

If we had told people we were going to build a new bug tracker, they would have told us we were com-
pletely nuts. A little research into the market would tell you that there are scores, maybe hundreds,
of potential competitors, from mega-expensive corporate systems and free open source projects, to
on-demand software-as-a-service applications and homegrown tools purpose built to do one thing
and do it well. And then there’s Microsoft Excel, the all-in-one list builder and charting tool, which is
still incredibly popular among small software teams.

Had we considered the massive competition out there, we may have never created JIRA. Fortunately
for us, we had some naïveté in our favour, and no one told us not to do it. We built JIRA to help us
track our own consulting business, which is what Atlassian was in 2001, and in 2002 it became a full-
fledged product.

There’s two reasons JIRA was successful: an unexpected business model and its flexible architecture.
In 2002, Atlassian’s sales model was unlike any other business-to-business software tools. It wasn’t free
like an open source project, but it wasn’t expensive either like products from big corporations. It didn’t
require any professional services to use. And there were no sales people. It caused some confusion in
the market. Can you help us set up an evaluation? Um, just download it and try it. How can we make
changes to the license agreement? You can’t. It’s one size fits all. How much for a support agreement? It’s
included. Free. Can I send you a purchase order? Sure, or you can use your credit card. A credit card?
To purchase enterprise software?

Of course, JIRA’s popularity is more than a price point and business model. Most of the develop-
ers who started working on JIRA in 2003 are still at Atlassian today, building atop one of the most
feature-rich and flexible issue trackers available. Depending on which company is using it, JIRA has
been called a bug tracker, issue tracker, defect tracker, task tracker, project management system, or
help desk system. It’s used by waterfall and agile development teams. It’s used by some of the largest
corporations in the world to help build their biggest products, and some people use it to manage their
personal cross country moves. The permissions system has allowed JIRA to work for both private and
public-facing projects.

An ecosystem has been built up around JIRA. As of the time of writing this foreword, there are 273
commercial and open source plugins to JIRA on the Atlassian Plugin Exchange, and hundreds of oth-
er integrations built by companies for in-house use or by vendors who sell complementary products.
We’re extremely excited for Matt’s book, too. Matt has been a terrific partner who has built custom
integrations for JIRA, extending it far and beyond. In some ways, this book is another plugin to JIRA,
helping customers to squeeze more value from the application. It’s sure to provide assistance to all the
aforementioned customers—the big companies and the small ones, the ones looking to configure it as
a bug tracker, and those looking for project management tool.

The final word is about our customers who have pushed the product, our product and support teams,
and our imaginations, further then we could have ever done by ourselves. It’s been a lot of fun, and
for that, we say thanks, mate.

Mike Cannon-Brookes and Scott Farquhar, Atlassian co-founders and CEOs

Practical JIRA Administration

Practical JIRA Administration

Matthew B. Doar

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Practical JIRA Administration
by Matthew B. Doar

Copyright © 2011 Matthew B. Doar. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Practical JIRA Administration, the image of Cochin chickens, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30541-3

[LSI]

1305913431

Table of Contents

Preface . xi

1. Groups Versus Roles . 1
Overview 1

Scaling 2
Updating 2

Project Roles 2
Creating a New Project Role 3
Summary 4
Further Reading 5

2. Resolved, Resolution, and Resolution Date . 7
Overview 7
Resolved 7
Resolution 8
Resolution Date 9
Other Approaches 9
Summary 10
Further Reading 10

3. Understanding Schemes . 11
Overview 11
Project-Wide Schemes 11

Adding Users to Schemes 12
Notification Schemes 13
Permission Schemes 14
Issue Security Schemes 15
Issue Type Schemes 16

Schemes That Use Issue Types 17
Workflow Schemes 17
Field Configuration Schemes 18

vii

Issue Type Screen Schemes (ITSS) 19
Working with Schemes 21

Documenting Schemes 21
Debugging Schemes 22

The Future of Schemes 23

4. JIRA as a Platform . 25
Overview 25
What Can Be Configured 25

What Is Configured System-Wide 26
Worked Example: Configuring JIRA for a New Department 26
Basic JIRA Project Setup 27

Project Lead 27
Project Category and Avatar 27
Notification Scheme 27
Permission Scheme 28
Groups and Roles 28
Hiding Projects from Users 28
Issue Security Scheme 29

Advanced Project Setup 29
Issue Type Scheme 29
Workflow Scheme 30
Field Configuration Scheme 30
Screen Scheme 30
Issue Type Screen Scheme (ITSS) 31

Adding a Custom Field 31
Names Used in the Example 32
Summary 33

5. Creating a Workflow from Scratch . 35
Overview 35
Designing a Workflow 36
Implementing a Workflow 38
Deploying and Testing a Workflow 39
Workflows and Events 40
Further Reading 41

6. The User Lifecycle . 43
Overview 43
Adding Users 43
Modifying Users 44

Changing a Username 44
Deactivating Users 46

viii | Table of Contents

Monitoring Users 46

7. Planning a JIRA Upgrade . 47
Overview 47
Preparing for an Upgrade 48
Important JIRA Locations 49
A General Upgrade Procedure 49
Testing an Upgrade 53
Troubleshooting an Upgrade 54
In-Place Database Upgrades 55
Further Reading 55

8. Remote Access to JIRA . 57
Overview 57
Email 57
SQL 58
SOAP 59

Debugging a SOAP Client 60
Creating Custom SOAP Methods 61

REST 61
XML and RSS 62
CLI (Command Line Interface) 62
Integrating with Other Applications 63
Further Reading 63

9. Jiraargh! Frustrations . 65
Overview 65
Frustrations with Fields 65
Frustrations with Actions 66
More Information Needed! 67
Frustrations with Email 67
Learning JIRA Safely 68
Too Many Administrators 68
Debugging your Configuration 69
Managing Custom Fields 69
Managing Projects 70
Managing Users 70
Further Reading 71

Table of Contents | ix

Preface

What This Book Is About
This book is about JIRA, the popular issue tracker from Atlassian. An issue tracker lets
people collaborate more effectively when there are things to be done. You can use an
issue tracker for everything from tracking bugs in software to customer support re-
quests, and beyond.

The book is intended for readers who administer a JIRA instance or design how JIRA
is used locally. It assumes a basic familiarity with what JIRA can do and provides more
information about how JIRA is intended to be used.

Each chapter should help clarify some confusing aspect of JIRA administration. The
chapters are only loosely connected to each other, with the intention that they can be
read in any order. Chapters 1 and 2 are “warm-up” chapters that deal with two specific
aspects of JIRA administration. Chapters 3 through 5 cover more system-wide aspects.
Chapters 6 through 9 cover other similarly focused areas.

The intention of this book is to supplement but not repeat the extensive JIRA docu-
mentation, freely available at http://confluence.atlassian.com/display/JIRA/JIRA+Docu
mentation.

In selecting the different topics to cover in this book, I was conscious of the different
questions that I, as a software toolsmith, am asked about JIRA every day. I chose the
most frequently asked and difficult ones. If you can’t find a particular topic and think
it should be in a book such as this, then please do contact me with more details.

Some of the topics that are covered are expanded versions of entries already posted to
my blog “Practical JIRA Development”, at http://jiradev.blogspot.com. The chapters
which are based on these entries are Chapters 1, 2, and 4.

JIRA Versions and System Details
This book refers to JIRA version 4.2.4 Standalone, which was released in February 2011.
Where there are differences between versions of JIRA (or for JIRA Studio or JIRA WAR/
EAR), these are noted in the text.

xi

The system used throughout this book is a Linux server with JDK 1.6 and MySQL. The
main differences for other operating systems, deployment types, databases, and JVMs
are the installation instructions and the names and paths of certain files. These details
are described in the online JIRA documentation.

Development Environment
This book was written using OSX 10.6.6 on a Mac Mini 2.1, using DocBook 4.5, Emacs
22.1.50.1 and Subversion 1.5.2. The output files were generated using a custom remote
toolchain provided by O’Reilly for their authors. Using a remote toolchain makes it
easier to use DocBook and allows books to be updated more frequently.

Technical Reviewers
Stafford Vaughan

Stafford started using JIRA in 2005 after completing a Software Engineering degree
in Australia and joining CustomWare, Atlassian’s leading services partner. He is a
founding author of Atlassian’s official JIRA training course materials, and has spent
the past five years delivering training to hundreds of organizations worldwide.
Stafford currently lives in San Francisco and works in Silicon Valley.

Bryan Rollins
Bryan is the Product Manager for Atlassian JIRA.

Paul Slade
Paul is a member of the Atlassian JIRA development team.

Matt Quail
Matt is a member of the Atlassian JIRA development team.

Matt Silver
Matt Silver has worked in the technical support field for 10 years and now works
for O’Reilly. He’s an avid rock drummer and lives in Northern California.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

xii | Preface

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Administration→System→System Information
Shows menu selections within JIRA, in this case the Administration menu item,
the System menu item and then the System Information menu item.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Practical JIRA Administration by Matthew
B. Doar (O’Reilly). Copyright 2011 Matthew B. Doar, 978-1-449-30541-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they
are available for print, and get exclusive access to manuscripts in development and
post feedback for the authors. Copy and paste code samples, organize your favorites,

Preface | xiii

download chapters, bookmark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449305413

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
People at Atlassian who have been particularly helpful over the years include Jonathan
Nolen, Sarah Maddox, and Jessie Curtner. The Atlassian founders Mike Cannon-
Brookes and Scott Farquhar, and all of the JIRA team have always been responsive and
encouraging.

Within the Atlassian community, Jamie Echlin, Nic Brough, Neal Applebaum, and
Leonid Maslov stand out for the number of times they’ve answered questions from
myself and others in the JIRA Developer’s Forum. Other experts that I have benefited
from discussions with include Andy Brook, Jonathan Doklovic, David Fischer, Jobin
Kuruvilla, Bob Swift, Vincent Thoulé, and David Vittor. Many thanks to all of you, and
see you at the next AtlasCamp!

xiv | Preface

My sincere thanks also go to all the clients of Consulting Toolsmiths for directly and
indirectly providing me with the knowledge of which parts of JIRA confuse many JIRA
administrators.

Behind all I do is my dearest wife Katherine and beloved children Lizi, Jacob, and Luke.
Thank you all, and may the love of God rest and remain with you always.

Preface | xv

CHAPTER 1

Groups Versus Roles

Overview
The difference between JIRA groups and JIRA project roles seems to confuse many
JIRA administrators. This chapter explains the differences and what each one is good
for.

Up until a few years ago, JIRA had users and groups of users, but no project roles.
Groups were pretty powerful—wherever you could do something with a user, you
could generally use a group instead.

For instance, if you wanted to allow a specific user john.smith to change the Reporter
field in a project’s issues, you could:

1. Create a new permission scheme named something like “john.smith can change
Reporter”.

2. Next, add the john.smith user to the appropriate Modify Reporter permission entry
in the new permission scheme.

3. Change the appropriate project to use the new permission scheme.

You could also do the same thing with a group:

1. Define a new JIRA group named “Can Modify Reporters”.

2. Add the user john.smith to the new group.

3. Create a new permission scheme named something like “Added an extra group of
users that can change Reporter”.

4. Add the group (instead of the user) to the appropriate Modify Reporter permission
entry in the new permission scheme.

5. Just as before, change the appropriate project to use the new permission scheme.

Both of these approaches now allow john.smith to change the Reporter field. So far so
good, but there are two main problems with using JIRA groups like this: scaling and
updating.

1

Scaling
If you want john.smith to be able to edit the Reporter field in some projects, and also
allow a different user, jane.bloggs, to do the same thing in other projects, then you
have to create two permission schemes, one for each user being granted this permission.
If you then decide that they are both allowed to edit the Reporter in some shared
projects, then you need a third permission scheme. With lots of users, this leads to an
explosion in the number of permission schemes (and any other JIRA scheme that sup-
ports groups). Keeping track of the difference between each of these schemes is tedious
and error-prone, even with the scheme comparison tools (Administration→Scheme
Tools).

Updating
As time passes, users may need to be part of different JIRA groups. A project lead usually
knows which groups a user should currently be part of. However, only JIRA adminis-
trators can change the membership of JIRA groups, which means extra maintenance
tasks for them that could be better handled by JIRA project leads.

Project Roles
What was needed to avoid these problems with JIRA groups was another level of in-
direction,* and that’s exactly what JIRA project roles are. Figure 1-1 shows the basic
idea.

Figure 1-1. JIRA project roles

JIRA has three default project roles: Administrators, Developers, and Users. The current
members of these roles for each project can be seen at Administration→Projects: click
on the project name, then Project Roles, and then View Members.

* “All problems in computer science can be solved by another level of indirection.” —David Wheeler, the
inventor of the subroutine.

2 | Chapter 1: Groups Versus Roles

The number and names of the roles can be changed at Administration→Project Role
Browser, but for now let’s stick with the three default roles. Every JIRA project has the
same set of project roles all the time. The default members of each role for new projects
are shown in Figure 1-2.

Figure 1-2. JIRA default roles and their memberships

For each role in every project, you can define who plays that role by adding or removing
a user or a group for the role.

For example, you could add an individual contractor using JIRA to the Users role for
only the projects they need to work with.

Once you’ve chosen who plays each role for each project, you can use the roles in your
schemes. For instance, when you look at the default permission scheme you’ll see that
all of the permissions are granted to project roles, not directly to users or groups. The
significant thing about roles is that they can be changed for each project by people who
are in the Administrators role but aren’t JIRA administrators. These people can now
create versions and components for their project without needing to change the un-
derlying configuration of JIRA.

To put all that another way:

Who can change a project’s versions and components?
The users who have the Administer Projects permission.

Which users have the Administer Projects permission?
People in the “Administrators” project role.

Which users have the Administrators project role?
Members of the jira-administrators group and anyone else that you add to that role
for a project.

Who can change other parts of JIRA’s configuration?
Only members of the jira-administrators group, not users who have the Adminis-
trators project role.

Creating a New Project Role
Another way to understand what’s going on here is to create a new project role. Let’s
say that for some reason, we want to allow the technical publications (“Tech Pubs”)
user assigned to each project to modify the Reporter of an issue.

Creating a New Project Role | 3

The default permission scheme already allows users with an Administrator role in a
project to modify the Reporter of an issue. But we don’t want to allow the Tech Pubs
user to administer the whole project: we just want to give them that one specific
permission.

We can create a new role Documentation, at Administration→Project Role Browser. We
can also add our Tech Pubs lead bobby.jones as a default member in the “Users” column
of the new project role so that he will be in the Documentation role for all new projects
by default.

Now every JIRA project has this new role. When a new JIRA project is created, it will
have the bobby.jones user in the Documentation role for the project. For existing
projects, we can manually add the appropriate Tech Pubs user (or group) to the Doc-
umentation role for each project. Once the users for this role have been added, we can
edit the appropriate permission schemes and add the Documentation role to the Modify
Reporter permission entry. The permission scheme now checks which users are in the
role for each project, rather than looking at a fixed list of users or groups of users.

