
Excerpts from the R Cookbook

Paul Teetor

Getting Started
with

R

25 Recipes for

www.it-ebooks.info

http://www.it-ebooks.info/

25 Recipes for Getting Started with R

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

25 Recipes for Getting
Started with R

Paul Teetor

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

25 Recipes for Getting Started with R
by Paul Teetor

Copyright © 2011 Paul Teetor. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Adam Zaremba
Proofreader: Adam Zaremba

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. 25 Recipes for Getting Started with R, the image of a harpy eagle, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30323-5

[LSI]

1296229980

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface . vii

The Recipes . 1
1.1 Downloading and Installing R 1
1.2 Getting Help on a Function 3
1.3 Viewing the Supplied Documentation 4
1.4 Searching the Web for Help 6
1.5 Reading Tabular Datafiles 8
1.6 Reading from CSV Files 10
1.7 Creating a Vector 12
1.8 Computing Basic Statistics 13
1.9 Initializing a Data Frame from Column Data 16

1.10 Selecting Data Frame Columns by Position 17
1.11 Selecting Data Frame Columns by Name 21
1.12 Forming a Confidence Interval for a Mean 22
1.13 Forming a Confidence Interval for a Proportion 23
1.14 Comparing the Means of Two Samples 24
1.15 Testing a Correlation for Significance 26
1.16 Creating a Scatter Plot 28
1.17 Creating a Bar Chart 29
1.18 Creating a Box Plot 30
1.19 Creating a Histogram 32
1.20 Performing Simple Linear Regression 33
1.21 Performing Multiple Linear Regression 34
1.22 Getting Regression Statistics 36
1.23 Diagnosing a Linear Regression 39
1.24 Predicting New Values 42
1.25 Accessing the Functions in a Package 43

v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

R is a powerful tool for statistics, graphics, and statistical programming. It is used by
tens of thousands of people daily to perform serious statistical analyses. It is a free, open
source system whose implementation is the collective accomplishment of many intel-
ligent, hard-working people. There are more than 2,000 available add-ons, and R is a
serious rival to all commercial statistical packages.

But R can be frustrating. It’s not obvious how to accomplish many tasks, even simple
ones. The simple tasks are easy once you know how, yet figuring out the “how” can be
maddening.

This is a book of how-to recipes for beginners, each of which solves a specific problem.
The recipe includes a quick introduction to the solution, followed by a discussion that
aims to unpack the solution and give you some insight into how it works. I know these
recipes are useful and I know they work because I use them myself.

Most recipes use one or two R functions to solve the stated problem. It’s important to
remember that I do not describe the functions in detail; rather, I describe just enough
to get the job done. Nearly every such function has additional capabilities beyond those
described here, and some of those capabilities are amazing. I strongly urge you to read
the function’s help page. You will likely learn something valuable.

The book is not a tutorial on R, although you will learn something by studying the
recipes. The book is not an introduction to statistics, either. The recipes assume that
you are familiar with the underlying statistical procedure, if any, and just want to know
how it’s done in R.

These recipes were taken from my R Cookbook (O’Reilly). The Cookbook contains over
200 recipes that you will find useful when you move beyond the basics of R.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Other Resources
I can recommend several other resources for R beginners:

An Introduction to R (Network Theory Limited)
This book by William N. Venables, et al., covers many general topics, including
statistics, graphics, and programming. You can download the free PDF book; or,
better yet, buy the printed copy because the profits are donated to the R project.

R in a Nutshell (O’Reilly)
Joseph Adler’s book is the tutorial and reference you’ll keep by your side. It covers
many topics, from introductory material to advanced techniques.

Using R for Introductory Statistics (Chapman & Hall/CRC)
A good choice for learning R and statistics together by John Verzani. The book
teaches statistical concepts together with the skills needed to apply them using R.

The R community has also produced many tutorials and introductions, especially in
specialized topics. Most of this material is available on the Web, so I suggest searching
there when you have a specific need (as in Recipe 1.4).

The R project website keeps an extensive bibliography of books related to R, both for
beginning and advanced users.

Downloading Additional Packages
The R project has over 2,000 packages that you can download to augment the standard
distribution with additional capabilities. You might see such packages mentioned in
the See Also section of a recipe, or you might discover one while searching the Web.

Most packages are available through the Comprehensive R Archive Network (CRAN)
at http://cran.r-project.org. From the CRAN home page, click on Packages to see the
name and a brief description of every available package. Click on a package name to
see more information, including the package documentation.

Downloading and installing a package is simple via the install.packages function. You
would install the zoo package this way, for example:

> install.packages("zoo")

When R prompts you for a mirror site, select one near you. R will download both the
package and any packages on which it depends, then install them onto your machine.

On Linux or Unix, I suggest having the systems administrator install packages into the
system-wide directories, making them available to all users. If that is not possible, install
the packages into your private directories.

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Software and Platform Notes
The base distribution of R has frequent, planned releases, but the language definition
and core implementation are stable. The recipes in this book should work with any
recent release of the base distribution.

One recipe has platform-specific considerations (Recipe 1.1). As far as I know, all other
recipes will work on all three major platforms for R: Windows, OS X, and Linux/Unix.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

Preface | ix

www.it-ebooks.info

http://www.it-ebooks.info/

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “25 Recipes for Getting Started with R by
Paul Teetor (O’Reilly). Copyright 2011 Paul Teetor, 978-1-449-30323-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449303235

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The Recipes

1.1 Downloading and Installing R
Problem
You want to install R on your computer.

Solution
Windows and OS X users can download R from CRAN, the Comprehensive R Archive
Network. Linux and Unix users can install R packages using their package management
tool.

Windows

• Open http://www.r-project.org/ in your browser.

• Click on “CRAN”. You’ll see a list of mirror sites, organized by country.

• Select a site near you.

• Click on “Windows” under “Download and Install R”.

• Click on “base”.

• Click on the link to download the latest version of R (an .exe file).

• When the download completes, double-click the .exe file and answer the usual
questions.

OS X

• Open http://www.r-project.org/ in your browser.

• Click on “CRAN”. You’ll see a list of mirror sites, organized by country.

• Select a site near you.

• Click on “MacOS X”.

• Click on the .pkg file for the latest version of R, under “Files:”, to download it.

• When the download completes, double-click the .pkg file and answer the usual
questions.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Linux or Unix
The major Linux distributions have packages for installing R. Here are some
examples:

Distribution Package name

Ubuntu or Debian r-base

Red Hat or Fedora R.i386

Suse R-base

Use the system’s package manager to download and install the package. Normally,
you will need the root password or sudo privileges; otherwise, ask a system ad-
ministrator to perform the installation.

Discussion
Installing R on Windows or OS X is straightforward because there are prebuilt binaries
for those platforms. You need only follow the preceding instructions. The CRAN Web
pages also contain links to installation-related resources, such as frequently asked
questions (FAQs) and tips for special situations (“How do I install R when using Win-
dows Vista?”) that you may find useful.

Theoretically, you can install R on Linux or Unix in one of two ways: by installing a
distribution package or by building it from scratch. In practice, installing a package is
the preferred route. The distribution packages greatly streamline both the initial in-
stallation and subsequent updates.

On Ubuntu or Debian, use apt-get to download and install R. Run under sudo to have
the necessary privileges:

$ sudo apt-get install r-base

On Red Hat or Fedora, use yum:

$ sudo yum install R.i386

Most platforms also have graphical package managers, which you might find more
convenient.

Beyond the base packages, I recommend installing the documentation packages, too.
On my Ubuntu machine, for example, I installed r-base-html (because I like browsing
the hyperlinked documentation) as well as r-doc-html, which installs the important R
manuals locally:

$ sudo apt-get install r-base-html r-doc-html

Some Linux repositories also include prebuilt copies of R packages available on CRAN.
I don’t use them because I’d rather get my software directly from CRAN itself, which
usually has the freshest versions.

2 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

In rare cases, you may need to build R from scratch. You might have an obscure, un-
supported version of Unix; or you might have special considerations regarding per-
formance or configuration. The build procedure on Linux or Unix is quite standard.
Download the tarball from the home page of your CRAN mirror; it’s called something
like R-2.12.1.tar.gz, except the “2.12.1” will be replaced by the latest version. Unpack
the tarball, look for a file called INSTALL, and follow the directions.

