome>
<to-view-id>/detail.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

</faces-config>

Because the phase listener needs to access the UserHolder web bean by name, you
need to give it a name (see Listing 4-41).

Listing 4-41. Naming the UserHolder Web Bean

@Named("uh™)

@SessionScoped

public class UserHolder implements Serializable {
private User currentUser;

public User getCurrentUser() {
return currentUser;

}

public void setCurrentUser(User currentUser) {
this.currentUser = currentUser;

Now, you'd like to go to the confirm page without logging in to test your progress.
But you just logged in not long ago, so how do you make the application forget that you
logged in? You could wait, say, 30 minutes so that the session is timed out, but a faster
way is to close the browser and start a new one. Then JBoss will treat it as a new browser
(and thus a new user and a new session).

Try it, and it should display the login page. But how do you return the user to the
right page once he has logged in? You can store the original view ID in the UserHolder web
bean before redirecting to the login page and let the login page return to there on a suc-
cessful login (see Listing 4-42, Listing 4-43, and Listing 4-44).

143

144 CHAPTER 4 CREATING AN E-SHOP

Listing 4-42. Keeping the Original View ID in the UserHolder Web Bean

@Named("uh")

@SessionScoped

public class UserHolder implements Serializable {
private User currentUser;
private String originalViewId;

public String getOriginalViewId() {
return originalViewId;

}

public void setOriginalViewId(String originalViewId) {
this.originalViewId = originalViewId;

}

public User getCurrentUser() {
return currentUser;

}

public void setCurrentUser(User currentUser) {
this.currentUser = currentUser;

Listing 4-43. Storing the Original View ID in the UsertHolder Web Bean

public class ForceloginPhaselistener implements Phaselistener {
public PhaseId getPhaseId() {
return PhaseId.RENDER_RESPONSE;
}
public void beforePhase(PhaseEvent event) {
FacesContext context = FacesContext.getCurrentInstance();
String viewId = context.getViewRoot().getViewId();
if (viewId.equals("/confirm.xhtml")) {
Application app = context.getApplication();
UserHolder uh = (UserHolder) app.evaluateExpressionGet(context,
"#{uh}", UserHolder.class);
if (uh.getCurrentUser() == null) {
uh.setOriginalViewId(viewId);
ViewHandler viewHandler = app.getViewHandler();
UIViewRoot viewRoot = viewHandler.createView(context,
"/login.xhtml");
context.setViewRoot(viewRoot);

CHAPTER 4 CREATING AN E-SHOP

}
}
}
public void afterPhase(PhaseEvent event) {
}

Listing 4-44. Returning to the Original View (If Any) on Successful Login

@Named("loginRequest")

@RequestScoped

public class LoginRequest {
private String username;
private String password;
@Current
private UserHolder userHolder;

public String login() {
if (username.equals("u1") &8 password.equals("p1")) {

userHolder.setCurrentUser(new User("u1", "p1", "1234"));

String viewId = userHolder.getOriginalViewId();

if (viewId != null) {
FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
ViewHandler viewHandler = app.getViewHandler();
UIViewRoot root = viewHandler.createView(context, viewId);
context.setViewRoot(root);
userHolder.setOriginalViewId(null);
return null;

} else {
return "loggedIn";

}

} else {
FacesContext context = FacesContext.getCurrentInstance();
context.addMessage(null, new FacesMessage(
FacesMessage.SEVERITY ERROR, "Login failed", null));
return null;

145

146

CHAPTER 4 CREATING AN E-SHOP

Note that it is possible that the user explicitly clicked the login link to go to the login
page instead of being redirected to here. In that case, there is no original view ID (null),
so you'll just return loggedIn as the outcome as usual. Then the navigation system will
send the user to the catalog page. If there is indeed an original view ID, you'll use it to
load the view root and set it as the current view root. In that case, because you have set
the view root yourself, you must tell the navigation system to not change the view root
again. This is done by returning null as the outcome.

Now, start a new session, and run it again. Try to check out without logging in. The
application should display the login page. Then it will return you to the confirm page
once you have logged in. Then start a new session, but this time log in from the catalog
page. It should then return you to the catalog page.

Implementing Logout

Suppose that you’d like to allow the user to log out by clicking a Logout link, as shown in
Figure 4-29.

L Insert title here - Mozilla Firefox = (8 e,

Eile Edit View History Bookmarks Tools Help

¢ -004E [0

’ﬁ‘ Name ‘Price
’E‘Pencﬂ ‘1.2
’p72‘Eraser ‘2.0
’E‘Baﬂ pen ‘3.5
Login Logout

Figure 4-29. The Logout link

The minimum that you need to do is to remove the User object from the UserHolder
web bean. However, a better way is to delete the session altogether (including the shop-
ping cart, for example) because it will free up the memory. To do that, modify catalog.
xhtml as shown in Listing 4-45. Note that you're not setting the outcome (action) so that
it remains on the catalog page after logging out. In addition, you will create the action lis-
tener to remove the session. Why not specify a method in the action attribute? You could
do that, but removing the session is a UI-specific task, not a business task. So, an action
listener is better.

CHAPTER 4 CREATING AN E-SHOP 147

Listing 4-45. Logout Link on the Catalog Page

non nan

<h:dataTable value="#{catalog.products}" var="p" border="1">

</h:dataTable>

<h:form>

<h:commandLink action="login" value="Login"/>

<h:commandLink value="Logout">

<f:actionListener type="shop.LogoutActionListener"/>

</h:commandLink>
</h:form>

</body>

Create the LogoutActionListener class in the shop package, as shown in Figure 4-30.

package shop;

import
import
import
import
import
import

public

javax.faces.context.ExternalContext;
javax.faces.context.FacesContext;
javax.faces.event.AbortProcessingException;
javax.faces.event.ActionEvent;

javax.faces.event.ActionlListener; The external context means the platform JSF
javax.servlet.http.HttpSession; is running on. In this case, it's JBoss.

class LogoutActionListener implements ActionListener {

public void processAction(ActionEvent event)

throws AbortProcessingException {
FacesContext context = FacesContext.getCurrentInstance();
ExternalContext externalContext = context.getExternalContext();
Object session = externalContext.getSession(false);
HttpSession httpSession = (HttpSession) |session;
httpSession.invalidate();
Get access to the session. The session is
maintained by the platform (JBoss).

Remove the session.

The session is an Chject, not an HtpSession. Thisis
because JSF could potentially run on a platform that
doesn't use HITR, Here you're sure it is using HT TR, so
you can typecast it.

Figure 4-30. The LogoutActionlListener class

148

CHAPTER 4 CREATING AN E-SHOP

Run the application, and log in and then log out. Then try to check out, and it should
ask you to log in again. You may notice that there is no space between the Login link and
the Logout link. To fix this, modify catalog.xhtml as shown in Listing 4-46.

Listing 4-46. Inserting a Space

<h:form>
<h:commandLink action="login" value="Login"/>
<h:outputText value=" "/>
<h:commandLink value="Logout">
<f:actionListener type="shop.LogoutActionListener"/>
</h:commandLink>
</h:form>
</body>
</html>

When you run the application, there should be a space between the two links.

Protecting the Password

Currently the login page shows the password as the user types it in. This is no good because
someone watching over the user’s shoulders could steal the password. It’s better to display
it as asterisks. To do that, modify login.xhtml as shown in Listing 4-47. <h:inputSecret> is
just like <h:inputText> in that it will create a UI Input. The only difference is that the user
input will appear as asterisks. Again, this is done using a different renderer.

Listing 4-47. Using <h:inputSecret>

<body>
<h:messages />
<h:form>
<h:inputText value="#{loginRequest.username}" />
<h:inputSecret value="#{loginRequest.password}" />
<h:commandButton value="Login" action="#{loginRequest.login}" />
</h:form>
</body>
</html>

When you run the application now, the password should be displayed as asterisks.

CHAPTER 4 CREATING AN E-SHOP 149

Summary

You learned the following in this chapter:

¢ Afacetis a child component that is subjected to special processing by its parent.

¢ Arequest has a table of attributes. Each attribute has a name and a value (Object).
It allows you to give a name to an object. It is like request-scoped web beans except
that it doesn’t create the object; it only associates it with a name.

¢ To loop through some items in a table, if the number of items can only be determined
at runtime, use the <h:dataTable> tag, which will create a UI Data component. You
provide a List of items to it, and it will loop through it for each item. Its children must
be UI Column components. Each UI Column represents a column in the table. For
each row, the UI Data will create an environment containing the row index and store
the current item into an attribute before asking each UI Column to render itself. Each
UI Column will render its own child components (excluding the facet named header).
A UI Column can optionally have a facet named header. In that case, the UI Data will
render a header row and ask the UI Columns to render the header facet as the header
for the column before it starts to process the data rows.

¢ On form submission, the UI Data will loop through the items again, re-creating the
environment (to set up the attribute) and giving each component inside an oppor-
tunity to apply request values, process validations, update domain values and
invoke application in each respective phase.

e Because the current item is stored into an attribute and that attribute will be
cleared by the environment, if you need to pass it onto the next page, most likely
you’'ll want to use the Set Property action listener.

¢ If you need to loop through some items but they won’t be presented in an HTML
<table>, you can use the <ui:repeat> tag. It works very much like the <h:dataTable>
tag except that it won’t output markup of its own.

¢ To create a link, use the UT Command component with a link renderer. In terms of
behavior, it is just like a Ul Command component with a button renderer.

¢ For a Ul Command, in addition to setting an outcome in its action attribute, you can
also specify a method. This is useful when you need to perform a business action.
That method should return a string indicating the outcome. If you need to perform
a Ul-specific action, it’s better to add an action listener to the Ul Command.

e A Ul Input can be rendered such that user input is echoed as stars. This is good for
password input.

150

CHAPTER 4 CREATING AN E-SHOP

If you display the properties of a request-scoped web bean using a page, you must
be careful when the form is submitted because a new request-scoped web bean
will be created. Usually you will use a UI Input component along with an HTML
Hidden Input renderer to store the ID in the browser as a hidden field. You will
then load the object when the ID is set.

JSF uses a view handler to create the JSF component tree from a specified view ID.
You need to use a view handler when you want to bypass the JSF navigation sys-
tem. You need to load a view and set it as the one to be rendered.

A session is a memory area for each user (or rather, each browser instance). To
start a new session, either restart the browser or wait until the timeout. To remove
the session on the server, call invalidate() on the session. This is commonly done
when logging out. Everything put into the session must implement Serializable.

There is a web bean table in each session. You can put per-user temporary data
into there.

A phase listener will be notified before entering a phase or after exiting from a phase.
You can use it to make sure the user has logged in before rendering a certain pages.

The external context means the platform on which JSF is running. In your case, it
is JBoss. JSF assumes this platform is responsible for maintaining the session.

CHAPTER 5

Creating Custom Components

In this chapter, you'll learn how to create your own components that can be reused on

multiple pages.

Displaying a Copyright Notice on Multiple Pages

Suppose that you’d like to display a copyright notice on multiple pages like that shown in

Figure 5-1.
Page 1 Page 2
Unique Page Content Unique Page Content
Gopyright. Fooiinc. Gopyright. Fooiinc.
The Same Gopyright
Notice

Figure 5-1. Copyright notice on multiple pages

This is no good, because if later you need to modify the copyright notice, you'll have
to do it multiple times (once for each page). To solve this problem, you can extract the
common HTML code into a separate XHTML file, as shown in Figure 5-2.

151

152 CHAPTER 5 CREATING CUSTOM COMPONENTS

Page 1 Page 2

Lhique Page Gontent Lhique Page Gontent

Copyright. Fooinc. | Copyright. Fooinc.

copyright xhitm

Copyright. Foo inc.

Figure 5-2. Extracting common code into a separate XHTML file

Then to include that XHTML file into a particular page, let’s assume that someone
has developed a custom tag that can be used, as shown in Figure 5-3.

Page 1
<html>

<copyright/> -
</html> You can assume that the
<copyright> tag will include
the XHTML content from the
file at runtime.

copyright.xhtml

Copyright. Foo inc. —

Figure 5-3. Including the XHTML file using a custom tag

However, this is not a simple text inclusion. When JSF is creating the component tree,
it will use the content of copyright.xhtml to create a subtree and then graft that subtree
into the page, as shown in Figure 5-4.

CHAPTER 5 CREATING CUSTOM COMPONENTS

e E The subtree is grafted
into the page.

The roct of the subtree is a @
component that is likea U : Qomponen
” e

Figure 5-4. Grafting the subtree into the page

In addition, in XHTML each tag must belong to a namespace, so your <copyright>
tag must as well. Let’s choose http://foo.com as the namespace (you could choose any
unique URL that you’d like, though). Then you will use the tag as shown in Listing 5-1.

Listing 5-1. The <copyright> Tag in the http://foo.com Namespace

<html xmlns:foo="http://foo.com">

<foo:copyright/>
</html>

In addition, just because the tag is named copyright, JSF will not simply assume that
the XHTML is named copyright.xhtml. Instead, you must explicitly tell JSF the file name
when defining the tag. Conceptually, it looks like Figure 5-5.

153

http://foo.com
http://foo.com
http://foo.com

154

CHAPTER 5 CREATING CUSTOM COMPONENTS

namespace: http://foo.com
tag: copyright
source: copyright.xhtml

Brplicitly define the file
name.

Figure 5-5. Explicitly specifying the file name when defining a custom tag

Because a namespace could contain more than one tag, conceptually you could
define multiple tags, as shown in Listing 5-2.

Listing 5-2. Defining Multiple Tags Conceptually

namespace: http://foo.com
tagl: copyright

sourcel: copyright.xhtml
tag2: ...

source2: ...

This means that you're defining a tag library instead of just a single tag. You would
put such a tag lib definition into a file in a folder named META-INF in the classpath. The
file name must end with .taglib.xml, such as foo.taglib.xml. On startup, JSF will look for
such file names and load the definitions.

Now, let’s do it. Create a new dynamic web project named CustomComp. Create
p1.xhtml as shown in Listing 5-3. Here p1 stands for “page 1” and serves as a simple page
to use your <copyright> tag.

Listing 5-3. Sample Page Using the Custom Tag

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:foo="http://foo.com">

<p>This is pagel.</p>

<foo:copyright/>

</html>

Create a META-INF folder in your Java source folder, and then create a file foo.taglib.
xml in it. Listing 5-4 shows the content. Here you're defining a Facelet tag lib, which is the
same as a namespace. The tag lib (namespace) is identified by the URL http://foo.com.

http://foo.com
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://foo.com

CHAPTER 5 CREATING CUSTOM COMPONENTS

You're defining a single tag called <copyright>, while you could define many tags in a tag
lib. The XML tags used in Listing 5-4 to define a tag (for example, <facelet-taglib> and
<tag>) are all in the http://java.sun.com/JSF/Facelet namespace.

Listing 5-4. Defining a Tag Lib

<IDOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib 1 0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">
<namespace>http://foo.com</namespace>
<tag>
<tag-name>copyright</tag-name>
<source>copyright.xhtml</source>
</tag>
</facelet-taglib>

Note In Mojarra 2.0.0.PR2, there is a bug preventing *.taglib.xml files in the META- INF folder on the
classpath to be discovered. To work around it, put the whole META-INF folder into WebContent and then
explicitly specify the tag lib in web.xm1, as shown in Listing 5-5.

Listing 5-5. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>

<servlet>
<servlet-name>JSF</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>JSF</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</param-name>
<param-value>/META-INF/foo.taglib.xml</param-value>

</context-param»

</web-app>

155

http://java.sun.com/JSF/Facelet
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

156

CHAPTER 5 CREATING CUSTOM COMPONENTS

Create the copyright.xhtml file in the same META-INF folder. The content contains
a single line only (see Listing 5-6).

Listing 5-6. XHTML Code for the <copyright> Tag
Copyright. Foo inc.

However, JSF expects that the file is a complete XHTML page such as Listing 5-7,
probably so that you can use a visual editor to edit the XHTML code.

Listing 5-7. Complete XHTML Page for the <copyright> Tag

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<body>

Copyright. Foo inc.

</body>

</html>

However, this is a problem, because you definitely don’t want to include the <html>
and <body> tags in the real page. To solve this problem, JSF will require that you indicate
the real content, as shown in Listing 5-8, by surrounding it with the <component> tag. This
tag will create the UI Panel-like component as the root of the subtree. Everything outside
will not go into the JSF component tree and thus will have no effect on the output. The
<component> tag is defined in the JSF Facelets tag lib, which is the third taglib in addition
to the JSF Core tag lib and JSF HTML tag lib. The tags in the JSF Facelets tag lib are mainly
used to define components.

Listing 5-8. Indicating the Real Content with <ui:component>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets">

<body>

<ui:component>

Copyright. Foo inc.

</ui:component>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

CHAPTER 5 CREATING CUSTOM COMPONENTS

Now when you run the application, you should see the copyright notice on the page.

Allowing the Caller to Specify the Company Name

Suppose that in your application you’d like to display “Foo” as the company name on
some pages, but on other pages you’d like to display “Bar” instead. How do you do that?
You can let your <copyright> tag accept a parameter, as shown in Listing 5-9.

Listing 5-9. Providing Parameters to a Custom Tag

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">

<p>This is pagel.</p>

<foo:copyright company="Foo"/>

</html>

To output the company parameter in copyright.xhtml, access it just like a web bean
or an attribute (see Listing 5-10).

Listing 5-10. Accessing a Parameter in an EL Expression

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<body>

<ui:component>

Copyright. #{company}
</ui:component>
</body>

</html>

How does it work? When JSF is building the component tree, the <copyright> tag will
copy all its attributes into a table (see Figure 5-6). The attribute values are treated as EL
expressions, and they will be copied as is, without being evaluated. Then JSF will go into
copyright.xhtml. When it sees the EL expression #{company}, it will link it to the surround-
ing variable table so that it can find the variables when it is evaluated in the future. This
kind of variable is called an EL variable. If you know C/C++, an EL variable is very much
like a macro in C/C++ in that you can assign a name to an expression.

157

http://www.w3.org/1999/xhtml
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

158 CHAPTER 5 CREATING CUSTOM COMPONENTS

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">
<p>This is pagel.</p>

<foo: copyright

</html> 1: Gopy the attributes into the table.

Name |EL expr
company (Foo

2: Link the B expression to that
variable table.

value: #{company}

Figure 5-6. Custom tag parameters gathered to form a variable table

After the tree is completed, the connection between the variable table and the
UI Panel-like component will be removed, and the tree will look like what’s shown in
Figure 5-7. Now, there is no longer any concept of parameters.

Name |EL expr
company |Foo

Panel-Like
Gomponent

L Qutput-Likd Variable Table
Gomponent

value: #{company}

Figure 5-7. EL expression linked to a variable table

When the UI Output-like component needs to render itself, it will evaluate the EL
expression. The EL expression will look up the variable table (see Figure 5-8) and reach
Foo. Then it will evaluate Foo as an EL expression again. Because it is a literal, the result is
still Foo, so that’s the output you'll see on the screen.

http://www.w3.org/1999/xhtml
http://foo.com

CHAPTER 5 CREATING CUSTOM COMPONENTS

Name (EL expr
CanpamQFoo

-

Panel-Like
Gomponent

e
Gomponent

value: #{company}

Figure 5-8. Looking up the variable to find the EL expression to evaluate

Now run the application again, and it will display the copyright notice with “Foo” as
the company name.

Creating a Product Editor

You aren’t limited to passing strings as parameters; you can pass objects. For example,
suppose that you’d like to have a form to edit the details of a Product object (containing,
say, a product ID and a product name) and that the form is used on multiple pages. So,
you’d like to create a custom tag to represent such a form and pass a Product object to it
for editing (see Listing 5-11). Here, <pe> stands for “product editor.”

Listing 5-11. Passing an Object to a Custom Tag

<foo:pe product="...EL EXPR TO RETURN A PRODUCT..."/>
<foo:copyright company="Foo"/>

To do that, modify foo.taglib.xml as shown in Listing 5-12.

Listing 5-12. Defining the <pe> Tag

<IDOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib 1 o.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">
<namespace>http://foo.com</namespace>
<tag>
<tag-name>copyright</tag-name>
<source>copyright.xhtml</source>
</tag>

159

http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

160

CHAPTER 5 CREATING CUSTOM COMPONENTS

<tag>
<tag-name>pe</tag-name>
<source>pe.xhtml</source>
</tag>
</facelet-taglib>

Create the pe.xhtml file as shown in Listing 5-13.

Listing 5-13. XHTML Code for the <pe> Tag

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">
<body>
<ui:component>
<h:form>
<h:inputHidden value="#{product.id}"/>
<h:inputText value="#{product.name}"/>
<h:commandButton action="#{product.onUpdated}" value="0K"/>
</h:form>
</ui:component>
</body>
</html>

Note how the EL expressions refer to the product parameter in the variable table.
Finally, the caller has to provide a Product object. Let’s do it in p1.xhtml (see Listing 5-14).

Listing 5-14. Providing a Product Object to the <pe> Tag

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">

<p>This is pagel.</p>

<foo:pe product="#{currentProduct}"/>

<foo:copyright company="Foo"/>

</html>

Create the Product class in the custom package, and create the currentProduct web
beans from it (see Listing 5-15).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://www.w3.org/1999/xhtml
http://foo.com

CHAPTER 5 CREATING CUSTOM COMPONENTS

Listing 5-15. The Product Class

package custom;

@Named("currentProduct")

@RequestScoped

public class Product {
private String id;
private String name;

public Product() {
this("p1", "pen");

}

public Product(String id, String name) {
this.id = id;
this.name = name;

}

public String onUpdated() {
System.out.println(id + ":

+ name);
return "updated";

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

Note that its onUpdate() method will simply print its data to the console. In practice, it
could update the database, and so on. Now, restart JBoss so that JSF loads the tag lib defi-
nition again. Then run the application, modify the product name, and submit the form. It
will now print the data to the console.

161

162

CHAPTER 5 CREATING CUSTOM COMPONENTS

Passing a Method in a Parameter?

Note that some built-in JSF tags accept methods as parameters, as shown in Listing 5-16.

Listing 5-16. JSF Tags Accepting Method Parameters

<h:commandButton action="#{ph.addToCart}"/>
<h:commandLink action="..."/>

Can this be done with your custom tags? For example, could you modify the <pe> tag
so that it can be used as shown in Listing 5-17?

Listing 5-17. Custom Tags Accepting Method Parameters?

n

<foo:pe product="..." action="currentProduct.onUpdated"/>

Then you could call it as shown in Listing 5-18.

Listing 5-18. Calling a Method Parameter?

<ui:component>
<h:form>
<h:inputHidden value="#{product.id}"/>
<h:inputText value="#{product.name}"/>
<h:commandButton action="#{action}" value="OK"/>
</h:form>
</ui:component>
</body>
</html>

Unfortunately, by default it won’t work. That is, by default all attributes of a custom
tag are expected to evaluate to values (primitive values or objects). They can’t evaluate to
methods. The workaround is to pass an object that has a method that you can invoke (see
Listing 5-19 and Listing 5-20).

Listing 5-19. Passing an Object As an Action Provider

n

<foo:pe product="..." actionProvider="some object having an onUpdated() method"/>

CHAPTER 5 CREATING CUSTOM COMPONENTS 163

Listing 5-20. Invoking the Method of an Action Provider

<ui:component>
<h:form>
<h:inputHidden value="#{product.id}"/>
<h:inputText value="#{product.name}"/>
<h:commandButton action="#{actionProvider.onUpdated}" value="0K"/>
</h:form>
</ui:component>
</body>
</html>

This example is actually not much different from the original solution: invoking
amethod on the Product object itself.

Creating a Box Component

Suppose that you’d like to create a component that will accept any XHTML code (includ-
ing JSF tags) and will render a box around the code. See Figure 5-9 for an example.

