

The eXperT’s Voice® in JaVa™ Technology

Beginning

JSF™ 2 APIs
and JBoss® Seam

Kent Ka Iok Tong

   

Begin using the new JavaServer™ Faces (JSF™) 2
APIs available in the new Java™ EE 6 platform

Beginning JSF™ 2 APIs
and JBoss® Seam

Kent Ka Iok Tong

Beginning JSF™ 2 APIs and JBoss® Seam

Copyright © 2009 by Kent Ka Iok Tong

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1922-4

ISBN-13 (electronic): 978-1-4302-1923-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written
without endorsement from Sun Microsystems, Inc.

Lead Editors: Steve Anglin, Matt Moodie
Technical Reviewer: Jim Farley
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben
Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Sofia Marchant
Copy Editors: Kim Wimpsett and Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor and Artist: Kinetic Publishing Services, LLC
Proofreader: Patrick Vincent
Indexer: Toma Mulligan
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

Contents at a Glance

About the Author .ix

About the Technical Reviewer .xi

ChAPTer 1 Getting Started with JSF . 1

ChAPTer 2 Using Forms . 29

ChAPTer 3 Validating Input . 67

ChAPTer 4 Creating an E- shop . 101

ChAPTer 5 Creating Custom Components . 151

ChAPTer 6 Providing a Common Layout for Your Pages . 173

ChAPTer 7 Building Interactive Pages with Ajax . 183

ChAPTer 8 Using Conversations . 215

ChAPTer 9 Supporting Other Languages . 231

ChAPTer 10 Using JBoss Seam . 253

Index . 287

v

Contents

About the Author .ix

About the Technical Reviewer .xi

ChAPTer 1 Getting Started with JSF . 1

Introducing the “Hello world” Application . 1

Installing Eclipse . 2

Installing JBoss . 3

Installing a JSF Implementation . 7

Installing Web Beans . 8

Creating the “Hello world!” Application with JSF . 9

Generating Dynamic Content . 17

Retrieving Data from Java Code . 20

Exploring the Life Cycle of the Web Bean . 25

Using an Easier Way to Output Text . 25

Debugging a JSF Application . 25

Summary . 27

ChAPTer 2 Using Forms . 29

Developing a Stock Quote Application . 29

Getting the Stock Quote Symbol . 29

Displaying the Result Page . 36

Displaying the Stock Value . 38

Marking Input As Required . 40

Inputting a Date . 49

Conversion Errors and Empty Input . 55

Using a Combo Box . 60

Using a Single b2 Bean . 62

Hooking Up the Web Beans . 63

Summary . 66

■CONTENTSvi

ChAPTer 3 Validating Input . 67

Developing a Postage Calculator . 67

What If the Input Is Invalid? . 73

Null Input and Validators . 78

Validating the Patron Code . 80

Creating a Custom Validator for the Patron Code 82

Displaying the Error Messages in Red . 86

Displaying the Error Message Along with the Field 87

Validating a Combination of Multiple Input Values 96

Summary . 100

ChAPTer 4 Creating an e- shop . 101

Listing the Products . 102

Making the Link to Show the Details . 106

Displaying Headers in the Columns . 115

Implementing a Shopping Cart . 116

Displaying the Content of the Shopping Cart . 126

The Checkout Function . 127

Getting the Credit Card Number of the Current User 131

Forcing the User to Log In . 139

Implementing Logout . 146

Protecting the Password . 148

Summary . 149

ChAPTer 5 Creating Custom Components . 151

Displaying a Copyright Notice on Multiple Pages . 151

Allowing the Caller to Specify the Company Name 157

Creating a Product Editor . 159

Passing a Method in a Parameter? . 162

Creating a Box Component . 163

Accepting Two Pieces of XHTML Code . 166

Creating a Reusable Component Library . 168

Creating a Component Library Without taglib .xml 170

Summary . 172

vii■CONTENTS

ChAPTer 6 Providing a Common Layout for Your Pages 173

Using the Same Menu on Different Pages . 173

Using Global Navigation Rules . 177

Using Two Abstract Parts . 178

Creating Page- Specific Navigation Cases . 180

Summary . 182

ChAPTer 7 Building Interactive Pages with Ajax . 183

Displaying a FAQ . 183

Refreshing the Answer Only . 185

Hiding and Showing the Answer . 189

Using Ajax to Hide or Show the Answer . 191

Giving a Rating to a Question . 194

Updating the Rating as the User Types . 199

Using a Dialog Box to Get the Rating . 200

Setting the Look and Feel with Skins . 204

Displaying Multiple Questions . 206

Summary . 212

ChAPTer 8 Using Conversations . 215

Creating a Wizard to Submit Support Tickets . 215

Interference Between Browser Windows . 219

URL Mismatched? . 225

Summary . 229

ChAPTer 9 Supporting Other Languages . 231

Displaying the Current Date and Time . 231

Supporting Chinese . 232

Easier Way to Access Map Elements . 237

Internationalizing the Date Display . 238

Letting the User Change the Language Used . 238

Localizing the Full Stop . 243

Displaying a Logo . 246

Making the Locale Change Persistent . 248

Localizing Validation Messages . 250

Summary . 251

■CONTENTSviii

ChAPTer 10 Using JBoss Seam . 253

Installing Seam . 253

Re-creating the E-shop Project . 254

Allowing the User to Add Products . 257

Restricting Access to the Product-Editing Page . 265

Creating a Shopping Cart . 267

Turning the Shopping Cart into a Stateful Session Bean 273

Creating the Checkout Page . 277

Using WebLogic, WebSphere, or GlassFish . 284

Summary . 284

Index . 287

ix

About the Author

■KenT KA IOK TOnG is the manager of the IT department of the Macau Productivity and Tech-
nology Transfer Center. With a master’s degree in computer science from the University of New
South Wales in Sydney, Australia, and having won the Macao Programming Competition
(Open Category) in 1992, Kent has been involved in professional software development, train-
ing, and project management since 1993. He is the author of several popular books on web
technologies including Essential JSF, Facelets and Seam, Enjoying Web Development with Tapestry,
Enjoying Web Development with Wicket, and Developing Web Services with Apache Axis 2.

xi

About the Technical Reviewer

■JIm FArLeY is a technology architect, strategist, writer, and manager. His career has touched
a wide array of domains, from commercial to nonprofit and from finance to higher education.
In addition to his day job, Jim teaches enterprise development at Harvard University. Jim is
the author of several books on technology and contributes articles and commentary to various
online and print publications.

1

C h a p t e r 1

Getting Started with JSF

In this chapter you’ll learn how to set up a development environment and create a “Hello
world!” application with JSF.

Introducing the “Hello world” Application
Suppose that you’d like to develop the application shown in Figure 1‑1.

 Figure 1‑1. A simple “Hello world!” application with a single page

To do that, you’ll need to install some software (see Figure 1‑2). First, you’ll need an
IDE to create your application. This book will use Eclipse, but other popular IDEs will do
just fine too. Next, you’ll need to install JBoss, which provides a platform for running web
applications (there are also fine alternatives to JBoss). In addition, your application will
use JSF and Web Beans as libraries. So, you’ll need to download them too.

Chapter 1 ■ GettING StarteD WIth JSF2

JBoss

JSF

App1

Eclipse

Web Beans

Generates
App2

 Figure 1‑2. The software that you’ll need

Installing Eclipse

You need to make sure you have the Eclipse IDE for Java EE Developers, as shown in
 Figure 1‑3 (note that the Eclipse IDE for Java Developers is not enough, because it doesn’t
include tools for developing web applications). You can go to http://www.eclipse.org
to download it. For example, you’ll need the eclipse-jee-ganymede-SR1-win32.zip file if
you use Windows. Unzip it into a convenient location, such as c:\eclipse. Then, create
a shortcut to run c:\eclipse\eclipse -data c:\workspace. This way, it will store your proj‑
ects under the c:\workspace folder.

You need this one, NOT that one:

 Figure 1‑3. Getting the right bundle of Eclipse

http://www.eclipse.org

Chapter 1 ■ GettING StarteD WIth JSF 3

To see whether it’s working, run it, and make sure you can switch to the Java EE per‑
spective (it should be the default; if not, choose Window ➤ Open Perspective ➤ Other), as
shown in Figure 1‑4.

 Figure 1‑4. The Java EE perspective

Installing JBoss

To install JBoss, go to http://www.jboss.org/jbossas/downloads to download a binary pack‑
age of JBoss Application Server 5.x (or newer), such as jboss-5.0.1.GA.zip. Unzip it into
a folder such as c:\jboss. To test whether it is working, you can try to launch JBoss in
Eclipse. To do that, choose Windows ➤ Preferences in Eclipse, and then choose Server ➤
Installed Runtime Environments. You’ll see the window shown in Figure 1‑5.

 Figure 1‑5. The installed runtime environments

http://www.jboss.org/jbossas/downloads

Chapter 1 ■ GettING StarteD WIth JSF4

Click Add, and choose JBoss ➤ JBoss v5.0 (Figure 1‑6).

 Figure 1‑6. The JBoss 5.0 runtime

Click Next. Specify c:\jboss as the application server directory (Figure 1‑7).

 Figure 1‑7. Specifying the JBoss application server directory

Chapter 1 ■ GettING StarteD WIth JSF 5

Click Finish. Next, you need to create a JBoss instance. In the bottom part of the
Eclipse window, you’ll see a Servers tab (you’ll see this tab only when you’re in the Java
EE perspective); right‑ click anywhere on the tab, choose New ➤ Server, and choose the
JBoss v5.0 server runtime environment (Figure 1‑8).

 Figure 1‑8. Choosing the JBoss runtime environment

Click Next until you see the screen in Figure 1‑9, where you can add web applications
to the JBoss instance.

Chapter 1 ■ GettING StarteD WIth JSF6

If you had web application
projects in Eclipse, you
would see them listed here.

You can add selected projects
to that JBoss instance.

 Figure 1‑9. Adding web applications

For the moment, you’ll have none. Click Finish. Then you should see your JBoss
instance on the Servers tab (Figure 1‑10).

To run it, click the green button here.

To stop it, click the red button here.

 Figure 1‑10. JBoss instance

Chapter 1 ■ GettING StarteD WIth JSF 7

Click the green icon as shown in Figure 1‑10 to run JBoss. Then you will see some
messages on the Console tab, as shown here:

...

14:47:06,820 INFO [TomcatDeployment] deploy, ctxPath=/

14:47:06,902 INFO [TomcatDeployment] deploy, ctxPath=/jmx-console

14:47:06,965 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-127.0.0.1-8080

14:47:06,992 INFO [AjpProtocol] Starting Coyote AJP/1.3 on ajp-127.0.0.1-8009

14:47:07,001 INFO [ServerImpl] JBoss (Microcontainer) [5.0.1.GA (build:

SVNTag=JBoss_5_0_1_GA date=200902231221)] Started in 26s:587ms

■Note If your computer is not that fast, JBoss will take so long to start that Eclipse may think it has stopped
responding. In that case, double- click the JBoss instance, click Timeouts, set the timeout for starting to a longer
value such as 100 seconds, and then start JBoss again.

To stop JBoss, click the red icon (as shown earlier in Figure 1‑10).

Installing a JSF Implementation

JSF stands for JavaServer Faces and is an API (basically, it’s some Java interfaces). To use JSF,
you need an implementation (which means you need Java classes that implement those
interfaces). There are two main implementations: the reference implementation from Sun
and MyFaces from Apache. In this book, you’ll use the former, but you could use MyFaces
with no practical difference.

So, go to https://javaserverfaces.dev.java.net to download a binary package of the
JSF 2.0 implementation, which is called Mojarra. The file is probably called something
like mojarra-2.0.0-PR2-binary.zip; unzip it into a folder, say c:\jsf.

https://javaserverfaces.dev.java.net

Chapter 1 ■ GettING StarteD WIth JSF8

Installing Web Beans

To install Web Beans, go to http://www.seamframework.org/WebBeans to download it. Make
sure it is strictly newer than 1.0.0 ALPHA2; otherwise, get the nightly snapshot. The file is
probably called something like webbeans-ri-distribution-1.0.0-SNAPSHOT.zip; unzip it into
a folder such as c:\webbeans.

Next, you’ll need to install Web Beans into JBoss. To do that, you’ll need to run Ant 1.7.0
or newer. If you don’t have this tool, you can download it from http://ant.apache.org and
unzip it into a folder such as c:\ant.

Next, modify the c:\webbeans\jboss-as\build.properties file to tell it where JBoss is,
as shown in Listing 1‑1. Make sure that there is no leading # character on that line!

 Listing 1‑1. Tell Web Beans Where JBoss Is

jboss.home=c:\jboss

java.opts=...

webbeans-ri-int.version=5.2.0-SNAPSHOT

webbeans-ri.version=1.0.0-SNAPSHOT

jboss-ejb3.version=1.0.0

Open a command prompt, make sure you’re connected to the Internet, and then
issue the commands shown in Listing 1‑2.

 Listing 1‑2. Issue These Commands at the Command Prompt

c:\>cd \webbeans\jboss-as

c:\>set ANT_HOME=c:\ant

c:\>ant update

This will output a lot of messages. If everything is fine, you should see a “BUILD SUC‑
CESSFUL” message at the end, as shown here:

...

[copy] Copying 2 files to /home/kent/jboss-

5.0.1.GA/server/default/deployers/webbeans.deployer/lib-int

[copy] Copying 8 files to /home/kent/jboss-

5.0.1.GA/server/default/deployers/webbeans.deployer

update:

BUILD SUCCESSFUL

http://www.seamframework.org/WebBeans
http://ant.apache.org

Chapter 1 ■ GettING StarteD WIth JSF 9

Creating the “Hello world!” Application with JSF
To create the “Hello world!” application, right‑ click in Package Explorer, and choose New
➤ Dynamic Web Project (Figure 1‑11).

 Figure 1‑11. Creating a dynamic web project

Enter the information shown in Figure 1‑12.

The name doesn't really matter.

Run this application in JBoss.

 Figure 1‑12. Entering the project information

Chapter 1 ■ GettING StarteD WIth JSF10

Keep clicking Next until you finish. Finally, you should end up with the project struc‑
ture shown in Figure 1‑13.

 Figure 1‑13. Project structure

To make JAR files from the JSF implementation available to your project, copy the
JAR files into JBoss, as shown in Figure 1‑14.

jsf

lib

?????.jar

?????.jar

jboss

server

default

deploy

jbossweb.sar

jsf-libs

 Figure 1‑14. Copying the JAR files into the JBoss

Chapter 1 ■ GettING StarteD WIth JSF 11

To see the Web Beans classes available to you at compile time, right‑ click the project,
choose Build Path ➤ Configure Build Path, and add c:\jboss\server\default\deployers\
webbeans.deployer\jsr299-api to the build path.

Next, you’ll create the “Hello world!” page. To do that, right‑ click the WebContent
folder, and choose New ➤ HTML. Enter hello as the file name, as in Figure 1‑15.

 Figure 1‑15. Creating the “Hello world!” page

Click Next, and choose the template named New XHTML File (1.0 Strict), as in
 Figure 1‑16.

Chapter 1 ■ GettING StarteD WIth JSF12

 Figure 1‑16. Using the XHTML strict template

Click Finish. This will give you a file named hello.html. This XHTML file will serve as
the “Hello world!” page. However, JSF by default assumes that XHTML files use the .xhtml
extension, so rename the file as hello.xhtml (see Figure 1‑17).

Chapter 1 ■ GettING StarteD WIth JSF 13

 Figure 1‑17. Renaming the file

Open the file, and input the content shown in Listing 1‑3.

 Listing 1‑3. Content of hello.xhtml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

Hello world!

</body>

</html>

Next, modify the web.xml file in the WebContent/WEB-INF folder as shown in Figure 1‑18.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 1 ■ GettING StarteD WIth JSF14

This “servlet” is the JSF engine.
You can give it any name
you'd like.

http://localhost:8080/Hello/faces/???

You will access the application
using a URL like this. This way,
JBoss will send the request to
the JSF engine for handling.

Hello

WebContent

The Project Name

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID"
version="2.5">
 <display-name>Hello</display-name>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>
 <servlet>
 <servlet-name>JSF</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>JSF</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>
This "servlet" is the JSF engine.
You can give it any name
you'd like.

...

 Figure 1‑18. web.xml

http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://localhost:8080/Hello/faces/???

Chapter 1 ■ GettING StarteD WIth JSF 15

Next, create a file called faces-config.xml in the WebContent/WEB-INF folder. This is the
configuration file for JSF, as shown in Listing 1‑4. Without it, JSF will not initialize. Because
you have no particular configuration to set, it contains only an empty <faces-config>
element.

 Listing 1‑4. faces-config.xml

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"

version="2.0">

</faces-config>

To register your application with JBoss, right‑ click the JBoss instance on the Servers
tab, and choose Add and Remove Projects; then you’ll see Figure 1‑19.

 Figure 1‑19. Adding projects to the JBoss instance

http://java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-�instance
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd

Chapter 1 ■ GettING StarteD WIth JSF16

Choose your Hello project to add to the JBoss instance.
Now, start JBoss, and try to access http://localhost:8080/Hello/hello.xhtml in

a browser. Note that this URL does not include the /faces prefix and thus will not be han‑
dled by the JSF engine. Instead, JBoss will directly read the hello.xhtml page and return its
content (see Figure 1‑20). We’re doing this just to check whether the basic web applica‑
tion is working.

http://localhost:8080/Hello/hello.xhtml

JBoss

GET /Hello/hello.xhtml

Hello

WebContent

hello.xhtml

Read and return the
content of this �le

HTTP Request
Browser

 Figure 1‑20. Directly accessing the content of hello.xhtml

If everything is working, the browser should either prompt you to save the file (Firefox)
or display the “Hello world!” page (Internet Explorer).

To access it through the JSF engine, use http://localhost:8080/Hello/faces/hello.xhtml
instead, as shown in Figure 1‑21. Simply put, JSF will take path /hello.xhtml (the view ID)
from the URL and use it to load the XHTML file.

http://localhost:8080/Hello/hello.xhtml
http://localhost:8080/Hello/hello.xhtml
http://localhost:8080/Hello/faces/hello.xhtml

Chapter 1 ■ GettING StarteD WIth JSF 17

http://localhost:8080/Hello/hello.xhtml

Browser

JBoss

GET /Hello/faces/hello.xhtml

3: Treat /hello.xhtml as a relative
path from WebContent to read the
�le. This path is called the “view
ID” in JSF.

HTTP Request

JSF

2: Pass the path /hello.xhtml to JSF.

Page Object

4: Parse the .xhtml �le and
create an object to represent
the page (the “Page Object”).

5: Generate HTML code.

1: Read this path.

Hello

WebContent

hello.xhtml

 Figure 1‑21. Accessing the hello.xhtml file through JSF

You’ll see “Hello world!” displayed in the browser.

Generating Dynamic Content

Displaying static text is not particularly interesting. Next, you’ll learn how to output some
dynamic text. Modify hello.xhtml as shown in Figure 1‑22. The page object created is also
shown in the figure.

http://localhost:8080/Hello/hello.xhtml

Chapter 1 ■ GettING StarteD WIth JSF18

This is the JSF HTML
namespace. This
namespace contains tags
like <outputText>:

Page Object
(View Root)

UI Output

This tag will create a UI
Output component.

Value:John

“h” is a shorthand for the
JSF HTML namespace. It
is called a “pre�x.”

Such a hierarchical data
structure is called the
“JSF component tree” or
the “JSF view.”

The page object is called
the “component view root.”

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
Hello world<h:outputText value="John"></h:outputText>!
</body>
</html>

 Figure 1‑22. JSF component tree

The component tree generates HTML code, as shown in Figure 1‑23. In JSF, the pro‑
cess is called encoding.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 1 ■ GettING StarteD WIth JSF 19

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html ...>
<html ...>
...
<body>
Hello <h:outputText value="John"></h:outputText>!
</body>
</html>

View Root

UI Output

Value: John

Static Code
Block 1

Static Code
Block 2

View Root

UI Output

Value: John John

Static Code
Block 1

Static Code
Block 2

Static Code Block 1

Static Code Block 2

1: Output the
static code
unchanged.

2: Output
the value.

3: Output the stuff unchanged.

 Figure 1‑23. JSF component tree generating HTML code

Now access the page again in the browser. Do you need to start JBoss again? No. By
default Eclipse will update the web application in JBoss every 15 seconds after you make
changes to the source files. If you can’t wait, you can right‑ click the JBoss instance and
choose Publish to force it to do it immediately. Anyway, the HTML page should look like
 Figure 1‑24.

Chapter 1 ■ GettING StarteD WIth JSF20

 Figure 1‑24. Generated HTML code

Note that there is no space between “Hello” and “John.” This is because JSF ignores
the spaces surrounding JSF tags. You can easily fix this problem, but let’s ignore it for
now; we’ll fix it later in the chapter.

Retrieving Data from Java Code

Next, you’ll let the UI Output component retrieve the string from Java code. First, create
the Java class GreetingService in the hello package. Input the content shown in Listing 1‑5.

 Listing 1‑5. GreetingService.java

package hello;

public class GreetingService {

public String getSubject() {

return "Paul";

}

}

So, how do you get the UI Output component to call the getSubject() method in the
class? Figure 1‑25 shows how it works. Basically, in each HTTP request, there is a table
of objects, and each object has a name. (Each object is called a web bean.) If you set the
value attribute of the UI Output component to something like #{foo}, which is called
an EL expression, at runtime it will ask the JSF engine for an object named foo. The JSF
engine will in turn ask the Web Beans manager for an object named foo.

Chapter 1 ■ GettING StarteD WIth JSF 21

View Root

Web Beans
Manager

U Output

Object 1

Object 2

Name

foo

bar
... ...

Object

value: #{foo}

JSF
Engine

HTTP request

1: Give me an object named “foo.”

2: Give me an object named “foo.”

3: Look up a web bean named “foo.”

 Figure 1‑25. Accessing a web bean

For your current case, what if Object1 were a GreetingService object (let’s ignore
how to create one of those for the moment)? Then the UI Output component can already
reach the GreetingService object. How can the output call the getSubject() method on it?
To do that, modify the value attribute of the outputText tag as shown in Listing 1‑6.

Chapter 1 ■ GettING StarteD WIth JSF22

 Listing 1‑6. Accessing the subject Property of a GreetingService Object

<html ...>

...

<body>

Hello <h:outputText value="#{foo.subject}"></h:outputText>!

</body>

</html>

Now, let’s return to the question of how to put a GreetingService object into the web
bean table. To do that, modify the GreetingService class as shown in Figure 1‑26.

package hello;

import javax.annotation.Named;
import javax.context.RequestScoped;

@Named("foo")
@RequestScoped
public class GreetingService {
 public String getSubject() {
 return "Paul";
 }
}

Put the web bean into the table
in the request.

The web beans-related
annotations are de�ned in
those packages.

The name of the web bean.

 Figure 1‑26. Declaring a web bean class

How does it work? When the Web Beans manager looks for a web bean named foo
in the request (see Figure 1‑27), there is none because initially the table is empty. Then
it will check each class on the CLASSPATH to find a class annotated with @Named and with
a matching name. Here, it will find the GreetingService class. Then it will create an
instance of the GreetingService class, create a new row using the name foo, and add it to
the web bean table.

Chapter 1 ■ GettING StarteD WIth JSF 23

Web Beans
Manager

Greeting
Service

foo

Name

...

...

...

...

...

...
Object

HTTP request

1: Look up a web bean
named “foo.” Not found. 2: Look, there is a class with a

matching @Named annotation.

5: Add a new entry to
the table.

3: Create an
instance.

4: Where to store it?
Look, store it into the
request.

Name Object

@Named("foo")
@RequestScoped
public class GreetingService {
 public String getSubject() {
 return "Paul";
 }
}

 Figure 1‑27. How the Web Beans manager creates the web bean

Note that in order for the Web Beans manager to create an instance of the class, it needs
to have a no‑ argument constructor. For the JSF engine to get its subject property, it needs to
have a corresponding getter, in other words, getSubject(). In summary, the class needs to be
a Java bean.

When you need to use Web Beans, you must enable the Web Beans manager by
creating a configuration file for it. So, create an empty file named beans.xml in the
WebContent/WEB-INF folder.

Because you have no configuration for it, leave it empty.

Chapter 1 ■ GettING StarteD WIth JSF24

Now run the application, and it will work as shown in Figure 1‑28.

 Figure 1‑28. Successfully getting the value from a web bean

Now let’s fix that space issue we talked about earlier; just add a space to the value
attribute of the outputText tag, as shown in Figure 1‑29.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html ...>
<html ...>
...
<body>
Hello <h:outputText value=" #{foo.subject}"></h:outputText>!
</body>
</html>

Add a space here. It is treated as
static text and will be output as is.
It is called a “literal expression.”

This part will be evaluated at
runtime and is called an “eval
expression.”

In general, you can have multiple
literal expressions and multiple
eval expressions in a single EL
expression like:

<h:outputText value="... #{...}" ... #{...} ...>

 Figure 1‑29. Adding a space to the value attribute

Run the application again, and it will work.

Chapter 1 ■ GettING StarteD WIth JSF 25

Exploring the Life Cycle of the Web Bean

Will the web bean stay there forever? No; the web bean table is stored in the HTTP request,
so as HTML code is returned to the client (the browser), the HTTP request will be destroyed
and so will the web bean table and the web beans in it.

■Note If you have worked with servlets and JSP before, you may wonder whether it’s possible to store
web beans in the session instead of the request. The answer is yes; you’ll see this in action in the subse-
quent chapters.

Using an Easier Way to Output Text

You’ve seen how to use the <h:outputText> tag to output some text. In fact, there is an
easier way to do that. For example, you could modify hello.xhtml as shown in Listing 1‑7.

 Listing 1‑7. Using an EL Expression Directly in the Body Text

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html ...>

<html ...>

...

<body>

Hello <h:outputText value=" #{foo.subject}"></h:outputText>!

Hello #{foo.subject}!

</body>

</html>

Run the application, and it will continue to work.

Debugging a JSF Application
To debug your application in Eclipse, you can set a breakpoint in your Java code, as
shown in Figure 1‑30, by double‑ clicking where the breakpoint (the little filled circle)
should appear.

Chapter 1 ■ GettING StarteD WIth JSF26

 Figure 1‑30. Setting a breakpoint

Then click the Debug icon in the Server window (Figure 1‑31). Now go to the browser
to load the page again. Eclipse will stop at the breakpoint (Figure 1‑32). Then you can step
through the program and check the variables and whatever else. To stop the debug ses‑
sion, just stop or restart JBoss in normal mode.

This will start JBoss in
debug mode. If it is
already running, it will
be restarted.

 Figure 1‑31. Launching JBoss in debug mode

Chapter 1 ■ GettING StarteD WIth JSF 27

 Figure 1‑32. Stopping at a breakpoint

Summary
In this chapter, you learned that you can run one or more web applications on top of
JBoss. If a web application uses the JSF library, it is a JSF application. In a JSF application,
a page is defined by an .xhtml file and is identified by its view ID, which is the relative
path to it from the WebContent folder.

You also learned that an .xhtml file consists of tags. Each tag belongs to a certain
namespace, which is identified by a URL. To use a tag in an .xhtml file, you need to intro‑
duce a shorthand (prefix) for the URL and then use the prefix to qualify the tag name. The
JSF tags belong to the JSF HTML namespace.

To create a JSF component in the component tree, you use a JSF tag such as
<h:outputText> in the .xhtml file. The root of the component tree is the view root. The
component tree will generate HTML code to return to the client. The process of gener‑
ating markup in JSF is called encoding.

To output some text, you can use the <h:outputText> tag, which will create a UI Out‑
put component. That component will output the value of its value attribute. That value
can be a static string or an EL expression.

Chapter 1 ■ GettING StarteD WIth JSF28

As an alternative to the <h:outputText> tag, you can directly put the EL expression into
the body text.

In addition, this chapter also covered EL expressions, which typically look like #{foo.p1}.
If you use an EL expression, the JSF engine will try to find an object named foo. It will in turn
ask the Web Beans manager to do it, and the Web Beans manager will look up the web beans
in the web bean table in the HTTP request or create it appropriately. Then the JSF engine will
call getP1() on the web bean, and the result is the final value of the EL expression.

Finally, you learned that web beans are JavaBeans created and destroyed automatically
by the Web Beans manager. To enable web beans, you need to have a META-INF/web-beans.xml
file on your CLASSPATH. To define a Java class as a web bean class, the class needs to be a Java‑
Bean; in other words, it has a no‑ argument constructor and provides getters and/or setters
for certain properties. Then it must be annotated with the @Named annotation to be given
a name.

29

C h a p t e r 2

Using Forms

In this chapter, you’ll learn how to use forms to get input from users and store it in a web
bean for processing.

Developing a Stock Quote Application
Suppose that you’d like to develop the application shown in Figure 2‑1. That is, if the user
enters a stock symbol and clicks the button, then the application will display the stock value.

1: Input a stock symbol.

2: Clicking the

button will display

the result page.

 Figure 2‑1. A stock quote application

Getting the Stock Quote Symbol

Let’s create the example application now. In Eclipse, copy the Hello project, and paste it
as a new project called Stock. Then choose Window ➤ Show View ➤ Navigator, and locate
the org.eclipse.wst.common.component file shown in Figure 2‑2.

Chapter 2 ■ USING FOrMS30

 Figure 2‑2. Locate this configuration file.

Open the file, and modify it as shown in Listing 2‑1. Eclipse “forgot” to update the
project name there, so you need to do it yourself.

 Listing 2‑1. Update the Content with the New Project Name

<?xml version="1.0" encoding="UTF- 8"?>

<project-modules id="moduleCoreId" project- version="1.5.0">

 <wb- module deploy- name="Stock">

 <wb- resource deploy- path="/" source- path="/WebContent"/>

 <wb- resource deploy-path="/WEB- INF/classes" source- path="/src"/>

 <property name="context- root" value="Stock"/>

 <property name="java-output- path"/>

 </wb- module>

</project-modules>

Chapter 2 ■ USING FOrMS 31

Save this file, and close the Navigator view. Then rename the hello.xhtml file as
getsymbol.xhtml. Modify the new getsymbol.xhtml file as shown in Figure 2‑3.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ...>
<html ...>
...
<body>
<h:form>
 <h:inputText></h:inputText>
 <h:commandButton></h:commandButton>
</h:form>
</body>
</html>

UI View Root

UI Form

UI Input

UI Command

Before the page is rendered, the <h:form>

tag will create a UI Form component.

It will create a UI Input

component.

It will create a UI

Command component.

 Figure 2‑3. getsymbol.xhtml

What do the components such as UI Form do? During rendering, these components
will generate HTML elements, as shown in Figure 2‑4.

UI View Root

UI Form

UI Input

UI Command

<form action="...">
 <input type="text" value="???" />
 <input type="submit" />
</form>

But what is the value

initially displayed to

the user?

The UI Form will generate the

action value so that this component

tree will be invoked on form

submission.

 Figure 2‑4. Rendering of form- related components

Chapter 2 ■ USING FOrMS32

What is the initial symbol value displayed to the user? You can link a web bean to UI
Input component (see Figure 2‑5). That is, on rendering, the UI Input component will
evaluate the EL expression and use the result as the initial value.

UI View Root

UI Form

UI Input

UI Command

<form ...>
 <input type="text" value="???" />
 <input type="submit" />
</form>

b1

value: #{b1.sym}

sym: MSFT

1: Set the value to an EL expression. Here,

it points to the "sym" property of a web

bean "b1."

2: When it needs to get the initial value to

display, it reads the "sym" property. Let's

suppose that the value is "MSFT."

3: It puts the "MSFT" as the initial value.

MSFT

 Figure 2‑5. Linking a property of a web bean to a UI Input component

Note that after rendering the page, the HTTP request is gone and so is the b1 bean
(see Figure 2‑6).

http://localhost/...

Browser GET the Page

Request 1

...

...

HTML Code

Response 1

b1

b1 is accessed and thus created

on demand. Finally, when the

response has been sent, b1 is

destroyed.

 Figure 2‑6. The b1 bean will be gone after rendering.

http://localhost/

Chapter 2 ■ USING FOrMS 33

Suppose that the user changes the value from “MSFT” to “IBM” and then submits the
form. What will happen? Figure 2‑7 shows the process. Note that this b1 bean is not the
original; it is newly created and associated with the new request representing the form
submission.

Browser GET the Page

Request 1

HTML Code

Response 1

b1

IBM

Request 2

1: The user changes it to

IBM and submits the form.

IBM

b1

UI Input

value: #{b1.sym}

sym: BM
2: It tries to store the value "IBM"

back into the "sym" property of

b1. This will create a new b1.

...

 Figure 2‑7. The form submission process

But what is the HTTP response? By default, the same page will render again. There‑
fore, it will display “IBM” as the value again because the b1 bean just created is still there
(see Figure 2‑8).

Chapter 2 ■ USING FOrMS34

Browser GET the Page

Request 1

HTML Code

Response 1

b1

IBM

Request 2

1: The user changes it to
IBM and submits the form.

IBM

b1

UI Input

value: #{b1.sym}

sym: IBM

...

2: Store the
value "IBM"
back into b1.

3: During
rendering, read
the "sym"
property again.

HTML Code

Response 2
4: Generate the
response.

 Figure 2‑8. The rendering process after form submission

Now, to implement these ideas, modify getsymbol.xhtml as shown in Listing 2‑2.

 Listing 2‑2. getsymbol.xhtml

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE ...>

<html ...>

...

<body>

<h:form>

 <h:inputText value="#{b1.sym}"></h:inputText>

 <h:commandButton></h:commandButton>

</h:form>

</body>

</html>

Chapter 2 ■ USING FOrMS 35

Of course, you need to define the b1 web bean. To do that, create a class called
QuoteRequest in a stock package (see Listing 2‑3). Note that the sym property is initial‑
ized to MSFT, and some messages are printed in various methods to show the order of
the events. You can also delete the hello package.

 Listing 2‑3. Defining the b1 Web Bean

package stock;

...

@Named("b1")

@RequestScoped

public class QuoteRequest {

 private String sym = "MSFT";

 public QuoteRequest() {

 System.out.println("Creating b1");

 }

 public String getSym() {

 System.out.println("getting sym");

 return sym;

 }

 public void setSym(String sym) {

 System.out.println("setting sym to: " + sym);

 this.sym = sym;

 }

}

Now, start JBoss, and access the page at http://localhost:8080/Stock/faces/getsymbol.
xhtml. You should see the messages in the console that are shown in Listing 2‑4.

 Listing 2‑4. Messages Showing the Rendering Process

Creating b1

getting sym

Change the symbol to “IBM,” and then submit the form. You should see the messages
shown in Listing 2‑5. From these messages you can see that a new b1 bean is created.
Then for some reason the sym property is read (it is because the UI Input component is
checking whether the new value is really different from the old one and, if so, notifying
some interested parties). Next, the UI Input component stores IBM into it, and finally it is
read again to generate the HTML code.

http://localhost:8080/Stock/faces/getsymbol

Chapter 2 ■ USING FOrMS36

 Listing 2‑5. Messages Showing the Form Submission Process

Creating b1

getting sym

Creating b1

getting sym

setting sym to: IBM

getting sym

Displaying the Result Page

For the moment, when handling the form submission, you’re simply letting JSF redisplay
the current page containing the form. This is no good. You’d like to display a result page
showing the stock price instead. To do that, create a stockvalue.xhtml file in the WebContent
folder. For the moment, the content is hard‑ coded (see Listing 2‑6).

 Listing 2‑6. Result Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Stock value is: 123.

</body>

</html>

The question is, how do you tell JSF to display the result page? This is done using
a navigation rule (see Figure 2‑9).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 2 ■ USING FOrMS 37

/getsymbol.xhtml

/stockvalue.xhtml
If Outcome is OK

Some other view ID
If Outcome is ...

The View ID of the

Current Page

The View ID of the

Next Page

Each such branch is

called a "navigation

case."

The whole thing is

called a "navigation

rule."

The View ID of the

Next Page

 Figure 2‑9. Navigation rule

To create the navigation rule, modify faces- config.xml as shown in Listing 2‑7.

 Listing 2‑7. Navigation Rule in faces-config.xml

<faces-config ...>

 <navigation- rule>

 <from-view-id>/getsymbol.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>ok</from- outcome>

 <to-view-id>/stockvalue.xhtml</to-view- id>

 </navigation- case>

 ...

 ...You could have more <navigation- case> elements here...

 ...

 </navigation- rule>

</faces-config>

Now that you’ve defined the navigation rule and cases (only one, actually), the
next step is to set the outcome to ok. To do that, modify getsymbol.xhtml as shown in
 Listing 2‑8.

Chapter 2 ■ USING FOrMS38

 Listing 2‑8. Setting the action Attribute of UI Command Component

<?xml version="1.0" encoding="UTF- 8" ?>

...

<h:form>

 <h:inputText value="#{b1.sym}"></h:inputText>

 <h:commandButton action="ok"></h:commandButton>

</h:form>

</body>

</html>

Then, the UI Command component reads its action attribute and uses the value to
set the outcome, as shown in Figure 2‑10.

IBM

Browser

Button Clicked

1: HTTP Request

UI Command

action: "ok"

2: Look into the request
to see the button was
clicked? Yes!

HTML Code

5: HTTP Response

3: Set the outcome
to "ok."

ok

Outcome

JSF

...

Navigation Rules

4: Use the current
view ID and the
outcome to �nd the
next view ID.

stockvalue
Page

5: Load it.

 Figure 2‑10. Using the action attribute to control the outcome

Now, run the application, and it should work.

Displaying the Stock Value

For the moment, you’re hard‑ coding the stock value. Next, you’ll calculate a dynamic
value. In a real implementation, you would look up the stock price probably from an
online service. For simplicity in this example, you’ll just use the hash code of the symbol

Chapter 2 ■ USING FOrMS 39

as the stock value. To do that, modify stockvalue.xhtml so that it gets the stock value from
the b1 bean (see Listing 2‑9).

 Listing 2‑9. Getting the Stock Value from a Web Bean

...

<body>

Stock value is: #{b1.stockValue}.

</body>

...

For this to work, define a getter in the b1 bean, as shown in Listing 2‑10.

 Listing 2‑10. Providing the Stock Value from the b1 Bean

...

public class QuoteRequest {

 private String sym = "MSFT";

 public QuoteRequest() {

 System.out.println("Creating b1");

 }

 public String getSym() {

 System.out.println("getting sym");

 return sym;

 }

 public void setSym(String sym) {

 System.out.println("setting sym to: " + sym);

 this.sym = sym;

 }

 public int getStockValue() {

 return Math.abs(sym.hashCode());

 }

}

Run the application, and the stock value should change depending on the symbol.
How does it do that? See Figure 2‑11. Basically, when the HTTP request arrives, the UI
Input and UI Command components are each given the opportunity to handle the request
such as reading values from it, checking whether a value is provided, validating the value
as needed, and finally storing the value into a web bean (see Figure 2‑11). Let’s call this
phase the Input Processing phase. In this phase for the UI Command component, after
finding that the button was clicked, it will not immediately set the outcome. Instead, it
schedules a listener to be executed in the next phase.

Chapter 2 ■ USING FOrMS40

Assuming that there is no error of any kind, JSF will enter the next phase in which
all scheduled listeners will be executed. In this example, the listener scheduled by the UI
Command component will execute to set the outcome. Then JSF will check the outcome
and use the navigation rules to determine the next view ID of the next page. This phase is
called the Invoke Application phase.

In the next phase, JSF uses the next view ID to load the page and let it render. This
phase is called the Render Response phase.

Input Processing

UI Input

...

UI Command

HTTP request

1: Read the values, check them

if they are provided, validate

them.

Web bean

2: Store the values

into web beans.

Invoke

Application

Listener

3: Schedule a listener to be

executed.

ok

Outcome

4: Set the

outcome

Render

Response

 Figure 2‑11. JSF handles a request in phases.

Marking Input As Required

What if the user deletes the initial symbol displayed and then submits the form? You’ll
get an empty string. For this stock quote application, this should be treated as an error;
in other words, the user should be forced to enter something. To do that, you just need to
mark the UI Input component as required (see Figure 2‑12).

Chapter 2 ■ USING FOrMS 41

UI Input

required: true

symbol=

2: HTTP Request

3: The symbol has a

non-empty value?

No.

Symbol is required
4: Log an error message.

1: Mark it as required.

<h:inputText value="#{b1.sym}" required="true"></h:inputText>

 Figure 2‑12. Marking input as required

However, if the UI Command component still sets the outcome to ok, JSF will go
ahead and display the stock result. This is obviously not what you want. You’d like to do
the following:

 1. Redisplay getsymbol.xhtml.

 2. Have it display the error message.

In order to do step 1, you need to first understand how JSF handles the request when
there is any error in the Input Processing phase, such as when no value is provided but
the UI Input component is marked as required (see Figure 2‑13). Obviously, the UI Input
component has no value to set into the web bean. Because the UI Command component
doesn’t know about the error, it will still schedule the listener. JSF will note the error, skip
the Invoke Application phase, and go directly to the Render Response phase. Then the
outcome will not have been set and will remain at its initial value of null. JSF will treat it
as a signal to not change the current view ID and thus will redisplay the current page.

