
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

NFC APPLICATION DEVELOPMENT

FOR ANDROID™

INTRODUCTION . xix

CHAPTER 1 Overview of Near Field Communication . 1

CHAPTER 2 NFC Essentials for Application Developers . 23

CHAPTER 3 Getting Started with Android . 53

CHAPTER 4 Android Software Development Primer . 77

CHAPTER 5 NFC Programming: Reader/Writer Mode . 115

CHAPTER 6 Reader/Writer Mode Applications . 149

CHAPTER 7 NFC Programming: Peer-to-Peer Mode . 181

CHAPTER 8 Peer-to-Peer Mode Applications . 207

CHAPTER 9 NFC Programming: Card Emulation Mode . 229

APPENDIX A URI Prefi xes for NDEF . 247

APPENDIX B Android NFC Packages . 249

INDEX . 265

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

NFC Application Development
for Android™

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

NFC Application Development
for Android™

Vedat Coskun
Kerem Ok

Busra Ozdenizci

www.it-ebooks.info

http://www.it-ebooks.info/

© 2013 John Wiley & Sons, Ltd.

Registered offi ce

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offi ces, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identifi ed as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
 promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
 services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are
the property of their respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned
in this book.

A catalogue record for this book is available from the British Library.

978-1-118-38009-3 (paperback)
978-1-118-38056-7 (ePub)
978-1-118-38055-0 (eMobi)
978-1-118-38054-3 (ePDF)

Set in 9.5/12 Sabon LT Std Roman, by MPS Limited, Chennai

Printed in the United States at Bind-Rite

www.it-ebooks.info

http://www.wiley.com
http://www.it-ebooks.info/

My beloved love; Istanbul, the magnifi cent

I am so lucky to be born out of you,

and my passionate ambition is to be buried into you

as well.

—Vedat Coskun

To my dear family.

Her zaman yanımda olan aileme.

—Kerem Ok

To my lovely family and Ugurcan who encouraged me

to do my best.

—Busra Ozdenizci

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHORS

VEDAT COSKUN is a computer scientist, academician, and author. He established
NFC Lab –

.
Istanbul (www.NFCLab.com), the leading research lab on Near Field

Communication (NFC) technology worldwide, which aims to take initiative on
sustainable evolution of the technology for creating a win-win ecosystem for all the
actors in the game such as users and fi nancial and technical organizations. He is

 currently working as Associate Professor of Information Technology at ISIK University, Istanbul.
He received the “Excellence in Teaching” award from ISIK University in 2012. He also gave lectures
at several other universities such as University of Thessaly in Volos, Greece; Malardalen University
in Vasteras, Sweden, and Inholland University in Amsterdam, Netherlands. He specializes in
security, mobile technologies, Java technology, Android, and NFC. He has written a vast amount
of conference and journal publications, and authored several books, including Near Field
Communication (NFC): From Theory to Practice (Wiley, 2012). He believes that establishing a
strong relationship between academia and the NFC industry is important, and considers his role as
a consultant for national and international companies as a catalyst to making that happen.

KEREM OK is a PhD candidate in the Informatics department at Istanbul
University. His research areas are NFC, mobile technologies, web technologies, and
mobile usability. He has authored several journal and conference publications on
NFC technology. He is also one of the authors of Near Field Communication (NFC):
From Theory to Practice. He is currently a researcher at NFC Lab –

.
Istanbul.

BUSRA OZDENIZCI received her MS degree in Information Technologies from ISIK
University, Turkey, and is pursuing her PhD degree in the Informatics department
at Istanbul University. Her research areas include NFC, mobile communication
 technologies, and mobile persuasion. She has authored several conference and
 journal publications on NFC technology. She is one of the authors of the book titled

Near Field Communication (NFC): From Theory to Practice. She is currently a researcher at NFC
Lab –

.
Istanbul.

www.it-ebooks.info

http://www.NFCLab.com
http://www.it-ebooks.info/

ABOUT THE TECHNICAL EDITORS

PETR MAZENEC is the cofounder of the Mautilus, s.r.o. company, which is focused on NFC technol-
ogy and custom software development for smartphones and tablets. He is currently responsible for
coordinating NFC activities and technical project leadership for Smart TV development. Petr became
interested in computers in the late 80s, when he was one of the few lucky users of the Commodore
64 machine behind the iron curtain. He started programming at that time and since then software
development has become his passion. He has progressed from coding on the assembler in MS-DOS
up to the current development of software for the most recent smartphone platforms. He started
mobile development in 2003 on the Symbian platform, when Nokia released the fi rst smartphone
7650 followed by the famous Siemens SX1. As a Symbian developer, Petr participated in and won
several developers’ competitions and was named a Forum Nokia Champion six times in a row.

