Th
Pr ematic
ogrammers

Good Math

A Geek’s Guide to the Beauty of
Numbers, Logic, and Computation

Mark C. Chu-Carroll
Edited by John Osborn

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Early praise for
Good Math

Mark Chu-Carroll is one of the premiere math bloggers in the world, able
to guide readers through complicated concepts with delightful casualness.
In Good Math he brings that same skill to a book-length journey through
math, from the basic notion of numbers through recent developments in
computer programming. If you have ever been curious about the golden
ratio or Turing machines or why pi never runs out of numbers, this is the
book for you.
» Carl Zimmer
author of “Matter,” a weekly column about science in The New York
Times (http://bit.ly/NYTZimmer); and “The Loom,” a National Geographic
Magazine blog (http://phenomena.nationalgeographic.com/blog/the-loom)

Fans of Mark Chu-Carroll’s lively and informative blog, Good Math/Bad
Math, will find much to savor in this mathematical guide for the “geekerati.”
Chu-Carroll covers it all, from the basics of natural, irrational, and imagi-
nary numbers and the golden ratio to Cantor sets, group theory, logic,
proofs, programming, and Turing machines. His love for his subject shines
through every page. He’ll help you love it, too.
» Jennifer Ouellette

author of The Calculus Diaries

www.it-ebooks.info


http://bit.ly/NYTZimmer
http://phenomena.nationalgeographic.com/blog/the-loom
http://www.it-ebooks.info/

Good Math

A Geek’s Guide to the Beauty
of Numbers, Logic, and Computation

Mark C. Chu-Carroll

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

www.it-ebooks.info


http://www.it-ebooks.info/

\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http:/pragprog.com.

The team that produced this book includes:

John Osborn (editor)

Candace Cunningham (copyeditor)
David ] Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-33-8

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2013

www.it-ebooks.info


http://pragprog.com
http://www.it-ebooks.info/

This book is dedicated to the memory of my father, Irving
Carroll (zt"1). He set me on the road to becoming a math
geek, which is why this book exists. More importantly,
he showed me, by example, how to be a mensch: by living
honestly, with compassion, humor, integrity,
and hard work.

www.it-ebooks.info


http://www.it-ebooks.info/

Contents

Preface

Part | — Numbers

Natural Numbers .

1.1 The Naturals, Axiomatically Speaking

1.2 Using Peano Induction

Integers . . . .
21  What's an Integer?
22 Constructing the Integers—Naturally

Real Numbers .
3.1  The Reals, Informally
3.2 The Reals, Axiomatically
3.3  The Reals, Constructively

Irrational and Transcendental Numbers

41  What Are Irrational Numbers?

42  The Argh! Moments of Irrational Numbers
43  What Does It Mean, and Why Does It Matter?

Part Il — Funny Numbers

Zero . . . .
51  The History of Zero
52  An Annoyingly Difficult Number

e: The Unnatural Natural Number .
6.1  The Number That’s Everywhere

6.2 History
6.3  Does e Have a Meaning?

www.it-ebooks.info

xi

11

15
15
18
20

23
23
24
26

31
31
34

37
37
39
40


http://www.it-ebooks.info/

10.

11.

12.

13.

Contents ® viii

&: The Golden Ratio 41
7.1  What Is the Golden Rat107 42
7.2 Legendary Nonsense 44
7.3 Where It Really Lives 45
i: The Imaginary Number . 47
8.1  The Origin of i 47
8.2  WhatiDoes 49
8.3  WhatiMeans 50
Part Ill — Writing Numbers
Roman Numerals 55
9.1 A Positional System 55
9.2 Where Did This Mess Come From? 57
9.3  Arithmetic Is Easy (But an Abacus Is Easier) 58
9.4  Blame Tradition 61
Egyptian Fractions . 65
10.1 A 4000-Year-Old Math Exam 65
10.2  Fibonacci’s Greedy Algorithm 66
10.3 Sometimes Aesthetics Trumps Practicality 68
Continued Fractions 69
11.1 Continued Fractions 70
11.2  Cleaner, Clearer, and Just Plain Fun 72
11.3  Doing Arithmetic 74
Part IV — Logic
Mr. Spock Is Not Logical 79
12.1  What Is Logic, Really? 81
12.2 FOPL, Logically 82
12.3  Show Me Something New! 86
Proofs, Truth, and Trees: Oh My! 91
13.1 Building a Simple Proof with a Tree 92
13.2 A Proof from Nothing 94
13.3  All in the Family 96
13.4 Branching Proofs 98

www.it-ebooks.info


http://www.it-ebooks.info/

14.

15.

16.

17.

18.

19.

20.

Contents ® ix

Programming with Logic .

14.1 Computing Family Relatlonshlps
14.2 Computation with Logic

Temporal Reasoning . .
15.1 Statements That Change w1th Tlme
15.2  What’s CTL Good For?

Part V — Sets

Cantor’s Diagonalization: Infinity Isn’t Just

Infinity
16.1 Sets, Naivelz
16.2 Cantor’s Diagonalization
16.3 Don't Keep It Simple, Stupid

Axiomatic Set Theory: Keep the Good, Dump the
Bad .

171 The Axioms of ZFC Set Theory

17.2  The Insanity of Choice

17.3  Why?

Models: Using Sets as the LEGOs of the Math
World .
18.1 Building Natural Numbers
18.2  Models from Models: From Naturals to Integers

and BeXond!

Transfinite Numbers: Counting and Ordering Infinite
Sets . . .

19.1 Introducmg the Transfinite Cardmals

19.2  The Continuum Hypothesis

19.3  Where in Infinity?

Group Theory: Finding Symmetries with Sets

20.1 Puzzling Symmetry

20.2 Different Kinds of Symmetry
20.3 Stepping into History

204 The Roots of Symmetry

www.it-ebooks.info

103
104
108

117
118
123

127
128
131
135

139
140
147
150

153
154

156

161
161
163
164

167
167
171
173
176


http://www.it-ebooks.info/

21.

22,

23.

24.

25.

26.

27.

Contents ® x

Part VI — Mechanical Math

Finite State Machines: Simplicity Goes Far .

21.1
21.2
21.3

The Simplest Machine
Finite State Machines Get Real
Bridging the Gap: From Regular Expressions to

Machines

The Turing Machine .

221
22.2

Adding a Tape Makes All the Difference
Going Meta: The Machine That Imitates
Machines

Pathology and the Heart of Computing

23.1

23.2
23.3

Introducing BF: The Great, the Glorious, and the

Completely Silly
Turing Complete, or Completely Pointless?

From the Sublime to the Ridiculous

Calculus: No, Not That Calculus—A Calculus

241

242
24.3

Writing A Calculus: It's Almost
Programming!

Evaluation: Run It!

Programming Languages and Lambda

Strategies

Numbers, Booleans, and Recursion

25.1
25.2
25.3
254

But Is It Turing Complete?

Numbers That Compute Themselves
Decisions? Back to Church
Recursion: Y Oh Y Oh Y?

Types, Types, Types: Modeling A Calculus .

26.1
26.2
26.3

Playing to Type
Prove It!
What's It Good For?

The Halting Problem

27.1
27.2

A Brilliant Failure
To Halt or Not To Halt?

Bibliography

www.it-ebooks.info

183
183
187

189

197
198

203

209

211
214
215

219

220
224

226

231
231
232
235
237

243
244
249
250

253
254
256

261


http://www.it-ebooks.info/

Preface

Where’d This Book Come From?

Growing up, some of my earliest memories of my father
involve math. My dad was a physicist who worked for RCA
doing semiconductor manufacturing, so his job involved a
lot of math. Sometimes he’d come home with some unfin-
ished work to do over the weekend. He'd be sitting in the
living room of our house, with a scattering of papers around
him and his trusty slide rule by his side.

Being a geeky kid, I thought the stuff he was doing looked
cool, and I'd ask him about it. When 1 did, he always stopped
what he was doing and explained it to me. He was a fantastic
teacher, and I learned so much about math from him. He
taught me the basics of bell curves, standard deviations, and
linear regression when I was in third grade! Until I got to
college, I never actually learned anything in math class at
school because my dad had always taught it to me long
before we got to it in the classroom.

He did much more than just explain things to me. He taught
me how to teach. He always told me that until you could
explain something to someone else, you didn't really
understand it yourself. So he’d make me explain things back
to him as though he didn’t know them.

Those times with my dad were the foundation of my love
of math, a love that’s lasted through the decades.

Back in 2006 or so, I started reading science blogs. I thought
that these blog things were really fascinating and really
exciting. But I didn’t think that I had anything to say that
would interest anyone else. So I just read what others wrote,
and sometimes I commented.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Preface * xii

And then one day I was reading a blog called Respectful
Insolence, written under the pseudonym “Orac,” by a guy
who was a professional cancer surgeon. He was talking
about a paper written by a couple of crackpots who had
drawn ridiculous conclusions from data published in a
public database. Orac dismantled their arguments meticu-
lously, explaining why the authors’ claims about basic
medicine and biology were ridiculous. But in reading the
original paper, what struck me was that refuting the authors’
misunderstanding of biology was unnecessary; their entire
argument turned on interpreting graph data in a way that
was completely bogus. That’s when I realized that while
tons of biologists, doctors, neurologists, physiologists, and
physicists were blogging about their specialties, no one was
blogging about math!

So I went to Blogger and created a blog. I wrote up my cri-
tique of the sloppy math in the paper and sent a link to Orac.
I figured that I'd probably get a couple of dozen people to
read it and that I'd probably give up on it after a couple of
weeks.

But once I'd published that first post on my new blog, I
thought about my dad. He was the kind of guy who
wouldn’t approve of spending time making fun of people.
Doing that once in a while was fine, but making an entire
hobby out of it? Not something he’d be proud of.

Remembering how he taught me, I started writing about the
kind of math I loved, trying to help other people see why it
was so beautiful, so fun, and so fascinating. The result was
my blog, Good Math/Bad Math. It's been almost seven years
since I started writing it, and my posts now number in the
thousands!

When I started my blog, I thought that no one would be
interested in what I had to say. I thought that I'd probably
be read by a couple dozen people, and I'd give up in disgust
after a couple of weeks. Instead, years later, I've acquired
thousands of fans who read every post I write.

This book is my way of reaching out to a wider audience.
Math is fun and beautiful and fascinating. I want to share
that fun, beauty, and fascination with you. In this book,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Preface * xiii

you'll find the fruits of the time my dad spent with me,
teaching me to love math and teaching me to teach it to
others.

I still have his slide rule. It's one of my most prized
possessions.

Who This Book Is For

If you're interested in math, this book is for you! I've tried
to write it so that it’s accessible to anyone with a basic high-
school background in math. The more background you have,
the more depth you'll notice, but even if you've only taken
high-school algebra, you should be able to follow along.

How to Read This Book

This isn’'t a book that you need to read cover-to-cover. Each
chapter is mostly stand-alone. You can pick topics that
interest you and read them in any order. Within the six parts
of the book, chapters will often refer back to previous chap-
ters in the same part for details. You'll get more out of those
chapters if you read the referenced sections, but if you don’t
feel like it, you should still be able to follow along.

What Do You Need?

For most of the book, you need nothing but curiosity. In a
few sections, there are a couple of programs. In case you
want to run them, there are links and instructions in the
section with the program.

Acknowledgments

It's always tricky trying to acknowledge everyone who
contributed to a book like this. I'm sure that I'll wind up
forgetting someone: if you deserved an acknowledgement
but I left you out, I apologize in advance and thank you for
your help!

Many thanks to the following people:

* My “blogfather” and friend Orac (aka David Gorski),
who gave me the motivation to start my blog and helped
me get the attention of readers when I was starting out

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Preface ® xiv

¢ The many readers of my blog, who've caught my mis-
takes and helped me become a better writer

* My fellow bloggers at Scientopia

* The people who gave time and effort doing technical
reviews of drafts of this book: Paul Keyser, Jason Liszka,
Jorge Ortiz, and Jon Shea

* My coworkers at Foursquare, for giving me support and
feedback and for making work such a fun place to be

* The crew at The Pragmatic Bookshelf, especially David
Thomas and David Kelly, who went above and beyond
the call of duty to make it possible to typeset the math
in this book

¢ And, of course, my family, for putting up with a crazed
geek writer

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Part]

Numbers

When you think about math, the first thing that comes to mind is
probably numbers. Numbers are fascinating things. But when you
think about it, it’s crazy to realize just how little most of us actually
understand about them.

How do you define what a number actually is? What makes a number
a real number? Or a real number? How many numbers are there?
How many different kinds of numbers are there?

I can’t possibly tell you everything there is to know about numbers.
That could fill twenty or thirty different books. But I can take you
on a sort of a cruise, looking at some of the basic stuff about what
numbers are and then looking at some of the weird and interesting
numbers among them.

www.it-ebooks.info


http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info


http://www.it-ebooks.info/

Natural Numbers

What’s a number?

In math, we could answer that question a few different ways.
We could answer it semantically by looking at what numbers
mean. Or we could answer that question axiomatically by
looking at how they behave. Or we could answer the ques-
tion constructively by looking at how we could build the
numbers from some other kind of simpler object.

We'll start with semantics. What do numbers mean? We all
think we know the answer to this, but in fact, we’re wrong
most of the time! People think that a number is just one thing,
the thing that you use to count, and that’s it. But that’s not
really true. Numbers can have two different meanings,
depending on how they’re used.

There are two kinds of numbers. When you see the number
3, you don't really know what it means. It could have two
different meanings, and without knowing which one you're
using, it's ambiguous. As we’ll see in a moment, it could
mean 3 as in “I have three apples,” or it could mean 3 as in
“I came in third in the race.” The 3 in “three apples” is a
cardinal number, and the 3 in “third place” is an ordinal
number.

A cardinal number counts how many objects there are in a
group. When I say “I want three apples,” that three is a car-
dinal. An ordinal number counts where a particular object
isin a group. When I say “I want the third apple,” that three
is an ordinal. In English, this distinction is easy to make
because there’s a specific grammatical form called the ordinal

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

1. Natural Numbers © 4

form: “three” for cardinals, “third” for ordinals, and the
distinction between cardinal and ordinal is exactly the same
distinction used in English grammar.

The cardinal/ordinal distinction really starts to make sense
when you talk about the set theoretic basis for math. We’ll
look at this in more detail when we talk about set theory in
16, Cantor’s Diagonalization: Infinity Isn't Just Infinity, on page
127. For now, this basic idea is enough: cardinals count

objects; ordinals position them.

The axiomatic part is a lot more interesting. In an axiomatic
definition we describe what we're looking at in terms of a
collection of rules, called axioms. The axioms work by
defining how the numbers (or whatever we're defining)
behave. In math, we always prefer to work with axiomatic
definitions because an axiomatic definition removes all
ambiguity about what is possible and how it works. An
axiomatic definition has less intuitive meaning, but it’s
absolutely precise, and it’s structured in a way that makes
it possible to use it in formal reasoning.

The Naturals, Axiomatically Speaking

We'll start by talking about the basic fundamental group of
numbers: the naturals. The natural numbers (written N)
consist of zero and the numbers greater than zero that can
be written without fractions.

When you talk about numbers, you start with the natural
numbers because they’re the most basic fundamental sort
of number. Intuitively, natural numbers are the first mathe-
matical concepts that we understand as children. They’re
the whole numbers, with no fractions, starting at zero and
going onward toward infinity: 0, 1, 2, 3, 4, .... (Computer
scientists like me are particularly fond of natural numbers
because everything computable ultimately comes from the
natural numbers.)

The natural numbers are actually formally defined by a set
of rules called Peano arithmetic. Peano arithmetic specifies a
list of the axioms that define the natural numbers.

Initial Value Rule: There is one special object called 0, and 0
is a natural number.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

1. Natural Numbers ® 5

Successor Rule: For every natural number 7 there is exactly
one other natural number, called its successor, s(n).

Predecessor Rule: Zero is not the successor of any natural
number, and every natural number except 0 is the succes-
sor to some other natural number, called its predecessor.
Say you have two numbers, a and b; if b is a’s successor,
then a is b’s predecessor.

Uniqueness Rule: No two natural numbers have the same
SuCCessor.

Equality Rules: Numbers can be compared for equality. This
has three subrules: equality is reflexive, which means
that every number is equal to itself; equality is symmet-
ric, meaning that if a number a is equal to a number b,
then b = g; and equality is transitive, which means that
ifa=band b=c, thena=c.

Induction Rule: For some statement P, P is true for all natural
numbers if

1. Pis true about 0 (that is, P(0) is true).

2. If you assume P is true for a natural number n (P(n)
is true), then you can prove that P is true for the
successor s(n) of n (that P(s(n)) is true).

And all of that is just a fancy way of saying that the natural
numbers are numbers with no fractional part starting at 0.
On first encountering the Peano rules, most people find them
pretty easy to understand, except for the last one. Induction
is a tricky idea. I know that when I first saw an inductive
proof I certainly didn’t get it; it had a feeling of circularity
to it that I had trouble wrapping my head around. But
induction is essential: the natural numbers are an infinite
set, so if we want to be able to say anything about the entire
set, then we need to be able to use some kind of reasoning
to extend from the finite to the infinite. That is what induc-
tion does: it lets us extend reasoning about finite objects to
infinite sets.

When you get past the formalism, what the induction rule
really says is, here’s a pattern that you can use. If you make
a definition work for your first number, then you can define

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

1. Natural Numbers * 6

it for all of the numbers after that first number by talking
about what happens when you add 1 to it. With that pattern,
we can write proofs about statements that are true for all
natural numbers, or we can write definitions that work for
all natural numbers. And using similar tricks, we can talk
about all integers or all fractions or all real numbers.

Definitions are easier, so we’ll do one of them before we try
a proof. To give an example of how we use induction in a
definition, let’s look at addition. We can define addition on
the natural numbers quite easily. Addition is a function “+”
from a pair of natural numbers to another natural number
called their sum. Formally, addition is defined by the follow-
ing rules:

Commutativity For any pair of natural numbers n and m,
n+m=m+n

Identity For any natural numbers 7,
n+0=0+n=n

Recursion For any natural numbers m and #,
m+s(n)=s(m+n)

The last rule is the inductive one, and it’s built using recur-
sion. Recursion is difficult when you're not used to it, so
let’s take the time to pick it apart.

What we’re doing is defining addition in terms of the succes-
sor rule from Peano arithmetic. It’s easier to read if you just
rewriteitatad touse+land -l:m+n=1+(m+(n-1)).

What you need to remember to help make sense out of this
is that it’s a definition, not a procedure. So it’s describing what
addition means, not how to do it.

The last rule works because of the Peano induction rule.
Without it, how could we define what it means to add two
numbers? Induction gives us a way of saying what addition
means for any two natural numbers.

Now for a proof. Proofs are scary to most people, but there’s
no need to fear them. Proofs really aren’t so bad, and we’ll
do a really easy one.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

1. Natural Numbers ® 7

Using Peano Induction

One simple but fun proof using the natural numbers with
addition is this one: suppose I have a natural number N.
What's the sum of all of the integers from 1 to N? It’s N times
N + 1 divided by 2. So how can we prove that using the
induction rule?

We start with what's called a base case. That means we need
to start with one case that we can prove all by itself, and
then that case will be used as the base on which we build
the induction. In the induction rule, the first clause says that
the fact we want to prove needs to start by showing it for 0,
so 0 is our base case. It’s easy to prove this for zero: (0%(0 +
1))/2 is 0. So our equation is true when N = 0. That’s it: that’s
our base case done.

Now comes the inductive part. Suppose for anumber N that
it'’s true. Now we want to prove it for N + 1. What we're
going to do here is the heart of induction, and it's an amazing
process. We want to show that since we know the rule is
true for 0, then it must also be true for 1. Once we know it’s
true for 1, then it must be true for 2. If it’s true for 2, then it
must be true for 3. And so on. But we don’t want to have to
do a separate proof of each of those. So we just say, “Suppose
it’s true for N; then it must be true for N + 1.” By putting the
variable in this inductive structure, we're simultaneously
doing “If it’s true for 0, then it’s true for 1; if it’s true for 1,
then it’s true for 2, and so forth.”
Here’s what we want to prove:
(n+1)(n+2)
(O+1+2+3+"'+“+“+1)=f
To start, we know this:

n(n+1)
O0+1+2+3+ -+ +n)=

So we can substitute that in and get this:

n(n+1) (n+1)(n+2)
+n+l=———+

n

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

1. Natural Numbers * 8

Now we expand the multiplication on both sides:

n2+n n2+3n+2
o+l =——

Get a common denominator on the left side:

n2+n+2n+2 _ n2+3n+2

2 2

Finally, simplify the left side:

n2+3n+2 _ n2+3n+2
2 a 2

And that’s it: we’ve just proven that it works for all natural
numbers.

That’s the axiomatic version of the naturals. They’re numbers
greater than or equal to zero, where each number has a
successor and on which you can use that successor relation-
ship to do induction. Pretty much everything that we do
with natural numbers, and the bulk of the basic intuitive
arithmetic stuff that we learn as children, can be built from
nothing more than that.

After all of that, can we say what a number is? Sort of. One
of the lessons of numbers in math is that numbers don’t have
just one meaning. There’s a whole lot of different sorts of
numbers: natural numbers, integers, rational numbers, real
numbers, complex numbers, quaternions, surreals, hyper-
reals—on and on and on. But the whole universe of numbers
starts with what we did right here: the natural numbers.
And ultimately, the meanings of those numbers come down
to either quantity or position. They're all ultimately cardinals
and ordinals, or collections of cardinals and ordinals. That’s
what a number is: something that is constructed from a notion
of either quantity or position.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Integers

Natural numbers are the first numbers that we understand.
But they’re nowhere close to sufficient. Given how we use
numbers, you inevitably wind up needing something beyond
just the natural numbers.

If you go to the store and buy something, you give them
money in exchange for what you buy. You could buy
something like a loaf of bread for three dollars. If you paid
them with a five dollar bill, they’ll give you two dollars back
in change.

Just to understand that, you're doing something that doesn’t
really make sense in natural numbers. The money is flowing
in two different directions. One, going from you to the store,
subtracts from the money you have. The other, going from
the store to you, adds to the money you have. Positive and
negative integers allow you to distinguish between the two
directions in which the money can move.

What's an Integer?

If you have the natural numbers and you want the integers,
all you have to do is add an additive inverse. If you under-
stand the naturals and want to understand the integers, you
also only need to add one thing: direction. If you think of a
number line, the natural numbers start from zero and go to
the right, but there’s nothing to the left of zero. Integers start
with the naturals and add negative numbers moving to the
left on the other side of zero.

The meaning of integers follows from the notion of direction.
Positive integers mean the same thing as the natural

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

2.Integers * 10

numbers, both as cardinals and as ordinals. Negative num-
bers allow you to move in the other direction. If you think
in terms of cardinals, integers allow you to talk about moving
things between sets. If you have a set of size 27 and another
set of size 29, then to make the sets have the same size, you
can either add two objects to the first set or remove two
objects from the second set. If you add to the first set, you're
doing something with a positive cardinality. If you remove
from the second set, you're doing something with a negative
cardinality.

In ordinals, it’s even easier. If you're looking at the third
element in a set and you want to look at the fifth, you move
forward two steps, and that motion is described by a positive
ordinal integer. If you're looking at the fifth element and
you want to look at the third, you move backward two steps,
and that motion is a negative ordinal integer.

Let’s move on to an axiomatic definition. The integers are
what you get when you extend the naturals by adding an
inverse rule. Start with the set of natural numbers, N. In
addition to the Peano rules, we just need to add a definition
of the additive inverse. The additive inverse of a non-zero
natural number is just a negative number. To get the integers,
we just add these new rules:

Additive Inverse For any natural number n other than zero,
there is exactly one number —# that is not a natural
number and that is called the additive inverse of n, where
n +-n = 0. We call the set of natural numbers and their
additive inverses the integers.

Inverse Uniqueness For any two integers i and j, i is the addi-
tive inverse of j if and only if j is the additive inverse
of i.

With those rules, we’ve got something new. The set of values
that we talked about as the natural numbers can’t satisfy
those rules. Where do all of these new values—the negative
integers —come from?

The answer is a bit disappointing. They don’t come from
anywhere; they just are. We can’t create objects in math; we
can only describe them. The numbers—naturals, integers,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

2.Integers ® 11

reals—exist because we define rules that describe them and
because those rules describe something consistent.

All of that is just a fancy way of saying that the integers are
all of the whole numbers: zero, the positives, and the
negatives.

What's pretty neat is that if you define addition for the nat-
ural numbers, the inverse rule is enough to make it work
for the integers as well. And since multiplication on natural
numbers is just repeated addition, that means that multipli-
cation works for the integers too.

Constructing the Integers—Naturally

We can create mathematical constructions to represent the
integers in terms of the naturals. These constructions are
called models of the integers. But why would we want to do
that? And what is a model, precisely?

In a model of something new, like our integers, we're trying
to show that there’s a way of making objects that will obey
the axioms that we’ve defined. To do that, you take the
things that you already know exist and use them as building
blocks. With those building blocks, you build objects that
will follow the axioms of the new system. For example, to
construct the integers, we're going to start with the natural
numbers, which are objects that we already know about and
understand. Then we’re going to use them to create objects
that represent the integers. If we can show that the objects
in the model follow the axioms of the natural numbers, we
know that our definitions of the integers are consistent.

Why should we go through all this?

There are two reasons for building constructions like models.
First, a model shows us our axioms make sense. When we
write a set of axioms, it’s easy to screw up and accidentally
write our model in an inconsistent way. A model proves
that we didn’t. We can write out a bunch of axioms that look
reasonable but are inconsistent in a subtle way:. If that’s true,
it means that the objects we defined don't exist, even in the
abstract mathematical sense. And worse, it means that if we
work as if they do exist, then every conclusion we draw will
be worthless. I said earlier that the integers exist because we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

2.Integers ® 12

defined them and the definitions are consistent. If we don’t
show that it’s possible to create a model, then we can’t be
sure that the definitions really are consistent.

The other reason is less abstract: a model makes it easier for
us to understand and to describe how the system we are
building is supposed to work.

One last caveat before we get to the model. It’s really
important to understand that what we're doing is creating
a model of the integers, not the model of the integers! What
we're doing here is describing one possible way of represent-
ing the integers. The integers are not the representation that
I'm going to show you. There are many possible representa-
tions; so long as a representation fits the axioms, it can be
used. The distinction between the model and the thing that
it models is subtle, but it’s very important. The integers are
the objects described by the axioms, not the model that we're
building. The model is just a representation.

The simplest way of representing the integers is to use
ordered pairs of natural numbers: (4, b). The integer repre-
sented by a pair (g, b) is the value of (a —b). Obviously then,
(2,3),(3,4),(18,19) and (23413, 23414) are all representations
of the same number. In mathematical terms, we say that the
integers consist of equivalence classes of those pairs.

But what'’s an equivalence class?

When we're doing things like building a model of the inte-
gers, very often the way we define them doesn't create
exactly one object for each integer. We define the model so
that for each object in the thing we’re modeling, there’s a
collection of values that are equivalent within the model.
That group of equivalent values is called an equivalence
class.

In our model of the integers, we're creating pairs of natural
numbers to model each specific integer. Two of those pairs
(a, b) and (b, c) are equivalent when the first and second
element of each pair are separated by the same distance and
direction on a number line, such as (4, 7) and (6, 9). On a
number line, to go from 4 to 7, you have to take three steps
to the right. To go from 6 to 9, you still have to go three steps
to the right, so they’re in the same equivalence class. But if

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

2.Integers ® 13

you look at (4, 7) and (9, 6), you'd go three steps to the right
to get from 4 to 7, but three steps to the left to get from 9 to
6. So they are not in the same equivalence class.

The representation here gives us an easy way to understand
what the various arithmetic operations mean when applied
to the integers in terms of what those operations mean on
the natural numbers. We understand what addition means
on the natural numbers, and so we can use that to define
addition on the integers.

If you have two objects from our model of the integers,
they’re defined as pairs of natural numbers: M = (m;, m,)
and N = (n;, n,). Addition and subtraction on them are
defined by the following rule:

* M+N=(my;+nym,+n,)
* M—N =(my+n, m,+ny)

¢ The additive inverse of a number N = (n;, n,), written
—N, is just the reverse pair: —N = (n,, n;).

The definition of subtraction turns out to be pretty neat. 3 -5
would be (3, 0) — (5, 0), which is equal to (3, 0) + (0, 5) = (3,
5), which is an element of the equivalence class of —2. And
the definition of additive inverse is just a natural result of
how we define subtraction: -N =0 - N.

That’s all we need to do to get from the natural numbers to
the integers: just add additive inverses. We could do subtrac-
tion with just the naturals, which would almost require
additive inverses in some sense, but it would be messy.

The problem would be that in just the natural numbers, you
can’t define subtraction as an operation on any two values.
After all, if you subtract 5 from 3, the result can’t be defined
with just the natural numbers. But with the integers, subtrac-
tion becomes a really general operation: for any two integers
M and N, M — N is another integer. In formal terms, we say
that subtraction is a fotal function on the integers and that
the integers are closed over subtraction.

But that leads us toward the next problem. When we look
at addition in the integers, it has a natural inverse operation
in subtraction, which can be defined in terms of the additive

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

2.Integers * 14

inverse of the integers. When we move on to the next com-
mon operation, multiplication, we can define multiplication
on the naturals and the integers, but we can’t define its
inverse operation, division, because there is no way that we
can define a multiplicative inverse that will work on the
integers. To describe division as a well-defined operation,
we need to have another kind of number—the rational
numbers—which we’ll talk about next.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Real Numbers

Now we know about the naturals and the integers. That’s a
good start. But there are more kinds of numbers than that:
there are fractions and irrationals and...well, we’ll come to
that later. But the next step in understanding numbers is
looking at numbers that have non-integer parts, numbers
that fit into the gaps between integers, like 1/2, -2/3, and .

For now, we’ll look at the next kind of numbers—numbers
with a non-integer part, otherwise known as the real
numbers.

Before I go into detail, I need to say up front that I hate the
term “real numbers.” It implies that other kinds of numbers
are not real, which is silly, annoying, frustrating, and not
true. In fact, the term was originally coined as a counterpart
to imaginary numbers, which we’ll talk about in 8, i: The
Imaginary Number, on page 47. Those were named “imagi-

nary” as a way of mocking the concept. But the term real
numbers has become so well established that we're pretty
much stuck with it.

There are a couple of ways to describe the real numbers. I'm
going to take you through three of them: first, an informal
intuitive description; then, an axiomatic definition; and
finally, a constructive definition.

The Reals, Informally

An informal and intuitive way to depict the real numbers is
the number line that we learned in elementary school.
Imagine a line that goes on forever in both directions. You
can pick a spot on it and label it 0. To the right of 0, you mark

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 16

off a second spot and label it 1. The distance between 0 and
1 is the distance between any two adjacent integers. So go
the same distance to the right, make another mark, and label
it 2. Keep doing that as far as you want. Then start going to
the left from 0. The first mark is -1, the second -2, etc. That’s
a basic number line. I've drawn a version of that in the fol-
lowing figure. Anyplace on that line that you look is a real
real number. Halfway between 0 and 1 is the real number
1/2. Halfway between 0 and 1/2 is 1/4. You can keep dividing
it forever: between any two real numbers you can always
find another real number.

I T I T I O
B I B

Figure 1—The number line. The real numbers can be
represented by the points to the left and right of 0 on
an infinitely long line.

Using the number line, most of the important properties of
the real numbers can be described in very nice, intuitive
ways. The ideas of addition, subtraction, ordering, and
continuity are all very clear. Multiplication may seem tricky,
but it can also be explained in terms of the number line (you
can look at my blog for posts about slide rules to get an idea
of how').

What the number line gives us to start isn't quite the real
numbers. It’s the rational numbers. The rationals are the set
of numbers that can be expressed as simple fractions: they’re
the ratio of one integer to another. ¥, ¥4, %, 124342/58964958.
When we look at the number line, we usually think about
it in terms of the rationals. Consider for a moment the way
that I described the number line a couple of paragraphs ago:
“You can keep dividing it forever: between any two real
numbers, you can always find another real number.” That
division process will always give us a rational number.

1.  http://scientopia.org/blogs/goodmath/2006/09/manual-calculation-using-a-
slide-rule-part-1

www.it-ebooks.info


http://scientopia.org/blogs/goodmath/2006/09/manual-calculation-using-a-slide-rule-part-1
http://scientopia.org/blogs/goodmath/2006/09/manual-calculation-using-a-slide-rule-part-1
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 17

Divide any fraction into any number of equal parts, and the
result is still a fraction. No matter how many times we divide
using rationals and integers, we can never get anything that
isn't another rational number.

But even with the rational numbers, there are still gaps that
can’t be filled. (We know about some of the numbers that
fit into those gaps—they're irrational numbers like the
familiar m and e. We’ll see more about the irrational numbers
in 4, Irrational and Transcendental Numbers, on page 23, and

about e specifically in 6, e: The Unnatural Natural Number, on

page 37.) Looking at the rationals, it’s hard to see how there
can be gaps. No matter what you do, no matter how small
the distance between two rational numbers is, you can
always fit an infinite number of rational numbers between
them. How can there be gaps? The answer is that we can
easily define sequences of values that have a limit but whose
limit cannot possibly be a rational number.

Take any finite collection of rational numbers and add them
up. Their sum will be a rational number. But you can define
infinite collections of rational numbers, and when you add
them up, the result isn’t a rational number! Here’s an
example:

4 4 4 4 4 4

Mm=———4—-———4+—-———

1 3 5 7 9 1

Every term of this sequence is obviously a rational number.
If you work out the result of the first two terms, then the
first three, then the first four, and so on, you get 4.0, 2.666...,
3.4666..., 2.8952..., 3.3396... and after 100,000 terms, it’s
about 3.14158. If you keep going, it’s clearly converging on
a specific value. But no finite sequence of rationals will ever
be exactly the limit of that sequence. There’s something that
is the limit of this sequence, and it’s clearly a number; and
no matter what we do, it’s never exactly equal to a rational
number. It’s always somewhere between any two rational
numbers that we can choose.

The real numbers are the integers, the rational numbers, and
those strange numbers that fit into the gaps between the
rational numbers.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers * 18

The Reals, Axiomatically

The axiomatic definition is, in many ways, quite similar to
the definition the number line provides, but it does the job
in a very formal way. An axiomatic definition doesn't tell
you how to get the real numbers; it just describes them with
rules that draw on simple set theory and logic.

When we're building something like the real numbers, which
are defined by a set of related components, mathematicians
like to be able to say that what we're defining is a single
object. So we define it as a tuple. There’s no deep meaning to
the construction of a tuple; it’s just a way of gathering com-
ponents into a single object.

The reals are defined by a tuple: (R, +, 0, x, 1, <), where R is
an infinite set, “+” and “x” are binary operators on members
of R, “0” and “1” are special distinguished elements of R,
and “<” is a binary relation over members of R.

The elements of the tuple must satisfy a set of axioms, called
the field axioms. The real numbers are the canonical example
of a mathematical structure called a field. A field is a funda-
mental structure used all over the place in mathematics; it’s
basically the structure that you need to make algebra work.
We define a field axiomatically by a set of field axioms. The
field axioms get a bit hairy, so instead of looking at them all
at once, we’ll go through them one by one in the following
sections.

Field Axioms Part 1: Addition and Multiplication

Let’s start with the most basic axioms. The real numbers
(and all fields) have two main operations: addition and
multiplication. Those two operations need to work together
in specific ways:

* (R, + x) are a field. Here’s what this means:

— “+” and “x” are closed, total, and onto in R. Closed
means that for any pair of real numbers r and s, if
you add them together, r + s and r x s will be real
numbers. Total means that for any possible pair of
real numbers r and s, you can add r + s or multiply
r x 5. (It may sound silly to say that, but remember:

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 19

we're going to get to division soon, and for division,
that's not true. You can’t divide by zero.) And
finally, onto means that if you have any real number
x, you can find pairs of real numbers like r and s or
tand u, wherer+s=xand t x u =x.

— “+” and “x” are commutative:a+b=b+a,axb=bxa.

"y

- “x” is distributive with respect to each “+.” That
means that (3+4)x5=3x5+4x5,

— 0is the only identity value for “+.” For alla, a + 0=a.

— For every member x of the set R, there is exactly one
value —x, called the additive inverse of x, so that x +
—x=0,and for all x #0, x #—x.

— 1is the only identity value for “x”; for alla, a x 1 =a.

— For every real number x except 0, there is exactly
one value xfl, called the multiplicative inverse of x,
such that x x x ' =1 ; and unless x is 1, x and x ! are
not equal.

If you turn all of that into English, it’s really not hard. It just
says that addition and multiplication work the way that we
learned in school. The difference is that in school, we were
taught that this is just how numbers work; now we’re stating
the axioms explicitly as requirements. The real numbers are
the real numbers because they work this way.

Field Axioms Part 2: Ordering

The next axioms are about the fact that the real numbers are
ordered. Basically, it's a formal way of saying that if you
have two real numbers, one is less than the other unless
they’re equal.

* (R, <) is a total order:

1. For all real numbers a and b, eithera <b or b <a (or
both, if a = b).

2. “<”istransitive:ifa <band b <cthena <c.

3. “<”isantisymmetric: if a <b, and a #b, then it’s not
true that b <a.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 20

"1
X7

¢ “<” is compatible with “+” and
1. Ifx<ythen(x+1)<(y+1).
2. Ifx <y, then forall z where 0 <z, (x x z) <(y x 2).

3. Ifx <y, thenforallz <0, (x xz) <(y xz).

Field Axioms Part 3: Continuity

Now, we get to the hard one. The tricky bit about the real
numbers is the fact that they’re continuous—meaning that
given any two real numbers, there’s an infinite number of
real numbers between them. And in that infinitely large
collection of reals, the total order still holds. To say that, we
have to talk in terms of upper bounds:

¢ For every subset S in R where S is not the empty set, if
S has an upper bound, then it has a least upper bound, 1,
such that for any real number x that is an upper bound
for S, [ <x.

That really says this: if you take a bunch of real numbers,
no matter how close together or how far apart they are, there
is one number that is the smallest number that’s larger than
all of the members of that set.

That’s an extremely concise version of the axiomatic defini-
tion of reals. It describes what properties the real numbers
must have, in terms of statements that could be written out
in a formal, logical form. A set of values that match that
description is called a model for the definition; you can show
that there are models that match the definition and that all
of the models that match the definition are equivalent.

The Reals, Constructively

Finally, the constructive definition—a constructive definition
is a procedure for creating the set of real numbers. We can
think of the real numbers as the union of several different
sets.

First, we’ll take the integers. All of the integers are real
numbers, with exactly the properties they had as integers.

Then we’ll add fractions, which are formally called rational
numbers. A rational number is defined by a pair of non-zero

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 21

integer numbers called a ratio. A ratio n/d represents a real
number that when multiplied by d gives the value n. The set
of numbers constructed this way ends up with lots of
equivalent values, such as 1/2, 2/4, 3/6, and so on. As we did
with the integers, we’ll define the rationals as a set of equiv-
alence classes over the ratios.

Before we can define the equivalence classes of the rational
numbers, we need to define a couple of other things that
we'll need:

1. If (a/b) and (c/d) are rational numbers, then (a/b) x (c/d)
=(axc)(bxd).

2. For every rational number except 0, there’s another
rational called its multiplicative inverse. If a/b is a rational
number, then its multiplicative inverse, written ( u/b)fl,
is (b/a). For any two rational numbers x and y, if y = X!
(if y is the multiplicative inverse of x), thenx x y =1.

We can use the definition of the multiplicative inverse to
define ratio equivalence. Two ratios a/b and c/d are equivalent
if (a/b) x (c/d)™ = 1; that is, if multiplying the first ratio by the
multiplicative inverse of the second ratio is 1. The equiva-
lence classes of ratios are the rational numbers, and every
rational number is also a real number.

That gives us the complete set of the rational numbers. For
convenience, we'll use Q to represent the set of rational
numbers. Now we're kind of stuck. We know that there are
irrational numbers. We can define them axiomatically, and
they fit the axiomatic definition of reals. But we need to be
able to construct them. How?

Mathematicians have a bunch of tricks at their disposal that
they can use to construct the real numbers. The one I'm going
to use is based on something called a Dedekind cut. A Dedekind
cut is a mathematical object that can represent a real number r
as a pair (A, B) of sets: A is the set of rational numbers smaller
than ; B is the set of rational numbers larger than r. Because of
the nature of the rationals, these two sets have really peculiar
properties. The set A is a set containing values smaller than some
number r; but there is no largest value of A. B is similar: there is
no smallest value in B. r is the number in the gap between the
two sets in the cut.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

3.Real Numbers ® 22

How does that get us the irrational numbers? Here’s a simple
example: let’s define the square root of 2 using a Dedekind
cut:

A={r:rxr<2orr<0}
B={r:rxr>2andr>0}

Using Dedekind cuts makes it easy to define the real num-
bers constructively. We can say that the set of real numbers
is the set of numbers that can be defined using Dedekind
cuts of the rationals.

We know that addition, multiplication, and comparisons
work nicely on the rationals —they form a field and they are
totally ordered. Just to give you a sense of how we can show
that the cuts also fit into that, we can show the definitions
of addition, equality, and ordering in terms of cuts.

* Addition: This shows the sum X + Y of two cuts, X = (X,
Xp)and Y=(Y;, Yp)=(Z;, Zy), where Z, ={ x +y : x in
Xpandyin Y }and Zg={x+y:xin Xz and y in Yg/.

* Equality: Two cuts X= (X, Xp) and Y=(Y}, Y}) are equal
if and only if X; is a subset of Y; and X} is a subset of
Yg.

* Ordering: If you have two cuts, X = (X}, Xp) and Y =(Y,
Yr), X is less than or equal to Y if and only if X; is a
subset of Y; and Yy is a subset of X.

Now that we’ve defined the reals and shown how we can
construct good models of them, we’ve gotten to the point
where we know what the most familiar numbers are and
how they work mathematically. It might seem like now we
really understand numbers. But the fact is, we don’t really.
Numbers are still full of surprises. To give you a very quick
taste of what’s coming, it turns out that we can’t write most
numbers. Most numbers go on forever and ever, and we
can’t write them down. In fact, most numbers, we can’t even
give a name to. We can’t write a computer program that will
find them. They're real and they exist; but we can’t point at
them, name them, or describe them individually! In the next
section, we’ll look at a class of numbers called the irrational
numbers that are the root of this uncomfortable fact.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4

Irrational and
Transcendental Numbers

In the history of math, there’ve been a lot of disappointments
for mathematicians. They always start off with the idea that
math is a beautiful, elegant, perfect thing. They pursue it,
and they eventually discover that it’s not.

This leads us to a collection of strange numbers that we need
to deal with: the irrational and transcendental numbers. Both
were huge disappointments to the mathematicians who
discovered them.

What Are Irrational Numbers?

Let’s start with the irrational numbers. These are numbers
that aren’t integers and also aren’t a ratio of any two integers.
You can’t write them as a normal fraction. If you write them
as a continued fraction (which we’ll describe in 11, Continued
Fractions, on page 69), then they go on forever. If you write

them in decimal form, they go on forever without repeating.
They're called irrational because they can’t be written as
ratios. Many people have claimed that they’re irrational
because they don’t make sense, but that’s just a rationaliza-
tion after the fact.

They do make sense, but they are uncomfortable and ugly
to many mathematicians. The existence of irrational numbers
means that there are numbers that you cannot write down,
and that’s an unpleasant fact. You can’t ever be precise when
you use them: you're always using approximations because

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4. Irrational and Transcendental Numbers ¢ 24

you can’t write them down exactly. Any time you do a cal-
culation using a representation of an irrational number,
you're doing an approximate calculation, and you can only
get an approximate answer. Unless you manipulate them
symbolically, no calculation that involves them can ever be
solved exactly. If you're looking for perfection—for a world
in which numbers are precise and perfect—this isn't it.

The transcendental numbers are even worse. Transcendental
numbers are irrational; but not only can transcendental
numbers not be written as a ratio of integers, not only do
their decimal forms go on forever without repeating, tran-
scendental numbers are numbers that can’t be described by
algebraic operations. There are irrational numbers like the
square root of 2, which you can easily define in terms of an
algebraic equation: it’s the value of x in the equation y = X
— 2 where y = 0. You can’t write the square root of 2 as a
decimal or a fraction, but you can write it with that simple
equation. When you're looking at a transcendental number,
you can’t even do that. There’s no finite sequence of multi-
plications, divisions, additions, subtractions, exponents, and
roots that will give you the value of a transcendental number.
The square root of 2 is not transcendental, because you can
describe it algebraically; but e is.

The Argh! Moments of Irrational Numbers

According to legend, the first disappointment involving the
irrational numbers happened in Greece around 500 BC. A
rather brilliant man by the name of Hippasus, who was part
of the school of Pythagoras, was studying roots. He worked
out a geometric proof of the fact that the square root of 2
could not be written as a ratio of integers. He showed it to
his teacher, Pythagoras. Pythagoras, like so many other
mathematicians, was convinced that numbers were clean
and perfect and he could not accept the idea of irrational
numbers. After analyzing Hippasus'’s proof and being unable
to find any error in it, he became so enraged that he drowned
poor Hippasus.

A few hundred years later, Eudoxus worked out the basic
theory of irrationals, and it was published as a part of
Euclid’s mathematical texts.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4. Irrational and Transcendental Numbers ¢ 25

From that point, the study of irrationals pretty much disap-
peared for nearly two thousand years. It wasn’t until the
seventeenth century that people really started looking at
them again. And once again, it led to disappointment, but
at least no one got killed this time.

With the acceptance of irrational numbers, the idea of
numbers as something that allowed us to capture the world
precisely fell apart. Even something like calculating the cir-
cumference of a circle couldn’t be done precisely. But
mathematicians didn’t give up on perfection. They came up
with a new idea for what the perfection of numbers in
mathematics meant, this time based on algebra. This time
they theorized that while you might not be able to write
down all numbers as ratios, all numbers must be describable
using algebra. Their idea was that for any number, whether
integer, rational, or irrational, there was a finite polynomial
equation using rational coefficients that had the number as
a solution. If they were correct, then any irrational number
could be computed by a finite sequence of addition, subtrac-
tion, multiplication, division, exponents, and roots.

But it was not to be. The German philosopher, mathemati-
cian, and man about town Gottfried Wilhelm Leibniz
(1646-1716) was studying algebra and numbers, and he’s
the one who made the unfortunate discovery that lots of
irrational numbers are algebraic but lots of them aren’t. He
discovered it indirectly by way of the sine function. Sine is
one of the basic operations of trigonometry, the ratio of two
sides of a right triangle. The sine function is one of the
fundamentals of analytic geometry that has real-world
implications and is not just a random weird function that
someone made up. But Leibniz discovered that you couldn’t
compute the sine of an angle using algebra. There’s no
algebraic function that can compute it. Leibniz called sine a
transcendental function, since it went beyond algebra. This
wasn't quite a transcendental number, but it really introduced
the idea that there were things in math that couldn’t be done
with algebra.