If the Tech Pubs person changes for the project, then the people in the project Admin-
istrator role can change the members of the Documentation role for just that project.
There is no need to ask the JIRA administrator to make the changes.

For more information about using project roles to control which users can view which
projects, see “Hiding Projects from Users” on page 28.

From the other direction, you can also see which roles an individual user has in all the
JIRA projects: go to Administration→User Browser, find the user, and click on Project
Roles.

Summary
JIRA groups are made up of JIRA users and can only be changed by JIRA administrators.
But JIRA project roles are made up of JIRA users and JIRA groups and can be changed
per project by project administrators. Project administrators are all the users in the
Administrators role for a JIRA project.

Should I use a group or a project role?

If you want to refer to the same set of more than six users across multiple
projects, use a group. If you want to refer to a set of users that is poten-
tially different per project, use a project role. Also, don’t add new roles
without considering whether the existing ones can be used in the per-
mission scheme to accomplish what you are trying to do.

4 | Chapter 1: Groups Versus Roles

Further Reading
http://confluence.atlassian.com/display/JIRA/Managing+Groups discusses JIRA groups
in general.

http://confluence.atlassian.com/display/JIRA/Managing+Project+Roles discusses JIRA
Project Roles specifically.

Some of the background information to this chapter can be found at http://confluence
.atlassian.com/display/JIRA/Migrating+User+Groups+to+Project+Roles, along with
the documentation for the JIRA Scheme Comparison Tools. Unfortunately, the scheme
tools only work with Permission and Notification Schemes.

Further Reading | 5

CHAPTER 2

Resolved, Resolution, and
Resolution Date

Overview
One thing that sometimes confuses both JIRA users and administrators is the difference
between the Resolved status and the Resolution field. This chapter clears up some of
the confusion between these very similar-sounding terms. The differences are sum-
marized at the end of this chapter (“Summary” on page 10).

Getting this right is important, because many of the standard JIRA reporting gadgets
expect the Resolution field to be set as expected—otherwise confusing results occur.
For example, gadgets that refer to the date when issues were resolved use the Resolution
Date field, which is in turn based on the Resolution field.

Resolved
JIRA comes with a default workflow (Administration→Global Settings→Workflows)
named “jira”, shown later in Figure 5-1 and summarized below in Figure 2-1. This
workflow has the following statuses for an issue, shown in the order they commonly
occur.

Figure 2-1. Default JIRA workflow

7

The idea is that an issue (such as a bug) is created with a status of Open, and is then
moved to In Progress and then Resolved by the person who fixes it. The bug is then
moved to either Closed or Reopened by someone who checks whether it really was fixed
or not. So “Resolved” is just a name for an issue status. The status could just as well
have been named “Believed Fixed” or “Ready for Testing”.

If you create a workflow from scratch (see Chapter 5), the Resolved
status is not connected in any way with the Resolution field

Resolution
It’s generally a good idea to keep the number of statuses in your workflow as small as
possible to make maintenance easier. It makes sense to avoid having lots of statuses
with names like:

“Closed and Fixed”
“Closed and Won’t Fix”
“Closed Because It’s A Duplicate”
“Closed Since…”

The Resolution system field (Administration→Issue Settings→Resolutions) can be used
to avoid having lots of similar statuses. The default values for Resolution of Fixed, Won't
Fix, Duplicate, Incomplete, and Cannot Reproduce cover many of the reasons that a bug
could be closed, and you can change this list if necessary.

The intended use of the Resolution field is that when a bug is created, the field is empty,
with no value at all. This is displayed in an issue as a value of “Unresolved”. When an
issue is moved to a status such as Resolved or Closed, the Resolve Issue Screen is usually
shown during the transition. This screen includes the Resolution field, ready for the
user to set a value. A bug can have its Resolution set to “Fixed” while it is moving to
the Resolved status, for example.

JIRA expects the Resolution field to be set in any status you would con-
sider an issue resolved, and that the Resolution field should be cleared
in all other statuses. It’s up to you to make sure this happens, with a
transition screen or post-functions when you create or modify work-
flows (see Chapter 5).

In the default JIRA workflow, the Resolve Issue Screen is the only screen where you
can set the Resolution field for an issue, and this screen is only used for transitions to
the Resolved and Closed statuses. In your own workflows you are responsible for mak-
ing sure that the Resolution is set. Once the Resolution has been set, the issue is con-
sidered resolved by JIRA, even if the status of the issue is not the Resolved status but
some other status defined by you (such as “Deployed”).

8 | Chapter 2: Resolved, Resolution, and Resolution Date

The only way to remove the resolution from an issue in a standard JIRA
installation is to Reopen an issue. Adding the Resolution field to the
Default Screen to make it easier to change is a bad idea, because it’s a
required field and will get set for issues that aren’t yet resolved.

Another approach to clearing a Resolution field in an issue is to create transitions back
to the same status that have a post-function to clear the Resolution. More details on
this can be found at How to Clear the Resolution Field.

Resolution Date
The Resolution Date system field is the latest date that any value was set in the Reso-
lution system field for that issue. Changing the issue status from Resolved to Closed
also used to change the resolution date, but this was fixed in JIRA 4.3.1. The Resolution
Date field will only be empty if there is no value at all in the Resolution field.

The Resolution Date is confusingly named Resolved in the list of Issue
Navigator columns and some gadgets. This has nothing directly to do
with the status named “Resolved”.

Other Approaches
Many organizations using JIRA don’t use the Resolution field for a number of reasons:

• It’s hard to reset the value to empty for unresolved issues.

• It doesn’t appear on standard screens, only during transitions.

• It’s hard to make the Resolution field not required on custom transition screens.

Instead, they base their reporting only on the name of the statuses in the workflows.
They may also create their own custom Select List field named something like
Our Resolution or Sub-status, with its own values such as Unresolved, Fixed, Won't
Fix, Duplicate, Incomplete, and Cannot Reproduce.

The drawback of not using the system Resolution field as JIRA intended
is that many of the standard JIRA reporting gadgets are no longer useful.
Making sure that the Resolution is set correctly in your workflow is a
better approach in the long run (see the section “Implementing a Work-
flow” on page 38).

Other Approaches | 9

A helpful approach to consider in custom workflows is creating a transition for each
desired resolution, with a post-function in each transition to set the resolution with-
out using a screen. For example, there could be a transition from the current status to
Closed named “Duplicate”, which automatically sets the resolution to Duplicate.

Adding a resolution named “Unresolved” to the system Resolution field
is a bad idea, because since the Resolution field now has a value, the
issue will still be treated as resolved by the standard JIRA gadgets.

Summary
• “Resolved” is just the name of one of the issue statuses in the default JIRA

workflow.

• Resolution is a system field with values of Fixed, Not Fixed, and so on. The Reso-
lution field is usually set during transitions.

• An unresolved issue is one with no value in the Resolution field.

• The Resolution Date system field is the latest date that the Resolution field was
changed to any value.

Further Reading
Some of the points in this chapter are mentioned briefly at http://confluence.atlassian
.com/display/JIRA/Configuring+Workflow#ConfiguringWorkflow-About%27open
%27and%27closed%27issues.

Clearing the Resolution field is covered at http://confluence.atlassian.com//display/JIRA/
How+to+clear+the+resolution+field+when+the+issue+is+reopened.

The problem of the Resolution Date changing when an issue’s status is updated is
described in the JIRA bug JRA-20286.

The Created vs Resolved Gadget described at http://confluence.atlassian.com/display/
JIRA/Adding+the+Created+vs+Resolved+Gadget is a good example of where confusion
can occur about what “Resolved” actually means.

10 | Chapter 2: Resolved, Resolution, and Resolution Date

CHAPTER 3

Understanding Schemes

Overview
Schemes are a major part of configuring JIRA, but they are also one of the most con-
fusing parts of JIRA. This chapter is intended to clear up some of that confusion.
Chapter 4 has a worked example of how schemes can be used.

A JIRA scheme is a collection of configured values that can be used by more than one
JIRA project. For example, a Notification scheme describes who receives what kinds
of email when issues are changed. The same Notification scheme can be used by more
than one JIRA project. In fact, the Default Notification scheme is used by all JIRA
projects unless you configure a project differently.

The seven schemes that are being used for a particular JIRA project can be viewed and
edited by editing the project (go to Administration→Projects and click on the project
name, not Edit).

We’ll cover the four schemes that are similar to the Notification scheme first and look
at the remaining three (more complex) schemes later. The top-level page in the Atlassian
documentation for all of this information is http://confluence.atlassian.com/display/
JIRA/Defining+a+Project.

Project-Wide Schemes
The four schemes like the Notification scheme that apply to the whole project or to
all issue types within a JIRA project are:

Notification Scheme
Who receives what email when an issue changes

Permission Scheme
Who can do what to an issue

Issue Security Scheme
Who can even view an issue

11

Issue Type Scheme
What issue types a JIRA project can use

First we’ll take a quick detour to see how JIRA refers to users in such schemes.

Adding Users to Schemes
There are a dozen different ways (shown in Figure 3-1) that JIRA lets you specify a set
of users, but happily the same ways can be used in both Notification and Permission
Schemes. Issue Security schemes use a subset of these choices.

Figure 3-1. Referring to users in a scheme

The simplest of these are:

Current Assignee
The user that the issue is currently assigned to.

Reporter
The reporter of the issue.

Current User
For permission schemes, the user who is logged in.

Project Lead
Component Lead

The project lead is specified in each project’s settings. Component leads are op-
tionally configured for each component in a project.

12 | Chapter 3: Understanding Schemes

Single Email Address
A specific email address. This only works for issues that can be browsed
anonymously.

All Watchers
All users listed in the system Watchers field for an issue.

The not-so-obvious ways are:

Single User
A username such as john.smith, not their full name such as “John Q. Smith”.

Group
Project Role

In general, use a Project Role instead of a Group, as discussed in Chapter 1.

User Custom Field Value
Use the contents of a custom field of type User Picker or Multi User Picker. Such
a field might be populated during a transition or by editing an issue.

Group Custom Field Value
Use the contents of a custom field of type Group Picker or Multi Group Picker. In
a notification scheme, all the members of these groups will receive email, so be
careful about how many users are involved.

Notification Schemes
A notification scheme controls who receives what email about changes to JIRA issues.
A reasonable default notification scheme comes with JIRA.

It’s much easier to add changes to a notification scheme than to undo
them. So always keep an unchanged copy of the default notification
scheme as an easy way to undo any changes you make later on.

JIRA uses an event-driven model for its notifications. When something such as a com-
ment or a status change happens to a JIRA issue, a specific kind of Event is sent within
JIRA. Another part of JIRA listens for events and acts on them when they are received.
For example, when the JIRA system Mail Listener (Administration→Listeners) receives
an event from an issue, it uses the notification scheme for the issue’s project to decide
who should receive the email. This process is summarized in Figure 3-2. The actual set
of users who are sent email for each different event can be defined in the various ways
listed in “Adding Users to Schemes” on page 12.

Project-Wide Schemes | 13

Figure 3-2. Notification Scheme

You can define your own custom events at Administration→General Configura-
tion→Events, and then change the post-function in a workflow transition to make it
send (“fire”) the new event. The new event will appear as a new row in all the notifi-
cation schemes, and you can then define who should receive email when that transition
takes place.

Note that you cannot configure the type of event sent for non-workflow issue operations
such as Assign or Comment.

It’s important to avoid spamming your users with too much email, or
they’ll just filter it and miss useful information. Be careful how many
users you add to a notification scheme.

For more information, see the documentation at http://confluence.atlassian.com/dis
play/JIRA/Creating+a+Notification+Scheme.

Permission Schemes
A permission scheme is how you configure who is allowed to do what to a JIRA issue.
There are a number of fine-grained permissions, such as “Create Issues” and “Edit
Issues”. Each of these permissions has a set of users that are granted that permission,
as shown in Figure 3-3. Just like notification schemes, this set of users can be configured
in the various ways described in “Adding Users to Schemes” on page 12.

14 | Chapter 3: Understanding Schemes

Figure 3-3. Permission Scheme

Just like other schemes, it’s much easier to make changes to a permission scheme than
to undo them. Keep an unchanged copy of the default permission scheme as an easy
way to undo any changes you make later on.

Once defined, such permissions are used by JIRA in various ways. The most obvious
permissions do what they say (e.g., “Link Issues” controls whether a user can link one
issue to another). Other permissions such as Resolve Issue and Close Issue can be used
in workflow conditions to control who can change an issue’s status.

However, some of the permissions have effects that are not as obvious at first glance.
For instance, when editing an issue, the Resolve Issue permission is needed to see the
Fix Versions field, and the Schedule Issues permission is needed to see the Due Date
field. If the user does not have those permissions, then these fields are hidden—not just
grayed out—in an issue’s edit screen.

For more information, see the documentation at http://confluence.atlassian.com/dis
play/JIRA/Managing+Project+Permissions.

Issue Security Schemes
An issue security scheme controls who can view or edit a specific issue. In practice, most
JIRA projects don’t need to have an Issue Security scheme defined, which is why this
scheme is set to “None” by default when you create a new project.

Within an issue security scheme, you can define one or more “security levels” as shown
in Figure 3-4. There is actually no hierarchy involved in these levels; they’re really just
sets of users. Each security level can have users assigned to it in the same way described
in “Adding Users to Schemes” on page 12. You can also choose one level to be a default
security level for the scheme.

Figure 3-4. Issue Security Scheme

Project-Wide Schemes | 15

There is a system field in all issues named “Security Level”, which contains a list of all
the different levels configured in the issue security scheme that are active for that issue’s
project. Once a security level has been set in this field in an issue, then only users in
that level can view or edit the issue. For other users, the issue is invisible and doesn’t
appear in searches—or recent issue lists either.

To be able to set the Issue Security field in an issue to anything but the
default value, you need to have the Set Issue Security permission (“Per-
mission Schemes” on page 14). The default permission scheme does not
give any user this permission.

As an example of using an issue security scheme, the Atlassian support website for JIRA
at https://support.atlassian.com/browse/JSP uses an issue security scheme that only al-
lows the Reporter and Atlassian staff to see each issue. That way, confidential infor-
mation in a support request from one customer is not seen by a competitor who also
happens to be using JIRA.

For more information, please see the documentation at http://confluence.atlassian.com/
display/JIRA/Configuring+Issue+Level+Security.

Issue Type Schemes
A JIRA project’s issue type scheme controls which issue types are valid in that project,
as shown in Figure 3-5. For instance, most JIRA projects that are not used by developers
don’t want to have the Bug issue type to be shown as a choice anywhere.