Page 1

<foorbox>
x <hinputText.../>
y. <hinputText.../>
</foo:box>

It will add a box around the

content provided by the
box Xt caller.
\
x]
y 1

Figure 5-9. The Box component

A first attempt is to try to pass the XHTML code through a parameter, as shown in
Listing 5-21, and then to output it as shown in Listing 5-22.

164

CHAPTER 5 CREATING CUSTOM COMPONENTS

Listing 5-21. Passing XHTML Code in Parameters?

<foo:box content="x: <h:inputText .../> ...">

Listing 5-22. Outputting XHTML Code?

<table border="1">
<tr>
<td><h:outputText value="#{content}"/></td>
</tr>
</table>

However, this won’t work because the XHTML code will be treated as a string and
JSF won't parse it to create components accordingly. Then what you’ll get will look like
Figure 5-10.

x <hinputText .../>
y. <hinputText.../>

Figure 5-10. JSF tags will be output as is.

To really pass XHTML code (including JSF tags) to a custom tag, you can put the
XHTML code into the tag body. Let’s do it in p1.xhtml (see Listing 5-23).

Listing 5-23. Passing XHTML Code As the Tag Body

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">

<p>This is pagel.</p>

<foo:box>
<foo:pe product="#{currentProduct}"/>
<foo:copyright company="Foo"/>

</foo:box>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com

CHAPTER 5 CREATING CUSTOM COMPONENTS 165

So, how do you parse the XHTML code in the custom component? Create box.xhtml
(in the META-INF folder) with the content shown in Figure 5-11. Simply put, the <ui:insert>
tag will trace back into the body of the custom tag in the calling page to build the compo-
nent tree.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">

<p>This is pagel.</p>

<foo:box>

—<foo:pe product="#{currentProduct}"/>

<foo:copyright company="Foo"/>

</foo:box>
</html>
boxxttrm
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<body>
<ui:component>
<table border="1"> Draw the border.
<tr>
<td>
The <uii <ui:insert/>
il sacmioTe /td>
bodly specified by the </tr>
caller to huild the </table>
férmeea"dgraﬂit </ui:component>
e.
</body>
</html>

Figure 5-11. Using <ui:insert> to trace into the body

Finally, define the <box> tag in foo.taglib.xml, as shown in Listing 5-24.

Listing 5-24. Defining the <box> Tag

<IDOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib 1 0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">
<namespace>http://foo.com</namespace>
<tag>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

166 CHAPTER 5 CREATING CUSTOM COMPONENTS

<tag-name>copyright</tag-name>
<source>copyright.xhtml</source>
</tag>
<tag>
<tag-name>pe</tag-name>
<source>pe.xhtml</source>
</tag>
<tag>
<tag-name>box</tag-name>
<source>box.xhtml</source>
</tag>
</facelet-taglib>

Restart JBoss, and run the application. When you do, you should see a border sur-
rounding the product editor and the copyright notice.

Accepting Two Pieces of XHTML Code

Can a custom tag accept two pieces of XHTML code? For example, can you create a tag
that will display the two pieces of XHTML in two cells in a row, as shown in Figure 5-12?

Page 1
<foopair>
x <hiinputText .../> —
y: <hiinputText.../>
</foo pair> Gointo the right
cell.
Gointo the left
cell.

pairxhtrrl

x] y]

Figure 5-12. Accepting two pieces of XHTML code

To do that, create pair.xhtml (in the META-INF folder), and modify p1.xhtml as shown
in Figure 5-13. That is, you assign a unique name to each <ui:define> tag. When using
a<ui:insert> tag to trace back into the body of the custom tag in the calling page, you
also specify a name so that it can look up the corresponding <ui:define> tag by name.

CHAPTER 5 CREATING CUSTOM COMPONENTS

Define a piece of XHTML code named "left".
The name s just a unique id and has no
particular meaning.

<htm1 xmlns="http: //www w3.0rg/1999/xhtml"
xmlns:foo="http: //fpo com"
xmlns:ui="http://java.sun.com/jsf/facelets">
<p>This is pagel.</p>

<foo:pair>
<ui:define name="left"> <« The <tiiinsert> tag
<foo:pe product="#{currentProduct}"/> hes a name. Soit wil
</ui:define> taﬁim%mzﬁzf
.. . _nos " piece to build
<ui:define name= right ><% subtree and graft it
<foo:copyright|company="Foo"/> here.
</ui:define>
</foo:pair> Trace into there to build
the subtree and graft it
</html> here.
Define another piece of pairxhtm
XHTML code narmed
"right". <!DOCTYPE html PUBLIC "—//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3. org/TR/xhtmll/DTD/xhtmll -transitional.dtd">
<html xmlns="http://www.w3. org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<body>
<ui:component>
<table border="1">
<tr>
<td>
<ui:insert name="left"/>
</td>
<td>
<ui:insert name="right"/>
</td>
</tr>
</table>
</ui:component>
</body>
</html>

Figure 5-13. Using <ui:insert> with a name along with <ui:define>

Define the <pair> tagin foo.taglib.xml as shown in Listing 5-25.

Listing 5-25. Defining the <pair> Tag

<IDOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib 1 o.dtd">

167

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/jsf/facelets
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd

168 CHAPTER 5 CREATING CUSTOM COMPONENTS

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">
<namespace>http://foo.com</namespace>
<tag>
<tag-name>copyright</tag-name>
<source>copyright.xhtml</source>
</tag>
<tag>
<tag-name>pe</tag-name>
<source>pe.xhtml</source>
</tag>
<tag>
<tag-name>box</tag-name>
<source>box.xhtml</source>
</tag>
<tag>
<tag-name>pair</tag-name>
<sources>pair.xhtml</source>
</tag>
</facelet-taglib>

Restart JBoss, and run the application. You should see the product editor in the left
cell and the copyright notice in the right one.

Creating a Reusable Component Library

Suppose that you’d like to use the custom tags created so far in multiple projects. Obvi-
ously, copying foo.taglib.xml and the source XHTML files into multiple projects is a bad
idea, because if later you need to fix a bug in one of those files, you will have to do it once
for each project. To solve the problem, you can pack the META-INF folder into a JAR file and
reuse it in multiple projects (see Figure 5-14).

QustomGomp Hello

T [
L—-NEW%mF WEB-INF
footagiibxmi E lio
ot | fooar
‘ foojar

Figure 5-14. Creating a component library

http://java.sun.com/JSF/Facelet
http://foo.com</namespace

CHAPTER 5 CREATING CUSTOM COMPONENTS 169

To do that, create a new project named CompUser as usual. Then right-click the
META-INF folder in the CustomComp project, and choose Export. Then choose Java » JAR

File. Click Browse to save the JAR file as foo.jar in the WEB-INF/1ib folder of the CompUser
project (see Figure 5-15).

(3 JAR'Export

JAR File Specification

5
l
@ The export destination will be relative to your workspace. 1\—J

Select the resources to export:

~ 2% CustomComp
- El&#src
[# custom

box.xhtml
copyright.xhtml
w 4% foo.taglib.xml
pair.xhtml
pe.xhtml

[# javax.webbeans
META-INF

Export generated class files and resources

[Export all output folders for checked projects
[] Export Java source files and resources

[1 Export refactorings for checked projects. Select refactorings...

Select the export destination:

JAR file: | CompUser/WebContent/WEB-INF/lib/foo.jar

Browse...

Options:
Compress the contents of the AR file
[1 Add directory entries

1 Overwrite existing files without warning

@ [< Back [Next >] I Finish | I Cancel

Figure 5-15. Exporting a JAR file

In the CompUser project, create a p2.xhtml file (which stands for “page 2”) in the
WebContent folder, and try to use the custom tags shown in Listing 5-26.
Listing 5-26. Using the Custom Tags in Another Project

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

170

CHAPTER 5 CREATING CUSTOM COMPONENTS

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com">
<foo:box>Testing</foo:box>
</html>

When you run the application now, you'll see the “Testing” message appear in a box.
Now it should be clear why you need to put the foo.taglib.xml file and the source XHTML
files into the classpath instead of WebContent or WEB-INF: they were designed to be packed
into a JAR file for reuse.

Creating a Component Library Without taglib.xml

For the moment, you're creating a taglib.xml file to define a tag lib. However, there is an
easier way to do that. For example, let’s create another tag lib that has the same <pe> tag.
Instead of a URL, such an “easy” taglib is identified by a short name. Let’s name it bar. To
create it, simply create the folder META-INF/resources/bar in the classpath.

To define the <pe> tag, copy the pe.xhtml file into that folder, and modify it as shown
in Listing 5-27. The <composite:interface> tag assigns a name and a display name to the
<pe> tag, which are mainly used for visual tools. Then the <composite:attribute> tag states
that the <pe> tag accepts a parameter named product whose type is custom.Product and
that it is a required parameter. Finally, the <composite:implementation> tag plays a role
similar to <ui:component>. That is, it indicates the real content of the component.

Listing 5-27. Defining the <pe> Tag

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite”>
<body>
<composite:interface name="pe" displayName="Product Editor">
<composite:attribute name="product" type="custom.Product” required="true"/>
</composite:interface>
<composite:implementation>
<h:form>
<h:inputHidden value="#{product.id}"/>
<h:inputText value="#{product.name}"/>
<h:commandButton action="#{product.onUpdated}" value="0K"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/composite

CHAPTER 5 CREATING CUSTOM COMPONENTS

</h:form>
</composite:implementation>
</body>
</html>

However, in such a component, the parameters are available only in a Map that can be
accessed as compositeComponent.attrs (see Listing 5-28). Note how you can access a par-
ticular element in a Map using its key in an EL expression.

Listing 5-28. Accessing the Parameters in a Map in an “Easy” Component

<composite:implementation>
<h:form>
<h:inputHidden value="#{compositeComponent.attrs['product'].id}"/>
<h:inputText value="#{compositeComponent.attrs['product’].name}"/>
<h:commandButton
action="#{compositeComponent.attrs['product’].onUpdated}" .../>
</h:form>
</composite:implementation>
</body>
</html>

To use the bar taglib in p1.xhtml, you need to use its namespace URL. But what’s its
URL? Because it has only a short name, its URL is always derived from the short name
using this pattern: http://java.sun.com/jsf/composite/<short name>.In this case, it is
http://java.sun.com/jsf/composite/bar. So, modify p1.xhtml as shown in Listing 5-29.

Listing 5-29. Using the <pe> Tag in the Bar Tag Lib

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:foo="http://foo.com"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:bar="http://java.sun.com/jsf/composite/bar">
<p>This is pagel.</p>
<bar:pe product="#{currentProduct}"/>
<foo:pair>
<ui:define name="left">
<foo:pe product="#{currentProduct}"/>

17

http://java.sun.com/jsf/composite/
http://java.sun.com/jsf/composite/bar
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/composite/bar

172

CHAPTER 5 CREATING CUSTOM COMPONENTS

</ui:define>
<ui:define name="right">
<foo:copyright company="Foo"/>
</ui:define>
</foo:pair>
</html>

Now, run the application, and it should display a new product editor outside the pair.

Summary

Whenever you see duplicated code in XHTML files, it’s high time that you considered
extracting the duplicated code into a custom component. To do that, as you learned in
this chapter, you can define a tag lib by putting a *.taglib.xml file into the META-INF folder.
For each tag, specify the source XHTML file, and put the duplicated code in that XHTML
file

You also learned that you can pass parameters to a custom tag. At tree construc-
tion time, parameters will be formed into a variable table, and the EL expressions in the
source file will be linked to it. At render time, they will trace into the variable table to get
the value as an EL expression for evaluation.

The EL expression can evaluate to a value/object only. It must not evaluate to a method.
To pass a method to the custom tag, pass an object that hosts the method.

You can’t pass XHTML code to a custom tag through a parameter and expect JSF to
parse the code. To do that, put the code into the body of the tag, or use <ui:define> if you
have multiple pieces of code. The custom component can trace into the code to build the
subtree using <ui:insert>.

To reuse custom tags in multiple projects, you can export the META-INF folder into
aJAR file and reuse it.

Finally, you learned you can create a tag lib without using a taglib.xml file by cre-
ating a folder using the short name of the taglib in a special location on the classpath
(META-INF/resources). The short name is also used to derive the namespace URL. Com-
ponents in such a tag lib provide more information regarding their parameters for visual
tools to use. To access their parameters, the components need to access them from a Map
using a special name in EL expressions.

CHAPTER 6

Providing a Common Layout for
Your Pages

It is commonly required for all the pages in a given application to have a common layout.

In this chapter, you'll learn how to apply a common layout to all your pages in your appli-
cation easily.

Using the Same Menu on Different Pages

Suppose that you’d like to develop an application like the one shown in Figure 6-1. It is
not important what the application shown does. What is important is that on each page
there is the same menu on the left.

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Iools Help

Q] @ 8 - @ [".'; |http::‘i|nca|hos | - I l-| Q]
Home .. Home ..
This is the Home This is the Products
Products age Products age
Contact page. Contact page.

Figure 6-1. All the pages have a menu on the left.

To do that, create a new dynamic web project named Layout. You're about to create
two pages: home.xhtml and products.xhtml. Figure 6-2 shows the structure of these pages.
You can see that the XHTML page structures are the same, and the only difference is the
cell content on the right.

173

174

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

Hml Hml

Figure 6-2. Pages sharing a common structure

Whenever you see duplicate XHTML code, you should extract it into a common
place. For example, if you extracted it into a component, that would allow you to reuse
it in both pages (see Listing 6-1 for home.xhtml using the imagined component), but you
would still have to duplicate the <html> tag, the <head> tag, the <body> tag, any CSS styles,
and so on, as highlighted in Listing 6-1.

Listing 6-1. Using a Custom Component Would Not Remove All Duplicate Code

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:foo="http://foo.com">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" type="text/css" href="stylei.css"/>
<link rel="stylesheet" type="text/css" href="style2.css"/>
</head>
<body>
<foo:mycomponent>
This is the Home page.
</foo:mycomponent>
</body>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://foo.com

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

Instead of having to repeat all that code, you should extract the duplicate code into
a base page that contains some abstract parts (see Figure 6-3). Then you can let each page
extend the base page and provide its unique content, just like Java class inheritance.

-

[e

Figure 6-3. Page inheritance

To do that, create base.xhtml (also in the WebContent folder), as shown in Listing 6-2.
Note how it uses the <ui:insert> tag to insert the abstract part, exactly like what you
would do in a custom component in the previous chapter.

Listing 6-2. The Base Page

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:form>
<table>
<tr>
<td width="40%"><h:commandLink action="home">Home</h:commandLink>

<h:commandLink action="products">Products</h:commandLink>

<h:commandLink action="contact">Contact</h:commandLink></td>

175

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets

176 CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

<td>
<ui:insert>unique content</ui:insert>
</td>
</tr>
</table>
</h:form>
</body>
</html>

Create home.xhtml to “inherit” base.xhtml, as shown in Figure 6-4.

Include a certain page
(here /base.xhtm).

<html xmlns="http://www.w3.0rg/1999/xhtml" L Euerything autsic the

xmlns:ui="http://java.sun.com/jsf/facelets">
<ui:compbsition template="/base.xhtml">

<composition>
element will not be

This is the home page. otput
</ui:composition>
</html>]

) . This path starts from
E"e'yth'r‘%gq’tf'de the the cortext root folder
element will not be (WeloContent).
output. The tag body is the

concrete part.

Figure 6-4. “Inheriting” the base page

Run the application by visiting http://localhost:8080/Layout/faces/home.xhtml. If it is
working as expected, the HTML code should be that of base.xhtml except for the abstract
part. This is very much like using a custom component except that you don’t need to
define a custom tag.

Now create products.xhtml in a similar manner. It works in the same way.

In this setup, you can think of it like the base page providing a template with some
holes to fill in and the Home page and the Products page using that template and filling
those holes with their unique contents.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://localhost:8080/Layout/faces/home.xhtml

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES 177

Using Global Navigation Rules

What is interesting is how to create the navigation rules for the links. As a first attempt,
you may try what’s shown in Figure 6-5.

Rile1 Rule 2
/home.xhtml /products.xhtml
> » (_ /homexhtml
home home
» (_/products.xhtml » (_/products.xhtml
products products
» (_ /contact.xhtml » (_ /contact.xhtml
contact oontact

Figure 6-5. Duplicate navigation rules

However, that is a lot of duplication. Figure 6-6 shows a better way. Because the star
will match any source view ID, the navigation rule could be considered a global fallback
rule.

Astar will match any view D.

» (_ /homexhtml
home

» (_/products.xhtml
products
contact

Figure 6-6. Using a wildcard to match any view ID

To implement this idea, modify faces-config.xml as shown in Listing 6-3.

178

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

Listing 6-3. faces-config.xml Using a Wildcard to Match Any View ID

<?xml version="1.0" encoding="UTF-8"?>
<faces-config ...>

<navigation-rule>
<from-view-id>*</from-view-id>
<navigation-case>
<from-outcome>products</from-outcome>
<to-view-id>/products.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>home</from-outcome>
<to-view-id>/home.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Restart the application, and you'll see that the links work.

Using Two Abstract Parts

Suppose that each page may need to have a particular header that contains HTML ele-
ments or even JSF components, as shown in Figure 6-7.

This header may contain markup such as

Home T <h1> or even componerts.

Home
Products This is the home page.
Contact

Figure 6-7. Creating a unique header for each page

Now you'll have a structure that looks like Figure 6-8.

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

base.xhtrml

home.xhtml Home Products products.xhtrm

o B
s =

Figure 6-8. Having two abstract parts

This is like a base class having two abstract methods. For this to work, you need to
give a unique name to each abstract part, as shown in Listing 6-4.

Listing 6-4. Giving a Unique Name to Each Abstract Part

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<ui:insert name="p1">header</ui:insert>
<h:form>
<table>
<tr>
<td width="40%"><h:commandLink action="home">Home</h:commandLink>

<h:commandLink action="products">Products</h:commandLink>

<h:commandLink action="contact">Contact</h:commandLink></td>
<td>
<ui:insert name="p2">unique content</ui:insert>

179

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets

180

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

</td>
</tr>
</table>
</h:form>
</body>
</html>

Modify home.xhtml to provide the two concrete parts as shown in Listing 6-5. Again, this
is exactly like when passing multiple fragments of XHTML tags to a custom component.

Listing 6-5. Providing Concrete Parts

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">
<ui:composition template="/base.xhtml">
<ui:define name="p1">
<h1>Home</h1>
</ui:define>
<ui:define name="p2">
This is the home page.
</ui:define>
</ui:composition>
</html>

Run the application, and you'll see it works. Then, modify products.xhtml similarly.

Creating Page-Specific Navigation Cases

Suppose that you’d like to have a link on the Products page to display hot deals, as shown
in Figure 6-9.

Fle Edit View History Bookm:

@B - Q@ A [mpmocanes [-] [Cl-]00a)

Products

Home This is the Products
Products page. Here are
Contact somehot deals.

Figure 6-9. A link to hot deals

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

Why is this requirement interesting? Consider where you should put the navigation
case. If you put it into the global navigation rule, it would affect all the pages in the applica-
tion, which is not what you want. To see how to do it, read on. First, modify products.xhtml
as shown in Listing 6-6.

Listing 6-6. Putting a JSF Tag in a Concrete Part

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">
<ui:composition template="/base.xhtml">
<ui:define name="p1">
<h1>Products</h1>
</ui:define>
<ui:define name="p2">
This is the Products page.
Here are some <h:commandLink action="hotDeals">hot
deals</h:commandLink> .
</ui:define>
</ui:composition>
</html>

There is nothing special here. Create a simple hotdeals.xhtml page as shown in
Listing 6-7.
Listing 6-7. The Hot Deals Page

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

Hot deals here!

</html>

Then, create a normal navigation rule for the products page as shown in Listing 6-8.

Listing 6-8. Navigation Rule for the Products Page

<?xml version="1.0" encoding="UTF-8"?>
<faces-config ...>

<navigation-rule>
<from-view-id>*</from-view-id>

181

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

182 CHAPTER 6 PROVIDING A COMMON LAYOUT FOR YOUR PAGES

<navigation-case>
<from-outcome>products</from-outcome>
<to-view-id>/products.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>home</from-outcome>
<to-view-id>/home.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/products.xhtml</from-view-id>
<navigation-case>
<from-outcome>hotDeals</from-outcome>
<to-view-id>/hotdeals.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Now, that is the interesting part: both this rule and the global rule will match the cur-
rent view ID (/products.xhtml), so which one will take effect? This rule will be considered
before the global rule because it is more specific (that is, it doesn’t contain any wildcard).
Once a navigation case is found, the search will stop. In this case, it means the specific
rule will take effect because it is considered first and because it contains a matching navi-
gation case. Now, run the application again, and try to go to the hot deals page. It should
work as expected.

Summary

In this chapter, you learned that if you have pages with a common layout, you can extract
the common stuff into a base page and mark the abstract parts using <ui:define>. Then
in each child page, suck in the base page using <ui:composition>, and provide each con-
crete part using <ui:define>. Each part should have a unique name. If there is only one
abstract part, you can omit the name and provide the concrete part as the body of the
<ui:composition> element.

You learned that you can use a star as the view ID in a navigation rule. In that case, it
will match any view ID. This is useful if multiple pages share the same navigation cases.
If a page needs some additional navigation cases, it can have its own normal navigation
rule, which will be checked first.

CHAPTER 7

Building Interactive Pages
with Ajax

In this chapter, you'll learn how to build pages that are more interactive than normal
HTML pages using a technique called Ajax.

Displaying a FAQ

Suppose that you’d like to develop an application that displays a FAQ, as shown in
Figure 7-1.

(@ Insert title here - Mozilla Firefox

File Edit wiew History Bookmarks Tools Help

@ % -0 A [<|vea -] [E-[o&)

How to run Eclipse?

Double-click its icon.

How to auto-complete?
Press Ctrl-Space.

How to delete a file?

Press Del

Figure 7-1. Displaying a FAQ

Suppose that every question has both a short answer and a long answer. Initially, the
short answer is displayed. If the user clicks the question, the answer will change to the long
answer. If the user clicks it again, it will change back to the short answer again.

To do that, create a new dynamic web project named FAQ in the same way as you
have created projects in the rest of the book. As a first step, you’ll show a single question
only. So, create a listfaq.xhtml page as shown in Listing 7-1.

183

184 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-1. Iistfaq.xhtml

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<h:form>
<h:commandLink action="#{faqService.trigger}"

value="#{fagService.questionText}" />

</h:form>

<h:outputText value="#{faqService.answerText}" />

</body>

</html>

Create the FAQService class in the faq package as shown in Listing 7-2.

Listing 7-2. FAQService Class

package faq;

@Named("fagService")
@SessionScoped
public class FAQService implements Serializable {
private String questionText = "How to run Eclipse?”;
private String answerTextShort = "Double-click its icon.";
private String answerTextlLong = "Double-click its icooooooooooooooooooooon.";
private boolean isShortForm = true;

public String getQuestionText() {
return questionText;
}
public String getAnswerText() {
return isShortForm ? answerTextShort : answerTextlong;

}
public String trigger() {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

isShortForm = !isShortForm;
return null;

Note that this class is in the session scope (and thus needs to implement Serializable).
Why? If it were in the request scope, then a new bean would be created for each request
and the isShortForm flag would always be true. In addition, the trigger() method returns
null so that the current page is redisplayed after the link is clicked.

Now run it. Clicking the question will change the form of the answer between the
short and long forms.

Refreshing the Answer Only

Note that for the moment, whenever the user clicks the link, the progress bar in the browser
will go from 0 to 100 percent, as shown in Figure 7-2. This indicates that the whole HTML
page is refreshed.

Insert title here - Mozilla Firefox

Eile Edit View History Bookmarks Tools Help

45‘ - @ & [".'; http:/flocalhos | - l [v |sessi'@]

How to run Eclipse?