See Also
R in a Nutshell contains more details for downloading and installing R, including in-
structions for building the Windows and OS X versions. Perhaps the ultimate guide,
though, is R Installation and Administration (http://cran.r-project.org/doc/manuals/R
-admin.html), available on CRAN, which describes how to build and install R on a
variety of platforms.

This recipe is about installing the base package. Use the install.packages function to
install add-on packages from CRAN.

1.2 Getting Help on a Function
Problem
You want to know more about a function that is installed on your machine.

Solution
Use help to display the documentation for the function:

> help(functionname)

Use args for a quick reminder of the function arguments:

> args(functionname)

Use example to see examples of using the function:

> example(functionname)

Discussion
I present many R functions in this book. Every R function has more bells and whistles
than I can possibly describe. If a function catches your interest, I strongly suggest read-
ing the help page for that function. One of its bells or whistles might be very useful to
you.

Suppose you want to know more about the mean function. Use the help function like
this:

> help(mean)

1.2 Getting Help on a Function | 3

www.it-ebooks.info

http://www.it-ebooks.info/

This will either open a window with function documentation or display the documen-
tation on your console, depending on your platform. A shortcut for the help command
is to simply type ?, followed by the function name:

> ?mean

Sometimes you just want a quick reminder of the arguments to a function; what are
they, and in what order do they occur? Use the args function:

> args(mean)
function (x, ...)
NULL
> args(sd)
function (x, na.rm = FALSE)
NULL

The first line of output from args is a synopsis of the function call. For mean, the synopsis
shows one argument, x, which is a vector of numbers. For sd, the synopsis shows the
same vector, x, and an optional argument called na.rm. (You can ignore the second line
of output, which is often just NULL.)

Most documentation for functions includes examples near the end. A cool feature of
R is that you can request that it execute the examples, giving you a little demonstration
of the function’s capabilities. The documentation for the mean function, for instance,
contains examples, but you don’t need to type them yourself. Just use the example
function to watch them run:

> example(mean)

mean> x <- c(0:10, 50)

mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.1))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
 Murder Assault UrbanPop Rape
 7.42 167.60 66.20 20.16

The user typed example(mean). Everything else was produced by R, which executed the
examples from the help page and displayed the results.

1.3 Viewing the Supplied Documentation
Problem
You want to read the documentation supplied with R.

4 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use the help.start function to see the documentation’s table of contents:

> help.start()

From there, links are available to all the installed documentation.

Discussion
The base distribution of R includes a wealth of documentation—literally thousands of
pages. When you install additional packages, those packages contain documentation
that is also installed on your machine.

It is easy to browse this documentation via the help.start function, which opens a
window on the top-level table of contents; see Figure 1-1.

Figure 1-1. Documentation table of contents

1.3 Viewing the Supplied Documentation | 5

www.it-ebooks.info

http://www.it-ebooks.info/

The two links in the Reference section are especially useful:

Packages
Click here to see a list of all the installed packages, both in the base packages and
the additional installed packages. Click on a package name to see a list of its func-
tions and datasets.

Search Engine & Keywords
Click here to access a simple search engine, which allows you to search the
documentation by keyword or phrase. There is also a list of common keywords,
organized by topic; click one to see the associated pages.

See Also
The local documentation is copied from the R Project website, which may have updated
documents.

1.4 Searching the Web for Help
Problem
You want to search the Web for information and answers regarding R.

Solution
Inside R, use the RSiteSearch function to search by keyword or phrase:

> RSiteSearch("key phrase")

In your browser, try using these sites for searching:

http://rseek.org
This is a Google custom search that is focused on R-specific websites.

http://stackoverflow.com/
Stack Overflow is a searchable Q&A site oriented toward programming issues such
as data structures, coding, and graphics.

http://stats.stackexchange.com/
The Statistical Analysis area on Stack Exchange is also a searchable Q&A site, but
it is oriented more toward statistics than programming.

Discussion
The RSiteSearch function will open a browser window and direct it to the search engine
on the R Project website (http://search.r-project.org/). There, you will see an initial
search that you can refine. For example, this call would start a search for “canonical
correlation”:

> RSiteSearch("canonical correlation")

6 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

This is quite handy for doing quick Web searches without leaving R. However, the
search scope is limited to R documentation and the mailing-list archives.

RSeek.org provides a wider search. Its virtue is that it harnesses the power of the Google
search engine while focusing on sites relevant to R. That eliminates the extraneous
results of a generic Google search. The beauty of RSeek.org is that it organizes the results
in a useful way.

Figure 1-2 shows the results of visiting RSeek.org and searching for “canonical corre-
lation”. The left side of the page shows general results for search R sites. The right side
is a tabbed display that organizes the search results into several categories:

• Introductions

• Task Views

• Support Lists

• Functions

• Books

• Blogs

• Related Tools

Figure 1-2. Search results from RSeek.org

1.4 Searching the Web for Help | 7

www.it-ebooks.info

http://www.it-ebooks.info/

If you click on the Introductions tab, for example, you’ll find tutorial material. The
Task Views tab will show any Task View that mentions your search term. Likewise,
clicking on Functions will show links to relevant R functions. This is a good way to
zero in on search results.

Stack Overflow is a so-called Q&A site, which means that anyone can submit a question
and experienced users will supply answers—often there are multiple answers to each
question. Readers vote on the answers, so good answers tend to rise to the top. This
creates a rich database of searchable Q&A dialogs. Stack Overflow is strongly problem
oriented, and the topics lean toward the programming side of R.

Stack Overflow hosts questions for many programming languages; therefore, when
entering a term into their search box, prefix it with “[r]” to focus the search on questions
tagged for R. For example, searching for “[r] standard error” will select only the ques-
tions tagged for R and will avoid Python and C++ questions.

Stack Exchange (not Overflow) has a Q&A area for Statistical Analysis. The area is
more focused on statistics than programming, so use this site when seeking answers
that are more concerned with statistics in general and less with R in particular.

See Also
If your search reveals a useful package, use the install.packages function to install it
on your machine.

1.5 Reading Tabular Datafiles
Problem
You want to read a text file that contains a table of data.

Solution
Use the read.table function, which returns a data frame:

> dfrm <- read.table("filename.txt")

Discussion
Tabular datafiles are quite common. They are text files with a simple format:

• Each line contains one record.

• Within each record, fields (items) are separated by a one-character delimiter, such
as a space, tab, colon, or comma.

• Each record contains the same number of fields.

8 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

This format is more free-form than the fixed-width format because fields needn’t be
aligned by position. Here is a datafile in tabular format, called statisticians.txt, using
a space character between fields:

Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

The read.table function is built to read this file. By default, it assumes the data fields
are separated by white space (blanks or tabs):

> dfrm <- read.table("statisticians.txt")
> print(dfrm)
 V1 V2 V3 V4
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

If your file uses a separator other than white space, specify it using the sep parameter.
For example, if our file used a colon (:) as the field separator, we would read it this way:

> dfrm <- read.table("statisticians.txt", sep=":")

You can’t tell from the printed output, but read.table interpreted the first and last
names as factors, not strings. We see that by checking the class of the resulting column:

> class(dfrm$V1)
[1] "factor"

To prevent read.table from interpreting character strings as factors, set the stringsAs
Factors parameter to FALSE:

> dfrm <- read.table("statisticians.txt", stringsAsFactor=FALSE)
> class(dfrm$V1)
[1] "character"

Now the class of the first column is character, not factor.

If any field contains the string “NA”, then read.table assumes that the value is missing
and converts it to NA. Your datafile might employ a different string to signal missing
values; if it does, use the na.strings parameter. The SAS convention, for example, is
that missing values are signaled by a single period (.). We can read such datafiles like
this:

> dfrm <- read.table("filename.txt", na.strings=".")