Figure 3-5. Issue Type Scheme

You can define an issue type scheme by going to Administration→Issue Settings→Issue
Types and clicking on the tab Issue Types Scheme (not “Issue Type Schemes” as you
might expect). This location is not as obvious as it might be. You can also set the default
issue type that will be used when someone is creating an issue, and even change the
order of issue types the user will see.

Changing any scheme for lots of projects is generally a long and repetitive task (see
“Managing Custom Fields” on page 69), but not for issue type schemes. The Asso-
ciate link in the list of issue type schemes allows you to select multiple projects to change
at once.

16 | Chapter 3: Understanding Schemes

For more information, see the documentation at http://confluence.atlassian.com/dis
play/JIRA/Associating+Issue+Types+with+Projects.

Schemes That Use Issue Types
Every JIRA project has three other schemes whose behavior depends upon the issue
type of an issue. For example, the fields for a Bug may be quite different from the fields
for a Task—this is defined in a field configuration scheme.

These schemes are more complex than schemes that don’t depend on
the issue type, and they’re the schemes that usually confuse JIRA ad-
ministrators. One way to keep the two kinds of schemes separate is to
remember that these three schemes are the last three of the seven
schemes listed when you’re editing a project’s schemes.

The schemes that use an issue’s issue type are:

Workflow Scheme
Which workflow is used for each issue type

Field Configuration Scheme
Which fields are part of each issue type

Issue Type Screen Scheme
Where are the fields displayed in an issue

All of these schemes have the concept of a default. This is what is used if an issue type
is not specifically mentioned in the scheme.

Different JIRA projects can all have totally different schemes, but to
make maintenance easier you should always try to define schemes that
can be reused by more than one project. This is discussed in “Working
with Schemes” on page 21.

Workflow Schemes
JIRA is designed to support different workflows. A workflow scheme defines which
workflow is used for each issue type, as shown in Figure 3-6. A default workflow can
also be chosen in a workflow scheme, and this workflow will be used for all issue types
that aren’t specifically mentioned in the scheme.

The workflow scheme is an example of a common naming pattern for
these three JIRA schemes: the Foo Scheme is the mapping from an issue
type to a particular Foo thing.

Schemes That Use Issue Types | 17

One common practice is to start with a single workflow for the default and to then add
workflows for specific issue types as necessary. For example, begin with the “Default
Workflow”, then add a “Bug Workflow”, a “Task Workflow”, and so on.

For more information, please see the documentation at http://confluence.atlassian.com/
display/JIRA/Activating+Workflow.

Field Configuration Schemes
A field configuration scheme defines which Field Configuration is used for each issue
type, as shown in Figure 3-7. A default field configuration can also be set.

Figure 3-7. Field configuration scheme

A Field Configuration (which is not a scheme) is a list of all the possible fields in any
issue, with further configuration so that each field is valid and therefore “shown”, or
invalid and “hidden”. For instance, the Fix Versions field is useful for a Bug but maybe
not for a Task, so it would be configured as hidden in the Task field configuration.

When you edit a field configuration, you’ll notice that every possible field is listed,
whether or not the field is restricted by issue type or project. This is the expected
behavior.

Figure 3-6. Workflow scheme

18 | Chapter 3: Understanding Schemes

Each field can also be marked as “Required”, which means that it can’t be left empty.
JIRA will try to not allow you to make a field both required and hidden.

You can change a field’s description in a field configuration, and also change the way
that the contents of the field are displayed using various renderers. The renderers can
show the contents of a field as raw text or can treat the text as wiki markup. If your
users complain about JIRA mangling characters in the description, check which ren-
derer is being used.

For more information, see the documentation at http://confluence.atlassian.com/dis
play/JIRA/Associating+Field+Behaviour+with+Issue+Types.

Issue Type Screen Schemes (ITSS)
I’ve saved the most complex and confusing scheme for last. All the other JIRA schemes
either control the behavior of an entire JIRA project (permission, notification, issue
security, issue type schemes) or control the behavior differently per issue type. An Issue
Type Screen Scheme (ITSS) controls how the fields are displayed for an issue using
two levels of indirection instead of just one. This is shown in Figures 3-8 and 3-9.

Other things to note about this scheme are that an “Issue Type Screen Scheme” is
entirely different from a “Issue Type Scheme”, and also that the phrase “Screen Scheme”
is a great tongue-twister. Try it!

Recall that a field configuration scheme and its field configurations define the fields
that are valid for a particular project and issue type. Screens are what control how these
fields are viewed by a user.

On the first level of indirection we have Screen Schemes, which are not used directly
by a JIRA project. Each Screen Scheme refers to up to three screens—one for creating
an issue, one for viewing an issue, and one for editing an issue. This is so that you can
have the same set of fields displayed in a different order on each screen (or not show
certain fields during issue creation if they don’t make sense there).

I usually define a screen scheme for a single issue type. For example, you might have a
Bug Screen Scheme that defines how to display the fields for a Bug during creation,
viewing, and editing an issue, as shown in Figure 3-8.

At the second level of indirection, an ITSS defines which screen scheme should be used
for each issue type. A default screen scheme can also be chosen in an ITSS.

For more information, see the online documentation at http://confluence.atlassian.com/
display/JIRA/Associating+Field+Behaviour+with+Issue+Types.

Schemes That Use Issue Types | 19

Figure 3-8. Screen scheme

Figure 3-9. Issue Type Screen Scheme

20 | Chapter 3: Understanding Schemes

Working with Schemes
Even once you’ve understood what the different schemes do in JIRA, they will still need
to maintained. Every time that someone asks you to add a new field just for them, you
will want to consider the effects of that change on everyone else’s issues. Chapter 4
looks at how to make sure this happens in a controlled way, and the rest of this chapter
covers some of the details of making this possible.

There is a necessary balance between the number of schemes and what they all do. I
try to have only as many schemes as are needed by the different communities using a
particular JIRA instance. You can configure JIRA so that every project has a complete
set of schemes, but that’s usually overkill and just makes for a lot of maintenance work
later on. Also, if every group in an organization has a different process, then working
together is going to be that much harder.

The most important thing to do before changing schemes is to create a
backup of your JIRA data. If possible, test all scheme changes on a de-
velopment server. Even better, do both.

Documenting Schemes
Each scheme has a name and an optional description. What are good names for
schemes? Obviously it’s a personal preference, but I usually name my schemes using a
Project Category or Issue Type name, and then the scheme type.

For example, I might have a project category named “Customer Support” for all of the
Customer Support department’s JIRA projects. For an ITSS used by all those projects,
I would use a name such as “Customer Support ITSS”—and then this scheme would
refer to screen schemes with names like “Support Request Screen scheme” and “Train-
ing Screen scheme”, using the issue types for the screen scheme names.

I also use the scheme’s description field to record the latest change at the beginning,
just after the summary of what a screen is for. The maximum length of the description
varies according to the underlying database, but you can assume at least 4000 charac-
ters.

Sometimes I also add version numbers to a scheme’s description or name, and update
these when I change the scheme. This is useful, but I recommend adding the date as
well, since you may end up with branched schemes. Only workflows record the date
and user who last changed them.

If I’m really feeling paranoid or the JIRA configuration is particularly complicated, then
I may even create a document describing the intended purpose of each scheme and the
changes that have been made to it over time. This helps me when I’m trying to work
out the effects of a proposed change to a particular scheme.

Working with Schemes | 21

Debugging Schemes
Sometimes you have to try to understand how a JIRA instance has been configured by
another person whose documentation and naming of schemes was perhaps minimal.
This usually happens when someone asks you something like “why can’t I edit this field
anymore?”

The first thing to do is to see if the names of the various schemes bear any resemblance
to what they are actually used for. Just because a scheme is called “Bug Workflow
scheme” doesn’t mean that it’s only (or even) being used for bugs. The fastest way to
get this information is to go to each scheme administration page and look at the projects
that each scheme is assigned to. With luck, you’ll spot an obvious pattern. If the scheme
names don’t end in “scheme”, consider adding that to make it clear that it’s a workflow
scheme, not a workflow (for example).

You may also want to compare two schemes to see how they differ. There is a convenient
tool for comparing permission and notification schemes available at Administra-
tion→Schemes→Scheme Tools. For other scheme types, I find that opening each scheme
in a separate tab in my browser allows me to compare them reasonably well side-by-
side.

If you decide to do a wholesale renaming of the schemes in your JIRA instance, then I
recommend making a backup (of course) and then renaming just one collection of
similar projects at a time (such as those with the same project category). Renaming old
scheme names with an obvious prefix such as “OLD” can also help you spot the cases
that you’ve missed. Since you’ve got a backup, you can also consider deleting inactive
schemes.

Once you have a better understanding of which schemes exist and what they’re used
for, you can debug the original problem. My process for debugging most scheme prob-
lems is as follows:

1. Obtain a specific issue key where the problem can be reproduced.

2. If you can, get a sense of when the problem began, since it may be related to some
other scheme change you’ve just made.

3. Note the project, issue type, and status of the issue, and also whether the problem
occurs during creating, viewing, or editing the issue.

4. Go to Administration→Projects and click on the project name.

5. Note the names of the seven schemes that are currently being used by this project.

6. For each scheme in turn, view the details of the individual scheme and see what
applies for the specific issue type. Note this information as well.

7. If the problem is about a field, then view the appropriate field configuration and
the create, edit, or view screen. The field may be hidden, required, not present on
the screen, or present but in another screen tab.

22 | Chapter 3: Understanding Schemes

Some fields are only visible if the user has the correct permission, so you may not
have the same problem as an administrator. Try creating a user account with the
same groups and project roles as the user reporting the problem. Alternatively, log
in as the user who reported the problem using the JIRA SU (Switch User) Plugin.

8. If the problem is about a workflow action, check the specific transition’s conditions
and validators first.

9. If the problem seems related to some other scheme, then drill down into that
scheme’s definition, bearing in mind the issue type and where the problem was
seen.

10. Once you have identified the root cause and fixed it, revert the fix and confirm that
the same problem reappears, then fix it again. This confirms that your analysis and
changes are correct. You should also check other schemes where the same problem
may exist.

Don’t make any change to schemes before making a backup. Ideally,
you should debug and fix the problem in a development instance of JIRA
before touching the production JIRA.

The Future of Schemes
Schemes have always been a powerful but somewhat confusing part of JIRA. They’re
not going to go away, but Atlassian is actively investigating ways to make them easier
to use. A sample of how JIRA might present all of the various schemes’ information in
the future can be seen in the JIRA Project Configuration Prototype plugin’s home page
(https://plugins.atlassian.com/plugin/details/34407).

This work is also typical of how Atlassian makes large feature changes to JIRA. First a
plugin is developed that offers the functionality in parallel to the existing functionality,
but in a harmless way. Feedback and fixes occur rapidly and then the plugin is bundled
with the shipped JIRA package. Many of the core features of JIRA are in fact plugins
when you look at their source code.

The Future of Schemes | 23

CHAPTER 4

JIRA as a Platform

Overview
A common request that JIRA administrators receive is to use JIRA for more than its
current purpose. The typical case is that someone in one group tells a different group
that “you can do that with JIRA, and it’s already installed.” It’s true that JIRA can be
used to track many different kinds of issues, and Chapter 3 described how to configure
JIRA schemes to do just that.

This idea is, in effect, using JIRA as a platform for different web applications or “vertical
solutions” for each group of users. There might be one such web application for Engi-
neering JIRA projects, one for Customer Support JIRA projects, and so on. Using JIRA
as a platform in this way is part of how it is designed to be used, but it does need a
consistent configuration approach to be successful. This is particularly true if different
groups don’t want to see any part of other groups in the same JIRA instance.

However there isn’t much documentation on how to do this in a consistent manner.
This chapter describes one way to do this using a worked example, and then summa-
rizes this in “Summary” on page 33.

What Can Be Configured
For each pair of a JIRA project and issue type, we can change the following:

• Which system and custom fields an issue can use, and whether they are required
or not

• Whereabouts on an issue screen the system and custom fields appear

• The workflow for an issue, including the statuses available in an issue

25

On a per-project basis, we can also configure:

• The issue types used in the project

• The components and versions available for an issue

• The permissions for what a user can do with an issue, including even knowing the
issue exists

• Who can access the whole project

• Who receives email about changes to issues

What Is Configured System-Wide
Some configurations for JIRA are system-wide and affect all the users of a JIRA instance.
Such configurations are not part of using JIRA as a platform, but they may have a
bearing in discussions between groups because changing them affects everyone. Some
of the more common ones that I encounter when discussing this topic are:

• The logo and colors used by JIRA

• Names of system fields; any translation of a field name or status applies everywhere
(Administration→Issue Settings→Statuses or Issue Types, Translate)

• Whether unassigned issues are allowed or not

• The maximum attachment size, which is set to 10MB by default

• Priorities; all issues use the same list of priorities in the system priority field

• Resolutions; all issues use the same list of resolutions in the Resolution field (this
is most commonly seen during a workflow transition)

For the last two, there is a popular JIRA feature request (JRA-3821) to make priorities
and resolutions configurable per project and issue type.

All the other system-wide configurations, such as enabling or disabling voting, can be
found at Administration→Global Settings→General Configuration.

Worked Example: Configuring JIRA for a New Department
In this example, we are going to configure JIRA for use by an imaginary accounting
department. The information stored is totally different from what appears in a Bug
issue type, and includes an example custom field named “Amount”. Only certain peo-
ple can see the accounting information in JIRA, and some of this information is still
further restricted. The accounting department also requested that they should see
nothing about Engineering projects, since that was just unnecessary clutter on their
screens.

26 | Chapter 4: JIRA as a Platform

The first thing to do is to take a backup of your JIRA data, do this work on a develop-
ment JIRA instance, or both. The next things to do are:

1. Create a new Project Category for the accounting department, e.g., “Accounts”.
Some scheme names will use this word as a prefix, so make sure that the category
name is obviously unique and meaningful.

2. Create a new issue type for that department’s issues, for example, “Invoice”. Add
a description of what kind of information it contains. Other scheme names will
also use this word as a prefix, so make it meaningful.

3. Create a test project with a project key such as ACCTEST. JIRA project keys should
generally be as brief as possible since everyone types them frequently.* Once this
project’s configuration is complete, you can create more JIRA projects and con-
figure all of them in the same way as this project.

Basic JIRA Project Setup
The next stage is to do the simplest part of the job first. Edit the project configuration
with Administration→Projects, then click on the project name ACCTEST (not on Edit).

Project Lead
Set the Project Lead for the project. This user will be the default assignee for issues in
the project. With the default notification scheme, email about new issues is sent to the
assignee, reporter, and watchers, so the project lead should expect to receive email
about issues assigned to them.

Project Category and Avatar
Set the Project Category for the project to the new Accounts category that we just
created. Any other future accounting projects, such as ACCMAIN or ACCSUB, will also use
this category.