Double-click its icon.

The progress bar shows
that the whole page is
refreshed.

http:/flocalhost: 8080/FAQ/faces/listfaq.xhtmls @% y

Figure 7-2. Progress bar indicating a full-page refresh

185

186

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

This can be made better. For example, you could refresh the answer only, not the
whole page. This way the response will feel much faster and thus provide a better user
experience. To do that (see Figure 7-3), you need to generate some JavaScript for the
onclick event of the question link (the <a> element). Don’t worry about how to actually do
it now; it will become clear later in the chapter. When the link is clicked, that JavaScript
will send a request to your application. This will cause the action method of the UI Com-
mand component to execute, which will change the form of the answer. Then only the
UI Output component is asked to render again (not the whole page). The UI Output
component will generate some HTML code, which will be returned to the JavaScript in
the browser. The JavaScript will use that HTML code to update the answer. This entire
process is called Ajax.

2: The link is dlicked. The JavaScript

sends a request to your application. 3: Call its action method
as usual. This will
change the form of the
1: Generate some JavaScript Request ’

=)
\iew Root
<html> l ‘
<a lonclick="some JavaScript"pHow to...

<bxr/>

[Double-click its icon. |

hnls T |

5: Return this HTIML code to the Javascript. Hopefully it 4: Only the answer
should replace the HTML code for the answer. component is asked to
render.

Double-click its icoooooooooooooooooon.

Figure 7-3. How Ajax works

However, there is still a problem: how does the JavaScript know which part of the
page to update? To solve this problem, you need to explicitly assign an ID to the com-
ponent being refreshed (the UI Output component in this case), as shown in Figure 7-4.
This will cause the component to generate an HTML element with a client ID. Then the
JavaScript can use the client ID to look up the existing HTML element and replace it.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<h:form>
<h:commandLink .../>
</h:form>

<h:outputText value="..." id="a" />

<html>

How to...

Double-click its icon.
A 1: At the beginning, the ID will cause the U

o Qutput to generate a and set the
</html> o D

2: When the U Qutput is refreshed during an
3: The JavaScript will use the client IDto look Aax operation, it will also output a
up the existing HTML element and replace it. with dient ID set. \

Double-click its icoooooooooooooooooon.

Figure 7-4. Assigning an ID to identify the HTML element to be updated

To implement these ideas, you need to use a JSF component library called RichFaces
from JBoss. Go to http://labs. jboss.com/jbossrichfaces to download it. It may be some-
thing like richfaces-ui-3.3.0-GA-bin.zip. Unzip the download into, say, c:\richfaces-ui.
To use it, copy all the JAR files in c:\richfaces-ui\lib into your WEB-INF/1lib. RichFaces
in turn needs a few third-party JAR files. You can download them from the Source Code
section of the Apress web site (http://www.apress.com) and unzip the files into WEB/1ib.
Finally, refresh the project in Eclipse.

The 3.3 version of RichFaces doesn’t support JSF 2.0 yet. Because you installed JSF 2.0
into the JBoss application server in Chapter 1, you can’t run the application being devel-
oped on top of it. To solve this problem, you may want to download a clean copy of the
JBoss application server again and unzip it into, say, c:\jboss. Then go to https://facelets.
dev.java.net/servlets/ProjectDocumentlList to download the latest version of Facelets.

It has been included in JSF 2.0, but because you aren’t using JSF 2.0, you need to include it
yourself. The file may be something like facelets-1.1.15.b1. Unzip it into, say, c:\facelets.
Finally, copy c:\facelets\jsf-facelets. jar into your WEB-INF/1ib, and refresh the project in
Eclipse. Before JSF 2.0, Facelets is an add-on that needs to be enabled. To do that, modify
faces-config.xml as shown in Listing 7-3.

187

http://labs.jboss.com/jbossrichfaces
http://www.apress.com
https://facelets

188 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-3. Enabling Facelets in faces-config.xml (Before JSF 2.0)

<faces-config ...>
<application>
<view-handler>com.sun.facelets.FaceletViewHandler
</view-handler>
</application>
</faces-config>

Next, modify WEB-INF/web.xml as shown in Listing 7-4.

Listing 7-4. Changes to web.xml in Order to Use RichFaces

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>

<servlet>
<servlet-name>JSF</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>JSF</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>oxrg.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>

</context-param»

<context-param>
<param-name>org.richfaces.CONTROL_SKINNING</param-name>
<param-value>enable</param-value>

</context-param»

<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>JSF</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<dispatcher>INCLUDE</dispatcher>
</filter-mapping>
</web-app>

You don’t need to completely understand the meaning of this code, but basically, it is
used to enable RichFaces to intercept requests so that it can deliver JavaScript to the browser.
Next, modify 1istfaq.xhtml as shown in Figure 7-5. In summary, the <a47j:commandLink> is used
like a normal <h:commandLink>, but it will generate some JavaScript into the onclick attribute
of the HTML link. That JavaScript will call the action method on the server and then rerender
the component specified in its reRender attribute.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"

xmlns:a4j="http://richfaces.org/a4j">
<head> j— Use the <commandLink> in the Ajlax4Jsf tag lib.

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

How to...

</head> 1: It will set the ondlick

<body> event hander to some . —
h:form JavaScript. 2: If dicked, it will call

¢ this trigger() method on

<a4j:commandLink action="#{fagService.trigger}"*— i sarver sice.
value="#{faqService.questionText}"

reRender= :i\ />

</h:form>

 3: Then, ask this "a" component only to render again. l
<h:outputText value="#{faqService.answerText}" id="a" />
</body>

</html>

Figure 7-5. Using <a47j : commandLink>

When you run the application, clicking the question will change the form of the
answer, while this time no progress bar will be displayed in the browser, indicating that
the page as a whole is not refreshed.

Hiding and Showing the Answer

Suppose that instead of changing the form of the answer, now you’d like to hide or show
the answer. For simplicity, let’s do it without Ajax first. Modify 1istfaq.xhtml as shown in
Listing 7-5.

189

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

190

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-5. Using the rendered Attribute

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j">

<head»

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>
<body>
<h:form>
<h:commandLink
action="#{faqService.trigger}"
value="#{fagqService.questionText}" />
</h:form>

non

<h:outputText value="#{faqService.answerText}" id="a
rendered="#{faqService.showingAnswer}"/>
</body>

</html>

What does that rendered attribute do? When the UI Output component is about to
render itself in the Render Response phase, it will check this attribute. In this case, it will
call isShowingAnswer () on the web bean. If isShowingAnswer () returns true, it will go ahead
to render itself. Otherwise, it will do nothing. For it to work, modify the web bean as
shown in Listing 7-6.

Listing 7-6. Showing or Hiding the Answer in the Web Bean

package faq;

@Named("fagService")

@SessionScoped

public class FAQService implements Serializable {
private String questionText = "How to run Eclipse?”;
private String answerText = "Double-click its icon.";
private boolean isShowingAnswer = false;

public String getQuestionText() {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

return questionText;

}

public String getAnswerText() {
return answerText;

}

public String trigger() {
isShowingAnswer = !isShowingAnswer;
return null;

}

public boolean isShowingAnswer() {
return isShowingAnswer;

When you run the application, clicking the question should show and hide the
answer. Of course, now the whole page is refreshed because Ajax is not used.

Using Ajax to Hide or Show the Answer

Now, you'd like to use Ajax to hide or show the answer, without refreshing the whole
page. A first attempt is shown in Listing 7-7.

Listing 7-7. Trying to Use Ajax to Change the Visibility of a Component

<IDOCTYPE ...>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:form>
<a4j:commandLink
action="#{faqService.trigger}"
value="#{fagService.questionText}"
reRender="a" />
</h:form>

191

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

192

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

nn

<h:outputText value="#{fagService.answerText}" id="a
rendered="#{faqService.showingAnswer}"/>
</body>

</html>

If you run it, initially no answer will be shown, which is the correct behavior. How-
ever, if you click the link, nothing seems to happen. This is because when the UI Output
component is about to render itself initially, the rendered attribute is false so it will not
output any HTML element (see Figure 7-6). As a result, the onclick JavaScript will be
unable to find the HTML element to update in the subsequent Ajax operations.

co e

<h:form>
<h:commandLink .../>
</h:form>

<h:outputText value="..." id="a" />
<html>
How to...
RS2
o 1: At the beginning, it generates no HTML
</html> element as the rendered attribute is false.

3: The JavaScript will use the client ID to look 2: When the Ul Output is refreshed during an
up the existing HTML element but will fail to Ajax operation, it will output a with
find any! client ID set as usual. 1

Double-click its icon.

Figure 7-6. Why Ajax will fail to show a component

To solve this problem, you'll place a panel surrounding the answer and use Ajax to
update the panel (see Figure 7-7). Simply put, that HTML element generated by
the panel will always be there. It may contain nothing in its body (if the answer is hidden)
or contain the answer (if the answer is shown). As it is always there, you can use Ajax to
update it.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX 193

Apanel containing the answer.
Initially the answer has no HTIVL
code.
|

~ et Double-click its icon.
whole
panel.

Double-click its icon.

~mere |
whole
panel.

Figure 7-7. Using a panel to show or hide a component

To implement this idea, modify 1istfaq.xhtml as shown in Listing 7-8.

Listing 7-8. Refreshing the Whole Panel Group in 1istfaq.xhtml

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:adj="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

194 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<body>
<h:form>
<a4j:commandLink action="#{faqService.trigger}"

value="#{fagService.questionText}"
reRender="p" />

</h:form>

<h:panelGroup id="p">

nn

<h:outputText value="#{faqgService.answerText}" id="a
rendered="#{faqService.showingAnswer}"/>

</h:panelGroup>

</body>

</html>

Now when you run the application, clicking the question will show or hide the
answer using Ajax.

Giving a Rating to a Question

Suppose that you’d like to allow the user to rate the helpfulness of the question (and its
answer). The latest rating is displayed at the end of the question, as shown in Figure 7-8.
Again, you don’t want to refresh the whole page, but just the question. This is just like
clicking the <a4j:commandLink> to update the answer, except that now you need to process
some user input (the rating).

@ & [".'; http:/flocalho: |v
How to run Eclipse? (9)
Qicking the button will
refresh the question.

Double-click its icon.

Figure 7-8. Getting and displaying a rating from the user

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

To do that, you can use an <a4j:commandButton> as shown in Figure 7-9. Simply put, an
<a4j:commandButton> is just like an <a4j:commandLink> except that it will render itself as an
HTML button instead of an HTML link.

<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value:"#{faqService.questionTextB#{faqService.rating“ reRender="p"
> 1d="q" /> Tisisjustanomal HIML thing to TLispanisjmtaliteral Literal expression

</h:form> put the form tothe right. expression that will be again.
<h:form style="float:right"> output s is.
Refresh the <h:inputText size="2" value="#{faqService.rating}"></h:inputText>

question.

<a4j:commandButton value="Rate" action="#{faqService.rate}"

L reRender="q">
</a4j:commandButton>

</h:form> <ocommandButton> from the AjlaxdJsf tag lib.

 It will put JavaScript into the onclick hander of
the HTIVL submit button.

<h:panelGroup id="p">
<h:outputText value="#{faqgService.answerText}" id="a
rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

Figure 7-9. Using <a4j : commandButton>

Modify the FAQService class as shown in Listing 7-9.

Listing 7-9. Maintaining a Rating in FAQService

@Named("fagService")

@SessionScoped

public class FAQService implements Serializable {
private String questionText = "How to run Eclipse?”;
private String answerText = "Double-click its icon.";
private boolean isShowingAnswer = false;
private int rating = 0;

195

196

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

public String getQuestionText() {
return questionText;

}

public String getAnswerText() {
return answerText;

}

public String trigger() {
isShowingAnswer = !isShowingAnswer;
return null;

}

public boolean isShowingAnswer() {
return isShowingAnswer;

}

public String rate() {
System.out.println("Setting rating to:
return null;

+ rating);

}

public int getRating() {
return rating;

}

public void setRating(int rating) {
this.rating = rating;

Now run the application, and you should be able to give a rating to the question.
What if the user enters something invalid such as “abc” as the rating? Then you
should display an error. To do that, as a first attempt, modify listfaq.xhtml as shown in
Listing 7-10. Note how to refresh two (or more) components in the reRender attribute:

just list their IDs using a comma as the separator.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-10. Refreshing Both the Question and the <h:messages>

<IDOCTYPE ...>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:messages id="m"/>
<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{fagqService.questionText} (#{faqService.rating})" reRender="p"
id="q" />
</h:form>
<h:form style="float:right">
<h:inputText size="2" value="#{fagService.rating}"></h:inputText>
<a4j:commandButton value="Rate" action="#{fagService.rate}"
reRender="q,m">
</a4j:commandButton>
</h:form>

<h:panelGroup id="p">
<h:outputText value="#{faqService.answerText}" id="a"
rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

However, this will not work, because if there is no error message, the Ul Messages
component will not generate any HTML code at all. It means subsequent Ajax operations
will be unable to find the HTML element to update. To solve this problem, put that UI
Messages component into a panel and update the panel instead (see Listing 7-11).

197

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

198 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-11. Putting the <h:messages> Inside a Panel

<IDOCTYPE ...>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:panelGroup id="mp">
<h:messages id="m"/>
</h:panelGroup>
<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{fagService.questionText} (#{faqService.rating})" reRender="p"
id="q" />
</h:form>
<h:form style="float:right">
<h:inputText size="2" value="#{fagqService.rating}"></h:inputText>
<a4j:commandButton value="Rate" action="#{fagService.rate}"
reRender="q,mp">
</a4j:commandButton>
</h:form>

<h:panelGroup id="p">
<h:outputText value="#{fagService.answerText}" id="a"
rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

Now when you run the application and enter some garbage as the rating, it should be
caught as an error.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Updating the Rating as the User Types

What if you'd like to update the rating as the user types (even using the Rate button)?

You can do it as shown in Figure 7-10. In summary, the <a4j:support> tag is like the
<a4j:commandLink> tag except that you can specify the name of the JavaScript event to con-
trol when to trigger the Ajax operation.

<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form>
<adj:commandlLink action="#{faqService.trigger}"
value="#{faqService.questionText} (#{faqService.rating})"
reRender="p" id="q" />
</h:form>
<h:form style="float:right">
<h:inputText size="2" value="#{faqService.rating}">
A <a4j:support — Whenever a key is up...
<adjsupport> willadd eyent="onkeyup"
JavaScript to the . " . "
<input> HML dlement aCtion= #{faqService.rate}"—
generated by its parent TeRender="q,mp" >
component. </agj:support> | Refresh the question andthe
</h:inputText> message panel.

Call this action method on the
server side.

reRender="g;mp>

<_,La4ﬂ_eemma.n.d-gu:)bt9|q_> L You don't need the Rate button

</h:form> anymore.

<h:panelGroup id="p">

<h:outputText value="#{faqService.answerText}" id="a

rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Figure 7-10. Using <a4j:support>

199

200

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

When you now run the application and type some value as the rating, the value
should appear immediately after the question text.

Using a Dialog Box to Get the Rating

Suppose that you’d like to display a dialog box to get the rating: the user clicks a Rate link,
which pops up a dialog box, and then the user can input the rating (see Figure 7-11) and
click the Rate button to close the dialog box. Finally, the rating for the question will be
refreshed.

Insert title here - Mozilla Firefox

Eile Edit View History Bookmarks Tools Help

A | [httpocaihost:g0soraq |~ | [[Gl - | Q

Qicking the link will bring

How to run Eclipse? (9) Rate
up this dialog box.

Enter a rating

’9— Rate

Qicking the button will
close the dialog box and
update the rating.

Figure 7-11. Using a dialog box

To do that, modify listfaq.xhtml as shown in Figure 7-12. Simply put, the
<rich:modalPanel> tag will create a modal panel that is initially hidden on the HTML page.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<!DOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j"
xmlns:rich="http://richfaces.org/rich">

<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{faqService.questionText} (#{faqService.rating})"
reRender="p" id="q" /> Adalogboxiscalledamodal panel. Intially,
</h:form> | it is in a hidden state in the HTML page in
L_<rich:modalPanel id="myDialog"s thebrowser

ftisinthe 'rich" tagllo (R form style="float:right">

In FchFaces. <h:inputText size="2" value="#{faqService.rating}"/>
<a4j:commandButton M
value="Rate" Use a button aggin,
action="#{faqService.rate}" Everything here wil

appear in the modal

reRender="q,mp"> canel.

</a4j:commandButton>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">
<h:outputText value="#{faqService.answerText}" id="a"
rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

Figure 7-12. Using <rich:modalPanel>

But how do you show the modal panel, and how do you hide it later? This is not done
by Ajax. Instead, it is done using JavaScript (see Listing 7-12). Note the oncomplete prop-
erty of <a4j:button>. It specifies a piece of JavaScript that will be executed after the HTML
elements have been updated in the browser. Here, you will hide the modal panel.

Listing 7-12. Showing and Hiding a Modal Panel

<h:panelGroup id="mp">

<h:messages id="m" />
</h:panelGroup>

201

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich

202

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{fagService.questionText} (#{faqService.rating})"
"p" id="q" />
Rate
</h:form>
<rich:modalPanel id="myDialog">
<h:form style="float:right">
<h:inputText size="2" value="#{faqService.rating}"/>
<a4j:button
value="Rate"

reRender="p

action="#{fagService.rate}"
reRender="gq,mp"
oncomplete="Richfaces.hideModalPanel('myDialog')">
</a4j:button>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">
<h:outputText value="#{faqService.answerText}" id="a"
rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

When you run the application now and click the Rate link, it should pop up the
modal panel, and you should be able to enter the rating. However, if the user enters some
garbage and clicks the Rate button, the code will go ahead and close the modal panel and
display the error in the main page. A more proper behavior is to display the error in the
modal panel and not close it. To do that, modify the code as shown in Listing 7-13. What
you have done is to move the panel group into the modal panel and to check whether
there is no error message (with the JavaScript function called getElementById) before hid-
ing the modal panel.

Listing 7-13. Hiding a Modal Panel Only If There Is No Error

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"

xmlns:a4j="http://richfaces.org/a4j"

xmlns:rich="http://richfaces.org/rich">

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{faqService.questionText} (#{fagService.rating})"
reRender="p" id="q" />
Rate
</h:form>
<rich:modalPanel id="myDialog">
<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form style="float:right">
<h:inputText size="2" value="#{faqService.rating}"/>
<a4j:commandButton
value="Rate"
action="#{fagService.rate}"
reRender="gq,mp"
oncomplete="if (document.getElementById('m')==null)
Richfaces.hideModalPanel('myDialog')">
</a4j:commandButton>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">
<h:outputText value="#{faqService.answerText}" id

nn

a
rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Run the application now, and try to input something invalid as the rating. An error
message should be displayed in the modal panel, and the modal panel should remain dis-
played. Finally, you may want to give the modal panel a title bar so that the user can drag
to move it. This is done by giving it a facet named “header” (Listing 7-14). In addition, you
may want to set its initial size to a smaller size such as 200 pixels X 140 pixels.

203

204

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-14. Giving the Modal Panel a Header and Setting Its Initial Size

<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{faqService.questionText} (#{faqService.rating})"
reRender="p" id="q" />
Rate
</h:form>
<rich:modalPanel id="myDialog" width="200" height="140">
<f:facet name="header">
<h:outputText value="Enter a rating"></h:outputText>
</f:facet>
<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form style="float:right">
<h:inputText size="2" value="#{faqService.rating}"/>
<a4j:commandButton
value="Rate"
action="#{faqService.rate}"
reRender="gq,mp"
oncomplete="if (document.getElementById('m')==null)
Richfaces.hideModalPanel('myDialog"')">
</a4j:commandButton>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">

n_n

<h:outputText value="#{faqService.answerText}" id="a
rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Run the application, and you’ll see that the modal panel should have a header and
that it’s the right size.

Setting the Look and Feel with Skins

All RichFaces components support so-called skins. For example, a particular skin named
s1 might have been defined as shown in Table 7-1.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Table 7-1. Definition of a Skin

Attribute Value
Text font Arial
Text color Blue
Text size 12pt
Background color Yellow

RichFaces comes with several predefined skins. They're named blueSky, classic,
deepMarine, and so on. To choose which one to use, use web.xml as shown in Listing 7-15.

Listing 7-15. Choosing the Skin to Use

<web-app ...>

<context-param>
<param-name>oxrg.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>
</context-param»

</web-app>

In addition, by default the selected skin is also applied to the input-related HTML
elements such as <a> or <input> generated by normal JSF components. However, it is not
applied to others such as . To make sure the whole page uses the skin, group every-
thing into a <rich:panel> as shown in Listing 7-16. This way, everything inside that panel
will inherit its CSS styles.

Listing 7-16. Grouping Everything into a <rich:panel>

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:rich="http://richfaces.org/rich">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<rich:panel>

205

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/rich

206 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<h:form>
<a4j:commandLink action="#{faqService.trigger}"
value="#{fagService.questionText} (#{faqService.rating})"
reRender="p" id="q" />
Rate
</h:form>
<rich:modalPanel id="myDialog" width="200" height="140">
<f:facet name="header">
<h:outputText value="Enter a rating"></h:outputText>
</f:facet>
<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form style="float:right">
<h:inputText size="2" value="#{faqService.rating}"/>
<a4j:commandButton
value="Rate"
action="#{fagService.rate}"
reRender="gq,mp"
oncomplete="if (document.getElementById('m')==null)
Richfaces.hideModalPanel('myDialog')">
</a4j:commandButton>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">
<h:outputText value="#{faqService.answerText}" id
rendered="#{faqService.showingAnswer}" />

nn

a

</h:panelGroup>
</rich:panel>
</body>

</html>

Displaying Multiple Questions

So far, you've simply displayed a single question and answer, but now you’re about to
display multiple questions. However, because the tags for a single question are getting
quite complicated, it is desirable to encapsulate them inside a custom tag/component.
Then listfag.xhtml can be simplified as shown in Listing 7-17. It is assumed that q1 is
a Question object containing the question text, answer text, and so on.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-17. Using a Custom Tag in 1istfaq.xhtml

<IDOCTYPE ...>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:rich="http://richfaces.org/rich"
xmlns:foo="http://foo.com">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<rich:panel>
<foo:qa question="#{faqService.q1}"/>

</rich:panel>

</body>

</html>

To do that, move most of the tags from listfaq.xhtml into ga.xhtml in the src/META-INF
folder, and then modify the code as shown in Listing 7-18. The main changes are to take
the information from a Question object passed through the question parameter.

Listing 7-18. ga. xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="http://richfaces.org/a4j"
xmlns:rich="http://richfaces.org/rich"
xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

207

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/rich
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich
http://java.sun.com/jsf/facelets

208

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

<body>
<ui:component>
<h:form>
<a4j:commandLink
action="#{question.trigger}"
value="#{question.questionText} (#{question.rating})"
reRender="p" id="q" />
Rate
</h:form>
<rich:modalPanel id="myDialog" width="200" height="140">
<f:facet name="header">
<h:outputText value="Enter a rating"/>
</f:facet>
<h:panelGroup id="mp">
<h:messages id="m" />
</h:panelGroup>
<h:form style="float:right">
<h:inputText size="2" value="#{question.rating}"/>
<a4j:commandButton
value="Rate"
action="#{question.rate}"
reRender="q,mp"
oncomplete="if (document.getElementById('m')==null)
Richfaces.hideModalPanel('myDialog')">
</a4j:commandButton>
</h:form>
</rich:modalPanel>

<h:panelGroup id="p">
<h:outputText id="a"
value="#{question.answerText}"
rendered="#{question.showingAnswer}" />
</h:panelGroup>
</ui:component>
</body>
</html>

Next, create the tag lib definition file foo.taglib.xml in the same META-INF folder as
shown in Listing 7-19.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-19. foo. taglib.xml

<IDOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"http://java.sun.com/dtd/facelet-taglib 1 0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet" >
<namespace>http://foo.com</namespace>
<tag>
<tag-name>qa</tag-name>
<source>ga.xhtml</source>
</tag>
</facelet-taglib>

Create a Question class as shown in Listing 7-20. It is basically a copy of the FAQService
class except that it has a constructor and is not a web bean (because you should have
multiple Question objects, it makes no sense to make it a web bean).

