ry
yew

JavaServer
Pages

Covers JSP 2.0

SeconNDp Epimon

LARNE PEKOWSKY

JavaServer Pages" , Second Edition

By Larne Pekowsky

Publisher : Addison Wesley

Pub Date : August 15, 2003
ISBN: 0-321-15079-1
Pages : 368

Slots: 1

Copyright

Preface

Acknowledgements

Chapter 1. Introduction

Section 1.1. A Brief History of the Web
Section 1.2. Basic Dynamic Page Generation
Section 1.3. Solving CGI Problems

Section 1.4. Welcome to Java News Today
Section 1.5. Trying the Examples

Chapter 2. Simple JSPs

Section 2.1. Removing Text from a JSP
Section 2.2. JSP Errors

Section 2.3. Including Text in a JSP
Section 2.4. The Phases of a JSP

Section 2.5. Creating Custom Error Pages
Section 2.6. Java News Today

Section 2.7. Summary and Conclusions
Section 2.8. Tags Learned in This Chapter

Chapter 3. Using Beans

Section 3.1. Splitting Big Tasks into Manageable Pieces
Section 3.2. Defining Beans

Section 3.3. JavaBean Tags

Section 3.4. Making Data Available Throughout an Application
Section 3.5. Special Actions When Beans Are Created

Section 3.6. Making Beans Last Forever

Section 3.7. Java News Today and Beans

Section 3.8. Future Directions

Section 3.9. Summary and Conclusions

Section 3.10. Tags Learned in This Chapter

Chapter 4. The Standard Taqg Library

Section 4.1. Tag Libraries

Section 4.2. Tags with Bodies

Section 4.3. Dynamic Attributes in Tags

Section 4.4. Displaying Expressions

Section 4.5. Formatting Output

Section 4.6. Compound Data in the Expression Language

Section 4.7. Browser Detection

Section 4.8. Combining Tags

Section 4.9. Selecting among Multiple Choices

Section 4.10. Summary and Conclusions

Section 4.11. Tags Learned in this Chapter

Chapter 5. Java News Today: Part |

Section 5.1. The Beans

Section 5.2. The Header

Section 5.3. The Left-Hand Navigation

Section 5.4. The Login Page

Section 5.5. The Quiz Result Page

Section 5.6. The Section Page

Section 5.7. The Article Page

Section 5.8. The Remaining Pages

Section 5.9. Summary and Conclusions

Section 5.10. Tags Learned in this Chapter

Chapter 6. Databases

Section 6.1. A Quick Introduction to Databases

Section 6.2. A Language for Databases

Section 6.3. Using SQL Directly from JSPs

Section 6.4. Inserting Data from JSPs

Section 6.5. SQL and Beans

Section 6.6. Summary and Conclusions

Section 6.7. Tags Learned in This Chapter

Chapter 7. Java News Today: Part 2

Section 7.1. Designing the Tables

Section 7.2. Adding Articles

Section 7.3. User Pages

Section 7.4. Other User Preferences

Section 7.5. Advertising

Section 7.6. Summary and Conclusions

Chapter 8. Working with XML

Section 8.1. A Brief Introduction to XML

Section 8.2. Using XML in JSPs

Section 8.3. Selecting Data from an XML Document

Section 8.4. Processing XML in JSPs

Section 8.5. Formatting XML

Section 8.6. Java News Today and XML

Section 8.7. Summary and Conclusions

Section 8.8. Tags Learned in this Chapter

Chapter 9. A Small Cup of Java

Section 9.1. EXxpressions

Section 9.2. Types

Section 9.3. Storing Values

Section 9.4. Method Calls

Section 9.5. Conditionally Evaluating Code

Section 9.6. Evaluating the Same Code Multiple Times

Section 9.7. Grouping Code

Section 9.8. Handling Errors

Section 9.9. Modeling a Problem with Objects

Section 9.10. Objects in Java

Section 9.11. Building Objects from Classes

Section 9.12. Sometimes Nothing Is Something

Section 9.13. Building Classes from Other Classes

Section 9.14. Interfaces

Section 9.15. Creating Groups of Classes and Interfaces

Section 9.16. Using Java in JSPs

Section 9.17. Database Access from Java

Section 9.18. Summary and Conclusions

Chapter 10. Writing Beans

Section 10.1. How Beans Are Implemented
Section 10.2. Automatic Type Conversion
Section 10.3. How Beans Work

Section 10.4. Bean Serialization

Section 10.5. Events

Section 10.6. Special Events

Section 10.7. Bean Errors

Section 10.8. Summary and Conclusions

Chapter 11. Servlets

Section 11.1. The Servlet Life Cycle

Section 11.2. The Servlet Class Hierarchy
Section 11.3. Servlet Events

Section 11.4. Forwarding and Including Requests
Section 11.5. Using Scopes from Servlets
Section 11.6. Using Beans from Servlets

Section 11.7. The JSP Classes

Section 11.8. Intercepting Requests

Section 11.9. Summary and Conclusions

Chapter 12. The Controller

Section 12.1. Some Common Controller Tasks

Section 12.2. Support for Controllers: Struts

Section 12.3. Summary and Conclusions

Chapter 13. Creating New Tag Libraries

Section 13.1. The Tag Life Cycle

Section 13.2. Tags without Bodies

Section 13.3. Tags with Bodies

Section 13.4. Using the Expression Language

Section 13.5. JSPs as Custom Tags

Section 13.6. Summary and Conclusions

Chapter 14. Advanced Topics

Section 14.1. Declaring Variables and Methods

Section 14.2. Extending Different Classes

Section 14.3. Returning Other Kinds of Data

Section 14.4. Threads

Section 14.5. Advanced Error Handling

Section 14.6. Summary and Conclusions

Appendix A. Summary of Tags

Section A.1. Built-in Tags

Section A.2. Core Tags

Section A.3. Format, Parsing, and Internationalization Tags

Section A.4. SOL Tags

Section A.5. XML Tags

Appendix B. Configuring a Web Application

Section B.1. Layout of the Directories

Section B.2. The Web.xml File

Preface

Thisisabook about how to use an exciting and powerful technology, JavaServer Pages,
(JSP) to create dynamic, interactive Web stes. Asthe nameimplies, this technology is
based on the Java programming language and inherits many of the language's feetures
and benefits. Most notably, Java makes JSPs available on amost every kind of computer
and operating system and certainly al those in common use.

JavaServer Pages are now a mature and stable technology, dready in use in thousands of
companies. But maturity has certainly not led to stagnation! Recently, a new verson of
the JSP specification was released, bringing new capabilities and possibilities. In addition,
severa companion technologies have been devel oped to augment the fundamenta
specification. The new specification, as well as the most important of these associated
technologies, are dl covered in this book. Throughout this book, effort has been made to
show the capabilities of al these tools and to discuss how they can best be used.

One of the most important features of JavaServer Pagesis how easy they are to use.
Anyone who is reasonably comfortable with HTML (Hypertext Markup Language) can
learn to write JavaServer Pages by using afew smple tags that may do very sophisticated
things behind the scenes, aong with small packages of code cdled JavaBeans. This
dlowsfor avery productive working relationship between HTML experts who build
pages and Java programmers who build beans and new tags.

Both kinds of developer will find materid of interest in this book. Chapter 1 givesabrief
higtory of the Web, setting JSPsin context and clarifying whet they are, how they work,
and why they work that way. Chapter 2 introduces some of the smpler features of JSPs
and shows just how easy the trangition from HTML to JSPis.

The next two chapters introduce the two vita technologies that give JSPs their enormous
power and flexibility: JavaBeansin Chapter 3 and custom tagsin Chapter 4. These tags
are presented as page authors will use them: components that hide dl the complexities of
Java behind smple interfaces that can be combined and used in limitless ways. Chapter 5
uses beans and tags to build afully functiond Web ste.

One of the great benefits of JSPsisthat they make it possible for pagesto interact with
complex systems. A very common such system is a database. Chapter 6 introduces
database concepts and discusses easy ways in which a page author can access data.
Chapter 7 usesthisinformation to expand the utility of the site built in Chapter 5.

XML (Extensble Markup Language) is an increasingly important technology, and JSPs
are dready well equipped to work with XML. Thistopic is covered in Chapter 8.

Thefirg eight chapters comprise alogicd firgt haf of the book, dedling with the myriad
things page authors can do with JSPs without knowing anything about Java. The
remainder of the book delves under the hood to explain how dl this is accomplished and
how Java programmers can extend the capabilities of JSPs. For readers who are not yet
familiar with Java, Chapter 9 introduces the language.

Chapter 10 covers the process of creating new beans. Chapter 11 covers atechnology,
cdled sarvlets, that underlies JISPs. Thisinformation isthen used in Chapter 12 to talk
about controllers, Java code that helps pieces of a Web site work together smply and
cleanly. Chapter 13 discusses how to use Javato create new tags. Chapter 14 coversa
few remaining advanced topics.

Readers who are not interested in programming will get the most out of this book by
reading Chapters 1 through 9, which comprise a complete course on how to use JSPs,
beans, tags, and related technologies to build just about any Web site imaginable. At thet
point, such readers may wish to learn alittle Javafrom Chapter 9 and then proceed on
through the rest of the book in order to understand better how everything works.

On the other hand, readers who aready know Java but who may not be familiar with
JSPs, the new features added as part of the latest specification, or related technologies
will want to move quickly through Chapter 2 to get afed for JSP syntax and then go
through Chapters 3 and 4 to see how JSPs interface with Java via tags and beans.
Programmers may then wish to proceed to Chapter 10 to see how new beans are crested,
and from there through the second haf of the book in order to understand serviets and
tags.

Findly, as amazing as it may seem, there is absolutely no cost to developing and
deploying JSPS! Thereisno need to buy a specia server or particular hardware or
operating system. All the tools needed, and many others, have been released for free by
the Apache group. The CD-ROM accompanying this book contains these tools, aswell as
al the examples from the book. It ismy sincere hope that this book, in conjunction with
these tools, will help you get the most out of this revolutionary new technology for
building exciting, compelling Web stes.

Acknowledgements

This book is very much agroup effort, and | am deeply indebted to everyone who helped
make it possible.

It has been my great pleasure to work with some of the brightest and most dedicated
peoplein New York at Capita Thinking. Although there are too many to name, | want to
thank them al for helping to keep technology fun and exciting enough to write abot.
Almogt every red-world consideration regarding server-side Java that appearsin this
book came out of projects my colleagues and | worked on.

Many thanks and high praise to everyone at the Apache project behind Tomcat, the
gsandard tag libraries, sruts, and so much more. Their decison to make such high-qudity
tools free and open source deserves around of applause from every Java and JSP
developer.

All the code in this book was developed on a FreeBSD system. | owe a debt of gratitude
to everyone behind both the operating system and the Java ports.

| would a0 like to thank everyone who took the time to read over the manuscript and
make suggestions. The find result is profoundly better for their efforts.

This book would be nothing but a collection of unread bits on my hard driveif not for
everyone at Addison-Wedey, including Ann Sdllers, Jacqui Doucette, Debby Van Dijk,
Michad Mullen, Mary O'Brien, and the many others whom | may not have been lucky
enough to work with directly.

Finaly, | would like to thank the artists who created the music that kept me company
while | was writing. Many of their names appear in examples scattered throughout the
text.

...and | wrote this book for evil gray monkeys who haunt me. . .

10

Chapter 1. Introduction

Since JavaServer Pages were introduced in June 1999, they have taken the world by
storm! Dozens of products are devoted to JSPs, and hundreds of companies are using
JSPs to build their Web sites and corporate intranets. The friendly .jp extension can be
seen dl over the Web.

The most significant of the many good reasons for thisisthat it is amazingly easy to
develop sophigticated Web sites with JSPs. Anyone who can write HTML can quickly
create rich, dynamic, and responsive Web stes that enable usersto get the most out of
their online time. Through a mechanism caled JavaBeans, JSPs have made it possible for
large teams or individuals working on complex projects to divide the work in such away
as to make each piece smple and managesble, without sacrificing any power. JSPs dso
provide a great ded of flexibility when generating HTML, through the ability to cregte
HTML-like custom tags.

In addition to this fundamenta ease of development, high-quadity JSP tools are reedily
available and easy to use. Developers do not need to buy expensive software or commit
to a particular operating system in order to use JSPs. The CD-ROM accompanying this
book contains everything a JSP author needs to get sarted, and the tools are powerful
enough to serve even amidsized Web site without problems. These free, open-source
tools are stable and secure and run on nearly every platform. Of course, high-qudity
commercid JSP tools are available as wdll, suitable for serving even the most complex
and high-traffic Web stes.

Although JSPs have been ussful and powerful since the beginning, thisis an especidly
exciting time to be a JSP developer. The recently released version 2.0 of the JSP
specification provides even more features that smplify the process of creating Web sSites.
In addition, a standard tag library that provides many JSP tags that solve awide range of
common problems has been released. Findly, in the time since they were released, a
number of best practices for usng JSPs have emerged.

This book covers dl the topics: the basic powerful features of the JSP specification, the
improvements introduced with verson 2.0, aswell asthe new standard tag library and all
the things it does. In addition, this book discusses how best to use these tools, based on
real-world experiences.

However, before we get into dl the fun, let's take alook back at how the Web has
evolved. Thiswill highlight the kinds of problems that Web authors have faced since the

11

beginning. Once thisis understood, it will be clear how JSPs solve these problems and
make page cregtion so easy.

1.1 A Brief History of the Web

A Web transaction involves two participants. the browser and the server. Asorigindly
concelved, the browser was supposed to be avery smple, lightweight program that
would alow usersto navigate through data. This data could consst of plain text, HTML,
images, and so on, and the browser would render dl the datain away that humans could
understand and interact with. Data could be interconnected, and the browser would render
references between documents as an image or text that could be clicked or otherwise
selected.

Over time, regrettably, rapid development, the race to add new features, and poor
adherence to standards have caused browsers to lose the smplicity for which they once
drived. This has resulted in a Stuation best summarized by Internet legend James "Kibo"
Parry's description of browsers as "fragile assemblies of bugs, held together with Hello
Kitty stickers."

The server is an equdly complex program. The server is respongible for finding the data
requested by the browser, packaging the data for transmisson, and sending it back to the
browser.

In the smplest kind of Web transaction, the browser asks for a angle document from the
sarver, and the server retrieves this data and sendsiit back, at which point the browser
rendersit in an gppropriate way for the user. Thiswhole processis shownin Figure 1.1.

Figure 1.1. The relationship between browser and server.

1. Browser requests HTML -
—2 Server sends file back to brovsar — 2 Server finds file on chsk
- ——[=
= Bl =t
1

Usars Computer e—— —_

JO000
0000

This basc activity has many variations. The data being requested by the browser may
come from auser typing a URL (universal resource locater) directly, may be in response
to the usar's clicking alink, or may be automatic, such as an image contained within a
page. In each case, the server will receive a properly formatted request for the data, no
matter how the request is generated on the client.

How the server fulfills this request dso has many variations. In the Smplest modd, the
response may come from afile. Often, thereis asmple relationship between URLs and
such files. For example, the URL

http://someste.net/lyricsThis Ascenson/forever_shaken.txt might come from afile

called CA\WebfilesThis Ascensoniforever_shaken.txt on the computer called
somesite.net.

However, just asthe server does not care how the request is generated, the client does not
care how the responseis constructed. Storing datain afile is perfectly adequate for
information that never changes, such asthe lyricsto asong, or that doesn't change very
often, such as aband's tour schedule. When anew date is added to such aschedule,
someone can Smply edit the file by using a text editor, such as emacs, vi, or notepad, or a
full HTML editor, such as Dreamweaver.

However, thefile-based mode does not work for information that changes very rapidly

or that requiresinput from the user. Following are afew of the waysin which a gte might
need to take input from a user.

Many Web sites are dedicated to getting stock quotes, and these sites are used by
uncountable numbers of people. If Web servers could do no more than send files
around, every ste would need to have a separate file for every single stock in
exigence. The result would be a huge set of files, and it would be difficult, if not
impossible, to keep them all updated.

Although many e-commerce companies have gone out of business, e-commerce
itsdf is thriving, and the eectronic shopping cart is now commonplace. This
activity would aso be completely impossible without the ability to run programs
on the server. A site could Hill put its catalog online as a collection of files, but it
takes a program to keep track of what items have been ordered, aswell asto
connect with the shipping and inventory systems to send the merchandise to the
user.

Now that the Web is so big, the only way to find a particular piece of information
is with a search engine. Some companies, notably Y ahoo, build huge,
wedl-ordered catalogs of Web stes, which could in principle be regular HTML

13

files. For a user to enter arbitrary text in an entry box and obtain alist of filesthat
contain that word requires a program to look through the files and find ones that
meatch.

Userslove Web sites where they can vote for their favorite celebrity, manage a

virtua stock portfolio, or compete against other usersin amatch of wits and
knowledge.

Wha dl these situations have in common is that the content is now dynamic; it needsto
change based on time, user input or preferences, or any of hundreds of other attributes.

1.2 Basic Dynamic Page Generation

Fortunately, a solution to the problem of dynamic content has been available snce the
earliest days of the Web. Rather than reading the datafrom afile, the server canrun a
program in order to generatethe data. This processisillusrated in Figure 1.2.

Figure 1.2. How a server generates dynamic content.

:‘l'. 'il i—d. GGl genorates HTML—
- cal
— |
[1. Brewsef fegueats HTML L~
—— Y
M— 5. Server sends HTML back o browser — - = ;
- ——

] 2. Barved finds program o6 disk

passing info through the
Usar's Computer

i ===
OO i R —

Asfar asthe browser is concerned, this Stuation isidenticd to that when the data comes
from afile. The browser doesn't care whether the server obtains its data by reading afile
or running a program, as long aswhat it gets back isvaid HTML. However, the fact that
aprogram is being run behind the scenes enables the content to be dynamic.

Asshownin Figure 1.2, the mechanism by which the server and the HTML-generating
program communicate is cdled CGI (common gateway interface). Over time, the

terminology has shifted somewhat, and the programs themsdves are now usudly referred
to as CGls.

The earliest CGls were written in alanguage cdled C. A sample CGI writtenin Cis
shownin Liging 1.1. It generates a Web page that contains the current time and date.

Listing 1.1 A sample CGlin C

#i ncl ude <stdi o. h>

#i ncl ude <tine. h>

int main(int argc, char **argv) {

time_t now,

printf("<HTM.>\n");
printf("<BODY>\n");

ti me(&now);

printf("The time is now. %", ctinme(&ow));

printf("</BODY>\n");
printf("</HTM.>\n");

exit(0);
}
This CGl illustrates two important drawbacks to the way the earliest CGls worked. Firdt,
this program is clearly not agood format for HTML developers. Such a CGlI could be
created only by a programmer, and it looks nothing like the HTML that page developers
are used to. In fact, thisisn't even agood format for programmers. Each little piece of
HTML requiresits own piece of C code. Thisis acceptable, if ugly, for asmple CGl
such asthis, but for amore redigtic example involving lots of tables and colors and
JavaScript, thiswould quickly become overwheming. It would dso make it difficult to
fix problemsin the HTML or to make changesin order to make the page more éttractive
or useful.
Owing to the peed a which C programsrun, C is till frequently used for CGI portions
that are not directly related to the generation of HTML. However, C wasrapidly
overtaken asthe CGlI language of choice by another language, caled Perl. Perl'smain
advantageisthat it is extremely good a manipulating text, which iminates some of the

15

overhead involved with C. Liding 1.2 shows the Perl equivaent of the CGI from Lising
1.1.

Listing 1.2 A sample CGl in Perl

#! [/ usr/ bi n/ perl

$now = localtine(tine());

print <<"<EOT>"

<HTM_>
<BODY>

The tine is now. $now

</ BODY>
</ HTM.>

<EQT>

This CGl isalittle better; dl the codeisin one place, and dl the HTML isin another.
They are il in the same file, though, and tightly coupled, so there is no easy way for
different people to work on different portions. In addition, it was possble to move dl the
code to the top only because of the smplicity of this example. In a more complex

example, it would likely gtill be necessary to intermingle the logic with the HTML.

Today, it is possible to write CGlsin dmost every language avallable, even Java. In the
end, however, the CGI modd itself has anumber of intringc problems, regardless of any
language- specific issues.

The firgt problem is speed. Just the mere task of having the Web server locate and invoke
the CGI program may take up to haf a second or so. This may not seem like much, but as
any impatient Web surfer can attest, those seconds add up.

Worsg, this gart-up pendty must be paid for every request, as once it has finished
processing one request, a CGI program exits and disappears from the computer's memory.
The next time it needs the program, the Web server must be restarted. Thisis particularly
aproblem for complex CGl s that need to access a database or other system resource.

16

These programs need not only to start up fresh each time but also to load up their
resources.

The trangent nature of CGI programs aso limits what they can do, at least without help.
The shopping cart is a classc example of this. Clearly, a shopping cart will need to
remember which items a user has selected, but it cannot do thisaoneif it isgoing to
evaporate after each item is added. In more technicd terms, CGI programs are statel ess,
meaning that they cannot keep track of any data between requests. Most CGls get around
this problem by saving al necessary information to a database before they exit, but this
can be dow and requires that the connection to the database be opened each time the
program is started.

Perhaps the most serious problem with CGls is the way they mesh presentation with logic.
As noted, the presentation of apage is expressed as HTML and istypicaly written by
designers and/or expert HTML authors. Program logic, such as what to do on a stock
page if the requested ticker symbol does not exigt, livesin the program code and is
written by programmers. Despite exceptions to this division of labor, both HTML coding
and programming are generdly such complex and specidized activitiesthet it israre to
find someone skilled at both.

The problem hereisthat at some point, the HTML must be incorporated into the program
because ultimately, the program must generate the output; in order to do this, the program
must have dl the HTML that will go on the page. Thisis bad for both the programmers
and HTML authors. When the design changes or new pages are designed, the HTML
authors cannot change the HTML directly becauseit is buried in the program. They must
present the new designs to the programmers, who must then incorporate the changesinto
their code without breeking any functionality. The HTML authors must then try out the
program to ensure that the HTML that comes out isidentica to the HTML that went in,
and so on. Hours of company time can be lost thisway, and animosity can al too
frequently develop between the programming and production groups.

1.3 Solving CGI Problems

The problems of speed, lack of data perdstence, and development have dl been
addressed in a number of ways.

1.3.1 Speeding up CGl

17

As noted earlier, one of the biggest problems with CGlsistha awhole new program
must be started up for every request. A number of gpproaches have been taken to
eliminae this overhead.

One such gpproach is called Fast CGl. In thismodd, the CGI remains running instead of
restarting each time. The Web server passes the CGI requests to the program over a
communication channd caled a socket, reads the HTML back over the same channel,
and then passesthe HTML on to the user. This givesthe Situation illusirated in Figure
1.3.

Figure 1.3. Fast CGI.

i Browsed reguests MTML = — | |2 Server sends request o CF __Fzs.l 'f.'-liil__
p— . Sarcer sends HTML back bo browssr — I-—"-I pi—1_ GGl generates HTML =—— r"::fi‘;":
-

o

] LN
Users Computer]ﬂ FJ “_! H :|

)R L

jooooon

I"___..-"" “‘-.____1

In addition to solving some of the speed problems, this gpproach aso solves the problem
of keegping state. Because the CGI program never exits, it can hold onto information
between requedts. All that isthen needed isaway for the CGI to recognize which user is
accessing the page, so it will be able to associate the right data with the right user.
Typicaly, thisis accomplished by sending the user acookie, asmal marker thet the
sarver firg sendsto the browser and that the browser then includesin any future requests
to the same server. Fast CGls aso allow programs to keep connections to a database open,
eliminating the need to reopen one for each request. This speeds things up another notch.
Some problems remain with Fast CGls, however. Most notably, each CGI program is
now a separate process, and each will use up a portion of memory and some of the centrd
processor. This can be dleviated by putting the CGls on a different computer from the
one where the Web server lives, but then the sockets must talk across the network, which
will dow things down. Thiswill ill be faster than having to gart anew program each

time, so the Stuation is not dl that bad.

Fast CGls aso introduce a new problem. Updating aregular CGI or adding anew oneis
a pretty smple matter, smply replacing the old verson of the program with the new one.
Updating a Fast CGl isabit more involved, as the old version needs to be shut down and

Senved

18

the new one started, and the Web server needs to close down the socket and open anew
one. Ingdling a brand new Fast CGl is even more difficult and will typicaly require

some change to the Web server's configuration describing where the Fast CGI processis
running and other information. Most Fast CGI implementations will make this process as
automated as possible, but it may gtill require specid system privileges to meke al the
changes happen.

Fast CGls can be written in C, Perl, or numerous other languages. Typicdly, the
programs look like regular CGls, with perhgps some additiona code at the beginning.
Thismakesit very easy for programmersto learn how to write Fast CGls, but it leaves dl
the same problems regarding the intermingling of program code and HTML.

Since the development of Fast CGl's, afew modifications to address these problems have
been made. Most of the popular Web servers can address the problem of too many
separate processes by alowing new dynamic functiondity to be added to the Web server
itself. Theideaisthat new capabilities can be added to the Web server; when it seesa
request that it formerly would have passed off to a CGl, the Web server instead invokes
the new routines. This greatly enhances the speed of requests, as everything now saysin
one process. Thisarchitectureisillustrated in Figure 1.4.

Figure 1.4. Web server extensions.

¥

———1. Browser regquests HTML
j——— 3. Server sends HTML back to browser

- — O

User's Compuler

SEner

19

Apache, perhaps the most used and most extensible Web server, took thisidea a step
further and incorporated the Perl interpreter. This extension, called mod_perl, dlows any
Perl program, with some minor modifications, to run as part of the Web server.
However, extending the Web server thisway is not for the faint of heart! It typically
requires alot of knowledge about the inner details of how the Web server works, as well
as very careful programming. If an error causes a CGl to exit prematurely, no hamis
done, as the next request will Smply start anew one. Even Fast CGls can typically
recover after acrash. But if an extension to the Web server crashes, the whole server is
likely to go down.

Updating extensons to the Web server is even more difficult than updating a Fast CGl,
and only afew syslem adminidrators within any given company will typicdly have the
knowledge and permissions to do so. This makes such an extenson useful only for
adding very fundamental kinds of functions, such as new registration or security features,
and not at al well suited to CGl-like gpplications.

Another gpproach to improving performance was taken by application servers.
Application servers combine the best festures of Fast CGls and server extensions. Like
Fast CGls, an gpplication server runs as a separate process and stays running between
requests. This diminates the cogt of starting a new program each time. Like server
extensons, gpplication servers are extensible, alowing programmers to add new features
as needed. Thisarchitectureisillugrated in Figure 1.5.

Figure 1.5. An application server.

.
| Browrser requesis HTHL I — |
& Barsir binicd MTHIL Bach 1o browier— |1] | 3. App '”"'::.'-i""'"!"
_a T Wl SENET SEn rhES] 1 b
== §0 St dafei |
I— L d
Py S gy &
:.|||II l) f\.\lr
| 1l _,/I ool b, ;—-"ﬁ"'-—1
0000000 PN SN
] f
Ser . _..rﬁx Fes b
2 e Wi
-~ R el T
e I
- -
L=l
AppicaBion Senves

In a sense, gpplication servers can be thought of as enhanced Fast CGls, whereby each
extenson acts as a separate Fast CGl, but they dl st in the same process. This has
numerous benefits. For example, it was mentioned that a Fast CGI can maintain an open

20

connection to a database. Clearly, though, each Fast CGl running individualy will need
its own connection. An gpplication server can maintain acentral "pool” of open
connections and hand one off to each component as needed.

Most modern gpplication servers aso support some form of load balancing. This alows
multiple instances of an application server to run, possibly on different computers. If one
gpplication server getstoo busy or one of the computers crashes, al requests can go to
another server. The users should never even notice the problem.

1.3.2 Separating HTML from Code

In pardlel with the developments on the speed front, progress was made in separating
HTML from program logic. The motivation behind many of these approaches can be
understood by first consdering avery smple CGI and building the complexity up from
there.

Condder again Liding 1.1, which isjust about the smplest possible CGl. It has dmost
no logic, except for the two lines needed to get the date and time. Modtly, it prints out a
bunch of HTML. Therefore, dl the HTML could be pulled out of the CGI and put into a
separate file. The CGI would open thisfile, read the contents, and send them back to the
sarver. The HTML author could then edit the file without needing to touch the program
code.

Once this mechanism has been built, it is easy to extend it dowly in order to include such
things as the date and time. Thisis a specific instance of a generd problem, namdy, that
frequently a CGI will have to incorporate some data, such as the date or a user's name,
into the page.

However, the HTML author need not care where this data comes from. Asfar asthe
design of the page is concerned, the important thing is that the date shows up where it
belongs. The HTML author could indicate this by using a specid tag, perhaps something
like<dat e/ >. If the CGlI iswritten in Perl, thistag could even be a Perl variable, such as
the $now variableused in Ligting 1.2. Now when it reads the HTML and before sending it
to the user, the program can look over the whole file for any occurrences of <dat e/ >, do
whatever it needs to in order to get the date, replace the tag with the value, and then send
the page dong.

Thisidea can be extended by creating more tags to indicate other common data or
behaviors. Essentidly, the new tags define a new language that both the programmers
and the HTML authors agree to speak, and the CGI acts as atrandator, converting tags

21

into actions. This sort of system is often called templating, asthe HTML page with the
gpecia tags acts as atemplate, or blueprint, for al the pages built by the CGl.
Unfortunately, this schemeis not quite powerful enough to do dl the things dynamic
pages need to do. Or rather, by the time it does become sufficiently powerful, the set of
tags will be as complicated as any programming language, and we will be back to where
we started. Consequently, most systems built around this idea have introduced afew
mechanisms that dlow this basic scheme to be extended dynamically.

Thefirg isto alow the set of tags to be extensble. An HTML author creating a page for
amusic catalog, for example, might need atag to represent the artist's name. Inan
extensble system, the HTML author could communicate this need to someone in the
programming staff, and the two could agree on anew tag to use. The HTML author could
then start using this tag while the programmer goes and writes the code that will respond
toit.

The system can aso be extended in other ways. In addition to cresting new tags, the
programmers could creste new functions, which may be thought of as smal magic black
boxes, with adot to drop things into and a ramp where things come out. An HTML
author could, metaphoricaly, drop the name of amusica artist into the dot, and the
names of dl that artist's abums would come spilling out from the ramp. Then tags could
be used to specify where on the page these abum names should go.

Best of al, aprogrammer can extend atemplating system like this by providing new
objects In programming terms, objects are much like physical objectsin the red world.
They have properties that can be obtained or changed, numerous complex ways in which
they may relate to other objects, and so on. In the previous example, instead of providing
afunction, the programmer could provide an "artist” object. One property of this object
would be alist of dbums, and an HTML-like tag could request thislist. Each dbum
would aso be an object, and some of its properties would be the year it was recorded, the
list of track names, and so on. In other words, the artist object would encapsulate adl the
relevant information in one neat bundle. Again, tags could be created to accessthe
information from this object and the other objects it contains.

This concept isillugtrated in Figure 1.6. The box at the top left displaysthe list of dbums
as rendered in abrowser. Below thisisasmplified view of the "artist”" object. The box
on the upper right shows a hypothetical page that could generate the data for the browser.
Firg isatag that sets up the "artist” object withthe name of the artist in question; then
another tag retrieves the set of abums from the object and sends them to the browser.
Although highly smplified, the basic concepts are very smilar to the way JSPs work.

Figure 1.6. A tag that uses an object.

Browser Page
Albums by
"This Ascension" <get artist="This Ascension'/>

<get albums/-

Light and Shade JA\

Tears in Rain

Walk softly, a
dream lies here

Sever

Cbject
(Cbject fetches album infoT{:

(Object transfers data to page)(

New tags, functions, and objects can greatly extend the way the templates get data but
dill do not alow much control over how that informetion is presented. For example, it is
easy to cregte atag that means "get dl dbums by thisartigt,” but it is much more difficult
to express the concept "display dl the dbums where the firgt track was written by the
lead singer.” All the necessary information might be present in the object, but combining
that information in arbitrary ways may be infeasble.

23

Conseguently, most templating systems alow for some form of scripting. Scripting

dlows dements of afull programming language wudly the language in which the

trandation CGl iswritten to beincluded in the page. All languages have away to

compare two pieces of text and do different things, depending on whether they match.
The example in the previous paragraph would reguire writing some code that checked
whether the name of the lead signer matched the name of the author of the first track.
Thisis once again mixing programlike code with HTML, but because most of the hard
work is done in the objects or functions, dl the HTML authors typicaly need to know is
some relatively smple control structures that do such things as compare two values or
loop through a set of vaues, performing some action on each.

So far in discussing templating, nothing has been said about performance. Not
surprisingly, the speed of such a system may be less than ided. Firgt, the CGI hasto be
darted, then it hasto read the template, then it has to look for dl the specia tags and
process them, and so on. All other things being equd, a system likethisislikely to be
orders of magnitude dower than a CGl written entirely in C.

Thereis dill hope for templating by mixing it with the performance-improvement ideas
that were discussed previoudy. In particular, it is possible to turn the templating CGlI into
an extension to the Web server, which will diminate the need to sart the CGI up each
time atemplate is needed. This aso dlows templates to save state information, use
shared resources efficiently, and so on. Many such templating systems are dive and well
today, from PHP, awell-known hypertext preprocessor that mixes scripting commands
with HTML; to WebSQL, atemplating system that provides easy access to databases; to
osforms, a system built by Object Design to work with its object database.,

1.3.3 Servlets and JavaServer Pages

Let's reconsder some of the problems with CGls. As previoudy noted, it is
time-consuming to have to restart a CGI program for each request. Because the program
does not perdst between connections, it is difficult to maintain Sate. Althoughitis
possible to overcome these problems with Fast CGls or server extensions, these make
adding new functiondity rdaively difficult.

Sun's gpproach to solving these problemsisto use serviets Just as an gpplet isasmdl
goplication that extends the functionaity of a Web browser, a servlet isasmal piece of
code that extends the functiondity of a server.

24

Technically, aserviet is an object, written in Java, that is equipped to receive arequest
and to construct and send back aresponse. Because servlets are written in Java, they
inherit al the language's power and strengths. One of these strengthsis speed, as a great
dedl of effort has been put into making Java perform well as a server language. Equaly
important, Javais also a cross-platform technology, so it is possible to develop a serviet
under Linux, deploy it on NT, and move to Solaris when the site grows, dl without
needing to change or recompile anything.

Of specid interest to Web developers, Javais an intrinscaly dynamic and extensible
language. This neaily eiminates the problems inherent in extending aWeb server. If it
supports Java, the server can betold to load a new servlet with aminima changeto a
configuration file and without needing to recompile anything.

The sarvlet architecture is designed to diminate the need to reload anything every time a
request is made. Instead, the serviet isloaded once, the first time it is needed; after that, it
stays active, turning requests into responses as quickly as the Web server can send them.
Thisgives sarvlets dl the speed of Fast CGlIs, with none of the hasdes. In short, serviets
can completely replace CGls, with no downside.

Servlets dso have one additiond advantage. Because Java was designed from the ground
up as a secure language, servlets can be run in a™secure sandbox,” which will prevent
them from accessing any potentidly sensitive system resources. It is certainly possible to
write a CGlI that has no security problems, and there are tools to assist in this endeavor.
Nonetheless, many security breaches on Web sites happen through insecure CGls.

The next logica step would be to build a templating system on top of serviets. However,
the Art Technology Group (ATG) had an even better idea. Instead of writing aservlet
that reads afile, figures out what to do based on specid tags, and then does it, why not
trandate the specid tags directly into Java and then compile and run the Java code? This
would mean that the firgt time a page was requested, it would take alittle longer to do the
conversion, but the second and subsequent requests would be as fast asa servlet. This
revolutionary concept, called page compilation, was introduced in ATG's application
sarver, caled Dynamo. Sun was so impressed by the concept that it licensed the
technology for incluson in its own Java Web Server. The HTML mode isshownin

Figure 1.7.

Figure 1.7. The flow of information through a JHTML page.

25

—@ _z.mmﬁ:‘s:r:*““—
1. Browses requests HTML: H==
-u—rSarnrmrmkﬁulDﬂlﬂm_ Tmm
E "HTML o sarvar
User's Compuiar ['
00000
0000000

:

A 3. H neaded, tha Java anging reacs tha |sp Tl
Sarviet
5. The sarvsl
| muns and 4, Tho JSP is tumaod intd & serdol,

qenarates ! compded, and loaded

Java Engine

No ideais perfect on the firdt try, and page compilation had problems. Most significantly,
there were problems with the set of specid tagsthat ATG had defined, which were
somewhat cumbersome, somewhat limited, and completdy unlike the tags that other
templating systems were using. Over time, Sun has refined these tags to creste

JavaServer Pages.

JavaServer Pages, or JSPs, combine the best festures of the many approaches to dynamic
page generation we have discussed. JSPs are implemented in Java, so they are cross
platform and inherit al Javas other strengths. Because they are built on top of serviets,
JSPs are fast and can be changed easily. They are extensible, and programmers can easily
creste new objects and functiondity using JavaBeans, which page authors can use

equaly easly.

Sun considers JSPs so important that they are included as aformal part of the Java 2
Enterprise Edition, the standard version of Javafor large companies doing complex,
performance-critical tasks. Every magor vendor of gpplication servers has announced
support for JSPs, including ATG, BEA's WebL ogic, IBM's Web Sphere, and many more.
JSPs have truly become an industry standard.

Best of dl, the power of JSPsisnot limited to big enterprises or companies that can

afford an application server. At the 1999 Java One conference, Sun announced a
partnership with the makers of the Apache Web server to provide full support for JISPs

26

under Apache. The resulting project, called Jakarta, has been refined and improved many

times since then and now dlows anyone with a computer to develop and deploy JISPs ¢

ompletdy for free.

1.4 Welcome to Java News Today

Throughout this book, we will be following the evolution of afictiond Web ste caled
JavaNews Today. JNT is a Sart-up company of Java enthusasts who want to create a
compdling, up-to-the-minute Ste covering dl things Java. Because it wants to attract and
maintain an audience, INT will make its Ste as dynamic as possible. In addition to
updating the content frequently, the Steisto have games, palls, search functiondity, and
other interactive features. INT dso congdersit very important to dlow usersto
customize and adjust the gteto fit their own needs. The folks at INT hope that |ots of
userswill make INT their home page and that no users will move into a home they
cannot decorate themsealves.

Everyone a INT will openly admit to being afan of the Sashdot Site, a
http://www.dashdot.org, and the Java Lobby, at http://mww.javalobby.org Readers
familiar with those stes may notice some amilaitiesin the features that INT istrying to
build. But then, imitation is the Sncerest form of flattery.

1.5 Trying the Examples

All the examples in this book have been included on the companion CD-ROM, so readers

can see them in action and experiment with changes. The CD-ROM also includes Tomcat,
the high- performance JSP engine provided for free by the Apache project, at
http://|akarta.apache.org. The verson included is 5.0, the first implementation of the JSP

2.0 and sarviet 1.3 specifications.

The CD-ROM aso includes a number of third-party libraries that provide useful utilities.

These libraries include HypersonicSQL, afile-based database written in Java; Jaxen, a set

of Java classes for working with XML ; and the Canetoad utilities, which provide a

number of utilities for working with beans.

27

Indructions for ingaling and running the examples can be found in the index.html file on
the CD-ROM. Mot users can smply double-click thisfile to get Sarted.

28

Chapter 2. Simple JSPs

Chapter 1 presented the case for dynamic sites and surveyed a number of techniques for
building such sites, focusing on the strengths of JavaServer Pages technology. With these
preliminaries out of the way, everything isin place to Sart cresting some pages This
chapter begins by introducing some of the smpler features of JSPs.

It isatime-honored tradition for computer books to start with an example that alows the
system being studied to introduce itself. This book is no exception, so without further
delay, Liging 2.1 contains our first JSP.

Listing 2.1 A simple JSP

<ht m >

<l-- Qur first JavaServer Page -->

<body>

Hel l o, worl d!

</ body>

</htm >

Thismay look like aplain old chunk of HTML, not avery intereting one & that.
However, when saved in afile cdled index.jsp and given to a JSP engine such as Tomcat,
this chunk of HTML becomes much more than agtatic block. In fact, thisis a program
very Smilar to the programsin Ligtings 1.2 and 1.3.

Asaprogram, thisfile contains a series of ingructions that the JSP engine will follow.
Written out in English, these indructions are equivaent to the following:2

U Thisisn't quite true. For the sake of efficiency, most JSP engines send aut contiguous chunks of HTML al at once.

However, it is often helpful to think of JSPs as being processed one line at a time.

Send the text <ht i > to the user.

Sendthetext<! -- Qur first JavaServer page --> totheuser.
Send the text <body> to the user.

Sendthetext Hel | o, wor | d! tothe user.

Send the text </ body > to the user.

Send thetext </ ht nl > to the user.

S e A

29

More technicdly, aprogram caled the page compiler convertsthe origind fileinto
another little Java program, a servlet asdiscussed in Section 1.3. This serviet iswhat gets
run. Servlets are an important technology, and they are covered in more detail in Chapter
11. For the time being, these details are unimportant, and it is perfectly reasonable to
think of the JSPfile itsdlf asthe program.

At this point, three different things are dl going by the name index.jsp. Oneisthe

origind file, gtting in adirectory from where it can be edited like any other file. Second
isthe serviet, which is managed by the JSP engine and is generdly not meant to be seen
directly. Third isthe URL and the corresponding page as seen in abrowser. To avoid
confusion, the specific meaning will dways be indicated when it is not clear from the
context.

In this particular case, dl the extrawork of creating and running a program has not
accomplished anything. However, the trandation has not been pointless, asit has created
aprogram from HTML. Thisiswhy JSP authors generally do not need to do much
programming thems=lves. The JSP engine is quite sophisticated and can turn afew
smple tagsinto very complex code. The servlet thet is generated and the environment in
which this code runs are o very sophisticated, which removes even more of the
programming burden.

This program illustrates two of the basic rules for the JSP programming language:

1. Plantext turnsinto acommand to send that text to the user.
2. Regular HTML tags turn into a command that sends that tag to the user.

2.1 Removing Text from a JSP

All it tekesisasmadl changeto Liging 2.1 in order to start exploring some of the things
the JSP engine can do. Note that the HTML comment, "Our first JavaServer Page," has
turned into a program ingtruction that sends the comment to the user.

To people building and maintaining pages, these kinds of comments are often useful
because they can clarify what ablock of otherwise indecipherable HTML is meant to be.
However, becauseit isaregular part of the document, this comment will show up in the
"view source” function of a user's browser.

Thisistypicdly not a problem, dthough it is possible for these comments to contain
implementation details that might be confidentid. Or maybe a page author was having a

30

bad day and used some comment space to rant about his or her boss or relationship or the
date of the world. These comments can be quite embarrassing if anyone happensto see
them.

S0, hereisadilemma Comments are useful to authors but useless, or worse, for readers.
JSP has a solution to this. The preceding HTML comment could be replaced with a JSP
comment, like so:

<% - CQur first JavaServer Page --%

When it seesthis tag, the page compiler will recognize it as acomment and will not put it
into the servlet that it builds. Hence, this comment will never be sent to the user and will
not show up when the user does aview source. Again, this effect is subtle and, frankly,
not that exciting. However, it does begin to show that what goesinto a JSP file can and
will be different from what comes out. Further, this adds athird rule to the JSP
programming language: Text enclosed between comment tags (<% - and - - %) does not
turn into an indruction at dl but is smply ignored.

2.2 JSP Errors

Assmart asthe JSP engineis, it isaso very literal minded. Like any other program ever
written, the best it can manage isto do what we say, which is not dways the same thing
as to do what we want. When a JSP page does not specify what to do in exactly the right
way, the JSP engine sometimes has no aternative but to give up, return an error page,
and ask for help.

One common error isleaving out a closing tag. This might happen if a page author tries

to close a JSP comment as if it were an HTML comment, asin <% - our first JSP--

A user who triesto access this page will recelve arather unsettling page giving a great
ded of information about the cause and nature of the error. The exact format of this
message varies between JSP engines, Tomcat generates a page such as the one shown in

Figure2.1.

Figure 2.1. The Tomcat error page.

31

=l BN Niow o Eooimdes Jtoe o pirdee HoE

F ﬁ@ a 0 l.- hry.::'rlr.'.a Tl I'|'.n‘ﬁ.'hmt‘rh.rﬂ-'uﬁ:'mrn' H; E BT ‘::5,;,

IlHTTP Status 500 - i

TS Evception 1caon
m The server encountzred an ingesnal aroe (1 faak prevenged i fom ilfling tkis reooes.

ncention

can) wpashi g par Jas e Ercaplios. ok apbendTaem poli) J anmimaled &= Lay
20 e, fuagan u||||.l|| riculan rl.?l-andlsr.k-ptl o :ltl'dlulli o Hendbke avnEE
ne e b paamn i IiEraa e e BE M
| 2 v apachs jasger Con z
£ e pus g
ovag s e s e ey 3 b
g apacha fasger compiles Rartar it Py n-...133

g g b papen conpiler P :Hl.'n “rdiee oy el Bar e o o e Jae 358
i e jaa g e G L0 prars P o ! LE
g apacha fusger cam Wit Coe o e e s P Ee T il J:n-. A5,

iy e b page s
A epacie g Compilar Soanp e ikl npiler javaddg]
A il S T S ||I|'.¢C':1||p i T om il e 21
Ty oapa e =il | W |ul-|_-.|;|" pil=FonZi sl jaee BT 1)
S apache jus L5 pae v Lol ap e o |l .upq. e 30E!
B e R L g e
ay A b pagen l.rr.lL LR R [R T |-|y|w| I'II
= e = LI R R spEey el gev o kS FaenITH
T g sk oAl o mﬂppll-'.atl:h Filber> wherral CoilbarcE pplic n-'\-r' i Chein ses 782
a9 Apeas b s bl cerw Applicali o Fillee® Cain CafHisddpplicaticnfillea® bain areahE
S0 bl oS0 N 1 0nd S1an D P LN KalS R A da dialr b i e Al 1V 2541
= gy s, e - o o Sl o oY e oot e e Mah(E T :md.grr,l_.ahqf nt vt w1
= orgapehe coiel cn cors ShandardPiFaline e ke tika = S ardPipalins e d ol
7 oL dpaieg i Loong Combe el s Lt LR P RN T Fied T
= =g A che At e ans SR LA ATG R R e e e SR s n bl e
= s e b o8 el fAcors Cimn dar Al e bew ™ pe b el pes W rmn e e U uhud‘m'l'lxr ja .-t. Iq]
= o0 Sk 2B neng SAan da AR s ling s 2 bEiSEa s s ardPipeling j2uad S
8= o Anche cedsinne core | oabs o cadlace ncag e iCanhne Jlos e 100
0| eetd Sl

e pneralleal e ||u||r|].l a4

""":'.."":‘..""!‘1."!'.":.'

o

e

The mogt Sgnificant part of this message is the first exception line, which containsthe
following:

/errorl.jsp(l.4) Unterm nated <% - tag

Thisline concisaly specifies what the problem is, dong with the name of thefilein which
the error occurred. The numbersin parentheses are the line number and the number of
characters within the line where the problemétic tag darts.

A vaidion of this problem is even more ingdious. Congder the following JSP snippet:
<% - This is a comment -->

Hel l o, worl d.

<% - This is another coment --%

When a browser requests this page, the content will be missing, but no error will be
generated. The reason isthat thistime, the comment tag is closed; it just happensto be
closad by the second comment tag! This means that the page compiler will consder
"Hdlo, world" as part of the comment and will discard it.

2.3 Including Text in a JSP

32

Removing text from a pageis only dightly useful; it is much more exciting to consder
waysin which a JSP can add data to a page. This data may come from any number of
places, such as a database, some Java code, or data explicitly provided by the user.
Regardless of the source, it will be the JSP's job to inject this data into the page.
Thefirst and smplest place a JSP can get data from is another JSP. Lising 2.2 shows a
dightly modified verson of Liding 2.1.

Listing 2.2 A JSP that includes another JSP

<htm >

<body>

Hel |l o again, worl d!

<j sp:include page="content.jsp"/>

</ body>

</htm >

Thisturnsinto a program just as Ligiing 2.1 did, and once again, dl the HTML tagsturn
into ingtructions that send those tags to the browser. Thej sp: i ncl ude tag turnsinto an
ingtruction for the JSP engine to run the program called content.jsp, which isshownin

Liging 2.3.

Listing 2.3 The included content

This is sone text fromcontent.jsp

Note that Liging 2.3 contains acomplete and valid JSP. A browser could request
content.jsp directly, and the response would be the message with no HTML or other tags.
However, the intended use is that the browser will request the top-leve page, which will
render its content, and thenthej sp: i ncl ude tagwill cal content.jp. Control will then
return to the origind page, which will send the find dlosing body and HTML tags. The
result, asfar as the browser is concerned, will look exactly asif dl the HTML wasin the

origina page dl dong.
Errors to Watch For

Includes can suffer from the same kinds of errors as comments. Firg, tags can
be broken, such as<j sp: i ncl ude page="content.jsp">, whichismissng the
closing dash. The JSP engine will catch this error and report it as

/i ndex.jsp(3,0) Expected "parant tag with "nane" and

"val ue" attributes w thout the "parans" tag.

It is a0 possible to atempt to include afile that does not exist, which will
usualy happen because of atypo, such as typing headersjsp instead of
header.jsp. In this case, the JSP engine will report "Can't read file headersjsp,”
which is eadlly fixed.

Two files do not make for avery interesting Site, but thej sp: i ncl ude tag becomes much
more useful when there are many more files. In one common scenario, many files may dl
want to include some common text. For example, every page on aSte might have at the
bottom a clever or amusing quote that the Ste administrators change once aweek. If this
quoteis kept in its own JSP, it is necessary to change only that onefilein order to change
the whole ste.

Conversdly, one file may want to include severd others. A customized news Site might
have separate JSPs for top headlines, technology stories, wesather, and sports. Many
different combinations of content pages could then be easily created by smply choosng
which of these piecesto include. In this sense, usng JSPsisalot like building with
LEGOS. Whole stes can be congtructed by combining smple blocks in different ways.
Both of these techniques will be used extengvely later in this chapter.

Closdly rlated to thej sp: i ncl ude tag isanother, cdledj sp: f or war d. Whereas

j sp: i ncl ude includes the contents of one page within another, j sp: f or war d Smply
sends the user to another page. Thisrequiresthat the pageissuing thej sp: f or war d have
no text other than blank lines either before or after the tag. This may not seem useful yet
but later will dlow pages to make decisions about what content should be displayed.

2.4 The Phases of a JSP

Each JSP goes through two distinct phases. The firgt phase, when the trandator turnsthe
fileinto aserviet, is cdled translation time This trandation from JSP to serviet happens
whenever the JSP file is modified.

The second phase, when the resulting servlet is run to generate the page, is caled request
time. This happens whenever a browser requests the page. Different things happen in
each phase, and the digtinction isimportant.

The handling of JSP comment tags happens at trandation time. The trandator smply
omits any text within comment tags, so the serviet will not even need to dedl withit.

Conversdly, thej sp: i ncl ude tagishandled at request time. For every request that
comesin for the index.jsp URL, the content.,jp servlet will be run when the

j sp:incl ude tag isencountered. In principle, this could have been done at trandation
time; the chunk of HTML from the content.jsp file could have been dropped right into the
index.jsp servlet. Thiswould be much less powerful, however. By processing includes a
request time, the contents of the included file can change independently of the mainfile.
Ancther advantage to processing includes at request time is that doing so ensures that no
JSPisfundamentally specid or different. Every JSPisalittle program that can be run by
requesting the corresponding URL through a browser; thereis no digtinction between
"top-leve" and "included” JSPs. As mentioned, this means that a browser can directly
request an included file, such as content.jsp, which is often useful when testing page
components.

Thisadso guarantees that al JSP dements will work the same way in al pages. This
means that JSP comments will be stripped out of included files and that thej sp: i ncl ude
tag will work inside included files! Files can include files that can include files, and so on,
potentidly to infinity.

For the sake of completeness, it is worth mentioning the trandation-time verson of the

j sp:incl ude tag, called theinclude directive Thistag lookslikethis.

<%@ ncl ude file="contents.jsp" %

Thistag is called a directive because it directs the page compiler to take some action. In
this case, when it sees the directive, the page compiler will embed the contents of the
contentsjsp file directly into the serviet that it is building for index.jsp. Subsequently, if
the contentsjp fileis edited, index.jsp will not change. Browsers will continue to get the
old message until the page compiler isforced to rebuild the index.jsp serviet.

Note that the include directive specifieswhat isto be included with f i | e=, whereasthe
j sp:incl ude tag pecifiespage=. Thisnicely encgpsulates the differences between the
two: The directiveincludes afile asit is building the serviet at request time, and the tag
includes another page at request time.

In some obscure ingtances, the include directive and thej sp: i ncl ude tag are not
equivaent. For the most part, though, the two are functiondly identical, and asthe

j sp:incl ude tagismore convenient, it will be used in preference to the directive
throughout this book.

2.5 Creating Custom Error Pages

Many other directives are available for issuing ingtructions to the page trandator. One of
the most ussful is called, not surprisingly, page.

This directive takes a number of forms, many of which will be encountered throughout
this book as needed. One immediately useful option alows a JSP to specify where the
user should be directed in the event of an error. Tomcat's default error page, as dready
shownin Figure 2.1, can be useful to developers but more than alittle scary to end users.
Idedlly, users will never see an error page, but agood site plansfor dl contingencies and
50 should include an error page that fits visudly with the rest of the Ste and that dlows
the user to continue what he or she was doing, to whatever extent possible.

Using acustom error page involves two steps. The fird isto create the page, which can
be another JSP. However, error pages need to be treated differently from regular pages,
and so the page trandator must be notified that a JSP will be used as an error page by use
of the following page directive a the very top of thefile:

<%® page i sErrorPage="true" %

Once such an error page has been created and properly identified, it can be used in one of
two ways. Thefirg isglobaly, by telling Tomcat which error page to use for each type of
error. Thisis done through a configuration file and is shown in Appendix B.

In addition to the globa approach, each JSP can specify its own error page through
another variation of the page directive, asin

<%@ page errorPage="error_page_url" %

Here, error _page_ur| isthe URL of the error page, relative to the current page. Both of
these versons of the page directive will be demongtrated in the next section.

2.6 Java News Today

Java News Today, our fictiond news dite, isready to begin congtructing itsSte. INT has
decided to gart with the new home page and for the moment will not worry about the
dynamic dements. Thefirg versonisshownin Liging 2.4.

Listing 2.4 The JNT index page

<%@ page errorPage="error.jsp" %

<htm >

<head>

<link rel ="Styl eSheet"
href="style.jsp"
TYPE="t ext/css"

nmedi a="screen" >

<title>Java News Today: Welcone!</title>

</ head>

<body>

<tabl e w dt h="100%
bor der="0"
cel | spaci ng="0"

cel | paddi ng="0">

<tr>

<td wi dt h="15% cl ass="borders">

<% - Big Enpty Corner --%
</td>

<td wi dt h="20" cl ass="borders">

<% - Little buffer for the curvy bit --%

<inmg src="1x1.qgif">
</td>

<td cl ass="borders">

<% - start header --%

<cent er ><h2>Java News Today:

<% - end header --%
</td>

</[tr>

<tr>

Wel cone! </ h2></ cent er >

<td wi dt h="15% cl ass="borders"></td>

<td wi dt h="20" hei ght="20">
<% - The curvy bit --%

<inmg src="corner20x20.gif">

37

</td>
<td><ing src="1x1.gif"></td>

</[tr>

<tr>
<td wi dth="15% cl ass="borders" valign="top">
<% - start navigation --%
Navi gati on - none yet
<% - end navigation --%
</td>
<td wi dth="20"><ing src="1x1l.gif"></td>

<td valign="top" align="Ileft">
<% - All content goes here! --%
</td>

</[tr>

</tabl e>

</ body>

</htm >

JINT savesthe contents of Liding 2.4 into afile caled index.jsp, pointsits browsers a the
corresponding URL, and as expected seesthe page in Figure 2.2.

Figure 2.2. The INT home page.

Edv Bl Yiw G Boskmanks Tosls Wisdew Help |

W O 9 hit # Aealiiast BB/ shaak st

T ———

i:|ﬁ-w:r:|;|:l>-m 3 S ; =
Conceptudly, this page congsts of four mgjor elements: the header, the navigation, the
content, and the HTML that connectsit al together. Note the use of JSP commentsto
delineste these sections. It is generaly wise to mark off mgjor functiond areas of a page,
but asthe end user is probably not interested in these fences, they might as well be JSP
comments instead of HTML comments.

Different pages will have different content, but it is reasonable to expect that the header
and navigation will be repested dl over the Site, dthough doing so can be amgor
headache. The author of each new page will have to remember to put these piecesin and
will have to worry about getting everything right. Worst of al, sooner or later will come
the hateful day when anew section isintroduced and everyone has to go back and reedit
al their pages.

The solution for this nightmare scenario is, of course, thej sp: i ncl ude tag. The header
and footer will be split into separate files. The header.j5p file will contain everything in
Liging 24from<% - start header --% t0<% - end header --%.Likewise,
navigationjp will hold everything from <% - start navigation --% t0<% - end
navi gati on --%.

Thistechnigue of pulling out common chunks of HTML and puiting them in separate
filesis cdled templating, dthough the use of the word here is dightly different from that

in Chapter 1. Here, atemplate is merdy an HTML page with some "holes' where text
should be, dong with away to indicate where this text should be found. The advantage is
that many pages can have the same spaces, and al these holes can befilled from the same

place. This makes it possible to keep the header in exactly onefile and let each page have
a space that should befilled by thisfile.

So far, this might seem like arather goofy thing to do, as the header and navigation are
currently so small. However, rest assured that they will grow in subsequent chapters, and
the advantages of removing them from the main page will become increasingly obvious.
One such advantage is that it now becomes easy to create aterndtive versons of the
home page. Because dl the HTML dements remain in the main file, asmplified verson
suitable for text-only browsers, such as Lynx, could be created with a page like that
shownin Liging 2.5.

Listing 2.5 A version of the home page without tables

<%@ page errorPage="error.jsp" %

<htm >

<head>
<title>Java News Today: Welcone!</title>

</ head>

<body>

<j sp:include page="header.jsp"/>

<hr>

<j sp:include page="navigation.jsp"/>

<hr>

<% - The contents of each page go here --%

</ body>

</htm >

Note that there are alot of HTML dements. It would be areal pain to have to rewrite
them for every page on the site. Fortunately, thej sp: i ncl ude tag can once again come
to the rescue. Theidealis that everything above the content can be placed in one file and
everything below in another, and then each new page can be created as smply aswriting

the content and including two files Thisfina verson of the INT home pageis shown in
Liding 2.6.