It’s also a nice touch to set an avatar (a small logo) for the project to make it easy for
people to quickly distinguish it from other projects. You can upload your own images.
One possible idea is to use the same image for all projects in the same category.

Notification Scheme
Open a new browser tab and create a new notification scheme named Accounts Noti-
fication scheme. Copying the Default Notification Scheme and modifying the copy is
the most common way to do this. The name of this new scheme indicates what the

* You can also edit the jira-application.properties file to allow numbers in the project key, if that helps.

Basic JIRA Project Setup | 27

scheme is (a notification scheme) and which category of projects it is intended for
(Accounts).

In your original browser tab, set the notification scheme for the project to the new
notification scheme, Accounts Notification scheme.

Permission Scheme
Create a new permission scheme named Accounts Permission scheme. Again, copying
the Default Permission Scheme and modifying the copy is the most common way to do
this.

There should be no need to change any of the permissions except for one. The Set Issue
Security permission controls who can change an issue’s security level (see “Issue Se-
curity Schemes” on page 15). Add the Administrators role to this permission. As dis-
cussed in Chapter 1, we want to use a project role rather than a group here.

Set the permission scheme for the project to the new permission scheme, Accounts
Permission scheme.

Groups and Roles
Define a new JIRA group named “Accounting” that contains all the users who should
be able to see issues in the Accounts projects.

In the project configuration page, click on Project Roles: View Members, and then:

• Delete the jira-users group from the Users role and add the Accounting group.

• Delete the jira-developers group from the Developers role and add the Accounting
group.

• Add the project lead as a user to the Administrators role.

Hiding Projects from Users
At this point only Accounting users can see the Accounting projects, which is as in-
tended, but they can still see Engineering projects. This is because all of those projects
are likely using the jira-users group in their Users role.

To change this, we need to step back and look at how we are defining the Users role
for all of the JIRA projects. The Users role is what usually controls who can access a
project. There is no way to explicitly block access to a project for a specific group in
JIRA. So the approach I usually take is that all users should be members of the default
jira-users group, but also members of a group that controls which projects they can
see.

28 | Chapter 4: JIRA as a Platform

In this case I would define a group Engineering, add all the engineers to it, and then
change all the Engineering projects’ Users and Developers roles to use this group instead
of jira-users.

Now the users in the Accounting group won’t have access to the Engineering projects,
and those projects won’t clutter up JIRA for the Accounting users.

Issue Security Scheme
Create a new issue security scheme named Accounts Issue Security scheme:

• Add a security level named “All Accounting” and add the Accounts group to it.
Make this level the default one.

• Add another security level named “Confidential Accounting” and add only the
accounting users who are permitted to see the more confidential accounting
information.

Set the issue security scheme for the project to the new issue security scheme, Accounts
Issue Security scheme.

Advanced Project Setup
Now we need to define the more complex schemes and configure the ACCTEST project
to use them. These schemes are:

• Issue Type scheme

• Workflow scheme

• Field Configuration scheme

• Issue Type Screen scheme, which uses at least one Screen scheme

Issue Type Scheme
An Issue Type Scheme controls which issue types can be used in a project.

Under Administration→Issue Setting→Issue Types, click on the Issue Types Scheme tab
to create a new issue type scheme named Accounts Issue Type scheme. Then:

• Add the main accounting issue type Invoice as the default issue type.

• Add other issue types, such as Task and Improvement, only if they will be used by
the new department. You can reorder them to change the order in which they
appear when a user is creating an issue. The default issue type will be shown as
selected at that time.

Now set the issue type scheme for the ACCTEST project to the new issue type scheme,
Accounts Issue Type scheme.

Advanced Project Setup | 29

Workflow Scheme
Create a new workflow for the Invoice issue type named Invoice Workflow and add the
desired statuses and transitions to the new workflow. See Chapter 5 for more details
on how to create a new workflow.

Create a workflow scheme named Accounts Workflow scheme and configure it to use
the new workflow for Invoice issue types. For any other issue types that are allowed in
the project, add their workflow mappings in Accounts Issue Type scheme.

Set the workflow scheme for the ACCTEST project to be the new workflow scheme,
Accounts Workflow scheme.

Field Configuration Scheme
A field configuration controls which fields are part of an issue type, e.g., what data is
part of an Invoice.

Create a new field configuration named Invoice Field Configuration. This is not a
scheme. Don’t hide any fields here yet since we’ll use screens to do that later on. If a
particular field is required in an Invoice, mark it as such here.

Create a new field configuration scheme named Accounts Field Configuration scheme,
and configure this new field configuration scheme to use the Invoice Field Configura-
tion for the Invoice issue type.

Now set the field configuration scheme for the ACCTEST project to the new field config-
uration scheme, Accounts Field Configuration scheme.

Screen Scheme
Screens control whether a field appears in an issue to a user, and also the order in which
the fields appear. Screen Schemes choose which screen is used to create, edit, or view
an issue.

Create a screen named Invoice Screen. This screen should have all the fields that are
wanted in the Invoice issue type, including the custom field Amount (after it is defined
in “Adding a Custom Field” on page 31). You can add more than one field at once,
and then reorder them in one go using “Move to Position”.

I recommend starting with just one screen and using it for all three of
the screens (Create, View, and Edit). Later on, you can copy and edit
the screen and change the screen scheme without having to change the
project settings. A good reason to have different screens is that some
fields may not be known when an issue is created, or there might be
fields that are not directly editable by users.

30 | Chapter 4: JIRA as a Platform

Create a new screen scheme named Invoice Screen scheme and configure the Create,
Edit, and View issue screens to all be the same screen for now. This can also be done
by changing the default to use just one screen.

Issue Type Screen Scheme (ITSS)
An Issue Type Screen Scheme (ITSS) ensures that the right sets of screens are used for
each issue type.

Create a new ITSS named Accounts ITSS and configure the default screen scheme to be
the Invoice Screen scheme defined in “Screen Scheme” on page 30. If there are other
issue types, then add mappings for each one to an appropriate screen scheme. For more
information, see “Issue Type Screen Schemes (ITSS)” on page 19.

Now set the issue type screen scheme for the ACCTEST project to the new issue type
screen scheme, Accounts ITSS.

Adding a Custom Field
Adding a custom field is the real test of all this work, since you’ll probably do it more
than once for all the projects in a category. The custom field for this example is named
“Amount”.

Define the new custom field with Administration→Issue Fields→Custom Fields and
then the Add Custom Field link. Give the field a name and a description. Since the
description appears just below the field in the issue screens, make it useful for people
by describing what they are expected to enter, perhaps along with an example value.
For example, The dollar amount owed, with no dollar sign, e.g., “15.95”.

Since the accounting department will want to be able to search on this field, make sure
that the searcher template is not set to “None”.

Now restrict the custom field to just the applicable issue types that uses it. For this
example, that’s just the Invoice issue type.

Don’t restrict the custom field to a project, because then you’ll have to
come back and do that for every JIRA project that you add to the Ac-
counts category. If you have lots of custom fields, that will take a long
time to do manually.

Go to Administration→Issue Fields→Screens and add the new custom field to the In-
voice Screen (or to the Invoice Create, Invoice View, and Invoice Edit screens if they were
defined in “Screen Scheme” on page 30). To ensure that this new field doesn’t interfere
with other projects and their issues, don’t add the new field to any other screens.

Adding a Custom Field | 31

This is the end of the worked example. Note that when you’re looking for the Amount
field to use in a search in the Issue Navigator, you will have to choose a project and an
issue type in order for that the custom field to appear as a choice.

Names Used in the Example
This section lists all the different names used in the example above in one convenient
place:

Accounts
A project category

ACCTEST, ACCMAIN, ACCSUB
The keys of three JIRA projects in the Accounts project category

Accounting, Engineering
Groups of JIRA users

Users, Developers
The standard JIRA project roles

Invoice
A new issue type

Amount
A custom field in Invoice issues

The seven schemes and the things they control are:

Accounts Notification scheme
The notification scheme for Accounts JIRA projects

Accounts Permission scheme
The permission scheme for Accounts JIRA projects

Accounts Issue Type scheme
The issue type scheme for Accounts JIRA projects

• Invoice—a new issue type used in the ACCTEST JIRA project

• Task, Improvement—existing issue types

Accounts Issue Security scheme
The issue security scheme for Accounts JIRA projects

• All Accounting—a security level in the issue security scheme

• Confidential Accounting—another security level in the issue security scheme

Accounts Workflow scheme
The workflow scheme for Accounts JIRA projects

• Invoice Workflow—a custom workflow for the Invoice issue type

32 | Chapter 4: JIRA as a Platform

Accounts Field Configuration scheme
The field configuration scheme for Accounts JIRA projects

• Invoice Field Configuration—the field configuration for the Invoice issue type

Accounts ITSS
The issue type screen scheme for Accounts JIRA projects

• Invoice Screen scheme—the screen scheme for the Invoice issue type

• Invoice Screen—the screen used for the Invoice issue type by the Invoice Screen
scheme

Summary
The key to using JIRA for many groups is to have a standard way of using JIRA schemes
and issue types. The details of the approach used in the example in this chapter are:

• The project category is used as the common theme for related projects.

• The naming of schemes uses the category or issue type names.

• Field constraints are implemented using issue types not projects.

• Use project roles in preference to groups.

• Document what you do!

Of course there is a balance to be struck with any approach. Too few schemes, and
every change will have unwanted consequences. Too many schemes, and you risk losing
track of how they differ.

Summary | 33

CHAPTER 5

Creating a Workflow from Scratch

Overview
Workflows are the different statuses that an issue can have, together with the transitions
between the statuses. For instance, there could be a status named Open, with transitions
leading to the Resolved and Closed statuses.

The word “status” is preferred over using “state” in the JIRA documen-
tation (and also in this book), but in practice they seem to both be used
interchangeably. One useful notion is that a “status” is a summary of
“states”. For example, someone’s medical status could be summarized
as “normal” based on the state of their heart, the state of their liver, and
so on.

JIRA workflow transitions can also optionally have conditions, validators, and extra
post-functions:

• Conditions restrict who can see that a transition exists.

• Validators check the values that were entered during a transition.

• Post-functions make changes after a transition has taken place and send events to
say what just happened. JIRA automatically adds certain post-functions to every
transition.

The statuses and transitions of the default JIRA workflow are shown in Figure 5-1,
which is taken from http://confluence.atlassian.com/display/JIRA/What+is+Workflow.
The expected sequence over time goes from the top left to the bottom right.

One of the major attractions of JIRA is the ability to customize workflows, including
adding new statuses, new transitions, and making other things happen as part of tran-
sitions. This chapter describes how to create such a JIRA workflow from scratch.

35

Why would you want to do that? JIRA comes with one default workflow. You could
create your custom workflow by simply copying and modifying the default workflow.
However, I’ve found that doing this often leads to maintenance problems including:

• The names of your statuses may not be the same as the ones in the default JIRA
workflow, and renaming them doesn’t completely hide the old names everywhere
in JIRA.

• The JIRA Closed status, by default, has a property that does not allow issues in that
status to be edited (jira.issue.editable). It’s easy to forget that the property is
there until you want to bulk change many issues, some of which may be in the
Closed status.

• Some of the default JIRA transitions are common transitions, meaning that chang-
ing them in one place also changes them everywhere else they are used in a work-
flow. This isn’t very clear from the standard JIRA workflow editor, so at least for
simple workflows, it’s better to not have any common transitions at all.

Designing a Workflow
The hardest part about designing workflows is getting everyone to agree on them in
the first place. After all the smoke and noise is over, all that is really needed is:

• The issue types that are expected to use this workflow.

• A list of the status names and their descriptions.

Figure 5-1. The default JIRA workflow

36 | Chapter 5: Creating a Workflow from Scratch

• A list of the transitions with names and their descriptions.

• What, if any, information needs to be entered during each transition. Such infor-
mation may be needed for restrictions of who can see or execute a transition. This
information is used by the optional conditions and validators.

• Any changes to an issue other than status as part each transition. These changes
are typically made using post-functions.

Both statuses and transition names should be as brief as possible.

Some general guidelines for designing workflows that I find helpful are:

Use the past tense of verbs for statuses
For example “Closed”, instead of “Closing” or “To Be Closed”. The name of the
status should describe what has already happened to an issue that has that status.

Use the imperative tense for transitions into a status
For example “Close”, instead of “Closing” or “To Be Closed”. The name of the
transition should describe you want to do to the issue.

Don’t use transition names that are existing action names
There is a standard issue action called “Assign” that assigns an issue to a different
user. If you give a transition that same name, then your users will see two tabs on
an issue, both named “Assign”, that do very different things.

Fewer statuses is better
Use the smallest number of statuses possible. More than about ten suggests you
may have overcomplicated the workflow, which in turn means that other people
will have a hard time using it. You may need to have more than one issue type and
a workflow for each issue type.

One way to decide whether you need a status is to consider what report would use
it, and whether that same information can be provided by JIRA in a different way.

Clear descriptions
Make sure that you have a brief description of the purpose of every status and
transition, and enter it the JIRA workflow. This will appear as a floating tooltip to
guide confused users.

Put statuses and transitions in their expected order
Whenever you list the statuses during design or are adding them to a JIRA work-
flow, do so in the order that you expect them to appear most of the time. Similarly,
add the most common transition first in any list of transitions from a status. An
alternative way to change the order that transitions appear in using properties is
described at http://confluence.atlassian.com/display/JIRA/Configuring+Workflow.

Workflow screens
A transition can either happen immediately, or a transition screen with various
fields on it can be shown during the transition. Transition screens also have a place
to leave a comment about why the transition was made. JIRA provides two stand-
ard screens for this (Resolve Issue and Workflow), but if there are fields that you

Designing a Workflow | 37

want to allow to be edited during a transition, then you can define your own
screens. Just don’t use the Default screen as a transition screen, because when users
change statuses they’ll feel rather overwhelmed by seeing all the fields in the issue.

Which statuses are resolved?
Decide which statuses should always have a value set in the system Resolution field
(Chapter 2). Make sure that all transitions from a non-resolved status to a resolved
status set the Resolution, and that all transitions from resolved to non-resolved
statuses clear the resolution.

Allow for mistakes: no status is final
Every status should have a transition to another status: otherwise, it becomes a
final status. Final statuses are fine until someone accidentally moves an issue into
one and then can’t undo their mistake. You can always only allow administrators
to execute a transition if you want to make it more difficult to change a status.

For many workflows, I find that thinking about the intended assignee for each status
is helpful when designing the workflow. For instance, a bug might have been assigned
to a default user for a project, then to a developer, then to QA for testing, and finally
assigned to someone in Operations for deployment as part of a release. I try to consider
what each person will want to do most frequently with the issue.

Implementing a Workflow
Once you have the names and descriptions of the statuses and transitions, you can
create the new workflow at Administration→Global Settings→Workflows. For ideas on
naming the workflow, see “Workflow Schemes” on page 17 and “Workflow
Scheme” on page 30.