Building on the work of Leibniz, the French mathematician
Joseph Liouville (1809-1882) worked out that you could
easily construct numbers that couldn’t be computed using

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4. Irrational and Transcendental Numbers * 26

algebra. For example, the constant named after Liouville
consists of a string of 0s and 1s where for digitx, 10 is a 1
if and only if there is some integer n such that n/ = x.

Once again, mathematicians tried to salvage the beauty of
numbers. They came up with a new theory: that transcen-
dental numbers existed, but they needed to be constructed.
They theorized that while there were numbers that couldn’t
be computed algebraically, they were all contrived things,
things that humans designed specifically to be pathological.
They weren’t natural.

Even that didn’t work. Not too much later, it was discovered
that ¢ was transcendental. And as we’ll see in 6, e: The
Unnatural Natural Number, on page 37, e is a natural,

unavoidable constant. It is absolutely not a contrived cre-
ation. Once e was shown to be transcendental, other numbers
followed. In one amazing proof, = was shown to be transcen-
dental using e. One of the properties that they discovered
after recognizing that e was transcendental was that any
transcendental number raised to a non-transcendental
power was transcendental. Since the value of ¢™ is not tran-
scendental (it’s —1), then m must be transcendental.

An even worse disappointment in this area came soon. One
of the finest mathematicians of the age, Georg Cantor
(1845-1918) was studying the irrationals and came up with
the infamous “Cantor’s diagonalization,” which we’ll look
at in 16, Cantor’s Diagonalization: Infinity Isn’t Just Infinity,
on page 127, which shows that there are more transcendental

numbers than there are algebraic ones. Not only are there
numbers that aren’t beautiful and that can’t be used in pre-
cise computations, but most numbers aren’t beautiful and
can’t be used in precise computations.

What Does It Mean, and Why Does It Matter?

Irrational and transcendental numbers are everywhere. Most
numbers aren’t rational. Most numbers aren’t even algebraic.
That’s a very strange notion: we can’t write most numbers
down.

Even stranger, even though we know, per Cantor, that most
numbers are transcendental, it’s incredibly difficult to prove

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4. Irrational and Transcendental Numbers ¢ 27

that any particular number is transcendental. Most of them
are, but we can’t even figure out which ones!

What does that mean? That our math-fu isn't nearly as strong
as we like to believe. Most numbers are beyond us. Here are
some interesting numbers that we know are either irrational
or transcendental:

* ¢: transcendental
¢ 7 transcendental
* The square root of 2: irrational, but algebraic

* The square root of x, for all x that are not perfect squares:
irrational

tof2, . .
o DSAUArETOOLOLS. 4rrational

¢ ), Chaitin’s constant: transcendental

What's interesting is that we really don’t know very much
about how transcendentals interact; and given the difficulty
of proving that something is transcendental, even for the
most well-known transcendentals, we don’t know much of
what happens when you put them together. w+e; mxe; i, e
are all numbers we don’t know are transcendental. In fact,
for m+ e, we don’t even know if it’s irrational!

That'’s the thing about these numbers. We have such a weak
grasp of them that even things that seem like they should
be easy and fundamental, we just do not know how to do.
And as we keep studying numbers, it doesn’t get any better.
For the people who want numbers to make sense, the disap-
pointments keep coming. Not too long ago, an interesting
fellow (and former coworker of mine) named Gregory
Chaitin (1947-), showed that the irrational numbers are even
worse than we thought. Not only are most numbers not
rational, not only are most numbers not algebraic, most
numbers cannot even be described in any way. It's not a big
surprise that they can’t be written down, because we already
know that we can't really write down any irrational num-
ber —the best we can do is write a good approximation. In
fact, for most numbers, we can’t write a description, an
equation, or a computer program to generate them. We can’t
identify them precisely enough to name them. We know

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

4. Irrational and Transcendental Numbers ¢ 28

they exist, but we're absolutely helpless to describe or
identify them in any way at all. It’s an amazing idea. If you're
interested in it, I highly recommend reading Greg’s book,
The Limits of Mathematics [Cha02].

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Part 11

Funny Numbers

When we think about numbers, even if we’re thinking abstractly, we
don’t usually think of anything like an axiomatic definition such as
Peano arithmetic. We think about specific numbers and their symbols.

From a mathematical viewpoint, some numbers tell us important
things. For example, the number zero, which for eons wasn’t even
considered a number, practically changed the entire world once
people understood it!

In this part of the book, we're going to look at some of the special
numbers used by mathematicians and scientists because they tell us
interesting things about the world and how we, as human beings,
understand it. Because their properties are sometimes startling, I call
them funny numbers.

www.it-ebooks.info


http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info


http://www.it-ebooks.info/

Zero

When we look at strange numbers, the starting place has to
be zero. Zero may not seem strange to you because you're
used to it. But the idea of zero really is strange. Think about
what we said numbers mean: if you think in terms of cardi-
nals and ordinals, in terms of counting and position, what
does zero mean?

As an ordinal, what does it mean to be the zeroth object in
a collection? And what about zero as a cardinal? I can have
one something and count it. I can have 10 somethings and
count them. But what does it mean to have zero of some-
thing? It means thatI don’t have any of it. So how can I count
it?

And yet, without the concept of zero and the numeral 0,
most of what we call math would just fall apart.

The History of Zero

In our pursuit of the meaning of zero, let’s start with a bit
of history. Yes, there’s an actual history to zero!

If we were to go back in time and look at when people
started working with numbers, we’d find that they had no
concept of zero. Numbers really started out as very practical
tools, primarily for measuring quantity. They were used to
answer questions like “How much grain do we have stored
away?” and “If we eat this much now, will we have enough
to plant crops next season?” When you think about using
numbers in a context like that, a measurement of zero doesn’t
really mean much. A measurement can only make sense if
there’s something to measure.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

5.Zero *® 32

Even when math is applied to measurements in modern
math, leading zeros in a number—even if they’re mea-
sured —don’t count as significant digits in the measurement.
(In scientific measurement, significant digits are a way of
describing how precise a measurement is and how many
digits you can use in computations. If your measurement
had two significant digits, then you can’t have more than
two meaningful digits in the result of any computation based
on that measurement.) If 'm measuring some rocks and one
weighs 99 grams, then that measurement has only two sig-
nificant digits. If I use the same scale to weigh a very
slightly larger rock and it weighs 101 grams, then my mea-
surement of the second rock has three significant digits. The
leading zeros don’t count.

We can understand early attitudes about zero by looking
back to Aristotle (384-322 BC). Aristotle was an ancient
Greek philosopher whose writings are still studied today as
the foundations of the European intellectual tradition.
Aristotle’s thoughts on zero are a perfect example of the
reasoning behind why zero wasn'’t part of most early number
systems. He saw zero as a counterpart to infinity. Aristotle
believed that both zero and infinity were pure ideas related
to the concept of numbers and counting, but that they were
not actually numbers themselves.

Aristotle also reasoned that, like infinity, you can’t ever get
to zero. If numbers are quantities, he thought, then obvious-
ly, if you start with one of something and cut it in half, you'll
be left with half as much. If you cut it in half again, you'll
have one quarter. Aristotle and his contemporaries thought
that you could continue that halving process forever: 1/4,
1/8,1/16, and so on. The amount of stuff you'll have left will
get smaller and smaller, closer and closer to zero, but you'll
never actually get there.

Aristotle’s view of zero does make sense. After all, you can’t
really have zero of anything, because zero of something is
nothing. When you have zero, you don't have a real quantity
of stuff. Zero is the absence of stuff.

The first real use of zero wasn’t really as a number, but as a
digit symbol in numeric notation. The Babylonians had a

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

5.Zero * 33

base-60 number system. They had symbols for numbers
from one to 60. For numbers larger than 60, they used a
positional system like our decimal numbers. In that position-
al system, for digit-places with no number, they left a space;
that space was their zero. This introduced the idea of a zero
as a recordable quantity in some contexts. Later they
adopted a placeholder that looked like a pair of slashes (//).
It was never used by itself but only as a marking inside
multidigit numbers. If the last digit of a number was zero,
they didn’t write it, because the zero marker was just a
placeholder between two non-zero digits to show that there
was something in between them. So, for example, the num-
bers 2 and 120 (in Babylonian base-60, that’s 2 x 1 versus 2
x 60) looked exactly the same; you needed to look at the
context to see which it was, because they wouldn't write a
trailing zero. They had the concept of a notational zero, but
only as a separator.

The first real zero was introduced to the world by an Indian
mathematician named Brahmagupta (598-668) in the seventh
century. Brahmagupta was quite an accomplished mathe-
matician: he didn’t just invent zero, but arguably he also
invented the idea of negative numbers and algebra! He was
the first to use zero as a real number and the first to work
out a set of algebraic rules about how zero and positive and
negative numbers worked. The formulation he worked out
is very interesting; he allowed zero as both a numerator or
a denominator in a fraction.

From Brahmagupta, zero spread west (to the Arabs) and
east (to the Chinese and Vietnamese). Europeans were just
about the last to get it; they were so attached to their won-
derful roman numerals that it took quite a while to penetrate:
zero didn't make the grade in Europe until about the
thirteenth century, when Fibonacci (he of the sequence)
translated the works of a Persian mathematician named
al-Khwarizmi (from whose name sprung the word algorithm
for a mathematical procedure). Europeans called the new
number system Arabic and credited it to the Arabs. As we’ve
seen, the Arabs didn’t create Arabic numbers, but it was
Arabic scholars, including the famous Persian poet Omar
Khayyam (1048-1131), who adopted Brahmagupta’s notions

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

5.Zero ® 34

and extended them to include complex numbers, and it was
their writings that introduced these ideas to Europe.

An Annoyingly Difficult Number

Even now, when we recognize zero as a number, it’s an
annoyingly difficult one. It’s neither positive nor negative;
it's neither prime nor compound. If you include it in the set
of real numbers, then the fundamental mathematical struc-
tures like groups that we use to define how numbers apply
to things in the world won't work. It’s not a unit. Units don't
work with it—for any other number, 2 inches and 2 yards
mean different things—but that’s not true with zero. In
algebra, zero breaks a fundamental property called closure:
without 0, any arithmetic operation on numbers produces
a result that is a number. With zero, that’s no longer true,
because you can’t divide by zero. Division is closure for
every possible number except zero. It’s a real obnoxious
bugger in a lot of ways. One thing Aristotle was right about:
zero is a kind of counterpart to infinity: a concept, not a
quantity. But infinity we can generally ignore in our daily
lives. Zero we're stuck with.

Zero is a real, inescapable part of our entire concept of
numbers. But it’s an oddball, the dividing line that breaks a
lot of rules. For example, addition and subtraction aren't
closed without zero. Integers with addition form a mathe-
matical structure called a group —which we’ll talk more about
in 20, Group Theory: Finding Symmetries with Sets, on page 167
—that defines what it means for something to be symmetric
like a mirror reflection. But if you take away 0, it's no longer

a group, and you can no longer define mirror symmetry.
Many other concepts in math crumble if we take away zero.

Our notation for numbers is also totally dependent on zero;
and it’s hugely important for making a polynomial number
system work. To get an idea of how valuable it is, just think
about multiplication. Without 0, multiplication becomes
much, much harder. Just compare long multiplication the
way we do it with the way the Romans did multiplication,
which I explain in Section 9.3, Arithmetic Is Easy (But an

Abacus Is Easier), on page 58.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

5.Zero * 35

Because of the strangeness of zero, people make a lot of
mistakes involving it.

For example, here’s one of my big pet peeves: based on that
idea that zero and infinity are relatives, a lot of people believe
that one divided by zero is infinity. It isn’t. 1/0 doesn’t equal
anything; the way that we define what division means, it’s
undefined —the written expression 1/0 is a meaningless,
invalid expression. You can’t divide by 0.

An intuition supporting the fact that you can’t divide by
zero comes from the Aristotelean notion that zero is a con-
cept, not a quantity. Division is a concept based on quantity,
so asking “What is X divided by Y?” is asking “What quan-
tity of stuff is the right size so that if I take Y of it, I'll get X?”

If we try to answer that question, we see the problem: what
quantity of apples can I take zero of to get one apple? The
question makes no sense, and it shouldnt make sense,
because dividing by zero makes no sense: it’s meaningless.

Zero is also at the root of a lot of silly mathematical puzzles
and tricks. For example, there’s a cute little algebraic pun
that can show that 1 =2, which is based on hiding a division
by zero.

Trick: Use Hidden Division by Zero to Show That 1=2.
1. Startwithx=y.

2. Multiply both sides by x: x* = xy.

@

Subtract yz from both sides: x”* — yz =xy— yz.

=

Factor: (x + y)(x —y) = y(x - y).

Divide both sides by the common factor (x —y), giving x +y =y.
6. Since x =y, we can substitute y for x: y +y =y.

7. Simplify: 2y =y.

8. Divide both sides by y: 2 =1.

The problem, of course, is step 5. Because x —y = 0, step 5 is
equivalent to dividing by zero. Since that’s a meaningless
thing to do, everything based on getting a meaningful result
from that step is wrong—and so we get to “prove” false
facts.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

5.Zero ® 36

Anyway; if you're interested in reading more, the best source
of information that I've found is an online article called “The
Zero Saga.”" It covers a bit of history and random chit-chat
like this section, but it also provides a detailed presentation
of everything you could ever want to know, from the linguis-
tics of the words “zero” and “nothing” to cultural impacts
of the concept, to a detailed mathematical explanation of
how zero fits into algebras and topologies.

1.  http://home.ubalt.edu/ntsbarsh/zero/ZERO.HTM

www.it-ebooks.info


http://home.ubalt.edu/ntsbarsh/zero/ZERO.HTM
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

6

e: The Unnatural
Natural Number

Our next funny number is called e, also known as Euler’s
constant, also known as the base of the natural logarithm.
e is a very odd number, but it’s also very fundamental. It
shows up constantly and in all sorts of strange places where
you wouldn’t expect it.

The Number That's Everywhere
What is e?

e is a transcendental irrational number. It is roughly
2.718281828459045. It's also the base of the natural logarithm.
That means that by definition, if In(x) = y, then ¢’ =x.

Given my highly warped sense of humor and my love of
bad puns (especially bad geek puns), I like to call e the
unnatural natural number. It’s natural in the sense that it’s
the base of the natural logarithm; but it’s not a natural
number according to the usual definition of natural numbers.
(Hey, I warned you that it was going to be a bad geek pun!)

But that’s not a sufficient answer. We call it the natural loga-
rithm. Why is a bizarre irrational number that’s just a bit
smaller than 2 % considered natural?

The answer becomes clear once you understand where it
comes from. Take the curve y = 1/x. For any value n, the area
under the curve from 1 to n is the natural log of n. e is the
point on the x-axis where the area under the curve from 1

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

6. e: The Unnatural Natural Number * 38

to n is equal to 1, as shown in the following figure. That
means that the natural logarithm of a number is directly
related to that number through its reciprocal.

Figure 2—Finding e graphically: The natural logarithm of a
number n is the area under the curve from 1 to n.

e is also what you get if you add up the reciprocal of the
factorials of every natural number:

1 1 1 1 1
e=(—+-+-+—+—+ )
or 1 2 31 4

It’s also what you get if you take this limit:
. 1.n
e=lim__ (1+ ;)

It’s also what you get if you work out this very strange-
looking series:

e=2+

1+

It’s also the base of a very strange equation in calculus:

d(:‘x X
—=e
dx

That last one means that ¢* is its own derivative, which is
more than a little strange. There’s no other exponential
equation that is precisely its own derivative.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

6. e: The Unnatural Natural Number ® 39

And finally, it’s the number that makes the most amazing
equation in all of mathematics work:

e’ +1=0
That’s an astonishing equation. It’s taking a collection of the
most fundamental and, frankly, mysterious numbers in all of
mathematics and connecting them. What does it mean? We’ll
talk about that in 8, i: The Imaginary Number, on page 47.

Why does e come up so often? It’s part of the fundamental
structure of numbers. It is a deeply natural number that is
a part of many of the most basic mathematical structures,
like the shape of a circle. There are dozens of different ways
of defining it because it’s so deeply embedded in the struc-
ture of everything. Wikipedia even points out that if you put
$1 into a bank account paying 100% interest compounded
continuously, at the end of the year, you'll have exactly e
dollars." (That's not too surprising; it’s just another way of
stating the integral definition of ¢, but it’s got a nice intuitive-
ness to it.)

History

As major mathematical constants go, e has less history to it
than most. It's a comparatively recent discovery.

The first reference to it was by the English mathematician
William Oughtred (1575-1660) during the seventeenth cen-
tury. Oughtred is the guy who invented the slide rule, which
works on logarithmic principles. The moment you start
looking at logarithms, you'll start seeing e. Oughtred didn’t
actually name it, or even really work out its value, but he
did write the first table of the values of the natural logarithm.

Not too much later, it showed up in the work of Gottfried
Leibniz (1646-1716). Leibniz’s discovery of the number
wasn't too surprising, given that Leibniz was in the process
of working out the basics of differential and integral calculus,
and e shows up all the time in calculus. But Leibniz didn’t
call it ¢; he called it b.

The first person to really try to calculate a value for e was
Daniel Bernoulli (1700-1782), who is mostly known for his

1.  http://en.wikipedia.org/wiki/E_(mathematical constant)

www.it-ebooks.info


http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

6. e: The Unnatural Natural Number © 40

work in fluid dynamics. Bernoulli became obsessed with the
limit equation, and he actually calculated it out.

By the time Leibniz’s calculus was published, e was well and
truly entrenched, and we haven’t been able to avoid it since.

Why the letter e? We don’t really know. It was first used by
Euler, but he didn’t say why he chose that. It was probably
an abbreviation for “exponential.”

Does e Have a Meaning?

Does e mean anything? Or is it just an artifact—a number
that’s just a result of the way that numbers work?

That’s more a question for philosophers than mathemati-
cians. But I'm inclined to say that the number e is an artifact,
but that the natural logarithm is deeply meaningful. The
natural logarithm is full of amazing properties: it’s the only
logarithm that can be written with a closed-form series; it’s
got that wonderful interval property with the 1/x curve; it
really is a deeply natural thing that expresses very important
properties of the basic concepts of numbers. As a logarithm,
the natural logarithm had to have some number as its base;
itjust happens that it works out to be the value e. But it’s the
logarithm that’s the most meaningful, and you can calculate
the natural logarithm without knowing the value of e.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

¢; The Golden Ratio

Now we get to a number that really annoys me. I'm not a
big fan of the golden ratio, also known as ¢ (“phi”). It's a
number that has been adopted by all sorts of flakes and
crazies, and there are alleged sightings of it in all sorts of
strange places that are simply not real. For example, new-
age pyramid worshipers claim that the great pyramids in
Egypt have proportions that come from the golden ratio,
but the simple truth is that they don’t. Animal mystics claim
that the ratio of drones to larvae in a beehive is approximate-
ly the golden ratio, but it isn't.

The thing is, the value of the golden ratio is (1 + sqrt(5))/2,
or roughly 1.6. It’s just a hair more than 1 %. Sitting there,
it’s naturally close to lots of different things. If something is
close to one and a half, it’s close to the golden ratio. And
because it has this reputation for being ubiquitous, people
assume: oh, hey, look, it’s the golden ratio!

For example, there was even a recent study that claimed that
the ideal ratio of a woman’s bust to her hip is related to the
golden ratio. Why? Well, obviously, everyone knows that the
golden ratio is the perfect aesthetic, and when they did a
survey where men assessed the beauty of different pictures
of women, if you squinted a bit when you looked at the
results, the proportions of the women in the most highly
rated pictures were close to the golden ratio. There’s no real
reason to believe this beyond the belief that the golden ratio
is important, and there are many reasons not to believe it.
(For example, the “ideal” figure for a woman has varied
through history.)

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

7. @: The Golden Ratio *® 42

But even if you discard all of this stuff, the golden ratio is
an interesting number. My own personal reason for thinking
it's cool is representational. In many different ways of writ-
ing numbers, the structure of the number becomes apparent
in fascinating ways. For example, if you write the golden
ratio as a continued fraction (which I explain in ‘1 1, Continued
Fractions, on page 69), you get this:

1
1
1

1+_17

p=1+
1+
1+

You could also write this as [1;1,1,1,1...]. And if you write
it as a continued square root, it’s this:

g0:1+\/1+\/1+\/1+m

These different representations of ¢ aren’t just pretty; they

tell us something about the legitimately interesting properties
of the number. The continued-fraction form of ¢ tells us that
the reciprocal of ¢ is ¢ — 1. The continued root form means
that ¢'=¢ + 1. Those are both different ways of explaining
the fundamental geometric structure of ¢, as we’ll show in
the next section.

What Is the Golden Ratio?

What is this golden ratio thing, anyway? It's the number
that is a solution for the equation (a + b)/a = (a/b). In other
words, given a rectangle where the ratio of the length of its
sides is 1:¢, when you remove the largest possible square
from it, you'll get another rectangle whose sides have the
ratio ¢:1. If you take the largest square from that, you'll get
a rectangle whose sides have the ratio 1:¢. And so on. You
can see an image of the basic idea in Figure 3, The golden

ratio, on page 43.

Allegedly, the golden ratio is the ratio of the sides of a rect-
angle that produce the most aesthetically beautiful appear-
ance. I'm not enough of a visual artist to judge that, so I've
always just taken that on faith.

But the ratio does show up in many places in geometry. For
example, if you draw a five-pointed star, the ratio of the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

7. @: The Golden Ratio * 43

1/¢

on2

Figure 3—The golden ratio: The golden ratio is the ratio of the

sides of an ideal rectangle. When you remove the largest possible

square from such afigure, you're left with another rectangle whose
sides have same ratio.

length of one of the point-to-point lines of the star to the
length of the sides of the pentagon inside the star is ¢:1, as
shown in the next figure.

Figure 4—The golden ratio and the five-pointed star: Another
example of the golden ratio can be found in the ratio of the sides
of the isosceles triangles surrounding the central pentagon of a
five-pointed star.

www.it-ebooks.info

report erratum

- discuss


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

7. @: The Golden Ratio * 44

The golden ratio is also related to the Fibonacci sequence.
In case you don't remember, here’s a refresher: the
Fibonacci sequence is the set of numbers where each number
in the series is the sum of the two previous: 1, 1, 2, 3, 5, §,
13, .... If Fib(n) is the nth number in the series, you can
compute it like this:

q)n -(1- fp)n

Fib (n) = =
5

Legendary Nonsense

There are a ton of stories about the history of the golden
ratio. Most of them are utter bunk.

Many histories will tell you that the pyramids of Egypt are
built on the golden ratio or that the proportions of various
features of Greek temples were built to fit the golden ratio.
But like so much else about the lore of the golden ratio, it’s
just apophenia—finding patterns where there are none.

Let’s look at an example of the supposed connection between
the pyramids and the golden ratio. If we look at the faces of
the Great Pyramid of Khufu, the relation to the golden ratio
is just a rough approximation: the golden ratio is roughly
1.62, and the ratio of the length of the sides of the Great
Pyramid is 1.57. The Great Pyramid is famous for the preci-
sion of its construction, but on the scale of the pyramid, that
error corresponds to about 6 feet. That kind of error doesn’t
fit the mythology. But so many mythologists are so certain
that the golden ratio must be a factor that they struggle to
find some way of making it work. People will go to amaz-
ingly great lengths to satisfy their expectation. For example,
one author who's written extensively about the mythologies
of the great pyramids, a Mr. Tony Smith, argues that the
ratio of the length of the faces was chosen so that the angle
at which the side meets the ground is the arc-sine of the
reciprocal of the square root of the golden ratio.'

We do know that the golden ratio was identified by someone
from the cult of Pythagoras, quite possibly Hippasus, our
poor drowned friend from the history of irrational numbers.

1.  http://www.tony5m17h.net/Gpyr.html

www.it-ebooks.info


http://www.tony5m17h.net/Gpyr.html
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

7. @: The Golden Ratio ® 45

The golden ratio was well known among the ancient Greeks.
Euclid wrote about it in his Elements, and Plato wrote about
it in his philosophical works. In fact, I would argue that
Plato is the initiator of all of the bizarre, flaky metaphysical
gibberish frequently attached to the golden ratio. He believed
that the world was made of up four elements, each of which
was formed from perfect polyhedra. These perfect polyhedra
were, according to Plato, built from triangles that were
themselves formed according to perfect ratios—foremost
among them was the golden ratio. To Plato, the golden ratio
was one of the most fundamental parts of the universe.

The reason the golden ratio is called ¢ is actually a reference
to the Greek sculptor Phidias (cc. 490-430 BC), who used it
in his compositions. Written in Greek, his name started with
the letter ¢.

After the Greeks, there wasn't a lot of interest in ¢ until the
sixteenth century, when a monk named Pacioli (1445-1517),
known for his studies of both art and mathematics, wrote a
text called The Divine Proportion, which discussed the golden
ratio and its uses in architecture and art. Da Vinci was fasci-
nated by the golden ratio as he studied Pacioli’s text, and as
a result, it ended up playing a major role in many of his
sketches and paintings. In particular, his infamous “Vitru-
vian Man” (shown in Figure 5, DaVinci’s Vitruvian Man, on
page 46) is his illustration of how the human body suppos-

edly embodies the divine proportion.

Of course, once Da Vinci embraced it, artists and architects
all over Europe immediately jumped on the bandwagon,
and it’s pretty much continued to be used by artists and
architects all the way to the present.

Where It Really Lives

As I've been explaining, people constantly see the golden
ratio where it isn’t. But still, it is a real thing, and it does
manage to show up in some astonishingly odd places.

Most of the real appearances of the golden ratio are related
to the Fibonacci sequence. Because the Fibonacci sequence
and the golden ratio are deeply connected, wherever the
Fibonacci sequence shows up, you can find the golden ratio.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

7. @: The Golden Ratio * 46

Figure 5—DaVinci’s Vitruvian Man: DaVinci believed that the
human form embodied the golden ratio.

For example, the basic scale used by Western music is built
on the Fibonacci sequence, and the chord structure of most
tonal music has numerous examples of the golden ratio
between the tones that make up the chords. Several musi-
cians have taken advantage of this pattern. My favorite
example of this comes from the great twentieth-century
composer Béla Bartok (1881-1945), who used it as a funda-
mental construct in some of his works, most wonderfully as
a portion of the twelve-part fugue in his Music for Strings,
Percussion, and Celesta—to my knowledge one of the only
twelve-part fugues in the canon of European music.

For fun, you can build a number system called phinary that
is based on the golden ratio. It's a strange number system
that has some amusing properties. In phinary, because of
the particular structure of phi as an irrational number, every
rational number has a non-terminating representation: that
means that every rational number looks irrational in phinary.
Is phinary useful for anything? Not particularly, but it’s
pretty neat anyway!

www.it-ebooks.info

report erratum -« discuss


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8

j: The Imaginary Number

Possibly the most interesting strange number is the sadly
maligned i, the square root of -1, also known as the “imagi-
nary” number. Where'd this strange thing come from? Is it
real (not in the sense of real numbers, but in the sense of
representing something real and meaningful in our world)?
What's it good for?

The Origin of i

The number i has its “roots” in the work of early Arabic
mathematicians, the same people who first really understood
the number. But they weren’t quite as good with i as they
were with 0; they didn't really get it. They had some concept
of the roots of a cubic equation, where sometimes the tricks
for finding the roots just didn’t work. They knew there was
something going on, some way that the equation needed to
have roots, but just what that really meant, they didn't get.

Things stayed that way for quite a while. Mathematicians
studying algebra knew that there was something missing in
a variety of mathematical concepts, but no one understood
how to solve the problem. What we know as algebra devel-
oped for many years, and various scholars, like the Greeks,
encountered them in various ways when things didn’t work,
but no one really grasped the idea that algebra required
numbers that were more than just points on a one-dimen-
sional number line.

The first real step toward i was in Italy, over a thousand
years after the Greeks. During the sixteenth century, mathe-
maticians were searching for solutions to cubic equations,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8.i: The Imaginary Number © 48

the same things that the early Arabian scholars had tried to
find. But finding solutions for cubic equations, even when
those equations did have real solutions, sometimes required
working with the square root of —1 along the way.

The first real description of i came from a mathematician
named Rafael Bombelli (1526-1572), who was one of the
mathematicians trying to find solutions for cubic equations.
Bombelli recognized that you needed to use a value for the
square root of —1 in some of the steps to reach a solution,
but he didn’t really think that i was something real or
meaningful in numbers; he just viewed it as a peculiar but
useful artifact for solving cubic equations.

i got its unfortunate misnomer, the “imaginary number,” as
a result of a diatribe by the famous mathematician/philoso-
pher René Descartes (1596-1650). Descartes was disgusted
by the concept of i, believing that it was a phony artifact of
sloppy algebra. He did not accept that it had any meaning
at all: thus he termed it an “imaginary” number as part of
an attempt to discredit the concept.

Complex numbers built using i finally came into wide
acceptance as a result of the work of Leonhard Euler
(1707-1783) in the eighteenth century. Euler was probably
the first to truly fully comprehend the complex number
system created by the existence of i. And working with that,
he discovered one of the most fascinating and bizarre
mathematical discoveries ever, known as Euler’s equation.
I have no idea how many years it’s been since I was first
exposed to this, and I still have a hard time wrapping my
head around why it’s true.

10 ..
¢ = cosf+ isiné

And here’s what that really means:

That’s just astonishing. The fact that there is such a close
relationship between i, m, and e is just shocking on the face
of it.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8.i: The Imaginary Number ¢ 49

What i Does

Once the reality of i as anumber was accepted, mathematics
was changed irrevocably. Instead of the numbers described
by algebraic equations being points on a line, suddenly they
become points on a plane. Algebraic numbers are really two-
dimensional; and just like the integer 1 is the unit distance
on the axis of the real numbers, i is the unit distance on the
axis of the imaginary numbers. As a result numbers in
general become what we call complex: they have two compo-
nents, defining their position relative to those two axes. We
generally write them as a + bi, where a is the real component
and b is the imaginary component. You can see in the follow-
ing figure what a complex number as a two-dimensional
value means.

imaginary

A axis

5+ 3i

real
axis

Figure 6—Complex number as a point on a 2D plane: A com-

plex number a + bi can be represented graphically as a point on a

two-dimensional plane, where a is its position along the real axis,
and b is its position along the imaginary axis.

The addition of i and the resulting addition of complex
numbers is a wonderful thing mathematically. It means that
every polynomial equation has roots. In particular, a poly-
nomial equation in x with a maximum exponent n will
always have exactly n complex roots.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8.i: The Imaginary Number ¢ 50

But that’s just an effect of what’s really going on. The real
numbers are not closed algebraically under multiplication
and addition. With the addition of i, multiplicative algebra
becomes closed, which means that every operation and every
expression in algebra becomes meaningful. Nothing escapes
the system of the complex numbers.

Of course, it’s not all joy and happiness once we go from
real to complex numbers. Complex numbers aren’t ordered.
There is no less-than (<) comparison for complex numbers.
The ability to do meaningful inequalities evaporates when
complex numbers enter the system.

What i Means

But what do complex numbers mean in the real world? Do
they really represent actual phenomena, or are they just a
mathematical abstraction?

The answer is that they're very real, as any scientist or
engineer will tell you. There’s one standard example that
everyone uses because it’s so perfect: Take the electrical
outlet that powers your lights, your computer. It provides
an alternating current. What does that mean?

Well, the voltage—which (to oversimplify) can be viewed
as the amount of force pushing the current— is complex. In
fact, if your outlet supplies a voltage of 110 volts AC at 60 hz
(the standard in the US), that means the voltage is a number
of magnitude 110. In Figure 7, Alternating current in the com-

plex plane: electric vs. magnetic fields, on page 51, I've plotted

the real voltage on a graph with time on the x-axis and
voltage on the y-axis. That’s a sine wave. Along with that, I
plotted the strength of the magnetic field, which is a sine
wave out of phase with the electric field by 90 degrees, so
that when the magnetic field is at its maximum, the voltage
is 0.

If you looked at just the voltage curve, you'd get the wrong
impression because it implies that the power is turning on
and off really quickly. It isn't: there’s a certain amount of
power being transmitted in the alternating current, and that
amount of power is constant over time. The power is being
expressed in different ways. From our perspective as

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8.i: The Imaginary Number ¢ 51

AN SAN
VN

Figure 7—Alternating current in the complex plane: electric
vs. magnetic fields

magnetic fie

electricity users, we can usually treat it as turning on and
off, because we're only using the voltage part of the power
system. In reality, though, it’s not really turning on and off:
it's a dynamic system, a system in constant motion, and
we're just looking at one slice of that motion.

The vector representing the power being transmitted is a
fixed-size vector. It’s rotating through the complex number
plane, as I try to show in Figure 8, Rotation through the complex
plane, on page 52. When it’s rotated entirely into the imagi-
nary plane, the energy is expressed completely as a magnetic

field. When it’s rotated entirely into the real plane, the
energy is expressed completely as an electric field, which
we measure as the voltage. The power vector isn’t shrinking
and growing; it’s rofating.

The relationship between the electric and magnetic fields in
AC electricity is really typical of how i applies in the real
world: it’s a critical part of fundamental relationships in
dynamic systems with related but orthogonal aspects, where
it often represents a kind of rotation or projection of a mov-
ing system in an additional dimension.

You can see another example of the same basic idea in
computer speech processing. We analyze sounds using
something called the Fourier transform. To be able to translate
sound into words, one of the tricks engineers use is to
decompose a complex waveform (like the sound of a human

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

8.i: The Imaginary Number ¢ 52

Imaginary axis
(magnetic field

77.8+77 8i

4/ 110+0i

Real axis
electric field)

Figure 8—Rotation through the complex plane

voice) into a collection of basic sine waves, where the sum
of the sine waves equal the wave at a given point in time
The process by which we do that decomposition is intimately
tied with complex numbers: the Fourier transform and all
of the analyses and transformations built on it are dependent
on the reality of complex numbers (and in particular on the
magnificent Euler equation that we introduced at the start
of this section).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Part I1I

Writing Numbers

Numbers are so familiar to us that we often forget about their beauty
and their mystery. We think that the way we commonly look at
numbers is the only way to look at them and that the way we write
them is the only correct way to do so.

But that isn’t always the case. As mathematics has evolved, its prac-
titioners have invented an amazing number of ways to write numbers.
Some of these systems of notation are worse than the ones we use
today, and some are just, well, different. In this part of the book, we're
going to look at two ancient systems of notation and a modern one
that continues to intrigue today’s mathematicians.

We'll look first at how the Romans wrote numbers and see how our
number system really does make a dramatic difference in how easily
we can do math by looking at how difficult it is to do using roman
numerals.

We'll look at how the Egyptians wrote fractions and see how the
aesthetics of numbers have changed.

And we’ll look at an example of how even today mathematicians
have continued to invent new ways of writing numbers for specific
purposes by looking at a special kind of fraction, called a continued
fraction.

www.it-ebooks.info


http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info


http://www.it-ebooks.info/

9

Roman Numerals

We normally write numbers in a notation that'’s called arabic
numbers, because it came to the European culture via Ara-
bian mathematicians. But before that, in Western culture,
numbers were written in the Roman style. In fact, in a lot of
formal documents, we still use roman numerals. If you look
at the preface to most textbooks, the pages are numbered
with roman numerals. Every day on my way to work, I walk
past buildings in Manhattan that have cornerstones record-
ing the year the building was constructed, and every one
uses roman numerals. In the closing titles of most movies,
the copyright date is written in roman numerals.

Even though I've probably seen roman numerals every day
of my life, I've always been perplexed by them. Why would
anyone come up with something so strange as a way of
writing numbers? And given that they’re so damned weird,
hard to read, and hard to work with, why do we still use
them for so many things today?

A Positional System

I expect most people already know this, but I'll go through
an explanation of how roman numerals work. The roman
numeral system is nonpositional, meaning that a numeric
symbol represents a particular value no matter where it sits.
This is very different from our decimal arabic notation, which
is positional. In our common notation, the 3 in “32” repre-
sents thirty, but the 3 in “357” represents three hundred. In
roman numerals, that’s not true. An “X” always represents
ten, no matter where in the number it sits.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 56

The basic scheme of roman numerals is to assign fixed
numeric values to letters.

e “I” stands for 1.

e “V” stands for 5.

e “X” stands for 10.

e “L” stands for 50.

e “C” stands for 100.
e “D” stands for 500.
e “M” stands for 1000.

The standard set of roman numerals doesn’t include any
symbols for representing numbers larger than 1000. In the
middle ages, monks that used roman numerals in
manuscripts added a notation for larger numbers; adding a
horizontal line over the top of a numeral means that
numeral multiplied by 1000, so that a V with a horizontal
line floating over it represents 5000, an X with a line floating
over it represents 10,000, and so forth. But that’s a later
addition, which isn't part of the original roman numeral
system. Even with that addition, it’s difficult to clearly write
larger numbers.

The symbols in roman numerals are combined in a bizarre
way. Take a roman numeral like I or X. When two or more
appear in a group—such as III or XXX—they are added
together. Thus, Ill represents 3, and XXX represents 30. When
the number represented by a numeral is smmaller than the one
to its right, it is subtracted from its successor. But if the order
is reversed with the smaller number coming after the larger
one, then it is added to the number to its left.

The notation for a number is anchored by the largest roman
numeral symbol used in that number. In general (though
not always), you do not precede a symbol by anything
smaller than one-tenth its value. So you wouldn’t write IC
(100 - 1) for 99; you'd write XCIX (100 — 10 + 10 — 1).

Let’s look at a few other examples.

* [V=4:V=51=1.1precedes V so it’s subtracted, so IV
=5-1.

e VI=6:V=51=1.1follows V soit’sadded, so VI=5 +
1=6.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 57

* XVI=16:X=10,V=5,1=1. Vlis anumber starting with
a symbol whose value is smaller than X, so we take its
value and add it. Since VI =6, then XVI =10+ 6 = 16.

* XCIX=99: C=100. The X preceding the Cis subtracted,
so XC = 90. Then the IX following it is added. X is ten,
preceded by I, so IX =9. So XCIX = 99.

e MCMXCIX=1999: M =1000. CM is 1000 — 100 = 900, so
MCM =1900. C=100, XC=90.1X=9.

For some reason, 4 is sometimes written IV and sometimes
IIII (there are a number of theories why, which I'll discuss
later).

What about 0? Is there a roman numeral for 0? Sort of. It
wasn'’t part of the original system and was never used by
the Romans themselves. But during the Middle Ages, monks
using roman numerals used N, for nullae, to represent 0. But
it wasn’t the positional 0 of arabic numbers; it was just a
roman numeral used to fill into the astronomical tables used
to compute the date of Easter, rather than leaving the column
blank.

Where Did This Mess Come From?

The main theory about the origin of roman numerals is that
they were invented by shepherds, who counted their flocks
by marking notches on their staffs. The system that became
roman numerals started off as just these notches on a staff,
not letters at all.

When counting their sheep, a shepherd would mark four
notches, one at a time for the first four; and then on the fifth
one, they would cut a diagonal notch, in pretty much the
same way that we commonly write four lines and then a
diagonal strike-through for five when tallying something.
But instead of striking through the preceding notches, they
just used the diagonal to turn a “/” notch into “V.” Every
tenth notch was marked by a strike-through so it looked like
an “X.” Every tenth V got an extra overlapping notch, so it
looked sort of like the Greek letter psi, and every tenth X got
an extra overlapping notch, so it looked like an X with a
vertical line through the center.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 58

In this system, if you had eight sheep, you would write
HIIVIIL But the leading IIIIs are not really needed. So you
could just use VIII instead, which became important when
you wanted to write a big number.

When the Romans made this system part of their written
language, the simple notches became I and V, the strike-
through became X, and the psi-like thing became L. Beyond
that they started using mnemonics: the symbols C, D, and
M were derived from the Latin words for 100, 500, and 1000.

The prefix-subtraction stuff came as it transitioned to writing.
The problem with an ordinal system like this is that it
involves a lot of repeated characters, which are very difficult
for people to read correctly. Keeping the number of repeti-
tions small reduces the number of errors that people make
reading the numbers. It's more compact to write IX than
VIIII, and it’s a lot easier to read because of fewer repetitions.
So scribes started using the prefix-subtraction form.

Arithmetic Is Easy (But an Abacus Is Easier)

Looking at the roman numerals, it looks like doing arithmetic
in that format will be a nightmare. But basic arithmetic—
addition and subtraction—is pretty easy. Addition and
subtraction are simple, and it’s obvious why they work. On
the other hand, multiplication with roman numerals is diffi-
cult, and division is close to impossible. It's worth noting
that while scholars did teach arithmetic this way, most
everyday calculations were done in Roman times with a
Roman abacus, which works much more like our modern
number system does.

To add two roman numerals, you do this:

1. Convert any subtractive prefixes to additive suffixes.
So, for example, IX would be rewritten to VIIIL

Concatenate (or link together) the two numbers to add.
Sort the letters large to small.

Do internal sums (for example, replace IIIII with V)

o & » N

Convert back to subtractive prefixes.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 59

Example: 123 + 69. In roman numerals, that’s CXXIII + LXIX.
e CXXIII has no subtractive prefixes. LXIX becomes LXVIIII.
¢ Concatenate: CXXIIILXVIIIIL.
e Sort: CLXXXVIIIIIL.

e Internal sum: reduce the IIIIII to VII, giving CLXXXVVII; then
reduce the VV to X, resulting in CLXXXXIL

e Switch to subtractive prefix: XXXX = XL, giving CLXLII. LXL
=XC, giving CXCII, or 192.

Subtraction isn’t any harder than addition. To subtract A - B,
you would take these steps:

1. Convert subtractive prefixes to additive suffixes.

2. Eliminate any common symbols that appear in both A
and B.

3. For the largest remaining symbol in B, take the first
symbol in A larger than it and expand it into repetitions
of the next largest unit. Then go back to step 2 until
there’s nothing left. (For example, to subtract XX from
L, you'd first expand the L to XXXXX.)

4. Convert back to subtractive prefixes.
Example: 192 — 69, or CXCII — LXIX.
* Remove prefixes: CLXXXXII — LXVIIIL.
® Remove common symbols: CXXX — VIL
* Expand an X in CXXX: CXXVIIII - VIL.

® Remove common symbols: CXXIII = 123.

Doing multiplication with roman numerals is neither easy
nor obvious. Both figuring out just how to make it work and
actually doing it are difficult. You can do the trivial thing,
which is repeated addition. But it should be pretty obvious
that that’s not practical for large numbers. The trick that the
Romans used was clever, actually! It’s basically a strange
version of binary multiplication. To make it work, you need
to be able to do addition and to divide by two, but both are
pretty easy things to do. So here goes:

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 60

1. Given A x B, you create two columns, and write A in the
left column, and B in the right.

2. Divide the number in the left column by 2, discarding
the remainder. Write the result down in the next row of
the left column.

3. Multiply the number in the right column by 2. Write
that answer down in the right column next to the result
from step 1.

4. Repeatstep 1 through 3 until the value in the left column
is 1.

5. Go down the table and cross out every row where the
number in the left column is even.

6. Add up the remaining values in the right column.

Let’s look at an example: 21 x 17, or XXI x XVII in roman

numerals.

We build the table:

Left Right

XXI(21) XVII(17)

X (10)  XXXIV (34)
V(5)  LXVII (68)
11 (2) CXXXVI (136)

1(1)

CCLXXII (272)

Then strike out the rows where the left side is even:

Left
XXI

Right
(21) XVII (17)

V(5)  LXVII (68)

1(1)

CCLXXII (272)

Now add the right column: XVII + LXVIII + CCLXXII =
CCLLXXXXVVIIIII = CCCXXXXXVII = CCCLVIL = 357.

Why does it work? It’s binary arithmetic. In binary arith-

metic, to multiply A by B, you start with O for the result, and
then for each digit d,, of A, if d, = 1, then add B with n 0s
appended to the pending result.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 61

Dividing by two gives you the binary digit of A for each
position: if it's odd, then the bit in that position is 1; if it’s
even, the bit in that position is 0. Multiplying by two on the
right is giving you the results of appending the zeros in
binary —for the nth digit, you've multiplied by two 1 times.

Division is the biggest problem in roman numerals. There
isno good trick that works in general. Division really comes
down to making a guess, doing multiplication to see if it’s
right, and then adjusting the guess. The only thing you can
do to simplify is variations on finding a common factor of
both numbers that’s easy to factor out. For example, if both
numbers are even, you can divide each of them by two before
starting the guesswork and testing. It’s also fairly easy to
recognize when both numbers are multiples of 5 or 10 and
to do the division by 5 or 10 on both numbers. But beyond
that, you take a guess, do the multiplication, subtract, repeat.

Blame Tradition

We use roman numerals for historic reasons. Until quite
recently, scholars in western culture did most of their work
in Latin. For example, Isaac Newton (1643-1727) wrote his
famous monograph, Philosophiae Naturalis Principia Mathe-
matica, in Latin in the seventeenth century because all
scholarly work at the time was published in Latin.

Using a historic language out of tradition, it also made sense
to use their traditional number notation. This has continued
into the present in many places entirely out of tradition. For
example, modern architects still put dates on cornerstones
using roman numerals. While a modern geek like me would
argue that it doesn’t make sense to use such an impractical
notation, tradition is a powerful force, and tradition
dominated.

There’s no practical reason for us to continue to use roman
numerals. It’s just a matter of tradition. But even with the
question of why answered, there’s a lot of strangeness around
our use of roman numerals, which can't just be explained
by tradition.

One very common question is “Why does a clock use IIII
instead of IV?”

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 62

The answer is unclear. There are a bunch of different theo-

ries, and no one is really entirely sure which one is correct.

The most common ones, along with my opinions of them,

include these:

I and V are the first letters of the name of the god Jupiter in
Latin. Probably bogus, but still widely cited. Romans
had no issue with writing down the name Jupiter.
Worrying about writing the name of a deity is an issue
that comes from the ten commandments in Judaism and
Christianity.

I and V could be the first letters of the name “Jehovah” in
Latin. Better than the Jupiter thing, since early Christians
did follow the Jewish practice of not writing God’s name.
I'm still skeptical, but at least it’s historically consistent.

I is more symmetric with VIII on the clock face. Pretty
likely —our style of clock dates back to the artisans that
designed the first clock faces. Artists and craftsmen are
often extremely obsessed with aesthetics and balance,
and it’s true that IIII and VIII really do look better than
IV and VIIIL.

I allows clock makers to use fewer molds to make the num-
bers for the clock face. Probably not; there’s not a big
enough difference.