Listing 2.6 The final version of the index page

<%@ page errorPage="error.jsp" %

<j sp:include page="top.jsp"/>

Cont ent goes here!

<jsp:include page="bottomjsp"/>
Now that's what a JSP should look like! For the sake of completeness, top.jsp is shownin
Liging 2.7 and bottom.jspin Ligting 2.8.

Listing 2.7 The top part of the page

<%@ page errorPage="error.jsp" %

<htm >
<head>
<link rel ="Styl eSheet"
href="style.jsp"
TYPE="t ext/css"
nmedi a="screen" >
<title>Java News Today: Welcone!</title>

</ head>

<body>

<tabl e wi dt h="100%
border="0"
cel | spaci ng="0"

cel | paddi ng="0">

<tr>

<td wi dt h="15% cl ass="borders">

41

<% - Big Enpty Corner --%
</td>

<td wi dt h="20" cl ass="borders">
<% - Little buffer for the curvy bit --%
<inmg src="1x1.gif">

</td>

<td cl ass="borders">
<% - start header --%
<j sp:include page="header.jsp"/>
<% - end header --%

</td>

</[tr>

<tr>
<td wi dt h="15% cl ass="borders"></td>
<td wi dt h="20" hei ght="20">
<% - The curvy bit --%
<inmg src="corner20x20.gif">
</td>
<td><ing src="1x1.gif"></td>

</[tr>

<tr>
<td wi dt h="15% cl ass="borders" valign="top">
<% - start navigation --%
<j sp:include page="navigation.jsp"/>
<% - end navigation --%
</td>
<td wi dth="20"><ing src="1x1.gif"></td>

<td valign="top" align="left">

Listing 2.8 The bottom of the page

42

</td>

</[tr>

</tabl e>

</ body>

</ htm >

Top.jsp includes header.jsp and navigation.jsp, but it is perfectly OK for an included JSP
to include yet other ones.

One problem with the way this page has been split up isthat theftitle tag is currently
hard-coded in top.jsp, and the page banner is likewise hard-coded in header.jp. Thisis
quite easy to fix but requires atag that has not been introduced yet and so will have to
wait until Chapter 4.

It is aso worth pointing out thet this page uses a style sheet to set various visud attributes
of the page. Thisin itsdlf is not unusua; most Web sites do the same thing. However,

note that the style sheet being used is not aregular .cssfile but another ISP This will

turn out to be very important when tackling customization, asit will dlow the style sheet
itself to be generated dynamically! For the moment, thisfileis static and pretty smal but
isshown in Lidting 2.9 for those interested.

Listing 2.9 The style sheet

TABLE. form { border-style: groove;
border-col or: #004400; }

TD. | abel { border-style: solid;
border-wi dth: 1px;
border-col or: #00aa00;
background: #00AA0O0;
col or: #000000;
paddi ng-right: 5px }

TD.form { border-style: solid;
border-wi dth: 1px;

bor der-col or: #004400; }

TD. borders { background: #66ffff; }

DI V. bordered { border-style: groove;

border-col or: #004400; }
All verdgons of the index page now use the page directive to link to a custom error page,
and thiserror pageisshownin Liging 2.10.

Listing 2.10 The error page

<%@ page i sErrorPage="true" %
<htm >

<head>
<title>Java News Today: Error</title>

</ head>
<body>

We're sorry, but an error occurred while building
your page. We will try to fix this problem shortly;
in the neantine please return to the

JNT hone page
</ body>

</htm >

Apart from the page directive a the top, thislooks just like any other JSP. Thisisonly a
very bare-bones example; amore redigtic error page would include the same header and
navigation dements that the index page used, so asto make it look more like aregular
page on the Site. In addition, a sophisticated error page could do something like notify the
dte adminigrator that an error had occurred. Unfortunately, doing something like this
requires many features that have not yet been discussed, and so it will have to wait until

Chapter 14.

2.7 Summary and Conclusions

This chapter started down the exciting road of writing JSPs. The two phases of a JSP's
existence were discussed: the trandation phase, in which JSP code is turned into a Java
sarvlet, and the request phase, in which the servlet isrun to produce HTML.

So far, we have not even begun to scratch the surface of what JSPs can do. The next
chapter starts looking at some of the things that can be done a request time, which is
when the doorway to dynamic content really opens.

2.8 Tags Learned in This Chapter

<% - --% JSP comment

Parameters: None

Body: None

Anything within the comment tag is removed by the page compiler at trandation
time.

j sp:include Includetag
Parameters:
page: Specifies the page to be induded
Body: None
The named page is evaduated and the results included into the output at request time.

j sp: forwar d Forward tag
Parameters:
page: Specifies the page to be included
Body: None
Control passes to the named page. The cdling page mugt not contain any text before
or after the tag.

@ ncl ude Include directive
Parameters:
fil e: Specifiesthe file to be included
Body: None
The named file is included into the servlet built by the page compiler at trandation
time.

Chapter 3. Using Beans

The examplesin Chapter 2 were quite smple, dthough they did illustrate a few important
points. Notably, these examples demongtrated how a JSP file is converted into alittle
program and how this program can then perform certain actionswhen it isrun. What is
needed now is amechanism for pages to react to user input and other data.

A page may need to react to such information in any of severd ways. For example, a
page that displays a stock portfolio typically uses green text to show the stocks that have
increased in value and uses red to show those that have decreased in value. Here the page
needs to display avaue and aso change an aspect of its gppearance, based on the value.
A page might dso want to use avaue in acomplex caculaion or process. In the online
portfolio, once a"buy" order is placed, the current status of the user's account must be
checked to ensure that it contains sufficient funds to cover the purchase and any
transaction fees. If this condition is met, the order must be handled, which entailsa
number of processes behind the scenes. In ether case, the result of the request must then
be reported back to the user.

The firgt kind of reaction, in which the presentation of the page is dtered, can be handled
ether by putting Java code within the page itsdlf or by using specid JSP tags. But before
diving into the second type of reaction, it is worth discussing the more generd problem of
software engineering.

3.1 Splitting Big Tasks into Manageable Pieces

Aswith any kind of engineering, software engineering is inherently difficult. No one

person can build a bridge, plane, or building. The same istrue of software beyond fairly
small projects. Often a project is 0 big and complex that it Smply cannot dl fit into a
sangle humean brain.

For alarge project to be managegble, it must be split into smaller pieces. Thisistrue

when many members of ateam are working on the same project, so that each knows what
part of the whole he or she will create. It is even true when a project is being undertaken
by a single person. Splitting big problemsinto smaller ones alows the developer to
concentrate on one thing at atime. Usudly, the smdler pieces are easer to design, build,

and test; once built, the individua components can be updated or changed without
worrying about how that change will affect the rest of the system.

A difficult task can be partitioned in many ways. Javaitsdf provides anatura unit of
work in the form of classes, which will be discussed further in Chapter 9. Although these
classes can help define the way work is done, the more fundamenta question remains:
what each class should do and which classes each developer should build.

One approach to this question advocates dividing the work into mgor functiond units.
This makes perfect sense, asit isthe way most physical engineering is done. When
building a car, oneteam islikely to be responsible for the engine, another for the
electronics that controls everything, and athird for the exterior. These are natura waysto
divide the work, as each piece is somewhat independent of the others and requires very
different ills

Thereisno st recipe for the way in which a software project should be divided, but over
time, an important pattern that advocates dividing the project into three magor pieces has
emerged. The first piece will be respongble for modeling the problem to be solved and so
is caled the model. Thismodd might be avirtud shopping cart for an online catalog, a
database representing a CD collection, or aset of equations representing a complex
scientific smulation. In each case, the modd contains dl the information about how the
dataisinternaly stored and the operations that may be performed on that data.

The second pieceis responsible for alowing usersto interact with this data. This could be
a desktop application written in Java using the Swing AP, or it could be an applet or
even a program that controls a huge dectronic billboard. The code for this piece contains
everything needed in order to navigate through the data, display the vaues, modify the
display as needed, and, possibly, alow the user to make changes to the modd. Idedlly,
the presentation should aso be aesthetically pleasing and intuitive to use. Thispieceis
known as the view.

Findly, the third piece acts to mediate between the first two. Although it allows the user
to request particular data, the view will not itself load that data into the model. In addition,
some data may be restricted to certain users. Such security information should not reside
in either the mode or the view. So, the third piece, caled the controller, is responsible
for controlling the model, based on ingructions from the view, and may dso tdll the view
to hide certain information, based on data in the modd!.

In addition to identifying these three pieces, it isimportant to ensure that they dl fit
together and can interoperate. Thisis done by providing well-defined interfaces between
each pair of components. The view will know how to get data from the model, the
controller will know how to configure the view and the mode, and so on.

47

Splitting the work in thisway is known as the model/view/controller paradigm, and it is
very powerful. Not surprisngly, JSPswill act asthe view. The controller piece is not
important for smple pages, and so discussion of it isdeferred until Chapter 12.

That leaves the modd. In the Javaworld, the modd is usually composed of reusable
software components called JavaBeans. These beans provide the logic behind the
stock-purchasing system discussed earlier.

Theimportance of beans cannot be overstated. Besides being a fundamental Java
specification in their own right, beans are the means for making JavaServer Pages do
interesting and exciting things. Using beans properly alows sites to be built and
maintained much more easily than they would otherwise. On the other hand, confusion
about what belongs on a page versus what belongsin abean can be arecipe for disaster.
With that in mind, it'stime to find out what these bean things actudly are.

3.2 Defining Beans

For the moment, forget about Javaand consider ared bean. A bean has certain
characterigtics, or properties, such as color, Size, shape, species, and so on. Not al beans
have the same properties. Coffee beans have a"'grams of caffeine’ property, which lima
beans do not have. &

[pedants may point out that lima beans do have a "grams of caffeing” property; it's just that the value is aways zero!

Such people are welcome to try brewing a cup of decaf from lima beans.

It is dways possble to determine the value of these properties, athough this sometimes
requires a careful chemicd andysis. However, imagineif a person could discover the
vaue of one of these properties by asking the bean. Further, imagine if beans could
change their properties at will; someone could order a bean to set its Sizeto 3 feet or its
color to blue, and the bean would suddenly change. People could then ingtantly
decaffeinate their coffee beans or double the amount of caffeine for those lengthy early
morning metings.

Findly, consider a"bean microscope’ that could automatically list dl abean's properties.

Note that none of these activities finding the current State of a property, changing a

property, or discovering which properties are available veuld require cutting the bean

open or studying its metabolism or anything Smilarly complex.

Thisis now areasonably good metaphor for a JavaBean. A JavaBean has a st of
properties that can be read or changed. It is also possble to find out the names of the
properties that a bean has available.

Many objects, processes, and other things in the real world can be modeled as a set of
properties. A CD could be described by giving the values of properties representing the
year it was released, the record company that produced it, the list of tracks, and so on.
Likewise, each track has properties, such asthe lyrics, thekey itisin, and thelength in
seconds. Similarly, a stock portfolio can be specified by giving alist of stocks it contains,
aong with how many shares of each is held and the initid purchase price. The stocks
themselves have properties, such as current value, voldility, price-to-earnings ratio, and
dozens more. In both of these cases, once the properties of interest have been identified, a
JavaBean can be designed to create amodd.

Two things make beans especidly useful. Thefirg isthat neither Java programmers nor
JSP programmers need to know anything about a bean in advance in order to useit. A CD
bean could be purchased from a bean company, and it would only need to beinstalled on
the local system for JSP authors to start using it immediately.

The second useful thing about beansisthat it does not matter how they go about
manipulating their properties. It is possible for the request for avaue to cause the bean to
look up some information in a database. When a bean's property is changed, it could send
e-mail to asysem adminigtrator with anotification of the new vaue. In fact, both
accessing and changing properties can trigger arbitrarily complex actions, but the JSP
author does not need to worry about this. In this sense, beans act as mysterious black
boxes with switches and readouts. Page authors can turn the knobs to change properties
and view the properties off the readouts without ever knowing whét is going on insde the
box. Thismodd of abeanisillugrated in Figure 3.1.

Figure 3.1. A bean as a black box.

49

- T

#.f’"..? The Bean {mm;, .; .

e Memary) ~ gotProperty1()
/Pmpertgﬂ 1 \ selProperty1() |

N,
Property2 4\ setProperty2———
{stored in A

| ' ‘ o o L getPropenty2) -
property3) {
__ getProperty3() f"' >
i Propertyd 4 =
LY =i P s
o " getPropertya()

ﬂq.____-_ L - [P
R S—

Data

It is even possible for properties to depend internaly on one another. A bean might have
the two propertiesval uel and val ue2 and athird, sum that is always constrained to be
val uel plusval ue2. Thiswould provide dl the functiondity necessary to build asmple
JSP-based calculator, and in fact we will shortly see a bean that doesthis.

As mentioned previoudy, for the modd /view/controller paradigm to work, the three
pieces must fit together easily and naturdly. JSPs can interact with beans through three
new tags, discussed in the next section.

3.3 JavaBean Tags

The JavaServer Pages specification provides three basic tags for working with beans one
that finds the bean and makes it available to the rest of the page, one that gets a property
from the bean, and one that sets one or more properties. Because of the many waysto use
abean, these tags have anumber of variations. These tags and their variations are the
basic gateways between the JSP view and the bean mode!.

Note that these tags are very different from the usud HTML tags. Tags such as and

</ b> giveingructions to the Web browser, saying "present the enclosed text in abold
font." The tags that will shortly be presented give indructions to the JSP engine, tdling it

how to build the HTML that will eventudly be sent to the browser. The browser itself
will never see these tags and wouldn't know what to do with them

In the most basic form, a bean may be made available to a JSP with the following tag:
<j sp: useBean i d="bean nanme" class="bean cl ass"/>

Herebean nane will bethe namethat is used later to refer to the bean. This name has
only two redtrictions. Firgt, it must contain only letters, numbers, and the underscore
character.2 The name must aso be unique everywhere it isto be used. This means that
two beans cannot have the samei d, and an i d cannot be any of thewordsr equest ,
response, Or out , which are reserved by the JSP system.

(2 Technically, it must be a "valid Java identifier," which will make more sense &after Chapter 9.

Thebean cl ass will bethe name of a Java class that defines the bean. Chapter 9
discusses classesin more detail, but for now, a class can be thought of as the collection of
Java code that makes up the bean, just as DNA is the code that makes up alima bean.
This bean class must be available to the JSP engine. The JSP specification includes
details on how to make classes available to Web applications, which isdiscussed in
Appendix B.

Thetralling dash a the end of the tag isimportant; it Sgndsthat thereisno
corresponding </ j sp: useBean> closetag. If thisdash ismissng, an error will occur a
trandation time. Examples later in this chapter use aclosing tag, but when it is not used,
the JSP engine must be told not to expect it.

Errors to Watch For

The most common problem with thej sp: useBean tag is gpecifying aclass that
the JSP engine cannot find. When the page is tested, thiswill be reported asa

j ava. | ang. Cl assNot FoundExcept i on. Thiserror may be caused by asmple
mispdling or typo in the name, or it may be because the file that makes up the
cassisnoat in theright directory.

3.3.1 Getting a Property
Once a bean has been obtained with j sp: useBean, getting a property isas smple as

usngthej sp: get Property tag:

<j sp: get Property name="bean nane" property="property nane"/>

51

Bean nane Will bethe same namethat wasused inthei d fidd, and pr operty nane will
be the name of the property to get. Ligting 3.1 demonstrates the use of these tags.

Listing 3.1 A JSP that gets properties from a bean

<j sp: useBean
i d="beanl"

class="com awl . j spbook. ch03. Beanl"/ >

<p>Here is sonme data that cane from beanl: </p>

The nanme of this bean is:

<j sp: get Property nane="beanl" property="nane"/>

The 7th prinme nunber is:
<j sp: get Property
nane="beanl"

property="sevent hPri meNunber"/ >

The current tinme is:

<j sp: getProperty nanme="beanl" property="currentTi ne"/>

</ ul >
Thefirg thing this JSP does is make the bean available to the page. Here, thei d has
some relationship to the class name, but that need not be the case. It is dso not necessary
for thej sp: useBean tag to appear right at the top of the page, aslong asit appears before
ayj sp: get Property tags. However, putting dl thej sp: useBean tags together at the
top of apage makesit easy to see dl the beansthat a pageisusng.
Once the bean has been loaded, the | sp: get Property tagisused to retrieve datafromit.
As promised, this hides a number of programming details from the page author. Within
the bean, the code that gets the seventh prime number could smply returnit from a
precomputed list of prime numbers, recompute it each time, or pull it out of a database. In
fact, it does the easest thing and returns the number 17.2

52

(311§ 17 ever ceases to be the seventh prime number, please contact the author, and a replacement bean will be

cheerfully provided.

The method the bean uses to get the current date cannot rely on asimilar trick, asthe date
changes every time the page loads. This method mugt therefore have some codeto it,
whichisshownin Chapter 10.
Finally, note that bean properties can be used anywhere on a page, including within
HTML tags, asin:
<td bgcol or="<j sp: get Property nane="beanl"

property="col or"/>">
Here, the color of atable cdl isbeing pulled out of a bean. For thisto work, the color
property must be presented in one of the acceptable forms for HTML, such as #-F0000
or "red." Thisisanother place where the person coding the page and the person coding
the bean must agree.

Errors to Watch For

The only error that can come from thej sp: get Pr oper t y tag results from trying
to get a property that the bean does not have. This error would be presented on
the page as

com sun. j sp. JspException

getProperty(id): can't find nmethod to read prop

Most likely, this error will arise because of atypo in the property name, which
can smply be corrected. If the JSP does need a property that the bean does not
have, the programmer will have to be asked to add it.

3.3.2 Setting Properties

Of the many waysto set a bean's properties, the smplest looks dmost exactly like getting
aproperty:
<j sp:set Property

name="bean nane"

property= "property name"

val ue= "property val ue"/>

Here, nane, asbefore, isthei d fromthej sp: useBean tag, and pr oper t y isthe name of
the property to set. val ue isthe new vaue to assgn to the property. The smplest type of
vaueisadring enclosed in quotes, suchas" red" or " 3".

Liging 3.2 shows a JSP that uses a bean with two properties related to the time. The

f or mat property alows the JSP author to specify the format in which the time should be
presented, and the cur r ent Ti me property has the date.

Listing 3.2 A JSP that sets a property

<j sp: useBean
i d="dat e"

cl ass="com aw . j spbook. ch03. Dat eBean"/ >

<j sp:setProperty nanme="date" property="format"

val ue="EEEE, MVMM dd yyyy 'at' hh:nmi'/>

<l i><jsp:getProperty nane="date" property="currentTi me"/>

<j sp:setProperty nanme="date" property="format"

val ue="hh: nm ss MM dd/yy"/>

<jsp:getProperty nane="date" property="currentTi me"/>

<j sp:setProperty nanme="date" property="format"
val ue="yyyyy. MMMW dd GGG hh: nm aaa"/ >

<l i><jsp:getProperty nane="date" property="currentTi me"/>

</ ul >

Recd| from Chapter 2 that a JSP is evaluated by the JSP engine from top to bottom. So,
the JSP engine will first seethej sp: useBean tag and make the bean available to the page
under the name dat e. Then, thisbean'sf or mat property will be set. The exact meaning
of the value is unimportant, dthough details are available in the documentation for the

j ava. text . Si npl eDat eFor mat class. Theimportant thing is that when the JSP engine

next goes to get the vaue of the cur r ent Ti me property from the bean, the bean will use
thevadueof thef or mat property to render it.

When it encountersthe next j sp: set Proper t y tag, the JSP engine will replace the old
vaue of thef or mat property with the new one. Thisis not a problem; that old value has
aready served its purpose. When it is next asked for cur r ent Ti me, the bean will use the
new vaue and will present the current time differently. The bean might dso present a
dightly different time, as afew millisaconds will have passed since the last

j sp: get Property.

Hard-coded va ues such as these format specifications are fine for many purposes. But to
participate in dynamic pages, beans must be capable of interacting with other dynamic
elements.

The Connection Between Forms and Properties

Mog interesting dynamic pages are driven at least partidly by vauestha have been
provided by users through forms. Because most program logic resdes in beans, it seems
naturd that many JSPs take input vaues from forms, pass these valuesinto beans via
j sp: set Property tags, and then display other properties representing the result of a
compuitation.
Fortunatdly, the JSP architects redized how common this situation would be and
provided another smple tag to accomplish it. If the form is providing avaue cdled
"par anet er " and the bean has a property caled " par anet er ", the value can be st with
thetag
<j sp:set Property

nane="bean nane"

property="paraneter"/>
In this case, the value isimplied and is assumed to come from the form. Sometimes, the
name of the form parameter and the name of the property will not match. They can be
connected through another variation of thej sp: set Property tag:
<j sp:set Property

nane="bean nane"

property="property nanme"

par am=" par am nane"/ >
Here, the JSP will use the form parameter called par am nane to set the property caled

property nane.

The most powerful verson of thej sp: set Proper t y tag looks through dl the parameters
provided by the form and al the methods provided by the bean and links them
automaticaly. Thisverson looks as follows:

<j sp: set Property nane="bean nanme" property="*"/>

If the form provides values cdled par ant, par an2, and so on and if the bean has
properties with the same names, everything will match up perfectly. If the form provides
some parameters for which there are no matching properties, these parameters will be
ignored, and no error will occur. The JSP could proceed to do something else with those
parameters, such as pass them on to the bean manually or send them to a different bean
with another j sp: set Property tag. Likewise, if the bean provides properties for which
the form does not supply vaues, these properties will smply not be set. The JSP can cal
them manudly, if needed.

Liding 3.3 shows a page with asmple HTML form. When thisform is submitted, the
vaues will be passad to the pagein Liging 3.4, which will pass these valuesto abean
and then use the bean to access the values,

Listing 3.3 A form that sends data to a bean

<form acti on="form handl er.jsp" nethod="post">

Enter some text: <input type="text" nane="textFi el d">

Now sel ect a color: <select name="col or">
<option val ue="red">red

<option val ue="green">green

<option val ue="bl ue">bl ue

</ sel ect >

Do you |i ke cheese?
<i nput type="radi 0" nane="cheese" val ue="yes">Yes

<i nput type="radi 0" nane="cheese" val ue="no">No

<i nput
type="submt"
nane="submt"

value="Send this info to a bean">

</forne

Absolutely nothing is specid about this form; you can hardly eventdl that itisaJSP! In
particular, note that the page with the form knows nothing about the bean that will be
receiving the form values. That is handled entirdly by the receiving page, which is shown

inLigting 34.
Listing 3.4 Processing form inputs with a bean

<j sp: useBean
i d="val ues"
cl ass="com aw . j spbook. ch03. For mBean"/ >
<j sp:setProperty nanme="val ues" property="*"/>
Here is your text, in the color you chose
<font col or="<jsp: getProperty
nane="val ues"
property="col or"/>">
<j sp: getProperty name="val ues" property="textField"/>

</ f ont >

When asked whet her you |ike cheese, you said

<j sp: get Property nanme="val ues" property="cheese"/>

Thefird line of this example summons a bean into exisence and cdlsit val ues. The
second line then passes dl the vaues from the form into this bean by setting properties.
Thisworks only because the bean was built to work with this form and so has properties
cdledt ext, col or, and cheese. These properties are then pulled out of the bean in afew
ways. Thet ext and cheese vauesaesmply displayed, but thecol or property is used
within afont tag in order to set acolor.

The bean in this exampleis acting like a smple glass box; vaues are put in with the

j sp: set Property tag and can then be viewed with thej sp: get Propert y tag. However,
once a bean has been given vaues, it can do much more than smply hold them and give
them back.

The next example, Liging 3.5, illugtrates this. This JSP uses a bean that acts like asmple
cdculator; it has two properties, called val uel and val ue2, which may be set froma
form. The bean dso has athird property, sum which it computes by adding val ue1 and

val ue2.

57

Listing 3.5 A bean calculator

<j sp: useBean
i d="cal c"

cl ass="com aw . j spbook. ch03. Cal cBean"/ >

<j sp:setProperty name="cal c" property="*"/>

The sum of your two nunbers is

<j sp: get Property nanme="cal ¢c" property="suni'/>

Thereyou haveit: acaculaor in just four lines of code! The form that cdlsthis pageis
very smple and so is not shown here, dthough it may be found on the CD-ROM
accompanying thisbook. Asin Ligting 3.4, the form knows nothing about the bean but
samply provides two text boxes named val uel and val ue2, and the bean takes care of the
rest.

Having conveyed how well beans and forms work together, it'stime for alittle fine print.
For this cooperation to work, it must be an echo of cooperation between the person
writing the bean and the person writing the form. They must agree on the names of the
form variables, which oneswill be multivalued, and so on. This should not be any burden
to either person, as the bean interface makes both their jobs easier.

It isimportant to note that each time auser visits the caculator page, thej sp: useBean
tag will create a brand new ingtance of the Cal cBean. Thisisagood thing, asit means
that if severa users access the same page a the same time, they will each get a copy of
the bean, with different values for al the properties. This ensuresthat if one person tries
to use the calculator from Liging 3.5 to compute 100 + 156 at the same time that another
user iscomputing 62 + 34, they will get 256 and 96, respectively.

Thismay not seem like a big dedl; in fact, many people would probably not even have
thought that this would be an issue. However, in some Web application frameworks,
developers mugt give agreet ded of thought to how their sysems will behave if many
users access the Site smultaneoudy. Fortunately, using beans and JSPs means that
developers can write their pages asif only one user will be usng them a atime, and they
will automatically work properly even when there are many smultaneous users.

Errors to Watch For

Attempting to set a property that bean does not possesswill result in the

following error:
com sun. j sp. JspException

setProperty(id): Can't Find the nethod for setting prop
Asin attempting to get a nonexistent property, this error may be amisspdling,
or the bean developer must add the needed property. Note that this error will not
be generated when setting a bean's properties from aform. If the form names
and properties do not match up, the mismatched vaues will smply be ignored.
This can be worse, as it means that a page may not work without an obvious
error message to explain why.

Form Values

Unfortunately, smple things are sddom perfect; abug is lurking in the Smple caculator

of Liding 3.5. If auser enters on the form avaue that is not a number, such as A, the
page will return acryptic error message. The bean programmer could avoid this by
congructing the bean in such away that it would smply ignore bad inputs. Thiswould
hardly be an improvement, though, as the page would return an incorrect answer instead
of an error. At least with the error message, the user knows that something is awry.

What is needed here isameans for the bean to tell the page whether the inputs were vaid
and for the page to display different text in either case. Thisis possble, but such
interaction between amodd and aview is best mediated by a controller, so thiswill be
deferred until Chapter 12.

It would aso be possible to use some JavaScript within the page to ensure that the values
arelegal. This could be done by adding to the form an onsubni t vaue, which would
check that the values ook like numbers and would pop up an error dialogue if they do not.
The advantage to this agpproach is that the feedback is presented to the user immediately,
without having to pass dl the data to the server. This dso means one less condition the
server needs to check and one less submission it needs to process. For very popular
gpplications, reducing the strain on the server in such away can make a noticegble
difference in overd| system performance.

Unfortunately, using JavaScript has lots of downsides. Firg, getting the same JavaScript
to work on multiple different browsers can be surprisingly difficult. Browsers
incompatibilities and fragility are especidly evident when JavaScript isinvolved. Many
Web programmers decide to target only one browser, making their Site unavailable to a
portion of their potentid audience. Alternatively, it is possible to write many different
versons of the JavaScript code and have the server include the appropriate version based

59

on which browser is being used. JSPs can make it relatively painless to detect the browser
being used and include appropriate JavaScript; thiswill so be demongtrated in Chapter
4. Even usng JSPs, al that JavaScript code will still need to be tested and maintained.

In addition to the compatibility issues, some users choose to turn off JavaScript, and
some browsers, such as those included in many mobile phones, don't support JavaScript
a dl. Thismeansthat it will be necessary to write the code to handle the form validation
on the server anyway.

Findly, it is generdly good practice to have dl related code in one place. Because the
form will ultimately be processed on the server, it makes aesthetic sense to keep the
vaidation code there aswdl. Thisway, if and when the businesslogic changes, it will

not be necessary to hunt down the JavaScript code that checks values and the completely
separate Java code that uses these values.

3.4 Making Data Available Throughout an
Application

So far, dl the beans used have been fairly trangent entities: They are summoned into
exigencethrough aj sp: useBean tag at the top of a page and disappear when the page
ends. Thisisusudly agood thing; in fact, thisisthe very property that alows each user
to get hisor her own version of the bean.
However, in many stuaions, it is useful to have abean last longer than asingle page. A
ample mechanism dlows JSP authors to specify any of severd lifetimes for their beans.
These lifetimes are cdlled scopes, and they indicate the period of activity during which
the bean isavailable. If abean is created and placed in a scope, any changes to that bean
madeviaj sp: set Property tagswill bevisble to other pages usng the same bean.
A scope may be given to abean by adding scope=tothej sp: useBean tag:
<j sp: useBean

i d="bean nanme"

cl ass="bean cl ass"

scope="scope"/ >
Legal vauesfor the scope property are” page”, "request ", "sessi on", and
"appl i cati on". Each may be ussful in different Stuaions.

3.4.1 The Page Scope

Beans created in the page scope, the smalest scope, will be available only within the JSP
from which they were created. It is reasonable to think of the page scope as spanning a
sngle JISPfile

Thismeansthat if one page includes another by using aj sp: i ncl ude tag and that if they
each useaj sp: useBean tag to obtain the same bean in the page scope, they will eechiin
fact get adifferent ingtance of the bean. Thisisillugrated in Ligting 3.6.

Listing 3.6 A page that uses page scope

<j sp: useBean
i d="beanl"
cl ass="com aw . j spbook. ch03. Ani nal Bean"

scope="page"/ >

At first, our animal is:
<j sp: get Property nane="beanl" property="animl"/>

<j sp: set Property
name="beanl"
property="ani mal "

val ue="oct opus"/ >

After setting the property, the animal is:
<j sp: get Property nane="beanl" property="animl"/>

<j sp:include page="page_scope2.jsp"/>

This example creates a bean, placesit in the page scope, and then shows the value of the
bean'sani mal property. This bean comes with a default value for this property, "ferret",
which will be displayed by thefirstj sp: get Proper ty. This property isthen changed to

"oct opus" and redisplayed, to prove that it changed. Then the page includes another

page, whichisshownin Liging 3.7.

Listing 3.7 An included page that reuses the bean

61

<j sp: useBean
i d="beanl"
class="com aw . j spbook. ch03. Ani nal Bean"

scope="page"/ >

In the include, the animal is:

<j sp: get Property nane="beanl" property="animl"/>

This page obtains the same bean, and once again displaysthe ani nal property. Because
the bean isin the page scope, a completely new instance of the bean will be created when
the included page reachesthej sp: useBean Satement; thisingtance will ill have the
origind vaue, " ferret ", and so the page will display the following:

At first, our animal is: ferret
After setting the property, the animal is: octopus

In the include, the animal is: ferret

3.4.2 The Request Scope

The request scope is larger than the page scope; beans created in the request scope will
last from the time they arefirst created until the last of the datais sent to the user. Most
ggnificantly, this means that the same instance of the bean will be available to dl
included pages, which can be demongtrated by changing scope="page" to
scope="request" inLigdings 3.6 and 3.7. When thisis done, the resulting page will look
likethis

At first, our animal is: ferret

After setting the property, the animal is: octopus

In the include, the aninmal is: octopus

The request scope is useful when multiple components of a page are scattered among
severd files that include one another, and al need access to the same data. Asthisisthe
most common Situation, the request scope is the default. In dl the previous examples, in
which no scope was specified, we were in fact using the request scope without knowing
it.

3.4.3 The Session Scope

Both of the scopes encountered so far associate data with pages or pieces of pages. But
because users, not pages, should be the focus of asite, away isneeded to tie datato a
particular user so it will be available and adjustable from whichever pages the user vists.

62

An obvious example of thisis ashopping cart. Multiple users can dl seethe same
"checkout" page of a shopping Site, but each user will see his or her own sdlections.
Likewise, many users may view a particular item, but when one user dectsto buy it, the
item goes into that person's shopping cart and no one el se's.

In JSP terms, data associated with a user isin the session scope. A session does not
correspond directly to a user but rather to the period of time the user spends at a site.
Typicaly, this period is defined as extending from the first vigt to the site, through the
point at which the user has not accessed any pages on the site for more than haf an hour.
Theresfter, the sesson will have expired, and any beansin the sesson scope will
disappear. Liging 3.8 demonstrates a smple use of the session scope to keep track of
how many times a user has accessed the Site.

Listing 3.8 A counter bean in the session scope

<j sp: useBean
i d="counter"
cl ass="com awl . j spbook. ch03. Count er Bean"

scope="sessi on"/>

<j sp:set Property
nanme="counter"
property="i ncrenent Count"

val ue="1"/>

You have visited this page

<j sp: get Property nanme="counter" property="count"/>

time(s).

This example doesn't look like anything specid, but a user who accesses the page and
repeatedly clicks the browser's reload button will see the counter steadily climb. Two
things make this page work. Thefirg isthe way thei ncr ement Count property works.
When this property is &, it adds its vaue to the count property, much as Liging 3.5
added theval uel andval ue2 propertiesto set the sum property.

More important, the secret to this page's functiondity is the on scope, which keeps
the bean around even &fter the page completes. If the scope were changed to page or
request, the counter would stay stuck at 1 perpetualy.

The session scope extends across multiple pages, aswell as across individua pages
multipletimes. If thej sp: useBean andj sp: set Proper t y tagswere copied into another
page, the counter would then register the total number of times the user had visited both
pages during the current session.

3.4.4 The Application Scope

The gpplication scope isthe largest of the available scopes. Beans placed in the
goplication scope will be avallable to dl pages, for dl users, until the Web application is
shut down or restarted. This scopeis useful for displaying globa information, such asa
"quote of the day" that might be displayed at the bottom of every page acrossasite. The
application scope can aso be used to create a counter that displays the totd number of
times a page has been accessed. A smple modification to Listing 3.8 counts how many
times each user has accessed a page: To makethisglobal, changescope="sessi on" t0

scope="application".

3.5 Special Actions When Beans Are Created

Now that beans can live beyond the scope of asingle page, any given indance of a

j sp: useBean tag may or may not create a new instance of a bean. Often a page will need
to take a gpecia action when the bean isfirst created.

This can be done with asimple extenson to thej sp: useBean tag. So far, thistag has
been used without aclosing / j sp: useBean tag. If thereisamatching close tag, anything
in the body between the open and close tags will be evaluated when the bean is created
and not subsequently.

The content enclosed by these tags can be anything at al. For adart, it can be plain text.
Liging 3.9, adight modification to Ligting 3.8, illudrates this ahility.

Listing 3.9 Displaying text when a bean is created

<j sp: useBean
i d="count er 2"
cl ass="com aw . j spbook. ch03. Count er Bean"

scope="sessi on" >

Wel cone to the site

</j sp: useBean>

With this change, the user will see the message "Welcome to the Ste”’ when the bean is
created. On the user's subsequent visits to this page, or any other using the counter bean,
the message will not be displayed. Note that the identifier count er 2 isused to diginguish
this bean from the one used in Ligting 3.8. If this were not done, the counter would
register how many times the user had been to either page, and if counter.jsp were visited
before counter2.jsp, the wel come message would not show up.

In addition to text, the initidization block can contain j sp: set Property tags. Thiscan
be useful when the bean needs to have certain values before it is used. In some cases,
these default vaues can be placed in the bean itsdlf, such astheinitid vaue of O for the
number of vistsin the counter bean. In other cases, the vaues with which the bean needs
to be initialized may depend on the current user or the page or any of thousands of other
possibilities. Rather than putting values with these kinds of dependenciesinto the bean
code, it makes more sense to let the page set up the beans as needed.

Listing 3.10 shows another addition to Ligting 3.8. Thistime, the bean will be told the
name of the page on which it was created.

Listing 3.10 Setting a value when a bean is created

<j sp: useBean
i d="count er 3"
cl ass="com awl . j spbook. ch03. Count er Bean"

scope="sessi on">
<j sp:set Property
nanme="count er 3"
property="firstPage"
val ue="counter3.jsp"/>
Wel conme to the site

</jsp: useBean>

<j sp:set Property

name="count er 3"
property="increnent Count "

val ue="1"/>

The first page you visited was

<j sp: get Property nane="counter3" property="firstPage"/>

You have seen

<j sp: get Property nane="counter3" property="count"/>

page(s) on this site.

The bean will now keep track of where it was cregted. If this bean were then used on
multiple pages, it could report on the total number of pages visited, aswdl asthefirst
page.

At thispoint, it is natura to wonder whether there are corresponding close tags for

j sp: get Property andj sp: set Property. Infact, there are not. Although it is often
necessary to perform different actions, depending on whether a property is s, thisis
done using specid JSP tags cdled conditionas, which will be discussed in the next
chapter.

3.6 Making Beans Last Forever

Although it is not a scope, arelated technology extends the lifetime of abean. Beans can
be frozen by saving their contentsinto files, and these files can then be transparently
turned back into beans when they are needed.

The mechaniam to turn beansinto filesis caled serialization, abuilt-in fadlity of the
Java programming language. Seridization is dso very useful to JSP authors because it
alows beansto be tailored, or customized, before they are used.

For example, a software company might make a bean that computes how quickly money
in abank account will grow. One property of this bean would be the interest rate. Many
different banks could purchase this bean, set thei nt er est Rat e property to the
gppropriate vaue, and then save the bean.

When they create their Web pages, the JSP authors at these banks can use the sandard
bean tags to access the bean, and none of the pages they create will need to worry about
the interest rate. This aso makes these Sites easier to maintain. When the interest rate

changes, the adminigtrator will Smply need to replace the seridized file with one
containing the new rate, and al the pages will automatically use the new value. In a sense,
seridization can be used to "bake in" vaues that are appropriate to asite. JSPs can then
use these values asif they were intrinsc to the bean.
The details of how seridization is done are beyond the scope of this book, but many
programs hide the details and make it easy to create such frozen beans. Sun provides one
cdled the Bean Box, dthough thisis targeted primarily for people usng beansto buld
graphic front ends and is overkill for the kinds of beans used in JSPs. A much smpler
editor from Canetoad Software isincluded on the CD-ROM for this book, aong with
indructionsfor its use.
Usng aseriaized bean is no more complicated than creating a bean from scratch; it
amply requiresadight variation to thej sp: useBean tag:
<j sp: useBean

i d="bean nane"

beanName="bean nane"

type="bean cl ass"/>
Here, i d isthe name by which the JSP will use the bean, the same as aways, and
beanNane should be the name of afile containing a seridized bean. By convention, such
files end with the .ser extension, which should not be included in the name. Findly, t ype
isthe class or interface for which the bean is an instance. Note that typeis used instead of
class because the cdlass isimplicitly provided by the seridized file. An ingtance dways
knows what classit is an instance of, and this is true even when that instance has been
dored in afile. Thetypeis still necessary because the JSP gtill needs to assign atypeto
the variable that will hold the bean. In practice, the type can usually be thought of asthe
bean's class.
Ligting 3.11 shows a JSP that uses a serialized bean to get information about arecord, in
this case "Tinderbox" by Siouxsie and the Banshees.

Listing 3.11 Using a serialized bean

<j sp: useBean id="al bun beanNane="ti nder box3"

type="com aw . j spbook. ch03. Al bum nfo"/ >
<body

bgcol or ="<j sp: get Property

nane="al bunt

67

property="bgCol or"/>"
text ="<j sp: getProperty
name="al bunt

property="text Col or"/>">
<h1><j sp: get Property name="al bum' property="name"/></hl>

Artist: <jsp:getProperty nane="al bunt

property="artist"/><p>
Year: <jsp:getProperty name="al bunf' property="year"/></p>
This looks much like the other examplesin this chapter, except for thej sp: useBean tag
and the fact that there is no obvious place where the properties have been set. The reason
isthat they are not set in the JSP but have dready been stored in the seridized file.
It would be niceif this JSP could dso display the list of tracks, but thereisaproblem. In
generd, the page won't know in advance how many tracks are on agiven CD. The bean
could have a separate property for each track, and the page could display any fixed
number of tracks in the obvious way:
<l'i ><j sp: get Property nane="al bunl property="trackNanmel"/ >
<l'i ><j sp:getProperty nane="al bunl property="trackNanme2"/ >
<j sp: get Property name="al bum' property="trackNane3"/>
However, if the CD has only two tracks, thiswill display an extra bullet with no name
next to it. If the CD has four or more tracks, some won't get shown at al. What is needed
isaway to repeat some region of HTML, once for each track in the bean. Thisis called
iteration and is covered in the next chapter.
This use of seridization makes beans behave alittle like a database. Perhaps the
"tinderbox" bean came as part of the collection of beansfor dl of the Banshees abums.
To create pages for these others, it would be necessary only to change the beanNarne to
"Hyaena" Or " Juj u", or soon. Infact, the degp connection between beans and databases
isexplored morefully in Chapter 6.

3.7 Java News Today and Beans

The Java News Today saff loves beans and is planning to build the mgority of the INT
ste around bean technologies. To start with, beanswill dlow JNT to add to the Ste anew

festure: adally quiz consging of asingle multiple-choice question. This quiz will gppear
in the right-hand navigation bar right above the list of sections. Of course, in order to
meake this new component easy to work with, it will be stored in a separate file caled
quizjsp, which will be included in the navigation bar with aj sp: i ncl ude tag. The new
verson of the navigation isshown in Listing 3.12.

Listing 3.12 The new navigation bar

<di v cl ass="bordered">

<j sp:include page="quiz.jsp"/>

</ di v>

Now, onto the quiz itself. Beans have two aspects that will make this feature very easy to
add. Thefirg isthat the user will respond to the quiz through aform; as we have seen,
beans excd a handling form inputs. The second concerns the way the questions will be
stored. If the questions were placed directly in the HTML, it would be a pain to update
them. Instead, the questions and the correct response will be stored in a seridized bean,
which can be updated using any of severd available bean editors. Listing 3.13 shows how
this bean will be used in quizjp.

Listing 3.13 The daily quiz

<j sp: useBean
id="qui z"
beanNane="t odaysQui z3"
type="com aw . j spbook. ch03. Qui zBean"/ >

<j sp:getProperty name="qui z" property="question"/><P>
<form action="quiz_result.jsp" nmethod="POST">
<i nput type="radi 0" nane="user Guess" val ue="1">

<j sp:getProperty nane="qui z" property="answer 1"/ >

<i nput type="radi 0" nane="user Guess" val ue="2">

<j sp:getProperty nane="qui z" property="answer 2"/ >

<i nput type="radi o" nane="user Guess" val ue="3">

<j sp:getProperty nane="qui z" property="answer 3"/ >

<i nput type="Subm t" nane="CGuess" val ue="Cuess">
</forne
There are no new surprises here; the seridized bean is obtained with thej sp: useBean
tag, and properties are put on the page with thej sp: get Proper t y tag. Recdl from
Liging 34 that it is not necessary for aform page to obtain a bean, even if the form will
ultimately be sending datato that bean. Thisis ill true; in this example, the beanis
being used not directly with the form but only to obtain blocks of text that are displayed
within the form.
The INT designers are now ready to start thinking about persondization, & least a avery
high abdtract level. Even though it is not yet clear how persondization will work; it is
safe to assume that every user will be modeled as a bean and that this bean will have
various properties describing the user's preferences. Thisis enough to sart laying some
groundwork. To start with, the designers will use this bean to customize the header by
displaying the user's name, if it has been provided. Thisis shown in Listing 3.14.

Listing 3.14 The header, with a bean property

<j sp: useBean i d="user"
cl ass="com aw . j spbook. ch03. User | nf oBean"

scope="sessi on"/>

<cent er><h2>Java News Today: Wl cone! </ h2></center>

<div class="left">

Hel l o <j sp:getProperty nanme="user" property="nane"/>
</div>
To prepare further for customization, alink will dso be added to the left navigation bar.
With the addition of the link and the quiz, the front page is sarting to look like ared gte.
Itisshownin Figure 3.2.

Figure 3.2. The new JNT home page.

70

It isaso possble to use custom values in the style sheet: for example, to change the color
behind the navigation bar and header. Thisisillugtrated in Listing 3.15.

Listing 3.15 The style sheet, with a bean property

<j sp: useBean i d="user"
class="com awl . j spbook. ch03. User | nf oBean"

scope="sessi on"/>

TABLE. form { border-style: groove;
border-col or: #004400; }

TD. | abel { border-style: solid;
border-wi dth: 1px;
border-col or: #00aa00;
background: #<jsp:getProperty

name="user"
property="banner Col or"/ >;
col or: #000000;
paddi ng-right: 5px }

71

TD.form { border-style: solid,;
border-w dt h: 1px;
border-col or: #004400;}

TD. borders { background
#<j sp: get Property
name="user"

property="banner Col or"/>; }

DI V. bordered { border-style: groove;
border-col or: #004400; }

DIV.left { margin: Opx Opx Opx Opx;

paddi ng: Opx Opx Opx Opx;

text-align: right; }
Thereisone smal catch to changing the colors. The little corner bit, which is used to
give the Ste adightly smoother ook, isan image, and its color is not controlled by the
syle sheet. It will therefore look noticeably out of placeif the colors are changed. This
could be solved by making part of the image transparent in aclever way, but itisaso
possible to generate the image dynamically so thet its colors maich the site. The
advantage of the latter techniqueisthat it makes it possible to handle an image with
multiple different colors that al need to match colors on the Ste. The disadvantage is thet
this requires some advanced techniques, and so it will not be possible to discuss this until
Chapter 14.
Difficulties with the image aside, it is aready possible for the user to modify these values,
thanks to the fact that the bean isin the session scope. Setting new vaues can be done by
providing asmple form that will st the name and color attributes. Because the beanisin
the session scope, these vaues, once set by such aform, will remain set until the session
expires or the user changes them. Lidting 3.16 shows the customization form, and the
page as seenin abrowser is shown in Figure 3.3.

Figure 3.3. The JNT customization page.

72

Listing 3.16 The customization form

<j sp:include page="top.jsp"/>

<table class="form >
<form acti on="custonm ze_handl er.jsp" method="post">
<tr>

<td class="| abel ">Background col or: </td>

<t d><i nput type="text" nanme="bgCol or"></td>

</[tr>

<tr>
<td cl ass="I| abel ">Banner color:</td>
<t d><i nput type="text" nanme="banner Col or"></td>

</[tr>

<tr>
<td class="I|abel ">Text color:</td>
<td><i nput type="text" nanme="text Col or"></td>

</[tr>

73

<tr>
<td class="| abel ">Your nane:</td>
<t d><i nput type="text" nanme="nane"></td>

</[tr>

<tr>
<td col span="2" align="right">
<i nput type="subm t" nane="go" val ue="Set Preferences">
</td>
</[tr>
</forne

</t abl e>

<j sp:include page="bottomjsp"/>

Thisisyet another standard HTML form. As expected, the fun happens on the receiving
page, which smply sets the bean and noatifies the user that his or her preferences have
been changed. Thisisshownin Ligting 3.17.

Listing 3.17 The customization handler

<j sp:include page="top.jsp"/>

<j sp: useBean i d="user"
cl ass="com aw . j spbook. ch03. User | nf oBean"

scope="sessi on"/>

<j sp:setProperty nanme="user" property="*"/>

Your preferences have been set!

<j sp:include page="bottomjsp"/>

These three examples should demonstrate how easy it isto use beansin order to make

gtes dynamic. On one page, the bean is smply used to display vaues. Another page has
avery ample form that sends valuesto the bean in order to change these vaues. Findly,

74

athird page usesasinglej sp: set Proper t y tag to do the setting. From then on, the new
vaueswill be available to the first page.

Findly, totieit al together, alink to the customization page can be added to the
navigation bar, asshownin Ligting 3.18.

Listing 3.18 Adding alink to the customization page

<j sp:include page="top.jsp"/>

<j sp: useBean i d="user"
cl ass="com aw . j spbook. ch03. User | nf oBean"

scope="sessi on"/>

<j sp:setProperty name="user" property="*"/>

Your preferences have been set!

<jsp:include page="bottomjsp"/>

Although customization is proceeding nicely, things are not looking as good for the quiz.
Unfortunatdly, it is not yet possible to write the result page, which will state whether the
user's guess was correct. Thiswill require one of those conditionas mentioned earlier and
so will have to wait for the next chapter. For the moment, however, it is possible to create
apage that will at least tdl the user what the right answer is, dong with the user's guess.
Thisisshownin Liding 3.19 and illustrated in Figure 3.4.

Figure 3.4. The placeholder quiz result page.

75

Tou guested 3. The correct arrwer = 2.

Listing 3.19 The quiz result page

<j sp:include page="top.jsp"/>

<% - Start content --%
<j sp: useBean
id="quiz"
beanNanme="t odaysQui z3"
type="com aw . j spbook. ch03. Qui zBean"/ >

<j sp:setProperty nanme="qui z" property="*"/>

You guessed

<j sp: get Property name="qui z" property="user Guess"/>

The correct answer is

<j sp: getProperty name="qui z" property="correct Answer"/>

<% - End content --%

<j sp:include page="bottomjsp"/>

76

Agan, thisis very sraightforward; the guessis sent with astandard j sp: set Property
tag to the bean, and then both the guess and the right answer are shown with

j sp: set Property tags. Note again how easy it was to create anew JNT page by adding
the two appropriatej sp: i ncl ude tags.

3.8 Future Directions

Asnoted earlier in this chapter, there is more to beans than the names of the properties.
One other feature beans provide is the ability to notify one another when certain events
have occurred. For example, a bean used on one page could notify abean used on another
that a user had just vidited that page, provided some input on aform, or any of amillion
other things. JSPs have no built-in facility to connect beansin thisway, so this ability

will not be discussed in any further detail. However, it would not be surprising to see this
as afeature in afuture verson of the JSP spec, so stay tuned. In the meantime, thereisno
reason interested programmers or page authors cannot use this ability manudly.

A number of products that make beans even more powerful and useful are available. Sun
provides a set of classes, caled the Infobus, that further extends the way beans can
communicate with one another. The Java Activation Framework package adds the ability
for beansto discover dynamicaly the type of pieces of data and the available methods
related to that type.

Findly, the Java 2 Enterprise Edition makes extensve use of some additiond types of
beans, collectively known as Enterprise JavaBeans, or EJBs. EIBs provide a suite of
methods for managing persstent data, ensuring that beans are kept in aconsstent sate,
and using beansin digtributed environments, where different beans may resde on
different computers on a network. EJBs are beyond the scope of this book, but it islikely
that they will more and more converge with JSPs.

3.9 Summary and Conclusions

Beans are Java's sandard component model and integrate well with JSPs. Beans help
separate Java code from HTML by providing standard tags that alow the JSP to get data
to and from the bean, via the bean's properties. Beans aso make writing dynamic pages
that use forms easier, by providing easy waysto send form datainto beans and get results

77

out. By supporting seridization, beans dso help pull changeable data out of pages, which
alows a bean to be customized and stored. This customization can tailor abean for asite
or aperiod of time.

Chapter 10 discusses how to write beansin more detail. In the meantime, the source code
for al the beans used in this chapter isincluded on the CD-ROM for interested readers to
explore.

In order to complete the calculator and quiz examples from this chapter, a page must be
able to customize itsdlf based on certain criteria. In order to do this, the page will need to
use the specia JSP tags from the standard library. Thisisthe topic of the next chapter.

3.10 Tags Learned in This Chapter

j sp: useBean Makes abean avalade to a page
Parameters.
i d: The name by whichthis bean will be known to the rest of the page
cl ass: The Java class that represents the bean
beanName: For seridized beans, indicates the file where the bean is stored
t ype: For saridized beans, indicates the type

scope: Thescope [@ge, request, sesson, or gpplication inwhichthe bean

IS stored.
Body: Optiond arbitrary JSP code or text. If present, a body will be eva uated when
the bean is created.

j sp: useBean Setsaproperty inabean

Parameters:
name: The name of the bean; should matchthei d inthe useBean tag
property: The name of the property to set, or " " to set dl avallable properties
fromaform
val ue: If present, specifies the vadue to set; if not present, the vadue fromthe
form

Body: None

j sp: useBean getsa property fromabean

78

Parameters:
nane: The name of the bean; should matchthei d inthe useBean tag
proper t y: The name of the property to get

Body: None

7

Chapter 4. The Standard Tag Library

Chapter 3 explained how to get values from beansto pages with thej sp: get Property
tag, dong with anumber of limitations in this process. There was no good way to display
the tracks on a CD, because the page has no way to know how many tracks a bean will be
holding. The quiz was unable to determine whether the user's answer was correct,

because the page has no way to compare two valuesin a bean.

Both of these problems can be solved by a new set of tags: the standard tag library.
Although these tags are not technically a portion of the JSP specification, they are closdly
related and can be used in any application server that supports JSPs. This chapter looks at
what these tags can do, after afew words on how tags in JavaServer Pageswork in
generd.

4.1 Tag Libraries

We have dready seen tags that dedl with things ranging from including other JSPsto
manipulating beans. These tags are dl useful and perform their specific tasks well, but
amost from the beginning, the authors of the JSP specification redlized that no set of tags
could possibly do everything that everyone would need from JSPs. To address that issue,
those authors provided a mechanism for programmers to create new tags that could do
anything possible and an easy way for pages to use these custom tags. The topic of the
creation of new tagsis covered in Chapter 13. Lisiing 4.1 illustrates how a page |oads and
uses atag.

Listing 4.1 A JSP that uses a custom tag

<v@taglib prefix="aw"
uri ="http://jspbook.aw . com sanpl es" %
The tine, in tw different formats: <p>
<awl : date format="EEEE, MMW dd yyyy 'at' hh: mi/>

<awl : date format="hh: Mm ss MM dd/yy"/ >

Thetag library isloaded with the fird line. The URI (Uniform Resource | dentifier)
specifies the location of the tag library definition, and the prefix specifies the name that
will be used to accessthe tags. Here, the prefix isaw , but it could be anything, aslong as

it is used conggtently. One of the tagsfrom this library, t i me, isused twicein the last
two lines. The name of the tag is prepended by the prefix specified at the top.2

[2] Formally, the tag lives in an XML namespace specified by the prefix. Custom tags can be loaded with any

namespace; formally, the portion before the colon is not part of the name. In the text however, this prefix will aways

be included to avoid possible confusion between tags, such as C: par amand sl : par am

Theawi : ti me tag itsdf amply sends the current time to the page, in aformat specified
by thef or mat property. If thislooks familiar, it is because this does essentidly the same
thing as Ligting 3.2. That example used a bean with an input for the format and an output
for the time. Using a custom tag, the input is specified as a named property, and the
output isimplicit in the way the tag works.

Technicdly, neither example was particularly good. Because they play the part of modes
in the moded/view/controller paradigm, beans should not be concerned with how their
datawill be presented. Hence, the bean used in Lidting 3.2 should not have had to ded
with formatting issues. Smilarly, tags are intringcdly part of the view portion and so
should not dedl directly with data, but theaw : t i me tagin Listing 4.1 holds datain the
form of the current time. With some effort, the sandard tag library can help make such
separations of roles between tags and beans easier to manage, as will be seen later in this
chapter.

4.2 Tags with Bodies

Custom tags can do more than output data controlled by parameters. A custom tag can
have abody, which it can control in arbitrary ways. Recal asmilar tag, j sp: useBean,
which rendersits body only when the bean it is accessing is created. Listing 4.2 shows
such a custom tag that can be used to display its body, hideit, or even reverseit. The
result isshown in Figure 4.1.

Figure 4.1. The result of a custom tag.

81

The b to; 024314 02727703

D0 T2 41 3420 0 et &h T

T e e e e e e e e e e =T |
Listing 4.2 A custom tag with a body

<v@taglib prefix="aw"
uri="http://jspbook.aw . com sanpl es" %

<aw : maybeShow show="no" >

You can't see ne!

</ awl : maybeShow>

<aw : maybeShow show="yes" >

The time is:

<awl : date format="hh: mm ss MV dd/yy"/>
</ awl : maybeShow>

<awl : maybeShow show="reverse" >
The time is:
<awl : date format="hh: mm ss MM dd/yy"/>
</ awl : maybeShow>

This example loads the same tag library used in Ligting 4.1 and again Specifies that it will
beusngtheaw prefix to access the tags. The tag used thistimeis called
awl : maybeShow, and it has a parameter, show, that controls what the tag should do with

82

its body. This parameter may be set to no, in which case the body is hidden from the page;
yes, inwhich case the body is displayed; or r ever se, in which case the body is shown
backward.

Note that the body of the awl : maybeShow tag may include anything, including other JSP

tags. Thiswas dso true of thej sp: useBean tag and in fact istrue of any custom tag that

has been properly programmed. This property is described by saying that JSP tags can be
nested. From here on, it will smply be assumed, unless otherwise noted, that the body of

any tag can contain any other tag.

4.3 Dynamic Attributes in Tags

For the standard tag library to be able to do al the wonderful thingsit clamsto do, the
tags will need to take parameters that are more complicated than such smple ingtructions
as"yes' and "no." In fact, the parameters to the standard tag library comprise afull
language, dthough one that is Sgnificantly smpler than Javaitsdf and much better

auited for building pages.

Thislanguage is built into the very core of JSPsin the latest verson of the JSP
gpecification. This means that programmers cregting new tags may use this language for
their own purposes; thiswill dso beillustrated in Chapter 13.

Expressonsin this language are surrounded by braces and preceded by a dollar sign. The
amplest kinds of expressonsin the language are congtants, such as strings or numbers.

${ 23}

${98. 6}

${' hello'}

These expressons don't mean anything on their own, but when used asthe vaue of a
parameter, they are evaluated by the expression language before they are sent to the tag.
Because numbers and gtrings evauate to themselves, this means that the following two
expressons mean the same thing:

<aw : maybeShow show="${"'yes'}">

<aw : maybeShow show="yes" >

Note that within an expressions, literdls are surrounded by single quotes and that the
whole expression is surrounded by double quotes.

Errors to Watch For

If an expression iswritten incorrectly, such as leaving off aclosng quote or a

brace, a JSP page error will report something like
An error occurred while parsing custom action

Now for the fun part: The scripting language can aso refer to beans and properties of

beans. Liding 3.1 used a bean to display some Static properties, including the seventh

prime number. Suppose that bean were loaded into a page with this tag:

<j sp: useBean i d="beanl" class="com aw . spbook. ch03. Beanl"/ >

In that case, then the scripting language would refer to the saventh prime number

property as

${beanl. sevent hPri meNunber}

Note the pattern: first, the name of the bean as defined in thej sp: useBean tag, then a dot,
then the name of the property. Thisis not exactly equivalent to the j sp: get Property tag,
as dropping this script fragment into a page will not display the vaue. In fact, it will not

do anything at al. However, thiswould serve perfectly as away to send the seventh

prime number to a custom tag. Admittedly, there would probably never be any need to do

such athing, but often it will be necessary to send avalue from aform to atag. We now

have the means to do this: Send the form inputsinto abean with thej sp: set Property

tag and then send the value from the bean to atag with a scripted parameter.