The JIRA Workflow Designer plugin is a graphical tool that makes
implementing workflows easier. JIRA 4.0 to 4.3 are supported and the
Early Access Program releases of JIRA 4.4 suggest that this will be in-
cluded with JIRA as a new feature. While this is a great help, the un-
derlying details of workflows are unchanged, including the limitations
of draft workflows (see “Further Reading” on page 41).

First, create new statuses as necessary at Administration→Issue Settings→Statuses. The
icons chosen for each status will be shown next to an issue’s status wherever it appears
in JIRA.

Now add the statuses to the workflow in the expected order of their most frequent use.
A workflow is actually made up of steps, and each step has just one status associated
with it. For simplicity, make the step names the same as the status names—otherwise,
your users will see discontinuities in a few places in JIRA.

38 | Chapter 5: Creating a Workflow from Scratch

JIRA will have added a first step named “Open”. After you add other steps, you will be
able to make any one of them your initial status if you want to, and can then delete the
original step that JIRA added for you. To change the initial status, click on the Open
step name, then the Create Issue transition, then Edit, and finally change the Destina-
tion Step to the new initial status.

Next, add the transitions away from the first status, also in their expected order of use.

For each transition, after you’ve entered the name and description, check which con-
ditions, validators, and post-functions are wanted, and add them.

You are allowed to have transitions back to the same status if you want
to. This is one way to narrowly restrict what is changed in an issue, and
is used in the section “Resolution” on page 8.

The default JIRA workflow has some conditions, validators, and post-functions that
are worth knowing about:

• The initial Create Issue transition into Open has a validator to check that the user
has the Create Issues permission.

• The Start Progress transition has a condition to check that the current user is the
issue’s assignee. Other users won’t see this transition as a choice.

• The Closed status has the jira.issue.editable property set to false which means
that issues with this status can’t be edited.

• Many statuses and transitions have a property jira.i18n.title which is used to
get the actual name. If you’re having problems renaming something, look for this
property, and either delete it or translate the status’ name at Administration→Issue
Types→Statuses.

There are five post-functions that are added by default to new transitions, but only one
of these is editable: “Fire Generic Event”. Events are discussed later in “Workflows and
Events” on page 40.

Deploying and Testing a Workflow
When a workflow is created from scratch, there is of course no project or issue type
that is using it, so it’s inactive.

The first step towards making a workflow active is to create a workflow scheme to
define which issue types use each workflow. For instance, tasks (issues with issue type
Task) could have a different workflow from bugs, which have an issue type of Bug. See
“Workflow Scheme” on page 30 for details on a recommended way to do this.

Deploying and Testing a Workflow | 39

Once you have a workflow scheme that refers to the new workflow, you can edit a JIRA
project to use the workflow scheme (go to Administration→Projects and click on the
project name).

Now when you create a new issue of the specified type in that project, you should see
that the status of the issue is the one that you chose as the initial status. The available
workflow choices for the issue should be the transitions that you defined as possible
from that status.

To test the workflow, execute the transitions between all the statuses, checking for
usability errors as much as any actual failures or error messages. Check that any custom
conditions, validators, or post-functions behave as expected. Manually testing all the
different combinations of transitions and user permissions is only really possible for
small to medium-sized workflows.

To make a change to a workflow once it’s in use and active, you have to create a draft
of the workflow, edit the draft, and finally publish the draft. The option of saving a
copy of the original workflow is offered when the workflow is published, and can be
useful if version numbers are added to the workflow name. However, I generally find
it leads to too many copies of old workflows, so I don’t use it.

One thing that’s currently missing in JIRA is a way to compare two versions of the same
workflow. When I really want to be sure of what has changed, I export the workflow’s
XML before and after the change and then compare the two files using a diff tool,
preferably one that understands XML.

Workflows and Events
JIRA sends software “events” internally when issues are changed. Some of these events
are hardcoded, such as the one sent when an issue’s assignee changes. However, events
sent during a transition are designed to be configurable. Many of the events listed at
Administration→Global Settings→Events are really intended for use in workflows. For
example, the “Work Started on Issue” event is intended to be sent (“fired”) by a post-
function on all transitions into the “In Progress” status.

The standard post-function “Fire Generic Event” can be edited to send a more appro-
priate event when a transition executes. The main reason that a JIRA administrator
cares about what type of events are sent is because they are used by a project’s Notifi-
cation Scheme (see “Notification Schemes” on page 13), which controls who receives
email when the status of an issue changes.

You can also add new types of events to JIRA at Administration→Global Set-
tings→Events, as described in detail at http://confluence.atlassian.com/display/JIRA/Add
ing+a+Custom+Event.

40 | Chapter 5: Creating a Workflow from Scratch

The ability to create new events and have your workflow fire them off instead of the
Generic event or some other standard event can be useful for trimming JIRA spam. For
example, if you really want to fine-tune who receives email when an issue changes
status, you can define a new event type for each transition, perhaps giving them highly-
descriptive names such as Task Workflow: Open to Resolved Event. (The event names
don’t appear in email templates.) Then you can edit the transition from Open to Re-
solved, and change its post-function to fire the appropriate new event. In a custom
notification scheme, you can then specify which users will receive email for precisely
that one transition and no other transitions.

Further Reading
The documentation for configuring workflows can be found at http://confluence.atlas
sian.com/display/JIRA/Configuring+Workflow.

The process of changing a workflow so that issues in the Closed status can be edited is
described at http://confluence.atlassian.com/display/JIRA/Allow+editing+of+Closed+Is
sues.

The limitations of how draft workflows can be changed are documented at at http://
confluence.atlassian.com/display/JIRA/Configuring+Workflow#ConfiguringWorkflow
-Limitations.

Details of adding a new event to JIRA are at http://confluence.atlassian.com/display/
JIRA/Adding+a+Custom+Event.

Further Reading | 41

CHAPTER 6

The User Lifecycle

Overview
One of the areas that a new JIRA administrator commonly feels uncertain about is
adding, modifying, and deactivating users in JIRA. This chapter covers some of the
different aspects of the lifecycle of a JIRA user.

Adding Users
Before someone can log into JIRA, a JIRA administrator has to create a user account
for them. A JIRA administrator is someone in the jira-administrators or jira-system-
administrators groups,* not someone in the project role Administrators.

JIRA has an internal directory service of user accounts, but there are also a number of
other ways to define JIRA users.

The most common request is to have JIRA work with user accounts that have already
been defined for other tools and network domains. For example, many organizations
have a Microsoft Active Directory (AD) server where users and email group aliases are
added. JIRA can use such directory services in a number of different ways:

Authentication
The passwords for JIRA users are the same as their passwords in the directory
service. This is usually the easiest one to set up.

Authorization
The different groups that JIRA users belong to are defined in the directory service.
This often means that changes to group membership have to be performed by the
directory service administrators.

* The differences between these two groups are described at http://confluence.atlassian.com/display/JIRA/
Managing+Global+Permissions#ManagingGlobalPermissions-sysadmin.

43

Provisioning of User Accounts
The user accounts in JIRA are automatically created when they appear in the di-
rectory service. Automatic deactivation of accounts requires that the groups are
also defined in the directory service.

Atlassian has a directory service product (Crowd, available at http://www.atlassian.com/
software/crowd) that integrates with JIRA and all the other Atlassian tools. This allows
you to manage all your Atlassian users in one place. Crowd can synchronize its list of
users from another directory service such as AD.

As of JIRA 4.3, much of the user management aspect of Crowd has been
merged into JIRA. Crowd is still required for single sign-on (SSO) or
large numbers of users. Extracting a list of users from Crowd is not a
straightforward process.

For more detailed information, please see the documentation at http://confluence.atlas
sian.com/display/JIRA/Managing+Users.

Modifying Users
The only constant is change, so you should expect JIRA user accounts to need updating.
If a user is defined in the JIRA internal directory service, then changing a user’s email
address and full name is easy enough to do: go to Administration→User Browser, find
the user, and click Edit.

JIRA doesn’t check for duplicate email addresses for its users, so you can create two
users with the same email address. However, both JIRA users may be sent email from
within JIRA, which will result in receiving duplicate emails at the same email address.
Also, if an email message is used to create a comment on an issue (see the section
“Email” on page 57), JIRA assumes that the comment was sent by the first user whose
email address matches the From address in the email.

As an aside, a user’s full name can also be used to contain information about their
affiliation (e.g., “John Smith (Example Company)”). The full name can be up to 255
characters.

Changing a Username
A name change after marriage is a common reason for a request to change a JIRA
username, sometimes also referred to as the “userid” or “Username”. The full name
(“Jane Smith”) of the user can be changed easily enough, but unfortunately changing
the username (jane.smith) is harder to do cleanly. Leaving the username unchanged
may not fit with corporate IT policies, or may just be seen as too confusing for other
users.

44 | Chapter 6: The User Lifecycle

If you have simply created a user and made an error entering the username, deleting
the user and starting again is the best approach. But once a JIRA user is active, then
deleting a user is not allowed while there are issues assigned to the user or reported by
the user. Deleting a user also removes useful historical information from issues.

If you really need to change an active username, then the following steps may help:

1. First, create a new JIRA user account with the correct username.

2. Make sure that the old and new user accounts are members of the same JIRA
groups.

3. Delete any filter subscriptions for the old account and recreate them for the new
account. You’ll have to log in as the user to see how they are defined.

4. If the old account is used in any notification or permission schemes or workflows,
then change those too.

5. If the user is a project lead for any projects, then change those projects to use the
new account. JIRA also checks for this when deleting a user.

6. If the user might have been added to a project role directly, perhaps as a project
administrator, change the role to use the new account. You can check this at Ad-
ministration→User Browser: find the user, and click on Project Roles.

Once the new account is ready, then you can use a search to find all the issues assigned
to the old account and assign them to the new account using Tools→Bulk Change.
You’ll also need to do the same thing for issues reported by the old account. Both of
these changes require you to have the right permissions for all the issues involved, or
the bulk edit action will be unavailable.

By now you’re probably thinking “surely I can just do this with some SQL?” Selectively
updating just some of the tables in the database is an easy way to corrupt your
data—don’t do it! However, there is another approach. The Groovy script for the Script
Runner plugin will make the necessary changes directly in the database, more safely.
Before using this script, confirm that it has been tested with your version of JIRA just
in case new tables have been added.

Another really tedious approach is to take an XML backup, perform a
global find and replace on the username string in this large file, and then
reimport from the modified backup. At least try to do a diff to check
that you didn’t modify more than you expected. This really is a method
of last resort.

A common question from frustrated administrators is “I know each user account has
a unique numeric ID in the database userbase table, so why can’t I just change the
username?” The answer seems to be that JIRA was written to work with external di-
rectory services, and the unique user identifier for them was intended to be the user-
name, not a numeric ID. The username was subsequently used in other database tables
where you might have expected to see an ID used instead.

Modifying Users | 45

Deactivating Users
When a user should no longer have access to JIRA, they can be deactivated. This is
preferable to deleting them, which removes useful historical information (and is also
more work). The term is also less ambiguous than disabling someone. A deactivated
user cannot log in and also does not appear in lists of users (e.g., for assigning issues).

The steps to deactivate a user are as follows:

1. Remove the user from all JIRA groups. If they aren’t a member of the groups that
have the JIRA Users permission (Administration→Global Settings→Global Permis-
sions) then they can’t log in to JIRA and issues can’t be assigned to them. They
also don’t count towards the total number of users in licenses that only allow a
limited number of users.

Some JIRA administrators create a special group named something like Deactivated
Users, and add deactivated users to that. So long as that group isn’t referred to by
any other part of JIRA, that’s fine for unlimited licenses.

2. Add a prefix such as “zzz ” to their full name. For example, “Roger Rabbit” becomes
“zzz Roger Rabbit”. This makes the user appear at the end of any list of users sorted
by name. It also alerts other users that any issue currently assigned to the deacti-
vated user is unlikely to see any progress in the future.†

3. Once a user leaves an organization, their email address will eventually become
invalid and may cause “bounce” errors in the JIRA log files. To avoid this, change
the top-level domain in the user’s email address from .org or .com to .invalid,
which is the official way to mark an email address as invalid (RFC 2606).

Reactivating a deactivated user is just a matter of reversing the above changes—add
the user to some groups, and change their name and email back to what they were.

Users in JIRA Studio have an property access level with a value of
Developer, Collaborator, or No Access that can be set by an administra-
tor. Setting a user’s access level to No Access is the equivalent of deac-
tivating the user.

Monitoring Users
An often overlooked feature in JIRA is the ability to see which users are logged in, by
using Administration→User Sessions. This feature can be useful during upgrades (see
Chapter 7) for checking who needs to log out before the upgrade can begin. You can
also send email to such users from within JIRA at Administration→Send E-mail.

† To do the opposite and make a user appear at the top of a list, use a prefix such as “(” or “[”.

46 | Chapter 6: The User Lifecycle

CHAPTER 7

Planning a JIRA Upgrade

Overview
Atlassian has released two new versions of JIRA each year for a few years now and may
even increase this rate in the future. Recent releases and their dates are:

JIRA 4.0 - October 2009
JIRA 4.1 - April 2010
JIRA 4.2 - October 2010
JIRA 4.3 - March 2011
JIRA 4.4 - August 2011?

Major versions such as 4.2 and 4.3 are supported for “two years after the last minor
iteration of that version is released.” So if JIRA 4.2.4, which was released in February
2011, ends up being the final release that was based on JIRA 4.2, then all of the JIRA
4.2.x releases become unsupported from February 2013 onwards.

All of this means that upgrading JIRA on a yearly basis is not uncommon. The process
of upgrading JIRA is complex enough to warrant having a chapter dedicated to it,
especially since doing it once per year is just long enough to mislay your notes from the
last time you did the same job. This chapter describes an upgrade procedure that can
be used over and over, though of course it also depends on the specific release notes
for each JIRA version, which are published at http://confluence.atlassian.com/display/
JIRA/Production+Releases.

47

Preparing for an Upgrade
The very first thing to do is to work out which JIRA version you’re allowed to upgrade
to. JIRA licenses permit you to upgrade to any newer version released during a period
when you are covered by a support contract. The first year of support comes bundled
with the initial purchase. So if you buy JIRA on July 9th, 2011, then you are allowed
to upgrade to any version released before July 9th, 2012. However, if the next version
happens to be released in October 2012, then you’ll have to renew your support
contract to be able to upgrade to it. You can find your support details at Administra-
tion→System→License Details.

The next thing to do is to make sure that your backups are working. If you don’t have
a full Bare Metal Recovery procedure to test them with, then at least check that recent
backups of the data and attachments are being created and contain some reasonable-
looking data.