The king of France liked the way that I11I looked better than
IV. Once again, I'm very skeptical. People love to blame
things on despicable aristocrats. But clock faces don't
really historically date back to France, and there’s no
contemporary documentation to back this up.

Coincidence. Technically, IIII is as correct as IV. So
someone who started making clocks just happened to
be someone who used IIII instead of IV. In fact, the
Romans themselves generally preferred IIII; it’s more
common in historical documents. And that last fact is,
quite probably, the real reason.

And before I close this section, my favorite question: What's

the silliest thing that anyone’s done with roman numerals?

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

9. Roman Numerals ® 63

There’s a delightfully ridiculous programming language,
designed as an elaborate joke, called INTERCAL (which
stands for “Language With No Pronounceable Acronym”).!

INTERCAL as it was originally designed was amazingly
horrible. But then a bunch of enthusiasts got hold of it and
decided to make it worse. The original INTERCAL didn’t
really have a way to do input or output. So to make
INTERCAL both more complete and more horrible, its
inventors decided to add input and output but chose to use
their own, custom variant of roman numerals. The result
could give any sane programmer screaming nightmares. In
INTERCAL, they follow the rule we mentioned about using
a horizontal bar floating over a number to multiply by 1000.
But when INTERCAL was invented, they were programming
for a teletype, which didn’t have a character for a letter with
a bar over it. So they defined a variant of roman numerals
that includes backspace characters. 5000 was printed as
“V<backspace>-.”

Looking at this, one thing should be clear: we're really lucky
that arabic numerals took the place of roman numerals.
Everything is harder with roman numerals. And if we still
really used roman numerals, we might all be stuck program-
ming in INTERCAL.

1.  You can find out more about the horror that is INTERCAL at the
INTERCAL resources site: http://catb.org/esr/intercal/.

www.it-ebooks.info


http://catb.org/esr/intercal/
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

10

Egyptian Fractions

As math has evolved, so have people’s views of what is
aesthetic in math and what is not. The ancient Greeks (from
whom we got many of our mathematical notions) thought,
for example, that as a matter of elegance, the only way to
write fractions was as unit fractions—fractions whose
numerator is 1. A fraction that was written with a numerator
larger than one was considered wrong. Even today, many
math books use the term vulgar fraction to refer to non-unit
fractions.

Obviously, there are fractions other than the unit fractions.
A unit fraction like ¥ is a reasonable quantity; but so is %.
So how did the Greeks handle these quantities? They repre-
sented them in a form that we refer to today as an Egyptian
fraction. An Egyptian fraction is expressed as the sum of a
finite set of unit fractions. For example, instead of writing
the vulgar fraction %, the Greeks would write “V2 + %.”

A 4000-Year-Old Math Exam

We don’t know that much about the origins of Egyptian
fractions. What we do know is that the earliest written record
of their use is in an Egyptian scroll from roughly the eigh-
teenth century BC, which is why they’re known as Egyptian
fractions.

That scroll, known as the Rhind Papyrus, is one of the most
fascinating documents in the entire history of mathematics.
It appears to be something along the lines of a textbook of
Egyptian mathematics! It’s a set of what look like exam
questions along with fully worked answers. The scroll

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

10. Egyptian Fractions ® 66

includes tables of fractions written in unit-fraction sum form,
as well as numerous algebra (in roughly the form we use
today!) and geometry problems. From the wording of the
scroll, it's strongly implied that the author is recording
techniques well-known to the mathematicians of the day
but kept secret from the masses. (What we would call
mathematicians were part of the priestly class in Egypt,
usually temple scribes. Subjects such as advanced math were
considered a sort of sacred mystery reserved for those in the
temples.)

So we don't really know when Egyptian fractions were
invented or by whom. But from the time of the Egyptians
through the empires of the Greeks and Romans, they contin-
ued to be considered the correct mathematical notation for
fractions.

As I said in the introduction, vulgar fractions were consid-
ered ugly at best and incorrect at worst all the way into the
Middle Ages. Fibonacci defined what is still pretty much
the canonical algorithm for computing the Egyptian fraction
form of a rational number.

Not too long after Fibonacci, the obsession with avoiding
vulgar fractions declined. But they’ve stayed around both
because of the historical documents that use them and
because they’re useful as a way of looking at certain prob-
lems in number theory (not to mention as a foundation for
a lot of nifty mathematical puzzles).

Fibonacci’'s Greedy Algorithm

The primary algorithm for computing the Egyptian fraction
form is a classic example of what computer-science geeks
like me call a greedy algorithm. The greedy algorithm doesn't
always generate the shortest possible Egyptian fraction form,
but it is guaranteed to terminate with a finite (if ugly)
sequence.

The basicidea of the algorithm is this: given a vulgar fraction
x/y, its Egyptian form can be computed like this:
X -y mod x

e(=) = L + e(r), wherer = ———
Yoo Tylx yXTy/x]

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

10. Egyptian Fractions ® 67

Or in a slightly more useful form, here’s the same algorithm
written as a Haskell program that returns a list of unit frac-
tions. (For non-Haskell folks out there, x%y is a Haskell-type
constructor that creates the fraction x/y; and x:y creates a list
with head x and tail y.)

egypt :: Rational -> [Rational]
egypt 0 = []
egypt fraction =
(1%denom) : (remainders) where
x = numerator fraction
y = denominator fraction
denom = ceiling (y%x)
remx = (-y) “mod’ Xx
remy = y*denom
remainders = egypt (remxS%remy)

And for fun, here’s the reverse process, converting from the
Egyptian form to the vulgar:

vulgar :: [Rational] -> Rational
vulgar r = foldl (+) 0 r

To get a sense of what Egyptian fractions look like and how
complex they can get, let’s look at a few examples.

Example: Egyptian fractions
® 4/5=1/2+1/4+1/20
® 9/31=1/4+1/25+1/3100
e 21/50=1/3 +1/12 +1/300
e 1023/1024 =1/2 +1/3 +1/7 + 1/44 + 1/9462 + 1/373029888

As you can see, the Fibonacci algorithm for Egyptian frac-
tions can generate some really ugly terms. It often generates
sequences of fractions that are longer than necessary and
that include ridiculously large and awkward denominators.
For example, that last fraction can be written more clearly
as (1/2 + 1/4 + 1/8 + 1/16 + 1/64 + 1/128 + 1/256 + 1/512 +
1/1024). One of the canonical examples of weakness of the
Fibonacci algorithm is 5/121 = 1/25 + 1/757 + 1/763309 +
1/873960180913 + 1/1527612795642093418846225, which can
be written much more simply as 1/33 +1/121 + 1/363.

The problem, though, is that the Fibonacci algorithm is the
most widely known and easiest to understand of the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

10. Egyptian Fractions ® 68

methods for computing Egyptian fractions.' While we can
compute them, we don’t know of any particularly good or
efficient ways of computing the minimum-length forms of
Egyptian fractions. In fact, we don’t even know what the
complexity bounds of computing a minimal Egyptian
fraction are.

Sometimes Aesthetics Trumps Practicality

WhatI find particularly interesting about Egyptian fractions
is how long they’ve lasted given how difficult it is to work
with them. Adding Egyptian fractions is difficult; multiply-
ing one by an integer is a pain, but multiplying two of them
is absolutely insane. From a purely practical standpoint,
they seem downright ridiculous. As early as AD 150, they
were roundly criticized by Ptolemy himself! And yet they
were the dominant way that fractions were written for close
to three thousand years. The aesthetics of unit fractions
overwhelmed the practicality of tractable arithmetic.

There are a bunch of interesting, open problems involving
Egyptian fractions. I'll just leave you with one fun example:
Paul Erdos, the great Hungarian mathematician, tried to
prove that for any fraction 4/n, there was an Egyptian frac-
tion containing exactly three terms. Doing brute-force tests,
it’s been shown to be true for every number # smaller than
1014, but no one has figured out how to prove it.

1. David Eppstein has a website with a collection of other Egyptian
fraction algorithms, and implementations of many of them, at
http://www.ics.uci.edu/~eppstein/numth/egypt/.

www.it-ebooks.info


http://www.ics.uci.edu/~eppstein/numth/egypt/
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11

Continued Fractions

The way that we write numbers that aren’t integers is
annoying and frustrating.

We’ve got two choices: we can write them as fractions or we
can write them as decimals. But both have serious problems.
There are some numbers that we can write easily as fractions,
like 1/3 or 4/7. That’s great. But there are some numbers that
you just can’t write as a fraction, like .

For numbers like &, there are fractions that are close. 22/7 is
a common approximation for n. But fractions are terrible for
that: if you need to be a bit more precise than that, you can’t
change it a little bit; you need to come up with a totally dif-
ferent fraction. That’s one of the reasons that decimals are
great. We can approximate a number like n using a decimal
form like 3.14. If you need it to be a bit more precise, you
can add a digit, like 3.141, then 3.1415, and so on.

But decimals have their own problems. Lots of numbers that
we could have written perfectly as fractions, we can't ever
write exactly as a decimal. We can write 1/3, but as a deci-
mal? It’s 0.33333333, repeating forever.

They’re both great representations in their way. But they
both fail in their own ways.

Can we do better? Yes. There’s another way of writing frac-
tions that keeps all of the good things about fractions and
also gives this new kind of fraction all of the benefits of
writing decimals. It’s called continued fractions.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 70

Continued Fractions

A continued fraction is a very neat thing. Here’s the idea:
take a number where you don’t know its fractional form.
Pick the nearest simple fraction 1/n that’s just a little bit too
large. If you were looking at, say, 0.4, you'd take 1/2, because
it’s a bit bigger. That gives you a first approximation of the
number as a fraction. But it’s a little bit too big. If the value
of a fraction is a little bit larger than you want it to be, that
means that the denominator of that fraction is a little bit too
small, and to fix it you need to add a correction to the
denominator to make it a little bit bigger. A continued frac-
tion works on that basic principle. Just keep adjusting the
denominator; you approximate the correction to the
denominator by adding a fraction to it that’s just a little bit
too big, and then you add a correction to the correction.

Let’s look at an example:

Example: Express 2.3456 as a continued fraction.
1. It’s close to 2. So we start with 2 + (0.3456).

2. Now we start approximating the fraction. We take the recipro-
cal of 0.3456 and take the integer part of the result: 1/0.3456
rounded down is 2. So we make it 2 + 1/2; and we know that
the denominator is off by about 0.893518518518518.

3. We take the reciprocal again and get 1, and it’s off by about
0.1191709844559592.

4. We take the reciprocal again and get 8, and it’s off by about
0.3913043478260416.

5. Next we get 2 and it’s off by about 5/9.

6. If we keep going, we'll get 1, 1, and 4, and then we’ll have no
remaining error.
And there you are. As a continued fraction, 2.3456 looks like this:

2.3456 = 2 !

2+

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 71

As a shorthand, continued fractions are normally written as
a list notation enclosed by square brackets: the integer part
comes first, followed by a semicolon, and then a comma-
separated list of the denominators of the fractions in the
series. So our continued fraction for 2.3456 would be written
[2;2,1,8, 2,1, 1, 4]. When we write it in this form, as a
sequence of terms, we call each term of the sequence a
convergent.

There’s a very cool visual way of understanding that algo-
rithm. I'm not going to show the procedure for 2.3456,
because it would be hard to draw the complete diagram for
itin a legible way. So instead, we’ll look at a simpler number.
Let’s write 9/16 as a continued fraction.

We start by drawing a grid for the fraction. The number of
columns in the grid is the value of the denominator; the
number of rows in the grid is the numerator. For 9/16, that
means that our grid is 16 across by 9 down, like the one
drawn in the following figure.

3 (third digit)

o

z
-

HEEEED e

(4th digit)

[ )
|
LIOIOIOICE0]
OO0
O
DDDDDD[HS
HENEEENEN

|
OO0
OO0
A

|
O
O

T IO T

[ ]

/

1 (first digit) 1 (second digit)

Figure 9—Computing a continued fraction graphically: The
most commonly used algorithm for computing a continued fraction
can be visualized by extracting the largest possible squares from a

grid whose height and width correspond to the numerator and
denominator of a fraction. When 1 by 1 squares are all that remain,
the fraction is complete.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 72

Now we draw the largest square we can on that grid. The
number of squares of that size that we can draw is the first
term of the continued fraction. For 9/16, we can draw only
one 9-by-9 square, which is the largest square possible, so
our first convergent is 1. Once we’ve marked off that square,
we're left with a 7-by-9 rectangle.

Now we repeat the previous step: once again we draw the
largest square we can. That’s a 7-by-7 square and we can
only draw one. So the second convergent is 1, and we're left
with a 7-by-2 rectangle.

When we repeat the previous step, the largest square we
can draw is one that’s 2 by 2, but this time we can draw three
of them. That means the next convergent is a 3. We're left
with a 1-by-2 rectangle, in which it’s possible to draw two
1-by-1 squares. So the last convergent is a 2.

No squares remain. The continued fraction for 9/16 is
1/(1+1/(1+3/(1+1/2))), or [0; 1, 1, 3, 2].

Cleaner, Clearer, and Just Plain Fun

Continued fractions really are interesting buggers. They're
interesting both in theoretical terms and in terms of just fun,
odd properties.

With regular fractions, it’s easy to take the reciprocal —you
just swap the numerator and the denominator. It looks like
it’s going to be difficult to do that with a continued fraction,
but it isn’t. It's even easier! Take a number like 2.3456, aka
[2;2,3,1,3,4,5,6,4]. The reciprocal is [0; 2,2, 3,1, 3,4, 5, 6,
4]. We just add a zero to the front as the integer part, and
push everything else one place to the right. If it was a zero
in front, then we would have removed the zero and pulled
everything else one place to the left.

Using continued fractions, we can represent any rational
number as a finite-length continued fraction. Irrational
numbers, which can’t be written in finite form as either
regular fractions or decimals, also can’t be written in finite
form as continued fractions. But it’s no worse than (and, in
fact, a bit better than) what we do with decimals. In decimals,
we write approximations of irrational numbers as a pre-
fix—that is, we write the first digits of the number and stop

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 73

when it’s accurate enough. If we need more accuracy, we
add more digits to get a better approximation. With contin-
ued fractions, we do the same basic thing: we write an
approximation of them using a series of convergents, and if
we need more accuracy, we add more convergents.

In fact, it gets a bit better. The continued-fraction form of an
irrational number is an infinite series of correction fractions,
which we can understand as an infinite sequence of ever-
improving approximations of the value of the irrational
number. What makes it different from decimals is that with
continued fractions, it’s easy to generate exactly the next
convergent. In fact, we can take the procedure that we used
to create a continued fraction and convert it into a function
called a recurrence relation, which takes the sequence of con-
vergents that we’ve determined so far and computes the
next convergent. That recurrence relation is a beautiful thing
about continued fractions: with decimals, there’s no way to
define a function that produces exactly the next digit.

Another beautiful thing about continued fractions is their
precision and compactness. Adding a single convergent to
a continued-fraction approximation adds more information
than adding a single digit. For example, we know that
n=1[3;7,151, 292, 1, ...]. If we work that out, the first six
places of the continued fraction for n would be represented
in decimal form as 3.14159265392. That’s n correct to the first
eleven decimal places. The continued fraction requires five
convergents containing a total of eight numerals to get the
same precision as eleven digits in decimal form. In general,
the conciseness savings of continued fractions is even better
than that!

Aside from just being generally cool, continued fractions
have some really interesting properties. A very big one is
that a lot of numbers become cleaner and clearer in continued
fractions. In particular, numbers with no apparent structure
or pattern can reveal deep patterns when rendered as con-
tinued fractions.

For example, the square root of every nonperfect square
integer is an irrational number. They generally don’t have
any visible structure. For example, the square root of 2 in

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 74

decimal form is approximately 1.4142135623730951. But if
you do it as a continued fraction, you get [1;2,2,2, 2,2, ...].
All of the square roots of integers that are nonperfect squares
have repeated forms in continued fractions.

Another great example is e. If you render e as a continued
fraction, yougete=1[2;1,2,1,1,4,1,1,6,1,1,8,1,1, 10, 1,
1,12, 1, ...]. In this and many other cases, continued fractions
reveal the underlying structure of the numbers.

There’s another cool property of continued fractions. When
we write numbers, we write them in a base, using powers of
a particular number. With decimal numbers, everything is
written in powers of 10. For example, 32.12 is 3x10" + 2x10°
+1x107+2x107. If we change the number base, we complete-
ly change the representation of the number: 12.5 in base 10
becomes 14.4 in base 8. But with continued fractions, the
sequence of convergents is exactly the same in different
bases!

Doing Arithmetic

Of course, a natural question at this point is, can you actually
do arithmetic with these things? They're pretty, and they're
interesting, but can you actually use them? Can you do
arithmetic with them?

And the answer is heck yes (so long as you're a computer).

For along time, no one realized that. It took until 1972, when
an interesting guy named Bill Gosper came up with a solu-
tion.' The full details of Gosper’s methods are pretty hairy,
but the basic idea of the method isn’t that hard.

Gosper’s fundamental insight was that you could use what
we now call lazy evaluation to do continued-fraction arith-
metic. With lazy evaluation, you don’t need to compute the
digits of a continued fraction all at once; you compute them
one at a time, as you need them.

In modern software terms, you can think of it as being a way
of treating a continued fraction as an object with two
methods.

1. You can read Gosper’s original paper describing his algorithm at
http://www.tweedledum.com/rwg/cfup.htm.

www.it-ebooks.info


http://www.tweedledum.com/rwg/cfup.htm
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 75

In Scala (my personal language of choice), here’s how that
looks:

cfrac/cfrac.scala
trait ContinuedFraction {
def getIntPart: Int
def getConvergent: Int
def getNext: ContinuedFraction

override def toString: String =
"“[" + getIntPart + "; " + render(1000) + "]J"

def render(invertedEpsilon: Int): String = {
if (getConvergent > invertedEpsilon) {
ngn
} else {
getConvergent + ", " + getNext.render(invertedEpsilon)
}
}

}

Using the Scala trait we’ve just defined, we can implement
a continued-fraction object that creates a continued fraction
from a floating-point value with this:

cfrac/cfrac.scala
class FloatCfrac(f: Double) extends ContinuedFraction {
def getIntPart: Int =
if (f > 1) f.floor.tolnt
else 0

private def getFracPart: Double f - f.floor

override def getConvergent: Int = (1.0/getFracPart).toInt

override def getNext: ContinuedFraction = {
if (getFracPart == 0)
CFracZero
else {
val d = (1.0/getFracPart)
new FloatCfrac(d - d.floor)
}
}
}

object CFracZero extends ContinuedFraction {
def getIntPart: Int =0
def getConvergent: Int = 0
def getNext: ContinuedFraction = CFracZero
override def render(i: Int): String = "0"

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/cfrac/cfrac.scala
http://media.pragprog.com/titles/mcmath/code/cfrac/cfrac.scala
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

11. Continued Fractions ® 76

That code implements exactly the steps of the algorithm we
used to compute a continued fraction.

Gosper’s second insight was that to get the next convergent
of the result of a continued fraction, you only need a finite
part of the two continued fractions you are operating on. So
you just pull convergents from the fractions that you're
working with until you have enough to compute the next
convergent of the result.

The actual algorithm is pretty messy. But the gist is this: you
can always determine that the next convergent of the result
will be within some range, even if that range is as wide as
the range from zero to infinity. Each time you get the next
convergents of the two operands, you can narrow that range.
Eventually, after pulling enough convergents, you'll narrow
it to be an integer, which is your convergent. Once you know
that convergent, you can then represent the remainder as a
new continued fraction in terms of the unknown remainder
as an arithmetic operation of the unretrieved convergents
of the two operands.

With Gosper’s insight, continued fractions become a way of
writing numbers that is incredibly well suited to computer
programs. Gosper’s algorithms for continued-fraction
arithmetic give a lot of precision! And they are not biased
toward base 10! And it’s easy to do computations in a way
that allows you to decide on the fly just how much precision
you want! It’s painful to understand how to implement it,
but once you do, the implementation itself is pretty simple,
and once it’s been implemented, you just use it and it works.

Once you have Gosper’s method, continued fractions become
beautiful on all counts. Not only do you get all of the cool
properties that we've already seen, but arithmetic with
continued fractions becomes perfectly precise for as much
precision as you want! It's beautiful.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Part IV

Logic

There’s a lot more to math than just numbers. The fun of math really
starts to become clear when you move beyond arithmetic and get to
the abstract stuff. All of the abstractions can be built with two basic
things: logic and set theory. So here we’ll take a look at logic.

In this part of the book we’ll explore what logic is, what a proof is,
and what it really means for one statement to logically follow from
the statements before it. We’ll take a look at a couple of logics to see
how various logics can describe different kinds of reasoning, and
we’ll explore the power of logical reasoning by playing with a pro-
gramming language that’s entirely built on logic.

www.it-ebooks.info


http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info


http://www.it-ebooks.info/

12

Mr. Spock Is Not Logical

I'm a big science fiction fan. In fact, my whole family is
pretty much a gaggle of sci-fi geeks. When I was growing
up, every Saturday at 6 p.m. was Star Trek time, when a local
channel showed reruns of the original series. When Saturday
came around, we always made sure we were home by 6,
and we’d all gather in front of the TV to watch the show. It’s
a really fond memory. But there’s one thing about Star Trek
for which I'll never forgive Gene Roddenberry or the show:
the way that they abused the word “logic,” every time Mr.
Spock said, “But that would not be logical.”

Mr. Spock’s pronouncements taught a huge number of
people that “logical” means the same thing as either “reason-
able” or “correct.” When you hear people say that something
is logical, what they usually mean isn’t that it’s logical: they
mean almost the exact opposite of that—that common sense
tells them that it’s correct.

If you're using the word “logical” correctly, then just saying
that something is logical doesn’t mean anything about
whether it’s correct or not. Anything, anything at all can be
logical. For something to be logical, it just has to be a valid
example of reasoning from some set of premises.

For example, what if I told you this was logical: “If my car
is made out of uranium, then the moon is made of cheese.”
You'd probably think I'm crazy. It’s a silly, ridiculous state-
ment, and by intuition, it’s not true. Mr. Spock would cer-
tainly say that it’s not logical. But, in fact, it is logical. Under
the standard rules of predicate logic, it’s a true statement.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 80

The fact that it’s a stupid statement that doesn’t mean any-
thing is irrelevant. It’s logical because logic says it’s true.

How is it logical? To say that something is logical, what
you're saying is that it is something that can be inferred or
proven using a formal system of reasoning. In first-order
predicate logic (FOPL)—the most common logic used by
mathematicians—an if/then statement (formally called an
implication) is true if either the “if” part is false or the “then”
part is true. If you put something false in the “if” part, you
can put anything at all in the “then” statement, and the if/then
statement will be logically true.

But there’s more to it than that. Logic, in the sense that we
generally talk about it, isn’t really one thing. Logic is aname
for the general family of formal proof systems with inference
rules. There are many logics, and a statement that is a valid
inference (that is, is logical) in one system may not be valid
in another. To give you a very simple example, most people
know that in logic there’s a rule called the law of the excluded
middle, which says for a given statement A, that A or not A
is true. In FOPL, that’s a kind of statement called a tautology
that must always be true. But there are more kinds of logic
that we can use. There’s another very useful logic called
intuitionistic logic, in which A or not A is not necessarily true.
You cannot infer anything about whether it’s true or false
without proving whether A is true or false.

Logic has a lot more variety than you might expect. FOPL
and intuitionistic logic are pretty similar, but there are many
other kinds of logic that are useful for different things. FOPL
is great for proofs in algebra and geometry, but it’s awful at
talking about time. FOPL has no good way to say something
like “I won't be hungry until 6 p.m. tonight” that really
captures the temporal meaning of that statement. But there
are logics like CTL (which we’ll talk more about in 15, Tem-
poral Reasoning, on page 117) that are designed specifically

to be good at that kind of statement. But they’re not useful
for the kinds of things that FOPL is good at. Each logic is
designed for a purpose, to do a particular kind of reasoning.
Each logic can be used in different ways to prove different
things.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 81

What Star Trek and Mr. Spock get right is that one of the
fundamental points of logic is being unbiased. Mr. Spock
does, at least in theory, try to reduce things to a form where
they can be understood without emotion. But saying that
you're being logical isn’t enough to be meaningful. You need
to say which logic you're using. You need to say what axioms
(basic facts) you're using to reason with and how your logic
allows you to do your reasoning.

The same argument can be logically valid and correct in one
logic and logically invalid and incorrect in another logic, or
even in the same logic with a different set of basic facts.
Without specifying the logic and the axioms, saying that a
conclusion is logical tells you nothing.

What Is Logic, Really?

A logic is a system for mechanical reasoning. It’s a system
that allows you to express an argument in a neutral symbolic
form and then use that symbolic form to determine whether
or not the argument is valid. What matters in logic isn’t
meaning; instead it’s whether or not the steps of reasoning
that make up the argument follow from one another. It’s a
very powerful tool, specifically because it ignores meaning
when it’s doing reasoning. Logic can’t be biased toward one
side of an argument, because logic neither knows nor cares
what the argument means!

To make that kind of unbiased reasoning work, a logic needs
to be structured in a rigorous, formal way. That formality
shows us that the reasoning (formally called inference) in the
logic will produce correct results when applied to real
arguments.

We care about this because logic is at the heart of how we
reason, and reasoning is at the heart of how we communi-
cate! Every political debate, every philosophical argument,
every technical paper, every mathematical proof, every
argument at its core has a logical structure. We use logic to
capture that core in a way that lets us see the structure, and
more than just see it—understand it and test it and ultimately
see if it’s correct.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 82

We make it all formal because we want to be sure that when
we're analyzing an argument, we aren’t being biased. The
formality makes sure that our logical system is really reliable,
systematic, and objective. What logic does is take an argu-
ment and reduce it to a symbolic form that can be evaluated
for correctness without knowing what it means. If you consider
meaning, it’s easy to let your intuitive understanding sway
you. If you know what the argument is about, it’s easy to let
your own biases creep in. But logic reduces it to symbols
that can, in theory, be evaluated by a machine.

Formally, a logic consists of three parts: syntax, semantics,
and a set of inference rules. The syntax tells you exactly what
statements in the logic look like and how you should read
and write them. Semantics tells what statements in the logic
mean by showing you how to move between the abstract
symbolic statements of the logic and the ideas and objects
that you're reasoning about. Finally, the inference rules
describe how, given a collection of statements written in the
logic, you can perform reasoning in the logic.

FOPL, Logically

The first thing you need to know about a logic is its syntax.
A logic’s syntax tells you, formally, how to read and write
sentences in that logic. Syntax doesn't tell you how to
understand the statements or what they mean. It just tells you
what they look like and how to correctly put them together.

Logic separates the meaning of the statements from the
syntax. The meaning is called the semantics of the logic. For
FOPL, the semantics are pretty easy to follow —not because
they're really all that simple, but because you use them every
day. Most arguments, most bits of reasoning that you hear
every day, are FOPL, so you're used to it even if you don’t
realize it.

We're going to walk through the basic syntax and semantics
of FOPL together because it's much easier to follow that
way. We'll start with the objects that we're going to reason
about.

The point of logic is to let you reason about things. Those
things can be concrete things like cars or people, or abstract

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 83

entities like triangles or sets. But to reason in a logic, we need
to use symbols to represent those objects. For each object
that we want to reason about we introduce a symbol called
a constant, or an atom. Each atom represents a particular
object, number, or value that can be reasoned about using
the logic. If I wanted to reason about my family, the constants
will be the names of members of my family, the places we
live, and so on. I'll write constants as either numbers or
quoted words.

When you don’t want to refer to a specific object, you can
use a variable. For example, if you want to say that every
object has a property, like every person has a father, you

" u

don’t want to have to write “Mark has a father,” “Jennifer
has a father,” “Rebecca has a father,” and so on. You want
to be able to write one statement that says that it’s true for
everyone. Variables let you do that. A variable doesn’t have
any meaning on its own; it gets its meaning from context.
We'll see what that means in a little while, when we get to

quantifiers.

The last type of thing that we need for FOPL is a predicate.
A predicate is sort of like a function that describes properties
of objects or relationships between objects. For example,
when I say “Mark has a father,” the phrase “has a father” is
the predicate. In our examples, we’ll write predicates using
an uppercase identifier, with the objects it’s talking about
following inside parens. If I wanted to write the statement
“Mark’s father is Irving” in FOPL, I would write
Father("Irving”, "Mark”).

Every predicate, when it's defined, explains when it’s true
and when it’s false. If I wanted to use my example predicate,
Father, my definition of it would need to explain when it’s
true. In this case, you might think that the name is enough:
we know what it means when we say “Joe is Jane’s father.”
But logic needs to be precise. If Joe is actually Jane’s adoptive
father, should Father(”Joe”, "Jane”) be true? If what we care
about is family relationships, then the answer should be yes;
if what we care about is biological relationships, then the
answer should be no. For our examples, we’ll say that we're
talking about biological relationships.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 84

A predicate with its parameters filled in is called either a
simple fact or a simple statement.

We can form more interesting statements by taking the
statements that we have and either modifying them or
combining them. The simplest combinations and modifica-
tions are “and” (called conjunction), “or” (called disjunction),
and “not” (called negation). In formal syntax, we use the /
symbol for “and,” the V symbol for “or,” and the - symbol

“ ”

for “not” Using these, we can write things like
Father("Mark”, "Rebecca”) A Mother("Jennifer”, "Rebecca”)
(Mark is Rebecca’s father and Jennifer is Rebecca’s mother),
YoungestChild(” Aaron”, "Mark”) V YoungestChild(”Rebecca”,
"Mark”) (Aaron is Mark’s youngest child or Rebecca is
Mark’s youngest child, and -Mother("Mark”, "Rebecca”)
(Mark is not Rebecca’s mother).

And, or, and not all work almost the way you expect them to.
A /N Bis true if both A is true and B is true. A VB is true if A
is true or if B is true. = A is true if A is false.

There’s one tricky thing about the logical or. In informal talk,
if you say “I want the hamburger or the chicken sandwich,”
what you mean is that you want either the hamburger or the
chicken sandwich, but not both. With a logical or, A VB, is
true whenever af least one of A and B is true. It’s also OK for
both to be true. The informal sense of or is called an exclusive
or in FOPL. When we're defining the logic, we don’t define
the exclusive or because it can be written in terms of the
other statements.'

With /4, V, and -, we can form all of the sentences that we
want to. But we're missing one thing that we really want:
if-then, also known as implication. In arguments of all types,
implication is a common and useful tool, so we’d really like
to be able to write it directly. Strictly speaking, we don’t
need it because we can write it using and, or, and not. But
because it’s so useful, we'll add it anyway. There are two
kinds of implications: simple if and if-and-only-if.

A simple if statement is written A = B, which can be read as
either “A implies B,” or “if A then B.” What it means is that

1. The statement A exclusive or B can be written A VB A —=(A /A B).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 85

if the A part is true, then the B part must also be true—and
also the inverse: if the B part is false, then the A part must
also be false.

If-and-only-if is written A < B, which is read “A if-and-only-
if B,” or “A if/f B” for short. If/f is the logical version of
equality: A < B is true whenever A and B are both true or
whenever A and B are both false. As the double-headed
arrow notation suggests, A < B is exactly the same as A =
BAB=A.

The connectives give us the ability to form all of the basic
logical statements. But we still can’t write interesting argu-
ments. Simple statements like these just aren’t enough. To
see why, let’s look at an example of one of the simplest and
most well-known logical arguments that came to us from
the ancient Greek philosopher Aristotle:

1. All men are mortal
2. Socrates is a man.
3. Therefore, Socrates is mortal.

With what we know about FOPL so far, we can’t write that
argument. We know how to write specific statements about
specific atoms, which means that we can write steps 2 and
3asIs_A_Man("Socrates”), and Is_Mortal(”Socrates”). But we
can’t write that first statement. We have no way of saying
“All men are mortal” because we have no way of saying “all
men.” That’s a statement about all atoms, and we have no
way yet of making a general statement about all atoms.

To make a general statement about all possible values, you
use a universal statement. It's written V a: P(a) (read “for all
a, P(a)”), which means that P(a) is true for all possible values
of a.

Most of the time, universal statements show up in implica-
tions, which let you limit the statement to a particular set of
values instead of allowing all possible values. In the mortal
Socrates example, the universal statement “All men are
mortal” would be written as Vx: Is_A_Man(x) = Is_Mortal(x)
(“For all x, if x is a man, then x is mortal”). Since this is used
so frequently, there’s a shorthand: we’ll often write it as V'
x €Is_A_Man: Is_Mortal(x).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 86

The last kind of thing we want to be able to do is called an
existential statement. An existential lets us say that there
must be a value that makes a statement true, even if we don’t
know exactly what that statement is. Using our family
statements, we can say that I must have a father: 3 x: Father(x,
"Mark”), which we read as “There exists an x such that x is
the father of Mark.”

Existentials are most useful when they’re combined with
universals. Saying that I must have a father isn't a particu-
larly useful statement: we know who my father is. But by
combining a universal with an existential, I can say that
everyone has a father: V x: d y: Father(y, x). That’s always
true—it’s a fundamental fact of human biology. If we see a
person, we know that that person must have a father. We
may not know who he is. In fact, the person may not know
who his or her father is. But we know, without question,
that this person has a father. And that combination of quan-
tifiers lets us say that.

Show Me Something New!

Now we’ve seen the language of logic: how to read and write
statements and how to understand what they mean. But all
that we have so far is the language for writing statements.
What makes it into a logic is the ability to prove things. Proof
in logic is done by inference: inference gives you a way of
taking what you know and using it to prove new facts,
adding to what you know.

I'm not going to go through the entire set of inference rules
allowed in FOPL in detail in this section. I'm just going to
give you a couple of examples that are enough to demon-
strate a bit of inference. In the next chapter, I'll show you all
of the rules in a more detailed form that’s useful for checking
proofs. But for now, here’s a few to get the sense of how it
works:

Modus Ponens This is the most fundamental rule of predicate
logic. If I know that P(x) = Q(x) (P(x) implies Q(x)) and
I know P(x), then I can infer that Q(x) must be true.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 87

Likewise, we can do the reverse. If I know that P(x) =
Q(x), and I know that = Q(x) (that Q(x) is false), then I
can conclude that = P(x); that is, that P(x) must be false.

Weakening If I know that P(x) A Q(x) is true, then I can infer
that P(x) must be true.

Similarly, if I know P(x) V Q(x) is true and I know that
Q(x) is false, then P(x) must be true.

Universal Elimination If we know that V x: P(x) is true and

" _nmn " _nm

a” is a specific atom, then we can infer that P("a”) is
true.

Existential Introduction If x is an unused variable and we

" _n

know that P("a”) is true, then we can infer that  x: P(x)
is true.

Universal Introduction If we can make a proof that shows
that P(x) is true without knowing anything about x, then
we can generalize from that and say that V x: P(x).

To reason with a logic, you start with a set of axioms, which
are the basic facts that you know are true even though you
don’t have a proof. A statement is true in the logic if that
statement can be proven by using axioms and the inference
rules of the logic.

So once again, here’s a set of axioms about my family.

e Axiom 1. Father("Mark”, "Rebecca”) Mark is Rebecca’s
father.

e Axiom 2. Mother("Jennifer”, "Rebecca”)

* Axiom 3. Father("Irving”, "Mark”)

e Axiom 4. Mother("Gail”, "Mark”)

* Axiom 5. Father("Robert”, "Irving”)

* Axiom 6. Mother(”Anna”, "Irving”)

e Axiom 7. Va, Vb:(Father(a, b) V Mother(a, b)) = Parent(a, b)

* Axiom 8. Vg, Vc: (dp : Parent(g, p) /\ Parent(p, c)) =
Grandparent(g, c)

Now let’s use these axioms and our inference rules to prove
that Irving is Rebecca’s grandparent.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 88

Example: Prove that Irving is Rebecca’s grandparent.

1. Since we know by axiom 1 that Father(”"Mark”,
"Rebecca”), we can infer Parent(”Mark”, "Rebecca”). We'll
call this inference I1.

2. Since we know by axiom 3 that Father("Irving”,”Mark”),
we can infer Parent("Irving”,”Mark”). We'll call this
inference 12.

3. Since we know by I1 and I2 that Parent(Irving, Mark) and
Parent("Mark”, "Rebecca”), we can infer Parent("Irving”,
"Mark”) N Parent(Mark,Rebecca). We'll call this inference
13.

4. Since by I3, we know Parent("Irving”, "Mark”) A
Parent("Mark”, "Rebecca”) using axiom 8, we can infer
Grandparent(”Irving”, "Rebecca”).

5. QED.

In a given logic, a chain of inferences forged from its rules
is called a proof. The chain in our example is a proof in first-
order predicate logic. A very important thing to notice is
that the proof is entirely symbolic: we don’t need to know
what the atoms represent or what the predicates mean! The
inference process in logic is purely symbolic and can be done
with absolutely no clue at all about what the statements that
you're proving mean. Inference is a simple process that uses
inference rules to work from a given set of premises to a
conclusion. Given the right set of premises, you can prove
almost any statement; given a choice of both premises and
logic, you can prove absolutely any statement.

Let’s try to redo the inductive proof from 1, Natural Numbers,
on page 3, this time being clear about how we're using
logical inference.

Example: Prove that for all n, the sum of the natural numbers from
0 to n is n(n+1)/2.

1. The induction rule, in logical terms, is an implication
that says this: if that statement is both true for 0 and if
we can show that for all values n greater than or equal
to 1, it’s true for n if it was true for n — 1, then it will be
true for all n—and we’ll have proven it.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical * 89

We need to show those two cases in order to use the
implication. We start with the base case. We need to
show that n(n+1)/2 = sum of the naturals from 0 to n
when n = 0. If we wanted to be complete, we would
actually need to reason through the formal Peano-based
definitions of addition and multiplication. In the defini-
tion of multiplication, it says that zero times anything
is zero; so we can use that as a logical equivalence and
substitute 0 for n(n+1)—so the sum from 0 to 0 is 0, and
the base case is proven. We now have as an inferred fact
that it’s true for 0.

Now comes the inductive part. The inductive part is
itself an implication. If we take the fact that we're trying
to prove as a predicate P, then what we want to do is
show that for all n, P(n) implies P(n+1). We do that by
using the universal introduction inference rule. We show
that the n/n+1 inference is true by working through it
with an unbound n:

Suppose, for a number #, that it’s true. Now we want
to prove it for n + 1.

So what we want to prove is this:
(n+1)(n+2)

O0+1+2+3+ - +n+n+1)= .

Then we go through the algebraic part exactly as we did
the first time through. At the end of that, we have a
statement that if P is true for n, then it’s true for n + 1.
We can use an inference rule to generalize that into a
universal.

Now we have both of the statements that were required
by the implication, and as a result, we can use implica-
tion inference (the rule that if A implies B and we know
A is true, then B must be true). We know that P is true
for 0. We know that for all n> 0, P is true for n if it was
true for n — 1. So by the induction rule, we can now infer
the conclusion: For all natural numbers 7, the sum of
the numbers from 0 to n is n(n+1)/2.

QED.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

12. Mr. Spock Is Not Logical ® 90

Going through all of the inference rules here might seem
like it’s a bit of overkill, but there is a point to it.

The beautiful thing about logic is that it'’s a simple way of
making reasoning clear and mechanical. The list of rules can
seem complex, but when you think about it, virtually every
argument that you hear in daily life, in politics, in business,
in school, or around the dinner table, when you boil it down,
are all expressible in first-order predicate logic. And all of
those arguments, every one, in every case, are testable by
turning them into the FOPL form and then using that set of
inference rules. That’s all you need to be able to check any
argument or make any proof. When you think of it that way,
you should be able to start to see why it really is amazingly
simple.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13

Proofs, Truth, and Trees:
Oh My!

The point of logic is to make it possible to prove things. What
is a proof? In math, it’s a sequence of logical inferences that
show how a new fact, called a conclusion, can be derived
from a set of known facts, called premises.

Proofs tend to scare people. I can still remember being a
sophomore in high school and being introduced to proofs
in my geometry class. It was by far the worst experience I'd
ever had in a math class! I'd try to work out a proof in my
homework; and when the teacher handed it back, it would
be covered in red ink, with every other line marked “doesn’t
follow,” or “missing case.” I just couldn’t figure out what I
was supposed to be doing.

A lot of people have had pretty much the same experience.
We're taught that a valid proof has to have every step follow
from what came before, and it has to cover every possible
case. Sadly, what we aren’t taught nearly as well is exactly
how to tell when a step follows, or how to be sure that we’ve
covered all of the cases. Understanding how to do that only
comes from actually understanding the logic and the
mechanics of logical inference used in a proof.

That’s what makes proofs so hard for so many of us. It’s not
really that proofs are so terribly hard. Instead, it’s the fact
that mastering proofs requires mastering the logic that’s
used in those proofs. The logic part of proofs isn't really
taught to us in most math classes. It’s treated as something

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 92

that we should just understand. For some people, that’s easy;
for many of us, itisn't.

So in this chapter, we're going to look at the mechanics of
proofs in FOPL. I'm going to approach it using a technique
called truth trees or semantic tableaus. What you'll see is a bit
different from the typical presentation of truth trees. I was
lucky enough to take a course in logic when I was in college
from a great professor named Ernest Lepore. Professor
Lepore had worked out his own way of teaching truth trees
to students, and to this day I still use his. Since they’re what
I use, they’re what I'm going to show you. (If you want to
learn more about logic and proofs from a less mathematical
perspective, then you can’t go wrong with Professor Lepore’s
book, Meaning and Argument: An Introduction to Logic Through

Language [Lep00].

Building a Simple Proof with a Tree

Truth trees work by creating a contradiction. We take a
statement that we want to prove true, turn it around by
negating it, and then show that that negation leads to
contradictions.

For example, I can use this basic method to prove that there
isn’t a largest even number, N:

Example: Prove there is no such thing as a largest even number,
N.

1.  We'll start by inverting the fact to prove, and then we’ll
show that it leads to a contradiction. Suppose that there
is a largest even number, N.

2. Since N is the largest even number, then for every other
even number 1, n < N.

3. N is a natural number; therefore, it can be added with
other natural numbers.

4. If we add 2 to N, the result will be even and it will be
larger than N.

5. We just created an even number larger than N, which
contradicts step 2. Since we have a contradiction, that
means that the statement that N is the largest even
number is false.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 93

That’s how truth trees work: by showing that every possible
chain of reasoning starting from a negation of what you
want to prove will lead to a contradiction. The tree mecha-
nism gives you an easy, visual way of making sure that
you’'ve got all of your cases covered: every time you do
anything that introduces another case, you create a branch
of the tree.

In practice, I don't actually use truth trees for writing proofs;
I use them for checking a proof. When I think that I've got a
good proof of something in FOPL, I check that I got it right
by throwing together a truth tree to check that I didn’t make
any mistakes. The tree makes it easy to look at a proof and
verify that everything follows correct inference and that all
cases are covered, ensuring that the proof is valid.

The way that you do that in a truth tree is to start by writing
down the premises that you're given in a column; then you
take the statement that you want to prove and write it at the
top of the page. Then you negate that statement. In the truth
tree we'll show that with the statement negated, every pos-
sible inference path leads to a contradiction. If that happens,
then we know that the negated statement is false, and the
statement that we wanted to prove is true.

Implication Equivalence A = B is equivalentto~A VB

Universal Negation - Vx: P(x) is equivalent to J x: -
P(x)

Existential Negation = Hx: P(x) is equivalent to V x: -
P(x)

And Negation ~(A A B) is equivalentto- A V- B

Or Negation - (A VB)isequivalentto~ A A—~ B

Double Negation — - Ais equivalent to A

Universal Reordering Va: (Vb: P(a, b)) is equivalent to V'
b: (Va:P(a, b))

Existential Reordering ~ Ha: (4b: P(a, b)) is equivalent to
b: (da: P(a, b))

Table 1—Logical equivalence rules

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! ¢ 94

Given Rule Infer

And Weakening (left)y A AB A

And Introduction Aand B AANB

Or Branching AVB Two branches: one
with A, one with B

Or Negation AVBand-A B

Or Introduction A AVB

Modus Ponens A=Band A B

Universal Elimination  V x: P(x) P(a) for any specific
atoma

Existential Elimination H x: P(x) P(a) for any unused
atom a

Table 2—The inference rules for truth trees in FOPL

Instead of droning on through a list of the inference rules,
I've just listed them in tables. For the most part, if you look
at them carefully and think about them, you can figure out
what they mean. But the point of logic as a reasoning system
is that you don't need to know what they mean. The logic defines
these inference rules; and as long as you follow them, you'll
be able to create valid proofs.

A Proof from Nothing

Now that we’ve seen all of the sequents, how can we use
them?

Let’s start with a proof of a simple but fundamental rule of
logic called the law of the excluded middle. It says that any
statement must be either true or false. When you write that
in logic, it means that if you have a statement A, then
regardless of what A is, A V-A must be true.

The law of the excluded middle is a tautology, which means
that it's a fundamental truth that must always be true,
regardless of what axioms we choose. In order to show that
the tautology is true, we need to build a proof that uses
nothing but the statement, the logic’s rules of inference. If
we can derive a proof of A V- A with no premises, we can
show that it’s a universal truth.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 95

Since we want to prove A V = A, we'll start the truth tree
with its negation, and then we’ll show that every path
through the tree will end with a contradiction. The proof is
shown in the following figure.

1:.-(Av =A)

2: AN A

‘

3:=A

y

4:==A

:

5:A

Figure 10—A proof tree for the law of the excluded middle

Prove that A V- A.

1. We want to prove A V = A, so we start with its negation:
— (A V= A).

2. By using the and negation equivalence rule, we can write down
—AAN--A

By using and weakening on (2), we can add - A.
By using and weakening on (2) again, we can add —— A.

By using double negation on (4), we can add A to the tree.

S .= W

Our only branch of the tree now contains both A and - A,
which is a contradiction.

That’s a complete proof of our tautology. It wasn’t so hard,
was it? The point of the proof is that we know that we’ve
covered all of our bases, everything follows from what came
before, and all cases are definitely covered.

Notice that in each step, we don’t need to think about what
anything means. We can just observe that at the beginning
of the step we have something that matches a pattern in one
of the rules and we use that rule to derive something new:
a new inference, which added to the tree.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 96

This was an easy example, but even in a case like this, the
difficult part of a proof isn't applying the rules. Applying
an inference rule is easy. But how do you decide which
inference rule to apply? That’s the hard part. How did I
know to use and weakening in step 3? Basically, I made an
educated guess. I knew that I wanted to get to a simple
contradiction, and to do that,  needed to separate the pieces
that could turn into a contradiction.