Errors to Watch For

If an attempt is made to access a property that does not exist, a page error that
looks like the following will be generated:

Unable to find a value for "property"

in object of class "beanCl ass"

Liding 4.3 shows asmple form that lets the user choose whether to show, hide, or
reverse ablock of text.

Listing 4.3 A form that will be used by atag

<htnm >
<body>

<form acti on="show result.jsp" nethod="post">
Shall | display the tag body?

<sel ect nanme="shoul dShow" >

<opti on>yes

<opti on>no

<option>reverse

</ sel ect >

<i nput type="Submt" nanme="Go" val ue="Go">

</ fornme

</ body>
</htm >

The page thet will usethisformis shown in Ligting 4.4. It combines many of the things

that have been discussed so far: abean, the awi : maybeShow tag, and a scripted parameter.

Listing 4.4 Using a bean and a tag together

<v@taglib prefix="aw"
uri ="http://jspbook.aw . com sanpl es" %
<j sp: useBean
id="fornt
cl ass="com aw . j spbook. ch04. For mBean"/ >

<j sp:setProperty name="form' property="*"/>

<awl : mybeShow show="${f orm shoul dShow} " >

The time is:

<awl : date format="hh: nmss MM dd/yy"/>
</ awl : maybeShow>
The firgt portion of this example should be old hat by now: Firgt, atag library isloaded,
and then a bean is obtained and fed the form vaues. The second part uses the tag amost
exactly asin Liging 4.2. The only differenceis that the show parameter is not a fixed
vaue but comes from the bean via a script. Using a bean, a custom tag, and the scripting
language, we can now dynamicaly control awhole block of text!

4.4 Displaying Expressions

The ability to use abean to control atag is certainly powerful, but often such values must
be shown to the user rather than used by atag. A standard tag, c: out , renders valuesto
the page, and the use of thistag is quite Sraightforward. Listing 4.5 revisits the example
from Liging 3.1, which displayed various vaues from a bean. Liding 4.5 use the same

bean but now displays vaues using the new tag.
Listing 4.5 The out tag

<v@taglib prefix="c"
uri="http://java.sun.comjstl/core" %
<j sp: useBean
i d="beanl"

cl ass="com aw . j spbook. ch03. Beanl"/ >

<p>Here is sone data that cane from beanl: </ p>

<l i>The nanme of this bean is:

<c:out val ue="${beanl. nane}"/ >

<l'i>The 7th prinme nunber is:

<c:out val ue="${beanl. sevent hPri meNunber}"/>

<l i>The current tine is:

<c:out val ue="${beanl.currentTime}"/>

</ ul >

Because this does exactly the same thing as Lidting 3.1, it may not be immediately clear
why anyonewould usethec: out tagingead of thej sp: get Proper t y tag. Although
c: out issomewhat shorter, the real reasonto useit isthat it has many advantages, dl of
which are derived from the fact that what is being shown isthe result of a script, not a

smple property.

The expression language alows page devel opers to manipul ate properties in many ways.
For example, it is possible to write an expression that will add two numbersright in the
page, without needing to rely on the bean to do it. Liding 4.6 shows another version of
our caculator from Listing 3.6, only doing the addition in the page.

Listing 4.6 Addition in the expression language

<v@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<j sp: useBean
id="cal c"
cl ass="com aw . j spbook. ch04. Cal cBean"/ >

<j sp:setProperty name="cal c" property="*"/>

The sumis

<c:out value="${cal c.valuel + calc.value2}"/>

It is now possble to extend this easly to do more complex cdculations, such asfinding
the average of the two numbers or raising one to the power of the other, and so on.

Note that dthough thisis very powerful, it dso breaks the mode /view/controller
paradigm, as the modd is now being manipulated directly from the view. Sometimes, this
isworth doing, but asagenerd rule of thumb, it is better to leave such cdculationsin the
bean.

Another advantageto thec: out tagisthat it can display things other than beans. Every
JSP has available anumber of implicit objects that is, objects that the system provides
without the developer's needing to load or name them explicitly. One of these isthe
pageCont ext object, which contains agreat ded of information about the action
currently being performed, such as the name of the page being generated, the name of the
computer from which the request came, and so on. Ligting 4.7 usesthe pageCont ext
object to digplay some of the avallable information.

Listing 4.7 Therequest object
<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

Your conputer is called

87

<c:out val ue="${pageCont ext.request.renoteHost}"/>

<l'i >Thi s page canme from server

<c:out val ue="${pageCont ext.request.serverName}"/ >

<l'i>Thi s page canme from port

<c:out val ue="${pageCont ext.request.serverPort}"/>

</ ul >

Thisexampleillustrates anew kind of syntax: expressons with multiple dots. Thiswill
make more sense following the discusson of compound data later in this chapter.
Ancther important implicit variableispar am and it holds dl the vaues that have been
sent to apage by aform. This variable acts like a specid bean in that it does not have a
predefined set of properties but instead has a property for every vaue in the form.2
Suppose, for example, that aform has an input like this:

2] For readers familiar with Java, par amisininstance of a class that implements the java.util. Map interface. The
expression language handles the dot operator following the name of a map by treating the identifier after the dot as a

key.

<i nput type="text" nanme="col or">
The user's response could be displayed on a page usng the following:
<c:out val ue="${paramcolor}"/>
This feature of the expresson language provides afix for a problem with the Java News
Today ste. Recdll that the pagetitle gopearsin t op. j sp, which is shared by every page,
but thistitle redly should change to identify each page. This can be accomplished as
follows
<title>

Java News Today: <c:out value="${paramtitle}"/>
</title>
Here, the parameter t i t | e will not come from aform but instead can be passed in
through avariaion of thej sp: i ncl ude tag. For example, the index page will now
include the top portion of the page with
<j sp:include page="top.jsp">

<j sp: param nane="title" val ue="Wel cone!"/>

</jsp:include>

The avalability of par amaso meansthat the bean isn't needed in Ligting 4.4 a dl! The
whole page can be reduced to

<awl : mybeShow show="${par am shoul dShow} " >
The time is:
<awl : date format="hh: nm ss MM dd/yy"/>
</ aw : maybeShow>
Likewise, the caculator could do without its bean, reducing the page to
The sumis:

<c:out val ue="${param val uel + param val ue2}"/>

Errors to Watch For

Mogt of the comments about possible errors when using thej sp: get Property
tag adso goply to c: out and other tags that use expressons. In particular, trying
to reference a property that the bean does not possess will result in an error.

In addition, trying to reference a bean that does not exist, such asc: out

val ue="${soneBean. soneProperty}" if soneBean hasnot been loaded, will
not result in an error but Smply in nothing being displayed. This can result in
problems that may be difficult to find and fix, for example, if the name of abean
issmply misspeled.

Becausec: out actslike an enhanced verson of j sp: get Property, itisnot surprisng
that an equivalent of thej sp: set Property tagisinthe sandard library. Thistag, c: set ,
looks like this:
<c:set

t arget ="bean”

property="property nanme"

val ue="property val ue"/>
Thistag sets the property caled pr oper ty nane inthe bean identified asbean nane to
val ue. Unlikethej sp: set Property tag, thec: set tag can not set dl the propertiesina
bean at once by using the specia property * . However, each of the parameterstoc: set
may be a script, which alows properties to be set with dynamic values.

Errors to Watch For

Whenusng thec: set tag, it isvery important to mind the distinction between

something liket ar get =" bean" andt ar get =" ${ bean}". The former isaname
that has no properties, the latter is a bean obtained from the name by the
expression language. This can be a natura source of confusion, asthe

j sp: set Property tag does use the name. Even if the reason is not completely
clear a this point, remember that the target should always take an expression,

not smply aname.

4.5 Formatting Output

Consider once again the calculator from Listing 4.6. If the user enters large numbers sy,

1264528 and 9273912 the sum will be 10538440. Thisis certainly the right answer, but

itisnot in aparticularly readable format. It would be much better if it could be displayed
as 10,538,440. The issue of formatting comes up frequently when designing Web pages,
as there are often particular rules about how numbers, currencies, and dates should be
displayed.
Another portion of the standard library provides tags for digplaying formatted values.
Thislibrary can be imported by using
<Yv@taglib prefix="fnm"
uri="http://java.sun.confjstl/fm" %

Once loaded, anumber of new tags are available, some of which work smilarly to the
c: out tag but alow aformat to be specified. For example, thec: out tagfrom Ligding 4.6
could be replaced with
<f mt : f or mat Nunber

val ue="%${cal c. val uel + cal c.val ue2}"

patter n="###, ###" | >
Thepat t er n indicates that there should be a comma after every three digits. It would
aso belegd to provide adecima point, asin ###, ###. ##, which would indicate that a
commashould be placed every three digits, with two digits following the decimd point.
A number of examples have contained custom mechanisms for formetting dates. Now a
more generd solution to this problem isavailable: thef nt : f or mat Dat e tag. Thistag
works very much likef nt : f or mat Nunber tag but expectsits vaueto be adate. If the

bean from Liding 3.1 were loaded with j sp: useBean, the dat e property could be
formatted with
<fnt:formatDat e

val ue="${beanl. date}"

pattern="hh: mm ss MM dd/yy"/>
Thevalid expressionsfor pat t er n can be found in the documentation for the
j ava. t ext . Si npl eDat eFor mat class, but note for the moment that any of the
expressonsfrom Liding 3.2 would work.
The formatting tags can do agreat dedl more than has been shown here. Different
countries have different standard ways to express numbers and dates, and the format tags
can ensure that data is formatted in an gppropriate way for each country, through a
mechanism cdled internationalization. The format tags can aso be used to parse values,
which would alow the caculator to accept inputs with commeas and decima points.
These topics are beyond the scope of this book, but now that the basic functiondity of
these tagsis clear, interested readers can see the remaining detailsin section 9 of the
JavaServer Pages Standard Tag Library specification, which isavailable from
http://java.sun.com/products/| /.

4.6 Compound Data in the Expression Language

Up until now, dl the bean properties have have been smple types. strings of text or
numbers. This feature of the examples that have gppeared is not a fundamenta restriction
on beans themsalves. Beans can contain compound values as wdll.

Compound values, as the name implies, contain multiple pieces of data. If this sounds
familiar, it shoud; beans themsdves hold multiple pieces of data. Indeed, beans can
contain other beans, which can contain yet other beans, and so on, indefinitely.

Asan example of how this might be useful, consder how a bean would be used to modd
ahome entertainment system, which may contain many individual components, such as
an amplifier, CD player, cassette player, and radio tuner. The system as awhole may
have certain properties, such as which component is currently playing and the overdl
color and sze of the system. In addition, each individua component hasits own st of
properties. The CD player has a property representing the name of the disc it currently
contains, the tuner has a property indicating the sation it is currently tuned to, and so on.

91

It would in principle be possible to give dl the properties of the components to the
system as awhole, but thisis bad design. It is much better to encapsulatelogicd unitsas
Separate beans. This design dlows more complex beans to be constructed incrementally
by using the individud building blocks, in the same way that usng thej sp: i ncl ude tag
alows complex pages to be built up from smaller ones.
Given the home entertainment system bean, there is no way in which the
j sp: get Property tag could be used to determine the name of the CD in the CD player.
Thewhole CD player bean could be obtained with
<j sp: get Property

i d="honmeEnt ert ai nnent"

property="cdPl ayer"/ >
However, thiswill display the whole CD player bean. Beans as awhole have no standard
representation; this might display as something cryptic, such as
com awl . ch04. j spbook. CdBean10b053, or it might display asalist of dl the properties
of the bean or anything ese that the bean programmer has chosen. In any casg, it is
unlikely to display only the name of the current disc. What is needed isaway to traverse
aset of compound data. Fortunately, the expression language provides a mechanism to do
this.
As discussed previoudy, within the expression language, a Single dot between two names
indicates that the name on the left should be a bean and the name on the right a property.
Thisextends in anaturd way; if aproperty isitself abean, itislega to add another dot
followed by the name of a property within that bean, and so on. Getting the name of CD
from a CD player within a home entertainment system would therefore look something
like
${ honeEnt ert ai nment . cdPl ayer. current Di sk}
The meaning of the multiple dotsin Listing 4.7 should make more sense now. An object
cdled pageCont ext holdsinformation about the page currently being generated. Within
this object is another object, called r equest , which holds information pertaining to the
request being processed. Findly, ther equest object has such data as the name of the
local computer, the remote computer, and so on.

4.6.1 Repeating a Section of a Page

Another important kind of compound data is a collection of an arbitrary number of values.
A CD has anumber of tracks, but as this number is different for different CDs, a CD bean

92

cannot smply have a different property for each track. Similarly, a shopping cart bean

will contain a number of items, but this number will change as the bean is used.

Java has many way's to manage collections of varying Sze, but the smplest iscaled an
array. Arrays are lists of objects of the same type, such as arrays of strings, arrays of
numbers, and arrays of CDs. Within these arrays, items are referenced by a number called
the index, starting with O.

The expresson language makesiit possible to pull a particular d ement out of such an

array by placing itsindex within brackets. Obtaining thefirst track of a CD could be done
with an expresson like this

${cd.tracks[0]}

Agan, note how thislogicdly follows from the way propertieswork: ${ cd. t r acks}
would return the entire array; following thiswith [0] pulls out a particular e ement from
that array.

Errors to Watch For

If arequest is made for an index beyond the number of eementsin the array, the
result will be empty.

It is unusua to need to access a particular eement in an array; it is more common to need
to repeat some action for every element, regardless of how many there are. This process
isknown asiteration, and it should come as no surprise that atag in the standard library
handlesit: j sp: f or Each. Recdl that Ligting 3.13 obtained information about a CD from
aseridized bean. At that point, however, there was no way to list the tracks, because the
page could not know in advance how many there would be. Listing 4.8 usesthe

c: f or Each tag to solve this problem, and the resulting page is shown in Figure 4.2.

Figure 4.2. Iteration used to display every element in an array.

93

i .E“"“.g;"“ ?;_:.ﬁ:- ‘ﬂ_sgc ..I.I...g TR P il ..a&-:?c-'llf'

e

Tinderbox

At Soodkae ond the Bamhess

tear: LEEC
[Bere are the tracie

= Srvhimm

w Th==weetest Chill

= Tl Liest

= Gies o Dest

& Camrang

= sarpes Fall

= 52 Deoreer

"andsErd

& Th e Cinarnérd-satng OF Tha Dag
= Ao Exscution

s ;

= _Imhrelln

& Cizeslin Dest | Desended Vermerh

Listing 4.8 The f or Each tag

<v@taglib prefix="c"
uri="http://java.sun.confjstl/core" %

<j sp: useBean

i d="al bun

beanName="t i nder box4"

type="com aw . j spbook. ch04. Al bunl nf 0"/ >
<hl><c:out val ue="${al bum name}"/></hil>

Artist: <jsp:getProperty nane="al bunt
property="artist"/><p>

Year: <c:out value="${al bumyear}"/></p>

Here are the tracks:

<c:forEach itens="${al bumtracks}" var="track">

<c:out value="${track}"/>

</ c: for Each>

</ ul >

Thec: f or Each tag takes anumber of parameters. The fird is the itemstto iterate over,
which is specified by a script. The second is aname to use as a variable; within the body
of c: f or Each, thisvarigble will be set to each dement in the array in turn. Thisvarigble
can be accessad by the expression language as a bean, which means, among other things,
that the c: out tag can be used to display it.

Errors to Watch For

If something other than an array isused asthei t ens parameter, thec: f or Each
tag will treet it asif it were an array with one eement.

4.6.2 Optionally Including Sections of a Page

Iteration dlows a page to do one thing many times. The other mgjor type of control a
page may need is determining whether to do something at dl. The custom

awl : maybeShow tag introduced a the beginning of this chapter handled alimited verson
of that problem, but the standard tag library provides anumber of much more generd
mechanisms, called collectively the conditional tags. The most basic of these tagsis
cdledc:if.

Inits most common form, thec: i f tag tekesasingle parameter, t est , whose vaue will
be a script. This script should perform alogical check, such as comparing two vaues, and
facilities are provided to determine whether two vaues are equd, the firgt isless than the
second, thefirgt is greater than the second, and a number of other possibilities. Listing 4.9
shows how thec: i f tag can work with abean to determine whether to show ablock of
text.

Listing 4.9 Theif tag

<U@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<U@taglib prefix="aw"
uri ="http://jspbook.aw . com sanpl es" %
<j sp: useBean
id="fornt
cl ass="com aw . j spbook. ch04. For nBean"/ >

<j sp:setProperty name="fornl property="*"/>

<c:if test="${form shoul dShow == 'yes'}">

The tinme is:

<awl : date format="hh: mm ss MM dd/yy"/>
</fc:if>
Note the expression in the script for thet est parameter. Two equal Signs, ==, are used to
check two vaues for equdity. Here, the first value comes from a property and is obtained
with the normal dotted notation. The second value, yes, isacongant, or literal, whichis
reflected by the single quotes around it in the script. If these quotes were not present, the
expression language would look for abean cdled " yes™ ; as no such bean exigs, the
result would be an error.
Liging 4.9 isgmilar to Liging 4.3; the mgor differenceisthat Liding 4.9 usesthe
standard tag instead of the custom awi : maybeShow. The downsdeisthat thec: i f tag
cannot reverse ablock of text; al it can do is decide whether to include its body content
inthefind page.
Thismay seem like a shortcoming but in fact reflects a good design pattern. Note that
awl : maybeShow does two completdy unrelated things: checks whether avaueisyes, no,
or rever se and reverses ablock of text. Rather than making one tag do two things it is
better to have two different tags. According to the so-caled UNIX philosophy of
software, each piece of code should do only one thing and do it well, and there should be
easy waysto knit these small pieces together. For tags, this means that each tag can be
used independently or combined with other tags. Inthiscase, if an aw : rever se tag did
nothing but reverse its body content, it could be combined with thec: i f tag to do the
samething asLiding 4.3. Thisisshownin Listing 4.10.

Listing 4.10 Splitting tags

<v@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<v@taglib prefix="aw"
uri ="http://jspbook.aw . com sanpl es" %
<j sp: useBean
id="fornt
class="com aw . j spbook. ch04. For mBean"/ >

<j sp:setProperty name="form' property="*"/>

<c:if test="${form shoul dShow == 'yes'}">
The tinme is:
<awl : date format="hh: mm ss MM dd/yy"/ >

</fc:if>

<c:if test="${form shoul dShow == 'reverse'}">
<awl : reverse>
The time is:
<awl : date format="hh: nm ss MM dd/yy"/>
</awl : reverse>
</fc:if>
Notethat twoc: i f tags are used here: one to check whether the value isyes and another
to check whether itisr ever se. The body content of both of these tags is the same, which
is rather wasteful. It meansthat if the body ever needs to change, it will need to be
modified in two placesin order to keep everything consstent. It would be better in this
case to put the body in a separate file and then have both of thei f tagsindude that file
withaj sp: i ncl ude tag. Now that the functiondity of awl : maybeShow has been divided
into two pieces, thec: i f tag can be used for many other things, and theawl : r ever se tag
can be used to reverse unconditiondly ablock of text, should such athing ever be useful.
Ligting 4.10 imports two tag libraries: the standard one, which isingaled as ¢ and
providesthec: i f tag, and the cussom one indaled asaw , which providesthe
aw : rever se tag. Thisis perfectly valid; often a page will need many different tags from
different libraries, and it will then need to import dl of them. The only catch isthat each
tag library must be given a different prefix.

4.7 Browser Detection

Web programmers face many difficult decisons, not the least of which is how to ded
with the fairly horrible state of modern browsers. A popular Web steislikely to receive
requests from versons of Internet Explorer 3 through 6, Mozilla, Netscape 4.7, Opera,
various AOL browsers, and numerous custom browsers now available in consumer
devices, such as phones and PDAS (persond digital assstants). Each of theseislikdy to
render HTML dightly differently, support different media types, and handle JavaScript
differently, if at dl.

97

Oneway of dedling with this variability isto use the "lowest common denominator,” that

is, only those features that are supported and work the same in every browser. This makes
things easier for the Web developer but means that the user will be getting a Site that

looks like something from the early 1990s, which may disappoint many users.

Alternatively, Web developers may design a Site for one browser @rhaps Mozilla 1.0

nd put up a note encouraging other usersto switch to this browser. Thisislikely to
infuriate many users who ether don't want to or can't change browsers smply to get to
one Site.

Finaly, developers can create parale versons of dl the browser-specific HTML and
JavaScript and so on and send out the appropriate version, based on which browser is
being used. The browser makes this possible by identifying itself with every request, and
JSPs make this possible through the conditiona tags. A skeleton of code that
accomplishesthisisshownin Lising 4.11.

Listing 4.11 Browser detection

<v@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<j sp: useBean
i d="Dbrowser"

cl ass="com aw . j spbook. ch04. Br owser Bean"/ >

<c:set
target ="${browser}"
property="request"

val ue="${pageCont ext . request}"/>

You are using a browser that identifies itself as

<c:out val ue="${browser.full Nane}"/><p>
<c:if test="${browser.type == 'Gecko'}">
i nclude Mozilla code here ..

</c:if>

<c:if test="${browser.type == 'MSIE }">

i nclude I E code here ..
</fc:if>
Thisexample uses Br owser Bean, autility bean that extracts browser information from
the request. In order to obtain thisinformation, Br owser Bean must have accessto the
request object. Thisobject is obtained from the pageCont ext , aswasdonein Liging
4.7, and passed with ac: set tag to the bean.
A bean such as Br owser Bean isneeded for two reasons:. first, because the browser name
isnot available as asmple property, such asthe ones shown in Ligting 4.7; second,
because the full name of the browser islikdly to be something unwieldy, such as
Mozilla/5.0 (X11; U; FreeBSD 1386; en-US; rv:1.0rc3) Gecko/20020607, which contains
information about the specific revision and operaing system on which the browser is
running. Thisis generdly more information than needed to select the appropriate
browser-gpecific code for a page. This second problem is solved by having the bean
recognize maor browser types, and it isthistype that isused by thec: i f tags.

4.8 Combining Tags

As mentioned previoudy, the bodies of JSP tags can contain anything, including other
JSPtags. An exampleisthec: out tagwithinthec: f or Each tagin Liging 4.8. To
demondtrate thisfurther, thec: i f andc: f or Each tagswork together in the following
example.

If given an empty array, ac: f or Each tag will not render its body content a dl. Thisis
fine but can lead to some odd-looking pages. In Liging 4.8, if the CD is empty, the page
will display "Here are the tracks' and then stop. Thisis technicaly correct but to the user
may ook as though the page stopped generating halfway through. It would be better to
inform the user that the CD is empty rather than to digplay alist with no dements. This
can be accomplished by putting thec: f or Each taginddeac: i f tag, asshownin Liding
4.12.

Listing 4.12 Tags working together

<U@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<j sp: useBean i d="al bum beanNane="ti nder box4"

type="com aw . j spbook. ch04. Al bum nfo"/ >

<hl><j sp: get Property nanme="al bunt property="nane"/></hl>

Artist: <jsp:getProperty nane="al bunt
property="artist"/><p>

Year: <jsp:getProperty nanme="al bunf' property="year"/></p>

<c:if test="${enpty al bumtracks}">
There are no tracks! What a boring CD

</fc:if>

<c:if test="${!(enpty al bumtracks)}">

Here are the tracks:

<c:forEach items="${al bumtracks}" var="track">

<c:out value="${track}"/>

</c:forEach>

</ ul >
</c:if>
Conceptually, the only new thing about this example isthe check that isdoneinthec: i f
tag. Theenpt y in the test checks whether the named property exists2 and if it doesexist
and isan array, whether it has any eements. The exclamation point in the test should be
read as"not." It meansthat if the following test would be true, it returnsf al se, and vice
versa

(3 Technically, it tests whether the value equals NUI |, aswill be discussed in Chapter 9.

4.9 Selecting among Multiple Choices

Once again, the preceding example had to usetwo c: i f tags, dthough the bodies are
different in this case. However, thisis gill somewhat dumsy, as the same check is being
performed twice: once to see whether it is true and once to see whether the reverseistrue.
This double check is needed becausethec: i f tag is capable of deciding only between

100

two dternatives: to include its body or not to include it. Another set of tags dlows
multiway branching, or choosing from among severa mutualy exdusive possibilities.
Unlike the other tags seen so far, three tags work together to obtain the desired result. The
outermost tag, c: choose, has no parameters, it merely serves as a container for a
collection of two other tags c: when and c: ot her wi se. Eachindividud c: when tag actsa
lotlikeac: i f tag. Both tagstake aparameter cdled t est , which should be a script, and
render their body content if the condition in the script ist r ue. The differenceisthat
multiplec: i f tagswill each be checked in turn, whereasac: choose tag will stop after
finding thefird c: when tagwithat est thatistr ue.

In other words, consider a set of possible vaues for a bean property, such asthe colors
red, green, and blue. The following snippet of code would check each of these
possibilities regardiess of the vaue:

<c:if test="${bean.color == "red' }">. ..</c:if>
<c:if test="${bean.color == "'green'}">. ..</c:if>
<c:if test="${bean.color == "blue'}">. ..</c:if>

The following snippet will check whether the color isred; if so, it will stop and will not
then have to check whether it is green and then blue:

<c: choose>

<c:when test="$%${bean.color == "'red' }">...</c:when>
<c:when test="${bean.color == 'green'}">...</c:when>
<c:when test="${bean.color == "blue'}">...</c:when>

</ c:choose>

Clearly, the second option is more efficient. In addition, using thec: choose tag groups

related code in one place and so makes JSPs easier to read and understand.

Thec: choose tag works with another tag: c: ot her wi se. Thistag also has no parameters;
its body will be evduated if none of thec: when tagshasat r ue condition.

It isnow clear how it would be possible to avoid doing the check twicein Liging4.11 b
yudngonec: when andac: ot herwi se ratherthanby usngtwo c: i f tags Thisis
shownin Ligting 4.13.

Listing 4.13 The choose tag

<c: choose>

<c:when test="${enpty al bumtracks}">

101

There are no tracks! What a boring CD

</ c: when>

<c: ot herw se>
Here are the tracks:

<c:forEach itens="${al bumtracks}" var="track">
<c:out value="${track}"/>
</c:forEach>
</ ul >
</ c:otherw se>
</ c: choose>
This codeisalittle more verbose than Listing 4.12 but has the advantage of avoiding one
redundant t est . Usingthec: choose tag also makesit clear that the conditions are
mutually exclusive, and hence only one of the bodies will ever be rendered.
Chapter 2 briefly mentionsthe| sp: f or war d tag, which sends the user from one page to
another. Thistag can be combined with thec: choose tag to provide atype of control
cdled dispatching, whereby one page determines where the appropriate content lives and
sends the user to that page. Thisisillusrated in Listing 4.14.

Listing 4.14 Using the choose tag as a dispatcher

<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<c: choose>

<c:when test="${param whi chPage == 'red'}">
<jsp:forward page="red.jsp"/>

</ c: when>

<c:when test="%${param whi chPage == 'green'}">

<jsp:forward page="bl ue.jsp"/>

</ c: when>

<c: when test="%${param whi chPage == 'blue'}">

<jsp:forward page="bl ue.jsp"/>

102

</ c: when>

<c: ot herw se>
<jsp:forward page="sel ect _page.jsp"/>

</ c:otherw se>
</ c: choose>
This page looks for aform parameter, whi chPage, which should ber ed, gr een, or bl ue,
and, based on this value, sends the user to one of three pages. If no value has been
provided, the ot her wi se tag forcestheuser to " sel ect _page. j sp", which containsthe
form to befilled out.

4.10 Summary and Conclusions

Now were cooking! This chapter introduced the concept of custom tags and the standard

tag library now part of the JSP specification. These tags give page authors full control

over what the user ends up seeing, by providing the meansto show arbitrary vaues,

repeat a section of a page as many times as needed, conditionaly remove a section of

page, or choose from many possible sections. In the next chapter, we'll see how these tags,
together with beans, dlow Java News Today to build its Ste.

4.11 Tags Learned in this Chapter

c: f or Each Repeats a section of the page for every iteminan array

Parameters:
i t ems: An expression specifying the array to use, most likely a bean property
var : The name of the varidble with which each dement inthe array will be
referred

Body:Arbitrary JSP code

c: out Displays avadue

Parameters:
val ue: An expressionto be evauated and displayed

103

Body: Arbitrary JSP code; the body content will be displayed if val ue isnul |

c: i f Conditiondly include a portion of the page

Parameters:
t est : An expression that should be alogicd test of a property
var : If present, names a variable where the result of the expressionwill be
stored

Body: Arbitrary JSP code

c: choose Includes one of severa portions of a page
Parameters: None
Body: Arbitrary number of ¢c: when tags and, optiondly, onec: ot her wi se tag

c: when One posshility for ac: choose tag
Parameters:

t est : An expression that should be alogicd test of a property
Body: Arbitrary JSP code

c: ot herw se The catch-dl posshility for ac: choose tag. If none of the expressons
inthe c: when tags evauatestot r ue, the body of the c: ot her wi se will be

included.

Parameters: None

Body: Arbitrary JSP code

c: set Set aproperty inabean
Parameters:
t ar get : The name of a bean
proper t y: The property within the bean to set
val ue: The vaue to assgn; may be a script
Body: None

fnt: format Nunber Format a number for output
Parameters:

val ue: The vaue to be formatted; may be a script

pat t er n: A pattern gpecifying how the number should be formaited
Body: None

104

fnt : f or mat Dat e Format a date and/or time for output
Parameters:

val ue: The vaue to be formatted; may be a script

pat t er n: A pattern gpecifying how the date should be formatted
Body: None

105

Chapter 5. Java News Today: Part |

Armed with the power of beans, the expression language, and the sandard tag library,
JavaNews Today is at last ready to start putting its Site together in earnest. In order to do
so, INT will need to decide what functiondity the site will offer, design the beans that

will represent the entities they will be dedling with, and build pagesto provide that
functionality. This chapter looks at each of these steps.

5.1 The Beans

Genedly thefirst step of any large project, data modeling, consists of deciding what data
the system will need to maintain, how this data will be represented, and how it

interrelates. Traditionally, such modeding takes place in the context of a database,
discussed in Chapter 6. For current purposes, however, it is reasonable to model
everything in terms of beans. Asthereisnot yet anywhere to store dl the data, the
examplesin this chapter use beans in which the data has been hard- coded, dthough thisis
never agood ideain real-world projects. Even when prototyping a system, it is better to
use asmall, smple database. However, thislittle chest will not sgnificantly change the
way the pages work, so it will suffice for now.

JavaNews Today has dready identified afew beansit will need. In Chapter 3, INT
developed the Qui zBean, which holds the question, options, and correct answer for the
daily quiz, and created aUser | nf oBean to hold users preferencesfor colors, aswell asa
name. At thistime, INT is ready to consder dlowing usersto register on the Site, in order
to sore their preferences permanently. This will necessitate adding some logic to the

User | nf oBean in order to handle logging users on the system. The fields added will be
user nane, passwor d, andi sLoggedl n, aflag that will bet r ue if the user is currently
logged inand f al se otherwise.

In addition to users and quizzes, the other mgjor entities behind the INT Ste are articles.
AnArticl eBean will hold the text of the story, a headline, and a date and time of
publication. Each Ar t i ¢l eBean will dso have a unique numeric identifier to identify and
load that story.

Aswith aphysica newspaper, articles will be grouped into major sections covering broad
categories, such as 2EE, the Java community, related technologies, and so on. Each

106

section will have aname and a description and will dso keep track of dl the articlesit
contains. This containment will be managed by cresgting asect i onBean and giving each
indanceof Sect i onBean anaray of Arti cl eBean ingances This should immediady
suggest the use of thej sp: f or Each tag to display dl the storiesin a section, and indeed
such apage will be on the Ste. Thisillustrates how the data-modeling phase of a project
can ingpire and affect the page-designing phase.

Smilarly, sectionswill be grouped into an edition. At the moment, an edition will have

only an array of sections; later, its role will be expanded to manage many of the
persondization options Java News Today will offer.

Findly, in order to make this a community ste, the staff a Java News Today would like

to alow usersto add comments to stories. Some sites, notably http://www.dashdot.org,
provide very sophisticated commenting systems that can include threaded discussions,
moderation of comments, and awhole host of other features. For the moment, INT will
dlow only asmple"fla" commenting system, whereby comments smply appear in the
reverse order they were added. This suggests the need for a Conment Bean and an array of
such beansheld by each Arti cl eBean. Figure 5.1 shows a sample of beans as they might
exig in memory and their relationships to one ancther.

Figure 5.1. The JNT beans.

107

UserInfoBean

EditionBean

} SectionBean 1

9- ArticleBean 1 —> CommentBean 1

9- ArticleBean 2 CommentBean 2

9- SectionBean 2

9- ArticleBean 3

5.2 The Header

The header is the site's Smplest component, asits only job isto display a banner with the
title of the page, dong with the user's name as added in Chapter 3. In order to clean it up
alittle, the header will be modified to show only the user's name if the user has logged in.
The resulting pageisshown in Ligting 5.1.

Listing 5.1 The header

<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

108

<j sp: useBean i d="user5"
class="com aw . j spbook. ch05. User | nf oBean"

scope="session"/ >

<center>
<h2>
Java News Today: <c:out value="${paramtitle}"/>
</ h2>

</ center>

<c:if test="${userb5.islLoggedln}">

<div class="left">

Hel l o <c:out val ue="${user5. nane}"/>

</ div>
</fc:if>
Thisisabout as smple apage as one could hope for. It loads a bean, checks a property
withthec: i f tag, and digplaysavauewiththec: out tag.
The bean is loaded from the session scope because the user information should remain
active aslong as the user is active on the Site. If this bean were in the request scope, the

user's preferences would need to bereloaded @ worse, would be lost completly an

every new page. If the bean were in the gpplication scope, every user would share the

same data, which would not allow each user to have different options. Thus, sesson

scope is definitey the right place for this bean.

Note that the test smply checks the value of a property. The test does not need to check
whether the ${ user . 5i sLoggedl n == true}i sLoggedl n property itsdf refurnst r ue or
fal se directly.

5.3 The Left-Hand Navigation

The left Sde of the page has thus far contained only the daily quiz, which was devel oped
inLiding 3.13, and alink to the customization page. Thiswill now be enhanced by the
addition of alogin box from which the user can log in. Thiswill aso be asmple form,

109

but in the interest of encgpsulation, it will be placed in its own file and included with a
j sp:include. Liging 5.2 shows the new login form.

Listing 5.2 The login form

<form action="login_result.jsp" nethod="post">

User name:

<i nput type="text" name="usernane" size="8">

Passwor d:

<i nput type="text" name="password" size="8">

<i nput type="submt" nanme="Login" val ue="Login">

</ fornp

Thisfile contains no beans, scripts, or gpecia tags, which should come as no surprise.
There have dready been many examples of forms that provide vauesto beans, and in dl
these cases, the forms themsalves need not know anything about the beans, as dl the
action happens on the receiving page, where the form vaues are loaded into a bean with
thej sp: set Property tag. The only requirement for thisto work is that the bean's
properties must be caled user name and passwor d. Because these names were chosen in
the data- moddling phase, both the author of this form and the author of the

User | nf oBean will know to use those names.

The implementation of the User | nf oBean used in this chapter knows about one user
whose user nane and passwor d areboth "t est ", 0 those are the vaues to enter into the
login form when exploring the examples on the CD-ROM.

The other necessary eement of the left-hand navigation isthe list of sectionsavallablein
the current edition. The designer for the site would like an asterisk next to the current
section S0 that the user will dways know where in the Site he or she currently is. The
section ligt will aso be placed in a separae file for easy manipulation; thisfile is shown

inLiging 5.3.
Listing 5.3 The list of sections

<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %
<j sp: useBean
i d="edition"

beanName="j nt"

110

type="com aw . j spbook. ch05. Edi ti onBean"/ >

<j sp: useBean
i d="current Section"

class="com aw . j spbook. ch05. Sect i onBean"/ >

<j sp: set Property
nanme="current Secti on"

property="sectionld"/>

<c:forEach items="${edition.sections}" var="section">
<c:if
test="${current Section.sectionld == section.sectionld}">

*

</fc:if>

<a href="<c:url value="section.jsp">
<c: param nane="sectionl d" val ue="${section.sectionld}"/>

</c:url>"><c:out val ue="${section. nane}"/>

</c:forEach>
This example is somewhat more complicated, S0 let's go through it line by line. Thefirg
lineloads atag library, and the next two lines load beans. The Edi t i onBean will hold the
list of sections, as decided in the data-modeling phase. This bean will live in the sesson
scope for the same reasons that the User | nf oBean does.
ThesSect i onBean will hold the currently selected section, informeation that will be
needed in order to put the asterisk in the right place in the ligt. In order to know what the
current section is, this bean will need to be told, which is done by setting the sect i onl d
property inthej sp: set Proper ty tag onthe following line,
The next line darts an iteration with the sandard c: f or Each tag. Here, theitemsto
iterate are the sections from the edition; theiteration variable iscaled sect i on. Note that
different names are used for the bean and the iteration variable in order to keep
everything clear.
Next, acheck is performed to determine whether to display the asterisk. This smple test
for equdity ishandled by thec: i f tag.
Now things get exciting! Displaying the name of the section would be easy enough using
thec: out tag, ascan be seen just beforethe closing c: f or Each tag. However, this name

m

needs to be turned into alink so that the user can select a section by clicking the name.
Thislink will need to look something like the following:

<c: show val ue="${secti on. nane}"/></ a>

It is now necessary to determine what vaue should fill in the mystery spotin href . A
page cdled section.jsp will enable the user to see dl the stories in a section, so that page
should be the degtination. The only remaining question is how to pass aong the
information about which section was selected. If the section were sdlected viaamenu or
drop-down in aform, thesect i onl d would be passed along asaform varigble. Asit
turns out, attaching a name and avalue to a URL behaves exactly the same asusing a
form. In particular, thej sp: set Proper t y tag can load a bean with vaues passed in such
aURL. Thus, the URL should look like this:

section.jsp?sectionld=<c: show

val ue="${section.sectionld}"/>
Thisshould explain how thej sp: get Proper t y tag & the top of thisfile will work.
Clicking one of the linkswill go to the section page, passng dong sect i onl d= with the
section ID that was sdlected. The section page will include the section list page; when the
j sp: set Property tagisencountered, the section list page will grab the value from the
URL. This may seem dlightly weird, as this page is therefore sort of eating its own output.
It may indeed be weird, but it is aso a very common technique in Web development and
isworth getting accusomed to it.
Although specifying the URL would work in most cases, a better gpproach uses anew teg
from the standard library. Thec: ur | tag buildsaURL using theval ue parameter asthe
base page and appending the names and values from any c: par amtags within the body.
Usngthec: ur | tagingead of manualy congructing a URL has a number of advantages.
One of the most important advantagesisthat thec: ur | tag will ensure that the resulting
URL isvdid. Certain characters, such as spaces and the equa sign, are not vdid in
names or vaueswithin URLs. Thec: ur | tag will trandate such charactersinto alegd
representation automaticaly.
Now that the pieces are in place, the left-hand navigation bar itsdlf is a sraightforward
enhancement of previous versonsand isshownin Liding 5.4.

Listing 5.4 The left-hand navigation bar

<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

112

<j sp: useBean
i d="userb5"
scope="sessi on"

class="com aw . j spbook. ch05. User | nf oBean"/ >

<c:if test="${!user5.isLoggedln}">
<di v cl ass="bordered">
<j sp:include page="login.jsp" flush="true"/>
</ di v>

</fc:if>

<di v class="bordered">
<jsp:include page="section_list.jsp" flush="true"/>

</ div>

<di v cl ass="bordered">
<j sp:include page="quiz.jsp"/>

</ div>

<c:if test="${userb5.islLoggedln}">

<di v cl ass="bordered">

Custon ze JNT

</ div>
</fc:if>
The page imports the standard tag library and loads the User | nf oBean. This bean is used
to hide the login form if the user is dready logged in and, if the user islogged in, to
disolay the customization link.
It is somewhat a matter of persond preference whether the check for thelogin form
should be done here or in loginjsp. The advantage to putting it in loginjsp isthat dl the
login-reaed logic isin onefile. However, doing so would mean that there would be no
way to override the decision not to display the login form.
In generd, this sort of decison should he handled by the controller layer instead of the
view. Thisissue will berevisted in Chapter 12 when controllers are discussed in more
detail. The new home page with dl the new navigation dementsis shown in Figure 5.2.

Figure 5.2. The new JNT home page.

113

Mew version of Tomeat containg support for JSP 2.0

Open-souroe ool o be tested for J2EE compliance.
Matwve vermon af the latest JOK now available

5.4 The Login Page

Now that aform has been provided so users can log themsalves in on the system, there
needs to be a page that will perform the necessary actions. The page that doesthisis
shownin Liging 5.5.

Listing 5.5 The login handler

<Yv@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean
i d="user5"
scope="sessi on"

cl ass="com aw . j spbook. ch05. User | nf oBean"/ >
<j sp:setProperty nanme="user5" property="*"/>
<j sp:set Property

name="user 5"

114

property="1 ogi n"

val ue="true"/ >

<j sp:include page="top.jsp">
<j sp: param nane="title" val ue="Login"/>

</jsp:include>

<c: choose>

<c:when test="${user5.islLoggedl n}">
You have sucessfully logged into Java News Today! <p>
Click here to proceed to
your custom edition.

</ c: when>

<c: ot herw se>
We're sorry, we were unable to | og you in. Perhaps you
m styped your usernane or password; use the formon
the left to try again.

</ c:otherw se>

</ c:choose>

<j sp:include page="bottomjsp"/>

This page begins with the usua things, induding loading the User | nf oBean. The bean's
properties are then set: the user nane and passwor d fromtheloginformin Ligting 5.2.
Part of the User | nf oBean's job asthe modd of usersisto provide a mechanism that logs
auser in on the system, given the user nane and passwor d. This mechanism istriggered
by stting thel ogi n property of the bean, which will cause the bean to check these
vauesagang alig of dl usarsin the sysem; if amatch isfound, thei sLoggedI n
property will besettot r ue.

This setting of properties has to be done before the page top isincluded. If it were done
afterward, the user'si sLogged! n property would sill bef al se during processng of the
header and navigation, and consequently the name would not be shown and the login
form would.

Theregt of the pageis pretty anticlimactic: another c: choose tag used to determine
whether the login succeeded and to display an appropriate message in either case.

115

5.5 The Quiz Result Page

Chapter 3 introduced the daily quiz that Java News Today will useto liven up its Ste.

The quiz consgts of a seridized bean that holds the questions and correct answer, aong
with aform from which the user can guess, as shown in Ligting 3.13. At that point, there
was no way to check whether the user was correct, but that's easily remedied now that we
have the sandard tag library at our digposd. The quiz result page, shown in Ligting 5.6, it
is very graightforward.

Listing 5.6 The quiz result page

<v@taglib prefix="c"

uri="http://java.sun.com jstl/core"” %

<j sp: useBean
i d="qui z"
beanName="t odaysQui z3"
type="com aw . j spbook. ch03. Qui zBean"/ >

<j sp:set Property name="qui z" property="+*"/>

<j sp:include page="top.jsp" flush="true">
<j sp: param nanme="title" value="Quiz result"/>

</jsp:include>

<c: choose>

<c:when test="3${qui z.user Guess == qui z.correct Answer}">
That's right! <p>

</ c: when>

<c: ot herw se>
Sorry, that's incorrect; the right answer is
<c:out val ue="${quiz.correct Answer}"/><p>

</ c:otherw se>

</ c:choose>

116

<j sp:include page="bottomjsp" flush="true"/>
Thisis another example of setting bean properties from aform and then checking a
conditionwithac: choose tag.

5.6 The Section Page

Ligting 5.3 showed how the section page will be cdled from the list of available sections
and how this page will be passed asect i onl d asif aform had sent it. This means that it
will be possbleto useabean and aj sp: set Property to tel that bean which section was
selected, just as was done in the section ligt to place an agterisk in front of the current
Section.

If the section bean is designed to load up dl the storiesin a section whenthesect i onl d
property is s, dl that is necessary to build the section page isto iterate the available
aticleswithac: f or Each tag. That is exactly what Liging 5.7 does.

Listing 5.7 The section page

<j sp: useBean
i d="current Section"

cl ass="com aw . j spbook. ch05. Secti onBean"/ >

<j sp:set Property
name="current Secti on"
property="sectionld"/>
<dl >
<c:forEach itens="${current Section.articles}"
var="article">
<dt><a href="<c:url value="article.jsp">
<c: param nane="articl el d"
value="${article.articleld}"/>
</c:url>"><c:out value="${article.headline}"/>
<dd><c:out value="${article.sunmary}"/>
</c: forEach>

</dl >

117

If thislooks very smilar to the section list from Lidting 5.3, it should! They both do
essntidly the same thing; the only significant difference isthat the itemsin this example
arein adefinition ligt instead of an unordered ligt. In particular, thec: ur | tagisusedin
both. Figure 5.3 shows how the section page looks in a browser.

Figure 5.3. The JNT section page.

Mew version of Tomes? contains suppert far JSP 2.0

Open-coarce toal to ba tested for JAEE compliance

5.7 The Article Page

The article page congsts of two pieces: the contents of the article and the comment
region, which dlows users to comment on stories and read others comments. The first
portion is even smpler than the section page, asit need only display the contents of afew
propertiesfromthe Art i cl eBean, asshownin Listing 5.8.

Listing 5.8 The article page

<j sp: useBean
id="article"

cl ass="com awl . j spbook. ch05. Arti cl eBean"/ >

118

<j sp: useBean
i d="user5"
scope="sessi on"

class="com aw . j spbook. ch05. User | nf oBean"/ >

<j sp:setProperty nane="article" property="articleld"/>
<h2><c: out value="${article.headline}"/></h2>
<i >Posted by <c:out value="${article.author}"/>
at
<fnt:formatDate
val ue="${article.tine}"
pattern="MV dd/yy hh: mi />

</i><p>

<c:out value="${article.contents}"/>

Note the use of thef nt : f or mat Dat e tag from the previous chapter to format the date.
The comment portion appears below the article contents and showsthe list of available
comments, aong with aform to add an additiond one, as shown in Lidting 5.9.

Listing 5.9 The comment section

<hr wi dt h="80% >
<h2>Comment s</ h2>

<c:forEach items="${article.coments}" var="conmment">
Post ed by <c:out val ue="${coment. author}"/>
at <fnt:formatDate
val ue="${comment.tine}"
pattern="MM dd/yy hh: mi'/ >

<bl ockquot e>
<c:out value="${coment.text}"/>
</ bl ockquot e><p>

</ c: for Each>

<hr wi dt h="80% >

119

<c:if test="${userb5.islLoggedln}">
<h2>Comment on this article</h2>
<formaction="comrent _result.jsp" method="post">
<i nput
type="hi dden"
name="aut hor"
val ue="<c: out val ue="${user5. nane}"/>">
<i nput type="hi dden"
name="articl el d"

val ue="<c:out value="${article.articleld}"/>">

<textarea name="text" rows="10" col s="30">

</t ext ar ea>

<i nput type="submt" nanme="Submt" val ue="subnmt">

</fornp

</fc:if>
Anyone may read existing comments, so the current st is displayed with a standard
c: f or Each tag. Java News Today has decided that only logged-in users may add
comments. This encourages users to sign up with the Ste and makes it easer to ban users
who abuse the system. Consequently, the input form iswrgpped inac: i f tag. The
browser view of this page for a user who haslogged inis shown in Figure 5.4. Note that
this page recognizes alogged-in user in three ways. Thelogin form is gone, the user's
name appears in the header, and the comment section is active.

Figure 5.4. The JNT article page.

Ede I&m __il m J:_u_ll hhillr Help

Tomeat 5.0 Available

Posted by JoveDude ar 03/ 27/03 0256

The Jabass project today releasmd vermon 5.0 of the populas Tomeat applicaton server, Amars many other pew
Fearares, the is the first verson to sapport the latest JSP 20 specificamon.

Comments
Posted by Test User ar 03/27/09 02:55
That's great news!

Comment on this article

Tl i B ST L e e e e e T T e R S =_—"—.
One new festure to the form |tself isthat the name of the user is passed in a hidden
variable, acommon trick for transmitting data from one page to another. Although it
would certainly have been possible for the receiving page to set manualy the user's name
inthe Comment Bean fromthe User | nf oBean, providing that information through the
form dlows the recaiving page Smply todo onej sp: set Property indead of having to
get properties from multiple places.
The comment result page is much like other pages that have aready been considered. The
heart of this page will smply set the values from the form into the bean in the sandard
way:
<j sp: set Property nane="comment" property="*"/>
The Conmrent Bean isdesigned so that once dl the fields have been set, the comment is
correctly associated with an Ar t i ¢l eBean. Once again, putting the complex logic in the
mode has made it very easy to cregte the view.

5.8 The Remaining Pages

That pretty much wraps up the set of pages available at Java News Today, at least for
now. Two other pages were not mentioned because they do not include anything new, but
for the sake of completeness, they will be discussed briefly. All pages are available on the
companion CD-ROM.

121

The front page, index.jsp, shows alist of the ten most recent stories. This looks exactly
like the section page except that the list comesfrom edi tion. recent Articl es instead
of current Section. arti cl es. Findly, apageisavailable for the user to change
preferences, which was aready covered in Listings 3.16 and 3.17.

5.9 Summary and Conclusions

This chapter conveyed how easy it isto put together a Site using beans and the standard
tag library. Although Java News Today is till quite Smple in both design and
functiondity, the principles usad in this example are universa and will scdewell in any
gte.

Although the INT gteitsdf isfairly dynamic, the data behind it is not. Thereis no way to
add new gtories, user preferences will be lost when the session expires, and comments
will belogt if the system is ever shut down. The solution to al these problemsisto have
the beans communicate with a database, but before seeing how thisis done, it will be
necessary to discuss databases in general. Thisisthe topic of the next chapter.

5.10 Tags Learned in this Chapter

c: par am Passes a parameter to a page or URL
Parameters:

name: The name of the parameter

val ue: The vdue of the parameter; may be a script
Body: None

c: url Congruct a URL auitable for useinan hr ef
Parameters:
val ue: The base page of the URL

Body: c: par amtags

Chapter 6. Databases

In one sense, dl Web sites are about information, or data. The stories on anews Site are
data, as aretheitemsin acatdog. A great dedl of data exists behind the scenes, such as
information about users or the types of datathey areinterested in.

The problem of organizing large amounts of datais not a new one; many companies had
to organize inventory or customer datalong before the Web. This need to organize data
gaveriseto akind of application cdled adatabase, arepository of structured information
optimized to store and retrieve data quickly. Databases aso alow multiple users to access
or even change the same data S multaneoudy without corrupting it.

This chapter presents a brief overview of database technology, including standard tag
library built-in features that greetly smplify working with databases. This chapter dso
discusses low-level techniques that alow JavaServer Pages to access databases and then
discusses a bean-based approach that is both sophisticated and smple to use.

6.1 A Quick Introduction to Databases

Because any large collection of information is in a sense a database, there are many kinds
of databases. The most commonly used kinds of commercia databases are called
relational databases.

Redationd databases sore information in conceptualy smple structures caled tables. A
table in a database is something like an HTML table or, for that matter, atable in book.
For example, Table 6.1 contains some information about a CD collection.

Table 6.1. A Table with CD Information

Artist Album Name
Black Tape for aBlue Girl The Scavenger Bride
Mors Syphylitica Feather and Fate
Voaltare Boo Hoo

Thedatain Table 6.1 isorganized into rows, each of which describesa single CD. Each
row has columns, or fields, each containing a smple attribute of the CD. Each column
aso has aname, specified in the table header.

A tablein adatabase aso has rows containing named columns; the only additiona
feature isthat each column aso has a specified type. Most databases handle types that
will be familiar to Java developers. integers, characters, strings, dates, floats, and so on.
Some fields will be alowed to have a specid vaue, NULL, which means "no datais
avalable” Theenpt y test asused in Listing 4.12 can be used to check for this specia
value.

Next, consder the problem of adding track data to the CD table. One possibility would be
samply to add fields, such astrack title and track length, to Table 6.1, but doing so would
mean that every track entry would need to contain the album and artist name as well,
which would waste space on the page or on disc, in the case of ared database. It would
be much more efficient to use two tables: one for tracks and one for CDs. The two can be
linked by giving each CD aunique integer ID and referencing thet ID in the track table.
Thiswould lead to Tables 6.2 and 6.3.

Using integersto link up tablesis avery common technique, especialy when mapping
one-to-many relationships, whereby arow in one table may connect to many rows of
another table. Integers are smal and so do not take up much space in the database, and
because integers are easy to sort and manipulate, looking up information based on an ID
istypicaly very fast. Smilarly, because artigts typicaly have many albums, another
possible efficiency is to be gained by moving artigts into their own tables and using an
atig ID to map them to their abums.

Many, many databases are available. Many business sites use products from Oracle or
Microsoft, but a number of high-quality, free databases dso are available. These
databases are perfectly suitable for smal to midsized sites or for development and are
very ditractive to people who cannot afford alarge commercia database. MySQL and
PostgreSQL are prime examples of this latter type of database. MySQL is available from
http://Aww.mysgl.org, and PostgreSQL is available from http://www.postgresgl.org

Table 6.2. The CD Table with a Unique ID

Artist Album Name Album ID
Black Tape for aBlue Girl The Scavenger Bride 1
Mors Syphylitica Feather and Fate 2

124

Table 6.2. The CD Table with a Unique ID
Artist Album Name Album ID
Voltare Boo Hoo 3

Table 6.3. The Track Table

Album ID Track Name
1 The Scavenger Bride
1 Kinski
2 The Hues of Longing
2 Naturaly Crud
3 Future Ex-Girlfriend
3 I'm Sorry

All the examplesin this book use a database called hsgldb, a smdl, fast, free relationa
database implemented in 100% Pure Java. In addition to its other features, hsgldb can run
on any platform and is completely self-contained, so readers running the examplesin this
book will not need to worry about setting up or configuring a database. Hsgldb is
included on the companion CD-ROM and is aso available from
http://hsaldb.sourceforge.net/.

6.2 A Language for Databases

For humans and databases to work together, they must speak a common language.
Although in principle, every database manufacturer could defineits own such language,
doing so would cause problems for both users and database vendors. To avoid these
problems, a standard called Structured Query Language (SQL., pronounced "sequel™) that
al database vendors support, athough frequently with some enhancements specific to

their products, has been defined.

Most databases provide a utility program that alows usersto enter SQL commands
interactively and get results back. That program for hsgldb's can be accessed by running

the fallowing:

125

java -cp hsqgl db.jar org. hsql db.util.DatabaseManager

One such command might be indructions to creste a new table by specifying the names
and types. The SQL commandsto create the CD and track tables from Tables 6.1 and 6.2
areshownin Liding 6.1.

Listing 6.1 SQL commands to create tables

CREATE TABLE artist (
artist_idint,

namne char (40)

CREATE TABLE cd (
al bumid int,
artist_idint,

namne char (40)

CREATE TABLE track (

al bumid int,

namne char (60)
)
These commands define the columns in each table by giving each column aname and a
type. The semicolons here indicate the end of each SQL command. Thisisacommon
convention but is not universal. Some SQL interpreters require the word go after each
command.
Once the tables have been created, data can be stored in them with SQL'si nsert
command, asshown in Liging 6.2.

Listing 6.2 SQL commands to put data into tables

| NSERT | NTO artist VALUES(1,' Mors Syphilitica');

I NSERT | NTO cd VALUES(1, 1,'Prinrose');
I NSERT | NTO cd VALUES(2,1,"' Feather and Fate');

I NSERT | NTO track VALUES(1,'Ungrateful Grl");

126

I NSERT | NTO track VALUES(1,' Rem dy');

I NSERT | NTO track VALUES(2,' The Hues of Longing');

I NSERT I NTO track VALUES(2,' Naturally Cruel');

These commands build rows in the database by specifying the vaue for each columniin
that row. Astute readers will note that the name of the second track is misspdlled;
fortunately, there isaway to change data once it has been entered, and thiswill be shown
shortly.

Of course, dataiis useful only if it can be retrieved, and the SQL command that does this
iscdled sel ect . It has anumber of variations, but the smplest ligs dl data from atable.
Thefollowing command would li dl tracks for dl dbums:

SELECT * FROM track;

The asterisk indicates that al fields should be retrieved. If only the track name and
duration were desired, the asterisk would bereplaced by nane,l engt h.

Generdly, pulling dl the rows from atable is not that interesting. In thisexample, it

would have pulled the tracks from both adbums, which is unlikely to be of any particular
interest. A SELECT command can be modified by awher e clause, which imposes one or
more conditions that must be true in order for the row to be retrieved. To see only the
names of the tracks on "Primrose," the SQL command would look like this:

SELECT nanme fromtrack WHERE al bum.id = 1;

This command will obtain the desired data, but in order to construct this query, itis
necessary to know the album ID. This D could be found by looking at the CD table,

using the following query:
SELECT al bum.id fromcd WHERE nane=' Pri nrose';

But thisis cumbersome. Fortunatdly, it is unnecessary, asthe two queries can be
combined into asingle command by sdlecting from the two tables smultaneoudy and
imposing a condition that connects them. Thiskind of query is caled ajoin because it

joinstwo or more tables together. Here isthe SQL to accomplish this:
SELECT track. name FROM cd, track

WHERE cd. al bumid = track.al bum.id

AND cd. name = "Prinrose';

The field to select is specified as the table name, adot, and then the column name. Thisis
necessary because both the CD and track tables have afield cdled nane, 0t is
necessary to clarify which table isintended. Without this clarification, the database would
respond with an error about a"field ambiguity.” The SELECT is done on both the CD and
track tables, and they are joined by the condition that the al bum i d fields must match.

127

An additiond requirement is placed on the dbum name, so that only the tracks from thet
abum will be returned.

The SELECT command has many more options. But this is enough to follow the examples
throughout the book.

Other SQL commands delete and update rows. The DELETE command also takes awnher e
clause and will delete dl rows that satisfy the condition in the clause. The UPDATE
command likewise tekesawher e clause, aswdl asa sat of new vaues. For example, to

change one of the track names, a SQL statement like this could be used:
UPDATE track

SET nane=' Renedy'’

WHERE nane=' Remi dy'

Thiswill find dl rowsin which theftitle track is named "Remidy" and will replace the
name with the correct spelling.

6.3 Using SQL Directly from JSPs

The standard tag library contains tags that dlow SQL commands to be embedded directly
inapage. The most basic of theseisthe quer y tag, which adlows a page to perform a

sel ect and digplay the results. Thetag's use is demondtrated in Liding 6.3, which sdlects
thelig of artigts from the table defined in Ligting 6.1.