I am a huge fan of self-describing data: datafiles which describe their own contents. (A
computer scientist would say the file contains its own metadata.) The read.table func-
tion has two features that support this characteristic. First, you can include a header
line at the top of your file that gives names to the columns. The line contains one name

1.5 Reading Tabular Datafiles | 9

www.it-ebooks.info

http://www.it-ebooks.info/

for every column, and it uses the same field separator as the data. Here is our datafile
with a header line that names the columns:

lastname firstname born died
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

Now we can tell read.table that our file contains a header line, and it will use the
column names when it builds the data frame:

> dfrm <- read.table("statisticians.txt", header=TRUE, stringsAsFactor=FALSE)
> print(dfrm)
 lastname firstname born died
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

The second feature of read.table is comment lines. Any line that begins with a pound
sign (#) is ignored, so you can put comments on those lines:

This is a datafile of famous statisticians.
Last edited on 1994-06-18
lastname firstname born died
Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978
Yates Frank 1902 1994
Smith Kirstine 1878 1939

read.table has many parameters for controlling how it reads and interprets the input
file. See the help page for details.

See Also
If your data items are separated by commas, see Recipe 1.6 for reading a CSV file.

1.6 Reading from CSV Files
Problem
You want to read data from a comma-separated values (CSV) file.

Solution
The read.csv function can read CSV files. If your CSV file has a header line, use this:

> tbl <- read.csv("filename")

10 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

If your CSV file does not contain a header line, set the header option to FALSE:

> tbl <- read.csv("filename", header=FALSE)

Discussion
The CSV file format is popular because many programs can import and export data in
that format. Such programs include R, Excel, other spreadsheet programs, many da-
tabase managers, and most statistical packages. CSV is a flat file of tabular data, in
which each line in the file is a row of data, and each row contains data items separated
by commas. Here is a very simple CSV file with three rows and three columns (the first
line is a header line that contains the column names, also separated by commas):

label,lbound,ubound
low,0,0.674
mid,0.674,1.64
high,1.64,2.33

The read.csv function reads the data and creates a data frame, which is the usual R
representation for tabular data. The function assumes that your file has a header line
unless told otherwise:

> tbl <- read.csv("table-data.csv")
> tbl
 label lbound ubound
1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330

Observe that read.csv took the column names from the header line for the data frame.
If the file did not contain a header, we would specify header=FALSE, and R would syn-
thesize column names for us (V1, V2, and V3 in this case):

> tbl <- read.csv("table-data-with-no-header.csv", header=FALSE)
> tbl
 V1 V2 V3
1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330

A good feature of read.csv is that is automatically interprets nonnumeric data as a
factor (categorical variable), which is often what you want since this is, after all, a
statistical package, not Perl. The label variable in the tbl data frame just shown is
actually a factor, not a character variable. You see that by inspecting the structure of tbl:

> str(tbl)
'data.frame': 3 obs. of 3 variables:
 $ label : Factor w/ 3 levels "high","low","mid": 2 3 1
 $ lbound: num 0 0.674 1.64
 $ ubound: num 0.674 1.64 2.33

Sometimes, you really want your data interpreted as strings, not as factors. In that case,
set the as.is parameter to TRUE; this indicates that R should not interpret nonnumeric
data as a factor:

1.6 Reading from CSV Files | 11

www.it-ebooks.info

http://www.it-ebooks.info/

> tbl <- read.csv("table-data.csv", as.is=TRUE)
> str(tbl)
'data.frame': 3 obs. of 3 variables:
 $ label : chr "low" "mid" "high"
 $ lbound: num 0 0.674 1.64
 $ ubound: num 0.674 1.64 2.33

Notice that the label variable now has character-string values and is no longer a factor.

Another useful feature is that input lines starting with a pound sign (#) are ignored,
which lets you embed comments in your datafile. Disable this feature by specifying
comment.char="".

The read.csv function has many useful bells and whistles. These include the ability to
skip leading lines in the input file, control the conversion of individual columns, fill out
short rows, limit the number of lines, and control the quoting of strings. See the R help
page for details.

See Also
See the R help page for read.table, which is the basis for read.csv. See the write.csv
function for writing CSV files.

1.7 Creating a Vector
Problem
You want to create a vector.

Solution
Use the c(...) operator to construct a vector from given values.

Discussion
Vectors are a central component of R, not just another data structure. A vector can
contain numbers, strings, or logical values, but not a mixture.

The c(...) operator can construct a vector from simple elements:

> c(1,1,2,3,5,8,13,21)
[1] 1 1 2 3 5 8 13 21
> c(1*pi, 2*pi, 3*pi, 4*pi)
[1] 3.141593 6.283185 9.424778 12.566371
> c("Everyone", "loves", "stats.")
[1] "Everyone" "loves" "stats."
> c(TRUE,TRUE,FALSE,TRUE)
[1] TRUE TRUE FALSE TRUE

12 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

If the arguments to c(...) are themselves vectors, it flattens them and combines them
into a single vector:

> v1 <- c(1,2,3)
> v2 <- c(4,5,6)
> c(v1,v2)
[1] 1 2 3 4 5 6

Vectors cannot contain a mix of data types, such as numbers and strings. If you create
a vector from mixed elements, R will try to accommodate you by converting one of
them:

> v1 <- c(1,2,3)
> v3 <- c("A","B","C")
> c(v1,v3)
[1] "1" "2" "3" "A" "B" "C"

Here, the user tried to create a vector from both numbers and strings. R converted all
the numbers to strings before creating the vector, thereby making the data elements
compatible.

Technically speaking, two data elements can coexist in a vector only if they have the
same mode. The modes of 3.1415 and "foo" are numeric and character, respectively:

> mode(3.1415)
[1] "numeric"
> mode("foo")
[1] "character"

Those modes are incompatible. To make a vector from them, R converts 3.1415 to
character mode so it will be compatible with "foo":

> c(3.1415, "foo")
[1] "3.1415" "foo"
> mode(c(3.1415, "foo"))
[1] "character"

c is a generic operator, which means that it works with many datatypes
and not just vectors. However, it might not do exactly what you expect,
so check its behavior before applying it to other datatypes and objects.

1.8 Computing Basic Statistics
Problem
You want to calculate basic statistics: mean, median, standard deviation, variance,
correlation, or covariance.

Solution
Use one of these functions as appropriate, assuming that x and y are vectors:

1.8 Computing Basic Statistics | 13

www.it-ebooks.info

http://www.it-ebooks.info/

• mean(x)

• median(x)

• sd(x)

• var(x)

• cor(x, y)

• cov(x, y)

Discussion
When I first opened the documentation for R, I began searching for material called
something like “Procedures for Calculating Standard Deviation.” I figured that such an
important topic would likely require a whole chapter.

It’s not that complicated.

Standard deviation and other basic statistics are calculated by simple functions. Ordi-
narily, the function argument is a vector of numbers, and the function returns the
calculated statistic:

> x <- c(0,1,1,2,3,5,8,13,21,34)
> mean(x)
[1] 8.8
> median(x)
[1] 4
> sd(x)
[1] 11.03328
> var(x)
[1] 121.7333

The sd function calculates the sample standard deviation, and var calculates the sample
variance.

The cor and cov functions can calculate the correlation and covariance, respectively,
between two vectors:

> x <- c(0,1,1,2,3,5,8,13,21,34)
> y <- log(x+1)
> cor(x,y)
[1] 0.9068053
> cov(x,y)
[1] 11.49988

All these functions are picky about values that are not available (NA). Even one NA
value in the vector argument causes any of these functions to return NA, or even halt
altogether with a cryptic error:

> x <- c(0,1,1,2,3,NA)
> mean(x)
[1] NA
> sd(x)
[1] NA

14 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

It’s annoying when R is that cautious, but it is the right thing to do. You must think
carefully about your situation. Does an NA in your data invalidate the statistic? If yes,
then R is doing the right thing. If not, you can override this behavior by setting
na.rm=TRUE, which tells R to ignore the NA values:

> x <- c(0,1,1,2,3,NA)
> mean(x, na.rm=TRUE)
[1] 1.4
> sd(x, na.rm=TRUE)
[1] 1.140175

A beautiful aspect of mean and sd is that they are smart about data frames. They un-
derstand that each column of the data frame is a different variable, so they calculate
their statistic for each column individually. This example calculates those basic statis-
tics for a data frame with three columns:

> print(dframe)
 small medium big
1 0.6739635 10.526448 99.83624
2 1.5524619 9.205156 100.70852
3 0.3250562 11.427756 99.73202
4 1.2143595 8.533180 98.53608
5 1.3107692 9.763317 100.74444
6 2.1739663 9.806662 98.58961
7 1.6187899 9.150245 100.46707
8 0.8872657 10.058465 99.88068
9 1.9170283 9.182330 100.46724
10 0.7767406 7.949692 100.49814
> mean(dframe)
 small medium big
 1.245040 9.560325 99.946003
> sd(dframe)
 small medium big
0.5844025 0.9920281 0.8135498

Notice that mean and sd both return three values, one for each column defined by the
data frame. (Technically, they return a three-element vector in which the names attribute
is taken from the columns of the data frame.)