Listing 7-20. Question Class

package faq;
import java.io.Serializable;

public class Question implements Serializable {
private String questionText;
private String answerText;
private boolean isShowingAnswer = false;
private int rating = 0;

public Question(String questionText, String answerText) {
this.questionText = questionText;
this.answerText = answerText;

}

public String getQuestionText() {
return questionText;

}

public String getAnswerText() {
return answerText;

}

public String trigger() {
isShowingAnswer = !isShowingAnswer;
return null;

209

http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

210 CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

}

public boolean isShowingAnswer() {
return isShowingAnswer;

}

public String rate() {
System.out.println("Setting rating to:

+ rating);
return null;

}

public int getRating() {
return rating;

}
public void setRating(int rating) {

this.rating = rating;

Modify FAQService as shown in Listing 7-21.

Listing 7-21. Providing a Single Question Object in FAQService

package faq;

import javax.webbeans.Named;
import javax.webbeans.SessionScoped;

@Named("fagService")
@SessionScoped
public class FAQService implements Serializable {
private Question q1 = new Question("How to run Eclipse?", "Double-click its
icon.");
public Question getQ1() {
return qi;

Go ahead and modify listfaq.xhtml as shown in Listing 7-17. Then run the applica-
tion, and it should continue to work.

Note In Facelets there is a bug preventing *.taglib.xml files in the META-INF folder on the classpath
to be discovered in JBoss. To work around it, put the whole META-INF folder into WebContent and then
explicitly specify the tag lib in web.xm1 as shown in Listing 7-22.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

Listing 7-22. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF-8"?>
<web-app ...>

<servlet>
<servlet-name>JSF</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>JSF</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<context-param>
<param-name>facelets.LIBRARIES</param-name>
<param-value>/META-INF/foo.taglib.xml</param-value>

</context-param>

</web-app>

Finally, modify listfaq.xhtml to display multiple questions as shown in Listing 7-23.

Listing 7-23. Using <a4j:repeat> to Loop Through the Questions

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:rich="http://richfaces.org/rich"
xmlns:a4j="http://richfaces.org/a4j"
xmlns:foo="http://foo.com">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<rich:panel>
<a4j:repeat value="#{faqService.questions}" var="q">
<foo:qga
question="#{q}" />
<p />
</a4j:repeat>
</rich:panel>
</body>
</html>

211

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://richfaces.org/rich
http://richfaces.org/a4j
http://foo.com

212

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

The <a4j:repeat> tag is exactly like the <h:dataTable> tag, except that it will loop over
its body while not generating tags like <table>, <tr>, or <td>. Next, modify FAQService to
provide the question list as shown in Listing 7-24.

Listing 7-24. Providing a List of Question Objects in FAQService

package faq;

@Named("fagService")

@SessionScoped

public class FAQService implements Serializable {
private List<Question> questions;

public FAQService() {
questions = new ArraylList<Questions();
questions.add(new Question("How to run Eclipse?", "Double-click its
icon."));
questions.add(new Question("How to auto-complete?", "Press Ctrl-
Space."));
questions.add(new Question("How to delete a file?", "Press Del."));
}
public List<Question> getQuestions() {
return questions;

When you run the application now, it should display all three questions.

Note Currently there is a bug in the JSF reference implementation preventing a form from working if it is
in a loop.

Summary

In this chapter, you learned how to build pages with Ajax. Ajax means that when a certain
event occurs in the browser, a request is sent to the application so that it can perform
some action and then only parts of a page are refreshed. You can use an <a4j: commandLink>
for a link, an <a4j: commandButton> for a button, or an <a4j:support> for any other events.
In these tags, you also specify an action method to execute in the application and a list of
component IDs that are to be refreshed.

CHAPTER 7 BUILDING INTERACTIVE PAGES WITH AJAX

A component can be excluded from rendering. In that case, it will generate noth-
ing. If you need to show it using Ajax, you can put it inside a panel and refresh that panel
instead. Similarly, some components such as the Ul Messages component may output
nothing in normal use. To update them using Ajax, put them inside a panel.

In addition, you learned how to show or hide a modal panel using JavaScript.

You also learned about skins in this chapter. A skin defines a look and feel including
the font family, font size, color, and so on. All RichFaces components support skins. The
selected skin by default will also cover HTML code generated by normal JSF components.

213

CHAPTER 8

Using Conversations

In the previous chapters, you learned how to use web beans to maintain states for

a request (request scope), for a user (session scope), or for the whole application (applica-
tion scope). In this chapter, you’ll learn how to use a very powerful type of scope provided
by web beans: conversation scope. It allows you to maintain a different state on the server
for a browser window.

Creating a Wizard to Submit Support Tickets

Suppose you’d like to develop a wizard that allows the user to submit a support ticket, as
shown in Figure 8-1. That is, the user enters her customer ID at step 1 and enters the prob-
lem description at step 2. After submitting the ticket, a “Thank you!” page is displayed.
What is interesting is that the user can use the Next button and Back button to go back and
forth between the pages.

215

216

CHAPTER 8 USING CONVERSATIONS

Insert title here - Mozilla Firefox

File Edit View History Bookmarks Tools Help

& -00 A [-‘:;‘http:;‘!locz "H" Q]

Step 1: — | Step 2:
Customer id:[cl I Eclipse won't start
Description:

File Edit Wiew History Bookmarks Toels Help o
4;‘ @ T @ [".-; ‘http:h‘\oc; | =] [,| Ql
Thank you!

Figure 8-1. Submitting a ticket using a wizard interface

To start building this wizard, create a new dynamic web project named Wizard. Then
create a Ticket class in the wizard package, as shown in Listing 8-1. Note that it is in the
session scope so that it will be available across the two wizard steps.

Listing 8-1. Ticket Class

package wizard;

import java.io.Serializable;
import javax.annotation.Named;
import javax.context.SessionScoped;

@Named ("ticket")

@SessionScoped

public class Ticket implements Serializable {
private String customerId;
private String problemDesc;

CHAPTER 8 USING CONVERSATIONS

public String getCustomerId() {
return customerlId;

}

public void setCustomerId(String customerId) {
this.customerId = customerId;

}

public String getProblemDesc() {
return problemDesc;

}

public void setProblemDesc(String problemDesc) {
this.problemDesc = problemDesc;

Create the step1.xhtml, step2.xhtml, and thankyou.xhtml files in the WebContent folder,
as shown in Listing 8-2, Listing 8-3, and Listing 8-4, respectively. There is nothing special
about them except the <h:inputTextarea> tag used in step2.xhtml. The <h:inputTextarea>
tag is exactly like the <h:inputText> tag except that it will generate an HTML input text
area so that the user can enter multiple lines of text.

Listing 8-2. step1. xhtml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Step 1:

<h:form>
Customer id: <h:inputText value="#{ticket.customerId}"/>

<h:commandButton value="Next" action="next"/>

</h:form>

</body>

</html>

217

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

218

CHAPTER 8 USING CONVERSATIONS

Listing 8-3. step2. xhtml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Step 2:

<h:form>
Description: <h:inputTextarea value="#{ticket.problemDesc}"/>

<h:commandButton value="Back" action="back"/>
<h:commandButton value="Finish" action="finish"/>

</h:form>

</body>

</html>

Listing 8-4. thankyou. xhtml

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Thank you!

</body>

</html>

Define the navigation rules in faces-config.xml, as shown in Listing 8-5.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 8 USING CONVERSATIONS

Listing 8-5. Navigation Rules for the Wizard

<faces-config ...>
<navigation-rule>
<from-view-id>/step1l.xhtml</from-view-id>
<navigation-case>
<from-outcome>next</from-outcome>
<to-view-id>/step2.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/step2.xhtml</from-view-id>
<navigation-case>
<from-outcome>back</from-outcome>
<to-view-id>/stepl.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>finish</from-outcome>
<to-view-id>/thankyou.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Now, start the JBoss instance, and try to access http://localhost:8080/Wizard/faces/
step1.xhtml in the browser. It should allow you to input the ticket, and the Next and Back
buttons should work.

Interference Between Browser Windows

Now, let’s run an experiment. Enter cl as the customer ID, and then go to step 2. Then
open a new browser tab, and display step 1. You'll see “c1” displayed as the customer ID.
This means the two browser windows are working on the same ticket object. This is no
good, because the application won’t allow a customer to work on two or more tickets at
the same time.

Assuming that you should really allow customers to work on multiple tickets at the
same time, you need to know about something called a conversation. Whenever a request
arrives, Web Beans will allocate a web beans table in the session for the browser win-
dow (see Figure 8-2). This table is the conversation. Such a conversation will be ended
(destroyed) automatically after the response is rendered.

219

http://localhost:8080/Wizard/faces/

220

CHAPTER 8 USING CONVERSATIONS

W\eb Beans creates a conversation. Session

Arequest arrives. It is later handed]
and a response is rendered. Conversation
[Name [Object

Web Beans ends the conversation
automatically.

Y Time

Figure 8-2. A conversation

Such a transient conversation is not that useful because it is so short-lived; what you
put into it is just like those request-scoped web beans. However, before the response is
generated, if you tell web beans to turn the conversation into a long-running one, it will
hang in there until when, maybe many requests later, you turn it back into a transient
one; then it will be destroyed at the end of the request (see Figure 8-3).

W\eb Beans creates a conversation. Session

Request 1
Conversation
L Name [Object

Turn it into long-running.
Request 2
Request n

Turn it back into transient.

W\eb Beans ends the conversation

o automatically.
y Time

Figure 8-3. Making a conversation long-running

CHAPTER 8 USING CONVERSATIONS

The interesting thing about conversations is that if in the middle of the (long-running)
conversation you open a new browser tab and access the application, a new conversation
will be created, and the two conversations will not interfere with each other (see Figure 8-4).

|
o1 [] Sesin

Conversation 1 Conversation 2
Name [Object Name |Object

Figure 8-4. Each tab having a different conversation

To implement this idea, you need to put the ticket into the conversation scope, as
shown in Listing 8-6. Because a conversation is still stored in the session, the ticket still
needs to implement Serializable.

Listing 8-6. Putting the Ticket into the Conversation Scope

package wizard;

import java.io.Serializable;
import javax.annotation.Named;
import javax.context.ConversationScoped;

@Named ("ticket")

@ConversationScoped

public class Ticket implements Serializable {
private String customerId;
private String problemDesc;

public String getCustomerId() {
return customerld;

}

public void setCustomerId(String customerId) {
this.customerId = customerId;

}

public String getProblemDesc() {
return problemDesc;

221

222

CHAPTER 8 USING CONVERSATIONS

}
public void setProblemDesc(String problemDesc) {
this.problemDesc = problemDesc;

Next, you need to consider when to turn the conversation into a long-running one.
You can do this when the user clicks the Next button at step 1. After that, the ticket will be
available across multiple requests. To do that, modify step1.xhtml as shown in Listing 8-7.

Listing 8-7. Invoking a Java Method When Clicking Next

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Step 1:

<h:form>
Customer id: <h:inputText value="#{ticket.customerId}"/><bx/>
<h:commandButton value="Next" action="#{stepi.next}"/>

</h:form>

</body>

</html>

Create a Step1 class in the wizard package to provide the next() method, as shown in

Listing 8-8.

Listing 8-8. Step1 Class

package wizard;

import javax.annotation.Named;
import javax.context.RequestScoped;

@Named("step1")
@RequestScoped

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 8 USING CONVERSATIONS

public class Step1l {
public String next() {
//TURN THE CONVERSATION INTO LONG-RUNNING;
return "next";

To turn the conversation into a long-running one, modify the Step1 class as shown
in Listing 8-9. First you inject the conversation object (as described in Chapter 4), and
then you call begin() on it. begin() is actually a misnomer because the conversation has
already begun; what this method does is turn the conversation into a long-running one.

Listing 8-9. Turning a Conversation into a Long-Running One

package wizard;

import javax.annotation.Named;
import javax.context.RequestScoped;
import javax.context.Conversation;
import javax.inject.Current;

@Named("step1")
@RequestScoped
public class Step1l {
@Current
private Conversation c;

public String next() {
c.begin();
return "next";

Next, you need to consider when to turn the conversation back into transient. You
can do this when the user clicks the Finish button at step 2. After that, the ticket will be
destroyed along with the conversation at the end of the request. To do that, modify step2.
xhtml as shown in Listing 8-10.

223

224

CHAPTER 8 USING CONVERSATIONS

Listing 8-10. Invoking a Java Method When Clicking Finish

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Step 2:

<h:form>
Description: <h:inputTextarea value="#{ticket.problemDesc}"/>

<h:commandButton value="Back" action="back"/>
<h:commandButton value="Finish" action="#{step2.finish}"/>

</h:form>

</body>

</html>

Create a Step2 class in the wizard package in order to provide the finish() method,
as shown in Listing 8-11. The critical part is the call to the end() method on the conversa-
tion object, which will turn the conversation into transient. Another point to note is that
instead of really submitting the ticket (to a database, for example), you simply print its
content to the console.

Listing 8-11. Step2 Class

package wizard;

import javax.annotation.Named;
import javax.context.Conversation;
import javax.context.RequestScoped;
import javax.inject.Current;

@Named("step2")
@RequestScoped

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

CHAPTER 8 USING CONVERSATIONS

public class Step2 {
@Current
private Conversation c;
@Current
private Ticket ticket;

public String finish() {
submit(ticket);
c.end();
return "finish";

}

private void submit(Ticket ticket) {
System.out.println(ticket.getCustomerId());
System.out.println(ticket.getProblemDesc());

Now, when you run the application again, try to submit two tickets simultaneously in
two browser tabs. The two tickets will not interfere with each other.

URL Mismatched?

If you're careful, you may have noticed that after clicking Next at step 1, step 2 is indeed
displayed, but the URL is still pointing to step 1. Why? When you first enter the URL to
step1.xhtml and press Enter (see Figure 8-5), a request is sent, and step1.xhtml will gener-
ate a response. So, you see step 1 in the browser window. But what is the action attribute
of the HTML form? If the user clicks the Next button, you'll definitely want the original
component tree of step 1 to handle the form submission so that, for example, the various
Ul Input components can update their web beans using the user input in the request.
Therefore, the action attribute should still point to step1.xhtml, which is indeed what
is done by the UI Form component. That is, it will set the action attribute to invoke the
then-current page. Now, when the user clicks the Next button, the browser will copy that
action attribute (for step1.xhtml) into the location URL and then send the request to the
step1.xhtml for handling. step1.xhtml will handle it and then pass the rendering (through
the JSF navigation system) to step2.xhtml. As a result, you'll see the step 2 in the browser
window, but the location URL is still for step1.xhtml.

225

226 CHAPTER 8 USING CONVERSATIONS

Browser
| ../stepl xhtmi
\ Recuest
1: The user enters the URL and
press Enter.
2: Request is sent. \
Browser step1.xhtml
Step 1
U Form
<form
action=".../step1.xhtml" - O
RS 3: Response is sent. u
4: The user dlicks the Next button.
stepl.xhtml
5: The action URL is copied to the
location bar.
Browser
.../stept xhtrrl l 6: Navigate to step2.xhtm.
step2.xhtml
Step2 o2
Nex | | Finish
‘7: Response is sent.

Figure 8-5. Why URL and content are mismatched

This is quite confusing to the user. In addition, if the user tries to reload/refresh the
page, the browser will try to submit the form to step1.xhtml again. This is probably not
what she wants. Instead, all she wants maybe is to reload step2.xhtml.

Can these problems be fixed? Yes. You can tell the JSF navigation system to send
a so-called redirect response to the browser (see Figure 8-6). Usually a response contains
HTML to be displayed in the browser, but a redirect response is different; it doesn’t con-
tain any HTML code. Instead, it simply contains a URL. In this case, it contains the URL
for step2.xhtml and tells the browser to go there. The browser will then update the URL
in the location bar for step2.xhtml and send a request for step2.xhtml. Finally, step2.xhtml
will generate a response, so you'll see step 2 in the browser window and in the location bar.

Browser

Step 1

<form
action=".../step1.xhtml"

o>

1: The user dicks the Next button.

CHAPTER 8 USING CONVERSATIONS

2: The action URL is copied to the

location bar. L__
e
Br UR_: .../step2.xhtml
../stepl . xhtml |
3: Return a redirect response.
4: Change the URL to that for
step2.xhtml.
Browser
A\l
[sttt step2.xhtmi
Request
Step 2
5: Request for
[Nt | | Finsh step2
6: Response is sent

Figure 8-6. Redirect response

When applying this technique (“redirect after post”), a very important requirement is
that step2.xhtml needs to still have access to its data for rendering. If the data were in the
request scope, it would have been gone because a new request was triggered by the redi-
rect response. However, because you're using the conversation scope, the data (the

ticket) will still be there.

To tell step1.xhtml to send a redirect for step2.xhtml, all you need to do is modify the

navigation case as shown in Listing 8-12.

Listing 8-12. Using Redirect in Navigation Case

<faces-config ...>
<navigation-rule>

<from-view-id>/stepl.xhtml</from-view-id>

<navigation-case>

<from-outcome>next</from-outcome>

227

228 CHAPTER 8 USING CONVERSATIONS

<to-view-id>/step2.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/step2.xhtml</from-view-id>
<navigation-case>
<from-outcome>back</from-outcome>
<to-view-id>/stepl.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>finish</from-outcome>
<to-view-id>/thankyou.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Restart the application, and run it again. Go to step 2, and observe that the URL
should also be showing step2.xhtml.

Note In Web Beans beta 1, there is a bug preventing a long-running conversation from spanning across
a redirect response.

Similarly, you can apply the same technique for the Back button and the Finish but-
ton, as shown in Listing 8-13.

Listing 8-13. Using Redirect for Other Buttons

<faces-config ...>
<navigation-rule>
<from-view-id>/step1l.xhtml</from-view-id>
<navigation-case>
<from-outcome>next</from-outcome>
<to-view-id>/step2.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/step2.xhtml</from-view-id>
<navigation-case>

CHAPTER 8 USING CONVERSATIONS

<from-outcome>back</from-outcome>
<to-view-id>/stepl.xhtml</to-view-id>
<redirect/>
</navigation-case>
<navigation-case>
<from-outcome>finish</from-outcome>
<to-view-id>/thankyou.xhtml</to-view-id>
<redirect/>
</navigation-case>
</navigation-rule>
</faces-config>
</faces-config>

Run the application again, and the URL should change correctly with each button
click.

Summary

Web Beans provides a very powerful scope: conversation scope. As you learned in this
chapter, a conversation is a table in the session for a given browser tab/window. You can
make a conversation long-running and later turn it back into Java code. During its life-
time, all conversation-scoped web beans will remain available across different requests.

To render the next page, you can choose between a simple render or a redirect. A redi-
rect will show the new URL in the browser and will work fine with the Reload/Refresh button.
To allow a redirect, if one page needs to pass a web bean to the next page, it should be in the
conversation scope.

229

CHAPTER 9

Supporting Other Languages

In this chapter, you'll learn how to develop an application that can appear in two or
more different languages to suit users in different countries.

Displaying the Current Date and Time

Suppose that you have an application that displays the current date and time, as shown
in Figure 9-1.

(@) Current date - Mozilla Firefox - ey wits

Eile Edit View History Bookmarks Tools Help

@ B - @ @ A [|npunocanostsoson | - [IG]-] @)
Today is:Sun Mar 08 16:05:26 HKT 2009.

Figure 9-1. Displaying the current date and time

To do that, create a new dynamic web project as usual named MultiLang. Then create
a showdate.xhtml file, as shown in Listing 9-1.

Listing 9-1. showdate . xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<?xml version="1.0" encoding="UTF-8" ?>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

231

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

232

CHAPTER 9 SUPPORTING OTHER LANGUAGES

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Current date</title>

</head>

<body>

Today is: <h:outputText value="#{showDate.today}"/>.

</body>

</html>

Create the ShowDate class in the multilang package, and create a web bean from it, as
shown in Listing 9-2.

Listing 9-2. ShowDate Class

package multilang;
import java.util.Date;

@Named("showDate™")
@RequestScoped
public class ShowDate {
public Date getToday() {
return new Date();

Start the JBoss instance, and try to access http://localhost:8080/MultilLang/faces/
showdate.xhtml in the browser. It should display the current date and time correctly. (Note
that your application may display the date differently than in Figure 9-1, because this
depends on the default language configured on your computer.)

Supporting Chinese

Suppose that some of your users are Chinese. They would like to see the application in
Chinese when they run the application. To do that, create a file called msgs.properties
(the file name is not really important as long as it ends with .properties) in the multilang
package, as shown in Listing 9-3.

Listing 9-3. Providing Text Messages in a .properties File

currentDate=Current date
todayIs=Today is:

http://localhost:8080/MultiLang/faces/

CHAPTER 9 SUPPORTING OTHER LANGUAGES

To support Chinese, create another file, called msgs_zh.properties. The zh part repre-
sents Chinese. Usually people use the Bigh encoding to encode Chinese. However, Java
requires that such files be in a special encoding called escaped Unicode encoding. For
example, the Chinese equivalent of “Current date” consists of four Unicode characters, as
shown in Figure 9-2. The figure also shows their Unicode values (hexadecimal). The prop-
erties file should be written as their Unicode values.

I H

’u _l‘
Ox7576 0x524D Ox65E5 O0x671F

| |
currentDate=\u7576\u524d\u65e§\u671f|
todayIs=...

Figure 9-2. Characters written as their Unicode values

Obviously, this is not very convenient when you have lots of strings to encode. Fortu-
nately, there is a free properties file editor available for Eclipse that allows you to type in
the text while it saves the text in the escaped Unicode encoding automatically. To install
this editor, select Help » Software Updates in Eclipse, choose the Available Software tab,
click Add Site, and enter http://propedit.sourceforge.jp/eclipse/updates as the location.
Choose the Properties Editor, and click Install to start the installation.

To use it, right-click the msgs_zh.properties file, and choose Open With » Propert-
iesEditor. For those readers who don’t know how to input Chinese, you can simply type
some random text and pretend it’s Chinese. Listing 9-4 shows the authentic Chinese text
messages as would be displayed by the Properties Editor.

Listing 9-4. Chinese Text Messages That Would Be Displayed by the Properties Editor

currentDate= i H A
todayIs=5HE :

To make use of the .properties files, modify showdate.xhtml as shown in Figure 9-3.
That is, the <f:1oadBundle> tag will create a Ul Load Bundle component. When the UI View
Root component asks the UI Load Bundle component to render, instead of generating
HTML code, it will find out the preferred language as set in the HTTP request (suppose that
itis zh). Then, because the basename attribute in the tag specified is multilang.msgs, it will go
into the multilang folder on the classpath and look for the file msgs_<language>.properties,

233

http://propedit.sourceforge.jp/eclipse/updates

234 CHAPTER 9 SUPPORTING OTHER LANGUAGES

which is msgs_zh.properties in this case. Then it will load the text messages into a resource
bundle. Finally, as specified by the var attribute in the tag, it will store that resource bundle
into a request-scoped attribute named b.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<f:loadBundle basename="multilang.msgs" var="b" />

<title>Cutrent date</titles

</head>
<body>
Today is: <h:outputText .../>. 1: Qreate this U Load
</body> Bunde component.
</html> Attribute Table for the Recquest
View Root Name [Object
— b
HTTP Request
Language: zh < 6: Rut the resource
bunde into an attribute _
3: What is the preferred in the request scope. Key St'i',ng
language? The attrlbut'elname is currentDate | i H
'b" s specified. todayls SHE:
WEB- NF 5: Load the text
L__ messages into a
classes resource
| bunde.
multilang

4: Gointo the multilang

folder on the classpath and ShowDate.class

then look for the file ies

msgs_zh.properties. msgs propert

> Msgs_zh.properties ~

Figure 9-3. Loading a . properties file into a resource bundle

To read messages from the resource bundle, access it like a map, as shown in Listing 9-5.