The hardest part of JIRA upgrades used to be working out whether all third-party
plugins were compatible with the new version of JIRA. You had to look up each plugin
listed in Administration→Plugins at the Atlassian Plugin Exchange (plugins.atlas
sian.com) by hand. The Universal Plugin Manager (UPM) now does this automatically
for you. The UPM is what is seen at Administration→Plugins in JIRA 4.3 and later. It
can also be installed as a plugin in earlier versions of JIRA, and in that case will appear
at Administration→Universal Plugin Manager.

You may ask “what if I’m using a plugin that isn’t compatible with the new version of
JIRA?” Check if there is already an open issue at wherever that plugin tracks issues
about compatibility (the plugin’s issue tracker, not jira.atlassian.com), and create a
support request if there isn’t one already there. If the plugin is supported, you can also
try contacting the plugin vendor. Some plugins take months after a new JIRA release
to catch up, which is one reason why some people choose to wait for the first dot release
(i.e., 4.3.1 instead of 4.3).

The upgrade procedure described below assumes that you have a de-
velopment instance of JIRA, which is one configured just like your pro-
duction instance and containing a recent snapshot of the data from the
production instance—but which is only used by you. If this is not the
case and you only have one JIRA instance (which is your production
JIRA), then the upgrade job will take a little less time but is a bit more
risky, so make doubly sure your backups are valid.

You may also want to start planning possible dates for the upgrade with your users and
other groups. Most upgrades I’ve done recently seemed to require about two hours of
JIRA downtime. In-place database upgrades (see the section “In-Place Database Up-
grades” on page 55) and improved installers should reduce this time for large JIRA
instances in the future.

48 | Chapter 7: Planning a JIRA Upgrade

Important JIRA Locations
There are at least four locations or services involved in every working JIRA instance.
These are:

jira_app
The JIRA Install directory; this is where JIRA was unpacked and is named
something like atlassian-jira-enterprise-4.2.4-standalone or atlassian-jira-4.3-
standalone. On Linux, I usually create a soft link named jira_app to the install
directory from its parent directory to make future upgrades easier, like this:

lrwxr-xr-x jira jira 40 May 7 08:00 \
 jira_app@ -> atlassian-jira-enterprise-4.2-standalone

jira_data
The JIRA Home directory; this is where JIRA stores any data that isn’t in the da-
tabase. These include files that are added as attachments to issues, files for plugins,
and caches of the database data. This is the directory name that is configured in
the jira-applications.properties file under the install directory.

This directory can be named anything you wish, but I usually name it something
like jira_data_424 if it is being used for a JIRA 4.2.4 installation. On Linux, I usually
create a soft link named jira_data to the JIRA home directory at the same level.

Database
The database used by JIRA contains both the issues added by JIRA users and the
JIRA configuration that is changed by JIRA administrators. The two major sets of
files that are not kept in the database are attachments and plugins, which are kept
in jira_data. Avatars (custom project icons) are also not in the database.

Directory Service
The directory service is where JIRA keeps its list of users. By default, JIRA uses an
internal directory service which is stored in the database. If Active Directory,
Crowd, or some other separate directory service is used, then the upgraded JIRA
needs to use that too—otherwise no one will be able to log in, including JIRA
administrators (see “Adding Users” on page 43).

A General Upgrade Procedure
This section describes a general procedure for upgrades. Since no procedure can fit
every upgrade precisely, please use it only as a basis for your own customized upgrade
procedure. Briefly, the procedure looks like this:

• Install and configure the new, upgraded JIRA instance ready for data.

• Take a backup of the current JIRA instance and shut it down.

• Import the backup into the upgraded JIRA instance and test it.

• Declare the upgrade complete.

A General Upgrade Procedure | 49

These steps are similar to the ones in the documentation at http://con
fluence.atlassian.com/display/JIRA/Upgrading+JIRA. Where they differ
is that upgrading the existing database (see “In-Place Database Up-
grades” on page 55) is the recommended approach for JIRA 4.3 and
later releases. The approach used here is the original one and involves
creating a new database. It’s still valid, and also a little easier if you don’t
have access to your database’s restore tools.

The four instances of JIRA referred to in this upgrade procedure are:

• The current production JIRA (e.g., version 4.2)

• The upgraded production JIRA (e.g., version 4.3), usually on the same server as
the current production JIRA—upgrading JIRA and moving JIRA to a new server
are two steps that are best done separately

• The current development JIRA (e.g., version 4.2)

• The upgraded development JIRA (e.g., version 4.3), usually on the same server as
the current development JIRA

If you don’t have a development instance of JIRA, then your production
instance is effectively your development instance, and your upgrade is
done after Step 15 on page 53.

The upgrade steps follow:

1. As usual before changing anything, create a backup. Then start taking your own
notes about each of the upcoming steps. Record what you did and any unexpected
results.

2. Unpack the new version of JIRA on the development server, making sure the files
are owned by the user that will run JIRA. This location is the new jira_app directory
for this instance. Any existing jira_app soft link will eventually refer to this directory
when the upgrade is complete.

3. Create a new JIRA Home directory named jira_data_43 for the new development
JIRA instance. Any existing jira_data soft link will eventually refer to this directory.

4. Create a new, empty database for the new development JIRA instance. Make sure
that the database uses the correct character set, collation order, table type, and so
forth (or at least the same ones as the existing JIRA database).

5. Configure the new development JIRA files. Some of the files in jira_app that are
likely to be changed include:

atlassian-jira/WEB-INF/classes/jira-application.properties
Used to set jira.home to the absolute path of jira_data.

50 | Chapter 7: Planning a JIRA Upgrade

atlassian-jira/WEB-INF/classes/entityengine.xml
Used to change the type of database being used, and then conf/server.xml to
change the database Resource element to refer to the new database you just
created.

It’s important to use the right database name here, or you will end up upgrad-
ing your existing database in place and abandoning an upgrade will become
harder. See “In-Place Database Upgrades” on page 55 for more details about
this.

atlassian-jira/WEB-INF/classes/osuser.xml
Used if you have Active Directory or Crowd integrated with JIRA; JIRA 4.3
needs this file but then stores the information elsewhere.

bin/setenv.sh
Used to change the JVM memory settings and to uncomment
DISABLE_NOTIFICATIONS so that the development instance doesn’t send or re-
trieve email.*

lib/*.jar
You should check that the JDBC driver jar file for your database is available
here. Recent versions of JIRA ship with the drivers for MySQL, PostgreSQL,
and Oracle. Earlier versions of JIRA used a version of Tomcat that kept the
driver files in common/lib.

JIRA 4.4 will likely see changes in how JIRA is configured after installation. When
that time comes, use the appropriate installer to configure all these files.

6. Copy or modify any other files such as custom icons for issue types, priorities,
resolutions and statuses, or a logo image file. You can find a list of files that have
been changed in the current production JIRA under Administration→System
Info→Modifications. If you added any custom events (see the section “Workflows
and Events” on page 40) or changed your email templates, you’ll also need to merge
them over to the upgraded instance.

If you have integrated JIRA with Crowd, make sure you copy or merge any relevant
files for that as well.

It’s about now that I usually start to wish I had used version control
or a tools such as puppet to record the changes I made to the current
JIRA when I last upgraded it. It’s not too late to start, but few people
do.

* I also tend to comment out the line with jirabanner.txt because I find ASCII art isn’t so cool when it looks
like line noise in a log file.

A General Upgrade Procedure | 51

7. If you want to, you can install any updated plugin files that you’ve downloaded
manually at this stage. Having the plugins in place will reduce the number of error
log messages about missing plugins when you import data into the new instance.

Old-style version 1 plugin .jar files go into atlassian-jira/WEB-INF/lib. New-style
version 2 plugin .jar files go in jira_data/plugins/installed-plugins (you’ll have to
create this directory). If a plugin’s installation involves more than just copying
a .jar file, I usually postpone installing it until after this step.

8. Export the data from the current production instance as a compressed XML backup
file (Administration→Backup Data to XML).

There is a short period here where JIRA is still active but the backup is running.
Any changes made by users during this period will be lost when the upgrade is
complete, so make sure you warn people not to use JIRA after a certain time.

You may ask “Why can’t I just make my current JIRA readonly?” You could do
this, but then the port used by JIRA is still in use, and the new instance can’t use
it. Also, there’s no really convenient way to allow users to log in to a read-only
instance, which is necessary to for issue security.

9. Make sure any automated network monitoring systems are aware of the upcoming
outage and then shut down the production JIRA instance. This is when the clock
starts timing how long the upgrade inconveniences JIRA users.

10. Create a new directory called jira_data/data/import in the new development in-
stance.

11. Copy the XML backup file into the import directory, or create a soft link to it there.

12. Start up the new JIRA development instance and browse to the start page. You
shouldn’t be prompted to log in since you’re using a new database and a new
jira_data directory.

If you are prompted to log in then you’ve probably just done an in-
place database upgrade (see the section “In-Place Database Up-
grades” on page 55) and you can skip the next step of importing
the XML backup. However, if you stop the upgrade after this point,
you will need to restore the database from a database backup.

13. Click on the link to import your existing data and give the absolute path to the
XML backup file in the import directory. Then click Restore.

If you need to update the license for this version of JIRA, you will be prompted for
a new license key.

You may also get a message about an import failing because the paths for the index
directory or attachments directory wasn’t found. This means that these directories
were at locations in the current JIRA instance that don’t exist on the upgraded
instance. In that case, just click the “retry with default paths” link.

52 | Chapter 7: Planning a JIRA Upgrade

You can follow progress of the import in jira_app/logs/catalina.out or in atlassian-
jira.log. It may take some minutes to parse the XML, store the generic entities to
the new database, create the Lucene indexes, apply schema changes, and reindex
for each schema change.

14. Copy the attachments over to the new jira_data/data/attachments directory. This
can take some time if there are many large attachments. Check for other directories
with any content in jira_data/data and copy them too.

15. Once JIRA is available again, you will want to test it as described in the next section,
“Testing an Upgrade” on page 53.

16. After giving users some time to test the upgraded development instance, repeat all
these steps for the production JIRA instance.

You can set a banner across the top of all of JIRA’s pages using
Administration→Options & Settings→Announcement Banner.
This is a great way to warn users of an upcoming JIRA outage. For
extra notice, you can use the existing CSS by surrounding your
banner text with div elements:

 <div class="infoBox">
 Your announcement text goes here.
 <div>

17. After the upgrade, you will need to change the name of the database that should
be backed up. You may also need to change the JIRA Home directory location in
the backup scripts. Any startup scripts to start JIRA after a server reboot should
be checked too. If you have used soft links for jira_data and jira_app, then fewer
things should have to change.

Update any local Bare Metal Recovery documents and other administration notes,
take a breath, and you’re done!

Testing an Upgrade
The first and easiest test is whether user authentication is working—can you log in?

Start at the Administration→System Information page and look for errors or outdated
settings. Does the Base URL need to change? Do the locations for Attachments, In-
dexing, and the Backup Service at Administration→Services look correct?

If the upgraded JIRA is a development instance, then you can compare it to the pro-
duction JIRA directly in a browser. Compare the Administration→System Information
pages for unexpected differences. Pick three issues at random and check that their data,
including some attachments, is the same. You can also print all this out to use when
testing the production JIRA after it is upgraded.

Testing an Upgrade | 53

The most likely area for trouble with an upgrade is third-party plugins. Check the list
of plugins for disabled plugins or plugin modules.

Another useful test is to count the number of custom fields in the development instance
and in the production instance. Disabled custom field plugins may be responsible for
any difference in numbers.

Check that all the custom fields that used to be searchable in the Issue Navigator are
still searchable. If not, then a custom field searcher plugin may not be working.

If the upgraded JIRA is the production JIRA, then check that attachments can be
downloaded from issues and that email can be sent and received.

The most likely place to notice that something is wrong is in the directory
jira_app/logs/catalina.out. Searching in this file for ERROR and WARN will usually suggest
things to investigate further. To me, a good upgrade is one that results in a minimal
number of such warning messages in log files, and no log messages that repeat every
minute and cause the log file to become bloated.

Troubleshooting an Upgrade
Most JIRA upgrades go just fine, but sometimes what was intended to be just a quick
upgrade turns into a Bad Day. You’ve got frustrated users and only a few cryptic error
messages to go on. What now?

If this is the upgraded production instance, then you should probably abandon the
upgrade and let people use the current production JIRA instance again. To do that,
simply stop the upgraded instance of JIRA, change any soft links back to where they
used to point, and restart the current instance of JIRA.

Then check whether it was really a problem at all. Some messages in JIRA log files can
appear alarming, but aren’t in fact all that serious. For example, if you haven’t installed
a plugin that provides a custom field type then you will see an error like:

2011-04-16 21:54:23,847 main ERROR [jira.issue.managers.
DefaultCustomFieldManager] Could not load custom field type plugin with
key ... Is the plugin present and enabled?

JIRA preserves the data in any custom fields that use such custom field types, but
doesn’t display the custom field at Administration→Custom Fields. This means that
you can’t delete such fields and that you will see the error message every time you restart
JIRA. Old services and listeners can generate similar error messages in log files.

More troublesome are messages that keep occurring, filling up a log file and making it
harder to use when real problems occur. These are always worth tracking down—or
as a last resort, reducing the log level for just that area in log4j.properties.

54 | Chapter 7: Planning a JIRA Upgrade

Other approaches to use when troubleshooting an upgrade are:

• Log into JIRA using the simplest URL possible. If you have forwarding set up with
Apache, then disable that temporarily and use the default JIRA URL and port 8080.

• If you can’t authenticate using Active Directory, then try logging in as some user
that is defined in JIRA’s internal directory service. The original JIRA administrator
account may even still work for you.

• Check your https settings very carefully and only apply them after checking that
everything else is working.

If all else fails, contact Atlassian Support or an Atlassian Partner to ask for help.

In-Place Database Upgrades
The upgrade procedure described in this chapter uses a new database for the new in-
stance of JIRA. Leaving the database used by the current JIRA instance untouched
makes stopping an upgrade easy. However, using a new database does mean that the
data has to be migrated using an XML backup file, which can be very large and slow
to generate for large JIRA instances.

As of JIRA 4.3, in-place database upgrades are officially supported and recommended.
This means that you can reuse the same database for the new instance. The database
schema, including the database indexes, will be modified by the new instance of JIRA
when it starts up. Of course, you should back up at the database level before that occurs,
and upgrading a development JIRA instance first is still a good idea. This also means
that JIRA can lock users out during the upgrade, which reduces the period where a
user’s changes might be lost during an XML upgrade.

This affects Steps 4, 8, and 10 through 14 of the upgrade procedure.

New installers in future releases of JIRA are likely to reduce the number of manual
changes required in Step 5.

Further Reading
The official Atlassian support policy for JIRA can be found at http://confluence.atlassian
.com/display/Support/Atlassian+Support+End+of+Life+Policy.