If you're a programmer, building a proof is a lot like walking
through a search tree. In theory, at each step in the proof,
you can find every inference rule that’s applicable and try
using each one. If you keep doing that and the statement is
provable, then eventually you'll find the proof. It may take
a very long time, but if the statement is provable, you’ll get
there. (But as we'll see in 27, The Halting Problem, on page

253, if the statement isn’t provable, you might be searching
forever.) In practice, building real proofs is a combination
of a search process and a lot of directed trial and error. You
look at what you want to prove and what facts you have
available to you, and you figure out what possible inference
steps you can take. Knowing what your options are, you
pick the one that seems, based on your understanding of
what you're proving, to be the most likely to lead to your
conclusion. If you try that and it doesn’t work, then you pick
a different option and try again.

Allin the Family

Now let's move on and try something more interesting.
We're going to go back to the family-relationships example
from the previous chapter and prove that if two people are
cousins, then they have a common grandparent.

In our family relations, we need to define what cousins are
in logical terms: we’ll say that two people are cousins if they
each have a parent who's a sibling of one of the other’s par-
ents. In FOPL, that’s this: Va: V b: Cousin(a, b) < Hm: d n:
Sibling(m, n) A Parent(m, a) /\ Parent(n, b).

We want to prove that V d: V e: Cousin(d, e) < H g: Grandparent(g, d)
A Grandparent(g, e).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 97

Like the proof of the excluded middle, we can do this without

branching the tree. The proof does have a fair bit of jumping

around. The key to understanding it is to remember that anything

above a statement in the tree is fair game for use below it.

Throughout this proof, our goal is to take the definitions of Cousin

and Grandparent, decompose them into simple terms, and then
push those terms to form a contradiction.

1.

10.

As always, we start by taking the statement we want to prove
and negating it; that’s the root of the tree:

- (Vd: Ve: Cousin(d, e) © H g: Grandparent(g, d) /\
Grandparent(g, e).

Use universal negation equivalence to push the - inside the first V:

(3d:~ Ve: Cousin(d, e) < H g: Grandparent(g, d) /\
Grandparent(g, e)).

Use universal negation equivalence again to push inside the
second V:

Hd: He: = (Cousin (d, e) < H g(Grandparent(g, d) N
Grandparent(g, e)).

Use implication equivalence to convert = to an V:

Hd: He: = (~ Cousin(d, e) VH g: Grandparent(g, d) /\ Grandpar-
ent(g, e)).

Use or negation to push the - into the or:
dd, He: Cousin(d, e) N = 3 g: Grandparent(g, d) /\ Grandparent(g, e)).

Use existential elimination to get rid of the by substituting a
new variable:

Cousin(d’, e’) N = H g: Grandparent(g, d’) A Grandparent(g, e’)).
Use and weakening to separate the left clause of the /:
Cousin(d’, e’).

Use universal elimination to specialize the definition of cousin
with d”and e”:

Cousin(d’, e’) < Hp, d q: Sibling(p, q) /\ Parent(p, d’) /\ Parent(q, e’).
Modus ponens:

Hp, d q: Sibling(p, q) /\ Parent(p, d’) /\ Parent(q, e’).

Existential elimination:

Sibling(p’, q°) /\ Parent(p’, d’) /\ Parent(q’, e’).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! ¢ 98

11. And weakening:
Sibling(p’, q°).

12.  Universal elimination to specialize the definition of sibling for
p.a:

Sibling(p’, q") = H g: Parent(g, p’) /\ Parent(g, q’).

13. Modus ponens:

H g: Parent(g, p’) /A Parent(g, q°).

14.  Universal elimination to specialize the definition of Grandparent
ford”

V g: Grandparent(g, d’) < He, Parent(g, e) /\ Parent(e, d’).

15. And introduction:

Parent(p’, d’) /\ Parent(g, p’).
16. Modus ponens:
Grandparent(g, d’).

17. Now repeat the specialization of Grandparent using e’, and
you'll get
Grandparent(g, e’).

18. Go back to where we did and weakening to separate the left-
hand clause and do a separate right to separate the right, and
you'll get
- H g: Grandparent(g, d’) A Grandparent(g, e’)).

19. And that is a contradiction. Since we never branched, we've

got a contradiction on the only branch that our tree has, and
that means we’re done.

Branching Proofs

The two truth-tree proofs we’ve seen so far have both been
single-branch proofs. In practice a lot of interesting proofs,
particularly in number theory and geometry, turn out to be
single-branch. Some proofs, though, do need branching. To
see how that works, we're going to look at another tautology:
the transitivity of implication. If we know that statement A
implies statement B, and we also know that statement B
implies a third statement, C, then it must be true that A
implies C. In logical form, (A =B AB = C) = (A = C).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 99

The following figure shows the truth-tree proof of this. We'll
walk through the steps together. The strategy in this proof
is similar to what we did in our proof of the law of the
excluded middle. We want to just take the statement at the
top of the proof, decompose it into simple statements, and
then try to find contradictions.

I: m((A=B) A(B =0Q) =(A =0

\

2: 7(~((A=B) A(B=C)) v (A = Q)

v

3 (A=B) AB=0Q) An(A=0

15: =B 16: C
v

17: =C

Figure 11—Truth tree example

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! ¢ 100

Example: Prove that (A =B AB = C) = (A = C).

1.

2.

@

N o o &

10.
11.

12.
13.
14.

15.
16.

As always, start by negating the statement we want to prove.
Use implication equivalence to get rid of the outermost implication.

Use and negation and double negation to push the outer negation
through the statement.

Implication equivalence twice to eliminate the first two implications.
And weakening to separate out the first term.

And weakening to separate out the second term.

And weakening to separate out the third term.

Implication equivalence and or negation to simplify the statement
from step 7.

Or branching on the statement from step 5.
Left branch of the or branching from step 9.

And weakening of the statement in step 8. This gives us both A
and —A in this branch, which is a contradiction. That means
we’re done on this branch.

Right branch of the or branching from step 9.
Or branching of the statement in step 6.

Left branch of the or branching in step 13. That gives us - B
here and B in step 12, which is a contradiction, so we're done
on this branch.

Right branch of the or branching in step 13.

And weakening of step 8. This gives us - C. We've got C in step
16, which means that we’ve got a contradiction on our final
branch. All of the branches end in contradiction! That means
we're done.

This dive through inference with truth trees has been pretty
detailed, but there are two important reasons why we went
through it.

First, logical inference can seem downright magical. As we'll

see in the next chapter, you can make logical inference do
really difficult things. That makes it seem like inference must

be doing something complicated. But it isn’t. Inference is

easy. You can see that there’s a small number of rules, and

you can understand them all without much effort. But this

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

13. Proofs, Truth, and Trees: Oh My! * 101

simple framework turns into something astonishingly
powerful.

Second, seeing the rules in detail helps to make one of the
fundamental points of logic really clear. These rules are
completely syntactic, so you can do the reasoning in terms
of symbols, not in terms of meaning.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14

Programming with Logic

Having seen a bit of how inference in first-order predicate
logic works using truth trees, you might wonder just how
much you can do with inference. The answer is, a whole
heck of a lot! In fact, anything that a computer can do—any
computation that can be written as a program —can be done
by inference in first-order predicate logic!

This isn’t just an empty boast or a theoretical equivalence,
but a real and practical fact. There’s a very powerful, very
useful programming language called Prolog, in which a
program consists of nothing but collections of facts and
predicates—all you can do is provide it with a collection of
facts and predicates. The execution of a Prolog program is
a sequence of inferences performed by the Prolog interpreter
using the facts and predicates of your program.

Odds are that even if you're a professional engineer, you
probably won’t ever need to write Prolog. ButI'm a program-
ming-language junkie, and trust me on this: it's worth
learning about. I know a positively silly number of program-
ming languages, and when someone asks me what one
language they should learn, I usually tell them Prolog. Not
because I expect them to use it either, but Prolog opens your
mind to a completely different way of programming, and
it'’s worth the effort just for that.

I'm not going to teach you all that you'd want to know about
Prolog —that’s far too much to cover here. For that, you need
to read a book about Prolog. (I list a couple of texts in the
references at the end of this section.) But I can definitely give
you a taste to see what it’s like.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic * 104

Computing Family Relationships

I'm going to introduce you to Prolog by using the same
example as the previous chapter: family relationships. But
instead of writing them out in formal logical syntax, we’ll
do it in Prolog, and we’ll see how you'd interact with the
Prolog system. I'm using a free, open-source Prolog inter-
preter called SWI-Prolog,' but you can use that or any other
Prolog system that runs on your computer.

In logic, you reason over objects, called atoms. In Prolog, an
atom is any lowercase identifier, number, or quoted string.
For example, mark, 23, and "q" are atoms. For an example,
we'll look at reasoning about family relationships, so the
atoms will all be first names.

A variable in Prolog is a symbol that represents an atom.
Variables can be used in the logic to reason about universal
properties—if every object has a property (like, for example,
every person has a father), there’s a way of using a variable
to say that in the logic. Variables in Prolog are uppercase
letters: X, Y.

A predicate in Prolog is a statement that allows you to define
or describe properties of objects and variables. A predicate
is written as an identifier, with the objects it’s talking about
following inside parens. For example, I can say that my
father is Irving using a predicate named father: father(Irving,
Mark). So in our example, we state a series of facts using a
predicate person to say that a bunch of atoms are people.
What we're doing here is presenting the Prolog interpreter
with a set of basic, known facts, which are called the axioms
of our logic.

logic/family.pl

person(aaron).

person(rebecca).

person(mark) .

person(jennifer).

person(irving).

person(gail).

person(yin).

person(paul).

1. You can get information and download SWI-Prolog from
http://www.swi-prolog.org/.

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://www.swi-prolog.org/
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 105

person(deb).
person(jocelyn).

We can connect a series of facts using commas: A, B means
that both A and B are true.

Now we can check to see if certain atoms are people. If we
load the set of facts into Prolog, we can ask it questions:

person(mark) .

true.
person(piratethedog).
false.
person(jennifer).
true.

At this point, all that it can tell us is whether these statements
were explicitly given to it as facts. That’s good, but it’s not
particularly interesting. With what we’ve given it so far,
there’s nothing that it can infer. In order to give it meat for
inference, we can define more interesting predicates. We're
going to give it rules that it needs in order to infer family
relationships. Before we do that, though, we need to give it
some fundamental family relationships. To do that, we need
to give it some more complicated facts using multiple
parameter predicates. We'll do that by writing facts about
fathers and mothers.

logic/family.pl

father(mark, aaron).

father(mark, rebecca).

father(irving, mark).

father(irving, deb).

father(paul, jennifer).

mother(jennifer, aaron).

mother(jennifer, rebecca).

mother(gail, mark).

mother(gail, deb).

mother(yin, jennifer).

mother(deb, jocelyn).

Now, finally, we can get to the interesting part. What makes
logic valuable is inference — that is, the ability to take known
facts and combine them in ways that produce new facts.

So suppose that we want to be able to talk about who is a
parent and who is a grandparent. We don’t need to go
through and enumerate all of the parent relationships. We've
already said who is whose mother and father. So we can

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

=

14. Programming with Logic * 106

describe being a parent in terms of being a mother or a father.
And once we’'ve done that, we can describe being a grand-
parent in terms of being a parent:

logic/family.pl
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

First, we have two lines that define what a parent is in terms
of logic. Each line defines one alternative: the two parent
lines can be read as “X is Y’s parent if X is Y’s father, or X
is Y’s parent if X is Y’s mother.”

Then we define what a grandparent is logically in terms of
parents: “X is Y’s grandparent if there’s a Z, where X is Z’s
parent, and Zis Y’s parent.” I can ask the Prolog interpreter
to infer facts about parents and grandparents. To do that, I
just write logical statements with variables, and it will try
to find values for those variables for which it can infer that
the statement is true.

What if we wanted to write a rule to define what it means
to be a sibling? A sibling is someone who has a common
parent. So we can write that logically in Prolog by saying
that A and B are siblings if there’s a P that is the parent of
both A and B:

logic/family.pl

siblingl(X, Y) :-

parent(P, X),
parent(P, Y).

Let’s try that rule out.

?-

sibling(X, rebecca)
X = aaron ;
X = rebecca ;
X = aaron ;
X = rebecca ;
f

Prolog will infer any fact that fits the logical rules. The
compiler neither knows nor cares whether it makes sense:
it's a computer program that does exactly what you tell it.
Using common sense, we know that it’s silly to say that
Rebecca is Rebecca’s sibling, but according to the Prolog
statements that we wrote, Rebecca is Rebecca’s sibling. We
didn’t write the definition correctly. The Prolog program

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

=

=

14. Programming with Logic ® 107

that we wrote didn’t include all of the important facts, and
so the Prolog interpreter inferred a fact that we would say
is incorrect. That’s one of the tricks of writing Prolog, or
indeed, of writing good code in any programming language.
We need to be specific and explicit about what we define
and make sure that we don’t leave gaps in our code or rely
on common sense or intuition. In our code to define sibling,
we need to add a clause saying that no one is their own
sibling.
logic/family.pl
sibling(X, Y) :-

XA\=Y,

parent(P, X),

parent(P, Y).

cousin(X, Y) :-
parent(P, X),
parent(Q, Y),
sibling(P, Q).

And finally, we can write a rule about cousins. A is a cousin
of B if A has a parent that we’ll call P, and B has a parent that
we'll call Q, and P and Q are siblings:

logic/family.pl

cousin(X, Y) :-
parent(P, X),
parent(Q, Y),
sibling(P, Q).

7.

parent (X, rebecca).

X = mark ;

X = jennifer.

7.

grandparent (X, rebecca).

X = irving ;

X = paul ;

X = gail ;

X = yin.

cousin(X, rebecca).
X = jocelyn;

X = jocelyn.

How did it figure out that Rebecca and Jocelyn are cousins?
It used what we told it: it took the general rule about parents
and the specific facts (axioms) that we gave it, and it
combined them. Given the fact father(mark, rebecca) and the

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://media.pragprog.com/titles/mcmath/code/logic/family.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic * 108

general statement parent(X, Y) :- father(X, Y), it was able to
combine the two and infer the fact that parent(mark, rebecca).
Similarly, it used the general rule about what a grandparent
is and combined it with both the rules for parents and the
specific given facts about who is whose father and mother
to produce the new facts about who is whose grandparent.
It’s also interesting to point out why it sometimes produces
the same result more than once. That'’s because it produced
a result each time it inferred that result. So for mark and deb,
it produced the result that they’re siblings twice—once for
their common mother and once for their common father.
Then when it was figuring out rebecca’s cousins, it used both
of those sibling relationships between mark and deb, so it said
twice that rebecca and jocelyn are cousins.

What Prolog is doing, internally, is producing proofs. When
we give it a predicate with a variable, it takes that and looks
for values that it can fill in place of that variable for which
it can prove that the predicate is true. Any result produced
by a Prolog interpreter is actually a fact that Prolog was able
to generate a proof for.

A very important property of Prolog programs to notice is
that the proof is entirely symbolic! A Prolog interpreter
doesn’t know what the atoms represent or what the predi-
cates mean. They're just symbols in a computer’s memory.
That'’s true about all logic: inference is a mechanical process.
Given a set of atoms and facts and a set of inference rules,
a logic can derive proofs without any knowledge of what it
all means. The inference process in logic is purely symbolic
and can be done with absolutely no clue at all about what
the statements that you're proving mean. It’s all a mechanical
process of working from the premises using the inference
rules. Given the right set of premises, you can prove almost
any statement; given a choice of both logics and premises,
you can prove absolutely any statement.

Computation with Logic

We can use Prolog for much more than just a silly example like
family-relationship inferences. In Prolog, using nothing but
logical inference, we can implement programs to perform any
computation that we could implement in a more traditional
programming language. To see how we can do that, we’ll look

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 109

at two examples of how you write more realistic computations
in Prolog. First, we’ll pull out Peano arithmetic, which we talked
about back in 1, Natural Numbers, on page 3, and implement
it in Prolog. Then we’ll take the most widely used sorting
algorithm in modern software and look at how it appears in

Prolog.

Peano Arithmetic in Prolog

As we saw back toward the beginning of this book, Peano
arithmetic is a formal, axiomatic way of defining the natural
numbers. It starts by defining zero, and then it defines all of
the other natural numbers in terms of a successor operation.
Arithmeticis defined structurally by talking about successor
relations between numbers.

We can use Prolog to implement natural numbers and their
arithmetic operations using the axioms of Peano arithmetic.
In fact, Prolog makes it downright easy! Prolog has a very
simple mechanism for building data structures that we’ll
use. In Prolog, any lowercase identifier followed by parens
is a data constructor. We'll use z for zero, and we’ll create a
data constructor, s, to represent the successor of n. The data
constructor isn’t a function. It doesn’t do anything to its
parameters except wrap them. If you're familiar with pro-
gramming in a language like C++, you can think of a data
constructor as being roughly equivalent to struct S: public
NaturalNumber { NaturalNumber* n; };, except that you don’t
need to declare the struct type in advance. So when you see
s(n), you can think of s as being the data type and s(n) as
meaning the same as new S(n). If z is zero, then s(z) is one,
s(s(z)) is two, and so on.

logic/number.pl
nat(z).
nat(X) :-
successor(Y, X), nat(Y).
successor(s(A), A).

Now we can define arithmetic on our Peano naturals. We
can start with addition:

logic/number.pl

natadd(A, z, A).

natadd(A, s(B), s(C)) :-
natadd(A, B, C).

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/number.pl
http://media.pragprog.com/titles/mcmath/code/logic/number.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

=

=

14. Programming with Logic ® 110

The first part, natadd(A, z, A) says that adding zero to any
number A gives you A. The second part says that s(C) (the
successor to C) is the sum of A and S(B) if C is the sum of A
and B.

Let’s play with that just a bit.

natadd(s(s(s(z))), s(s(z)), S).
S = s(s(s(s(s(z)))))

That’s right: 3 + 2 =5. With that out of the way, we can move
on to other ways of using the same predicate.

Unlike most programming languages, in Prolog you don’t
distinguish between parameters and return values: Prolog
will take whichever parameters to a predicate are unbound
variables and try to assign values to those variables to make
the predicate true. You can invoke a predicate like natadd
with all different combinations of bound and unbound
parameters:

natadd(s(s(z)), P, S).

P =2z,

S = s(s(z)) ;

P =5s(z),

S = s(s(s(z))) ;

P =s(s(z)),

S = s(s(s(s(z)))) ;

P =s(s(s(z))),

S = s(s(s(s(s(z))))) ;

P = s(s(s(s(z)))),

S = s(s(s(s(s(s(2)))))) ;

P = s(s(s(s(s(z))))),

S = s(s(s(s(s(s(s(z2))))))) ;
P = s(s(s(s(s(s(z)))))),

S = s(s(s(s(s(s(s(s(z))))))))

In essence, I asked the Prolog interpreter, “What are the
values of S and P where P + 2 =5? 7 And Prolog gave me a
list of possible answers until I interrupted it. I could also ask
it what numbers sum up to a given sum:

natadd(A, B, s(s(s(s(z))))).

A = s(s(s(s(z)))),
B=2z;

A = s(s(s(z))),

B =s(z) ;

A =B, B=s(s(z)) ;
A =5s(z),

B =s(s(s(z))) ;

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 111

A=z,
B = s(s(s(s(z2)))) ;
false.

We can implement multiplication using the same basic pat-
tern as addition.

logic/number.pl

product(z, B, z).

product(s(z), B, B).

product(s(A), B, Product) :-
natadd(B, SubProduct, Product),
product(A, B, SubProduct).

Multiplication is just repeated addition. It’s built the same
way as addition, but instead of repeatedly invoking succes-
sor, we invoke addition. Because of the way that parameters
work, our implementation of multiplication is also an
implementation of division! If we invoke it with the third
parameter unbound, then it’s multiplication: in product(s(s(z)),
s(s(s(z))), P), then P will be bound to 2 times 3. If we invoke it
with the first or second parameter unbound, then it’s divi-
sion: in product(s(s(z)), D, s(s(s(s(s(s(z))))))), then D will be bound
to 6 divided by 2.

Obviously we wouldn’t write real arithmetic this way. This
is an extremely inefficient way of doing arithmetic. But it’s
not an empty example: this general way of decomposing
computation into predicates and then expressing computa-
tions using recursive predicate definitions is exactly the way
that you would implement real programs.

A Quick Prolog Quicksort

Peano numbers are fine, but they’re not realistic. No one is
going to actually write a real program using Peano numbers.
It’s great for understanding how the definitions work and
it's a fun program to write, but it’s not actually useful.

So now we're going to take a look at a real computation.
One of the most common, fundamental algorithms that gets
used everywhere all the time is quicksort. It’s hard to imag-
ine writing a real program in a language that couldn’t do a
quicksort! At the same time, if you're not familiar with logic
programming, it’s hard to see how an algorithm like quick-
sort can be implemented using logical inference!

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/number.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 112

We're going to solve that little dilemma by looking at a real
implementation of quicksort in Prolog and seeing how the
algorithm can be described using logic and how inference
can implement it.

A Quick Quicksort Refresher

First a refresher, in case you don’t know what quicksort is.
Quicksort is a divide and conquer algorithm for sorting a list
of values. The idea of it is pretty simple. You've got a list of
values; for simplicity, let’s just say that they’re numbers.
They're all out of order, and we want to get them in order
from smallest to largest. How can we do that quickly?

Quicksort picks out one number from the list, called a pivot.
Then it goes through the list and collects the values that are
smaller than the pivot and puts them into one bucket (called
Smaller), and it collects the values that are larger than the
pivot and puts them into a second bucket (called Larger).
Then it sorts the two buckets and concatenates the sorted
Smaller, the pivot, and the sorted Larger, and it’s done.

For example, let’s look at a small list: [4, 2, 7, 8, 3, 1, 5]. We'll
take the first element of the list as a pivot, so Pivot=4, Small-
er=[2, 3, 1], and Larger=[7, 8, 5]. Then we sort the two buckets,
giving us SortedSmaller=[1, 2, 3], and SortedLarger=[5, 7, 8], and
our resultis[1,2,3]+4+15,7,8].

Appending Lists: Recursion Over Lists

Let’s see how we’d do a quicksort in Prolog. We'll start with
the last step: appending the lists together. Actually, that’s
already implemented in Prolog’s standard library, but we’ll
implement it ourselves because it’s a nice introduction to
working with lists in Prolog.

logic/sort.pl

/* Append(A, B, C) is true if C = A + B */

append([], Result, Result).

append([Head | Taill], Other, [Head | Subappend]) :-
append(Tail, Other, Subappend).

append describes what it means to combine lists. If I say
append(A, B, C), I'm asserting that the list C contains the ele-
ments of the list A followed by the elements of the list B.

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/sort.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 113

The way that we’d say that in Prolog is a classic recursive
definition. There are two cases: a base case and a recursive
case. In the base case, we say that the concatenation of the
empty list with any other list is that other list.

The recursive case is a bit trickier. It’s not really that hard,
but it takes a bit of practice to learn how to piece apart a
Prolog declaration. But once we translate it into English, it’s
pretty clear. What it says is this:

1. Suppose I have three lists.

2. The first one can be split into its first element and the
rest of it (which we’ll call the tail.). Likewise, the last
one can be split into its first element and the rest of it.

3. The last list is the concatenation of the first two lists if

a. The first elements of the first and third lists are the
same, and

b. The rest of the third list is the concatenation of the
tail of the first list and the second list.

The key feature of this implementation is that we never say
“In order to concatenate two lists, we need to do this, then
that, then the other thing.” We just describe, in logical terms,
what it means for a list to be the concatenation of two other
lists.

Let’s look at that in practice. Suppose we want to append
[1,2,3]and [4, 5, 6]:

1. The first list’s head is 1, and its tail is [2, 3].

2. The third list is the concatenation of the first two if: the
first element of the third list is the same as the head of
the first. So if it’s the concatenation, it will start with 1.

3. The rest of the third list has to be the concatenation of
[2,3]and [4, 5, 6].

4. So if the third list is the concatenation, then the rest of
it has to be [2, 3, 4, 5, 6].

5. So to be true, the third list must be [1, 2, 3, 4, 5, 6].

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

-1

14. Programming with Logic * 114

Partitioning Logically

The next step to building the pieces we need for quicksort
is partitioning. To sort, we need to be able to describe what
a partitioned list is. We're going to use the same basic trick
that we used for concatenation. We're not giving a procedure
for how to do it; instead, we're giving a definition of what
it means in terms of logic and letting the inference process
turn that definition into a procedure.

logic/sort.pl

/* partition(A, B, C, D) is true if C and D are lists

* where A=C + [B] +D

*/

partition(Pivot, [1, [1, [1).

partition(Pivot, [Head | Taill, [Head | Smaller], Bigger) :-
Head @=< Pivot,
partition(Pivot, Tail, Smaller, Bigger).

partition(Pivot, [Head | Taill], Smaller, [Head | Bigger]) :-
Head @ Pivot,
partition(Pivot, Tail, Smaller, Bigger).

This is another example of the recursion pattern that we
used in the append predicate.

@ We start with the base case. If the list to partition is
empty, then its two partitions—the smaller and the
bigger partitions —must also be empty.

© Now we get to the interesting bit. If the Head of the list
to be partitioned is smaller than the Pivot, then the
smaller partition must contain that Head. That’s why the
smaller partition in the predicate declaration here starts
with the head.

The rest of the list is handled by recursion. We partition
the Tail and say that Larger must be whatever is parti-
tioned from Tail as larger than the Pivot, and Smaller must
be whatever is partitioned from Tail as smaller than the
Pivot plus the Head.

© This is basically the same as the last case, except that the
Head is larger than the Pivot.

Sorting
Finally, the sort predicate.

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/sort.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

14. Programming with Logic ® 115

logic/sort.pl
/* quicksort(A, B) is true if B contains the same elements as A
* but in sorted order.
*/
quicksort([1, [1).
quicksort([Head|Tail], Sorted) :-
partition(Head, Tail, Smaller, Bigger),
quicksort(Smaller, SmallerSorted),
quicksort(Bigger, BiggerSorted),
append(SmallerSorted, [Head | BiggerSorted], Sorted).

Since we already dealt with partition and append, this is pretty
easy.

A list Sorted is the sorted form of the input ([Head|Taill)
if —when you partition Tail around Head, sort the two sublists,
and then concatenate them —the result is equal to Sorted.

As I have hopefully convinced you, logical inference is
extremely powerful. The power of logic isn't limited to
simple textbook examples like the family relations we played
with! In fact, much like we saw with our implementation of
quicksort, any computation that we could implement using
any programming language on any computer we can
implement using pure logical inference.

If you have any interest in learning more about the logical
approach to programming, there are a couple of fantastic
books that I recommend. You can learn more about Prolog
as a language from Programming in Prolog: Using the 1SO
Standard [CMO03], by William Clocksin and Christopher
Mellish. If you want to know more about the way that you

use Prolog to do programming based on logical inference,
then you can’t go wrong with The Craft of Prolog [O'K09], by
Richard O’Keefe. I highly recommend picking up one of

these two books and spending some time playing with Pro-
log. It will be time well spent!

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/logic/sort.pl
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15

Temporal Reasoning

The logic that we’ve looked at so far, first-order predicate
logic, is really powerful. You can do a ton of stuff in it. In
fact, as we saw in Prolog, if you can do it with a computer,
you can do it with first-order predicate logic (FOPL).

But there are some kinds of reasoning that standard predicate
logic is really bad at, such as reasoning about time. In pred-
icate logic, if something is true, then it’s always true. There’s
no notion of time, no way for things to happen in sequence.
There’s no good way to say in predicate logic that I'm not
hungry now but I will be later.

For example, in 2010 I worked for Google, and today I work
for Foursquare. If I want to be able to capture that, I can’t
just use a predicate WorksFor(Mark, Google), because that’s
not true now. Nor can I say WorksFor(Mark, Foursquare),
because that wasn't true two years ago. A predicate in FOPL
is always true—not just now but in the past as well as in the
future.

Of course, if you're clever, you can always find a way to
work around limitations. You can work around the problem
of change over time using standard predicate logic. One way
is to add a time parameter to every predicate. Then instead
of saying WorksFor(Mark, Foursquare), 1 could say Works-
For(Mark, Foursquare, 2012). But then for all of the typical,
non-temporal statements in predicate logic, I would need
to add universal statements: Vt: Person(Mark, t). It gets very
cumbersome very quickly; and worse, it makes using the
logic for reasoning painfully awkward.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 118

There’s also another problem with predicate logic: there are
lots of temporal statements I'd like to make that have a spe-
cific temporal structure that I can’t express in first-order
logic. I'd like to be able to say things like “Eventually I'll be
hungry” or “I'll be tired until I get some sleep.” Those are
two typical statements about temporal properties. They’ve
got common forms that we're familiar with, and it would
be really useful to be able to take advantage of those common
forms in logical inference. Unfortunately, in first-order
predicate logic, even when I've added time terms to every
predicate, it’s difficult to define a form like eventually.

To say something like eventually without repeating a complex
series of boilerplate statements, we would need to be able
to write a predicate that took another predicate as a param-
eter. And that, by definition, is second-order logic. Switching
from first-order to second-order logic creates a huge number
of complications. We really don’t want to do that.

So if predicate logicis so awkward for reasoning about time,
what do we do? We create a new logic. That may sound silly,
but it's something we do all the time in math. After all, a
logic is a pretty simple formal system, and we can define
new ones whenever we want. So we’ll just create a new
logic, a temporal logic, which will make it easy for us to rea-
son about how things change over time.

Statements That Change with Time

Temporal reasoning is really useful. In order to talk about
time, logicians have designed many different temporal logics,
including CTL, ATL, CTL*, and LTL to name just a few. I'm
going to describe the one I'm most familiar with, which is
called computation tree logic, or CTL. CTL is designed for
reasoning about very low-level computations in computer
hardware where operations can modify persistent state, like
hardware flags. CTL is a very simple logic, which really can’t
say very much. In fact, CTL may seem unreasonably simple
when you see it. But it’s really not; CTL is widely used for
real-world practical applications.

CTL may be simple, but it’s a typical example of the way
that you can look at time in a logic. The semantics or mean-
ing of the logic is based on a general idea called Kripke

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 119

semantics, which is used in many different kinds of logic
that need to be able to describe the passage of time. I'll
describe the general idea behind the model for temporal
logic in this section, but if you want to know more about the
idea of Kripke semantics, check out my blog; I wrote a series
of posts about intuitionistic logic.'

The starting point for CTL is an extremely simple logic called
propositional logic. Propositional logic is, basically, FOPL
(first-order predicate logic) where the predicates can’t take
parameters. In a propositional logic, you could make state-
ments like MarkHasABigNose and JimmyDuranteHas ABigNose,
but they’'d be totally different, unrelated statements. In a
propositional logic, you have a finite set of specific state-
ments, and that’s it. There are no variables, no quantifiers,
no parameters. (There are predicate extensions to CTL, but
they make it vastly more complicated, so we’ll stick to the
simple, basic propositional version.) We can combine the
propositions using the standard propositional logical opera-
tors: and, or, implication, and negation.

Where it gets interesting is that we also have a set of temporal
quantifiers that are used to specify the temporal properties
of propositional statements. Every statement in CTL has at
least two temporal quantifiers. But before we get into them
in detail, we need to talk about the basic model of time in
CTL.

The idea of the model CTL, as I said earlier, is based on
Kripke semantics. Kripke semantics defines a changing
system by using a collection of what are called worlds.
Statements in the logic have a truth binding in specific
worlds. Time is a sequence of changes from the world at one
moment in time to the world at another moment in time. In
CTL's Kripke semantics, we can’t say that P is true; we can
only say P is true in a specific world.

Each world defines an assignment of truth values to each of
the basic propositions. From each world, there’s a set of
possible successor worlds. As time passes, you follow a path
through the worlds. In CTL, a world represents a moment

1.  http://scientopia.org/blogs/goodmath/2007/03/kripke-semantics-and-models-
for-intuitionistic-logic

www.it-ebooks.info


http://scientopia.org/blogs/goodmath/2007/03/kripke-semantics-and-models-for-intuitionistic-logic
http://scientopia.org/blogs/goodmath/2007/03/kripke-semantics-and-models-for-intuitionistic-logic
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 120

in time where the truth assignments define what is true at
that moment, and the successors to the world represent the
possible moments of time that immediately follow it.

The Kripke semantics of CTL effectively give us a nondeter-
ministic model of time. From a given moment, there can be
more than one possible future, and we have no way of
determining which possible future will come true until we
reach it. Time becomes a tree of possibilities: from each
moment, you could go to any of its successors: each moment
spawns a branch for each of its successors, and each path
through the tree represents a timeline for a possible future.

CTL gives us two different ways of talking about time in
that tree of possible futures; to make a meaningful temporal
statement, we need to combine them.

First, if you look at time from any particular moment, there’s
a collection of possible paths into the future, so you can talk
about things in terms of the space of possible futures. You
can make statements that begin with things like “In all pos-
sible futures...” or “In some possible futures....”

Second, you can talk about the steps along a particular path
into the future, about a sequence of worlds that define one
specific future. You can make statements about paths like
“...will eventually be true.” By putting them together, you
can produce meaningful temporal statements: “In all possible
futures, X will always be true”; or “In at least one possible
future, X will eventually become true.”

Every CTL statement uses a pair of temporal quantifiers to
specify the time in which the statement is true: one universe
quantifier and one path quantifier.

Universe quantifiers are used to make statements that range
over all paths forward from a particular moment in time.
Path quantifiers are used to make statements that range over
all moments of time on a particular timeline-path. AsIsaid,
in CTL statements the quantifiers always appear in pairs: a
universe quantifier that specifies what set of potential futures
you're talking about and a path quantifier that describes the
properties of paths within the set quantified by the universe.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 121

There are two universe quantifiers, which correspond to the
universal and existential quantifiers from predicate logic.

A A is the all-universe quantifier. It's used to say that some
statement is true in all possible futures. No matter what
paths you look at, if you follow enough universe transi-
tions, then the statement following the A quantifier will
become true.

E E is the existential universe quantifier. It’s used to say that
there is at least one possible future reachable from the
present moment at which the statement will be true.

Next there are path quantifiers. Path quantifiers are similar
to universe quantifiers, except that instead of ranging over
a set of possible timelines they range over the time-worlds
on a specific timeline-path. There are five path quantifiers,
which can be divided into three groups:

X (next) The simplest path quantifier is the immediate
quantifier, X (next). X is used to make a statement about
the very next time-world on this path.

G (global) G is the universal path quantifier, also called the
global quantifier. G is used to state a fact about every
world-moment on the path. Something quantified by G
is true at the current moment and will remain true for
all moments on the path.

F (finally) F is the finally path quantifier, which is used to state
a fact about at least one world-moment along a
particular timeline-path. If the path described by the F
quantifier is followed, then the statement will become
true in some world on F.

Finally, there are temporal relationship quantifiers. These
aren’t quite quantifiers in the most traditional sense. Most
of the time, quantifiers precede statements and either intro-
duce variables or modify the meaning of the statements that
follow them. Temporal relationship quantifiers actually join
together statements in a way that defines a temporal relation-
ship. There are two relationship quantifiers: strong until and
weak until.

U (strong until) U is the strong until quantifier. When you
have a statement allb, it says that a is currently true and

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 122

that eventually it will become false, and when it is no
longer true, b will be true.

W (weak until) W, also known as the weak until quantifier, is

almost the same as U. aWb also says that a is true, and
when it becomes false, b must be true. The difference is
that in allb, eventually b must become true, but in aWb,
a might stay true forever; and if it does, b might never
become true.

It’s hard to see quite how all of these quantifiers will work

together when you see them all listed out. But once you see

them used, they make sense. So we're going to look at a few

examples of statements in CTL, and I'll explain what they

mean.

Examples: CTL Statements

AG.(Mark has a big nose): No matter what happens, at every
point in time, Mark will always have a big nose. As my kids
love to point out, this is an inescapable, unvarying fact.

EF.(Joe lost his job): It's possible that in some future, Joe will be
fired. (To put it formally, there exists a possible timeline where
the statement “Joe lost his job” will eventually become true.)

A.(Jane does her job well)W(Jane deserves to get fired): For all
possible futures, Jane does her job well until a time comes
when she no longer does her job well, and if/when that hap-
pens she’ll then deserve to be fired. But this is using weak
eventually, and so it explicitly includes the possibility that Jane
will continue to do her job well forever, and thus she will
never deserve to get fired.

A.(Mitch is alive)U(Mitch is dead): No matter what happens,
Mitch will be alive until he dies, and his eventual death is
absolutely inevitable.

AG.(EE.(I am sick)): It's always possible that I'll eventually get
sick.

AG.(EE(The house is painted blue) VV AG.(The house is painted
brown)): In all possible futures, either the house will eventually
be painted blue or it will stay brown. It will never be any color
other than blue or brown.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning ® 123

What's CTL Good For?

I'said that CTL, despite its simplicity, is actually very useful.
What's it really good for?

One of the main uses of CTL is something called model
checking. (I'm not going to go into detail, because the details
have easily filled whole books themselves. If you want to
know more about model checking with CTL, I recommend
Clarke’s textbook [CGP99].) Model checking is a technique
used by both hardware and software engineers to check the

correctness of certain temporal aspects of their system. They
write a specification of their system in terms of CTL, and
then they use an automated tool that compares an actual
implementation of a piece of hardware or software to the
specification. The system can then verify whether or not the
system does what it’s supposed to; and if not, it can provide
a specific counterexample demonstrating when it will do
the wrong thing.

In hardware model checking, you've got a simple piece of
hardware, like a single functional unit from a microproces-
sor. That hardware is basically a complex finite state
machine. The way that you can think of it is that the hard-
ware has some set of points where it can have a zero or a
one. Each of those points can be represented by a CTL
proposition. Then you can describe operations in terms of
how outputs are produced from inputs.

For example, if you were looking at a functional unit that
implements division, one of the propositions would be “The
divide-by-zero flag is set.” Then your specification would
include statements like AG.(DivisorlsZero) = AF.(DivideByZe-
roFlag). That specification says that if the divisor is zero, then
eventually the divide-by-zero flag will be set. It does not
specify how long it will take: it could take one clock tick in
your hardware, or it could take 100. But since the behavior
that we care about with that specification should be true
regardless of the details of how the divider is implemented,
we don’t want to specify how many steps, because there can
be many different implementations of the specification,
which have different precise timing characteristics (think of
the difference between a 1990s-era Intel Pentium and a 2012

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

15. Temporal Reasoning * 124

Intel Core i7; they implement the same instructions for
arithmetic, but the hardware is very, very different). The
important behavior is that if you try to divide by zero, the
appropriate flag bit will be set.

The real hardware specifications are a lot more complex than
this example, but that gives you the general sense. This is a
real-world, common application of CTL: the processor in
the computer that I'm typing this on was modeled in CTL.

It’s also used in software. Several years ago I worked at IBM.
While I was there, I had a friend who did some really fasci-
nating work on using model checking for software. Lots of
people had looked at that, because the idea of being able to
automatically verify the correctness of software is very
attractive. But, sadly, for most software, model checking
didn’t turn out to be very useful —writing the specifications
is hard, and checking them given the amount of state in a
typical program is a nightmare! My friend realized that there
is a place in software where model checking could be perfect!
Modern computing systems use parallel computation and
multithreading all the time, and one of the hardest problems
is ensuring that all of the parallel threads synchronize
properly. The desired synchronization behavior of parallel
computation is generally pretty simple and is almost ideally
suited for description in a language like CTL. So he worked
out a way to use model checking to verify the correctness of
the synchronization behaviors of software systems.

Those are the basics of CTL, an extremely simple but
extremely useful logic for describing time-based behaviors.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

PartV

Sets

Set theory, along with its cousin first-order predicate logic (FOPL),
is pretty much the foundation of all modern math. You don’t abso-
lutely need set theory, because you can construct math from a lot of
different foundations. But the combination of FOPL and axiomatic
set theory is currently the dominant approach. Set theory gives us
the objects to reason about, and FOPL gives us the ability to do rea-
soning. The combination of the two gives us math.

There are many kinds of objects that we could use to build math. We
could start with numbers or with functions or with a plane full of
points. But in modern math we always start with set theory, and not
with any of the alternatives! Set theory starts with some of the sim-
plest ideas and extends them in a reasonably straightforward way
to encompass the most astonishingly complicated ones. It’s truly
remarkable that none of set theory’s competitors can approach its
intuitive simplicity. In this section of the book, we’re going to look
at what sets are, where they came from, how set theory is defined,
and how we can use it to build up other kinds of math.

We'll start by looking at the origins of set theory in the work of Georg
Cantor. Cantor’s work provides one of the most amazing and coun-
terintuitive results in math. It’s a beautiful example of what makes
set theory so great. You start with something that seems too simple
to be useful, and out of it comes something amazingly profound.

www.it-ebooks.info


http://www.it-ebooks.info/

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.it-ebooks.info


http://www.it-ebooks.info/

16

Cantor's Diagonalization:
Infinity Isn't Just Infinity

Set theory is unavoidable in the world of modern mathemat-
ics. Math is taught using sets as the most primitive building
block. Starting in kindergarten, children are introduced to
mathematical ideas using sets! Since we’ve always seen it
presented that way, it’s natural that we think about set the-
ory in terms of foundations. But in fact, when set theory was
created, that wasn't its purpose at all. Set theory was created
as a tool for exploring the concept of infinity.

Set theory was invented in the nineteenth century by a bril-
liant German mathematician named Georg Cantor
(1845-1918). Cantor was interested in exploring the concept
of infinity and, in particular, trying to understand how
infinitely large things could be compared. Could there pos-
sibly be multiple infinities? If there were, how could it make
sense for them to have different sizes? The original purpose
of set theory was as a tool for answering these questions.

The answers come from Cantor’s most well-known result,
known as Cantor’s diagonalization, which showed that there
were at least two different sizes of infinity: the size of the
set of natural numbers and the size of the set of real numbers.
In this chapter, we're going to look at how Cantor defined
set theory and used it to produce the proof. But before we
can do that, we need to get an idea of what set theory is.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 128

Sets, Naively

What Cantor originally invented is now known as naive set
theory. In this chapter, we’ll start by looking at the basics of
set theory using naive set theory roughly the way that Cantor
defined it. Naive set theory is easy to understand, but as
we'll see in Section 16.3, Don't Keep It Simple, Stupid, on page

135, it’s got some problems. We’ll see how to solve those
problems in the next chapter; but for now, we’ll stick with
the simple stuff.

A set is a collection of things. It’s a very limited sort of collec-
tion where you can only do one thing: ask if an object is in
it. You can't talk about which object comes first. You can’t
even necessarily list all of the objects in the set. The only
thing you're guaranteed to really be able to do is ask if spe-
cific objects are in it.

The formal meaning of sets is simple and elegant: if an object
is a member of a set S, then there’s a predicate P, where an
object 0 is a member of S (written o € S) if and only if P¢(0)
is true. Another way of saying that is that a set S is a collec-
tion of things that all share some property, which is the
defining property of the set. When you work through the
formality of what a property means, that’s just another way
of saying that there’s a predicate. For example, we can talk
about the set of natural numbers: the predicate IsNaturalNum-
ber(n) defines the set.

Set theory, as we can see even from the first definition, is
closely intertwined with first-order predicate logic. In gen-
eral, the two can form a nicely closed formal system: sets
provide objects for the logic to talk about, and logic provides
tools for talking about the sets and their objects. That’s a big
part of why set theory makes such a good basis for mathe-
matics—it's one of the simplest things that we can use to
create a semantically meaningful complete logic.

I'm going to run through a quick reminder of the basic
notations and concepts of FOPL; for more details, look back
at Part IV, Logic, on page 77.

In first-order predicate logic, we talk about two kinds of
things: predicates and objects. Objects are the things that we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 129

can reason about using the logic; predicates are the things
that we use to reason about objects.

A predicate is a statement that says something about some
object or objects. We'll write predicates as either uppercase
letters or as words starting with an uppercase letter (A, B,
Married), and we’ll write objects in quotes. Every predicate
is followed by a list of comma-separated objects (or variables
representing objects).

One very important restriction is that predicates are not objects.
That’s why this is called first-order predicate logic: you can’t
use a predicate to make a statement about another predicate.
So you can’t say something like Transitive(Greater Than): that's
a second-order statement, which isn’t expressible in first-
order logic.

We can combine logical statements using and (written A) and
or (V). We can negate a statement by prefixing it with not
(written =). And we can introduce a variable to a statement
using two logical quantifiers: for all possible values (V), and
for at least one value (3).

When you learned about sets in elementary school, you were
probably taught about another group of operations that
seemed like primitives. In fact, they aren’t really primitive:
The only things that we need to define naive set theory is
the one definition we gave! All of the other operations can
be defined using FOPL and membership. We’ll walk through
the basic set operations and how to define them.

The basics of set theory give us a small number of simple
things that we can say about sets and their members. These
also provide a basic set of primitive statements for our FOPL:

Subset
S5cT

Sis asubset of T, meaning that all members of S are also
members of T. Subset is really just the set theory version
of implication: if S is a subset of T, then in logic, S = T.

For example, let’s look at the set N of natural numbers and
the set N, of even natural numbers. Those two sets are
defined by the predicates IsNatural(n) and IsEvenNatural(n).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 130

When we say that N, is a subset of N, what that means is
V x: IsEvenNatural(x) = IsNatural(x).

Set Union
AUB

Union combines two sets: the members of the union are
all of the objects that are members of either set. Here it
is in formal notation:

x€E(AUB sxe AV xeB

The formal definition also tells you what union means
in terms of logic: union is the logical or of two predicates.

For example, if we have the set of even naturals and the
set of odd naturals, their union is the set of objects that
are either even naturals or odd naturals: an object x is
in the union (EvenNatural U OddNatural) if either
IsEvenNatural(x) or IsOddNatural(x).

Set Intersection

ANB

The intersection of two sets is the set of objects that are
members of both sets. Here it is presented formally:

xeANBsxeAAXxeB

As you can see from the definition, intersection is the
set equivalent of logical and.

For example, EvenNatural ) OddNatural is the set of
numbers x where EvenNatural(x) A OddNatural(x). Since
there are no numbers that are both even and odd, that
means that the intersection is empty.

Cartesian Product

AXB
(x, EAXxBsxe€eAANyeB

Finally, within the most basic set operations, there’s one
called the Cartesian product. This one seems a bit weird,
but it’s really pretty fundamental. It's got two purposes:
first, in practical terms, it’s the operation that lets us
create ordered pairs, which are the basis of how we can
create virtually everything that we want using sets. In

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 131

purely theoretical terms, it's the way that set theory
expresses the concept of a predicate that takes more than
one parameter. The Cartesian product of two sets S and
T consists of a set of pairs, where each pair consists of
one element from each of the two sets.