Chapter 2 ■ USING FOrMS42

Input Processing

UI Input

...

UI Command

HTTP Request

1: There is an error while

reading the values and

validating them.

Web Bean

2: Will not store

any values into the

web bean.

Invoke

Application

Listener

3: Schedule a listener to be

executed.

null

Outcome

Render

Response

 Figure 2‑13. Skipping the Invoke Application phase if there is any error when processing input

What if you had two UI Input components and one failed? Would the other one store
the value into a web bean (see Figure 2‑14)?

Chapter 2 ■ USING FOrMS 43

Input Processing

UI Input

...

UI Input

HTTP Request

1: There is an error while

reading the values and

validating them.

Web Bean

3: Will not store

any values into the

web bean.

Invoke

Application

Render

Response

2: No error.

Web Bean

4: Will it store the

value into the web

bean?

 Figure 2‑14. What would happen if just one UI Input component failed?

You certainly hope that it wouldn’t. To achieve this effect, the part of updating the
web beans is always split from the Input Processing phase to form a new phase called
Update Domain Values (see Figure 2‑15). That is, if there is any error when processing the
input, the entire Update Domain Values phase will be skipped.

Chapter 2 ■ USING FOrMS44

Input Processing

UI Input

...

UI Input

HTTP Request

1: There is an error while

reading the values and

validating them.
Web Bean

Invoke

Application

Render

Response

2: No error.

Web Bean

Update

Domain Values

3: Go directly to the

Render Response

phase if there is any

error.

Normally (e.g., no error),

go to the Update Domain

Values phase.

 Figure 2‑15. Skipping the Update Domain Values phase if there is any error when
processing input

Finally, in order to display the error messages recorded, modify getsymbol.xhtml as
shown in Figure 2‑16. That is, the UI Messages component will render the error messages
recorded.

Chapter 2 ■ USING FOrMS 45

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ...>
<html ...>
...
<body>
<h:messages/>
<h:form>
 <h:inputText ...></h:inputText>
 <h:commandButton action="ok"></h:commandButton>
</h:form>
</body>
</html>

UI View Root

UI Messages

1: Before the page is rendered, the

<h:messages> tag will create a UI

Messages component.

2: It will render the error messages

as a list.

...

 error message 1
 error message 2
 ...

...

 Figure 2‑16. Displaying error messages

Now run the application, and submit the form with an empty symbol. The application
will display an error message, as shown in Figure 2‑17.

Chapter 2 ■ USING FOrMS46

UI View Root

UI Form

UI Input

UI Command

UI Messages

The ID of the

UI Form

The ID of the

UI Input

The whole path is called the client ID of

the UI Input

 Figure 2‑17. Error messages are displayed.

As you can see in Figure 2‑17, the client ID of the UI Input component is the ID path
from the form to the component concerned. In general, client IDs are mainly used as the
values of the id or name attributes of the HTML elements generated. If you view the source
of the HTML page, you’ll see how various client IDs are used (see Listing 2‑11).

 Listing 2‑11. Client IDs Used As id or name Attributes

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html ...>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8"></meta>

http://www.w3.org/1999/xhtml

Chapter 2 ■ USING FOrMS 47

<title>Insert title here</title>

</head>

<body>

<form name="j_id3" id="j_id3" method="post" action="/Stock/faces/getsymbol.xhtml"

 enctype="application/x-www-form- urlencoded">

<input type="hidden" name="j_id3"></input>

<input type="text" name="j_id3:j_id4" value="MSFT"></input>

...

</form>

</body>

</html>

So, displaying the client ID is quite confusing to users. Instead, you should display
a user‑ friendly description for the UI Input component. To do that, modify getsymbol.
xhtml as shown in Listing 2‑12.

 Listing 2‑12. Specifying the Label

...

<body>

<h:messages />

<h:form>

 <h:inputText value="#{b1.sym}" required="true"

 label="Stock symbol"></h:inputText>

 <h:commandButton action="ok"></h:commandButton>

</h:form>

</body>

</html>

Run the code again, and it will display the label instead of the client ID (see Figure 2‑18).

 Figure 2‑18. Labels displayed in error messages

Chapter 2 ■ USING FOrMS48

If you don’t like this error message, you can provide your own. To do that, create
a text file named messages.properties in the stock package (the file name is not really sig‑
nificant as long as it has a .properties extension). Figure 2‑19 shows the content to input.

javax.faces.component.UIInput.REQUIRED=You must input {0}!

This is called the "resource key."

JSF will fill in the label ("Stock symbol").

 Figure 2‑19. Specifying the error message for missing input

JSF will not load the file automatically; you must tell it to do so. Therefore, modify
 faces- config.xml as shown in Figure 2‑20.

<faces-config ...>
 <application>
 <message-bundle>stock.messages</message-bundle>
 </application>
 <navigation-rule>
 <from-view-id>/getsymbol.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>ok</from-outcome>
 <to-view-id>/stockvalue.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

The Package

The Base Filename without

the .properties Extension

 Figure 2‑20. Telling JSF to load a properties file

Now JSF will load messages from this file and use them to override the default mes‑
sages. Run the application, and it should work (see Figure 2‑21).

Chapter 2 ■ USING FOrMS 49

 Figure 2‑21. Custom error messages in effect

Note that this error message will apply to all UI Input components in your applica‑
tion. If you’d like this error message to apply only to a single UI Input component, you
can do that by using the code in Listing 2‑13. This will override the message provided by
the UI Input component (either the default text or the text loaded from a .properties file).
Note that you can’t use placeholders like {0} in this string.

 Listing 2‑13. Specifying the Error Message for a Single UI Input Component

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE ...>

<html ...>

...

<body>

<h:messages/>

<h:form>

 <h:inputText value="#{b1.sym}" required="true" label="Stock symbol"

 requiredMessage="Input is missing!"></h:inputText>

 <h:commandButton action="ok"></h:commandButton>

</h:form>

</body>

</html>

Run the application, and it will display the error message you specified.

Inputting a Date

You’ve learned how to let the user input a string (the symbol). What if you need to input
a Date object? For example, say you’d like to allow the user to query the stock value on
a particular date, as shown in Figure 2‑22.

Chapter 2 ■ USING FOrMS50

 Figure 2‑22. Inputting a date

How does that differ from inputting a string? During rendering (the Render Response
phase), the UI Input component now needs to convert a Date object into a string (see
 Figure 2‑23).

UI Input

2: Convert the Date object into a

string.

Web Bean

1: Read a Date object

from a web bean.

<input type="text" value="9/25/2008"/>
...

y: 2008

m: 9

d: 25

 Figure 2‑23. Converting a Date object into a string in the Render Response phase

When the user submits the form, in the Input Processing phase the UI Input com‑
ponent needs to convert the string back to a Date object (see Figure 2‑24). Then in the
Update Domain Values phase, it will store the Date object into a web bean.

Chapter 2 ■ USING FOrMS 51

Input Processing

UI Input

d: "9/25/2008"

HTTP Request
1: Read the value (string) and

convert it to a Date object.

Invoke

Application

Render

Response

Web Bean

Update

Domain Values

converted:

2: Store into a web

bean.

y: 2008

m: 9

d: 25

 Figure 2‑24. Converting a string into the Date object in the Input Processing phase

The UI Input component knows about a few common types such as java.lang.Integer
and java.lang.Double and can convert between a value of such types and a string. Unfortu‑
nately, it doesn’t know how to convert between a java.util.Date and a string. To solve this
problem, you need to tell it to use a Date converter, as shown in Figure 2‑25.

UI Input

"9/25/2008"
y: 2008

m: 9

d: 25
Date Converter

"8/26/2008"
y: 2008

m: 8

d: 26

 Figure 2‑25. Using a Date converter

Chapter 2 ■ USING FOrMS52

To implement this idea, modify getsymbol.xhtml as shown in Figure 2‑26.

...
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
...
<h:form>
 <h:inputText value="#{b1.sym}" required="true" label="Stock symbol"
 requiredMessage="Input is missing!"></h:inputText>
 on
 <h:inputText value="#{b1.quoteDate}" required="true" label="Quote date">
 <f:convertDateTime/>
 </h:inputText>
 <h:commandButton action="ok"></h:commandButton>
</h:form>
</body>
</html>

1: Create a Date converter.

UI Input

Date converter

2: What is the JSF component

that you created? Oh, it's that

UI Input.

3: Add the Date converter to it.

You'll add this property to the b1

bean later.

This is the JSF Core taglib. The converter is not related to HTML in

any way so it belongs to the Core taglib.

 Figure 2‑26. Specifying a Date converter for a UI Input component

Add the quoteDate property to the b1 bean, as shown in Listing 2‑14. You’ll simply
append the Date to the symbol before getting the hash code so that the calculated stock
price will depend on both the Date and the symbol.

 Listing 2‑14. Providing a quoteDate Property

@Named("b1")

@RequestScoped

public class QuoteRequest {

 private String sym = "MSFT";

 private Date quoteDate = new Date();

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 2 ■ USING FOrMS 53

 public QuoteRequest() {

 System.out.println("Creating b1");

 }

 public String getSym() {

 System.out.println("getting sym");

 return sym;

 }

 public void setSym(String sym) {

 System.out.println("setting sym to: " + sym);

 this.sym = sym;

 }

 public Date getQuoteDate() {

 return quoteDate;

 }

 public void setQuoteDate(Date quoteDate) {

 this.quoteDate = quoteDate;

 }

 public int getStockValue() {

 return Math.abs((sym+quoteDate.toString()).hashCode());

 }

}

Now run the application, and it should work (see Figure 2‑27). Note that you’re creat‑
ing a new Date object and assigning it to the quoteDate property for each request, so the UI
Input component will display the current date on render.

 Figure 2‑27. Quote date working

Why does it show “Oct 26, 2008” instead of say “10/26/2008” or “26/10/2008”? This is
controlled by two factors: the preferred language set in the browser and the style used by
the converter. Table 2‑1 shows some examples.

Chapter 2 ■ USING FOrMS54

 Table 2‑1. How the Date Format Is Determined

Preferred Language Short Style Medium Style Long Style Full Style
U.S. English 10/26/2008 Oct 26, 2008 October 26, 2008 Sunday, October 26,

2008

U.K. English 26/10/2008 26 Oct, 2008

If you don’t set the style, it will use the medium style. To tell the converter to use, say,
the short style, you can use the code shown in Listing 2‑15.

 Listing 2‑15. Specifying the Date Style

...

<h:form>

 <h:inputText value="#{b1.sym}" required="true" label="Stock symbol"

 requiredMessage="Input is missing!"></h:inputText>

 on

 <h:inputText value="#{b1.quoteDate}" required="true" label="Quote date">

 <f:convertDateTime dateStyle="short"/>

 </h:inputText>

 <h:commandButton action="ok"></h:commandButton>

</h:form>

Now, run the application, and it should look like Figure 2‑28. Obviously, the user now
has to input the date using this short style too.

 Figure 2‑28. Quote date displayed in short style

You can also change the preferred language in the browser. For example, in Firefox,
you can set the preferred language by selecting Tools ➤ Options ➤ Content ➤ Languages
➤ Choose. For this to work, you still need to tell JSF that you support that language in
 faces- config.xml. For example, in Listing 2‑16, you’re telling JSF that English (en), French

Chapter 2 ■ USING FOrMS 55

(fr), German (de), and Chinese (zh) are supported and that English is the default. What does
default mean here? If an unsupported language such as Italian is requested, English will be
used instead.

 Listing 2‑16. Configuring the Supported Languages in faces-config.xml

<faces-config ...>

 <application>

 <message-bundle>stock.messages</message- bundle>

 <locale- config>

 <default-locale>en</default- locale>

 <supported-locale>fr</supported- locale>

 <supported-locale>de</supported- locale>

 <supported-locale>zh</supported- locale>

 </locale- config>

 </application>

 <navigation- rule>

 <from-view-id>/getsymbol.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>ok</from- outcome>

 <to-view-id>/stockvalue.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Now, change your preferred language to, say, French, and run the application again.
It will display the date in French.

You may wonder what will happen if you don’t configure the supported languages
in faces- config.xml at all. In that case, if your OS account (which runs JBoss) is set to use,
say, Japanese, then JSF will assume that you support Japanese only.

Conversion Errors and Empty Input

Having to convert a string into a Date object introduces some new issues:

	 •	 What	if	the	string	is,	say,	“abc”	and	thus	can’t	be	converted?	

	 •	 What	if	the	user	doesn’t	input	anything	(empty	string)	and	submits	the	form?

For the first issue, the Date converter will log an error, as shown in Figure 2‑29. This is
exactly like the case when input is required but nothing was provided.

Chapter 2 ■ USING FOrMS56

Input Processing

UI Input

d: "abc"

HTTP Request

1: Read the value (string)

but fails convert it to a

Date object.

Invoke

Application

Render

Response

Web Bean

Update

Domain Values

abc is not a valid date

2: Log an error message

 Figure 2‑29. Conversion failure

However, there is a slight difference here from the previous scenario. When the UI
Input component renders again in the Render Response phase, it would like to redisplay
the raw input entered by the user (“abc”) instead of retrieving it from the web bean again.
This is so the user can correct it. To do that, at the beginning of the Input Processing
phase all UI Input components will always store the raw input string into themselves first
(see Figure 2‑30). This processing is split from the Input Processing phase to form a new
phase called Apply Request Values. The rest of the Input Processing phase deals with data
conversion and validation and is called the Process Validations phase.

Chapter 2 ■ USING FOrMS 57

Process

Validations

UI Input

d: "abc"

HTTP Request
1: Read the value (string).

Invoke

Application

Render

Response

Web Bean

Update

Domain Values

abc is not a valid date

Apply

Request

Values

Raw: "abc"

Converted:null

4: Log

an

error.

2: Store the raw string.

3: Try to convert it to a

Date object but fails.

 Figure 2‑30. The Apply Request Values phase and the Process Validations phase

■Note I’ve made up the term Input Processing phase; in the official JSF specification, there is no such
term. You’ll find only the phases shown in Figure 2‑30.

Now run the application, and enter abc as the date. You’ll see something like Figure 2‑31.

Chapter 2 ■ USING FOrMS58

 Figure 2‑31. “abc” can’t be converted, and it is redisplayed.

Again, if you don’t like the error message, you can override it in the messages.properties
file (see Figure 2‑32).

javax.faces.component.UIInput.REQUIRED=You must input {0}!
javax.faces.converter.DateTimeConverter.DATE={0} is an invalid {2}. \
Try something like {1}

JSF will fill in the user input ("abc").

You may specify TIME here when you use

the converter it to convert a time.

When the line is too long, you can use a

backslash to tell Java to continue to the

next line.

The Label ("quote date")

An example string that

is valid such as

"12/20/08"

 Figure 2‑32. Customizing error messages using a .properties file

You may wonder how I found out what placeholders are supported by the Date con‑
verter. This is documented in the Javadoc of the DateTimeConverter class (see Figure 2‑33).

Chapter 2 ■ USING FOrMS 59

 Figure 2‑33. Finding out what placeholders are supported

Using a .properties file will affect all UI Input components. If you’d like to set
a .properties file just for this UI Input component, you can do so using the code shown in
 Listing 2‑17.

 Listing 2‑17. Specifying the Conversion Error Message for a Single UI Input Component

...

<h:form>

 <h:inputText value="#{b1.sym}" required="true" label="Stock symbol"

 requiredMessage="Input is missing!"></h:inputText>

 on

 <h:inputText value="#{b1.quoteDate}" required="true" label="Quote date"

 converterMessage="The quote date is invalid">

 <f:convertDateTime dateStyle="short"/>

 </h:inputText>

 <h:commandButton action="ok"></h:commandButton>

</h:form>

</body>

</html>

We’ve covered conversion errors, but what about empty input? Because an empty
string can’t be converted to a Date, will it be treated as a conversion error? No. The UI Input
component will assume all input is optional, and an empty string is treated as “no input.”
In that case, it converts the empty string into null (if the property type is not a string)
and stores it in the property of the web bean. As mentioned earlier, if the property type is
a string, no conversion is needed, and it will store just an empty string in the property.

Again, if the input is not optional, you can simply set the required attribute to true
(as you did in Figure 2‑12).

Chapter 2 ■ USING FOrMS60

Using a Combo Box

Suppose that you’d like to change the application so that the user will choose from a combo
box of stock symbols instead of typing one in (see Figure 2‑34).

 Figure 2‑34. Using a combo box

To do that, modify getsymbol.xhtml as shown in Figure 2‑35.

<h:form>
 <h:inputText value "#{b1.sym}" required "true" label "Stock symbol"
 requiredMessage="Input is missing!">
 </h:inputText>
 <h:selectOneMenu value="#{b1.sym}" required="true" label="Stock symbol"
 requiredMessage="Input is missing!">
 <f:selectItems value="#{b2.symbols}"/>
 </h:selectOneMenu>
 on
 <h:inputText value="#{b1.quoteDate}" .../>
 <h:commandButton action="ok"></h:commandButton>
</h:form>

Create

UI Select

One

UI Select

Items

Create

It provides the selected

symbol.

It provides the list of available symbols.

You'll create the b2 bean next.

It has got nothing to

do with HTML, so it

belongs to the Core

taglib.

 Figure 2‑35. Using a UI Select One component

Chapter 2 ■ USING FOrMS 61

For it to work, create a new class to serve as the b2 bean. Let’s call it StockService (see
 Figure 2‑36).

package stock;

import java.util.ArrayList;
import java.util.List;
import javax.faces.model.SelectItem;
import javax.annotation.Named;
import javax.context.ApplicationScoped;

@Named("b2")
@RequestScoped
public class StockService {
 private List<SelectItem> symbols;

 public StockService() {
 symbols = new ArrayList<SelectItem>();
 symbols.add(new SelectItem("MSFT"));
 symbols.add(new SelectItem("IBM"));
 symbols.add(new SelectItem("RHAT"));
 }
 public List<SelectItem> getSymbols() {
 return symbols;
 }
}

This class is provided by JSF. It

represents an item for the user's

selection.

This string will be displayed to

the user.

It can return a List or an array.

 Figure 2‑36. StockService class

Run the application, and it should work. However, you may wonder why you need
to provide it with a List<SelectItem> instead of just a List<String>. Say, for example, that
instead of displaying short codes such as “MSFT” to the user, you’d like to display a lon‑
ger description such as “Microsoft.” Internally all your processing will still use “MSFT,”
though. To do that, modify the code as shown in Figure 2‑37.

Chapter 2 ■ USING FOrMS62

package stock;
...
@Component
@Named("b2")
@RequestScoped
public class StockService {
 private List<SelectItem> symbols;

 public StockService() {
 symbols = new ArrayList<SelectItem>();

symbols.add(new SelectItem("MSFT", "Microsoft"));
symbols.add(new SelectItem("IBM", "IBM"));
symbols.add(new SelectItem("RHAT", "Red Hat"));

 }
 public List<SelectItem> getSymbols() {
 return symbols;
 }
}

b1

sym: ...

This string will be stored

into the web bean.

This string will be

displayed to the user.

 Figure 2‑37. Using a short ID and a long description

Using a Single b2 Bean

At the moment, you’re creating a new b2 bean for each request. However, because the
list of symbols should be global, a single instance should be enough for all requests from
all users. To do that, you need to know that in addition to the web bean table in each
request, there is a web bean table for the whole application (see Figure 2‑38).

HTTP Request 1

HTTP Request 2

Application

Web Beans

1: Look up the web bean
here (if you're handling
request 1).

2: If not found, look it up
here.

Name
...
...
...

...

...

...

Object

Name
...
...
...

...

...

...

Object

Name
...
...
...

...

...

...

Object

 Figure 2‑38. A web bean table for the whole application

Chapter 2 ■ USING FOrMS 63

To put the b2 bean into the application table, modify the StockService class as shown
in Listing 2‑18.

 Listing 2‑18. Using the Application Scope

package stock;

import javax.faces.model.SelectItem;

import javax.context.ApplicationScoped;

import javax.annotation.Named;

@Named("b2")

@ApplicationScoped

public class StockService {

 private List<SelectItem> symbols;

 public StockService() {

 symbols = new ArrayList<SelectItem>();

 symbols.add(new SelectItem("MSFT", "Microsoft"));

 symbols.add(new SelectItem("IBM", "IBM"));

 symbols.add(new SelectItem("RHAT", "Red Hat"));

 }

 public List<SelectItem> getSymbols() {

 return symbols;

 }

}

Run the application, and it will continue to work.

Hooking Up the Web Beans

For the moment, the stock value calculation is done in the QuoteRequest class (see
 Listing 2‑19).

 Listing 2‑19. Stock Value Calculation in QuoteRequest Class

@Named("b1")

@RequestScoped

public class QuoteRequest {

 private String sym = "MSFT";

 private Date quoteDate = new Date();

 ...

Chapter 2 ■ USING FOrMS64

 public int getStockValue() {

 return Math.abs((sym+quoteDate.toString()).hashCode());

 }

}

In a real implementation, you will need to hook up to a database or connect to
a network service provider to get the stock value. This kind of work is best done in the
StockService class. So, to make the code more realistic, let’s move the calculation logic
into the StockService class (see Listing 2‑20).

 Listing 2‑20. Moving the Stock Value Calculation into the StockService Class

@Named("b2")

@ApplicationScoped

public class StockService {

 private List<SelectItem> symbols;

 public StockService() {

 symbols = new ArrayList<SelectItem>();

 symbols.add(new SelectItem("MSFT", "Microsoft"));

 symbols.add(new SelectItem("IBM", "IBM"));

 symbols.add(new SelectItem("RHAT", "Red Hat"));

 }

 public List<SelectItem> getSymbols() {

 return symbols;

 }

 public int getStockValue(QuoteRequest r) {

 return Math.abs((r.getSym() + r.getQuoteDate().toString()).hashCode());

 }

}

Then the code in the QuoteRequest class should call the StockService to get the stock
value. But how do we get access to it (see Listing 2‑21)?

Chapter 2 ■ USING FOrMS 65

 Listing 2‑21. How Can b1 Get Access to b2?

@Named("b1")

@RequestScoped

public class QuoteRequest {

 private String sym = "MSFT";

 private Date quoteDate = new Date();

 public QuoteRequest() {

 System.out.println("Creating b1");

 }

 public int getStockValue() {

 StockService stkSrv = ???;

 return stkSrv.getStockValue(this);

 }

}

To solve this problem, you can tell web beans to inject b2 into b1 (see Figure 2‑39).
You may wonder why the annotation is called @Current instead of something like @Inject.
For the moment, you don’t need to worry about it.

import javax.inject.Current;
import javax.annotation.Named;
import javax.context.RequestScoped;

@Named("b1")
@RequestScoped
public class QuoteRequest {
 private String sym = "MSFT";
 private Date quoteDate = new Date();
 @Current
 private StockService stkSrv;

 public QuoteRequest() {
 System.out.println("Creating b1");
 }
 public int getStockValue() {
 StockService stkSrv ???;
 return stkSrv.getStockValue(this);
 }
}

... b2 ...

Web Beans

1: Look, need to store

another web bean into this

field after constructing this

web bean.

2: What is the class of

the web bean you are

looking for?

3: Is your case

StockService? No.

4: Is your case

StockService? Yes!

 Figure 2‑39. Injecting b2 into b1

Run the application, and it should continue to work.

Chapter 2 ■ USING FOrMS66

Summary
In this chapter, you learned about how to use forms to get input from users. To handle
a form submission, JSF will go through the following phases: Apply Request Values (store
the raw input strings), Process Validations (convert the strings into objects and validate
them), Update Domain Values (store the converted values into web beans), Invoke Appli‑
cation (set the outcome and determine the view ID of the next page), and Render Response
(render the next page).

If there is any error in the Process Validations phase, it will jump right to the Render
Response phase so that the web beans are not updated, the outcome is not set, and the
current page is redisplayed.

To let the user edit a string in a text field, use the UI Input component, and set its
value attribute to link it to the property of a web bean. To let the user choose an entry
from a combo box, use the UI Select One component. You can also set its value attribute
to link it to the property of a web bean. In addition, you need to provide a list of SelectItem
items to it. Each SelectItem contains an object (the value) and its string presentation (the
label).

For a UI Input component, if the type of the property is not a string or a built‑ in type
such as Integer or Double, you need provide a converter to the UI Input component. If
there is a conversion error, it will log an error message.

The UI Input component assumes that the input is optional and will convert an empty
string into null (or leave it unchanged if the type of the property is string). If the input is
mandatory, you need set the required attribute to true. Then it will log an error if no input
is provided.

To display error messages, use the UI Messages component.
To let the user click a button, use a UI Command component. Specify the outcome

in its action attribute. JSF will use the current view ID to look up the right navigation rule
and use the outcome to look up the right navigation case to find the next view ID. The UI
Command component will schedule a listener to set the outcome in the Invoke Applica‑
tion phase so that if there is any conversion or validation error, it will not set the outcome
and the original page will be redisplayed.

You can customize the error messages using a message bundle (that is, one or more
.properties files). This will affect the whole application. To customize it for a particular
component, simply set the right attribute of the component.

Finally, you learned that you can inject one web bean into a field of another using
@Current. Web beans will use the type of the field to locate the web bean to be injected.

67

C h a p t e r 3

Validating Input

In the previous chapter, you learned some basic ways of input validation: forcing the
user to input something for a mandatory field and enforcing the format of the input (it
can be converted into, say, a date properly). That is, you learned how to make sure that
there is a converted value. In this chapter, you’ll learn how to further validate that con-
verted value.

Developing a Postage Calculator
Suppose that you’d like to develop an application to calculate the postage for sending a
package from one place to another. The user will enter the weight of the package in kilo-
grams (see Figure 3-1). Optionally, he can enter a “patron code” identifying himself as a
patron to get a certain discount. After clicking OK, the calculator will display the postage
(Figure 3-1).

Figure 3-1. A postage calculator

To do that, create a new JSF project named Postage as usual (for example, copy an
existing project and then do some manual updates). Then create a getrequest.xhtml file.
To get the required tabular layout shown in Figure 3-1, you could use an HTML <table>
element, as shown in Listing 3-1.

Chapter 3 ■ VaL IDatING INpUt68

Listing 3-1. Using the HTML <table> to Get the Desired Tabular Layout

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <table>

 <tr>

 <td>Weight:</td>

 <td><h:inputText .../></td>

 </tr>

 <tr>

 <td>Patron code:</td>

 <td><h:inputText .../></td>

 </tr>

 <tr>

 <td></td>

 <td><h:commandButton .../></td>

 </tr>

 </table>

</h:form>

</body>

However, a design objective of JSF is to make it easier to support markups other than
HTML (for example, simplified markup for low-powered mobile devices). Therefore, you
can use an <h:panelGrid> tag instead of the HTML <table>, as shown in Figure 3-2. At
runtime, this tag will create a UI Panel component, and more important, it will create
another object (the HTML renderer). When the UI Panel needs to render itself, it will ask
the renderer to do it. In this case, the HTML renderer will read the properties of the UI
Panel and generate the corresponding HTML code such as a <table> element. The idea is
that if you needed to generate, say, WML output, you could reuse the UI Panel but give
it a WML renderer.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 3 ■ VaL IDatING INpUt 69

...
<h:form>
 <h:panelGrid columns="2">
 <h:outputText value="Weight:"/>
 <h:inputText .../>
 <h:outputText value="Patron code:"/>
 <h:inputText .../>
 <h:outputText value=""/>
 <h:commandButton .../>
 </h:panelGrid>
</h:form>

The <h:panelGrid> tag will create

a UI Panel component and give it

an HTML "renderer." A

component will ask its renderer to

output the markup.
UI Panel

HTML

Renderer

Some Other

Renderer

<table>
 ...
</table>

On other occasions, you

may give it another

renderer so that it outputs

non-HTML markup.

Non-HTML
markup

Figure 3-2. A component using a renderer

The HTML renderer will output the child components of the UI Panel sequentially, as
shown in Figure 3-3.

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText .../>

 <h:outputText value="Patron code:"/>

 <h:inputText .../>

 <h:outputText value=""/>

 <h:commandButton .../>

 </h:panelGrid>

</h:form>

The <table> should have

two columns.

Child 1 Child 2

Child 3 Child 4

...

It's full, so go

to the next

row.

Child 1

Child 2

Child 3

Child 4

Child 5

Child 6

Figure 3-3. The HTML renderer lays out the child components in a <table> sequentially.

Chapter 3 ■ VaL IDatING INpUt70

Next, you need to link a web bean to the two <h:inputText> tags. To do that, create
a class called Request in the postage package as shown in Listing 3-2. You’re making it a
request-scoped web bean named r. To allow Web Beans to create it, you need a construc-
tor that takes no argument. To calculate the postage, you’re injecting a PostageService
web bean into it. Finally, you need getters and setters for the properties to be edited.

Listing 3-2. The Request Class

package postage;

...

@Named("r")

@RequestScoped

public class Request {

 private int weight;

 private String patronCode;

 @Current

 private PostageService postageService;

 public Request() {

 }

 public Request(int weight, String patronCode) {

 this.weight = weight;

 this.patronCode = patronCode;

 }

 public int getWeight() {

 return weight;

 }

 public void setWeight(int weight) {

 this.weight = weight;

 }

 public String getPatronCode() {

 return patronCode;

 }

 public void setPatronCode(String patronCode) {

 this.patronCode = patronCode;

 }

 public int getPostage() {

 return postageService.getPostage(this);

 }

}

Chapter 3 ■ VaL IDatING INpUt 71

Listing 3-3 shows the PostageService class. In the constructor you hard-code some
patrons and their respective discounts. For example, p1 has 10 percent off. When calculat-
ing the postage, you assume that the postage is $10 per kilogram.

Listing 3-3. The PostageService Class

package postage;

import java.util.HashMap;

import java.util.Map;

import javax.context.ApplicationScoped;

@ApplicationScoped

public class PostageService {

 private Map<String, Integer> patronCodeToDiscount;

 public PostageService() {

 patronCodeToDiscount = new HashMap<String, Integer>();

 patronCodeToDiscount.put("p1", 90);

 patronCodeToDiscount.put("p2", 95);

 }

 public int getPostage(Request r) {

 Integer discount = (Integer) patronCodeToDiscount

 .get(r.getPatronCode());

 int postagePerKg = 10;

 int postage = r.getWeight() * postagePerKg;

 if (discount != null) {

 postage = postage * discount.intValue() / 100;

 }

 return postage;

 }

}

A very important point in Listing 3-3 is that you are not giving it a name using @Name.
Because the Request bean will inject it using its type (the PostageService class) and there is
no EL expression referring to it using a name (yet), you don’t need to name it.

Next, link the request properties and the UI Input components as shown in Listing 3-4.

Chapter 3 ■ VaL IDatING INpUt72

Listing 3-4. Linking the Request Properties and the UI Input Components

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText value="#{r.weight}"/>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

 <h:outputText value=""/>

 <h:commandButton/>

 </h:panelGrid>

</h:form>

Next, create the result page. Let’s call it showpostage.xhtml. Listing 3-5 shows the
content.

Listing 3-5. showpostage.xml

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Insert title here</title>

</head>

<body>

The postage is: #{r.postage}.

</body>

</html>

Set the outcome in the <h:commandButton> tag as shown in Listing 3-6.

Listing 3-6. Setting the Outcome

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText value="#{r.weight}"/>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 3 ■ VaL IDatING INpUt 73

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

Define the navigation rule as shown in Listing 3-7.

Listing 3-7. Navigation Rule

<faces-config ...>

 <navigation-rule>

 <from-view-id>/getrequest.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>ok</from-outcome>

 <to-view-id>/showpostage.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

Right-click the JBoss instance, and choose Add and Remove Projects to add the
project. Then, run the application by going to http://localhost:8080/Postage/faces/
getrequest.xhtml. It should work.

What If the Input Is Invalid?

At the moment, if the user enters a negative number as the weight (such as –5), the calcu-
lator will return a negative postage. This is no good. Instead, you’d like the application to
tell the user that the weight is invalid.

Similarly, for the moment, if the user enters a nonexisting patron code such as p3, the
calculator will simply treat it as “no discount” because the patron code is not found in the dis-
count map. Ideally, it should tell him that this patron code is not found (see Figure 3-4).

Figure 3-4. Catching unknown patron codes

http://localhost:8080/Postage/faces/

Chapter 3 ■ VaL IDatING INpUt74

Note that because the patron code is optional, if the user doesn’t enter anything, this
will not be treated as an error. This is a very important rule in validation: if some input
is optional and it is indeed not provided, you must not perform any validation because
there is simply no value to validate.

To validate the user input, you can add one or more validator objects to a UI Input
component (see Figure 3-5). When the form is submitted, as mentioned earlier, in the Apply
Request Values phase the UI Input component will store the raw input string (–5) locally. In
the Process Validations phase, it will convert it into an object (an integer, –5, here). Then it
will ask each of its validators (if any) in turn to validate the converted value (–5 here). If a vali-
dator fails, it will log an error message and tell the JSF engine to jump to the Render Response
phase directly, without updating the web beans or setting the outcome.

Process

Validations

UI Input

Weight: "-5"

HTTP Request
1: Read the value (string).

Invoke

Application

Render

Response

Web Bean

Update

Domain Values

Negative not accepted!

Apply

Request

Values

Raw: "-5"

Converted:-5

5: Log an error.

2: Store the raw string.

3: Convert it to an

Integer.

Validator 1
...

4: Check the

converted

value (-5).

Figure 3-5. How validators work

Chapter 3 ■ VaL IDatING INpUt 75

In order to create such a validator, modify getrequest.xhtml as shown in Listing 3-8.
This <f:validateLongRange> tag will create a “long range validator,” which will assume the
converted value is a long and will check whether it is in a specified range. Here, you’re
setting the minimum value to 0 so that anything less than 0 is an error. You could set the
maximum value too, but there is no need for the current case. Note that the long range
validator has nothing to do with the markup, so it is in the Core tag lib.

Listing 3-8. Creating a Long Range Validator

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText value="#{r.weight}">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

To display the error message, you need an <h:messages> tag, and you need to set the
label as shown in Listing 3-9. Why set the label? As explained in the previous chapter, if
you don’t set the label, the error message will display the client ID, which is daunting to
the user.

Listing 3-9. Displaying the Error Message

<h:messages/>

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText value="#{r.weight}" label="weight">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 3 ■ VaL IDatING INpUt76

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

Now run the application again, and it should work (see Figure 3-6).

Figure 3-6. Negative weight caught as an error

Just like the error messages for missing required input or conversion errors, you can cus-
tomize the error message using a message bundle. For example, create Postage.properties in
the postage package, as shown in Figure 3-7.

javax.faces.validator.LongRangeValidator.MINIMUM={1} must be at least {0}!

For a Validator

The Name of

the Validator

The situation: when

the value is less than

the minimum value.

The Label ("weight"

here)

The Minimum Value

(0 here)

Figure 3-7. Customizing validator error messages

You may wonder how I found out what placeholders are supported by the long range
validator. This is documented in the Javadoc of the LongRangeValidator class.

Chapter 3 ■ VaL IDatING INpUt 77

Specify the message bundle in faces-config.xml as shown in Listing 3-10.

Listing 3-10. Specifying the Message Bundle

<faces-config ...>

 <application>

 <message-bundle>postage.Postage</message-bundle>

 </application>

 <navigation-rule>

 <from-view-id>/getrequest.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>ok</from-outcome>

 <to-view-id>/showpostage.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

Make sure the application is reloaded. Then run the app, and it should work (Figure 3-8).

Figure 3-8. Customized error message displayed

This will affect all uses of the long range validator, though. If you’d like to customize
it for a single UI Input only, you can do it as shown in Listing 3-11.

Listing 3-11. Specifying the Validation Error Message for a Single Component

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

Chapter 3 ■ VaL IDatING INpUt78

 <h:inputText value="#{r.weight}" label="weight"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

In addition to this validator, there are similar ones for checking doubles and another
for checking the lengths of strings. They are shown in Listing 3-12, and their resource keys
are shown in Listing 3-13. The first tag creates a LengthValidator enforcing the length of a
string to be between 3 and 20. The second tag creates a DoubleRangeValidator enforcing a
double to be between 0 and 999999. What if you’d like to validate an integer? You’ll sim-
ply use the long range validator. What if you’d like to validate a float? You’ll simply use the
double range validator.

Listing 3-12. Double Validator and String Validator

<f:validateLength minimum="3" maximum="20"/>

<f:validateDouble minimum="0" maximum="999999"/>

Listing 3-13 shows their resource keys.

Listing 3-13. Resource Keys for the Other Validators

javax.faces.validator.LengthValidator.MINIMUM=...

javax.faces.validator.LengthValidator.MAXIMUM=...

javax.faces.validator.DoubleRangeValidator.MINIMUM=...

javax.faces.validator.DoubleRangeValidator.MAXIMUM=...

Null Input and Validators

If the user doesn’t input anything as the weight, what will the long range validator do?
Recall the rule regarding validation: if there is no input, you must skip the validation
because there is simply no value to validate. JSF does that automatically. In this case, if
the user doesn’t input the weight, it will be converted to null, and all validation will be
skipped. This is no good, because the weight should be mandatory. To fix it, simply mark
it as required (see Listing 3-14).

Chapter 3 ■ VaL IDatING INpUt 79

Listing 3-14. Marking the Weight As Required

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}"/>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

Then not inputting the weight will result in Figure 3-9.

Figure 3-9. The weight is mandatory.

Chapter 3 ■ VaL IDatING INpUt80

Validating the Patron Code

Now the weight field is working fine. How do you validate the patron code? No built-in val-
idator is suitable. In that case, you can specify a validator method as shown in Figure 3-10.

<h:form>
 <h:panelGrid columns="2">
 <h:outputText value="Weight:"/>
 <h:inputText value="#{r.weight}" label="weight" required="true"
 validatorMessage="weight cannot be negative!">
 <f:validateLongRange minimum="0"/>
 </h:inputText>
 <h:outputText value="Patron code:"/>
 <h:inputText value="#{r.patronCode}" validator="#{r.validatePatron}"/>
 <h:outputText value=""/>
 <h:commandButton action="ok" value="OK"/>
 </h:panelGrid>
</h:form>

This EL expression will evaluate to

a Method object representing this

method. The UI Command will

then use this method as a

validator.

public class Request {
...
public void validatePatron(...) {

...
}

}

Figure 3-10. Using a validator method

So, create that validatePatron() method as shown in Figure 3-11. In short, the
method will be passed the component and the converted value, and it is free to perform
whatever check it desires. If the converted value is considered invalid, it should throw a
ValidatorException and provide a FacesMessage.

Chapter 3 ■ VaL IDatING INpUt 81

public class Request {
 private int weight;
 private String patronCode;
 @In
 private PostageService postageService;
 ...
 public void validatePatron(FacesContext context, UIComponent component,
 Object convertedValue) throws ValidatorException {
 String patronCode = (String) convertedValue;
 if (!postageService.patronExists(patronCode)) {
 throw new ValidatorException(new FacesMessage(
 FacesMessage.SEVERITY_ERROR,
 "Patron code is invalid",
 "Patron code:" + patronCode + " is invalid"));
 }
 }
}

A message contains three pieces

of information: the severity (INFO,

WARN, ERROR, ...), a summary

message and a detail message. By

default, the UI Messages will

display the summary messages.

It represents the JSF engine.

The component being validated

(the UI Input here).

The converted value (here the

patron code). It must be non-

empty, otherwise this code would

not have been called.

You'll create this method

next.

If it doesn't exist, throw a

ValidatorException.

All validator

methods must

take this

signature.

Figure 3-11. Implementing a validator method

Create the patronExists() method in the PostageService class as shown in Listing 3-15.

Listing 3-15. Implementing the patronExists() Method

...

public class PostageService {

 private Map<String, Integer> patronCodeToDiscount;

 public PostageService() {

 patronCodeToDiscount = new HashMap<String, Integer>();

 patronCodeToDiscount.put("p1", 90);

 patronCodeToDiscount.put("p2", 95);

 }

 ...

 public boolean patronExists(String patronCode) {

 return patronCodeToDiscount.containsKey(patronCode);

 }

}

Now run the application, and it should work (see Figure 3-12).

Chapter 3 ■ VaL IDatING INpUt82

Figure 3-12. Unknown patron code caught

Creating a Custom Validator for the Patron Code

Suppose that you have multiple pages on which the user can input the patron code. Some
such pages may not store information to the Request bean at all. In that case, you can no
longer use the patronExists() method in the Request class as the validator method. To
solve this problem, it would be great if you had a validator for the patron code as shown
in Figure 3-13.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ...>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:x="http://foo.com">
...
<h:messages/>
<h:form>
 <h:panelGrid columns="2">
 <h:outputText value="Weight:"/>
 <h:inputText value="#{r.weight}" ...>
 <f:validateLongRange minimum="0"/>
 </h:inputText>
 <h:outputText value="Patron code:"/>
 <h:inputText value="#{r.patronCode}" validator="#{r.validatePatron}">
 <x:validatePatron/>
 </h:inputText>
 <h:outputText value=""/>
 <h:commandButton action="ok" value="OK"/>
 </h:panelGrid>
</h:form>

This namespace represents your

own tag lib.

This tag will create your own patron code

validator.

Don't need it anymore.