The var function understands data frames, too, but it behaves quite differently from
mean and sd. It calculates the covariance between the columns of the data frame and
returns the covariance matrix:

> var(dframe)
 small medium big
small 0.34152627 -0.21516416 -0.04005275
medium -0.21516416 0.98411974 -0.09253855
big -0.04005275 -0.09253855 0.66186326

1.8 Computing Basic Statistics | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Likewise, if x is either a data frame or a matrix, cor(x) returns the correlation matrix
and cov(x) returns the covariance matrix:

> cor(dframe)
 small medium big
small 1.00000000 -0.3711367 -0.08424345
medium -0.37113670 1.0000000 -0.11466070
big -0.08424345 -0.1146607 1.00000000
> cov(dframe)
 small medium big
small 0.34152627 -0.21516416 -0.04005275
medium -0.21516416 0.98411974 -0.09253855
big -0.04005275 -0.09253855 0.66186326

Alas, the median function does not understand data frames. To calculate the medians
of data frame columns, use the lapply function to apply the median function to each
column separately.

See Also
See Recipe 1.12 for calculating the confidence interval of the mean. See Recipe 1.15 for
testing the significance of a correlation.

1.9 Initializing a Data Frame from Column Data
Problem
Your data is organized by columns, and you want to assemble it into a data frame.

Solution
If your data is captured in several vectors and/or factors, use the data.frame function
to assemble them into a data frame:

> dfrm <- data.frame(v1, v2, v3, f1, f2)

Use as.data.frame instead if your data is captured in a list that contains vectors and/
or factors:

> dfrm <- as.data.frame(list.of.vectors)

Discussion
A data frame is a collection of columns, each of which corresponds to an observed
variable (in the statistical sense, not the programming sense). If your data is already
organized into columns, then it’s easy to build a data frame.

The data.frame function can construct a data frame from vectors, where each vector is
one observed variable. Suppose you have two numeric predictor variables, one cate-
gorical predictor variable, and one response variable. The data.frame function can cre-
ate a data frame from your vectors:

16 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

> dfrm <- data.frame(pred1, pred2, pred3, resp)
> dfrm
 pred1 pred2 pred3 resp
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
4 1.2666820 -1.27511434 PM 18.98153
5 0.7806372 -0.27292745 AM 19.59455
6 -1.0832624 0.73383339 AM 20.71605
7 -2.0883305 0.96816822 PM 22.70062
8 -0.7063653 -0.84476203 PM 18.40691
9 -0.8394022 0.31530793 PM 21.00930
10 -0.4966884 -0.08030948 AM 19.31253

Notice that data.frame takes the column names from your program variables. You can
override that default by supplying explicit column names:

> dfrm <- data.frame(p1=pred1, p2=pred2, p3=pred3, r=resp)
> dfrm
 p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
.
. (etc.)
.

Alternatively, your data may be organized into vectors, but those vectors are held in a
list instead of individual program variables, like this:

> lst <- list(p1=pred1, p2=pred2, p3=pred3, r=resp)

No problem. Use the as.data.frame function to create a data frame from the list of
vectors:

> as.data.frame(lst)
 p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694
.
. (etc.)
.

1.10 Selecting Data Frame Columns by Position
Problem
You want to select columns from a data frame according to their position.

Solution
To select a single column, use this list operator:

1.10 Selecting Data Frame Columns by Position | 17

www.it-ebooks.info

http://www.it-ebooks.info/

dfrm[[n]]
Returns one column—specifically, the nth column of dfrm.

To select one or more columns and package them in a data frame, use the following
sublist expressions:

dfrm[n]
Returns a data frame consisting solely of the nth column of dfrm.

dfrm[c(n1, n2, ..., nk)]
Returns a data frame built from the columns in positions n1, n2, ..., nk of dfrm.

You can use matrix-style subscripting to select one or more columns:

dfrm[, n]
Returns the nth column (assuming that n contains exactly one value).

dfrm[, c(n1, n2, ..., nk)]
Returns a data frame built from the columns in positions n1, n2, ..., nk.

Note that the matrix-style subscripting can return two different data types (either col-
umn or data frame) depending on whether you select one column or multiple
columns.

Discussion
There are a bewildering number of ways to select columns from a data frame. The
choices can be confusing until you understand the logic behind the alternatives. As you
read this explanation, notice how a slight change in syntax—a comma here, a double-
bracket there — changes the meaning of the expression.

Let’s play with the population data for the 16 largest cities in the Chicago metropolitan
area:

> suburbs
 city county state pop
1 Chicago Cook IL 2853114
2 Kenosha Kenosha WI 90352
3 Aurora Kane IL 171782
4 Elgin Kane IL 94487
5 Gary Lake(IN) IN 102746
6 Joliet Kendall IL 106221
7 Naperville DuPage IL 147779
8 Arlington Heights Cook IL 76031
9 Bolingbrook Will IL 70834
10 Cicero Cook IL 72616
11 Evanston Cook IL 74239
12 Hammond Lake(IN) IN 83048
13 Palatine Cook IL 67232
14 Schaumburg Cook IL 75386
15 Skokie Cook IL 63348
16 Waukegan Lake(IL) IL 91452

18 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Use simple list notation to select exactly one column, such as the first column:

> suburbs[[1]]
 [1] "Chicago" "Kenosha" "Aurora" "Elgin"
 [5] "Gary" "Joliet" "Naperville" "Arlington Heights"
 [9] "Bolingbrook" "Cicero" "Evanston" "Hammond"
[13] "Palatine" "Schaumburg" "Skokie" "Waukegan"

The first column of suburbs is a vector, so that’s what suburbs[[1]] returns: a vector.
If the first column were a factor, we’d get a factor.

The result differs when you use the single-bracket notation, as in suburbs[1]
or suburbs[c(1,3)]. You still get the requested columns, but R wraps them in a data
frame. This example returns the first column wrapped in a data frame:

> suburbs[1]
 city
1 Chicago
2 Kenosha
3 Aurora
4 Elgin
5 Gary
6 Joliet
7 Naperville
8 Arlington Heights
9 Bolingbrook
10 Cicero
11 Evanston
12 Hammond
13 Palatine
14 Schaumburg
15 Skokie
16 Waukegan

The next example returns the first and third columns wrapped in a data frame:

> suburbs[c(1,3)]
 city pop
1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

1.10 Selecting Data Frame Columns by Position | 19

www.it-ebooks.info

http://www.it-ebooks.info/

A major source of confusion is that suburbs[[1]] and suburbs[1] look similar but pro-
duce very different results:

suburbs[[1]]
This returns one column.

suburbs[1]
This returns a data frame, and the data frame contains exactly one column. This
is a special case of dfrm[c(n1,n2, ..., nk)]. We don’t need the c(...) construct
because there is only one n.

The point here is that “one column” is different from “a data frame that contains one
column.” The first expression returns a column, so it’s a vector or a factor. The second
expression returns a data frame, which is different.

R lets you use matrix notation to select columns, as shown in the Solution. But an odd
quirk can bite you: you might get a column or you might get a data frame, depending
which many subscripts you use. In the simple case of one index you get a column, like
this:

> suburbs[,1]
 [1] "Chicago" "Kenosha" "Aurora" "Elgin"
 [5] "Gary" "Joliet" "Naperville" "Arlington Heights"
 [9] "Bolingbrook" "Cicero" "Evanston" "Hammond"
[13] "Palatine" "Schaumburg" "Skokie" "Waukegan"

But using the same matrix-style syntax with multiple indexes returns a data frame:

> suburbs[,c(1,4)]
 city pop
1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

This creates a problem. Suppose you see this expression in some old R script:

dfrm[,vec]

Does that return a column or a data frame? Well, it depends. If vec contains one value,
you get a column; otherwise, you get a data frame. You cannot tell from the syntax
alone.