Listing 6.3 A page that gets data from a database

<U@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<U@taglib prefix="sql"
uri ="http://java.sun.conljstl/sql" %

<sql : query
dat aSour ce="j dbc: hsql db: j spbook, org. hsql db. j dbcDri ver, sa"
sql ="select * fromartist"
var="artists"/>

<c:forEach itenms="${artists.rows}" var="artist">

<a href="<c:url val ue="show cds.jsp">

128

<c:paramnane="artist_id" value="${artist.artist_id}"/>

<c: param nane="nanme" val ue="${artist.nanme}"/>
</c:url>"><c:out escapeXml ="fal se"

val ue="${artist.nanme}"/ >

</c:forEach>
</ ul >
This example tarts by importing the core library and anew SQL library that contains the
new tags. Immediately after loading the library, the quer y tag is used to load some data.
Thequer y tag has many options, but the ones used here are the most common. First, the
tag needs to be told how to connect to the database where the information lives, which is
pecified asthe dat aSour ce parameter. The exact form of this will make more sense
after Chapter 9, but for now, think of it as naming three things: the location of the
database, the kind of database, and the user name and password with which to connect to
the database. These are dl specified on one line, separated by commeas.
Thesql parameter specifiesthe SQL to execute. The SQL used hereisasmplesel ect
command.
Findly, thevar parameter names a variable in which the results of the query should be
dored. Thisis somewhat Smilar to thevar parameter inthec: f or Each tagin that both
make a vaue available dsawhere on the page.
Not coincidentaly, the next place thisvaridbleisseenisinac: f or Each tag on the next
line. Note that this variable is used asthei t ens, because this one variable contains
something like an array, each dement of which will be one row of data. Thear t i st
varigble, defined inthec: f or Each tag, will hold each row in turn.
Within the body of thec: f or Each tag, thearti st variable actslikethe par amvarigblein
Section 4.6, which has a different property for each vaue sent by aform. Smilarly,
arti st will have one property for each column, which may be obtained by using the
normal dot notation used with beans. The artist name, therefore, is obtained with
<c:out value="${artist.nane}" escapeXm ="fal se"/>
Theescapexni optiontothec: out tagisnew. Some bands have non-ASCII characters
in their names, such as The Crixshadows or Bjork. Such names can be stored in the
database by using the HTML that encodes these characters. For example, 8#252;
represents the character U. However, by default, the c: out tag will itsdf encode any
specid charactersit encounters, including ampersands. If this were alowed to happen, it
would turn ü into ü. Seiting escapexni ="f al se" turns off this behavior and
should be used whenever thec: out tag will be displaying data that has aready been
encoded for display.

The artist name should be alink to a page where dl of that artist's dbums will be shown.
In order to do that, theur | tag isused to construct a URL that will call the show_cdsjsp
page and passaongthearti st _i d of interest. Thisworks just like the Java News Today
section list from the previous chapter. The artit's nameis dso passed along so that it can
be displayed on the following page. Thisis not drictly necessary, asoncetheartis ID is
available, the name could be obtained through another sel ect . However, because the
nameis aready avallable, it may aswell be used from herein order to save the effort of
doing an extra call to the database.

Liging 6.4 shows the show_cds,jsp page, which will once again usethe sql : query tag.
Wheressin Liding 6.3, the query was dways the same, here there must be away to build
awher e clausethat includesthearti st _i d. Fortunately, the tag library dlowsfor this.

Listing 6.4 A parameterized query

<v@taglib prefix="c"
uri="http://java.sun.confjstl/core" %
<v@taglib prefix="sql"

uri ="http://java.sun.confjstl/sql" %

<sqgl : query
dat aSour ce="j dbc: hsql db: j spbook, org. hsql db. j dbcDri ver, sa"
sql ="select * fromcd where artist_id = ?"

var ="cds" >

<sql : paramval ue="${param artist_id}"/>

</ sql : query>

<h2>Al buns by <c:out escapeXnl ="fal se"

val ue="${param nane}"/ ></ h2>

<c:forEach items="${cds.rows}" var="cd">
<a href="<c:url value="show tracks.jsp">
<c: param nane="cd_i d" value="%${cd.cd_id}"/>
<c: param nane="nane" val ue="${cd. nane}"/ >

</c:url>"><c:out value="${cd. nane}"/>

130

</c:forEach>

Thesql : query tag herelooks very smilar to the onein Ligting 6.3; both specify a

dat aSour ce, var, and sql to run. In thisexample, however, thesql has aquestion mark
wherethearti st _i d passed in from the previous page might be expected.
Correspondingly, thesql : quer y tag hasabody containing asql : par amtag, whose
vaueisthevery arti st _i d that was needed.

Thisis another fegture of thesql : quer y tag. Before the query isrun, question marks
withinthesql parameter may befilled in with valuesfrom sql : par amtagsin the body.
Becausethe values of sql : par amcome from scripts, queries can be dynamicaly atered
as needed.

After thesql : query, therest of the page is Sraightforward. Another c: f or Each iterates
al the CDs and provides alink to see the tracks on another page.

6.4 Inserting Data from JSPs

To make thelittle CD gpplication more useful, it can be expanded to dlow the user to add
new artists, CDs, and tracks. Not surprisingly, the standard tag library provides another
tag to fadilitate this sql : updat e. Before jumping into seeing how thistag isused, itis
worthwhile to step back and consider what will need to be done in order to add a new
atis.

Fird, the user will specify the name in aform, which will be sent to another JSP, which
will usethe new tag to performan i nser t . It would be reasonable to expect that we will
useasql : par amin order to pass the nameto the query. Thisis al straightforward
enough. However, it isimportant to keep in mind that the artist table has not only aname
butdsoanartist i d. Wherewill thisID come from?

One posshility would be to force the user to provide it dong with the name. But thisis
far from satisfactory; this ID is used only internaly by the system to track data and has

no intringc meaning to the user. Hence the user should never seeit. In addition, thereis
no clear way in which the user would know what vaue to use.

It therefore seems that the system should keep track of IDs. That is perfectly fine, as such
information can eadily be added to the database. It is merely necessary to create another
table of IDs, which will be cdled sequence, asit will provide sequences of ID vaues. Its
definitionisample

131

create table sequence (
name char (60)

id int)

insert into sequence values('artist',0);
insert into sequence val ues(' al buni, 0)

insert into sequence val ues('track',0);

With thistablein place, cregting a new artist would take the following steps:

1. Useasel ect tofind the current ID wherenane isarti st .
Usean updat e toincrement that ID, so the next artist created will get anew
number.

3. UsetheobtanedID inani nsert tocreatethearti st.

Thereisin fact afurther complication. If two userstry to add an atist a the sametime,
they might both get the same ID in step 1 before elther can get to step 2 to update the
current ID. Most modern databases have away to prevent this, and it is supported by the
tag library through thej sp: t ransact i on tag, which is beyond the scope of the book.
Ligting 6.5 shows everything that must be done in aJSP in order to add an artist to the
database with a proper ID.

Listing 6.5 Using a JSP to add data to a database

<U@taglib prefix="sql"
uri ="http://java.sun.conljstl/sql" %

<sql : query
dat aSour ce="j dbc: hsql db: j spbook, org. hsql db. j dbcDri ver, sa"
sql ="sel ect val ue from sequence where nanme='Artist'"

var="ids"/>

<sqgl : updat e
dat aSour ce="j dbc: hsql db: j spbook, org. hsql db. j dbcDri ver, sa"
sql="insert into artist(artist_id, nane) values(?,?)">
<sql : param val ue="${ids.rows[0].id}"/>
<sql : par am val ue="${ param nanme}"/ >

</ sql : updat e>

132

<sql : updat e
dat aSour ce="j dbc: hsql db: j spbook, org. hsql db. j dbcDri ver, sa"
sgl ="updat e sequence set val ue=? where nane="Artist'">
<sql : param val ue="${ids.rows[0].id + 1}"/>

</ sql : updat e>

New arti st has been added! <p>

Return to the

artist list

The example exactly follows the steps outlined previoudy. The only noteworthy point is
that the ID obtained fromthesel ect isreferredtoasi ds. rows[0] . i d. Recdl that r ows
isan araylike object, suitablefor usngin c: f or Each tags, therefore, ement O of this
object will be thefirst row.

6.5 SQL and Beans

In Listing 6.5, it is immediately obvious that 99 percent of it is manipulating the model

he database wth only asingletiny line of view information announcing the completion

of thetask. Thisisjust plain wrong!

The view layer has too much model, and using the SQL tags asin the previous section is
finefor quick-and-dirty database gpplications. However, problems would soon arise
when dedling with alarger, more complex ste. If ten pages use some hard-coded SQL
and then the structure of the database changes, it can be very difficult to find and fix dl
the problems. Although it may seem as though a database, once designed, should never
change, requirements in the real world commonly shift over the course of a project.

The solution, as dways, isto move the modd layer, where it belongs, into some Java
beans. Fortunately, thisisasmple exercise, as beans and databases dready have a great
ded in common. A database row has anumber of named columns, just as abean hasa
number of named properties. A table can have many rows, just as an array can have many
beans. In Chapter 5, these correspondences were used in a set of hard-coded beans to

133

t

mimic a database. All that is necessary to complete the picture is to modify those beans
so they connect to ared database.

Toolsthat will autometically build a class or bean that reflects atable are available. A
very smpletool, Table2Bean, from Canetoad Software, isincluded on the accompanying
CD-ROM. Asits name implies, Table?2Bean takes a SQL table definition and builds a
bean. This bean can then provide easy mechanisms for interfacing with the underlying
table.

To see how thiswill work, consider CDBean, generated from thetablein Listing 6.1.

1. Ifthecdl d property is set, the bean will construct a SQL command, such as
SELECT * FROM CD WHERE cdl d= t he provi ded i d, execute this statement, and
use the result to populate the rest of the properties.

2. After loading the data, any property can be changed by using the normal set
methods. The bean will adso provide a specia property, cdled save. If this
property is set after any other properties have been changed, the changes will be
saved back to the database with an UPDATE command.

3. Smilaly, if thesave property is set beforethe cdl d property has been s, the
bean will assume that thisis new dataand will enter it into the database with an
| NSERT command.

4. Findly, another specid property, cdled beans, will return an array of beans that
match the current properties. If apage setsthearti st | d fiddto 1, thebeans
property will return an array of al the dbums from artist number 1.

The next chapter discusses how Java News Today will use these new beans, but the
principles can be examined by seeing how they could be used to smplify the CD
goplication. Liging 6.6 shows the new verson of the page thet displays dl an atist's
abums.

Listing 6.6 Retrieving data through a bean

<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %
<j sp: useBean

i d="cdBean"

cl ass="com aw . j spbook. ch06. CdBean"/ >

134

<j sp: set Property nane="cdBean" property="artistld"/>

<h2>Al buns by

<c:out escapeXm ="fal se" val ue="${param nanme}"/ ></ h2>

<c:forEach itenms="${cdBean. beans}" var="cd">

<a href="<c:url value="show tracks.jsp">

<c: param nanme="cd_i d" val ue="${cd. cdl d}"/>

<c: param nane="nane" val ue="${cd. nane}"/ >

</c:url>"><c:out val ue="${cd. nane}"/>

</ c: forEach>

The only differenceisthat thesql : query tag has been replaced by aj sp: useBean and
by j sp: set Property tags, now theiteration goes over cdBean. beans. Although thisis
no shorter than the database version, the conceptud difference is huge. Now this page
does not know whether the dataiis coming from a database or a seridized bean or is
connecting to aWeb Ste in order to get itsinformation. The details of the modd have
therefore been hidden from the view, which is asit should be.

The difference is even more pronounced in the bean version of the page that adds an arti<t,
whichisshownin Liding 6.7.

Listing 6.7 Storing data through a bean

<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean
i d="artistBean"

cl ass="com awl . j spbook. ch06. Arti st Bean"/ >
<j sp:setProperty nanme="arti st Bean" property="nane"/>
<j sp:set Property

name="arti st Bean"

property="save"

val ue="true"/ >

135

New arti st has been added! <p>

Return to the

artist list

Now that's morelikeit! All the details of the ID are hidden away in the bean, so dl the
view needsto do isload the data and then tell the mode to save itsdlf.

One smdll detail has been glossed over in these last two examples: how these beans get
the information necessary to connect to the database. This was passed in explicitly when
using the SQL tags, but the beans are able to hide this information by using afesture of
Java. It ispossible for a Java class to load aresource given its name, so aresource cdled
"db" that holds the connection information has been created, and the beans know to load
that information when it isfirst needed.

6.6 Summary and Conclusions

A databaseis a collection of tables, and tables contain rows of data, organized into
columns. Each column contains one attribute of the row. SQL isacommon language that
alows humans to communicate with databases, and the standard tag libraries make it
relatively painlessto use SQL from within pages. For many reasons, however, it is better
to hide the SQL and other database information within beans.

Up to this point, Java News Today has been a somewhat uninteresting site, as there has
been no way to add new stories or make users preferences permanent. Thiswill change
in the next chapter, where INT will move to a database and add editoria screens.

6.7 Tags Learned in This Chapter

sql : quer y Performa query againg a database
Parameters:
dat aSour ce: A gring specifying how to connect to the database
sql : The SQL to run; may contain parameters to be filled in, indicated by
question marks
var : The name of the varidble in which to store the results

Body:

136

sql : par amtags

sql : updat e Update, create, or delete data from a database
Parameters:

dat aSour ce: A string specifying how to connect to the database

sql : The SQL to run; may contain parameters to be filled in, indicated by

question marks

var : The name of the variable in which to store the results

Body: sql : par amtags

sql : par amProvide a parameter to SQL inasgql : query Or sql : updat e tag
Parameters.

val ue: The vaue to use, may be a script
Body: None

137

Chapter 7. Java News Today: Part 2

Findly, after dl the prdiminaries and the read-only site of Chapter 5, Java News Today

is ready to Sart providing some content! Doing so has not been possible until now
because there was no good place to store this content. It would not make sense to have to
write a brand new JavaServer Page or manually update the beans used in Chapter 5 each
time a new story was published. What is needed is a JSP that will dlow areporter to
write anew story as easily as a user can read one. Databases, as covered in Chapter 6,
provide the means to build such functiondlity.

7.1 Designing the Tables

As adatamodel was dready developed in Chapter 5, the smplest plan of attack would be
to turn thismodd into SQL and create the database. Once that's done, an object-relaiond
mapping tool could turn these tables back into beans, and the job would practicaly be
finished. Thereasonistha, if al the naming conventions for bean properties and column
names are carefully followed, the new beans will have the same property names asthe
origina ones, and none of the pages or formswill need to change a al. Thisis another

big advantage to the mode /view/controller paradigm: It makes it possible to change
completely the way the model works, aslong as the interfaces between the modd and the
view gstay the same, the view will not need to be rewritten.

Although it would be very easy to follow this plan of attack and recreate the existing Ste
on top of a database, doing so would preclude a great ded of possible new functionality
that a database could offer. Creating a Site based on hard-coded beans leads to necessary
regtrictions in the ways in which the data could be accessed. Because there is no easy way
to filter out asubsat, it is necessary to show dl the sections within in an edition and dl
articles within a section. With a database and a set of beans that make it easy to construct
SQL wher e clauses, the data can be managed, grouped, and arranged in any way that
might be useful. In particular, users now have the option to view only sectionsin which
they are interested; further, it is possible to rank articles within those sections to indicate
which ones are likely to be the mogt interesting.

To support these features, the data model will need to be rethought alittle. The basic
fieddsin the old beans will till be needed; for example, the Ar t i ¢l eBean will ill need

138

the text of the article, the time it was published, a headline, a summary, and the name of
the author.

Thislast item aready suggests one mgor change that should be made. In the CD

database from Chapter 6, it was noted that rather than store the artist’'s name in every CD,
it made more sense to have a separate table of artists and to link artists to CDs through
the use of asmdl ID. The sameistrue for authors and articles; it would be possble to
connect an author to an aticle by storinginthearti cl e tabletheuser _i d of the author
rather than the author's name. Thisway, if an author's name changes, it will not be
necessary to change every article; theuser _i nf o table can smply be updated in one
place. Thisis dso more efficient, as the name may take up 20 bytesto store, but an ID
will take only 4. This process of pulling common datainto separate tables is called
normalizing the database.

More generdly, when working with a database, it isimportant to consider what
relaionships will exist between otherwise gpparently unconnected data items. For
example, currently there is no relationship between sections and users, but for usersto be
able to select the set of sectionsin their editions, such ardationship must beincluded in
the database. The question then becomes, How this should be modeled?

One possibility would be to add to the user _i nf o table some additional columns, such as
want s_section_1,wants_secti on_2,and soon. But thisisnot very generd; if it
crestes anew section ayear from now, INT will need not only to update al the users but
aso to change the very dtructure of the database and modify dl the beans and JSPs that
use thistable. That is something that no one should have to live through if it can be
avoided, and, fortunately in this case, it can be avoided.

Following the examples from Chapter 6, each of the tables will have aunique ID, so each
user will haveauser i d, each section will haveasect i on i d, and so on. So, to moded
the connection between users and sections, another table that will haveauser _i d and a
section_i d can beintroduced. If user 50 does not want section 3, this new table would
have arow whereuser _i d = 50 andsection_i d = 3. A table like this, which holds only
the IDs of other tables and has no data of its own, isknown asajoin table.

It would aso be possible, and in some ways smpler, to keep track of which sectionsa
user does want. The advantage of storing unwanted sectionsisthat if anew sectionis
cregted, every user will initidly get it by default and can then opt to turn it off. If the
database tracked only sections a user did want, the user would need to act explicitly to
add new sections and hence might miss out on some good content.

Two more new tables will be used to connect articles to users, although less directly. First,
the notion of a keyword will be added to the system. A keyword isasingle word or short

139

phrase that describes an article. Thisis more finely grained than sections, whereas a
section might dedl with a broad category, such as " Java on consumer devices,” the
keywords might list particular devices or vendors that support Java.

As each article may have many keywords, each connected to many articles, another join
table will be used to connect them. In order to do so, this new table will have a
keyword_i d andanarticl e_i d. Thisalso suggests creating asimilar table to connect
usersto keywords by maintaining alist of keywor d_i d and user _i d pars. Thistable will
alow usersto indicate the set of keywords in which they are interested. With these two
tables, a user can be connected to an article by looking for good matches between article
keywords and user keywords.

The database design is dmogt finished; the only other thing needed is away to ensure

that only Java News Today staff can creste new articles. To do this, anew field will be
added to the user _i nf o table to mark certain users as reporters. With that done, the SQL
needed to create the Java News Today databaseis shownin Liding 7.1.

Listing 7.1 The JNT schema

create table user_info (

usr_id i nt,

user nane char (40),
password char (40),
nane char (20),
bg_col or char (6),

text _col or char (6),
banner _col or char (6),
reporter _ind char (1)

create table section (

section_id int,
nane char (20),
summary var char (1024)

create table article (

article_id int,

140

)

create

)

create

)

create

)

create

)

create

section_id int,

aut hor _id int,
created_date dateti ne,
headl i ne var char (80),
sunmary var char (1024),
t ext var char (4096)

tabl e keyword (
keyword_id int,

name char (20)

tabl e user _sections (
user _id int,

section_id i nt

t abl e user _keywords (
user _id int,

keyword_id i nt

table article_keywords (

article_id int,

keyword_id i nt

tabl e comment (

comrent _id int,
article_id int,

aut hor _id int,
created_date dateti e,

t ext var char (4096)

141

create table quiz (

question var char (80),
answer 1 var char (80),
answer 2 var char (80),
answer 3 var char (80),
correct_answer i nt

);

The names for fields and tables follow certain well-accepted conventions. Database
names use underscores to separate multiword names, when beans are generated from
these tables, the underscores will be removed, and the letter following the underscores
will be capitdized. Database fields ending with _i nd are indicators with the value Y or N.
The equivalent bean property will have valuest r ue or f al se and will therefore be
auiteble for use asthetestsinc: i f and c: when tags.

7.2 Adding Articles

With the new database and coding conventions established, adding new articles to the
database is quite smple. Firg, alink to the article creation page must be added to the
left-hand navigation, and a check must be done to ensure that thislink is avalaole only to
reporters. Thisis handled by asmple addition to the navigation, shown in Lising 7.2.

Listing 7.2 New link for reporters

<c:if test="${user7.isReporter}">

<di v cl ass="bordered">

Create a new articl e

</ di v>
<fc:if>
If the user has not yet logged in, thei sRepor t er property will be empty, thet is, neither
true nor fase. In this case, the test will Hill fail, and the link will not be shown. The
check hereistechnicaly not sufficient, as it does nothing to prevent amalicious user
from going to create_article,jsp directly by entering the URL in his or her browser. To
prevent this, acontroller is needed to handle site security; one will be built in Chapter 12.
The page to create articles is another sandard HTML form. The author will need to be
able to select the section to which the new story should be added, away to mark which

142

keywords are relevant, and a big text box for the contents. The JSP isshown in Liding
7.3, and the result as viewed in abrowser appearsin Figure 7.1.

Figure 7.1. The article creation page.

Listing 7.3 The article creation page

<Yv@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean
i d="user7"
cl ass="com awl . j spbook. ch07. User | nf oBean"

scope="session"/>
<j sp: useBean
id="edition7"

cl ass="com awl . j spbook. chO7. Edi ti onBean"/ >

<j sp:include page="top.jsp" flush="true">

<j sp: param nane="title" value="Create Article"/>

143

</jsp:include>

<table class="fornt>
<form action="article_handler.jsp” nethod="post">
<i nput

type="hi dden"

name="aut hor | d"

val ue="<c: out val ue="${user7.userlnfold}"/>">

<tr>
<td class="1abel ">Section: </td>
<t d>
<sel ect nane="sectionld">
<c:forEach itens="${edition7.all Sections}"
var ="section">
<option val ue="<c: out
val ue="${section.sectionld}"/>">
<c:out val ue="${section. nanme}"/>
</c:forEach>
</ sel ect >
</td>

</[tr>

<tr>
<td class="I| abel ">Keywords: </t d>
<td>
<c:forEach itens="${edition7.all Keywords}"
var =" keywor d" >
<i nput
type="checkbox"
name="keywor dl d"
val ue=<c: out val ue="${keyword. keywordl d}"/ >>
<c:out val ue="${keyword. nane}"/ >

</c: forEach>
</td>

</[tr>

144

<tr>

<td cl ass="1 abel ">Headl i ne: </ td>

<t d><i nput type="text" nanme="headline"></td>

</[tr>

<tr>

<td class="label ">Sunmary: </td>

<t d><i nput type="text" name="summary"></td>

</[tr>

<tr>
<td class="|abel ">Text: </ td>
<t d>
<textarea nane="text" rows="5"
</t ext area>
</td>

</[tr>

<tr>
<td col span="2" align="right">
<i nput type="submt" nane="go"
</td>
</[tr>
</ fornp

</t abl e>

col s="30">

val ue=" Set

<j sp:include page="bottomjsp" flush="true"/>

Pref erences" >

Note that the lists of available sections and keywords come from the Edi t i onBean. This
is gppropriate, asthis bean acts as the master container for al options on the site, as well

as the specific set of those options selected by each user.
Because dl the work is done in a bean representing the modd, as it should be, the view

portion of the article handler isamogt trivid:

<j sp:setProperty bean="article" property="*">

<j sp: set Property

nane="articl e"

145

property="useNowAsDat e"

val ue="true"/ >
<j sp:setProperty bean="article" property="save"

val ue="true">

Thefirg line sets al the properties of the article, including the section and the text. The
firdt line aso sets an array of keyword 1Ds, which the bean will use interndly to set up
the proper entriesinthear ti cl e_keywor d table. The second line sets a specia property,
cdled useNowAs Dat e, of the bean. When this property is s, it will set the underlying
cr eat edDat e property to the current time. It would be possible to set cr eat edDat e
directly from the page, but working with date properties can be cumbersome, so the
useNowAs Dat e property was provided as a convenience.
Finaly, the third line will then perform the save and will write al the data to the database.
It might seem that thisextraj sp: set Proper t y tag coud be avoided by usng a hidden
input field, aswas donein Ligting 5.9, to pass the usar's name to the comment handler:
perhaps something like
<i nput type="hi dden" nane="save" val ue="true">
However, thisis not guaranteed to work. Nothing in the JSP specification says anything
about the order in which properties will be set. If thesave property were sent dong with
text andsecti onl d,itisquite possblethat fird sect i onl d would be s, then save,
andfindly t ext . The net effect would be that an article would be placed in the database
withasect i onl d but no content!

7.3 User Pages

As promised, very few changes need to be made to the pages from Chapter 5. The section,
aticle, quiz, and navigation can dl stay dmost exactly the same. The few thingsthat do

need to change reflect the new use of normalized tables.

In the article page, it was formerly possible to obtain the author's name with

<c:out value="${article.authorNane}"/>

But because the aut hor Nane isno longer kept inthe Art i cl eBean but only the

aut hor | d, an additiona mechanism must be used to go from the ID to the author before
getting the name. Fortunately, the bean provides a meansto do this, by providing an

aut hor property that holds the appropriate User | nf oBean. Getting the name isthen as
ampleas

146

<c:out value="${article.author.nane}"/>

Note the use of a nested property.

The remaining user pages that need to be changed are those that now need to send data to
the database. These consst of the page that handles the saving of user preferences
(Ligting 3.18) and the page that adds a comment to an article (Listing 5.9).

Recdl that the user preferences are placed in the bean with thetag j sp: set Property,
just as the one used to set the article properties. Therefore, al that is needed to write these
values to the database isanother j sp: set Propert y tag that setsthesave property. This
will tell the bean to save its contents to the database, and because it will dready have a
user | nf ol d from the time when the user logged in, it will know thet datais being

updated instead of created.

Now that the preferences for an existing user can be saved, it is easy to alow the system
to create new users. Firg, the page should contain a message prompting usersto sgn up
with the Ste. The eesest way to do thisis by adding a smal message to the login formin
Liding 5.2:

Don't have an account yet?

Click here

to register with Java News Today!

It may seem odd that users would be sent to the user preferences page to Sgn up, asthat
page lets existing users change their options. It would certainly be possible to create a
Separate Sign-up page, but consider what such a page would contain. It would need a
form that prompted for a user name, password, and real name, which would seem to be
the minima information needed in order to register a new user. However, it would make
sense to give new users the option to set their preferences a the time they join, which
would mean that the sign-up page would have dl the same fields as the user preferences
page, in addition to the new ones. It would instead seem to be easier to put dl these fidlds
on the same page and use a conditiond tag to turn off the ones that aren't dways needed.
This modifies the user preferences page asshown in Listing 7.4.

Listing 7.4 The new user preferences page

<c:if test="${!user7.isLoggedln}">
<tr>
<td class="I abel ">Your nane: </td>
<td><i nput type="text" nanme="nanme"></td>

</[tr>

147

<tr>
<td class="I|abel ">User nane:</td>
<t d><i nput type="text" nane="usernane"></td>

</[tr>

<tr>

<td class="1abel ">Password: </t d>

<t d><i nput type="password" nanme="password"></td>
</[tr>

</fc:if>

<tr>
<td class="I|abel ">Background col or: </td>
<t d><i nput type="text" name="bgCol or"
val ue=' <c: out val ue="${user 7. bgCol or}"/>'></td>

</[tr>

<tr>
<td class="| abel ">Banner color:</td>
<t d><i nput type="text" name="banner Col or"

val ue=' <c: out val ue="${user 7. bannerCol or}"/>"></td>

</[tr>

<tr>

<td class="I|abel ">Text color:</td>

<t d><i nput type="text" nanme="text Col or"

val ue=' <c: out val ue="${user7.textColor}"/>" ></td>

</[tr>
To ensure that thiswill work, congder what will happen when the user clicks the submit
button and goes to preferences_handler.jp in each of the circumstances this page will
need to handle. In both cases, the result will be to set dl the form variables and then set
thesave property. Thisisthe right thing to do, regardless of whether the user issigning
up or changing preferences. The latter case has adready been considered and is known to
work. In theformer case, theinitid j sp: set Proper ty will set the additiond user name

148

and password fields; then, when the save property is s, the bean will recognize that

thereisnot yet auser | d pecified and hencewill doaSQL i nsert ingead of an updat e.

The upshot of al thisisthat once again, by putting al the hard work in the modd layer,

the task of cresting the view has been grestly smplified. If we did not have beans & our
disposal, we would need separate pages for new users and existing users and then two

other pages to handle saving the dataiin each of these cases. As an exercise, consder how
these cases would be handled if dl thiswork needed to be done using only sql : query
and sql : updat e tags

7.4 Other User Preferences

So far, the user preferences page has dedt only with smple properties: the ones that do
not involve thejoin tables. The problem with the remaining propertiesis twofold:
figuring out how to (1) display the user's current choices and (2) dlow them to be
changed. The solutions to these problems will be different for sections and keywords
because of the different ways this information will be used.

A good way to figure out how to tackle such problemsisto solve first them in raw SQL.
Then the SQL can be moved into the bean. Showing the list of sections the user has
selected not to display is easy:

sel ect section. nanme

from section, user_sections

where section.section_id = user_sections.section_id

and user_section.user_id = ?

The question mark would get filled inwith asql : par amfrom the current user.
Unfortunately, what is needed isthe inverse of this alist of al the sections that the user
does want. This could be done in three steps: (1) run the query, (2) run another query to
get thelig of dl sections, and (3) remove the items in the firgt list from the second list in
some Java code. Thiswould work, but as agenerd rule, it isworth trying to use asfew
gueries as possible and to do as much work with those queries as possible. Thisis partly
for the sake of efficiency, as each query will take some time and impose some overhead
on the database and the network. In generd, databases will aso be adle to manipulate
datamore efficiently than the equivdent Java code.

149

It turns out that it is possible to cook up aquery that will do dl the necessary work in one
step. This conceptually does the same thing that could be done manualy in Java: Sdect

theitemsfrom user _sect i on, and remove the maiching itemsfrom sect i on:
select * from section

where section_id not in

(select section_id fromuser_section

where user_info_id = ?)
Theinner sel ect , the one in parentheses, retrievesthe list of sections that the user does
not want; then the SQL keywordsnot i n remove those sections from the outer sel ect .
Now that the query has been designed, it will be put into the Edi t i onBean asanew
property: sel ect edSect i ons. Thiswill dter the section list in the navigation as shown in

Liding 7.5.

Listing 7.5 The customized section list

<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean
id="edition7"
cl ass="com awl . j spbook. ch07. Edi ti onBean"

scope="sessi on"/>

<j sp: useBean
i d="current Section"

cl ass="com aw . j spbook. ch07. Secti onBean"/ >
<j sp:set Property
name="current Secti on"

property="sectionld"/>

<c:forEach items="${edition7.sel ectedSections}"

var="section">

<c:if

test="${current Section.sectionld == section.sectionld}">

150

</fc:if>

<a href="<c:url value="section.jsp">
<c: param nane="sectionld" val ue="${section.sectionld}"/>

</c:url>"><c:out val ue="${section. nane}"/>

</c:forEach>
One other point needs to be made about this example. The query to get sections requires
user _i d asaparameter. If the user has not yet logged in, no ID will be available, and the
query will fail. This condition could be checked in the JSPwith ac: choose tag. If
user . user | d isempty, the page would then do what it did previoudy and iterate the
sectionsfrom edi ti on. sect i ons. However, thistest has been placed in the bean for dl
the usua reasons about keeping the view smple. In this case, it would be more correct to
put this check in the controller, as the model needs to be controlled based on an externa
criterion.
Smilarly, it will be necessary to natify the Edi t i onBean of the user's ID when the user
logsin. This can be done with a smple addition to the login handler page:
<c:set nane="edition7.userld" value="${user7.userld}"/>
Now that the navigation can make use of the user's section choices, a means for the user
to alter them is needed. Thelogical user interface for thiswould be alist of every section,
with a check box next to the ones the user would like to see. When the user goesto edit
the ligt, the sections dready selected should be checked so the user does not have to
reenter the choices whenever adding or removing only one.
This again requires connection between thesect i on and user _i nf o tablesbut with an
additional complication. The page cannot show only the sections the user has selected, as
that would not alow the person to add one. Nor can it show only the ones the user has not
selected, as there would then be no way to remove one. This could be handled with two
queries, fird iterating one set of sections and then the other. A better solution would be to
sdect dl the sections in one shot, dong with an indicator as to whether the user has
selected each.
This can be done with yet another feature of SQL: outer join. Theideaisthat anormal, or
inner, join between two tables A and B will have one row for each value common to both
tables. An outer join might have onerow for every row in A. If B has matching data, that
datawill be avallable; if not, those vaues will be marked as NULL.
To make these ideas more concrete, consider the two tables defined next.

create table character (character_id int,

151

character_nanme char (10))

create table actor (actor_id int, actor_nanme char(10))

insert into character values(1,'John Crichton")
insert into character values(2,'Aeryn Sun')

insert into character values(3,'Chiana')

insert into actor values(l,' ' Ben Browder')

insert into actor values(3,'Ggi Edgley')

A regular inner join could be used to get alist of actors and characters:
sel ect character_nane, act or _nane

from actor, character

where character_id = actor_id

The result would be in the following teble:

John Crichton Ben Browder

Chiana Gigi Edgley

However, thistable is missing information about characters for whom the corresponding
actor is not available. This can be remedied with an outer join:

sel ect character_nane, act or _name

from character

left join actor

on character _id = actor_id

This produces the following table:

John Crichton Ben Browder
Aeryn Sun NULL
Chiana Gig Edgley

Thistable contains dl the information we have available and might serve to remind
someoneto insart "Claudia Black™ into the actor table a some point. It is now fairly
sraightforward to use these ideas to construct an equivaent query for users and sections,

with an extrafied to indicate which ones the user does not want:
sel ect section_nane, nanme, user _id from section

left join user_section

on section.section_id = user_section.section_id

152

where user_section.user_id = ?

The result will have one row for each section. For those that the user does not want, the
row will dso have the user's ID; sections that the user does want will have avaue of

NULL for this column.

Hiding thisquery inthe Edi t i onBean will require alittle more work. The easest way to

do thisisto add anew property, sel ect ed, to the Sect i onBean and let the Edi t i onBean
st this property based on the results of the query. Pages can then obtain this specidly
marked list of sectionsthrough anew al | Sect i ons property, which can be used in the
user preferences page, as shownin Liging 7.6.2

(1 of course, it would also be possible to use this property instead of S€l ect edSect i ons in the navigation
by using the value of the selected flag to determine whether to show the section. However, doing it that way would
have missed out on a perfect opportunity to introduce the concept of nested S€l €Ct S, which is well worth

knowing.
Listing 7.6 Selecting sections

<j sp: set Property
nanme="user7"
property="cl ear Secti ons"

val ue="true"/ >

<tr>
<td class="|abel ">Whi ch sections do you want ?</td>
<t d>
<c:forEach items="${edition7.all Sections}" var="section">
<i nput
type="checkbox"
name="secti ons"
val ue="<c: out val ue="${section.sectionld}"/>"
<c:if test="${section.sel ected}">CHECKED</c:if>>
<c:out val ue="${section. nane}"/>

</c:forEach>
</td>

</[tr>

153

Note that options are marked as checked if the corresponding field is empty, because the
user should be shown the sections wanted, but the table keeps track of those not wanted.
When the form is submitted, the User | nf oBean will get passed an array of selected
section IDs, which it must then useto add or remove entriesintheuser _sect i on table.
Thisrequires abit of data manipulation in the Javalayer, which can be found in the code
for the User | nf oBean on the CD-ROM accompanying this book.

The keywords list, which will work almost exactly the same as the section ligt, will use an
outer join to select dl the available keywords and smultaneoudy flag which onesthe

user has sdlected. The result is easily added to the user preferences page and is shown in

Liging 7.7.
Listing 7.7 Selecting keywords

<j sp:setProperty
nanme="user 7"
property="cl ear Keywor ds"

val ue="true"/ >

<tr>
<td class="1abel ">
Sel ect keywords in which you are interested:
</td>
<t d>
<c:forEach itens="${edition7.all Keywords}" var="word">
<i nput
type="checkbox"
nanme="keywor ds"
val ue="<c: out val ue="${word. keywordl d}"/>"
<c:if test="%{word. sel ected}">CHECKED</c: i f>>
<c:out val ue="${word. name}"/ >

</ c: forEach>
</td>
</tr>

The new user customization page, with these two options added, is shown in Figure 7.2.

Figure 7.2. The new customization page.

154

F 2ER
F Java on devices
F Developer tools

will be used to compute for each article a score that will be digplayed on the front page
and the section page. Such a score can draw the user's attention to stories he or sheis
mogt likely to find interesting.

This score will be computed by examining each keyword; if both the user and the article
ether have or do not have that keyword, it will count for one point. The fina score will
then be the total number of points, divided by the tota number of keywords and
multiplied by 100 to produce a percentage. Of course, such acomplex calculation should
never be donein the view, so it will be added tothe Art i cl eBean. TheArti cl eBean will
therefore need to know for which user its score should be computed, but thisis easily
handled by aj sp: set Proper t y tag. This modifies the section page as shown in Lisiing
7.8, with the result shown in Figure 7.3.

Figure 7.3. The new section page.

(Seare: 87

Cpen-source ool to be wsed fog JIEE complionce
Tameat 5.0 Availahle [Seare: 874

Hew vernen of Temeat comlaing seppert for J5P 2,0

Listing 7.8 The new section page

<j sp: useBean
i d="current Secti on"

cl ass="com awl . j spbook. ch07. Secti onBean"/ >

<j sp:set Property
nane="current Secti on"
property="sectionld"/>
<dl >
<c:forEach itens="${current Section.articles}"
var="article">
<dt><a href="<c:url value="article.jsp">
<c: param nanme="articl el d"
val ue="${article.articleld}"/>
</c:url>"><c:out value="${article.headline}"/>
<c:if test="${user7.isLoggedl n}">
<c:set target="${article}"
property="user| nfol d"

val ue="${user 7. userInfold}"/>

(Score: <c:out value="${article.score}"/>)
</fc:if>
<dd><c:out value="${article.sunmary}"/>
</c:forEach>

</ dl >

7.5 Advertising

Money does not redly make the world go around; gravity and angular momentum take
care of that quite nicdly. However, money can keep a Web dte running, which a times
may seem dmost as important. One of the mogt time-tested ways for aWeb site to make
money isto sell space on each page to advertisers.

Thisis not fundamentally a odds with a usercentric site, such as Java News Today. No
one enjoys the endless repetition of ads for unwanted items or constant plugs to buy
shoddy or uninteresting goods. However, the Web can make shopping very easy and
convenient, and an advertisement for an item a user would like but did not know about is
awin for the user, the vendor, and the Web site.

The secret hereisto show usars only items that might gpped to them and to filter out dl
the advertisng "noisg" that most people find so irritating. In other words, the key is
persondization, just asit iswith content. By customizing the ads to the user, users will

not be bothered with irrdevant advertisng, and advertisers are generdly willing to pay
much more to ensure that their ads are seen only by people who might buy their products.
Again, everybody wins,

Because persondi zation will be the driving force behind INT's ads, it should not be
aurprising that ads will aso be stored in the database. Once again, this means that the first
sep will be to design the tables by considering what information needs to be stored.

The first and most obvious element is the text of each ad. In order to match ads with users,
the ads will need to be weighted according to relevant keywords, so an auxiliary table
mapping ad IDsto keyword IDs will be needed. Thiswill work in much the same way
that keywords were associated with articles. Finally, most ads are sold based on a number
of impressions; in other words, an advertiser may pay a certain amount to ensure that the
ad is seen a certain number of times. The database will thus need to store the number of
impressions sold, and the bean will need to decrement this count eech timethead is

157

viewed and remove it from the system when the count reaches 0. The new tables are
shownin Liging 7.9.

Listing 7.9 The advertising tables

create table ad (

ad_id int,
i mpressi ons int,
t ext var char (4096)

create table ad_keywords (

ad_id int,

keyword_i d i nt
)
Because ads are marked with keywords, just as articles are, it is possible to use the
scoring mechanism that was devel oped for articles to compute a score for each ad. Rather
then show this score directly to the user, it can be used by anew Advanager Bean. This
bean will compute a score for every ad in the system and randomly return an ad from
among the ten with the highest score. This ad will be placed in the heeder, which is
shownin Ligting 7.10.

Listing 7.10 The header, with an ad

<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean i d="user7"
cl ass="com aw . j spbook. ch07. User | nf oBean"

scope="session"/>

<j sp: useBean
i d="adManager 7"
cl ass="com aw . j spbook. ch07. AdManager Bean"
scope="sessi on"/>

<center>

158

<h2>
Java News Today: <c:out value="${paramtitle}"/>
</ h2>

</ center>

<c:if test="${user7.islLoggedln}">

<div class="left">

Hell o <c:out val ue="${user7. name}"/>!

</ div>
</fc:if>
Note that the AdMvanager Bean isstored in the sesson. The process of computing the score
may be somewhat time-consuming, and because the scores will not change much while a
user ison the site, the score does not need to be recomputed on every page.
Theimplication of thisisthat when the user logsin, the Advanager Bean must betold
who the user isin order to compute the scores, just asthe Edi t i onBean needed this
information to select the correct sections. Thisis done with another little addition to the
login handler page:
<c:set nane="ads.userld" val ue="${user.userld}"/>

With such an ad in the header, the new index page will look like the onein Figure 7.4.

Figure 7.4. The new index page.

159

Hllﬁ:mkm’hﬂl IHII' Halp

Hatowe vermon of the lotest JUK now available

Cpen-snaree toal o be tested for JIEE complinne

T

Hew version of Tosicat contaies support for JSP 2.0

A dight varigtion to thlsschemelsworth mentlonlng Insteed of asklng the user to
specify manudly which keywords are of interes, this information could be collected
automatically. Every time a user reads an article, it would be possible to track that
article's keywords and so over time build up arecord of the user's behavior on the site.
This profile could then be used to sdect advertisements using essentidly the same
AdManager Bean. Although there may be ethical concerns about the collection of
information without a user's knowledge or participation, thereis no technica barrier to
doing so.

7.6 Summary and Conclusions

We now have afull working version of the Java News Today site. Aswith any site, more
could dways be done. The keywords could aso be used for an interna search engine. To
do this, one page would ligt dl available keywordsin aform, and these would be used in
awher e clauseto sdect dl articles possessing that keyword.

Similarly, more functiondlity could be added to the editing festures. At some point,
reporters will probably want to be able to make changesto old articles. This could be
easly accomplished by dightly modifying the article cregtion page to retrieve the article

160

based on 1D, populate the form with the current values, and then send it to a page that
does an update. The ability to delete articles could be handled smilarly.

There is aso no page where a new reporter, section, or keyword can be added. These
pages would aso be sraightforward, but because these things happen infrequently, it is
not too much of aburden to require them to be done by issuing SQL commands directly
to the database.

No doubt hundreds of other additions could be made to this basic setup, but that will
aways be true. A Web site should aways be considered awork in progress, and JSPs
make it easy to add new features or pages continualy. Readers are encouraged to
experiment with the site code provided on the CD-ROM.

161

Chapter 8. Working with XML

XML, the Extensble Markup Language, is many things to many people. XML providesa
mechanism to store documentsin aformat that can be read and manipulated as easily by
programs as by humans. XML provides the basis for programs running on different
computers and operating systems to talk to one another over the Web. XML isadso a
language on top of which a huge number of industry-specific data formats have been
creeted, describing everything from corporate workflow to warehouse inventories to
geographic encyclopedias.

To support these and many more functions, a plethora of toolkits has become available to
amplify creating, processing, and manipulating XML documents. In an important sense,
XML provides another way to model data, and so great benefits are to be had by pairing
XML with aview technology, such as JavaServer Pages. The JSP specification itself,
aong with anumber of tags from the sandard tag library, make this pairing possible on a
number of levels.

8.1 A Brief Introduction to XML

Inits most fundamental sense, XML smply provides away to add structure to
documents. Consder the problem that someone might face when e-mailing alis of CDs
to afriend. Clearly, thise-mail will need to contain alist of artists, dbums, and tracks:

the same entities dedlt with when constructing a CD database in Chapter 6. One approach
might be to use tab stops to group informeation together, asin Lising 8.1.

Listing 8.1 Structuring a document with tabs

The Crixshadows

Telemetry of a Fallen Angel (1996)
Descensi on
Monst er s
Jackal - Head

The Mystery of the Whisper (1999)
Isis & Gsiris (Life/Death)
Cruelty

162

Leave nme Al one
W shfire (2002)

Before the Fire

Return (Com ng Hone)

Bi nary
Although thisis certainly easy for ahuman to read, and not even too difficult for a
compuiter, alot of information islacking. The numbersin parentheses indicate the year
the CD was released, but if someone is unfamiliar with that particular convention, the
numbers will appear meaningless. Also, smply looking at any particular word does not
indicate what it represents. "Jackal-Head" could be an artist, album, or track or even the
name of a sore where the CD was purchased, a club where the band played, or a
restaurant. If the recipient does not know to expect alist in exactly this precise form, the

file becomes meaningless because the semantics of the information viaat each piece

means and how the piecesrelate to one another ae not present in thefile,

In addition to that fundamenta problem, this format has no standard. Perhaps one person
will choose to use tab stops of four spaces, whereas someone else will use eight. Maybe
someone will choose to have one new line between each album and two before the Start
of each new artist. Although none of these changes will greetly impact the ability of a
person to read the file, it may complicate the creation of a program to manage such lists.
For smple data, such asa CD collection that dedls with only three kinds of objects and
two relationships, these problems are managesgble. But for much more complex systems,
these problems quickly become insurmountable. In a system that manages hundreds of
relationships, S tab stops might mean one thing one place in afile and another
somewhere else, and determining which is gppropriate cannot be done without mentally
processing the whole document.

XML offersaway out of this nightmare by providing avery smple syntax with which to
add semantic information to documents. This syntax looks very much like HTML, which
isnot surprising, as both XML and HTML have acommon ancestor: SGML (Standard
Generdized Markup Language).

AnHTML tag, suchas<H1>. . . </ H1>, was originaly intended to convey a semantic
meaning: that the body of thetag isalevel 1 header. Over time, this meaning has become
diluted; today, HTML is generdly used to specify how data should be presented rather
than what the data means. In the terms that have been used throughout this book, HTML
has gone from describing amodd to describing aview.

163

Despite HTML's changing role, the fundamental idea of using such tags to denote
meaning is il sound. The only maor piece missng isaway to cregie new tagsto
describe arbitrary kinds of entitiesinstead of afixed set of headers, images, and so on.
Thisiswhere the "extengbl€’ in Extensble Markup Language comesin.

Creating an XML document can be as Smple as deciding what tags to use and how they
relate. Ligting 8.1 could be rewritten in a much better, more structured way usng XML,
asshownin Liding 8.2.

Listing 8.2 Structuring a document with XML

<?xm version='"1.0" encodi ng="iso-8859-1"'>

<artist nanme="The Crixshadows">

<al bum nane="Tel enetry of a Fallen Angel" year="1996">
<track>Descensi on</track>
<track>Monst ers</track>
<track>Jackal - Head</track>
</ al bun®
<al bum nane="The Mystery of the \Wisper" year="1999">
<track>lsis & Gsiris (Lifel/Death)</track>
<track>Cruel ty</track>
<track>Leave ne Al one</track>
</ al bun®
<al bum name="W shfire" year="2002">
<track>Before the Fire</track>
<track>Return (Com ng Home) </track>
<track>Bi nary</track>
</ al bun®
</artist>
Asthisligting shows, the rules of XML are very much like those of HTML, despite some
important differencesin terminology. Fird, the file sarts with a declaration of what kind
of document it is and the character set it isuang.2 In XML, the entities in angle brackets,
or tagsin HTML, are cdlled nodes. Every node has a name, which isthe primary
identifier. Ligting 8.2 hasnodesnamed ar t i st , al bum and t r ack. Nodes are allowed to
have attributes, asin HTML. The al bumnode has the attributes nane and year . The use

164

of theword nane as an dtribute may be a bit mideading but is seen quite often. Here,
name refersto the name of the dbum, not the name of the node.

[2] Listing 8.2 uses |SO-8859-1 in order to support the umlaut. Documents that use only ASCII characters will more

likely use the UTF-8 character set.

Nodes can be nested arbitrarily, but a document can, and must, have one and only one

top-level node, cdled theroot node. In Liging 8.2, thearti st nodeisthe root. It would

not be legd to list the CDs from another artist in this same document by smply adding a

new arti st node. Instead, both ar t i st nodeswould need to be contained within another
node, which might be called col | ect i on. Besdes containing other nodes, anode can

contain ablock of plaintext, asthet r ack nodesin Liging 8.2 do.

More freedom is possible when deciding on the format of an XML document. For

example, the name of each track could be placed in an atribute, such as <t r ack

name="Bi nary"/ >, instead of in the body of the track node. The choiceis completely free,
athough experience will often suggest one way over ancther. Note that if anode has no

body, it must end with adash?TT>/> to indicate that the file does not have a

corresponding close tag.

Ligting 8.2 condtitutes whet is caled awell-formed XML document, meaning that it
followstherules of XML syntax, such as providing asngle root node, properly matching
opening and closing tags, and so on. Beyond following these smplerules, an XML
document can and should have much more information. Listing 8.2 implies certain things
about the nodes that are used, such asthe existence of thear ti st , al bum andt r ack
nodes; that art i st may have anane attribute; and so on. However, these rules are not
explicitly stated; nor does the listing specify any others that may be important to enforce.
Facing an al bumnode withinat r ack nodewould Hill result in well-formed XML, but
this information would now be meaninglessin context.

The mechaniam to fix this is cdled a document type definition (DTD). The DTD
describes dl the nodes that a document will use, their attributes, and their reationships.
Thisinformation, and more, could aso be specified usng an XML schema; however,
schemas are beyond the scope of this book, as are the art and science of creating DTDs.
A possble DTD for describing a CD collection isshown in Listing 8.3.

Listing 8.3 The document type definition

<l ELEMENT artist (al bunr)>

165

<I ATTLI ST artist name CDATA #REQUI RED>

<! ELEMENT al bum (track*) >
<I' ATTLI ST al bum name CDATA #REQUI RED>
<I' ATTLI ST al bum year CDATA #REQUI RED>

<! ELEMENT track (#PCDATA)>

Once such aDTD is created, the document can reference it with asingle line at the top:
<! DOCTYPE artist SYSTEM "cd. dtd">

With theindluson of aDTD, like Ligting 8.3, an XML document can be not only well
formed but also valid. Such adocument not only is syntacticaly correct but aso follows
dl therulesand is therefore semanticaly correct. Hipping tags around in ameaningless
way would now render a document invaid. This check can be done very early, when the
document isfirst parsed, avoiding any potential errors that could result from bad data
getting farther into the system. In addition, providing aDTD will often dlow the detato
be parsed and represented more efficiently. Many XML editorsareadso abletoread a
DTD and can ensure that the rules are followed while the document is being created or
changed.

8.2 Using XML in JSPs

Asan XML document is merely a bunch of text, creating one through a JSP is no more
difficult than creating an HTML document. Ligting 8.4 shows a JSP that retrieves CD
information from a database and generates the CD collection from Ligting 8.2.

Listing 8.4 Generating XML with a JSP

<%@ page content Type="text/xm" %

<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %
<j sp: useBean

id="artist"

cl ass="com awl . j spbook. ch08. Arti st Bean"/ >

166

<j sp: set Property
nanme="artist"

property="*"/>

<col | ecti on>
<artist name="<c:out escapeXnl ="fal se"
val ue="${artist.nanme}"/>">
<c:forEach itenms="${artist.cds}" var="cd">
<al bum nane="<c: out val ue="${cd. nane}"/>">
<c:forEach itens="${cd.tracks}" var="track">
<track nane="<c:out val ue="${track.name}"/>"/>
</c:forEach>
</ al bun
</c:forEach>
<lartist>
</col |l ection>
In amogt al respects, this example isidentica to Ligting 6.6, the major difference being
the use of XML tags hereinstead of HTML. Asit will not be returning an HTML
document, it isimportant that this page notify the browser what kind of data to expect.
Thisis accomplished by the use of the page directive at the top. Tdling the browser that
it will be getting an XML document alows the browser to present the data properly. For
example, both Mozillaand Internet Explorer have a specid mode that dlows usersto
open and close portions of XML documents interactively. In Figure 8.1, which shows
Mozillas view of such data, a+ in front of anode indicates that it may be expanded by
clicking it; conversdy, - means that the node can be collapsed.

Figure 8.1. The browser view of an XML document.

167

Ede Bilw Yo Go Boslowmasks Tesls Wishew Help
Q@l @ @ [% hisp s Acalbimdt BERBE) ghask doapbarti collectian (55 - ‘
= Py . AL — e e aree it

This XML fthe does not appeas to have iy syle nformanon sssecianed with' iz The docamens ree o thown below.

« woollection =
- <Eitis pame="The Cruxsbadows' >
+ <album name="Telemetry of a Fallen Angel' > < allmm=
4 cuftmm meme="The Mysery of tee Whispss™> </ albam>
j = <album mame="Whhme">
<trach mmme="Belore the Fi's =

|

<track same="Retam’s =
<rrack name="Rinasy’ >
<track names"The Seraphs’s =

l =iradk BRiEES 5P >

| <tirack neme="Tears'/ >

=<{rack aeme="Go Away =
<track mame="The 4th Phose’/ =

=itrack pame="Earhiall'y»
<track name="Orphean Wing' =
=track asme="Careval'/ =
<track pames"Resist-RY =
<irack name="Roman’ >
| <track pame="3piral {Dont Fall)5 =
=/ alnami>
CLT) 6l
</ collection =

1]] f= T S = R el
Moreinteresting is that the output of this page contains dl the data from the database,
and the DTD contains dmogt dl the information present in the SQL schemafrom Liging
6.1. This suggests a deep connection between databases and XML, and because there is
dready aknown relationship between databases and JavaBeans, this would suggest that
al three are in some sense interchangeable.
To an extent, thisis true. Just as tools can create beans from databases, tools can create
database schemas from XML DTDs and vice versa. Tools can aso convert between
DTDs and beans, most notably Sun's JAXB toolkit, available at
http://java.sun.com/xml/jaxby/.
All three types of relationships are ways to store and manipulate data. Each one has
strengths that make it well suited to particular tasks. Databases are appropriate for storing
large quantities of dataand retrieving it based on arbitrary criteria. XML is gppropriate
for goring and transmitting relatively smal amounts of data and for data that needs to be
trandated programmaticdly into other forms. Beans, as seen numerous times, are well
suited for moving data from the underlying model to the view or, more generaly, for
providing access to the model from other code.

8.3 Selecting Data from an XML Document

168

If the beans from Chapter 6 were used in a JSP to navigate through a collection of cds,
the page might use an expresson such as

collection.artist[0].al bunf?2].track[5]

A smilar but more powerful expresson language for navigating XML documentsis
XPath, which playsamagor rolein the way JSPs use XML.

Syntactically, XPath resembles traversing a set of beans except that the separator isa
dash (/) instead of adot (.), and arrays start counting from 1, not 0. Therefore, the XPath
expression that does the same thing as the preceding bean expression would be
/collection/artist[1]/al bunf3]/track][6]

Note that the expresson also starts with aleading dash.

XPeth and beans diverge beyond the smple mechanism used to select a specific eement.
One powerful feature of XPath isits ability to specify only part of an expresson, and
such apartid expresson will retrieve dl dements that maich. The smplest example of
thiswould be to leave off the last set of square brackets, asin
/collection/artist[1]/al bunf3]/track

This specifies al tracks on the third dbum of the first artist. Thisidea can be extended by
leaving off more array specifiers. The following, for example, would return al tracks on
dl dbumshy thefirst artist:

/collection/artist[1]/al buntrack

Indexed and nonindexed dements can be freely mixed. The following would return the
second track on each abum:

/collection/artist[1]/al bumtrack[?2]

Portions of a path can even be omitted entirely by using two dashes, asin// t r ack,
which would return al tracks from dbums by dl artigts.

Attributes can be specified by prefacing the name with an a sign (@, so in order to get
the name of thefirg artigt, the expressonwould be/ col | ection/artist[1]/ @ane.
Attributes can aso be used in brackets to regtrict the set of returned data. The expression
/1 al bunf @anme="' W shfire']/track would return al tracks from dl abums named
"Wishfire," of which there happens to be only one.

Much more could be said about XPeth, but thiswill be sufficient for the remainder of this
book. Readers interested in the full specification can find it a

http://mww.w3.org/ TR/xpath; anice tutorid is online at

http://mww.zvon.org/xxIl/X Path T utorid/Genera/examples.html.

169

8.4 Processing XML in JSPs

The standard tag library provides a number of tags that make it easy and natural to move
through XML documents using XPath. An example of thesetagsin actionisshown in

Liging 8.5.

Listing 8.5 Using XPath expressions in a JSP

<v@taglib prefix="x"
uri="http://java.sun.comjstl/xm" %
<v@taglib prefix="c"

uri="http://java.sun.comjstl/core" %

<c:inport
url="http://1ocal host: 8080/ spbook/ chapt er 08/
col l ection.jsp”

var="xm "/ >
<x:parse xm ="${xm }" var="doc"/>

Al bunms by <x:out select="%doc//artist[1]/ @ane"/>:

<x:forEach sel ect="%$doc//artist[1]/al bum' var="al buni >

<l i><x:out sel ect="%al buni @ane"/>

</ x:forEach>
</ ul >
Firdt, note that this example loads a new portion of the standard tag library, whichis
imported with the prefix x. The first new tag used in thisexample, c: i npor t , isnot
technicaly a part of the XML tags but is often used in conjunction with them. The tag
c: i mport works like asuperenhanced verson of thej sp: i ncl ude tag. Amazingly,
c: i nport can grab datafrom anywhere, not only from the ste where the page lives. This
makes it possible for Stes to include content from other Stes, dthough in generd this
should be done only with the other Ste's knowledge and permission. This ability works
especidly well in conjunction with XML, aswill soon be demonsrated.