Figure 3-13. Using a custom validator for the patron code

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://foo.com

Chapter 3 ■ VaL IDatING INpUt 83

To create such a tag (and the tag lib), create a META-INF folder in your Java source folder,
and then create a file foo.taglib.xml in it. (The file name is not important as long as it ends
with .taglib.xml.) Figure 3-14 shows the content. In short, it defines a namespace to iden-
tify your tag lib, define a <validatePatron> tag, and link it to the validator whose ID is foo.v1.

<!DOCTYPE facelet-taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
 "http://java.sun.com/dtd/facelet-taglib 1 0.dtd">
<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet" >
 <namespace>http://foo.com</namespace>
 <tag>
 <tag-name>validatePatron</tag-name>
 <validator>
 <validator-id>foo.v1</validator-id>
 </validator>
 </tag>
</facelet-taglib>

Define a Facelet tag lib which is just like the

JSF Core tag lib or the JSF HTML tag lib. What

is a Facelet? If an xhtml file contains JSF tags ,

then it is a Facelet.
A tag lib is identified by a URL. Here you use

this URL for your tag lib.

Define one tag here. You could define many

tags in a tag lib.

The tag being defined is <validatePatron>.

This tag is a validator. That is, it will

create a validator.

This tag will create a validator whose ID

is foo.v1. In JSF, the validators are

defined like this:

Id Class

foo.v1

... ...

... ...

com.foo.PatronValidator

The XML elements used here to

define your own tag (e.g.,

<facelet-taglib> and <tag>) are

all in this Facelet namespace.

Figure 3-14. Defining your own validator tag

■Note In Mojarra 2.0.0.PR2, there is a bug preventing *.taglib.xml files in the META-INF folder on the
classpath to be discovered. To work around it, put the whole META-INF folder into WebContent and then
explicitly specify the tag lib in web.xml, as shown in Listing 3-16.

Listing 3-16. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF-8"?>

<web-app ...>

 ...

 <servlet>

 <servlet-name>JSF</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

http://java.sun.com/dtd/facelet-taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 3 ■ VaL IDatING INpUt84

 </servlet>

 <servlet-mapping>

 <servlet-name>JSF</servlet-name>

 <url-pattern>/faces/*</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>javax.faces.FACELETS_LIBRARIES</param-name>

 <param-value>/META-INF/foo.taglib.xml</param-value>

 </context-param>

</web-app>

To define the foo.v1 validator, modify faces-config.xml as shown in Listing 3-17.

Listing 3-17. Defining a JSF Validator

<faces-config ...>

 <application>

 <message-bundle>postage.Postage</message-bundle>

 </application>

 <navigation-rule>

 <from-view-id>/getrequest.xhtml</from-view-id>

 <navigation-case>

 <from-outcome>ok</from-outcome>

 <to-view-id>/showpostage.xhtml</to-view-id>

 </navigation-case>

 </navigation-rule>

 <validator>

 <validator-id>foo.v1</validator-id>

 <validator-class>postage.PatronValidator</validator-class>

 </validator>

</faces-config>

Create the PatronValidator class in the postage package. Listing 3-18 shows the con-
tent. Note that you must implement the Validator interface provided by JSF, and the
validate() method must carry exactly the same signature as that of a validator method.

Listing 3-18. Creating the Validator Class

package postage;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

Chapter 3 ■ VaL IDatING INpUt 85

import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

public class PatronValidator implements Validator {

 @Override

 public void validate(FacesContext context, UIComponent component,

 Object convertedValue)

 throws ValidatorException {

 ...

 }

}

Fill in the code in the method as shown in Figure 3-15. You may wonder why you use
an EL expression to get access to the PostageService object instead of injection. This is
because the PatronValidator object will be created by JSF, not by Web Beans. Because JSF
knows nothing about injection, no injection will be performed.

public class PatronValidator implements Validator {
 @Override
 public void validate(FacesContext context, UIComponent component,
 Object convertedValue)
 throws ValidatorException {
 String patronCode = (String) convertedValue;
 Application app = context.getApplication();
 PostageService ps = (PostageService) app.evaluateExpressionGet(context,
 "#{ps}", PostageService.class);
 if (!ps.patronExists(patronCode)) {
 throw new ValidatorException(new FacesMessage(
 FacesMessage.SEVERITY_ERROR,
 "Patron code is invalid",
 "Patron code:" + patronCode + " is invalid"));
 }
 }
}

The application contains various helpers that

can be customized. Here, you'll use it to

evaluate an EL expression.

Evaluate the EL expression "#{ps}" and

then call get() on it. As an EL expression

can be set too, you need to be explicit

about you'd like to get or set it.

@ApplicationScoped
@Named("ps")
public class PostageService {
 private Map<String, Integer> patronCodeToDiscount;
 ...
 public boolean patronExists(String patronCode) {
 return patronCodeToDiscount.containsKey(patronCode);
 }
}

Need to specify a name for the

PostageService bean so that it

can be looked up in an EL

expression.

The result should belong to

this class. JSF will try to

convert the result to this class

if required.

Figure 3-15. Performing validation in validator class

Chapter 3 ■ VaL IDatING INpUt86

Finally, delete the validatePatron() method in the Request class because it is no lon-
ger used. Run the application, and it should continue to work.

For the moment, you’re embedding the error messages directly in the Java code. If you
need to support multiple languages, you may want to put them into the Postage.properties
file and then load the error messages in Java code, as shown in Figure 3-16.

public void validate(FacesContext context, UIComponent component,
 Object convertedValue) throws ValidatorException {
 String patronCode = (String) convertedValue;
 Application app = context.getApplication();
 PostageService ps = (PostageService) app.evaluateExpressionGet(context,
 "#{ps}", PostageService.class);
 if (!ps.patronExists(patronCode)) {
 Locale locale = context.getViewRoot().getLocale();
 ResourceBundle b = ResourceBundle.getBundle("postage.Postage", locale);
 String summary = b.getString("foo.v1.UNKNOWN_PATRON");
 String detail = MessageFormat.format(b.getString("foo.v1.UNKNOWN_PATRON_detail"),
 patronCode);
 throw new ValidatorException(new FacesMessage(
 FacesMessage.SEVERITY ERROR, summary, detail));
 }
}

Get the current page object (view

root), then get its locale.

postage

Postage.properties

Postage_fr.properties

Postage_de.properties

Load the Postage.properties file

in the package. However, if the

locale is, say, French, then the

Postage_fr.properties will be

used instead.

You could create a

French version and a

German version, for

example.

foo.v1.UNKNOWN_PATRON=Patron unknown!
foo.v1.UNKNOWN_PATRON_detail=Patron {0} is unknown!
javax.faces.validator.LongRangeValidator.MINIMUM={1} must be at least {0}!
...

Load the

summary

message.

Load the

detail

message.

Provide the

patron code

as {0}.

Figure 3-16. Providing error messages in a .properties file

Run the application, and it should work.

Displaying the Error Messages in Red

Suppose that you’d like the error messages to be in red. To do that, modify getrequest.
xhtml as shown in Figure 3-17.

Chapter 3 ■ VaL IDatING INpUt 87

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ...>
<html ...>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style type="text/css">
 li.c1 { color: red }
</style>
<title>Insert title here</title>
</head>
<body>
<h:messages errorClass="c1"/>
<h:form>
 ...
</h:form>
</body>
</html>

Define some styles.
These styles are called "CSS

styles." CSS stands for

cascading style sheet.

Define a CSS class named "c1." When c1 is applied to

an element, that element should appear in red.

 <li class="c1">...
 ...

The UI Messages will apply c1 to each message ().

The body will appear in red.

Figure 3-17. Assigning CSS class to error messages

Now run the application, and it will work.
This example shows how <h:messages> accepts CSS classes. In fact, many other JSF

tags do the same. For example, the <h:dataTable> accepts CSS classes for its headers and
columns. Look up the tag documentation to find out the details.

Displaying the Error Message Along with the Field

You may wonder what the purpose of the detail message in a FacesMessage is. It is
intended to be displayed along with the field (see Figure 3-18).

Chapter 3 ■ VaL IDatING INpUt88

Figure 3-18. Detail message displayed along with the field

To do that, you need to understand how JSF stores the error message. For example,
if the weight is negative, the error message is associated with the client ID of the weight
component, as shown in Figure 3-19.

Client id Severity Summary Detail

f:w ERROR weight is negative ...

...

...

Let's assume this is whatever client ID generated

by JSF for the weight component.

<form id="f" ...>
 <input id="f:w" ...>
 ...
</form>

Figure 3-19. Client ID and error message stored together

To display the detail error message associated with client ID f:w (if any), you can use
the <h:message> tag (not the plural <h:messages>), as shown in Listing 3-19. It will create a
UI Message component that will output the detail error message.

Listing 3-19. Using the <h:message> Tag

...

<h:messages errorClass="c1"/>

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

Chapter 3 ■ VaL IDatING INpUt 89

 <h:inputText value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="f:w"/>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}">

 <x:validatePatron/>

 </h:inputText>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

However, by default JSF will generate client IDs any way it likes. To guarantee that it
will be f:w, you need to modify the code as shown in Listing 3-20.

Listing 3-20. Specifying Client IDs

...

<h:messages errorClass="c1"/>

<h:form id="f">

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="f:w"/>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}">

 <x:validatePatron/>

 </h:inputText>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

Run the application, and it should basically work, but the layout will be incorrect (see
Figure 3-20).

Chapter 3 ■ VaL IDatING INpUt90

The detail message appears

here.

Figure 3-20. Detail message displayed but layout is incorrect

This is because <h:panelGrid> lays out the child components sequentially (in two col-
umns, as specified) and the UI Message is also a child component (see Figure 3-21).

<h:panelGrid columns="2">
 <h:outputText value="Weight:"/>
 <h:inputText id="w" ...>
 <f:validateLongRange minimum="0"/>
 </h:inputText>
 <h:message for="f:w"/>
 <h:outputText value="Patron code:"/>
 <h:inputText value="#{r.patronCode}">
 <x:validatePatron/>
 </h:inputText>
 <h:outputText value=""/>
 <h:commandButton action="ok"/>
</h:panelGrid>

Weight Label Weight Input

Weight Error

Figure 3-21. The UI Message component is also a child component.

Chapter 3 ■ VaL IDatING INpUt 91

To solve this problem, you can use another component to group the UI Input com-
ponent and the UI Message component together (see Figure 3-22).

Input ErrorLabel

Use another

component to group

them together.

Figure 3-22. Grouping multiple components into one

How do you do that? Could you use an <h:panelGrid> tag to group them together? In
that case, it will create a UI Panel with a renderer that renders the children in an HTML
table (see Figure 3-23). Let’s call this renderer the HTML grid renderer. However, for the
current case, you don’t really need to arrange them in an HTML table; all you need is to
arrange them one by one sequentially without adding any extra markup for the UI Panel
(see Figure 3-23 again). To do that, you can give the UI Panel a so-called group renderer.

UI Panel

HTML Grid

Renderer

<table>
 <tr>
 <td>[MARKUP OF CHILD1]</td>
 <td>[MARKUP OF CHILD2]</td>
 ...
</table>

UI Panel

Group

Renderer

[MARKUP OF CHILD1] [MARKUP OF CHILD2] ...

Figure 3-23. Group renderer vs. grid renderer

To create a UI Panel and give it a group renderer, you can use the <h:panelGroup> tag
as shown in Listing 3-21.

Chapter 3 ■ VaL IDatING INpUt92

Listing 3-21. Using the <h:panelGroup> Tag

...

<h:messages errorClass="c1"/>

<h:form id="f">

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:panelGroup>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="f:w"/>

 </h:panelGroup>

 <h:outputText value="Patron code:"/>

 <h:inputText value="#{r.patronCode}">

 <x:validatePatron/>

 </h:inputText>

 <h:outputText value=""/>

 <h:commandButton action="ok" value="OK"/>

 </h:panelGrid>

</h:form>

Then the page will look fine (see Figure 3-24).

Figure 3-24. Input field and error message sticking together

You may have noticed that the detail message is the same as the summary message.
This is because you’re setting the error message using the validatorMessage attribute (see
Listing 3-22). This will set both the summary and detail messages.

Chapter 3 ■ VaL IDatING INpUt 93

Listing 3-22. Using validatorMessage Will Set Both the Summary and Detail Messages

...

<h:form id="f">

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:panelGroup>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 ...

If you were still using the message bundle, you could provide the detail message (see
Listing 3-23). That is, just add the string _detail to the resource key. In addition, if the
value is too long, you can type a backslash and continue on the next line.

Listing 3-23. Providing a Detail Message in a Message Bundle

javax.faces.validator.LongRangeValidator.MINIMUM={1} must be at least {0}!

javax.faces.validator.LongRangeValidator.MINIMUM_detail={1} is invalid. It must \

be at least {0}!

Run the application again, and it should work (see Figure 3-25).

Figure 3-25. Detail message displayed

Chapter 3 ■ VaL IDatING INpUt94

For the <h:message> tag, you are specifying the client ID of f:w. In fact, you can specify
a so-called relative client ID instead (see Figure 3-26).

UI Form

Weight Input

UI Message

D: w

for: w

Client ID:xyz

<input id="xyz:w" ...>

xyz:w

Relative Client ID

ID is not specified. The client D

is automatically generated by

JSF.

Full Client ID

Client id Severity Summary Detail

ERROR weight is negative ...

...

...

xyz:w

The UI Message will use

it to look up the detail

message.

Figure 3-26. Using a relative client ID

Therefore, you can simplify the code a little bit by deleting the ID for the <h:form> tag
and using a relative ID for the <h:message> tag (see Listing 3-24).

Listing 3-24. Using Relative Client ID in getrequest.xhtml

...

<h:messages errorClass="c1"/>

<h:form>

 <h:panelGrid columns="2">

Chapter 3 ■ VaL IDatING INpUt 95

 <h:outputText value="Weight:"/>

 <h:panelGroup>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="w"/>

 </h:panelGroup>

 ...

 </h:panelGrid>

</h:form>

Run the application, and it will continue to work. Finally, you can make the detail
message appearing in red as shown in Listing 3-25.

Listing 3-25. Specifying CSS Class for UI Message

...

<style type="text/css">

 li.c1 { color: red }

 span.c1 { color: red }

</style>

...

<h:messages errorClass="c1"/>

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:panelGroup>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="w" errorClass="c1"/>

 </h:panelGroup>

 ...

 </h:panelGrid>

</h:form>

Chapter 3 ■ VaL IDatING INpUt96

Validating a Combination of Multiple Input Values

Suppose that for a particular patron p1, you will never ship a package that is weighted
more than 50 kilograms. Because this involves both the weight and the patron code (two
components), you can’t make a validator and assign it to a single component. One way to
do it is to perform the checking in an action method. To do that, modify getrequest.xhtml
as shown in Listing 3-26.

Listing 3-26. Invoking an Action Method for Validation

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:" />

 <h:panelGroup>

 ...

 </h:panelGroup>

 <h:outputText value="Patron code:" />

 <h:inputText value="#{r.patronCode}">

 <x:validatePatron />

 </h:inputText>

 <h:outputText value="" />

 <h:commandButton action="#{r.onOK}" value="OK" />

 </h:panelGrid>

</h:form>

</body>

</html>

Implement the onOK() method as shown in Figure 3-27. In short, it performs the
checking, and if it fails, it will log an error message and return null as the outcome so that
the current page is redisplayed.

Chapter 3 ■ VaL IDatING INpUt 97

public class Request {
 private int weight;
 private String patronCode;
 ...
 public String onOK() {
 if (!isValid()) {
 FacesContext context = FacesContext.getCurrentInstance();
 context.addMessage("f:w", new FacesMessage(
 FacesMessage.SEVERITY_ERROR,
 "weight too heavy for the patron", null));
 return null;
 }
 return "ok";
 }
 public boolean isValid() {
 if (patronCode.equals("p1") && weight > 50) {
 return false;
 }
 return true;
 }
}

Validate the request. This method

is defined below.

If you specify null as the detail

message, it will be treated as

equal to the summary.

Re-display the current page.

Record the error for this

component. You ll have to set

the client ID of the UI Form

explicitly.

Figure 3-27. The onOK() method

Explicitly set the client ID of the UI Form component as shown in Listing 3-27.

Listing 3-27. Setting the Client ID of UI Form

...

<h:messages errorClass="c1"/>

<h:form id="f">

 <h:panelGrid columns="2">

 <h:outputText value="Weight:"/>

 <h:panelGroup>

 <h:inputText id="w" value="#{r.weight}" label="weight" required="true"

 validatorMessage="weight cannot be negative!">

 <f:validateLongRange minimum="0"/>

 </h:inputText>

 <h:message for="w"/>

 </h:panelGroup>

 ...

 </h:panelGrid>

</h:form>

Chapter 3 ■ VaL IDatING INpUt98

Run the app, and it should work. However, if the Request class is intended to be
independent of the UI technology so that it can be reused in different types of UIs, then
it is now a problem because it is referring to JSF-specific classes such as FacesContext
and FacesMessage. If this bothers you, you can move this UI-specific code into a so-called
action listener to perform the validation (see Listing 3-28). Here you’re specifying that the
Java class of the action listener is postage.RequestValidatingListener. You’ll create this
class next. JSF will call all action listeners before calling the action method (if any) in the
Invoke Application phase. Now you don’t need the onOK() action method anymore, so go
ahead and delete it.

Listing 3-28. Using an Action Listener

...

<h:form>

 <h:panelGrid columns="2">

 <h:outputText value="Weight:" />

 <h:panelGroup>

 ...

 </h:panelGroup>

 <h:outputText value="Patron code:" />

 <h:inputText value="#{r.patronCode}">

 <x:validatePatron />

 </h:inputText>

 <h:outputText value="" />

 <h:commandButton action="ok" value="OK">

 <f:actionListener type="postage.RequestValidatingListener"/>

 </h:commandButton>

 </h:panelGrid>

</h:form>

</body>

</html>

Create this RequestValidatingListener class in the postage package. Listing 3-29 shows
the content. It has to implement the ActionListener interface provided by JSF and provide
a processAction() method. In that method it acquires the current request by evaluating
an EL expression. If the request is invalid, it tells JSF to stop any further processing on this
event by throwing an AbortProcessingException. In that case, all further action listeners (if
any) and the action method will be skipped, and thus the outcome will not be set.

Chapter 3 ■ VaL IDatING INpUt 99

Listing 3-29. The RequestValidatingListener Class

public class RequestValidatingListener implements ActionListener {

 public void processAction(ActionEvent event)

 throws AbortProcessingException {

 FacesContext context = FacesContext.getCurrentInstance();

 Application app = context.getApplication();

 Request req = (Request) app.evaluateExpressionGet(context, "#{r}",

 Request.class);

 if (!req.isValid()) {

 context.addMessage("f:w", new FacesMessage(

 FacesMessage.SEVERITY_ERROR,

 "weight too heavy for the patron",

 null));

 throw new AbortProcessingException();

 }

 }

}

Note that the properties of the Request object will have been updated in the Update
Domain Values phase while the action listener is executed in the Invoke Application
phase. Now, run the application, and it should continue to work (see Figure 3-28).

Figure 3-28. The whole Request object is validated.

Chapter 3 ■ VaL IDatING INpUt100

Summary
In this chapter, you learned how to validate user input. To validate the user input in a sin-
gle UI Input component, you can add one or more validators to it. They will be invoked
one by one in the Process Validations phase to check the converted value. If any one fails,
it will log an error for that component (or rather, for its client ID) and tell the JSF engine
to jump to the Render Response phase directly.

As you learned, JSF provides a few predefined validators for checking the range of a
long, the range of a double, or the length of a string. To customize their error messages,
use a message bundle or provide the message directly in the validator tag.

To perform custom validation, you learned that you can create a custom validator by
providing a Java class and a validator ID. In addition, you need to define a Facelet tag that
will create the validator. If the validation involves two or more components, you can add
an action listener to a UI Command. It will be executed in the Invoke Application phase.
As such, the beans will have been updated so you can check their properties.

I also covered how to specify a JSF message. Specifically, a JSF message contains a
severity level, a summary, and a detail. Usually you will display the summary using a UI
Message component and display the detail using a UI Message component along with
each UI Input component.

To customize the appearance of the HTML output, you can define CSS style classes
and let the components refer to them.

A UI Panel component lays out its child components according to its renderer. It can
lay them out in a table (<panelGrid>) or just arrange them one by one (<panelGroup>).

Finally, you learned that if a web bean is never looked up by name, you don’t need to
use @Named on it.

101

C h a p t e r 4

Creating an e- shop

In this chapter, you’ll learn how to create an e- shop. This involves displaying a list of
products (using a loop), implementing a shopping cart for each user, supporting user
login and logout, and requiring authenticated access for the checkout page.

Suppose that you’d like to create the e- shop as shown in Figure 4-1. Initially, the page
lists all the products. Clicking a product link will display the detail page for the product.

Three products are listed here.
The �rst product has an ID of p01,
its name is “Pencil,” and its price is $1.2.

Clicking a link will
display a detail page
for the product.

You could display some details of
the product in this area, but for
simplicity, you will do nothing.

 Figure 4‑1. Your e- shop

Chapter 4 ■ CreatING aN e- ShOp102

Listing the Products
OK, let’s do it. Create a new dynamic web project named Shop. Then create a catalog.xhtml
page. How will you list the products? The problem here is that supposedly the products are
loaded from a database; thus, you don’t know the number of products in advance, so you
can’t lay them out in advance using <h:panelGrid>, as shown in Listing 4-1.

 Listing 4‑1. You Don’t Know How Many Products to Lay Out

<h:panelGrid...>

 PRODUCT 1

 PRODUCT 2

 PRODUCT 3 -> But how do you know there are only three products?

</h:panelGrid>

To perform a loop at runtime, you can use <h:dataTable>, as shown in Figure 4-2. In
short, it will loop over each element of the list. For each element, it will render all the col-
umns specified inside. Figure 4-3 shows the component tree that will be created.

...
<body>
<h:dataTable value="a list of product">
 <h:column>
 <h:outputText value="some id"/>
 </h:column>
 <h:column>
 <h:outputText value="some name"/>
 </h:column>
 <h:column>
 <h:outputText value="some price"/>
 </h:column>
</h:dataTable>
</body>
</html>

You specify a List of product here.
If it contains, say, 10 products, the
data table will loop 10 times.

...

1

2

3

10

A <h:column> tag represents a
column in the table. Here, it
represents the "product id"
column.

The tags inside <h:column> will
output the cell content.

This is the
name column.

This is the
price column.

The rendering order
is shown below.

 Figure 4‑2. Looping with <h:dataTable>

Chapter 4 ■ CreatING aN e- ShOp 103

UI Data

UI Column

UI Output

UI Column

UI Output

UI Column

UI Output

 Figure 4‑3. Component tree created by <h:dataTable> and <h:column>

To implement this idea, you need to provide a List of products using a web bean. So,
create a Catalog class in the shop package, as shown in Listing 4-2. Because the catalog
is a global thing, use the application scope. In addition, instead of loading the products
from a database, for simplicity you’ll simply hard- code them into a List.

 Listing 4‑2. The Catalog Class

package shop;

...

@Named("catalog")

@ApplicationScoped

public class Catalog {

 private List<Product> products;

 public Catalog() {

 products = new ArrayList<Product>();

 products.add(new Product("p1", "Pencil", 1.20));

 products.add(new Product("p2", "Eraser", 2.00));

 products.add(new Product("p3", "Ball pen", 3.50));

 }

 public List<Product> getProducts() {

 return products;

 }

}

Chapter 4 ■ CreatING aN e- ShOp104

Define the Product class in the same package (Listing 4-3).

 Listing 4‑3. The Product Class

package shop;

public class Product {

 private String id;

 private String name;

 private double price;

 public Product(String id, String name, double price) {

 this.id = id;

 this.name = name;

 this.price = price;

 }

 public String getId() {

 return id;

 }

 public String getName() {

 return name;

 }

 public double getPrice() {

 return price;

 }

}

Provide the List to the dataTable (Listing 4-4).

 Listing 4‑4. Providing the List to the dataTable

...

<h:dataTable value="#{catalog.products}">

 <h:column>

 <h:outputText value="some id"/>

 </h:column>

 <h:column>

 <h:outputText value="some name"/>

 </h:column>

 <h:column>

 <h:outputText value="some price"/>

 </h:column>

</h:dataTable>

Chapter 4 ■ CreatING aN e- ShOp 105

Now, the UI Data component will render the Product objects one by one (one row
for each Product). However, how can the UI Output component in the columns access
the information in the current Product object? You can do that with the var attribute, as
shown in Listing 4-5. In short, the UI Data will use p as a looping variable to point to each
element in turn. This variable is implemented as an attribute (a name- value pair) in the
request.

So, you can finally access the attribute just like a web bean (Listing 4-5).

 Listing 4‑5. Accessing an Attribute Like a Web Bean

...

<h:dataTable value="#{catalog.products}" var="p">

 <h:column>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <h:outputText value="#{p.name}"/>

 </h:column>

 <h:column>

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

Note that an attribute is not a web bean. When evaluating an EL expression, JSF will
try to look up an attribute first, before looking up a web bean. Now when you run the
application, the products will be displayed (see Figure 4-4).

 Figure 4‑4. Products are displayed.

Chapter 4 ■ CreatING aN e- ShOp106

To make the grid visible, modify the page as shown in Listing 4-6.

 Listing 4‑6. Setting the Width of the Border

...

<h:dataTable value="#{catalog.products}" var="p" border="1">

 <h:column>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <h:outputText value="#{p.name}"/>

 </h:column>

 <h:column>

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

When you run the application now, the table border will now display.

Making the Link to Show the Details
Now, let’s create the link to show the product details. For this, you’ll use the
<h:commandLink> tag, as shown in Figure 4-5.

<h:dataTable value="#{catalog.products}" var="p" border="1">
 <h:column>
 <h:outputText value="#{p.id}"/>
 </h:column>
 <h:column>
 <h:commandLink>
 <h:outputText value="#{p.name}"/>
 </h:commandLink>
 </h:column>
 <h:column>
 <h:outputText value="#{p.price}"/>
 </h:column>
</h:dataTable>

<a>...

It will generate the <a> tag.

The content of the <h:commandLink>
element will generate the content of the <a>
element. Alternatively, you could specify the
content using the value attribute:

<h:commandLink value="#{p.name}"/>

 Figure 4‑5. Using <h:commandLink>

Chapter 4 ■ CreatING aN e- ShOp 107

Note that the behavior of the <h:commandLink> tag is the same as the <h:commandButton>
tag because they both will create a UI Command component. The only difference is that
the former will render the UI Command as a link, while the latter will render a button (see
 Figure 4-6). An important consequence of this is that the <h:commandLink> tag will submit
a form just like <h:commandButton>, and thus it must appear inside a form.

UI Command

Link
Renderer

...

UI Command

Button
Renderer

<input type="submit" ...>

Just like when it is rendered as a button, a
UI Command will submit the surrounding
form when it is clicked. This is done using
JavaScript.

 Figure 4‑6. <h:commandLink> vs. <h:commandButton>

Therefore, you need to modify the code as shown in Listing 4-7.
If you were using <h:commandButton>, you would set the outcome using the action

attribute. Because <h:commandLink> has exactly the same behavior, you do the same thing.

 Listing 4‑7. Setting the Outcome of <h:commandLink>

...

<h:dataTable value="#{catalog.products}" var="p" border="1">

 <h:column>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <h:form>

 <h:commandLink action="detail">

 <h:outputText value="#{p.name}"/>

 </h:commandLink>

 </h:form>

 </h:column>

 <h:column>

Chapter 4 ■ CreatING aN e- ShOp108

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

For it to work, create a detail.xhtml page as shown in Listing 4-8. Note that for sim-
plicity it contains static content only at the moment.

 Listing 4‑8. Detail Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

This is the detail

</body>

</html>

Create a navigation case in faces- config.xml, as shown in Listing 4-9.

 Listing 4‑9. Navigation Case to Show the Detail Page

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>detail</from- outcome>

 <to-view-id>/detail.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

When you run the application now, the detail link should be working (see Figure 4-7).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 4 ■ CreatING aN e- ShOp 109

 Figure 4‑7. Detail link working

The next question is, how do you get access to the selected product in the detail page?
As a first step, let’s create an action listener to print the ID of the selected product to the
console (we covered action listeners in Chapter 3). To do that, modify catalog.xhtml as
shown in Listing 4-10.

 Listing 4‑10. Using an Action Listener to Handle the Click

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

...

<h:dataTable value="#{catalog.products}" var="p" border="1">

 <h:column>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <h:form>

 <h:commandLink action="detail">

 <f:actionListener type="shop.OnDetailActionListener"/>

 <h:outputText value="#{p.name}"/>

 </h:commandLink>

 </h:form>

 </h:column>

 <h:column>

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 4 ■ CreatING aN e- ShOp110

How does the action listener get access to the selected product? When the UI Data
loops through the rows (see Figure 4-8), conceptually it will create an environment object
surrounding the UI Command created by <h:commandLink>. The environment object con-
tains the current row index. When the UI Command needs to output its client ID, it will
send its client ID through that environment, which will append the row index to the client
ID for display on the page.

<tr>.........</tr>
<tr>.........</tr>
<tr>.........</tr>

UI Data

Row Idx: 0

UI Command

1: Output my client ID,
foo.

2: Append the row index
to the client ID.

id: "foo"

Row Idx: 1 Row Idx: 2

 Figure 4‑8. Row- specific environment appending row index to client ID

When the user clicks a link (see Figure 4-9), in the Apply Request Values phase the UI
Data will loop through each row again. For each row, it will again create an environment
object surrounding the UI Command. When the UI Command checks whether it was
clicked, it sends its client ID to the environment object. That environment object again
will append the row index to get the final client ID before checking it against the client ID
in the request. If it is matched, the UI Command will schedule the execution of the action
listener through the environment object.

The environment object will attach to the action listener waiting for execution. When
it is executed, the environment object will first set the p attribute in request scope accord-
ing to its row ID, before calling the action listener. Finally, to clean up, it will remove the
p attribute.

Chapter 4 ■ CreatING aN e- ShOp 111

p1

Value
p
... ..
... ..

clicked: foo:0
1: Is my
client ID, foo,
clicked?

2: Append the row index
to get foo:0 and then
compare. Matched!

3: Execute of the action
listener in the Invoke
Application phase.

Action
Listener

4: Execute.

5: Set the value
according to the row
index.

6: Execute.

Apply Request Values Invoke Application

UI Data

Row Idx: 0

UI Command

Row Idx: 1 ... Row Idx: 0

Name

p2 p3

 Figure 4‑9. How UI Data handles form submissions

Therefore, in your action listener, you can readily access the selected Product object
from the p attribute. So, create the OnDetailActionListener class in the shop package (see
 Listing 4-11).

 Listing 4‑11. Accessing the Current Product in Your Action Listener

package shop;

...

public class OnDetailActionListener implements ActionListener {

 @Override

 public void processAction(ActionEvent ev) throws AbortProcessingException {

 FacesContext context = FacesContext.getCurrentInstance();

 Application app = context.getApplication();

 Product p = (Product) app.evaluateExpressionGet(context, "#{p}",

 Product.class);

 System.out.println(p.getId());

 }

}

Chapter 4 ■ CreatING aN e- ShOp112

When you run the application now, it should print the product ID to the console.
Now, the next step is to display the detail of the Product in the detail page. Can the detail
page find the Product in the p attribute? No, it can’t, because the attribute will have been
removed. To solve this problem, you can use your action listener to store the Product
object into a web bean. To do that, create a ProductHolder class in the shop package, as
shown in Listing 4-12.

 Listing 4‑12. Using a Web Bean to Hold the Current Product Object

package shop;

...

@Named("ph")

@RequestScoped

public class ProductHolder {

 private Product currentProduct;

 public Product getCurrentProduct() {

 return currentProduct;

 }

 public void setCurrentProduct(Product currentProduct) {

 this.currentProduct = currentProduct;

 }

}

Then modify your action listener as shown in Listing 4-13.

 Listing 4‑13. Using a Web Bean to Hold the Current Product Object

public class OnDetailActionListener implements ActionListener {

 @Override

 public void processAction(ActionEvent ev) throws AbortProcessingException {

 FacesContext context = FacesContext.getCurrentInstance();

 Application app = context.getApplication();

 Product p = (Product) app.evaluateExpressionGet(context, "#{p}",

 Product.class);

Chapter 4 ■ CreatING aN e- ShOp 113

 ProductHolder ph = (ProductHolder) app.evaluateExpressionGet(

 context,

 "#{ph}",

 ProductHolder.class);

 ph.setCurrentProduct(p);

 }

}

Alternatively, recall that an EL expression not only can be queried to get the value
but also can be used to set the value. Therefore, you could modify the code as shown in
 Figure 4-10.

public class OnDetailActionListener implements ActionListener {

 @Override
 public void processAction(ActionEvent ev) throws AbortProcessingException {
 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();
 Product p = (Product) app.evaluateExpressionGet(context, "#{p}",
 Product.class);
 ProductHolder ph = (ProductHolder) app.evaluateExpressionGet(context,
 "#{ph}",
 ProductHolder.class);
 ph.setCurrentProduct(p);
 ELContext elContext = context.getELContext();
 ValueExpression ve = app.getExpressionFactory().createValueExpression(
 elContext, "#{ph.currentProduct}", Product.class);
 ve.setValue(elContext, p);
 }
}

The expression factory
can create EL
expression objects.

The EL context provides
the variable bindings
and etc.

Given this string-form
EL expression, create
an EL expression
object.

The value of the EL expression
should be Product. This is
used for possible type
conversion.

Store the value of p into
the EL expression
(ph.currentProduct).

 Figure 4‑10. Taking advantage of the modifiability of EL expressions

Modify the detail.xhtml page to display the product name as shown in Listing 4-14.

Chapter 4 ■ CreatING aN e- ShOp114

 Listing 4‑14. Displaying the Product Name

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h1>#{ph.currentProduct.name}</h1>

</body>

</html>

When you run the application and click the link for a certain product, its details
should be displayed (see Figure 4-11).

 Figure 4‑11. Detail page displaying the correct product name

Because it is very common to store the value of one EL expression into another in an
action listener, JSF provides a built- in action listener to do that. To use it, modify catalog.
xhtml, as shown in Listing 4-15.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 4 ■ CreatING aN e- ShOp 115

 Listing 4‑15. Displaying the Product Name

<h:dataTable value="#{catalog.products}" var="p" border="1">

 <h:column>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <h:form>

 <h:commandLink action="detail">

 <f:setPropertyActionListener

 value="#{p}" target="#{ph.currentProduct}"/>

 <h:outputText value="#{p.name}"/>

 </h:commandLink>

 </h:form>

 </h:column>

 <h:column>

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

Delete the OnDetailActionListener class. Run the application now, and it will continue
to work.

Displaying Headers in the Columns
Next, you’d like to display headers as shown in Figure 4-12.

Each column

has a header.

 Figure 4‑12. Column headers

Chapter 4 ■ CreatING aN e- ShOp116

To do that, modify catalog.xhtml as shown in Figure 4-13.

<h:dataTable value="#{catalog.products}" var="p" border="1">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Id"/>
 </f:facet>
 <h:outputText value="#{p.id}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Name"/>
 </f:facet>
 <h:form>
 <h:commandLink action="detail">
 <f:setPropertyActionListener .../>
 <h:outputText value="#{p.name}"/>
 </h:commandLink>
 </h:form>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Price"/>
 </f:facet>
 <h:outputText value="#{p.price}"/>
 </h:column>
</h:dataTable>

...

1

2

3

10

Header Row

A facet a special type of child component. Each
facet has a name. How to use a facet is entirely
up to the parent (or grandparent). Here, the UI
Data will render a facet named "header" (if
any) for the header row and will ignore it for the
normal rows.

 Figure 4‑13. Using header facets

When you run the application now, it will display the headers.

Implementing a Shopping Cart
Now, let’s allow the user to add products to the shopping cart (see Figure 4-14).

Chapter 4 ■ CreatING aN e- ShOp 117

The IDs of the products in the

shopping cart are displayed.

 Figure 4‑14. Adding a product to the shopping cart

To do it, modify detail.xhtml as shown in Figure 4-15.

...
<body>
<h1>#{ph.currentProduct.name}</h1>
<h:form>
 <h:commandButton
 value="Add to cart"
 action="#{ph.addToCart}"/>
</h:form>
</body>
</html>

Usually it is just the outcome, but here you
specify a method. It should take no argument
and return a string which is the outcome.

public class ProductHolder {
 ...
 public String addToCart() {
 ...
 }
}

 Figure 4‑15. Using a business method as the action

Define this addToCart() method in the ProductHolder class as shown in Listing 4-16. In
the code, you first inject the shopping cart by marking it with the @Current annotation (see
the “Dependency Injection” sidebar for details). The @Current annotation is the default
binding type for web beans (you must specify a binding type for field injection, even if it
is the default binding type). A combination of the binding type and the object’s type is
used to select the web bean to inject.

Chapter 4 ■ CreatING aN e- ShOp118

In the addToCart() method, you simply print out the product ID to verify that it is
working. Then you add the product ID to the shopping cart. Finally, you return the string
“added” as the outcome.

 Listing 4‑16. The addToCart() Method

@Named("ph")

@RequestScoped

public class ProductHolder {

 private Product currentProduct;

 @Current

 private Cart cart;

 ...

 public String addToCart() {

 System.out.println("Adding "+currentProduct.getId());

 cart.add(currentProduct.getId());

 return "added";

 }

}

You’ll implement the Cart class next.

DePenDenCy InjeCtIon

Java applications consist of Java interfaces and classes, which make up the application components
that interact with each other to accomplish the application’s job. These component objects depend on
each other, so an object is dependent if it uses other objects to do its job. It then follows that the other
objects used by the dependent object are called the object’s dependencies.

An object pulls its dependencies if it is responsible for providing its dependencies from its environ-
ment. The object may do this by instantiating dependencies or by looking up an outside object for them.
Pulling dependencies is the traditional way of using objects in Java.

In contrast, another object could be responsible for providing dependencies and pushing them into
the object. This approach is called dependency injection, and the dependencies are injected by a third
party to the dependent object. In the case of web beans, the web bean implementation pushes their
dependencies into them, and this is how one web bean gains a reference to another web bean.

Chapter 4 ■ CreatING aN e- ShOp 119

You need to have the shopping cart as a web bean. What scope should it be in? If you
put it into the request scope, it will be gone when the request is finished. If you put it into
the application scope, all users will share the same shopping cart. To solve this problem,
you need to understand that whenever a new user starts using your application, the web
container will allocate memory for that session. When will a session be deleted? If the
user doesn’t send any request in a certain period, such as 30 minutes, the web container
will delete the session. This timeout can be configured. The session can also be destroyed
programmatically.

Because of the per- user nature of sessions, it is the best place to store per- user tem-
porary data, such as the shopping cart. How to do that? Initially there is an empty web
bean table in each session. To put a shopping cart into the session, create the Cart class as
in Listing 4-17. The @SessionScoped says that, once created, the Cart object should be put
into the session. But why does it need to implement Serializable? This is because the web
container may need to save the content of the session to disk or send it to another com-
puter over the network if you have a cluster. In that case, it needs to convert all the objects
in the session into bytes. This requires that all their classes implement Serializable.

 Listing 4‑17. Putting the Shopping Cart into Session

package shop;

...

@SessionScoped

public class Cart implements Serializable {

}

Implement the rest of the Cart class as shown in Listing 4-18.

Chapter 4 ■ CreatING aN e- ShOp120

 Listing 4‑18. Implementing the Rest of the Cart Class

...

@SessionScoped

public class Cart implements Serializable {

 private List<String> productIds;

 public Cart() {

 productIds = new ArrayList<String>();

 }

 public void add(String pid) {

 productIds.add(pid);

 }

}

The addToCart() method of the ProductHolder class returns the outcome “added.” You
need to define a navigation case for it to display the next page in faces- config.xml (see
 Listing 4-19).

 Listing 4‑19. Displaying the Next Page After Adding a Product to the Cart

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>detail</from- outcome>

 <to-view-id>/detail.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/detail.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>added</from- outcome>

 <to-view-id>/cart.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Chapter 4 ■ CreatING aN e- ShOp 121

Create the cart.xhtml page as shown in Listing 4-20. For simplicity, it contains static
content only for the moment.

 Listing 4‑20. A Page Displaying the Content of the Shopping Cart

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Shopping cart

</body>

</html>

Run the application. Unfortunately, it will throw a NullPointerException at the line
highlighted in Listing 4-21.

 Listing 4‑21. NullPointerException When Accessing the Current Product

@Named("ph")

@RequestScoped

public class ProductHolder {

 private Product currentProduct;

 @Current

 private Cart cart;

 ...

 public String addToCart() {

 System.out.println("Adding "+currentProduct.getId());

 cart.add(currentProduct.getId());

 return "added";

 }

}

Why? The short answer is that it’s because the ph bean is in the request scope. On
form submission it will be gone, and a new one will be created. Thus, the current product
will be null. For a more detailed explanation, see Figure 4-16.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 4 ■ CreatING aN e- ShOp122

catalog.xhtml

catalog.xhtml

Request

Request

5: The setPropertyActionListener
creates the "ph" bean and puts the
current Product into it.

detail.xhtml

UI Output

UI Command

detail.xhtmlRequest

8: Try to call addToCart()
in the "ph" bean, but it is
already gone and a new
one will be created!