For example, in 12, Mr. Spock Is Not Logical, on page 79,
we defined a predicate Parent(x, y), which meant that x
is a parent of y. In set theory terms, Parent is a set of pairs

of people. So Parent is a subset of the values from the
Cartesian product of the set of people with itself. (Mark,
Rebecca) € Parent, and Parent is a predicate on the set
Parent x Parent.

That’s really the heart of set theory: set membership and the
linkage with predicate logic. It's almost unbelievably simple,
which is why it’s considered so darned attractive by mathe-
maticians. It’s hard to imagine how you could start with
something simpler.

Now that you understand how simple the basic concept of
a set is, we’ll move on and see just how deep and profound
that simple concept can be by taking a look at Cantor’s
diagonalization.

Cantor’s Diagonalization

The original motivation behind the ideas that ended up
growing into set theory was Cantor’s recognition of the fact
that there’s a difference between the size of the set of natural
numbers and the size of the set of real numbers. They’re
both infinite, but they’re not the same!

Cantor’s original idea was to abstract away the details of
numbers. Normally when we think of numbers, we think of
them as being things that we can do arithmetic with, things
that can be compared and manipulated in all sorts of ways.
Cantor said that for understanding how many numbers there
were, none of those properties or arithmetic operations were
needed. The only thing that mattered was that a kind of
number like the natural numbers was a collection of objects.
What mattered is which objects were parts of which collec-
tion. He called this kind of collection a set.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 132

Using sets allowed him to invent a new way of defining a
way of measuring size that didn’t involve counting. He said
that if you can take two sets and show how to create a
mapping from every element of one set to exactly one ele-
ment of the other set, and if this mapping didn’t miss any
elements of either set (a one-to-one mapping between the two
sets), then those two sets are the same size. If there is no way
to make a one-to-one mapping without leaving out elements
of one set, then the set with extra elements is the larger of
the two sets.

For example, if you take the set {1, 2, 3}, and the set {4, 5, 6},
you can create several different one-to-one mappings
between the two sets: for example, {1 =4, 2 = 5,3 = 6}, or
{1 =5,2 =6,3 =4}. The two sets are the same size, because
there is a one-to-one mapping between them.

In contrast, if you look at the sets {1, 2, 3, 4} and {a, b, ¢},
there’s no way that you can do a one-to-one mapping with-
out leaving out one element of the first set; therefore, the
first set is larger than the second.

This is cute for small, finite sets like these, but it’s not
exactly profound. Creating one-to-one mappings between
finite sets is laborious, and it always produces the same
results as just counting the number of elements in each set
and comparing the counts. What's interesting about Cantor’s
method of using mappings to compare the sizes of sets is
that mappings can allow you to compare the sizes of
infinitely large sets, which you can’t count!

For example, let’s look at the set of natural numbers (N) and
the set of even natural numbers (N,). They're both infinite
sets. Are they the same size? Intuitively, people come up
with two different answers for whether one is larger than
the other.

1. Some people say they’re both infinite, and therefore they
must be the same size.

2. Other people say that the even naturals must be half the
size of the naturals, because it skips every other element
of the naturals. Since it’s skipping, it’s leaving out ele-
ments of the naturals, so it must be smaller.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 133

Which is right? According to Cantor, both are wrong. Or
rather, the second one is completely wrong, and the first is
right for the wrong reason.

Cantor says that you can create a one-to-one mapping
between the two:

{x>y):x, ye N, y=2Xx}

Since there’s a one-to-one mapping, that means that they’re
the same size—they’re not the same size because they're
both infinite, but rather because there is a one-to-one map-
ping between the elements of the set of natural numbers and
the elements of the set of even natural numbers This shows
us that some infinitely large sets are the same size as some
other infinitely large sets. But are there infinitely large sets
whose sizes are different? That’s Cantor’s famous result,
which we’re going to look at.

Cantor showed that the set of real numbers is larger than
the set of natural numbers. This is a very surprising result.
It’s one that people struggle with because it seems wrong. If
something is infinitely large, how can it be smaller than
something else? Even today, almost 150 years after Cantor
first published it, this result is still the source of much con-
troversy (see, for example, this famous summary [Hod98].)
Cantor’s proof shows that no matter what you do, you can't
create a one-to-one mapping between the naturals and the
reals without missing some of the reals; and therefore, the

set of real numbers is larger than the set of naturals.

Cantor showed that every mapping from the naturals to the
reals must miss at least one real number. The way he did
that is by using something called a constructive proof. This
proof contains a procedure, called a diagonalization, that takes
a purported one-to-one mapping from the naturals to the
reals and generates a real number that is missed by the
mapping. It doesn’t matter what mapping you use: given
any one-to-one mapping, it will produce a real number that
isn't in the mapping.

We're going to go through that procedure. In fact, we're
going to show something even stronger than what Cantor
originally did. We're going to show that there are more real

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 134

numbers between zero and one than there are natural

numbers!

Cantor’s proof is written as a basic proof by contradiction.

It starts by saying “Suppose that there is a one-to-one map-

ping from the natural numbers to the real numbers between

zero and one.” Then it shows how to take that supposed

mapping and use it to construct a real number that is missed
by the mapping.

Example: Prove that there are more real numbers between 0 and

1 than there are natural numbers.

1.

Suppose that we can create a one-to-one correspondence
between the natural numbers and the reals between 0
and 1. What that would mean is that there would be a
total one-to-one function R from the natural numbers
to the reals. Then we could create a complete list of all
of the real numbers: R(0), R(1), R(2), ....

If we could do that, then we could also create another
function, D (for digit), where D(x,y) returns the yth
digit of the decimal expansion of R(x). The D that we
just created is effectively a table where every row is a
real number and every column is a digit position in the
decimal expansion of a real number. D(x,3) is the third
digit of the binary expansion of x.

For example, if x = 3/8, then the decimal expansion of x
is 0.125. Then D(3/8,1) = 1, D(3/8,2) = 2, D(3/8,3) = 5,
D(3/8,4)=0, ...

Now here comes the nifty part. Take the table for D and
start walking down the diagonal. We're going to go
down the table looking at D(1,1), D(2,2), D(3,3), and so
on. And as we walk down that diagonal, we're going to
write down digits. If the D(i, i) is 1, we'll write a 6. If it’s
2, we'lllput7,3, we'llput§,4=9,5=0,6=1,7=2;
8=3;9=4;and 0 = 5.

The result that we get is a series of digits; that is, a deci-
mal expansion of some number. Let’s call that number
T. T is different from every row in D in at least one dig-
it—for the ith row, T is different at digit i. There’s no x
where R(x) =T.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 135

But T is clearly a real number between 0 and 1: the
mapping can’t possibly work. And since we didn't
specify the structure of the mapping, but just assumed
that there was one, that means that there’s no possible
mapping that will work. This construction will always
create a counterexample showing that the mapping is
incomplete.

5. Therefore, the set of all real numbers between 0 and 1
is strictly larger than the set of all natural numbers.

That’s Cantor’s diagonalization, the argument that put set
theory on the map.

Don’t Keep It Simple, Stupid

There’s an old mantra among engineers called the KISS
principle. KISS stands for “Keep it simple, stupid!” The idea
is that when you're building something useful, you should
make it as simple as possible. The more moving parts
something has, the more complicated corners it has, the more
likely it is that an error will slip by.

Looked at from that perspective, naive set theory looks great.
It’s so beautifully simple. What I wrote in the last section
was the entire basis of naive set theory. It looks like you
don’t need any more than that!

Unfortunately, set theory in practice needs to be a lot more
complicated. In the next section, we’ll look at an axiomatiza-
tion of set theory, and yeah, it’s going be a whole lot more
complicated than what we did here! Why can’t we stick with
the KISS principle, use naive set theory, and skip that hairy
stuff?

The sad answer is, naive set theory doesn’t work.

In naive set theory, any predicate defines a set. There’s a
collection of mathematical objects that we're reasoning about,
and from those, we can form sets. The sets themselves are
also objects that we can reason about. We did that a bit
already by defining things like subsets, because a subset is
a relation between sets.

By reasoning about properties of sets and relations between
sets, we can define sets of sets. That’s important, because

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 136

sets of sets are at the heart of a lot of the things that we do
with set theory. As we'll see later, Cantor came up with a
way of modeling numbers using sets where each number is
a particular kind of structured set.

If we can define sets of sets, then using the same mechanism,
we can create infinitely large sets of sets, like “the set of sets
with infinite cardinality,” also known as the set of infinite
sets. How many sets are in there? It’s clearly infinite. Why?
Here’s a sketch: if I take the set of natural numbers, it’s infi-
nite. If I remove the number 1 from it, it’s still infinite. So
now I have two infinite sets: the natural numbers, and the
natural numbers omitting 1. I can do the same for every
natural number, which results in an infinite number of infi-
nite sets. So the set of sets with infinite cardinalities clearly
has infinite cardinality! Therefore, it's a member of ifself!

If I can define sets that contain themselves, then I can write
a predicate about self-inclusion and end up defining things
like the set of all sets that include themselves. This is where
trouble starts to crop up: if I take that set and examine it,
does it include itself? It turns out that there are two sets that
match that predicate! There’s one set of all sets that include
themselves that includes itself, and there’s another set of all
sets that include themselves that does not include itself.

A predicate that appears to be a proper, formal, unambiguous
statement in FOPL turns out to be ambiguous when used to
define a set. That’s not fatal, but it's a sign that there’s
something funny happening that we should be concerned
about.

But now, we get to the trick. If I can define the set of all sets
that contain themselves, I can also define the set of all sets
that do not contain themselves.

And that’s the heart of the problem, called Russell’s paradox.
Take the set of all sets that do not include themselves. Does
it include itself?

Suppose it does. If it does, then by its definition, it cannot be
a member of itself.

So suppose it doesn’t. Then by its definition, it must be a
member of itself.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

16. Cantor’s Diagonalization: Infinity Isn't Just Infinity ® 137

We're trapped. No matter what we do, we’ve got a contradic-
tion. And in math, that’s deadly. A formal system that allows
us to derive a contradiction is completely useless. One error
like that, allowing us to derive just one contradiction, means
that every result we ever discovered or proved in the system
is worthless! If there’s a single contradiction possible anywhere
in the system, then every statement—whether genuinely true
or false—is provable in that system!

Unfortunately, this is pretty deeply embedded in the struc-
ture of naive set theory. Naive set theory says that any
predicate defines a set, but we can define predicates for
which there is no valid model, for which there is no possible
set that consistently matches the predicate. By allowing this
kind of inconsistency, naive set theory itself is inconsistent,
and so naive set theory needs to be discarded. What we need
to do to save set theory at all is build it a better basis. That
basis should allow us to do all of the simple stuff that we do
in naive set theory, but do it without permitting contradic-
tions. In the next section, we'll look at one version of that,
called Zermelo-Frankel set theory, that defines set theory
using a set of strong axioms and manages to avoid these
problems while preserving what makes set theory valuable
and beautiful.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17

Axiomatic Set Theory: Keep
the Good, Dump the Bad

In the last chapter, we saw the basics of naive set theory the
way that Cantor defined it. Naive set theory seems wonder-
ful at first because of its brilliant combination of simplicity
and depth. Unfortunately, that simplicity comes at great
cost: it allows you to create logically inconsistent self-refer-
ential sets.

Happily, the great mathematicians of the early twentieth
century weren't willing to give up on set theory. The devo-
tion of mathematicians to preserving set theory is best
summed up by the words of one of the most brilliant math-
ematicians in the history of math, David Hilbert (1862-1943):
“No one shall expel us from the Paradise that Cantor has
created.” This devotion led to an effort to reformulate the
foundations of set theory in a way that preserved as much
of the elegance and power of set theory as possible while
eliminating the inconsistencies. The result is what’s known
as axiomatic set theory.

Axiomatic set theory builds up set theory from a set of fun-
damental initial rules, called axioms. We're going to take a
look at a set of axioms that produce a consistent form of set
theory. There are several different ways of formulating set
theory axiomatically, which all produce roughly the same
result. We're going to look at the most common version,
called the Zermelo-Frankel set theory with choice, commonly
abbreviated as ZFC. The ZFC axiomatization consists of a

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 140

set of ten axioms, which we’ll look at. In particular, the last
axiom, called the axiom of choice, is still the focus of controver-
sy today, more than 100 years after it was proposed, and
we’ll take a look at why it still inspires so much emotion
among mathematicians!

There are other choices for axiomatic set theory. Most well-
known is an extension of ZFC called NBG set theory. We'll
say a bit about NBG, but our focus will be ZFC theory.

The Axioms of ZFC Set Theory

In this section, we're going to walk through the process of
creating a sound set theory, a version of set theory that pre-
serves the intuition and simplicity of naive set theory but
won't fall into the trap of inconsistency.

Keep in mind as we go that the point of what we're doing
is to produce something that is a foundation. As a founda-
tion, it cannot depend on anything except for first-order
predicate logic and the axioms themselves. Until we can
construct them using the axioms, there are no numbers, no
points, no functions! We can’t assume that anything exists
until we show how it can be constructed using these axioms.

What do we need to create a sound version of set theory? In
naive set theory, we started by saying that a set is defined
by its members. We'll start the same way in axiomatic set
theory. The property that a set is defined solely by its
members is called extensionality.

The Axiom of Extensionality
VA B:A=Bs(VC:Ce A= CeB)

This is a formal way of saying that a set is described by
its members: two sets are equivalent if and only if they
contain the same members. The name extensionality is
mathematical terminology for saying that things are
equal if they behave the same way. Since the only real
behavior of sets is testing if an object is a member of a
set, two sets are equal if they always have the same
answer when you ask if an object is a member.

The axiom of extensionality does two things: it defines what
a set is by defining its behavior, and it defines how to

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 141

compare two sets. It doesn't say anything about whether
any sets actually exist or how we can define new sets.

The next step then, is to add axioms that let us start building
steps. We follow the inductive pattern that we saw back in
Section 1.1, The Naturals, Axiomatically Speaking, on page 4:
there’s a base case and an inductive case. The base case says

that there is a set containing no elements. The inductive
cases tell us how we can build other sets using the empty
set.

The Empty-Set Axiom
1o :Vx:x- €0

The empty-set axiom gives us the base case of all sets:
it says that there exists a set, the empty set, which
contains no members. This gives us a starting point: an
initial value that we can use to build other sets. It does
a bit more than that: by telling us that there is an empty
set, it tells us that the set of values that exists given this
axiom is the set containing the empty set.

The Axiom of Pairing
YA B:AC:(VD:DeC= (D=AV D= B)))

Pairing gives us one way of creating new sets. If we have
any two objects, then we can create a new set consisting
of exactly those two objects. Before pairing, we could
have the empty set () and the set containing the empty
set ({J}), but we had no way of creating a set containing
both the empty set and the set containing the empty set
(19, {}). In logical form, pairing just says that we can
build a two-item set by enumeration: given any two sets
A and B, there’s a set C containing only A and B as
members.

The Axiom of Union
VA:(AB:(VWC:CeBs(dD:Ce DA De A)))

The axiom of union is the best friend of the axiom of
pairing. With the two of them together, we can create
any finite set we want by enumerating its members.
What it says formally is that given any two sets, their
union is a set. The notation is complicated, because we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 142

haven't defined the union operation yet, but all that it
really says is that we can define the union operation and
create new sets by union. By using the axiom of pairing,
we can pick specific elements that we want in a set; and
by using the axiom of union, we can chain together
multiple sets created by pairing. Thus with the two of
them, we can provide a specific list of elements, and
there will be a set containing exactly those elements and
no others.

The four axioms that we’ve seen so far give us the ability to
create any finite set we want. But finite sets aren’t enough:
we want things like Cantor’s diagonalization to work with
our new set theory. We need some way of creating more
than just finite sets. This is a crucial point for our new set
theory: infinite sets are where Cantor’s naive set theory ran
into trouble. Any mechanism that lets us create infinite sets
must be designed very carefully to ensure that it cannot create
self-referential sets.

We'll start by creating a single, canonical infinite set. We
know that this canonical infinite set is well behaved. Then
we'll use that set as a prototype: every infinite set will be
derived from the master infinite set and therefore will not
contain anything that could allow it to become a problem.

The Axiom of Infinity
AN: 2 e NA(MVMx:xe N=>xU{x}€eN)

The axiom of infinity is the most difficult axiom we’ve
seen so far, because it’s introducing a genuinely difficult
idea: it’s saying that we can have sets containing an
infinite number of members! Instead of just asserting
that we can have infinite sets, it says that there’s a specific
way to create infinite sets, and that all infinite sets must
either be created this way or derived from another infi-
nite set created this way.

The prototypical infinite set is defined by the axiom as
the set that

1. Contains the empty set as a member, and

2. For each of its members x, also contains the single-
ton set { x } containing x. That means that if we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 143

followed the formal statement and named the set
N, N contains &, {&}, {{&}}, {{{2}}}, and so on.

The axiom really does two things. First, it does what
we’ve already talked about: it gives us the prototypical
infinite set. But second, it defines that infinite set in a
very specific way. We could have defined a canonical
infinite set in many different ways! The reason that we
defined it this way is because this specific construction
is derived directly from the way that Peano numbers
can be constructed. This means basically that the Peano
numbers are the canonical infinite set.

The Meta-Axiom of Specification
VA:dB:VC:CeB=CeAAPO

For finite-size sets, the axiom of the empty set gave us
a prototypical finite-size set, and then the axioms of
pairing and union let us use that initial finite-size set to
create the other sets. For infinite sets, the axiom of
infinity gave us a prototypical infinite set, and now the
meta-axiom of specification will allow us to create as
many other infinite sets as we want using logical
predicates.

It’s called a meta-axiom because it’s got a big problem.
What we want it to say is this: given any predicate P,
you can take any set A and select out the elements of A
for which P is true, and the resulting collection of ele-
ments is a set. Less formally, we want it to say that you
can create a set of objects that share a particular property
by starting with a larger set (like our prototypical infinite
set) and then select the subset that has the desired
property.

That’s what we want to be able to say with a single
axiom. Unfortunately we can’t say that. A statement
that’s true for any predicate P is impossible to write in
first-order logic. To get around this problem, the people
who designed ZFC set theory did the only thing that
they could: they cheated and said it’s not really a second-
order axiom but a schema for what’s actually an infinite
set of axioms. For every predicate P, there’s another

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 144

instantiation of the axiom of specification that says you
can use that predicate P to define subsets of any set.

Nowhere in the axiom does it say that you can only use
it to select elements from an infinite set. You can use the
axiom of specification to find subsets of finite sets with
a common property. But for finite sets, you don’t need
to use specification: you can just manually enumerate
the elements that you want. If you had the set A ={1, 2,
3, 4}, you could say, “The elements of A that are even,”
or you could just say, “The set {2, 4}.” With infinite sets,
you need to use specification to define a set like the set
of even natural numbers.

The Powerset Construction Axiom
VA:dAB:YCCA:CeB

This is a nice, easy one, but it's very important. The
axiom of infinity gave us a prototypical infinite set. The
axiom of specification gave us a way of creating other
infinite sets by selecting elements from an infinite set.
Using the two together, we can create infinite sets that
are subsets of the prototype. However, that’s just not
enough. We know that if our new set theory works, then
the set of real numbers will be larger than the set of nat-
ural numbers, and we know that the prototypical infinite
set is exactly the same size as the set of naturals. Without
some way of creating a set larger than that, we won't
be able to represent the real numbers using sets! The
powerset axiom gives us a way around that: it says that
for any set A, the collection of all of the possible subsets
of A (called the powerset of A) is also a set. With this, the
axiom of infinity, and the axiom of specification, we can
create a whole universe of infinite sets!

The axiom of the powerset is dangerous. As soon as we
can create a set larger than the set of natural numbers,
we're treading on thin ice: that’s where the self-referen-
tial sets that caused us so much pain live. Explaining
exactly why is too complex for this book, but until we
had infinite sets larger than the set of natural numbers,
we couldn’t build a paradoxical self-referential set. With

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 145

the powersets, though, we can, so to keep our theory
sound we need to put up a firewall to prevent that.

The Foundation Axiom
VA+ @ :dBeA:ANB=©@

Every set A contains some member B that is a set com-
pletely disjoint from A.

Understanding the point of this one requires a bit of
brain-bending. It’s making it impossible to build certain
kinds of self-referential sets that would lead to inconsis-
tency. You can't create a set that only contains itself, and
in fact, every set like the problematic set of all sets that
do not contain themselves simply can’t be expressed in
a paradoxical way without violating this axiom. There-
fore they aren't sets, we can’t create them, we aren't
talking about them when we reason about sets, and thus
they aren’t a problem. It may feel a bit “handwavy,” but
what we're really doing is forbidding those sets in the
least restrictive way that we can.

We're almost done with our new set theory! We can create
finite sets and infinite sets. We can create sets of whatever
size we want, from finite to infinite and beyond! We can
define sets using predicates. And we can do all of that
without causing any inconsistencies. What's left?

Two things remain. The first is easy; the second is one of the
most difficult ideas thatI've ever encountered. The easy one
is just a formal way of saying how we can define functions
using sets and predicates. The other one...well, we’ll get to
that.

The Meta-Axiom of Replacement
VA:dB:Vy:yeB=>3dx€A:y=FXx)

Replacement is another meta-axiom, a stand-in for an
infinite number of real axioms. It says that you can
define functions in terms of predicates: P(x,y) is a func-
tion as long as the set defined by it has the key property
of a function: each value in its domain is mapped to one
value in its range. We can't say it that simply, because
we haven’t defined functions, domains, or ranges.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 146

We need this because when we talk about a typical
function, in formal terms, the function is defined logical-
ly using a predicate. For example, when I define the
function f(x) = x°, what I'm actually saying is that in
formal terms there is a set of pairs (4, b) for which a
predicate that means “b is the square of a” is true. That
runs into exactly the same problem that we had in the
meta-axiom of specification: we want to be able to say
that for any function-ish predicate, we can define the
function in terms of sets. Since we can’t say anything
about all predicates, we have to explicitly say that you
can do this, and we have to say it as a meta-axiom that
stands in for an infinite number of real axioms, one for
each function-ish predicate.

Hang on tight; here’s where it gets hairy! The axiom of choice
is still a subject of debate among mathematicians. It’s a very
tricky concept. It's extremely subtle, and it’s difficult to
explain why it's needed in intuitive terms. It’s really a
counterpart for the axiom of replacement. Replacement
provided a capability that we need to define functions,
because we knew that we were going to want to be able to
talk about functions, and without defining the capability
with an axiom, it wouldn’t be possible. Similarly, the axiom
of choice provides a capability that we know we're going to
need for subjects like topology, so we need to add it as an
axiom.

The Axiom of Choice I'm not going to try to do this in pure
notation; it’s just too hard to understand.

* Let X be a set whose members are all non-empty.

¢ There exists a function f from X to the union of the
members of X, such that for each member x €X, f(x)
€X.

* fis called a choice function.

What does that mean? It’s not an easy thing to explain.
Roughly, it means that sets have a certain kind of
structure that makes it possible to say that there exists a
consistent and yet arbitrary mechanism for selecting
things from that set, even when the set is infinitely large,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 147

even though we can’t create that mechanism or say how
it could possibly work.

That'’s it: we have our new set theory, which is defined by
this collection of axioms. This new version of set theory has
everything that we love about set theory. It’s all stated for-
mally, which makes it more complicated to read, but the
underlying concepts remain nearly the same as the intuitive
ideas of naive set theory. The careful axiomatic basis pre-
serves all of that, but it guarantees that we're safe from
inconsistencies: the problems that broke naive set theory are
prevented by the careful design of the axioms.

But we're not done yet. I've said that the axiom of choice is
controversial and difficult, but I haven't really explained
why. So now we're going to take a more in-depth look at
why the axiom of choice is strange and why we need it even
though it causes so much weirdness.

The Insanity of Choice

The only one of the axioms that’s really difficult to under-
stand is the axiom of choice. And that itself makes sense,
because even among mathematicians, the axiom of choice
is downright controversial in some circles. There’s a bunch
of variations of it, or different ways of ultimately saying the
same thing. But they all end up with the same problems.
And those problems are whoppers. But dumping choice also
has some serious problems.

To understand just what makes choice such a problem, it’s
easiest to use a variation of it. To be clear about what I mean
by a variation: it’s not just a restatement of the axiom of
choice in different language, but a statement that ends up
proving the same things. For example, we're going to look
at a variation called the well-ordering theorem. If we keep
the axiom of choice, then the well-ordering theorem is
provable using the ZFC axioms. If we don’t keep the axiom
of choice but replace it with the well-ordering theorem, then
the axiom of choice is provable using ZFC set theory with
well-ordering.

The easiest variation of the axiom of choice is called the well-
ordering theorem. It’s a great demonstration of the insanity

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 148

of choice because on the face of it, it sounds pretty easy and
obvious. But when you think it through, you realize that it’s
absolutely crazy. It says that for every set S, including infinite
sets, it’s possible to define a well-ordering on S. A well-
ordering on S means that for every subset of S, the subset
has a unique smallest element.

Obvious, right? If we have a less-than operation, then there
must be a smallest element, right? It seems to make sense.
Butitimplies something absolutely crazy: the well-ordering
theorem says that there’s a single, unique value that is the
smallest positive real number larger! Well-ordering says that
for every real number 7, there is a single, unique real number
that comes next. After all, I can take the set of real numbers
greater than or equal to 0—that’s obviously permitted by
the axiom of specification. The minimum element of that set
is 0. Using the axiom of specification again, I can create a
subset of that that doesn’t include 0. That new set still has a
smallest element: the smallest real number greater than 0.

That’s ridiculous, isn’t it? We know that for every pair of
real numbers, there’s an infinite number of real numbers
that fit between them. It looks like it’s a major inconsistency,
as bad as the inconsistent sets in ZFC. The usual argument
is that it’s not inconsistent: it’s not a problem because we
can’t ever get enough of a grip on that number to be able to
do anything with it that exploits its value in a way that cre-
ates a definite inconsistency.

Another way of demonstrating the weird implications of
choice is one of the weirdest things in math. It’s called the
Banach-Tarski paradox. Banach-Tarski says that you can take
a sphere and slice it into six pieces. Then you can take those
same six pieces, put them back together —without bending
or folding—as two identical spheres, each exactly the same
size as the original sphere! Or you can take those six pieces
and reassemble them into a new sphere that is one thousand
times larger than the original sphere!

When you look at it in detail, Banach-Tarski looks like it’s
downright crazy. It’s not as bad as it seems. It looks wrong,
but it does actually work out in the end. Banach-Tarski isn't
inconsistent: it just demonstrates that infinity is a really

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 149

weird idea. When we talk about things like the volume of a
sphere, we're using something called measure theory: the
volume of a shape is defined by a measure. What’s happen-
ing in Banach-Tarski is that we’re using the axiom of choice
to create an infinitely complex slice. At infinite complexity,
the volume and surface area of a shape can’t be measured.
We've pushed measure theory beyond its limits. When we
put the slices back together, the infinitely complex cuts match
up, and we end up with a figure that can once again be
measured. But because it passed through an indeterminate
phase, it doesn’t have to be consistent before and after. It
works out because ultimately each sphere contains an infinite
number of points: if we divide the infinite set in half, each
half still has the same number of points, which means that
there are obviously enough points to fill the two new
spheres. In set theory, that’s not inconsistent. In measure
theory it is, but measure theory doesn’t allow that kind of
infinitely complex slice, which is why the volume is
unmeasurable.

The axiom of choice seems to cause problems in all of its
forms. Why do we insist on keeping it? The easiest way to
answer that is to look at yet another way of restating it. The
axiom of choice is equivalent to this statement: the Cartesian
product of a collection of non-empty sets is not empty. That’s
such a simple necessary statement: if we couldn’t even show
that the product of non-empty sets isn’t empty, how could
we possibly do anything with our new set theory?

What the axiom of choice ultimately says is that we can
create a function that chooses from a set of indistinguishable
things. It doesn’t matter what the choice is. It just matters
that in some theoretical sense, there is a function that can
choose. Bertrand Russell (1872-1970), who was one of the
mathematicians who helped establish ZFC set theory as the
dominant foundation of mathematics, explained why the
axiom of choice was needed by saying, “To choose one sock
from each of infinitely many pairs of socks requires the
Axiom of Choice, but for shoes the Axiom is not needed.”
With shoes, the two members of the pair are different, so we
can easily design a function that distinguishes between them.
The two members of a pair of socks are exactly the same, so

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 150

we can’t say how to distinguish between them. The axiom
of choice says that the two can be distinguished, even if we
can’t imagine how.

Choice is uncomfortable. It seems crazy, and it seems
inconsistent. But no one has been able to definitively show
that it’s wrong, just that it's uncomfortable. There are some
holdouts that refuse to accept it, but for most of us, the cost
of dropping choice is too high. Too much of the math, from
basic number theory to topology and calculus, depend on
it. It produces results that feel wrong, but under the hood,
those wrong-seeming results are explainable. At the end of
the day, it works, so we stick with it.

Why?

There we are. That’s it: set theory in a nutshell. You can
derive pretty much all of mathematics from those ten axioms
plus simple first-order predicate logic. The integers fall out
pretty naturally from the axiom of infinity; once you’ve got
the integers, you can use the axiom of pairing to create the
rationals; once you've got the rationals, you can use these
axioms to derive Dedekind cuts to get the reals; once you've
got the reals, you can use the axiom of replacement to get
the transfinites. It just all flows out from these ten rules.

The amazing thing is that they’re not even particularly hard!
The axioms make sense: the reason why each is needed is
clear, and what each one means is clear. It doesn’t strain our
brains to understand them! It took some real genius to derive
these rules, figuring out how to draw down the entirety of
set theory into ten rules while preventing problems like
Russell’s paradox is an astonishingly difficult task. But once
a couple of geniuses did that for us, the rest of us dummies
are in great shape. We don’t need to be able to derive them;
we just need to understand them.

The point of the entire exercise of defining set theory
axiomatically was to avoid the inconsistency of naive set
theory. The way that our axioms did that is by hard-wiring
constraints into the basic definitions of sets and the funda-
mental set operations. The axioms don’t just say, “A set is a
collection of stuff”; they constrain what a set is. They don't
just say, “If you can write a predicate that selects the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

17. Axiomatic Set Theory: Keep the Good, Dump the Bad * 151

members, that predicate defines a set”; they provide a con-
strained mechanism by which you can define valid sets using
predicates. With those constraints in place, we have a consis-
tent, well-defined foundational theory that we can use to
build the rest of math!

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18

Models: Using Sets as the
LEGOs of the Math World

Mathematicians like to say that they can re-create all of
mathematics using set theory as a basis. What does that even
mean?

Sets are amazingly flexible. With the basic structure given
to us by sets in ZFC set theory, we can build anything.
They're basically a lot like the mathematical version of a
kid’s LEGO set: they’re easy to put together in a lot of differ-
ent ways, so you can use them to build whatever you want.
You can pick pretty much any field of math and build the
objects that you need using sets.

Suppose we wanted to build a new mathematical system,
like topology. A simple way of describing topology is that
it'’s a way of studying the shape of a surface by looking at
which points on that surface are close to which other points.
The axioms of topology define things like what a point is,
what a shape is, and what it means for one point to be close
to another point.

We could build the math of topology starting with absolutely
nothing, the way we did with sets. To do that, we'd need to
start with a lot of very basic axioms to answer the basic
questions: What's the simplest topological space? How can
we use that to build more complex spaces? How can we use
logic to make statements about spaces? And so on. It would
be very difficult, and much of it would retrace the steps that
we already followed in defining ZFC. Using set theory makes

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World * 154

the process much easier: we can just build a model that shows
how to build the basic objects of topology (points and sur-
faces) in terms of sets. Then we can show how the axioms
of topology are provable using the model along with the
axioms of ZFC.

As with so many ideas in math, it’s easiest to understand
what I mean by building a model by looking at a specific
example. For our example, we’ll go back to the original
purpose of set theory and use it to build a set-based model
of the ordinal and cardinal numbers.

Building Natural Numbers

All the way back in 1, Natural Numbers, on page 3, we

defined the natural numbers axiomatically. In most of math,
we define objects and their behaviors using axiomatic defi-
nitions like the rules of Peano arithmetic. One of the more
subtle problems in math is that if you want to define a new
mathematic construct, it’s not enough to just define a collec-
tion of axioms. A collection of axioms is a logical definition
of a kind of object and the way that that kind of object works,
but the axioms don’t actually show that an object that fits
the definition exists or that it even makes sense to create an
object that fits the definition. To make the axiomatic defini-
tion work, you need to show that it’s possible for the objects
described in the definition to exist by showing how you can
construct a set of objects that fit the axioms. That set of
objects is called a model of the axioms. That’s where sets come
into play: sets provide an ideal framework for building
mathematical objects to use in the model for pretty much
any axiomatic definition.

We're going to create a model of the natural numbers. How
do we do that without assuming that numbers already exist?
We look back to the creator of set theory. Back in the nine-
teenth century, Georg Cantor did something that many
mathematicians have tried to do. He tried to find a simple,
minimal basis on which he could build a new version of
mathematics. What he came up with is what became set
theory. Before Cantor’s work, the basic ideas of sets had been
used in math for thousands of years, but no one had ever
put it on a formal basis. Cantor changed the face of math

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World ® 155

forever by doing exactly that. He didn't get it completely
right, but the problems with his ideas about set theory were
fixed by ZFC. Without Cantor’s pioneering work showing
the value of the formal concept of sets, ZFC would never
have been developed. Cantor’s first demonstration of the
power of sets was using set concepts to build a model of
numbers, and that model holds up beautifully under ZFC.

Cantor formalized sets as part of his study of the roots of
number theory. He wanted to start with the simple set notion
and then build a model of numbers. So that’s exactly what
we're going to do.

First we need to define the objects that we're going to talk
about. That’s the set of natural numbers. We’ve already seen
the basic construction in the axiom of infinity. The set of
natural numbers starts with 0, which we represent as . For
each additional natural number N, the set is represented by
the set of all numbers smaller than N.

* 1={0}={D}
* 2={0,1}={T,{D}}
* 3={0,1,2}={9, {4}, {9, {D}}}

Now we need to show that the axioms that define the
meaning of the natural numbers are true when applied to
this construction. For natural numbers, that means we need
to show that the Peano axioms are true.

1.  Initial Value Rule: The first Peano axiom that we’ll look
at is the initial value rule, which says that 0 is a natural
number. In our construction of natural numbers, we’ve
got a 0 that is a natural number. Given our 0, the initial
value rule is satisfied.

2. Successor, Uniqueness, and Predecessor Rules: Peano
arithmetic says that every number has exactly one
unique successor. It should be obvious that in our con-
struction, there’s exactly one successor for each number.
For any number N, the successor is created as the set of
values from 0 to N. There’s only one way to create a
successor here, and it’s clearly unique. If the successor
rule is true, then the predecessor rule will also be true,
as long as there is no predecessor for 0.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World * 156

Since 0 is represented in our model as &, how could any
set be its predecessor? The successor to any number N
contains N as an element: the representation of 0 con-
tains nothing, so it can’t be the successor to anything.

3. Equality Rules: We'll use set equality. Two sets are equal
if and only if they have the same elements. Set equality
is reflexive, symmetric, and transitive, and that means
that number equality in our set-based model will be the
same.

4. Induction: The axiom of infinity is specifically designed
to make inductive proofs work. It’s a direct restatement
of the induction rule in a stronger form. That means
inductive proofs on the set-theoretic model of the natural
numbers will work.

We’ve just built a model of the natural numbers using sets,
and we showed that we can easily prove that the Peano
axioms are true and valid for that construction. By doing
that, we now know that our definition of the natural numbers
is consistent and that it’s possible to create objects that satisfy
it. The fact that the set-based model is both consistent and
satisfies the axioms of Peano arithmetic means that, using
that model, any proof about the natural numbers can be
reduced to a proof in terms of the axioms of ZFC. We don't
need to re-create any foundations the way we did when we
were setting up ZFC: we did that once, and now we'll just
keep on using it.

Models from Models: From Naturals to Integers
and Beyond!

I said that sets were like LEGOs, and I really meant it. To
me, the way that you build structures using sets and LEGOs
is very similar. When you're building an interesting project
like a fancy house with LEGOs, you don't usually start by
thinking about how you're going to build it in terms of
individual bricks. You start by dividing your project into
components. You build walls, roof and support beams, and
then you'd put those together to make your house. To build
the walls, you might divide a wall into sections: a base, a
window, and side sections around the windows. In math,
when we're building a model with sets, we often do the same

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World * 157

thing: we build simple components from sets and build more
elaborate models out of those components.

We built a nice model of the natural numbers using nothing
but sets. In fact, we started with nothing but the empty set
and then used the axioms of ZFC to allow us to build the set
of natural numbers.

Now we’d like to move on and build more numbers. We do
this exactly the same way that we did way back in 2, Integers,
on page 9, but we're doing it using our set-based naturals.

What we're going to do is take the natural numbers that
we’ve defined using sets. We're going to keep the same exact
set of values that we did before, but we’re going to assign a
different meaning to them.

For every even number N, we're going to say that it repre-
sents a positive integer equal to N/2; for every odd integer,
we're going to say that it represents a negative integer equal
to (N+1)/2.

Of course, for the sake of formality, we do need to define
just what it means to be even.

YVneN: Even(n)s(dxeN:2Xx=n)
VneN: Odd(n) £ - Even(n)
So:

* The natural number 0 will represent the integer 0; 0 is
even, because 0 * 0 = 0; so 0 is represented by the empty
set.

* The natural number 1 will represent the integer —1. 1 is
odd, so it represents —(1+1)/2 = 1. Therefore -1 is repre-
sented by the set { & }.

* 2 represents the integer +1, which means that +1 is
represented by the set { & { & }}.

e 3is-2,s0-2isrepresented by { & { O}, { & { T}}.
e And so on.

To be a valid model of the integers, we need to show that
the axioms for integers hold for this model. It’s pretty obvi-
ous that most of them do, because we verified them for the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World * 158

natural numbers. The one new thing that we’ve added is the
idea of an additive inverse. So we need to show that the
additive inverse axiom works for this model of the integers.
The additive inverse axiom says that every integer has an
additive inverse. By the definition of addition, we know that
if both N and —N exist, then N + —-N = 0. What we have to
show is that for every N greater than or equal to 0, our
model does have a —N, and for every N less than or equal to
0, our model has a +N.

As usual for proofs about number theory, we’ll use induction.

1. Base case: 0 is its own additive inverse, so the additive
inverse of 0 exists.

2. Induction: for any integer n, if the additive inverse of n
exists, then the additive inverse of n + 1 must exist.

3. We can show that our inductive case is true by saying
that for any number 1, it is represented by the natural
number 2n. Knowing that 2n represents n, then by the
definition of our model of the integers, 2n+2 represents
n+1, and 2n+1 represents the additive inverse of n + 1.
We’ve shown that the additive inverse of n+1 exists by
showing exactly how it’s represented.

That little proof demonstrates one of the beauties of using
sets as a LEGO model. We started off with nothing but the
empty set. We used that to construct the natural numbers.
Then we used the natural numbers to construct the integers.
If we hadn't taken that step of building the natural numbers
and then building the integers using the natural numbers,
proving that there’s an additive inverse would be a lot more
painful. It definitely could be done, but it would be a lot
harder to both read and write.

Similarly, we can keep going and build up more numbers.
Back in 3, Real Numbers, on page 15, when we defined the

rational numbers in terms of pairs of integers and real
numbers as Dedekind cuts of rationals, we were really using
set-based models of those kinds of numbers built on top of
the very first set-based model of natural numbers. We're
just being explicit about the fact that we’ve got a set-based
model of the most primitive kind of number, and then we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World * 159

use the bricks of set-based constructions to build on that first
model to build better and better bricks.

That’s how we build math from sets. We just build up the
blocks from simple pieces and then use those blocks to build
better pieces until we get to what we want; whether it’s
numbers, shapes, topologies, or computers, it’s all the same
process of LEGO-building using sets.

There’s one point about this that can’t be reinforced enough.
Sets are pretty much the ultimate mathematical building
blocks. In this chapter, we built models of the natural num-
bers and the integers. We didn't build the natural numbers;
we build a model of the natural numbers. The model of an
object is not the object being modeled.

Think about LEGOs. You can build a great model of a car from
LEGOs. But a car isn’t made from LEGOs. If you're building a
model of a car, what a car is really made of doesn’t really matter.
What you want to do is to build something that looks like a car,
that acts like a car. Even if you build a giant LEGO model that
people canride in and it in fact really is a car, that doesn’t mean
that cars are made of LEGOs!

This is a point about building models with sets that constant-
ly throws people off. We built a beautiful model of the
natural numbers here. But the objects in our model that
represent numbers are still sets. You can take the intersection
of the models of the numbers 7 and 9 in our construction. But
you can’t take the intersection of the numbers 7 and 9, because
the numbers aren’t the objects in the model. When you're
working with the objects in the model, you have to work
with them entirely in terms of operations in the model. In the
model, you have to stay in the model or else the results won't
be meaningful.

Whenever you build anything in set theory, you have to
remember that. You build models of object with sets, but
the objects that you modeled aren’t the models. You need
to be careful to stay inside the model if you want valid
results. To use the LEGO metaphor one more time: you can
build a LEGO model of a house, using clear bricks for the
windows. But you can remove a model window from the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

18. Models: Using Sets as the LEGOs of the Math World ¢ 160

model house, break it apart into the individual bricks, and
then reassemble it. You can’t do that with a real window.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19

Transfinite Numbers:
Counting and Ordering
Infinite Sets

One of the deepest questions you can ask is the very first
one that set theory was used to answer: Can you have
something infinitely large that is larger than something else
that is infinitely large? Once you know the answer to that
question and recognize that there are degrees of infinity,
that opens up a new question: How can you talk about
infinity using numbers? How does arithmetic work with
infinity? What do infinitely large numbers mean? We’'ll
answer those questions in this section by looking at numbers
through the lens of sets and at Cantor’s definition of cardinal
and ordinal numbers in terms of sets. This will lead us to
looking at a new kind of number: Cantor’s transfinite numbers.

Introducing the Transfinite Cardinals

Cardinality is a measure of the size of a set. For finite sets,
that’s a remarkably easy concept: count up the number of
elements in the set, and that’s its cardinality. When Cantor
was first looking at the ideas of numbers and set theory, the
first notion of the meaning of numbers that became clear
was cardinality. If we have a set, one of the most obvious
questions we can ask about it is “How big is it?” The measure
of the size of a set is the number of elements in that set, which
we call the set’s cardinality.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19. Transfinite Numbers: Counting and Ordering Infinite Sets ® 162

Once we have a notion of the size of a set, we can start asking
questions about the relative size of sets: “Which set is big-
ger—this one or that one?” That question becomes even
more interesting when we get to infinitely large sets. If I
have two infinitely large sets, is one bigger than the other?
If there are different sizes of infinitely large sets, how many
degrees of infinity are there?

We’ve already seen an example of how to compare the car-
dinality of different infinite sets in Section 16.2, Cantor’s

Diagonalization, on page 131. The idea of measuring relative

cardinality is based on the use of one-to-one functions
between sets. If I have two sets S and T and if there is a
perfect one-to-one mapping from S to T, then S and T have
the same cardinality.

It seems like a simple notion, but it leads to some very
strange results. For example, the set of even natural numbers
has the same cardinality as the set of natural numbers: f(x)
= 2*x is a total, one-to-one function from the set of naturals
to the set of even naturals. So the set of even naturals and
the set of all naturals have the same size, even though the
set of evens is a proper subset of the set of natural numbers.

When we look at most sets, we can classify them into one of
three cardinality classes: finite sets, whose cardinality is
smaller than the cardinality of the natural numbers; count-
able sets, which have the same cardinality as the set of natu-
ral numbers; and uncountable sets, which have a cardinality
greater than the cardinality of the natural numbers.

Set theorists, starting with Cantor, created a new kind of
number just for describing the relative cardinalities of differ-
ent sets. Before set theory, people thought that for talking
about sizes, there were finite numbers, and there was infin-
ity. But set theory showed that that’s not enough: there are
different infinities.

To describe the cardinalities of sets, including infinite sets,
you need a system of numbers that includes something more
than just the natural numbers: Cantor proposed an extended
version of the natural numbers that he called cardinal num-
bers. The cardinal numbers consist of the natural numbers
plus a new family of numbers called transfinite cardinal

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19. Transfinite Numbers: Counting and Ordering Infinite Sets ® 163

numbers. The transfinite cardinal numbers specify the cardi-
nality of infinite sets. The first transfinite number is written
%y (pronounced “aleph-null”), and it’s the size of the set of
natural numbers.

When you start looking at the transfinite numbers and trying
to work out what they mean about infinity, you get to some
fascinating results. The same basic idea that we used in
Cantor’s diagonalization can be used to prove that for any
non-empty set S, the set of all subsets of S (also called the
powerset of S) is strictly larger than S. That means that given
the smallest infinite set, aleph,, you can prove that there’s
got to be another infinite set larger than it; we’ll call that
aleph;. Then given aleph;, there’s another infinite set aleph,
which is bigger than aleph;, and so on. There’s an infinite
cascade of ever-larger infinities!

The Continuum Hypothesis

Cantor proposed that the first infinite set larger than x, was
of size of the powerset of x, which is the size of the set of
reals. That proposition is known as the continuum hypothesis.
If the continuum hypothesis is true, then

N =2
1
The continuum hypothesis turns out to be a really sticky
problem. In the model of numbers constructed from set
theory (and thus, in all set-theoretic mathematics!), it’s neither
true nor false. That is, you can choose to treat it as true, and
all of ZFC mathematics will be fine, because you'll never be
able to prove a contradiction. But you also can take it as being
false, and still you won't find any contradictions in ZFC.

Looking at the continuum hypothesis, you might think that
it's a problem like Russell’s paradox in naive set theory.
After all, it looks like we’ve got something that’s somehow
both true and false!

But it’s not really a problem. In Russell’s paradox, we had a
question that had two possible answers, and they were both
provably false. In the continuum hypothesis, we have a
question with two possible answers, and neither answer is
provable. There’s no contradiction here: we can't create any

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19. Transfinite Numbers: Counting and Ordering Infinite Sets * 164

proofs that are inconsistent. We’ve just discovered one of
the limits of ZFC set theory: the continuum hypothesis isn’t
provable either way. There are perfectly valid systems of
transfinite numbers where it’s true and where it’s false: we
can choose either of the two equally valid systems by adding
our choice on the continuum as an axiom.

That’s just weird. But that’s the nature of math. As I've said
before, the history of math is full of disappointments. When
the continuum problem was proposed, lots of people
believed that it was true; lots of people believed it was false.
But no one would have dreamed that it could be indepen-
dent, that it could be neither provably true nor provably
false. Even as we define math from the simplest, clearest
basis, we can’t get away from the fact that nothing works
quite the way we expect it to.

Where in Infinity?