170

Thec: i nport tag doresthe datait has read in avariable rather than automaticaly
sending it to the user. This makes it possible to process this data before the user seesiit,
which iswhat will be done here. In this case, the data from the collection page from
Lidting 8.1 has been put into a variable called xni . This data could then be shown directly
totheuser withasmple<c: out val ue="${xni }"/>.
Rather than display this data, it isinstead passed to another tag, x: par se, thefirst of the
new XML tags Thistag takes ablock of XML and processesit interndly into aform that
can be used more efficiently. The results of this conversion are stored in yet another
variable, which has been called doc.
Next, data is extracted from thisinterna representation with the x: out tag. Thistag
works somewhat likec: out but obtains the value to display from a combination of the
expression language and an XPath expresson. The JSP XML tags dlow the beginning of
asel ect expresson to start with anumber of expression language identifiers, such asthe
vaiabledoc that was created with the x: par se tag. Immediatdy following that can be
any valid XPeth expression, which will be used to pull data from the variable. Here, the
pages gets the name of the firgt artist in the collection.
Nextisan x: f or Each tag, whichistoc: f or Each what x: out iStoc: out . The
x: f or Each tag will repeat some action for every eement returned by an XPeth
expression, which in this caseis dl dbums from the first artist. Aswith c: f or Each, each
time through the loop, the current vaue can be assigned to avariable, in this case one
cdled al bum
Within the body of the x: f or Each tag isanother x: out , which displays the value of the
nane dtribute for each abum. Because al bumholds each of the XML dbum tags, the
XPeth portion of this second x: out tag does not need the full path starting from the top
but instead needs to know only how to get to the nane attribute from each al bumtag.
Note that it would aso have been possible to write this loop as
<x:forEach sel ect="%doc//artist[1]/al buni @Gane"
var =" nane" >

<x:out select="$nane"/>
</ x: forEach>
Thisloop would have the effect of looping over dl abum namesingead of over dl
abums. Thisworks, as dl the page will be showing is the name, but if it had to show
both the name and the year the album was released, the page would have had to loop over
the albums and then use two x: out tagsto display the two different attributes.
Thex:if,x: choose, x: when, and x: ot her wi se tags do essentialy the same things as
their counterparts from the c library, except that each can take an XPath expresson

171

indead of avaue from the expression language. This functiondity was covered in
Chapter 4 and so will not be repeated here.

8.5 Formatting XML

Ligting 8.5 does two separate but reated things. It pulls out a chunk of an XML
document, using the XPath expresson/ / arti st [1] / al bum and then builds some
HTML out of the vauesin the XML in the body of thex: f or Each. This second part,
trandating XML into another format, is o common and so important that a whole new
language?span class="docEmphass'>XSLT (Xtendble Stylesheet Language

Trandformations) \@s developed to make it easier.

This language uses many of the ideas that have dready been discussed. To begin,
consder what would be needed in order to find every artist's name from a CD collection
inan XML document and output the string "Albums for" followed by the name, enclosed
inan H1 tag. Thiswould pose no chadlenge: Smply specify the set of nodes to loop over
withan x: f or Each tag,usng/ / arti st asthe st of items. Then, withinthex: f or Each
tag, obtain the desired string, udng <x: out sel ect =" @ane"/ >.

XSLT takes these same concepts but replaces the idea of selecting a set of tags and then
iterating them, substituting with the nation of patterns. Each clause of an XSLT file
pecifies apattern to find in the XML file, such asdl artigs, dl dbumswith agiven
name, or any other possibility XPeth provides. A provided output template may include
elements sdected from the XML that matched the input. For example, the XSLT that will
format artist names as desired is

<xsl:tenplate match="artist">

<h1>Al buns by <xsl:val ue-of sel ect="@ane"/></hl>
</ xsl:tenpl at e>
Thislooks like the corresponding JSP code, with xs| : t enpl at e playing therole of the
x: for Each and xs! : val ue- of replacing thex: out . It isimportant to note the conceptual
difference, however; xs! : t enpl at e isnot an iteration operator and does not perform an
activity for every dement of a sat. Indtead, it provides arule saying that whenever and
wherever the XPath expresson given as mat ch isfound, the body will be processed.
A smilar clause could be added to put dbum namesin leve 2 heeders.

172

<xsl :tenpl ate mat ch="al buni >

<h2><xsl : val ue- of sel ect =" @ane"/ ></h2>
</ xsl:tenpl at e>
However, one more thing must be done to make both of these clauses fit together. The
rulegivenforarti st gpecifiesthat acertain string should result and that no other actions
should be taken. To get it to continue examining the rest of the document, XSLT must be
told to do so, which can be done by adding the following after the string:
<xsl :apply-tenpl ates sel ect="al buni'/>
Thisindicatesthat XSLT should continue processing the al bumeements within the
arti st . Order isimportant here; if xs| : appl y-t enpl at es gppeared before the string,
the result would show first the abums and thenthe artist.
Liging 8.6 rounds out the set of trandations by putting track namesin abulleted list.

Listing 8.6 The full XSLT file

<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl:tenplate match="artist">
<h1>Al buns by <xsl:val ue-of sel ect="@ane"/></hl>
<xsl : appl y-tenpl ates sel ect ="al buni'/ >

</ xsl:tenpl at e>

<xsl:tenpl ate match="al buni' >
<h2><xsl : val ue- of sel ect =" @ane"/></h2>

<xsl : appl y-tenpl ates sel ect="track"/>
</ ul >

</ xsl:tenpl at e>

<xsl:tenplate match="track">
<l i ><xsl : val ue-of sel ect="@ane"/></1i>

</ xsl:tenpl at e>

173

</ xsl :styl esheet >

Note that the rule for al bumalso needsan xsli : appl y-t enpl at es in order to processthe
tracks.

Once an XSLT file has been defined, using it from aJSPisdmod ridiculoudy easy!

Such apageisshownin Ligting 8.7.

Listing 8.7 Using XSLT from a JSP

<v@taglib prefix="x"
uri ="http://java.sun.confjstl/xm" %
<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<c:inport
url ="http://1ocal host: 8080/ spbook/ chapt er 08/
col l ection.jsp"

var="xm "/ >

<c:inport
url ="http://1ocal host: 8080/j spbook/ chapt er08/style.xsl"

var="xslt"/>

<x:transformxslt="${xslt}" xm ="${xm }"/>

In this example, the XML and XSLT filesareloaded usng c: i npor t tags Thenthe
transformation is performed and the result displayed with the new x: t r ansf or mtag. As
the final outcome of the transformation is HTML, the content type need not be set, and a
browser will be ableto render it in the usud way, as shown in Figure 8.2.

Figure 8.2. The result of an XSLT translation.

174

Ed¢ Biw Yiew Gy Boskmaks Teols Wisdew Help
Q @' Q @ [b Aecathos B5800 g sk dupte b Secmatind_collactian
Albums by The Criixshadows

Telemetry of a Fallen Angel

i & Dyscenmon
= Menitsrs E

* Jpchal-Head B

= Frometheus :

& Cleregiory

+ Wialic Aviny

& Mg Formune Renarms

= My World

Falben Ange]

= Honged Mon

& PHFAEY

= Monbyn, My Bufterness

& Daedsiug Flight. ks Fafls

= Saiellice

The Mystery of the Whisper

Ipa & Omne (Lafer Death)

= Cruelty

Leave Me Alone

- fl'.‘.-T.\rl'El'.:l

e

& Conluso
| = Sympathy [for Tomarrow)

A= Lt =i =

In a sense, this process has split the view layer into two smaller components. One, the
XML, provides data from the modd to the view. The second, the XSLT, contains dl the
presentation information. Using pure JSPs, these two actions are typicaly intertwined,
with some bean tags getting data from the mode and various iteration and conditiond
tags munging that data into the desired presentation.
Both of these operations may legitimately be consdered part of the view, and so having
them in the same JSP is not a bad design. However, splitting them into separate
components offers some new possibilities. It is often true that splitting pieces of a
complex system into separate modules makes it easy to add new functiondlity.
In this case, one new piece of functiondity isthe ability to change the gpparence of a
page easly without changing any of the underlying implementation. Listing 8.8 shows an

dternative XSLT file that uses tables to format a CD callection instead of itemized ligs.

Listing 8.8 An alternative style

<xsl :styl esheet version="1.0"

xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :tenpl ate mat ch="al buni >

<t abl e border="1">

175

<tr>
<t d><xsl : val ue-of select="parent::artist/ @ane"/></td>
<t d><xsl : val ue- of sel ect="@ane"/></td>
</[tr>
<xsl : appl y-tenpl ates sel ect="track"/>
</t abl e><p></p>

</ xsl:tenpl at e>

<xsl :tenplate match="track">
<tr><td col span="2"><xsl : val ue- of
sel ect =" @anme"/></td></tr>

</ xsl:tenpl at e>

</ xsl :styl esheet >

ThisXSLT file does nothing for artist nodes. When it encounters an dbum, it creates a
new table, the first row of which will have a column for the artist name and another for
the dbum name. The artist name is obtained with anew kind of XSLT expression:
parent::artist/ @ane. Theparent:: portionindicates that the vaue should be
obtained from the parent node, that is, the node that contains the current one. Because
abum nodes are contained within artist nodes, thiswill get the artist; from there, getting
the name is done as usud.

Now that a second style has been defined, Listing 8.7 can be easily modified to switch
between them, based on user preference, as shownin Ligting 8.9.

Listing 8.9 Allowing the user to choose a style

<v@taglib prefix="x"
uri ="http://java.sun.confjstl/xm" %
<v@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<c:inport
url ="http://1ocal host: 8080/ spbook/ chapt er 08/

176

col l ection.jsp”

var="xm "/ >

<c: choose>

<c:when test="${param style == "list'}">
<c:inport
url="http://1ocal host: 8080/ spbook/chapt er08/styl e. xsl™"
var="xslt"/>

</ c: when>

<c: ot herw se>
<c:inport
url="http://1ocal host: 8080/) spbook/ chapt er 08/

t abl estyl e. xsl "
var="xslt"/>
</ c:otherw se>

</ c:choose>

<x:transform xslt="${xslt}" xm ="${xm }"/>

Thisexample Smply usesac: choose tag to load one of two XSLT filesinto the sl t
vaiable, which will then be used by thex: t r ansf or mtag. The result of formatting with
the table-based XSLT fileisshown in Figure 8.3.

Figure 8.3. An alternative XSLT translation.

177

E]'l' :Er-rl-_.ﬂl."- g\'-']g:‘:::_—}.}.‘:ﬁ:ﬁ_!ﬁ_, e Help

| |k Cotcshadows{Telsmemy 22 Fallen Angell
TeseEnen |
| |¥ansiers

| | Jackal-Hazs
rhr:t

| [k e

¥ 1= Fomie ne 3eunms

| (3 Wodd

1 Failes Angal

| .'-.Huum.' Man

A

j [Py My Bicemess -
| | Juwcel.s Flght. Jearus Fal's

M |5ansl i

| ITt.ru;thﬂ' weThe M:r:-uq of the W-HTJ;?TF
CEE A Ot e Taath)

R e e e A R A

8.6 Java News Today and XML

In order to use these new features, Java News Today will be cresting XML versions of a
few of its pages, notably a stripped-down version of the index and section pages. These
pages will not contain some of the dynamic dements, such asthelogin form or quiz.

Both of these eements can be accomplished with asingle JSP, asthe only differenceis
whether to obtain the article list from the section or the edition. This JSPisshown in

Ligting 8.10.

Listing 8.10 The XML version of INT

<%@ page content Type="text/xm" %
<U@taglib prefix="c"

uri="http://java.sun.confjstl/core" %

<j sp: useBean
i d="current Section"

cl ass="com awl . j spbook. ch07. Secti onBean"/ >

178

<j sp: useBean
id="edition8"
scope="request"
cl ass="com awl . j spbook. ch07. Edi ti onBean"/ >

<j sp: set Property
name="current Secti on"

property="sectionld"/>

<c: choose>
<c:when test="${enpty current Section.sectionld}">

<c:set var="articles"
val ue="%${edition8.recentArticles}"/>
<c:set var="sectionNane" val ue="Java News Today"/>
</ c: when>
<c: ot herw se>
<c:set var="articles"
val ue="${current Section.articles}"/>
<c:set var="secti onNane"
val ue="${current Secti on. nane}"/ >
</c:otherw se>

</ c:choose>

<j avaNewsToday>
<section><c: out val ue="${sectionNane}"/></section>

<articles>
<c:forEach itens="${articles}" var="article">
<article>

<headl i ne>

<c:out value="${article.headline}"/>
</ headl i ne>

<summary>

179

<c:out value="${article.summary}"/>
</ sunmary>
<dat e>
<c:out value="${article.createdDate}"/>
</ dat e>
</article>
</c:forEach>
</articles>

</ j avaNewsToday>

Theblock of code at the top of this example determines whether the user is requesting a
section or the index page, based on whether asect i onl d has been provided. The code
block then stores aligt of articlesin avarigblecaled ar t i ¢l es and asection namein

sect i onName. Thistechnique has not been seen before, but it works very much like the
variables created by thec: i nport tag. Therest of the pageisastandard c: f or Each used
to create the XML.

The god of this XML representation of the Ste is not to replace the existing pages, which
are working well enough asthey are. Instead, this XML layer dlows Java News Today to
offer its content to other sites, aswell asdirectly to users.

As mentioned, thec: i npor t tag can pull pages from anywhere, not just localy. This

means that if another Javasite sy, javamonkeys.com \are interested in giving its users

access to Java News Today's articles, it could import the XML file and then format it
with itsown XSLT filein order to make it mesh seamlesdy with the rest of its Ste.

This ability to provide one Ste's content to other Sitesis caled syndication and is quite
popular. When properly done, it can benefit both sites. In this case, javamonkeys.com can
offer users additiond reasonsto vigt its Ste; in exchange, these additiond users will

learn about Java News Today and may wish to vigit the INT stedirectly. It isdso
possible for sites to charge each other for syndicated content or to swap advertisng
banners.

What makes adl this possbleisthat XML is a standard format. Javamonkeys.com doesn't
need to know anything about JNT's database layout, and INT doesn't need to alow
javamonkeys.com to access its database directly, which could be a security risk.

180

8.7 Summary and Conclusions

XML wraps data in an extensible set of tags so that documents can carry not only the raw
data but dso information about what the data means and how it interrelates. By providing
a standard mechanism to store and transmit data, XML greetly smplifies the process of
communication between different systems or different parts of the same system.

Cresting XML fileswith JSPsis no more difficult than creating HTML; dl the same
principles apply. Once a JSP has constructed an XML representation, this data can be
searched, tested, or iterated, using the X Path language and XML equivaents of many of
the tagsin the ¢ portion of the standard tag library. In addition, XML data can be
trandformed from one form into many others, including HTML, through XSLT.

8.8 Tags Learned in this Chapter

c:inport Importsdatafromany URL and storesit inavariable
Parameters:
url : The URL to load
var : The name of the varigble in which the data should be stored
Body: Optiond; if present, may be any number of c: par amtags, whose vaues will
be sent to the named URL

x: par se Transforms an XML document to an internd form that can be used by
other tags
Parameters:
xn - An expression specifying where the XML text is stored
var : The name of the varigble in which the resulting internal form should be
stored
Body: If no xm parameter is specified, the XML text may be put in the body.

x: out Displays avdue
Parameters:

sel ect : An XPath expression to be evaluated and displayed
Body: Arbitrary JSP code

181

x: f or Each Repeats a section of the page for every itemin an array

Parameters:
i t ems: An expression specifying the array to use, most likdly a bean property
var The name of the variable with which each dement in the array will be
referred

Body: Arbitrary JSP code

x: i f Conditionadly includes a portion of the page

Parameters:
t est : An expression that should be alogicd test of a property, which may
incdlude X Path dements
var : if present, names a varigble in which the result of the expression will be
stored

Body: Arbitrary JSP code

x: choose Includes one of severa portions of a page

Parameters. None

Body: Arbitrary number of x: when tags and, optiondly, one x: ot her wi se tag;
nothing else is permitted

x: when One posshility for anx: choose tag

Parameters:
t est : An expression that should be alogica test of a property, which may
include X Peth dements

Body: Arbitrary JSP code

x: ot her wi se The catch-dl posshility for anx: choose tag. If none of the
expressons inthe when tags evaluateto t r ue, the body of the ot her wi se will be
included.

Parameters: None

Body: Arbitrary JSP code

182

Chapter 9. A Small Cup of Java

At many points throughout this book, examples could be discussed only so far before
running into a boundary. Those boundaries were frequently demarcated by the transition
from the view into the model, but the red issueisthat on one side of this boundary lives
the JSP code and on the other side the unexplored territory of Java code.

In part, this divison has been made deliberately; one of the impetuses for the creation of
JSPs and for separating working into amodel part and a view part was to alow page
authorsto creete interactive, dynamic Web sites without needing to know any Java. But
in another sense, dl divisions between knowledge are arbitrary, and page authors could
benefit from knowing at least some Java

To those who have never programmed before, programming may seem like amystica
black art, beyond the ken of mere mortals. OK, it may be abit spooky, but thereisno
reason why everyone cannot learn to program. This chapter will not teach programming;
nor will it completely cover the Javalanguage. Many good books will do this, including
Introduction to Programming Using Java: An Object-Oriented Approach, Java 2 Update
by David Arnow and Gerald Weiss and The Java™ Tutorial, Third Edition: A Short
Course on the Basics by Mary Campione, Kathy Warath, and Alison Huml (Pearson
Education, 2001). A number of colleges and training centers offer coursesin Javafor
programmers and nonprogrammers.

This chapter will aso not explain how to use Tomcat or any other development
environment. See the documentation for the relevant product for this informetion or the
accompanying CD-ROM for information on setting up Tomcat.

What this chapter will do is introduce enough Java basics to follow the code that appears
throughout the subsequent chapters. These basics should a so be as much Java as most
JSP authors will ever need, athough, of coursg, it is never a bad ideato know more.
Learning to program in Javawill enable JSP authors to creste new beans and other utility
classes, aswdl aswrite serviets instead of JSPs when appropriate.

9.1 Expressions

Conceptudly, an expression issmply a sequence of characters representing avaue. Such
expressons have aready been encountered via the expression language used in many

183

tags. For example, ar ti cl e. aut hor . nanme iSan expresson representing the name of an
author who wrote an article, as used in the Java News Today Site. Expressonsin Javaare
bascaly the same thing, athough their syntax and meaning are different from
expressionsin the tag expression language.

To gart with, hereis an incredibly smple Java expression:

2

Obvioudy, this expression represents the number 2. Expressions can be more complex:
((8 /1 (2 * 4)) + 3) - (8/4)

This expression too represents the number 2. In thisexpression, +, -, * and/ arecaled
operators, asthey perform an operation on two expressions to produce aresult. Ina
numeric context, these operators do the expected things.

9.2 Types

The numbersin dl the previous examples have been integers:. numbers with no decimd
part.2 Dividon on integers works dightly differently from divison on numbersin the red
world. For example, the following evauatesto 3, as 3 isthe largest integer that, when
multiplied by 2, islessthan 7:

Wn computer science, integer, real, and similar terms typically do not mean exactly the same things as the

corresponding terms used in mathematics. For one thing, the set of integersin Javais not infinite.

71 2

If aprogram wanted this to evauate to 3.5, the numbers should be Java doubles, or
double-precison floating-point numbers, instead of integers. Thiswould be expressed by
using decimd points, asin

7.0/ 2.0

This exampleillustrates an important and fundamenta aspect of the Java programming
language. Everything in Javahas a value, such as 2 or 3.1415, and atype. Thiswas dso
true in SQL; when defining a column, it is necessary to assign aname, such as
article_id,aswdl asatype, suchasi nt . If Javaisexpecting an expresson of acertain
typein a particular context, that will restrict the possible vaues that can be used in that
context.

184

Java supports a number of built-in, or primitive, types. We have aready seen doubles and
integers, which Java cdlsints Java can dso manipulate text, usng the st r i ng type.
Strings are represented by surrounding them with quote marks:

"This is a Java string!"

It isimportant to keep in mind thet " 2" and 2 are very different things to Java, even

though they may look the same. Do not be fooled by what they ook like; the types are
different, which iswhat matters.

String expressions can aso be more complex:

"This is a " + "Java string!"

Here, the + operator is used to denote concatenation, which Smply means appending two
strings together. The result of this expresson is the same as the previous one. Thisisthe
only important instance in which an operator does two different things based on the type

of the expresson it is operating on.2 Technicdly, + applied to two doubles does

something different from + applied to two integers, but for the most part, differenceslike
this can be ignored.

2 some languages allow operators to be defined and crested by programmers, alowing for overloading. Javais not

one of these languages.

Under some circumstances, Java automatically converts part of an expresson from one
type to ancther. In the following, for example, the 2 will be interndly converted to 2.0,
and the result of the expresson will be adouble:

7.0/ 2

The full st of type-converson rulesis avaladlein any book on Java, but the generd rule
isthat Java never automaticaly goes from one type to another with less information. The
double-precison floating-point number 2.0 has more information than 2, o this
converson can happen automeaticaly.

Javawill dso automaticaly convert most typesto ast ri ng, when the result of an
expression should beast ri ng. The fallowing expresson will evduateto the string " 22" :
"2" 4+ 2

The second 2 isfirst convertedtoast ri ng, yidding " 2", which will then be gppended to
thefird string.

It isdso possble to convert anumber of one type explicitly into another type, which is
done by specifying the target type in parentheses before the vaue:

(double) 3

This example specifies a double number built from 3, which will be equivdent to 3.0.

185

It isaso possible to do conversons that lose datain thisway, such as

(int) 6.75

Thiswill yidd the value 6, the result of smply chopping off the decima part. Javawould
never perform such a converson autometicaly, but it is perfectly valid for a programmer
to do so.

Thiskind of moving from one type to ancther is caled casting. It may help to think of an
actor being "type cast,"” meaning forced into a particular role. Casting will become very
important once objects and classes have been introduced.

9.3 Storing Values

All the values seen o far have been literal's, meaning that they represent themsdves. Java
also supports variables, which can be thought of as boxes that can contain any vaue and
whose vaue can be changed throughout the course of a program.

Before avariable can be used, it must be declared, which will tdl Java the name and type
of the variable. A typicd declaration might look like

i nt aNunber;

The semicolon designates the end of a Java statement, which isdightly different from an
expression. A statement does something, whereas an expression has avaue.

The preceding statement creates anew "box" caled aNurber , which can hold an integer.
A vaue can be placed in this box with an assignment, which might look like

aNurmber = 2 + 4 - 7;

ThissatsaNunber to-1. Onceit hasavaue, avariable can be used in expressons just
like any other value, such asthe following:

2 - aNunber

Thisrepresentsthe number 2 - (- 1) , which equas 3.

Variables can aso be changed as many times as desired:

aNumber = 1,

aNumber = aNumber + 1;

After these two lines are encountered in a program, aNurber will be2. Note that thisis
darting to look like dgebra, dthough the symbols have a subtly different meaning. In
agebra, the second statement would be meaningless, as a number can never be equd to

186

itsdlf plus 1. In Java, however, this satement means "compute aNurber + 1, which is 2,
and then put that value back in the box cdled aNunber ."

If a statement or expression triesto mix typesin away that Java cannot automatically
resolve, an error will be reported when the programmer tries to convert the program into

aform that can be run. Either of these satements will cause an error:
aNunmber = 2.0;

aNumber = "Hi there";

9.4 Method Calls

Java dlows programmers to create methods, which can be thought of as black boxes with
some number of inputs and one output. Vaues of particular types are dropped into the
inputs, and avaue of a, possbly different, type comes out of the output. If a method
caled max has been defined, which takes two integers and returns the greater of the two,
the following expresson will have the value s:

max(8, 3)

Method calls can be used in other expressions; the following will set aNurber to 10:
aNunber = max(8,3) + 2;

Thevduesgiventoamethod itsarguments @n dso be arbitrary expressons. The

following expressons are both vadid:

max(3+2, 12)

max(11, max(13, 20))

However, the following is not, because max () can take only integer arguments:
max(2, "sone string")

Some methods do not return avalue. These methods can be used as statements. One very
common such method isSyst em out . pri nt | n() . For the moment, don't worry about the
goparently strange name of this method; the important thing iswhat it does: print its
argument to the user's termind or window. This method might be used in any of the
following ways

Systemout.println(2);

Systemout.println(7.3/ 2.1);

Systemout.printin("Hello, world!");

Systemout.println("The current value of aNunmber is " +

187

aNunber) ;

The last one will convert aNunber to asring, gppend thisstringto "The current val ue
of aNumber is", and print the result.

9.5 Conditionally Evaluating Code

Frequently, a portion of a page should be shown only under certain circumstances, for
example, inthe INT navigation, the link to create new articles should be shown only to
reporters. This condition has been handled by thec: i f andc: choose tags Smilar
congtructsin Java alow code to be run only when appropriate.
A number of operators, such as+ and/ have dready been encountered; dl operate on
numbers and produce another number. Another class of operators checks the truth of an
expresson, such as whether one vaue is less than another. Thiswould be expressed in
the way one might expect:
5 < 23
The type of thisexpressonisbool ean; it can have one of thetwo vauest r ue or f al se.
In thisexpresson, thevadueist r ue.
Just like any other expression, any vaue can be replaced by amore complex expression,
possibly including variables or method cdls:
max(aNunber, 17) < anot her Nunber
bool ean expressons can adso be combined with the and and or operators, expressed as
&& and| | , respectively:
(aNumber > 12) && (aNunber < 88)
Thiswill bet r ue if aNunber isgreater than 12 and aNunber isas0 lessthan 88.
It is possible to create bool ean variables and assgn the result of expressions to them, and
S0 on. However, bool ean expressons are most often used in conditionals, Java
congructs that can do different things based on an expresson. Conditionals consist of the
wordi f and abool ean expresson, followed by a statement, then possibly followed by
theword el se and another statement. If the bool ean expressonist r ue, the statement
after thei f will be executed; if not, the statement following the el se will be executed:
i f (aNunber < 0)

System out. println("aNunber is negative");
el se

System out. println("aNunber is not negative");

188

By convention, the statements are indented to make the code more readable. Typicdly,
braces are also placed around the statements, which aids readability. More important, any
statements that are between an opening and closing brace are treated as a single statement.
If a programmer wanted not only to detect whether aNunber were negative but aso to
change it to pogtive if it were, the code might look like the following:
i f (aNunmber < 0) {
System out. println("aNunber is negative");
aNunmber = -1 * alNunber;
} else {

System out. println("aNunber is not negative");

9.6 Evaluating the Same Code Multiple Times

Conditiona statements are control structures, in that they can control the flow through a
program. Another kind of control structures are loops, which can perform the same action
multiple times. In other words, Java provides congtructs that work likethec: f or Each
tag.

The amplest of these congructsis caled awhi | e loop, which performs an action aslong
as aBoolean expression continuesto bet r ue. The following contains dl the code needed
for aprogram that counts from 1 to 10:

int count = 1;

whi l e(count < 11) {

Systemout.println("Count is now" + count);

count = count + 1;
}
Thefirg line creates avariable and setsit to 1. Javais avery expressve language, so
both variable creation and assgnment can be done in one step. Then the whi | e loop will
execute the satements within the braces until count reaches 11. Within the loop, the
vaueis printed and then incremented by 1.
This loop displays acommon pattern: A varidbleis created and initidized, aloop does an
action until the variable reaches a certain vaue, and the vaue is changed within the loop.
Because this combination of steps happens so frequently, another kind of loop, af or loop,

189

meakes it more convenient by doing something for a certain number of times. The
previous code could be rewritten asaf or loop, which would look like the following:
for(int count=0;count<1l;count++) {

System out . println("Count is now" + count);
}
This code does exactly the same thing as the previous example but takes advantage of a
number of shortcuts. Firgt, dl the code affecting the variable i has been moved into the
f or statement. Thisincludes the cregtion and initidization, the Boolean expresson that
checks whether i hasreached 11, and the increment. Another common shortcut isused in
the increment; i ++ mears exactly the samethingasi =i + 1;thatis, i issetto one more
than its current value. The body of the loop isnow smply thepri nt | n Statement.

9.7 Grouping Code

When writing JSPs, it is often convenient to remove a portion of the page and put it in a
separate file, which is then pulled back into the page with aj sp: i ncl ude tag. Doing this
has two good reasons. Firdt, the same file may beincluded by multiple different pages.
Second, it may make the Site easier to understand and maintain if pages are split into
logicd units
The same principles apply to Java code. Often, the same code will be needed in multiple
different places, or it may make sense to identify one smal portion of the overdl task and
move the code that performs that portion off to the 9de. Thisis accomplished by defining
the code as a method, such as the max method discussed when looking at expressions.
A method definition looks something like a variable definition. The mgor differenceis
that a method must declare the types of its arguments, as well as the type of the vdue it
will generate. A method must dso define the set of ingtructionsiit will perform when it is
used, in order to transform the inputs into the output.
A smple method that takes two integers and adds them together could be written as
int add(int a, int b) {

return a + b;
}
The declaration states that this method will be cdled add, that it takes two integers, and
that it returns another integer. Ther et ur n line Sates that the two numbers should be
added and that the value should then be given back to the code that caled the method.

190

This method can be used in an expression, such as

add(12, 8)

The varigblesin the method a and b will be given the values 12 and 8, respectively. The
method will then evaluate, add the two numbers, and return 20.

Methods can contain loops, variable declarations, and anything ese. The following
example shows a method that adds al the numbers between two other numbers and
returns the sum:

int total (int start, int end) {

int total = 0O;

for(int i=start;i<=end;i++) {

total = total + i;

return total;
}
Thevaiablecaledt ot al iscrested and initidized to zero. Then af or loop goes through
al thevaluesbetween st ar t and end. Note that the test here is <=, meaning less than or
equa to, which ensuresthat i will reach end. Each time through the loop, the vaue of i
isadded tot ot al . At theend, thevaueof t ot al isreturned.
Methods that do not return avaue, such asSyst em out . print | n(), have aspecia
return type: voi d. What makesvoi d specid isthat it has no values. An integer can be
any whole number, and aBoolean can bet r ue or f al se, but nothing can be of type

voi d.

9.8 Handling Errors

An exception is generated when a Java Statement or expression encounters a problem
from which it cannot automaticaly recover. An example might be an integer expression
that tried to divide by zero. The result of such acomputation cannot be stored in Java, so
an exception will be generated; if nothing is done, the programwill terminate and report
the error.

191

Sometimes, this behavior is perfectly OK, but more often a program will want to be able
to detect exceptions and correct the problem. This can be done with a control structure
cdledtry and cat ch. A typicd use might look like this

try {
result = value / otherVal ue;

Systemout.println("The result is " + result);
}catch (Arithmeti cException e) {

System out. println("The conputation could not be done");
}
Here, the computationisinthet ry clause. If ot her Val ue happensto be zero, an
Arithneti cExcepti on will be generated. Thiswill cause the program to jump to the
codeinthecat ch clause, after which the program will proceed to whatever follows. If an
exception is generated, the variable e that appears in this example will hold more
information about the exception, including where exactly it happened. The use of this
variable is beyond the scope of this chapter but can be very handy for figuring out why a
program is not working the way a programmer might expect.

9.9 Modeling a Problem with Objects

Javais often described as an object-oriented language. To see what this term means,
consgder aprogram to play a CD, perhaps "Elyrid’ by Faith and the Muse. Traditiona
programming language would divide this problem into a set of steps that the computer
would have to follow:

Search through the shelf for "Elyria"
Removethe CD in its case from the shelf.
Open the jewel case.

Removethe CD.

Pace the CD in the CD player.

Push Play.

o U bk~ wbNhPE

Thisisaperfectly vdid way of programming, but an dternative treats the "things' in this

example as more fundamentd than the actions. The "things' here are the shelf, the CD

case, the CD itsdlf, and the CD player. Each contains a number of methods. To put it

another way, each object "knows" how to do certain things. The CD player can play a CD,

192

the CD case can provide the CD, and the shelf can provide aCD in acase. Using this
approach, the program might be rewritten as:

CDl nCase = shel f.findCD("Elyria");
CD = CDI nCase. get CD() ;
CDpl ayer . insert (CD)

A w Db

CDpl ayer . pl ay()

In thisverdgon, an expresson, such asshel f. fi ndCD(" El yri a") , means"ask the shelf
object to find the CD," and CDpl ayer . pl ay() means"ask the CD player to play
whatever disc it currently contains.”

Often, thinking in terms of objects can make a program much easier to write and maintain.
One advantage of this syle of programming isthet it often hides many cumbersome
detalls. This example has no code that determines whether the CD caseisatraditiond
plastic jewel box or a cardboard case with the CD in adeeve. The object itsdlf hasthe
code to support the get CD() method, so the programmer who smply needsto usea CD
case never needsto think about it. Of course, the programmer who created the CD case
object does need to know how this method should work, but once that code is written, it
becomes much easier for othersto use.

9.10 Objects in Java

Like everything esein Java, each object has an associated type, caled its class. Classes
are created by programmers and contain methods and varigbles. A very smple Java class

might look like this
public class SinpleC ass {

private int val ue;

public void setValue(int v) {

val ue = v;

public int getValue() {

return val ue;

193

}

In this chapter, this isthe first example that is completely vaid Java. This code could be
saved to afile, compiled, and then used in a JSP page.

This class contains two methods and one variable, dthough in classterms, varigbles are
more often cdled fields. The methods and fields look much like the examples used
previoudy, with one addition. Everything in a class has associated with it aleve of
protection, which determines what other code is alowed to use it. Something declared
private, for example, may be used only in the classin which it is defined. In this example,
thefidd val ue can be accessed only from within the methods that are dso defined in this
class. A method or field declared public may be accessed by anyone. Declaring the field
private and the methods public, as the example does, ensures that other classes that use
this dlass mugt go through the methods if they wish to access the fidld. Thisinformation
hiding isavery useful technique. In thefuture, if theval ue were stored in a database
ingtead of in asmple variable, the implementations of get Val ue() andset Val ue()
would need to change, but any programs that used this class would not. Thisis how the
CD case class would hide the details of what kind of caseit is. Aslong as the method
names and types stay the same, programmers can change the way they work without
causing al the code that uses the class to bresk.

Once a class has been defined, it can be used like any other type. Two variables of type
Si npl eCl ass could be created by the statement

Si npl eCl ass a, b;

Thevaridblesa and b arein an interesting Sate after this statement is executed. Clearly,
they both have atype, but they do not as yet have any vaue.

Before they can be used, they must be given vaues, which can be done with the new
operator. Classes may be thought of in some sense as blueprints; new takes that blueprint
and congtructs an instance of that class, which is an object of the appropriate type. Thisis

assmple asthe following:
a = new Sinpl eCl ass();

b = new Sinpl eCl ass();

Now a and b will have values and may be used in any number of ways.
a.set Val ue(12);

b. set Val ue(14);
System out . println(a.getValue() * b.getValue());

i f(a.getValue() == b.getValue()) {

System out. println("The values are identical");

194

} else {

System out.println("The values are different");
}
The conditiond &t the end illustrates an important point: Each indtance has its own copy
of each of the fields defined in aclass. If ablueprint contains the plans for a penthouse
goatment and if severa buildings are constructed from the blueprint, each will haveits
own penthouse.

9.11 Building Objects from Classes

The fact that linesthat build new objects look like method calls, complete with
parentheses, is not a coincidence. Classes may contain constructors, methods that
perform specid actions when an object is built. If a programmer does not explicitly
provide a congtructor, a default one that takes no argumentsiis provided automaticaly.
Writing condiructors is as easy as writing any other method. A congtructor for the
Si npl eCl ass dassmight initidizeval ue as
public SinpleC ass() {

val ue = 12;
}
This congtructor is declared to be public, meaning that any other class or code can
congtruct new instances. Now when new instances are constructed with new, val ue will
start at 12.
Congtructors can dso take arguments:
public SinpleC ass(int startValue) {

val ue = start Val ue;
}
This versgon of the congructor takes an integer and initidizesval ue to that number. This
congtructor could be called with aline of code like
Si npl eCl ass a = new Si npl eCl ass(20);
Congtructors can do amost anything aregular method can, such as contain loops and
conditionals, construct other objects, and so on. The only thing constructors cannot do is
return avaue, asin asense, the object being constructed is the return value.

195

9.12 Sometimes Nothing Is Something

Every object variable, regardless of its class, isdlowed to have a specia value cdled

nul I . InJava, nul | isaspecid vavethat indicates "nothing at dl.” Note thet thisis
different fromtheenpt y st ri ng, which isastring with no characters, often represented
as"" . Thisdiginction isimportant. In the red world, thisis somewhat andogous to the
difference between an empty box and not having abox at dl. Nul | isaconvenient vaue
to use for an object that has not yet been initidized, as a specid "flag” indicating alack of
data, or in many other circumstances. It shows up often in dmost dl red Java programs.
Also notethat nul | isnot of typevoi d.

9.13 Building Classes from Other Classes

Congder acdassthat represents an animd. Such aclass might have fields representing the
animd's gender, life expectancy, weight, preferred environment, and so on.

Now consider aclass representing afish. A fishisaparticular kind of animd, so it will
share many of the characterigtics of the generd animad dlass. A fish will aso have saverd
fields of its own, such asits swvimming speed, preferred water temperature, and so on.
Likewise, a class representing mammals would have severd fiddsin common with the
animal class but probably none with the fish class.

When building a system to dedl with dl these animals, it would be inefficient to have to
recreste everything in the anima class for each specific kind of animd. Javaand other

obj ect-oriented languages get around this problem though inheritance, which dlows one
classto inherit the fields and methods of another. Java does this by alowing one classto
extend another. The outline of the dass definitions for the anima program follows:

public class Animl {
public bool ean isFemale() {...}
public double getWeight() {...}

public void eat(Food soneFood) {...}

public class Fish extends Ani mal {

public doubl e get Speedl nVater() {...}

196

publ i c doubl e get WAt er Tenperature() {...}
}
public class Manmal extends Ani mal {

public int getNunberCOfLegs() {...}

Fish fishy = new Fish();

Mammal aMammal = new Mammal () ;

After this code has executed, f i shy will have dl the methods of the Fi sh class, aswdll
as the methods of the Ani mal class, so an expression likef i shy. i sFemal e() will be
vdid. Likewise, avarmal will have dl the vanmal methods as well as the Ani nal
methods. However, trying to call avanmal . get Speedl nwat er () will result in an error.
Thisideamay be extended further. It would be possble to defineacat class that extends
Manmmal , and aHousecat classthat extends cat , and so on.

It is possible to cast objects to different types, just asit is possible to cast integersto
doubles and vice versa. An object may always be cast to a class from which its class was
extended, so the following would be legd:

Ani mal anAnimal = (Animal) fishy;

Ani mal anot her Ani mal = (Animal) aMammal ;

This operation is called upcasting because it moves the object "up” into amore generd
class. Downcasting, whereby an object is cast into a more specific class, is aso possible
if the thing being cat is of the more redtrictive type. The following two casts are legd:

(Fi sh) anAni mal

(Manmmal) anot her Ani nmal

But thiswould cause aCl assCast Except i on:
(Manmmal) anAni nmal

9.14 Interfaces

In addition to an animal's taxonomy, it is often useful to know whether an animd is kept
as a pet. Pets may have specid fields or methods that untamed animas might not have,
such asaname. Thiswould seemto call for apet class, but thisleads to a problem. The
Housecat class should extend the cat class, but it should now aso extend the Pet class.

197

Some languages do alow this sort of multiple inheritance, but Java does not. Java does,
however, provide something amost as good: an interface.

Interfaces are something like classes but contain no code. Ingtead, an interface will sate
only what methods a classwill provide. When it provides the methods specified in that
interface, aclassis sad to implement the interface. The definitions for the Pet interface

and the cat classfollow:
public interface Pet {

public String getNane();

public void setName(String nane);

public class Housecat extends Cat inplenents Pet {

public String getName() {...}

public void setName(String nane) {...}
}
ThePet interface pecifies two methods but provides no code. The Housecat class
implements this interface, and to do so provides code for these methods.
Because interfaces provide no code, it may not be immediately obvious what purpose
they serve. The answer liesin the way Javatreatstypes. A classthat extends another class
and implements an interface, such asHousecat , hastwo types: cat and Pet . Thus, a
Housecat may be cast into either of these two types. This provides an easy way to ensure
that code makes sense. For example, amethod called buy will purchase apet. This
method would obvioudy take an object of type Pet as an argument:
voi d buy(Pet aPet);
It would belegd to cdl this method on aHousecat but not on another kind of cat, such
as asnow leopard, that does not implement the Pet interface. This ensures that only pet
animals can ever be purchased.
A class can extend only one other class but may implement any number of interfaces. The
makes Javals type system much more powerful than it would be without interfaces.

9.15 Creating Groups of Classes and Interfaces

198

In alarge program, the sheer number of classes may become overwheming, not to
mention the severa hundred classes that are part of the Java core libraries! To help
manage these classes, Javaincludes the notion of packages, or collections of classes,
interfaces, and possibly other packages. One such package, j ava. uti | , contansa
number of generdly useful dasses that programmers may use to make their lives easier.
A commonly used classin this packageis cdled vect or , which may be used to store an
arbitrary number of objects of arbitrary types. To declare avariable of thistype, itis
necessary Smply to include the package name before the class name:
java.util.Vector v = new java.util.Vector();

This can be alittle cumbersome when many classes are used from one or more packages.
To smplify this, aprogram may import one, severd, or dl the classes from a package,
after which the program will need to specify only the class name. So, the preceding

example could be rewritten as
i nport java.util.Vector;

Vector v = new Vector();

All the import statements must gppear at the top of afile containing a Java program. If it
wanted to use severa of the classesfromthej ava. uti | class, aprogram could have a
separate import line for each, or it could get them al with

i mport java.util.*;

The asterisk indicates that dl classesinthej ava. uti | package should be imported.

9.16 Using Java in JSPs

As mentioned, a JSP turnsinto aservlet, and asarvlet issmply a Javaclass. Thisimplies
that page authors should be able to embed Java directly in JSPs and that this Java code
will then be automaticaly carried over into the resulting serviet by the page trandator.
Thisisindeed the case, and the tag that doesthisisj sp: scri pt | et . Any javacode
between <j sp: scriptl et >andtheclosng </ j sp: scri pt | et > will be put, unchanged,
into the servlet. As a convenience, the same effect can be achieved by enclosing code
within<% . .. % tags.

It is possible to use these tags to write information directly to the page, asin

<% out.println("The tine is now. " +

new java. util.Date()); %

199

Thisis acomplete Java statement, including the closing semicolon. The varigble out ,
within a JSP page, refersto a specid output mechanism that writes the enclosed data to
the user or to any custom tag that may be collecting data. This object isthe origin of the
namec: out inthe standard teg library.
Scriptlets can dso introduce control structures:
<% for(int i=0;i<10;i++) { %

Hel | o! <p>
<%} %
Thiswill send Hel | o! <p> to the output page ten times. When the sarvlet is built, the first
linewiththef or will beinjected, complete with the opening brace. Then the hello line
will be added and then the second scriptlet with the closing brace. The result will be a
complete vaid Java block.
A great dedl of care must be gpplied when using scriptletsin this fashion; it isdl too easy
to missaclosing brace or accidently fail to close the scriptlet in the right place, leading to
difficult-to-find problems. In dmost every circumstance, it is preferable to use the
corresponding control tags from the standard libraries.
It isaso possible to get and use beans and access session data from within scriptlets. In
fact, it ispossible to do anything in a scriplet that can be done from a serviet, precisdy
because scriplet code goes directly into the servlet constructed by the page trandator.

9.17 Database Access from Java

Although it is possible to do a great ded of useful things by manudly entering SQL
commands, such asthose from Chapters 6, into an interpreter, the power of a database
increases a thousandfold if its features can be accessed from a programming language.
Traditiondly, this was provided by alanguage-specific and database- specific set of
functions cdled an application programming interface (API). The API conssted of a set
of functions or classes to expose the basic database functiondity. For example, asel ect
function that would be passed some data structures representing the fields and wher e
clause might be provided, and it would return another data structure representing the
returned rows.

One of the fundamenta gods of Javais to make programming independent of hardware,
operating system, and other externa aspects of the environment. This gpproach was
extended to databases with the introduction of the Java Database Connectivity (JDBC)

classes. These classes protect programmers from specific details about which databaseis
being usad by dlowing queries and commands to be written in standard SQL and data to
be retrieved through a standard, unified API. More information about usng JDBC, as
well as databasesin generd, isavailablein JIDBC™ API Tutorial and Reference, Third
Edition, by Maydene Fisher, Jon Ellis, and Jonathan Bruce (Pearson Educetion, 2003).
Thefirg step in usng JDBC isto obtain aJDBC driver for the database being used. A
driver isa collection of classesthat acts as the intermediary between the JDBC classes
and the database itsdlf. Of the many kinds of drivers, it isusualy preferable, when
possible, to use one that is written completely in Java. Before it can be used, the driver
must be loaded into the program. Some JSP implementations have a property filein
which drivers can be specified, but it is dways safe to load the driver manualy by
explicitly loading its class, which can be donewith acdl to Cl ass. f or Nane() .

Once adriver has been loaded, a connection to a database can be obtained. Databasesin
JDBC are specified by URLS, which tend to look something like Web page URLs. The
URL for HypersonicSQL is jdbc:hsgldb, followed by the name of the database. Asal the
examplesin this book will use a database caled jspbook, the URL will be
jdbc:hsgldb:jspbook.

Many driversfor different databases can be loaded and available at the same time, which
dlows a JSP or other Java program to use multiple databases smultaneoudy. Thisis
possible because each driver will be configured to handle a particular type of database
URL.

The connection can next be used to obtain a st at enent object, the object used to issue
queries. Queries comein two basic flavors. those that return results, such asthesel ect
statement, and those that change the state of the database, such ascr eat e, i nsert, and
del et e. Corresponding to this are two methodsin the st at ement class. The

execut eUpdat e() method returns an integer that indicates how many rows were affected,
and theexecut eQuer y() method returnsaResul t Set object, which describes a returned
st of rows and columns.

TheResul t Set class contains methods to iterate through the rows and get the datain
each column. Because Java types do not exactly correspond to SQL types, the methods
that get column data must specify the type of data that is expected. For example, to get
the track length after doing asel ect on the track table, a program would call

getInt ("l ength").Itwouldaso bepossbleto usetheget bj ect () method, which
will return the data as an object. The program could then cast this object to an integer,
string, or other appropriate type. The Resul t Set can aso be used to obtain a

201

Resul t Set Met aDat a object, which will contain information about the fidld names, types,
and other information.

Liging 9.1 shows these ideas in action in asmple command line utility to query the CD
database from Chapter 6. This query may be with no arguments:

java com aw . j spbook. ch09. CdExanpl e

In this case, it will display the names and IDs of dl bumsin the systlem. If it is caled
with one of these IDs as an argument, it will display al the tracks on the corresponding
abum.

Listing 9.1 A Java class that uses JDBC

package com awl . j spbook. ch09;

i mport java.sql.*;

public class CdeExanple {
public static void main(String argv[]) throws Exception{

Cl ass. forName("org. hsql db. j dbcDriver");

Connection db =
Dri ver Manager . get Connecti on(
"jdbc: hsql db: j spbook"

"sa’, ")

Statenent st = db.createStatenment();

try {
I nt eger. parselnt(argv[0]);

} catch (Exception e) {
Systemerr.println("Invalid request");
Systemexit(-1);

}

/1 if the user has asked for detail on an al bum
/1l provide it

Resul t Set rs;

202

if(argv.length > 0) {
rs = st.executeQuery(
"SELECT nane, length fromtrack " +
"WHERE al bumid =" + argv[O0]);

while (rs.next()) {
Systemout. println(rs.getString("name") +

+

rs.getlnt("length")):

}

} else {
/1 No al bumrequested, give a list

rs = st.executeQery("SELECT nane, al bumi d fromcd")

/'l go through the results
while (rs.next()) {
String nanme = rs.getString("nanme");
Systemout. println(rs.getlnt("al bumd") +
'+

rs.getString("name"));

rs.close();
st.close();

db. cl ose();

}

This example closdy follows the pattern described in the preceding paragraphs. First, the
driver classisloaded. The driver isthen used to get aConnect i on, and the Connect i on
isused to create a St at ement .

The class then checks whether details on a specific abum have been requested and, if o,
whether the request isavdid integer. Thisis an important security congderation; without

it, nothing would stop amaicious user from entering a command such as
java com awl . j spbook. ch09. CdExanple "1; delete * fromtracks;"

In this case, the query sent to the database would consist of
SELECT nane, l ength from track

WHERE al bumid = 1; delete * fromtracks;

Some databases will stop processing after the first complete statement, but others will
proceed to the second, wiping out the database. In generd, it is abad ideato pass input
from users directly to the database. Such input should aways be verified fird.
Assuming that the parameter looks valid, a query is constructed to retrieve the track
liging. Thisis submitted to the St at ement , and aResul t Set isreturned. A whi | e loopis
then used to go though each row and get the data from each column.

If the user did not request information on an dbum, a different query isused to get alist
of al currently available dbums. Again, the results are returned asaResul t Set , and a
whi | e loop goes through them.

All the preceding could aso be done within a JSP. As noted earlier, however, itismuch
easer to use the SQL tag library and even easier to use a bean.

9.18 Summary and Conclusions

This chapter isalong way from being a complete description of the Javalanguage but
should be enough to follow the use of Java code throughout this book. Although JSPs
greatly reduce the need to program in Java, anyone with an interest can learn to program,
and mog will find it avery useful skill when writing JSPs aswell as for many other

things. Readers are encouraged to pick up one of the books mentioned in the chapter or to
look up alocd class on programming in Java.

Chapter 10. Writing Beans

Chapter 9 provided a bridge between the world of JSPs and the world of Java. We can
now cross that bridge to explore those most important of Java classes: beand This
chapter describes beans from a programmer’s perspective and shows how to create beans
and make their properties available to JSPs.

10.1 How Beans Are Implemented

Internally, a bean is an instance of a Java class, athough in common terminology, the

classitsalf may aso be referred to as a bean. The most basic kind of bean exposes a

number of properties by following a few simple rules regarding method names. In general,
a bean provides two methods for each property: amethod to get the property and one to

set the property, corresponding directly tothej sp: get Property andj sp: set Property
tags. Together, these methods are known as accessors. Ligting 10.1 shows avery smple

bean with two properties.

Listing 10.1 A simple bean

package com awl . j spbook. chl0;

public class SinpleBean {
private int age;

private String nane;

public int getAge() {return age;}
public void set Age(int age) {this.age = age;}

public String getNane() {return nane;}

public void setNane(String nane) {this.nane = nane;}
}
This bean could be used in a JSP just like any other that has gppeared throughout this
book:

<j sp: useBean

i d="nyBean"

cl ass="com aw . j spbook. ch10. Si npl eBean"/ >

<c:out val ue="${nmyBean. nane}"/>

In generd, for a property named f oo of typet ype, theget method will return an dement
of t ype and will be called get Foo() . The one exception isthat if the type is boolean, the
get method may becdledi sFoo() . For example, if it needs to keep track of whether itis
ready to perform an action, abean might have ar eady property, and the method could be
cdledi sReady() . Whether get Foo() ori sFoo() isused, it isthismethod that iscdled
by thej sp: get Property tag, aswdl asany tag, suchasc: out orc:if, that obtainsa
vaue from abean. Smilarly, theset method will accept an argument of t ype, will be
cdled set Foo(),andwill becaledby j sp: set Property andc: set tags.

Thereis no redtriction on the type; it may be something smple, such as an integer or
String, or it may beaclass or interface type. The type may aso be an array of another
type, in which case the property is caled an indexed property. In this case, the accessor
methods operate on the whole array, and the bean may wish to provide methods to
operate on theindividua dements, asin Ligting 10.2.

Listing 10.2 A bean with an array property

package com awl . j spbook. chl10;

public class ArrayBean {

private String things[];

public String[] getThings() {return things;}
public void setThings(String things[]) {

this.things = things;

public String getThings(int i) {return things[i];}

public void setThings(int i, String thing) {
things[i] = thing;

If an attempt is made to set or get an dement with an index larger than the size of the

array, the method will throw an Ar r ay Qut OF Bounds exception. This could, and probably
should, be made explicit in the definition of the methods. In either case, any cdling class
should be prepared for this exception and should catch and recover appropriately.
Technicdly, thereis no reason why trying to get or set an element outside the array could
not be trapped and handled by the bean, perhaps by creating alarger array and copying

al the existing dementsto it. The JavaBean specification states that the only way to
change the Sze of an array isto usethe array verson of theset method, passngina
larger array. Programmers can weigh the value of adhering gtrictly to the standards

againg the need to catch exceptions esewherein their programs.

Although it is customary to provide both aset and aget method, doing so is not
required. A property that cannot be set is called aread-only property, and one with no
get method is cdled write-only. Read-only properties are fairly common; write-only ones
areless so.

Nothing that has been said so far places any restrictions on what these accessor methods
do. The preceding examples Smply held their propertiesin private variables, but aslong

as the naming conventions are maintained, any other Java class, including a servlet or JSP,
will be able to discover and access the properties. To illustrate this point, Listing 10.3
showsthe Dat eBean that wasused in Ligting 3.2.

Listing 10.3 More complex accessor methods

package com awl . j spbook. ch03;

i mport java.text.*;

i mport java.util.~*;

i mport java.io.Serializable;

public class DateBean inplenents Serializable {
public DateBean() {}

Si npl eDat eFor mat sdf;

public void setFormat (String format) {

sdf = new Si npl eDat eFor mat (f or mat) ;

207

public String getCurrentTime() {

return sdf.format(new Date());

}

This example has both a read-only and awrite-only property, dthough thereisno
fundamentd reason why aget For mat () method could not be provided. On the other
hand, aset Dat e() method would presumably need to dter time, which will not be
possible until Sun comes out with a"Java 2 time traveler's edition.”

This example aso contains an explicit constructor, even though that constructor doesn't
do anything. A bean is alowed to provide as many different constructors as the
programmer wants, but it must have one congtructor that takes no arguments.

10.2 Automatic Type Conversion

Bean properties can be any type; yet for the most part, JSPs ded with strings. Thisis
certainly true of form parameters, which are the entities that are most often passed to
beans set methods. If abean'sset method is expecting an integer and is passed a

St ri ng, aruntime exception will occur. In most common cases, this potentia problem is
trangparently resolved by thej sp: set Property andc: set tags, which will try to
convert the string to an appropriate type. If the method is expecting an integer, the JSP
sysemwill cal | nt eger . parsel nt () to obtain aninteger vaue. If this converson falls,
perhaps because the user has entered a string that cannot be turned into an integer, the
set method will smply not be called. This can be aproblem if some later code expects
that dl the parameters have been set successfully.

There are afew waysto handle this. The first and most obviousisfor dl set methods to
accept strings and do the conversion themsalves. However, amore elegant approach
would be to use a controller to mediate between the form and the bean. Thiswill be done

in Chapter 12.

10.3 How Beans Work

All the JSP/bean functiondlity is built on the ability of one Java classto discover and
invoke methods on another class at runtime. The mechanism that supports this,
introspection, has been built into Java since version 1.1. This extremely powerful
cgpability is missng from many other object- oriented languages, in which everything
must be known in advance; once a program is built, it may have to be changed
sgnificantly to extend it with new functiondity.

Introgpection is possible because alot of information about method names and signatures
isgtored in .classfiles, and certain methods can access and organize this information. An
essy way to see the kinds of information that introspection providesisto usethej avap
utility, which isincluded in the DK (Java Development Kit). Javap isrun from the
command line and isinvoked with the name of aclass. If it isgiven Si npl eBean from

Listing 10.1, Javap will generate the following output:
Conpi l ed from Si npl eBean. j ava

public synchronized class Sinpl eBean extends java.l ang. Obj ect

/* ACC_SUPER bit set */

public int getAge();

public void setAge(int);

public java.lang. String get Nanme();

public void setNanme(java.l ang. String);

public Sinpl eBean();
}
Although j avap does not use introspection to generate this output, the principle is the
same. The utility is able to pull out the names of dl the methods and the type of their
arguments and to return values. From this, a person or a program could infer that thereis
aproperty caled name that isastring, and so on.
Introgpection also provides a mechanism to create a new instance of an object onceits
class has been loaded. This mechanism will congtruct this instance by looking for a
congiructor that takes no arguments, which iswhy the programmer must provide one. As
aconvenience, if aclass contains no congructors a al, Javawill automaticaly provide
one that takes no arguments and doesn't do anything. However, it is aways better to
meake such things explicit.
The classesrelated to introgpection are dl inthej ava. beans andj ava. | ang. refl ect
packages, and the whole process sartswith thej ava. beans. | ntrospector class The
use of these classes is beyond the scope of this book, but readers are encouraged to
peruse the JDK documentation to see how dl thisis accomplished.

10.4 Bean Serialization

Asdiscussed in Chapter 3, one of the remarkable features of beansisther ability to store
an indance of a bean, perhaps containing some locd configuration deta, in afile. As
mentioned, this requires no specid code in the bean; the class must smply implement the
java.io. Serializabl e interface. Ligting 10.4 shows abean with armai n method that
allows instances to be created, saved, and loaded.

Listing 10.4 A bean that uses serialization

package com awl . j spbook. chl0;

i mport java.io.*;

i mport java.util.x*;

i mport java.text.*;

public class Saveabl eBean inplenments Serializable {
private Date createTine;
private String nessage;
publ i ¢ Saveabl eBean() {

set Dat e(new Date());

public void setDate(Date createTine) {

this.createTine = createTine;

public Date getDate() {return createTine;}

public void set Message(String nessage) {

thi s. nessage = nessage;

210

public String get Message() {return nessage;}

public static void main(String argv[])

t hrows Exception

if (argv[O0].equals("-create")) {
Saveabl eBean sb = new Saveabl eBean() ;

sb. set Message(argv[2]);

Cbj ect Qut put St ream out = new Obj ect Qut put St ream
new Fi | eQut put Stream(argv[1]))

out.witeCbject(sh);

out.close();

System out. println("Bean created and saved!");
} else if (argv[0].equals("-load")) {

Cbj ectl nput Streamin = new Cbj ect | nput St ream
new Fi |l el nput Stream(argv[1]));

Saveabl eBean sb = (Saveabl eBean) in.readObject();

in.close();

Si npl eDat eFor mat sdf =
new Si npl eDat eFor mat (" hh: mm ss dd/ MM yy") ;

Systemout.println("This bean was created at: " +

sdf . format (sb. get Date()));

System out. println("This bean says: " +

sb. get Message());
}

}

The code that does the saving and loading does not need to be in the mai n() method of
this class, as any class can read or write saved instances of any other class. Thisiswhat
makes genera bean editors, aswell as JSPs, possible.

Theseri al i zabl e interface does not have any methods; it is enough for aclassto
declare itsdf saridizable. However, such dasses must adhere to one retriction: All the

211

members of a seridizable class mugt themsalves be seridizable, as must their members,
and so on. Mogt of the classes from the core Java libraries that a bean would contain are
sridizable, so thisis not a concern very often.