20 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

To avoid this problem, you can include drop=FALSE in the subscripts; this forces R to
return a data frame:

dfrm[,vec,drop=FALSE]

Now there is no ambiguity about the returned data structure. It’s a data frame.

When all is said and done, using matrix notation to select columns from data frames
is not the best procedure. I recommend that you instead use the list operators described
previously. They just seem clearer.

1.11 Selecting Data Frame Columns by Name
Problem
You want to select columns from a data frame according to their name.

Solution
To select a single column, use one of these list expressions:

dfrm[["name"]]
Returns one column, the column called name.

dfrm$name
Returns the same, but presented in different syntax.

To select one or more columns and package them in a data frame, use these list
expressions:

dfrm["name"]
Selects one column and packages it inside a data frame object.

dfrm[c("name1", "name2", ..., "namek")]
Selects several columns and packages them in a data frame.

You can use matrix-style subscripting to select one or more columns:

dfrm[, "name"]
Returns the named column.

dfrm[, c("name1", "name2", ..., "namek")]
Selects several columns and packages them in a data frame.

Once again, the matrix-style subscripting can return two different data types (column
or data frame) depending on whether you select one column or multiple columns.

Discussion
All columns in a data frame must have names. If you know the name, it’s usually more
convenient and readable to select by name, rather than by position.

1.11 Selecting Data Frame Columns by Name | 21

www.it-ebooks.info

http://www.it-ebooks.info/

The solutions just described are similar to those for Recipe 1.10, where we selected
columns by position. The only difference is that here we use column names instead of
column numbers. All the observations made in Recipe 1.10 apply here:

• dfrm[["name"]] returns one column, not a data frame.

• dfrm[c("name1", "name2", ..., "namek")] returns a data frame, not a column.

• dfrm["name"] is a special case of the previous expression and so returns a data frame,
not a column.

• The matrix-style subscripting can return either a column or a data frame, so be
careful how many names you supply. See Recipe 1.10 for a discussion of this
“gotcha” and using drop=FALSE.

There is one new addition:

dfrm$name

This is identical in effect to dfrm[["name"]], but it’s easier to type and to read.

See Also
See Recipe 1.10 to understand more about selecting columns.

1.12 Forming a Confidence Interval for a Mean
Problem
You have a sample from a population. Given that sample, you want to determine a
confidence interval for the population’s mean.

Solution
Apply the t.test function to your sample x:

> t.test(x)

The output includes a confidence interval at the 95% confidence level. To see intervals
at other levels, use the conf.level argument.

If your sample size n is small, the underlying population must be normally distributed
for there to be a meaningful confidence interval. A good rule of thumb is that “small”
means n < 30.

Discussion
Applying the t.test function to a vector yields a lot of output. Buried in the output is
a confidence interval:

22 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

> x <- rnorm(50, mean=100, sd=15)
> t.test(x)

 One Sample t-test

data: x
t = 59.2578, df = 49, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 97.16167 103.98297
sample estimates:
mean of x
 100.5723

In this example, the confidence interval is approximately 97.16 < μ < 103.98, which is
sometimes written simply as (97.16, 103.98).

We can raise the confidence level to 99% by setting conf.level=0.99:

> t.test(x, conf.level=0.99)

 One Sample t-test

data: x
t = 59.2578, df = 49, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
 96.0239 105.1207
sample estimates:
mean of x
 100.5723

That change widens the confidence interval to 96.02 < μ < 105.12.

1.13 Forming a Confidence Interval for a Proportion
Problem
You have a sample of values from a population consisting of successes and failures.
Based on the sample data, you want to form a confidence interval for the population’s
proportion of successes.

Solution
Use the prop.test function. Suppose the sample size is n and the sample contains x
successes:

> prop.test(n, x)

The function output includes the confidence interval for p.

1.13 Forming a Confidence Interval for a Proportion | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
I subscribe to a stock market newsletter that is well written for the most part, but
includes a section purporting to identify stocks that are likely to rise. It does this by
looking for a certain pattern in the stock price. It recently reported, for example, that
a certain stock was following the pattern. It also reported that the stock rose six times
after the last nine times that pattern occurred. The writers concluded that the proba-
bility of the stock rising again was therefore 6/9 or 66.7%.

Using prop.test, we can obtain the confidence interval for the true proportion of times
the stock rises after the pattern. Here, the number of observations is n = 9 and the
number of successes is x = 6. The output shows a confidence interval of (0.309, 0.910)
at the 95% confidence level:

> prop.test(6, 9)

 1-sample proportions test with continuity correction

data: 6 out of 9, null probability 0.5
X-squared = 0.4444, df = 1, p-value = 0.505
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.3091761 0.9095817
sample estimates:
 p
0.6666667

The writers are pretty foolish to say the probability of rising is 66.7%. They could be
leading their readers into a very bad bet.

By default, prop.test calculates a confidence interval at the 95% confidence level. Use
the conf.level argument for other confidence levels, like this:

> prop.test(n, x, p, conf.level=0.99) # 99% confidence level

1.14 Comparing the Means of Two Samples
Problem
You have one sample each from two populations. You want to know if the two popu-
lations could have the same mean.

Solution
Perform a t test by calling the t.test function:

> t.test(x, y)

By default, t.test assumes that your data is not paired. If the observations are paired
(i.e., if each xi is paired with the corresponding yi), then specify paired=TRUE:

> t.test(x, y, paired=TRUE)

24 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

In either case, t.test will compute a p-value. Conventionally, if p < 0.05, the means
are likely different, whereas p > 0.05 provides no such evidence:

• If either sample size is small, the populations must be normally distributed. Here,
“small” means fewer than 20 data points.

• If the two populations have the same variance, specify var.equal=TRUE to obtain a
less conservative test.

Discussion
I often use the t test to get a quick sense of the difference between two population
means. It requires that the samples be large enough—both samples have 20 or more
observations—or that the underlying populations be normally distributed. I don’t take
the “normally distributed” part too literally. Being bell-shaped should be good enough.

A key distinction here is whether your data contains paired observations, since the
answer may cause your results to differ. Suppose we want to know if coffee in the
morning improves scores on SAT tests. We could run the experiment two ways:

• Randomly select one group of people. Give them the SAT test twice, once with
morning coffee and once without morning coffee. For each person, we will have
two SAT scores. These are paired observations.

• Randomly select two groups of people. One group has a cup of morning coffee and
takes the SAT test. The other group just takes the test. We have a score for each
person, but the scores are not paired in any way.

Statistically, these experiments are quite different. In experiment 1, there are two
observations for each person (caffeinated and decaf) and they are not statistically in-
dependent. In experiment 2, the data is independent.

If you have paired observations (experiment 1) and erroneously analyze them as un-
paired observations (experiment 2), then you could get this result with a p-value of
0.9867:

> t.test(x,y)

 Welch Two Sample t-test

data: x and y
t = -0.0166, df = 198, p-value = 0.9867
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -30.56737 30.05605
sample estimates:
mean of x mean of y
 501.2008 501.4565

1.14 Comparing the Means of Two Samples | 25

www.it-ebooks.info

http://www.it-ebooks.info/

The large p-value forces you to conclude that there is no difference between the groups.
Contrast that result with the one from analyzing the same data, but correctly identifying
it as paired:

> t.test(x, y, paired=TRUE)

 Paired t-test

data: x and y
t = -2.3636, df = 99, p-value = 0.02005
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.4702824 -0.0410375
sample estimates:
mean of the differences
 -0.2556599

The p-value plummets to 0.02005, and we reach exactly the opposite conclusion.

See Also
If the populations are not normally distributed (bell-shaped) and either sample is small,
the t test is inappropriate. In that case, consider using the Wilcoxon-Mann-Whitney
test, which is implemented by the wilcox.test function.

1.15 Testing a Correlation for Significance
Problem
You calculated the correlation between two variables, but you don’t know if the cor-
relation is statistically significant.

Solution
The cor.test function can calculate both the p-value and the confidence interval of the
correlation. If the variables came from normally distributed populations, use the default
measure of correlation, known as the Pearson method:

> cor.test(x, y)

For nonnormal populations, use the Spearman method instead:

> cor.test(x, y, method="Spearman")

The function returns several values, including the p-value from the test of significance.
Conventionally, p < 0.05 indicates that the correlation is likely significant, whereas p
> 0.05 indicates it is not.