Logging in JIRA is configured at Administration→System→Logging & Profiling. More
detailed documentation about the underlying log4j logging framework can be found
at http://logging.apache.org/log4j/1.2/manual.html.

There is an existing feature request to be able to make JIRA read-only at http://jira
.atlassian.com/browse/JRA-1924.

Further Reading | 55

CHAPTER 8

Remote Access to JIRA

Overview
“No man is an island,” wrote John Donne, and this is doubly true of JIRA and almost
every other application you may administer. Users want their data to appear in multiple
places, administrators want to manage applications from a single place, and anyone
may want to run some scripts to make lots of changes at once.

All of these require remote access to JIRA, where “remote access” is defined loosely as
using JIRA without a browser.

This chapter covers a variety of remote access methods for JIRA. The quick summary
is that SOAP is the way that most remote access to JIRA occurs in 2011. The future is
likely to see more REST than SOAP access, but it will take a while.

Email
Email is one of the simplest ways to use JIRA remotely. Issues can be created and then
comments added to them using the standard JIRA mail service and mail handlers. Email
is a function commonly already found in many applications.* Balanced against the
simplicity of email are its limitations:

• Email messages have limited structure. Only the To, Cc, Subject, From fields and
any attachments are easily separated from the email body.

• There’s no real guarantee about who most email is from, so authentication is hard.

• Email is asynchronous and unreliable, in the sense that retrying failed messages is
slow and limited—so you don’t know if your message reached JIRA. You may not
even get any feedback about whether a JIRA server is currently active.

* Zawinski’s Law: Every program attempts to expand until it can read mail.

57

Still, it’s familiar and convenient and a fair number of JIRA users only interact with
JIRA via email (see “Further Reading” on page 63). Some integrations between dif-
ferent systems use email, but it’s not really a great idea because of the limitations listed
above.

SQL
Accessing the underlying database of a JIRA instance is surprisingly common, perhaps
because like email, many applications are already accessing their own database and
adding one more is an obvious approach to try. Most access to JIRA’s database is for
creating reports using a separate report generating tool.

Reading data from the JIRA database using other systems is usually just fine (and is
generally pretty fast) but does have the following strict limitations:

• Access must be read-only. This is because JIRA caches many of the values read from
its database and may not update the caches until the next time it is restarted. If the
data is changed in JIRA before that happens, then the updated values will be written
back to the database, overwriting any changes that you made there.

• You have to carefully control who can view the different tables in the JIRA database.
For instance, if some issues have issue security schemes (see “Issue Security
Schemes” on page 15) defined so that only certain people can see the issues, the
underlying confidential data could end up being unintentionally visible to the user
running the SQL query.

• The JIRA database schema is deliberately only partially documented at http://con
fluence.atlassian.com/display/JIRA/Database+Schema because the schema does
change between different versions of JIRA. JIRA upgrades handle such changes
automatically, but Atlassian does not encourage (or support) direct database ac-
cess. The actual file where the database schema is defined (and not documented)
is atlassian-jira/WEB-INF/classes/entitydefs/entitymodel.xml.

If you do decide to take this approach, then one place to start is http://confluence.atlas
sian.com/display/JIRACOM/Example+SQL+queries+for+JIRA. This page has a num-
ber of SQL queries that other people have found useful. However, most of them don’t
have much explanation of why they work the way they do.

Another place to start is with the SQL queries that JIRA itself executes to retrieve data.
While this is sometimes useful for low-level troubleshooting, the queries themselves
may not be executed in quite the order you expect, since some data is prefetched and
then cached for later use.

58 | Chapter 8: Remote Access to JIRA

SOAP
SOAP (Simple Object Access Protocol) web service methods are currently the most
common way of remotely accessing JIRA. The system plugin rpc-jira-plugin provides
over a hundred different SOAP methods for accessing JIRA. Methods are defined within
the JIRA server using the Java interface JiraSoapService, and are documented using
Javadoc, just like any other Java method.

For example, the method to retrieve an issue looks like this:

 /**
 * Return a representation of a JIRA issue.
 *
 * @param token the SOAP authentication token
 * @param issueKey the key of the issue
 *
 * @return the issue fields in a RemoteIssue object
 */
 RemoteIssue getIssue(java.lang.String token, java.lang.String issueKey)

These SOAP methods are implemented in Java inside JIRA, but the choice of language
to use for the client is much wider. There are SOAP libraries for C, C++, Perl, Python
and Ruby, as well as Java. This means that using SOAP for scripted interactions with
JIRA is possible using a language that you’re probably already familiar with.

The JIRA documentation on using SOAP at http://confluence.atlassian.com/display/
JIRA/Creating+a+SOAP+Client contains step-by-step examples of how to create a
SOAP client in various languages. It also has nearly 300 comments from the last five
years, which usually indicates a topic that many people have found relatively complex.

SOAP isn’t a particularly fast way of remotely accessing any application since it uses
XML and HTTP. It’s worth bearing this in mind if you’re designing scripts that have
to iterate over all the issues in a project. For really long operations, it may be worth
implementing your own custom SOAP method to do most of the work inside the JIRA
server (see “Creating Custom SOAP Methods” on page 61) .

One other thing to note about SOAP is that although the endpoint URL does contain
a version number (v2), this number will not have been changed when the API changed.
Instead, all the changes so far have involved adding new methods and deprecating other
methods (but leaving them in place).

There is another remote access method named XML-RPC. It’s similar
to SOAP, but is generally less well-supported in all versions of JIRA since
4.0, and thus is not commonly used anymore.

SOAP | 59

Debugging a SOAP Client
SOAP error messages are notoriously cryptic in any language. Some of the steps that I
follow when I’m trying to get a buggy SOAP client to work are as follows:

1. The first thing to do is to double check that the Accept Remote API Calls setting is
set to ON under Administration→General Configuration→Global Settings.

2. Next, check the URL you are using. The URL for Atlassian’s own JIRA instance is
http://jira.atlassian.com/rpc/soap/jirasoapservice-v2?wsdl. This should display lots
of SOAP method details in your browser. Chrome users may need to install an
extension such as XML Tree to see them.

The WSDL file that is displayed is an XML document listing all the available SOAP
methods (wsdl:operation) and data types (complexType). A command client tool
such as wget can be useful for working out why you can’t download the WSDL file.

3. Now try to download the WSDL file from your local JIRA instance. Your URL
should look like some combination of one of these URLs:

http://jira.example.com/rpc/soap/jirasoapservice-v2?wsdl
https://jira.example.com/rpc/soap/jirasoapservice-v2?wsdl
http://jira.example.com:8080/rpc/soap/jirasoapservice-v2?wsdl
http://my.example.com/jira/rpc/soap/jirasoapservice-v2?wsdl

The bold parts of the URLs indicate things to check if the URL is not working—
scheme, port, context.

4. When you first connect to your JIRA instance at the correct URL, the atlassian-
jira.log file should contain a message that looks like this:

Publishing to jirasoapservice-v2 module class
com.atlassian.jira.rpc.soap.JiraSoapServiceImpl with
interface interface com.atlassian.jira.rpc.soap.JiraSoapService

5. The JIRA SOAP service expects you to use its login method with a valid user and
password, and then to pass the authentication string token that is returned into
every other JIRA SOAP method. This is so that JIRA can check that you have
permission to execute each individual method. You can confirm that this authen-
tication should succeed by logging into JIRA with the same username and password
in a browser.

If a specific user can’t browse an issue in the browser, then that user won’t be able
to access the issue’s details using SOAP.

Some JIRA SOAP methods such as getCustomFields and all the methods for work-
ing with groups, schemes, and permissions require that the authenticated user is
a member of the jira-administrators group.

6. If you have to use a compiled language such as Java or C++ for your client, try first
using a dynamic language such as Perl or Python to create a small test script to

60 | Chapter 8: Remote Access to JIRA

prove that any problem is not in the URL, authentication, or the values passed to
the method. This can greatly reduce the time taken for each development iteration.

Creating Custom SOAP Methods
It’s not easy to find the method you want in the long list of SOAP methods and some
of the methods’ documentation is pretty sparse. So how much work is it to create a
new SOAP method for a specific need?

The answer is that it’s not too hard to write most JIRA plugins. The SOAP endpoint
URL used to access the new method will be different from the standard JIRA one, and
you’ll have to make sure you add your own authentication checking in the method.
Another place to look for information about custom SOAP methods is at http://conflu
ence.atlassian.com/display/JIRA/RPC+Endpoint+Plugin+Module.

REST
The future of remote access for JIRA is officially REST. REST methods are invoked
using a URI, plus arguments passed in after the URI.† The resulting data from JIRA is
in the JSON format. The returned data usually also contains further URIs to let you
drill down into the data. This means that clients can “walk” the data and dynamically
discover what is currently available.

A good place to start for information about JIRA and REST is the tutorial at http://
confluence.atlassian.com/display/JIRA/JIRA+REST+API+%28Alpha%29+Tutorial .

The use of the word “Alpha” in the title is a strong clue that the JIRA REST API is still
under development. As of JIRA 4.3, you can retrieve a fair amount of information about
issues, but not modify them. General purpose REST resources for administering JIRA
don’t exist yet either.

If you want to see an example of what JIRA returns with REST for an issue, browse to
http://jira.atlassian.com/rest/api/latest/issue/JRA-9.json. Different browsers will display
the resulting JSON data differently. The Pretty JSON extension is helpful for Chrome
users.

Alternatively, you can use a command line tool such as curl or wget. Replace userid
with your JIRA username and secret with your password and try the following:

curl -u userid:secret \
 http://jira.atlassian.com/rest/api/latest/issue/JRA-9.json

wget --user=userid --password=secret \
 http://jira.atlassian.com/rest/api/latest/issue/JRA-9.json

† The more familiar URL (Uniform Resource Locator) is one kind of URI (Uniform Resource Identifier).

REST | 61

Over the past two years, JIRA has been changing internally to use REST for retrieving
more of the information that is destined for the UI. The JIRA Dashboard gadgets all
use REST, as have the Labels and Versions system fields since JIRA 4.2. This is all part
of the general move in web applications toward Dynamic HTML (DHTML), where
JavaScript running in the client’s browser asynchronously populates the HTML and
CSS that is used to produce the displayed web page.

The process of creating your own REST resources by writing a custom JIRA plugin is
described at http://confluence.atlassian.com/display/DEVNET/Plugin+Tutorial+-+Writ
ing+REST+Services.

XML and RSS
Retrieving an XML file with the details of just one issue is easy with a URL such as http:
//jira.atlassian.com/si/jira.issueviews:issue-xml/JRA-9/JRA-9.xml. The XML that’s re-
turned is formatted as an RSS feed item, but since it’s structured data, it can be pro-
cessed by clients for integrating other systems with JIRA.

You can also retrieve the results of a search as an XML file using the links in the Views
menu in the Issue Navigator screen. The XML link is the one that is used for integrating
JIRA with Confluence. JIRA provides similar RSS feeds for the activity of individual
users and projects as well.

Authentication is probably the hardest part of using RSS feeds for integration. A user-
name and password can be passed in the URL or a user can be prompted for a password,
but neither method is particularly robust.

More information can be found in the documentation at http://confluence.atlassian
.com/display/JIRA/Displaying+Search+Results+in+XML.

CLI (Command Line Interface)
Whether your underlying remote access method is SOAP or REST, you may not really
care if all you want is a way to interact with JIRA from a command line or with a script.
For example, you may want to have an automated build system add a new version in
JIRA when a new release occurs. Or you might want to make it easier for an IT group
to create new users in JIRA by providing a small script for them to run.

There are two CLIs available for JIRA—JIRA CLI by Bob Swift, and Python CLI for
JIRA by myself. The first one is written entirely in Java, is invoked from a shell script,
and is part of a suite of CLI tools for all of the Atlassian products. The second one is a
Python script that could do with a rewrite. Both offer similar functionality and both
use the standard JIRA SOAP methods.

So, which CLI to choose? I have to admit a certain fondness for my own creation but I
tend to mostly use it as a starting point for other work these days. I create a lot of scripts

62 | Chapter 8: Remote Access to JIRA

to automate JIRA administration tasks, along with custom plugins with new SOAP
methods, and Python works well for me for this. Bob’s CLI is well-maintained and very
well tested, so if it does what you want, then try that one first and tell Bob I sent you!

Integrating with Other Applications
Whichever method is used for integrating other applications with JIRA, there are a few
things are that worth bearing in mind.

Networking outages will inevitably occur, and your integration has to survive them
without inconsistent or corrupted data. This means that any synchronous approach
such as SOAP or REST has to be able to retry later on or warn users that something
went wrong. Other than changing issues, most JIRA operations are not strictly trans-
actional, which makes integrations harder.

JIRA provides services, custom tasks that are periodically executed as frequently as once
per minute. This is one way to have an integration be able to recover from errors. Such
services also run when JIRA is started, which may mean a large load on another system
if JIRA has been down for a while. In this case, limiting the amount of work that is done
in a single run of the service can help.

Synchronizing two systems in one direction only is much simpler than doing it in both
directions. If you really do have to do it in both directions, consider very carefully how
you’re going to avoid infinite loops and which application will maintain the synchro-
nization state (don’t try storing it in both). JIRA issues have an Updated date field that
can help with that if the systems’ clocks are synchronized, and there are also the internal
records of everything that has changed which can be used.

There is a useful book titled Enterprise Integration Patterns, by Gregor Hohpe and
Bobby Woolf (Addison-Wesley) that covers these kinds of issues. And you haven’t
already read it, then The Twelve Networking Truths (RFC 1925, http://www.faqs.org/
rfcs/rfc1925.html) is brief and applies to many integrations just as well as it does to
networking design.

Further Reading
The process of using JIRA via email is documented at http://confluence.atlassian.com/
display/JIRA/Creating+Issues+and+Comments+from+Email. The most commonly
used plugin to do more with this is Andy Brook’s JEMH (JIRA Extendable Mail Han-
dler).

The main page for information about the JIRA database schema is http://confluence
.atlassian.com/display/JIRA/Database+Schema. Enabling logging of all SQL queries
is described at http://confluence.atlassian.com/display/JIRA/Logging+JIRA+SQL+Quer
ies.

Further Reading | 63

Good places to look for more general information about SOAP and REST are http://en
.wikipedia.org/wiki/SOAP and http://en.wikipedia.org/wiki/REST, respectively. More
information about JSON and an example of what that format looks like can be found
at http://en.wikipedia.org/wiki/JSON.

Although neither CLI is technically a JIRA plugin, they are both available from
plugins.atlassian.com. Bob Swift’s JIRA CLI is at https://plugins.atlassian.com/plugin/
details/6398, and my Python CLI for JIRA is at https://plugins.atlassian.com/plugin/de
tails/10751.