When a bean does need to have a nonseriaizable member, this member can be declared
transi ent , and the seridization methods will smply ignore this member when saving or
loading. Thismay be desirable even when it is not necessary. For example, if abean will
be used to show the current date, saving its Dat e object in afile may not make sense.
The obvious downgde of transent membersis that they will be in some uninitidized
state, probably nul I, after the bean loads. The seridization mechanism dlows a bean to
"know" when it is being unseridized, so that it can take the opportunity to put its
transent members into some congstent state. To do this, it is necessary only for the bean

to havear eadmj ect () method, which might look asfollows:
private void readObject(java.io. ObjectlnputStream streamnm

throws java.io.| OException, Cl assNot FoundExcepti on

stream def aul t ReadObj ect () ;
. initialize transient nenbers here ..
}
Likewise, abean can know when it isbeing seriaized, in case it needs to do some specid
processing before it iswritten. Thisis done by providingawr i t eObj ect () method. See
the pageforj ava.io. Seri al i zabl e inthe JDK documentation for more details.

10.5 Events

So far, beans have been fairly sdf-contained. When a property is obtained or changed or
when an ingtance is saved or |oaded, the only objects that know about it are the object
that performed the action and the bean itsdlf. Often, it is dedirable for beansto
communicate with one another. For example, a JSP might have abeanthat isused asa
shopping cart and another bean that handles inventory. When a product is placed in the
cart, the inventory bean should be told that one lessitem of this product is avallable for
other shoppers. The JSP could handle this manudly, by calling the gppropriate methods
on both beans. Besides being inconvenient, thiswould risk potentid problems with
programmers forgetting to cal the right methodsin the right order. Instead, beans support
numerous mechanisms to communicate directly with one another.

212

Beanswere originaly designed as graphic components, such as buttons or menus. In this
role, abean would be driven by events, such asauser clicking a button. Other beans
would need to listen for a set of events and react appropriately. Thisleadsto an
event-based communication mechanism being incorporated into the bean specification,
and this mechanism turns out to be useful for server-side programs as well. The shopping
cart might generate, or fire, an event when an item is put into it, and the inventory bean
might listen for this event and react by decrementing its supply.

Event programming is almost as easy as property programming and once again is
expressed mostly as aset of naming conventions. Firs, it is necessary to define aclassto
represent the event. Ligting 10.5 shows an event that represents putting an itemin a
shopping cart.

Listing 10.5 An event

package com awl . j spbook. chl0;

public class PurchaseEvent extends java.util.Event Object {

private String itemNane;

publ i ¢ PurchaseEvent (Obj ect source, String itemNane)

{

super (source);

this.itemNane = it emNane;

public String getltenNanme() {return itenmNane;}

}

Once the event has been defined, it is necessary to define an interface that will listen for
events of that type, such asthe onein Liding 10.6. Listeners are defined as interfaces,
which dlows any classto declare that it will listen for any set of events.

Listing 10.6 A listener interface

package com awl . j spbook. chl0;

public interface PurchaselLi stener

213

extends java.util.EventListener

public void purchaseMade(PurchaseEvent e);
}
Thisinterface has only one method, but it is dlowable for alistener interface to have an
arbitrary number. In areal e-commerce system, the listener might need a second method
to handle a user removing an item from his or her shopping cart. This could go in the
same Pur chaseli st ener interface or in a separate one. In the latter case, the inventory
bean would need to implement both interfaces.
Once the event and listener have been defined, one or more beans can set themsdaves up
as event sources. Thisis done by providing two methods, one of which will add a listener;
the other will remove alistener. The method names will include the type of event, which
will alow introgpection to figure out automaticaly what kinds of events a bean may
generate. Lidting 10.7 shows a shopping cart bean that generates purchase events.

Listing 10.7 A bean representing a shopping cart

package com awl . j spbook. chl10;

i mport java.io.*;

i mport java.util.~*;

public class ShoppingCartBean inplenents Serializable {
public String itens[];

public int nunltens;
publ i c Vector purchaseli steners;
publ i ¢ Shoppi ngCart Bean() {

pur chaseli steners = new Vector();

items = new String[50];

num t ens = 0;

public void setlten(String item {

itenms[num tens++] = item

214

firePurchaseEvent (itemnm;

private void firePurchaseEvent(String item {
PurchaseEvent pe = new PurchaseEvent(this,item;
Enuneration e = purchaseli steners. el enments();
whi | e(e. hasMor eEl enents()) {

((PurchaselLi stener) e.nextEl enent()). purchaseMade(pe);

}

public void addPurchaselLi st ener (PurchaseLi stener p) {

pur chaseli st eners. addEl enent (p) ;

public void renovePurchaselLi st ener (PurchaselLi stener p) {

pur chaseli st eners. renoveEl enent (p);

}

The namesaddPur chaselLi st ener andr enmovePur chaselLi st ener are enough for the
system to figure out that there must be aPur chaseEvent classand aPur chaselLi st ener
interface, and this information could then be used in a graphic bean builder to hook two

or more beans together.

Findly, Ligting 10.8 shows the inventory bean, which can handle purchase events.

Listing 10.8 A bean that represents an inventory and handles purchase
events

package com awl . j spbook. chl0;

i mport java.io.*;

i mport java.util.~*;

public class |InventoryBean

i mpl ements Serial i zabl e, PurchaselLi st ener

215

private static final Integer ONE = new I nteger(1);

private Hashtable inventory = new Hashtabl e();

public void addlnventory(String nane) {
I nt eger count = (Integer) inventory.get(nane);
if(count == null) {
i nventory. put (nane, ONE)

} else {
i nventory. put (nane,

new | nteger(count.intValue() + 1));

}

public void renovel nventory(String nane)

{
I nt eger count = (Integer) inventory.get(nane);
if(count == null) {
return;

} else if(count.equal s(ONE)) {
i nventory.renove(nane);

} else {
i nventory. put (nane,

new | nteger(count.intValue() - 1));

}

public void purchaseMade(PurchaseEvent pe) {

removel nventory(pe. getltenNane());

}

As expected, this class implementsthe Pur chaselLi st ener interface and doesthe
obvious thing when it receives a purchase event.

Even more would need to be donein order to hook the shopping cart to the inventory. In
particular, the shopping cart will presumably live in one or more session scopes, and the
inventory will resde in the application scope. These beans mugt be able to "discover”

216

each other. Numerous other details remain to be filled in, such as how the inventory
should respond if it receives arequest for an item that is out of stock.

10.6 Special Events

In the bean sense, specid events refer to a couple of event typesthat are of particular
interest to bean authors working with JSPs. Thefirst iscaled Pr oper t yChange Event. A
bean may fire one of these any time one of its properties changes, in order to dert other
beans to the change. A property that generatesaPr oper t yChangeEvent whenitis
modified is caled abound property.

A bean can dso refuse to set a property to anew vaue, by generating avet oEvent . This
istypicaly thrown when another object tries to set a property to an unacceptable value.
The inventory bean might throw this exception if someone tried to change the number of
itemsitisholding to 2. A property that can generate a Vet oEvent isknownasa
constrained property.

These two events are defined in the bean specification. The JSP specification defines an
additiond event, Ht t pSessi onBi ndi ngEvent , which can be used to notify abean that it
has been added to or removed from a sesson scope. Recdl that a sesson will end after a
user has not come back to the Site after a certain length of time. When this happens, the
session will be deleted to make room in memory for other sessons, and any datain the
sesson will be lost. However, before the sesson iskilled, dl data objects connected to it
will besent an Ht t pSessi onBi ndi ngEvent , which gives these data objects a chance to
save datato a database or file or to do any other cleanup. Listing 10.9 shows a bean that
savesitsdf when the sesson shuts down.

Listing 10.9 A bean that listens for session binding events

package com awl . j spbook. chl0;
i mport java.io.*;
i mport java.util.x*;

i mport javax.servlet.http.*;

public class SessionBean

i npl ements Serializable, HtpSessionBindingListener

217

private String fil eNane;

private String nessage;

public void setFileNanme(String fil eNane) {

this.fileNane = fil eNane;

public String getFileNane() {return fil eNane;}

public void set Message(String nessage) {

this. ressage = nessage;

public String get Message() {return nessage;}

public void val ueBound(Htt pSessi onBi ndi ngEvent b) {

public void val ueUnbound(Ht t pSessi onBi ndi ngEvent b) {

save();

public void save() {
try {
Cbj ect Qut put St ream out = new Obj ect Qut put St ream
new Fi | eQut put Stream(fil eNane))
out.witeCbject(this);
out.close();

} catch (Exception e) {}

public static void main(String argv[]) {
Sessi onBean sb = new Sessi onBean();
sb. set Fi | eNanme(argv[0]);
sb. set Message(argv[1]);

218

sb. save();

}

An ingtance of this bean may be created and saved in afile with itsmai n() method. A
JSP may then use this seridized bean and change its message property. Some time later,
when the sesson has expired, the bean will save itsdlf, including the current message
string, back into the file. Note that there is no guarantee when thiswill happen. The JSP
engine may expire the sesson after afixed timeout period, when it needs more memory,
or perhaps not until the Web server is shut down.

10.7 Bean Errors

The most common problem when using a bean within a JSP is that introgpection tends to
mask programmer exceptions, making it difficult to see where the problem redlly is. If a
set method throws an exception, the JSP engine will likely print out something cryptic:

java.l ang. reflect. | nvocationTarget Exception

at com sun.jsp.runtine.JspRuntineLi brary.introspecthel per

at com sun.jsp.runtinme.JspRuntineLibrary.introspect

. etc ...

The easiest way to discover the red problem isto put the bodies of dl theset and get
methodsint ry/ cat ch blocks and have the cat ch clause dump the exception to
Systemerr.
Although thiswill cause useful debugging information to be generated, it will leave the
bean in an incongstent state. There is no hard-and-fast rule about what to do in such a
gtuaion. Theset method could leave the property in itslast known State, or it could be
reset to a sengble default. Another possibility isto throw the origina exception. The user
will get an error page, but this might be preferable to getting weird results. Perhgpsin a
future verson of the JSP specification, the JSP engine will ligen for Vet oEvent s, in
which case amethod could fire such an event on receiving an exception.
Another potentia problem concerns seridized instances. Consder what would happen if
aclass contained amember of typei nt , a seridized instance of this class were created,
and then the programmer rewrote the class to make the member a st ri ng. Evenif the
deseridization process were able to build something from this, the result would likely not
be meaningful.

219

To prevent this problem, dl classes and seridized ingtances have an ID cdled the
seri al Ver si onUl D. When an object is deseridized, the ID of the instance is checked
againg that of the dass; if they do not match, an exception will be thrown. The output

from the JSP engine in that case would look something like this:
java.io.lnvalidCl assException: Saveabl eBean;

Local class not conpati bl e:

stream cl assdesc seri al Versi onUl D=8221280906864288240

| ocal cl ass serial Versi onUl D=-8806858158408665433

If afield has changed types, not much can be done about an error like this, and the only
option isto recreate al the seridized instances with the new class. However, some
changes are more benign. For example, adding anew field or method should not affect
the ability to load old data, aslong asit isOK to leave the new fidds in an uninitidized
Sate after loading.

In most classes, the serid verson (UID) valueis not implicit but rather is computed
based on properties of the class. When the class structure changes, so will this value.
However, if old seridized instances should il work with anew dass, an explicit form

of the ID can be provided to make sure the IDs match. In the preceding case, it would be
necessary Smply to tell the class to use the same ID as the stream found, which could be

done by adding the following line to the dlass:
private static final |ong

seri al Ver si onUl D=8221280906864288240L;
If an ID has changed because new members were added to the class, the new version of
the bean could be given ar eadbj ect () method to initidize the new fidds after loading.

10.8 Summary and Conclusions

Beans are nothing more than Java classes that adhere to certain naming conventions.
Beans make properties available by providing get and set methods, which obtain and
modify the property, respectively. Beans may aso be seridizable, meaning that they can
write their dataout to disk and restore it later. Findly, beans may generate or listen to
events, and such events can be used to tie beans together. Of particular interest isthe

Ht t pSessi onBi ndi ngLi st ener interface, which a bean can use to get notified when a
bean in a session scope is about to be retired.

Anyone who can write a Java class can write beans that can be used in JSPs.
Correspondingly, dmost any Java class can be turned into a bean by thinking about what
the class does in terms of properties and exporting those properties with gppropriately
named methods.

221

Chapter 11. Servlets

This book has made many references to serviets. In particular, it has been repeatedly
noted that a JSP fileisturned into aserviet at trandation time and that the resulting

servlet isrun at request time. This means that JSPs and serviets are the same thing.
Asdiscussed in Chapter 1, aservlet isasmal classthat may be thought of as adynamic
extension to a Web server or application server. CGls, by contrast, are external programs
garted by the Web server. This change from externa to interna extensions has a number
of advantages, chief of which is performance. Because a serviet is loaded only once, the
firg timeit is needed and subsequently, it residesin the same Javavirtud machine (VM)
as the Web server or gpplication server; thus, the large overhead of Sarting anew
program for each request is avoided.

This chapter is hot meant to be a comprehensive study of serviets, atopic that could fill a
book itsdf. See, for example, Enterprise Java™ Servietsby Jeff M. Genender (Pearson
Education, 2002), which offers a much more detailed look at servlets and the serviet API.
As JSPs ultimately are serviets, it makes sense for JSP authors to know at least alittle
about what is going on behind the scenes, if for no other reason than to appreciate how
much essier it isto write JSPS

11.1 The Servlet Life Cycle

A CGlI has apretty smplelife. When a user makes arequest, the Web server runsthe
CGlI program. For a Perl program, this means starting up the Perl interpreter, which then
reads the file comprising the program and starts executing instructions, beginning at the
top of the file and moving down. For a CGI written in C or C++, the program starts at its
mai n() method, which then may call other procedures, cregate classes, and so on. In either
case, the Web server communicates al the information about the request through a set of
variables and data sent to the program'sinput. The program generates a response by
printing some headers containing the result's attributes, such as type and length, followed
by the result itsdlf. The CGI program then exits, vanishing from sysem memory asif it
had never existed. If the same CGI has many requests, either al a once or one after the
other, anew instance of the CGI will be created each time.

In principle, servlets could follow the same pattern. A serviet could consist of nothing
morethan aclasswith aser vi ce() method to handle arequest. Each time arequest
camein, anew ingance of the servlet would be created, and itsser vi ce() method would
be cdlled. Ingde this method, the class could make calls to get request information, and it
could return results by printing the headers and the resulting HTML page, just asa CGl
does.

This process would save the overhead of loading the class each time but is till very
inefficient. The serviet APl can best be understood by starting from this model and seeing
what improvements could be made.

Fird, it is unnecessary to create a new instance for every request. The Web server needs
to create only asingle instance and can then cdl thisinstancesser vi ce() method for
each request. For thisto be possible, theser vi ce() method could not use any globa data
or write to acommon output stream. If globa data were used to hold the request, input
would be jumbled if two or more requests camein at the sametime. Likewisg, if asngle
output stream were used, the output of multiple smultaneous requests would be
intermingled.

The solution to this problem is to have the Web server passin unique instances of objects
representing the request and response each timeit calstheser vi ce() method. This
might seem even worse than congtructing anew sarvlet, but in fact doing it thisway has
advantages. For one thing, the Web server would likely need to do this work anyway, as
different requests must be kept isolated from one another. Second, the request and
response objects will typicaly be much smpler than the serviet object, so it will be easer
to build them. By the way, if the notion of arequest object sounds familiar, it should.
Thisis the same object from which information about the request was obtained in Liging
4.7 and which contains data that is in the request scope.

Now that the servlet will be constructed only once, a further optimization can be made.
Consder aCGl that uses adatabase. Each timeiit is started, it will need to reestablish a
connection to the database, because a CGI has no way to hold onto a connection between
the timeit is shut down and the time it starts up again. However, as a sarvlet never exits,
it needs to open this connection only once. The sameistrue for many other kinds of
initidizations, such as building some auxiliary classes or setting some variables to known
defaults. Thismeansthat dl the initidization code can be taken out of theser vi ce()
method and put into a separate method: i ni t () . The Web server will cal thei ni t ()
method once when the serviet isfirst loaded, and after that it may call theser vi ce()
method multiple times.

If servlets |lasted forever, those two methods would be the only ones needed. However, a
servlet may be retired in a number of ways. Sooner or later, the Web server will need to
shut down; when it does, it should give dl its servlets a chance to clean up after
themselves, close database connections, and so on. A serviet might also be replaced by a
newer verson, in which case the old verson should aso be given the opportunity to close
any resources it has opened. Servlets handle this possibility by supporting adest roy()
method, which will be called by the Web server when it knows that the serviet will not be
asked to service any more requests. The servlet then has the chance to undo anything it
didinthei ni t () method.

These three methods define the sarviet life cycle, whichisillugtrated in Figure 11.1.

Figure 11.1. The servlet life cycle.

Class loaded

Instantiation Instantiation Instantiation
T
",.-"'
init ()
init () may
be called
several times,
but destrpy{? service() called
called first _ 0 or more times
service ()
destroy()

Finalization and
Garbage collection

24

11.2 The Servlet Class Hierarchy

The mogt basic sarvlet definitionsliveinthej avax. ser vl et package and consst of a
number of interfaces.

The Ser vl et Cont ext interface provides a means for servlets to communicate
with the surrounding Web server or gpplication server. This communication can
take the form of requests for system resources, reports written by the servietto a
log file, and so on. Indirectly, the Ser vi et Cont ext a0 dlows servietsto
communicate with one another, primarily by sending requeststo other pages. This
ishowthej sp: forward andj sp: i ncl ude tagsare implemented, as will be seen
ghortly. Ser vl et Cont ext isimplemented by people writing the Web or
goplication server; servlet authors seldom need to use it directly and never need to
extend it.

The ser vl et Conf i g interface provides a mechanism for the web Server to pass
intidizaion information to the serviet'si ni t () method. Thisinformation takes
the form of pairs of names and vaues, which are sored in a configuration file
cdled web.xml, which is examined more closdly in Appendix B. If asarviet is
going to open a connection to a database, it would not make sense to hard-code
the name of the driver class and the database URL in the servlet's code. Doing so
would make the serviet more difficult to change if a new database were ever
ingtdled. Ingtead, this information could be sent to the servlet as parameters, and
the servlet would use the Ser vi et Conf i g to retrieve these values and act
accordingly. Like Ser vl et Cont ext , thisinterface isimplemented by the authors
of the Web server.

The ser vl et interface defines the three life-cycle methods?T T>init(), service(),

anddestory() awdl asahandful of others.

TheSer vl et Request and Ser vl et Response interfaces encapsulate a request to
the servlet and aresponse from the serviet, respectively. Objects that implement
these interfaces will be passed to the servilet'sser vi ce() method. Codewithin
this method can then usethe Ser vi et Request to determine informeation about the
request, such asits origin, the exact data being requested, and so on. Similarly
codeintheservi ce() method canthen usethe Ser vl et Response to return

225

information about the response, as well asthe data, such asan HTML page, that
comprises the response itsdlf.

Thej avax. ser vl et package aso defines three other classes. Two arethe

Servl et | nput St reamand Ser vl et Qut put St r eamclasses, which servlets use to read and
write data, respectively. Thethird class, Generi cSer vl et , implements both the Ser vl et
and Ser vl et Conf i g interfaces and forms the basis for most redl serviets.

Note that so far, none of this has been specific to the Web or HTTP (HyperText Transfer
Protocol). Thisis ddiberate. Many kinds of servers are on the Web, including FTP (file
transfer protocol), mail, chat servers, games, and so on. Many of these servers will want
the same kind of dynamic extensihility that Web servers have, so it makes sense for each
of these serversto have a corresponding servlet. A multiuser dungeon game might have a
"character" servlet and a"wegpon” servlet; as new kinds of characters and weapons are
introduced, they could be written as servlets and loaded as needed.

The Web- specific versons of the servlet classes are included in a package called

j avax. servl et . htt p. The heart of thispackageistheHt t pSer vi et dass, which
extends Generi cServl et . Thisclasssser vi ce() method takesHt t pSer vl et Request
and Ht t pSer vl et Response objects, instead of the generic versons from the

j avax. servl et package. These variations contain a grest ded of HTTP-specific
information, such as cookies, remote user names, authentication schemes, and so on.
TheHt t pSer vl et classdso has provided abuilt-inser vi ce() method, which looks a
what kind of request has been received and calls an appropriate method to handle it. For
example, if the request werean HTTP GET, the doGet () method will be cdled. Thereis
asoadoPost () method, doDel et e() , and so on. Thisfrees asarviet writer from
worrying about handing specific requests properly. A servlet writer will Smply override
the appropriate do method or methods; if any other kind of request comesin, the serviet
will report that it does not handle that kind of request.

Liging 11.1 shows asmple servlet that shows these methods in use.

Listing 11.1 A simple servlet

package com awl . j spbook. chll;
i nport javax.servlet.*;

i nport javax.servlet.http.*;

i nport java.io.*;

226

public class HelloServlet extends HttpServlet {

private String nessage;

public void init(ServletConfig sc)

t hrows Servl et Excepti on

super.init(sc);
message = sc.getlnitParaneter("nessage");
if (message == null)

message = "Hello, world!";

public void doGet(HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void doPost (Htt pServl et Request req,
Ht t pSer vl et Response res)

throws | OException, Servl et Excepti on

handl e(req, res);

public void handl e(Ht t pServl et Request req,
Ht t pSer vl et Response res)

throws | OException, Servl et Excepti on

res.set Status(res. SC_ K);
res.set Content Type("text/htm");

PrintWiter out = res.getWiter();

227

out.println("<HTM>");

out. println("<HEAD><TI TLE>A servl et </ TI TLE></ HEAD>") ;
out. println("<BODY>");

out.println(nmessage);

out. println("</BODY>");

out.println("</HTM>");

out.cl ose();

public void destroy() {

return;

}

After the serviet isloaded, itsi ni t () method will be caled. This method will look for a
parameter to display as the response; if no such parameter is provided, a default will be
used. Note that thei ni t () method startsby cdling super . i nit (), whichwill ensure
that dl the behind-the- scenes setup is done properly.

This sarvlet does not overridetheser vi ce() method, so the default one will be usad.
Consequently, any GET or PoST methods will be handled by the corresponding method,
and any other kind of request will result in an error. In this case, the response to both GET
and PosST requests will be identica, so both of these methodscal handl e() , whichis
responsible for handing the request.

First, handl e() sets someinformation about the response it isreturning. In particular, it
specifies that the request succeeded by setting the status code to SC_ oK, and it specifies
that HTML datawill be returned. Then handl e() obtainsaPrint Wi t er object, which it
uses to print the page. Even on apage assmple asthisone, al thosepri nt Statements
can be a burden and a hasde, which is one reason it is so much easier to write JSPs.
Thefact that out was used asthe name of the Pri nt Wi t er iSno mere accident! The
name was chosen because this object is basically the same kind asused by thec: out tag
to send the vaue of an expression to the page, dthough thiswill have to be clarified a
little when discussing tags in more detail in the next chapter.

This servlet has nothing to clean up when it is decommissioned, so thedest r oy ()
method smply returns. In fact, this method is not needed here a al but isincluded for
the sake of completeness.

228

Two exceptions are declared by the methodsin this serviet. Thel OExcepti on isa
generd exception thrown whenever there is a problem with the input or output of data,
which could happen if the user clicks the browser stop button before receiving thefull

page or if anetwork problem occurs.

The other exception, Ser vi et Except i on, provides ameans for servlet authors to indicate
that the servlet has run into a problem while processing, athough this serviet never

actudly throws one. However, if the servlet author decided that failing to provide a
message was a critical error, i ni t () could throw aser vl et Except i on indtead of setting
message to adefault value. This exception could be constructed with a message
describing the problem, and this message would end up in alog file

A sarvlet can provide additiona information by throwing a subclass of

Servl et Exception: Unavai | abl eExcepti on. TheUnavai | abl eExcepti on comesin
two flavors. permanent and temporary. The permanent version tells the Web server that
this servlet cannot continue, and the Web server will consequently never cdl the serviet's
init() orservice() methodsagan. Onthe other hand, if aserviet throwsthe
temporary verson, it may include atime interva in seconds. The Web server will wait

for the specified period of time and will then cal the method that threw the exception.
Thisisuseful if aserviet discoversthat aresource it needs, such as a database, has
become unavailable. The chances are good that the database will be restarted shortly, at
which point the servlet can reconnect and continue working. In the meantime, however,

the servlet need not try to handle requests, which will only put alot of unnecessary

burden on the network.

11.2.1 More about Requests

In the broadest sense, the Ht t pSer vl et Request interface defines everything thereisto
know about the request. Some of this information isfairly sraightforward, such asthe
name of the machine from which the request was issued or the browser thet is being used.
However, afew kinds of information warrant further discusson.

One important kind of data provided by the request object isthe list of cookies sent by the
browser. Cookies are small pieces of data that a Web Ste can send to abrowser, which
the browser is then expected to send back to the Web site on subsequent requests.
Cookies have anumber of properties, including their domain, which indicates to which
systems the cookie should be sent; their path, which indicates for which URLs within that
domain the cookie should be sent; and a maximum age, which indicates how long the

cookie hasto live. Once the time has passed, the cookie will no longer be sent back to the
Web site and will probably be deleted from the browser's cookie repository.

In the serviet APIs, cookies are represented by the javax.serviet.hitp class, which contains
al the preceding information and possibly additiond fields. Thelist of cookies may be
obtained from the request object by cdling itsget Cooki es() method, which will return
an array of dl the cookies the browser sent with the current request.

Internally, JSPs and servlets aso use a specia cookie to keep track of sessons. HTTPis
by nature a statel ess protocol, meaning that no information is preserved between requests.
In order to implement sessions, al the information about each sesson is stored
somewhere in memory, and a specid key is used to look up the datardevant to a
particular user's sesson. Thiskey is passed in acookie, so each time the user makes a
request, the key will be sent dong, and the JSP engine can then retrieve this cookie and
use it to access the relevant sesson data

Some users distrust cookies, so the serviet APl provides an dternative way to passthe
key back and forth. Thisis done by rewriting each URL to include the key. For example,
a user without cookies who tries to access http://somesite.com/apage.jsp might be
redirected to something like
http://somesite.com/T01010mC0673157862957708/apage.jp, where the additional
information contains the sesson key. Any links on the page should be relative, such

as .../something/another pagejp, so that when the user follows the link, the portion of the
URL that contains the session key will be preserved.

The request object can inform a servlet or JSP whether the user's session is stored in a
cookie or aURL, by using two methods called i sRequest edSessi onl dFr om Cooki e()
andi sRequest edSessi onl dFr omJRL() methods. The request can aso provide access to
the sesson itsdf, which we will discuss further when we look at using scopes from

savles.

Ligting 11.2 shows asarvlet that prints dl its cookies, as well as some information about
the current sesson.

Listing 11.2 A servlet that gets cookie and session information

package com awl . j spbook. chll;
i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport java.io.*;

230

public class CookieServlet extends HttpServlet {
public void doGet (HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void doPost(HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Exception

handl e(req, res);

public void handl e(Htt pServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Exception

res.setStatus(res. SC_ XK);
res.set Content Type("text/htm ");

PrintWiter out = res.getWiter();

out.println("<HTM.>");

out. printl n("<HEAD><TI TLE>Cooki es</ Tl TLE></ HEAD>") ;

out. println("<BODY>");

Cooki e cooki es[] = req. get Cooki es();

if(cookies == null || cookies.length == 0) {

out.println("You have no cookies");

} else {

231

out .

out .
out .
out .
out .

out.println("<TH>Val ue</ TH>");

println("<TABLE>");

println("<TR>");

println("<TH>Name</ TH>") ;
println("<TH>Domai n</ TH>") ;
println("<TH>Pat h</ TH>") ;

out.println("<TH>Max Age</ TH>");

out.println("</TR>");

for(int

out.println("<TR>");

out .
out .
out .
out .

out.

println("<TD>"
println("<TD>"
println("<TD>"
println("<TD>"
println("<TD>"

out.println("</TR>");

}

cooki es[i]
cooki es[i]
cooki es[i]
cooki es[i]

cooki es[i]

out.println("</TABLE>");

i =0; i <cooki es.length;i++) {

get Name() + "</ TD>"):
get Domai n() + "</ TD>");
getPath() + "</ TD>");
getValue() + "</ TD>");
get MaxAge() + "</ TD>");

i f(req.isRequestedSessionldvalid()) {

i f(reqg.isRequest edSessi onl dFronCookie()) {

out.println("This session is froma cookie");

}

i f(req.isRequestedSessionldFromJRL()) {

out.println("This session is fromthe URL");

}

} else {

out.println("There is no session associated ");

out.println("with this request");

232

out.println("</BODY>");
out.println("</HTM>");

out.cl ose();

}

Structuraly, this serviet closaly resembles the one from Ligting 11.1; the mgor difference
isthat here, thesarviet hasnoi nit () or dest roy() methods. Ingdethehandl e()
method, the cookies are obtained from the request object and printed. The serviet then
checksfor a current valid sesson and, if so, determines whether it came from a cookie or
was written into the URL.

When this example isfirg run, the user will not have any cookies, so the output will be
rather sparse. The output can be made more interesting by cresting a servlet that will
issue cookies, which will be done in the next section.

11.2.2 More about Responses

TheHt t pSer vl et Response interface isin some ways the mirror image of the request
interface. The request interface has information about the request that the servlet is meant
to read but cannot change. The response object is where the servlet can write information
about the data it will send back. Whereas the mgority of the methods in the request
interface sart with get , indicating that they get avaue, many of the important methods

in the response start with set , indicating that they change a property. Note how even
these interfaces adhere to the usua naming conventions for beans.

Two of theseset methods have aready been encountered: one that sets the status code
and one that sets the content type. The status code indicates the status of the response.
Idedlly, thiswill usudly be sc_ok, indicating that the request succeeded normaly and

that the page data will follow. Other codesinclude SC | NTERNAL _SERVER ERROR, which
indicates a problem internal to the Web server. Thisisthe code that resultsin "error 500"
messages such asthe onein Figure 2.1. A complete list of codes supported by HTTPis
induded inthe Ht t pSer vI et Response interface.

The content type indicates what kind of datawill be sent back to the user. The page
directive uses this same mechanism, as was done in Chapter 8 to specify that some
examples were returning data of typet ext / xni . Itisnow clear how this directive works,
it amply generatesaset Cont ent Type() cdl intheresulting servlet, just as has been

233

donein Ligting 11.2. A servlet could aso send out plain text by setting this type to

t ext/ pl ai n Or even generate an image by setting this to something likei mage/ brp.

In addition to these two methods, a servlet can indicate how much dataiis coming back by
using theset Cont ent Lengt h() method. This attribute is set in relatively few pages these
days, but whenever possible, its use is encouraged, as it can help the browser know when
it can close the connection to the server and stop showing the throbbing "N or spinning
e

The request object can aso add new cookies by caling the addCooki e() method. This
method can take as an argument a brand new cookie, or an existing cookie can be
obtained from the request, modified, and then sent back to the user.

The other important method in the request interfaceisget Wi ter (), which returnsa
Print Wi ter,which the serviet then usesto send its data. Normdly, thisis the preferred
waly to send data back to the user, asthePri nt Wi t er classisconvenient to use, aswell
as automatically handling some internationdization issues. If it is going to be sending

back binary data, the serviet may instead wish to use the Ser vI et Qut put St r eamclass,
which can be obtained by caling get Qut put St reant() . Thisclass containsa
write(byte[]) method, whichisided for sending bytes of datathat should not be
interpreted or dtered in any way by either the browser or the server.

It isimportant to note that &l the header information, such as the content type and length,
must reach the browser before any of the data. This makes sense, as the browser will not
know what to do with this data until it receives dl the header information. Under most
circumstances, therefore, al the response's set methods must be called before anything is
printed to ether Ser vi et Qut put St reamOr Print Wi ter.

To be completdly accurate, the output from the serviet is buffered, meaning thet it is held
in memory until a certain amount has accumulated, and then it isal sent to the user &
once. Thisis done for the sake of efficiency, as sending data across the network has alot
of overhead and is best done asinfrequently as possible. This means that new headers can
be st until the buffered content is transmitted, which can be determined with the

i sConmi tt ed() method, which returnst r ue if any data has been sent to the user. To be
on the safe Side, though, it is strongly recommended that al headers be sent before
garting to send any data.

Listing 11.3 shows how aservlet can usethe Ht t pSer vl et Response to add a new cookie
and st avariety of other information.

Listing 11.3 A servlet that sets cookies

234

package com awl . j spbook. chll

i nport javax.servlet.*;
i nport javax.servlet.http.*;

i nport java.io.*;

public class ResponseServl et extends HttpServl et
public void doGet(HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public voi d doPost (Htt pServl et Request req,

Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void handl e(Ht t pServl et Request req,

Ht t pSer vl et Response res)

throws | OException, Servl et Excepti on

StringBuffer text = new StringBuffer();

String nane = req. get Paraneter (" nanme");

String val ue = req. get Paraneter ("val ue");

if(name == null) {
name = "Acooki e";

}

if(value == null) {

235

val ue = " Acooki eVal ue"

text.append(" <HTM.>");

t ext . append(" <HEAD><TI TLE>A servl et </ TI TLE></ HEAD>") ;
text. append(" <BODY>");

t ext . append("<P>Added a cooki e whose nane is: ");

t ext . append(nane);

text.append(" with a value of: ");

text.append(val ue);

text.append(" </ P>");

text. append(" <FORM ACTI ON=\ "r esponse\ " METHOD=\"GET\ " >"
t ext. append("<P>Nane: ");

text.append("<I NPUT TYPE=\"TEXT\" NAME=\"name\"></P>");
t ext.append("<P>Val ue: ");

text.append("<I NPUT TYPE=\"TEXT\" NAME=\"val ue\"></P>");
t ext . append(" <P><I NPUT TYPE=\"SUBM T\ " ></P>");
text.append(" </ FORM>") ;

text.append(" </ BODY>");

text.append(" </ HTM.>");

String html = text.toString();

res.set Status(res. SC_ XK);
res.set Content Type("text/htm ");
res.set ContentLength(htm .l ength());

Cooki e cooki e = new Cooki e(nane, val ue) ;
cooki e. set MaxAge((int) SystemcurrentTineMIlis() +
1000 * 60 * 10);

res. addCooki e(cooki e) ;
PrintWiter out = res.getWiter();

out.print(htm);

out.cl ose();

236

}

The cookie cregtion itsdlf is Sraightforward; the cookie is smply constructed and sent to
the user with the addCooki e() method. The cookieis s&t to last for 10 minutes by setting
its maximum age to the current time plus 10 minutes, expressed in milliseconds.

This servlet dso sets the content length. In order to do this, the serviet must buffer the
output interndly, which it does by using the st r i ngBuf f er . The code would have been a
little cleaner if it had used a st r i ng and the + operator, but the st ri ngBuf f er classis
generdly much more efficient2

[2] Buffering data internally is the only way to determine the content length reliably, but it is grossly inefficient even

whena St ri ngBuf f er isused. Thisiswhy so few pages bother with the content length at all.

Thissarvlet dso illudtrates the use of the get Par ant er Val ues() method, which contains
information about dl the data that aform has sent to the servlet. This method is dso used
behind the scenes by JSPs, as thisis what populates the par ammap often used in
expressions.

11.2.3 Convenience Methods

Most of the time, serviets will send out formatted HTML, in which case they will st the

status to SC_OK. However, a servlet might generate two other common kinds of responses:
errors and redirects. Error pages are al too common; they contain a numeric code

indicating the kind of error and, usudly, a short, cryptic message telling the user that

something went wrong. Rather then setting the status to the appropriate code and printing

the error text, aservlet can smply usethesendEr r or () method. This message takes an

integer representing the error code and a string to use as the error text. Thistext will be
enclosed by <body></ body> tags, which makesthings alittle easier for the serviet

programmer. A typica use might look something like
res. sendError(res. SC_| NTERNAL_SERVER_ERROR,

"Yi kes, something went awy! Please check back later.");
Redirectstdl a browser that the page for which it has asked has moved to anew URL;
the browser will respond by asking the appropriate server for the new URL. This
technique is common for preventing links from getting sde, but it isalso used to send a
user to adifferent page, based on a certain condition. For example, a user who triesto
access a page without having the permission to read it can be sent to a page explaining
what to do in order to obtain that permission.

237

Ht t pSer vl et Response provides amethod, sendRedi rect (), to make redirects easier to
use. It takes a Single gtring as an argument, which should contain the URL to which the

user should be sent. UnlikethesendEr r or () method sendRedi rect () doesnot takesa
string describing why the user is being sent esewhere, asin practice, the user will never

have a chance to read this message before the browser |oads the new page. Further,
sendRedi rect () doesnot need a status argument, as the status is assumed to be
SC_MOVED_TEMPORARI LY. A typica usefor this method would look like this

res. sendRedi rect ("http://ww. brunchi ng. cont") ;

The URL should be complete and cannot be relaive, unlike an HREF. Most browsers will
correctly handle ardative redirect, but thisis not part of the officid HTTP specification.

11.3 Servlet Events

Often, developers may wish to take certain specid actions at various points during the
life cycle of ether aservlet or the gpplication as awhole. Some of these actions can be
handled by smply adding code to the gppropriate life-cycle method, but other methods
are not available to the generd programmer. One common caseis sesson handling. If an
goplication could determine when a session was being expired, it would be possible to
move data from the session into a database before it disgppeared forever. Likewise,
knowledge of when a sesson was being created would make it possible to move data
from the database into the sesson. The result would be sessions thet are effectively
immortd, providing a seamless experience for the user.

This could be achieved in many ways, but a naturd mechanism is dready provided by the
JavaBean specification by way of events and listeners, as discussed in the preceding
chapter. The ideaisthat the servlet engine will fire off an event representing various
activities, and programmers can build listeners to capture and act on these events.
Conceptudly, thisworks just like any other bean event; it is smply a matter of
implementing the right listener interfaces and working with the corresponding events. An
outline of the sesson backup lisener isshown in Ligting 11.4.

Listing 11.4 The outline of a session listener

package com awl . j spbook. chl1;

238

i nport javax.servlet.http.*;

public class BackupLi stener

i npl ements Htt pSessi onAttri buteli stener

public void
sessi onCreat ed(Ht t pSessi onEvent event)

{

Ht t pSessi on sessi on = event. get Sessi on();

[l ... load the session fromthe database ..

public void
sessi onDestroyed(Ht t pSessi onEvent event)

{

Ht t pSessi on sessi on = event. get Sessi on();

/'l ... back up the session to the database ..

public void
attri but eAdded(Ht t pSessi onBi ndi ngEvent event)
{
/1 ... It may not be necessary to do anything
for this

/'l event, but the interface requires it be provided

public void
attribut eRenoved(Htt pSessi onBi ndi ngEvent event)
{
/1 ... It may not be necessary to do anything
for this

/'l event, but the interface requires it be provided

239

public void
attri but eRepl aced(Htt pSessi onBi ndi ngEvent event)
{
[l ... It may not be necessary to do anything
for this

/'l event, but the interface requires it be provided

}

Corresponding interfaces can capture the creation and destruction of aser vi et Cont ext ,
aswell asthe addition and remova of attributesto aser vi et Cont ext or sesson. Seethe
servlet specification for details.

11.4 Forwarding and Including Requests

Many examples throughout this book have sent a user to another page, usng atechnique
very different from the redirects. Thej sp: f or war d tag issort of a"server-side" redirect,
asit ingructs the server to generate a different page rather than tells the browser to load a
new URL. Thisisrdaed tothej sp: i ncl ude tag, which includes the body of one JSP,
HTML page, or servlet in another. Thereis no corresponding way to do this on the client
Sde, at least not one that works on all browsers.

Both of these tags are handled interndly by the Request Di spat cher class, which, asthe
name implies, can digpatch arequest to another resource in the system. It doesthis
through two methods cdled, appropriately enough, f or war d() andi ncl ude() . Both of
these methods take as arguments the request and response objects that the caling serviet
was passed. As might be expected, these objects will end up getting passed to the target
savlet'sser vi ce() method. Listing 4.14 showed a JSP that used aj sp: f or war d tag and
input from the user to send the user one of three pages. Ligting 11.5 shows how a serviet
would accomplish the same thing.

Listing 11.5 A servlet that forwards requests

package com awl . j spbook. chll
i mport javax.servlet.*;

240

i nport javax.servlet.http.*;

i nport java.io.*;

public class DispatchServl et extends HttpServlet {
public void doGet(HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

Servl et Cont ext sc = get Servl et Context();
Request Di spat cher rd;

String which = req. get Paraneter ("which");

if(which !'=null) {
i f(which.equals("red")) {
rd = sc. get Request Di spatcher("/chapterll/red.jsp");
rd. forward(req,res);
} else if(which.equals("green")) {
rd = sc. get Request Di spatcher ("/chapter1l/green.jsp");
rd. forward(req,res);
} else if(which.equals("blue"”)) {
rd = sc. get Request Di spatcher ("/chapter1l1/ bl ue.jsp");
rd. forward(req,res);
} else {
res.sendError(res. SC_| NTERNAL_SERVER ERROR
"A page was requested that does exist!");
}
} else {
res.sendError(res. SC_| NTERNAL_SERVER_ERROR,
"No destination page was specified!");

}

}

Thewhi ch parameter must be provided by aform or within the URL. The easiest way to
see this page in action would be to direct a browser to

"/ chapter 11/ di spat ch?whi ch=red".

241

It isimportant to redize that once the target page finishes, thef or war d() method will
return, and the calling servlet will regain control. However, the output stream will have
been closed, so the servlet should not try to set new headers or send new data. It can clean
up any global resources, if necessary. The caling servlet dso cannot print any data before
cdling f or war d() , because the target page will likely set one or more headers, and as
observed previoudy, this may not work if data has dready been sent. A smilar retriction
gopliestothei ncl ude() method. When including a page, the included page cannot set
any headers, because the servlet cdling i ncl ude() may have dready printed data.

11.5 Using Scopes from Servlets

Chapter 3 discussed the various scopes in which beans can live. Although these scopes
are usudly accessed by setting the scope fiddinaj sp: useBean tag, they can dso be
accessed through scriptlets or through code in a servlet. Ligting 11.6 shows aservlet with
a counter, which works much like the JSPin Liding 3.8 did.

Listing 11.6 A servlet with a page counter

package com awl . j spbook. chll

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport java.io.*;

public class Counterl extends HttpServlet {

private int count;

public void init(ServletConfig sc)

t hrows Servl et Exception
super.init(sc);
count = O;

public void doGet (HttpServl et Request req

Ht t pSer vl et Response res)

242

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void doPost (HttpServl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void handl e(Ht t pSer vl et Request req,
Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

res.set Status(res. SC_ K);
res.set Content Type("text/htm");

PrintWiter out = res.getWiter();

out.println("<HTM.>");

out. println("<HEAD><TI TLE>A Count er </ Tl TLE></ HEAD>") ;
out. println("<BODY>");

out.println("This page has been accessed ");
out.println(count);

out.println(" tinmes");

out.println("</BODY>");

out.println("</HTM>");

count ++;

out.cl ose();

243

Thecount variable hereisnot technicaly in a scope. But because the value will persast
as long asthe sarvlet is active, the variable behaves asiif it were in the application scope
in some sense. However, any vaue that was truly in the gpplication scope could be
obtained from any JSP or other servlet, but count isavailableto only this one sarviet.
Listing 11.7 shows how asmilar counter can be used from the session scope, so the page
will count how often each user has visited it.

Listing 11.7 A servlet with a session-based counter

package com awl . j spbook. chll
i mport javax.servlet.*;
i mport javax.servlet.http.*;

i mport java.io.*;

public class Counter2 extends HttpServlet {

private static final Integer ONE = new I nteger(1);
public void doGet (Htt pServl et Request req
Ht t pSer vl et Response res)

t hrows | OExcepti on, Servl et Excepti on

handl e(req, res);

public void doPost (HttpServl et Request req
Ht t pSer vl et Response res)

t hrows | OExcepti on, Servl et Excepti on

handl e(req, res);

public void handl e(HttpServl et Request req

Ht t pSer vl et Response res)

244

throws | OExcepti on, Servl et Excepti on

Ht t pSessi on t heSessi on = req. get Sessi on();
I nt eger count =

(I'nteger) theSession.getAttribute("count");

res.set Status(res. SC_ K);
res.set Content Type("text/htm ");

PrintWiter out = res.getWiter();

out.println("<HTM.>");
out. println("<HEAD><TI TLE>A Count er </ TI TLE></ HEAD>") ;
out. println("<BODY>");

if(count == null) {

out.println("This is your first visit to this page!");
count = ONE;

} else {

out.println("You have seen this page ");
out.println(count);

out.println(" tinmes before");

}

t heSessi on. set Attri bute("count",

new | nteger(count.intValue() + 1));

out. println("</BODY>");
out.println("</HTM>");

out.cl ose();

}
Thecal toget Sessi on() will creste anew sesson if one has not aready been given to

the current user. Thiswill cause anew cookie to be sent out aong with this page. Once
the session has been obtained, the count variable is accessed with the call to get Vval ue() .

245

Sessons can hold only objects, not primitive types, such asintegers, which iswhy the
vaueissoredasan | nt eger .

Thefird timecount isrequested, it will not bein the sesson, and so nul | will be
returned. This alows the servlet to know that the session is new, so it can print a different
message. This corresponds closdly to putting code or text in the body of aj sp: useBean
tag to do something special when the bean is created.

The variable ONE provides avery dight performance improvement, as it saves having to
congtruct anew | nt eger for every new request, which is both faster and uses less
memory. Technically, this means that every sesson will be sharing the same object, at
least for each user'sfirgt vidt. Because the value of ONE is never changed, this does not
present a problem. However, this does hint at some interesting ways different users could
share changeable data. For example, two users could have the same Hashivap inthar
sessions, and any vaues placed in this map by one user could be seen by the other.

The application and request scopes work almost exactly the same way as the sesson
scope; the only difference is the methods used to store and retrieve objects. For the
request scope, objects are retrieved from the request object by calling

request . get At ri but e(nane) , and objects are stored using the corresponding
request. set Atri but e(name, val ue) .

The gpplication scopeis stored inthe Ser vi et Cont ext object, asonly one of theseisin

any given sarver. A servlet can store data in the gpplication scope by calling
Servl et Cont ext sc = get Servl et Context();

sc.set Attri bute(nane, val ue);

Likewise, oncethe ser vI et Cont ext has been obtained, objects can be retrieved from it
withsc. get Attri but e(name) .

11.6 Using Beans from Servlets

Beans are as useful for servlet authors asthey are for JSP authors but are not quite as easy
to use from a servlet. Obtaining the bean is pretty straightforward, as shownin Liging
11.8, which uses the bean containing dbum information for Souxse and the Banshee's
"Tinderbox" from Chapter 3.

Listing 11.8 A servlet that uses a bean

package com awl . j spbook. chl1;

246

i nport javax.servlet.*;

i nport javax.servlet.http.*;
i nport java.io.*;

i nport java. beans. *;

i mport com awl . j spbook. ch03. Al bum nf o;

public class CDInfo extends HttpServlet {

public void doGet(HttpServl et Request req,

Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public voi d doPost (Htt pServl et Request req,

Ht t pSer vl et Response res)

throws | OExcepti on, Servl et Excepti on

handl e(req, res);

public void handl e(Htt pServl et Request req,

Ht t pSer vl et Response res)

throws | OException, Servl et Excepti on

Al bum nfo tinderbox;

res.set Status(res. SC_ K);
res.set Content Type("text/htm ");

PrintWiter out = res.getWiter();

try {
ti nderbox = (Al bunl nfo) Beans.instantiate(

get Cl ass() . get Cl assLoader (),

247

"tinderbox3");
} catch (Exception e) {

ti nderbox = null

out.println("<HTM.>");
out. println("<HEAD><TI TLE>Al bum | nf o</ Tl TLE></ HEAD>") ;
out. println("<BODY>");

if(tinderbox == null) {

out.println("The bean could not be found or | oaded");
} else {

out. println("<P>Al bum nane:

+ tinderbox. getNanme() + "</P>");
String tracks[] = tinderbox. getTracks();

out.println("<P>Tracks: </ P>");

out.println("");

for(int i=0;i<tracks.length;i++) {
out.println("" + tracks[i]);

}
out.println("</0L>");

out.println("</BODY>");
out.println("</HTM>");

out.close();

}

Thecdl toi nst anti at e() iswhat peformsthe red magic in thisexample. Here, it is
used to load a seridized bean, but if it were given the name of aclassingtead of afile
name, it would have loaded the class, caled its congtructor, and returned a new instance.
Thefirg argument toi nst ant i at e() isacl assLoader , which, asthe nameimplies isa
classthat loads other classes. Every Java class can get access to the class loader that

248

loaded it by cdling get C assLoader (), and any object can get its class by caling
get Cl ass().

Once the bean isloaded, it istreated like any other class. In particular, the bean isfirst

cast into the appropriate type, and then the methods of this class are called directly. This
isnot usng the full power of bean introspection, which can dynamicaly determine the
properties and methods of a bean at runtime. Introspection enables important JSP abilities,
such as the automatic setting of properties from form parameters.

Servlets can do introgpection, but it is beyond the scope of this book, so an example will

not be provided here. More information can be found in a good book on beans or the Java
documentation, starting with the get Beanl! nf o() method of the

j ava. beans. I ntrospect or class, which can befound at
http://java.sun.com/beans/javadoc/java.beans.I ntrospector.html.

Once it has been obtained by acadl toi nst anti at e() , abean may be stored in any of the
four scopes. If abean is placed in ascope by a serviet, a JSP can later retrieve the bean
from the scope through thenormd j sp: useBean tag. The reverseisaso true; any bean
placed in a scope by a JSP can be obtained and used by a servlet. For example, suppose

that Listing 11.7 hed included the following lines
Servl et Cont ext sc = get Servl et Context();

sc.setAttribute("tinderbox",tinderbox);
In that case, a JSP could access this bean with the following tag:
<j sp: useBean id="ti nderbox"

cl ass="com awl . j spbook. ch05. Al buml nf o"

scope="application"/>
Note that when trying to load a seridized bean, aservlet or ISP will look for afilewith
the .ser suffix. In this case, thefile that is loaded will be tinderbox.ser.
The ahility to store beans in the various scopes provides an easy and convenient way for
sarvlets and JSPs to share data and make the transition between them completely
transparent to users. In fact, this feature alows servlets to act as controllersin the
model/view/controller sense.
Typicaly, arequest will first go to aservlet, which will do some complex processng
needed to set up amodel, which will be represented as a bean. Once the processing is
complete, the bean will be placed in the page or request scope. The serviet will then
forward the request to one of severd JSPs, based on various rules. Thefind JSP, in true
view fashion, will be concerned only with presenting the datain the bean. A smple use
of thisdesgnisilludrated over the next severd listings, which demondrate an

249

gpplication that takes alist of numbers and computes their sum and average. Listing 11.9
begins the process with the serviet.

Listing 11.9 A servlet that passes a bean to a JSP

package com awl . j spbook. chll;

i mport java.util.StringTokenizer;

i mport java.io.| OException;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class SumAvgServl et extends HttpServlet {
public void doPost (Htt pServl et Request req,
Ht t pSer vl et Response res)

throws | OException, Servl et Exception

Request Di spat cher rd;
Servl et Context sc = get Servl et Context();

String val ues = req. get Paranet er ("val ues");
SumAvgBean data = new SumAvgBean();

int num = 0;

int sum = 0;

doubl e avg =

0
int count = 0;

/* Add the bean to the request scope */
req.setAttribute("data", data);

dat a. set Val ues(val ues);
if(values == null) {
rd = sc. get Request Di spat cher (

"/chapter 11/ sumavgformjsp");

rd. forward(req,res);

250

} else {
StringTokeni zer st =
new StringTokeni zer(val ues,",");

String token;

whi | e(st. hasMoreTokens()) {

token = st. next Token();

try {
num = | nt eger. parsel nt (t oken);

} catch (Nunber For mat Exception e) {
dat a. set Bad(t oken) ;
rd = sc. get Request Di spat cher (

"/ chapter1l1l/ sumavgerror.jsp");

rd. forward(req,res);

return,;

count ++;

sum = sum + num

dat a. set Sum(sun ;
dat a. set Avg(sum count) ;
rd = sc. get Request Di spat cher (
"/ chapter1l/sumavgresults.jsp");

rd. forward(req,res);

}
This servlet crestes abean cdled dat a and putsit in the request scope. The bean is shown
inListing 11.10.

Listing 11.10 A bean that contains sum and average data

package com awl . j spbook. chll

251

public class SumAvgBean {
private int sum
private doubl e avg;
private String bad,

private String val ues;

public void setBad(String bad) {this.bad = bad;}
public String getBad() {return bad;}

public void setVal ues(String val ues) {

this.val ues = val ues;

}

public String getValues() {return val ues;}

public void setSum(int sum {this.sum= sum}
public int getSum() {return sum}

public void set Avg(doubl e avg) {this.avg = avg;}

publ i c doubl e getAvg() {return avg;}
}
The servlet then checks whether it has been given any vaues. If not, it sends the request
onto sumavgform,jsp, whichisshownin Listing 11.11.

Listing 11.11 A form in which numbers may be entered

<htm >
<body>

Enter a list of nunbers, seperated by comms. | will

conpute their sum and average.

<form acti on="sumAvg" net hod="post">
<i nput type="text" nanme="val ues">
<i nput type="submt">

</fornp

252

</ body>
</htm >

All the numbers provided by the user are passed to the sarvlet in asingle sring. The
sarvlet then bresks this string into individua numbers and sarts to add them. If a
non-number is encountered while processing, the servlet places the offending text in the
bean's bad property and passes the request to sumavgerror.jsp, which isshownin Liging

11.12.

Listing 11.12 A JSP that displays an error value from a bean

<j sp: useBean

cl ass="com aw . j spbook. ch1ll. SumAvgBean"

i d="dat a"

scope="request"/>

<htnl >
<head><title>Error</titl e></head>

<body>

<p>

I was unable to conpl ete your request,

<j sp:getProperty nanme="data" property=

i's not a nunber.

</ p>

<form acti on="sumAvg" net hod="post">
<i nput type="text" NAME="val ues"
val ue="<j sp: get Property
nane="dat a"
property="val ues"/>">
<i nput type="submt">

</fornp

</ body>
</htm >

253

because

"bad"/ >

Findly, if al goeswell, the resulting sum and average are placed in abean, and the
vaues are sent to sumavgresult.jsp, which isshown in Listing 11.13.

Listing 11.13 A JSP that displays results from a bean

<j sp: useBean
cl ass="com awl . j spbook. chll. SumAvgBean"
i d="dat a"

scope="request"/>

<htnl >
<head><titl e>Resul ts</titl e></ head>

<body>

The sum of your nunbers is
<j sp: get Property nanme="data" property="suni'/>

<p>

The average of your nunbers is

<j sp:getProperty nanme="data" property="avg"/>

</ body>
</htm >

If this example were to be written solely as a JSP and a bean, the JSP would need to

handle differentiating between the casesin which input is or is not provided. The JSP

would aso need to handle the error conditions. Both of these Situations would need to be
done ether in Java or with some messy conditiond tags. However, the servlet can handle
both the application logic and what might be cdled the page-flow logic. Thisleavesthe

JSPsto do what they do best: handle the presentation.

11.7 The JSP Classes

Asdiscussed in Chapter 1, a.jsp fileistrandated to a Javafile by the page compiler, and
thisfile isthen compiled and run to produce the page output. Now that servlets have been

254

examined in some depth, it should be clearer whét this trandation entalls. For example,

consder asmple JSP.
Hel | o!

<j sp: useBean
i d="aBean"

class="com aw . j spbook. chll. SoneBean"/ >

<j sp: get Property

nanme="aBean"

property="aProperty"/>
This could turn into a servlet with the following ser vi ce() method:
public void service(HttpServl et Request request,

Ht t pSer vl et Response response)

response. set St at us(res. SC_XK) ;

response. set Content Type("text/htm");

PrintWiter out = response.getWiter();

out.println("Hello!");

com awl . j spbook. chll. SoneBean aBean =
(com awl . j spbook. chll. SoneBean)
Beans.instantiate(getCl ass().get Cl assLoader (),

"com awl . j spbook. chll. SoneBean");

out. println(aBean. get APropety());
}
This service() method above is not precisely what is generated, but it gives a sense of the
kind of trandations that take place. In fact the generated file does not even implement the
Ser vl et interface directly, nor doesit extend Ht t pSer vi et . Indtead it implements an
interface called Ht t pJspPage fromthej avax. servl et . j sp package. Ht t pJspPage
extends another interface cdled JsppPage, and JspPage extends Ser vl et . In other words,
there isawhole hierarchy of JSP-related classes that closely mirrors the serviet hierarchy.
JspPage addstwo additiond methodsto the Ser vl et interface j spinit () and
j spDest roy(),which act much likethei ni t () anddestroy() methodsintheSer vl et

255

class. The only differenceisthat j spl ni t () isnot passed aSer vl et Conf i g Object when
it is caled; however, the ser vi et Conf i g can be obtained viathe get Ser vi et Confi g()
method.

Ht t pJspPage adds one additional method, _j spSer vi ce() . Thismethod is passed an
Ht t pSer vl et Request and Ht t pSer vl et Response, just liketheser vi ce() method.
It isworth noting &t this point thet humans never writea_j spSer vi ce() . Thismethod is
built by the JSP engine, based on the origind JSPfile. If aprogrammer aso provides a
method with this name, there would be a conflict. In practice, thisis not a problem, as

any code that could be put in a service method can be put in ascriptlet in the JSP page.
Thej avax. servl et . j sp package aso provides anumber of classesthat provide
additiona information or make life eeser for developers. Mogt of these classes will be
used only by the JSP engine, but page authors may well want to use the Page Cont ext
class. Aningance of this dassis dways available in a JSP as an implicit object cdled
pageCont ext .

The PageCont ext class provides anumber of utility methods for handling scoped data
and hidesthe details of how various scopes are implemented. This means that instead of
having to know that the request scope isimplemented by the Ht t pSer v et Request class,
the application scopeisin the Ser vl et Cont ext , and asngle method can be used to get
or set data from any scope. These methods follow the naming conventions dready
discussed and are caled get At t ri but e() andset Attri but e() . They work much like
the identically named functionsfrom Ht t pSer vl et Request and Ser vI et Cont ext but
take an additional parameter specifying which scope to use. Listing 11.14 shows a JSP
that uses these methods to create a per session counter, just asLiding 11.6 didina
svlet.

Listing 11.14 A JSP that uses the PageCont ext class

<HTM_>
<HEAD><TI| TLE>Anot her count er </ Tl TLE></ HEAD>

<BODY>
<% | nt eger count = (Integer)

pageCont ext.get Attri bute("count",
PageCont ext . SESSI ON_SCOPE) ; %

256

<% if (count == null) { %
<P>This is your first visit to this page! </ P>
<% count = new Integer(1); %

<%} else {%>
<P>You have seen this page

<%= count % tines before </ P>

pageCont ext . set Attri bute("count",
new | nt eger (count.intVal ue()+1),
PageCont ext . SESSI ON_SCOPE) ; %

<%} %

</ BODY>

</ HTML>

SESSI ON_SCOPE is afinal integer indicating that the methods should use the session scope.
The other scopes have smilar definitions. This code will turninto a Java classthat is

amodt identical to Listing 11.6 but isalittle eesier to write and maintain, if only because

dl thecalstoout . println() areavoided.