HANK CHAVERS is Associate Principle at Constratus, a consultancy providing technical expertise
and business analysis for telecommunications, where he is leading the NFC innovation efforts
with key clients. Hank has over 20 years of experience in development, deployment, and converg-
ing of Internet services and wireless data. He has advised and consulted many companies —
including CNN, ESPN, and Sabre — in expanding their products to mobile; and AT&T, T-Mobile,
and Verizon Wireless in launching rich data services. His NFC-specifi c accomplishments include:
producing proof-of-concept demonstrations for NFC-enabling wireless technologies; providing
technical management for NFC trials, including the fi rst trial conducted with two types of payment
cards loaded on one device; and leading the NFC Forum Developer Workgroup and NFC Global
Competition.

www.it-ebooks.info

http://www.it-ebooks.info/

VP CONSUMER AND TECHNOLOGY

PUBLISHING DIRECTOR

Michelle Leete

ASSOCIATE DIRECTOR—BOOK CONTENT

MANAGEMENT

Martin Tribe

ASSOCIATE PUBLISHER

Chris Webb

ASSOCIATE COMMISSIONING EDITOR

Ellie Scott

ASSOCIATE MARKETING DIRECTOR

Louise Breinholt

MARKETING MANAGER

Lorna Mein

SENIOR MARKETING EXECUTIVE

Kate Parrett

EDITORIAL MANAGER

Jodi Jensen

SENIOR PROJECT EDITOR

Sara Shlaer

PROJECT EDITOR

Kathryn Duggan

EDITORIAL ASSISTANT

Annie Sullivan

TECHNICAL EDITORS

Petr Mazenec

Hank Chavers

PRODUCTION EDITOR

Christine Mugnolo

COPY EDITORS

Chuck Hutchinson

Grace Fairley

PROOFREADER

Sarah Kaikini

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER IMAGE

© fatih donmez / iStockphoto

CREDITS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION xix

CHAPTER 1: OVERVIEW OF NEAR FIELD COMMUNICATION 1

Ubiquitous Computing and NFC 2

Wireless Communication as NFC 3

RFID Technology 5

Essentials of an RFID System 6

Common RFID Applications 6

Smart Card Technology 7

Types of Smart Cards: Capability-Based Classifi cation 7

SCOS 8

Types of Smart Cards: Mechanism-Based Classifi cation 9

Common Smart Card Applications 10

NFC Technology 10

NFC Devices 13

NFC Operating Modes 14

NFC Applications 18

Summary 22

CHAPTER 2: NFC ESSENTIALS FOR APPLICATION DEVELOPERS 23

NFC Mobile 24

SE 25

NFC Interface 28

Interface Between SE and NFC Controller 29

HCI 31

Standards Used by NFC 32

Proximity Contactless Smart Card Standards 33

NFCIP 35

NFC Operating Mode Essentials 35

Reader/Writer Mode 36

Peer-to-Peer Mode 45

Card Emulation Mode 48

Standardization of NFC 49

Diversity of NFC Platforms 50

Summary 51

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

CONTENTS

CHAPTER 3: GETTING STARTED WITH ANDROID 53

What Is Android? 54

Linux Kernel 55

Android Runtime 56

Libraries 56

Application Framework 56

Applications 56

Android SDK 56

What You Need to Start 56

JDK and JRE 57

Android SDK 57

Adding More Platforms and Other Components to the SDK 59

SDK Packages 62

Android API Levels 63

Structure of Android Applications 65

Android Application Components 65

Intents 66

Intent Filters 66

Manifest File 67

Application Requirements 68

Application Resources 69

Processes and Threads 69

Dalvik Virtual Machine (DVM) 71

Platform Tools 71

SDK Tools 72

Android Virtual Device 74

Summary 75

CHAPTER 4: ANDROID SOFTWARE DEVELOPMENT PRIMER 77

Creating Your First Android Application 78

Components of the Project 81

Running the Project 83

Running Applications on Your Mobile Phone 83

Running Applications Instantly 84

Running Applications by Manual Installation 84

Distributing Android Applications 85

1. Gathering Materials and Resources 85

2. Confi guring the Application for Release 85

3. Compiling and Signing with Eclipse ADT 86

4. Publishing on Google Play 87

www.it-ebooks.info

http://www.it-ebooks.info/

xv

CONTENTS

Understanding Hello World 87

Using Multiple Views 90

Android Project Resources 90

Alternative Resources 91

Accessing Resources 92

Using an Event Listener 92

Layout 92

Resources 94

Code 94

Using Relative Layout 95

Using Dialog Builders 97

Layout 98

Resources 98

Code 98

Using Grid Layout 100

Android Activity Lifecycle 102

Implementing Multiple Activities and Intents 104

Step 1: Creating the Layout File 105

Step 2: Building the ListView 105

Step 3: Implementing onItemClick 106

Step 4: Editing AndroidManifest.xml 106

Step 5: Creating a New Layout 107

Step 6: Creating a New Activity 108

Using Menu Items 108

Creating a Menu XML File 110

Layout 110

Code 111

Summary 112