1: The user enters the
URL and press Enter.

4: The user clicks the
link.

Eraser

Add to cart

7: The user clicks the
button.

Browser

Browser

Browser

2: Request is sent.

3: Response is sent.

6: Response is sent.

UI Data

setPropertyActionListener
...

UI Output

UI Command

UI Data

 Figure 4‑16. How the ph bean is lost

To solve this problem, you can store the product ID into the web page (see Figure 4-17).

Chapter 4 ■ CreatING aN e- ShOp 123

detail.xhtml

UI Command

detail.xhtmlRequest

6: Store the product ID into
"ph" in the Update
Domain Values phase.

Eraser

Add to cart

5: The user clicks the
button. The product ID is
included in the request.

Browser

4: Response is sent.pid: p1

2: Bind a UI Input to the
product id in "ph" that will
render itself as a hidden
�eld in the HTML form.

pid: p1

Eraser

UI Command

ph

Request

ph

1: A product link is clicked.

3: Read the product ID.

7: Call the action
method in the
Invoke Application
phase.

UI Input

UI Input

 Figure 4‑17. Using a hidden UI Input to restore the product ID

To create such a UI Input, use the <h:inputHidden> tag. It behaves exactly the same as
<h:inputText> except that the former will render as an HTML hidden input, while the lat-
ter will render as an HTML text input (see Figure 4-18).

Chapter 4 ■ CreatING aN e- ShOp124

UI Input

Hidden

Input

Renderer

<input type="hidden"
 value="...">

UI Input

Text

Input

Renderer

<input type="text"
 value="...">

 Figure 4‑18. <h:inputHidden> vs. <h:inputText>

To use it, modify detail.xhtml as shown in Listing 4-22. It is used just like the
<h:inputText> tag.

 Listing 4‑22. Using the <h:inputHidden> Tag

...

<body>

<h1>#{ph.currentProduct.name}</h1>

<h:form>

 <h:inputHidden value="#{ph.productId}"/>

 <h:commandButton

 value="Add to cart"

 action="#{ph.addToCart}"/>

</h:form>

</body>

</html>

Modify the ProductHolder class to provide this property as shown in Listing 4-23. To
find the Product object given a product ID, you need to inject the catalog. In addition, in
getProductId(), why could the current product be null? The issue is, before calling the
setter on form submission, UI Input will try to get the existing value first to see whether
the new value is indeed different. So when the getter is called, the current product could
indeed be null.

 Listing 4‑23. Using the <h:inputHidden> Tag

...

@Named("ph")

@RequestScoped

Chapter 4 ■ CreatING aN e- ShOp 125

public class ProductHolder {

 private Product currentProduct;

 @Current

 private Cart cart;

 @Current

 private Catalog catalog;

 ...

 public String getProductId() {

 return currentProduct != null ? currentProduct.getId() : null;

 }

 public void setProductId(String pid) {

 currentProduct = catalog.getProduct(pid);

 }

 public String addToCart() {

 System.out.println("Adding "+currentProduct.getId());

 cart.add(currentProduct.getId());

 return "added";

 }

}

Define the getProduct() method in the Catalog class as shown in Listing 4-24.

 Listing 4‑24. Providing the getProduct() Method in the Catalog Class

@Named("catalog")

@ApplicationScoped

public class Catalog {

 private List<Product> products;

 public Catalog() {

 products = new ArrayList<Product>();

 products.add(new Product("p1", "Pencil", 1.20));

 products.add(new Product("p2", "Eraser", 2.00));

 products.add(new Product("p3", "Ball pen", 3.50));

 }

 public List<Product> getProducts() {

 return products;

 }

 public Product getProduct(String pid) {

 for (Product p : products) {

 if (p.getId().equals(pid)) {

 return p;

Chapter 4 ■ CreatING aN e- ShOp126

 }

 }

 return null;

 }

}

Now run the application, and try to add a product to the shopping cart. It should
print the product ID to the console and then display the cart page.

Displaying the Content of the Shopping Cart
How do you display the product IDs on the cart page? Obviously, you need to loop through
the product IDs stored in the shopping cart. Can you use <h:dataTable>? Unfortunately, it
will always output an HTML <table>, which is not what’s desired here. To loop but without
adding its own markup, you can use the <ui:repeat> tag. It works almost exactly like the
<h:dataTable> tag. For example, modify cart.xhtml as shown in Listing 4-25. <ui:repeat>
will simply loop through the list and render its children in each iteration. Because it out-
puts no markup by itself, it has nothing to do with HTML, so it is not in the JSF HTML tag
lib. Note that <h:outputText> is outputting a space after the product ID.

 Listing 4‑25. Using <ui:repeat> to Display the Product IDs

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Shopping cart:

<ui:repeat value="#{cart.productIds}" var="pid">

 <h:outputText value="#{pid} "/>

</ui:repeat>

</body>

</html>

Provide the getProductIds() method in the Cart class as shown in Listing 4-26.
Because you need to refer to it by name, you need to give it a name too.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

Chapter 4 ■ CreatING aN e- ShOp 127

 Listing 4‑26. Providing the getProductIds() Method and a Name in the Cart Class

...

@Named("cart")

@SessionScoped

public class Cart implements Serializable {

 private List<String> productIds;

 public Cart() {

 productIds = new ArrayList<String>();

 }

 public void add(String pid) {

 productIds.add(pid);

 }

 public List<String> getProductIds() {

 return productIds;

 }

}

When you run the application and add some products to the cart, their IDs will be
displayed (see Figure 4-19).

 Figure 4‑19. Content of shopping cart displayed

the Checkout Function
So far, you have implemented the catalog page, the detail page, and the shopping cart
page.

Next, you’d like to allow the user to check out (see Figure 4-20). That is, this new page,
the confirm page, will display the total charge and the credit card number of the user.

Chapter 4 ■ CreatING aN e- ShOp128

Eraser

Add to cart

catalog

detail

Content: p1 p2

cart

Checkout

You'll pay $23.4 using credit card
1111 2222 3333 444.

confirm

OK

 Figure 4‑20. The checkout function

For the total charge, you can get the product IDs from the shopping cart, so it is easy.
But how to get the credit card number of the user? Let’s hard- code it for the moment.
Now, create the confirm.xhtml page as shown in Listing 4-27.

 Listing 4‑27. The confirm.xhtml Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

You'll pay #{confirmService.total} with credit card #{confirmService.creditCardNo}.

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 4 ■ CreatING aN e- ShOp 129

For it to work, create the ConfirmService class in the shop package as shown in
 Listing 4-28.

 Listing 4‑28. The ConfirmService Class

package shop;

...

@Named("confirmService")

@RequestScoped

public class ConfirmService {

 @Current

 private Cart cart;

 @Current

 private Catalog catalog;

 public double getTotal() {

 double total = 0;

 for (String pid : cart.getProductIds()) {

 total += catalog.getProduct(pid).getPrice();

 }

 return total;

 }

 public String getCreditCardNo() {

 return "1111 2222 3333 4444";

 }

}

Create the Checkout button in cart.xhtml, as shown in Listing 4-29.

 Listing 4‑29. Checkout Button in the cart.xhtml Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html

Chapter 4 ■ CreatING aN e- ShOp130

Shopping cart:

<ui:repeat value="#{cart.productIds}" var="pid">

 <h:outputText value="#{pid} "/>

</ui:repeat>

<h:form>

 <h:commandButton value="Confirm" action="confirm"/>

</h:form>

</body>

</html>

Define the navigation case in faces- config.xml as shown in Listing 4-30.

 Listing 4‑30. Navigation Case for the confirm.xhtml Page

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>detail</from- outcome>

 <to-view-id>/detail.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/detail.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>added</from- outcome>

 <to-view-id>/cart.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/cart.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>confirm</from- outcome>

 <to-view-id>/confirm.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Chapter 4 ■ CreatING aN e- ShOp 131

When you run the application and try to check out, it should display the total amount
and the hard- coded credit card number (Figure 4-21).

 Figure 4‑21. Confirming page working (with a hard- coded credit card number)

Getting the Credit Card number of the Current User
So, how do you get the credit card number of the current user? Suppose that the user
accounts are stored in a secure database such as the one Amazon.com uses to remember
your card details (see Figure 4-22). If the user logs in, then you can use the user ID to load
the data into a User object and put it into the session for later use.

Id Password Credit card no.

u1 p1 1234

...

...

u1

Login

login

Database

Your Application

Session 1 Session 2

id: u1
passwd: p1
card: 1234

User Object

1: The user
clicks the Login
button. 2: The action method

loads the user's data
into a User object in
memory.

3: Store it into the
session as a web
bean.

 Figure 4‑22. Loading the user’s data on login

Chapter 4 ■ CreatING aN e- ShOp132

To implement this idea, you’ll make a Login link on the catalog page to show the login
page (see Figure 4-23). On a successful login, the user will be returned to the catalog page.

Eraser

Add to cart

catalog

detail

Content: p1 p2

cart

Checkout

You'll pay $23.4 using credit card
1111 2222 3333 444.

confirm

OK

Login

u1

Login

login

 Figure 4‑23. Page flow involving the login page

So, modify catalog.xhtml as shown in Listing 4-31.

 Listing 4‑31. Login Link

...

<body>

<h:dataTable value="#{catalog.products}" var="p" border="1">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Id"/>

 </f:facet>

 <h:outputText value="#{p.id}"/>

 </h:column>

 <h:column>

 <f:facet name="header">

Chapter 4 ■ CreatING aN e- ShOp 133

 <h:outputText value="Name"/>

 </f:facet>

 <h:form>

 <h:commandLink action="detail">

 <f:setPropertyActionListener .../>

 <h:outputText value="#{p.name}"/>

 </h:commandLink>

 </h:form>

 </h:column>

 <h:column>

 <f:facet name="header">

 <h:outputText value="Price"/>

 </f:facet>

 <h:outputText value="#{p.price}"/>

 </h:column>

</h:dataTable>

<h:form>

 <h:commandLink action="login" value="Login"/>

</h:form>

</body>

</html>

Define the navigation case in faces- config.xml as shown in Listing 4-32.

 Listing 4‑32. Navigation Case for the Login Page

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>detail</from- outcome>

 <to-view-id>/detail.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/detail.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>added</from- outcome>

Chapter 4 ■ CreatING aN e- ShOp134

 <to-view-id>/cart.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/cart.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>confirm</from- outcome>

 <to-view-id>/confirm.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>login</from- outcome>

 <to-view-id>/login.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Create login.xhtml as shown in Listing 4-33.

 Listing 4‑33. Login Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:messages/>

<h:form>

 <h:inputText value="#{loginRequest.username}" />

 <h:inputText value="#{loginRequest.password}" />

 <h:commandButton value="Login" action="#{loginRequest.login}" />

</h:form>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 4 ■ CreatING aN e- ShOp 135

Create the LoginRequest class in the shop package as shown in Listing 4-34. You’ll create
the (session- scoped) UserHolder web bean later in this chapter. It is like the ProductHolder
bean except that it contains the current User object. For simplicity, instead of looking up
the database, you’ll just hard- code a known user here. If the username and password are
correct, you’ll put the User object into the UserHolder web bean (and thus into the session).
If the username or password is incorrect, you’ll log an error message. In that case, you’ll
return null as the outcome, which tells JSF to not change the view ID, that is, redisplay the
current page (the login page).

 Listing 4‑34. The LoginRequest Class

package shop;

...

@Named("loginRequest")

@RequestScoped

public class LoginRequest {

 private String username;

 private String password;

 @Current

 private UserHolder userHolder;

 public String getUsername() {

 return username;

 }

 public String getPassword() {

 return password;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public void setPassword(String password) {

 this.password = password;

 }

 public String login() {

 if (username.equals("u1") && password.equals("p1")) {

 userHolder.setCurrentUser(new User("u1", "p1", "1234"));

 return "loggedIn";

 } else {

 FacesContext context = FacesContext.getCurrentInstance();

 context.addMessage(null, new FacesMessage(

 FacesMessage.SEVERITY_ERROR, "Login failed", null));

 return null;

Chapter 4 ■ CreatING aN e- ShOp136

 }

 }

}

For convenience, you are providing the user’s details rather than pulling them from
a database.

Create the UserHolder class in the shop package as shown in Listing 4-35. Note that it is
a session- scoped web bean and thus needs to implement Serializable.

 Listing 4‑35. The UserHolder Class

package shop;

...

@SessionScoped

public class UserHolder implements Serializable {

 private User currentUser;

 public User getCurrentUser() {

 return currentUser;

 }

 public void setCurrentUser(User currentUser) {

 this.currentUser = currentUser;

 }

}

Create the User class in the shop package as shown in Listing 4-36. Note that because
it will be dragged into the session by the UserHolder web bean, it needs to implement
Serializable too.

 Listing 4‑36. The User Class

package shop;

...

public class User implements Serializable {

 private String username;

 private String password;

 private String creditCardNo;

 public User(String username, String password, String creditCardNo) {

 this.username = username;

 this.password = password;

 this.creditCardNo = creditCardNo;

Chapter 4 ■ CreatING aN e- ShOp 137

 }

 public String getCreditCardNo() {

 return creditCardNo;

 }

}

Define the navigation case for a successful login as shown in Listing 4-37. Note that
on a successful login it will always return to the catalog page.

 Listing 4‑37. Navigation Case for Successful Login

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

 ...

 <navigation- rule>

 <from-view-id>/login.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>loggedIn</from- outcome>

 <to-view-id>/catalog.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

When you run the application now, the login page should be working (see Figure 4-24).

 Figure 4‑24. Login page working

Chapter 4 ■ CreatING aN e- ShOp138

Then, modify ConfrimService so that it retrieves the credit card number from the cur-
rent User object (see Listing 4-38).

 Listing 4‑38. Retrieving the Credit Card Number of the Current User

...

@Named("confirmService")

@RequestScoped

public class ConfirmService {

 @Current

 private Cart cart;

 @Current

 private Catalog catalog;

 @Current

 private UserHolder uh;

 public double getTotal() {

 double total = 0;

 for (String pid : cart.getProductIds()) {

 total += catalog.getProduct(pid).getPrice();

 }

 return total;

 }

 public String getCreditCardNo() {

 return uh.getCurrentUser().getCreditCardNo();

 }

}

Run the application, log in, and then go to the confirm page. It should display “1234”
as the credit card number (Figure 4-25) because that was hard- coded in Listing 4-34,
which means it is working.

Chapter 4 ■ CreatING aN e- ShOp 139

 Figure 4‑25. Checkout page displaying the user’s credit card number

Forcing the User to Log In
The example is working fine if the user logs in and then tries to check out. But what if the
user tries to check out without logging in first? Then the current User object will be null
and the code highlighted in bold in Listing 4-39 will be null.

 Listing 4‑39. Problems If the User Hasn’t Logged In

...

@Named("confirmService")

@RequestScoped

public class ConfirmService {

 @Current

 private Cart cart;

 @Current

 private Catalog catalog;

 @Current

 private UserHolder uh;

 public double getTotal() {

 double total = 0;

 for (String pid : cart.getProductIds()) {

 total += catalog.getProduct(pid).getPrice();

 }

 return total;

 }

 public String getCreditCardNo() {

 return uh.getCurrentUser().getCreditCardNo();

Chapter 4 ■ CreatING aN e- ShOp140

 }

}

To handle this scenario, the ideal behavior is to send the user to the login page and
then, after a successful login, return the user to the confirm page (see Figure 4-26).

Eraser

Add to cart

catalog

detail

Content: p1 p2

cart

Checkout

You'll pay $23.4 using credit card
1111 2222 3333 444.

con�rm

OK

Login

u1

Login

login

If already
logged in

If not yet
logged in

If he came from
the catalog page

If he was trying
to check out

 Figure 4‑26. Page flow forcing the user to log in

To achieve this effect, you will provide a firewall protecting the Render Response
phase, as shown in Figure 4-27. The firewall will check whether JSF is trying to render the
confirm.xhtml page but there is no current User object. If JSF is trying this, the firewall will
change the view ID to /login.xhtml; if it’s not, the firewall lets JSF continue the processing
as usual.

Chapter 4 ■ CreatING aN e- ShOp 141

R
ender R

esponse

Firewall

Yes

S
et view

 id =
 /login

view id = =/confirm &&
current User==null

N
o

 Figure 4‑27. Firewall protecting the Render Response phase

Such a firewall can be implemented as a phase listener in JSF. It will get notified
whenever JSF is entering a certain phase. So, create a ForceLoginPhaseListener class in
the shop package, as shown in Figure 4-28.

Chapter 4 ■ CreatING aN e- ShOp142

package shop;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIViewRoot;
import javax.faces.context.FacesContext;
import javax.faces.event.PhaseEvent;
import javax.faces.event.PhaseId;

public class ForceLoginPhaseListener implements PhaseListener {
 public PhaseId getPhaseId() {
 return PhaseId.RENDER_RESPONSE;
 }
 public void beforePhase(PhaseEvent event) {
 FacesContext context = FacesContext.getCurrentInstance();
 String viewId = context.getViewRoot().getViewId();
 if (viewId.equals("/confirm.xhtml")) {
 Application app = context.getApplication();
 UserHolder uh = (UserHolder) app.evaluateExpressionGet(context,
 "#{uh}", UserHolder.class);
 if (uh.getCurrentUser() == null) {
 ViewHandler viewHandler = app.getViewHandler();
 UIViewRoot viewRoot = viewHandler.createView(context,
 "/login.xhtml");
 context.setViewRoot(viewRoot);
 }
 }
 }
 public void afterPhase(PhaseEvent event) {
 }
}

It will be called before and after a certain
phase. Which phase? It tells JSF it is only
interested in the Render Response phase:

About to render the con�rm page?

No User object
(not logged in)?

View handler is the XHTML
parser that creates the
component trees from
XHTML �les.

Ask the view handler to
create the component tree
from the login.XHTML �le.

This is the view ID.

Tell JSF to render this
view.

 Figure 4‑28. ForceLoginPhaseListener

You need to register this phase listener with JSF in faces- config.xml (see Listing 4-40).

 Listing 4‑40. Registering the ForceLoginPhaseListener

<faces-config ...>

 <lifecycle>

 <phase-listener>shop.ForceLoginPhaseListener</phase- listener>

 </lifecycle>

Chapter 4 ■ CreatING aN e- ShOp 143

 <navigation- rule>

 <from-view-id>/catalog.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>detail</from- outcome>

 <to-view-id>/detail.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 ...

</faces-config>

Because the phase listener needs to access the UserHolder web bean by name, you
need to give it a name (see Listing 4-41).

 Listing 4‑41. Naming the UserHolder Web Bean

...

@Named("uh")

@SessionScoped

public class UserHolder implements Serializable {

 private User currentUser;

 public User getCurrentUser() {

 return currentUser;

 }

 public void setCurrentUser(User currentUser) {

 this.currentUser = currentUser;

 }

}

Now, you’d like to go to the confirm page without logging in to test your progress.
But you just logged in not long ago, so how do you make the application forget that you
logged in? You could wait, say, 30 minutes so that the session is timed out, but a faster
way is to close the browser and start a new one. Then JBoss will treat it as a new browser
(and thus a new user and a new session).

Try it, and it should display the login page. But how do you return the user to the
right page once he has logged in? You can store the original view ID in the UserHolder web
bean before redirecting to the login page and let the login page return to there on a suc-
cessful login (see Listing 4-42, Listing 4-43, and Listing 4-44).

Chapter 4 ■ CreatING aN e- ShOp144

 Listing 4‑42. Keeping the Original View ID in the UserHolder Web Bean

...

@Named("uh")

@SessionScoped

public class UserHolder implements Serializable {

 private User currentUser;

 private String originalViewId;

 public String getOriginalViewId() {

 return originalViewId;

 }

 public void setOriginalViewId(String originalViewId) {

 this.originalViewId = originalViewId;

 }

 public User getCurrentUser() {

 return currentUser;

 }

 public void setCurrentUser(User currentUser) {

 this.currentUser = currentUser;

 }

}

 Listing 4‑43. Storing the Original View ID in the UserHolder Web Bean

public class ForceLoginPhaseListener implements PhaseListener {

 public PhaseId getPhaseId() {

 return PhaseId.RENDER_RESPONSE;

 }

 public void beforePhase(PhaseEvent event) {

 FacesContext context = FacesContext.getCurrentInstance();

 String viewId = context.getViewRoot().getViewId();

 if (viewId.equals("/confirm.xhtml")) {

 Application app = context.getApplication();

 UserHolder uh = (UserHolder) app.evaluateExpressionGet(context,

 "#{uh}", UserHolder.class);

 if (uh.getCurrentUser() == null) {

 uh.setOriginalViewId(viewId);

 ViewHandler viewHandler = app.getViewHandler();

 UIViewRoot viewRoot = viewHandler.createView(context,

 "/login.xhtml");

 context.setViewRoot(viewRoot);

Chapter 4 ■ CreatING aN e- ShOp 145

 }

 }

 }

 public void afterPhase(PhaseEvent event) {

 }

}

 Listing 4‑44. Returning to the Original View (If Any) on Successful Login

...

@Named("loginRequest")

@RequestScoped

public class LoginRequest {

 private String username;

 private String password;

 @Current

 private UserHolder userHolder;

 ...

 public String login() {

 if (username.equals("u1") && password.equals("p1")) {

 userHolder.setCurrentUser(new User("u1", "p1", "1234"));

 String viewId = userHolder.getOriginalViewId();

 if (viewId != null) {

 FacesContext context = FacesContext.getCurrentInstance();

 Application app = context.getApplication();

 ViewHandler viewHandler = app.getViewHandler();

 UIViewRoot root = viewHandler.createView(context, viewId);

 context.setViewRoot(root);

 userHolder.setOriginalViewId(null);

 return null;

 } else {

 return "loggedIn";

 }

 } else {

 FacesContext context = FacesContext.getCurrentInstance();

 context.addMessage(null, new FacesMessage(

 FacesMessage.SEVERITY_ERROR, "Login failed", null));

 return null;

 }

 }

}

Chapter 4 ■ CreatING aN e- ShOp146

Note that it is possible that the user explicitly clicked the login link to go to the login
page instead of being redirected to here. In that case, there is no original view ID (null),
so you’ll just return loggedIn as the outcome as usual. Then the navigation system will
send the user to the catalog page. If there is indeed an original view ID, you’ll use it to
load the view root and set it as the current view root. In that case, because you have set
the view root yourself, you must tell the navigation system to not change the view root
again. This is done by returning null as the outcome.

Now, start a new session, and run it again. Try to check out without logging in. The
application should display the login page. Then it will return you to the confirm page
once you have logged in. Then start a new session, but this time log in from the catalog
page. It should then return you to the catalog page.

Implementing Logout
Suppose that you’d like to allow the user to log out by clicking a Logout link, as shown in
 Figure 4-29.

 Figure 4‑29. The Logout link

The minimum that you need to do is to remove the User object from the UserHolder
web bean. However, a better way is to delete the session altogether (including the shop-
ping cart, for example) because it will free up the memory. To do that, modify catalog.
xhtml as shown in Listing 4-45. Note that you’re not setting the outcome (action) so that
it remains on the catalog page after logging out. In addition, you will create the action lis-
tener to remove the session. Why not specify a method in the action attribute? You could
do that, but removing the session is a UI- specific task, not a business task. So, an action
listener is better.

Chapter 4 ■ CreatING aN e- ShOp 147

 Listing 4‑45. Logout Link on the Catalog Page

...

<h:dataTable value="#{catalog.products}" var="p" border="1">

 ...

</h:dataTable>

<h:form>

 <h:commandLink action="login" value="Login"/>

 <h:commandLink value="Logout">

 <f:actionListener type="shop.LogoutActionListener"/>

 </h:commandLink>

</h:form>

</body>

Create the LogoutActionListener class in the shop package, as shown in Figure 4-30.

package shop;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;
import javax.faces.event.ActionListener;
import javax.servlet.http.HttpSession;

public class LogoutActionListener implements ActionListener {
 public void processAction(ActionEvent event)
 throws AbortProcessingException {
 FacesContext context = FacesContext.getCurrentInstance();
 ExternalContext externalContext = context.getExternalContext();
 Object session = externalContext.getSession(false);
 HttpSession httpSession = (HttpSession) session;
 httpSession.invalidate();
 }
}

The external context means the platform JSF
is running on. In this case, it's JBoss.

Get access to the session. The session is
maintained by the platform (JBoss).

Remove the session.

The session is an Object, not an HttpSession. This is
because JSF could potentially run on a platform that
doesn't use HTTP. Here you're sure it is using HTTP, so
you can typecast it.

 Figure 4‑30. The LogoutActionListener class

Chapter 4 ■ CreatING aN e- ShOp148

Run the application, and log in and then log out. Then try to check out, and it should
ask you to log in again. You may notice that there is no space between the Login link and
the Logout link. To fix this, modify catalog.xhtml as shown in Listing 4-46.

 Listing 4‑46. Inserting a Space

...

<h:form>

 <h:commandLink action="login" value="Login"/>

 <h:outputText value=" "/>

 <h:commandLink value="Logout">

 <f:actionListener type="shop.LogoutActionListener"/>

 </h:commandLink>

</h:form>

</body>

</html>

When you run the application, there should be a space between the two links.

Protecting the Password
Currently the login page shows the password as the user types it in. This is no good because
someone watching over the user’s shoulders could steal the password. It’s better to display
it as asterisks. To do that, modify login.xhtml as shown in Listing 4-47. <h:inputSecret> is
just like <h:inputText> in that it will create a UI Input. The only difference is that the user
input will appear as asterisks. Again, this is done using a different renderer.

 Listing 4‑47. Using <h:inputSecret>

...

<body>

<h:messages />

<h:form>

 <h:inputText value="#{loginRequest.username}" />

 <h:inputSecret value="#{loginRequest.password}" />

 <h:commandButton value="Login" action="#{loginRequest.login}" />

</h:form>

</body>

</html>

When you run the application now, the password should be displayed as asterisks.

Chapter 4 ■ CreatING aN e- ShOp 149

Summary
You learned the following in this chapter:

	 •	 A	facet	is	a	child	component	that	is	subjected	to	special	processing	by	its	parent.

	 •	 A	request	has	a	table	of	attributes.	Each	attribute	has	a	name	and	a	value	(Object).	
It allows you to give a name to an object. It is like request- scoped web beans except
that it doesn’t create the object; it only associates it with a name.

	 •	 To	loop	through	some	items	in	a	table,	if	the	number	of	items	can	only	be	determined	
at runtime, use the <h:dataTable> tag, which will create a UI Data component. You
provide a List of items to it, and it will loop through it for each item. Its children must
be UI Column components. Each UI Column represents a column in the table. For
each row, the UI Data will create an environment containing the row index and store
the current item into an attribute before asking each UI Column to render itself. Each
UI Column will render its own child components (excluding the facet named header).
A UI Column can optionally have a facet named header. In that case, the UI Data will
render a header row and ask the UI Columns to render the header facet as the header
for the column before it starts to process the data rows.

	 •	 On	form	submission,	the	UI	Data	will	loop	through	the	items	again,		re-	creating	the	
environment (to set up the attribute) and giving each component inside an oppor-
tunity to apply request values, process validations, update domain values and
invoke application in each respective phase.

	 •	 Because	the	current	item	is	stored	into	an	attribute	and	that	attribute	will	be	
cleared by the environment, if you need to pass it onto the next page, most likely
you’ll want to use the Set Property action listener.

	 •	 If	you	need	to	loop	through	some	items	but	they	won’t	be	presented	in	an	HTML	
<table>, you can use the <ui:repeat> tag. It works very much like the <h:dataTable>
tag except that it won’t output markup of its own.

	 •	 To	create	a	link,	use	the	UI	Command	component	with	a	link	renderer.	In	terms	of	
behavior, it is just like a UI Command component with a button renderer.

	 •	 For	a	UI	Command,	in	addition	to	setting	an	outcome	in	its	action attribute, you can
also specify a method. This is useful when you need to perform a business action.
That method should return a string indicating the outcome. If you need to perform
a UI- specific action, it’s better to add an action listener to the UI Command.

	 •	 A	UI	Input	can	be	rendered	such	that	user	input	is	echoed	as	stars.	This	is	good	for	
password input.

Chapter 4 ■ CreatING aN e- ShOp150

	 •	 If	you	display	the	properties	of	a		request-	scoped	web	bean	using	a	page,	you	must	
be careful when the form is submitted because a new request- scoped web bean
will be created. Usually you will use a UI Input component along with an HTML
Hidden Input renderer to store the ID in the browser as a hidden field. You will
then load the object when the ID is set.

	 •	 JSF	uses	a	view	handler	to	create	the	JSF	component	tree	from	a	specified	view	ID.	
You need to use a view handler when you want to bypass the JSF navigation sys-
tem. You need to load a view and set it as the one to be rendered.

	 •	 A	session	is	a	memory	area	for	each	user	(or	rather,	each	browser	instance).	To	
start a new session, either restart the browser or wait until the timeout. To remove
the session on the server, call invalidate() on the session. This is commonly done
when logging out. Everything put into the session must implement Serializable.

	 •	 There	is	a	web	bean	table	in	each	session.	You	can	put		per-	user	temporary	data	
into there.

	 •	 A	phase	listener	will	be	notified	before	entering	a	phase	or	after	exiting	from	a	phase.	
You can use it to make sure the user has logged in before rendering a certain pages.

	 •	 The	external	context	means	the	platform	on	which	JSF	is	running.	In	your	case,	it	
is JBoss. JSF assumes this platform is responsible for maintaining the session.

151

C h a p t e r 5

Creating Custom Components

In this chapter, you’ll learn how to create your own components that can be reused on
multiple pages.

Displaying a Copyright Notice on Multiple Pages
Suppose that you’d like to display a copyright notice on multiple pages like that shown in
 Figure 5‑1.

Unique Page Content

Copyright. Foo inc.

Page 1

Unique Page Content

Copyright. Foo inc.

Page 2

The Same Copyright

Notice

 Figure 5‑1. Copyright notice on multiple pages

This is no good, because if later you need to modify the copyright notice, you’ll have
to do it multiple times (once for each page). To solve this problem, you can extract the
common HTML code into a separate XHTML file, as shown in Figure 5‑2.

Chapter 5 ■ CreatING CUStOM COMpONeNtS152

Copyright. Foo inc.

copyright xhtml

Unique Page Content

Copyright. Foo inc.

Page 1

Unique Page Content

Copyright. Foo inc.

Page 2

 Figure 5‑2. Extracting common code into a separate XHTML file

Then to include that XHTML file into a particular page, let’s assume that someone
has developed a custom tag that can be used, as shown in Figure 5‑3.

<html>
...
<copyright/>
</html>

Page 1

You can assume that the
<copyright> tag will include
the XHTML content from the
file at runtime.

Copyright. Foo inc.

copyright.xhtml

 Figure 5‑3. Including the XHTML file using a custom tag

However, this is not a simple text inclusion. When JSF is creating the component tree,
it will use the content of copyright.xhtml to create a subtree and then graft that subtree
into the page, as shown in Figure 5‑4.

Chapter 5 ■ CreatING CUStOM COMpONeNtS 153

UI View

Root

...

copyright.xhtml

UI Panel-Like

Component

...

UI Panel-Like

Component

...

The root of the subtree is a

component that is like a UI

Panel.

The subtree is grafted

into the page.

 Figure 5‑4. Grafting the subtree into the page

In addition, in XHTML each tag must belong to a namespace, so your <copyright>
tag must as well. Let’s choose http://foo.com as the namespace (you could choose any
unique URL that you’d like, though). Then you will use the tag as shown in Listing 5‑1.

 Listing 5‑1. The <copyright> Tag in the http://foo.com Namespace

<html xmlns:foo="http://foo.com">

...

<foo:copyright/>

</html>

In addition, just because the tag is named copyright, JSF will not simply assume that
the XHTML is named copyright.xhtml. Instead, you must explicitly tell JSF the file name
when defining the tag. Conceptually, it looks like Figure 5‑5.

http://foo.com
http://foo.com
http://foo.com

Chapter 5 ■ CreatING CUStOM COMpONeNtS154

namespace: http://foo.com
tag: copyright
source: copyright.xhtml

Explicitly define the file

name.

 Figure 5‑5. Explicitly specifying the file name when defining a custom tag

Because a namespace could contain more than one tag, conceptually you could
define multiple tags, as shown in Listing 5‑2.

 Listing 5‑2. Defining Multiple Tags Conceptually

namespace: http://foo.com

tag1: copyright

source1: copyright.xhtml

tag2: ...

source2: ...

This means that you’re defining a tag library instead of just a single tag. You would
put such a tag lib definition into a file in a folder named META- INF in the classpath. The
file name must end with .taglib.xml, such as foo.taglib.xml. On startup, JSF will look for
such file names and load the definitions.

Now, let’s do it. Create a new dynamic web project named CustomComp. Create
p1.xhtml as shown in Listing 5‑3. Here p1 stands for “page 1” and serves as a simple page
to use your <copyright> tag.

 Listing 5‑3. Sample Page Using the Custom Tag

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com">

<p>This is page1.</p>

<foo:copyright/>

</html>

Create a META- INF folder in your Java source folder, and then create a file foo.taglib.
xml in it. Listing 5‑4 shows the content. Here you’re defining a Facelet tag lib, which is the
same as a namespace. The tag lib (namespace) is identified by the URL http://foo.com.

http://foo.com
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://foo.com

Chapter 5 ■ CreatING CUStOM COMpONeNtS 155

You’re defining a single tag called <copyright>, while you could define many tags in a tag
lib. The XML tags used in Listing 5‑4 to define a tag (for example, <facelet- taglib> and
<tag>) are all in the http://java.sun.com/JSF/Facelet namespace.

 Listing 5‑4. Defining a Tag Lib

<!DOCTYPE facelet- taglib PUBLIC

 "- //Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

 "http://java.sun.com/dtd/facelet- taglib_1_0.dtd">

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://foo.com</namespace>

 <tag>

 <tag-name>copyright</tag- name>

 <source>copyright.xhtml</source>

 </tag>

</facelet-taglib>

■Note In Mojarra 2.0.0.PR2, there is a bug preventing *.taglib.xml files in the META- INF folder on the
classpath to be discovered. To work around it, put the whole META- INF folder into WebContent and then
explicitly specify the tag lib in web.xml, as shown in Listing 5‑5.

 Listing 5‑5. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF- 8"?>

<web-app ...>

 ...

 <servlet>

 <servlet-name>JSF</servlet- name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet- class>

 </servlet>

 <servlet- mapping>

 <servlet-name>JSF</servlet- name>

 <url-pattern>/faces/*</url- pattern>

 </servlet- mapping>

 <context- param>

 <param-name>javax.faces.FACELETS_LIBRARIES</param- name>

 <param-value>/META-INF/foo.taglib.xml</param- value>

 </context- param>

</web-app>

http://java.sun.com/JSF/Facelet
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 5 ■ CreatING CUStOM COMpONeNtS156

Create the copyright.xhtml file in the same META- INF folder. The content contains
a single line only (see Listing 5‑6).

 Listing 5‑6. XHTML Code for the <copyright> Tag

Copyright. Foo inc.

However, JSF expects that the file is a complete XHTML page such as Listing 5‑7,
probably so that you can use a visual editor to edit the XHTML code.

 Listing 5‑7. Complete XHTML Page for the <copyright> Tag

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<body>

Copyright. Foo inc.

</body>

</html>

However, this is a problem, because you definitely don’t want to include the <html>
and <body> tags in the real page. To solve this problem, JSF will require that you indicate
the real content, as shown in Listing 5‑8, by surrounding it with the <component> tag. This
tag will create the UI Panel–like component as the root of the subtree. Everything outside
will not go into the JSF component tree and thus will have no effect on the output. The
<component> tag is defined in the JSF Facelets tag lib, which is the third tag lib in addition
to the JSF Core tag lib and JSF HTML tag lib. The tags in the JSF Facelets tag lib are mainly
used to define components.

 Listing 5‑8. Indicating the Real Content with <ui:component>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<body>

<ui:component>

Copyright. Foo inc.

</ui:component>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

Chapter 5 ■ CreatING CUStOM COMpONeNtS 157

Now when you run the application, you should see the copyright notice on the page.

Allowing the Caller to Specify the Company Name
Suppose that in your application you’d like to display “Foo” as the company name on
some pages, but on other pages you’d like to display “Bar” instead. How do you do that?
You can let your <copyright> tag accept a parameter, as shown in Listing 5‑9.

 Listing 5‑9. Providing Parameters to a Custom Tag

...

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com">

<p>This is page1.</p>

<foo:copyright company="Foo"/>

</html>

To output the company parameter in copyright.xhtml, access it just like a web bean
or an attribute (see Listing 5‑10).

 Listing 5‑10. Accessing a Parameter in an EL Expression

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<body>

<ui:component>

Copyright. #{company}

</ui:component>

</body>

</html>

How does it work? When JSF is building the component tree, the <copyright> tag will
copy all its attributes into a table (see Figure 5‑6). The attribute values are treated as EL
expressions, and they will be copied as is, without being evaluated. Then JSF will go into
copyright.xhtml. When it sees the EL expression #{company}, it will link it to the surround‑
ing variable table so that it can find the variables when it is evaluated in the future. This
kind of variable is called an EL variable. If you know C/C++, an EL variable is very much
like a macro in C/C++ in that you can assign a name to an expression.

http://www.w3.org/1999/xhtml
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

Chapter 5 ■ CreatING CUStOM COMpONeNtS158

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:foo="http://foo.com">
<p>This is page1.</p>
<foo:copyright company="Foo"/>
</html>

Name

company

... ...

... ...

EL expr

Foo

UI Panel-Like

Component

UI Output-Like

Component

1: Copy the attributes into the table.

value: #{company}

2: Link the EL expression to that

variable table.

 Figure 5‑6. Custom tag parameters gathered to form a variable table

After the tree is completed, the connection between the variable table and the
UI Panel–like component will be removed, and the tree will look like what’s shown in
 Figure 5‑7. Now, there is no longer any concept of parameters.

Name

company

... ...

... ...

EL expr

Foo

UI Panel-Like

Component

UI Output-Like

Component

value: #{company}

Variable Table

 Figure 5‑7. EL expression linked to a variable table

When the UI Output–like component needs to render itself, it will evaluate the EL
expression. The EL expression will look up the variable table (see Figure 5‑8) and reach
Foo. Then it will evaluate Foo as an EL expression again. Because it is a literal, the result is
still Foo, so that’s the output you’ll see on the screen.

http://www.w3.org/1999/xhtml
http://foo.com

Chapter 5 ■ CreatING CUStOM COMpONeNtS 159

Name

company

... ...

... ...

EL expr

Foo

UI Panel-Like

Component

UI Output-Like

Component

value: #{company}

 Figure 5‑8. Looking up the variable to find the EL expression to evaluate

Now run the application again, and it will display the copyright notice with “Foo” as
the company name.

Creating a Product Editor
You aren’t limited to passing strings as parameters; you can pass objects. For example,
suppose that you’d like to have a form to edit the details of a Product object (containing,
say, a product ID and a product name) and that the form is used on multiple pages. So,
you’d like to create a custom tag to represent such a form and pass a Product object to it
for editing (see Listing 5‑11). Here, <pe> stands for “product editor.”

 Listing 5‑11. Passing an Object to a Custom Tag

...

<foo:pe product="...EL EXPR TO RETURN A PRODUCT..."/>

<foo:copyright company="Foo"/>

To do that, modify foo.taglib.xml as shown in Listing 5‑12.

 Listing 5‑12. Defining the <pe> Tag

<!DOCTYPE facelet- taglib PUBLIC

 "- //Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

 "http://java.sun.com/dtd/facelet- taglib_1_0.dtd">

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://foo.com</namespace>

 <tag>

 <tag-name>copyright</tag- name>

 <source>copyright.xhtml</source>

 </tag>

http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 5 ■ CreatING CUStOM COMpONeNtS160

 <tag>

 <tag-name>pe</tag- name>

 <source>pe.xhtml</source>

 </tag>

</facelet-taglib>

Create the pe.xhtml file as shown in Listing 5‑13.

 Listing 5‑13. XHTML Code for the <pe> Tag

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html">

<body>

<ui:component>

 <h:form>

 <h:inputHidden value="#{product.id}"/>

 <h:inputText value="#{product.name}"/>

 <h:commandButton action="#{product.onUpdated}" value="OK"/>

 </h:form>

</ui:component>

</body>

</html>

Note how the EL expressions refer to the product parameter in the variable table.
Finally, the caller has to provide a Product object. Let’s do it in p1.xhtml (see Listing 5‑14).

 Listing 5‑14. Providing a Product Object to the <pe> Tag

...

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com">

<p>This is page1.</p>

<foo:pe product="#{currentProduct}"/>

<foo:copyright company="Foo"/>

</html>

Create the Product class in the custom package, and create the currentProduct web
beans from it (see Listing 5‑15).

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://www.w3.org/1999/xhtml
http://foo.com

Chapter 5 ■ CreatING CUStOM COMpONeNtS 161

 Listing 5‑15. The Product Class

package custom;

...