11.8 Intercepting Requests

In fulfilling their role as controllers, servlets often need to access arequest before it goes
to aJSP, in order to set up some beans or make a decision about which JSP should be
invoked. The pattern of usng a servlet to do some preprocessing before passing control
to aJSPis so common that it has been formaly introduced into the servlet specification
by way of theFi | t er class.

Theideaisthat every request is dlowed to passthrough afilter chain, whereby each
element in the chain is a class that may manipulae arbitrary data. Often, the last dement
inachanisaJsP.

Normally, onceit hasfinished its task, a particular filter will passthe request to the rest
of the chain, but it isaso possble for afilter to "hijack” arequest and handleit on its
own by generating its own output, issuing a redirect, or disdlowing access. This makes
filterswdl suited to handling security, which will aso be discussed in the next chapter.

257

Before tackling the complex issues of security, hereisa smpler example that illudtrates
yet another way in which pages can display the current date and time. Instead of using a
custom tag, as was done previoudy, this verson uses afilter that adds the data to the
request, asshownin Listing 11.15.

Listing 11.15 A filter

package com awl . j spbook. chll

i mport java.io.| OException
i mport javax.servlet.*;
i mport javax.servlet.http. HttpServl et Request;

i mport java.text.*;

public class DateFilter inplenments Filter {
private DateFormat df = null;
public void init(FilterConfig conf)

throws Servl et Exception

df = new Si npl eDat eFor mat (

conf.getlnitParameter("format"));

public void doFilter(ServletRequest req,
Ser vl et Response res,
Fi | t er Chai n chai n)

throws Servl et Exception, | OException

{
Ht t pSer vl et Request hreq = (HttpServl et Request) req;
hreq. set Attri bute("date",
df . format (new java.util.Date()));
chain.doFilter(req,res);
}

258

public void destroy() {}
}
Like servlets, filters are created when the system starts up; at that point, they can be
initidized through thei ni t () method. Here, a configuration parameter is used to
determine how to format the date.
When arequest comesin, thedoFi | t er () methodiscaled withaser vl et Request and
Ser vl et Response and anew object, caled Fi | t er Chai n, representing the rest of the
chain. Thefilter may then do anything it likes with the request and response and then
should cdl doFi I ter () ontheFi | t er Chai n object to pass the request to the next filter
aong the chain or the final JSP. Note that the filter has no knowledge about what the next
object in the chain will be, which alowsfilters to be connected together as needed. The
order in which filters will be invoked and the set of URL s that will befiltered are
controlled by the configuration file for the Web application, which is discussed in
Appendix B.
If thefilter from Listing 11.15 isingdled, a JSP can display the current time asSmply as
<c:out value="${date}"/>
Usng filters to set up dataiin thisway can avoid alot of the overhead of doing soin JSPs
or having to learn the tagsin an extra custom tag library.

11.9 Summary and Conclusions

The servlet API provides the foundation on which JSPs are built, and understanding this

API can comein handy for page authors. The serviet AP defines alife cycle for serviets,
gatingwithani ni t () method that is cadled when the serviet first loads, aser vi ce()

method thet is called for each request, and adest r oy () method that is cdled before the
savletisretired. Thei ni t () method may alocate resources that requests will later need,

and dest roy() canfreetheseresources. Theservi ce() method is passed arequest and
aresponse object, which it uses to get information about the request, set information

about the response, and send the data.

Servlets can use all the scopes discussed in Chapter 3. Servlets can aso interact with JSPs,
using beans as an intermediary. Typicaly, the serviet will do the computation, build a

bean with the results, and send the bean on to the JSP for formatting, using the f or war d()
method. This provides the cleanest separation between logic and presentation.

259

JSPs are ultimately servlets. Thus, for pages with any significant amount of HTML, a JSP
will amost dways be the preferred means of creating pages, asit is easier to read and
maintain and it avoids dl thepr i nt statements. On the other hand, pages that are
dominated mostly by code expressng page logic may be better off as asarviet, asthis
will avoid having to put everything in scriptlets.

260

Chapter 12. The Controller

So far, little has been said about the controller side of the model/view/controller paradigm.
One reason isthat agreat deal can be done without aformal controller. Without a mode,
there would be nothing to show; without a view, there would be no way to show it. But o
far, it has been possble to muddle aong by putting controller functiondity into one of

the other layers. After dl, the whole Java News Today site was built without a controller.
The site has been able to get away with this only because the models and views have

been pretty closely matched. Most of Java News Today's pages have had a one-to-one
correspondence among page dements, form fields, bean properties, and database fidlds.
The second, and more relevant, reason that controllers have not yet been discussed is that
it would have been impossible to do so without a thorough knowledge of Java. No specid
JSP tags or smilar building blocks can be used to build a contraller; they must be hand
built in Java. Fortunately, an excdlent framework smplifies the task of building such
controllers.

It was dso necessary to understand bean implementations and servlets, as controllers will

mediate between user actions controlled by servletsand JSPs \kich are themsdves

savlets and beans. Therefore, the Java code that comprises the controller must be able

to interface with both of these APIs.

12.1 Some Common Controller Tasks

Before building acontraller, it is necessary to identify what it should do. This can be
determined by examining what has been put but that may not belong in the modd and

view. Many JSPs throughout this book have followed asmilar patern; aform @t of
theview hasanumber of fiddsfor auser to fill in; when the form is submitted, the

vauesareloaded intoabean themode \aj sp: set Property tags. Then another

261

j sp: set Property may set apseudoproperty, such assave, which causes the bean to
write the values to a database.

In this system, the beans are doing two unrelated things: modding the conceptud entity
being manipulated, which is good, and taking to forms, which isbad. The latter requires
that the moded and view must look pretty smilar. At the very least, form names must
match property names, but more generdly, developers must think of these two very
different things as connected in some way.

To separate the modd from the view more cleanly, it would therefore make senseto
begin by splitting the bean into two: one that will truly mode the system and the other

that will talk to the form. Doing this dlows a cleaner ddinegtion between the view
elements, consgting of the JSP containing the form and the form bean, and the mode,
conssting of another bean that holds and manages the data to be maintained or modeled.
This digtinction between form data and moded data has already been present in afew
gtuations. Recall Lidting 5.9, which alows a user to add a comment to aJJNT article, and
Liding 7.3, which alows areporter to create a new article. In both of these cases, the
underlying modd needs to keep track of the user performing the action. Thisinformation
was provided by adding hidden fields to the form. In other words, the view was modified
to accommodate the needs of the model, dthough it would have been cleaner to introduce
acontroller that would have added the user information without having to impact the
view.

Looking at the boundary between mode and view in this way provides an opportunity to
gart thinking about error conditions. So far, al the examples have been pretty lax about
the form inputs and have alowed users to enter into fidds any data, even if it did not
make sense. The discussion on Liging 3.5, for examples, mentions that an error would be
displayed if auser tried to add something that was not a number, such asthe string A.
This error would arise even if the user provided something that looks like a number to
humans but not to Java, such as s, 442. 23; without extrawork, Java cannot recognize an
expresson with acomma as a number. Worgt of al, the error displayed is useful to JSP
developers but will be totally unfriendly to any end users.

To addressthisissue, it is now time to start considering the problem of form validation:
ensuring that the user-provided va ues are both legd and sensible for the type of data they
are meant to represent. Also, ameansto report problems back to usersin a useful and
friendly way will be needed. The question then becomes whether this vaidation should

be done in the beans making up the mode or the new form beans that are part of the
view.

262

Becauseit isthe modd's job to store and act on the data, the modd should usudly be
responsible for al vaidation aswell. Certainly, some kinds of vaidation can happen only
in the modd; for example, in an online catalog, the model must check whether an item is
in stock when the user triesto purchase it. Likewise, a bean modeling a caculator that
can do divison should be responsible for ensuring that the denominator is not zero.
However, afew kinds of validation are not intringc to the modd but arise as part of the
way the mode and view communicate. Again consder acalculaior modd, which may
have a method cdled add that takes two integers as arguments. When used directly by a
Java program, this method could not be invoked with the letter a as an argument. In
essence, the Java compiler would do the validation before the modd was ever used.

The dynamic nature of JSPs bypasses this check by the compiler. This check could be put
into the caculator bean by adding to the add method a version that takes strings as
arguments and ensures that they look like numbers before proceeding. However, it has
been repestedly stressed that a view should not need to know the details of how the
model works, yet here the model would be changed, based on the details of the view. One
reasonable compromise isto note that al semantic vaidation must be done in the modd,
which isthe only part of the system that knows what the data means, but that smple
syntactic vaidation can be done by the view, which in this case means by the new form
beans.

The controller'srolein dl this should now start becoming clear. The controller will take
vaues from the form and provide them to the form bean and will then ask that bean to
vaidate them. If the vdidation fails, the controller will send the user back to the origina
form, providing the validation errors. The form can then display these errors and ask the
user to correct them. Once the validation succeeds, the controller will pass data from the
form bean to the model bean, dong with any additiond information, such as the current
user. The controller will then perform the desired action on the mode!, such asinvoking a
save() method, and then send the user to the appropriate page from which to continue.
In addition to moving data from forms to the back-end model, controllers can prepare
beans that are used to move data from the modd to JSPs. For example, the INT article
page expected to be called with an ar t i ¢l el d, which it would then use to load an

Arti cl eBean. The controller can detect that a user is going to the article page and can
prepare the appropriate Ar t i cl eBean on the page's behdf. This meansthat the view will
no longer need to ded with loading or initidizing eements of the mode. Thiswill be
moved to the controller, where it belongs.

Finally, the controller can enforce security policies. For example, it can ensure that only
reporters are allowed to access the article creation page.

263

12.2 Support for Controllers: Struts

It is clear that agreat ded of new infrastructure is needed to support controllers. Means
are needed to associate form beans and controller actions with forms. These controller
actions must know where to send users after successfully completing an action. A way is
needed to send validation errorsto users. Of course, the Java classes to implement the
controller actions must aso be written.

This seems like alot of work, but most of it has aready been done by atoolkit caled
struts, afree, opensource framework from the Jakarta projects, the same fine folks who
built Tomcat. Struts is much more than away to build controllers; it is a complete
gpplication framework containing view dements in the form of custom tags, a controller
framework, and much more. Although this book can cover only asmall portion of what
struts can do, readers are encouraged to find out more at http:/jakarta.apache.org/struts/.
Among the many other services it provides, struts adds another layer between data and
presentation. Up until now, content on a page either could be hard-coded in the page or
come from abean. A typicd exampleisthe CD database from Chapter 6; the name of the
artist was provided by a bean, but the preceding string, Al burms by :, was in the page itself.
Struts takes the gpproach that only structura elements should be part of a JSP, that is,
table cells, paragraph bresks, and so on. All other text, such as messages to users, labels
for form eements, and so on, should live in a common file separate from dl JSPs.
Separating content from structure ensures some level of consistency, as amessage used
on severa pagesis defined in one place. It also makes it easier to make changes, asthere
is no question about where to find a particular message.

Mogt important, isolating al a ste'stext in onefile makesit possible to support multiple
languages and locales eadily. A ste might have multiple versions of such afile. One for
English might contain:

message. ent r y=\Wel cone

nmessage. depart ur e=Goodbye

One for German might contain

nmessage. entry=W | | komen

nmessage. depart ur e=Auf W eder sehen

Using tags from the sruts library or a utility class, adeveloper can refer to

nmessage. ent ry, and the appropriate text will be retrieved, depending on whether the
location has been set to an English-speaking or a Germant spesking locale. Note that the
dotsin the names do not necessarily imply any sort of hierarchy, asthe dotsin bean

264

properties do. Here, the dots are smply a convenient way to group messages mentaly
into convenient units.

12.2.1 Using Struts

Thesarvlet or g. apache. struts. action. Acti onSer vl et , iSthe entry point to struts.
Thissaviet istypicdly inddled such that it will handledl URLsendingin . do. The
servlet reads a configuration file to determine what to do with each URL.

To make this more concrete, let's use struts to rebuild the caculator from Chapter 3. The
full set of messages used by thislittle cdculator isshownin Ligting 12.1.

Listing 12.1 The application messages

pronpt. nunber 1=Fi r st nunber
pronpt . nunber 2=Second nunber

nmessage. resul t=The sumis

butt on. save=Add
butt on. r eset =Reset

but t on. cancel =Cance

error.cal cul ator. m ssi ngl=\

<l i>Pl ease provide a value for the first nunber</Ili>

error.cal cul ator. m ssi ng2=\

<l i >Pl ease provide a value for the second nunmber</Ili>

error.cal cul ator. badl=\

<l i>The first value does not | ook |ike a nunber</Ili>

265

error.cal cul ator. bad2=\

<l i >The second val ue does not | ook |ike a nunber</Ili>

errors. header =\

Pl ease correct the follow ng problem(s) and try agai n:

errors. footer=\

</ ul ><hr >

Next, the mode needs to be defined, which is quite sSmpleand isshown in Listing 12.2.
Listing 12.2 The calculator model

package com awl . j spbook. chl12;

public class Cal cul ator {
private doubl e nunber1;
publ i c doubl e get Number1() {return nunberl;}
public void set Nunber 1(doubl e nunmberl) {
t hi s. nunber1l = nunber1;

private doubl e nunber?2
publ i c doubl e get Nunber2() {return nunber2;}
public void set Nunber2(doubl e nunmber2) {

t hi s. nunber2 = nunber 2;

private double sum
public double getSum() {return suniy}
public void set Sum double sum) {this.sum= sum}

public void conmputeSum() {

266

sum = nunberl1l + number 2;

}

This class has smple properties for the two inputs and the resulting sum, aswell asa
method, conput eSunt() , that will perform the computation. In this case, it would be easy
enough to have the controller compute the sum and soreit by cdling set Suny() , but that
would be inappropriate, as the modd should be responsible for managing al its data
Note that nothing in this bean knows anything about taking vaues from aform or parsng
numbers with commeas or anything dse.

The next thing to build is the bean that will directly interface with the HTML form. This
isshownin Listing 12.3.

Listing 12.3 The calculator form

package com awl . j spbook. chl12;

i mport java.text.Decinal Format;

i mport javax.servlet.http. HttpServl et Request;
i mport org.apache.struts. action. Acti onError

i mport org.apache.struts.action. Acti onErrors;
i mport org.apache.struts. action. Acti onForm

i mport org.apache.struts. action. Acti onMVappi ng;

public class Cal cul at or Form ext ends Acti onForm {
private String nunberl;
public String getNunber1l() {return nunberl;}
public void setNunber1(String numberl) {
thi s. nunmber1l = nunber1;

private String nunber2;
public String getNunber2() {return nunber2;}

267

public void set Nunber2(String nunmber2) {
thi s. number 2 = nunber 2;

public ActionErrors validate(Acti onMappi ng mappi ng,
Ht t pSer vl et Request request)

ActionErrors errors = new Acti onErrors();
Deci mal For mat f =

new Deci mal For mat (" ###, ###. #4#") ;

i f(enpty(nunberl)) {
errors. add(" nunber 1",
new Acti onError(
"error.cal cul ator.mssingl"));
} else {
try {
f. parse(nunber1l);
} catch (Exception e) {
errors. add(" nunber 1",
new Acti onError (

"error.cal culator. badl"));

i f(enpty(nunber2)) {

errors. add(" nunber 2",

new Acti onError (
"error.cal cul ator.mssing2"));

} else {

try {

f. parse(nunber?2);
} catch (Exception e) {

errors. add(" nunber 2",

268

new Acti onError (

"error.cal cul ator. bad2"));

return errors;

private bool ean enmpty(String s) {
return s == null || s.trim().length() == 0;

}

Note that this class extends a struts class caled Act i onFor m In struts terms, each thing
the controller does is considered an Act i on, and datais made availableto an Act i on via
aN ActionForm

TheCal cul at or For mcontains two smple properties to hold the inputs from the form.
These propertiesare St ri ngs, whereas those in the model are doubl es. This makes sense,
as acdculator can add numbers, but the form should alow the user to enter arbitrary text,
including representations of numbers with commeas.

Thecal cul at or For malowstheinputsto be vdidated through theval i dat e() method;
this method is defined in the Act i onFor mbase class and will be caled automaticaly by
sruts when the form is submitted. The method is passed an Act i onMappi ng, astruts class
containing information about the application, dong with an Ht t pSer vi et Request , which
contains the usual request information. Neither of theseis used in this example, but both
are available for more sophisticated kinds of validation.

Theval i dat e() method smply checks that values have been provided for both inputs
and that Javais able to turn the inputs into numbers. This latter test is done by attempting
to parse the databy usng thej ava. t ext . Deci mal For mat class, which here has been
told to alow numbers with commas. For more information about this class and how it is
used, consult the JDK documentation.

If avaueismissng or maformed, anew Act i onError, calederror s, isadded to the
st maintained by the Act i onEr r or s object. The exact text of these error messages

269

comesfromthefilein Lidting 12.1, which means that these errors could be reported in
any language for which afile had been built.

At the end of the method, theer r or s arereturned. Interndly, struts will check this vaue.
If it is empty, there were no problems, and the form can be processed; otherwise, the user
must be informed of the errors and given the opportunity to fix them.

Now that the form bean is completed, it istime to write the class that will implement the
action. Thisisshownin Ligting 12.4.

Listing 12.4 The Acti on handler

package com awl . j spbook. chl12;

i mport java.io.| OException;
i mport java.lang.reflect.lnvocationTarget Exception;
i mport java.text.Decinal Format;

i mport java.util.Locale;

i mport javax.servl et.RequestDi spatcher;
i mport javax.servlet. Servl et Excepti on;
i mport javax.servlet.http.*;

i mport org.apache.struts. action.*;

i mport org.apache.struts.util.x*;

public final class Cal cul atorAction extends Action {
public ActionForward perform Acti onMappi ng nmappi ng,
Acti onForm f orm
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)

t hrows | OException, Servl et Exception
/1 Popul ate the input form

if (form== null) {

form = new Cal cul at or Form() ;

270

request.setAttri bute(mappi ng.getAttribute(),
form;

Cal cul at or Form cal cForm = (Cal cul at or Form) form

/1 Build the nodel

Cal cul ator calc = new Cal cul ator();

cal c. set Nunber 1(get Nunmber (cal cFor m get Nunber 1()));
cal c. set Nunber 2(get Nunmber (cal cFor m get Nunber 2()));

cal c. conput eSum() ;

/'l Store the nodel in the request so the result
/'l page can get to it

request.setAttribute("calc",calc);

return (mapping. fi ndForward("success"));

private doubl e get Nunber(String s) {
Deci mal Format d = new Deci mal For mat (" ###, ###. ##") ;

try {
Nurmber n = d. parse(s);
return n.doubl eval ue();

} catch (Exception e) {
/1 No need to worry about parse errors, the

/] check in the formbean assures us of that!

return 0.O0;

271

}

This class extends another struts class, Act i on, whose per f or () method will be caled
after the form bean successfully vdidates the inputs. This method isinvoked with the
form bean, the same Act i onHandl er that was passed to theval i dat e() method, and the
request and response. The method ensures that there is a valid form bean, constructs an
ingtance of the Cal cul at or mode bean, populatesit, and then finishes the process by
cdling conput esun() . In amore complicated example, the modd bean might come from
adatabase or other repository rather than being constructed within the Act i on. Findly,
the calculator is stored in the request, which sets everything up for the result page to
display the sum, and the name of the result page is returned. This name is not hard-coded
but rather iskept inthe Act i onMappi ng under akey caled success.

That completes the set of classes. It may seem at this point that alot of overhead is
needed to do something as Smple as adding two numbers. However, as the task gets
more complicated, the amount of overhead diminishes proportionaly. A red system
needs form vaidation and away to perform the required actions, and so writing some
amount of Java code is inescapable. The more complex these tasks become, the lighter
the struts framework will seem in comparison, and the advantages of using such a
framework will rapidly become obvious.

Now that the classes are completed, struts needs to be told how to use them. Thisis
accomplished by providing a configuration filethat the Act i onSer vi et readswhen it
dartsup. A minimd verson of thisfileisshownin Ligting 12.5.

Listing 12.5 The struts configuration file

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<I DOCTYPE struts-config PUBLIC
"-// Apache Software Foundation//DTD Struts Config 1.0//EN"
"http://jakarta. apache.org/struts/dtds/struts-config.dtd">

<struts-config>
<f or m beans>

<l-- Calculator formbean -->

272

<f orm bean nane="cal cul at or For nf'
type="com aw . j spbook. ch12. Cal cul at or For ni'/ >

</ form beans>

<acti on- mappi ngs>
<action path="/cal cul ator”

type="com aw . j spbook. chl12. Cal cul at or Acti on"

name="cal cul at or For nf’

scope="request"

val i date="true"

i nput ="/ chapter12/cal cul ator.jsp">

<f orward name="success"
pat h="/chapter12/calc_result.jsp"/>
</ action>
</ action- mappi ngs>

</struts-config>
Thefirg section defines dl the form beans the gpplication will use, which hereisthe
Cal cul at or For mdefined earlier. It isgiven aname, cal cul at or For m which will be
used to reference it from JSP pages and elsawherein thefile.
The next section defines the actions the application will perform. The pat h attribute
defines the URL for which this action will be taken. Recdll that by convention, the
Act i onSer vl et isconfigured to handledl URLsendingin . do, so this clause of the
configuration fileindicates thet Cal cul at or Act i on will be invoked when the user
accesses the URL /jspbook/chapter12/calculator.do. The nanme parameter indicates the
name of the form class to use, which hereisthe name given to the Cal cul at or For min
the previous section. The scope parameter names the scope in which the form bean
should be stored. Using the session scope would alow one bean to collect inputs from a
number of forms spread across many JSP pages. Thisis useful for gpplications that must
collect agreat ded of information before they can perform their actions. Theval i dat e
flags indicates whether theval i dat e() method of the form bean should be called before
cdling theper f or () method of the handler. Findly, thei nput parameter indicates the
JSPfile that contains the form. Thisvalueisusad if there are any errors vdidating the
form and the user must be sent back to correct them.
Theact i on tag may contain any number of f or war d tagsthat give symbolic namesto
pages. This example has only one, caled success, which matches the name used in the

273

Cal cul at or Act i on. Usng symbolic names like this makes it much easer to modify the
way Stes behave. If it was ever decided that after successfully computing a sum the
caculator should send the user somewhere other than calc_result.jsp, it would smply be
necessary to change the configuration file. The Javafile would not need to be changed or
recompiled.

Here, struts has been configured with two pages: calculator.jp, which is marked as the
input, and calc result.jsp, which is marked as the "success’ URL. Struts will determine
which of these pagesis appropriate, based on the input it has received, and will then use a
Request Di spat cher toincludeit. This means that regardless of whether the user is
looking at the input or result pages, the URL will be caculator.do. This one URL thus
controls access to these two pages, further judtifying the use of the term controller.

That completes congtruction of the modd and controller, and struts will even smplify the
task of completing the view. Theinput pageisshown in Lidting 12.6.

Listing 12.6 The input page

<v@taglib prefix="bean"

uri ="http://jakarta.apache. org/struts/bean" %
<v@taglib prefix="htm"

uri="http://jakarta. apache.org/struts/htm" %

<htm :htm >

<head>
<title>Calculator</title>
<htm : base/ >

</ head>

<body>

<htnm :errors/>

<htm : form action="/cal cul ator">

274

<bean: nessage key="pronpt. nunberl1"/>

<htm :text property="numnber1"/>

<bean: nessage key="pronpt. nunber?2"/>

<htm :text property="numnber2"/>

<htm : subm t >
<bean: nessage key="button. save"/>

</htm :submt>

<htm :reset>

<bean: nessage key="button.reset"/>
</html :reset>
<htm : cancel >

<bean: nessage key="button.cancel "/ >

</ htm : cancel >

</htm :fornmpe

</ body>
</htm :htm >

This example imports two teg libraries from druts, inddled asbean and ht i . Thebean
tag library supports a number of tags that smplify working with beans, especialy for
connecting form beansto forms. Theht ni tag library provides a number of tags that
samplify the cretion of html; of particular interest isa set of tags that amplifiesthe
condruction of forms and adds some useful functiondlity.

275

The first use of these tags is encountered at the top, withtheht ni : ht i tag. Thistag
doesn't render any output beyond a standard html tag but does set up a context that other
srutstags will useinterndly. Thisisadso true of theht i : base tag afew lines down,
which establishes the current URL from which URLs to the action and result pages can
be built.
Thenhtm : errors tag digolays al the messages that have been added to the
Acti onErrors object by theCal cul at or For min Listing 12.2. Thefirg time auser
accessss this page, it will not yet have been through the Cal cul at or For m o the
ht i : err or s will not render any output. If thereare errors, ht i : err or s will firg
digplay thevaue of theer r or s. header property from Lisiing 12.1, then each of the
erors, thenerrors. f oot er. Thismakesit as easy to change the format of the errors as it
isto change their text.
The form itsdf garts alittle lower and begins with another new tag, ht ni : f or m Thistag
renders asaregular HTML form tag but ensures that the act i on points to the right place.
In particular, thistag will ensure thet the form gets sent tothe Act i onSever | et by
pointing the URL at jspbook/chapter12/cadculator.do. Thisin turn will allow the serviet to
usethenamecal cul at or tolook up the correct form bean and action handler in the
configuraionfile
A number of bean: message and ht m : t ext tagsfollow. Thebean: message tag Smply
looks up amessage in the resource file from Listing 12.1, once again dlowing the
messages to be configured, changed, or localized. Theht ni : t ext tags render a standard
HTML input of type text; in addition, siruts can use the name of the provided property
and what it knows about the form bean to provide vaues for these fields astheformis
rendered.
Thisistremendoudy useful. Congder what will happen if auser provides avauefor the
first number but leaves the second one blank. As previoudy noted, theval i dat e()
method will fail, and the user will be returned to thisinput form. Theht mi : error s tag
will display the appropriate error message informing the user to provide avaue for the
second number. However, as the user dready filled in the first number, it would not be
friendly to meke the user fill it out again! Theht ni : t ext tag will be ableto get the value
for the first number back out of the form bean and make it the default vaue, so the user
will not need to reenter it. Conceptudly, thisis smilar to writing
<i nput

type="text"

nanme="number 1"

val ue="<c: out val ue="${cal cul at or For m nunber 1} "/ >">

276

Theht ni : t ext tag hidesdl the details of which bean and property are used and is
therefore much easier to work with. Struts provides smilar tags that handle check boxes,
text areas, and dl the rest. Struts even provides tags to handle form submit and reset
buttons, as shown &t the bottom of Lisiing 12.6.

Thisis made possble by the fact that the JSP isincluded by the servlet. The serviet sets
up the cal cul at or For mbean and placesit in the request, so when validation fails and the
Request Di spat cher includes caculator.jsp, the bean and hence the usar's origina inputs
are dill avalable.

The only remaining piece of the caculator isthe result page, which isshown in Ligding
12.7.

Listing 12.7 The result page

<v@taglib prefix="bean"

uri ="http://jakarta.apache. org/struts/bean" %
<v@taglib prefix="htm"

uri ="http://jakarta.apache.org/struts/htm" %

<htm :htm >

<head>
<title>Calculator</title>
<htm : base/ >

</ head>

<body>

<htnm :errors/>

<htm : form action="/cal cul ator">

<bean: nessage key="pronpt. nunberl1l"/>

<htm :text property="nunber1"/>

277

<bean: nessage key="pronpt. nunber2"/>

<html :text property="nunber2"/>

<htm : subm t >
<bean: nessage key="button. save"/>

</htm :submt>

<htm :reset>
<bean: nessage key="button.reset"/>

</htm :reset>

<htm : cancel >
<bean: nessage key="button. cancel "/ >

</ htm : cancel >

</htm :fornmpe

</ body>

</htm :htm >

That'sit! The page does not need to load the Cal cul at or , which was dready done by the
Cal cul at or Act i on. The pageis thus reduced to pure view, with no controller eements
at dl, which ishow it should be.

12.2.2 Providing Security

In addition to controlling the interaction between the view and the model, a controller
a0 controls access to the Site and individua pages. The generd issues of security and
protecting pages and resources are complicated, and they cannot be addressed in depth
here. Numerous books discuss the topic, and the Java platform itsef provides many
libraries that handle security issues. For now, however, the discussion islimited to a

278

relatively smple problem: ensuring that only reporters are alowed to cregte new articles
for Java News Today.
Recdl that theuser _i nf o tablein Chapter 7 containsar eport er _i nd thatisy if the
user isareporter. Thisflag, through the User | nf oBean, isused to determine whether to
show the link to the article crestion page. However, if amaicious nonreporter knows to
type create_articlejsp into the browser URL window, nothing stops the person from
cregting as many stories as desired. The godl, then, isto find away to protect this page so
that nonreporters will be unable to accessit.
The smplest way of doing thiswould beto usethec: i f tag to wrap the sengtive parts of
the page:
<c:if test="${user.isReporter}">

. contents of the article creation form. ..
</fc:if>
In this case, a nonreporter can il access the page but will not be able to use the form.
This gpproach is a bit unsatisfying, though. If there were many reporter-only pages, it
would be necessary to replicate this code on dl of them. The closing tag may aso be far
from the opening tag, which might obscure the page logic to someone trying to maintain
the page months after it was written.
This latter problem can be fixed by reversng the test and sending a nonreporter away
from the page. This can be donewith thej sp: f or war d we saw in Chapter 11:
<c:if test="${!user.isReporter}">

<jsp:forward page="non_reporter.jsp"/>
</fc:if>
This code could even be made allittle smdler by creating a new custom tag that takes a

security check and a page to which nonauthorized users should be sent:
<aw : secure

test="${!user.isReporter}"”

page="non_reporter.jsp"/>
Although ether of these solutions has the advantage of being more sdif-contained than
thefirst verson, it still needs to be added to every page.
Alternatively, struts could be used to protect pages. So far, an "action” has been thought
of asthe submission of aform, but it is perfectly vaid to treet the smple clicking of a
link as an action aswell and to send it to an action handler. A Pr ot ect Act i on classthat
would check whether the user in the session is areporter could be created, and if so, send
that person to the "success' URL. Each protected page would then have an entry in the
configuration file:

279

<action path="/create_article"

type="com aw . j spbook. chl12. Prot ect Acti on"

scope="request"

i nput ="/ chapter12/ non_reporter.jsp">

<f orward nanme="success"
pat h="/chapterl2/create_article.jsp"/>

</ action>
A reporter accessing create_article.do will then get the contents of create articlejsp and
non_reporter.jp otherwise. This latter page might have some stern words for userstrying
to hack the system or a kinder message suggesting that the user log in as areporter or
request areporter account from the editorial staff.
The only problem with this gpproach, of course, is that it won't work; create articlejsp
will still exist as an independent page. If auser goes there instead of to create article.do,
the check will not be performed.
It issaid that every failure carries the seeds of success; this gpproach has some vauable
ideas that would be useful to carry over. Specificaly, it isagood ideato keep dl security
information in a configuration file rather than in each JSP. Further, the security system
should st "in front of" each page; put another way, the security system should get
invoked before the user even getsto the page. Both of these facts are yet another
restatement of the advantages of using a controller that is separate from the view.
So, we want something that gets access to requests before they reach the JSP and that can
be configured from one place. That soundsalot liketheFi | t er classfrom Chapter 11! A
Fi | t er can beconfigured to intercept any set of JSP requests and teke dl their
configuration information from a sngle file called web.xml, which is discussed in more
detail in Appendix B.
Conceptudly, theFi | t er that isneeded is quite smple. It will be configured with aset of
pages that should be protected and a page to which nonauthorized users should be sent.
For each reques, it then needs to check only whether the request is for one of the
protected pages, and if o, whether the user in the session is areporter. Thisfilter is
shownin Ligting 12.8.

Listing 12.8 The security filter

package com awl . j spbook. chl12;

280

import java.util.StringTokeni zer
i nport java.io.l OException

i nport javax.servlet.*;

i nport javax.servlet.http.*;

i nport java.util.HashMap;

i mport com awl . j spbook. ch07. User | nf oBean

public class ProtectFilter inplenments Filter {
private HashMap protectedPages = null

private String | oginPage = null;

public void init(FilterConfig conf)

throws Servl et Exception

| ogi nPage = conf.getlnitParanmeter ("l ogi nPage") ;
pr ot ect edPages = new HashMap();
String pages =

conf.getlnitParaneter("protectedPages");

StringTokeni zer st =

new StringTokeni zer (pages,",");

whi | e(st. hasMoreEl enents()) {
pr ot ect edPages. put (st. next El emrent (),

Bool ean. TRUE)

public void doFilter(Servl et Request req,

281

Servl et Response res,
FilterChai n chain)
throws Servl et Exception, | OException

Htt pServl et Request hreq =
(Htt pServl et Request) req;
String page = hreq. get Request URI () ;

i f (protectedPages. get (page) == Bool ean. TRUE) {
Ht t pSessi on ses = hreq. get Session(true);
if(ses !'=null) {

User | nfoBean i nf =
(User | nf oBean)
ses. getAttri bute("userlnfo");
if(inf '= null &% inf.getlsReporter()) {
chain.doFilter(req,res);

return;

Ht t pSer vl et Response hres =

(Htt pServl et Response) res;
try {

hres. sendRedi rect (| ogi nPage) ;

} catch(l OException e) {}

282

public void destroy() {}
}
ThedoFi | ter () method does essentialy what was described earlier. Thei nit ()
method sets up the necessary values. Thel ogi nPage is sraightforward and should
contain only the name of the page previoudy referred to as non_reporter. jp. The
pr ot ect edPages parameter should be a comma-separated list of pages to protect, which
thei ni t () method will bresk into individud strings, which get used askeysin the
prot ect edPages HashMap, dl of whose vaues are TRUE. This common trick isused to
check whether agiven item isin a s, as checking whether an item isbeing used as akey
inaHashMap can be done very quickly and easily, as shown inthe doFi | t er method.
It is dso worth discussing one other problem that illustrates just how ingdious security
problems can be. The handler for changing user preferences sets dl propertieswith acall
to<j sp: set Property property="*";/>. Normdly, thiswill set dl the fidds from the
form, but what would happen if a knowledgeable but unscrupulous user were to access
user _prefs_handl er.jsp?reporterlnd=Y directly? Thej sp: set Property tagwould
setther eporter | d vaueto Y and would then dutifully cal theset Save() method. The
result would be that the user would have become a reporter! Oneway to fix thisisto list
every property explicitly rather than relying on the asterisk version of the
j sp: set Property tag or to use the controller to disalow setting ther eporter | nd
property. In generd, though, the lesson is that securing a Web siteis difficult, and a great
ded of attention must be paid to the details.

12.2.3 Struts and JNT

At this point, it would be possible to rewrite INT amost completedy by using the struts
framework. Action handlers could be introduced at the section and article levels, asan
action can congg of clicking alink and submitting aform. A ample handler for the
aticle pageisshownin Liging 12.9.

Listing 12.9 The article handler

package com awl . j spbook. chl2;

i mport java.io.| OException;
i mport java.lang.reflect.|nvocati onTarget Excepti on;

i mport java.text.Deci mal For mat;

283

i nport

i nport
i nport
i nport
i nport
i nport

i nport

java.util.Local e;

j avax. servl et. Request Di spat cher;
javax. servl et. Servl et Excepti on;
javax.servlet.http.*;

org. apache. struts. action. *;

org. apache. struts. util.?*;

com awl . j spbook. ch07. Arti cl eBean;

public final class ArticleAction extends Action {

public ActionForward performActi onMappi ng mappi ng,

ActionFormform
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)

throws | OException, ServletException

/'l Make sure we were given a valid articleld
String articleldString =

request. get Paranmeter("articleld");
if(articleldString == null) {

return mappi ng. fi ndForward("noSuchArticle");

Integer articleld = null;

try {
articleld = new Integer(articleldString);

} catch (Nunber For mat Excepti on nfe) {

return mappi ng. fi ndForward("noSuchArticle");

284

/] Get the npdel

ArticleBean article = new Articl eBean();

/] Load the data

article.setArticleld(articleld);

/1 Make sure that articleld actually exists in the

/] dat abase

if(article.getHeadline() == null) {

return mappi ng. fi ndForward("noSuchArticle");

/'l Everything's ok - Store the nodel in the
/'l request so the result page can get to it

request.setAttribute("article",article);

return mapping. fi ndForward("success");

With this handler ingtaled as article.do, the article JSP page could drop thej sp: useBean
andj sp: set Property tagsand amply usethe Art i cl eBean that has been placed in the
request. The action handler also performs a number of checks to ensure that the requested
article exists and can send the user to an error page if it does not.

On the other hand, using a controller in this case requires 54 lines of Java code instead of

2 lines of JSP code. Further, the error conditions for which it checks are things that may
not be worth worrying much about. The only two waysinwhichan arti cl el d can be
sent to the article page are clicking alink built on the section or index pages or the user's
typing one directly into the browser. In the first case, it isensured that thear ti cl el d IS

285

valid, because the Ste itself provided it. In the second case, the user isusing thesteina
way not intended. This should be cause for concern if doing so could in any way damage
the system or impact other users; in this case, the worst that could happen is that the user
who is misusing the system will get a page with some garbage data or an error message.
In the end, it's up to each Site devel oper to weigh the complexity of protecting every page
from every possible input againgt the consequences to the user and the Ste asawhole if
they are not checked.

One place where it clearly does make sense to use a controller isin form handling,
notably the login handler. This would work much like the previous examplesin this
chapter, so it will not be presented here, but the necessary steps should be pretty clear.
The index page would be identified as the "success' page, and anew page with only the
login form would be identified as the "input.” 1t would be necessary to ensure that a user
name and password were provided to the system, as well asthat the user exists and has
that password. Checking that the fields werefilled in could be done by the form bean's
val i dat e() method, whereas the more semantic checks for user existence and
correctness would be donein the modd viathe User | nf oBean.

12.3 Summary and Conclusions

This completes congtruction of the last of the three pillars on which good Web
goplications stand. Although the role of the controller may be alittle more dusive than
that of the modd or view, it is certainly no lessimportant. One measure by which to
judge how badly a controller is needed isto count the JSP lines that do not directly turn
into data for the user. For example, j sp: useBean andj sp: set Property tagsare
important, but the user will never see them directly. If a page has many such tags, it may
be an indication that a controller should be loading these beans.

Unlike beans, servlets, and JSPs, strutsis not part of aformd specification, and it is
certainly possble to build standards-compliant Web agpplications without it. However,
drutsisafird-rate tool and isfree, so it should be consdered when building a controller.

286

Chapter 13. Creating New Tag
Libraries

Since Chapter 4, we have seen that custom tag libraries are an invauable asset. Thetime
has now cometo learn how to create new ones. Fundamentally, tags are not much more
complicated than servlets, in fact, servlets could be used to congtruct a very limited form
of custom tag. If it rendered the current time to a page, a servlet could be used dmost asa
tag'
<j sp:include page="/dateServlet">

<j sp: param nane="format" val ue="HH: MM SS"/ >
</jsp:include>
Alternatively, if tags were implemented as servlets and held to the bean naming
conventions, the page compiler could take asmple JSP

Here is the date:

<awl : date format="HH MM SS"/ >

<p>

and turn it into the following code:

public void service(HttpServl et Request request,

Ht t pSer vl et Response response)

response. set St at us(res. SC_OK) ;

response. set Cont ent Type("text/htm ");

PrintWiter out = response.getWiter();

out.println("Here is the date:");

Dat eServl et tag = new DateServlet();
tag. set For mat (" HH: MM SS") ;

tag. servi ce(request, response);

out.println("<p>");

287

}

Including the contents of a serviet within a page using ether of these gpproaches is not
quite enough to do everything that atag does. However, this concept will serveasa
convenient jJumping-off point in exploring how tag libraries are constructed.

13.1 The Tag Life Cycle

Thefirg gep in being aole to write new tags isto understand how pages will use them.
Consder astandard usage of atag, such astheaw : dat e tag from Chapter 4.

<awl : date format="HH: MM SS"/ >

Clearly, this request must be handled by a class. The name of this class will be associated
with the name awi : dat e through aconfiguration file that will be described shortly. For
now, the classiscaled com awl . j spbook. ch04. Dat eTag and must implement an
interface cdledj avax. servl et . j sp. t agext . Tag.

A logicd question at this point is whether the lookup of this class should happen at
request time or trandation time Doing it a request time would be more dynamic and
might dlow for some additiond functiondity, such as changing tag definitions on the fly.
However, the introspection mechanisms that dlow for thiskind of dynamic behavior can
be dow, and as tags are o ubiquitous, it isworth doing everything possible to make them
fadt.

(1| the terms tranglation time and request time are unclear, refer to Chapter 2

Therefore, the resolution from tag names to class names happens at trandation time, and
code to build the tag class will be placed in the resulting serviet. Likewise, the tag
configuration file can specify al the parameters the tag will accept, so thereisno need to
look them up dynamicaly as is done to obtain bean properties. However, if tag classes
gick to the bean naming conventions, the page trandator will, when it sees atag attribute
cadled f or mat , know to construct acall to set For mat () intheDat eTag class.

In addition to any parameters that the tag accepts, it will need some other information in
order to do itsjob. At the very least, the Dat eTag will need accessto out , the output
stream to which it should send the formatted date. It is reasonable to expect that in
generd, tags will need accessto thefull Ht t pSer vel t Request and

Ht t pSer vl et Response objects. Both of these objects, aswell asagreat deal of

288

additiond information, is handily contained in the dass introduced in Chapter 12. Thetag
class must therefore provide aset PageCont ext () method to receive this information.
Some tags may aso need to know whether they have been nested within another tag. The
c:when andc: ot her wi se tags need away to accessthec: choose tag that surrounds
them. Thec: choose tag can keep track of whether a matching condition has been found
yet, and each c: when tag can then ask the c: choose tag whether it shoud bother to check
itstest condition. The outer tag is called the parent, and so the tag class must have a

set Par ent () method.

Next, the tag will need to provide something akin to the sarvlet ser vi ce() method to do
the work. Unlike a servlet, however, atag consists of two parts: the opening and closing
tags. The preceding example has only an opening tag, and a/ > is used to indicate the
absence of aclosing tag, but thisisredly just shorthand for

<aw :time ...></aw :tinme>.Ingenerd, there may aso be body content between these
open and close tags. Therefore, rather than having asingleser vi ce() method, tags must
providedosSt art Tag() and doEndTag() methods.

Findly, once it has completed its task, atag may need to clean up some resources, asa
svlet doesinitsdest r oy() method. The equivaent for tagsiscaledr el ease() .

A few modifications to this basic scheme need to be consdered before it will be possible
to write Dat eTag. To dlow maximum flexibility, atag may wish to specify whether its

body content should be evauated, an obvious example of whichisthec: i f tag. Thisis
accomplished by dlowing dost ar t Tag() to return acode indicating how the tag's body
should be treated. Possible values are EVAL_BODY | NCLUDE and SKI P_BODY.

Smilaly, doEndTag() may decide that the rest of the page should not be evaluated, such
asin acustom security tag that wishes to hide the contents of a page from unauthorized
users. Therefore, the doEndTag() will dso return a status code, which may be EVAL_PAGE
Or SKI P_PAGE.

Given dl this, the page trandator will, when it encountersthe awl : dat e tag, inject
something like Ligting 13.1 into the serviet.

Listing 13.1 Tag code generated by the page translator

com awl . j spbook. chl3. DateTag t =
new com aw . j spbook. ch13. Dat eTag() ;
t.set Format ("HH MM SS") ;
t.set PageContext(... the page context ...);

t.setParent(... the tag's parent ...);

289

if(t.doStartTag() == EVAL_BODY) {

. code built for the contents of the tag body ...

i f(t.doEndTag() == EVAL_PACGE) {

. code built for the rest of the page ...

t.rel ease();

The exact code generated will depend on a number of factors. Some JSP engines will
attempt to reuse tags when possible to avoid the overhead of the constructor. Some may
exit the pageimmediately if doEndTag() returns Ski P_BODY rather than wrapping the
pagein a conditiond. Tag authors should not rely on the specifics of the trandation; nor
should they need to. The exact details of how tags behave is spdlled out in the ISP
specification, and al JSP engines will adhere to those rules, regardless of the code they
generate.

13.2 Tags without Bodies

We now know everything we need to know in order to write a custom tag. Ligting 13.2
shows the much-discussed awi : dat e tag:

Listing 13.2 A custom tag

package com awl . j spbook. ch04;

i mport java.io.| OException;
i mport java.text.Sinpl eDateFornat;
i mport java.util.Date;

i nport javax.servlet.*;
i nport javax.servlet.http.*;
i nport javax.servlet.jsp.*;

i nport javax.servlet.jsp.tagext.*;

public class DateTag inplenments Tag {
private String format;
public String getFormat() {return format;}
public void setFormat (String format)

{this.format = format;}

privat e PageCont ext pageCont ext;

publ i ¢ PageCont ext get PageCont ext ()
{return pageContext;}

public voi d set PageCont ext (PageCont ext pageContext) {
t hi s. pageCont ext = pageCont ext ;

private Tag parent;
public Tag getParent() {return parent;}
public voi d setParent(Tag parent)

{this.parent = parent;}

public int doStartTag() throws JspException {
Si npl eDat eFormat df = new Si npl eDat eFor mat (f or mat) ;

try {
pageCont ext . getQut (). print(df.format(

new Date()));
} catch (I Cexception e) {}

201

return EVAL_BODY_| NCLUDE;

public int doEndTag() throws JspException {
return EVAL_PAGE;

public void release() {
pageCont ext = null;

par ent = null;

}

Thisliding has dl the demerts that were deemed to be necessary by the preceding
discussion. It hasset methodsfor the custom f or nat attribute, aswell asthe
pageCont ext and par ent . Corresponding get methods for these properties have dso
been provided in order to make the tag class more beanlike, dthough in this case, no one
islikely ever to use those methods.

Thedost art Tag() usesthepageCont ext to get out , to which it sends the formatted
date before returning EVAL_BODY_| NCLUDE. Both of these actions would seem to be
correct, but if a page author decidesto useaclosng </ aw : dat e> tag, the date should
probably replace the opening tag instead of the closing one, and the body content should
be included rather than mysterioudy vanishing, aswould hgppen if SKI P_BODY were
returned.

Althoughthedost art Tag() sendsonly ahit of data to the page, keep in mind that this
method can do anything a servlet can do, including accessing beans or setting their
properties in the various scopes. This is what makes tags so useful: They expose thefull
power of servietsin nedt little packages easily used from JSPs.

Regardless of whether the page author uses a close tag, nothing is to be done when the
tag ends, so doEndTag() Smply returnsEVAL_PAGE. Also, no specia cleanup needsto be
peformedinther el ease() method. However, the method setsthe par ent and
pageCont ext tonul |, which may adlow Javato reclam the memory alocated to those
objects sooner rather than later.

Now that the tag code has been written, it needs to be added to the configuration file
mentioned earlier. Two files are involved here. Thefirgt, web. xni , isused to configure

292

the whole gpplication, including the set of serviets and filters and many other things.
More details about this file may be found in Appendix B, but the portion relevant to tag
librarieslooks like this:
<taglib>
<taglib-uri>
http://aw . conljspbook/sanpl es
</taglib-uri>
<taglib-location>
/VEB- I NF/ taglibs/aw .tld
</taglib-location>
</taglib>
Thet agl i b-uri portion specifiesthe URI that will beusedinthet agl i b directiveto
load thetag library. Thet agl i b- 1 ocat i on Specifiesthe location of thetag library
description (TLD) file, which is specified relative to the top-level directory for the Web
application. Thisfile contains an entry for each tag named in the class, the attributes, and
so on. For alibrary containing only the dat e tag, the TLD file would contain the
following:

<?xm version="1.0" ?>

<! DOCTYPE taglib
PUBLIC "-//Sun M crosystens, Inc.
[/ DTD JSP Tag Library 1.2//EN
"http://java. sun. conf dtd/ web-jsptaglibrary 1 2.dtd">

<taglib>
<tlib-version>1.0</tlib-version>
<j sp-versi on>2. 0</j sp-version>
<short - name>sanpl es</ short - nane>
<uri>http://aw .com j spbook/ sanpl es</uri>
<di spl ay- name>Sanpl es for JSP book</di spl ay- nane>

<descri pti on>Sanpl es for JSP book</description>

<tag>

<name>dat e</ nanme>

<t ag-cl ass>com awl . j spbook. chO4. Dat eTag</t ag- cl ass>

<body- cont ent >JSP</ body- cont ent >

<attribute>

<nanme>f or mat </ name>
<requi red>true</required>
</attribute>
</tag>

</taglib>
The verson information a the top specifies the minima requirements for thistag library.
Here, it isindicated that JSP verson 2 is required, athough this particular tag would
work with anything asfar back as 1.1. Shortly, however, tags that use the expression
language will be introduced, and these tags will require 2.0.
Thedi spl ay- name, short - name, and descri pt i on convey some information to anyone
reading the file but are meant primarily for development environments, such as NetBeans,
that provide arich workspace and tools to smplify the development and testing of JSPs.
The ligt of tags follows the opening section, which appliesto the whole library. Each tag
has anane that the pagewill useand at ag- cl ass gecifying the implementing dass
Each attribute that the tag accepts will have an entry; here, thereis only one, for the
f or mat attribute. Attributes may be marked asr equi r ed, in which case the page
trandator will report an error &t trandation time if the attribute is missing.
Normaly, every attribute that the tag can accept should have an entry intheat t ri but e
section. If atag implementsthe Dynani cAt t ri but es interface and provides a method
cadled set Dynami cAttri but e(), however, it ispossbleto send it arbitrary attributes at
request time. These dynamic attributes are passed to the tag by usingthej sp: attri but e
tag in the body of the tag in question. For each of these attributes, the tag's
set Dynami cAttri but e() method will be cadled with the name of vaue of the attribute.
Sometimes, it is not sufficient Smply to check whether r equi r ed tags are present in each
tag usage. Sometimes, atag will need one of severd attributes to be set but will not care
which one. A tag that retrieves information about an abum might have an &tribute to
specify the name and another to specify aunique abum ID. Neither one of these will be
required, but it is required that one or the other be given.
This stuation can be handled by cresting an auxiliary class that the page trandator will
use to perform additional checks on the attributes. Such classes extend the TagExt r al nf o
class and perform their checksin methods caled val i dat e() anddoVval i date() . The
page trandator istold of the existence of aTagExt r al nf o class by providing it in the

TLD dong with the name of the class, usng thet ei - cl ass tag. TagExt r al nf o classes
are dso able to natify the page trandator that the tag will be creating new specid
variables caled scripting variables, athough this technique has been largdly superseded
by the practice of adding attributesto the pageCont ext , usngtheset At t ri but e()
method.

The use of the TagExt r al nf o classis beyond the scope of this book, and it is used
relatively infrequently. However, readers who explore the TLDs for the standard tag
library will see afew references to that class.

13.3 Tags with Bodies

Often, tags will need accessto their bodies beyond being able to specify whether to
evauate them. Iteration tags, such asc: f or Each, will need to be able to evaduate their
bodies severd times and each time through will need to do some additiona processng to
manage the array over which it isiterating. Theaw : r ever se tag from Chapter 4 dso
needs access to the contents of its body so that it can reverse the text before sending it to
the page. Nether of these things can be done from classes that smply implement the Tag
interface.

Therefore, an extenson of Tag, Body Tag, has some additiona methods for dedling with
bodies. The firg of these methodsisdol ni t Body() , which is caled before the body is
evduated. This method can be used to initidize iteration variables. The doAf t er Body ()
method is called after the body has been processed but before doEndTag() . This method
may return EVAL_BODY_AGAI N in order to repeat the body or ski P_BoDY to end
processing. Findly, Body Tag providesthe set BodyCont ent () method, which is passed a
BodyCont ent 0bject containing the contents. Body Tag aso introduces a new vaue,
EVAL_BODY_BUFFERED, Which doSt ar t Tag() may return to indicate that the tag will want
to intercept the contents of the body for processng.

Because of the numerous methods ~ dten many of them doing sandard things to write

when building aBody Tag, a convenience class, Body TagSuppor t , isprovided that by
default runs through the body once and smply sends the contents of the body directly to
the page. The common gpproach to building body tags isto extend this class rather than
to implement Body Tag directly. Thisiswhat the Rever seTag from Chapter 4 does, as
shownin Ligting 13.3.

295

Listing 13.3 A tag with a body

package com awl . j spbook. ch04;

i mport java.io.| OException;

i mport java.io.StringWiter;

i mport java.text.Sinpl eDateFornat;
i mport java.util.Date;

i mport javax.servlet.*;
i mport javax.servlet.http.*;
i mport javax.servlet.jsp.*;

i mport javax.servlet.jsp.tagext.*;

public class ReverseTag extends BodyTagSupport {
privat e PageCont ext pageCont ext;
publ i ¢ PageCont ext get PageCont ext ()
{return pageContext;}
public void set PageCont ext (PageCont ext pageContext) {
t hi s. pageCont ext = pageCont ext;

private Tag parent;
public Tag getParent() {return parent;}
public void setParent(Tag parent)

{this.parent = parent;}

public int doStartTag() throws JspException {
return EVAL_BODY_BUFFERED

public int doEndTag() throws JspException {

String output = ;

i f(bodyContent !'=null) {
StringWiter sw= new StringWiter();
try {
bodyContent. writeCQut(sw);
out put = sw.toString();
} catch(java.io.|OException e) {}

out put = doReverse(out put);

try {
pageCont ext . get Qut (). print (output);
} catch(java.io. | Oexception e) {}

return EVAL_PAGE;

public void rel ease() {
pageCont ext = null;

par ent = null;

private String doReverse(String output) {
int len = out put.length();
char out2[] = newchar[len];
for(int i=0;i<len;i++) {

out2[i] = output.charAt(len-1-i);

297

return new String(out?2);

}

Thislisting has many of the same methods as the previous example, which isto be
expected, as body tags will need to beinitidized with apageCont ext and par ent , just as
any other tag. Thefirg differenceistha doSt ar t Tag() returns EVAL_BODY_BUFFERED,
indicating that it will be manipulating the contents of the body. This manipul&tion is
accomplished inthe doEndTag() method, which first checks whether the body content is
available by checking whether the specid varidble body Cont ent isnul | . Thisvariadleis
defined in the base class.

If thebodyCont ent isavailable, the tag obtains the contents by writing themto a
StringWiter,udngthew itecut () method. Thishappens after the body has been
processed, so if the body hasany c: out or other JSP tags, aswell as any other JSP tags,
they will dready have been replaced by the specified vaues.

Once the content of the body has been obtained, reversing it isfairly smple and is done
by thedoRever se() method in this class. Sending the contents to the page isthen as
ampleaswriting it to out , just aswas done for the date in Ligting 13.2.

It isnow possbleto clarify exactly what out is. It isan instance of another class, caled
JspWi ter that a thetop level will send any datawritten to it on to the user. However,
within body tags, the Jspw i t er will store, or buffer, the data that is written to it, so that
thebodyCont ent object can pass this data to the body tag. So in this casg, if the

aw : rever se tagisbeng used from within another body tag, out will hold onto the
reversed text and pass it along to the other tag. Thisisal managed transparently by the
JSP engine, so tag authors almost never need to worry about what exactly out iswhen
they are writing datato it.

13.4 Using the Expression Language

The JSP engine does not automatically handle attribute values that use the expression
language. If apagewereto cal aw : dat e withavaueof ${ param nyFor nmat} asthe
vaue of format, the Dat eFor mat object would attempt to use the literal string

${ par am myFor mat } when formatting the number and would not automaticaly look up
the vaue of the parameter called my For mat .

It isthe tag's respongibility to interpret any expression language variables that it wishesto
make dynamic. Fortunately, afew classes make this much easier. The primary oneis

Expr essi onEval uat or , which doesthe evauation. Expr essi onEval uat or usesacouple
of additiond classes: var i abl eResol ver , which isresponsble for looking up the vaues
of any variables used within an expresson, and Funct i onMapper , which can handle more
complex kinds of expressonsinvolving calsto functions. The functiondity is split into

these pieces in order to make it easier to customize their behavior. It would be possble

for aprogrammer to replace the default Var i abl eResol ver with one that obtained vaues
from a database. It would even be possible to create an Expr essi onEval uat or that
handled a different kind of expresson language entirely, making it possible to write
expressions in other languages, such as Scheme or Perl, if such athing were ever desired.
Leaving aside such exatic thoughts, let'slook at the basic use of these classes to enable
dynamic attributes. Listing 13.4 shows the class that implementsthe awi : maybeShowtag
from Chapter 4. Recdl that this tag has one attribute, show, which may beyes, no, or

reverse.
Listing 13.4 A tag that uses the expression language

package com awl . j spbook. ch04;

i mport java.io.| OException

i mport java.io.StringWiter;

i mport java.text.Sinpl eDat eFormat;
i mport java.util.Date;

i mport javax.servlet.*;
i mport javax.servlet.http.*;
i mport javax.servlet.jsp.*;

i mport javax.servlet.jsp.tagext.*;

i nport javax.servlet.jsp.el.*;

public class MaybeShowTag extends BodyTagSupport {
private String show
public String getShow() {return show, }
public void set Show(String show) {this.show = show; }

privat e PageCont ext pageCont ext;

publ i ¢ PageCont ext get PageContext () {
return pageCont ext;

}

public void set PageCont ext (PageCont ext pageContext) {
t hi s. pageCont ext = pageCont ext ;

private Tag parent;
public Tag getParent() {return parent;}
public void setParent (Tag parent) {

this. parent = parent;

public void release() {
pageCont ext = null;

par ent = null;

public int doStartTag() throws JspException {
return EVAL_BODY_BUFFERED

public int doEndTag() throws JspException {
/1 1f we've been through the body, grab

/] the contents

String output = ;

i f(bodyContent !'=null) {
StringWiter sw= new StringWiter();
try {

bodyContent. witeCQut(sw);
out put = sw.toString();
} catch(java.io. | Oexception e) {}

/'l Resolve the actual conmmand by assum ng

/'l the provided value is a script in the

/'l expression | anguage

Expressi onEval uat or ee =
pageCont ext . get Expr essi onEval uator () ;

Vari abl eResol ver vr =

pageCont ext . get Vari abl eResol ver () ;

/1 No default function mapper is provided or

/'l needed

Functi onMapper fm = null;
Expressi on expr = nul |
try {

expr = ee. par seExpressi on(show,
String. cl ass,

fm

301

nul l);
} catch (ELParseException e) {
t hrow new JspExcepti on(
"Unabl e to parse expression for show');
} catch (ELException e2) {
t hrow new JspExcepti on(

"Unabl e to eval uate expression for show');

try {

show = (String) expr.evaluate(vr);
} catch (ELException e) {

t hrow new JspExcepti on(

"Unabl e to eval uate expression for show');

if("reverse".equal s(show)) {
out put = doRever se(out put);
} else if("no".equal s(show)) {

output ="";

try {
pageCont ext . get Qut (). print (output);
} catch(java.io. | Oexception e) {}

return EVAL_PAGE;

private String doReverse(String output) {
int len = out put.length();

char out2[] = new char[len];

302

for(int i=0;i<len;i++) {
out2[i] = output.charAt(len-1-i);
}

return new String(out?2);

}

To alarge extent, this looks like the tags dready discussed in this chapter; in particular,
nothing is specid about the show attribute. The magic happensin dosSt ar t Tag() , which
fird usesthe pageCont ext in order to obtain the default Expr essi onEval uat or and
Vari abl eResol ver. ThedoSt art Tag() then uses these objectsto build an Expr essi on
object, which isan interna representation of the expression that can be evauated quickly
and efficiently. The cal to par seExpr essi on() aso takesaclass as an argument, in this
case st ring. cl ass, which represents the type of object that should be returned from the
expresson.