CHAPTER 5: NFC PROGRAMMING: READER/WRITER MODE 115

NFC APIs in Android 116

android.nfc package 116

android.nfc.tech package 117

Tag Intent Dispatch System vs. Foreground Dispatch System 117

NFC Tag Intent Dispatch System 118

How NFC Tags Are Dispatched to Applications 118

How Android Handles NDEF-Formatted Tags 120

NFC Properties in the Android Manifest File 121

Filtering NFC Intents 122

ACTION_NDEF_DISCOVERED 122

ACTION_TECH_DISCOVERED 125

ACTION_TAG_DISCOVERED 127

www.it-ebooks.info

http://www.it-ebooks.info/

xvi

CONTENTS

Checking NFC Adapter 127

Tag Writing 128

Preparing NDEF Data 128

Writing NDEF Data to Tags 132

Tag Reading 135

Getting an NDEF Message 135

Processing an NDEF Message 136

Android Application Record 140

How It Works 140

Intent Filters vs. AAR 141

Important Notes on AAR 141

Using AAR 141

Foreground Dispatch System 141

Working with Supported Tag Technologies 143

Getting Available Tag Technologies 144

NfcV Example 145

Summary 147

CHAPTER 6: READER/WRITER MODE APPLICATIONS 149

NFC Smart Poster Use Case 150

Smart Poster Tag Writer Application 150

Smart Poster Reader Application 161

NFC Shopping Use Case 169

NFC Shopping Tag Writer Application 170

NFC Shopping Main Application 172

Student Transportation Tracking Use Case 175

Student Tracking Tag Writer Application 176

Student Tracking Main Application 177

Summary 179

CHAPTER 7: NFC PROGRAMMING: PEER-TO-PEER MODE 181

Performing Peer-to-Peer Transactions 182

Beaming NDEF Messages 183

Beaming with setNdefPushMessageCallback() 183

Beaming with setNdefPushMessage() 184

Common Notes 184

Receiving Beams 185

An Abstract Beam with setNdefPushMessageCallback() 185

An Abstract Beam with setNdefPushMessage() 186

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

CONTENTS

Declaring Intent Filters 187

Using Android Application Records in Peer-to-Peer Mode 187

An Example Beam Application Using setNdefPushMessageCallback() 187

An Example Beam Application Using setNdefPushMessage() 191

Beam Support for API Level 10 196

Beaming with enableForegroundNdefPush() 196

An Example Beam Application Using enableForegroundNdefPush() 196

Android OS to Handle the Incoming Beam 199

Beaming Files 203

Beaming with setBeamPushUrisCallback() 203

Beaming with setBeamPushUris() 204

An Example Beam Application Using setBeamPushUrisCallback() 204

An Example Beam Application using setBeamPushUris() 204

Summary 205

CHAPTER 8: PEER-TO-PEER MODE APPLICATIONS 207

NFC Chatting 208

NFC Guess Number 215

NFC Panic Bomb 221

Summary 227

CHAPTER 9: NFC PROGRAMMING: CARD EMULATION MODE 229

Defi nition of Card Emulation Mode 230

Business Ecosystem 230

Stakeholders in an NFC Ecosystem 231

Business Models 232

Business Model Alternatives 232

General Revenue/Expenditure Flow Model 235

Card Emulation Mode Use Case Alternatives 236

Cashless Payment 236

Mobile Wallet 237

Ticketing 237

Loyalty Cards 237

Coupons 237

Card Emulation Mode Programming 238

Programming Secure Elements 238

Programming NFC Reader 240

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

CONTENTS

Programming Android Applications 240

Enabling Android OS Access to SE 242

Setting up the Platform 243

Accessing SE 244

Summary 246

APPENDIX A: URI PREFIXES FOR NDEF 247

APPENDIX B: ANDROID NFC PACKAGES 249

INDEX 265

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

MOBILE PHONE TECHNOLOGY has been in a race in recent years to integrate new technologies
and services, and the actors involved are all striving to be in the leading group that proposes
new suggestions to the users. Innovative additional services entice users, who try to beat, or
at least catch up with the people around them. Young people are especially keen to be part of
such competition. Adults, on the other hand, aim to use the most effi cient services to make
their lives easier — and to be a little bit admired at the same time.

In terms of the appetite for using new technologies, companies do not lag behind the users.
They are aware that companies that take the lead in promoting new technologies by embed-
ding them in new services and offering them to the users will come out ahead, and that this
is extremely important in today’s competitive world. Most companies try to propose new
services themselves, if possible, or by a minimal number of companies working together if it
is not. They try to entice the user by offering them services with low costs, and enhanced with
additional features.