@Named("currentProduct")

@RequestScoped

public class Product {

 private String id;

 private String name;

 public Product() {

 this("p1", "pen");

 }

 public Product(String id, String name) {

 this.id = id;

 this.name = name;

 }

 public String onUpdated() {

 System.out.println(id + ": " + name);

 return "updated";

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

Note that its onUpdate() method will simply print its data to the console. In practice, it
could update the database, and so on. Now, restart JBoss so that JSF loads the tag lib defi‑
nition again. Then run the application, modify the product name, and submit the form. It
will now print the data to the console.

Chapter 5 ■ CreatING CUStOM COMpONeNtS162

Passing a Method in a Parameter?
Note that some built‑ in JSF tags accept methods as parameters, as shown in Listing 5‑16.

 Listing 5‑16. JSF Tags Accepting Method Parameters

<h:commandButton action="#{ph.addToCart}"/>

<h:commandLink action="..."/>

Can this be done with your custom tags? For example, could you modify the <pe> tag
so that it can be used as shown in Listing 5‑17?

 Listing 5‑17. Custom Tags Accepting Method Parameters?

<foo:pe product="..." action="currentProduct.onUpdated"/>

...

Then you could call it as shown in Listing 5‑18.

 Listing 5‑18. Calling a Method Parameter?

...

<ui:component>

 <h:form>

 <h:inputHidden value="#{product.id}"/>

 <h:inputText value="#{product.name}"/>

 <h:commandButton action="#{action}" value="OK"/>

 </h:form>

</ui:component>

</body>

</html>

Unfortunately, by default it won’t work. That is, by default all attributes of a custom
tag are expected to evaluate to values (primitive values or objects). They can’t evaluate to
methods. The workaround is to pass an object that has a method that you can invoke (see
 Listing 5‑19 and Listing 5‑20).

 Listing 5‑19. Passing an Object As an Action Provider

<foo:pe product="..." actionProvider="some object having an onUpdated() method"/>

...

Chapter 5 ■ CreatING CUStOM COMpONeNtS 163

 Listing 5‑20. Invoking the Method of an Action Provider

...

<ui:component>

 <h:form>

 <h:inputHidden value="#{product.id}"/>

 <h:inputText value="#{product.name}"/>

 <h:commandButton action="#{actionProvider.onUpdated}" value="OK"/>

 </h:form>

</ui:component>

</body>

</html>

This example is actually not much different from the original solution: invoking
a method on the Product object itself.

Creating a Box Component
Suppose that you’d like to create a component that will accept any XHTML code (includ‑
ing JSF tags) and will render a box around the code. See Figure 5‑9 for an example.

box.xhtml

<foo:box>

Page 1

</foo:box>

x:

y:

x:

y:

It will add a box around the

content provided by the

caller.

<h:inputText .../>

<h:inputText .../>

 Figure 5‑9. The Box component

A first attempt is to try to pass the XHTML code through a parameter, as shown in
 Listing 5‑21, and then to output it as shown in Listing 5‑22.

Chapter 5 ■ CreatING CUStOM COMpONeNtS164

 Listing 5‑21. Passing XHTML Code in Parameters?

<foo:box content="x: <h:inputText .../> ...">

...

 Listing 5‑22. Outputting XHTML Code?

...

<table border="1">

 <tr>

 <td><h:outputText value="#{content}"/></td>

 </tr>

</table>

However, this won’t work because the XHTML code will be treated as a string and
JSF won’t parse it to create components accordingly. Then what you’ll get will look like
 Figure 5‑10.

x:

y:

<h:inputText .../>

<h:inputText .../>

 Figure 5‑10. JSF tags will be output as is.

To really pass XHTML code (including JSF tags) to a custom tag, you can put the
XHTML code into the tag body. Let’s do it in p1.xhtml (see Listing 5‑23).

 Listing 5‑23. Passing XHTML Code As the Tag Body

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com">

<p>This is page1.</p>

<foo:box>

 <foo:pe product="#{currentProduct}"/>

 <foo:copyright company="Foo"/>

</foo:box>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com

Chapter 5 ■ CreatING CUStOM COMpONeNtS 165

So, how do you parse the XHTML code in the custom component? Create box.xhtml
(in the META- INF folder) with the content shown in Figure 5‑11. Simply put, the <ui:insert>
tag will trace back into the body of the custom tag in the calling page to build the compo‑
nent tree.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<body>
<ui:component>
 <table border="1">
 <tr>
 <td>
 <ui:insert/>
 </td>
 </tr>
 </table>
</ui:component>
</body>
</html>

The <ui:insert> tag

will trace into the

body specified by the

caller to build the

subtree and graft it

here.

Draw the border.

...
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:foo="http://foo.com">
<p>This is page1.</p>
<foo:box>
 <foo:pe product="#{currentProduct}"/>
 <foo:copyright company="Foo"/>
</foo:box>
</html>

box.xhtml

 Figure 5‑11. Using <ui:insert> to trace into the body

Finally, define the <box> tag in foo.taglib.xml, as shown in Listing 5‑24.

 Listing 5‑24. Defining the <box> Tag

<!DOCTYPE facelet- taglib PUBLIC

 "- //Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

 "http://java.sun.com/dtd/facelet- taglib_1_0.dtd">

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://foo.com</namespace>

 <tag>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 5 ■ CreatING CUStOM COMpONeNtS166

 <tag-name>copyright</tag- name>

 <source>copyright.xhtml</source>

 </tag>

 <tag>

 <tag-name>pe</tag- name>

 <source>pe.xhtml</source>

 </tag>

 <tag>

 <tag-name>box</tag- name>

 <source>box.xhtml</source>

 </tag>

</facelet-taglib>

Restart JBoss, and run the application. When you do, you should see a border sur‑
rounding the product editor and the copyright notice.

Accepting Two Pieces of XHTML Code
Can a custom tag accept two pieces of XHTML code? For example, can you create a tag
that will display the two pieces of XHTML in two cells in a row, as shown in Figure 5‑12?

pair.xhtml

<foo:pair>

Page 1

</foopair>

x:

y:

x: y:

Go into the left

cell.

Go into the right

cell.

<h:inputText .../>

<h:inputText .../>

 Figure 5‑12. Accepting two pieces of XHTML code

To do that, create pair.xhtml (in the META- INF folder), and modify p1.xhtml as shown
in Figure 5‑13. That is, you assign a unique name to each <ui:define> tag. When using
a <ui:insert> tag to trace back into the body of the custom tag in the calling page, you
also specify a name so that it can look up the corresponding <ui:define> tag by name.

Chapter 5 ■ CreatING CUStOM COMpONeNtS 167

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<body>
<ui:component>
 <table border="1">
 <tr>
 <td>
 <ui:insert name="left"/>
 </td>
 <td>
 <ui:insert name="right"/>
 </td>
 </tr>
 </table>
</ui:component>
</body>
</html>

The <ui:insert> tag

has a name. So it will

trace into the right

piece to build the

subtree and graft it

here.

...
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:foo="http://foo.com"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<p>This is page1.</p>
<foo:pair>
 <ui:define name="left">
 <foo:pe product="#{currentProduct}"/>
 </ui:define>
 <ui:define name="right">
 <foo:copyright company="Foo"/>
 </ui:define>
</foo:pair>
</html>

pair.xhtml

Trace into there to build

the subtree and graft it

here.

Define a piece of XHTML code named "left".

The name is just a unique id and has no

particular meaning.

Define another piece of

XHTML code named

"right".

 Figure 5‑13. Using <ui:insert> with a name along with <ui:define>

Define the <pair> tag in foo.taglib.xml as shown in Listing 5‑25.

 Listing 5‑25. Defining the <pair> Tag

<!DOCTYPE facelet- taglib PUBLIC

 "- //Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

 "http://java.sun.com/dtd/facelet- taglib_1_0.dtd">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/jsf/facelets
http://java.sun.com/dtd/facelet-�taglib_1_0.dtd

Chapter 5 ■ CreatING CUStOM COMpONeNtS168

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet">

 <namespace>http://foo.com</namespace>

 <tag>

 <tag-name>copyright</tag- name>

 <source>copyright.xhtml</source>

 </tag>

 <tag>

 <tag-name>pe</tag- name>

 <source>pe.xhtml</source>

 </tag>

 <tag>

 <tag-name>box</tag- name>

 <source>box.xhtml</source>

 </tag>

 <tag>

 <tag-name>pair</tag- name>

 <source>pair.xhtml</source>

 </tag>

</facelet-taglib>

Restart JBoss, and run the application. You should see the product editor in the left
cell and the copyright notice in the right one.

Creating a Reusable Component Library
Suppose that you’d like to use the custom tags created so far in multiple projects. Obvi‑
ously, copying foo.taglib.xml and the source XHTML files into multiple projects is a bad
idea, because if later you need to fix a bug in one of those files, you will have to do it once
for each project. To solve the problem, you can pack the META- INF folder into a JAR file and
reuse it in multiple projects (see Figure 5‑14).

Hello

WebContent

WEB-INF

lib

src

META-INF

foo.taglib.xml

box.xhtml foo.jar
...

foo.jar

CustomComp

 Figure 5‑14. Creating a component library

http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 5 ■ CreatING CUStOM COMpONeNtS 169

To do that, create a new project named CompUser as usual. Then right‑ click the
 META- INF folder in the CustomComp project, and choose Export. Then choose Java ➤ JAR
File. Click Browse to save the JAR file as foo.jar in the WEB- INF/lib folder of the CompUser
project (see Figure 5‑15).

 Figure 5‑15. Exporting a JAR file

In the CompUser project, create a p2.xhtml file (which stands for “page 2”) in the
WebContent folder, and try to use the custom tags shown in Listing 5‑26.

 Listing 5‑26. Using the Custom Tags in Another Project

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

Chapter 5 ■ CreatING CUStOM COMpONeNtS170

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com">

<foo:box>Testing</foo:box>

</html>

When you run the application now, you’ll see the “Testing” message appear in a box.
Now it should be clear why you need to put the foo.taglib.xml file and the source XHTML
files into the classpath instead of WebContent or WEB- INF: they were designed to be packed
into a JAR file for reuse.

Creating a Component Library Without taglib.xml
For the moment, you’re creating a taglib.xml file to define a tag lib. However, there is an
easier way to do that. For example, let’s create another tag lib that has the same <pe> tag.
Instead of a URL, such an “easy” tag lib is identified by a short name. Let’s name it bar. To
create it, simply create the folder META- INF/resources/bar in the classpath.

To define the <pe> tag, copy the pe.xhtml file into that folder, and modify it as shown
in Listing 5‑27. The <composite:interface> tag assigns a name and a display name to the
<pe> tag, which are mainly used for visual tools. Then the <composite:attribute> tag states
that the <pe> tag accepts a parameter named product whose type is custom.Product and
that it is a required parameter. Finally, the <composite:implementation> tag plays a role
similar to <ui:component>. That is, it indicates the real content of the component.

 Listing 5‑27. Defining the <pe> Tag

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:composite="http://java.sun.com/jsf/composite">

<body>

<composite:interface name="pe" displayName="Product Editor">

 <composite:attribute name="product" type="custom.Product" required="true"/>

</composite:interface>

<composite:implementation>

 <h:form>

 <h:inputHidden value="#{product.id}"/>

 <h:inputText value="#{product.name}"/>

 <h:commandButton action="#{product.onUpdated}" value="OK"/>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�transitional.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/composite

Chapter 5 ■ CreatING CUStOM COMpONeNtS 171

 </h:form>

</composite:implementation>

</body>

</html>

However, in such a component, the parameters are available only in a Map that can be
accessed as compositeComponent.attrs (see Listing 5‑28). Note how you can access a par‑
ticular element in a Map using its key in an EL expression.

 Listing 5‑28. Accessing the Parameters in a Map in an “Easy” Component

...

<composite:implementation>

 <h:form>

 <h:inputHidden value="#{compositeComponent.attrs['product'].id}"/>

 <h:inputText value="#{compositeComponent.attrs['product'].name}"/>

 <h:commandButton

 action="#{compositeComponent.attrs['product'].onUpdated}" .../>

 </h:form>

</composite:implementation>

</body>

</html>

To use the bar tag lib in p1.xhtml, you need to use its namespace URL. But what’s its
URL? Because it has only a short name, its URL is always derived from the short name
using this pattern: http://java.sun.com/jsf/composite/<short name>. In this case, it is
http://java.sun.com/jsf/composite/bar. So, modify p1.xhtml as shown in Listing 5‑29.

 Listing 5‑29. Using the <pe> Tag in the Bar Tag Lib

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:foo="http://foo.com"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:bar="http://java.sun.com/jsf/composite/bar">

<p>This is page1.</p>

<bar:pe product="#{currentProduct}"/>

<foo:pair>

 <ui:define name="left">

 <foo:pe product="#{currentProduct}"/>

http://java.sun.com/jsf/composite/
http://java.sun.com/jsf/composite/bar
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://foo.com
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/composite/bar

Chapter 5 ■ CreatING CUStOM COMpONeNtS172

 </ui:define>

 <ui:define name="right">

 <foo:copyright company="Foo"/>

 </ui:define>

</foo:pair>

</html>

Now, run the application, and it should display a new product editor outside the pair.

Summary
Whenever you see duplicated code in XHTML files, it’s high time that you considered
extracting the duplicated code into a custom component. To do that, as you learned in
this chapter, you can define a tag lib by putting a *.taglib.xml file into the META- INF folder.
For each tag, specify the source XHTML file, and put the duplicated code in that XHTML
file.

You also learned that you can pass parameters to a custom tag. At tree construc‑
tion time, parameters will be formed into a variable table, and the EL expressions in the
source file will be linked to it. At render time, they will trace into the variable table to get
the value as an EL expression for evaluation.

The EL expression can evaluate to a value/object only. It must not evaluate to a method.
To pass a method to the custom tag, pass an object that hosts the method.

You can’t pass XHTML code to a custom tag through a parameter and expect JSF to
parse the code. To do that, put the code into the body of the tag, or use <ui:define> if you
have multiple pieces of code. The custom component can trace into the code to build the
subtree using <ui:insert>.

To reuse custom tags in multiple projects, you can export the META- INF folder into
a JAR file and reuse it.

Finally, you learned you can create a tag lib without using a taglib.xml file by cre‑
ating a folder using the short name of the tag lib in a special location on the classpath
 (META- INF/resources). The short name is also used to derive the namespace URL. Com‑
ponents in such a tag lib provide more information regarding their parameters for visual
tools to use. To access their parameters, the components need to access them from a Map
using a special name in EL expressions.

173

C h a p t e r 6

providing a Common Layout for
Your pages

It is commonly required for all the pages in a given application to have a common layout.
In this chapter, you’ll learn how to apply a common layout to all your pages in your appli‑
cation easily.

Using the Same Menu on Different Pages
Suppose that you’d like to develop an application like the one shown in Figure 6‑1. It is
not important what the application shown does. What is important is that on each page
there is the same menu on the left.

 Figure 6‑1. All the pages have a menu on the left.

To do that, create a new dynamic web project named Layout. You’re about to create
two pages: home.xhtml and products.xhtml. Figure 6‑2 shows the structure of these pages.
You can see that the XHTML page structures are the same, and the only difference is the
cell content on the right.

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS174

Menu

Cell

Content Unique to

the Home Page

Html

Form

Table

Row

Cell

Menu

Cell

Content Unique to

the Products Page

Html

Form

Table

Row

Cell

 Figure 6‑2. Pages sharing a common structure

Whenever you see duplicate XHTML code, you should extract it into a common
place. For example, if you extracted it into a component, that would allow you to reuse
it in both pages (see Listing 6‑1 for home.xhtml using the imagined component), but you
would still have to duplicate the <html> tag, the <head> tag, the <body> tag, any CSS styles,
and so on, as highlighted in Listing 6‑1.

 Listing 6‑1. Using a Custom Component Would Not Remove All Duplicate Code

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:foo="http://foo.com">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<link rel="stylesheet" type="text/css" href="style1.css"/>

<link rel="stylesheet" type="text/css" href="style2.css"/>

</head>

<body>

<foo:mycomponent>

 This is the Home page.

</foo:mycomponent>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://foo.com

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS 175

Instead of having to repeat all that code, you should extract the duplicate code into
a base page that contains some abstract parts (see Figure 6‑3). Then you can let each page
extend the base page and provide its unique content, just like Java class inheritance.

Base

Abstract

Home Products

Unique ContentUnique Content

 Figure 6‑3. Page inheritance

To do that, create base.xhtml (also in the WebContent folder), as shown in Listing 6‑2.
Note how it uses the <ui:insert> tag to insert the abstract part, exactly like what you
would do in a custom component in the previous chapter.

 Listing 6‑2. The Base Page

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <table>

 <tr>

 <td width="40%"><h:commandLink action="home">Home</h:commandLink>

 <h:commandLink action="products">Products</h:commandLink>

 <h:commandLink action="contact">Contact</h:commandLink></td>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS176

 <td>

 <ui:insert>unique content</ui:insert>

 </td>

 </tr>

 </table>

</h:form>

</body>

</html>

Create home.xhtml to “inherit” base.xhtml, as shown in Figure 6‑4.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<ui:composition template="/base.xhtml">
This is the home page.
</ui:composition>
</html>

Everything outside the
<composition>
element will not be
output. The tag body is the

concrete part.

Include a certain page
(here /base.xhtml).

This path starts from
the context root folder
(WebContent).

Everything outside the
<composition>
element will not be
output.

 Figure 6‑4. “Inheriting” the base page

Run the application by visiting http://localhost:8080/Layout/faces/home.xhtml. If it is
working as expected, the HTML code should be that of base.xhtml except for the abstract
part. This is very much like using a custom component except that you don’t need to
define a custom tag.

Now create products.xhtml in a similar manner. It works in the same way.
In this setup, you can think of it like the base page providing a template with some

holes to fill in and the Home page and the Products page using that template and filling
those holes with their unique contents.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://localhost:8080/Layout/faces/home.xhtml

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS 177

Using Global Navigation Rules
What is interesting is how to create the navigation rules for the links. As a first attempt,
you may try what’s shown in Figure 6‑5.

home

/home.xhtml

/home.xhtml

/products.xhtml

/contact.xhtml

products

contact

Rule 1

home

/products.xhtml

/home.xhtml

/products.xhtml

/contact.xhtml

products

contact

Rule 2

 Figure 6‑5. Duplicate navigation rules

However, that is a lot of duplication. Figure 6‑6 shows a better way. Because the star
will match any source view ID, the navigation rule could be considered a global fallback
rule.

home

*

/home.xhtml

/products.xhtml

/contact.xhtml

products

contact

A star will match any view D.

 Figure 6‑6. Using a wildcard to match any view ID

To implement this idea, modify faces- config.xml as shown in Listing 6‑3.

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS178

 Listing 6‑3. faces-config.xml Using a Wildcard to Match Any View ID

<?xml version="1.0" encoding="UTF- 8"?>

<faces-config ...>

 <navigation- rule>

 <from-view-id>*</from-view- id>

 <navigation- case>

 <from-outcome>products</from- outcome>

 <to-view-id>/products.xhtml</to-view- id>

 </navigation- case>

 <navigation- case>

 <from-outcome>home</from- outcome>

 <to-view-id>/home.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Restart the application, and you’ll see that the links work.

Using Two Abstract Parts
Suppose that each page may need to have a particular header that contains HTML ele‑
ments or even JSF components, as shown in Figure 6‑7.

This header may contain markup such as

<h1> or even components.

 Figure 6‑7. Creating a unique header for each page

Now you’ll have a structure that looks like Figure 6‑8.

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS 179

Base Abstract 1

Home Products

Unique Content 1

Unique Content 2

home.xhtml

Unique Content 1

Unique Content 2

products.xhtml

Abstract 2

base.xhtml

 Figure 6‑8. Having two abstract parts

This is like a base class having two abstract methods. For this to work, you need to
give a unique name to each abstract part, as shown in Listing 6‑4.

 Listing 6‑4. Giving a Unique Name to Each Abstract Part

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<ui:insert name="p1">header</ui:insert>

<h:form>

 <table>

 <tr>

 <td width="40%"><h:commandLink action="home">Home</h:commandLink>

 <h:commandLink action="products">Products</h:commandLink>

 <h:commandLink action="contact">Contact</h:commandLink></td>

 <td>

 <ui:insert name="p2">unique content</ui:insert>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS180

 </td>

 </tr>

 </table>

</h:form>

</body>

</html>

Modify home.xhtml to provide the two concrete parts as shown in Listing 6‑5. Again, this
is exactly like when passing multiple fragments of XHTML tags to a custom component.

 Listing 6‑5. Providing Concrete Parts

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<ui:composition template="/base.xhtml">

 <ui:define name="p1">

 <h1>Home</h1>

 </ui:define>

 <ui:define name="p2">

 This is the home page.

 </ui:define>

</ui:composition>

</html>

Run the application, and you’ll see it works. Then, modify products.xhtml similarly.

Creating Page‑ Specific Navigation Cases
Suppose that you’d like to have a link on the Products page to display hot deals, as shown
in Figure 6‑9.

 Figure 6‑9. A link to hot deals

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS 181

Why is this requirement interesting? Consider where you should put the navigation
case. If you put it into the global navigation rule, it would affect all the pages in the applica‑
tion, which is not what you want. To see how to do it, read on. First, modify products.xhtml
as shown in Listing 6‑6.

 Listing 6‑6. Putting a JSF Tag in a Concrete Part

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html">

<ui:composition template="/base.xhtml">

 <ui:define name="p1">

 <h1>Products</h1>

 </ui:define>

 <ui:define name="p2">

 This is the Products page.

 Here are some <h:commandLink action="hotDeals">hot

deals</h:commandLink>.

 </ui:define>

</ui:composition>

</html>

There is nothing special here. Create a simple hotdeals.xhtml page as shown in
 Listing 6‑7.

 Listing 6‑7. The Hot Deals Page

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Hot deals here!

</html>

Then, create a normal navigation rule for the products page as shown in Listing 6‑8.

 Listing 6‑8. Navigation Rule for the Products Page

<?xml version="1.0" encoding="UTF- 8"?>

<faces-config ...>

 <navigation- rule>

 <from-view-id>*</from-view- id>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml

Chapter 6 ■ prOVIDING a COMMON LaYOUt FOr YOUr paGeS182

 <navigation- case>

 <from-outcome>products</from- outcome>

 <to-view-id>/products.xhtml</to-view- id>

 </navigation- case>

 <navigation- case>

 <from-outcome>home</from- outcome>

 <to-view-id>/home.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/products.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>hotDeals</from- outcome>

 <to-view-id>/hotdeals.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Now, that is the interesting part: both this rule and the global rule will match the cur‑
rent view ID (/products.xhtml), so which one will take effect? This rule will be considered
before the global rule because it is more specific (that is, it doesn’t contain any wildcard).
Once a navigation case is found, the search will stop. In this case, it means the specific
rule will take effect because it is considered first and because it contains a matching navi‑
gation case. Now, run the application again, and try to go to the hot deals page. It should
work as expected.

Summary
In this chapter, you learned that if you have pages with a common layout, you can extract
the common stuff into a base page and mark the abstract parts using <ui:define>. Then
in each child page, suck in the base page using <ui:composition>, and provide each con‑
crete part using <ui:define>. Each part should have a unique name. If there is only one
abstract part, you can omit the name and provide the concrete part as the body of the
<ui:composition> element.

You learned that you can use a star as the view ID in a navigation rule. In that case, it
will match any view ID. This is useful if multiple pages share the same navigation cases.
If a page needs some additional navigation cases, it can have its own normal navigation
rule, which will be checked first.

183

C h a p t e r 7

Building Interactive pages
with ajax

In this chapter, you’ll learn how to build pages that are more interactive than normal
HTML pages using a technique called Ajax.

Displaying a FAQ
Suppose that you’d like to develop an application that displays a FAQ, as shown in
 Figure 7‑1.

 Figure 7‑1. Displaying a FAQ

Suppose that every question has both a short answer and a long answer. Initially, the
short answer is displayed. If the user clicks the question, the answer will change to the long
answer. If the user clicks it again, it will change back to the short answer again.

To do that, create a new dynamic web project named FAQ in the same way as you
have created projects in the rest of the book. As a first step, you’ll show a single question
only. So, create a listfaq.xhtml page as shown in Listing 7‑1.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX184

 Listing 7‑1. listfaq.xhtml

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <h:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText}" />

</h:form>

<h:outputText value="#{faqService.answerText}" />

</body>

</html>

Create the FAQService class in the faq package as shown in Listing 7‑2.

 Listing 7‑2. FAQService Class

package faq;

...

@Named("faqService")

@SessionScoped

public class FAQService implements Serializable {

 private String questionText = "How to run Eclipse?";

 private String answerTextShort = "Double- click its icon.";

 private String answerTextLong = "Double- click its icooooooooooooooooooooon.";

 private boolean isShortForm = true;

 public String getQuestionText() {

 return questionText;

 }

 public String getAnswerText() {

 return isShortForm ? answerTextShort : answerTextLong;

 }

 public String trigger() {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 185

 isShortForm = !isShortForm;

 return null;

 }

}

Note that this class is in the session scope (and thus needs to implement Serializable).
Why? If it were in the request scope, then a new bean would be created for each request
and the isShortForm flag would always be true. In addition, the trigger() method returns
null so that the current page is redisplayed after the link is clicked.

Now run it. Clicking the question will change the form of the answer between the
short and long forms.

Refreshing the Answer Only
Note that for the moment, whenever the user clicks the link, the progress bar in the browser
will go from 0 to 100 percent, as shown in Figure 7‑2. This indicates that the whole HTML
page is refreshed.

The progress bar shows

that the whole page is

refreshed.

 Figure 7‑2. Progress bar indicating a full- page refresh

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX186

This can be made better. For example, you could refresh the answer only, not the
whole page. This way the response will feel much faster and thus provide a better user
experience. To do that (see Figure 7‑3), you need to generate some JavaScript for the
onclick event of the question link (the <a> element). Don’t worry about how to actually do
it now; it will become clear later in the chapter. When the link is clicked, that JavaScript
will send a request to your application. This will cause the action method of the UI Com‑
mand component to execute, which will change the form of the answer. Then only the
UI Output component is asked to render again (not the whole page). The UI Output
component will generate some HTML code, which will be returned to the JavaScript in
the browser. The JavaScript will use that HTML code to update the answer. This entire
process is called Ajax.

View Root

1: Generate some JavaScript

here.

2: The link is clicked. The JavaScript

sends a request to your application.

Request

UI Command

UI Output

4: Only the answer

component is asked to

render.

<html>
...
 How to...

 Double-click its icon.
...
</html>

Double-click its icoooooooooooooooooon.

5: Return this HTML code to the Javascript. Hopefully it

should replace the HTML code for the answer.

3: Call its action method

as usual. This will

change the form of the

answer.

 Figure 7‑3. How Ajax works

However, there is still a problem: how does the JavaScript know which part of the
page to update? To solve this problem, you need to explicitly assign an ID to the com‑
ponent being refreshed (the UI Output component in this case), as shown in Figure 7‑4.
This will cause the component to generate an HTML element with a client ID. Then the
JavaScript can use the client ID to look up the existing HTML element and replace it.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 187

...
<h:form>
 <h:commandLink .../>
</h:form>

<h:outputText value="..." id="a" />

Double-click its icoooooooooooooooooon.

1: At the beginning, the ID will cause the UI

Output to generate a and set the

client ID.

<html>
...
 How to...

 Double-click its icon.
...
</html>

2: When the UI Output is refreshed during an

Ajax operation, it will also output a

with client ID set.

3: The JavaScript will use the client ID to look

up the existing HTML element and replace it.

 Figure 7‑4. Assigning an ID to identify the HTML element to be updated

To implement these ideas, you need to use a JSF component library called RichFaces
from JBoss. Go to http://labs.jboss.com/jbossrichfaces to download it. It may be some‑
thing like richfaces-ui-3.3.0-GA- bin.zip. Unzip the download into, say, c:\richfaces- ui.
To use it, copy all the JAR files in c:\richfaces- ui\lib into your WEB- INF/lib. RichFaces
in turn needs a few third‑ party JAR files. You can download them from the Source Code
section of the Apress web site (http://www.apress.com) and unzip the files into WEB/lib.
Finally, refresh the project in Eclipse.

The 3.3 version of RichFaces doesn’t support JSF 2.0 yet. Because you installed JSF 2.0
into the JBoss application server in Chapter 1, you can’t run the application being devel‑
oped on top of it. To solve this problem, you may want to download a clean copy of the
JBoss application server again and unzip it into, say, c:\jboss. Then go to https://facelets.
dev.java.net/servlets/ProjectDocumentList to download the latest version of Facelets.
It has been included in JSF 2.0, but because you aren’t using JSF 2.0, you need to include it
yourself. The file may be something like facelets- 1.1.15.b1. Unzip it into, say, c:\facelets.
Finally, copy c:\facelets\jsf- facelets.jar into your WEB- INF/lib, and refresh the project in
Eclipse. Before JSF 2.0, Facelets is an add‑ on that needs to be enabled. To do that, modify
 faces- config.xml as shown in Listing 7‑3.

http://labs.jboss.com/jbossrichfaces
http://www.apress.com
https://facelets

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX188

 Listing 7‑3. Enabling Facelets in faces-config.xml (Before JSF 2.0)

<faces-config ...>

 <application>

 <view- handler>com.sun.facelets.FaceletViewHandler

 </view- handler>

 </application>

</faces-config>

Next, modify WEB- INF/web.xml as shown in Listing 7‑4.

 Listing 7‑4. Changes to web.xml in Order to Use RichFaces

<?xml version="1.0" encoding="UTF- 8"?>

<web-app ...>

 ...

 <servlet>

 <servlet-name>JSF</servlet- name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet- class>

 </servlet>

 <servlet- mapping>

 <servlet-name>JSF</servlet- name>

 <url-pattern>/faces/*</url- pattern>

 </servlet- mapping>

 <context- param>

 <param-name>org.richfaces.SKIN</param- name>

 <param-value>blueSky</param- value>

 </context- param>

 <context- param>

 <param-name>org.richfaces.CONTROL_SKINNING</param- name>

 <param-value>enable</param- value>

 </context- param>

 <filter>

 <display- name>RichFaces Filter</display- name>

 <filter-name>richfaces</filter- name>

 <filter-class>org.ajax4jsf.Filter</filter- class>

 </filter>

 <filter- mapping>

 <filter-name>richfaces</filter- name>

 <servlet-name>JSF</servlet- name>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 189

 <dispatcher>INCLUDE</dispatcher>

 </filter- mapping>

</web-app>

You don’t need to completely understand the meaning of this code, but basically, it is
used to enable RichFaces to intercept requests so that it can deliver JavaScript to the browser.
Next, modify listfaq.xhtml as shown in Figure 7‑5. In summary, the <a4j:commandLink> is used
like a normal <h:commandLink>, but it will generate some JavaScript into the onclick attribute
of the HTML link. That JavaScript will call the action method on the server and then rerender
the component specified in its reRender attribute.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:a4j="http://richfaces.org/a4j">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Insert title here</title>
</head>
<body>
<h:form>
 <a4j:commandLink action="#{faqService.trigger}"
 value="#{faqService.questionText}"
 reRender="a"/>
</h:form>

<h:outputText value="#{faqService.answerText}" id="a" />
</body>
</html>

Use the <commandLink> in the Ajax4Jsf tag lib.

How to...
1: It will set the onclick

event handler to some

JavaScript. 2: If clicked, it will call

this trigger() method on

the server side.

3: Then, ask this "a" component only to render again.

 Figure 7‑5. Using <a4j:commandLink>

When you run the application, clicking the question will change the form of the
answer, while this time no progress bar will be displayed in the browser, indicating that
the page as a whole is not refreshed.

Hiding and Showing the Answer
Suppose that instead of changing the form of the answer, now you’d like to hide or show
the answer. For simplicity, let’s do it without Ajax first. Modify listfaq.xhtml as shown in
 Listing 7‑5.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX190

 Listing 7‑5. Using the rendered Attribute

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <h:commandLink

 action="#{faqService.trigger}"

 value="#{faqService.questionText}" />

</h:form>

<h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}"/>

</body>

</html>

What does that rendered attribute do? When the UI Output component is about to
render itself in the Render Response phase, it will check this attribute. In this case, it will
call isShowingAnswer() on the web bean. If isShowingAnswer() returns true, it will go ahead
to render itself. Otherwise, it will do nothing. For it to work, modify the web bean as
shown in Listing 7‑6.

 Listing 7‑6. Showing or Hiding the Answer in the Web Bean

package faq;

...

@Named("faqService")

@SessionScoped

public class FAQService implements Serializable {

 private String questionText = "How to run Eclipse?";

 private String answerText = "Double- click its icon.";

 private boolean isShowingAnswer = false;

 public String getQuestionText() {

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 191

 return questionText;

 }

 public String getAnswerText() {

 return answerText;

 }

 public String trigger() {

 isShowingAnswer = !isShowingAnswer;

 return null;

 }

 public boolean isShowingAnswer() {

 return isShowingAnswer;

 }

}

When you run the application, clicking the question should show and hide the
answer. Of course, now the whole page is refreshed because Ajax is not used.

Using Ajax to Hide or Show the Answer
Now, you’d like to use Ajax to hide or show the answer, without refreshing the whole
page. A first attempt is shown in Listing 7‑7.

 Listing 7‑7. Trying to Use Ajax to Change the Visibility of a Component

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <a4j:commandLink

 action="#{faqService.trigger}"

 value="#{faqService.questionText}"

 reRender="a" />

</h:form>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX192

<h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}"/>

</body>

</html>

If you run it, initially no answer will be shown, which is the correct behavior. How‑
ever, if you click the link, nothing seems to happen. This is because when the UI Output
component is about to render itself initially, the rendered attribute is false so it will not
output any HTML element (see Figure 7‑6). As a result, the onclick JavaScript will be
unable to find the HTML element to update in the subsequent Ajax operations.

...
<h:form>
 <h:commandLink .../>
</h:form>

<h:outputText value="..." id="a" />

Double-click its icon.

1: At the beginning, it generates no HTML
element as the rendered attribute is false.

<html>
...
 How to...

...
</html>

2: When the UI Output is refreshed during an
Ajax operation, it will output a with
client ID set as usual.

3: The JavaScript will use the client ID to look
up the existing HTML element but will fail to
�nd any!

 Figure 7‑6. Why Ajax will fail to show a component

To solve this problem, you’ll place a panel surrounding the answer and use Ajax to
update the panel (see Figure 7‑7). Simply put, that HTML element generated by
the panel will always be there. It may contain nothing in its body (if the answer is hidden)
or contain the answer (if the answer is shown). As it is always there, you can use Ajax to
update it.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 193

 Double-click its icon.

 Double-click its icon.

Update the

whole

panel.

Update the

whole

panel.

A panel containing the answer.

Initially the answer has no HTML

code.

 Figure 7‑7. Using a panel to show or hide a component

To implement this idea, modify listfaq.xhtml as shown in Listing 7‑8.

 Listing 7‑8. Refreshing the Whole Panel Group in listfaq.xhtml

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX194

<body>

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText}"

 reRender="p" />

</h:form>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}"/>

</h:panelGroup>

</body>

</html>

Now when you run the application, clicking the question will show or hide the
answer using Ajax.

Giving a Rating to a Question
Suppose that you’d like to allow the user to rate the helpfulness of the question (and its
answer). The latest rating is displayed at the end of the question, as shown in Figure 7‑8.
Again, you don’t want to refresh the whole page, but just the question. This is just like
clicking the <a4j:commandLink> to update the answer, except that now you need to process
some user input (the rating).

Clicking the button will

refresh the question.

 Figure 7‑8. Getting and displaying a rating from the user

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 195

To do that, you can use an <a4j:commandButton> as shown in Figure 7‑9. Simply put, an
<a4j:commandButton> is just like an <a4j:commandLink> except that it will render itself as an
HTML button instead of an HTML link.

...
<h:form>
 <a4j:commandLink action="#{faqService.trigger}"
 value="#{faqService.questionText} (#{faqService.rating})" reRender="p"
 id="q" />
</h:form>
<h:form style="float:right">
 <h:inputText size="2" value="#{faqService.rating}"></h:inputText>
 <a4j:commandButton value="Rate" action="#{faqService.rate}"
 reRender="q">
 </a4j:commandButton>
</h:form>

<h:panelGroup id="p">
 <h:outputText value="#{faqService.answerText}" id="a"
 rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

Refresh the

question.

This is just a normal HTML thing to

put the form to the right.
This part is just a literal

expression that will be

output as is.

Literal expression

again.

<commandButton> from the Ajax4Jsf tag lib.

It will put JavaScript into the onclick handler of

the HTML submit button.

 Figure 7‑9. Using <a4j:commandButton>

Modify the FAQService class as shown in Listing 7‑9.

 Listing 7‑9. Maintaining a Rating in FAQService

@Named("faqService")

@SessionScoped

public class FAQService implements Serializable {

 private String questionText = "How to run Eclipse?";

 private String answerText = "Double- click its icon.";

 private boolean isShowingAnswer = false;

 private int rating = 0;

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX196

 public String getQuestionText() {

 return questionText;

 }

 public String getAnswerText() {

 return answerText;

 }

 public String trigger() {

 isShowingAnswer = !isShowingAnswer;

 return null;

 }

 public boolean isShowingAnswer() {

 return isShowingAnswer;

 }

 public String rate() {

 System.out.println("Setting rating to: " + rating);

 return null;

 }

 public int getRating() {

 return rating;

 }

 public void setRating(int rating) {

 this.rating = rating;

 }

}

Now run the application, and you should be able to give a rating to the question.
What if the user enters something invalid such as “abc” as the rating? Then you

should display an error. To do that, as a first attempt, modify listfaq.xhtml as shown in
 Listing 7‑10. Note how to refresh two (or more) components in the reRender attribute:
just list their IDs using a comma as the separator.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 197

 Listing 7‑10. Refreshing Both the Question and the <h:messages>

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:messages id="m"/>

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})" reRender="p"

 id="q" />

</h:form>

<h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"></h:inputText>

 <a4j:commandButton value="Rate" action="#{faqService.rate}"

 reRender="q,m">

 </a4j:commandButton>

</h:form>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

However, this will not work, because if there is no error message, the UI Messages
component will not generate any HTML code at all. It means subsequent Ajax operations
will be unable to find the HTML element to update. To solve this problem, put that UI
Messages component into a panel and update the panel instead (see Listing 7‑11).

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX198

 Listing 7‑11. Putting the <h:messages> Inside a Panel

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:panelGroup id="mp">

 <h:messages id="m"/>

</h:panelGroup>

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})" reRender="p"

 id="q" />

</h:form>

<h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"></h:inputText>

 <a4j:commandButton value="Rate" action="#{faqService.rate}"

 reRender="q,mp">

 </a4j:commandButton>

</h:form>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Now when you run the application and enter some garbage as the rating, it should be
caught as an error.

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 199

Updating the Rating as the User Types
What if you’d like to update the rating as the user types (even using the Rate button)?
You can do it as shown in Figure 7‑10. In summary, the <a4j:support> tag is like the
<a4j:commandLink> tag except that you can specify the name of the JavaScript event to con‑
trol when to trigger the Ajax operation.

...
<h:panelGroup id="mp">
 <h:messages id="m" />
</h:panelGroup>
<h:form>
 <a4j:commandLink action="#{faqService.trigger}"
 value="#{faqService.questionText} (#{faqService.rating})"
 reRender="p" id="q" />
</h:form>
<h:form style="float:right">
 <h:inputText size="2" value="#{faqService.rating}">
 <a4j:support
 event="onkeyup"
 action="#{faqService.rate}"
 reRender="q,mp">
 </a4j:support>
 </h:inputText>
 <a4j:commandButton value="Rate" action="#{faqService.rate}"
 reRender="q,mp">
 </a4j:commandButton>
</h:form>

<h:panelGroup id="p">
 <h:outputText value="#{faqService.answerText}" id="a"
 rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

Whenever a key is up...

Call this action method on the

server side.

Refresh the question and the

message panel.

You don't need the Rate button

anymore.

<a4j:support> will add

JavaScript to the

<input> HTML element

generated by its parent

component.

 Figure 7‑10. Using <a4j:support>

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX200

When you now run the application and type some value as the rating, the value
should appear immediately after the question text.

Using a Dialog Box to Get the Rating
Suppose that you’d like to display a dialog box to get the rating: the user clicks a Rate link,
which pops up a dialog box, and then the user can input the rating (see Figure 7‑11) and
click the Rate button to close the dialog box. Finally, the rating for the question will be
refreshed.

Clicking the link will bring

up this dialog box.

Clicking the button will

close the dialog box and

update the rating.

 Figure 7‑11. Using a dialog box

To do that, modify listfaq.xhtml as shown in Figure 7‑12. Simply put, the
<rich:modalPanel> tag will create a modal panel that is initially hidden on the HTML page.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 201

<!DOCTYPE ...>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:a4j="http://richfaces.org/a4j"
 xmlns:rich="http://richfaces.org/rich">
...
<h:panelGroup id="mp">
 <h:messages id="m" />
</h:panelGroup>
<h:form>
 <a4j:commandLink action="#{faqService.trigger}"
 value="#{faqService.questionText} (#{faqService.rating})"
 reRender="p" id="q" />
</h:form>
<rich:modalPanel id="myDialog">
 <h:form style="float:right">
 <h:inputText size="2" value="#{faqService.rating}"/>
 <a4j:commandButton
 value="Rate"
 action="#{faqService.rate}"
 reRender="q,mp">
 </a4j:commandButton>
 </h:form>
</rich:modalPanel>

<h:panelGroup id="p">
 <h:outputText value="#{faqService.answerText}" id="a"
 rendered="#{faqService.showingAnswer}" />
</h:panelGroup>
</body>
</html>

A dialog box is called a modal panel. Initially,

it is in a hidden state in the HTML page in

the browser.