If the expression parses correctly, it will then be evauated by passing the

Vari abl eResol ver totheeval uat e() method. If dl goeswel, thiswill return the result
of the expression. To be rigorous, the code should now check the vaue to ensurethet it is
one of the three acceptable possihilities, but in the interest of keeping the code smple,

this check has been omitted. The use of the vaue itsdlf is pretty sraightforward; it is
smply, used to decide whether to leave the output asis, reverseit, or deleteit.

13.5 JSPs as Custom Tags

Asof verson 2.0, it is possble to create new tagsin JSP, aswell asin Java. Thisis
supported by afew new tags, such asj sp: doBody, and some new directives, such as
vari abl e. Theideais straightforward, as the page trandator can turn a JSP into a serviet,
whichisaJavafile, aswel asturn a JSP into tag, which is another kind of Javafile. The
details are beyond the scope of this book, but interested readers can find dl the details
datingin Section 8.4 of the JSP 2.0 specification.

13.6 Summary and Conclusions

In Chapter 2, we were using JSP comments Smply to remove chunks of text from a page.
Weve now reached the point a which new tags can be created, putting the full power of
the Java language and libraries into smple boxes that are no more difficult to usethan
old-fashioned HTML tags.

Of course, writing tags can be a complicated business, and it would not be possible to
cover dl theintricaciesin one chapter. The materia here, in conjunction with everything
that was said about servletsin Chapter 11, should alow the cregtion of rich and varied
tags that meet most needs. Users interested in more of the details should read Sections 12
and 13 in the JSP 2.0 specification. Fortunately, alarge collection of sampletagsis
available to study: the standard tag library itself. Thanks to the wonders of open-source
development, al the code for the tags in the sandard library is available for download
from the Jekarta Site at

http://j akarta.apache.org/builds/j akartataglibs/rel eases/'standard/src/. The sheer number of
filesmay seem overwheming, but looking through some of the classes, such asthe one
that implements org.apache.taglibs.standard.tag.€l.core.OutTag, will quickly reveal some
familiar things from this chapter.

Chapter 14. Advanced Topics

The preceding chapters have included more than enough information to build amost any
conceivable Web ste by using JSPs, beans, databases, and servlets. In fact, however, a
great ded in the JSP, servlet, JIDBC, and bean specifications could not possibly be
included here. This book has concentrated on those features that are most common: the
ones that will be used 90 percent of the time. This chapter surveys afew remaining topics
that should cover another 5 percent.

14.1 Declaring Variables and Methods

As JSPs are servlets and class variables and new methods can be added to servlets, it
should be possible to do the same to a JSP. This can be done by placing the declaration
between <j sp: del care>and </ j sp: decl ar e> tags or, equivdently, by placing the
declaration between <% and . Compare thisto thej sp: scri pl et tag seenin Chapter
9. That tag causes the page trand ator to embed code within the JSP equivaent of the
servi ce() method; j sp: decl ar e causes code to be embedded in the generated Java
class. In other words, the declaration tags can define new methods as well as variables.
Listing 14.1 shows a JSP page that computes the the n'"" prime number, using a declared
method.

Listing 14.1 A JSP with a user-defined method
<98

public int prines(int n) {

if(n <2) return 2;

if(n == 2) return 3;

int primes[] = newint[n];
primes[0] = 2;
prinmes[1] = 3;

int candi date = 5;
int nunSoFar = 2;

bool ean maybePri ne;

whi |l e (nunSoFar < n) {
maybePrinme = true;
for(int i=0;i<nunSoFar && maybePrine;i++) {

maybePrime = (candidate % prines[i]) !=0

i f (maybePrinme) {
pri mes[nunSoFar ++] = candi dat e;

}

candi dat e++;

return prines[n-1];

%

<HTM_>
<HEAD><TI| TLE>Pr i nes</ Tl TLE></ HEAD>

<BODY>

<P>Here are the first 5 prinme nunbers: </ P>

<% prines(1l) %
<% prines(2) %
<% prines(3) %
<% prinmes(4) %
<% prines(5) %
</ UL>

</ BODY>

</ HTML>

This example uses another tag to display the values. This expression tag may be written
<% ... %, aswasdonehereor, equivaently, as<j sp: expression> ...

</ j sp: expressi on>. In either case, the result isidentical to writing <% out . print (...

%>, with the dot replaced by the expression.

Theprimes() method itsdf computes primesin asmple way. It gartswith the first two
primes and computes each prime after that by checking every number againgt the list of
primesit has dready computed. When checking 9, it will first check 9/2, which will not
divide evenly. It then checks 9/3, which will divide evenly, ruling 9 out asaprime
number.

Although thisworks, it has severd inefficiencies. Every time the method is called, it will
recompute the whole array to get to the number it wants, even if it has dready computed
mogt or al of that array. Listing 14.1 will compute the first four primes when asked to
evaduatepri nes(4), and it will then recompute al four in the next step, when it asked for
the fifth.

The solution isto take the pr i mes array out of the method and into a separate fidd in the
class. Then each time it is asked for a prime number, the method can check the list it has
dready built and return the number if it has aready been computed. If not, the method
will then need to compute only the values between the last one it found and the one for
which it hes just been asked.

It will also make sense to Sart the array with more than two vaues, giving the method a
bit more of ajump start. The best place to do thisiswhen the JSPisfirst loaded, which
can be done by placing theinitidization codein aj spl ni t () method. Although this
method will be trested specidly by the JSP engine, it can be declared just like any other
method, as shown in Ligting 14.2.

Listing 14.2 A JSP with aj splnit () method

<%
int primes[];

%

<%
public void jsplnit() {

307

/* Pre-populate the first 100 prinmes */
primes(100);

%

<%
public int prinmes(int n) {
if(primes !'= null & & n < prines.length) {

return prinmes[n-1];

int oldPrimes[] = prines;

prinmes = newint[n+l];

i nt candi dat e;

i nt nunSoFar ;

if(oldPrimes !'= null) {
System arraycopy(ol dPri nes, O,
primes, 0, ol dPrinmes. | ength-1);
candi date = ol dPri mes[ol dPri nes. | engt h-1];
nunmSoFar = ol dPri nes. | engt h;
} else {
primes[0] = 2;
candi date = 3;

nunSoFar = 1;

bool ean maybePri ne;

whi | e (nunmSoFar < n) {
maybePrime = true;
for(int i=0;i<nunSoFar && maybePrine;i++) {
maybePrime = (candidate %prinmes[i]) != 0;
}
i f(maybePrinme) {

pri mes[nunSoFar ++] = candi dat e;

}
candi dat e++
return prinmes[n-1];
%>

<HTM_>
<HEAD><TI| TLE>Pr i nes</ Tl TLE></ HEAD>

<BODY>

<P>Here are the first 5 prime nunbers: </ P>

<% prines(l) %

<% prines(2) %

(
(
<Ll ><% prinmes(3) %
<Ll ><% prinmes(4) %
<% prines(5) %

</ UL>

</ BODY>
</ HTML>

14.2 Extending Different Classes

Congdering how much Javacodeisin Ligings 14.1 and 14.2, it might aswdl bea
savlet. But if it were, it would have the same old problem of being difficult to change the
appearance or other aspects, such as the number of primes to generate. The code could
as0 be placed in abean or custom tag, which might initidize the array in its congtructor.

Thisis normaly the recommended agpproach, but ancther aternative may be preferablein
some instances.

In Chapter 11, it was mentioned that al JSPsimplement the Ht t pJspPage interface.
Tomcat does this by making JSPs extend the Ht t pJspBase dlass, whichinturn
implements Ht t pJspPage. In principle, a JSP could extend a different class, so long as
that class dso implemented Ht t pJspPage. Thisclass could definethepri nes() and

j splnit() methods. TheJSPenginewill dill cdl j spinit () whenitloadsthe JSP, and
thepri nmes() method will then be available to the page without the need to define any
code in the page itsdlf. Lidting 14.3 shows the class containing the prime code.

Listing 14.3 A base class with the prime methods

package com awl . j spbook. chl4;
i mport org.apache.jasper.runtinme.*;

public abstract class Prinmes extends HttpJspBase {

int primes[];

public void jsplnit() {
/* Pre-populate the first 100 prinmes */
primes(100);

/**

* W don't need to do anything when the JSP
* is destroyed, but we still need to provide
* this nethod to satisfy the interface.

*/

public void jspDestroy() {

return;

public int prines(int n) {
if(primes !'= null &% n < prines.length) {

return primes[n-1];

310

int oldPrimes[] = prines;

prinmes = newint[n];

i nt candi dat e;

i nt nunSoFar ;

if(oldPrimes !'= null) {
System arraycopy(ol dPri nes, O, pri nes, 0,
ol dPrimes.length-1);
candi date = ol dPri mes[ol dPri nes. | engt h-1];
nunmSoFar = ol dPri nes. | engt h;
} else {
primes[0] = 2;
candi date = 3;

nunSoFar = 1;

bool ean maybePri ne;

whi | e (nunmSoFar < n) {
maybePrinme = true;
for(int i=0;i<nunSoFar && maybePrine;i++) {

maybePrime = (candidate %prinmes[i]) !'= 0O;

i f (maybePrinme) {
pri mes[nunSoFar ++] = candi dat e;

}

candi dat e++;

return prinmes[n-1];

311

Once this class has been defined, using it is quite Smple, asshown in Ligting 14.4.
Listing 14.4 A JSP that extends a different base class

<%@ page extends="com aw .| spbook.chl4. Prinmes" %

<HTM_>
<HEAD><TI TLE>Pri mes</ Tl TLE></ HEAD>

<BODY>

<P>Here are the first 5 prinme nunbers: </ P>

<Ll ><% prinmes(1l) %
<Ll ><% prinmes(2) %
<Ll ><% prines(3) %
<Ll ><% prinmes(4) %
<Ll ><%= prines(5) %

</ UL>

</ BODY>

</ HTML>

The JSPistold to use a different base class with another use of the page directive. Apart
from this directive, the rest of the page is straightforward and much cleaner than the
previous versions.

When faced with the need to add some functiondity to a JSP, four choices are now
avalable: Use abean, use a new tag, define the methods in the JSP, or put the methods in
asgparate class. Putting the code in the JSP is ugly and cumbersome, which leavesthe
other three possibilities. The decisons will dmost dways fdl on the side of beans or
custom tags. The JSP specification states, in section JSP.1.10: "[The extends attribute]
should not be used without careful consderation asit restricts the ability of the JSP
engine to provide specidized superclasses that may improve on the quality of rendered
sarvice”

312

14.3 Returning Other Kinds of Data

Severd examplesin Chapter 8 usethe page directive to change the content type, and
Chapter 11 notesthat thisis accomplished by cdling theset Cont ent Type() methodin
the Ht t pSer vl et Response class. One of the exciting possibilities that this ability offers
isfor aJSP or sarvlet to generate binary data, such as an image, aswell as various kinds
of text. Thiswill a long last make it possible to fix the one remaining problem with the
Java News Today sSte. Recall that users are permitted to change the color of the top and
Sde navigation areas by setting avaue in a style sheet. However, arounded corner is
used between these two pieces in order to give the page a smoother apparence, and this
rounded corner is an image that cannot be controlled by a style sheet.

Manipulating binary data would be difficult to do directly in a JSP, so a bean will be used
to do the data preparation. Listing 14.5 shows a bean that generates the datafor a GIF file
containing the corner.

Listing 14.5 A bean that generates GIF data
package com awl . j spbook. chl4;
i nport java.io.*;

public class CornerBean {

private final static byte cornerBytes[] = {

(byt e) 0x49,
(byte)Ox61,
(byt e) 0x00,
(byt e) 0x66,
(byte) Oxff,
(byt e) 0x00,
(byt e) 0x00,
(byt e) 0x02,
(byt e) 0x69,
(byt e) 0x9b,
(byt e) 0x55,
(byte)0x73,

)
)
)
)
)
)

(byte) 0x47,
(byt e) 0x37,
(byte) 0x14,
(byt e) 0x00,
(byte) Oxff,
(byt e) 0x00,
(byte) 0x14,
(byt e) 0x00,
(byt e) Ox8f,
(byt e) OxO0c,
(byt e) Oxce,
(byte) Ox75,

(byt e) 0x38,
(byt e) 0x00,
(byt e) 0x00,
(byte) Oxff,
(byte) 0Ox2c,
(byt e) 0x00,
(byt e) 0x00,
(byt e) 0x84,
(byt e) Oxea
(byte) 0x31,
(byt e) Oxchb,
(byte)Ox7d,

313

(byt e) 0x46,
(byt e) 0x14,
(byt e) 0x80,
(byte) Oxff,
(byte) Oxff,
(byt e) 0x00,
(byt e) 0x14,
(byte) 0x27,
(byte)Oxcl,
(byt e) 0x43,
(byt e) Oxed,
(byt e) Ox4d,

(byte)0x28,
(byte)O0x1d,
(byt e) Ox50
(byt e) 0x35,
(byt e) Oxe3,

(byt e) Ox5d,
(byt e) 0x99,
(byt e) Oxad,
(byte)Oxbl,
(byte)0x73,

(byt e) 0x40,
(byt e) Ox8a
(byt e) Ox4a
(byt e) 0x75,
(byt e) Oxce,

(byt e) 0x82,
(byt e) 0x68,
(byt e) Oxeb,
(byt e) Oxd3,
(byte) Oxf9,

(byte) Ox05, (byte)Oxf7,(byte)0Ox3b, (byte)0x00};

private String fgCol or "TETETET

A O

private String bgCol or

public String getFgColor() {return fgCol or;}
public String getBgColor() {return bgCol or;}

public void setFgColor(String fgCol or) {
this.fgColor = fgCol or
byte tnp[] =
cornerBytes[13] =

t oHex(f gCol or);

(byte) (tnp[O]
(byte) (tnp[2]
(byte) (tnp[4]

* 16 + tnp[1]);
* 16 + tnp[3]);
* 16 + tnp[5]);

cornerBytes[14] =
cornerBytes[15] =

public void setBgCol or(String bgCol or) {
t hi s. bgCol or = bgCol or;
byte tnp[] = toHex(bgCol or);
cornerBytes[16] = (byte) (tnp[O]
(byte) (tnp[2]
= (byte) (tnp[4]

* 16 + tnp[1]);
* 16 + tnp[3]);
* 16 + tnp[5]);

cornerBytes[17] =
cor ner Byt es[18]

public String getCorner() {

return new String(cornerBytes);

public byte[] toHex(String s) {

byte tnp[] = s.toUpperCase().getBytes();

314

for(int i=0;i<tnp.length;i++) {
if(tnp[i] >="A && tnp[i] <="F) {
tnp[i] = (byte) (tmp[i] - "A + 10);
} else {

tmp[i] = (byte) (tnp[i] - "0");

return tnp;

}
The GIF data, with a gray foreground and white background, isheld inthecor ner Byt es

array. GIFs store their colors in a well-defined location: the colormap. The set FgCol or ()

and set BgCol or () methods change the valuesin this colormap, and the get Cor ner
method smply returns the data as a new string. This bean can now be used in aJSP, as
shownin Liging 14.6.

Listing 14.6 A JSP page that generates a GIF

<%

taglib

prefix="c"

uri ="http://java.sun.conljstl/core" %<%®

page

content Type="i mage/ gi f" %<j sp: useBean

i d="corner"

cl ass="com awl . j spbook. ch14. Cor ner Bean"/ ><j sp: useBean
i d="user7"

cl ass="com aw . j spbook. ch07. User | nf oBean"
scope="sessi on"/ ><j sp: set Property

name="cor ner"

property="fgCol or"
property="${user 7. banner Col or}"/ ><j sp: get Property

name="corner" property="corner"/>

315

The formatting of thisexampleisalittle srange, asdl the tags are directly adjacent and

dl theline breeks are ingde the tags. This was done to ensure that no whitespace shows

up intermixed with the image data, which would cause a browser to be unable to render it.
For this and numerous other reasons, this kind of thing is unlikely ever to be donein the

red world. Servlets are much better at manipulating binary data than JSPs, even with the

help of beans. However, this does show how a JSP can generate things other than text.

Nothing new isin the code itsdf. The content typeis set through the page directive, the

bean isloaded, the user's chosen banner Col or property isassgned to the corner's

f gCol or property withaj sp: set Property tag, andthecor ner property isthen

obtained.

14.4 Threads

Threads, an integrd and powerful feature of Java, dlow asingle program to do many
things smultaneoudy. An obvious exampleis aWeb server that iswritten in Javaand

that may handle hundreds of user requests at the same time. The earliest Web servers
handled multiple requests by essentidly creeting a copy of themsalves for each, which

can be dow and use alot of memory. Under Java, it is necessary only to art anew

thread, and it will use the same code and same memory as dl the other threads.

To describe what threads are, consder the way someone might have read this book. A
person might have started a page 1 and read straight through to this point. Alternatively,
the reader may have skipped around a bit, perhaps checking Chapter 9 to read more about
aparticular Java congtruct. In any case, each reader defines his or her own path through
the book.

Now consider two or more people reading this book smultaneoudy. In red-world terms,
this might mean that the pages would need to be torn out and passed around; conceptually,
however, severd people could be reading at the same time. Each will define a path

through the materid, based on persond interests and familiarity with some of the topics.
Sometimes, two or more people might find themsalves reading the same words at the
sametime; a other points, everyone will be reading a different places.

Java threads work much like this, except that they are reading Javaingtructions insteed of
words. A new reader can start by specifying the chapter a which to start. A new thread
can be created a any time and given amethod to start with, usudly ther un() method of

316

aclassthat implementsthe Runnabl e interface. Once athread has Started, it may take a
different path through the code, based on input from users, time of day, contents of a
database, or anything else that can be expressed in a conditiond.

o far, there is no problem; multiple readers can go through a book without interfering
with one anather, and multiple threads can move through a Java program without ever
knowing that another thread exists. However, consder what would happen if this book
had a quiz at the end of each chapter. One reader might start working on aquiz, starting
with the first question, and another reader might start the same quiz aminute later,
lagging behind the first reader by afew questions. By the time the first reader finished,
most of the answers would have been over-written by the second reader, and the score for
the quiz would be a meaningless combination.

Threads have an ana ogous problem, which can be demongtrated by the smple JSP
shownin Liging 14.7.

Listing 14.7 A JSP with a potential thread problem

<% String machi neNane; %

<% machi neNanme = request. get Rennt eHost (); %

<HTM_>
<BODY>

<P> You are using a conputer called <% nmachi neNane %. </ P>

</ BODY>

</ HTML>

In thisexample, machi neNane isan ingtance variable, meaning that there will be one
shared among dl the users of this JSP. Now consider what would happen if two users,
Daria and Jane, access this page more or less simultaneoudy. For the sake of discussion,
assume that they are usng machines cdled orwell and van_gogh, respectively.

If Darids request isrecaived firdt, machi neName will be set to Orwell. If Janesrequest is
then recelved before Darias thread gets to the expression, machi neName will then be set
to van_gogh. Then when Darids request getsto the expression, the JSP will state that she
isusing van_gogh, which isincorrect.

317

The chances of this hgppening are pretty dim if apageisamdl and smpleor if itis
accessed infrequently. However, as a page gets more complex and takes longer to
generate, or asit is used by more people, potentia thread problems become much more
likely.

The JSP specification provides an easy way to avoid thread problems, but it is not
without its costs. A JSP can declare that it is not thread safe, meaning that isisnot adleto
handle multiple threads smultaneoudy. This can be done by using another variant of the
page directive; Smply add the following line at the top of the JSP.

<%@ page i sThreadSaf e="fal se" %

The same thing can be donein aserviet by having it implement the

j avax. servl et. Si ngl eThreadMVbdel interface. When it seesthat a JSP or servlet is not
thread safe, the JSP engine will force adl requests to go through sequentidly. This means
that if Daria gets to the page firdt, either Jane will have to wait until Daria has the fulll
response back, or the Web server will need to create a second instance of the servlet for
Jane.

This does indeed avoid the thread problem, but the result isthat either users may have to
wait for ther turn, which will make the Site seem dower, or multiple versons of serviets
will need to be created, usng up memory. This may eventualy cause usersto give up on
adgtein frugraion, which is not acceptable for a Ste that wishes to build and hold an
audience. However, the single-threading technique is useful for tracking down problems.
If apage or awhole ste is exhibiting strange bugs that appear irregularly and are
impossible to recreate or track down, it may be worth making al pages single threaded
for awhile. If the problems go away, it is a safe bet that some threading issue is the
cause.

14.4.1 Avoiding Thread Problems

In the generd case, avoiding any thread problems may be quite difficult and is a science
unto itsdf. Concurrent Programming in Java™ Second Edition: Design Principles and
Patterns by Doug Lea (Addison-Wedey, 2000) provides much more information for
those who want to understand the issues fully. Fortunatdly, it is not difficult to avoid the
most common kinds of thread problemsin aJSP. The first step is knowing what may
potentidly cause problems.

As Lidting 14.7 showed, ingtance variables can definitely cause bugs, but loca variables
cannot. When athread cals amethod, a private copy of dl that method's variablesis

318

created, s0 each thread isworking with its own copy. The problem would vanish if the
declaration in Ligting 14.7 were replaced with a scriptlet creating aloca variable:

<% String machi neNane; %

As each request and response object are aso private to each thread, the problem would
never have arisenif Ligting 14.7 had skipped the intermediate variable atogether and just
cdled

<% request. get Renot eHost () %

This aso appliesto objectsin the request scope. As each thread has its own request, each
request scope is separate from al others, which means that beans or other objects placed
in this scope will not normally be avalable to any other thread. Of course, if an object is
dready available to multiple threads, Smply placing it in the request scope will not

protect it. If severa threads were dl to put the machi neName instance variable into their
own request scopes, it will ill be the same variable, and any change made by one threed
would il bevigbleto dl others.

Objectsin the session scope are dso safein generd, as only one user, and hence one
thread, will typically be accessing agiven sesson a any moment. This, after dl, isthe
whole point of the sesson scope. It is possible for a user to open multiple browser
windows and hit different pages smultaneoudy, which can in principle cause problems.
Normaly, this should not be a concern. The same is true of the page scope.

That leaves the application scope, which is clearly not thread safe. Anything in the
gpplication scope may be used by severd pages and severa users sSmultaneoudy. This
offers a powerful mechanism for sharing data across pages, but it aso means that thread
safety may need to be considered carefully.

Usually, the application scope will contain beans crested from pages by thej sp: useBean
tag. Theissue of thread safety then movesinto the Java code within the bean. The easiest

way to ensure that a bean isthread safe isfor each of its methods to be written as
public int someMethod(...) {

synchroni ze(this) {

. nmet hod code ..

}

Thecdl tosynchroni ze() putsalock in place, which ensures that only onethread at a
time will be able to execute any method in that bean. This goes somewhat back to the
Stuation when JSP is declared not thread safe, but it is much more granular. If Dariaand
Jane are accessng pages using the same bean in an gpplication scope, one of them will
have to wait for the other only if they both happen to call amethod in that bean at the

319

sametime. If they are in the section of the page that uses the bean a different times, they
will both be able to continue using the other portions of the page without needing to wait

for each other.

Typicdly, in fact, not dl the methods of a bean will need to be synchronized, which will
further decrease the chances that any user will have to wait for another. Thisiswhere the
science of threading comesin, and interested readers are referred to Concurrent
Programming in Java™ Second Edition: Design Principles and Patterns for the details.

14.4.2 Using Threads

So far, they have gppeared only as potentia sources of bugs, but threads can be powerful
dliesaswdl. Any time auser's request requires an action on the server sde but the user
does not need to wait for the action to be completed, the action can be handled by
cregting anew thread. Examples are such things as placing an order at an e-commerce
gte. The user doesn't have to wait for the order to reach the shipping center; it is enough
for the user to know that the order has been entered into the system. Once that has been
done, the user can be shown a page indicating that the order is being processed, and a
separate thread that will handle the back-end processing, including contacting the
shipping center can dart.

Threads can also be used to ensure that data is updated or that datain memory and in a
database is synchronized. For example, recall the bean that contained advertisng
information for Java News Today, as used in Chapter 7. This bean would load data from
the database when it was first congtructed. This data would include the number of
impressions the advertiser had purchased and the number delivered so far, and each time
the ad was shown to a user, the count would be incremented. However, it would be
extremdy inefficient to have this bean update the count in the database each time an ad
was shown, as that would mean a constant stream of writes to the database, which would
dow down the whole Site.

A better solution isto have the ad bean keep the counts in memory, and once every 10
minutes or so update al the counts in the database. The outline of the code that does this
isshownin Ligting 14.8; the full code isincluded on the CD-ROM.

Listing 14.8 A bean that periodically saves itself to a database

package com awl . j spbook. ch07;
i mport java.sql.*;

320

i mport com canet oad. util . Persistent Connection

public class AdManager Bean i npl ements Runnabl e {

public final static Integer ZERO = new I nteger(0);

private AdBean ads[];

private Thread runner

publ i ¢ AdManager Bean() {
/'l Load all the ads in the system
AdBean tnmp = new AdBean();
ads = tnp. get Beans();

/1l Start a thread to keep things synchronized with
/'l the database

runner = new Thread(this);

public void run() {
whi l e(runner !'= null) {
try {
/'l sleep 10 m nutes
Thr ead. sl eep(1000 * 60 * 10);
/1 Now updat e the dat abase by subtracting
/'l the nunber of inpressions seen fromthe
/'l nunber sold
Connection tnp =
Per si st ent Connecti on. get Connecti on();

Statenent s =

tnp. createStatenent ();
for(int i=0;i<ads.length;i++) {
i f (ZERO. equal s(

ads[i].getlnmpressions()))

s. execut eUpdat e(

321

"update ad set inpressions = inpressions-" +
ads[i].getlnpressions() +

" where ad_id =" +

ads[i].getAdld());

/1 1f the inpression count has

/'l reached 0, we should renove it
/'l fromthe system but we'l

/'l assune that happens off-Iline
/'l as part of some nightly

/'l processing

/| Reset the counter

ads[i].setlnpressions(ZERO ;

s.close();
} catch (Exception e) {
Systemerr. println(
"Unabl e to decrenent ad counter™);

e.printStackTrace(Systemerr);

}
When the bean is congtructed, it will create a new thread, which it then starts. The

Thr ead dasswill cdl ther un() method of the object it is created with, which in this case
isthe same object. Ther un() method smply deepsfor 10 minutes and then cdlsthe
bean's updat e() method, which saves any new data to the database.

14.5 Advanced Error Handling

322

Chapter 2 mentioned in passing that it is possible to send users to a custom JSP when an
error occurs. Thisis atwo-step process. First, the page that may generate the error should
specify the dedtination with one use of the page directive:

<%@ page errorPage="error.jsp" %

Second, the page that is to act as the error handler should declare this fact with another
use of the page directive

<%® page i sErrorPage="true" %

The error page can do anything that any other JSP can do, but in addition it will probably
want to report the error to the user and/or a Site administrator. To make this possible, the
error itself iscontained in an Except i on object, as described in Chapter 9, and this object
iscaled, not surprisngly, except i on. Liding 14.9 usesthis variable to report the error to
the user, usng the INT styleingtead of the default Tomcat one.

Listing 14.9 A simple error page

<%@ page i sErrorPage="true" %

<jsp:include page="top.jsp" flush="true">
<jsp: param name="title" value="Error"/>

</jsp:include>

<% exception. printStackTrace(out); %

<jsp:include page="bottomjsp" flush="true"/>

The details of the error are unlikely to be of use to the end user, so it ismore likely that
an error page will smply offer an apology to the user and behind the scenes report it to
the adminigrator. Listing 14.10 writes the error to afile caled "errors.™

Listing 14.10 A slightly more sophisticated error page

<%@ page i sErrorPage="true"

i mport="java.io.*" %
<j sp:include page="top.jsp" flush="true">

<j sp: param nanme="title" value="Error"/>

</jsp:include>

323

We're sorry, but an error occurred while building
your page. We will try to fix this problemshortly;
in the neantine please return to the

JNT hone page

<%
FileWiter w= new FileWiter("errors",true);

PrintWiter fileQut = new PrintWiter(w);

exception. printStackTrace(fileCQut);
w. cl ose();

%

<j sp:include page="bottomjsp" flush="true"/>

This example uses another new feature of the page directive, i mpor t , which makesa
package available to a JSP. Here, it isused to import the j ava. i o package, which
contains classes to manage files and printing.

In fact, writing an error to afile like thisis not terribly productive, asal errorsare

dready saved in the Tomcat error logs. However, it is possible to use this basic technique
to do more eaborate things, such as send an e-mall dert to the Site maintainer every time
an error crops up. A standard Java extension, the JavaMail API, would handle dl the
hard work in this case.

14.6 Summary and Conclusions

The topics covered in this chapter will not be everyday concerns but are included here on
the theory that no knowledge is ever wasted. At times, it may be easier for a JSP to define
a utility method than to use a bean, and this method might be used so often that it makes
senseto put it in abase class. Sooner or later, the highest-volume sites will have to dart
worrying about thread issues, and this chapter has enough information to avoid most of

the common problems that may be encountered in a multithreaded environment.

That concludes our introduction to the wonderful world of JavaServer Pages, but perhaps
itisjust the beginning of your use of this exciting and powerful technology. The

324

CD-ROM contains the complete set of Java News Today pages; agood place to start
experimenting might be to take the Ste asit isand turn it into something with ared

design, one that might attract users. Or try creating new sections, authors, or keywords, or
perhaps even drop dl the existing ones and create a brand new set. Or start from scratch
and create anews Ste about Linux, music, or anything else. For every dynamic Web ste
that exists today, an infinite number of ideas have yet to be explored. Let JavaServer
Pages be the technology that turns your greeat ideainto a dynamic and compelling Web
gte that might just be the Internet's next Big Thing.

325

Appendix A. Summary of Tags

Section A.1. Bult-in Tags

Section A.2. Core Tags

Section A.3. Format, Parsing, and Internationdization Tags
SectionA.4. SQL Tags

Section A.5. XML Tags

A.l Built-in Tags

Note: Parameters marked as "dynamic" may be expression language scripts.

j sp:scriptlet: EmbedsJavacodedirectly in the serviet constructed at trandation
time; equivalently, <% ... %

Body: Fully formed Java code

j sp: decl ar at i on: Embeds Java declarationsdirectly in thetop leve of the servlet
constructed at trandation time; equivalently, < ... %

Body: Fully formed Java declarations

j sp: expressi on: Obtainsthe value of a Java expression, which may contain method
calls, declared variables, or beansloaded with j sp: useBean; equivalently, <% . . .
% . Thislatter form may be used asthevalue attributein aj sp: par amor
j sp: set Property and asthepage attributeinj sp: f orward and j sp: i ncl ude.

Body: A fully formed Java expresson

j sp:include: Includesthe contents of one JSP, servlet, or HTML pageat request

time
Parameter | Dynamic? | Required? Description
page No Yes The page to include
flush No No Hag indicating whether to send dl data to the user
after the included pace completes or to continue to

326

j sp:include: Includesthe contents of one JSP, servlet, or HTML page at request
time

Parameter | Dynamic? | Required? Description

buffer it

Body: Any number of j sp: par amtags

j sp:include: Transferscontrol to another JSP, servlet, or HTML page. No data
can bewritten either before or after thistag.

Parameter Dynamic? Required? Description

page No Yes The page to which the request should be
transferred

Body: Any number of j sp: par amtags

j sp: param A named parameter for arequest toaj sp: i ncl ude Or j sp: f or war d.
Such parametersaretreated by the receiving pageexactly asif they had come from

aform.

Parameter Dynamic? Required? Description
nane No Yes The name of the parameter
val ue No Yes The vaue of the parameter
Body: None

j sp: useBean: Makes a bean availableto therest of a page

Parameter | Dynamic? | Required? Description

id No Yes The name by which this bean will be known to the
rest of the page

scope No No The scope in which the bean lives

cl ass No No The class that implements the bean. The class
and/or type attribute must be provided.

type No No The class the bean should be trested as. The

327

j sp: useBean: Makes a bean availableto therest of a page

Parameter | Dynamic? | Required? Description
implementing dass must extend or implement this
type.

beanNane No No The name of a seridized bean to load. When this

attribute is used, the type must aso be specified.

Body: Arbitrary JSP code, which will be executed if the bean has been crested as aresult

of thistag
j sp: get Property: Digplaysa property from a bean

Parameter | Dynamic? | Required? Description

name No Yes The name of the bean, as specified in the
j sp: useBean tag

property No Yes The name of the property to obtain

Body: None

j sp: set Property: Setsoneor more propertiesin a bean

Parameter | Dynamic? | Required? Description

nane No Yes The name of the bean, as specified in the
j sp: useBean tag

property No Yes The name of the property to set. May be" * ",
indicating to set dl properties whose name
matches the name of a parameter from aform

val ue No No The vaue of the property; if not present, avaue
will be looked for in the set of parameters

Body: None

328

A.2 Core Tags

c: out : Sendstheresult of an expression to the page

Parameter | Dynamic? | Required? Description

val ue Yes Yes The expression to be evauated and displayed

escapeXn Yes No Defaultstot r ue; ift r ue, gpecia characterswill
be converted to specia codes that can be rendered
withinan HTML page

def aul t Yes No If thevaueisnul | and there is a defaullt, that

defauit will be dislayed.

Body: Optiond; if present, acts the same as the defaullt attribute

c: set: Setsavariable or bean property

Parameter | Dynamic? | Required? Description

val ue Yes No The vaue to which the variable target will be set
var No No Name of the variable to set

scope No No Scope in which the varigble lives

t ar get Yes No Expresson evauating to a bean

property Yes No The property in the target to be set

Body: Optiond; if present, actsthe same astheval ue dtribute

c: renmove: Removes avariable from a scope

Parameter | Dynamic? | Required? Description
var No Yes The variable to be removed
scope No Yes The scope in which the varidble lives
Body: None

329

c: cat ch: Catches any exception that occursduring JSP processing

Parameter

Dynamic?

Required?

Description

var

No

Yes

The name of avariable in the page scopein
whichthej ava. | ang. Except i on object will
be stored

Body: The content of the body will be processed as usud. If an exception occurs during
this processing, it will be stored in the named var , and the JSP code following the closing
tag will be processed.

c: i f: Conditionally evaluates a block of JSP code

Parameter | Dynamic? | Required? Description

t est Yes Yes An expression that should evaluate to a Boolean

var No No The name of avariable in which the result of the
test will be stored

scope No No The scope in which the varigble lives

Body: Anything in the body will be evduated if and only if t est evauatestot r ue.

c: choose: Conditional evaluates one of several blocks of JSP code

Body: Any number of c: when tags, zero or onec: ot her wi se tags

c: when: A gingle alternative within ac: choose

Parameter

Dynamic?

Required?

Description

t est

Yes

Yes

An expression that should evaluate to
aBoolean

Body: Anything in the body will be evduated if and only if t est evaluatestot r ue. Once
onet est withinaset of c: wher e tags succeeds, no other options will be tested.

c: ot herwi se: Default option withinac: choose

Body: If none of the testswithin aset of ¢: wher e tags succeeds, the body of a
c: ot herwi se tagwill be evduated, if provided.

c: for Each: Repeats a block of JSP code once for each element in an array or other

collection

Parameter

Dynamic?

Required?

Description

var

No

Yes

The name of the variable in which each item of
the callection will be stored

itens

Yes

No

An expression evaduating to an array, list, or map.
Ifi t ens isnot provided, begi n and end must be.

var St at us

No

No

The name of avariable in which the gatus of the
iteration will be stored

begin

Yes

No

An expression evauating to an integer from which
the iteration will start counting

end

Yes

No

An expresson evauding to an integer at which
the iteration will sop

step

Yes

No

An expresson evauaing to an integer
representing the increment to the count; defaultsto
1

Body: The contents of the body will be repeated once for each dementini t ens, or
(end-count)/step times.

c: for Tokens: Repeatsa block of JSP code once for each token

Parameter | Dynamic? | Required? Description

var No Yes The name of the variable in which each item of
the callection will be stored

var St at us No No The name of avariable in which the saus of the
iteration will be stored

itens Yes Yes An expresson evauatingtoasnglest ri ng
containing multiple substrings, separated by
ddimiters

del i ns Yes Yes An expresson evauainato ast ri na containina

331

c: for Tokens: Repeats a block of JSP code once for each token

Parameter | Dynamic? | Required? Description
the set of ddimiterswith which to splitthei t ens
dring
begin Yes No An expression eva uating to an integer
representing the index of the firgt token of interest
end Yes No An expresson evauating to an integer
representing the index of the last token of interest
step Yes No The number of intervening tokensto skip

Body: The contents of the body will be repeated once for each token.

c: i nput : Loadsthe content of any URL, and putsit in either the page or avariable

Parameter | Dynamic? | Required? Description

ur | Yes Yes The URL to retrieve

cont ext Yes No The name of the context when loading a URL
from the same machine but a different Web
gpplication

var No No The name of avariable in which to sore the
resulting text, rather than sending it to the page

scope No No Scope in which the varidble lives

char Encodi ng Yes No The character encoding to use for the data

var Reader No No The name of the variable holding aReader

that will be used to load the data

Body: Any number of c: par amtags

c:url: Congructsa URL resolving relative references and properly URL-encoding

query parameters

Parameter

Dynamic?

Required?

Description

c:url: Congructsa URL resolving relative references and properly URL-encoding

query parameters

Parameter | Dynamic? | Required? Description

val ue Yes Yes The base URL to be processed

cont ext Yes No The name of aforeign context if the resulting
URL is not in the same Web application asthe
current page

var No No A variadlein which to sore the resulting URL

scope No No The scope of the varigble

Body: Any number of c: par amtags

c:redirect: Constructsa URL and issuesan HTTP redirect to the browser

Parameter | Dynamic? | Required? Description
ur | Yes Yes The base URL to be processed
cont ext Yes No The name of aforeign context if the resulting

URL isnot in the same Web gpplication asthe
current page

Body: Any number of c: par amtags

c: par ani Providesa parameter toa URL inac:inport,c:url,or c:redirect

Parameter Dynamic? Required? Description
nanme Yes Yes The name of the parameter
val ue Yes Yes The vaue of the parameter
Body: None

A.3 Format, Parsing, and Internationalization Tags

fnt:setLocal e: Setsthecurrent localefor usein all subsequent format tags

Parameter | Dynamic? | Required? Description

val ue Yes Yes An expression evauating to the name of the locde
touse

vari ant Yes No Minor variant of the locale

scope No No Scope in which the locde should be set

Body: None

fmt : bundl e: Loads a resour ce bundle that will be used in the body content

Parameter | Dynamic? | Required? Description

basenane Yes Yes The base name of the bundle to load

prefix Yes No A stri ng that will be prepended to the value key
of any f nt : message tagswithin the body

Body: Arbitrary JSP code; any f nt : nessage tags within the body will be resolved using
the specified bundle

fnt: set Bundl e: Loads a resource bundleinto a scope, to beused by all f nt : nessage
tagswithin that scope

Parameter Dynamic? Required? Description
basename Yes Yes The base name of the bundle to |oad
var No No Thevaridblein which to sore the

bundle
scope No No The scope of the variable
Body: None

fnt: message: Looks up a message in the current resource bundle

Parameter | Dynamic? | Required? Description

key Yes No The name of the message to look up; if not
provided as an attribute, this should be in the body

bundl e Yes No The bundleto use

var No No Name of avariable holding abundle, set up by an
fnt: set Bundl e tag

scope No No The scope of the varigble

Body: A key if not provided as an attribute, dong with any number of f nt : par amtags

fnt : par ani Providesa parameter to amessagein a bundle

Parameter

Dynamic?

Required?

Description

val ue

Yes

No

The vaue of the parameter; if not provided asan
attribute, the body content will be used

Body: Arbitrary JSP code, which will be evauated and used asthe vaue if oneis not
provided as an attribute

fnt:request Encodi ng: Specifiestherequest's character encoding

Parameter | Dynamic? | Required? Description

val ue Yes Yes The name of the encoding to use when processing
request parameters

Body: None

fmt:ti mezone: Specifiesatime zoneto use when formatting dates within the body

content
Parameter Dynamic? Required? Description
val ue Yes Yes Thetime zoneto use

Body: Arbitrary JSP code; any f nt : f or mat Ti me tagswill use the given time zone

fnt: set Ti meZone: Setsthetime zone globally or in a scoped variable

Parameter | Dynamic? | Required? Description
val ue Yes Yes Thetime zoneto use
var No No The variable in which to gore the time zone
scope No No The scope of the variable
Body: None

fmt : f or mat Nurber : Formatsa number appropriatey for the current locale

Parameter Dynamic? | Required? Description

val ue Yes No The number to format; if not provided as
an attribute, the body content will be
used

type Yes No I ndicates whether the number should be
treated as a number, currency, or
percentage

pattern Yes No The formatting pattern to use

currencyCode Yes No When formatting as a currency, specifies
the currency code

currencySynbol Yes No When formatting as a currency, specifies
the currency symbol

groupi ngUsed Yes No Indicates whether val ue hasany
grouping symbols

maxlntegerDigits Yes No Maximum number of digits comprisng
the integer portion of the result

mnintegerDigits Yes No Minimum number of digits comprisng
the integer portion of the result

maxFractionDigits Yes No Maximum number of digits comprising
the noninteger portion of the result

m nFractionDigits Yes No Minimum number of didits comorisna

fnt : for mat Nunber : Formatsa number appropriately for the current locale

Par ameter Dynamic? | Required? Description
the noninteger portion of the result
var No No The name of avariablein which to sore
the formatted result. If not provided,
output goes to the page
scope No No The scope of the varigble

Body: If vaueisnot provided as an attribute, the body content is used as the vaue.

fnt : par seNunber : Parsesanumber, storing theresult in a scope variable

Parameter | Dynamic? | Required? Description

val ue Yes No The string to be parsed; if not provided asan
attribute, the body content will be used

type Yes No I ndicates whether the value should be trested as
anumber, currency, or percentage

par seLocal e Yes No Thelocdeto use

integerOnly Yes No Indicates whether to ignore any fractiond part
of the resulting number

var No Yes The varidble in which the resulting number
should be stored

scope No No The scope of var

Body: If the vdue is not provided as an attribute, the body content is used as the value.

fnt: format Dat e: Formatsa date and/or time appropriately for a specified locale

Parameter | Dynamic? | Required? Description

val ue Yes Yes The vaueto format

type Yes No Specifies whether the time, date, or both are to be
formatted

337

fnt: format Dat e: Formatsa date and/or time appropriately for a specified locale

Parameter | Dynamic? | Required? Description
dateStyle Yes No A predefined pattern from
j ava. text. Dat eFor mat to use when formatting
timeStyle Yes No A predefined pattern from
j ava. t ext . Dat eFor mat to use when formatting
pattern Yes Yes A pattern to use when formatting
ti meZone Yes No The time zone to use when formatting
var No No The name of avariable in which the formatted
value should be stored
scope No No The scope of var
Body: None

fmt : par seDat e: Parsesastring representation of a date and/or time

Parameter | Dynamic? | Required? Description
val ue Yes No The string to be parsed; if not provided asan
atribute, the body content will be used
type Yes No Specifies whether the time, date, or both are to be
formaited
dateStyle Yes No A predefined pattern from
j ava. t ext . Dat eFor mat to use when formatting
ti meStyle Yes No A predefined pattern from
j ava. t ext . Dat eFor mat to use when formatting
pattern No No A pattern to use when formatting
ti meZone Yes No The time zone to use when formeatting
var No No The name of avariable in which the formatted

vaue should be stored

fnt: parseDat e: Parsesa string representation of a date and/or time

Parameter

Dynamic?

Required?

Description

scope

No

No

The scope of var

Body: If the value is not provided as an atribute, the body content is used asthe vaue.

A.4 SQL Tags

sql : query: Issuesaquery to a database, storing theresultsin a variable suitable for

iteratingwith c: f or Each
Parameter | Dynamic? | Required? Description

sql Yes No The query to be evauated; if not provided as an
attribute, the body content will be used

dat aSour ce Yes No The JDBC data source to use to talk to the
database; may pecify the arguments to the
driver/manager classor aJNDI resource

startRow Yes No Thefirgt row to include in the result st

nmaxRows Yes No The maximum number of rowsto indudein the
result set

var No Yes The variable in which the result of the query
should be stored

scope No No The scope of var

Body: The query, if not provided as an attribute, dong with any number of sql : par am

tags
sql : updat e:
Parameter | Dynamic? | Required? Description

sql Yes No The update to be evauated; if not provided asan
attribute, the body content will be used

dat aSour ce Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or aJNDI resource

start Row Yes No Thefirgt row to include in the result st

var No Yes The variable in which the result of the undate

sql : updat e:

Parameter

Dynamic?

Required?

Description

should be stored

scope

No

No

The scope of var

Body: The query, if not provided as an attribute, dong with any number of sql : par am

tags
sql : transacti on: Providesatransaction context for a set of sql : query and
sql : updat e tags
Parameter | Dynamic? | Required? Description

dat aSour ce Yes No The JDBC data source to use to tak to the
database; may specify the arguments to the
driver/manager class or a INDI resource

i sol ation Yes No Theisolation level of the transaction

Body: Arbitrary JSP code. All sql : query and sql : updat e tagswithin the body will
occur in the same transaction.

sql : set Dat aSour ce: Setsa SQL data source either in avariableor globally

Parameter | Dynamic? | Required? Description

dat aSour ce Yes No The JDBC data source to use to talk to the
database; may specify the arguments to the
driver/manager class or aJNDI resource

driver Yes No The JDBC driver to use

url Yes No The URL to use

user Yes No The name of the user with which to connect to
the database

passwor d Yes No The password with which to connect to the

database

Al

sql : set Dat aSour ce: Setsa SQL data source either in avariableor globally

Parameter | Dynamic? | Required? Description
var No No The variable in which to store the data source
scope No No The scope of var

Body: None

sql : parani Providesa parameter toa SQL statement used inasql : query or

sql : updat e

Parameter

Dynamic?

Required?

Description

val ue

Yes

No

The vaue of the parameter; if not provided as an
atribute, the body content will be used

Body: If val ue isnot provided as an attribute, the body content will be evaluated and
used asthe vaue.

342

A.5 XML Tags

x: par se: Parses XML into an internal form suitablefor usein subsequent XML

tags

Parameter | Dynamic? | Required? Description

xn Yes No The XML to parse; if not provided as an attribute,
the body content will be used

system d Yes No The URI to use when parsing the XML

filter Yes No A filter to apply to the XML source

var No Yes The name of avariablein which to sore the
parsed representation

scope No No The scope of var

var Dom No No The name of avariablein which to sore the
parsed representation as an instance of
or g. w3c. dom Docunent

scopeDom No No The scope of var Dom

Body: If the XML isnot provided as an attribute, the body content will be used.

x: out : Sends a segment of XML selected by an XPath expression to the page

Parameter | Dynamic? | Required? Description

sel ect No Yes The XPath expression

escapeXn Yes No Defaultstot r ue; if t r ue, Specid characterswill
be converted to specia codes that can be rendered
within an HTML page

Body: None

x: set : Storesa segment of XML selected by an XPath expression in a scoped

variable

Parameter | Dynamic? | Required? Description

sel ect No Yes The XPath expression

var No Yes The name of avariablein which to sorethe
result

scope No No The scope of var

Body: None

x: i f: Evaluatesan XPath expression and evaluates the body content if theresult is

true
Parameter Dynamic? Required? Description
sel ect No Yes The XPath expresson
var No No A variablein which to store the result
scope No No The scope of var

Body: Optiond; if present, will be evauated if the result of the sdlect ist r ue

x: choose: Conditional; evaluates one of several blocks of JSP code

Body: Any number of x: when tags, zero or one x: ot her wi se tags

x: when: A singlealternative within an x: choose

Parameter Dynamic? Required? Description
sel ect No Yes An XPath expression

Body: Anything in the body will be evduated if and only if t est evaluatestot r ue. Once
onetest within asat of ¢: wher e tags succeeds, no other options will be tested.

x: ot herwi se: Default option within an x: choose

Body: If none of the testswithin aset of x: wher e tags succeeds, the body of an
x: ot her wi se tag will be evauated, if provided.

x: for Each: Repeatsablock of JSP code once for each element selected by an XPath
expression

Parameter | Dynamic? | Required? Description

var No Yes The name of the variable in which each item will
be stored
sel ect No No The XPath expression

Body: Arbitrary JSP code

x: transforn Appliesan XSLT stylesheet to an XML document

Parameter Dynamic? Required? Description

xm Yes No XML document to be transformed

xsl t Yes No The XSLT specification

xm System d Yes No The URI for parsing the XML
document

xslt Systenid Yes No The URI for parsingthe XSLT dyle
sheet

var No No The vaidblein which the
transformed document should be
stored

scope No No The scope of var

resul t Yes No A vaiddlein which to sore the
transformetion result

Body: If thexni attribute is not provided, the body may hold the XML. If thexsl t
atribute is not provided, the body may contain the XSLT. At least one must be provided
as an attribute. Body may dso contain any number of x: par amtags.

x: par ani Provides a parameter to thetransformation performed by an x: t r ansf orm
tag

Parameter | Dynamic? | Required? Description

name Yes Yes The name of the parameter

x: par am Providesa parameter to thetransformation performed by an x: t ransf orm

tag
Parameter | Dynamic? | Required? Description
val ue Yes No The vaue of the parameter; if not provided asan
attribute, the body content will be used

Body: If the value is not provided as an attribute, the body content will be used asthe

vaue.

Appendix B. Configuring a Web
Application

JavaServer Pages do not exist in avacuum. At the very least, they will need accessto
numerous Java classes representing beans and the implementations of tag libraries. In
addition, in any ste of redigtic complexity, JISPswill coexigt with a set of servietsand
filtersand will need access to various other resources. Of course, some fileswill be
needed to configure dl this.

All these pieces together comprise a Web application, and the exact layout of such
goplicationsis defined as part of the J2EE specification. Standardizing on such aformat
has numerous advantages. It makes it possible to develop under one application server,
such as Tomcat, and to deploy under something commercialy supported. It aso makesiit
possible to package Web applications as single files called war (Web application resource)
files that can be sold or otherwise distributed without needing to support hundreds of
deployment scenarios.

B.1 Layout of the Directories

All the JISPfileslivein the top levd of the Web application. It is aso possible to create
arbitrary subdirectories for JSPs, and these are accessed as URL s in the obvious way.
All the other dements of the gpplication arein aspecid directory: WEB-INF. Within this
directory isthe master configuration file, web.xml, which will be examined in the next
Section.

Javacodelibraries AR (JavaArchive) filesare placed in the WEB-INF/lib directory.

Thisautomaticaly adds these JAR filesto the CLASSPATH for the gpplication. There
are no subdirectories under lib.

Code spexific to the Web gpplication may be placed in aJAR file, which isthen indalled
in WEB-INF/ib, or in WEB-INF/classes. This directory is added to the effective
CLASSPATH; within it, codeislaid out according to the usud Javarues. For example,
theclasscom aw . j sp. ch08. CdBean would befoundin

347

WEB- | NF/ cl asses/ conf awl / j spbook/ ch08/ CdBean. cl ass. Itisup to the developer
whether to leave the Java source files within these directories or to compile them
elsewhere and move the resulting .dassfiles

It is aso common to store resources, such as property files, resource bundles, and
seridized beans, in the CLASSPATH. These resources may therefore dso be placed in
JAR files or under WEB-INF/classes.

Finally, by convention, is a specia directory for tag library descriptors: WEB-INF/taglibs.
This convention is not enforced, asthe location of TLD filesis specified in web.xml; in
generd, it isgood practice to put them al in one place.

Once the gpplication has been laid out according to these rules; it can be packaged into
a.war file, with the following command:

jar -cOf ../application_nanme.war .

Here, appl i cati on_nane can be replaced with the chosen name for the application. In
many gpplication servers, such as Tomcat, it is possible to deploy an gpplication by

samply placing the .war file in the proper directory. For Tomcet, the directory iscdled
webapps under the Tomcat home directory.

B.2 The Web.xml File

The web.xml file controls everything specific to the current Web gpplications. Typicdly,
one or more files configure the gpplication server as awhole; this vendor-spedific fileis
not defined as part of the J2EE specification.

Aswith any good XML document (see Chapter 8), web.xml starts with adeclaration,

DTD reference, and root node. Thetop leve lookslike this:
<?xm version="1.0" encodi ng="1SO 8859-1"7?>

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Web Application 2.3//EN
"http://java. sun. conf dtd/ web-app_2_3.dtd">

<web- app>

</ web-app>

The red mest isfound within theweb- app tags and congsts of the following dementsin
order.

1. Anoptiond icon to be used by interactive configuration or maintenance gpplications.
This can specify small (16 x 16) and large (32 x 32) images, which should live within the
main directory of the Web application. Example:
<i con>

<l arge-i con>i nages/ j spbook_| arge.jpg</I| arge-icon>

<smal | -i con>i mages/ j spbook_snmal | .jpg</small-icon>
</icon>
2. An optiond display name, which can aso be used by adminigtration tools. Example:
<di spl ay- nane>JSP book exanpl es</di spl ay- nanme>
3. An optiond description, for the benefit of people reading the web.xml file or

goplication tools. Example:
<descri pti on>

Exanpl e code from "JavaServer Pages, second edition”
</ descri ption>
4. An optiond flag indicating that this Web gpplication can be run within an gpplication
server that runs across multiple computers:
<di stri butabl e/ >
5. Any number of context parameters conssting of aname, avaue, and an optiond
description. These parameters will be used by theser vi et Cont ext when it Starts up.
Example
<cont ext - par an»

<par am nanme>def aul t Col or </ par am nane>

<par am val ue>bl ack</ param val ue>

<descri pti on>St andard background col or </ description>
</ cont ext - par ane
6. Any number of filter definitions (see Chapter 9). These definitions must define the
name of the filter and the implementing class and may dso provide initidization
parameters. In addition, an icon, adisplay name, and a description may be provided.
Example
<filter>

<filter-name>authFilter</filter-name>

<di spl ay- nanme>Aut h filter</display-nane>

<descri pti on>

Filter that prevents non-reports fromcreating articles
</ description>

<filter-class>com aw . j spbook. chl3. AuthFilter</filter-class>

349

<init-paranp
<par am name>pr ot ect edPages</ par am name>
<param val ue>create_article.jsp</paramval ue>
</init-paranpr
</filter>
7. Any number of filter mappings, which tell the Web gpplication which requests should
be passed through each filter. Any given filter may appear in multiple filter-mappings,
and multiple filter-mappings may refer to the same URL pattern. In this case, the chainis
congtructed in the order of the filter-mapping definitions. Example:
<filter-mappi ng>
<filter-name>authFilter</filter-name>
<url-pattern>*.jsp</url-pattern>
</filter-mpping>
8. Any number of listeners (see Chapter 11). Example:
<listener>
<listener-class>
com awl . j spbook. chll. Sanpl eLi st ener
</listener-class>
</listener>
9. Any number of servlet declarations, specifying the name of the serviet, the
implementing class, and any initidization parameters. An icon, display name, and
description may aso be provided. Additiona configuration information related to
Security may be provided, but such configuration is beyond the scope of this book.
Example
<servl et >
<servl et - nanme>acti on</ ser vl et - nanme>
<servl et-class>
org. apache. struts. action. Acti onServl et
</ servlet-class>
<init-paranp
<par am name>appl i cati on</ param nanme>
<param val ue>
config. Applicati onResources
</ param val ue>
</init-paranpr

<init-paranp

<par am name>confi g</ par am nane>
<par am val ue>
/ VEB- | NF/ cl asses/ config/struts-config.xm
</ param val ue>
</init-paranpr
</servlet>
10. Any number of serviet mappings, associating a servlet name with aclass of URLs.
Likefilters, one serviet may be configured to handle multiple sets of URLS unlikefilters,
only one sarvlet can handle any given URL. Example:
<servl et - mappi ng>
<servl et - nane>acti on</ servl et - nane>
<url -pattern>*.do</url-pattern>
</ servl et - mappi ng>
11. An optional session config, which specifies how long, in seconds, sessions should last.
Example
<sessi on-confi g>
<sessi on-ti nmeout >3600</ sessi on-ti neout >
</ sessi on-config>
12. Any number of MIME (multipurpose Internet mail extensons) mappings. These
associae file name extensions with MIME types, which tdll the browser how to handle
the data. Example:
<m me- mappi ng>
<ext ensi on>o0gg</ ext ensi on>
<m me-t ype>audi o/ ogg</ m ne-type>
</ m nme- mappi ng>
13. An optiond ligt of "wecomefiles"" Thesefiles specify a set of filesto look for if a
user triesto access a directory name. For example, it would be possible to send users
going to "/directory™ to "/directory/index.j0" if thet file exids, to "/directory/index.html"
if it doesn't, and so on. Example:
<wel conme-file-list>
<wel come-fil e>i ndex. | sp</wel cone-fil e>
<wel come-fil e>i ndex. ht m </ wel cone-file>
</wel come-file-list>
14. Any number of error pages, each of which associates a page with akind of error.
Usng this, it is possible to send requests for a nonexistent page to one place, an
gpplication error to another, and so on. Example:

351

<error-page>
<error-code>404</error-code>
<l ocati on>no_such_page. | sp</I| ocation>
</ error-page>
15. Any number of tag library declarations that associate a URI as used in a JSP with a
tag library descriptor (see Chapter 13). Example:
<taglib>
<taglib-uri>http://java.sun.comjstl/core</taglib-uri>
<taglib-location> WEB-I1NF/taglibs/c.tld</taglib-location>
</taglib>
Then come places to specify various security and resource parameters, including the use
of Enterprise JavaBeans. These are adso beyond the scope of this book; see the relevant
J2EE specifications for detalls.

352