Listing 9-5. Changes to web.xml in Order to Use RichFaces

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

CHAPTER 9 SUPPORTING OTHER LANGUAGES

<f:loadBundle basename="multilang.msgs" var="b" />
<title>

<h:outputText value="#{b['currentDate']}"/>
</title>

</head>

<body>

<h:outputText value="#{b['todayIs']}"/>
<h:outputText value="#{showDate.today}"/>.

</body>

</html>

When you run the application, it should display the current date and time in English.

How do you make the page use the Chinese version of the resource bundle
(msgs_zh.properties)? For example, in Firefox, choose Tools » Options » Content, add
Chinese, and move it to the top. However, that is still not enough: JSF will screen the
preferred language as set in the HTTP request to see whether it is supported by your
application (see Figure 9-4). For example, in the figure, if the preferred language set
in the HTTP request were en or zh, then it would be supported and used. However, if
it were, say, de (German), then it would not be supported, and the default language
would be used (en here). No matter which case it is, the language chosen to be used
will be stored into the UI View Root. The UI Load Bundle will consult the UI View
Root instead of the HTTP request for the language.

|
o "] Use the cefauit (en). '7

Supported
HTTP Request by the ————————»lLbeH. f—————————
Language: zh application? Yes
Store the language
into the view roct.
Default: en M
S
T Read the
language.
U Load
Bundle

Figure 9-4. JSF screening the preferred language

To specify the default language and supported languages, modify faces-config.xml as
shown in Listing 9-6. Here, you are supporting both English and Chinese with English as
the default.

235

236

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Listing 9-6. Listing the Supported and Default Language in faces-config.xml

<faces-config ...>
<application>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>zh</supported-locale>
</locale-config>
</application»
</faces-config>

Save the file, restart the JBoss instance, and then reload the page. You should see the
Chinese version. If you don’t see the Chinese characters, make sure your computer has
a font that supports Chinese. For example, log in as the administrator, open the Control
Panel, choose Regional Settings, and ensure that traditional Chinese support is enabled.

You may be wondering what happens when the preferred language is en and there is
no msgs_en.properties file, as is the case in our example. You might think the request will
get past the JSF screening and that the UI Load Bundle component will try to load the
msgs_en.properties file and fail miserably because that file doesn’t exist.

To understand how it works, first consider the case when the preferred language is
zh. In that case, it will load msgs_zh.properties and then use msgs.properties as the parent
resource bundle (see Figure 9-5). When a child resource bundle is looked up for a key but
it is not found, the child will look for it in the parent.

msgs.properties
Key String

currentDate |Current date
todayls Today is

t

2: Not found, look it

msgs_zh.properties up in the parent.
Key String

1: Look up the key " lcurrentDate | Hij H i

oo ocs N

Figure 9-5. Parent-child relationship between resource bundles

Now, consider the case when the preferred language is en. In that case, it tries to load
msgs_en.properties, butitis not found (see Figure 9-6). Then you can consider it will use
the nonexistent msgs_en.properties as the child resource bundle, and effectively only the
parent resource bundle will be used.

CHAPTER 9 SUPPORTING OTHER LANGUAGES

msgs.properties
Key String

currentDate |Current date
todayls Tochy is:

Figure 9-6. A nonexistent child resource bundle

Anyway, now you have internationalized this page (let it use a resource bundle) and
localized it to Chinese (provided msgs_zh.properties). If in the future you need to add sup-
port for, say, French, you will not need to internationalize it again but just need to localize
it to French (provide msgs_fr.properties).

Easier Way to Access Map Elements

Before moving on, let’s introduce an easier way to access a map element if the key is a lit-
eral string. Instead of writing b[' currentDate'], you could write b.currentDate. After failing
to find the getCurrentDate() method on the b object, it will try to perform a map lookup or
aresource bundle lookup. Therefore, showdate.xhtml can be slightly simplified, as shown
in Listing 9-7.

Listing 9-7. Accessing Map Elements Using the Dot Notation

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b.currentDate}"/>

</title>

</head>

<body>

237

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

238 CHAPTER 9 SUPPORTING OTHER LANGUAGES

<h:outputText value="#{b.todayIs}"/>
<h:outputText value="#{showDate.today}"/>.
</body>

</html>

Internationalizing the Date Display

For the moment, the current date and time is still displayed in the default language
of your OS account (probably English). To solve the problem, modify showdate.xhtml
as shown in Listing 9-8. It shows that not only can UI Input components take a con-
verter (see Chapter 2 for a review on converters) but that Ul Output components can
do that too. While the former will use a converter for both rendering and handling form
submissions, the latter will use it only for rendering. Without a converter, a Ul Output
component will simply call toString() on the value to convert it to a string. With a con-
verter, it will be used to do the conversion. But more important, the date-time converter
will use the language code stored in the UI View Root to format the Date object. Setting
the date style to long is not really required,; it is done so that you can see Chinese charac-
ters in the date display.

Listing 9-8. Specifying a Language-Aware Converter for a UI Output Component

<body>

<h:outputText value="#{b.todayIs}"/>

<h:outputText value="#{showDate.today}">
<f:convertDateTime dateStyle="long"/>

</h:outputText>.

</body>

</html>

Run the application, and it should display the current date in Chinese. If you change
the preferred language to English in the browser and refresh the page, the current date
should appear in English.

Letting the User Change the Language Used

Suppose that a user is using a browser that prefers Chinese but he would like to show the
application to his friend who doesn’t understand Chinese but understands English. To
support this, you should enhance the application to allow the user to explicitly choose the
language, as shown in Figure 9-7.

Current date - Mozilla Firetox

File Edit View History Bookmarks Tools Help

CHAPTER 9

‘= mHE - Mozilla Firetox

File Edit View History Bookmarks Tools Help

SUPPORTING OTHER LANGUAGES

@ w8 - @ @ g l‘http:mocalr |vHv| @ w8 - @ @ g l‘http:h‘\ocalr‘ |vHv|
Today is:March 8, 20009. 4 HaZ: 2009%F3H8H.
"Engiish = L
English Qlicking the button
will change the
language used.

Figure 9-7. Letting the user change the language used
To do that, modify showdate.xhtml as shown in Listing 9-9.

Listing 9-9. Letting the User Choose the Language in a Form

<body>
<h:outputText value="#{b.todayIs}"/>
<h:outputText value="#{showDate.today}">
<f:convertDateTime dateStyle="long"/>
</h:outputText>.
<h:form>
<h:selectOneMenu value="#{showDate.langCode}">
<f:selectItems value="#{showDate.langCodes}"/>
</h:selectOneMenu>
<h:commandButton action="#{showDate.changeLangCode}" value="Change"/>
</h:form>
</body>

Define the properties required in the ShowDate class as in Listing 9-10. Note how you
get the default language and the supported language from the JSF Application object.
What you get is not a language code, but a Locale object. A Locale object contains a lan-
guage code (such as en or zh) and optionally a country code (such as US, UK, or CN). Even
though a Locale object is not a string, you can call toString() on it to convert it to a string
of the pattern <LANGUAGE CODE>_<COUNTRY CODE>, such as en_US or zh (if the country code is
not specified).

Listing 9-10. Letting the User Choose the Language in a Form

package multilang;

import java.util.Arraylist;

239

240

CHAPTER 9 SUPPORTING OTHER LANGUAGES

import java.util.Iterator;
import java.util.list;
import java.util.locale;

import javax.faces.application.Application;
import javax.faces.context.FacesContext;
import javax.faces.model.SelectItem;

@Named("showDate")

@RequestScoped

public class ShowDate {
private String langCode;

public String getLangCode() {
return langCode;

public void setLangCode(String langCode) {
this.langCode = langCode;

public List<SelectItem> getlLangCodes() {
List<SelectItem> items = new ArraylList<SelectItem>();
Application app = FacesContext.getCurrentInstance().getApplication();
Locale locale = app.getDefaultlocale();
items.add(new SelectItem(locale.toString()));
Iterator<lLocale> iter = app.getSupportedLocales();
while (iter.hasNext()) {
locale = iter.next();
items.add(new SelectItem(locale.toString()));

}

return items;

}
public Date getToday() {

return new Date();

Define the action method as shown in Listing 9-11. The critical part is creating the
Locale object from the language code and then setting it into the UI View Root. Finally, it
returns null so that the current page is redisplayed.

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Listing 9-11. Changing the Locale in the UI View Root

public class ShowDate {
private String langCode;

public String getlangCode() {
return langCode;

}

public void setlangCode(String langCode) {
this.langCode = langCode;

}
public List<SelectItem> getlangCodes() {

}
public String changelangCode() {
UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();
viewRoot.setlLocale(new Locale(langCode));
return null;
}
public Date getToday() {
return new Date();

Run the application, and try to change the language; it should appear in the chosen
language. However, it is displaying the language codes such as en and zh in the combo
box, which aren’t that user-friendly. Instead, you probably want to display “English” and
“HF3Z” (the word “Chinese” as displayed in Chinese) in the combo box. To do that, modify
the ShowDate class as in Listing 9-12. The critical part is the getDisplayName() method that
returns the name of the locale suitable for display (for example, “English” or “Chinese”).
If you specify a locale, it will return the name of the language in that locale (for example,
“fix2” if the locale is Chinese).

Listing 9-12. Getting the Display Name of the Language

public class ShowDate {

public List<SelectItem> getlangCodes() {
List<SelectItem> items = new Arraylist<SelectItem>();
Application app = FacesContext.getCurrentInstance().getApplication();

24

242

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Locale locale = app.getDefaultlLocale();
String display = locale.getDisplayName(locale);
items.add(new SelectItem(locale.toString(), display));
Iterator<lLocale> iter = app.getSupportedlocales();
while (iter.hasNext()) {

locale = iter.next();

display = locale.getDisplayName(locale);

items.add(new SelectItem(locale.toString(), display));
}

return items;

Run the application again, and the language names will be displayed in the combo
box. Finally, the Change button should also be internationalized and localized. That’s
easy. Just modify showdate.xhtml as shown in Listing 9-13.

Listing 9-13. Getting the Display Name of the Locale

<body>
<h:outputText value="#{b.todayIs}"/>
<h:outputText value="#{showDate.today}">
<f:convertDateTime dateStyle="long"/>
</h:outputText>.
<h:form>
<h:selectOneMenu value="#{showDate.langCode}">
<f:selectItems value="#{showDate.langCodes}"/>
</h:selectOneMenu>
<h:commandButton action="#{showDate.changelLangCode}"
value="#{b.change}"/>
</h:form>
</body>
</html>

Define the entry in the resource bundles as shown in Listing 9-14 and Listing 9-15.

Listing 9-14. Entry for the Change Button in msgs.properties

currentDate=Current date
todayIs=Today is:
change=Change

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Listing 9-15. Entry for the Change Button in msgs_zh.properties

currentDate= fij F A
todayIs=5HE !
change=##5

Now run the application, and the Change button will appear in the correct language.

Localizing the Full Stop

There is still a minor issue here. The full stop used at the end of the sentence so far is the
English one, not the Chinese one (yes, there is a Chinese full stop). To solve this problem,
you could add a new entry to your properties files for the full stop, but then you would be
outputting the sentence in three separate parts, as shown in Figure 9-8.

[Today isMerch 8, 200d |
Pat1 Part2 Part 3

Figure 9-8. Outputting a sentence in three separate parts

This is getting too complicated; more important, you're hard-coding the order of
these parts and whether or not there is a space between them in showdate.xhtml, while
in fact these should depend on the language. For example, in English there should be a
space after the colon, but in Chinese there should be none. To solve this problem, you
should adopt the best practice of outputting the whole sentence in one UI Output com-
ponent, not two or three. To do that, modify the resource bundles as shown in Listing
9-16 and Listing 9-17. You will fill in the placeholder {0} later.

Listing 9-16. Using a Single Entry for the Whole Sentence in msgs . properties

currentDate=Current date
todayIs=Today is: {0}.
change=Change

Listing 9-17. Using a Single Entry for the Whole Sentence in msgs_zh.properties

currentDate= i H A
todayIs="7 1% : {0}.
change=3#

243

244

CHAPTER 9 SUPPORTING OTHER LANGUAGES

To output the whole sentence while filling out the {0} placeholder, modify showdate.
xhtml as shown in Listing 9-18.

Listing 9-18. Outputting the Whole Sentence with the <h:outputFormat> Tag

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<f:loadBundle basename="multilang.msgs" var="b" />
<title>
<h:outputText value="#{b.currentDate}"/>
</title>
</head>
<body>
<h:outputFormat value="#{b.todayIs}">
<f:param value="#{showDate.today}"/>
</h:outputFormat>
<h:form>
<h:selectOneMenu value="#{showDate.langCode}">
<f:selectItems value="#{showDate.langCodes}"/>
</h:selectOneMenu>
<h:commandButton action="#{showDate.changelLangCode}" value="#{b.change}"/>
</h:form>
</body>
</html>

As shown in Figure 9-9, the <h:outputFormat> tag will create a UI Output component
(just like the <h:outputText> tag does) but will associate it with a format renderer. The
<f:param> will create a Ul Parameter component and add it as a child of the UI Output
component. The Ul Parameter component by itself has no meaning at all. It is entirely up
to the parent component (the UI Output component here) how to make use of it. Here, the
UI Output component will let the format renderer do the work, which will use the value of
the UI Output component as a format pattern. Then it will find out the value of the 0th UI
Parameter component and substitute it for the {0} placeholder in the pattern. Of course,
if you had more than one placeholder, you would use {0}, {1}, and so on, in the pattern.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

CHAPTER 9 SUPPORTING OTHER LANGUAGES

<h:outputFormat value="#{b.todayIs}">
<f:param value="#{showDate.today}"/>
</h:outputFormat>

1: Read the value of

Format \ the 0" parameter.
Renderer

2: Rut that
value into the
format
pattern.

value: "Today is: {0}."

value: |E|——

Figure 9-9. How <h:outputFormat> and <f:param> work

Now when you run the application, the sentence, including the full stop, should appear
just fine. However, the date display is no longer in the long style. To fix it, specify the format
and style in the placeholder as shown in Listing 9-19 and Listing 9-20.

Listing 9-19. Specifying the Format and Style for {0} in msgs. properties

currentDate=Current date
todayIs=Today is: {0, date, long}.
change=Change

Listing 9-20. Specifying the Format and Style for {0} inmsgs_zh.properties

currentDate= i H 1
todayIs=%7H5¢ : {0, date, long}.
change=%&1H

Now when you run the application, the date should appear in the long style. Table 9-1
shows some more examples for date, time, and currency.

245

246

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Table 9-1. Different Formats and Styles

Placeholder Meaning

{0, date, short} Format it as a date using the short style.

{0, date, full} Format it as a date using the full style.

{0, time, short} Format it as a time using the short style.

{0, time, long} Format it as a time using the long style.

{0, number, currency} Format it as a number using the currency style.
{0, number, integer} Format it as a number using the integer style.

Displaying a Logo

Now, suppose that you'd like to display a logo on the page, as shown in Figure 9-10.

L@ | Current date - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

@ B - o @ % Ilhttp:muca\k ‘v] [v‘ 'Q‘Q]

DateqU

Today is: March 8, 2009.

Figure 9-10. Using a logo

Note the character “4” in the logo, meaning “for” in this case. In Chinese, “4” doesn’t
mean “for” or “four” at all. In fact, it is pronounced just like the word death in Chinese, so
people tend to avoid it in names. So, say you’d like to have a Chinese version of the logo.
Suppose that you have the English version in the file logo_en.gif and the Chinese version
in logo zh.gif. (You can use any image files; how the images look is not really important
as long as they look different from each other.)

First, put them in the WebContent folder. Then, modify showdate.xhtml as shown in
Listing 9-21. The <h:graphicImage> tag will create a UI Graphic component, which will
generate an HTML tag on render. If the value attribute starts with a slash (as is
the case now), it will be treated as a relative path from the WebContent folder. Without the
leading slash, it would be treated as relative to the showdate.xhtml file itself (that would
work fine too in this case).

Listing 9-21. Using the <h:graphicImage> Tag

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

CHAPTER 9 SUPPORTING OTHER LANGUAGES

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<f:loadBundle basename="multilang.msgs" var="b" />
<title>
<h:outputText value="#{b.currentDate}"/>
</title>
</head>
<body>
<h:graphicImage value="/logo_en.gif"/><p/>
<h:outputFormat value="#{b.todayIs}">
<f:param value="#{showDate.today}"/>
</h:outputFormat>
<h:form>
<h:selectOneMenu value="#{showDate.langCode}">
<f:selectItems value="#{showDate.langCodes}"/>
</h:selectOneMenu>
<h:commandButton action="#{showDate.changelLangCode}" value="#{b.change}"/>
</h:form>
</body>
</html>

Now run the application, and the English version of the logo should appear (regardless
of the language chosen). To make it depend on the language chosen, modify showdate.xhtml
as shown in Listing 9-22. The view variable is a special variable that will return the UI View
Root. Such a special variable is called an implicit object provided by JSF. Then you call get-
Locale() on it and let the EL expression evaluator convert it to a string and append it to the
file name.

Listing 9-22. Using the <h:graphicImage> Tag

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

247

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

248

CHAPTER 9 SUPPORTING OTHER LANGUAGES

<f:loadBundle basename="multilang.msgs" var="b" />
<title>
<h:outputText value="#{b.currentDate}"/>
</title>
</head>
<body>
<h:graphicImage value="/logo_#{view.locale}.gif"/><p/>
<h:outputFormat value="#{b.todayIs}">
<f:param value="#{showDate.today}"/>
</h:outputFormat>
<h:form>
<h:selectOneMenu value="#{showDate.langCode}">
<f:selectItems value="#{showDate.langCodes}"/>
</h:selectOneMenu>
<h:commandButton action="#{showDate.changelLangCode}" value="#{b.change}"/>
</h:form>
</body>
</html>

When you run the application now, it should display the right version of the logo. As
an alternative, you might store the image file name as an entry in the .properties file and
look it up in the value attribute of the <h:graphicImage> tag.

Making the Locale Change Persistent

Suppose that your most preferred locale is Chinese in the browser. Let’s do an experi-
ment: change the locale to English using the Change button, and then press Enter in the
location bar in the browser. The page will be displayed in Chinese again. This means
the locale change is temporary: it’s set for the current view root and thus for the current
request only.

To make the change persistent for, say, the current session, you can store the chosen
language code into the session as shown in Listing 9-23. Whenever the user changes the
language, the code will check whether there is already a session. If there is, it will store the
chosen language code as an attribute in the session under the name multilang.langCode.

Listing 9-23. Storing the Language Code into the Session

<?xml version="1.0" encoding="UTF-8" ?>
public class ShowDate {
private String langCode;

public String changelangCode() {

CHAPTER 9 SUPPORTING OTHER LANGUAGES

HttpSession session = (HttpSession) FacesContext.getCurrentInstance()
.getExternalContext().getSession(false);
if (session != null) {
session.setAttribute("multilang.langCode", langCode);
}
UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();
viewRoot.setlocale(new Locale(langCode));
return null;

The next step is to let the UI View Root use the language code if it exists. To do that,
you need to know that it is the so-called view handler in JSF that creates and initializes
the UI View Root. This includes retrieving the preferred language in the HTTP request,
performing the screening, and then setting the locale into the UI View Root. Now, you
need to provide your own view handler that will check whether a language code is in the
session and, if there is, use it without looking at the HTTP request.

To do that, create a MyViewHandler class in the multilang package as shown in Listing 9-24.
It extends the MultiViewHandler class, which is the default view handler in JSF. When it needs
to find out the locale to store into the UI View Root, JSF will call the calculatelocale() method.
Here you will try to use the language code stored in the session and use it to create a Locale
object to return. If it doesn’t exist, you'll let the base class do what it does (that is, check the
preferred language in the HTTP request).

Listing 9-24. Using the Language Code in the Session to Create the Locale to Use

package multilang;

import java.util.locale;

import javax.faces.context.FacesContext;

import javax.servlet.http.HttpSession;

import com.sun.faces.application.view.MultiViewHandler;

public class MyViewHandler extends MultiViewHandler {
public Locale calculatelocale(FacesContext context) {
HttpSession session = (HttpSession) context.getExternalContext()
.getSession(false);
if (session != null) {
String langCode = (String) session
.getAttribute("multilang.langCode");
if (langCode != null) {
return new Locale(langCode);

249

250

CHAPTER 9 SUPPORTING OTHER LANGUAGES

}

return super.calculatelocale(context);

To tell the JSF to use your own view handler, modify faces-config.xml as shown in
Listing 9-25.

Listing 9-25. Using Your Own View Handler

<faces-config ...>
<application>
<view-handler>multilang.MyViewHandler</view-handler>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>zh</supported-locale>
</locale-config>
</application>
</faces-config>

Save the file, restart the JBoss instance, and run the application again. This time the
locale change should persist until you end the session (such as by restarting the browser).

Localizing Validation Messages

Remember that you can customize the validation messages using a resource bundle. For
example, you may have a file such as MyApp.properties in the multilang package, as shown
in Listing 9-26.

Listing 9-26. Custom Validation Messages

javax.faces.converter.DateTimeConverter .DATE={0} is an invalid {2}!
javax.faces.component.UIInput.REQUIRED=You must input {0}!
javax.faces.validator.LongRangeValidator .MINIMUM={1} must be at least {0}!
javax.faces.validator.LongRangeValidator .MINIMUM detail={1} is invalid!

To use it, you need to say so in faces-config.xml, as shown in Listing 9-27.

CHAPTER 9 SUPPORTING OTHER LANGUAGES

Listing 9-27. Specifying the Application Resource Bundle

<faces-config ...>
<application>
<view-handler>multilang.MyViewHandler</view-handler>
<message-bundle>multilang.MyApp</message-bundle>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>zh</supported-locale>
</locale-config>
</application>
</faces-config>

It is simply a global resource bundle used by the built-in components. To localize it
for, say, Chinese, all you need is to create MyApp zh.properties, just like you would for any
other resource bundle.

Summary

You learned the following in this chapter:

¢ To internationalize a page, you can extract the strings into resource bundles, one for
each supported language and a default resource bundle to act as the parent. To look
up a string for a certain key in a resource bundle, use the <loadBundle> tagto load a
resource bundle as a request-scoped attribute and access it like accessing a map.

¢ To determine the locale to use, the view handler will check the preferred locale as
specified in the HTTP request and check whether it is supported by your applica-
tion. If it is, it will store it into the view root. If it’s not, it will use the default locale
specified in your application.

 Ifyou'd like to let the user specify a particular locale to use, overriding the preferred
locale set in the browser, you may want to store it into the session and provide a view
handler subclass to retrieve it later.

e It is best practice to output the whole sentence using one UI Output compo-
nent. To fill in various placeholders in a pattern before outputting it, you can
use <outputFormat> and specify the value for each placeholder using a UI Param-
eter component (created by a <param>). The meaning of UI Parameter is entirely
determined by its parent component.

¢ To display an image, use a <graphicImage> tag. Its value attribute is a relative path
from the WebContent folder (if it has a leading slash) or from the . xhtml file (other-
wise). To internationalize an image, just internationalize its value attribute.