Everything here will

appear in the modal

panel.

Use a button again.

It is in the "rich" tag lib

in RichFaces.

 Figure 7‑12. Using <rich:modalPanel>

But how do you show the modal panel, and how do you hide it later? This is not done
by Ajax. Instead, it is done using JavaScript (see Listing 7‑12). Note the oncomplete prop‑
erty of <a4j:button>. It specifies a piece of JavaScript that will be executed after the HTML
elements have been updated in the browser. Here, you will hide the modal panel.

 Listing 7‑12. Showing and Hiding a Modal Panel

...

<h:panelGroup id="mp">

 <h:messages id="m" />

</h:panelGroup>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX202

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})"

 reRender="p" id="q" />

 Rate

</h:form>

<rich:modalPanel id="myDialog">

 <h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"/>

 <a4j:button

 value="Rate"

 action="#{faqService.rate}"

 reRender="q,mp"

 oncomplete="Richfaces.hideModalPanel('myDialog')">

 </a4j:button>

 </h:form>

</rich:modalPanel>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

When you run the application now and click the Rate link, it should pop up the
modal panel, and you should be able to enter the rating. However, if the user enters some
garbage and clicks the Rate button, the code will go ahead and close the modal panel and
display the error in the main page. A more proper behavior is to display the error in the
modal panel and not close it. To do that, modify the code as shown in Listing 7‑13. What
you have done is to move the panel group into the modal panel and to check whether
there is no error message (with the JavaScript function called getElementById) before hid‑
ing the modal panel.

 Listing 7‑13. Hiding a Modal Panel Only If There Is No Error

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j"

 xmlns:rich="http://richfaces.org/rich">

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 203

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})"

 reRender="p" id="q" />

 Rate

</h:form>

<rich:modalPanel id="myDialog">

 <h:panelGroup id="mp">

 <h:messages id="m" />

 </h:panelGroup>

 <h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"/>

 <a4j:commandButton

 value="Rate"

 action="#{faqService.rate}"

 reRender="q,mp"

 oncomplete="if (document.getElementById('m')==null)

 Richfaces.hideModalPanel('myDialog')">

 </a4j:commandButton>

 </h:form>

</rich:modalPanel>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Run the application now, and try to input something invalid as the rating. An error
message should be displayed in the modal panel, and the modal panel should remain dis‑
played. Finally, you may want to give the modal panel a title bar so that the user can drag
to move it. This is done by giving it a facet named “header” (Listing 7‑14). In addition, you
may want to set its initial size to a smaller size such as 200 pixels ✕ 140 pixels.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX204

 Listing 7‑14. Giving the Modal Panel a Header and Setting Its Initial Size

...

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})"

 reRender="p" id="q" />

 Rate

</h:form>

<rich:modalPanel id="myDialog" width="200" height="140">

 <f:facet name="header">

 <h:outputText value="Enter a rating"></h:outputText>

 </f:facet>

 <h:panelGroup id="mp">

 <h:messages id="m" />

 </h:panelGroup>

 <h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"/>

 <a4j:commandButton

 value="Rate"

 action="#{faqService.rate}"

 reRender="q,mp"

 oncomplete="if (document.getElementById('m')==null)

 Richfaces.hideModalPanel('myDialog')">

 </a4j:commandButton>

 </h:form>

</rich:modalPanel>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</body>

</html>

Run the application, and you’ll see that the modal panel should have a header and
that it’s the right size.

Setting the Look and Feel with Skins
All RichFaces components support so‑ called skins. For example, a particular skin named
s1 might have been defined as shown in Table 7‑1.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 205

Table 7‑1. Definition of a Skin

Attribute Value
Text font Arial

Text color Blue

Text size 12pt

Background color Yellow

RichFaces comes with several predefined skins. They’re named blueSky, classic,
deepMarine, and so on. To choose which one to use, use web.xml as shown in Listing 7‑15.

 Listing 7‑15. Choosing the Skin to Use

<web-app ...>

 ...

 <context- param>

 <param-name>org.richfaces.SKIN</param- name>

 <param-value>blueSky</param- value>

 </context- param>

 ...

</web-app>

In addition, by default the selected skin is also applied to the input‑ related HTML
elements such as <a> or <input> generated by normal JSF components. However, it is not
applied to others such as . To make sure the whole page uses the skin, group every‑
thing into a <rich:panel> as shown in Listing 7‑16. This way, everything inside that panel
will inherit its CSS styles.

 Listing 7‑16. Grouping Everything into a <rich:panel>

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:rich="http://richfaces.org/rich">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<rich:panel>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/rich

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX206

<h:form>

 <a4j:commandLink action="#{faqService.trigger}"

 value="#{faqService.questionText} (#{faqService.rating})"

 reRender="p" id="q" />

 Rate

</h:form>

<rich:modalPanel id="myDialog" width="200" height="140">

 <f:facet name="header">

 <h:outputText value="Enter a rating"></h:outputText>

 </f:facet>

 <h:panelGroup id="mp">

 <h:messages id="m" />

 </h:panelGroup>

 <h:form style="float:right">

 <h:inputText size="2" value="#{faqService.rating}"/>

 <a4j:commandButton

 value="Rate"

 action="#{faqService.rate}"

 reRender="q,mp"

 oncomplete="if (document.getElementById('m')==null)

 Richfaces.hideModalPanel('myDialog')">

 </a4j:commandButton>

 </h:form>

</rich:modalPanel>

<h:panelGroup id="p">

 <h:outputText value="#{faqService.answerText}" id="a"

 rendered="#{faqService.showingAnswer}" />

</h:panelGroup>

</rich:panel>

</body>

</html>

Displaying Multiple Questions
So far, you’ve simply displayed a single question and answer, but now you’re about to
display multiple questions. However, because the tags for a single question are getting
quite complicated, it is desirable to encapsulate them inside a custom tag/component.
Then listfaq.xhtml can be simplified as shown in Listing 7‑17. It is assumed that q1 is
a Question object containing the question text, answer text, and so on.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 207

 Listing 7‑17. Using a Custom Tag in listfaq.xhtml

<!DOCTYPE ...>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:rich="http://richfaces.org/rich"

 xmlns:foo="http://foo.com">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<rich:panel>

 <foo:qa question="#{faqService.q1}"/>

</rich:panel>

</body>

</html>

To do that, move most of the tags from listfaq.xhtml into qa.xhtml in the src/META- INF
folder, and then modify the code as shown in Listing 7‑18. The main changes are to take
the information from a Question object passed through the question parameter.

 Listing 7‑18. qa.xhtml

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:a4j="http://richfaces.org/a4j"

 xmlns:rich="http://richfaces.org/rich"

 xmlns:ui="http://java.sun.com/jsf/facelets">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/rich
http://foo.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://richfaces.org/a4j
http://richfaces.org/rich
http://java.sun.com/jsf/facelets

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX208

<body>

<ui:component>

<h:form>

 <a4j:commandLink

 action="#{question.trigger}"

 value="#{question.questionText} (#{question.rating})"

 reRender="p" id="q" />

 Rate

</h:form>

<rich:modalPanel id="myDialog" width="200" height="140">

 <f:facet name="header">

 <h:outputText value="Enter a rating"/>

 </f:facet>

 <h:panelGroup id="mp">

 <h:messages id="m" />

 </h:panelGroup>

 <h:form style="float:right">

 <h:inputText size="2" value="#{question.rating}"/>

 <a4j:commandButton

 value="Rate"

 action="#{question.rate}"

 reRender="q,mp"

 oncomplete="if (document.getElementById('m')==null)

 Richfaces.hideModalPanel('myDialog')">

 </a4j:commandButton>

 </h:form>

</rich:modalPanel>

<h:panelGroup id="p">

 <h:outputText id="a"

 value="#{question.answerText}"

 rendered="#{question.showingAnswer}" />

</h:panelGroup>

</ui:component>

</body>

</html>

Next, create the tag lib definition file foo.taglib.xml in the same META- INF folder as
shown in Listing 7‑19.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 209

 Listing 7‑19. foo.taglib.xml

<!DOCTYPE facelet- taglib PUBLIC

 "- //Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

 "http://java.sun.com/dtd/facelet- taglib_1_0.dtd">

<facelet-taglib xmlns="http://java.sun.com/JSF/Facelet" >

 <namespace>http://foo.com</namespace>

 <tag>

 <tag-name>qa</tag- name>

 <source>qa.xhtml</source>

 </tag>

</facelet-taglib>

Create a Question class as shown in Listing 7‑20. It is basically a copy of the FAQService
class except that it has a constructor and is not a web bean (because you should have
multiple Question objects, it makes no sense to make it a web bean).

 Listing 7‑20. Question Class

package faq;

import java.io.Serializable;

public class Question implements Serializable {

 private String questionText;

 private String answerText;

 private boolean isShowingAnswer = false;

 private int rating = 0;

 public Question(String questionText, String answerText) {

 this.questionText = questionText;

 this.answerText = answerText;

 }

 public String getQuestionText() {

 return questionText;

 }

 public String getAnswerText() {

 return answerText;

 }

 public String trigger() {

 isShowingAnswer = !isShowingAnswer;

 return null;

http://java.sun.com/dtd/facelet-�taglib_1_0.dtd
http://java.sun.com/JSF/Facelet
http://foo.com</namespace

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX210

 }

 public boolean isShowingAnswer() {

 return isShowingAnswer;

 }

 public String rate() {

 System.out.println("Setting rating to: " + rating);

 return null;

 }

 public int getRating() {

 return rating;

 }

 public void setRating(int rating) {

 this.rating = rating;

 }

}

Modify FAQService as shown in Listing 7‑21.

 Listing 7‑21. Providing a Single Question Object in FAQService

package faq;

import javax.webbeans.Named;

import javax.webbeans.SessionScoped;

@Named("faqService")

@SessionScoped

public class FAQService implements Serializable {

 private Question q1 = new Question("How to run Eclipse?", "Double- click its

 icon.");

 public Question getQ1() {

 return q1;

 }

}

Go ahead and modify listfaq.xhtml as shown in Listing 7‑17. Then run the applica‑
tion, and it should continue to work.

■Note In Facelets there is a bug preventing *.taglib.xml files in the META- INF folder on the classpath
to be discovered in JBoss. To work around it, put the whole META- INF folder into WebContent and then
explicitly specify the tag lib in web.xml as shown in Listing 7‑22.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 211

 Listing 7‑22. Explicitly Specifying a Tag Lib

<?xml version="1.0" encoding="UTF- 8"?>

<web-app ...>

 ...

 <servlet>

 <servlet-name>JSF</servlet- name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet- class>

 </servlet>

 <servlet- mapping>

 <servlet-name>JSF</servlet- name>

 <url-pattern>/faces/*</url- pattern>

 </servlet- mapping>

 <context- param>

 <param-name>facelets.LIBRARIES</param- name>

 <param-value>/META-INF/foo.taglib.xml</param- value>

 </context- param>

</web-app>

Finally, modify listfaq.xhtml to display multiple questions as shown in Listing 7‑23.

 Listing 7‑23. Using <a4j:repeat> to Loop Through the Questions

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:rich="http://richfaces.org/rich"

 xmlns:a4j="http://richfaces.org/a4j"

 xmlns:foo="http://foo.com">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

<rich:panel>

 <a4j:repeat value="#{faqService.questions}" var="q">

 <foo:qa

 question="#{q}" />

 <p />

 </a4j:repeat>

</rich:panel>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://richfaces.org/rich
http://richfaces.org/a4j
http://foo.com

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX212

The <a4j:repeat> tag is exactly like the <h:dataTable> tag, except that it will loop over
its body while not generating tags like <table>, <tr>, or <td>. Next, modify FAQService to
provide the question list as shown in Listing 7‑24.

 Listing 7‑24. Providing a List of Question Objects in FAQService

package faq;

...

@Named("faqService")

@SessionScoped

public class FAQService implements Serializable {

 private List<Question> questions;

 public FAQService() {

 questions = new ArrayList<Question>();

 questions.add(new Question("How to run Eclipse?", "Double- click its

 icon."));

 questions.add(new Question("How to auto- complete?", "Press Ctrl-

Space."));

 questions.add(new Question("How to delete a file?", "Press Del."));

 }

 public List<Question> getQuestions() {

 return questions;

 }

}

When you run the application now, it should display all three questions.

■Note Currently there is a bug in the JSF reference implementation preventing a form from working if it is
in a loop.

Summary
In this chapter, you learned how to build pages with Ajax. Ajax means that when a certain
event occurs in the browser, a request is sent to the application so that it can perform
some action and then only parts of a page are refreshed. You can use an <a4j:commandLink>
for a link, an <a4j:commandButton> for a button, or an <a4j:support> for any other events.
In these tags, you also specify an action method to execute in the application and a list of
component IDs that are to be refreshed.

Chapter 7 ■ BUILDING INteraCtIVe paGeS WIth aJaX 213

A component can be excluded from rendering. In that case, it will generate noth‑
ing. If you need to show it using Ajax, you can put it inside a panel and refresh that panel
instead. Similarly, some components such as the UI Messages component may output
nothing in normal use. To update them using Ajax, put them inside a panel.

In addition, you learned how to show or hide a modal panel using JavaScript.
You also learned about skins in this chapter. A skin defines a look and feel including

the font family, font size, color, and so on. All RichFaces components support skins. The
selected skin by default will also cover HTML code generated by normal JSF components.

215

C h a p t e r 8

Using Conversations

In the previous chapters, you learned how to use web beans to maintain states for
a request (request scope), for a user (session scope), or for the whole application (applica‑
tion scope). In this chapter, you’ll learn how to use a very powerful type of scope provided
by web beans: conversation scope. It allows you to maintain a different state on the server
for a browser window.

Creating a Wizard to Submit Support Tickets
Suppose you’d like to develop a wizard that allows the user to submit a support ticket, as
shown in Figure 8‑1. That is, the user enters her customer ID at step 1 and enters the prob‑
lem description at step 2. After submitting the ticket, a “Thank you!” page is displayed.
What is interesting is that the user can use the Next button and Back button to go back and
forth between the pages.

Chapter 8 ■ USING CONVerSatIONS216

 Figure 8‑1. Submitting a ticket using a wizard interface

To start building this wizard, create a new dynamic web project named Wizard. Then
create a Ticket class in the wizard package, as shown in Listing 8‑1. Note that it is in the
session scope so that it will be available across the two wizard steps.

 Listing 8‑1. Ticket Class

package wizard;

import java.io.Serializable;

import javax.annotation.Named;

import javax.context.SessionScoped;

@Named("ticket")

@SessionScoped

public class Ticket implements Serializable {

 private String customerId;

 private String problemDesc;

Chapter 8 ■ USING CONVerSatIONS 217

 public String getCustomerId() {

 return customerId;

 }

 public void setCustomerId(String customerId) {

 this.customerId = customerId;

 }

 public String getProblemDesc() {

 return problemDesc;

 }

 public void setProblemDesc(String problemDesc) {

 this.problemDesc = problemDesc;

 }

}

Create the step1.xhtml, step2.xhtml, and thankyou.xhtml files in the WebContent folder,
as shown in Listing 8‑2, Listing 8‑3, and Listing 8‑4, respectively. There is nothing special
about them except the <h:inputTextarea> tag used in step2.xhtml. The <h:inputTextarea>
tag is exactly like the <h:inputText> tag except that it will generate an HTML input text
area so that the user can enter multiple lines of text.

 Listing 8‑2. step1.xhtml

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Step 1:

<h:form>

 Customer id: <h:inputText value="#{ticket.customerId}"/>

 <h:commandButton value="Next" action="next"/>

</h:form>

</body>

</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 8 ■ USING CONVerSatIONS218

 Listing 8‑3. step2.xhtml

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Step 2:

<h:form>

 Description: <h:inputTextarea value="#{ticket.problemDesc}"/>

 <h:commandButton value="Back" action="back"/>

 <h:commandButton value="Finish" action="finish"/>

</h:form>

</body>

</html>

 Listing 8‑4. thankyou.xhtml

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Thank you!

</body>

</html>

Define the navigation rules in faces- config.xml, as shown in Listing 8‑5.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 8 ■ USING CONVerSatIONS 219

 Listing 8‑5. Navigation Rules for the Wizard

<faces-config ...>

 <navigation- rule>

 <from-view-id>/step1.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>next</from- outcome>

 <to-view-id>/step2.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/step2.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>back</from- outcome>

 <to-view-id>/step1.xhtml</to-view- id>

 </navigation- case>

 <navigation- case>

 <from-outcome>finish</from- outcome>

 <to-view-id>/thankyou.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Now, start the JBoss instance, and try to access http://localhost:8080/Wizard/faces/
step1.xhtml in the browser. It should allow you to input the ticket, and the Next and Back
buttons should work.

Interference Between Browser Windows
Now, let’s run an experiment. Enter c1 as the customer ID, and then go to step 2. Then
open a new browser tab, and display step 1. You’ll see “c1” displayed as the customer ID.
This means the two browser windows are working on the same ticket object. This is no
good, because the application won’t allow a customer to work on two or more tickets at
the same time.

Assuming that you should really allow customers to work on multiple tickets at the
same time, you need to know about something called a conversation. Whenever a request
arrives, Web Beans will allocate a web beans table in the session for the browser win‑
dow (see Figure 8‑2). This table is the conversation. Such a conversation will be ended
(destroyed) automatically after the response is rendered.

http://localhost:8080/Wizard/faces/

Chapter 8 ■ USING CONVerSatIONS220

Web Beans creates a conversation.

A request arrives. It is later handled

and a response is rendered.

Web Beans ends the conversation

automatically.

Time

Name Object

... ...

... ...

Session

Conversation

 Figure 8‑2. A conversation

Such a transient conversation is not that useful because it is so short‑ lived; what you
put into it is just like those request‑ scoped web beans. However, before the response is
generated, if you tell web beans to turn the conversation into a long‑ running one, it will
hang in there until when, maybe many requests later, you turn it back into a transient
one; then it will be destroyed at the end of the request (see Figure 8‑3).

Request 1

Web Beans ends the conversation

automatically.

Time

Name Object

... ...

... ...

Session

Conversation

Request 2

Request n

...

Turn it into long-running.

Turn it back into transient.

Web Beans creates a conversation.

 Figure 8‑3. Making a conversation long- running

Chapter 8 ■ USING CONVerSatIONS 221

The interesting thing about conversations is that if in the middle of the (long‑ running)
conversation you open a new browser tab and access the application, a new conversation
will be created, and the two conversations will not interfere with each other (see Figure 8‑4).

Name Object

... ...

... ...

Session

Conversation 1

Name Object

... ...

... ...

Conversation 2

Tab 1 Tab 2

 Figure 8‑4. Each tab having a different conversation

To implement this idea, you need to put the ticket into the conversation scope, as
shown in Listing 8‑6. Because a conversation is still stored in the session, the ticket still
needs to implement Serializable.

 Listing 8‑6. Putting the Ticket into the Conversation Scope

package wizard;

import java.io.Serializable;

import javax.annotation.Named;

import javax.context.ConversationScoped;

@Named("ticket")

@ConversationScoped

public class Ticket implements Serializable {

 private String customerId;

 private String problemDesc;

 public String getCustomerId() {

 return customerId;

 }

 public void setCustomerId(String customerId) {

 this.customerId = customerId;

 }

 public String getProblemDesc() {

 return problemDesc;

Chapter 8 ■ USING CONVerSatIONS222

 }

 public void setProblemDesc(String problemDesc) {

 this.problemDesc = problemDesc;

 }

}

Next, you need to consider when to turn the conversation into a long‑ running one.
You can do this when the user clicks the Next button at step 1. After that, the ticket will be
available across multiple requests. To do that, modify step1.xhtml as shown in Listing 8‑7.

 Listing 8‑7. Invoking a Java Method When Clicking Next

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Step 1:

<h:form>

 Customer id: <h:inputText value="#{ticket.customerId}"/>

 <h:commandButton value="Next" action="#{step1.next}"/>

</h:form>

</body>

</html>

Create a Step1 class in the wizard package to provide the next() method, as shown in
 Listing 8‑8.

 Listing 8‑8. Step1 Class

package wizard;

import javax.annotation.Named;

import javax.context.RequestScoped;

@Named("step1")

@RequestScoped

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 8 ■ USING CONVerSatIONS 223

public class Step1 {

 public String next() {

 //TURN THE CONVERSATION INTO LONG- RUNNING;

 return "next";

 }

}

To turn the conversation into a long‑ running one, modify the Step1 class as shown
in Listing 8‑9. First you inject the conversation object (as described in Chapter 4), and
then you call begin() on it. begin() is actually a misnomer because the conversation has
already begun; what this method does is turn the conversation into a long‑ running one.

 Listing 8‑9. Turning a Conversation into a Long- Running One

package wizard;

import javax.annotation.Named;

import javax.context.RequestScoped;

import javax.context.Conversation;

import javax.inject.Current;

@Named("step1")

@RequestScoped

public class Step1 {

 @Current

 private Conversation c;

 public String next() {

 c.begin();

 return "next";

 }

}

Next, you need to consider when to turn the conversation back into transient. You
can do this when the user clicks the Finish button at step 2. After that, the ticket will be
destroyed along with the conversation at the end of the request. To do that, modify step2.
xhtml as shown in Listing 8‑10.

Chapter 8 ■ USING CONVerSatIONS224

 Listing 8‑10. Invoking a Java Method When Clicking Finish

<?xml version="1.0" encoding="UTF- 8" ?>

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1- strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

<head>

<meta http-equiv="Content- Type" content="text/html; charset=UTF- 8" />

<title>Insert title here</title>

</head>

<body>

Step 2:

<h:form>

 Description: <h:inputTextarea value="#{ticket.problemDesc}"/>

 <h:commandButton value="Back" action="back"/>

 <h:commandButton value="Finish" action="#{step2.finish}"/>

</h:form>

</body>

</html>

Create a Step2 class in the wizard package in order to provide the finish() method,
as shown in Listing 8‑11. The critical part is the call to the end() method on the conversa‑
tion object, which will turn the conversation into transient. Another point to note is that
instead of really submitting the ticket (to a database, for example), you simply print its
content to the console.

 Listing 8‑11. Step2 Class

package wizard;

import javax.annotation.Named;

import javax.context.Conversation;

import javax.context.RequestScoped;

import javax.inject.Current;

@Named("step2")

@RequestScoped

http://www.w3.org/TR/xhtml1/DTD/xhtml1-�strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 8 ■ USING CONVerSatIONS 225

public class Step2 {

 @Current

 private Conversation c;

 @Current

 private Ticket ticket;

 public String finish() {

 submit(ticket);

 c.end();

 return "finish";

 }

 private void submit(Ticket ticket) {

 System.out.println(ticket.getCustomerId());

 System.out.println(ticket.getProblemDesc());

 }

}

Now, when you run the application again, try to submit two tickets simultaneously in
two browser tabs. The two tickets will not interfere with each other.

URL Mismatched?
If you’re careful, you may have noticed that after clicking Next at step 1, step 2 is indeed
displayed, but the URL is still pointing to step 1. Why? When you first enter the URL to
step1.xhtml and press Enter (see Figure 8‑5), a request is sent, and step1.xhtml will gener‑
ate a response. So, you see step 1 in the browser window. But what is the action attribute
of the HTML form? If the user clicks the Next button, you’ll definitely want the original
component tree of step 1 to handle the form submission so that, for example, the various
UI Input components can update their web beans using the user input in the request.
Therefore, the action attribute should still point to step1.xhtml, which is indeed what
is done by the UI Form component. That is, it will set the action attribute to invoke the
 then‑ current page. Now, when the user clicks the Next button, the browser will copy that
action attribute (for step1.xhtml) into the location URL and then send the request to the
step1.xhtml for handling. step1.xhtml will handle it and then pass the rendering (through
the JSF navigation system) to step2.xhtml. As a result, you’ll see the step 2 in the browser
window, but the location URL is still for step1.xhtml.

Chapter 8 ■ USING CONVerSatIONS226

step1.xhtml

Request

.../step1.xhtml

1: The user enters the URL and

press Enter.

4: The user clicks the Next button.

Browser

Browser

2: Request is sent.

3: Response is sent.

UI Form

UI Command

Step 1

Next
step1.xhtml

UI Form

UI Command

step2.xhtml

7: Response is sent.

6: Navigate to step2.xhtml.

<form

 action=".../step1.xhtml"

 ...>

.../step1.xhtml

5: The action URL is copied to the

location bar.

Browser

Step 2

Next Finish

 Figure 8‑5. Why URL and content are mismatched

This is quite confusing to the user. In addition, if the user tries to reload/refresh the
page, the browser will try to submit the form to step1.xhtml again. This is probably not
what she wants. Instead, all she wants maybe is to reload step2.xhtml.

Can these problems be fixed? Yes. You can tell the JSF navigation system to send
 a so‑ called redirect response to the browser (see Figure 8‑6). Usually a response contains
HTML to be displayed in the browser, but a redirect response is different; it doesn’t con‑
tain any HTML code. Instead, it simply contains a URL. In this case, it contains the URL
for step2.xhtml and tells the browser to go there. The browser will then update the URL
in the location bar for step2.xhtml and send a request for step2.xhtml. Finally, step2.xhtml
will generate a response, so you’ll see step 2 in the browser window and in the location bar.

Chapter 8 ■ USING CONVerSatIONS 227

1: The user clicks the Next button.

Browser

Step 1

Next
step1.xhtml

UI Form

UI Command

step2.xhtml

6: Response is sent.

URL: .../step2.xhtml

<form

 action=".../step1.xhtml"

 ...>

.../step1.xhtml

2: The action URL is copied to the

location bar.

Browser

.../step2.xhtml

Browser

Step 2

Next Finish

4: Change the URL to that for

step2.xhtml.

Request

5: Request for

step2.xhtml

Redirect

3: Return a redirect response.

 Figure 8‑6. Redirect response

When applying this technique (“redirect after post”), a very important requirement is
that step2.xhtml needs to still have access to its data for rendering. If the data were in the
request scope, it would have been gone because a new request was triggered by the redi‑
rect response. However, because you’re using the conversation scope, the data (the
ticket) will still be there.

To tell step1.xhtml to send a redirect for step2.xhtml, all you need to do is modify the
navigation case as shown in Listing 8‑12.

 Listing 8‑12. Using Redirect in Navigation Case

<faces-config ...>

 <navigation- rule>

 <from-view-id>/step1.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>next</from- outcome>

Chapter 8 ■ USING CONVerSatIONS228

 <to-view-id>/step2.xhtml</to-view- id>

 <redirect/>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/step2.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>back</from- outcome>

 <to-view-id>/step1.xhtml</to-view- id>

 </navigation- case>

 <navigation- case>

 <from-outcome>finish</from- outcome>

 <to-view-id>/thankyou.xhtml</to-view- id>

 </navigation- case>

 </navigation- rule>

</faces-config>

Restart the application, and run it again. Go to step 2, and observe that the URL
should also be showing step2.xhtml.

■Note In Web Beans beta 1, there is a bug preventing a long- running conversation from spanning across
a redirect response.

Similarly, you can apply the same technique for the Back button and the Finish but‑
ton, as shown in Listing 8‑13.

 Listing 8‑13. Using Redirect for Other Buttons

<faces-config ...>

 <navigation- rule>

 <from-view-id>/step1.xhtml</from-view- id>

 <navigation- case>

 <from-outcome>next</from- outcome>

 <to-view-id>/step2.xhtml</to-view- id>

 <redirect/>

 </navigation- case>

 </navigation- rule>

 <navigation- rule>

 <from-view-id>/step2.xhtml</from-view- id>

 <navigation- case>

Chapter 8 ■ USING CONVerSatIONS 229

 <from-outcome>back</from- outcome>

 <to-view-id>/step1.xhtml</to-view- id>

 <redirect/>

 </navigation- case>

 <navigation- case>

 <from-outcome>finish</from- outcome>

 <to-view-id>/thankyou.xhtml</to-view- id>

 <redirect/>

 </navigation- case>

 </navigation- rule>

</faces-config>

</faces-config>

Run the application again, and the URL should change correctly with each button
click.

Summary
Web Beans provides a very powerful scope: conversation scope. As you learned in this
chapter, a conversation is a table in the session for a given browser tab/window. You can
make a conversation long‑ running and later turn it back into Java code. During its life‑
time, all conversation‑ scoped web beans will remain available across different requests.

To render the next page, you can choose between a simple render or a redirect. A redi‑
rect will show the new URL in the browser and will work fine with the Reload/Refresh button.
To allow a redirect, if one page needs to pass a web bean to the next page, it should be in the
conversation scope.

231

C h a p t e r 9

Supporting Other Languages

In this chapter, you’ll learn how to develop an application that can appear in two or
more different languages to suit users in different countries.

Displaying the Current Date and Time
Suppose that you have an application that displays the current date and time, as shown
in Figure 9-1.

Figure 9-1. Displaying the current date and time

To do that, create a new dynamic web project as usual named MultiLang. Then create
a showdate.xhtml file, as shown in Listing 9-1.

Listing 9-1. showdate.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<?xml version="1.0" encoding="UTF-8" ?>

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html

Chapter 9 ■ SUppOrtING Other LaNGUaGeS232

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Current date</title>

</head>

<body>

Today is: <h:outputText value="#{showDate.today}"/>.

</body>

</html>

Create the ShowDate class in the multilang package, and create a web bean from it, as
shown in Listing 9-2.

Listing 9-2. ShowDate Class

package multilang;

...

import java.util.Date;

@Named("showDate")

@RequestScoped

public class ShowDate {

 public Date getToday() {

 return new Date();

 }

}

Start the JBoss instance, and try to access http://localhost:8080/MultiLang/faces/
showdate.xhtml in the browser. It should display the current date and time correctly. (Note
that your application may display the date differently than in Figure 9-1, because this
depends on the default language configured on your computer.)

Supporting Chinese
Suppose that some of your users are Chinese. They would like to see the application in
Chinese when they run the application. To do that, create a file called msgs.properties
(the file name is not really important as long as it ends with .properties) in the multilang
package, as shown in Listing 9-3.

Listing 9-3. Providing Text Messages in a .properties File

currentDate=Current date

todayIs=Today is:

http://localhost:8080/MultiLang/faces/

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 233

To support Chinese, create another file, called msgs_zh.properties. The zh part repre-
sents Chinese. Usually people use the Big5 encoding to encode Chinese. However, Java
requires that such files be in a special encoding called escaped Unicode encoding. For
example, the Chinese equivalent of “Current date” consists of four Unicode characters, as
shown in Figure 9-2. The figure also shows their Unicode values (hexadecimal). The prop-
erties file should be written as their Unicode values.

0x7576 0x524D 0x65E5 0x671F

currentDate=\u7576\u524d\u65e5\u671f
todayIs=...

Figure 9-2. Characters written as their Unicode values

Obviously, this is not very convenient when you have lots of strings to encode. Fortu-
nately, there is a free properties file editor available for Eclipse that allows you to type in
the text while it saves the text in the escaped Unicode encoding automatically. To install
this editor, select Help ➤ Software Updates in Eclipse, choose the Available Software tab,
click Add Site, and enter http://propedit.sourceforge.jp/eclipse/updates as the location.
Choose the Properties Editor, and click Install to start the installation.

To use it, right-click the msgs_zh.properties file, and choose Open With ➤ Propert-
iesEditor. For those readers who don’t know how to input Chinese, you can simply type
some random text and pretend it’s Chinese. Listing 9-4 shows the authentic Chinese text
messages as would be displayed by the Properties Editor.

Listing 9-4. Chinese Text Messages That Would Be Displayed by the Properties Editor

currentDate=當前日期
todayIs=今日是：

To make use of the .properties files, modify showdate.xhtml as shown in Figure 9-3.
That is, the <f:loadBundle> tag will create a UI Load Bundle component. When the UI View
Root component asks the UI Load Bundle component to render, instead of generating
HTML code, it will find out the preferred language as set in the HTTP request (suppose that
it is zh). Then, because the basename attribute in the tag specified is multilang.msgs, it will go
into the multilang folder on the classpath and look for the file msgs_<language>.properties,

http://propedit.sourceforge.jp/eclipse/updates

Chapter 9 ■ SUppOrtING Other LaNGUaGeS234

which is msgs_zh.properties in this case. Then it will load the text messages into a resource
bundle. Finally, as specified by the var attribute in the tag, it will store that resource bundle
into a request-scoped attribute named b.

View Root

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">
<head>
<f:loadBundle basename="multilang.msgs" var="b" />
<title>Current date</title>
</head>
<body>
Today is: <h:outputText .../>.
</body>
</html>

UI Load

Bundle

1: Create this UI Load

Bundle component.

2: Render.

Name Object

b

... ...

Attribute Table for the Request

WEB- NF

classes

multilang

ShowDate.class

msgsproperties

msgs_zh.properties

4: Go into the multilang

folder on the classpath and

then look for the file

msgs_zh.properties.

Language: zh

HTTP Request

3: What is the preferred

language?

Key String

currentDate

todayIs

5: Load the text

messages into a

resource

bundle.

6: Put the resource

bundle into an attribute

in the request scope.

The attribute name is

"b" as specified.

Figure 9-3. Loading a .properties file into a resource bundle

To read messages from the resource bundle, access it like a map, as shown in Listing 9-5.

Listing 9-5. Changes to web.xml in Order to Use RichFaces

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 235

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b['currentDate']}"/>

</title>

</head>

<body>

<h:outputText value="#{b['todayIs']}"/>

<h:outputText value="#{showDate.today}"/>.

</body>

</html>

When you run the application, it should display the current date and time in English.
How do you make the page use the Chinese version of the resource bundle

(msgs_zh.properties)? For example, in Firefox, choose Tools ➤ Options ➤ Content, add
Chinese, and move it to the top. However, that is still not enough: JSF will screen the
preferred language as set in the HTTP request to see whether it is supported by your
application (see Figure 9-4). For example, in the figure, if the preferred language set
in the HTTP request were en or zh, then it would be supported and used. However, if
it were, say, de (German), then it would not be supported, and the default language
would be used (en here). No matter which case it is, the language chosen to be used
will be stored into the UI View Root. The UI Load Bundle will consult the UI View
Root instead of the HTTP request for the language.

Language: zh

HTTP Request

Default: en

Supported:zh

Supported: fr

Supported

by the

application? Yes

Use it.

Use the default (en).
No

View Root

Store the language

into the view root.

UI Load

Bundle

Language: zh

Read the

language.

Figure 9-4. JSF screening the preferred language

To specify the default language and supported languages, modify faces-config.xml as
shown in Listing 9-6. Here, you are supporting both English and Chinese with English as
the default.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS236

Listing 9-6. Listing the Supported and Default Language in faces-config.xml

<faces-config ...>

 <application>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>zh</supported-locale>

 </locale-config>

 </application>

</faces-config>

Save the file, restart the JBoss instance, and then reload the page. You should see the
Chinese version. If you don’t see the Chinese characters, make sure your computer has
a font that supports Chinese. For example, log in as the administrator, open the Control
Panel, choose Regional Settings, and ensure that traditional Chinese support is enabled.

You may be wondering what happens when the preferred language is en and there is
no msgs_en.properties file, as is the case in our example. You might think the request will
get past the JSF screening and that the UI Load Bundle component will try to load the
msgs_en.properties file and fail miserably because that file doesn’t exist.

To understand how it works, first consider the case when the preferred language is
zh. In that case, it will load msgs_zh.properties and then use msgs.properties as the parent
resource bundle (see Figure 9-5). When a child resource bundle is looked up for a key but
it is not found, the child will look for it in the parent.

Key String

currentDate

todayIs

1: Look up the key

"foo."

msgs_zh.properties

Key String

Current date

Today is:

currentDate

todayIs

msgs.properties

2: Not found, look it

up in the parent.

Figure 9-5. Parent-child relationship between resource bundles

Now, consider the case when the preferred language is en. In that case, it tries to load
msgs_en.properties, but it is not found (see Figure 9-6). Then you can consider it will use
the nonexistent msgs_en.properties as the child resource bundle, and effectively only the
parent resource bundle will be used.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 237

msgs_en.properties

Key String

Current date

Today is:

currentDate

todayIs

msgs.properties

Parent

NON-EXISTENT

Figure 9-6. A nonexistent child resource bundle

Anyway, now you have internationalized this page (let it use a resource bundle) and
localized it to Chinese (provided msgs_zh.properties). If in the future you need to add sup-
port for, say, French, you will not need to internationalize it again but just need to localize
it to French (provide msgs_fr.properties).

Easier Way to Access Map Elements
Before moving on, let’s introduce an easier way to access a map element if the key is a lit-
eral string. Instead of writing b['currentDate'], you could write b.currentDate. After failing
to find the getCurrentDate() method on the b object, it will try to perform a map lookup or
a resource bundle lookup. Therefore, showdate.xhtml can be slightly simplified, as shown
in Listing 9-7.

Listing 9-7. Accessing Map Elements Using the Dot Notation

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b.currentDate}"/>

</title>

</head>

<body>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 9 ■ SUppOrtING Other LaNGUaGeS238

<h:outputText value="#{b.todayIs}"/>

<h:outputText value="#{showDate.today}"/>.

</body>

</html>

Internationalizing the Date Display
For the moment, the current date and time is still displayed in the default language
of your OS account (probably English). To solve the problem, modify showdate.xhtml
as shown in Listing 9-8. It shows that not only can UI Input components take a con-
verter (see Chapter 2 for a review on converters) but that UI Output components can
do that too. While the former will use a converter for both rendering and handling form
submissions, the latter will use it only for rendering. Without a converter, a UI Output
component will simply call toString() on the value to convert it to a string. With a con-
verter, it will be used to do the conversion. But more important, the date-time converter
will use the language code stored in the UI View Root to format the Date object. Setting
the date style to long is not really required; it is done so that you can see Chinese charac-
ters in the date display.

Listing 9-8. Specifying a Language-Aware Converter for a UI Output Component

...

<body>

<h:outputText value="#{b.todayIs}"/>

<h:outputText value="#{showDate.today}">

 <f:convertDateTime dateStyle="long"/>

</h:outputText>.

</body>

</html>

Run the application, and it should display the current date in Chinese. If you change
the preferred language to English in the browser and refresh the page, the current date
should appear in English.

Letting the User Change the Language Used
Suppose that a user is using a browser that prefers Chinese but he would like to show the
application to his friend who doesn’t understand Chinese but understands English. To
support this, you should enhance the application to allow the user to explicitly choose the
language, as shown in Figure 9-7.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 239

Clicking the button

will change the

language used.

Figure 9-7. Letting the user change the language used

To do that, modify showdate.xhtml as shown in Listing 9-9.

Listing 9-9. Letting the User Choose the Language in a Form

...

<body>

<h:outputText value="#{b.todayIs}"/>

<h:outputText value="#{showDate.today}">

 <f:convertDateTime dateStyle="long"/>

</h:outputText>.

<h:form>

 <h:selectOneMenu value="#{showDate.langCode}">

 <f:selectItems value="#{showDate.langCodes}"/>

 </h:selectOneMenu>

 <h:commandButton action="#{showDate.changeLangCode}" value="Change"/>

</h:form>

</body>

Define the properties required in the ShowDate class as in Listing 9-10. Note how you
get the default language and the supported language from the JSF Application object.
What you get is not a language code, but a Locale object. A Locale object contains a lan-
guage code (such as en or zh) and optionally a country code (such as US, UK, or CN). Even
though a Locale object is not a string, you can call toString() on it to convert it to a string
of the pattern <LANGUAGE_CODE>_<COUNTRY CODE>, such as en_US or zh (if the country code is
not specified).

Listing 9-10. Letting the User Choose the Language in a Form

package multilang;

import java.util.ArrayList;

Chapter 9 ■ SUppOrtING Other LaNGUaGeS240

import java.util.Iterator;

import java.util.List;

import java.util.Locale;

import javax.faces.application.Application;

import javax.faces.context.FacesContext;

import javax.faces.model.SelectItem;

...

@Named("showDate")

@RequestScoped

public class ShowDate {

 private String langCode;

 public String getLangCode() {

 return langCode;

 }

 public void setLangCode(String langCode) {

 this.langCode = langCode;

 }

 public List<SelectItem> getLangCodes() {

 List<SelectItem> items = new ArrayList<SelectItem>();

 Application app = FacesContext.getCurrentInstance().getApplication();

 Locale locale = app.getDefaultLocale();

 items.add(new SelectItem(locale.toString()));

 Iterator<Locale> iter = app.getSupportedLocales();

 while (iter.hasNext()) {

 locale = iter.next();

 items.add(new SelectItem(locale.toString()));

 }

 return items;

 }

 public Date getToday() {

 return new Date();

 }

}

Define the action method as shown in Listing 9-11. The critical part is creating the
Locale object from the language code and then setting it into the UI View Root. Finally, it
returns null so that the current page is redisplayed.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 241

Listing 9-11. Changing the Locale in the UI View Root

public class ShowDate {

 private String langCode;

 public String getLangCode() {

 return langCode;

 }

 public void setLangCode(String langCode) {

 this.langCode = langCode;

 }

 public List<SelectItem> getLangCodes() {

 ...