26 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
In my experience, people often fail to check a correlation for significance. In fact, many
people are unaware that a correlation can be insignificant. They jam their data into a
computer, calculate the correlation, and blindly believe the result. However, they
should ask themselves: Was there enough data? Is the magnitude of the correlation
large enough? Fortunately, the cor.test function answers those questions.

Suppose we have two vectors, x and y, with values from normal populations. We might
be very pleased that their correlation is greater than 0.83:

> cor(x, y)
[1] 0.8352458

But that is naïve. If we run cor.test, it reports a relatively large p-value of 0.1648:

> cor.test(x, y)

 Pearson's product-moment correlation

data: x and y
t = 2.1481, df = 2, p-value = 0.1648
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.6379590 0.9964437
sample estimates:
 cor
0.8352458

The p-value is above the conventional threshold of 0.05, so we conclude that the cor-
relation is unlikely to be significant.

You can also check the correlation by using the confidence interval. In this example,
the confidence interval is (−0.638, 0.996). The interval contains zero, so it is possible
that the correlation is zero, in which case there would be no correlation. Again, you
could not be confident that the reported correlation is significant.

The cor.test output also includes the point estimate reported by cor (at the bottom,
labeled “sample estimates”), saving you the additional step of running cor.

By default, cor.test calculates the Pearson correlation, which assumes that the under-
lying populations are normally distributed. The Spearman method makes no such as-
sumption because it is nonparametric. Use method="Spearman" when working with
nonnormal data.

See Also
See Recipe 1.8 for computing correlations and other basic statistics.

1.15 Testing a Correlation for Significance | 27

www.it-ebooks.info

http://www.it-ebooks.info/

1.16 Creating a Scatter Plot
Problem
You have paired observations: (x1, y1), (x2, y2), ..., (xn, yn). You want to create a scatter
plot of the pairs.

Solution
If your data is held in two parallel vectors, x and y, use them as arguments of plot:

> plot(x, y)

If your data is held in a (two-column) data frame, plot the data frame:

> plot(dfrm)

Discussion
A scatter plot is usually my first attack on a new dataset. It’s a quick way to see the
relationship, if any, between x and y. Creating the scatter plot is easy:

> plot(x, y)

The plot function does not return anything. Rather, its purpose is to draw a plot of the
(x, y) pairs in the graphics window.

Life is even easier if your data is captured in a two-column data frame. If you plot a
two-column data frame, the function assumes you want a scatter plot created from
those two columns. The scatter plot shown in Figure 1-3 was created by one call to plot:

> plot(cars)

The cars dataset contains two columns: speed and dist. The first column is speed, so
that becomes the x-axis, and dist becomes the y-axis.

If your data frame contains more than two columns, you will get multiple scatter plots,
which might or might not be useful.

To get a scatter plot, your data must be numeric. Recall that plot is a polymorphic
function, so, if the arguments are nonnumeric, it will create some other type of plot.
See Recipe 1.18, for example, which creates box plots from factors.

See Also
See the help page for plot to learn more about adding a title, subtitle, and labels.

28 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

1.17 Creating a Bar Chart
Problem
You want to create a bar chart.

Solution
Use the barplot function. The first argument is a vector of bar heights:

> barplot(c(height1, height2, height3))

Discussion
The barplot function produces a simple bar chart. It assumes that the heights of your
bars are conveniently stored in a vector. That is not always the case, however. Often,
you have a vector of numeric data and a parallel factor that groups the data, and you
want to produce a bar chart of the group means or the group totals. For example, the
airquality dataset contains a numeric Temp column and a Month column. We can create

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Figure 1-3. Scatter plot

1.17 Creating a Bar Chart | 29

www.it-ebooks.info

http://www.it-ebooks.info/

a bar chart of the mean temperature by month in two steps. First, we compute the
means:

> heights <- tapply(airquality$Temp, airquality$Month, mean)

That gives the heights of the bars, from which we create the bar chart:

> barplot(heights)

The result is shown in the lefthand panel of Figure 1-4. The result is pretty bland, as
you can see, so it’s common to add some simple adornments: a title, labels for the bars,
and a label for the y-axis:

> barplot(heights,
+ main="Mean Temp. by Month",
+ names.arg=c("May", "Jun", "Jul", "Aug", "Sep"),
+ ylab="Temp (deg. F)")

5 6 7 8 9

0
20

40
60

80

May Jun Jul Aug Sep

Mean Temp. by Month
Te

m
p

(d
eg

. F
)

0
20

40
60

80

Figure 1-4. Bar charts, plain (left) and adorned (right)

The righthand panel of Figure 1-4 shows the improved bar chart.

See Also
The barchart function in the lattice package is another way to produce a bar chart.

1.18 Creating a Box Plot
Problem
You want to create a box plot of your data.

30 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use boxplot(x), where x is a vector of numeric values.

Discussion
A box plot provides a quick and easy visual summary of a dataset. Figure 1-5 shows a
typical box plot:

• The thick line in the middle is the median.

• The box surrounding the median identifies the first and third quartiles; the bottom
of the box is Q1, and the top is Q3.

• The “whiskers” above and below the box show the range of the data, excluding
outliers.

• The circles identify outliers. By default, an outlier is defined as any value that is
farther than 1.5 × IQR away from the box. (IQR is the interquartile range, or
Q3 − Q1.) In this example, there are three outliers.

●

●

●

0
1

2
3

4

Figure 1-5. Your typical box plot

1.18 Creating a Box Plot | 31

www.it-ebooks.info

http://www.it-ebooks.info/

1.19 Creating a Histogram
Problem
You want to create a histogram of your data.

Solution
Use hist(x), where x is a vector of numeric values.

Discussion
The lefthand panel of Figure 1-6 shows a histogram of the MPG.city column taken from
the Cars93 dataset, created like this:

> data(Cars93, package="MASS")
> hist(Cars93$MPG.city)

Histogram of Cars93$MPG.city

Cars93$MPG.city

F
re

qu
en

cy

15 25 35 45

0
10

20
30

40

City MPG (1993)

MPG

F
re

qu
en

cy

15 20 25 30 35 40 45

0
5

10
15

20

Figure 1-6. Histograms

The hist function must decide how many cells (bins) to create for binning the data. In
this example, the default algorithm chose seven bins. That creates too few bars for my
taste, because the shape of the distribution remains hidden. So, I would include a sec-
ond argument for hist—namely, the suggested number of bins:

> hist(Cars93$MPG.city, 20)

The number is only a suggestion, but hist will expand the number of bins as possible
to accommodate that suggestion.

32 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

The righthand panel of Figure 1-6 shows a histogram for the same data, but with more
bins and with replacements for the default title and x-axis label. It was created like this:

> hist(Cars93$MPG.city, 20, main="City MPG (1993)", xlab="MPG")

See Also
The histogram function of the lattice package is an alternative to hist.

1.20 Performing Simple Linear Regression
Problem
You have two vectors, x and y, that hold paired observations: (x1, y1), (x2, y2), ..., (xn,
yn). You believe there is a linear relationship between x and y, and you want to create
a regression model of the relationship.

Solution
The lm function performs a linear regression and reports the coefficients:

> lm(y ~ x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 17.72 3.25

Discussion
Simple linear regression involves two variables: a predictor variable, often called x; and
a response variable, often called y. The regression uses the ordinary least-squares (OLS)
algorithm to fit the linear model:

yi = β0 + β1xi + εi

where β0 and β1 are the regression coefficients and εi represents the error terms.

The lm function can perform linear regression. The main argument is a model formu-
la, such as y ~ x. The formula has the response variable on the left of the tilde character
(~) and the predictor variable on the right. The function estimates the regression coef-
ficients, β0 and β1, and reports them as the intercept and the coefficient of x,
respectively:

Coefficients:
(Intercept) x
 17.72 3.25

1.20 Performing Simple Linear Regression | 33

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, the regression equation is:

yi = 17.72 + 3.25xi + εi

It is quite common for data to be captured inside a data frame, in which case you want
to perform a regression between two data frame columns. Here, x and y are columns
of a data frame dfrm:

> dfrm
 x y
1 0.04781401 5.406651
2 1.90857986 19.941568
3 2.79987246 23.922613
4 4.46755305 32.432904
5 3.76490363 44.259268
6 5.92364632 61.151480
7 8.04611587 26.305505
8 7.11097986 43.606087
9 9.73645966 58.262112
10 9.19324543 57.631029
.
. (etc.)
.