251

CHAPTER 10

Using JBoss Seam

If your application uses Enterprise JavaBeans (EJBs), you may want to use a framework
called Seam (from JBoss) so that your JSF pages will work with the EJBs more easily. For
example, Seam will allow you to access E]JBs in EL expressions, just like you access web
beans. In addition, Seam also provides some nice features to speed up your JSF develop-
ment. For example, it can generate pages to perform the CRUD (create, retrieve, update,
and delete) operations for your business object class without you writing a single line of
code. In this chapter, you'll learn about such features.

Don’t worry if you don’t know about EJBs; you should still be able to go through this
chapter easily.

Installing Seam

To install Seam, go to http://seamframework.org to download a binary package of JBoss
Seam, such as jboss-seam-2.1.1.GA.zip. Unzip it into a folder such as c:\jboss-seam. As
the download is a library, you can’t run it yet.

Seam version 2.1 doesn’t support JSF 2.0 yet. As you've installed JSF 2.0 into the JBoss
application server in Chapter 1, you can’t run a Seam application on top of it. To solve
this problem, you may want to download a clean copy of the JBoss application server
again and unzip it into, say, c:\jboss.

253

http://seamframework.org

254

CHAPTER 10 USING JBOSS SEAM

Re-creating the E-shop Project

Suppose that you’d like to re-create the e-shop using EJBs and Seam. To do that, open a
command prompt and issue the commands shown in Listing 10-1. Note that these com-
mands assume that your JDK has been installed into c:\Program Files\Java\jdk1.6.0; if
not, you must use the actual path on your computer.

Listing 10-1. Starting Seam Setup

c:\>cd \jboss-seam
c:\>set JAVA HOME=c:\Program Files\Java\jdk1.6.0
c:\>seam setup

The seam setup command will prompt you for some information about your Seam
project and save it for later use. The answers that you must enter yourself are highlighted
in Listing 10-2. For the rest of the questions, you can simply accept the defaults.

Listing 10-2. Telling Seam About Your Seam Project

SEAM_HOME: c:/jboss-seam
Using seam-gen sources from: c:/jboss-seam/seam-gen
Buildfile: c:/jboss-seam/seam-gen/build.xml

init:

setup:
[echo] Welcome to seam-gen :-)
[input] Enter your Java project workspace (the directory that contains your Seam
projects) [C:/Projects] [C:/Projects]
c:/Documents and Settings/kent/workspace
[input] Enter your JBoss AS home directory [C:/Program Files/jboss-4.2.3.GA]
[C:/Program Files/jboss-4.2.3.GA]
c:/jboss
[input] Enter the project name [myproject] [myproject]
SeamShop
[echo] Accepted project name as: SeamShop
[input] Do you want to use ICEfaces instead of RichFaces [n] (y, [n])

CHAPTER 10 USING JBOSS SEAM

[input] skipping input as property icefaces.home.new has already been set.
[input] Select a RichFaces skin [classic] (blueSky, [classic], deepMarine,
DEFAULT, emeraldTown, japanCherry, ruby, wine)

[input] Is this project deployed as an EAR (with EJB components) or a WAR (with
no EJB support) [ear] ([ear], war)

[input] Enter the Java package name for your session beans
[com.mydomain.SeamShop] [com.mydomain.SeamShop]
shop
[input] Enter the Java package name for your entity beans [shop] [shop]

[input] Enter the Java package name for your test cases [shop.test] [shop.test]

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle,
postgres, mssql, db2, sybase, enterprisedb, h2)

[input] Enter the Hibernate dialect for your database
[org.hibernate.dialect.HSQLDialect] [org.hibernate.dialect.HSQLDialect]

[input] Enter the filesystem path to the IDBC driver jar [c:/jboss-
seam/1ib/hsqgldb.jar] [c:/jboss-seam/lib/hsqldb. jar]

[input] Enter JDBC driver class for your database [org.hsqldb.jdbcDriver]
[org.hsqgldb.jdbcDriver]

[input] Enter the JDBC URL for your database [jdbc:hsqldb:.] [jdbc:hsgldb:.]
[input] Enter database username [sa] [sa]

[input] Enter database password [] []

[input] Enter the database schema name (it is OK to leave this blank) [] []
[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n] (y,
[n])

255

256

CHAPTER 10 USING JBOSS SEAM

[input] Do you want to drop and recreate the database tables and data in
import.sql each time you deploy? [n] (y, [n])

[propertyfile] Creating new property file: c:/jboss-seam/seam-gen/build.properties
[echo] Installing JDBC driver jar to JBoss AS
[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL
Total time: 7 minutes 33 seconds

The seam setup command only saves the information into a setting file so that it can
be used later. To create an Eclipse project (using the saved information), issue the com-
mand seam new-project as the second step. Then, the tool will print some output and say
BUILD SUCCESSFUL as shown in Listing 10-3.

Listing 10-3. Creating the Seam Project for the IDE

create-project:

[echo] A new Seam project named 'SeamShop' was created in the c:/Documents and
Settings/kent/workspace directory

[echo] Type 'seam explode' and go to http://localhost:8080/SeamShop

new-project:

BUILD SUCCESSFUL
Total time: 5 seconds

Now, go to Eclipse. Right-click anywhere in the Project Explorer window, and choose
Import followed by “Existing Projects into Workspace,” and then browse to the c:/Documents
and Settings/kent/workspace/SeamShop folder to import the project. Note that you do not
need to add the project to the JBoss instance, as the project has been set up so that, when-
ever you change any file in it, Eclipse will update the corresponding application in JBoss.

To see if everything is working, start the JBoss instance (create a new one if you did
install a clean copy of JBoss) in Eclipse, and try to access http://localhost:8080/SeamShop/
home.seam. You should see a welcome page like the one shown in Figure 10-1. As you may
have noted in the URL, by default, a Seam application maps *.seam to the JSF engine
instead of the /faces prefix.

http://localhost:8080/SeamShop
http://localhost:8080/SeamShop/

CHAPTER 10

Dane

File Edit View History Bookmarks Tools Help

SeamShop - Mozilla Firefox

an -0 [| http:ocalnost:B0B0/SeamShop/ D| 'H'H

eamSho|

Welcome to Seam!

Your seam-gen project is deployed!
Here are some of the features this project
provides:

Ant build script

Deployment to JBoss AS (EAR or
WAR)

Development and production
profiles

Integration testing using TestNG and
Embedded JBoss

JavaBean or EJB 3.0 Seam
components

JPA entity classes

A configurable DataSource and JPA
EntityManager

Tamnlatad Canalabs vimuarnes

S G

Figure 10-1. The welcome page displayed in a Seam application

USING JBOSS SEAM

Note Keep the command prompt open, because you’ll need it in the next section.

Allowing the User to Add Products

For the moment, you have nothing in the products database (no tables and no data).
Therefore, you’d like to allow the user to add some products. You don’t need to create
the products table, as it will be created automatically. All you need is to create the Product
class in the src/main folder (let’s put it into the shop package), as shown in Figure 10-2. In
summary, you are mapping the Product class to a table using @Entity, specifying the pri-
mary key using @Id and some validation constraints on the fields (@NotEmpty for a non-null
field and @Min specifying the minimum valid value).

257

258

CHAPTER 10 USING JBOSS SEAM

package shop;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.ld;
import org.hibernate.validator.Min;
import org.hibernate.validator.NotEmpty;
This annotation tells JBoss this class should be

@Entity mapped to a table named as the dlass. Each field
. is mapped to a column with the same name. This
public class Product { way, you can tell JBoss to save a Fradict object
@Id intothe table. Product

@GeneratedValue

price

I:‘l> id* name
—@NotEmpty

private Long id;
private String name; This annotation tells JBoss that the id colunn

@Min(o) is the primary key. This way, you can tell JBoss
private double price; gloadcx_upchteaﬂ'oductlfapartlwlarld

} ueis given.
It states that the price should -This annotation tells JBoss that when you ask it
be>=0. to add a Product object to the table, if the id

fieldis null, it should generate a value for it
automatically before saving it to the table.

This annotation states that the name should be
non-empty. For example, JBoss could translate
it into a NOT NULL constraint on the name
colurm.

Figure 10-2. Mapping the Product class to a table

Add the getters and setters for access to the fields, as shown in Listing 10-4.

Listing 10-4. Adding Getters and Setters

package shop;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.Id;

import org.hibernate.validator.Min;
import org.hibernate.validator.NotEmpty;

@Entity

public class Product {
@Id
@GeneratedValue
private Long id;
@NotEmpty

CHAPTER 10 USING JBOSS SEAM

private String name;
@Min(0)
private double price;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public double getPrice() {
return price;

}

public void setPrice(double price) {
this.price = price;

Next, you need to create a page to let the user add products. Surprisingly, Seam can
do that automatically for you. In the same command prompt you used before, issue
seam generate-ui. This command will scan the src/main folder for classes with the @Entity
annotation. For each such class, the command will create a page to search and list the
objects, a page to view an object, and a page to edit an object.

Now, refresh the project in Eclipse so that it notes the new files. Note that three
pages should have been created in the view folder: Product.xhtml (for viewing a product),
ProductEdit.xhtml (for editing a product), and ProductList.xhtml (for searching and listing
products).

To see if these pages are working, go to http://localhost:8080/SeamShop/home.seam
again. You should see a Product List link at the top, as shown in Figure 10-3. Click the link
to take you to the product list page.

259

http://localhost:8080/SeamShop/home.seam

260

CHAPTER 10 USING JBOSS SEAM

SeamShop - Mozilla Firefox

File Edit View History Bookmarks Tools Help
4] @ - @ @ g [.}-".-L|http:ﬂluca\hust:SUSUfSeamShupfhuma.seam

SeamShop: Home Product List

—

Welcome to Seam!

SeamShop - Mozilla Firefox

‘ File Edit View History Bookmarks Iools Help

a® -0 2 l}:.l‘http:Hluca\hust:SUSUISeam ‘v”v| Ql

SeamShop: Home Product List Login
Product Search Filter «
Name ‘ |

Product Search Results

The product search returned no results

Create product

Powered by Seam. Generated by seam-gen H

Figure 10-3. The Product List link

If you try to create a product by clicking the Create Product button on the product
list page, the application will ask you to log in first, because the product-editing page has
been declared as requiring a logged-in user. This requirement is set in the ProductEdit.
page.xml file in the view folder, as shown in Listing 10-5.

Listing 10-5. Requiring Authenticated Access to a Page

<?xml version="1.0" encoding="UTF-8"?>

<page xmlns="http://jboss.com/products/seam/pages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/pages

http://jboss.com/products/seam/pages-2.1.xsd"
no-conversation-view-id="/ProductList.xhtml"
login-required="true">

</page>
As you can see, in Seam, you can have a configuration file for each page. For example,

if the page is named foo.xhtml, its configuration is named foo.page.xml and is stored in
the same folder as the page file.

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.1.xsd

CHAPTER 10 USING JBOSS SEAM

How does Seam check the user name and password? It relies on a web bean named
authenticator. Actually, Seam versions prior to and including 2.1 predate the Web Beans
specification and therefore do not support web beans. However, these versions of Seam
do support a similar concept called a component. This authenticator component is in
the src/hot folder in the Authenticator class in the shop package, as shown in Listing 10-6.
It was generated when seam new-project created the Eclipse project. (Are you wondering
why the funny name “hot”? Seam can hot deploy components defined in this folder when
you make changes to them.)

In Seam, the name of the component is specified using @ame, not @amed, and injec-
tion is done by @In instead of @Current. @In and @Current work similarly but with one very
important difference: @In uses the name of the field (for example, identity or credentials)
to look up the component, while @Current uses the class of the field to do that.

When Seam needs to check the user name and password, it will call the authenticate()
method. That method can obtain the user name and password entered by the user from
the Credentials component. If the method returns true, the authentication will be consid-
ered successful; false indicates a failure. As Listing 10-6 shows, instead of looking up a user
database or an LDAP directory, Seam hard-codes a user named admin without checking the
password and tells (any parties concerned) that the user has the role of admin. You can take
that to mean that the user belongs to the admin group. You'll see how to make use of admin
user group privileges later.

Listing 10-6. Authenticator Component

package shop;

import org.jboss.seam.annotations.In;
import org.jboss.seam.annotations.Logger;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.log.Llog;

import org.jboss.seam.security.Credentials;
import org.jboss.seam.security.Identity;

@Name("authenticator™)
public class Authenticator {

@Logger

private Log log;
@In

Identity identity;
@In

Credentials credentials;

261

262

CHAPTER 10 USING JBOSS SEAM

public boolean authenticate() {

log.info("authenticating {0}", credentials.getUsername());

//write your authentication logic here,

//return true if the authentication was

//successful, false otherwise

if ("admin".equals(credentials.getUsername())) {
identity.addRole("admin");
return true;

}

return false;

Now, log in as admin, and try to add a product as shown in Figure 10-4. Note that Seam
has figured out that the name is required (from @NotEmpty) and that the price is also required
(from the fact that it is a primitive double, not a Double and thus can’t be null).

SeamShop - Mozilla Firefox

i

Fle Edit View History Bookmarks Tools Help

e% -0

SeamShop: Home ProductList

[1= | http:/flocalhost:8080/SeamShop/ProductEdit.seam

Add Product

Name *

Pen

Price * 2.3
* required fields

Figure 10-4. Adding a product

If you try to input a negative price, the page will return an error as shown in Figure 10-5.
It means Seam has created a DoubleRangeValidator from the @Min annotation automatically.

CHAPTER 10 USING JBOSS SEAM

SeamShop - Mozilla Firetox

Bt

SeamShop: Hom Product List signed in as

Add Product

Name *

Pen

Price* |—2.3 | @ must be greater than or equal to 0

" required fields

Figure 10-5. Invalid input caught

Also in Figure 10-5, note that the invalid field is highlighted, and an error message is
displayed to its right. This visual feedback for the user is implemented by the <s:decorate>
tag in ProductEdit.xhtml, as shown in Listing 10-7. This tag is also responsible for adding
an asterisk to the label if the field is required. To use the <s:decorate> tag, you need to
pass a piece of JSF content (representing the field label) to it using the name label, and
put the input field in the <s:decorate> tag’s body.

Listing 10-7. Using the <s:decorate> Tag

<IDOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.01g/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:a="http://richfaces.org/a4j"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">

263

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/a4j
http://richfaces.org/rich

264 CHAPTER 10 USING JBOSS SEAM

<ui:define name="body">
<h:form id="product" styleClass="edit">
<rich:panel>
<f:facet name="header">...</f:facet>
<s:decorate id="nameField" template="layout/edit.xhtml">
<ui:define name="label">Name</ui:define>
<h:inputTextarea id="name"
cols="80"
rows="3"
required="true"
value="#{productHome.instance.name}"/>
</s:decorate>
<s:decorate id="priceField" template="layout/edit.xhtml">
<ui:define name="label">Price</ui:define>
<h:inputText id="price"
required="true"
value="#{productHome.instance.price}">
<a:support .../>
</h:inputText>
</s:decorate>

</rich:panel>

</h:form>
</ui:define>
</ui:composition>

Also note that the page uses a base page (layout/template.xhtml). That’s why all the
pages in the Seam application have the same menu at the top and the same footer at the
bottom.

Now, go ahead and add some more products. The product list page should show the
products you've added, and you can click the View link to see a particular product, as
shown in Figure 10-6.

CHAPTER 10 USING JBOSS SEAM 265

SeamShop - Mozilla Firefox

File Edit View History Bookmarks Tools Help o
@ -0an [*E;)|http:ﬂluca\hcst:suaoJSeamshupJPruducu ‘v] [v\ Ql
SeamShop: Home ProductlList signedin as: admin Logout

Product Search Filter [

Name | ‘

Product Search Results

1 Pen 23 View Edit

2 Eraser 34 — View Edit
3 Pencil 12 View Edit

SeamShop - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help ot
B -0 A [-:E:,“http:ulucalhust:auauiSE ‘v] [v\ Q]

SeamShop: Home Product List signed in as: admin

Product Details

Name Eraser
Price 34
[oone

Powered by Seam. Generated by seam-gen

N |

Figure 10-6. Listing and viewing products

Restricting Access to the Product-Editing Page

For the moment, any logged-in user can edit the products, and this setup is insecure.
Suppose only users with the admin role should be allowed to edit the products. To add this
security feature, modify ProductEdit.page.xml as shown in Listing 10-8.

Listing 10-8. Restricting Access to Product Editing Page

<?xml version="1.0" encoding="UTF-8"?>
<page ...>

<restrict>SOME EL EXPR RETURNING TRUE ONLY IF USER HAS THE ADMIN
ROLE</restrict>

<begin-conversation join="true" flush-mode="MANUAL" />

266 CHAPTER 10 USING JBOSS SEAM

<action execute="#{productHome.wire}" />
<param name="productFrom" />
<param name="productId" value="#{productHome.productId}" />
<navigation from-action="#{productHome.persist}">
<rule>
<end-conversation />
<redirect view-id="/Product.xhtml" />
</rule>
</navigation>
<navigation from-action="#{productHome.update}">
<rule>
<end-conversation />
<redirect view-id="/Product.xhtml" />
</rule>
</navigation>
<navigation from-action="#{productHome.remove}">
<rule>
<end-conversation />
<redirect view-id="/ProductlList.xhtml" />
</rule>
</navigation>
</page>

What EL expression do you put into the body of the <restrict> tag? You can do it as
shown in Figure 10-7. In summary, the EL expression evaluator will use the prefix “s” and
the function name “hasRole” to look up the function and then call it. The return value is
the value of the EL expression.

1: Look up a function library whose prefixis
ey
Prefix: s

Name [Function

—— |hasRole

<?xml version="1.0"|encoding="UTF-8"?> 2: Lok up the function named This "s" function library is
<page ...> "hasRdle". provided by Seam, sothe
<restrict>#{s:hasRole("admin")}</restrict> function paints to a static

method provided by a class in
Seam.

</page>

class SomeClassInSeam {
static boolean isUserInRole(String role) {

}
}

Figure 10-7. Calling a function in an EL expression

CHAPTER 10 USING JBOSS SEAM 267

Now, you might like to test run the application and log in as an ordinary user, but you
can’t, because the system has only one (admin) user. To solve the problem, hard-code an
ordinary user in the Authenticator class, as shown in Listing 10-9.

Listing 10-9. Hard-Coding an Ordinary User

package shop;

@Name("authenticator™)
public class Authenticator {

@Logger

private Log log;
@In

Identity identity;
@In

Credentials credentials;

public boolean authenticate() {

log.info("authenticating {0}", credentials.getUsername());

// write your authentication logic here,

// return true if the authentication was

// successful, false otherwise

if ("ui".equals(credentials.getUsername())) {
return true;

}

if ("admin".equals(credentials.getUsername())) {
identity.addRole("admin");
return true;

}

return false;

Now, run the application, log in as u1, and try to access the product-editing page. You
should be rejected. If you log out and try again as the admin user, you should get through.

Creating a Shopping Cart

Next, you'd like to allow users to add products to a shopping cart. To do that, you need to
add a button on the product-viewing page like the one shown in Figure 10-8. After adding
the product, the IDs of the products in the shopping cart are displayed.

268

CHAPTER 10 USING JBOSS SEAM

SeamShop - Mozilla Firefox

File Edit View History Bookmarks Tools Help

5

SeamShop - Mozilla Firefox

Fle Edit Wiew History Bookmarks Tools Help

A

@ m - @6 A [¢]mpaocan [-][C-] @ B - @ @ A [hpacah
SeamShop: Home Product List Login F SeamShop: Home ProductList Login F
Cart
Pen]
Name 12
Price 23
m] Powered by Seam. Generated by seam-gen

Figure 10-8. Adding a product to the shopping cart

To add the shopping cart button, modify product.xhtml as shown in Listing 10-10. The
Seam <s:button> is very much like an <h:commandButton> except that you can specify the
next view ID directly using the view attribute: using <s:button> means you don’t need to
define a navigation rule. In addition, the Seam button is quite smart—it will work even if
itis not inside an <h:form>.

Listing 10-10. Using <s:button> for the “Add to Cart” Button

<IDOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">
<ui:define name="body">
<rich:panel>
<f:facet name="header">Product Details</f:facet>
<s:decorate id="name" template="layout/display.xhtml">
<ui:define name="label">Name</ui:define>
<h:outputText value="#{productHome.instance.name}"/>
</s:decorate>
<s:decorate id="price" template="layout/display.xhtml">
<ui:define name="label">Price</ui:define>
<h:outputText value="#{productHome.instance.price}"/>
</s:decorate>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

CHAPTER 10 USING JBOSS SEAM

<div style="clear:both"/>
</rich:panel>
<div class="actionButtons">
<s:button view="/ProductEdit.xhtml"
id="edit"
value="Edit"/>
<s:button view="/#{empty productFrom ? 'ProductlList' : productFrom}.xhtml"
id="done"
value="Done"/>
<s:button view="/cart.xhtml"
action="#{cart.add}"
value="Add to Cart"/>
</div>
</ui:define>

Now that you have a button, you need to create the cart component to provide the
add() action method to use it. So, create the Cart class in the src/hot folder in the shop
package as shown in Listing 10-11. Here, you inject the ProductHome object using the @In
annotation. This ProductHome class was generated by Seam when you ran seam generate-ui
and is very much like the ProductHolder class in the e-shop from the plain JSF example
in Chapter 4. That is, it is used to hold a product ID, and it can use that to load a Product
object.

The Cart.add() method gets the product ID from the ProductHome object. Then you
just print the product ID to the console to verify that it is working. Note that the add()
method returns void instead of an outcome, which is possible because the view ID has
been specified in the <s:button> tag.

Listing 10-11. Adding the Product ID to the Shopping Cart

package shop;

import java.io.Serializable;
import java.util.Arraylist;
import java.util.list;

import org.jboss.seam.ScopeType;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.annotations.Scope;

@Name("cart")
@Scope(ScopeType.EVENT)
public class Cart implements Serializable {

269

270 CHAPTER 10 USING JBOSS SEAM

private List<lLong> pids;
@In
private ProductHome productHome;

public Cart() {
pids = new Arraylist<Long>();

}

public void add() {
Long pid = productHome.getProductId();
System.out.println(pid);
pids.add(pid);

}

public List<lLong> getPids() {
return pids;

Now that you have the method to handle the cart, create the cart.xhtml file in the
view folder to display the contents of the shopping cart. For the moment, the content is
static, as shown in Listing 10-12.

Listing 10-12. cart.xhtml

<IDOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">
<ui:define name="body">

<h1>Cart</h1>

</ui:define>

</ui:composition>

Now, run the application, and try to add a product to the shopping cart. Unfortu-
nately, it will fail with the exception shown in Figure 10-9.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

CHAPTER 10 USING JBOSS SEAM 27

o
- Exception

Exception during request processing:

Caused by javax.el.ELException with message:
“org.jboss.seam.RequiredException: @In
attribute requires non-null value:
cart.productHome"

org.jboss.el.util.ReflectionUtil.invokeMethod(Refled
org.jboss.el.util.ReflectionUtil.invokeMethod(Refled
org.jboss.el.parser.AstPropertySuffix.invoke (AstProg

: orq.1boss.el.parsen.AstValue.invoke(AstValue.1avF19§Z
4] | 4

Figure 10-9. An error received when injecting a nonexistent component

The exception in Figure 10-9 is thrown because when Seam tries to inject the productHome
component into the cart component, it finds that there is no such productHome component.
Why? Because the ProductHome class extends the EntityHome class (provided by JBoss), which
is in the conversation scope. However, the application did not start a long-running conversa-
tion, so the productHome component will be gone when the “Add to Cart” button is submitted.
What happens when the component being injected doesn’t exist? If the component were
being referenced in an EL expression, Seam would create it. But when the injected compo-
nent is referenced by another Seam component, Seam will simply throw an exception.