Now we’ve got sets, and we can talk about the size of those
sets using cardinal numbers. But even if we have a set where
we know its size and we know that its elements are ordered
by some kind of relation, we can’t talk about where in the set
a particular value lives. A cardinal number describes the
number of elements in a set. It's a way of specifying a
quantity.

In English, it’s easy to show why you can't use ordinals in
the place of cardinals, but it's much harder to do the other
way around. If you speak English and you try to say “I have
seventh apples,” it’s obviously wrong. Going the other way,
you can say “I want apple 3,” and it seems like you're using
a cardinal to specify an ordinal position. In English, you can
get away with that. In math, you can't. You need a different
object, with a different meaning, to refer to a position than
you do to refer to a measure of quantity.

We need to define ordinal numbers. We can use the same
representation to build a model of the ordinals. It’s OK that
we're using the same objects under the hood for the ordinals
and the cardinals: remember that you can only talk about
the modeled object in the model. So we can't take a cardinal
from the cardinal model and drop it into the ordinal model
and expect it to make sense.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19. Transfinite Numbers: Counting and Ordering Infinite Sets ® 165

Now that we've got the ordinal numbers, what happens
when we try to use them for sets with infinite cardinality?
How can we describe ordinal positions within a set whose
size is xy? To talk about the position of elements inside that,
we need some way to represent the first position of an ele-
ment after all of the finite ordinal positions.

Just like we needed to define transfinite cardinals, we’ll need
to define a new kind of ordinal number called a transfinite
ordinal number. We use the symbol  (“omega”) for the first
transfinite ordinal.

Transfinites are one of the places where the behavior of the
ordinals becomes very different from the cardinals. If you
add one element to a set whose size is x, the size of the set
is still x,. But if you look at position w and then look at the
position after it, position w + 1 does come after position w,
which means that @ + 1 is greater than w + 1.

Remember, we're not talking about size, we're talking about
position; and even when we get to the transfinite realm,
there can be an object next to an object in position w. Since
it's in a distinct position, it needs a distinct transfinite ordi-
nal. When we talk about ordinals, there are three kinds of
ordinal numbers:

Initial Ordinal The initial ordinal is 0, which is the position
of the initial element of a well-ordered set.

Successor Ordinals Successor ordinals are ordinals that we
can define as the next ordinal after (aka the successor
to) some other ordinal. All finite numbered positions
are successor ordinals.

Limit Ordinals Limit ordinals are ordinal numbers like w
that you can't get to by taking any number of successors.

wis a limit ordinal. It’s the limit of the finite ordinals: as the
first non-finite ordinal, every finite ordinal comes before it,
but there is no way of specifying just what ordinal it’s the
successor to. (There is no subtraction operation in ordinal
arithmetic, so -1 is undefined.) Limit ordinals are important,
because they’re what gives us the ability to make the connec-
tion to positions in infinite sets. A successor ordinal can tell
us any position within a finite set, but it's no good once we

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

19. Transfinite Numbers: Counting and Ordering Infinite Sets * 166

get to infinite sets. And as we saw with the cardinals, there’s
no limit to how large sets can get, because there’s an infinite
number of transfinite cardinals with corresponding sets.

So how do we use transfinite ordinals to talk about position
in sets? In general, it’s part of a proof using transfinite
induction. So while we can’t necessarily specifically identify
element w of a set with transfinite cardinality, we can talk
about the wth element.

The way that we do that is by isomorphism. In mathematical
terms, an isomorphism is a strict one-to-one mapping between
two different sets. Every well-ordered set is isomorphic to
the set-form of an ordinal. A set with N elements is isomor-
phic to the ordinal N+1.

We can talk about the wth element of an infinite set by talking
in terms of the well-ordering and the isomorphism. We know
that sets of this size exist; so if the set exists, the ordinal must
as well.

Now we’ve got our ordinal numbers. And you can see
pretty easily that they’re different from cardinal numbers.
The cardinal x, is the cardinality of the set representation of
w. And of w+ 1. And w + 2. And so on. So in ordinals, w is
different from w + 1. But in cardinals, the sizes of w and w +
1 are the same, because ¥, is the same as x, + 1.

They're different, because they mean different things. It’s
not so obvious when you're looking at finite values. But once
you hit infinity, they’re completely different and follow
completely different rules.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20

Group Theory: Finding
Symmetries with Sets

Every day, most of us get up in the morning, go into the
bathroom, and brush our teeth in front of a mirror. When
we do that, we're confronted with a profound mathematical
concept that we rarely think about: symmetry.

Mirror reflection is the kind of symmetry that’s most familiar
to us because we experience it every day. There are many
other kinds of symmetry: symmetry is a very general concept
that comes up everywhere from math to art to music to
physics. By understanding the mathematical meaning of
symmetry, we can see how all of the different kinds of
symmetries are all really different expressions of the same
fundamental concept.

To understand what symmetry really is, we’ll use the LEGO-
like nature of sets to build an algebraic structure called a
group to explore group theory. Groups capture what it means
to be symmetric in precise, formal mathematical terms.

Puzzling Symmetry

Let’s play a game that I'm calling crypto-addition. I've taken
the letters a through k and I've assigned each one to one of
the numbers between -5 and +5, and I want you to figure
out which letter represents which number. The only clues
come from A crypto-addition table, where I've shown you the

sums of different letters whenever that sum is between -5
and +5.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 168

a b ¢ d e f g h i j k
a b a h f d k
b f b d k a c h
¢ b f g c i k j e h
d a b c de f g hi j k
e h d e c j g
f k f c h b g d a
g f k j e h c i d
h a d hj boc ke gHf
i d c i g e j
itk e j d i g c
k: h k g adf j c b

Table 3—A crypto-addition table
The letters a through k represent the numbers between -5 and +5. Entries
in the table represent the sums of the row and column labels.

Using the crypto-addition table, what can you figure out
about which numbers are represented by which letters?

You can easily figure out what zero is: just look at the first
row. This shows you what you get for each symbol when
you add the number represented by a with every other
number. When you add a to d, you get g, so d is zero, because
zero is the only number where x + 0 = x.

Once you know what zero is, you can figure out pairs of
positive and negative numbers, because they’ll add up to
zero. So we don’t know what number 4 is, but we do know
that a + i = 0, and that therefore a = -i.

What else can you figure out? With enough experimentation,
you can find an ordering: if you start with 2 and add c to it,
you get b. If you keep adding c to it again, you get f, k, h, d,
¢, & j, e, and finally i. Or you could start with i and then
repeatedly add h to it, which will give you the opposite
ordering. Only I and c can step through the entire sequence
of numbers, so we know that they’re -1 and 1, but we don’t
know which is which.

Knowing the ordering, we can figure out most of the rest:
we know that c and h are -1 and 1; g and k are -2 and 2; fand

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 169

jare-3 and 3; and b and e are -4 and 4. We already knew that
a and 7 were -5 and 5.

Which symbol represents +1, c or h?

You can't tell. 2 might be -5, in which case c is +1, or a might
be +5, in which case ¢ would be -1. Since our only clue is
addition, there’s absolutely no way that we can tell which
numbers are positive and which are negative. We know that
i and j are the same sign, but we don’t know which sign that
is!

The reason that we can't tell which sign is which is because
addition of integers is symmetric. You can change the signs
of the numbers, but according to everything you can do with
addition, the change is invisible.

Using my letter representation, I can write an equation, a +
c¢=b, knowing thata=5,b=4,and c=-1: 5+-1=4. Then I
can switch all of the signs in my representation, and the
equation still works: -5 + 1 =-4. In fact, any equation which
relies only on addition can't tell the difference when the
signs are switched. When you looked at the crypto-addition
puzzle, the symmetry of addition meant that nothing you
could do could tell you which numbers were positive and
which were negative.

That’s a simple example of what symmetry means. Symmetry
is an immunity to transformation. If something is symmetric,
that means that there is something you can do to it, some
transformation you can apply to it, and after the transforma-
tion, you won't be able to tell that any transformation was
applied.

That basic idea of a set of values with one operation is the
heart of what'’s called group theory. Group theory is all about
symmetry, and it’s built around the fact that every kind of
symmetry can be described in terms of a group.

A group is exactly what we were looking at in the example
before. It’s a set of values with one closed operation. To be
formal, a group consists of a tuple (S, +), where S is a set of
values, and + is a binary operation with the following
properties.

Closed For any two values, a,b €S,a+b €S.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 170

Associativity For any three values, a, b, c €5, a+ (b +¢c) =
(a+b)+c.

Identity There is a value 0 € S, where for any value s €5,
O+s=s+0=s.

Inverse For every value a in S, there is another value b in S
wherea+b=0b+a=0.bis called the inverse element of a.

If the operation satisfies those rules, then you have a group.
When something is a group, there is a transformation asso-
ciated with the group operator that is undetectable within
the structure of the group. Exactly what that transformation
is depends on the specific values and operation that’s asso-
ciated with the group. For convenience, most of the time
when we're talking about a group, we’ll write the group
operation using a plus sign, but it doesn’t have to be addi-
tion: the group operation can be anything that satisfies the
constraints we listed. We'll see some examples in a bit that
use different operations to form a group.

When we talk about symmetry in groups, we say that the
operation of a group produces an effect that is invisible
within the group. The “within the group” part is important:
when you apply an operation other than the group operation,
you can detect the change. For example, with our crypto-
arithmetic puzzle, if you could do multiplication, then you
could tell ¢ apart from h: ¢ times b is ¢, and c times e is b,
which would tell you that ¢ must be -1. Multiplication isn’t
part of the group, so when you use it, you're no longer
symmetric.

Think back to the intuitive idea of mirror symmetry: the
integer addition group is the mathematical description of a
mirror! What mirror symmetry means is that if you draw a
line through an image and swap what’s on the left-hand side
of it with what’s on the right-hand side of it, the mirror-
symmetric image will be indistinguishable from the original
image. That’s exactly the notion that we’ve captured with
the group formed by real numbers with addition. The con-
struction of addition-based groups of numbers captures the
fundamental notion of mirror symmetry: it defines a central
division (0), and it shows how swapping the objects on
opposite sides of that division has no discernible effect. The

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 171

only catch is that we're talking about integers, not images.
Later on, we’ll look at how to take the symmetry defined by
a group and apply it to other kinds of things, like applying
the mirror symmetry of integer addition to a picture.

Different Kinds of Symmetry

There are more kinds of symmetry than just mirrors. For
example, look at the folloiwng figure, which shows multiple
symmetries on a hexagon. A hexagon has two different kinds
of mirror symmetries. But going beyond the mirror symme-
try, it also has rotational symmetry: if you rotate a hexagon
by 60 degrees, it’s indistinguishable from the hexagon before
rotation.

Figure 12—Multiple symmetries—hexagon: Hexagons have
multiple symmetries—two kinds of mirror symmetry and a
rotational symmetry.

All sorts of transformations can be described by groups as
long as there’s some way in which the transformation can
be performed without producing a visible effect. For
example, all of the following are possible symmetric trans-
formations that can be described by groups.

Scale Symmetry of scale means that you can change the size
of something without altering it. To understand this,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 172

think of geometry, where you're interested in the funda-
mental properties of a shape —the number of sides, the
angles between them, the relative sizes of the sides. If
you don’t have any way of measuring size on an abso-
lute basis, then an equilateral triangle with sides 3
inches long and an equilateral triangle with sides 1 inch
long can't be distinguished. You can change the scale
of things without creating a detectable difference.

Translation Translational symmetry means you can move
an object without detecting any change. If you have a
square grid like graph paper drawn on an infinite can-
vas, you can move it the distance between adjacent lines,
and there will be no way to tell that you changed
anything.

Rotation Rotational symmetry means you can rotate some-
thing without creating a detectable change. For example,
if you rotate a hexagon by 60 degrees without any
external markings, you can't tell that it’s rotated.

Lorentz Symmetry In physics, if you have a laboratory in a
spaceship that isn't accelerating, no lab result conducted
inside the spaceship will be affected by the speed of the
ship. If you did an experiment while the ship was trav-
eling at one mile per hour away from Earth, the results
would be exactly the same as if the ship were traveling
at 1000 miles per hour.

A single set of values can have more than one kind of sym-
metry by forming it into groups that pair it with different
operations. For example, in Figure 13, Multiple symmetries—a

tiling pattern, on page 173, you can see at least four basic

symmetries: mirror symmetry, rotation symmetry, transla-
tion symmetry, and color-shift symmetry.

Groups start to explain in a mathematical way what symme-
try is. The way we’ve looked at it so far has one big problem:
it’s limited to things that we can manipulate algebraically.
We defined mirror symmetry using numbers and addition,
but when we think about mirror symmetry, we're not
thinking about numbers! We're thinking about pictures and
reflections, about what things that are symmetric look like.
How can we take this basic idea of group symmetry and

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets * 173

Figure 13—Multiple symmetries—a tiling pattern: This tiling
pattern has many symmetries: mirror, rotation, translation, and
color-shift.

expand it so that it makes sense for talking about real-world
objects?

What we can do is introduce something called a group action.
A group action allows you to take the symmetry of a group
and apply it to other things. To understand the group action
and how to use groups to describe symmetry in general, the
easiest approach is to look at something called permutation
groups.

Before we go into the formal math of the permutation groups
and how they lead to group actions, we're going to take a
brief diversion into history to see where group theory came
from.

Stepping into History

Before group theory was invented, the notion of symmetry
was first captured mathematically in what we now call the
permutation groups. The study of permutation groups was
the reason group theory was originally created!

www.it-ebooks.info

report erratum - discuss


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 174

Group theory was developed as a part of the algebraic study
of equations. During the nineteenth century, mathematicians
were obsessed with finding ways to compute the roots of
polynomials. This obsession reached the point where it
became a spectator sport: people would assemble in audito-
riums to watch master algebraists race to be the first to
compute the solutions to a polynomial! The holy grail to
these competitive equation-solvers was a simple equation
that could yield the solutions to a polynomial.

What they wanted was something like the quadratic equation
but for polynomials with larger exponents. Anyone who’s
taken any high-school math has seen the quadratic equation:
it tells you exactly how to find all of the roots of any simple
quadratic polynomial. If the polynomial is arranged in the
order ax’ + bx + ¢ = 0, then the quadratic equation says this:

—b+V B> —dac

2a

X =

Just fill in the specific values of a, b and ¢, and do the arith-
metic, and you’'ve got the roots of the equation! There are
no tricks that you need to know how to do, no clever
manipulations of the polynomial, no factoring or rewriting.
We're used to it, so it doesn’t seem to be a big deal, but being
able to just extract the solution to a polynomial with a simple
mechanical process is an amazing thing!

The quadratic solution has been known for a very long
time — there are records dating back to the Babylonians that
contain forms of the quadratic equation. Even starting from
scratch, deriving the quadratic equation is easy enough that
many high-school math classes go through the derivation.
Since it’s so easy for the quadratic, you might think that
doing the same thing for polynomials with higher powers
might not be too difficult. It turns out that it’s very difficult.
The quadratic equation was known hundreds of years before
the common era, but it took until the middle 1500s to find a
solution to the cubic (third power) and quartic (fourth
power) equations. After the quartic was discovered in 1549,
there was no progress in finding root equations for hundreds
of years.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 175

Finally, in the nineteenth century, two men named Niels
Henrik Abel (1802-1829) and Evariste Galois (1811-1832),
both very young and very unlucky mathematicians, simul-
taneously proved that there was no general solution for
quintic equations (fifth power). Galois did it by recognizing
that there are fundamental symmetries in the solutions of
polynomials. By identifying what those symmetry properties
were, he showed that you couldn’t derive a single equation
to solve all of the quintic equations. He showed that there
was no possible way to get a general solution because of the
properties of permutation groups for those equations.

Abel and Galois were both amazing young men, and both
died tragically young.

As a young student in Norway, Abel derived what he
believed to be the solution to the quintic polynomials. He
later went on to discover the error in his solution and to
broaden that into a description of the symmetry properties
of polynomial equations that showed that there was no
general solution for polynomials with degrees higher than
four. While traveling to Paris to present his work to the
French academy of mathematics, he became infected with
tuberculosis, the disease that eventually killed him. On a
trip home for his own wedding, weakened by his tuberculo-
sis, he became ill with pneumonia and finally died. While
he was home, dying, he finally received an appointment to
a professorship of mathematics at a university in Berlin, but
he never learned of it and never received the recognition he
deserved for his work.

The story of Galois is even sadder. Galois was a mathematical
prodigy. He started publishing his own original mathematical
work on the subject of continued fractions when he was just
sixteen years old! He submitted his first paper on the symmetric
properties of polynomials just one year later, at the ripe old age
of seventeen. Over the next three years, he wrote three papers
that defined the entire basis of what became group theory. Just
one year after that, he died in a duel. The exact circumstances
aren’t known for certain, but from letters he sent days before
his death, it appears that one of the greatest mathematical minds
of the nineteenth century died at the age of twenty-one in a
duel over a failed love affair.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 176

The Roots of Symmetry

Galois and Abel independently discovered the basic idea of
symmetry. They were both coming at the problem from the
algebra of polynomials, but what they each realized was
that underlying the solution of polynomials was a fundamen-
tal problem of symmetry. The way that they understood
symmetry was in terms of permutation groups.

A permutation group is the most fundamental structure of
symmetry. As we'll see, permutation groups are the master
groups of symmetry: every kind of symmetry is encoded in
the structure of the permutation group.

Formally, a permutation group is a simple idea: it’s a struc-
ture describing all of the possible permutations, or all of the
possible ways of rearranging the elements of a set. Given a
set of objects, O, a permutation is a one-to-one mapping from
O to itself, which defines a way of rearranging the elements
of the set. For example, given the set of numbers {1, 2, 3}, a
permutation of them is {12, 23, 3—>1}. A permutation group
is a collection of permutations over a set, with the composi-
tion of permutations as the group operator.

For example, if you look at the set {1, 2, 3} again, the elements
of the largest permutation group are { { 11, 22, 323 },
{1-1,2-3,3-2},{1-2,2->1,3->3}, {12, 23,31},
{1-3,2-1,3-2)},{1-3,2-2,3—>1}}.

To see the group operation, let’s take two values from the
set. Let f = {12, 23, 3—1} and let g = {13, 22, 3—>1}.
Then the group operation of function composition will
generate the result: f* g={1-2, 21, 33}

To be a group, the operation needs to have an identity value.
With permutation groups, the identity is obvious: it’s the
null permutation: 1, ={1-1, 22, 3—3}. Similarly, the group
operation needs inverses, and the way to get them is obvious:
just reverse the direction of the arrows: { 123, 21, 32}
={3-1,1-2,2-3}.

When you take the set of permutations over a collection of N
values, the result is the largest possible permutation group over
those values. It doesn’t matter what the values are: every collec-
tion of N values effectively has the same permutation group.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 177

That canonical group is called the symmetric group of size N, or
Sy- The symmetric group is a fundamental mathematical object:
every finite group is a subgroup of a finite symmetric group,
which in turn means that every possible symmetry of every
possible group is embedded in the structure of the correspond-
ing symmetric group. Every kind of symmetry that you can
imagine, and every kind of symmetry that you can’t imagine,
are all tied together in the symmetry groups. What the symme-
try group tells us is that all symmetric groups are really, under
the hood, different reflections of the same thing. If we can define
a kind of symmetry on one set of values with a group operation,
then by the fundamental relationship illustrated by the symmet-
ric group, we can apply it to any group, as long as we do the
mapping in a way that preserves the fundamental structure of
the symmetric group.

To see how that works, we need to define a subgroup. If you
have a group (G,+), then a subgroup of it is a group (H,+)
where H is a subset of G. In English, a subgroup is a subset
of the values of a group that uses the same group operator
and that satisfies the required properties of a group.

For example, given the group made from the set of real
numbers combined with addition as the group operation,
then the set of integers is one of its subgroups. We can show
that the integers with addition are a group because it’s got
the necessary properties: any time you add any two integers,
the result is an integer, which means that its arithmetic is
closed over addition, the arithmetic inverse of an integer is
an integer, and so on. You can work through the other two
properties required of a group, and it will satisfy them all.

We're finally ready to get to the general symmetry of groups.
As we said before, groups define a particular kind of sym-
metry as immunity to transformation. Defining that precisely
for a specific collection of values, figuring out the group
operator, and showing that it all works properly is a lot of
work. We don’t want to have to define groups and group
operators for every set of values that we see as symmetric.
What we'd like to do is capture the fundamental idea of a
kind of symmetry using the simplest group that really
exhibits that kind of symmetry and then able to use that
group as the definition of that kind of symmetry. To do that,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 178

we need to be able to describe what it means to apply the
symmetry defined by a group to some set of values.

We call the transformation of a set produced by applying a
symmetric transformation defined by a group G as the group
action of group G.

Suppose we want to apply group G as a symmetric transfor-
mation on a set A. What we can do is take the set A and
define the symmetric group over A, S,. Then we can define
a specific type of strict mapping called a homomorphism from
the group G to S 4. That homomorphism is the action of G on
the set A. In our definition (following) of the group action,
the constraint basically says that the action preserves the
structure of the symmetry group. Here it is in formal terms:

If (G,+) is a group and A is a set, then the group action of G
on A is a function f such that

1. VgeG:YacA:fig+h, a) = f(g fh a)
2. VaeA:f(lG,a)=a

All of which says that if you've got a group defining a
symmetry and a set you want to apply a symmetric transfor-
mation to, then there’s a way of mapping from the elements
of the group to the elements of the set, and you can perform
the symmetric group operation through that map. The group
action is an application of the group operation through that

mapping.
Let’s see how that works in terms of an image. In Figure 14,
Mapping a group to a set, on page 179 you can see a mirror-

symmetric image. Mirror-symmetry is described by the
group of integers with addition. The way that we can show
the symmetry of the image with the group action is to divide
the image into rows. On each row, we take the blocks and
assign a mapping between the blocks and the integers.
Clearly, the result is a subgroup of the integers.

To see the symmetry in terms of the group action, we can
divide it into columns and map those columns onto integers.
The symmetry of the image is exactly the symmetry of the
integers in the mapping. To illustrate that in the image, I've

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

20. Group Theory: Finding Symmetries with Sets ® 179

41312111123 |4

Figure 14—Mapping a group to a set: Therelationship between
the symmetry of the integers and the mirror symmetry of a simple
bitmap image is illustrated here by showing the mapping that
underlies the group action.

pulled out one row and written the mappings onto the
blocks.

By exploiting the deep relation between all symmetric
structures, we can apply the symmetry of any group to any
other group of values using the group action. It’s amazing
to realize, but every kind of symmetry we can imagine is
really exactly the same thing. From mirrors to the theory of
special relativity, it’s all the same simple, beautiful thing.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Part VI

Mechanical Math

One of my favorite areas of math should be obvious given what I do
for a living. I'm a computer scientist, and I've spent my career
building software. In particular, I've worked as both a researcher
and an engineer at a several different companies, building software
that other people use to build software, like programming languages,
compilers, build systems, and development tools.

So what area of math am I talking about? Computation. Computation
is the branch of math that studies what kinds of things machines can
do. Long before anyone had actually built a real computer of any
kind, mathematicians and logicians set the groundwork for what
became the field of computer science. They designed theoretical
machines, computing systems, and logics, and they studied what
was possible using those theoretical constructs. In addition to being
a theoretical model of the machines that we use, the theory of com-
puting formed the foundation of the programming languages that
are my obsession.

In this part of the book, we're going to take a look at the mechanical
marvels that were designed by these people and see how we can use
them to understand what machines can do and what they can tell us
about not just machines, but about information in the world we live
in.

We'll begin with a quick tour of different kinds of computing devices.
We'll start with something so simple that it can’t even count, but that

www.it-ebooks.info


http://www.it-ebooks.info/

Part 6. Mechanical Math ¢ 182

I and many other programmers around the world use every day.
Then we’ll make a jump to the Turing machine, which is one of the
fundamental theoretical machines that is used to study the limits of
computation. Then for a bit of fun, we’ll peek at a variant of some-
thing called the P” (pronounced “P prime-prime”) machine, which
was implemented as one of the most bizarrely delightful program-
ming languages ever designed.

Finally, we’ll end this survey by looking at A calculus. A calculus is
another foundational theoretical model. It’s a bit harder to understand
than the machines because it’s less concrete, but it's widely used in
practice. I use it every day! At my job, I use a programming language
called Scala, and Scala is just a fancy syntax for A calculus.

www.it-ebooks.info


http://www.it-ebooks.info/

21

Finite State Machines:
Simplicity Goes Far

When mathematicians and computer scientists try to describe
computation, we start with very simple machines and then
gradually add capabilities, creating different kinds of
machines that have different limits until we get to the most
complex machines that can be built.

We're not going to go through all of the possible classes of
computing devices—that would take a much longer book
than this one! Instead, we’ll look at the two types of machines
that form the limits: the most limited simple machines and
the most powerful complex ones.

We'll start looking at computing by looking at the simplest
kind of computing machine that does anything useful. This
type of machine is called a finite state machine (or FSM for
short). In formal writing, it’s also sometimes called a finite
state automaton. A finite state machine’s computational abil-
ities are limited to scanning for simple patterns in a string
of characters. When you see how trivial they are, it might
be hard to imagine that they’re useful for much. In fact, as
we'll see, every computer you've ever used is really just a
very complicated finite state machine.

The Simplest Machine

Finite state machines are very limited. They can’t count, and
they can't recognize deep or nested patterns. They really
don’t have much in the way of computational power. But

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far * 184

they're still very useful. Every modern programming lan-
guage has finite state machines in the form of regular
expressions built in or provided by a library.

So let’s look at how the machines work. A finite state
machine really only does one thing: it looks at a string of
characters and determines whether or not that string of
characters fits some pattern. To do this, the machine has a
small piece of state consisting of a single atomic value, called
the state of the machine. When it’s performing a computation,
the FSM is allowed to look at exactly one character of input.
It’s not allowed to sneak a peak ahead, and it’s not allowed
to look at any previous characters to see how it got into its
current state. It just iterates over the characters in order,
looking at each character exactly once, and then answers
either yes or no.

Let’s get precise.

An FSM processes strings of symbols in a specific alphabet.
For example, in most programming languages, you can
define regular expressions that work on either ASCII charac-
ters or unicode codepoints.

The machine itself consists of these parts:
e A set of states, which we’ll call S.

® One special state, i from S, that we call the initial
state—whenever we try to process a string using a finite
state machine, the machine starts in this state.

* A subset of S that we'll call f—these are the final states
of the machine. If after processing all of the characters
in an input string, the machine is in one of the states in
this set, then the machine’s answer for the string will be
yes; otherwise it will answer no.

* Finally, there’s ¢, which is the machine’s transition rela-
tion—the transition relation defines how the machine
behaves. It maps pairs of machine states and input
symbols to target states. The way that it works is this:
if there is a relation (g, x) — b, that means that when the
machine is in state a and it sees an input symbol x, it
will switch to state b.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 185

The machine starts to look at an input string in state i. For
each symbol in the input string in sequence, it performs a
single transition, consuming that input symbol. When it’s
consumed every symbol in the input string, if it’s in a state
that’s part of the set f, then it accepts the string.

For example, we can create a machine that accepts strings
that consist of any string containing at least one 4, followed
by at least one b.

* The alphabet for our machine is made up of the charac-
ters a and b.

e The machine has four states: { 0, A, B, Err }. Of these, 0
is the initial state, and b is the only final state.

¢ The state relation is shown in the following table about
the AB finite state machine.

FromState Char ToState

0 a A
0 b Err
A a A
A b B
B a Err
B b B
Err a Err
Err b Err

In general, we don't write out the table like that; we can just
draw the machine. The machine we're talking about is shown
in Figure 15, The AB finite state machine, on page 186. Each
state gets drawn as an oval, the initial state is marked with

an arrow, the final states are marked with either a double
outline or a bold outline, and the transitions are drawn as
labeled arrows.

Let’s step through a couple of input strings to see how it
works.

* Suppose the input string is aaabb.

1. The machine starts in state 0.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far * 186

a b

Sielos

\5@4——’ a
Figure 15—The AB finite state machine

It consumes the first character in the string, 4, and
it takes the transition from 0 to A.

The remaining input is aabb. It follows the transition
for a from state A to A.

The remaining input is now abb, so now the machine
processes the next a. It does exactly the same as the
previous step, so it ends up staying in state A.

The remaining input is bb. It consumes a b, following
the transition from A to B.

The remaining input is now just b. It consumes the
last b, following the transition from B to B.

There’s no input left. The machine is in state B,
which is a final state, so the machine accepts the
string.

* Suppose the input is baab.

1.
2.
3.

The machine starts in state 0.
It consumes the first b, which moves it to state Err.

The rest of the characters get consumed one at a
time, but all of the transitions from Err in this
machine return to Err: it's a dead end. Once it’s
consumed all of the characters, the machine will
still be in Err, which isn’t a final state, so it won't
accept the string.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 187

¢ Suppose the input is the empty string.
1. The machine starts in state 0.

2. Since there are no characters in the input, the
machine never runs any transitions, so it ends in
state 0. Since state 0 isn’t a final state, it doesn’t
accept the empty string.

When you look at this, it’s really a trivial machine. It seems
like there’s very little that it can do. And yet, at least in the-
ory, any computation that can be performed with a fixed,
finite amount of state can be implemented with a machine
this simple. Everything that I can do on the computer that
I'm typing this on is doable using a finite state machine. It
would have a huge number of states and an insanely com-
plex state transition function, but it would be doable.

Finite State Machines Get Real

FSMs are great, but if you want to use something like an
FSM in a real program, you probably don't want to try to
figure out the whole transition relation and write it all out
in code. When we really use a language processed by an
FSM, the transition relation contains hundreds of transitions.
It’s just hard to write it out correctly. Fortunately, we don’t
have to. There’s another way of writing an FSM: regular
expressions. If you're a programmer, you're almost certainly
already familiar with regular expressions: they’re ubiquitous
in real programs, and they're the way that we use FSMs.

Regular expressions aren’t quite a way of writing the FSM.
They're a syntax for writing down the language that an FSM
should accept. Given a regular expression, you can translate
it into many different possible FSMs, but they’ll all end up
doing the same thing. That’s how programming languages
do regular expressions: the programmer writes a regular
expression and passes it to a compiler in a regular expression
library, and the regular expression library translates regular
expressions into FSMs, and then the regular expressions run
the FSMs on input strings.

We're going to look at the simplest version of regular
expressions. In most regular expression libraries, they have
many more options for how to write things than what we're

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far * 188

going to walk through. That’s OK, because all of the addi-
tional features in the fancy regular expression syntaxes are
just shorthands for the simple syntax that we’ll use. The
simple syntax is easier for us to talk about because we don't
need to consider so many different options. In our syntax,
a regular expression consists of the following;:

Literal Characters A literal is just a character from the
alphabet, such as a. A literal character exactly matches
the character.

Concatenation If R and S are regular expressions, then RS is
a regular expression. The language matched by RS is
the concatenation of a string matched by R followed by
a string matched by S.

Alternation Alternation describes a choice. If R and S are
regular expressions, then RIS is a regular expression,
that matches anything matched by either R or S.

Repetition (aka Kleene closure) If R is a regular expression,
thenR isa regular expression. R matches any sequence
of zero or more strings matched by R concatenated
together.

As a shorthand, we can also write R', which means the
same thing as RR, to match at least one repetition of
something matched by R.

You can also use parentheses to group expressions in alter-
nation, to make it easier to write choices between larger
alternatives.

A few examples of regular expressions:

(alblcld) Any string of any length made from the characters
a, b, ¢, and d, so it matches things like abcd, aaaa, ab,
dabcbad, and so on

(alb)(cld)" A string of any length made of a’s and b, fol-
lowed by a string of any length of c¢’s and d’s so it
matches things like ababbbacdcdcccc, ab, b, ¢, cdedddcc, and
ddcc

(ab)*(cld)” A string of any number of repetitions of the
sequence ab followed by any number of ¢’s and d’s —this
matches ababababcceed, abec, ab, and so forth.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far * 189

a'b (cd) (e f) Strings consisting of at least one g, followed any
number of b’s (including zero), followed by any number
of repetitions of cd, followed by either a single e or a
single f.

When you look at finite state machines and regular expres-
sions and you consider how they actually work, they seem
to be so trivial that they shouldn’t be useful for much. But
that’s not the case at all. Libraries that let programmers use
regular expressions are one of the first things that any lan-
guage designer adds to a new programming language,
because no one would use a language without it.

Regular expressions make programmers’ lives much easier.
In real code, we constantly need to decompose strings based
on some pattern. Regular expressions make that really easy
to do. For example, I used to work on a program that
described how to build complex software systems consisting
of many components. One of the basic pieces of that system
was called a target. A target was a string that specified a
component in the system formatted as a sequence of direc-
tory names followed by the name of a file containing build
directives, followed by the name of a specific directive in
that file, like “code/editor/buffer/BUILD:interface.” One of
the things that I needed to do all the time was take a target
and split it into the three pieces: the directory path, the file-
name, and the target name. So I put together a regular
expression: “(.*)+/([A-Za-z]+):([A-Za-z]+).” The part of the
string that matched the “.*” was the directory path; the part
in the second parenthesis was the filename, and the part in
the last parenthesis was the target name. That’s typical of
how we use regular expressions, and it’s a facility that no
programmer wants to live without.

Bridging the Gap: From Regular Expressions to
Machines

Earlier I said that when regular expression libraries are
implemented in programming languages, the way that they
work is by converting regular expressions to finite state
machines and then using the FSM that they generated to
process input strings.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 190

Doing the translation from the regular expression to an FSM
is interesting. There are several different ways of converting
aregular expression to an FSM. It’s not a one-to-one transla-
tion. Depending on which method you choose, you can wind
up with different FSMs for the same regular expression. (In
fact, theoretically, there are an infinite number of different
finite state machines for each regular expression!) Fortunate-
ly, that doesn’t matter, because all of the different FSMs that
you can generate for a particular regular expression will
process exactly the same language and will do it in exactly
the same amount of time. We're going to use the method
that I think is the easiest to understand, called Brzozowksi
derivatives, or simply the derivative of a regular expression.

The idea of the derivative is that you can look at a regular
expression and ask, “If I give this regular expression one
input character, what would it accept after that character?”

In formal terms, let S(r) be the set of strings accepted by the
regular expression r. Then if you have a regular expression
r and a character c, the derivative of r with respect to ¢
(written D (r)) is a regular expression " such that t € 5(r') if
and only if ct € S(r).

For example, if you had a regular expression ab’, then the
derivative with respect to a would be ab .

If we know how to compute the derivative of a regular
expression, then to convert from a regular expression, we
can do the following:

1. Create aninitial state, labeled with the complete regular
expression 7.

2. While there are states r; in the machine that haven't been
processed yet,

a. For each character, ¢, in the alphabet, compute the
derivative r’;

b. If thereis a state ’; already in the machine, then add
a transition from r; to #’; labeled with symbol c; and

c. If there is no state r’;, then add it and add a transi-
tion from ; to r’; labeled with the symbol c.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Q00 © 00

21. Finite State Machines: Simplicity Goes Far ® 191

3. For each state in the machine labeled with a regular
expression r, mark it as a final state if and only if r can
match the empty string.

Computing the derivative is complicated, not because it’s
difficult but because there are a lot of cases to cover. I think
that the easiest way to understand the process is to look at
an implementation of it. We'll walk through it, looking at
code that computes it in Haskell.

First, we need to declare how we're going to represent reg-
ular expressions. The Haskell code is very straightforward.
A regular expression is defined exactly the way that we
described it earlier: it’s a specific character, a choice between
multiple regular expressions, a sequence of regular
expressions, or a repetition. For the Haskell, we’ll add two
alternatives that will make implementing the derivative
easier: VoidRE, which is a regular expression that never
matches anything, and Empty, which is a regular expression
that only matches an empty string.

computing/deriv.hs

data Regexp = CharRE Char
| ChoiceRE Regexp Regexp

| SeqRE Rexexp Regexp

| StarRE Regexp

| VoidRE

| EmptyRE

deriving (Eq, Show)

To compute the derivative of a regular expression, we need
to be able to test whether or not a given regular expression

can accept the empty string. By convention, we call that
function delta.

computing/deriv.hs

delta :: Regexp -> Bool

delta (CharRE c) = False

delta (ChoiceRE re one re two) =
(delta re one) || (delta re two)

delta (SeqRE re one re two) =
(delta re one) && (delta re two)

delta (StarRE r) = True

delta VoidRE = False

delta EmptyRE = True

O A regular expression that only matches a specific char-
acter can’t match the empty string.

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/computing/deriv.hs
http://media.pragprog.com/titles/mcmath/code/computing/deriv.hs
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 192

© A choice between two regular expressions can match
an empty string if either (or both) of its alternatives can
match an empty string.

© One regular expression followed by a second regular
expression can match an empty string only if both of the
regular expressions can match the empty string.

O A starred regular expression matches zero or one repe-
titions of a pattern. Zero repetitions is the empty string,
so any starred regular expression can match the empty
string.

© The void-regular expression never matches anything,
so it can’t match the empty string.

O By definition, the empty regular expression matches the
empty string.

With delta out of the way, we can finally see how the
derivative works!

computing/deriv.hs

derivative :: Regexp -> Char -> Regexp
derivative (CharRE c) d =
if c ==

then EmptyRE
else VoidRE
derivative (SeqRE re one re two)) c =
let re one' = (derivative re one c)
in case re_one' of
VoidRE -> VoidRE
EmptyRE -> re two
_ -> if (delta re one)
then (ChoiceRE (SeqRE re one' re two) (derivative re two c))
else (SeqRE re one' re_two)
derivative (ChoiceRE re one re two) c =
let re one' = (derivative re one)
re two' = (derivative re two)
in case (re one', re two') of
(VoidRE, VoidRE) -> VoidRE
(VoidRE, nonvoid) -> nonvoid
(nonvoid, VoidRE) -> nonvoid
_ -> (ChoiceRE re one' re two')
derivative (StarRE r) c =
let r' = derivative r ¢
in case r' of
EmptyRE -> (StarRE r)
VoidRE -> VoidRE
_ -> (SeqRE r' (StarRE r))

www.it-ebooks.info


http://media.pragprog.com/titles/mcmath/code/computing/deriv.hs
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 193

© derivative VoidRE ¢ = VoidRE
derivative EmptyRE c = VoidRE

The derivative of a single-character pattern CharRE c with
respect to a character k is empty if k = c, because the reg-
ular expression matched the character; otherwise it’s a
value representing failure, which we’ll call void, because
the match failed.

The derivative of a sequence is the hardest thing to
understand because there are a lot of subtle cases. We
start by taking the derivative of the first regular
expression. If that is void, that means that it can’t possi-
bly match, then the sequence can’t match, so the
derivative of the sequence is void as well. If the deriva-
tive of the first regular expression is empty, then it
definitely matches and the derivative is just the second
regular expression. If the derivative of the first is neither
empty nor void, then there are two subtle choices: the
obvious one is that the derivative of the sequence would
be the derivative of the first regular expression followed
by the second expression. But if the first regular
expression could match an empty string, then we also
need to consider the case where the first regular
expression matches the empty string.

This case is easy: the derivative of a choice is a choice
between the derivatives of the alternatives.

A starred regular expression is basically a choice
between the empty string or a sequence consisting of a
single instance of the starred expression followed by the
star. That’s hard to parse in English, but if we write it
in a regular expression, R* = empty | (R(R*)).

Both void and empty can’t match a character, so their
derivative with respect to any character must be void.

Let’s try looking at an example of this process. We'll start

with a regular expression that describes the same language

as the machine in Figure 15, The AB finite state machine, on

page 186: aa b’

1.

The initial state of the machine will be labeled with the
entire regular expression.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far * 194

2.  From the initial state, we need to take two derivatives,

one with respect to 2 and one with respect to b:

a.

The derivative with respect to “a” is ab,soweadd
a state with that regular expression and connect the
initial state to it with an arc labeled a.

The derivative with respect to b is void because the
regular expression doesn’t allow a string to start
with b. So we add a void state to the machine and
an arc from the initial state to void labeled with b.

3. Now, we need to look at the state ab.

a.

The derivative of this regular expression with
respect to a is the regular expression itself. We don’t
need to add a new state since we’ve already got this
one. We just add an arc from the state to itself,
labeled a.

The derivative of this regular expression with
respect to b is b*, so we add a new state to the
machine and an arc from the current state to the
new state labeled with b.

4. We move on to the state b . For that, we'll get an arc
labeled a to void and an arc labeled b from the state to
the state itself.

5. Finally, we need to figure out which states are final. To

do that, we need to compute delta for each state:

a.
b.
C.

d.

delta( aa*b*) is false, so state aa b isn’t final.
delta(, a*b*) is true, so it’s a final state.
delta( b*) is true, so it’s a final state.

delta(void) is false, so it’s not a final state.

The result is a machine that is identical to the machine we

drew in the original figure, except that the state names are
different.

Once you can compute the derivatives of regular expressions,

it’s easy to generate the FSM, and the FSM that you generate

is an efficient way of processing strings. In fact, you can even

use it to implement a lightweight regular expression

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

21. Finite State Machines: Simplicity Goes Far ® 195

matcher that doesn’t need to generate the full FSM in
advance! For each input symbol, you just take the derivative
of the expression. If it’s not the void expression, then go on
to the next character, using the derivative to process the rest
of the string. When you get to the end of your input, if 5 of
the final derivative regular expression is empty, then you
accept the string.

If you do this intelligently, by doing something like memo-
izing the derivative function so that you're not constantly
recomputing derivatives, this ends up being a reasonably
efficient way to process regular expressions. (Memoization
is a technique where you save the results of every invocation
of a function, so that if you call it repeatedly with the same
input, it doesn’t redo the computation, but just returns the
same result as the last time it was called with that input.)

That’s the finite state machine, the simplest kind of comput-
ing machine. It’s a really useful kind of machine in practice,
and it’s also genuinely interesting as an example of how
machines work.

When we think about the computers that we use every day,
we informally say that they’re more powerful than a finite
state machine. But in reality, that’s not true. To be more
powerful than an FSM, a machine needs to have an infinite
(or at least unbounded) amount of storage, and the comput-
ers we use are obviously finite. As trivial as it seems, this is
the reality of computers: since every real computer only has
a finite amount of storage, computers are really all finite
state machines. As finite state machines, they’re huge: without
considering disk storage, the computer that I'm using to
write this book has about 2°>2°%0% possible states! Because
of the quantity of storage that they have, they’re insanely
complicated finite state machines. We don’t normally think
of them as incomprehensibly large FSMs, because we know
that we can’t understand an FSM with more possible states
than there are particles in the known universe! Instead, we
think of them as limited examples of a more powerful type
of computing machine (like the Turing machine that we’ll
look at in the next chapter) that combine a small, comprehen-
sible state machine with an unlimited amount of storage.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22

The Turing Machine

One of the greatest names in the history of math is Alan
Turing (1912-1954). Turing was an amazing man who
worked in a ton of different areas, most specifically in
mathematical logic. At the heart of his most well-known
work in computation is a theoretical machine that he
designed as a model of mechanical computation, which is
named the Turing machine in his honor.

The Turing machine isn’t a model of real computers. The
computer that I'm using to write this book has absolutely
nothing to do with the Turing machine in any practical sense.
As a real device, the Turing machine is absolutely terrible.
But that’s because it was never intended to be a real machine!

The Turing machine is a mathematical model not of comput-
ers but of computation. That'’s a really important distinction.
The Turing machine is an easy-to-understand model of a
computing device. It's definitely not the simplest model.
There are simpler computing devices (for example, there’s
a cellular automaton called rule 111 that is dramatically
simpler), but their simplicity makes them harder to under-
stand. The Turing machine strikes a balance between
simplicity and comprehensibility that is, at least in my
opinion, completely unequalled.

The reason that the Turing machine is so important comes
down to the fact that, theoretically, what machine you use
to talk about computation doesn’t matter. There’s a limit to
what a mechanical device can do. There are lots of machines
out there, but ultimately no machine can go past the limit.
Any machine that can reach that limit is, for the purposes

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 198

of understanding computation, pretty much the same as any
other. When we talk about studying computation, what
we're talking about is the set of things that can be done by
a machine—not by a particular machine but by any conceiv-
able machine. The choice comes down to which machine
makes things easiest to understand. And that’s where the
Turing machine stands out: it’s remarkably easy to under-
stand what it does, it’s easy to tweak for experiments, and
it’s easy to use in proofs.

Adding a Tape Makes All the Difference
So let’s take a step back and ask, what is a Turing machine?

A Turing machine is just an extension of a finite state
machine. Just like an FSM, a Turing machine has a finite set
of states and a state relation that defines how it moves
between them based on its input. The difference is that its
inputs come on a strip of tape, and the machine can both
read and write symbols on that tape, something like this:

Figure 16— A Turing machine: A Turing machineis afinite state
machine that can read and write a tape.

The basic idea of the Turing machine is simple. Take a finite
state machine. Instead of feeding an input string directly into
the machine, the way we did with the FSM, write it down onto
a strip of tape. The tape is divided into cells, and each cell has
one character on it. In order to use the tape, the machine has a
head pointing at a cell, and it can either read or write the symbol
on the tape. Like a finite state machine, the Turing machine will
look at an input symbol and decide what to do. In the FSM, the

www.it-ebooks.info

report erratum -

discuss


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine ® 199

only thing it could do was change states and go on to the next
input character. With a Turing machine, it has the tape, so it
can do more things. Each step, it looks at the tape cell under
the head, and based on its state and the contents of the cell, it
can change the state, change the current symbol on the tape,
and move the tape head either left or right.

That’s all that it takes to build a Turing machine. People who
like to make computing sound impressive often have very
complicated explanations of it, but really that’s all there is
to it: it’s a finite state machine with a tape. The point of it
was to be simple, and simple it certainly is. But the important
fact is, if you have a task that can be done mechanically, it
can be done by a Turing machine. Now we’ll see how those
pieces turn into a computer.

To really understand how that trivial machine can do com-
putations, it helps to look at the formal definition of the
machine and the way that it works. In formal mode, a Turing
machine consists of the following pieces:

States A Turing machine has a set of states. At any time, the
machine is in one of those states. Its behavior when it
finds a particular symbol on the tape depends on the
value of its current state. We'll use S for the set of states.

Another way to think of the state is as a small, fixed-size
set of data that the machine can use to make decisions.
But for the Turing machines we're going to look at, we’ll
always use a specific set of states. (You'll see what I
mean in a minute.)

There’s one specific state, called the initial state. When
the machine starts running, before it’s looked at the tape
or done anything, it’s in its initial state.

To tell when the machine is done running, there’s a
second special state called the halting state. When the
machine enters the halting state, it stops, and whatever
is on the tape is the result of the computation.