The lm function lets you specify a data frame by using the data parameter. If you do,
the function will take the variables from the data frame and not from your workspace:

> lm(y ~ x, data=dfrm) # Take x and y from dfrm

Call:
lm(formula = y ~ x, data = dfrm)

Coefficients:
(Intercept) x
 17.72 3.25

1.21 Performing Multiple Linear Regression
Problem
You have several predictor variables (e.g., u, v, and w) and a response variable (y). You
believe there is a linear relationship between the predictors and the response, and you
want to perform a linear regression on the data.

Solution
Use the lm function. Specify the multiple predictors on the righthand side of the for-
mula, separated by plus signs (+):

> lm(y ~ u + v + w)

34 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Multiple linear regression is the obvious generalization of simple linear regression. It
allows multiple predictor variables instead of one predictor variable and still uses OLS
to compute the coefficients of a linear equation. The three-variable regression just
shown corresponds to this linear model:

yi = β0 + β1ui + β2vi + β3wi + εi

R uses the lm function for both simple and multiple linear regression. You simply add
more variables to the righthand side of the model formula. The output then shows the
coefficients of the fitted model:

> lm(y ~ u + v + w)

Call:
lm(formula = y ~ u + v + w)

Coefficients:
(Intercept) u v w
 1.4222 1.0359 0.9217 0.7261

The data parameter of lm is especially valuable when the number of variables increases,
since it’s much easier to keep your data in one data frame than in separate variables.
Suppose your data is captured in a data frame, such as the dfrm variable shown here:

> dfrm
 y u v w
1 6.584519 0.79939065 2.7971413 4.366557
2 6.425215 -2.31338537 2.7836201 4.515084
3 7.830578 1.71736899 2.7570401 3.865557
4 2.757777 1.27652888 0.4191765 2.547935
5 5.794566 0.39643488 2.3785468 3.265971
6 7.314611 1.82247760 1.8291302 4.518522
7 2.533638 -1.34186107 2.3472593 2.570884
8 8.696910 0.75946803 3.4028180 4.442560
9 6.304464 0.92000133 2.0654513 2.835248
10 8.095094 1.02341093 2.6729252 3.868573
.
. (etc.)
.

When we supply dfrm to the data parameter of lm, R looks for the regression variables
in the columns of the data frame:

> lm(y ~ u + v + w, data=dfrm)

Call:
lm(formula = y ~ u + v + w, data = dfrm)

Coefficients:
(Intercept) u v w
 1.4222 1.0359 0.9217 0.7261

1.21 Performing Multiple Linear Regression | 35

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
See Recipe 1.20 for simple linear regression.

1.22 Getting Regression Statistics
Problem
You want the critical statistics and information regarding your regression, such as R2,
the F statistic, confidence intervals for the coefficients, residuals, the ANOVA table,
and so forth.

Solution
Save the regression model in a variable, say m:

> m <- lm(y ~ u + v + w)

Then, use the following functions to extract regression statistics and information from
the model:

anova(m)
ANOVA table

coefficients(m)
Model coefficients

coef(m)
Same as coefficients(m)

confint(m)
Confidence intervals for the regression coefficients

deviance(m)
Residual sum of squares

effects(m)
Vector of orthogonal effects

fitted(m)
Vector of fitted y values

residuals(m)
Model residuals

resid(m)
Same as residuals(m)

summary(m)
Key statistics, such as R2, the F statistic, and the residual standard error (σ)

vcov(m)
Variance-covariance matrix of the main parameters

36 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
When I started using R, the documentation said to use the lm function to perform linear
regression. So I did something like this, getting the output shown in Recipe 1.21:

> lm(y ~ u + v + w)

Call:
lm(formula = y ~ u + v + w)

Coefficients:
(Intercept) u v w
 1.4222 1.0359 0.9217 0.7261

I was so disappointed! The output was nothing compared to other statistics packages
such as SAS. Where is R2? Where are the confidence intervals for the coefficients?
Where is the F statistic, its p-value, and the ANOVA table?

Of course, all that information is available—you just have to ask for it. Other statistics
systems dump everything and let you wade through it. R is more minimalist. It prints
a bare-bones output and lets you request what more you want.

The lm function returns a model object. You can save the object in a variable by using
the assignment operator (<-). This example assigns the object to the variable m:

> m <- lm(y ~ u + v + w)

From the model object, you can extract important information using specialized func-
tions. The most important function is summary:

> summary(m)

Call:
lm(formula = y ~ u + v + w)

Residuals:
 Min 1Q Median 3Q Max
-3.3965 -0.9472 -0.4708 1.3730 3.1283

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.4222 1.4036 1.013 0.32029
u 1.0359 0.2811 3.685 0.00106 **
v 0.9217 0.3787 2.434 0.02211 *
w 0.7261 0.3652 1.988 0.05744 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.625 on 26 degrees of freedom
Multiple R-squared: 0.4981, Adjusted R-squared: 0.4402
F-statistic: 8.603 on 3 and 26 DF, p-value: 0.0003915

The summary shows the estimated coefficients. It shows the critical statistics, such as
R2, and the F statistic. It also shows an estimate of σ, the standard error of the residuals.

1.22 Getting Regression Statistics | 37

www.it-ebooks.info

http://www.it-ebooks.info/

There are also specialized extractor functions for other important information:

Model coefficients (point estimates)

> coef(m)
(Intercept) u v w
 1.4222050 1.0358725 0.9217432 0.7260653

Confidence intervals for model coefficients

> confint(m)
 2.5 % 97.5 %
(Intercept) -1.46302727 4.307437
u 0.45805053 1.613694
v 0.14332834 1.700158
w -0.02466125 1.476792

Model residuals

> resid(m)
 1 2 3 4 5 6
-1.41440465 1.55535335 -0.71853222 -2.22308948 -0.60201283 -0.96217874
 7 8 9 10 11 12
-1.52877080 0.12587924 -0.03313637 0.34017869 1.28200521 -0.90242817
 13 14 15 16 17 18
 2.04481731 1.13630451 -1.19766679 -0.60210494 1.79964497 1.25941264
 19 20 21 22 23 24
-2.03323530 1.40337142 -1.25605632 -0.84860707 -0.47307439 -0.76335244
 25 26 27 28 29 30
 2.16275214 1.53483492 1.65085364 -3.39647629 -0.46853750 3.12825629

Residual sum of squares

> deviance(m)
[1] 68.69616

ANOVA table

> anova(m)
Analysis of Variance Table

Response: y
 Df Sum Sq Mean Sq F value Pr(>F)
u 1 27.916 27.9165 10.5658 0.003178 **
v 1 29.830 29.8299 11.2900 0.002416 **
w 1 10.442 10.4423 3.9522 0.057436 .
Residuals 26 68.696 2.6422

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

If you find it annoying to save the model in a variable, you are welcome to use one-
liners such as this:

> summary(lm(y ~ u + v + w))

38 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

1.23 Diagnosing a Linear Regression
Problem
You have performed a linear regression. Now you want to verify the model’s quality
by running diagnostic checks.

Solution
Start by plotting the model object, which will produce several diagnostic plots:

> m <- lm(y ~ x)
> plot(m)

Next, identify possible outliers either by looking at the diagnostic plot of the residuals
or by using the outlier.test function of the car package:

> library(car)
> outlier.test(m)

Finally, identify any overly influential observations (by using the influence.measures
function, for example).

Discussion
R fosters the impression that linear regression is easy: just use the lm function. Yet fitting
the data is only the beginning. It’s your job to decide whether the fitted model actually
works and works well.

Before anything else, you must have a statistically significant model. Check the F sta-
tistic from the model summary (Recipe 1.22) and be sure that the p-value is small
enough for your purposes. Conventionally, it should be less than 0.05, or else your
model is likely meaningless.

Simply plotting the model object produces several useful diagnostic plots:

> m <- lm(y ~ x)
> plot(m)

Figure 1-7 shows diagnostic plots for a pretty good regression:

• The points in the Residuals vs Fitted plot are randomly scattered with no particular
pattern.