Simply creating a new productHome component again will not resolve the exception,
as the component will have lost the product ID. Figure 10-10 shows a solution: When
<s:button> is generating the URL (to invoke the cart.xhtml page), it reads the product ID
from the productHome component and stores the ID into a query parameter in the URL.
When the user clicks the “Add to Cart” button, Seam intercepts the request, notes that it
is loading the cart.xhtml page, reads that query parameter, and stores the product ID into
the (new) productHome component.

272 CHAPTER 10 USING JBOSS SEAM

2: AddprodJctId:1ZSas 1: Read the product ID,

aquery parameter. suoh as123. procuct
Home

<input onclick="go to URL" ...>
5: Store 123 into the new

"productHome" component. . (product
| =
=

productlc; 123 +————

> 4: Read the query
3: The button is dlicked, and parameter.
arequest is sent along with
the query parameter.

Figure 10-10. Using a query parameter to maintain the product ID

To implement this idea, create the cart.page.xml file alongside the cart.xhtml page
(in the view folder). The content is shown in Listing 10-13. The key is the <param> tag. It
is read by both the <s:button> when generating the URL and Seam when handling the
request. The former reads the EL expression and stores the result into the specified query
parameter. The latter does the opposite: it reads the specified query parameter and stores
the result into the EL expression.

Listing 10-13. Using <param> to Maintain the Product ID with a Query Parameter

<?xml version="1.0" encoding="UTF-8"?>
<page xmlns="http://jboss.com/products/seam/pages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.1.xsd">
<param name="productId" value="#{productHome.productId}"/>
</page>

Run the application, and try to add a product to the shopping cart. The correct
product ID should print in the console.
Next, modify cart.xhtml to show the cart contents, as shown in Listing 10-14.

Listing 10-14. Displaying the Contents of the Shopping Cart

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.1.xsd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

CHAPTER 10 USING JBOSS SEAM

xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">
<ui:define name="body">
<h1>Cart</h1>
<rich:panel>
<ui:repeat value="#{cart.pids}" var="pid">
<h:outputText value="#{pid} "/>
</ui:repeat>
</rich:panel>
</ui:define>
</ui:composition>

There is nothing special here. If you run the application and add some products to
the shopping cart, their IDs will be displayed.

Turning the Shopping Cart into a Stateful
Session Bean

For the moment, you have a shopping cart for each user. If you have a huge number of
users, many shopping carts will exist in the memory, while many of them are not being
actively used. To save memory, you may let JBoss save some of them to the hard disk when
they are idle. When they are needed again, JBoss will load them from the hard disk. This
way, you can support a huge number of users, and your application will become very
scalable.

To implement this idea, you can turn the shopping cart into a stateful session bean.
To do that, first change the Cart class in the src/hot folder into an interface, as shown in
Listing 10-15.

Listing 10-15. The Cart Interface
package shop;

import java.util.list;

public interface Cart {

void add();
List<Long> getPids();

273

http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

274

CHAPTER 10 USING JBOSS SEAM

You'll still need to create a class to implement that interface. So, create a CartBean
class in the src/hot folder in the shop package, as shown in Figure 10-11. Simply put,
@Stateful tells JBoss to create a stateful session bean from this class. As a result, different
bean instances will be created, saved to disk, loaded from disk, and destroyed by JBoss
automatically. The application will access a bean instance through a proxy, so that the
bean instance can be saved, loaded, or moved around in memory without the applica-
tion noticing. Because the session bean is stateful, once the application obtains a proxy
to one instance (say, Cart 1), all subsequent method calls on the proxy will be delegated to
the same instance (Cart 1). In contrast, if the session bean was stateless, different method
calls on the same proxy might be delegated to different bean instances, because all the
bean instances are considered identical.

package shop;

import java.util.list;
import javax.ejb.Stateful;

@Stateful

. . This annotation tells JBoss to create a
public class CartBean implements Cart {

stateful session bean from this class.
The effect is that JBoss will create,

The bean instances (and the proxies) will implement manage, and destroy instances of that
the Cart interface, and the application will access stateful session bean.
. the proxy through the Cart interface too.
@0verride
public void add() {
@0verride

public List<Long> getPids() {
return null;
}

JBoss
}

Stateful Session Beans

— ()
O

App 1 _|\

Figure 10-11. Creating a stateful session bean for the shopping cart

To inject the productHome component into the shopping cart (so that the latter can
find out the ID of the selected product), you need to turn the session bean into a Seam
component. To do that, modify the CartBean class as shown in Listing 10-16.

CHAPTER 10 USING JBOSS SEAM 275

Listing 10-16. Turning a Session Bean into a Seam Component

package shop;

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

public class CartBean implements Cart {

@In
private ProductHome productHome;

@0verride
public void add() {

}

@0verride
public List<Long> getPids() {
return null;

How does the Seam component work with the session bean? When Seam needs to
create the cart component, it notes that the CartBean class is a stateful session bean (as
specified by the @Stateful annotation). So, Seam will obtain a proxy (from JBoss) to access
the bean instance and let the component delegate all method calls to it as shown in
Figure 10-12.

JBoss

App 1

Gt (P2t

Stateful session beans

RECD,
<

Figure 10-12. A Seam component delegating method calls to a stateful session bean

In addition, when the session is about to be destroyed, Seam will need to destroy the
cart component and the corresponding bean instance. To allow Seam to do that, you can

276

CHAPTER 10 USING JBOSS SEAM

modify the CartBean class as shown in Listing 10-17. The @Remove annotation tells JBoss to
remove the bean instance after the destroy() method returns. Noting the existence of this
annotation, Seam will call the destroy() method when it needs to destroy the component.

Listing 10-17. Providing a Destroy Method to Seam

package shop;
import javax.ejb.Remove;

@Stateful

@Name ("cart")

@Scope(ScopeType.SESSION)

public class CartBean implements Cart {
@In
private ProductHome productHome;

@0verride
public void add() {

}

@0verride

public List<Long> getPids() {
return null;

}

@Remove

public void destroy() {

Finally, implement the methods shown in Listing 10-18. They implement the busi-
ness functionality of the shopping cart, enabling it to store product IDs and retrieve them
later.

Listing 10-18. Implementing the Methods for the Shopping Cart
package shop;

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

public class CartBean implements Cart {

private List<Long> pids;
@In
private ProductHome productHome;

public CartBean() {
pids = new ArraylList<Long>();

}

@0verride
public void add() {

CHAPTER 10

Long pid = productHome.getProductId();

pids.add(pid);

}

@0verride

public List<lLong> getPids() {
return pids;

}

@Remove

public void destroy() {

USING JBOSS SEAM

Now, restart the browser so that a new session is created, run the application, and try
to add some products to the shopping cart. The application should continue to work.

Creating the Checkout Page

Next, you'd like to allow the user to check out as shown in Figure 10-13.

SeamShop - Mozilla Firefox

SeamShop - Mozilla Firefox

File Edit View History Bookmarks Tools Help e
an -0 A [',u‘:.'»‘http:,‘flucalhw |v l [v| '@{]

Product List Login B

SeamShop: Home

Cart

12

Checkout

Powered by Seam. Generated by seam-gen =

File Edit View History Bookmarks Tools Help

&% -0

A [&[httpiocalns |

-G~ ﬁxl

SeamShop: Home ProductList

@ Welcome, u1l

Confirm

You're paying 3.5 with credit card 1234

signedin g

Figure 10-13. Checking out

277

278

CHAPTER 10 USING JBOSS SEAM

To do that, modify cart.xhtml as shown in Listing 10-19.

Listing 10-19. Checkout Button

package shop;
<IDOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">
<ui:define name="body">
<h1>Cart</h1>
<rich:panel>
<ui:repeat value="#{cart.pids}" var="pid">
<h:outputText value="#{pid} " />
</ui:repeat>
<div>
<s:button view="/confirm.xhtml" value="Checkout"/>
</div>
</rich:panel>
</ui:define>
</ui:composition>

Create the confirm.xhtml file in the view folder. The content is shown in Listing 10-20.

Listing 10-20. confirm.xhtml

package shop;
<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ui="http://java.sun.com/jsf/facelets"”
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:rich="http://richfaces.org/rich"
template="layout/template.xhtml">
<ui:define name="body">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

CHAPTER 10 USING JBOSS SEAM

<h1>Confirm</h1>
<rich:panel>
You're paying #{confirm.total} with credit card #{confirm.creditCardNo}.
</rich:panel>
</ui:define>
</ui:composition>

Again, to achieve better scalability, you’d like to make the confirm component a ses-
sion bean. To do that, create the Confirm interface in the src/hot folder in the shop package
as shown in Listing 10-21.

Listing 10-21. The Confirm Interface

package shop;

public interface Confirm {
double getTotal();
String getCreditCardNo();

Create a ConfirmBean class in the src/hot folder in the shop package as shown in
Listing 10-22. Note that because the class has no state in itself (it simply injects other
components into itself), its scope is set to EVENT, which is the same as request. In addi-
tion, the class is annotated with @Stateless, meaning that different method calls on the
same proxy could delegate to different bean instances. As all ConfirmBean instances are
considered identical, JBoss will never save or load them to and from the hard disk (and
thus has less work to do); all it needs is to create and destroy them.

Listing 10-22. Seam Component Delegating to Stateless Session Bean

package shop;
import javax.ejb.Stateless;

@Stateless
@Name ("confirm")
@Scope(ScopeType.EVENT)
public class ConfirmBean implements Confirm {
@In
private Credentials credentials;
@In
private Cart cart;

279

280 CHAPTER 10 USING JBOSS SEAM

@0verride

public String getCreditCardNo() {
return null;

}

@0verride

public double getTotal() {
return 0;

}

@Remove

public void destroy() {

Next, implement the getTotal() method as shown in Listing 10-23. Here, you inject
the identity manager into the confirm bean. This entity manager component is provided
by Seam. You can consider the entity manager a connection to your database. Using it,
you can issue queries, updates, and so on. Here, you select the Product object whose ID is
specified, so you can find out the price of the product to add to the total amount.

Listing 10-23. Injecting the EntityManager

package shop;

import javax.persistence.EntityManager;
import javax.persistence.Query;

@Stateless
@Name ("confirm")
@Scope(ScopeType.EVENT)
public class ConfirmBean implements Confirm {
@In
private Credentials credentials;
@In
private Cart cart;
@In
private EntityManager entityManager;

@0verride
public String getCreditCardNo() {
return null;

CHAPTER 10 USING JBOSS SEAM

@0verride
public double getTotal() {
Query q = entityManager
.createQuery("select p from Product p where p.id=:id");
double total = o0;
for (Long pid : cart.getPids()) {
q.setParameter("id", pid);
Product p = (Product) q.getSingleResult();
total += p.getPrice();

}

return total;
}
@Remove

public void destroy() {

To implement the getCreditCardNo() method, for simplicity, let’s hard-code the credit

card number for user u1 instead of looking up a user database, as shown in Listing 10-24.

Listing 10-24. getCreditCardNo() Method

package shop;

@Stateless

@Name("confirm")

@Scope(ScopeType.EVENT)

public class ConfirmBean implements Confirm {

@In

private Credentials credentials;

@In

private Cart cart;

@In

private EntityManager entityManager;

@0verride
public String getCreditCardNo() {
if (credentials.getUsername().equals("u1")) {
return "1234";

}

return "unknown";

281

282

CHAPTER 10 USING JBOSS SEAM

}

@0verride
public double getTotal() {
Query g = entityManager
.createQuery("select p from Product p where p.id=:id");
double total = 0;
for (Long pid : cart.getPids()) {
q.setParameter("id", pid);
Product p = (Product) q.getSingleResult();
total += p.getPrice();

}

return total;
}
@Remove

public void destroy() {

Now, run the application, and try to check out. Unfortunately, the attempt will fail
with the following error messages:

Caused by: org.jboss.seam.RequiredException: @In attribute requires non-null value:
cart.productHome

at org.jboss.seam.Component.getValueToInject(Component.java:2297)

at org.jboss.seam.Component.injectAttributes(Component.java:1703)

at org.jboss.seam.Component.inject(Component.java:1521)

You can’t check out yet, because when Seam tries to call getPids() on the cart com-
ponent, Seam will try to inject the productHome component into cart component. But
there is no productHome component, which causes an error. As getPids() doesn’t really
need the productHome component, you can tell Seam to not to treat this as an error (see
Listing 10-25).

Listing 10-25. Marking an Injected Field As Unrequired
package shop;

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

CHAPTER 10 USING JBOSS SEAM 283

public class CartBean implements Cart {
private List<lLong> pids;
@In(required=false)
private ProductHome productHome;

public CartBean() {
pids = new ArraylList<Long>();

}

@0verride

public void add() {
Long pid = productHome.getProductId();
pids.add(pid);

}

@0verride

public List<lLong> getPids() {
return pids;

}

@Remove

public void destroy() {

If you try again now, you'll get the following error in the console:

Caused by: java.lang.NullPointerException
at shop.ConfirmBean.getCreditCardNo(ConfirmBean.java:27)
at sun.reflect.NativeMethodAccessorImpl.invokeo(Native Method)
at ...

This time, the user hasn’t logged in yet, and thus the user name is null. To solve this
problem, you should force the user to log in before viewing the confirmation page. To
do that, create the confirm.page.xml file along with the confirm.xhtml file. The content is
shown in Listing 10-26.

Listing 10-26. Requiring Authenticated Access to a Page

<?xml version="1.0" encoding="UTF-8"?>

<page xmlns="http://jboss.com/products/seam/pages"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/pages

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

284

CHAPTER 10 USING JBOSS SEAM

http://jboss.com/products/seam/pages-2.1.xsd"
login-required="true">
</page>

Now, try to check out again, and the application should force you to log in. Log in as
ul to see the total amount and the credit card number properly.

Using WebLogic, WebSphere, or GlassFish

Even though you used JBoss in this chapter, the code you developed should run fine on
other EJB3 servers such as WebLogic, WebSphere, or GlassFish. However, for each par-
ticular type of server, you may need to perform some specific setup adjustments. Consult
the Seam documentation for more information.

Summary

In the chapter, you've learned that if a class is annotated with @Entity, its instances can be
easily saved to or loaded from a database table with JBoss. Seam can generate pages for
such a class for searching and listing the instances and for viewing and editing of a par-
ticular instance. You can further annotate its fields to specify constraints.

You also learned that you can use session beans to achieve better scalability. If a
bean instance contains states, make it a stateful bean; otherwise, make it a stateless bean.
Whether your bean is stateful or stateless, JBoss will create and destroy the bean instances,
and the application will access a bean instance using a proxy. To save memory when work-
ing with stateful beans, JBoss may save bean instances to the hard disk and load them back
when they are needed again. JBoss will have less work to do for a stateless bean: it can sim-
ply destroy and create them.

You learned, too, that a Seam component is like a web bean. You can inject one
component into another by name. In addition, you now know how to turn a session bean
(stateful or stateless) into a Seam component, so the component will delegate method
calls to the proxy, which will further delegate to the bean instance. You also saw how to
annotate a method with @Remove to allow Seam to destroy the bean instance when it
destroys the component.

You learned that you can let Seam automatically generate a skeleton application,
complete with a common layout, login page, and many built-in components such as
Credentials (user name and password) and EntityManager (connection to database). You
also explored some of Seam’s powerful tags, specifically <s:decorate> and <s:button>. You
can now use the former to set up JSF validators according to the constraints you specified
on the field, add an asterisk to indicate a required field, and display the error message
(if any). And you can use the latter to specify the next view ID directly without using

http://jboss.com/products/seam/pages-2.1.xsd

CHAPTER 10 USING JBOSS SEAM

a navigation rule and to maintain some information for the next page through a query
parameter.

Finally, you learned that, in order to specify what information to maintain for the next
page, to require authenticated access to a page, or to restrict access to the users with a par-
ticular role, you can create a file <PAGE-NAME> . page.xml in the same folder as your page.

285

Index

A

<adj:button> tag, 201
<a4j:commandButton> tag, 195
<adj:commandLink> tag, 189, 194, 199
<adj:repeat> tag, 212
<adj:support> tag, 199
AbortProcessingException, 98
action attribute, 38, 107, 225
action listener
creating for the e-shop project, 109
implementing the ActionListener
interface, 98
modifying for the e-shop project, 112
moving Ul-specific code into, 98
action provider, 162
add(), 269
addToCart(), 117, 120
admin user group, 261
Ajax
<adj:button> tag, 201
<adj:commandButton> tag, 195
<adj:commandLink> tag, 189, 194, 199
<adj:repeat> tag, 212
<adj:support> tag, 199
assigning an ID to a component for
identification, 186
changing a component’s visibility, 191
displaying a FAQ, 183
FAQService class, 184, 195, 209-210, 212
foo.taglib.xml, 208
<h:dataTable> tag, 212
<h:messages> tag, 196
isShortForm flag, 185
isShowingAnswer(), 190
listfaq.xhtml, 183, 189, 193, 196, 200,
206,210-211
onclick event, 186
ga.xhtml, 207
Question class, 209
question parameter, 207

rating a question and answer, 194

refreshing a partial or entire page,
186

rendered attribute, 190, 192

reRender attribute, 189, 196

RichFaces component library, 187

<rich:modalPanel> tag, 200

<rich:panel> tag, 205

trigger(), 185

updating a panel, 192

updating a rating as the user types,
199

using a dialog box to get a rating, 200

Ant, downloading version 1.7.0 or newer, 8

Application object, 239

Apply Request Values phase, 56, 74, 110
authenticate(), 261

Authenticator class, 267

authenticator component, 261

B
b1 bean, 32
adding the quoteDate property,
52-53
defining, 35
determining the stock value from, 39
b2 bean, creating, 61
Back button, 215, 219, 228
basename attribute, 233
base page, 264
base.xhtml
creating a base page, 175
inheriting from, 176
beans.xml, 23
begin(), 223
Big5 encoding, 233
box component
<box> tag, defining, 165
box.xhtml, 165
creating, 163

287

INDEX

pl.xhtml, 164

passing XHTML code as the tag body, 164

passing XHTML code through a
parameter, 163

<ui:insert> tag, 165

See also components

C
calculateLocale(), 249
Cart class, 119, 126, 269, 273
CartBean class, 274-276
cart.page.xml, 272
cart.xhtml, 121, 129, 270-272, 278
Catalog class, 103, 125
catalog.xhtml, 102, 109, 114, 116, 132, 146,
148
Change button, 242
Checkout button, creating, 129
Chinese language support, 232
Big5 encoding, 233
localizing the full stop, 243
using Chinese fonts, 236
using the Chinese version of a resource
bundle, 235
client IDs
code example, 46
specifying, 89
specifying a relative client ID, 94
storing with error messages, 88
combo box, choosing stock symbols from,
60
components
<component> tag, 156
creating a box component, 163
creating a component library without
taglib.xml, 170
creating a product editor, 159
creating a reusable component library,
168
creating custom components, 151
displaying a copyright notice on
multiple pages, 151
grouping multiple components into
one, 91
passing method parameters to custom
tags, 162

providing parameters to a custom tag, 157
specifying the validation error message
for a single component, 77
UI Command, 38-39, 41, 107, 186
UI Data, 105
Ul Form, 31, 97
Ul Input, 32, 35, 39-41, 46-47, 49, 51,91
Ul Load Bundle, 233, 235
UI Message, 88, 90, 95
Ul Output, 105, 186, 190, 238, 243-244
Ul Panel, 68, 91
UI Parameter, 244
Ul View Root, 235, 238, 240, 247, 249
See also box component
<composite:attribute> tag, 170
<composite:implementation> tag, 170
<composite:interface> tag, 170
confirm page, 127
ConfirmBean class, 279
confirm.page.xml, 283
ConfirmService class, 129, 138
confirm.xhtml, 128, 140, 278, 283
conversation scope, 215
conversation, definition of, 219
making a conversation long-running,
220-223
transient vs. long-running
conversations, 220
turning a conversation back into a
transient one, 223
converters, 238
copyright notice
<component> tag, 156
copyright.xhtml, 152, 156
creating the CustomComp project,
154
defining a Facelet tag lib, 154-155
defining and naming a tag library, 154
defining the namespace, 153
developing a custom <copyright> tag,
153
displaying on multiple pages, 151
extracting common code into a
separate XHTML file, 151
foo.taglib.xml, 154
pl.xhtml, 154

<copyright> tag
complete XHTML page for, 156
developing, 153
outputting the company parameter in
copyright.xhtml, 157
Credentials component, 261
@Current annotation, 117, 261
CustomComp project
creating, 154
p2.xhtml, 169
packing the META-INF folder into a JAR
file for exporting, 169
custom tags
accepting method parameters, 162
accepting two pieces of XHTML code, 166
pl.xhtml, 166
<pair> tag, defining in foo.taglib.xml,
167
pair.xhtml, 166
<ui:define> tag, 166
<ui:insert> tag, 166

D
date display
internationalizing, 238
setting the date style to long, 238
table of formats and styles, 245
Date object
converting into a string, 50
Date converter and conversion failure, 55
Date converter, using, 51
inputting, 49
specifying the date format, 53-54
DateTimeConverter class, 58
dependencies
dependency injection, 118
object, 118
pulling, 118
destroy(), 276
detail.xhtml, 108, 113,117, 124
DoubleRangeValidator, 78, 262

E

Eclipse
debugging a JSF application, 25
downloading, 2
installing, 2
launching JBoss in, 3

INDEX

Navigator view, 29
Properties Editor, installing and using,
233
setting a breakpoint in Java code, 25
switching to the Java EE perspective, 3
EL expression
accessing a parameter in, 157
definition of, 20
EL variable, 157
evaluating, 105
linking to a variable table, 158
using directly in body text, 25
encoding, definition of, 18
end(), 224
@Entity annotation, 257, 259
EntityHome class, 271
error messages
AbortProcessingException, 98
creating a messages.properties text file,
48, 58
customizing error messages using a
message bundle, 76
displaying in red, 86
displaying with a field, 87
<h:messages> tag, 75
specifying a conversion error message,
59
specifying for a single UI Input
component, 49
specifying the validation error message
for a single component, 77
storing with client IDs, 88
ValidatorException, 80
validatorMessage attribute, 92
escaped Unicode encoding, 233
e-shop project
accessing an attribute like a Web Bean,
105
accessing a selected Product object,
111
action attribute, 107
action listener, 109, 112
adding products to the shopping cart,
116
addToCart(), 117, 120
allowing the user to check out, 127
appending the row index to the client
ID, 110

289

INDEX

Cart class, 119, 126

cart.xhtml, 121, 129

Catalog class, 103, 125

catalog.xhtml, 102, 109, 114, 116, 132,
146, 148

confirm page, 127, 138, 140, 143, 146

ConfirmService class, 129, 138

confirm.xhtml, 128, 140

creating the Checkout button, 129

creating the link to show the product
details, 106

@Current annotation, 117

defining the navigation case for a
successful login, 137

detail.xhtml, 108,113,117, 124

displaying a password as asterisks, 148

displaying column headers, 115

displaying the shopping cart’s contents,
126

faces-config.xml, 120, 130, 133, 142

ForceLoginPhaseListener class, 141

forcing the user to log in, 139

getProduct(), 125

getProductld(), 124

getProductlds(), 126

getting the user’s credit card number,
128,131

OnDetailActionListener class, 111, 115

printing the product ID to the console,
112

Product class, creating, 104

ProductHolder class, 112,117, 120, 124

providing the List to the dataTable, 104

putting a shopping cart into the session,
119

recreating with EJBs and Seam, 254

removing a session, 146

returning loggedIn as an outcome, 146

session timeout, 119

@SessionScoped, 119

storing the original view ID in the
UserHolder Web Bean, 143

storing the Product object in a Web
Bean, 112

UI Data, 105

<uirrepeat> tag, 126

User class, 136

User object, 131, 139

UserHolder class, 136

UserHolder Web Bean, 135, 143

var attribute, 105

view ID, 135, 140, 143, 146

F

Facelet tag lib, defining, 154-155
Facelets, downloading and installing, 187
faces-config.xml, 77, 120, 130, 133, 142,