Alphabet Each machine has a collection of symbols that it
can read from and write to its tape. This set is called the
machine’s alphabet.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine ¢ 200

Transition Function This is the real heart of the machine,
which describes how the machine behaves. For formali-
ty, it’s defined as a function from the machine state and
the alphabet character on the current tape cell to the
action that the machine should take. The action specifies
anew value for the machine’s state, a character to write
onto the current tape cell, and a direction to move the
tape head, either left or right.

For example, let’s look at a classic example of a really simple
Turing machine: one that does subtraction using unary
numbers. A unary number N is written as a series of N “1”s.
In unary notation, for example, the number 4 is written as
1111.

We'll give the machine a tape that contains the two numbers
M and N to be subtracted, written as a string “N - M =." After
running until it halts, the tape will contain the value of M
subtracted from N. For example, if the input tape contains
the characters “1111-11=" (or 4 - 2 in decimal), the output
will be “11” (or 2 in decimal).

1/1// 7 "
, -

The alphabet is the characters (blank space),

(minus sign), and “=" (equals sign).

The machine has four states: scanright, eraseone, subone, and
skip. It starts in the state scanright. Its transition function is
given by the following table:

FromState Symbol ToState  WriteChar Direction

scanright space scanright space right
scanright 1 scanright 1 right
scanright minus scanright minus right
scanright equal eraseone space left
eraseone 1 subone  equal left
eraseone minus HALT space n/a
subone 1 subone 1 left
subone  minus skip minus left
skip space  skip space left
skip 1 scanright space right

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 201

What this machine does is move to the right until it sees the
equals sign; it erases the equals sign and moves to the left,
erases one digit off the second number and replaces it with
the equals sign (so the second number is reduced by one
and the equals sign is moved over one position). Then it
scans back to the minus sign (which separates the two
numbers), erases one digit of the first number, and switches
back to scanning to the right for the equals sign.

So one at a time it erases one digit from each of the two
numbers. When it reaches the equals sign, it starts going
back to erase a digit from the second number; if it hits the
“-" before it finds a digit, it knows that it’s done, so it stops.
That will be clearer if we trace through how the machine
would process a specific input string. In the trace, I'll write
the machine state, followed by a colon, followed by the tape
contents surrounded by [] (square brackets), with the current
tape cell surrounded by {} (curly braces).

State Tape

scanright [{1}1 1 11111-111-=]
scanright [ 1{1})1 1 1111 -111-=]
scanright [ 1 1{1}1 1 111 - 111 =]
scanright [ 1 1 1{1})1 111 - 111 =]
scanright [ 1 1 1 1{1}1 11 - 111 = ]
scanright [ 1 1 11 1{1}11-111 =]
scanright [ 1 1 111 1{1}1 - 111 = ]
scanright [ 1 11111 1{1}- 111 =]
scanright [ 1 1 111111{-}111 =]
scanright [ 11 111111-{1}11 =]
scanright [ 11 111111- 1{1}1= ]
scanright [ 11 111111-11{1}=]
scanright [ 11 111111-111{=} ]
eraseone [ 11 111111-11{1} ]
subone [11111111- 1{1}=1
subone [11111111-{1}1=1]
subone [ 11111111{-}1 1=]
skip [ 1111111{1}-1 1=1]

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 202

State Tape
scanright [ 1 111111 {-}1 1= ]
scanright [ 1 111111 -{1}1= ]
scanright [ 1 111111- 1{1}= ]
scanright [ 11 11111-11{=} ]
eraseone [ 1111111 - 1{1} ]
subone [1111111-{1} =1
subone [ 1111111{-}1=1]
skip [1111111{ 3} 1=1
skip [ 111111{1} -1 =]
scanright [ 1 11111{ 3} 1-=1]
scanright [ 1 1 1111 {-}1 =]
scanright [ 1 11111 -{1} =1
scanright [ 1 1 1111 -1{=} ]
eraseone [ 111111 -{1} ]
subone [111111{-}=1]
skip [111111{} =1
skip [111111{ 3} - =1
skip [ 11111{1} - =
scanright [ 111114} - =]
scanright [ 1 1111{ }- =]
scanright [ 1 1111 {-}=1
scanright [ 1 1111 -{=} 1]
eraseone [ 11111 {-} 1
Halt [ 111114131

The resultis 11111 (5 in decimal). See—it works!

One really important thing to understand here is that we do
not have a program. What we just did was define a Turing
machine that does subtraction. This machine does not take
any instructions: the states and the transition function are
built into the machine. The only thing this specific Turing
machine can do is subtract one number from another. To
add or multiply two numbers, we would have to build
another machine.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 203

Going Meta: The Machine That Imitates Machines

Turing machines like the ones we’ve seen are nice, but
they’re very limited. If all Turing had done was invent a
machine like this, it would have been cool but not really
remarkable. The real genius of Turing was his realization
that this kind of machine was enough to be able to imitate
itself. Turing was able to design a Turing machine whose
input tape contained a description of another Turing
machine —what we would now call a program. This single
machine, known today as a universal Turing machine, could
simulate any other Turing machine and therefore could be
programmed to perform any computation!

That’s the basic idea of what we call a computer, and it tells
us what a computer program really is. The universal Turing
machine (or UTM) isn't just a computing machine: it is a
device that can be turned into any computing machine just
by feeding it a description of the machine you want. And a
computer program, whether it’s written in binary machine
language, lambda calculus, or the latest functional program-
ming language, is nothing but a description of a machine
that does a specific task.

The universal Turing machine isn’t just a machine: it’s a
machine that is able to masquerade as other machines. You
don’t need to build special machines for special tasks: with
the Turing machine, you only need one machine, and it has
the ability to become any other machine that you want.

To understand computing, we play with the Turing machine,
using it as a platform for experiments. Figuring out how to
do things in terms of the simple mechanics of a Turing
machine can be a fascinating exercise: nothing else drives
home quite how simple of a machine this really is.

A great example of Turing machine experimentation involves
the effort to figure out what the smallest possible UTM is.
For years, people figured out how to make the machine
smaller and smaller: seven states and four symbols, five
states and four symbols, four states and three symbols.
Finally, in 2007, a two-state machine with a three-symbol
alphabet (first proposed in A New Kind of Science [Wol02])
was shown to be “Turing complete.” It's been known for a

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine ¢ 204

while that it’s not possible to build a UTM with fewer than
three symbols in its alphabet, so the two/three machine is
now known to be the simplest possible.

Another set of experiments is possible when you start trying
to change the machine and see what effect it has. When you
see how simple the Turing machine is, it seems hard to
believe that it really is a universal machine. What we can do
to probe that is to try adding things to the machine and then
see if they let us do anything that we couldn’t do with a
standard Turing machine.

For example, if you try to do complex computations with a
Turing machine, you end up spending a lot of time scanning
back and forth, trying to find the positions where you need
to do something. We saw this in our simple subtraction
example: even in something as trivial as unary subtraction,
it took some effort to get the forward and backward scanning
right. What if we added a second tape to be used for auxiliary
storage? Would we be able to do anything that we couldn’t
do with a single-tape Turing machine?

Let’s get specific about what we want to do. We're going to
create a new two-tape Turing machine. The input to the
machine is on the first tape, and the second tape will be blank
when the machine starts. As it scans the tape, it can write
markings on the second tape to record information about
the computation in progress. The tapes move together so
that the annotations on the second tape are always lined up
with the things that they annotate. The transition function
is extended to two tapes by having each state transition rule
depend on the pair of values found on the two tapes, and it
can specify symbols to be written onto both tapes.

Does the auxiliary storage tape add any power? No, you can
design a single-tape Turing machine that behaves exactly
the same as the two-tape. You just need to be able to write
two symbols onto each tape cell, and you can do that by
creating a new alphabet, where each alphabet symbol actu-
ally consists of a pair. Take the set of symbols that you can
have on tape 1 and call it A;, and take the set of symbols you
can have on tape 2 and call that A,. We can create a single-
tape Turing machine whose alphabet is the cross-product

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine ® 205

of A; and A,. Now each symbol on the tape is equivalent to
a symbol on tape 1 and a symbol on tape 2. So we’ve got a
single-tape machine that is equivalent to the two-tape
machine. With that change, the single-tape Turing machine
can do exactly the same thing as the two-tape. And if the
fancy augmented-alphabet Turing machine can do it, since
it's a regular one-tape Turing machine, that means that a
universal Turing machine can do it as well!

We could do a lot more. For example, we could lift the
restriction on the heads moving together. A two-tape
machine where the tapes move independently is much more
complicated. But you can still show how a single-tape
machine can do the same things. The two-tape machine can
be much faster at a lot of computations: to emulate the two
tapes, a one-tape machine is going to have to do a lot of
scanning back and forth between the positions of the two
heads. So a single-tape simulation of a two-tape machine is
going to be a whole lot slower. But while it might take it a
lot longer, anything that you can do with a two-tape
machine, you can do with a one-tape.

How about a two-dimensional tape? There are some fun
programming languages that are based on the idea of a two-
dimensional Turing machine." It certainly seems like there’s
a lot of expressibility in the two dimensions. But as it turns
out, there’s nothing doable in two dimensions that isn't
doable in one!

We can simulate a two-dimensional machine with a two-tape
machine. Since we know that we can simulate a two-tape
with a one-tape, if we can describe how to do a two-dimen-
sional machine with a two-tape machine, we’ll know that
we could do it with just one tape.

For a two-tape machine, we map the 2D tape onto the 1D-
tape, as seen in Figure 17, Mapping a 2D tape, on page 206, so

that cell 0 on the 1D tape corresponds to cell (0,0) on the two-
tape, cell (0,1) on the 2D corresponds to cell 1 on the 1D, cell
(1,1) on the 2D is cell 2 on the 1D, and so on. Then we use

1. The esoteric language Befunge (http://catseye.tc/node/Funge-98.html)
is a fun example of programming a two-dimensional universal

Turing machine.

www.it-ebooks.info


http://catseye.tc/node/Funge-98.html
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 206

the second tape for the bookkeeping necessary to do the
equivalent of 2-D tape moves. And we’ve got a 2D Turing
machine simulated with a two-tape 1D; and we know that
we can simulate a two-tape 1D with a one-tape 1D.

N
N\

NN
N

= [\

| |7

Figure 177—Mapping a 2D tape

To me, this is the most beautiful thing about the Turing
machine. It's not just a fundamental theoretical construction
of a computing device; it’s a simple construction of a com-
puting device that’s really easy to experiment with. Consider
lambda calculus for a moment. It’s more useful than a Turing
machine for lots of purposes. In the real world, we write
programs in lambda calculus when no one would build a
real application using a Turing machine program. But
imagine how you'd try things like the alternate constructions
of the Turing machine. It's a whole lot harder to build
experiments like those in lambda calculus: likewise for other
kinds of machines, like Minsky machines, Markov machines,
and so forth.

If you're interested in playing with a Turing machine, I
implemented a simple Turing machine language in Haskell.
You can get the source code and compilation instructions
for it on the website for this book.” You feed it a Turing

2. http://pragprog.com/book/mcmath/good-math

www.it-ebooks.info


http://pragprog.com/book/mcmath/good-math
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine ¢ 207

machine description and an input string, and it will give
you a trace of the machine’s execution like the one discussed.
Here’s the specification of the subtraction machine written
in my little Turing language:

states { "scanright" "eraseone" "subtractOneFromResult"
"skipblanks" } initial "scanright"

alphabet { '1" " ' '=" '-' } blank '

trans from "scanright" to "scanright" on (' ')
write ' ' move right

trans from "scanright" to "scanright" on ('l')
write 'l' move right

trans from "scanright" to "scanright" on ('-"')

write '-' move right
trans from "scanright" to "eraseone" on ('=')
write ' ' move left
trans from "eraseone" to "subtractOneFromResult" on ('1l')
write '=' move left
trans from "eraseone" to "Halt" on ('-')
write ' ' move left

trans from "subtractOneFromResult" to
"subtractOneFromResult" on ('1')
write '1l' move left

trans from "subtractOneFromResult" to "skipblanks" on ('-")

write '-' move left

trans from "skipblanks" to "skipblanks" on (' ')
write ' ' move left

trans from "skipblanks" to "scanright" on ('1'")
write ' ' move right

The syntax is pretty simple:

e The first line declares the possible states of the machine
and what state it starts in. This machine has four possible
states: “scanright,” “eraseone,” “subtractOneFromRe-
sult,” and “skipblanks.” When the machine starts, it will

be in the "skipright" state.

® The second line declares the set of symbols that can
appear on the tape, including what symbol will initially
appear on any tape cell whose value wasn’t specified
by the input. For this machine, the symbols are the digit
1, a blank space, the equals sign, and the subtraction
symbol; the blank symbol is on any tape cell whose ini-
tial value wasn't specified.

» After that is a series of transition declarations. Each
declaration specifies what the machine will do for a
given pair of an initial state and a tape symbol. So, for

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

22.The Turing Machine * 208

example, if the machine is in state "scanright" and the
current tape cell contains the equals sign, then the
machine will change to state "eraseone," write a blank

onto the tape cell (erasing the
tape cell one position to the left.

sign), and move the

That’s the machine that changed the world. It’s not a real
computer, and it’s got very little to do with the computer
that’s sitting on your desk, but it’s the one that laid the
groundwork not just for our computers but for the entire
concept of computation. As simple as it is, there’s nothing
that you can do with any computer that you can’t do with
a Turing machine.

The fundamental lesson of the Turing machine is that com-
putation is simple. It doesn’t take much to make it work. In
the next chapter, we'll take a look at computation from a
different, mind-warping direction; and in the process, we’ll
explore just what a computing system needs in order to be
able to do any possible computation, just like a Turing
machine.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23

Pathology and the
Heart of Computing

In computer science-speak, we say that a computing system
is “Turing complete” if it can do the same computations as
a Turing machine. That’s important because the Turing
machine is an example of the maximum capability of any
mechanical computer. The capability of a Turing machine
can be matched, but never exceeded. If a computing device
can do the same computations as a Turing machine, then it
can do everything that any computer can do. Understanding
that, we'd like to understand what a machine needs to be
Turing complete. How hard is it to make machines that can
perform any possible computation?

The answer is, surprisingly easy.

Computers can do amazingly complicated things, and
because of that, we expect that they must be complicated.
Our experiences with these devices seems to support our
expectation of complexity: the computer on which I'm typing
has 292 million switches in its CPU alone, and it has billions
more in RAM, flash storage, its graphics processing unit,
and elsewhere. That'’s the kind of number that’s really hard
to wrap your head around. A modern solid-state silicon
computer is an amazingly complex machine.

But despite their complexity and despite our expectations,
computing devices are, in theory at least, extremely simple
machines. What’s complicated is figuring out how to make
them small and fast, how to make them easy to program, or

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 210

how to build them so that they can interact with lots of
devices. But in fact, the basics of computation are so simple
that you have to work hard to build a computing system
that isn’t Turing complete.

So what does it take to be Turing complete? There are four
essential elements that form the heart of computing: any
machine that has all four will be Turing complete and
therefore capable of performing any possible computation.

* Storage: Every complete computing device needs to have
access to an unbounded amount of storage. Obviously,
no real machine can have infinite storage, and no pro-
gram can ever use an infinite amount of storage. But in
theory, to be Turing complete, you can’t have any fixed
limits on the amount of storage you can access. The
storage can be anything you want. It doesn’t have to be
a numerically addressable store, like what we have in
real computers. It could be a tape, or a queue, or a col-
lection of name-to-value bindings, or an expandable
collection of grammar rules. It doesn’t matter what kind
of storage it is, as long as it’s unlimited.

* Arithmetic: You need to be able to do arithmetic in some
way. In particular, you need to be able to do Peano
arithmetic. The specifics don't really matter. You can do
your arithmetic in unary, binary, ternary, decimal,
EBCDIC, roman numerals, or anything else you can
imagine. But your machine must at least be able to per-
form the basic operations defined by Peano arithmetic.

* Conditional Execution: To do general computation, you
need to have some way of making choices. You can do
that by selectively ignoring certain code (like the
PLEASE IGNORE command in INTERCAL), by having
conditional branches, by having state selection based
on the contents of a tape cell, or by a variety of other
mechanisms. The key is that you need to have the ability
to select different behaviors based on values that were
either computed or were part of the input to your
program.

* Repetition: Every computing system needs to be able to
repeat things. Loops, recursion, or some other repetition

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 211

for iterating or repeating pieces of a computation are
essential, and they need to be able to work together with
the mechanism for conditional execution to allow condi-
tional repetition.

In this chapter, we're going to use those requirements to
study how a new computing machine provides the essential
requirements of a Turing-complete computing system. But
just looking at another machine like the Turing machine
would be boring. So we're going to go the silly route and
look at the heart of computing by looking at what I call a
pathological programming language.

Introducing BF: The Great, the Glorious, and the
Completely Silly

In real life, I'm not a mathematician; I'm a computer scientist.
I'm still a math geek, mind you, but what I really do is very
much in the realm of applied math, working on building
systems to help people build programs.

One of my pathological obsessions is programming lan-
guages. Since I first got exposed to TRS-80 Model 1 BASIC
back in middle school, I've been absolutely nuts about pro-
gramming languages. Last time I counted, I'd learned about
150 different languages, and I've picked up more since then.
I've written programs in most of them. Like I said, I'm nuts.

This is a roundabout way of explaining where the subject
of this chapter came from. There’s a remarkably simple
computing device, with a complete formal definition and
an implementation in hardware,' that has been rendered
into an amazingly bizarre pathological programming
language.

Designing bizarre programming languages is a popular
hobby among a certain wonderfully crazy breed of geeks.
There are, at the very least, hundreds of these languages.”
Even in a gallery full of insane programming languages,

1.  http://en.wikipedia.org/wiki/P_prime prime and http://www.robos.org/
?bfcomp, respectively
2. Ifyou're interested, there’s a wiki full of them at http://esolangs.org/

www.it-ebooks.info


http://en.wikipedia.org/wiki/P_prime_prime
http://www.robos.org/?bfcomp
http://www.robos.org/?bfcomp
http://esolangs.org/
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 212

there’s one that deserves a special place of honor: Brainf***,’
designed by a gentleman named Urban Moller.

The BF machine is a work of beauty. It’s a register machine,
which means that its computations are performed in storage
registers. If you're familiar with a modern electronic CPU,
you're familiar with a real-life register machine. In real
computer hardware, the physical hardware registers have
fixed names. In the BF machine they don't: they’re referenced
via relative position. On a BF machine, an infinite number
of registers are (conceptually) available on an infinite tape,
and there’s a tape head that points to the current register.
Registers are referenced by their position relative to the
current position of the tape head. (BF makes the concept of
relative addressing, a technique used by most modern
compilers, into a fundamental primitive.) BF programs work
by moving the register tape head back and forth to access
different registers. When the register tape head is located at
a particular cell, it can increment the cell’s value, decrement
the cell’s value, and branch conditionally, depending on
whether the cell’s value is zero. That’s it, and that’s enough
to be Turing complete.

Now that we know a bit about the machine, let’s look at its
instruction set. BF has a total of eight commands, including
input and output. Each command is written as a single
character, making BF among the most concise language
syntaxes ever.

Tape Forward: > Move the tape head one cell forward
Tape Back: < Move the tape head one cell backward
Increment: + Increment the value on the current tape cell
Decrement: - Decrement the value on the current tape cell

Output: . Output the value on the current tape cell as a
character

Input:, Input a character and write its numeric value onto
the current tape cell

3. http://www.muppetlabs.com/~breadbox/bf/

www.it-ebooks.info


http://www.muppetlabs.com/~breadbox/bf/
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 213

Compare and Branch Forward: [ Compare and jump forward
—compare the current tape cell to zero: if it’s zero, jump
forward to the first instruction after the matching “]”;
otherwise, go on to the next instruction.

Compare and Branch Back: ] Compare and jump backward —if
the current tape cell is not zero, then jump backward to
the matching “[”.

BF ignores any character that is not one of those eight
instruction characters. When the BF interpreter encounters
a non-command character, it will just skip to the next com-
mand character. This means that you don’t need any special
syntax to write comments in BF, because you can simply
intersperse your comments with the program instructions.
(But you need to do it carefully; if you use punctuation,
you’ll probably create instructions that will break your
program.)

To give you some sense of what it looks like, here’s a hello-
world program in BF:
++++++++
[>++++++++4<-]

>, <+ttt

[>++++++<-]

P = o o R
<t++++++++
[>>++++<<-]

>>, <<++++

[>------ <-1

>, <t++++

[>++++++<-]

Let’s pull that program apart in an attempt to understand
it.
® ++++++++: Store the number 8 in the current tape cell.

We're going to use that as a loop index, so the loop is
going to repeat eight times.

® [>+++++++++<-]: Run a loop: using the tape cell after
the loop index, add 9 to it. Then go back to the loop
index, decrement it, and, if it’s not zero, branch back to
the beginning of the loop. When the loop completes,

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing * 214

we’ll wind up with the number 72 in the second cell.
That’s the ASCII code for the letter H.

* >.: Go to the cell after the loop index and output what'’s
there. That outputs the value 72 as a character (H).

® <+++++: Return to the loop index. This time store the
value 5 there.

® [>++++++<-]: Run another loop, as we did to generate
the H: this time, however, we're going to add 6 to the
value in the second cell 5 times. (Remember that we
didn’t get rid of the value left in that cell by our previous
operation, which is still the number 72.) When this new
loop completes, the second cell contains the number 102.

¢ >-: Advance past the index, subtract 1, and output the
value in the register, which is the number 101, or e.

After that, it continues in pretty much the same vein, using
a couple of tape cells and running loops to generate the
values of the characters. It’s quite beautiful in its way. But
at the same time, that’s an astonishingly complicated way
of just printing out “Hello world”! Remarkable, isn’t it?

Turing Complete, or Completely Pointless?

So how is the BF machine Turing complete? Let’s look at its
features in terms of the four criteria for being Turing
complete.

 Storage: BF has an unbounded tape. Each cell on that
tape can hold an arbitrary integer value. So the storage
is obviously unbounded. It’s tricky to work with,
because you can't reference a specific cell by name or
by address: the program has to be written to keep track
of where the tape head currently is and how to move it
to get to the location of the value you want to look at.
But when you think about it, that’s not really a restric-
tion. In a program on a real computer, you need to keep
track of where everything is—and in fact, most programs
are written to use relative addresses anyway —so the BF
mechanism, while incredibly simple, isn’t particularly
restrictive, certainly not enough to make this storage
unusable for computing. So the storage requirement is
satisfied.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 215

* Arithmetic: BF stores integer values in its tape cells and
provides increment and decrement operations. Since
Peano arithmetic defines its operations in terms of
increment and decrement, this is obviously sufficient.
So we've got arithmetic.

e Conditional Execution and Repetition: BF provides both
conditional execution and repetition through a single
mechanism. Both the [ and ] operations provide conditional
branching. The [ can be used to conditionally skip over a
block of code and as a target for a backward branch by a
[. The ] command can be used to conditionally repeat a
block of code, and as a target for a forward branch by a [
instruction. Between them you can create blocks of code
that can be conditionally executed and repeated. That’s all
that we need.

From the Sublime to the Ridiculous

If that didn’t seem impressive enough, here is a really gor-
geous implementation of a Fibonacci sequence generator,
complete with documentation. The BF compiler used to write
this ignores any character other than the eight commands,
so the comments don't need to be marked in any way; they
just need to be really careful not to use punctuation.’

+++++++++++ number of digits to output
> #1

+ initial number

>>>> #5
++++++++++
++++++++ -+ (COmma)
> #6

+++++++HH
+++++++++H++H+++++ (Space)
<<<<<< #0

[

> #1

copy #1 to #7
[>>>>>>+>+<<<<<<<-]
SS>>>>> [ <<<<KK<HSSS>>>> - ]

<

divide #7 by 10 (begins in #7)
[

>

4.  The original source of this code is the BF documentation at
http://esoteric.sange.fi/brainfuck/bf-source/prog/fibonacci.txt.

www.it-ebooks.info


http://esoteric.sange.fi/brainfuck/bf-source/prog/fibonacci.txt
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 216

++++++++++ set the divisor #8

[

subtract from the dividend and divisor
i<-

if dividend reaches zero break out
copy dividend to #9
[>>4>+<<<- 55> [<<<+>>>- ]

set #10

+

if #9 clear #10

<[>[-1<[-]]

if #10 move remaining divisor to #11
S[<<[>>>+<<<-]>>[-]1]

jump back to #8 (divisor position)
<<

1

if #11 is empty (no remainder) increment the quotient #12
>>> #11

copy to #13
[>>4>+<<<- 55> [<<<+5>> - ]

set #14

+

if #13 clear #14

<[>[-1<[-]1]

if #14 increment quotient
>[<<+>>[-]]

<<<<<<< #7

1

quotient is in #12 and remainder is in #11
>>>>> #12

if #12 output value plus offset to ascii 0
[+++++++++++++++H -+

FH++t L [ -] ]
subtract #11 from 10

++++++++++  #12 is now 10

< #11

[->-<]

> #12

output #12 even if it's zero
++++++
L -]
<<<<<<<<<<< #1

check for final number

copy #0 to #3
<[>>>4>+<<<<- 555> [ <<<<+>>>>- ]

<- #3

if #3 output (comma) and (space)
[>>.>.<<<[-1]]

<< #1

[>>4>+<<<- 55> [<<<+>>> - ]
<<[<+>-]>[<+>- ] <<<-

]

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

23. Pathology and the Heart of Computing ® 217

Now this might seem pointless. I would honestly never
recommend BF for writing serious programs. But BF is an
amazingly simple language, and it’s the best example that
I know of a minimal Turing-complete computing system:
eight instructions, including input and output.

It’s a great demonstration of what it means to be Turing
complete: BF has exactly the essentials that it needs:
unbounded storage on the register tape, arithmetic by the
increment and decrement instructions, and control flow and
loops using the open and close bracket instructions. That’s
it: that’s the heart of computing.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24

Calculus: No, Not That
Calculus—A Calculus

In computer science, especially in the field of programming
languages, when we're trying to understand or prove facts
about computation, we use a tool called A (“lambda”)
calculus.

A calculus was designed by an American mathematician
named Alonzo Church (1903-1995) as part of one of the first
proofs of the Halting problem (which we’ll talk more about
in 27, The Halting Problem, on page 253). Turing is largely

credited as the person who solved that, and his proof is the
one that most people remember. But Church did it indepen-
dently of Turing, and his proof was actually published first!

A calculus is probably the most widely used theoretical tool
in computer science. For example, among programming-
language designers, it’s the preferred tool for describing
how programming languages work. Functional program-
ming languages like Haskell, Scala, and even Lisp are so
strongly based in A calculus that they’re just alternative
syntaxes for pure A calculus. But the influence of A calculus
isn’t limited to relatively esoteric functional languages.
Python and Ruby both have strong A-calculus influences,
and even C++ template metaprogramming is profoundly
influenced by A calculus.

Outside of the world of programming languages, A calculus
is extensively used by logicians and mathematicians studying
the nature of computation and the structure of discrete

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 220

mathematics; and it’s even used by linguists to describe the
meaning of spoken languages.

What makes it so great? We’ll see in detail in this section,
but the short version is this:

* ) calculus is simple: it’s only got three constructs for
building expressions—abstraction, identifier reference,
and application. To evaluate expressions written using
those two constructs, you only need two evaluation
rules, called a (renaming [“alpha”]) and B (function
application [“beta”]).

¢ ) calculus is Turing complete: if a function can be com-
puted by any possible computing device, then it can be
written in A calculus.

* ) calculus is easy to read and write: it has a syntax that
looks like a programming language.

¢ ) calculus has strong semantics: it’s based on a logical
structure with a solid formal model, which means that
it's very easy to reason about how it behaves.

* ) calculus is flexible: its simple structure makes it easy
to create variants for exploring the properties of various
alternative ways of structuring computations or
semantics.

A calculus is based on the concept of functions. The basic
expression in A calculus is the definition of a function in a
special form, called a A expression. In pure A calculus,
everything is a function; the only thing you can do is define
and apply functions, so there are no values except for func-
tions. As peculiar as that may sound, it’s not a restriction at
all: we can use X calculus functions to create any data struc-
ture we want.

With the lead-in out of the way, let’s dive in and look at A
calculus.

Writing A Calculus: It's Almost Programming!

Before we really dive in to the specifics of A calculus, let’s
consider exactly what makes it a calculus. To most of us, the
word calculus means something very specific: the differential
and integral calculus invented by Isaac Newton and

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 221

Gottfried Leibnitz. A calculus has nothing to do with that
kind of calculus!

In mathematical terms, a calculus is a system for symbolically
manipulating expressions. Differential calculus is a calculus
because it’s a way of manipulating expressions that represent
mathematical functions. A calculus is a calculus because it
describes how to manipulate expressions that describe
computations.

The way that we define a calculus is very much like the way
that we defined a logic back in 12, Mr. Spock Is Not Logical,
on page 79. It has a syntax, which describes how you write

statements and expressions in the language, and it has a set
of evaluation rules that allow you to symbolically manipulate
expressions in the language.

One of the many reasons that Ilove A calculus is because it’s
so natural to a programmer. While Turing machines are
beautifully simple, trying to figure out how to do complicat-
ed things with one can be quite a challenge. But A calculus?
It’s just like programming. You can understand it as being
a template for building programming languages (in part,
because it has become the main template for building pro-
gramming languages). The language of A calculus is basically
a super-simple expression-based programming language
with just three types of expressions:

® Function definition: A function in A calculus is an
expression, written as A param . body, which defines a
function with one parameter.

e Identifier reference: An identifier reference is a name that
matches the name of a parameter defined in a function
expression enclosing the reference.

* Function application: Applying a function is written by
putting the function value in front of its parameter, as
in x y to apply the function x to the value y.

If you're paying attention, you might have noticed a problem
with function definitions. They only allow one parameter!
How can we write all of our functions with one parameter?
We can’t even implement a simple addition function using
only one parameter!

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 222

The solution is one of the fundamental lessons of A calculus:
many things that we believe to be essential primitives aren't.
A calculus shows us that we don't actually need to have
multiparameter functions, numbers, conditionals, or any of
the other things that we tend to think of as basic primitives.
We don't need any of those concepts as primitives because
simple one-parameter functions are powerful enough to
allow us to build them.

The lack of multiple-parameter functions isn't a problem:
we can create things that behave just like multiple-parameter
functions but that are built using nothing but single-
parameter functions. This works because of the fact that in
A calculus, functions are values, and just like we create new
values whenever we want in a program, we can create new
functions whenever we want. We can use that ability to
create the effect of a multiple-parameter function. Instead
of writing a two-parameter function, we can write a one-
parameter function that returns a one-parameter function,
which can then operate on the second parameter. In the end,
it’s effectively the same thing as a two-parameter function.
Taking a two-parameter function and representing it by 2
one-parameter functionsis called currying, after the logician
Haskell Curry (1900-1982), who originally thought of the
concept.

For example, suppose we wanted to write a function to add
x and y. We'd like to write something like this: A x y . x +y.
We do that with one-parameter functions like this:

* We write a function that takes the first parameter.

* The first function returns a second one-parameter
function, which takes the second parameter, and returns
a final result.

Adding x plus y becomes writing a one-parameter function
with parameter x, which returns another one-parameter
function with parameter y and which actually returns the
sum of x and y: A x . (Ay . x +y). In fact, if we gave that a
name, like “add,” then we’d invoke it as add 3 4. The curried
function even looks like a two-parameter function when we
use it!

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 223

Because of currying, taking multiple parameters really isn’t
fundamentally different from taking just one parameter, so
long as you can create and return new functions. (See what
I mean about A calculus being great for experimentation?
We've barely looked at any of it, and it’s already coming in
handy!)

In practice, we’ll go ahead and write A expressions with
multiple parameters. It's just a simplified syntax for the
curried functions, but it’s very convenient, and it can make
expressions easier to read.

There’s one other really important thing about understand-
ing A calculus that I haven’t mentioned yet. Look at our
second currying example. It will work correctly only if, when
it returns the function A y . x +y, the variable x gets its value
from the invocation of the A form that fextually surrounds
it. If it’s a standalone and x can get its value from anywhere
but the invocation of the surrounding A, then it won't pro-
duce the right result.

That property, that variables are always bound by their
specific textual context, is called syntactic closure or syntactic
binding. In programming languages, we call it lexical binding.
It’s how we tell which definition of a variable we’ll use in a
function: no matter where a function is used, the values of
all of the variables that it uses take their meaning from where
it was defined.

Like many programming languages, every variable in A
calculus must be declared. The only way to declare a variable
is to bind it using a A expression. For a A calculus expression
to be evaluated, it cannot reference any identifiers that are
not bound. An identifier is bound if it is defined as a
parameter in an enclosing A expression; if an identifier is not
bound in any enclosing context, then it is called a free vari-
able. Let’s look quickly at a few examples:

* Ax.pxy:In this expression, y and p are free because
they’re not the parameter of any enclosing A expression;
x is bound because it’s a parameter of the function defi-
nition enclosing the expression p x y where it’s
referenced.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 224

¢ A x y.y x: In this expression both x and y are bound
because they are parameters of the function definition,
and there are no free variables.

* Ay.(Ax.pxy): This one is a tad more complicated
because it contains an inner A. So let’s start there. In the
inner A, Ax.pxy,yand p are free and x is bound. In the
full expression, both x and y are bound: x is bound by
the inner X, y is bound by the other A, and p is still free.

We'll often use free(x) to mean the set of identifiers that are
free in the expression x.

A ) calculus expression is valid (and thus evaluable) only
when all of its variables are bound. When we look at smaller
subexpressions of a complex expression taken out of context,
they can look like they have free variables. That means that
it's very important to have a way of making sure that the
variables that are free in subexpressions are treated correctly.
We’ll see how we can do that by using a renaming operation
called o in the next section.

Evaluation: Run It!

There are only two real rules for evaluating expressions in
X calculus, called a conversion and f reduction.

a is a renaming operation. In A calculus, the names of vari-
ables don't have any meaning. If you rename a variable at
its binding pointin a A and also rename it in all of the places
where it’s used, you haven't changed anything about its
meaning. When you're evaluating a complex expression,
you’ll often end up with the same name being used in several
different places. a conversion replaces one name with
another to ensure that you don’t have name collisions.

For instance, if we had an expression like A x . if (= x 0) then
1 else x*2, we could do an a conversion to replace x with y
(written afx/y]) and get Ay . if (=y 0) then 1 else y"2.

Doing an a conversion doesn’t change the meaning of the
expression in any way. But as we'll see later, it’s important
because without it, we'd often wind up with situations where
a single variable symbol is bound by two different enclosing
As. (This will be particularly important when we get to
recursion.)

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 225

B reduction is where things get interesting: this single rule
is all that’s needed to make the A calculus capable of perform-
ing any computation that can be done by a machine.

A B reduction is how you apply a function in A calculus. If
you have a function application, you can apply it by replac-
ing the function with the body of the A and then taking the
argument expression and replacing all uses of the parameter
in the A with the argument expression. That sounds confus-
ing, but it’s actually pretty easy when you see it in action.

Suppose we have this application expression: (A x . x +1) 3.
By performing a p reduction, we can replace the application
by taking the body x + 1 of the function and substituting (or
aing) the value of the parameter (3) for the parameter vari-
able symbol (x). (This is sometimes written as a[x/3].) So we
replace all references to x with 3. So the result of doing a 8
reductionis 3 + 1.

A slightly more complicated example is the expression
Ay . (Ax.x+y))q.It's an interesting expression because it’s
a A expression that, when applied, results in another A
expression; that is, it’s a function that creates functions. When
we do B reduction in this, we’re replacing all references to
the parameter y with the identifier g, so the resultis A x. x +4.

One more example, just for the sake of being annoying.
Suppose we have (Ax y. x y) (Az. z * z) 3. That’s a function
that takes two parameters and applies the first one to the
second one. When we evaluate that, we replace the parame-
ter x in the body of the first function with Az . z * z, and we
replace the parameter y with 3, getting (Az.z *z) 3. And we
can perform f on that, getting 3 * 3.

Written formally, B says this:
Ax.Be = B[x/ e]if free(e) C free (B[x/ e])

That condition on the end is why we need a: we can only do
reduction if doing it doesn't create any collisions between bound
identifiers and free identifiers. If the identifier z is free in ¢, then
we need to be sure that the B reduction doesn’t make z become
bound. If there is a name collision between a variable that is
bound in B and a variable that is free in ¢, then we need to use
o to change the identifier names so that they’re different.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 226

As usual, an example will make that clearer. Suppose we
have a expression defining a function, A z. (A x. x + z). Now
suppose we want to apply it: (Az. (Ax. x +z)) (x +2). In the
parameter (x + 2), x is free. Next, suppose we break the rule
and go ahead and do B. We'd get A x . x + x + 2. The variable
that was free in x + 2 is now bound! We've changed the
meaning of the function, which we shouldn’t be able to do.
If we were to apply that function after the incorrect 3, we'd
get (Ax.x+x+2)3.By B, wedget3+3+2, or8.

What if we did o the way we were supposed to?

First, we'd do an a to prevent the name overlap. By a[x/y],
we would get Az. (Ay.y+z) (x+2).

Then by B, we'd get Ay . y + x + 2. If we apply this function
the way we did before, then by B, we'd get 3 +x +2. 3 +x +
2 and 3 + 3 + 2 are very different results!

That'’s all that you can do in a A calculus computation. All
computation is really just B reduction, with o renaming to
prevent name collisions. In my experience, that makes it the
simplest formal system of computation. It’s a lot simpler
than the state-plus-tape notion of the Turing machine, which
is itself one of the simpler ways of doing computation.

If that’s too simple for you, there’s another optional rule you
can add called n (“eta”) conversion. ) is a rule that adds
extensionality, which provides a way of expressing equality
between functions.

eta says that in any A expression, you can replace the value
fwith the value g as long as for all possible parameter values

X, fx=gx.
Programming Languages and Lambda Strategies

In the beginning of this chapter, I said a lot about how useful
A calculus is for talking about programming-language
design. From just looking at the calculus this far, exactly
what A calculus brings to the table isn’t entirely clear. To get
a sense of where the value comes from, we're going to take
a quick look at A calculus evaluation strategies and their
relationship to programming languages.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 227

In any course on programming languages, you're going to
get a lecture about different evaluation strategies: eager
evaluation versus lazy evaluation.

These ideas all involve the mechanics of parameter passing
in the programming language. Suppose you're thinking
about a call to a function f(g(x+y), 2*x). In a language with
eager evaluation, you'd first compute the values of the
parameters and only invoke the function after the parameters
had been computed. So in this example, you'd compute
g(x+y) and 2*x before invoking f; and when you were com-
puting g(x+y), you'd first compute x+y before invoking the
function g. This is the way that many familiar languages
actually work: for example, this is how C, Java, JavaScript,
and Python work.

In lazy evaluation, you don’t compute the value of any
expression until you need to. In our example code, you'd
invoke f first. You wouldn’t invoke g(x+y) until f tried to use
the value of that expression. If f never specifically used the
value of the parameter expression g(x+y), then it would
never get computed and g would never get invoked. This
kind of evaluation turns out to be really useful, and it’s the
basis of languages like Haskell and Miranda.

Defining exactly what eager versus lazy evaluation means,
in a precise enough way to make things really predictable,
is difficult. Unless you use A calculus.

In X calculus, as we’ve seen, computation is really done by
repeated use of B reductions. If you look at a A calculus
expression, there are typically a lot of different B reductions
that you can perform at any given moment. So far, we've
been ad hoc about that, choosing which  reduction to per-
form when based on what was clearest for explaining the
meaning of a construction. If you want to think about pro-
gramming languages, you can’t be ad hoc: a language needs
to be predictable! You need to specify how you're going to
do your B reductions in a precise and reproducible way.

The way that you perform your B reductions is called the
evaluation strategy. The two most common evaluation
strategies are these:

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 228

Applicative Order In applicative order, find the innermost
expressions that are p reducible and perform them from
right to left. Effectively, youre looking at your A
expression as a tree and evaluating the tree from right
to left, from the leaves of the tree upward.

Normal Order In normal order, you start with the outermost
expressions and evaluate them from left to right.

Applicative order is exactly what we meant by eager evalua-
tion, and normal order is lazy evaluation. Let’s look at an
example to see the difference: (A xyz. + (*xx)y) (+32) (*10
2) (/24 (*2 3)).

Applicative (Eager) Order In applicative order, we start with
the innermost expressions and evaluate them from right
to left. The innermost expression in this is the (* 2 3). So
we’d do the B reductions to evaluate it and reduce it to
6. Then right to left, we'd evaluate (/ 24 6), (* 10 2), + 3 2.
That would reduce our expression to (Axyz. + (*xx) y)
520 4. Next, we'd reduce the outermost A: (+ (* 5 5) 30),
which would evaluate to (+ 25 30), and finally to 55.

Normal Order In normal order, we'd start with the left-out-
ermost first. So we'd first do the outer f reduction, giving
us (+ (*(+32)(+32))(*102).

The important thing to notice about the two different scenar-
ios is that in applicative order evaluation, we evaluated all
of the parameters first; in normal order evaluation, we didn't
evaluate the parameters until we needed to. In the case of
the normal order evaluation, that meant that we never
needed to evaluate the parameter expression (/ 24 (* 2 3))
because we never used that value.

A calculus shows us that the two evaluation strategies per-
form the same computation in the sense that they produce
the same result. It also gives us an extremely simple way of
defining what laziness means. We usually say that lazy
evaluation means we don’t evaluate any expression until
we need to, but that doesn’t explain how we know when we
need to evaluate something. Normal order evaluation defines
laziness for us: you need to evaluate an expression when it’s
the leftmost outermost unevaluated expression.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

24. Calculus: No, Not That Calculus—A Calculus ® 229

Similarly, we can show how different parameter-passing
strategies like call-by-value, call-by-reference, and call-by-
name all work by describing the evaluation strategy in A
calculus.

Now we’ve seen our first taste of A calculus: how to read
and write it and how to evaluate it. We’ve seen a bit of why
A calculus is useful by showing how different ways of
ordering B reductions are used to describe different kinds
of programming-language semantics.

We're still missing some really important things. We've
handwaved using numbers, but we don't really know how
to make them work: we know that in A calculus, the only
really computational step is B reduction, but we don’t know
how to do arithmetic using nothing but B reduction. Similar-
ly, we don’t know how to do conditionals or iteration using
B reduction. Without numbers, iteration, and conditionals,
A calculus wouldn't be Turing complete!

In the next chapter, we'll take care of that by showing how
to fill in all of those gaps.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25

Numbers, Booleans,
and Recursion

But Is It Turing Complete?

A calculus, as we described it in the previous chapter, is
Turing complete. The question that you should be asking
yourself now is how. Remember the three properties of
computation? You need to have unbounded storage; you
need to be able to do arithmetic; and you need to be able to
do control flow. How can we do that in A calculus?

The storage part is easy. You can store arbitrarily complicat-
ed values in a variable, and we can generate as many
functions as we need without bound. So unbounded storage
is pretty obvious.

But arithmetic? In our work so far we’ve just handwaved
arithmetic by treating it as a primitive. In fact, we can create
a very cool way of doing arithmetic using nothing but A
expressions.

And what about choices and repetition? So far we have no
way of making choices between alternatives, or of repeating
operations. It’s hard to imagine how we’re going to get there:
at first glance, it seems like there’s so little capability in A
expression evaluation, where all we can do is rename or
replace things. We'll see that there’s a way of making
choices based on the way that we’ll do arithmetic. And rep-
etition in A calculus is done using a really amazing trick.
Repetition in A calculus can only be done by using recursion

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 232

and that can only be done by using something called a fixed-
point combinator.

None of these things that we need to be Turing complete
are built into A calculus. But fortunately, it’s all stuff that we
can build. So in this chapter we’ll look at how to build the
things that we need in A calculus.

Before we move on, for convenience, I'll introduce a way of
naming things. In the programming-language world, we
call that syntactic sugar—it’s just a notational shorthand —but
when we start looking at some more complicated expres-
sions, it makes a huge difference in readability.

We'll define a global function (that is, a function that we’ll
use throughout our A calculus introduction without includ-
ing its declaration in every expression) like this:

square=Ax.x *x

This declares a function named square, whose definition is
Ax.x *x.If we had an expression square 4, the definition we
gave means that it would effectively be treated as if the
expression were (A square . square 4)(A x . xxx).

Numbers That Compute Themselves

To show that A calculus is Turing complete, we said we need
to show two more things. We need to be able to do arith-
metic, and we need to be able to do flow control. For
arithmetic, we get—once again! —to create numbers. But this
time we’ll do them with A expressions. We'll also see how
to take the same basic mechanics that we’ll use to create
numbers, and turn them into a form of conditional
if/then/else construct, which will give us the first half of what
we need for full flow control in A calculus.

As we’ve seen, all we have to work with in A calculus is
functions written as A expressions. If we want to create
numbers, we have to do it by devising some way of creating
objects that we can use to do Peano arithmetic using nothing
but functions. Fortunately for us, Alonzo Church, the genius
who invented A calculus, worked out how to do that. His
version of numbers-as-functions are called Church numerals.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 233

In Church numerals, all numbers are functions with two
parameters: s (for successor) and z (for zero).

® Zero=A5z.z

* One=Asz.sz

* Two=Asz.s(sz)

® Three=Asz.s(s(sz)

* And so on. Any natural number 7 is represented by a
Church numeral, a function that applies its first param-
eter to its second parameter n times.

A good way of understanding this is to think of z as being
a name for a function that returns a zero value and s as a
name for a successor function.

Church numerals are absolutely amazing. Like so much else
in A calculus, they’re a tribute to the astonishing brilliance
of Alonzo Church. The beauty of them is that they’re not
just representations of numbers: they’re a direct representa-
tion of the computation to generate the numbers they
represent using the Peano axioms. Here’s what I mean:
imagine that we had another way of representing numbers.
Then we could write a zero function and a successor function
in that new representation. For example, we could implement
unary numbers using strings:

"nn

* UnaryZero= A x.
* UnarySucc= A x. append "1" x

If you took the Church numeral for the number 7,
A s z . s(s(s(s(s(s(s(z))))))), and applied it to UnaryZero and
UnarySucc, then the result would be 1111111, the unary
representation of 7.

Addition works off of the same self-computation principle.
If we have two numbers x and y that we want to add, we
can invoke x using y as the zero function, and x would add
itself to y.

Actually, it’s a bit more complicated than that because we
need to be sure that x and y use the same increment function.
If we want to do addition, x + y, we need to write a function
with four parameters; the two numbers to add and the s and
z values we want in the resulting number:

add Aszxy.xs(ysz)

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 234

There are two things going on in that definition: First, it’s
taking two parameters that are the two values we need to
add; second, it needs to normalize things so that the two
values being added end up sharing the same binding of the
zero and successor values. To see how those two pieces of
addition work, let’s curry the definition in order to separate
them out.

add_curry=Axy. (Asz.(xs(ysz))

Looking at that carefully, add_curry says that if you want to
add x and y, you need to do this:

1. Create the Church numeral y using the parameters s
and z.

2. Take the result and apply x to it, using the same s and
z functions.

As an example, let’s use add_curry to add the numbers 2 and
3.