• The points in the Normal Q–Q plot are more-or-less on the line, indicating that
the residuals follow a normal distribution.

• In both the Scale–Location plot and the Residuals vs Leverage plots, the points are
in a group with none too far from the center.

1.23 Diagnosing a Linear Regression | 39

www.it-ebooks.info

http://www.it-ebooks.info/

20 40 60 80 100 120

−
20

−
10

0
10

20

Fitted values

R
es

id
ua

ls

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Residuals vs Fitted

6

7 16

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

6

7 16

20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Scale−Location
6

7 16

0.00 0.04 0.08 0.12

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

6

27

1

Figure 1-7. Diagnostic plots: pretty good fit

In contrast, Figure 1-8 shows the diagnostics for a not-so-good regression. Observe that
the Residuals vs Fitted plot has a definite parabolic shape. This tells us that the model
is incomplete: a quadratic factor is missing that could explain more variation in y. Other
patterns in residuals are suggestive of additional problems; a cone shape, for example,
may indicate nonconstant variance in y. Interpreting those patterns is a bit of an art,
so I suggest reviewing a good book on linear regression while evaluating the plot of
residuals.

There are other problems with the not-so-good diagnostics. The Normal Q–Q plot has
more points off the line than it does for the good regression. Both the Scale–Location
and Residuals vs Leverage plots show points scattered away from the center, which
suggests that some points have excessive leverage.

40 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

Another pattern is that point number 28 sticks out in every plot. This warns us that
something is odd with that observation. The point could be an outlier, for example.
We can check that hunch with the outlier.test function of the car package:

> outlier.test(m)

max|rstudent| = 3.183304, degrees of freedom = 27,
unadjusted p = 0.003648903, Bonferroni p = 0.1094671

Observation: 28

outlier.test identifies the model’s most outlying observation. In this case, it identified
observation number 28 and so confirmed that it could be an outlier.

0 100 200 300 400 500

−
50

0
50

10
0

Fitted values

R
es

id
ua

ls

●

●
●

●

●

●

●

●

●●
●

●

● ● ●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

Residuals vs Fitted

28

30
1

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

28

30
1

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location
28

30
1

0.00 0.04 0.08 0.12

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

●

●

●

●

●●
●

●

●●●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

28

30
1

Figure 1-8. Diagnostic plots: not-so-good fit

1.23 Diagnosing a Linear Regression | 41

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
The car package is not part of the standard distribution of R; download and install it
using the install.packages function.

1.24 Predicting New Values
Problem
You want to predict new values from your regression model.

Solution
Save the predictor data in a data frame. Use the predict function, setting the newdata
parameter to the data frame:

> m <- lm(y ~ u + v + w)
> preds <- data.frame(u=3.1, v=4.0, w=5.5)
> predict(m, newdata=preds)

Discussion
Once you have a linear model, making predictions is quite easy because the predict
function does all the heavy lifting. The only annoyance is arranging for a data frame to
contain your data.

The predict function returns a vector of predicted values with one prediction for every
row in the data. The example in the Solution contains one row, so predict returns one
value:

> preds <- data.frame(u=3.1, v=4.0, w=5.5)
> predict(m, newdata=preds)
 1
12.31374

If your predictor data contains several rows, you get one prediction per row:

> preds <- data.frame(
+ u=c(3.0, 3.1, 3.2, 3.3),
+ v=c(3.9, 4.0, 4.1, 4.2),
+ w=c(5.3, 5.5, 5.7, 5.9))
> predict(m, newdata=preds)
 1 2 3 4
11.97277 12.31374 12.65472 12.99569

In case it’s not obvious, the new data needn’t contain values for response variables,
only predictor variables. After all, you are trying to calculate the response, so it would
be unreasonable of R to expect you to supply it.

42 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
These are just the point estimates of the predictions. Use the interval="prediction"
argument of predict to obtain the confidence intervals.

1.25 Accessing the Functions in a Package
Problem
A package installed on your computer is either a standard package or a package down-
loaded by you. When you try using functions in the package, however, R cannot find
them.

Solution
Use either the library function or the require function to load the package into R:

> library(packagename)

Discussion
R comes with several standard packages, but not all of them are automatically loaded
when you start R. Likewise, you can download and install many useful packages from
CRAN, but they are not automatically loaded when you run R. The MASS package comes
standard with R, for example, but you could get this message when using the lda func-
tion in that package:

> lda(x)
Error: could not find function "lda"

R is complaining that it cannot find the lda function among the packages currently
loaded into memory.

When you use the library function or the require function, R loads the package into
memory and its contents immediately become available to you:

> lda(f ~ x + y)
Error: could not find function "lda"
> library(MASS) # Load the MASS library into memory
> lda(f ~ x + y) # Now R can find the function
Call:
lda(f ~ x + y)

Prior probabilities of groups:
.
. (etc.)
.

Before calling library, R does not recognize the function name. Afterward, the package
contents are available and calling the lda function works.

1.25 Accessing the Functions in a Package | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that you needn’t enclose the package name in quotes.

The require function is nearly identical to library, but it has two features that are useful
for writing scripts. It returns TRUE if the package was successfully loaded and FALSE
otherwise. It also generates a mere warning if the load fails—unlike library, which
generates an error.

Both functions have a key feature: they do not reload packages that are already loaded,
so calling twice for the same package is harmless. This is especially nice for writing
scripts. You can write a script to load needed packages while knowing that loaded
packages will not be reloaded:

The detach function will unload a package that is currently loaded.

> detach(package:MASS)

Observe that the package name must be qualified, as in package:MASS.

One reason to unload a package is if it contains a function whose name conflicts with
a same-named function lower on the search list. When such a conflict occurs, we say
the higher function masks the lower function. You no longer “see” the lower function
because R stops searching when it finds the higher function. Hence unloading the
higher package unmasks the lower name.

See Also
See the search function for more about the search path.

44 | The Recipes

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Other Resources
	Downloading Additional Packages
	Software and Platform Notes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	The Recipes
	1.1 Downloading and Installing R
	Problem
	Solution
	Discussion
	See Also

	1.2 Getting Help on a Function
	Problem
	Solution
	Discussion

	1.3 Viewing the Supplied Documentation
	Problem
	Solution
	Discussion
	See Also

	1.4 Searching the Web for Help
	Problem
	Solution
	Discussion
	See Also

	1.5 Reading Tabular Datafiles
	Problem
	Solution
	Discussion
	See Also

	1.6 Reading from CSV Files
	Problem
	Solution
	Discussion
	See Also

	1.7 Creating a Vector
	Problem
	Solution
	Discussion

	1.8 Computing Basic Statistics
	Problem
	Solution
	Discussion
	See Also

	1.9 Initializing a Data Frame from Column Data
	Problem
	Solution
	Discussion

	1.10 Selecting Data Frame Columns by Position
	Problem
	Solution
	Discussion

	1.11 Selecting Data Frame Columns by Name
	Problem
	Solution
	Discussion
	See Also

	1.12 Forming a Confidence Interval for a Mean
	Problem
	Solution
	Discussion

	1.13 Forming a Confidence Interval for a Proportion
	Problem
	Solution
	Discussion

	1.14 Comparing the Means of Two Samples
	Problem
	Solution
	Discussion
	See Also

	1.15 Testing a Correlation for Significance
	Problem
	Solution
	Discussion
	See Also

	1.16 Creating a Scatter Plot
	Problem
	Solution
	Discussion
	See Also

	1.17 Creating a Bar Chart
	Problem
	Solution
	Discussion
	See Also

	1.18 Creating a Box Plot
	Problem
	Solution
	Discussion

	1.19 Creating a Histogram
	Problem
	Solution
	Discussion
	See Also

	1.20 Performing Simple Linear Regression
	Problem
	Solution
	Discussion

	1.21 Performing Multiple Linear Regression
	Problem
	Solution
	Discussion
	See Also

	1.22 Getting Regression Statistics
	Problem
	Solution
	Discussion

	1.23 Diagnosing a Linear Regression
	Problem
	Solution
	Discussion
	See Also

	1.24 Predicting New Values
	Problem
	Solution
	Discussion
	See Also

	1.25 Accessing the Functions in a Package
	Problem
	Solution
	Discussion
	See Also