 }

 public String changeLangCode() {

 UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();

 viewRoot.setLocale(new Locale(langCode));

 return null;

 }

 public Date getToday() {

 return new Date();

 }

}

Run the application, and try to change the language; it should appear in the chosen
language. However, it is displaying the language codes such as en and zh in the combo
box, which aren’t that user-friendly. Instead, you probably want to display “English” and
“中文” (the word “Chinese” as displayed in Chinese) in the combo box. To do that, modify
the ShowDate class as in Listing 9-12. The critical part is the getDisplayName() method that
returns the name of the locale suitable for display (for example, “English” or “Chinese”).
If you specify a locale, it will return the name of the language in that locale (for example,
“中文” if the locale is Chinese).

Listing 9-12. Getting the Display Name of the Language

...

public class ShowDate {

 ...

 public List<SelectItem> getLangCodes() {

 List<SelectItem> items = new ArrayList<SelectItem>();

 Application app = FacesContext.getCurrentInstance().getApplication();

Chapter 9 ■ SUppOrtING Other LaNGUaGeS242

 Locale locale = app.getDefaultLocale();

 String display = locale.getDisplayName(locale);

 items.add(new SelectItem(locale.toString(), display));

 Iterator<Locale> iter = app.getSupportedLocales();

 while (iter.hasNext()) {

 locale = iter.next();

 display = locale.getDisplayName(locale);

 items.add(new SelectItem(locale.toString(), display));

 }

 return items;

 }

}

Run the application again, and the language names will be displayed in the combo
box. Finally, the Change button should also be internationalized and localized. That’s
easy. Just modify showdate.xhtml as shown in Listing 9-13.

Listing 9-13. Getting the Display Name of the Locale

...

<body>

<h:outputText value="#{b.todayIs}"/>

<h:outputText value="#{showDate.today}">

 <f:convertDateTime dateStyle="long"/>

</h:outputText>.

<h:form>

 <h:selectOneMenu value="#{showDate.langCode}">

 <f:selectItems value="#{showDate.langCodes}"/>

 </h:selectOneMenu>

 <h:commandButton action="#{showDate.changeLangCode}"

 value="#{b.change}"/>

</h:form>

</body>

</html>

Define the entry in the resource bundles as shown in Listing 9-14 and Listing 9-15.

Listing 9-14. Entry for the Change Button in msgs.properties

currentDate=Current date

todayIs=Today is:

change=Change

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 243

Listing 9-15. Entry for the Change Button in msgs_zh.properties

currentDate=當前日期
todayIs=今日是：
change=變更

Now run the application, and the Change button will appear in the correct language.

Localizing the Full Stop
There is still a minor issue here. The full stop used at the end of the sentence so far is the
English one, not the Chinese one (yes, there is a Chinese full stop). To solve this problem,
you could add a new entry to your properties files for the full stop, but then you would be
outputting the sentence in three separate parts, as shown in Figure 9-8.

Today is: March 8, 2009.

Part 1 Part 2 Part 3

Figure 9-8. Outputting a sentence in three separate parts

This is getting too complicated; more important, you’re hard-coding the order of
these parts and whether or not there is a space between them in showdate.xhtml, while
in fact these should depend on the language. For example, in English there should be a
space after the colon, but in Chinese there should be none. To solve this problem, you
should adopt the best practice of outputting the whole sentence in one UI Output com-
ponent, not two or three. To do that, modify the resource bundles as shown in Listing
9-16 and Listing 9-17. You will fill in the placeholder {0} later.

Listing 9-16. Using a Single Entry for the Whole Sentence in msgs.properties

currentDate=Current date

todayIs=Today is: {0}.

change=Change

Listing 9-17. Using a Single Entry for the Whole Sentence in msgs_zh.properties

currentDate=當前日期
todayIs=今日是：{0}.

change=變更

Chapter 9 ■ SUppOrtING Other LaNGUaGeS244

To output the whole sentence while filling out the {0} placeholder, modify showdate.
xhtml as shown in Listing 9-18.

Listing 9-18. Outputting the Whole Sentence with the <h:outputFormat> Tag

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b.currentDate}"/>

</title>

</head>

<body>

<h:outputFormat value="#{b.todayIs}">

 <f:param value="#{showDate.today}"/>

</h:outputFormat>

<h:form>

 <h:selectOneMenu value="#{showDate.langCode}">

 <f:selectItems value="#{showDate.langCodes}"/>

 </h:selectOneMenu>

 <h:commandButton action="#{showDate.changeLangCode}" value="#{b.change}"/>

</h:form>

</body>

</html>

As shown in Figure 9-9, the <h:outputFormat> tag will create a UI Output component
(just like the <h:outputText> tag does) but will associate it with a format renderer. The
<f:param> will create a UI Parameter component and add it as a child of the UI Output
component. The UI Parameter component by itself has no meaning at all. It is entirely up
to the parent component (the UI Output component here) how to make use of it. Here, the
UI Output component will let the format renderer do the work, which will use the value of
the UI Output component as a format pattern. Then it will find out the value of the 0th UI
Parameter component and substitute it for the {0} placeholder in the pattern. Of course,
if you had more than one placeholder, you would use {0}, {1}, and so on, in the pattern.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 245

...
<h:outputFormat value="#{b.todayIs}">
 <f:param value="#{showDate.today}"/>
</h:outputFormat>

1: Read the value of

the 0th parameter.

UI Output

Format

Renderer

value: "Today is: {0}."

UI

Parameter

value: Date

2: Put that

value into the

format

pattern.

Figure 9-9. How <h:outputFormat> and <f:param> work

Now when you run the application, the sentence, including the full stop, should appear
just fine. However, the date display is no longer in the long style. To fix it, specify the format
and style in the placeholder as shown in Listing 9-19 and Listing 9-20.

Listing 9-19. Specifying the Format and Style for {0} in msgs.properties

currentDate=Current date

todayIs=Today is: {0, date, long}.

change=Change

Listing 9-20. Specifying the Format and Style for {0} in msgs_zh.properties

currentDate=當前日期
todayIs=今日是：{0, date, long}.

change=變更

Now when you run the application, the date should appear in the long style. Table 9-1
shows some more examples for date, time, and currency.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS246

Table 9-1. Different Formats and Styles

Placeholder Meaning
{0, date, short} Format it as a date using the short style.

{0, date, full} Format it as a date using the full style.

{0, time, short} Format it as a time using the short style.

{0, time, long} Format it as a time using the long style.

{0, number, currency} Format it as a number using the currency style.

{0, number, integer} Format it as a number using the integer style.

Displaying a Logo
Now, suppose that you’d like to display a logo on the page, as shown in Figure 9-10.

Figure 9-10. Using a logo

Note the character “4” in the logo, meaning “for” in this case. In Chinese, “4” doesn’t
mean “for” or “four” at all. In fact, it is pronounced just like the word death in Chinese, so
people tend to avoid it in names. So, say you’d like to have a Chinese version of the logo.
Suppose that you have the English version in the file logo_en.gif and the Chinese version
in logo_zh.gif. (You can use any image files; how the images look is not really important
as long as they look different from each other.)

First, put them in the WebContent folder. Then, modify showdate.xhtml as shown in
Listing 9-21. The <h:graphicImage> tag will create a UI Graphic component, which will
generate an HTML tag on render. If the value attribute starts with a slash (as is
the case now), it will be treated as a relative path from the WebContent folder. Without the
leading slash, it would be treated as relative to the showdate.xhtml file itself (that would
work fine too in this case).

Listing 9-21. Using the <h:graphicImage> Tag

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 247

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b.currentDate}"/>

</title>

</head>

<body>

<h:graphicImage value="/logo_en.gif"/><p/>

<h:outputFormat value="#{b.todayIs}">

 <f:param value="#{showDate.today}"/>

</h:outputFormat>

<h:form>

 <h:selectOneMenu value="#{showDate.langCode}">

 <f:selectItems value="#{showDate.langCodes}"/>

 </h:selectOneMenu>

 <h:commandButton action="#{showDate.changeLangCode}" value="#{b.change}"/>

</h:form>

</body>

</html>

Now run the application, and the English version of the logo should appear (regardless
of the language chosen). To make it depend on the language chosen, modify showdate.xhtml
as shown in Listing 9-22. The view variable is a special variable that will return the UI View
Root. Such a special variable is called an implicit object provided by JSF. Then you call get-
Locale() on it and let the EL expression evaluator convert it to a string and append it to the
file name.

Listing 9-22. Using the <h:graphicImage> Tag

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Chapter 9 ■ SUppOrtING Other LaNGUaGeS248

<f:loadBundle basename="multilang.msgs" var="b" />

<title>

<h:outputText value="#{b.currentDate}"/>

</title>

</head>

<body>

<h:graphicImage value="/logo_#{view.locale}.gif"/><p/>

<h:outputFormat value="#{b.todayIs}">

 <f:param value="#{showDate.today}"/>

</h:outputFormat>

<h:form>

 <h:selectOneMenu value="#{showDate.langCode}">

 <f:selectItems value="#{showDate.langCodes}"/>

 </h:selectOneMenu>

 <h:commandButton action="#{showDate.changeLangCode}" value="#{b.change}"/>

</h:form>

</body>

</html>

When you run the application now, it should display the right version of the logo. As
an alternative, you might store the image file name as an entry in the .properties file and
look it up in the value attribute of the <h:graphicImage> tag.

Making the Locale Change Persistent
Suppose that your most preferred locale is Chinese in the browser. Let’s do an experi-
ment: change the locale to English using the Change button, and then press Enter in the
location bar in the browser. The page will be displayed in Chinese again. This means
the locale change is temporary: it’s set for the current view root and thus for the current
request only.

To make the change persistent for, say, the current session, you can store the chosen
language code into the session as shown in Listing 9-23. Whenever the user changes the
language, the code will check whether there is already a session. If there is, it will store the
chosen language code as an attribute in the session under the name multilang.langCode.

Listing 9-23. Storing the Language Code into the Session

<?xml version="1.0" encoding="UTF-8" ?>

public class ShowDate {

 private String langCode;

 ...

 public String changeLangCode() {

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 249

 HttpSession session = (HttpSession) FacesContext.getCurrentInstance()

 .getExternalContext().getSession(false);

 if (session != null) {

 session.setAttribute("multilang.langCode", langCode);

 }

 UIViewRoot viewRoot = FacesContext.getCurrentInstance().getViewRoot();

 viewRoot.setLocale(new Locale(langCode));

 return null;

 }

}

The next step is to let the UI View Root use the language code if it exists. To do that,
you need to know that it is the so-called view handler in JSF that creates and initializes
the UI View Root. This includes retrieving the preferred language in the HTTP request,
performing the screening, and then setting the locale into the UI View Root. Now, you
need to provide your own view handler that will check whether a language code is in the
session and, if there is, use it without looking at the HTTP request.

To do that, create a MyViewHandler class in the multilang package as shown in Listing 9-24.
It extends the MultiViewHandler class, which is the default view handler in JSF. When it needs
to find out the locale to store into the UI View Root, JSF will call the calculateLocale() method.
Here you will try to use the language code stored in the session and use it to create a Locale
object to return. If it doesn’t exist, you’ll let the base class do what it does (that is, check the
preferred language in the HTTP request).

Listing 9-24. Using the Language Code in the Session to Create the Locale to Use

package multilang;

import java.util.Locale;

import javax.faces.context.FacesContext;

import javax.servlet.http.HttpSession;

import com.sun.faces.application.view.MultiViewHandler;

public class MyViewHandler extends MultiViewHandler {

 public Locale calculateLocale(FacesContext context) {

 HttpSession session = (HttpSession) context.getExternalContext()

 .getSession(false);

 if (session != null) {

 String langCode = (String) session

 .getAttribute("multilang.langCode");

 if (langCode != null) {

 return new Locale(langCode);

Chapter 9 ■ SUppOrtING Other LaNGUaGeS250

 }

 }

 return super.calculateLocale(context);

 }

}

To tell the JSF to use your own view handler, modify faces-config.xml as shown in
Listing 9-25.

Listing 9-25. Using Your Own View Handler

<faces-config ...>

 <application>

 <view-handler>multilang.MyViewHandler</view-handler>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>zh</supported-locale>

 </locale-config>

 </application>

</faces-config>

Save the file, restart the JBoss instance, and run the application again. This time the
locale change should persist until you end the session (such as by restarting the browser).

Localizing Validation Messages
Remember that you can customize the validation messages using a resource bundle. For
example, you may have a file such as MyApp.properties in the multilang package, as shown
in Listing 9-26.

Listing 9-26. Custom Validation Messages

javax.faces.converter.DateTimeConverter.DATE={0} is an invalid {2}!

javax.faces.component.UIInput.REQUIRED=You must input {0}!

javax.faces.validator.LongRangeValidator.MINIMUM={1} must be at least {0}!

javax.faces.validator.LongRangeValidator.MINIMUM_detail={1} is invalid!

To use it, you need to say so in faces-config.xml, as shown in Listing 9-27.

Chapter 9 ■ SUppOrtING Other LaNGUaGeS 251

Listing 9-27. Specifying the Application Resource Bundle

<faces-config ...>

 <application>

 <view-handler>multilang.MyViewHandler</view-handler>

 <message-bundle>multilang.MyApp</message-bundle>

 <locale-config>

 <default-locale>en</default-locale>

 <supported-locale>zh</supported-locale>

 </locale-config>

 </application>

</faces-config>

It is simply a global resource bundle used by the built-in components. To localize it
for, say, Chinese, all you need is to create MyApp_zh.properties, just like you would for any
other resource bundle.

Summary
You learned the following in this chapter:

	 •	 To	internationalize	a	page,	you	can	extract	the	strings	into	resource	bundles,	one	for	
each supported language and a default resource bundle to act as the parent. To look
up a string for a certain key in a resource bundle, use the <loadBundle> tag to load a
resource bundle as a request-scoped attribute and access it like accessing a map.

	 •	 To	determine	the	locale	to	use,	the	view	handler	will	check	the	preferred	locale	as	
specified in the HTTP request and check whether it is supported by your applica-
tion. If it is, it will store it into the view root. If it’s not, it will use the default locale
specified in your application.

	 •	 If	you’d	like	to	let	the	user	specify	a	particular	locale	to	use,	overriding	the	preferred	
locale set in the browser, you may want to store it into the session and provide a view
handler subclass to retrieve it later.

	 •	 It	is	best	practice	to	output	the	whole	sentence	using	one	UI	Output	compo-
nent. To fill in various placeholders in a pattern before outputting it, you can
use <outputFormat> and specify the value for each placeholder using a UI Param-
eter component (created by a <param>). The meaning of UI Parameter is entirely
determined by its parent component.

	 •	 To	display	an	image,	use	a	<graphicImage> tag. Its value attribute is a relative path
from the WebContent folder (if it has a leading slash) or from the .xhtml file (other-
wise). To internationalize an image, just internationalize its value attribute.

253

C h a p t e r 1 0

Using JBoss Seam

If your application uses Enterprise JavaBeans (EJBs), you may want to use a framework
called Seam (from JBoss) so that your JSF pages will work with the EJBs more easily. For
example, Seam will allow you to access EJBs in EL expressions, just like you access web
beans. In addition, Seam also provides some nice features to speed up your JSF develop-
ment. For example, it can generate pages to perform the CRUD (create, retrieve, update,
and delete) operations for your business object class without you writing a single line of
code. In this chapter, you’ll learn about such features.

Don’t worry if you don’t know about EJBs; you should still be able to go through this
chapter easily.

Installing Seam
To install Seam, go to http://seamframework.org to download a binary package of JBoss
Seam, such as jboss-seam-2.1.1.GA.zip. Unzip it into a folder such as c:\jboss-seam. As
the download is a library, you can’t run it yet.

Seam version 2.1 doesn’t support JSF 2.0 yet. As you’ve installed JSF 2.0 into the JBoss
application server in Chapter 1, you can’t run a Seam application on top of it. To solve
this problem, you may want to download a clean copy of the JBoss application server
again and unzip it into, say, c:\jboss.

http://seamframework.org

Chapter 10 ■ USING JBOSS SeaM254

Re-creating the E-shop Project
Suppose that you’d like to re-create the e-shop using EJBs and Seam. To do that, open a
command prompt and issue the commands shown in Listing 10-1. Note that these com-
mands assume that your JDK has been installed into c:\Program Files\Java\jdk1.6.0; if
not, you must use the actual path on your computer.

Listing 10-1. Starting Seam Setup

c:\>cd \jboss-seam

c:\>set JAVA_HOME=c:\Program Files\Java\jdk1.6.0

c:\>seam setup

The seam setup command will prompt you for some information about your Seam
project and save it for later use. The answers that you must enter yourself are highlighted
in Listing 10-2. For the rest of the questions, you can simply accept the defaults.

Listing 10-2. Telling Seam About Your Seam Project

SEAM_HOME: c:/jboss-seam

Using seam-gen sources from: c:/jboss-seam/seam-gen

Buildfile: c:/jboss-seam/seam-gen/build.xml

init:

setup:

 [echo] Welcome to seam-gen :-)

 [input] Enter your Java project workspace (the directory that contains your Seam

 projects) [C:/Projects] [C:/Projects]

c:/Documents and Settings/kent/workspace

 [input] Enter your JBoss AS home directory [C:/Program Files/jboss-4.2.3.GA]

 [C:/Program Files/jboss-4.2.3.GA]

c:/jboss

 [input] Enter the project name [myproject] [myproject]

SeamShop

 [echo] Accepted project name as: SeamShop

 [input] Do you want to use ICEfaces instead of RichFaces [n] (y, [n])

Chapter 10 ■ USING JBOSS SeaM 255

 [input] skipping input as property icefaces.home.new has already been set.

 [input] Select a RichFaces skin [classic] (blueSky, [classic], deepMarine,

 DEFAULT, emeraldTown, japanCherry, ruby, wine)

 [input] Is this project deployed as an EAR (with EJB components) or a WAR (with

 no EJB support) [ear] ([ear], war)

 [input] Enter the Java package name for your session beans

 [com.mydomain.SeamShop] [com.mydomain.SeamShop]

shop

 [input] Enter the Java package name for your entity beans [shop] [shop]

 [input] Enter the Java package name for your test cases [shop.test] [shop.test]

 [input] What kind of database are you using? [hsql] ([hsql], mysql, oracle,

 postgres, mssql, db2, sybase, enterprisedb, h2)

 [input] Enter the Hibernate dialect for your database

 [org.hibernate.dialect.HSQLDialect] [org.hibernate.dialect.HSQLDialect]

 [input] Enter the filesystem path to the JDBC driver jar [c:/jboss-

seam/lib/hsqldb.jar] [c:/jboss-seam/lib/hsqldb.jar]

 [input] Enter JDBC driver class for your database [org.hsqldb.jdbcDriver]

 [org.hsqldb.jdbcDriver]

 [input] Enter the JDBC URL for your database [jdbc:hsqldb:.] [jdbc:hsqldb:.]

 [input] Enter database username [sa] [sa]

 [input] Enter database password [] []

 [input] Enter the database schema name (it is OK to leave this blank) [] []

 [input] Enter the database catalog name (it is OK to leave this blank) [] []

 [input] Are you working with tables that already exist in the database? [n] (y,

 [n])

Chapter 10 ■ USING JBOSS SeaM256

 [input] Do you want to drop and recreate the database tables and data in

 import.sql each time you deploy? [n] (y, [n])

[propertyfile] Creating new property file: c:/jboss-seam/seam-gen/build.properties

 [echo] Installing JDBC driver jar to JBoss AS

 [echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Total time: 7 minutes 33 seconds

The seam setup command only saves the information into a setting file so that it can
be used later. To create an Eclipse project (using the saved information), issue the com-
mand seam new-project as the second step. Then, the tool will print some output and say
BUILD SUCCESSFUL as shown in Listing 10-3.

Listing 10-3. Creating the Seam Project for the IDE

...

create-project:

 [echo] A new Seam project named 'SeamShop' was created in the c:/Documents and

 Settings/kent/workspace directory

 [echo] Type 'seam explode' and go to http://localhost:8080/SeamShop

 ...

new-project:

BUILD SUCCESSFUL

Total time: 5 seconds

Now, go to Eclipse. Right-click anywhere in the Project Explorer window, and choose
Import followed by “Existing Projects into Workspace,” and then browse to the c:/Documents
and Settings/kent/workspace/SeamShop folder to import the project. Note that you do not
need to add the project to the JBoss instance, as the project has been set up so that, when-
ever you change any file in it, Eclipse will update the corresponding application in JBoss.

To see if everything is working, start the JBoss instance (create a new one if you did
install a clean copy of JBoss) in Eclipse, and try to access http://localhost:8080/SeamShop/
home.seam. You should see a welcome page like the one shown in Figure 10-1. As you may
have noted in the URL, by default, a Seam application maps *.seam to the JSF engine
instead of the /faces prefix.

http://localhost:8080/SeamShop
http://localhost:8080/SeamShop/

Chapter 10 ■ USING JBOSS SeaM 257

Figure 10-1. The welcome page displayed in a Seam application

■Note Keep the command prompt open, because you’ll need it in the next section.

Allowing the User to Add Products
For the moment, you have nothing in the products database (no tables and no data).
Therefore, you’d like to allow the user to add some products. You don’t need to create
the products table, as it will be created automatically. All you need is to create the Product
class in the src/main folder (let’s put it into the shop package), as shown in Figure 10-2. In
summary, you are mapping the Product class to a table using @Entity, specifying the pri-
mary key using @Id and some validation constraints on the fields (@NotEmpty for a non-null
field and @Min specifying the minimum valid value).

Chapter 10 ■ USING JBOSS SeaM258

package shop;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import org.hibernate.validator.Min;
import org.hibernate.validator.NotEmpty;

@Entity
public class Product {
 @Id
 @GeneratedValue
 private Long id;
 @NotEmpty
 private String name;
 @Min(0)
 private double price;
}

id* name price

...

...

This annotation tells JBoss this class should be

mapped to a table named as the class. Each field

is mapped to a column with the same name. This

way, you can tell JBoss to save a Product object

into the table. Product

This annotation tells JBoss that the id column

is the primary key. This way, you can tell JBoss

to load or update a Product if a particular id

value is given.

This annotation tells JBoss that when you ask it

to add a Product object to the table, if the id

field is null, it should generate a value for it

automatically before saving it to the table.

This annotation states that the name should be

non-empty. For example, JBoss could translate

it into a NOT NULL constraint on the name

column.

It states that the price should

be >= 0.

Figure 10-2. Mapping the Product class to a table

Add the getters and setters for access to the fields, as shown in Listing 10-4.

Listing 10-4. Adding Getters and Setters

package shop;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

import org.hibernate.validator.Min;

import org.hibernate.validator.NotEmpty;

@Entity

public class Product {

 @Id

 @GeneratedValue

 private Long id;

 @NotEmpty

Chapter 10 ■ USING JBOSS SeaM 259

 private String name;

 @Min(0)

 private double price;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

}

Next, you need to create a page to let the user add products. Surprisingly, Seam can
do that automatically for you. In the same command prompt you used before, issue
seam generate-ui. This command will scan the src/main folder for classes with the @Entity
annotation. For each such class, the command will create a page to search and list the
objects, a page to view an object, and a page to edit an object.

Now, refresh the project in Eclipse so that it notes the new files. Note that three
pages should have been created in the view folder: Product.xhtml (for viewing a product),
ProductEdit.xhtml (for editing a product), and ProductList.xhtml (for searching and listing
products).

To see if these pages are working, go to http://localhost:8080/SeamShop/home.seam
again. You should see a Product List link at the top, as shown in Figure 10-3. Click the link
to take you to the product list page.

http://localhost:8080/SeamShop/home.seam

Chapter 10 ■ USING JBOSS SeaM260

Figure 10-3. The Product List link

If you try to create a product by clicking the Create Product button on the product
list page, the application will ask you to log in first, because the product-editing page has
been declared as requiring a logged-in user. This requirement is set in the ProductEdit.
page.xml file in the view folder, as shown in Listing 10-5.

Listing 10-5. Requiring Authenticated Access to a Page

<?xml version="1.0" encoding="UTF-8"?>

<page xmlns="http://jboss.com/products/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.com/products/seam/pages

 http://jboss.com/products/seam/pages-2.1.xsd"

 no-conversation-view-id="/ProductList.xhtml"

 login-required="true">

 ...

</page>

As you can see, in Seam, you can have a configuration file for each page. For example,
if the page is named foo.xhtml, its configuration is named foo.page.xml and is stored in
the same folder as the page file.

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.1.xsd

Chapter 10 ■ USING JBOSS SeaM 261

How does Seam check the user name and password? It relies on a web bean named
authenticator. Actually, Seam versions prior to and including 2.1 predate the Web Beans
specification and therefore do not support web beans. However, these versions of Seam
do support a similar concept called a component. This authenticator component is in
the src/hot folder in the Authenticator class in the shop package, as shown in Listing 10-6.
It was generated when seam new-project created the Eclipse project. (Are you wondering
why the funny name “hot”? Seam can hot deploy components defined in this folder when
you make changes to them.)

In Seam, the name of the component is specified using @Name, not @Named, and injec-
tion is done by @In instead of @Current. @In and @Current work similarly but with one very
important difference: @In uses the name of the field (for example, identity or credentials)
to look up the component, while @Current uses the class of the field to do that.

When Seam needs to check the user name and password, it will call the authenticate()
method. That method can obtain the user name and password entered by the user from
the Credentials component. If the method returns true, the authentication will be consid-
ered successful; false indicates a failure. As Listing 10-6 shows, instead of looking up a user
database or an LDAP directory, Seam hard-codes a user named admin without checking the
password and tells (any parties concerned) that the user has the role of admin. You can take
that to mean that the user belongs to the admin group. You’ll see how to make use of admin
user group privileges later.

Listing 10-6. Authenticator Component

package shop;

import org.jboss.seam.annotations.In;

import org.jboss.seam.annotations.Logger;

import org.jboss.seam.annotations.Name;

import org.jboss.seam.log.Log;

import org.jboss.seam.security.Credentials;

import org.jboss.seam.security.Identity;

@Name("authenticator")

public class Authenticator {

 @Logger

 private Log log;

 @In

 Identity identity;

 @In

 Credentials credentials;

Chapter 10 ■ USING JBOSS SeaM262

 public boolean authenticate() {

 log.info("authenticating {0}", credentials.getUsername());

 //write your authentication logic here,

 //return true if the authentication was

 //successful, false otherwise

 if ("admin".equals(credentials.getUsername())) {

 identity.addRole("admin");

 return true;

 }

 return false;

 }

}

Now, log in as admin, and try to add a product as shown in Figure 10-4. Note that Seam
has figured out that the name is required (from @NotEmpty) and that the price is also required
(from the fact that it is a primitive double, not a Double and thus can’t be null).

Figure 10-4. Adding a product

If you try to input a negative price, the page will return an error as shown in Figure 10-5.
It means Seam has created a DoubleRangeValidator from the @Min annotation automatically.

Chapter 10 ■ USING JBOSS SeaM 263

Figure 10-5. Invalid input caught

Also in Figure 10-5, note that the invalid field is highlighted, and an error message is
displayed to its right. This visual feedback for the user is implemented by the <s:decorate>
tag in ProductEdit.xhtml, as shown in Listing 10-7. This tag is also responsible for adding
an asterisk to the label if the field is required. To use the <s:decorate> tag, you need to
pass a piece of JSF content (representing the field label) to it using the name label, and
put the input field in the <s:decorate> tag’s body.

Listing 10-7. Using the <s:decorate> Tag

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:a="http://richfaces.org/a4j"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/a4j
http://richfaces.org/rich

Chapter 10 ■ USING JBOSS SeaM264

<ui:define name="body">

 <h:form id="product" styleClass="edit">

 <rich:panel>

 <f:facet name="header">...</f:facet>

 <s:decorate id="nameField" template="layout/edit.xhtml">

 <ui:define name="label">Name</ui:define>

 <h:inputTextarea id="name"

 cols="80"

 rows="3"

 required="true"

 value="#{productHome.instance.name}"/>

 </s:decorate>

 <s:decorate id="priceField" template="layout/edit.xhtml">

 <ui:define name="label">Price</ui:define>

 <h:inputText id="price"

 required="true"

 value="#{productHome.instance.price}">

 <a:support .../>

 </h:inputText>

 </s:decorate>

 ...

 </rich:panel>

 ...

 </h:form>

</ui:define>

</ui:composition>

Also note that the page uses a base page (layout/template.xhtml). That’s why all the
pages in the Seam application have the same menu at the top and the same footer at the
bottom.

Now, go ahead and add some more products. The product list page should show the
products you’ve added, and you can click the View link to see a particular product, as
shown in Figure 10-6.

Chapter 10 ■ USING JBOSS SeaM 265

Figure 10-6. Listing and viewing products

Restricting Access to the Product-Editing Page
For the moment, any logged-in user can edit the products, and this setup is insecure.
Suppose only users with the admin role should be allowed to edit the products. To add this
security feature, modify ProductEdit.page.xml as shown in Listing 10-8.

Listing 10-8. Restricting Access to Product Editing Page

<?xml version="1.0" encoding="UTF-8"?>

<page ...>

 <restrict>SOME EL EXPR RETURNING TRUE ONLY IF USER HAS THE ADMIN

ROLE</restrict>

 <begin-conversation join="true" flush-mode="MANUAL" />

Chapter 10 ■ USING JBOSS SeaM266

 <action execute="#{productHome.wire}" />

 <param name="productFrom" />

 <param name="productId" value="#{productHome.productId}" />

 <navigation from-action="#{productHome.persist}">

 <rule>

 <end-conversation />

 <redirect view-id="/Product.xhtml" />

 </rule>

 </navigation>

 <navigation from-action="#{productHome.update}">

 <rule>

 <end-conversation />

 <redirect view-id="/Product.xhtml" />

 </rule>

 </navigation>

 <navigation from-action="#{productHome.remove}">

 <rule>

 <end-conversation />

 <redirect view-id="/ProductList.xhtml" />

 </rule>

 </navigation>

</page>

What EL expression do you put into the body of the <restrict> tag? You can do it as
shown in Figure 10-7. In summary, the EL expression evaluator will use the prefix “s” and
the function name “hasRole” to look up the function and then call it. The return value is
the value of the EL expression.

<?xml version="1.0" encoding="UTF-8"?>
<page ...>
 <restrict>#{s:hasRole("admin")}</restrict>
 ...
</page>

1: Look up a function library whose prefix is

"s".

Name Function

... ...

hasRole

Prefix: s

class SomeClassInSeam {
 static boolean isUserInRole(String role) {
 ...
 }
}

2: Look up the function named

"hasRole".

This "s" function library is

provided by Seam, so the

function points to a static

method provided by a class in

Seam.

Figure 10-7. Calling a function in an EL expression

Chapter 10 ■ USING JBOSS SeaM 267

Now, you might like to test run the application and log in as an ordinary user, but you
can’t, because the system has only one (admin) user. To solve the problem, hard-code an
ordinary user in the Authenticator class, as shown in Listing 10-9.

Listing 10-9. Hard-Coding an Ordinary User

package shop;

...

@Name("authenticator")

public class Authenticator {

 @Logger

 private Log log;

 @In

 Identity identity;

 @In

 Credentials credentials;

 public boolean authenticate() {

 log.info("authenticating {0}", credentials.getUsername());

 // write your authentication logic here,

 // return true if the authentication was

 // successful, false otherwise

 if ("u1".equals(credentials.getUsername())) {

 return true;

 }

 if ("admin".equals(credentials.getUsername())) {

 identity.addRole("admin");

 return true;

 }

 return false;

 }

}

Now, run the application, log in as u1, and try to access the product-editing page. You
should be rejected. If you log out and try again as the admin user, you should get through.

Creating a Shopping Cart
Next, you’d like to allow users to add products to a shopping cart. To do that, you need to
add a button on the product-viewing page like the one shown in Figure 10-8. After adding
the product, the IDs of the products in the shopping cart are displayed.

Chapter 10 ■ USING JBOSS SeaM268

Figure 10-8. Adding a product to the shopping cart

To add the shopping cart button, modify product.xhtml as shown in Listing 10-10. The
Seam <s:button> is very much like an <h:commandButton> except that you can specify the
next view ID directly using the view attribute: using <s:button> means you don’t need to
define a navigation rule. In addition, the Seam button is quite smart—it will work even if
it is not inside an <h:form>.

Listing 10-10. Using <s:button> for the “Add to Cart” Button

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

<ui:define name="body">

 <rich:panel>

 <f:facet name="header">Product Details</f:facet>

 <s:decorate id="name" template="layout/display.xhtml">

 <ui:define name="label">Name</ui:define>

 <h:outputText value="#{productHome.instance.name}"/>

 </s:decorate>

 <s:decorate id="price" template="layout/display.xhtml">

 <ui:define name="label">Price</ui:define>

 <h:outputText value="#{productHome.instance.price}"/>

 </s:decorate>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

Chapter 10 ■ USING JBOSS SeaM 269

 <div style="clear:both"/>

 </rich:panel>

 <div class="actionButtons">

 <s:button view="/ProductEdit.xhtml"

 id="edit"

 value="Edit"/>

 <s:button view="/#{empty productFrom ? 'ProductList' : productFrom}.xhtml"

 id="done"

 value="Done"/>

 <s:button view="/cart.xhtml"

 action="#{cart.add}"

 value="Add to Cart"/>

 </div>

</ui:define>

Now that you have a button, you need to create the cart component to provide the
add() action method to use it. So, create the Cart class in the src/hot folder in the shop
package as shown in Listing 10-11. Here, you inject the ProductHome object using the @In
annotation. This ProductHome class was generated by Seam when you ran seam generate-ui
and is very much like the ProductHolder class in the e-shop from the plain JSF example
in Chapter 4. That is, it is used to hold a product ID, and it can use that to load a Product
object.

The Cart.add() method gets the product ID from the ProductHome object. Then you
just print the product ID to the console to verify that it is working. Note that the add()
method returns void instead of an outcome, which is possible because the view ID has
been specified in the <s:button> tag.

Listing 10-11. Adding the Product ID to the Shopping Cart

package shop;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

import org.jboss.seam.ScopeType;

import org.jboss.seam.annotations.Name;

import org.jboss.seam.annotations.Scope;

@Name("cart")

@Scope(ScopeType.EVENT)

public class Cart implements Serializable {

Chapter 10 ■ USING JBOSS SeaM270

 private List<Long> pids;

 @In

 private ProductHome productHome;

 public Cart() {

 pids = new ArrayList<Long>();

 }

 public void add() {

 Long pid = productHome.getProductId();

 System.out.println(pid);

 pids.add(pid);

 }

 public List<Long> getPids() {

 return pids;

 }

}

Now that you have the method to handle the cart, create the cart.xhtml file in the
view folder to display the contents of the shopping cart. For the moment, the content is
static, as shown in Listing 10-12.

Listing 10-12. cart.xhtml

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

 <ui:define name="body">

 <h1>Cart</h1>

 </ui:define>

</ui:composition>

Now, run the application, and try to add a product to the shopping cart. Unfortu-
nately, it will fail with the exception shown in Figure 10-9.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

Chapter 10 ■ USING JBOSS SeaM 271

Figure 10-9. An error received when injecting a nonexistent component

The exception in Figure 10-9 is thrown because when Seam tries to inject the productHome
component into the cart component, it finds that there is no such productHome component.
Why? Because the ProductHome class extends the EntityHome class (provided by JBoss), which
is in the conversation scope. However, the application did not start a long-running conversa-
tion, so the productHome component will be gone when the “Add to Cart” button is submitted.
What happens when the component being injected doesn’t exist? If the component were
being referenced in an EL expression, Seam would create it. But when the injected compo-
nent is referenced by another Seam component, Seam will simply throw an exception.

Simply creating a new productHome component again will not resolve the exception,
as the component will have lost the product ID. Figure 10-10 shows a solution: When
<s:button> is generating the URL (to invoke the cart.xhtml page), it reads the product ID
from the productHome component and stores the ID into a query parameter in the URL.
When the user clicks the “Add to Cart” button, Seam intercepts the request, notes that it
is loading the cart.xhtml page, reads that query parameter, and stores the product ID into
the (new) productHome component.

Chapter 10 ■ USING JBOSS SeaM272

<input onclick="go to URL" ...>

Seam

Button
product

Home

1: Read the product ID,

such as 123.

2: Add productId=123 as

a query parameter.

Request

3: The button is clicked, and

a request is sent along with

the query parameter.

productId: 123

Seam

4: Read the query

parameter.

product

Home

5: Store 123 into the new

"productHome" component.

Figure 10-10. Using a query parameter to maintain the product ID

To implement this idea, create the cart.page.xml file alongside the cart.xhtml page
(in the view folder). The content is shown in Listing 10-13. The key is the <param> tag. It
is read by both the <s:button> when generating the URL and Seam when handling the
request. The former reads the EL expression and stores the result into the specified query
parameter. The latter does the opposite: it reads the specified query parameter and stores
the result into the EL expression.

Listing 10-13. Using <param> to Maintain the Product ID with a Query Parameter

<?xml version="1.0" encoding="UTF-8"?>

<page xmlns="http://jboss.com/products/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.com/products/seam/pages

 http://jboss.com/products/seam/pages-2.1.xsd">

 <param name="productId" value="#{productHome.productId}"/>

</page>

Run the application, and try to add a product to the shopping cart. The correct
product ID should print in the console.

Next, modify cart.xhtml to show the cart contents, as shown in Listing 10-14.

Listing 10-14. Displaying the Contents of the Shopping Cart

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.1.xsd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

Chapter 10 ■ USING JBOSS SeaM 273

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

 <ui:define name="body">

 <h1>Cart</h1>

 <rich:panel>

 <ui:repeat value="#{cart.pids}" var="pid">

 <h:outputText value="#{pid} "/>

 </ui:repeat>

 </rich:panel>

 </ui:define>

</ui:composition>

There is nothing special here. If you run the application and add some products to
the shopping cart, their IDs will be displayed.

Turning the Shopping Cart into a Stateful
Session Bean
For the moment, you have a shopping cart for each user. If you have a huge number of
users, many shopping carts will exist in the memory, while many of them are not being
actively used. To save memory, you may let JBoss save some of them to the hard disk when
they are idle. When they are needed again, JBoss will load them from the hard disk. This
way, you can support a huge number of users, and your application will become very
scalable.

To implement this idea, you can turn the shopping cart into a stateful session bean.
To do that, first change the Cart class in the src/hot folder into an interface, as shown in
Listing 10-15.

Listing 10-15. The Cart Interface

package shop;

import java.util.List;

public interface Cart {

 void add();

 List<Long> getPids();

}

http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

Chapter 10 ■ USING JBOSS SeaM274

You’ll still need to create a class to implement that interface. So, create a CartBean
class in the src/hot folder in the shop package, as shown in Figure 10-11. Simply put,
@Stateful tells JBoss to create a stateful session bean from this class. As a result, different
bean instances will be created, saved to disk, loaded from disk, and destroyed by JBoss
automatically. The application will access a bean instance through a proxy, so that the
bean instance can be saved, loaded, or moved around in memory without the applica-
tion noticing. Because the session bean is stateful, once the application obtains a proxy
to one instance (say, Cart 1), all subsequent method calls on the proxy will be delegated to
the same instance (Cart 1). In contrast, if the session bean was stateless, different method
calls on the same proxy might be delegated to different bean instances, because all the
bean instances are considered identical.

package shop;

import java.util.List;
import javax.ejb.Stateful;

@Stateful
public class CartBean implements Cart {

 @Override
 public void add() {

 }
 @Override
 public List<Long> getPids() {
 return null;
 }
}

Stateful Session Beans

Cart 1 Cart 2

...

JBoss

App 1

This annotation tells JBoss to create a
stateful session bean from this class.
The effect is that JBoss will create,
manage, and destroy instances of that
stateful session bean.

Proxy 1

App 2

The bean instances (and the proxies) will implement
the Cart interface, and the application will access
the proxy through the Cart interface too.

Figure 10-11. Creating a stateful session bean for the shopping cart

To inject the productHome component into the shopping cart (so that the latter can
find out the ID of the selected product), you need to turn the session bean into a Seam
component. To do that, modify the CartBean class as shown in Listing 10-16.

Chapter 10 ■ USING JBOSS SeaM 275

Listing 10-16. Turning a Session Bean into a Seam Component

package shop;

...

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

public class CartBean implements Cart {

 @In

 private ProductHome productHome;

 @Override

 public void add() {

 }

 @Override

 public List<Long> getPids() {

 return null;

 }

}

How does the Seam component work with the session bean? When Seam needs to
create the cart component, it notes that the CartBean class is a stateful session bean (as
specified by the @Stateful annotation). So, Seam will obtain a proxy (from JBoss) to access
the bean instance and let the component delegate all method calls to it as shown in
Figure 10-12.

Stateful session beans

Cart 1 Cart 2

...