Finally, the whole of the quote from John Donne:

No man is an Iland, intire of it selfe; every man is a peece of the Continent, a part of the
maine; if a Clod bee washed away by the Sea, Europe is the lesse, as well as if a Prom-
ontorie were, as well as if a Mannor of thy friends or of thine owne were; any mans death
diminishes me, because I am involved in Mankinde; And therefore never send to know
for whom the bell tolls; It tolls for thee.

—Devotion XVII (Meditation XVII), John Donne, 1624

64 | Chapter 8: Remote Access to JIRA

CHAPTER 9

Jiraargh! Frustrations

Overview
I once wrote an article with the provocative title Bug Trackers: Do They Really All
Suck?. My conclusion was probably not, but that they are all annoying in some way.
Why is this? My theory is that it’s because tools like JIRA are used by multiple groups
of people. This means that each group has different needs from the same tool, which
in turn leads to no one being fully satisfied.

So what can be done? I think the first thing to remember is that every problem is at root
a people problem (Jerry Weinberg). What that means for you and your JIRA is that
decisions about using the tool need to be discussed and agreed upon by all the people
who use the tool. Tools can only help to reduce the barriers for people and groups
working together; there is no magic tool to make people want to work together.

That said, this chapter describes some of the more common frustrations with JIRA
and possible ways to avoid some of them. These include both things that annoy users
if not configured properly by administrators, and aspects of JIRA that annoy JIRA
administrators.

Frustrations with Fields
One of the most common frustrations for users is having to enter data in fields that
they don’t understand or care about. This can happen in a number of ways:

• A field may be required by one group, but not another.

The solution for this is to define a field configuration and screens for use by just
that group’s projects, along with the other schemes for their projects. Grouping
projects by categories can help with maintaining such schemes, as described in
Chapter 4.

65

• The field’s description may be missing or misleading.

Don’t accept a request for a new custom field unless it comes with a succinct and
clear description of what the field is intended for. Then use that as the field’s
description.

• The field is being used as a combination of other fields.

This can happen if custom fields aren’t added when needed, so users overload an
existing field (such as the summary) to record two or more pieces of information.
For example, I’ve seen summary fields that contain text like “Showstopper: cus-
tomer can’t log in”. The “showstopper” part of that field should have been recorded
in some other field, probably priority, to allow better reporting lafter on. It’s also
easy to forget the convention, or use it without really understanding it (perhaps
using it just because some other issues did).

• Required fields are not on the default tab.

Just don’t do this when you’re designing screens. Put all the required fields on the
default tab, so you don’t forget that they’re required during issue creation.

Frustrations with Actions
Other frustrations for users center around issue actions and workflow transitions:

• Why can’t I change an issue to a certain status?

If it’s just certain transitions, then it’s probably due to conditions and validations
that have been defined as part of the workflow for the issue. These conditions may
or may not make any use of the Resolve Issues and Close Issues permissions, de-
pending on how the workflow is configured (see Chapter 5).

Adding the introduction gadget to the system dashboard and including links to
documents that describe such expected restrictions can help.

• What permission do I need for a certain issue operation?

Permissions are controlled with the permission scheme that an issue’s project is
using. To edit an issue, a user needs to have the Edit permission, which may be
granted by project role or any of the other ways listed in the section “Adding Users
to Schemes” on page 12.

Some of the less obvious permissions are noted in the section “Permission
Schemes” on page 14. Changing a permission usually involves adding a user to a
specific project role, rather than modifying the permission scheme.

• Why can’t I bulk change some issues?

The default JIRA workflow doesn’t let you edit issues in the Closed status. So if
you want to change a field in a hundred issues using Bulk Change but just one of
those issues is closed, then JIRA won’t let you change any of them. Sometimes
there’s an explanation given, but more often it’s a puzzle to users and their

66 | Chapter 9: Jiraargh! Frustrations

administrators. Start with a smaller set of issues and see if you can bulk change
those issues.

Not all of an issue’s fields can always be altered using a Bulk Change. For example,
the Resolution field can only be changed if the field configuration hasn’t hidden
that field.

More Information Needed!
Sometimes users need more guidance about where to create or not create issues, and
what should go in each field. What is needed is a way to add this information to JIRA’s
issue screens.

For just this reason, the Message custom field types are part of the standard JIRA Toolkit
plugin available from Atlassian. These field types allow you to display text on an issue’s
screens. For example, the Message Custom Field (for edit) field type allows you to insert
text between other fields on an edit screen. Other custom field types from the same
plugin allow you to insert HTML (or even use Velocity template files) to create the
message. As shown in Figure 9-1, Atlassian uses these fields to provide additional guid-
ance to users filing bugs with them.

Figure 9-1. Adding helpful text to an issue screen

These message fields are defined just like any other custom field, and are added to
screens as usual. They don’t have any values and do not appear in an issue otherwise.

Frustrations with Email
How can you make sure that another user is notified of changes to a particular issue?
That is what the Watchers system field is for. But even after another user has been
added to the Watchers field, they won’t receive email about the issue until the next
change after that. It’s like having a Cc on an email that only works for the next email.

Sometimes a user wants to just “poke” someone about an issue, but isn’t sure who else
will receive the email if they add a comment. This is like Reply to All, but without being

Frustrations with Email | 67

able to see the To field. What is really needed is the current list of email recipients for
each action, just for when it is wanted. The JIRA Email This Issue Plugin can help here.

Learning JIRA Safely
The first thing that any new administrator usually does with JIRA is to create a test
project and a few test issues. The next thing they might do is change the default priorities
and then start in on some workflow changes. A few minutes later, they wish they had
made a backup and hadn’t been playing around with the production JIRA instance.

Now, playing about is a powerful* way to learn any tool as a new user or administrator,
but do it somewhere that won’t matter when you make mistakes. Having a development
instance of JIRA is a great idea for this.

If you’re concerned about sending email to other people as a result of your changes,
then you can define an empty notification scheme for the JIRA project where you
are playing with issues. You could also do the same thing by just removing the notifi-
cation scheme from a project, but using an empty scheme makes it clearer in Admin-
istration→Notification Schemes as to which projects don’t send email.

I also like to have a project named SCRATCH in production JIRA instances that is
configured with the same schemes as one of my more heavily-used JIRA projects. I use
that project to create test issues when checking my changes and avoid cluttering up any
real projects.

Another thing I do is to maintain a separate project or component to track issues related
to the local JIRA instance. This is using JIRA as a meta-tracker and it helps for all the
same reasons you installed JIRA in the first place.

Too Many Administrators
Having too many JIRA administrators invariably leads to a JIRA instance with a con-
fusing configuration. The temptation to experiment and hack until JIRA appears to do
what you want seems to be irresistible. A main administrator, a couple of backup ad-
ministrators, and maybe an IT-related administrator are usually all that should be nee-
ded. I recommend trimming the jira-administrators group regularly.

One oft-overlooked aspect of JIRA is that you can have both jira-administrators and
jira-system-administrators groups. The differences between these two groups are de-
scribed at http://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions
#ManagingGlobalPermissions-sysadmin. By default, the two groups are effectively the
same, but one way to reduce what the existing JIRA administrators can do is to go to

* “Let my playing be my learning, and my learning be my playing.” —Homo Ludens, Johan Huizinga, 1938

68 | Chapter 9: Jiraargh! Frustrations

Administration→Global Settings→Global Permissions, and set the group used for JIRA
System Administrators to a new jira-system-administrators group.

You may wonder “Why have I got so many administrators in my JIRA?” The most likely
explanation is that earlier versions of JIRA allowed only JIRA administrators to add
components and versions to a project. This implied that project leads had to also be
JIRA administrators, which often led to many users in the jira-administrators group.
The better approach nowadays is to use JIRA project roles (see the section “Project
Roles” on page 2), which let you grant project leads the permissions they need for their
projects without destabilizing the rest of your JIRA instance.

Debugging your Configuration
Working out why a user can’t see or do something they expect can take a few frustrating
minutes, even when you have a good procedure.

My approach, described in more detail in “Debugging Schemes” on page 22, is to note
the issue’s project and issue type, then go to the project administration screen. Note
the names of all of the schemes that the project is using and then view the appropriate
one. For example, for permissions, view the named permission scheme and see which
project roles are needed for the permission in question. Then return to the project’s
administration screen and go to the project’s roles to see which users have that role in
the project.

For more complex schemes (such as the issue type screen scheme), view the scheme
and use the issue type to work out which screen scheme is being applied. Then look at
that screen scheme to work out which of the screens is involved. Finally, view that
screen to see whether the field is shown or not, and where.

Managing Custom Fields
Managing large numbers of custom fields (more than a hundred) can be difficult be-
cause you have to scroll up and down to find the field you want. The “find” feature in
your browser can help here. JIRA permits multiple custom fields with the same name
and field type, so check carefully which issue types and projects each custom field is
applied to. Even a single custom field can have multiple contexts (i.e., issue type and
project pairs) so you may have to click Configure for a field before you can see all the
ways that a field is configured.

Managing Custom Fields | 69

Managing Projects
Changing the project settings for more than a few projects quickly becomes tedious.
For example, if you’ve added a new issue type and have updated a copy of a workflow
scheme to include the new issue type, you now have to manually update each project’s
workflow scheme to use the new scheme.

Opening each project in a new tab on a browser can help to make sure that you don’t
miss a project, but it’s still awkward. Sometimes I create a new SOAP method (see
“Creating Custom SOAP Methods” on page 61) to handle just this kind of case but it’s
a fiddly few hours of work that I’d rather not have to do.

Once a JIRA project has been configured as intended, a common request is to create
another project configured in exactly the same way. The new project will likely be part
of a number of projects with the same category. JIRA has no built-in way to use one
project as a template for another—though look at “Further Reading” on page 71 for
information about a plugin that can do this.

Managing Users
Adding one or two users to JIRA is straightforward enough, but adding a few dozen
users soon becomes awkward. What is needed is a scripted way to do this.

One approach to automating this and JIRA administration in general is to use Jelly
scripts. Jelly is a XML-based scripting language originally used by Maven 1.x, but now
only used by JIRA (as far as I can tell). It has to be enabled explicitly for a JIRA instance,
but after that you can go to Administration→Options & Settings→Jelly Runner, and
paste in scripts that look like this:

<JiraJelly xmlns:jira="jelly:com.atlassian.jira.jelly.JiraTagLib">
 <jira:CreateUser username="john.smith"
 password="secret"
 confirm="secret"
 fullname="John Smith"
 email="jsmith@example.com"/>
</JiraJelly>

The Python CLI for JIRA (see “CLI (Command Line Interface)” on page 62) also has a
function for creating users by reading from a text file of user details with one user per
line.

Deactivating users is another task that can benefit from automated scripting, though
the standard JIRA SOAP methods are not sufficient to do this. Custom SOAP methods
can be created as described in “Creating Custom SOAP Methods” on page 61.

70 | Chapter 9: Jiraargh! Frustrations

Further Reading
The same Script Runner plugin by Jamie Echlin that was used to change a username in
“Changing a Username” on page 44 has scripts to copy the configuration from one
project to another, and also to bulk modify resolutions.

The JIRA Email This Issue Plugin can be found at https://plugins.atlassian.com/plugin/
details/4977.

The Jelly website is http://commons.apache.org/jelly, and the use of Jelly in JIRA is
documented at at http://confluence.atlassian.com/display/JIRA/Jelly+Tags.

Further Reading | 71

About the Author
Matt Doar is based in San Jose, CA where he runs a software tools consultancy. He has
been helping other people with JIRA for over five years and is the author of a number
of JIRA plugins. He is an Atlassian partner and is part of the wider Atlassian develop-
ment community. He also wrote Practical Development Environments (O’Reilly), which
described the basics of software tools—version control, build tools, testing, issue
trackers, and automation. He has also held some sort of dubious record for the most
bugs submitted about JIRA by a non-Atlassian. Before JIRA entered his world, Matt
was a developer and then a software toolsmith at various networking companies. Before
all that, he completed his B.A. and Ph.D. in Computer Networking at the University
of Cambridge Computer Laboratory and St. John's College, Cambridge.

Colophon
The animals on the cover of Practical JIRA Administration are Cochin chickens (Gallus
domesticus).

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSans Mono Condensed.

	Copyright
	Table of Contents
	Preface
	What This Book Is About
	JIRA Versions and System Details
	Development Environment

	Technical Reviewers
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Groups Versus Roles
	Overview
	Scaling
	Updating

	Project Roles
	Creating a New Project Role
	Summary
	Further Reading

	Chapter 2. Resolved, Resolution, and Resolution Date
	Overview
	Resolved
	Resolution
	Resolution Date
	Other Approaches
	Summary
	Further Reading

	Chapter 3. Understanding Schemes
	Overview
	Project-Wide Schemes
	Adding Users to Schemes
	Notification Schemes
	Permission Schemes
	Issue Security Schemes
	Issue Type Schemes

	Schemes That Use Issue Types
	Workflow Schemes
	Field Configuration Schemes
	Issue Type Screen Schemes (ITSS)

	Working with Schemes
	Documenting Schemes
	Debugging Schemes

	The Future of Schemes

	Chapter 4. JIRA as a Platform
	Overview
	What Can Be Configured
	What Is Configured System-Wide

	Worked Example: Configuring JIRA for a New Department
	Basic JIRA Project Setup
	Project Lead
	Project Category and Avatar
	Notification Scheme
	Permission Scheme
	Groups and Roles
	Hiding Projects from Users
	Issue Security Scheme

	Advanced Project Setup
	Issue Type Scheme
	Workflow Scheme
	Field Configuration Scheme
	Screen Scheme
	Issue Type Screen Scheme (ITSS)

	Adding a Custom Field
	Names Used in the Example
	Summary

	Chapter 5. Creating a Workflow from Scratch
	Overview
	Designing a Workflow
	Implementing a Workflow
	Deploying and Testing a Workflow
	Workflows and Events
	Further Reading

	Chapter 6. The User Lifecycle
	Overview
	Adding Users
	Modifying Users
	Changing a Username

	Deactivating Users
	Monitoring Users

	Chapter 7. Planning a JIRA Upgrade
	Overview
	Preparing for an Upgrade
	Important JIRA Locations
	A General Upgrade Procedure
	Testing an Upgrade
	Troubleshooting an Upgrade
	In-Place Database Upgrades
	Further Reading

	Chapter 8. Remote Access to JIRA
	Overview
	Email
	SQL
	SOAP
	Debugging a SOAP Client
	Creating Custom SOAP Methods

	REST
	XML and RSS
	CLI (Command Line Interface)
	Integrating with Other Applications
	Further Reading

	Chapter 9. Jiraargh! Frustrations
	Overview
	Frustrations with Fields
	Frustrations with Actions
	More Information Needed!
	Frustrations with Email
	Learning JIRA Safely
	Too Many Administrators
	Debugging your Configuration
	Managing Custom Fields
	Managing Projects
	Managing Users
	Further Reading

	Colophon