Example: Adding 2 + 3 using a curried function
1. two=Asz.s(sz)
2. three=Asz.s(s(sz)

3. Now we want to evaluate: add_curry (Asz.s(sz)) (Asz.

s(s(sz))

4.  Using the same names in two and three is going to be a problem,
so we'll a them and make two use s2 and z2 and three use s3
and z3; that gives us this: add_curry (A s2 z2 . s2 (s2 z2))
(As3 23 .53 (s3(s323))

5. Now let’s replace “add_curry” with its definition: (A x y
(Asz. (xsysz) (As22z2.52(s222)) (As3 23 .53 (s3 (s323)))

6. Do a B on the outermost function application: Asz. (As2z2.
52 (s222)) s (A3 23 .53 (s3 (s3 2z3)) s z)

7. Now we get to the interesting part: we're going to 8 the Church
numeral for three by applying it to the s and z parameters. This
normalizes three: it replaces the successor and zero function
in the definition of three with the successor and zero functions
from the parameters to add. This is the result: Asz. (15222 .
52 (s222)) s (s (s (s 2)))

8. And we B again, this time on the A for two. Look at what we're
going to be doing here: two is a function that takes two

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 235

parameters: a successor function and a zero function. To add
two and three, we're using the successor function that was
passed to the outer add_curry function, and we're using the
result of evaluating three as the value of the zero for two:

Asz.s(s(s(s(sz)

9. And we have our result: the Church numeral for five!

Aside from being pretty much the coolest representation of
numbers in the known universe, Church numerals also set
the pattern for how you build computations in A calculus.
You write functions that combine other functions in order
to make it do what you want.

Decisions? Back to Church

With numbers out of the way, we're closing in on Turing
completeness. We're still missing two things: the ability to
make decisions, and repetition.

To make decisions, we're going to do something very similar
to how we did numbers. To represent numbers, we built
functions that computed the numbers. To do choice, we're
going to do almost the same trick: we're going to create
Boolean values that select alternatives.

For making decisions, we’d like to be able to write choices
as if/then/else expressions, like we have in most program-
ming languages. Following the basic pattern of the Church
numerals, where a number is expressed as a function that
adds itself to another number, we’ll express true and false
values as functions that perform an if/then/else operation
on their parameters. These are sometimes called Church
Booleans (of course, they were also invented by Alonzo
Church). An if/then/else choice construct is based on the two
Boolean values, true and false. In A calculus, we represent
them as (what else?) functions. They're two-parameter
functions that take two arguments:

o TRUE=Atf. ¢
o FALSE=Atf.f

With the Church Booleans, it's downright simple to write
an if function whose first parameter is a condition expression,
whose second parameter is the expression to evaluate if the

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 236

condition is true, and whose third parameter is the expres-
sion to evaluate if the condition is false.

IfThenElse= A cond t f. cond t f
We can also build the usual Boolean operations:

* And=Axy.xyFALSE.
® BoolOr=Axy.x TRUE y.
® BoolNot=Ax.x FALSE TRUE*.

Let’s take a closer look at those to see how they work. Let’s
first take a look at BoolAnd.

Let’s start by evaluating BoolAnd TRUE FALSE.

1. Expand the TRUE and FALSE definitions: BoolAnd
(Atf. ) (Atf. .

2. o the true and false: BoolAnd (A tt tf . tt) (A ft ff. ff).

3. Now expand BoolAnd: (A tf. t f FALSE) (A tt tf. tt)
(Aftff. ).

4. B (Atttfitt) (Aftff. ff) FALSE.

5. Bagain: (A xfyf. yp.

And we have the result: BoolAnd TRUE FALSE = FALSE.
Now let’s try BoolAnd FALSE TRUE:

1. BoolAnd (Atf.f) (Atf.t).
2. o BoolAnd (A ft ff. ff) (Atttf. tt).

3. Expand BoolAnd: (A x y .x y FALSE) (lambda ft ff . f)
(lambda tt tf . tt).

4. B (Aftff.f) (lambda tt tf . tt) FALSE.

5. Bagain, and you end up with FALSE. So BoolAnd FALSE
TRUE = FALSE.

Finally, let’s try BoolAnd TRUE TRUE:

1. BoolAnd TRUE TRUE

Expand the two trues: BoolAnd (At f.t) (Atf. 1)
o BoolAnd (A xt xf. xt) (A yt yf . yt).

- LN

Expand BoolAnd: (A x y . x y FALSE) (A xt xf . xt)
(Aytyf. yt).

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 237

5. B:(Axtxf.xt) (Aytyf.yt) FALSE.

6. Bagain: (A yt yf. yt).
7. So BoolAnd TRUE TRUE = TRUE.

The other Boolean operations work in much the same way.
By the genius of Alonzo Church, we have almost everything
we need to show that A calculus is Turing complete. All
that’s left is recursion. But recursion in A calculus is a real
mind-bender!

Recursion: YOh Y Oh Y?

We’ve been building up the bits and pieces that turn A calcu-
lus into a useful system. We’ve got numbers, Booleans, and
choice operators. The only thing we’re lacking is some kind
of repetition or iteration.

In A calculus, all iteration is done by recursion. In fact,
recursion is a pretty natural way of expressing iteration. It
takes a bit of getting used to, but if you spend a lot of time
in a functional language like Scheme, ML, or Haskell, you
get used to it; and then when you return to an imperative
language like Java, there’s a good chance that you'll end up
feeling frustrated about having to force all of your iterations
into the loop structure instead of just being able to do them
recursively!

It can be a bit difficult if you're not used to thinking recur-

sively. So we'll start by looking at the basics of recursion.

Understanding Recursion

The cleverest definition that I've seen of recursion comes
from The New Hacker’s Dictionary [Ray96], whose entry reads

as follows:

Recursion: see “Recursion.”

Recursion is about defining things in terms of themselves. It
almost seems like magic until you get the hang of it. The
principle is the same as what we saw with induction back
in 1, Natural Numbers, on page 3, but applied to a definition

instead of a proof.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 238

It’s easiest to show you what that means with an example,
like a factorial. Let’s think about factorials. The factorial
function N!is defined for all natural numbers: for any natural
number N, its factorial is the product of all of the integers
less than or equal to N.

o 11=1

e 2=1%2=1

e 3[=1%2%*3=6

o 41=1%2%3%4=24

e 5!=1%2%3%4*5=120
e And so on

If you look at that definition, it’s pretty cumbersome. If you
you look at the sequence of examples, you can see that there’s
a pattern: the factorial of each number N is the product of a
sequence of numbers, and that sequence is exactly the same
as the sequence for the number before it, with N added onto
the end.

We can use that to make the list a bit simpler; let’s just
replace the sequence for everything but N with the product
of the numbers in that part of the sequence:

o 11=1

e 21=1%2=2
e 31=2%3=6
o 4l=6%4=24

e 51=24*5=120
e And soon

Now the pattern should be reasonably easy to see: look at
4! and 5!; 4! = 24; 5! = 5 * 24. Since 4! is 24, we can then say
that 5! =5 * 4.

In fact, we can say in general that for any N, N/ =N *(N-1)!.
Well, almost.

The expression doesn’t quite work, because it never stops.
Try computing 3/: 3/=3%2/=3%*2*1/=3*2*1*0!=3%2
*1*0*-11=....

We could keep going forever, because the way that we
defined it, we never stop repeating. The definition doesn’t
have any way to stop.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 239

To make recursion work, you need to give it a way to even-
tually stop. In formal terms, you need to define a base case:
that is, you need to define a place where the recursion
stops —where you've got a definition for some value that can
be computed without doing any more recursion.

For factorial, we do that by saying that the factorial of 0 is
1. Then things work: factorial is only supposed to work for
positive numbers; and for any positive number, the recursive
definition will expand until it hits 0!, and then it will stop.
So let’s look at 3! again: 3/ =3 *2/=3*2*1/=3%*2*1%0!/=
3*2*1*1=6.

What we saw in the factorial is what we’ll see in every
recursive definition. The definition will be written with two
cases: a general case that defines the function recursively
and a specific base case that defines the function for specific
values nonrecursively.

The way that we write a recursive definition is to state the
two cases using conditions in something that looks almost
like a little bit of a program:

e N/=1ifN=0
e N/=N*(N-D!if N>0

Congratulations! Now you understand at least a little bit of
recursion.

Recursion in A Calculus

Suppose we want to write a factorial in A calculus. We're
going to need a few tools. We need a test for equality to zero,
we need a way of multiplying numbers, and we need a way
of subtracting 1.

For testing equality to zero, we’ll use a function named
IsZero, which takes three parameters: a number and two
values. If the number is zero, it returns the first value; if it’s
not zero, then it returns the second value.

Multiplication is an iterative algorithm, so we can’t write
multiplication until we work out recursion. But we’ll just
handwave that for now and have a function Mult x y.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 240

And finally, for subtracting 1, we’ll use Pred x for the prede-
cessor of x—thatis, x - 1. So a first stab at a factorial written
with the recursive call left with a blank in it would be this:

Amn.IsZeron 1 (Mult n (**something™* (Pred n)))

Now the question is, what kind of something can we plug in
there? What we’d really like to do is plug in a copy of the
function itself:

Fact=An.IsZeron 1 (Mult n (Fact (Pred n)))

How can we do that? The usual way of plugging something
into a A calculus function is by adding a parameter:

Fact=(Afn.IsZeron 1 (Mult n (f (Pred n)))) Fact

We can’t plug in a copy of the function as its own parameter
that way: the name Fact doesn’t exist in the expression in
which we're trying to use it. You can’t use an undefined
name, and in A calculus, the only way to bind a name is by
passing it as a parameter to a A expression. So what can we
do?

The answer is to use something called a combinator. A
combinator is a special kind of function that operates on
functions and that can be defined without reference to any-
thing but function applications. We're going to define a
special, almost magical function that makes recursion possi-
ble in A calculus, called the Y combinator.

Y=Ay.(Ax.y(xx)(Ax.y(xx)

The reason for calling it Y is because it is shaped like a Y. To
show you that more clearly, sometimes we write A calculus
using trees. The tree for the Y combinator is in Figure 18,
The Y Combinator, on page 241.

Why is the Y combinator an answer to our problem in
defining the factorial function? The Y combinator is a fixed-
point combinator. That means that it’s a strange beast that’s
capable of reproducing itself! What makes it special is the
fact that for any function f, Y f evaluates to f Y f, which
evaluates to f (f Y f), which evaluates to f (f (f Y f)). See why
it’s called Y?

Let’s try walking through Y f:

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 241

Figure 18—The Y Combinator: When the Y combinator is drawn
as atree, it’s clear where the “Y” in its name originates.

e Expand Y: (Ay. (Ax.y(xx) (Ax.y(xx)f.

* B:(Ax.f(xx)(Ax.f(xx)).

® Bagain: f(Ax.f(xx) (Ax.f(xx).

e Since Yf=(Ax.f(xx)) (Ax.f(xx)), what we just got in
step threeis f Y f.

See, there’s the magic of Y. No matter what you do, you can’t
make it consume itself. Evaluating Y f will produce another
copy of fand leave the Y f part untouched.

So how do we use this crazy thing?

Remember our last attempt at defining the factorial function?
Let’s look at it again:

Fact=(Afn.IsZeron 1 (Mult n (f (Pred n)))) Fact

Let’s rewrite it just a tiny bit to make it easier to talk about:
Metafact = (A fn . IsZeron 1 (Mult n (f (Pred n))))

With that, Fact = Metafact Fact.

Now, we're left with one last problem. Fact is not an identi-
fier defined inside of Fact. How do we let Fact reference Fact?
Well, we did a A abstraction to let us pass the Fact function
as a parameter, so what we need to do is to find a way to
write Fact that lets us pass it to itself as a parameter.

But remember what Y f does? It expands into a call to f with
Y f as its first parameter. In other words, Y f turns f into a
recursive function with itself as its first parameter! So the
factorial function is this:

Fact =Y Metafact

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

25. Numbers, Booleans, and Recursion ® 242

I learned about the Y combinator back in my undergrad
days, which would place that around 1989, and I still find
it rather mystifying. I understand it now, but I can’t imagine
how on earth anyone ever figured it out!

If you're interested in this, then I highly recommend you get
yourself a copy of the book The Little Schemer [FFB95]. It's
a wonderful little book. It’s set up like a children’s book,
where the front of each page is a question and the back of
each page is the answer. It’s written in a delightfully playful

style, it’s very fun and engaging, and it will also teach you
to program in Scheme.

We've seen everything that we need to write arbitrary
computations in A calculus. We’ve shown that it gives us
arbitrary amounts of storage using variables and complex
values. We've seen how to build numbers using the amazing
self-computation trick of Church numerals. We figured out
how to do choice using Church Booleans. And finally, we
saw how to do repetition using recursion with the Y combi-
nator. It took some effort, but with the tools we’ve built, A
calculus can do anything we want it to do.

The power of this is remarkable, and as a result, it's been
used all over. Most notably to people like me, there’s proba-
bly no programming language in use anywhere that hasn’t
been influenced at least a little bit by A calculus.

Unfortunately, we still have a problem. Just like everything
else in math, a calculus like A needs a model. The model
shows that the calculus, the way that we defined it, is really
valid. Without a model, A calculus could be fooling us: it
could look like something terrific, but like we saw with
Russell’s paradox in naive set theory, it could be built on a
fundamental flaw that makes it inconsistent!

In the next chapter, we’ll look at how to fill that hole and
show that there is a valid model for A calculus. Along the
way, we'll see just what types are and how types can help
detect errors in a program using logic.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26

Types, Types, Types:
Modeling A Calculus

A calculus began with the simple untyped A calculus that
we discussed in the previous chapter. But one of the great
open questions about A calculus at the time of its invention
was this: is it sound? In other words, does it have a valid
model?

Church was convinced that A calculus was sound, but he
struggled to find a model for it. During his search, Church
found that it was easy to produce some strange and worri-
some expressions using the simple A calculus. In particular,
he was worried about falling into a Godel-esque trap of
self-reference (which we’ll talk about more in 27, The Halting
Problem, on page 253), and he wanted to prevent that kind

of inconsistency. So he tried to distinguish between values
representing atomic primitive values and values representing
predicates. By making that distinction, he wanted to ensure
that predicates could operate only on atoms and not on
other predicates.

Church did this by introducing the concept of types. Types
provided a way of constraining expressions in the calculus
that made it impossible to form the kinds of self-referential
structures that could lead to inconsistencies. The addition
of types created a new version of A calculus that we call the
simply typed A calculus. The original goal of this was to show
that A calculus had a valid model. The idea that it introduced
turned out to be useful for far more than that: if you've ever

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 244

used a statically typed programming language, you've seen
the products of A calculus: the typed A calculus first intro-
duced by Alonzo Church is the foundation of all of the type
systems and of the very notion of types that we use.

The first version of typed A calculus is called simply typed
because it’s the simplest reasonable notion of types. It pro-
vides base types and function types, but not types with
parameters or predicates. In programming language terms,
using this version of A calculus, we could define a type
Integer, but we couldn’t define a parametric type like List of
Integer.

Playing to Type

When Church designed typed X calculus, his goal was to
build a model that showed that A calculus was consistent.
What he was worried about was a Cantor-esque self-refer-
ence problem. In order to avoid that, he created a way of
partitioning values into groups called types and then used
that idea of types to constrain the language of A calculus so
that you couldn’t write an expression that did something
inconsistent.

The main thing that typed A calculus adds to the mix is a
concept called base types. In a typed A calculus, you have
some universe of atomic values that you can manipulate.
Those values are partitioned into a collection of distinct non-
overlapping groups called the base types. Base types are
usually named by single lowercase Greek letters. In our
description of the simply typed A calculus, we’ll use a for a
type containing the natural numbers, § for a type containing
Boolean true/false values, and y (“gamma”) for a type con-
taining strings.

Once we have basic types, we can then talk about the type
of a function. A function maps from a value of one type (the
type of its parameter) to a value of a second type (the type
of the return value). For a function that takes a parameter
of type y and returns a value of type & (“delta”), we write its
type as y — 6. The right-arrow is called the function type
constructor; it associates to the right, so y > 6 = ¢ (“epsilon”)
is equivalent to y = (6 = g). The resemblance to a logical
implication isn’t accidental: a function type a = §is a logical

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 245

implication: passing a value of type o to the function implies
that the return type will be 8.

To use these types in A calculus, we need to add two new
constructs. First, we need to modify our A calculus syntax
so that we can include type information in A terms. Second,
we need to add a set of rules to show what it means for a
typed program to be valid.

",y

The syntax part is easy: we add a colon (“:”) to the notation.
The colon binds the expression or variable binding on its
left to the type specification on its right. It asserts that
whatever is on the left side of the colon has the type specified
on the right side. This method of specifying the type of an
expression is called a type ascription.

Let’s look at a few examples:

® Ax:a.x+3: This is a simple function that declares that
the parameter x has type a, which is our name for the
natural numbers. This function doesn’t say anything
about the type of the result of the function, but since we
know that + is a function with type a. > a, we can infer
that the result type of this function will be o.

* (Ax.x+3): a = o This is the same as the previous
function with a different but equivalent type declaration.
This time the type ascription asserts the type of the entire
A expression. We can infer that x : @ because the function
type is declared to be a - a, which means that the
parameter has type o.

* Ax:a,y:8.ifythenx *xelse x. Now we're getting more
complicated. This is a two-parameter function where
the first parameter is type a and the second parameter
is type 6. We can infer the return type, because it’s the
type of x that is a. Using that, we can see that the type
of the full function is & = § = . This may seem surpris-
ing at first because it’s a two-parameter function, but
we're writing the type using multiple arrows. The trick
here is that, as I explained in Section 24.1, Writing A

Calculus: It's Almost Programming!, on page 220, A calculus

really works entirely in terms of single-parameter
functions; multiparameter functions are a shorthand for
currying. x: ay:0. if y then x * x else x is shorthand for A

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 246

x:o.(Ay: 8. ifythen x * x else x). The inner A has type
6 = a, and the outer A has type a = (6 = a).

The point of typing is to enforce consistency on A calculus
expressions and programs. To do that, we need to be able
to determine whether or not a program’s use of types is
consistent and valid. If it is, we say that the program is well
typed. The way that we check whether a program is well
typed is by using a system of type inference. Type inference
takes type declarations as axioms and uses logical inference
to determine the types of every clause and expression in the
program. If the type of every expression can be inferred and
none of the inferred types is different from the declared
types, then the program is well typed. When the type of an
expression is inferred using the type logic, we call that
inference a type judgement.

Type judgements are usually written in a notation called a
sequent, which looks like a fraction where the numerator
consists of statements that we know to be true and the
denominator is what we can infer from the numerator. In
the numerator, we normally have statements using a type
context (or just context), which is a set of type judgements
that we already know. The context is usually written as an
uppercase letter. If a type context G includes the judgement
that x : y, we'll write thatas G :-x:y”.

For the simply typed A calculus, a simplified version of the
type inference rules are given here:

Type Identity

This is the simplest rule: if we have no information
other than a type ascription of the variable’s type, then
we know that that variable has the type that was
ascribed to it.
Type Invariance

GEX:a,x#y

G+y:pEx:a
This is a statement of noninterference. It says that once
we’ve been able to judge the type of some variable or

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 247

expression, adding more information about the types
of other variables or expressions can’t change our
judgement. This is extremely important for keeping type
inference usable in practice; it means that we can make
a judgement as soon as we have enough information,
and we never need to reevaluate it.

Function Type Inference

G+x:aEy:f

GE(MA:ay):a—p

This statement allows us to infer function types given
parameter types. If we know the type of the parameter
to a function is o, and we know that the type of the term
that makes up the body of the function is §, then we
know that the type of the function is a—p.

Function Application Inference
GEx:a—- B GEy:«a
GEXy):p

If we know that a function has type a—f and we apply
it to a value of type a, the result is a value of type .

These four rules are all that we need. If we can come up with
a consistent set of type judgements for every term in a A
expression, then the expression is well typed. If not, then
the expression is invalid.

Let’s work through an example.
Example: A x y . ify then 3 * x else 4 * x.

1. If/then/else would be a built-in function, which would be in
the context. The type would be g »a—a— a—that is, it’s a
function that takes three parameters: a Boolean, a value to
return if the Boolean is true, and a value to return if the
Boolean is false. For if/then/else to be well typed, both the
second and third parameters must have the same type or the
function would have two possible return types, which would
be inconsistent. So using the known type information about
if/then/else and using function type inference, we can infer
that y must have the type .

2. Similarly, we do the same basic thing with the other expres-
sions in the if/then/else function. *is a function from a number
to a number, so since we're using x as a parameter to *, x : a.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 248

3. Once we know the types of the parameters, we can use appli-
cation inference to find the return type of if/then/else: it's
BPra=>a—>a.

4. And finally, we can use function type inference now to get the
type of the top-level function. (A x: ay: B. if y then 3 * x else 4
*x):a—>p—>a

In more complex programs, we often need to play with type
variables. A type parameter is a placeholder for a currently
unknown type. When we have a variable whose type we
don’t know, we can introduce a new type variable. Eventual-
ly, when we figure out what the actual type should be in
any place where the type variable is used, we can replace it.
For example, let’s look at a really simple expression: A x .y x.

Without any type declarations or parameters, we don’t know
its exact type. But we do know that x has some type, so we’ll
use a type variable to represent its unknown type and hope
that later we’ll be able to replace the variable with a specific
type. We'll call the type variable t, which means that using
type identity, we can add the judgement x: t. We know that
y is a function because it’s applied in the A body and takes
x as a parameter. Since we don’t know what type it returns,
we’ll use another new type variable 4, and say y: u (function
type inference). By doing function application inference, we
can judge that the result type of the application of i is u. This
means that we can write types for everything in that function
using type variables: (A x:ty: t = u. (y x): u) t = (t > u) > u.
We can't infer anything else without knowing more about
the types of x and y. So we’ve been able to infer a lot just
from the structure of the A expression, but we can’t quite get
to the point of showing that it’s well typed.

To see the problem, suppose that we wanted to apply our A
like this: (Ax y .y x) 3 (A a. if a then 3 else 2). Then we'd be
able to say that y must have type f — o (we said earlier that
B is the type of Boolean values, and a is natural numbers).
Since we're passing 3 for x, then x: a. Now we’ve got an
inconsistency: according to the type judgement for y, t must
be B, but according to the type judgement for x,  must be c.

That’s all we needed: now we have the simply typed A
calculus.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 249

Let’s take another look at the types of the simply typed A
calculus. Anything that can be formed from the following
grammar is a A calculus type:

Prove It!

type = primitive || function || (type)
primitive : : = alpha; || beta; || delta; || ---
function : : = type rarr; type

The grammar defines the syntax of valid types, but that’s
not quite enough to make the types meaningful. Using that
grammar, you can create type expressions that are valid but
for which you can’t actually write an expression that will
produce a value of that type. When there is an expression
that has a type, we say that the expression inhabits the type
and that the type is an inhabited type. If there is no expres-
sion that can inhabit a type, we say it's uninhabitable. So
what’s the difference between an inhabitable type and an
uninhabitable type?

The answer comes from something called the Curry-Howard
isomorphism. The Curry-Howard isomorphism is one of the
most brilliant pieces of work that I've ever seen. It showed
that for a typed X calculus, there is a corresponding intuition-
istic logic: a type expression in the A calculus is inhabitable
if and only if the type is a provable theorem in the correspond-
ing logic.

I alluded to this earlier: look at the type a—a. Instead of
seeing “—” as the function type constructor, try viewing it
as a logical implication. “o implies a” is clearly a theorem
of intuitionistic logic. So the type a—a is inhabitable.

Now look at a— . That’s not a theorem, unless there’s some
other context that proves it. As a function type, we can
understand it as the type of function that takes a parameter
of type a and returns something different, a value of type S.
Taken on its own, you can’t do that: the 8 needs to come
from somewhere. In order for a = B to be a theorem, it must
be provable. What's the proof? A program that takes a
parameter of type a and returns a value of type B. The pro-
gram is the proof that the type is inhabitable.

The fact that A calculus programs are proofs is even deeper
than that. You can take any statement in intuitionistic logic

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 250

and render it into a type declaration in A calculus. Then you
can prove the validity of that statement by writing a valid
program. The program is the proof; the f reductions that are
used to evaluate the proof are inference steps in the logic.
There is a one-to-one relation between B reductions and
inferences. And the execution of the program produces a
concrete example that demonstrates the truth of the
statement.

When we began this chapter, I said that in order for it to be
considered sound, A calculus needed a valid model. And
here we are: intuitionist logic is the model.

What's It Good For?

Aside from making it possible to build a model, types made
it possible to reason about expressions in the A calculus in
amazing ways. Types for A calculus changed the field of
computation forever: not only are they useful for abstract
mathematical study, but the typed A calculus has directly
impacted practical computation. Today it is widely used in
the design of programming languages, as a tool for describ-
ing the meaning of programming languages, and even as a
tool for describing the meaning of human languages. Type
systems for A calculi have never stopped developing: people
are still finding new things to do by extending the A type
system today!

Most programming languages based on A calculus are based
on a variant of System-F, which extends A calculus with a
much more sophisticated type system that includes param-
eterized types. (If you want to learn more about System-F,
a good introduction is Types and Programming Languages

[Pie02].) System-F was simplified and used in the design of
a programming language called ML by Robin Milner (see
The Definition of Standard ML (Revised) [MHMT97] for details),
which was the basis for pretty much all of the modern typed
A-calculus-based programming languages. Milner went on
to earn the Turing award for his work in designing ML as

well as for his work in modeling concurrent computation
using something called the calculus of communicating systems.

Once people really started to understand types, they realized
that the untyped A calculus was really just a pathologically

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

26. Types, Types, Types: Modeling A Calculus ® 251

simple instance of the simply typed A calculus: a typed A
calculus with only one base type. Types weren't really nec-
essary for the model, but they made it easier and opened
new vistas for the practical application of A calculus.

The simply typed X calculus started as a way of constraining
A calculus expressions to ensure that they were consistent.
But the way that Church created types is amazing. He didn’t
just create a constraint system. He added a level of logic to
types. This was a stroke of absolute genius that meant that
if a A calculus function is well formed, then the types of its
expressions will form a logical proof of its consistency! The
type system of a simply typed A calculus is an intuitionistic
logic: each type in the program is a proposition in the logic,
each B reduction corresponds to an inference step, and each
complete function is a proof that the function contains no
type errors!

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27

The Halting Problem

What better way to finish a book on computing than by
asking if computations will ever finish?

One of the most fundamental questions in computing is, can
you tell if a particular computation will ever stop? It’s obvi-
ously important to an engineer writing a program. A correct
program should always eventually finish what it’s doing
and stop. If you’ve written a program that doesn’t ever finish
what it’s doing, it’s almost certainly incorrect.

There’s a lot more to this question than just whether or not
a particular program is correct. It gets to the very heart of
questions about the fundamental limits of mathematics.

Most of the time when mathematicians talk about the limits
of math, they end up talking about something called Gdidel’s
incompleteness theorem. Incompleteness proved that not all
true statements are provable. By showing this, the proof of
incompleteness showed that the most ambitious project in
the history of mathematics was doomed to be an utter failure.
This made incompleteness simultaneously one of the greatest
results and one of the greatest disappointments ever in all
of math.

I'm not going to explain it.

What I am going to do is explain something related but
simpler that comes from the question about whether a
program will ever finish running and stop. We saw in 14,

Programming with Logic, on page 103, that logical proofs and

computations are the same thing. By looking at computations
and asking whether or not those computations will ever

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 254

finish, we can produce a result that means almost the same
thing as incompleteness. Here’s the fundamental question
we're going to look at: if I give you a program P, can you
write a program that will tell you whether P will ever finish
running? Turing spent a lot of time working on it under its
German name, the Entscheidungsproblem. In English, it's
called the halting problem. But before I go into detail, I want
to set the stage for why it’s such a big deal!

A Brilliant Failure

Early in the twentieth century, a group of mathematicians
led by Bertrand Russell and Alfred North Whitehead set out
to do something amazing; they wanted to build a complete
formalization of mathematics. They started with nothing
but the most basic axioms of set theory and then tried to
build up the complete edifice of mathematics as one system,
published as the Principia Mathematica. The system described
in Principia would have been the ultimate perfect mathemat-
ics! In this system, every possible statement would be either
true or false: every true statement would be provably true,
and every false statement would be provably false.

This should give you a sense of just how complex the Prin-
cipia system was: it took Whitehead and Russell 378 pages
of nothing but pure mathematical notation just to get to the
point where they could prove that 1 + 1 =2. A brief except
from that amazingly complicated proof is shown in Figure
19, The Principia Mathematica, on page 255.

If the Principia had been successful, it would have unlocked
all of the secrets of mathematics. Russell and Whitehead
would have accomplished what would have been the most
significant intellectual accomplishment of all time.

Sadly, it was a failure. The system blew up in their faces: not
only did their effort fail, but it was proven to be absolutely,
utterly, inescapably impossible for it ever to succeed.

What happened to cause this magnificent effort to fall apart?
Simple: Kurt Godel (1906-1978) came along in 1931 and
published a paper that was called “On Formally Undecidable
Propositions in Principia Mathematica and Related
Systems I,” which contained his first incompleteness theorem.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 255

Similarly  F:ngCuaviy.a~eB.D:f=A.v.8=1Y (3
F.(2).(3).%348.2

P BClou ity ~(,yeB).D:B=A.v.B=t"2.v. 8=y €]
Fo(1).(4).%348.D
FrLBCrizvity.d:f=A.v.B=tz.v.B=1'y.v.B=1l"zviY (5)
F.%24:12 . %22:5842, D
F':.B=A.v.B-—.L‘m.v.ﬁ=.‘.‘3;,v.,8=f,‘muL‘y:3.3C£‘mul‘y (6)
b.(5).(6).DF. Prop

This proposition shows that a class contained in a couple is either the

null-class or a unit class or the couple itself, whence it will follow that 0 and
1 are the only numbers which are less than 2.

Figure 19—The Principia Mathematica: An excerpt from the
formal proof in Principia Mathematica (see pg. 378) that 1+ 1=2.
(Image courtesy of the University of Michigan Library archive at

http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umbhist-
math;idno=AAT3201.0001.001.)

Incompletness proved that any formal system powerful
enough to express Peano arithmetic would be either incom-
plete or inconsistent. The mechanics of the incompleteness
proof are complex but stunningly beautiful.

Incompleteness absolutely halted work on any system like
the Principia, because it showed that such efforts were
doomed to fail. The theorem did this by showing that any
complete system had to be inconsistent, and any consistent
system had to be incomplete. What does that mean?

In mathematical terms, an inconsistent system is a system
in which you can produce a proof of a false statement. In
the math world, that’s the worst possible flaw. In a logical
system, if you can ever prove a false statement, that means
that every proof in the system is invalid! We absolutely can-
not tolerate an inconsistent system. Since we can’t allow an
inconsistent system, any system that we build must be
incomplete. Saying that a system is incomplete means that
there are true statements that can’t be proven to be true.

Incompleteness spelled disaster for the Principia system —the
entire point of the Principia effort was to make every true
statement provable within a single formal system.

What does this have to do with Alan Turing and the halting
problem?

www.it-ebooks.info


http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAT3201.0001.001
http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAT3201.0001.001
http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 256

Explaining the proof of incompleteness is difficult. There are
entire books dedicated to the subject. We don't have the time
or space to go through that! Fortunately, there’s an easy way
out in Alan Turing’s proof of the so-called halting problem,
which turns out to be a simpler version of nearly the same thing.

As we saw with Prolog in 14, Programming with Logic, on
page 103, a logical inference system is a kind of computing
system, because the process of searching for a proof in a

logic is a computation. That means that if the Principia were
capable of working, then for any statement in a logic, a search
for a proof would eventually produce a proof that either the
statement was true or that it was false. There would always
be an answer, and that answer would always eventually be
generated by a program.

So the question “Is there a proof that statement S is either
true or false?” is really the same thing as the question “Will
a program P ever finish with an answer?”

Godel proved the logical side of that question: he proved
that there are some statements that aren't false, but that you
can’t prove are true. Turing proved the equivalent statement
that there are programs for which you can't tell whether
they will ever finish, or halt.

They are, in a deep sense, the same thing. But understanding
the proof of the halting problem is very easy compared to
understanding Godel’s proof of incompleteness.

To Halt or Not To Halt?

To begin, we need to define what a computing device is. In
formal mathematical terms, we don’t care how it works; all
we care about is what it can do in abstract terms. So we
define something called an effective computing device or an
effective computing system, abbreviated ECS. An effective
computing device is any Turing-equivalent computing
device: it could be a Turing machine or a A calculus evaluator
or a Brainf*** interpreter or the CPU in your mobile phone.
I'm being deliberately vague here because we don’t care
what kind of machine it is. What we want to show is that for
any possible computing device, it won't be able to tell correctly
whether programs halt.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 257

An ECS is modeled as a two-parameter function:
C:NXN-—>N

The first parameter is an encoding of a program as a natural
number; the second parameter is the input to the program.
It’s also encoded as a natural number. Encoding it that way
might seem limiting, but it really isn’t because we can encode
any finite data structure as a natural number. If the program
halts, then the return value of the function is the result of
the program. If the program doesn't halt, then the function
doesn’t return anything. In that case, we say that the pair
consisting of the program and its input aren’t in the domain
of the ECS.

So if you wanted to describe running the program f on the
input 7, you'd write that as C(f, 7). And finally, the way that
we would write that a program p doesn’t halt for input i is
Clp,i)=_.

Now that we’ve got our basic effective computing device,
we need to equip it to handle more than two parameters
before we can use it to formulate the halting problem. After
all, a halting oracle is a program that takes two inputs:
another program and the input to that program. The easiest
way to do that is to use a pairing function, a one-to-one
function from an ordered pair to an integer.

There are lots of possible pairing functions. For example,
you could convert both numbers to binary, left-pad the
smaller of the two until theyre of equal length, and then
interleave their bits. Given (9, 3), you convert 9 to 1001, and
3 to 11; then you pad 3 to 0011 and interleave them to give
you 10001011, or 139. It doesn’t matter exactly which pairing
function we use: what matters is that we know it’s possible
to choose some pairing function that lets us combine multiple
parameters into a single number. We'll write our pairing
function as pair(x, y).

With the help of the pairing function, we can now express
the halting problem. The question is, does there exist a pro-
gram O, called a halting oracle, such that

Oif p(p, ) = L

¥ ¥ 1O paip D =y w1

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 258

In English: Does there exist a program O such that for all
pairs of program p and inputs i, the oracle returns 1 if
C(pair(p, i) halts, and 0 if it doesn't? Or less formally, can I
write a program that tells whether or not other programs
will eventually finish running and stop?

Now for the proof. Suppose that we do have a halting oracle,
O. That means that for any program p and input i, C(O, pair(p,
i)) = 0 if and only if C(pair(p, 1)) = _.

What if we can devise a program p4 and input i where C(p,, 1)
halts, but C(O, pair(p, i)) = 0? If we can, then that will mean
the halting oracle failed, which in turn will show that we
cannot always determine whether a program will eventually
halt.

So we're going to build that program. We'll call it the
deceiver. The deceiver looks at what the halting oracle would
predict that it would do, and then it does the opposite.

def deceiver(oracle) {
if oracle(deceiver, pair(oracle, deceiver)) == 1 then
loop forever
else
halt
}

Simple, right? Almost. It's not quite as easy as it might seem.
You see, the problem is that the deceiver needs to be able to
pass itself to the oracle. But how can it do that? A program
can't pass itself into the oracle.

Why not? Because we're working with the program repre-
sented as a number. If the program contained a copy of itself,
then it would have to be larger than itself. Which is, of course,
impossible.

As an aside, there are a variety of tricks to work around this.
One of the classic ones is based on the fact that for any given
program p, there are an infinite number of versions of the
same program with different numeric representations. Using
that property, you can embed a program 42 into a deceiver
d.But there are a few other tricks involved in getting it right.
It’s not simple, and even Alan Turing screwed it up in the
first published version of his proof!

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 259

Fortunately, there’s a nice workaround. What we care about

is whether there is any combination of program and input

such that O will incorrectly predict the halting status. So

we'll just turn the deceiver into a parameter that it can pass

to itself. That is, the deceiver is this:

def deceiver(input) {
(oracle, program) = unpair(input)
if oracle(program, input):

while(True): continue

else:
halt

}

Then we’ll be interested in the case where the value of the
program parameter is the numeric form of the deceiver itself.

Now, when input = pair(O, deceiver), O will make the wrong
prediction about what deceiver will do. That means that once
again we're back where we were in the simpler version of
the proof. A halting oracle is a program that, given any pair
of program and input, will correctly determine whether that
program will halt on that input. We're able to construct a
program and input pair where the oracle doesn’t make the
right prediction, and therefore it isn’t a halting oracle.

This proof shows that any time anyone claims to have a
halting oracle, they’re wrong. And you don't need to take
it on faith: this proof shows you how to build a specific
example where the oracle will be wrong.

The halting problem seems like a simple one. Given a
computer program, you want to know if it will ever finish
running. Thanks to Turing, we know that’s a question you
can't answer. But the problem goes beyond the concerns of
computer professionals because computation is so central
to the field of mathematics. Long before anyone had actually
thought deeply about computation, the limits of computation
were setting the limits of mathematics. The fact that we can’t
know whether a program will ever stop means that there
are problems in computing that we can’t ever solve, and,
more crucially, that mathematics itself can’t ever solve.

If you're interested in learning more about Godel and the
incompleteness theorems, I highly recommend you check
out two books. The first, .G'o'del, Escher, Bach: An Eternal Golden

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

27.The Halting Problem ¢ 260

Braid [Hoi_‘99], is my all-time favorite nonfiction book, and it
does a beautiful job of actually walking you through the
steps of Godel’s proof in an engaging, fun, informal way. If
you prefer a more formal and mathematical approach, I
recommend Gddel’s Proof [NNO8], a brilliant presentation.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

[CGP99]

[CMO03]

[Cha02]

[FFBY5]

[Hod98]

[Hof99]

[Lep00]

[MHMT97]

[NNO08]

Bibliography

Edmund M. Clarke Jr., Orna Grumberg, and Doron
A. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

William F. Clocksin and Christopher S. Mellish. Pro-
gramming in Prolog: Using the ISO Standard. Springer,
New York, NY, USA, Fifth, 2003.

Gregory J. Chaitin. The Limits of Mathematics: A Course
on Information Theory and the Limits of Formal Reasoning.
Springer, New York, NY, USA, 2002.

Daniel P. Friedman, Matthias Felleisen, and Duane
Bibby. The Little Schemer. MIT Press, Cambridge, MA,
Fourth, 1995.

Wilfrid Hodges. An editor recalls some hopeless
papers. The Bulletin of Symbolic Logic. 4[1], 1998, March.

Douglas R. Hofstadter. Gddel, Eschet, Bach: An Eternal
Golden Braid. Basic Books, New York, NY, USA, 20th
Anniv, 1999.

Ernest Lepore. Meaning and Argument: An Introduction
to Logic Through Language. Wiley-Blackwell, Hoboken,
NJ, 2000.

Robin Milner, Robert Harper, David MacQueen, and
Mads Tofte. The Definition of Standard ML - Revised.
MIT Press, Cambridge, MA, Revised, 1997.

Ernest Nagel and James Newman. Gddel’s Proof. NYU
Press, New York, NY, 2008.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

[0'K09]

[Pie02]

[Ray96]

[Wol02]

Bibliography ¢ 262
Richard O’Keefe. The Craft of Prolog (Logic Program-
ming). MIT Press, Cambridge, MA, 2009.

Benjamin C. Pierce. Types and Programming Languages.
MIT Press, Cambridge, MA, 2002.

Eric S. Raymond. The New Hacker’s Dictionary. MIT
Press, Cambridge, MA, Third, 1996.

Stephen Wolfram. A New Kind of Science. Wolfram
Media, Champaign, IL, 2002.

www.it-ebooks.info


http://pragprog.com/titles/mcmath/errata/add
http://forums.pragprog.com/forums/mcmath
http://www.it-ebooks.info/

Put the “Fun” in Functional

Elixir puts the “fun” back into functional programming, on top of the robust, battle-
tested, industrial-strength environment of Erlang.

Programming Elixir

You want to explore functional program- "R s
ming, but are put off by the academic feel
(tell me about monads just one more time). Pro or .
You know you need concurrent applications, Eh)ﬂr g
but also know these are almost impossible Functional
to get right. Meet Elixir, a functional, concur- }i e
rent language built on the rock-solid Erlang P Fun
VM. Elixir’s pragmatic syntax and built-in

support for metaprogramming will make

you productive and keep you interested for

the long haul. This book is the introduction .

.. . José Valim,
to Elixir for experienced programmers. plinsiniee S0

Dave Thomas

edited by Lynn Beighley it

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)

. . . 2L ic
A multi-user game, web site, cloud applica- P s
tion, or networked database can have thou-
sands of users all interacting at the same
time. You need a powerful, industrial- Pro%rammlng
strength tool to handle the really hard prob- riarn
. . . Software for a Concurrent World
lems inherent in parallel, concurrent environ-
. 3 Second Edition
ments. You need Erlang. In this second edi- ‘

tion of the bestselling Programming Erlang, N

you'll learn how to write parallel programs
that scale effortlessly on multicore systems. & -

Joe Armslrow
Joe Armstrong ety S Dt 11
(510 pages) ISBN: 9781937785536. $42 &6 &
http://pragprog.com/book/jaerlang2 2 N ' &

www.it-ebooks.info


http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

Seven Databases,
Seven Languages

There’s so much new to learn with the latest crop of NoSQL databases. And instead of
learning a language a year, how about seven?

www.it-ebooks.info


http://www.it-ebooks.info/

Tinker, Tailor, Solder, and DIY!

Get into the DIY spirit with Raspberry Pi or Arduino. Who knows what you’ll build
next...

Raspberry Pi

computer that runs Linux. Use its video, au-
dio, network, and digital I/O to create media

centers, web servers, interfaces to external Raspb e
hardware —you name it. And this book gives B

The Raspberry Pi is a $35, full-blown micro E

A Quick-Start Guide
you everything you need to get started.

Maik Schmidt
(149 pages) I1SBN: 9781937785048. $17
http://pragprog.com/book/msraspi

Maik Schmidt
Edtted by Jacquelyn Carter

www.it-ebooks.info


http://pragprog.com/book/msraspi
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/mcmath
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/book/mcmath

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

www.it-ebooks.info


http://pragprog.com/book/mcmath
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/mcmath
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Preface
	Where'd This Book Come From?
	Who This Book Is For
	How to Read This Book
	What Do You Need?
	Acknowledgments

	Part I—Numbers
	1. Natural Numbers
	The Naturals, Axiomatically Speaking
	Using Peano Induction

	2. Integers
	What's an Integer?
	Constructing the Integers—Naturally

	3. Real Numbers
	The Reals, Informally
	The Reals, Axiomatically
	The Reals, Constructively

	4. Irrational and Transcendental Numbers
	What Are Irrational Numbers?
	The Argh! Moments of Irrational Numbers
	What Does It Mean, and Why Does It Matter?


	Part II—Funny Numbers
	5. Zero
	The History of Zero
	An Annoyingly Difficult Number

	6. e: The Unnatural Natural Number
	The Number That's Everywhere
	History
	Does e Have a Meaning?

	7. φ: The Golden Ratio
	What Is the Golden Ratio?
	Legendary Nonsense
	Where It Really Lives

	8. i: The Imaginary Number
	The Origin of i
	What i Does
	What i Means


	Part III—Writing Numbers
	9. Roman Numerals
	A Positional System
	Where Did This Mess Come From?
	Arithmetic Is Easy (But an Abacus Is Easier)
	Blame Tradition

	10. Egyptian Fractions
	A 4000-Year-Old Math Exam
	Fibonacci's Greedy Algorithm
	Sometimes Aesthetics Trumps Practicality

	11. Continued Fractions
	Continued Fractions
	Cleaner, Clearer, and Just Plain Fun
	Doing Arithmetic


	Part IV—Logic
	12. Mr. Spock Is Not Logical
	What Is Logic, Really?
	FOPL, Logically
	Show Me Something New!

	13. Proofs, Truth, and Trees: Oh My!
	Building a Simple Proof with a Tree
	A Proof from Nothing
	All in the Family
	Branching Proofs

	14. Programming with Logic
	Computing Family Relationships
	Computation with Logic

	15. Temporal Reasoning
	Statements That Change with Time
	What's CTL Good For?


	Part V—Sets
	16. Cantor's Diagonalization: Infinity Isn't Just Infinity
	Sets, Naively
	Cantor's Diagonalization
	Don't Keep It Simple, Stupid

	17. Axiomatic Set Theory: Keep the Good, Dump the Bad
	The Axioms of ZFC Set Theory
	The Insanity of Choice
	Why?

	18. Models: Using Sets as the LEGOs of the Math World
	Building Natural Numbers
	Models from Models: From Naturals to Integers and Beyond!

	19. Transfinite Numbers: Counting and Ordering Infinite Sets
	Introducing the Transfinite Cardinals
	The Continuum Hypothesis
	Where in Infinity?

	20. Group Theory: Finding Symmetries with Sets
	Puzzling Symmetry
	Different Kinds of Symmetry
	Stepping into History
	The Roots of Symmetry


	Part VI—Mechanical Math
	21. Finite State Machines: Simplicity Goes Far
	The Simplest Machine
	Finite State Machines Get Real
	Bridging the Gap: From Regular Expressions to Machines

	22. The Turing Machine
	Adding a Tape Makes All the Difference
	Going Meta: The Machine That Imitates Machines

	23. Pathology and the Heart of Computing
	Introducing BF: The Great, the Glorious, and the Completely Silly
	Turing Complete, or Completely Pointless?
	From the Sublime to the Ridiculous

	24. Calculus: No, Not That Calculus—λ Calculus
	Writing λ Calculus: It's Almost Programming!
	Evaluation: Run It!
	Programming Languages and Lambda Strategies

	25. Numbers, Booleans, and Recursion
	But Is It Turing Complete?
	Numbers That Compute Themselves
	Decisions? Back to Church
	Recursion: Y Oh Y Oh Y?

	26. Types, Types, Types: Modeling λ Calculus
	Playing to Type
	Prove It!
	What's It Good For?

	27. The Halting Problem
	A Brilliant Failure
	To Halt or Not To Halt?


	Bibliography