JBoss

Proxy 1"cart"

Component

App 1

Figure 10-12. A Seam component delegating method calls to a stateful session bean

In addition, when the session is about to be destroyed, Seam will need to destroy the
cart component and the corresponding bean instance. To allow Seam to do that, you can

Chapter 10 ■ USING JBOSS SeaM276

modify the CartBean class as shown in Listing 10-17. The @Remove annotation tells JBoss to
remove the bean instance after the destroy() method returns. Noting the existence of this
annotation, Seam will call the destroy() method when it needs to destroy the component.

Listing 10-17. Providing a Destroy Method to Seam

package shop;

...

import javax.ejb.Remove;

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

public class CartBean implements Cart {

 @In

 private ProductHome productHome;

 @Override

 public void add() {

 }

 @Override

 public List<Long> getPids() {

 return null;

 }

 @Remove

 public void destroy() {

 }

}

Finally, implement the methods shown in Listing 10-18. They implement the busi-
ness functionality of the shopping cart, enabling it to store product IDs and retrieve them
later.

Listing 10-18. Implementing the Methods for the Shopping Cart

package shop;

...

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

Chapter 10 ■ USING JBOSS SeaM 277

public class CartBean implements Cart {

 private List<Long> pids;

 @In

 private ProductHome productHome;

 public CartBean() {

 pids = new ArrayList<Long>();

 }

 @Override

 public void add() {

 Long pid = productHome.getProductId();

 pids.add(pid);

 }

 @Override

 public List<Long> getPids() {

 return pids;

 }

 @Remove

 public void destroy() {

 }

}

Now, restart the browser so that a new session is created, run the application, and try
to add some products to the shopping cart. The application should continue to work.

Creating the Checkout Page
Next, you’d like to allow the user to check out as shown in Figure 10-13.

Figure 10-13. Checking out

Chapter 10 ■ USING JBOSS SeaM278

To do that, modify cart.xhtml as shown in Listing 10-19.

Listing 10-19. Checkout Button

package shop;

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

 <ui:define name="body">

 <h1>Cart</h1>

 <rich:panel>

 <ui:repeat value="#{cart.pids}" var="pid">

 <h:outputText value="#{pid} " />

 </ui:repeat>

 <div>

 <s:button view="/confirm.xhtml" value="Checkout"/>

 </div>

 </rich:panel>

 </ui:define>

</ui:composition>

Create the confirm.xhtml file in the view folder. The content is shown in Listing 10-20.

Listing 10-20. confirm.xhtml

package shop;

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:s="http://jboss.com/products/seam/taglib"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:f="http://java.sun.com/jsf/core"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:rich="http://richfaces.org/rich"

 template="layout/template.xhtml">

 <ui:define name="body">

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://jboss.com/products/seam/taglib
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/core
http://java.sun.com/jsf/html
http://richfaces.org/rich

Chapter 10 ■ USING JBOSS SeaM 279

 <h1>Confirm</h1>

 <rich:panel>

 You're paying #{confirm.total} with credit card #{confirm.creditCardNo}.

 </rich:panel>

 </ui:define>

</ui:composition>

Again, to achieve better scalability, you’d like to make the confirm component a ses-
sion bean. To do that, create the Confirm interface in the src/hot folder in the shop package
as shown in Listing 10-21.

Listing 10-21. The Confirm Interface

package shop;

public interface Confirm {

 double getTotal();

 String getCreditCardNo();

}

Create a ConfirmBean class in the src/hot folder in the shop package as shown in
Listing 10-22. Note that because the class has no state in itself (it simply injects other
components into itself), its scope is set to EVENT, which is the same as request. In addi-
tion, the class is annotated with @Stateless, meaning that different method calls on the
same proxy could delegate to different bean instances. As all ConfirmBean instances are
considered identical, JBoss will never save or load them to and from the hard disk (and
thus has less work to do); all it needs is to create and destroy them.

Listing 10-22. Seam Component Delegating to Stateless Session Bean

package shop;

...

import javax.ejb.Stateless;

@Stateless

@Name("confirm")

@Scope(ScopeType.EVENT)

public class ConfirmBean implements Confirm {

 @In

 private Credentials credentials;

 @In

 private Cart cart;

Chapter 10 ■ USING JBOSS SeaM280

 @Override

 public String getCreditCardNo() {

 return null;

 }

 @Override

 public double getTotal() {

 return 0;

 }

 @Remove

 public void destroy() {

 }

}

Next, implement the getTotal() method as shown in Listing 10-23. Here, you inject
the identity manager into the confirm bean. This entity manager component is provided
by Seam. You can consider the entity manager a connection to your database. Using it,
you can issue queries, updates, and so on. Here, you select the Product object whose ID is
specified, so you can find out the price of the product to add to the total amount.

Listing 10-23. Injecting the EntityManager

package shop;

...

import javax.persistence.EntityManager;

import javax.persistence.Query;

@Stateless

@Name("confirm")

@Scope(ScopeType.EVENT)

public class ConfirmBean implements Confirm {

 @In

 private Credentials credentials;

 @In

 private Cart cart;

 @In

 private EntityManager entityManager;

 @Override

 public String getCreditCardNo() {

 return null;

 }

Chapter 10 ■ USING JBOSS SeaM 281

 @Override

 public double getTotal() {

 Query q = entityManager

 .createQuery("select p from Product p where p.id=:id");

 double total = 0;

 for (Long pid : cart.getPids()) {

 q.setParameter("id", pid);

 Product p = (Product) q.getSingleResult();

 total += p.getPrice();

 }

 return total;

 }

 @Remove

 public void destroy() {

 }

}

To implement the getCreditCardNo() method, for simplicity, let’s hard-code the credit
card number for user u1 instead of looking up a user database, as shown in Listing 10-24.

Listing 10-24. getCreditCardNo() Method

package shop;

...

@Stateless

@Name("confirm")

@Scope(ScopeType.EVENT)

public class ConfirmBean implements Confirm {

 @In

 private Credentials credentials;

 @In

 private Cart cart;

 @In

 private EntityManager entityManager;

 @Override

 public String getCreditCardNo() {

 if (credentials.getUsername().equals("u1")) {

 return "1234";

 }

 return "unknown";

Chapter 10 ■ USING JBOSS SeaM282

 }

 @Override

 public double getTotal() {

 Query q = entityManager

 .createQuery("select p from Product p where p.id=:id");

 double total = 0;

 for (Long pid : cart.getPids()) {

 q.setParameter("id", pid);

 Product p = (Product) q.getSingleResult();

 total += p.getPrice();

 }

 return total;

 }

 @Remove

 public void destroy() {

 }

}

Now, run the application, and try to check out. Unfortunately, the attempt will fail
with the following error messages:

Caused by: org.jboss.seam.RequiredException: @In attribute requires non-null value:

 cart.productHome

 at org.jboss.seam.Component.getValueToInject(Component.java:2297)

 at org.jboss.seam.Component.injectAttributes(Component.java:1703)

 at org.jboss.seam.Component.inject(Component.java:1521)

You can’t check out yet, because when Seam tries to call getPids() on the cart com-
ponent, Seam will try to inject the productHome component into cart component. But
there is no productHome component, which causes an error. As getPids() doesn’t really
need the productHome component, you can tell Seam to not to treat this as an error (see
Listing 10-25).

Listing 10-25. Marking an Injected Field As Unrequired

package shop;

...

@Stateful

@Name("cart")

@Scope(ScopeType.SESSION)

Chapter 10 ■ USING JBOSS SeaM 283

public class CartBean implements Cart {

 private List<Long> pids;

 @In(required=false)

 private ProductHome productHome;

 public CartBean() {

 pids = new ArrayList<Long>();

 }

 @Override

 public void add() {

 Long pid = productHome.getProductId();

 pids.add(pid);

 }

 @Override

 public List<Long> getPids() {

 return pids;

 }

 @Remove

 public void destroy() {

 }

}

If you try again now, you’ll get the following error in the console:

Caused by: java.lang.NullPointerException

 at shop.ConfirmBean.getCreditCardNo(ConfirmBean.java:27)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at ...

This time, the user hasn’t logged in yet, and thus the user name is null. To solve this
problem, you should force the user to log in before viewing the confirmation page. To
do that, create the confirm.page.xml file along with the confirm.xhtml file. The content is
shown in Listing 10-26.

Listing 10-26. Requiring Authenticated Access to a Page

<?xml version="1.0" encoding="UTF-8"?>

<page xmlns="http://jboss.com/products/seam/pages"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jboss.com/products/seam/pages

http://jboss.com/products/seam/pages
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Chapter 10 ■ USING JBOSS SeaM284

 http://jboss.com/products/seam/pages-2.1.xsd"

 login-required="true">

</page>

Now, try to check out again, and the application should force you to log in. Log in as
u1 to see the total amount and the credit card number properly.

Using WebLogic, WebSphere, or GlassFish
Even though you used JBoss in this chapter, the code you developed should run fine on
other EJB3 servers such as WebLogic, WebSphere, or GlassFish. However, for each par-
ticular type of server, you may need to perform some specific setup adjustments. Consult
the Seam documentation for more information.

Summary
In the chapter, you’ve learned that if a class is annotated with @Entity, its instances can be
easily saved to or loaded from a database table with JBoss. Seam can generate pages for
such a class for searching and listing the instances and for viewing and editing of a par-
ticular instance. You can further annotate its fields to specify constraints.

You also learned that you can use session beans to achieve better scalability. If a
bean instance contains states, make it a stateful bean; otherwise, make it a stateless bean.
Whether your bean is stateful or stateless, JBoss will create and destroy the bean instances,
and the application will access a bean instance using a proxy. To save memory when work-
ing with stateful beans, JBoss may save bean instances to the hard disk and load them back
when they are needed again. JBoss will have less work to do for a stateless bean: it can sim-
ply destroy and create them.

You learned, too, that a Seam component is like a web bean. You can inject one
component into another by name. In addition, you now know how to turn a session bean
(stateful or stateless) into a Seam component, so the component will delegate method
calls to the proxy, which will further delegate to the bean instance. You also saw how to
annotate a method with @Remove to allow Seam to destroy the bean instance when it
destroys the component.

You learned that you can let Seam automatically generate a skeleton application,
complete with a common layout, login page, and many built-in components such as
Credentials (user name and password) and EntityManager (connection to database). You
also explored some of Seam’s powerful tags, specifically <s:decorate> and <s:button>. You
can now use the former to set up JSF validators according to the constraints you specified
on the field, add an asterisk to indicate a required field, and display the error message
(if any). And you can use the latter to specify the next view ID directly without using

http://jboss.com/products/seam/pages-2.1.xsd

Chapter 10 ■ USING JBOSS SeaM 285

a navigation rule and to maintain some information for the next page through a query
parameter.

Finally, you learned that, in order to specify what information to maintain for the next
page, to require authenticated access to a page, or to restrict access to the users with a par-
ticular role, you can create a file <PAGE-NAME>.page.xml in the same folder as your page.

287

Index

A
<a4j:button> tag, 201
<a4j:commandButton> tag, 195
<a4j:commandLink> tag, 189, 194, 199
<a4j:repeat> tag, 212
<a4j:support> tag, 199
AbortProcessingException, 98
action attribute, 38, 107, 225
action listener

creating for the e-shop project, 109
implementing the ActionListener

interface, 98
modifying for the e-shop project, 112
moving UI-specific code into, 98

action provider, 162
add(), 269
addToCart(), 117, 120
admin user group, 261
Ajax

<a4j:button> tag, 201
<a4j:commandButton> tag, 195
<a4j:commandLink> tag, 189, 194, 199
<a4j:repeat> tag, 212
<a4j:support> tag, 199
assigning an ID to a component for

identification, 186
changing a component’s visibility, 191
displaying a FAQ, 183
FAQService class, 184, 195, 209–210, 212
foo.taglib.xml, 208
<h:dataTable> tag, 212
<h:messages> tag, 196
isShortForm flag, 185
isShowingAnswer(), 190
listfaq.xhtml, 183, 189, 193, 196, 200,

206, 210–211
onclick event, 186
qa.xhtml, 207
Question class, 209
question parameter, 207

rating a question and answer, 194
refreshing a partial or entire page,

186
rendered attribute, 190, 192
reRender attribute, 189, 196
RichFaces component library, 187
<rich:modalPanel> tag, 200
<rich:panel> tag, 205
trigger(), 185
updating a panel, 192
updating a rating as the user types,

199
using a dialog box to get a rating, 200

Ant, downloading version 1.7.0 or newer, 8
Application object, 239
Apply Request Values phase, 56, 74, 110
authenticate(), 261
Authenticator class, 267
authenticator component, 261

B
b1 bean, 32

adding the quoteDate property,
52–53

defining, 35
determining the stock value from, 39

b2 bean, creating, 61
Back button, 215, 219, 228
basename attribute, 233
base page, 264
base.xhtml

creating a base page, 175
inheriting from, 176

beans.xml, 23
begin(), 223
Big5 encoding, 233
box component

<box> tag, defining, 165
box.xhtml, 165
creating, 163

nINDEX288

p1.xhtml, 164
passing XHTML code as the tag body, 164
passing XHTML code through a

parameter, 163
<ui:insert> tag, 165
See also components

C
calculateLocale(), 249
Cart class, 119, 126, 269, 273
CartBean class, 274–276
cart.page.xml, 272
cart.xhtml, 121, 129, 270–272, 278
Catalog class, 103, 125
catalog.xhtml, 102, 109, 114, 116, 132, 146,

148
Change button, 242
Checkout button, creating, 129
Chinese language support, 232

Big5 encoding, 233
localizing the full stop, 243
using Chinese fonts, 236
using the Chinese version of a resource

bundle, 235
client IDs

code example, 46
specifying, 89
specifying a relative client ID, 94
storing with error messages, 88

combo box, choosing stock symbols from,
60

components
<component> tag, 156
creating a box component, 163
creating a component library without

taglib.xml, 170
creating a product editor, 159
creating a reusable component library,

168
creating custom components, 151
displaying a copyright notice on

multiple pages, 151
grouping multiple components into

one, 91
passing method parameters to custom

tags, 162

providing parameters to a custom tag, 157
specifying the validation error message

for a single component, 77
UI Command, 38–39, 41, 107, 186
UI Data, 105
UI Form, 31, 97
UI Input, 32, 35, 39–41, 46–47, 49, 51, 91
UI Load Bundle, 233, 235
UI Message, 88, 90, 95
UI Output, 105, 186, 190, 238, 243–244
UI Panel, 68, 91
UI Parameter, 244
UI View Root, 235, 238, 240, 247, 249
See also box component

<composite:attribute> tag, 170
<composite:implementation> tag, 170
<composite:interface> tag, 170
confirm page, 127
ConfirmBean class, 279
confirm.page.xml, 283
ConfirmService class, 129, 138
confirm.xhtml, 128, 140, 278, 283
conversation scope, 215

conversation, definition of, 219
making a conversation long-running,

222–223
transient vs. long-running

conversations, 220
turning a conversation back into a

transient one, 223
converters, 238
copyright notice

<component> tag, 156
copyright.xhtml, 152, 156
creating the CustomComp project,

154
defining a Facelet tag lib, 154–155
defining and naming a tag library, 154
defining the namespace, 153
developing a custom <copyright> tag,

153
displaying on multiple pages, 151
extracting common code into a

separate XHTML file, 151
foo.taglib.xml, 154
p1.xhtml, 154

nINDEX 289

<copyright> tag
complete XHTML page for, 156
developing, 153
outputting the company parameter in

copyright.xhtml, 157
Credentials component, 261
@Current annotation, 117, 261
CustomComp project

creating, 154
p2.xhtml, 169
packing the META-INF folder into a JAR

file for exporting, 169
custom tags

accepting method parameters, 162
accepting two pieces of XHTML code, 166
p1.xhtml, 166
<pair> tag, defining in foo.taglib.xml,

167
pair.xhtml, 166
<ui:define> tag, 166
<ui:insert> tag, 166

D
date display

internationalizing, 238
setting the date style to long, 238
table of formats and styles, 245

Date object
converting into a string, 50
Date converter and conversion failure, 55
Date converter, using, 51
inputting, 49
specifying the date format, 53–54

DateTimeConverter class, 58
dependencies

dependency injection, 118
object, 118
pulling, 118

destroy(), 276
detail.xhtml, 108, 113, 117, 124
DoubleRangeValidator, 78, 262

E
Eclipse

debugging a JSF application, 25
downloading, 2
installing, 2
launching JBoss in, 3

Navigator view, 29
Properties Editor, installing and using,

233
setting a breakpoint in Java code, 25
switching to the Java EE perspective, 3

EL expression
accessing a parameter in, 157
definition of, 20
EL variable, 157
evaluating, 105
linking to a variable table, 158
using directly in body text, 25

encoding, definition of, 18
end(), 224
@Entity annotation, 257, 259
EntityHome class, 271
error messages

AbortProcessingException, 98
creating a messages.properties text file,

48, 58
customizing error messages using a

message bundle, 76
displaying in red, 86
displaying with a field, 87
<h:messages> tag, 75
specifying a conversion error message,

59
specifying for a single UI Input

component, 49
specifying the validation error message

for a single component, 77
storing with client IDs, 88
ValidatorException, 80
validatorMessage attribute, 92

escaped Unicode encoding, 233
e-shop project

accessing an attribute like a Web Bean,
105

accessing a selected Product object,
111

action attribute, 107
action listener, 109, 112
adding products to the shopping cart,

116
addToCart(), 117, 120
allowing the user to check out, 127
appending the row index to the client

ID, 110

nINDEX290

Cart class, 119, 126
cart.xhtml, 121, 129
Catalog class, 103, 125
catalog.xhtml, 102, 109, 114, 116, 132,

146, 148
confirm page, 127, 138, 140, 143, 146
ConfirmService class, 129, 138
confirm.xhtml, 128, 140
creating the Checkout button, 129
creating the link to show the product

details, 106
@Current annotation, 117
defining the navigation case for a

successful login, 137
detail.xhtml, 108, 113, 117, 124
displaying a password as asterisks, 148
displaying column headers, 115
displaying the shopping cart’s contents,

126
faces-config.xml, 120, 130, 133, 142
ForceLoginPhaseListener class, 141
forcing the user to log in, 139
getProduct(), 125
getProductId(), 124
getProductIds(), 126
getting the user’s credit card number,

128, 131
<h:commandButton> tag, 107
<h:commandLink> tag, 106–107, 110
<h:dataTable> tag, 102, 126
<h:inputHidden> tag, 123
<h:inputSecret> tag, 148
<h:inputText> tag, 123–124, 148
<h:outputText> tag, 126
<h:panelGrid> tag, 102
implementing a firewall as a phase

listener, 141
implementing logout, 146
implementing Serializable, 119, 136
listing the products, 102
Login link, 132, 146, 148
login page, 132, 135, 137, 140, 143, 146
login.xhtml, 134, 140, 148
LoginRequest class, 135
Logout link, 146, 148
LogoutActionListener class, 147
making the grid visible, 106
NullPointerException, 121

OnDetailActionListener class, 111, 115
printing the product ID to the console,

112
Product class, creating, 104
ProductHolder class, 112, 117, 120, 124
providing the List to the dataTable, 104
putting a shopping cart into the session,

119
recreating with EJBs and Seam, 254
removing a session, 146
returning loggedIn as an outcome, 146
session timeout, 119
@SessionScoped, 119
storing the original view ID in the

UserHolder Web Bean, 143
storing the Product object in a Web

Bean, 112
UI Data, 105
<ui:repeat> tag, 126
User class, 136
User object, 131, 139
UserHolder class, 136
UserHolder Web Bean, 135, 143
var attribute, 105
view ID, 135, 140, 143, 146

F
Facelet tag lib, defining, 154–155
Facelets, downloading and installing, 187
faces-config.xml, 77, 120, 130, 133, 142,

235, 250
configuring the supported languages,

54
creating, 15
defining a navigation rule, 37
enabling Facelets in, 187
matching any source view ID, 177
modifying to load a properties file, 48

FacesContext, 98
FacesMessage, 80, 87, 98
FAQ project

<a4j:button> tag, 201
<a4j:commandButton> tag, 195
<a4j:commandLink> tag, 189, 194, 199
<a4j:repeat> tag, 212
<a4j:support> tag, 199
adding a title bar (header) to a modal

panel, 203

nINDEX 291

displaying a FAQ, 183
displaying an invalid-entry error, 196
displaying multiple questions, 206
encapsulating questions inside a

custom tag, 206
foo.taglib.xml, 208
<h:dataTable> tag, 212
hiding a modal panel if there is no error,

202
<h:messages> tag, 196
isShortForm flag, 185
isShowingAnswer(), 190
listfaq.xhtml, 183, 189, 193, 196, 200,

206, 210–211
oncomplete property, 201
qa.xhtml, 207
Question class, 209
question parameter, 207
Rate link, 200, 202
rating a question and answer, 194
refreshing a partial or entire page, 186
rendered attribute, 190, 192
reRender attribute, 189, 196
RichFaces component library, 187
<rich:modalPanel> tag, 200
<rich:panel> tag, 205
showing or hiding a modal panel, 201
showing or hiding an answer in a Web

Bean, 190
trigger(), 185
updating a rating as the user types,

199
using a dialog box to get a rating, 200
using Ajax to change a component’s

visibility, 191
using Ajax to update a panel, 192

FAQService class, 184, 195, 209–210, 212
finish(), 224
Finish button, 223, 228
Firefox

setting the preferred language, 54
using the Chinese version of a resource

bundle, 235
<f:loadBundle> tag, 233
foo.taglib.xml, 83, 154, 159, 208
foo.v1 validator, 84
ForceLoginPhaseListener class, 141

forms
Apply Request Values phase, 56, 74, 110
Date converter and conversion failure,

55
form submission process, 33, 35
Input Processing phase, 39, 41, 50, 56
inputting a Date object, 49
Invoke Application phase, 40–41, 98–99
Process Validations phase, 74
QuoteRequest class, 64
Render Response phase, 40–41, 50, 56,

74, 140, 190
Update Domain Values phase, 43, 50, 99
See also input validation

<f:param> tag, 244
full stop, localizing, 243
<f:validateLongRange> tag, 75

G
getCreditCardNo(), 281
getDisplayName(), 241
getLocale(), 247
getPids(), 282
getProduct(), 125
getProductId(), 124
getProductIds(), 126
getrequest.xhtml, 67, 75, 86, 94, 96
getSubject(), 20–21, 23
getsymbol.xhtml

creating, 31
modifying, 34, 37, 52
redisplaying, 41
specifying the label instead of the client

ID, 47
using a combo box, 60

getTotal(), 280
GlassFish, 284
GreetingService class

accessing the subject property, 21
creating, 20
placing a GreetingService object into

the Web Bean table, 22
group renderer, 91

H
<h:commandButton> tag, 72, 107, 268
<h:commandLink> tag, 106–107, 110

nINDEX292

<h:dataTable> tag, 87, 102, 126, 212
Hello world application, creating with JSF,

1, 9–10, 12–13, 15, 17
hello.xhtml

accessing, 16
creating, 12
modifying, 17

<h:form> tag, 94, 268
<h:graphicImage> tag, 246, 248
<h:inputHidden> tag, 123
<h:inputSecret> tag, 148
<h:inputText> tag, 70, 123–124, 148, 217
<h:inputTextarea> tag, 217
<h:message> tag, 88, 94
<h:messages> tag, 75

CSS classes and, 87
placing inside a panel, 197
refreshing, 196

home.xhtml, 180
creating, 173
inheriting from base.xhtml, 176

hotdeals.xhtml, creating, 181
<h:outputFormat> tag, 244
<h:outputText> tag, 126
<h:panelGrid> tag, 68, 90–91, 102
<h:panelGroup> tag, 91
HTML grid renderer, 91
HTML renderer and components, 68
HTTP requests, 32, 39

I
@Id annotation, 257
id attribute, 46
 tag, 246
implicit object, definition of, 247
@In annotation, 261, 269
Input Processing phase, 39, 41, 50, 56
input validation

adding validator objects to a UI Input
component, 74

catching invalid input, 73
creating a custom validator for the

patron code, 82
creating a DoubleRangeValidator, 78
creating a LengthValidator, 78
creating a long range validator, 75
defining the foo.v1 validator, 84
<f:validateLongRange> tag, 75

handling optional input, 74
<h:messages> tag, 75
invoking an action method for

validation, 96
moving UI-specific code into an action

listener, 98
null input and validators, 78
RequestValidatingListener class, 98
specifying a tag lib, 83
specifying a validator method, 80
specifying the validation error message

for a single component, 77
validate(), 84
validatePatron(), 80, 86
<validatePatron> tag, 83
validating a combination of input

values, 96
See also forms

installing Seam, 253
Invoke Application phase, 40–41, 98–99
isShortForm flag, 185
isShowingAnswer(), 190

J
JBoss

choosing the JBoss runtime
environment, 5

downloading the JBoss Application
Server 5.x, 3

installing, 3–4, 6–7
installing Web Beans into, 8
launching in debug mode, 26
launching in Eclipse, 3
registering the Hello world application, 15
RichFaces component library, 187
setting a longer timeout value, 7
stopping, 7
telling Web Beans where JBoss is, 8
updating a web application, 19

JBoss Seam. See Seam
JSF

displaying the available Web Beans
classes, 11

downloading Mojarra, 7
encoding, definition of, 18
faces-config.xml, creating, 15
hello.xhtml, creating, 12
hello.xhtml, modifying, 17

nINDEX 293

installing Sun’s JSF implementation, 7
MyFaces, 7
Package Explorer, 9
using the XHTML strict template, 11
WebContent folder, 11
web.xml, modifying, 13

JSF Core tag lib, 156
JSF HTML tag lib, 156

L
languages. See MultiLang project
Layout project

base.xhtml, 175–176
creating a hot deals page, 181
creating navigation rules for links, 177
creating page-specific navigation cases,

180
extracting duplicate XHTML code, 174
faces-config.xml, 177
home.xhtml, 173, 176, 180
hotdeals.xhtml, 181
matching any source view ID, 177
page inheritance, 175
products.xhtml, 173, 176, 180–181
providing concrete parts, 180
<ui:insert> tag, 175
using two abstract parts, 178–179

LengthValidator, creating, 78
listfaq.xhtml, 183, 189, 193, 196, 200, 206,

210–211
Locale object, 239, 249
localization, 237, 250
loggedIn, returning as an outcome, 146
Login link, 132, 146, 148
login.xhtml, 134, 140, 148
LoginRequest class, 135
logo_en.gif, 246
logo_zh.gif, 246
Logout link, 146, 148
LogoutActionListener class, 147
long range validator, creating, 75
LongRangeValidator class, 76

M
Map, accessing the parameters in, 171
message bundle

providing a detail message in, 93
specifying, 76

messages.properties, creating, 48, 58
method parameters

calling, 162
passing to custom tags, 162

@Min annotation, 257, 262
Mojarra

downloading, 7
*.taglib.xml files and Mojarra 2.0.0.PR2,

83
msgs_en.properties, 236
msgs_zh.properties, 233, 236, 242
msgs.properties, 232, 236, 242
MultiLang project

accessing map elements using dot
notation, 237

Application object, 239
basename attribute, 233
Big5 encoding, 233
calculateLocale(), 249
Change button, 242
changing the preferred language, 238
displaying a logo on a page, 246
displaying the current date and time,

231
escaped Unicode encoding, 233
faces-config.xml, 235, 250
<f:loadBundle> tag, 233
<f:param> tag, 244
getDisplayName(), 241
getLocale(), 247
getting the display name of the locale,

241
<h:graphicImage> tag, 246, 248
<h:outputFormat> tag, 244
 tag, 246
internationalizing the date display, 238
letting users change the displayed

language, 238
Locale object, 239, 249
localizing the full stop, 243
localizing validation messages, 250
logo_en.gif, 246
logo_zh.gif, 246
making a locale change persistent, 248
msgs_en.properties, 236
msgs_zh.properties, 233, 236, 242
msgs.properties, 232, 236, 242
multilang.msgs, 233

nINDEX294

MultiViewHandler class, 249
MyApp.properties, 250
MyApp_zh.properties, 251
MyViewHandler class, creating, 249
reading messages from a resource

bundle, 234
setting the date style to long, 238
ShowDate class, 232, 239, 241
showdate.xhtml, 231, 233, 238–239,

242–244, 246–247
specifying the default and supported

languages, 235
storing a language code in a session,

248
supporting the Chinese language, 232
table of formats and styles, 245
toString(), 238–239
using the Chinese version of a resource

bundle, 235
using the Eclipse Properties Editor,

233
value attribute, 246, 248
view variable, 247
web.xml, 234

MultiViewHandler class, 249
MyApp.properties, 250
MyApp_zh.properties, 251
MyFaces, 7
MyViewHandler class, creating, 249

N
@Name annotation, 261
name attribute, 46
namespace, defining, 153
navigation

creating navigation rules for links, 177
creating page-specific navigation cases,

180
faces-config.xml, 177
matching any source view ID, 177
navigation rules, defining, 37, 73
providing concrete parts, 180
using two abstract parts, 178–179

Navigator view, 29
next(), 222
Next button, 215, 219, 222, 225
@NotEmpty annotation, 257, 262
NullPointerException, 121

O
object dependencies, 118
onclick event, 186
oncomplete property, 201
OnDetailActionListener class, 111, 115
onOK(), 96, 98
onUpdate(), 161
outputText tag, 21, 24

P
p1.xhtml, 154, 164, 166, 171
p2.xhtml, 169
Package Explorer, 9
page inheritance, 175
<pair> tag, defining in foo.taglib.xml, 167
pair.xhtml, 166
<param> tag, 272
passwords, displaying as asterisks, 148
patronExists(), 81–82
PatronValidator class, 84
<pe> tag

defining, 159, 170
using in the bar tag lib, 171

pe.xhtml, 170
postage calculator application

creating a custom validator for the
patron code, 82

creating the results page, 72
developing, 67
<f:validateLongRange> tag, 75
getrequest.xhtml, 67
<h:commandButton> tag, 72
<h:inputText> tag, 70
<h:messages> tag, 75
<h:panelGrid> tag, 68
HTML renderer, 68
linking the request properties and the

UI Input components, 71
marking the weight as required, 78
navigation rule, defining, 73
patronExists(), 81–82
PatronValidator class, 84
PostageService class, 71
Request bean, 71
Request class, 70
running the application, 73
showpostage.xhtml, 72
specifying a validator method, 80

nINDEX 295

<table> element, 67
validatePatron(), 86
<validatePatron> tag, 83
validating the patron code, 80

Postage.properties, 76, 86
PostageService class, creating, 71
Process Validations phase, 74
processAction(), 98
Product class, 104, 257
product editor

currentProduct Web Beans, creating,
160

foo.taglib.xml, 159
onUpdate(), 161
passing an object to a custom tag, 159
<pe> tag, 159–160
pe.xhtml, creating, 160
Product class, creating, 160

Product List link, 259
Product.xhtml, 259, 268
ProductEdit.page.xml, 260, 265
ProductEdit.xhtml, 259, 263
ProductHolder bean, 135
ProductHolder class, 112, 117, 120, 124
ProductHome class, 269, 271
ProductList.xhtml, 259
products.xhtml, 173, 176, 180–181
pulling dependencies, 118

Q
qa.xhtml, 207
Question class, creating, 209
question parameter, 207
quoteDate property, 52–53
QuoteRequest class, 35, 63–64

R
Rate link, 200, 202
redirect after post, 226–227
@Remove annotation, 276
Render Response phase, 40–41, 50, 56, 74,

140, 190
rendered attribute, 190, 192
Request bean, 71
Request class, 70, 86, 98–99
request scope, 185
RequestValidatingListener class, 98
required attribute, setting to true, 59

reRender attribute, 189, 196
resource bundle

reading messages from, 234
using the Chinese version of a resource

bundle, 235
<restrict> tag, 266
RichFaces component library

downloading and installing, 187
JSF 2.0 and, 187
modifying web.xml, 188
predefined skins, 205
support for skins, 204

<rich:modalPanel> tag, 200
<rich:panel> tag, 205

S
<s:button> tag, 268–269, 271–272
<s:decorate> tag, 263
Seam

accessing EJBs in EL expressions, 253
add(), 269
adding getters and setters, 258
adding products to the shopping cart,

267
adding the product ID to the shopping

cart, 269
admin user group, 261
authenticate(), 261
Authenticator class, 267
authenticator component, 261
base page, 264
Cart class, 269, 273
CartBean class, 274–276
cart.page.xml, 272
cart.xhtml, 270–272, 278
confirm.page.xml, 283
confirm.xhtml, 278, 283
ConfirmBean class, 279
creating a page for adding products, 259
creating an Eclipse project, 256
creating the cart component, 269
creating the checkout page, 277
creating the Confirm interface, 279
Credentials component, 261
@Current annotation, 261
destroy(), 276
destroying the cart component, 275
displaying the welcome page, 256

nINDEX296

DoubleRangeValidator, 262
@Entity annotation, 257, 259
EntityHome class, 271
getCreditCardNo(), 281
getPids(), 282
getTotal(), 280
GlassFish, 284
having a configuration file for each

page, 260
<h:commandButton> tag, 268
<h:form> tag, 268
@Id annotation, 257
implementing the methods for the

shopping cart, 276
@In annotation, 261, 269
injecting a nonexistent component,

271
injecting the EntityManager, 280
installing, 253
@Min annotation, 257, 262
@Name annotation, 261
@NotEmpty annotation, 257, 262
<param> tag, 272
performing CRUD operations, 253
Product class, mapping to a table,

257
Product List link, 259
Product.xhtml, 259, 268
ProductEdit.page.xml, 260, 265
ProductEdit.xhtml, 259, 263
ProductHome class, 269, 271
ProductList.xhtml, 259
recreating the e-shop project using EJBs

and Seam, 254
@Remove annotation, 276
requiring authenticated access to a

page, 260, 283
<restrict> tag, 266
restricting access to the product-editing

page, 265
<s:button> tag, 268–269, 271–272
<s:decorate> tag, 263
seam generate-ui command, 259, 269
seam new-project command, 256
seam setup command, 254, 256
specifying component names, 261
specifying injections, 261
@Stateful annotation, 274–275

@Stateless annotation, 279
turning a session bean into a Seam

component, 274
turning the shopping cart into a stateful

session bean, 273
WebLogic, 284
WebSphere, 284

Serializable, 119, 136, 221
session scope, 185
session timeout, 119
@SessionScoped, 119
ShowDate class, 232, 239, 241
showdate.xhtml, 231, 233, 238–239,

242–244, 246–247
showpostage.xhtml, 72
skins

choosing, 205
definition of, 204
predefined, 205
RichFaces component library and, 204
web.xml, 205

@Stateful annotation, 274–275
@Stateless annotation, 279
Step1 class, creating, 222
step1.xhtml, 217, 222, 225–227
Step2 class, creating, 224
step2.xhtml, 217, 223, 225–227
stock quote application

b1 bean, 32, 35
choosing stock symbols from a combo

box, 60
determining the stock value from the b1

bean, 39
getsymbol.xhtml, 31, 34, 37, 41, 47, 52,

60
marking the UI Input component as

required, 40
QuoteRequest class, 35, 63
StockService class, 61, 63–64
stockvalue.xhtml, 36, 39
sym property, 35
updating the project name, 30

StockService class
creating, 61
inserting the stock value calculation, 64
modifying, 63

stockvalue.xhtml, 36, 39
sym property, 35

nINDEX 297

T
<table> element, 67
tag library, defining and naming, 154
taglib.xml, 170
thankyou.xhtml, 217
Ticket class, 216
toString(), 238–239
trigger(), 185

U
UI Command, 38–39, 41, 107, 186
UI Data, 105
UI Form, 31, 97
UI Input, 32, 35, 39, 41, 51, 91

adding validator objects to, 74
client ID and, 46
displaying a user-friendly description

for, 47
marking as required, 40
specifying an error message for a single

component, 49
UI Load Bundle, 233, 235
UI Message, 88, 90, 95
UI Output, 20, 105, 186, 190, 238,

243–244
UI Panel, 68, 91
UI Parameter, 244
UI View Root, 235, 238, 240, 247, 249
<ui:component> tag, 170
<ui:define> tag, 166
<ui:insert> tag, 165–166, 175
<ui:repeat> tag, 126
Unicode

escaped Unicode encoding,
233

properties files and, 233
using the Eclipse Properties Editor,

233
Update Domain Values phase, 43,

50, 99
User class, 136
User object, 131, 139
UserHolder class, 136
UserHolder Web Bean, 135, 143

V
validate(), 84
validatePatron(), 80, 86

validator objects
adding to a UI Input component, 74
creating a custom validator for the

patron code, 82
defining the foo.v1 validator, 84
null input and validators, 78
specifying a validator method, 80
validate(), 84
validatePatron(), 80
<validatePatron> tag, 83

ValidatorException, 80
validatorMessage attribute, 92
value attribute, 246, 248
var attribute, 105
view ID, 135, 140, 143, 146, 177
view variable, 247

W
Web Beans

conversation, definition of, 219
definition of, 20
displaying the available Web Beans

classes, 11
downloading, 8
installing into JBoss, 8
life cycle of, 25
telling Web Beans where JBoss is, 8
transient vs. long-running

conversations, 220
Web Beans manager, 20, 22–23

web.xml, 13, 188, 205, 234
WebContent folder, 11
WebLogic, 284
WebSphere, 284
Wizard project

action attribute, 225
Back button, 215, 219, 228
begin(), 223
defining the navigation rules for, 218
end(), 224
finish(), 224
Finish button, 223, 228
<h:inputText> tag, 217
<h:inputTextarea> tag, 217
implementing Serializable, 221
making a conversation long-running,

222–223
next(), 222

nINDEX298

Next button, 215, 219, 222, 225
putting the ticket into the conversation

scope, 221
redirect after post, 226–227
resolving URL mismatches, 225
Step1 class, creating, 222
step1.xhtml, 217, 222, 225–227
Step2 class, creating, 224
step2.xhtml, 217, 223, 225–227
thankyou.xhtml, 217

Ticket class, creating, 216
turning a conversation back into a

transient one, 223

X
XHTML

extracting common code into a
separate XHTML file, 151

extracting duplicate XHTML
code, 174

Offer valid through 11/09.

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Getting Started with JSF
	Introducing the fiHello worldfl Applicati
	Installing Eclipse
	Installing JBoss
	Installing a JSF Implementation
	Installing Web Beans

	Creating the fiHello world!fl Application with J
	Generating Dynamic Content
	Retrieving Data from Java Code
	Exploring the Life Cycle of the Web Bean
	Using an Easier Way to Output Text

	Debugging a JSF Application
	Summary

	Using Forms
	Developing a Stock Quote Application
	Getting the Stock Quote Symbol
	Displaying the Result Page
	Displaying the Stock Value
	Marking Input As Required
	Inputting a Date
	Conversion Errors and Empty Input
	Using a Combo Box
	Using a Single b2 Bean
	Hooking Up the Web Beans

	Summary

	Validating Input
	Developing a Postage Calculator
	What If the Input Is Invalid?
	Null Input and Validators
	Validating the Patron Code
	Creating a Custom Validator for the Patron Code
	Displaying the Error Messages in Red
	Displaying the Error Message Along with the Field
	Validating a Combination of Multiple Input Values

	Summary

	Creating an eshop
	Listing the Products
	Making the Link to Show the Details
	Displaying Headers in the Columns
	Implementing a Shopping Cart
	Displaying the Content of the Shopping Cart
	the Checkout Function
	Getting the Credit Card number of the Current User
	Forcing the User to Log In
	Implementing Logout
	Protecting the Password
	Summary

	Creating Custom Components
	Displaying a Copyright Notice on Multiple Pages
	Allowing the Caller to Specify the Company Name
	Creating a Product Editor
	Passing a Method in a Parameter?
	Creating a Box Component
	Accepting Two Pieces of XHTML Code
	Creating a Reusable Component Library
	Creating a Component Library Without taglib.xml
	Summary

	providing a Common Layout for Your pages
	Using the Same Menu on Different Pages
	Using Global Navigation Rules
	Using Two Abstract Parts
	Creating PageSpecific Navigation Cases
	Summary

	Building Interactive pages with ajax
	Displaying a FAQ
	Refreshing the Answer Only
	Hiding and Showing the Answer
	Using Ajax to Hide or Show the Answer
	Giving a Rating to a Question
	Updating the Rating as the User Types
	Using a Dialog Box to Get the Rating
	Setting the Look and Feel with Skins
	Displaying Multiple Questions
	Summary

	Using Conversations
	Creating a Wizard to Submit Support Tickets
	Interference Between Browser Windows
	URL Mismatched?
	Summary

	Supporting Other Languages
	Displaying the Current Date and Time
	Supporting Chinese
	Easier Way to Access Map Elements
	Internationalizing the Date Display
	Letting the User Change the Language Used
	Localizing the Full Stop
	Displaying a Logo
	Making the Locale Change Persistent
	Localizing Validation Messages
	Summary

	Using JBoss Seam
	Installing Seam
	Re-creating the E-shop Project
	Allowing the User to Add Products
	Restricting Access to the Product-Editing Page
	Creating a Shopping Cart
	Turning the Shopping Cart into a Stateful Session Bean
	Creating the Checkout Page
	Using WebLogic, WebSphere, or GlassFish
	Summary

	Index