<h:commandButton> tag, 107
<h:commandLink> tag, 106-107, 110
<h:dataTable> tag, 102, 126

<h:inputHidden> tag, 123 235, 250
<h:inputSecret> tag, 148 configuring the supported languages,
31 54

<h:inputText> tag, 123-124, 148

<h:outputText> tag, 126

<h:panelGrid> tag, 102

implementing a firewall as a phase
listener, 141

implementing logout, 146

creating, 15

defining a navigation rule, 37
enabling Facelets in, 187

matching any source view ID, 177
modifying to load a properties file, 48

FacesContext, 98
FacesMessage, 80, 87, 98
FAQ project

implementing Serializable, 119, 136
listing the products, 102
Login link, 132, 146, 148

login page, 132, 135, 137, 140, 143, 146
login.xhtml, 134, 140, 148
LoginRequest class, 135

Logout link, 146, 148
LogoutActionListener class, 147
making the grid visible, 106
NullPointerException, 121

<adj:button> tag, 201

<adj:commandButton> tag, 195

<adj:commandLink> tag, 189, 194, 199

<adj:repeat> tag, 212

<adj:support> tag, 199

adding a title bar (header) to a modal
panel, 203

displaying a FAQ, 183
displaying an invalid-entry error, 196
displaying multiple questions, 206
encapsulating questions inside a
custom tag, 206
foo.taglib.xml, 208
<h:dataTable> tag, 212
hiding a modal panel if there is no error,
202
<h:messages> tag, 196
isShortForm flag, 185
isShowingAnswer(), 190
listfaq.xhtml, 183, 189, 193, 196, 200,
206,210-211
oncomplete property, 201
ga.xhtml, 207
Question class, 209
question parameter, 207
Rate link, 200, 202
rating a question and answer, 194
refreshing a partial or entire page, 186
rendered attribute, 190, 192
reRender attribute, 189, 196
RichFaces component library, 187
<rich:modalPanel> tag, 200
<rich:panel> tag, 205
showing or hiding a modal panel, 201
showing or hiding an answer in a Web
Bean, 190
trigger(), 185
updating a rating as the user types,
199
using a dialog box to get a rating, 200
using Ajax to change a component’s
visibility, 191
using Ajax to update a panel, 192
FAQService class, 184, 195, 209-210, 212
finish(), 224
Finish button, 223, 228
Firefox
setting the preferred language, 54
using the Chinese version of a resource
bundle, 235
<f:loadBundle> tag, 233
foo.taglib.xml, 83, 154, 159, 208
foo.v1 validator, 84
ForceLoginPhaseListener class, 141

INDEX

forms
Apply Request Values phase, 56, 74, 110
Date converter and conversion failure,
55
form submission process, 33, 35
Input Processing phase, 39, 41, 50, 56
inputting a Date object, 49
Invoke Application phase, 40-41, 98-99
Process Validations phase, 74
QuoteRequest class, 64
Render Response phase, 40-41, 50, 56,
74, 140, 190
Update Domain Values phase, 43, 50, 99
See also input validation
<f:param> tag, 244
full stop, localizing, 243
<fivalidateLongRange> tag, 75

G
getCreditCardNo(), 281
getDisplayName(), 241
getLocale(), 247
getPids(), 282
getProduct(), 125
getProductld(), 124
getProductlds(), 126
getrequest.xhtml, 67, 75, 86, 94, 96
getSubject(), 20-21, 23
getsymbol.xhtml
creating, 31
modifying, 34, 37, 52
redisplaying, 41
specifying the label instead of the client
ID, 47
using a combo box, 60
getTotal(), 280
GlassFish, 284
GreetingService class
accessing the subject property, 21
creating, 20
placing a GreetingService object into
the Web Bean table, 22
group renderer, 91

<h:commandButton> tag, 72, 107, 268
<h:commandLink> tag, 106-107, 110

292

INDEX

<h:dataTable> tag, 87, 102, 126, 212

Hello world application, creating with JSF,

1,9-10,12-13,15, 17
hello.xhtml

accessing, 16

creating, 12

modifying, 17
<h:form> tag, 94, 268
<h:graphiclmage> tag, 246, 248
<h:inputHidden> tag, 123
<h:inputSecret> tag, 148
<h:inputText> tag, 70, 123-124, 148, 217
<h:inputTextarea> tag, 217
<h:message> tag, 88, 94
<h:messages> tag, 75

CSS classes and, 87

placing inside a panel, 197

refreshing, 196
home.xhtml, 180

creating, 173

inheriting from base.xhtml, 176
hotdeals.xhtml, creating, 181
<h:outputFormat> tag, 244
<h:outputText> tag, 126
<h:panelGrid> tag, 68, 90-91, 102
<h:panelGroup> tag, 91
HTML grid renderer, 91
HTML renderer and components, 68
HTTP requests, 32, 39

I
@Id annotation, 257
id attribute, 46
 tag, 246
implicit object, definition of, 247
@In annotation, 261, 269
Input Processing phase, 39, 41, 50, 56
input validation
adding validator objects to a UI Input
component, 74
catching invalid input, 73
creating a custom validator for the
patron code, 82
creating a DoubleRangeValidator, 78
creating a LengthValidator, 78
creating a long range validator, 75
defining the foo.v1 validator, 84
<f:validateLongRange> tag, 75

handling optional input, 74
<h:messages> tag, 75
invoking an action method for
validation, 96
moving Ul-specific code into an action
listener, 98
null input and validators, 78
RequestValidatingListener class, 98
specifying a tag lib, 83
specifying a validator method, 80
specifying the validation error message
for a single component, 77
validate(), 84
validatePatron(), 80, 86
<validatePatron> tag, 83
validating a combination of input
values, 96
See also forms
installing Seam, 253
Invoke Application phase, 40-41, 98-99
isShortForm flag, 185
isShowingAnswer(), 190

J

JBoss
choosing the JBoss runtime
environment, 5
downloading the JBoss Application
Server 5.x, 3
installing, 3-4, 6-7
installing Web Beans into, 8
launching in debug mode, 26
launching in Eclipse, 3
registering the Hello world application, 15
RichFaces component library, 187
setting a longer timeout value, 7
stopping, 7
telling Web Beans where JBoss is, 8
updating a web application, 19
JBoss Seam. See Seam
JSF
displaying the available Web Beans
classes, 11
downloading Mojarra, 7
encoding, definition of, 18
faces-config.xml, creating, 15
hello.xhtml, creating, 12
hello.xhtml, modifying, 17

installing Sun’s JSF implementation, 7
MyFaces, 7
Package Explorer, 9
using the XHTML strict template, 11
WebContent folder, 11
web.xml, modifying, 13

JSF Core taglib, 156

JSF HTML tag lib, 156

L

languages. See MultiLang project
Layout project
base.xhtml, 175-176
creating a hot deals page, 181
creating navigation rules for links, 177
creating page-specific navigation cases,
180
extracting duplicate XHTML code, 174
faces-config.xml, 177
home.xhtml, 173, 176, 180
hotdeals.xhtml, 181
matching any source view ID, 177
page inheritance, 175
products.xhtml, 173, 176, 180-181
providing concrete parts, 180
<ui:insert> tag, 175
using two abstract parts, 178-179
LengthValidator, creating, 78
listfaq.xhtml, 183, 189, 193, 196, 200, 206,
210-211
Locale object, 239, 249
localization, 237, 250
loggedIn, returning as an outcome, 146
Login link, 132, 146, 148
login.xhtml, 134, 140, 148
LoginRequest class, 135
logo_en.gif, 246
logo_zh.gif, 246
Logout link, 146, 148
LogoutActionListener class, 147
long range validator, creating, 75
LongRangeValidator class, 76

Map, accessing the parameters in, 171
message bundle
providing a detail message in, 93
specifying, 76

INDEX

messages.properties, creating, 48, 58
method parameters
calling, 162
passing to custom tags, 162
@Min annotation, 257, 262
Mojarra
downloading, 7
* taglib.xml files and Mojarra 2.0.0.PR2,
83
msgs_en.properties, 236
msgs_zh.properties, 233, 236, 242
msgs.properties, 232, 236, 242
MultiLang project
accessing map elements using dot
notation, 237
Application object, 239
basename attribute, 233
Big5 encoding, 233
calculateLocale(), 249
Change button, 242
changing the preferred language, 238
displaying a logo on a page, 246
displaying the current date and time,
231
escaped Unicode encoding, 233
faces-config.xml, 235, 250
<f:loadBundle> tag, 233
<fiparam> tag, 244
getDisplayName(), 241
getLocale(), 247
getting the display name of the locale,
241
<h:graphiclmage> tag, 246, 248
<h:outputFormat> tag, 244
 tag, 246
internationalizing the date display, 238
letting users change the displayed
language, 238
Locale object, 239, 249
localizing the full stop, 243
localizing validation messages, 250
logo_en.gif, 246
logo_zh.gif, 246
making a locale change persistent, 248
msgs_en.properties, 236
msgs_zh.properties, 233, 236, 242
msgs.properties, 232, 236, 242
multilang.msgs, 233

293

INDEX

MultiViewHandler class, 249
MyApp.properties, 250
MyApp_zh.properties, 251
MyViewHandler class, creating, 249
reading messages from a resource
bundle, 234
setting the date style to long, 238
ShowDate class, 232, 239, 241
showdate.xhtml, 231, 233, 238-239,
242-244, 246-247
specifying the default and supported
languages, 235
storing a language code in a session,
248
supporting the Chinese language, 232
table of formats and styles, 245
toString(), 238-239
using the Chinese version of a resource
bundle, 235
using the Eclipse Properties Editor,
233
value attribute, 246, 248
view variable, 247
web.xml, 234
MultiViewHandler class, 249
MyApp.properties, 250
MyApp_zh.properties, 251
MyFaces, 7
MyViewHandler class, creating, 249

@Name annotation, 261
name attribute, 46
namespace, defining, 153
navigation
creating navigation rules for links, 177
creating page-specific navigation cases,
180
faces-config.xml, 177
matching any source view ID, 177
navigation rules, defining, 37, 73
providing concrete parts, 180
using two abstract parts, 178-179
Navigator view, 29
next(), 222
Next button, 215, 219, 222, 225
@NotEmpty annotation, 257, 262
NullPointerException, 121

0

object dependencies, 118

onclick event, 186

oncomplete property, 201
OnDetailActionListener class, 111, 115
onOKJ(), 96, 98

onUpdate(), 161

outputText tag, 21, 24

P
pl.xhtml, 154, 164, 166, 171
p2.xhtml, 169
Package Explorer, 9
page inheritance, 175
<pair> tag, defining in foo.taglib.xml, 167
pair.xhtml, 166
<param> tag, 272
passwords, displaying as asterisks, 148
patronExists(), 81-82
PatronValidator class, 84
<pe> tag
defining, 159, 170
using in the bar taglib, 171
pe.xhtml, 170
postage calculator application
creating a custom validator for the
patron code, 82
creating the results page, 72
developing, 67
<fivalidateLongRange> tag, 75
getrequest.xhtml, 67
<h:commandButton> tag, 72
<h:inputText> tag, 70
<h:messages> tag, 75
<h:panelGrid> tag, 68
HTML renderer, 68
linking the request properties and the
UI Input components, 71
marking the weight as required, 78
navigation rule, defining, 73
patronExists(), 81-82
PatronValidator class, 84
PostageService class, 71
Request bean, 71
Request class, 70
running the application, 73
showpostage.xhtml, 72
specifying a validator method, 80

<table> element, 67

validatePatron(), 86

<validatePatron> tag, 83

validating the patron code, 80
Postage.properties, 76, 86
PostageService class, creating, 71
Process Validations phase, 74
processAction(), 98
Product class, 104, 257
product editor

currentProduct Web Beans, creating,

160

foo.taglib.xml, 159

onUpdate(), 161

passing an object to a custom tag, 159

<pe> tag, 159-160

pe.xhtml, creating, 160

Product class, creating, 160
Product List link, 259
Product.xhtml, 259, 268
ProductEdit.page.xml, 260, 265
ProductEdit.xhtml, 259, 263
ProductHolder bean, 135
ProductHolder class, 112,117, 120, 124
ProductHome class, 269, 271
ProductList.xhtml, 259
products.xhtml, 173, 176, 180-181
pulling dependencies, 118

Q
ga.xhtml, 207
Question class, creating, 209
question parameter, 207
quoteDate property, 52-53
QuoteRequest class, 35, 63-64

R
Rate link, 200, 202
redirect after post, 226-227
@Remove annotation, 276
Render Response phase, 40-41, 50, 56, 74,
140, 190
rendered attribute, 190, 192
Request bean, 71
Request class, 70, 86, 98-99
request scope, 185
RequestValidatingListener class, 98
required attribute, setting to true, 59

INDEX

reRender attribute, 189, 196
resource bundle
reading messages from, 234
using the Chinese version of a resource
bundle, 235
<restrict> tag, 266
RichFaces component library
downloading and installing, 187
JSF 2.0 and, 187
modifying web.xml, 188
predefined skins, 205
support for skins, 204
<rich:modalPanel> tag, 200
<rich:panel> tag, 205

S
<s:button> tag, 268-269, 271-272
<s:decorate> tag, 263
Seam
accessing EJBs in EL expressions, 253
add(), 269
adding getters and setters, 258
adding products to the shopping cart,
267
adding the product ID to the shopping
cart, 269
admin user group, 261
authenticate(), 261
Authenticator class, 267
authenticator component, 261
base page, 264
Cart class, 269, 273
CartBean class, 274-276
cart.page.xml, 272
cart.xhtml, 270-272, 278
confirm.page.xml, 283
confirm.xhtml, 278, 283
ConfirmBean class, 279
creating a page for adding products, 259
creating an Eclipse project, 256
creating the cart component, 269
creating the checkout page, 277
creating the Confirm interface, 279
Credentials component, 261
@Current annotation, 261
destroy(), 276
destroying the cart component, 275
displaying the welcome page, 256

295

INDEX

DoubleRangeValidator, 262

@Entity annotation, 257, 259

EntityHome class, 271

getCreditCardNo(), 281

getPids(), 282

getTotal(), 280

GlassFish, 284

having a configuration file for each
page, 260

<h:commandButton> tag, 268

<h:form> tag, 268

@Id annotation, 257

implementing the methods for the
shopping cart, 276

@In annotation, 261, 269

injecting a nonexistent component,
271

injecting the EntityManager, 280

installing, 253

@Min annotation, 257, 262

@Name annotation, 261

@NotEmpty annotation, 257, 262

<param> tag, 272

performing CRUD operations, 253

Product class, mapping to a table,
257

Product List link, 259

Product.xhtml, 259, 268

ProductEdit.page.xml, 260, 265

ProductEdit.xhtml, 259, 263

ProductHome class, 269, 271

ProductList.xhtml, 259

recreating the e-shop project using EJBs
and Seam, 254

@Remove annotation, 276

requiring authenticated access to a
page, 260, 283

<restrict> tag, 266

restricting access to the product-editing
page, 265

<s:button> tag, 268-269, 271-272

<s:decorate> tag, 263

seam generate-ui command, 259, 269

seam new-project command, 256

seam setup command, 254, 256

specifying component names, 261

specifying injections, 261

@Stateful annotation, 274-275

@Stateless annotation, 279
turning a session bean into a Seam
component, 274
turning the shopping cart into a stateful
session bean, 273
WebLogic, 284
WebSphere, 284
Serializable, 119, 136, 221
session scope, 185
session timeout, 119
@SessionScoped, 119
ShowDate class, 232, 239, 241
showdate.xhtml, 231, 233, 238-239,
242-244,246-247
showpostage.xhtml, 72
skins
choosing, 205
definition of, 204
predefined, 205
RichFaces component library and, 204
web.xml, 205
@Stateful annotation, 274-275
@Stateless annotation, 279
Stepl class, creating, 222
stepl.xhtml, 217, 222, 225-227
Step2 class, creating, 224
step2.xhtml, 217, 223, 225-227
stock quote application
b1 bean, 32, 35
choosing stock symbols from a combo
box, 60
determining the stock value from the b1
bean, 39
getsymbol.xhtml, 31, 34,
60
marking the Ul Input component as
required, 40
QuoteRequest class, 35, 63
StockService class, 61, 63—-64
stockvalue.xhtml, 36, 39
sym property, 35
updating the project name, 30
StockService class
creating, 61
inserting the stock value calculation, 64
modifying, 63
stockvalue.xhtml, 36, 39
sym property, 35

37,41,47,52,

T

<table> element, 67

tag library, defining and naming, 154
taglib.xml, 170

thankyou.xhtml, 217

Ticket class, 216

toString(), 238-239

trigger(), 185

U
Ul Command, 38-39, 41, 107, 186
UI Data, 105
Ul Form, 31, 97
UlInput, 32, 35, 39, 41, 51,91
adding validator objects to, 74
client ID and, 46
displaying a user-friendly description
for, 47
marking as required, 40
specifying an error message for a single
component, 49
Ul Load Bundle, 233, 235
UI Message, 88, 90, 95
Ul Output, 20, 105, 186, 190, 238,
243-244
Ul Panel, 68, 91
UI Parameter, 244
UI View Root, 235, 238, 240, 247, 249
<ui:component> tag, 170
<ui:define> tag, 166
<ui:insert> tag, 165-166, 175
<uirrepeat> tag, 126
Unicode
escaped Unicode encoding,
233
properties files and, 233
using the Eclipse Properties Editor,
233
Update Domain Values phase, 43,
50,99
User class, 136
User object, 131, 139
UserHolder class, 136
UserHolder Web Bean, 135, 143

'}

validate(), 84
validatePatron(), 80, 86

INDEX

validator objects
adding to a UI Input component, 74
creating a custom validator for the

patron code, 82

defining the foo.v1 validator, 84
null input and validators, 78
specifying a validator method, 80
validate(), 84
validatePatron(), 80
<validatePatron> tag, 83

ValidatorException, 80

validatorMessage attribute, 92

value attribute, 246, 248

var attribute, 105

view ID, 135, 140, 143, 146, 177

view variable, 247

w
Web Beans
conversation, definition of, 219
definition of, 20
displaying the available Web Beans
classes, 11
downloading, 8
installing into JBoss, 8
life cycle of, 25
telling Web Beans where JBoss is, 8
transient vs. long-running
conversations, 220
Web Beans manager, 20, 22-23
web.xml, 13, 188, 205, 234
WebContent folder, 11
WebLogic, 284
WebSphere, 284
Wizard project
action attribute, 225
Back button, 215, 219, 228
begin(), 223
defining the navigation rules for, 218
end(), 224
finish(), 224
Finish button, 223, 228
<h:inputText> tag, 217
<h:inputTextarea> tag, 217
implementing Serializable, 221
making a conversation long-running,
222-223
next(), 222

207

298 INDEX

Next button, 215, 219, 222, 225

putting the ticket into the conversation
scope, 221

redirect after post, 226-227

resolving URL mismatches, 225

Stepl class, creating, 222

stepl.xhtml, 217, 222, 225-227

Step2 class, creating, 224

step2.xhtml, 217, 223, 225-227

thankyou.xhtml, 217

Ticket class, creating, 216
turning a conversation back into a
transient one, 223

X
XHTML
extracting common code into a
separate XHTML file, 151
extracting duplicate XHTML
code, 174

You Need the Companion eBook

Your purchase of this book entitles you to buy the

companion PDF-version eBook for only $10. Take
the weightless companion with you anywhere.

e believe this Apress title will prove so indispensable that you'll want
Wto carry it with you everywhere, which is why we are offering the com-
panion eBook (in PDF format) for $10 to customers who purchase this book
now. Convenient and fully searchable, the PDF version of any content-rich,
page-heavy Apress book makes a valuable addition to your programming
library. You can easily find and copy code—or perform examples by quickly
toggling between instructions and the application. Even simultaneously
tackling a donut, diet soda, and complex code becomes simplified with
hands-free eBooks!

Once you purchase your book, getting the $10 companion eBook is simple:

© Visit www.apress.com/promo/tendollars/.

O Complete a basic registration form to receive a randomly
generated question about this title.

©® Answer the question correctly in 60 seconds, and you will
receive a promotional code to redeem for the $10.00 eBook.

.k\.afu’

APIess

HE EXPERT'S VOICE™

2855 TELEGRAPH AVENUE | SUITE 600 | BERKELEY, CA 94705

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher. The
purchaser may print the work in full or in part for their own noncommercial use. The purchaser may place
the eBook title on any of their personal computers for their own personal reading and reference.

Offer valid through 11/09.

	Prelims

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Getting Started with JSF
	Introducing the fiHello worldfl Applicati
	Installing Eclipse
	Installing JBoss
	Installing a JSF Implementation
	Installing Web Beans

	Creating the fiHello world!fl Application with J
	Generating Dynamic Content
	Retrieving Data from Java Code
	Exploring the Life Cycle of the Web Bean
	Using an Easier Way to Output Text

	Debugging a JSF Application
	Summary

	Using Forms
	Developing a Stock Quote Application
	Getting the Stock Quote Symbol
	Displaying the Result Page
	Displaying the Stock Value
	Marking Input As Required
	Inputting a Date
	Conversion Errors and Empty Input
	Using a Combo Box
	Using a Single b2 Bean
	Hooking Up the Web Beans

	Summary

	Validating Input
	Developing a Postage Calculator
	What If the Input Is Invalid?
	Null Input and Validators
	Validating the Patron Code
	Creating a Custom Validator for the Patron Code
	Displaying the Error Messages in Red
	Displaying the Error Message Along with the Field
	Validating a Combination of Multiple Input Values

	Summary

	Creating an eshop
	Listing the Products
	Making the Link to Show the Details
	Displaying Headers in the Columns
	Implementing a Shopping Cart
	Displaying the Content of the Shopping Cart
	the Checkout Function
	Getting the Credit Card number of the Current User
	Forcing the User to Log In
	Implementing Logout
	Protecting the Password
	Summary

	Creating Custom Components
	Displaying a Copyright Notice on Multiple Pages
	Allowing the Caller to Specify the Company Name
	Creating a Product Editor
	Passing a Method in a Parameter?
	Creating a Box Component
	Accepting Two Pieces of XHTML Code
	Creating a Reusable Component Library
	Creating a Component Library Without taglib.xml
	Summary

	providing a Common Layout for Your pages
	Using the Same Menu on Different Pages
	Using Global Navigation Rules
	Using Two Abstract Parts
	Creating PageSpecific Navigation Cases
	Summary

	Building Interactive pages with ajax
	Displaying a FAQ
	Refreshing the Answer Only
	Hiding and Showing the Answer
	Using Ajax to Hide or Show the Answer
	Giving a Rating to a Question
	Updating the Rating as the User Types
	Using a Dialog Box to Get the Rating
	Setting the Look and Feel with Skins
	Displaying Multiple Questions
	Summary

	Using Conversations
	Creating a Wizard to Submit Support Tickets
	Interference Between Browser Windows
	URL Mismatched?
	Summary

	Supporting Other Languages
	Displaying the Current Date and Time
	Supporting Chinese
	Easier Way to Access Map Elements
	Internationalizing the Date Display
	Letting the User Change the Language Used
	Localizing the Full Stop
	Displaying a Logo
	Making the Locale Change Persistent
	Localizing Validation Messages
	Summary

	Using JBoss Seam
	Installing Seam
	Re-creating the E-shop Project
	Allowing the User to Add Products
	Restricting Access to the Product-Editing Page
	Creating a Shopping Cart
	Turning the Shopping Cart into a Stateful Session Bean
	Creating the Checkout Page
	Using WebLogic, WebSphere, or GlassFish
	Summary

	Index