Until recently, Near Field Communication (NFC) was not known at all. In just in a few years
it has been introduced with great enthusiasm by organizations including governmental depart-
ments, research centers, and companies.

There are two major areas in which NFC has the potential for success. The fi rst is its techno-
logical suffi ciency; the other is the ecosystem agreement by the actors in the game. These are
very much interrelated. As the actors become convinced about the success of the new model,
they invest more resources to develop it; and as new technical improvements take place, the
ecosystem becomes more established and ready for the boom. When one actor invests more
money in this option, that actor becomes more eager to make agreements with other actors in
order to recoup their funding and achieve a better return on investment (ROI). When all the
factors are analyzed, it might be confi dently suggested that an NFC boom is now about to start.

As a short-range wireless communication technology that potentially facilitates the mobile
phone usage of billions of people over the world, NFC offers an enormous number of use
cases — including credit cards, debit cards, loyalty cards, car keys, and access keys to hotels,
offi ces, and houses — and has the potential eventually to integrate all such materials into one
single mobile phone. NFC is already having an enormous impact on the fi nancial ecosystem,
as well as on mobile technology throughout the world. Mobile phone manufacturers, mobile
network operators (MNOs), fi nancial institutions such as banks, and information technology
fi rms are performing R&D activities to increase their share of the pie as much as possible.

NFC has become a real innovation in today’s mobile technology. Despite the fact that the tech-
nical structure of NFC is so simple, it offers a huge array of services, which is very important
when you consider the ecosystem point of view. Potentially, it promises a vast number of ways
to reach mobile phone users. Payment seems the foremost option for attempting to internal-
ize NFC technology to the portfolio of promising services. Loyalty is another attractive way

www.it-ebooks.info

http://www.it-ebooks.info/

xx

INTRODUCTION

to entice users, since traditional loyalty services are already so common. Social media looks like the
next promising area in which to expose new services, considering the huge explosion in social media
use in recent years.

When users purchase an NFC-enabled mobile phone, they are curious about how to make use of
the new annex to the traditional phone, and immediately try to do so. Many try to learn how to use
NFC capability by touching their phone to another NFC-enabled phone, or other wireless technol-
ogy devices. They are not aware that a program enabling a particular service has to be installed on
the phone for this purpose. This is one of the shortcomings of NFC technology. When a service is
embedded into the mobile phone, such as a movie camera, the user catches up very quickly if he or
she is already acquainted with movie recorders. NFC, on the other hand promises new services that
the ordinary user is not familiar with. Hence, some form of training will be required.

NFC technology is marvelous in the sense that almost everybody can design, at least amateurishly,
many new services. Some NFC-enabled mobile phones offer development services to ordinary users,
mostly to make money. There is no problem with this, because NFC presents a convenient opportu-
nity for potential entrepreneurs. One very important point here is the need to be aware that many
services require collaboration with companies — sometimes large companies — which might not be
eager to invest in people who try to muscle in. The payment sector, in particular, requires the co-
operation of huge companies such as banks, and hence is not suitable for individual entrepreneurs.

This book will give the reader a solid and complete understanding of NFC technology, NFC
application development essentials on Android technology, and NFC business ecosystem. We
provide information on NFC technology (i.e., NFC operating modes and technical essentials), an
introduction to Android programming technology, NFC programming essentials on Android tech-
nology, short use cases and case studies, application development phases, and NFC business eco-
system and business model alternatives with some examples over the world. With this book, solid
information on NFC technology and application development is provided that meets the needs
of people who are interested in NFC technology and its ecosystem, or practitioners interested in
developing NFC projects.

NFC LAB – İSTANBUL

NFC Lab –
.
Istanbul (www.NFCLab.com) considers NFC an emerging technology that transforms

innovative ideas into reality for the information and communication society of the future.

This book is the collective effort of the researchers of NFC Lab –
.
Istanbul. We as the researchers of

NFC Lab-
.
Istanbul are committed to working on NFC technology with a multidisciplinary network

of expertise all around the world.

NFC Lab –
.
Istanbul strives for research excellence in focused research areas relevant to NFC. The

lab is aimed to be a catalyst in achieving substantial progress with the involvement of key players
including mobile network operators (MNOs), fi nancial institutions, government agencies, other
research institutes, trusted third parties, and other service providers. The core team is accountable
for creating and maintaining the business and academic partnerships and dynamically generates net-
works on a project basis.

www.it-ebooks.info

http://www.NFCLab.com
http://www.it-ebooks.info/

xxi

INTRODUCTION

WHO THIS BOOK IS FOR

When a practitioner with some expertise in programming in Java decides to access this new area,
the most they can do is try to fi nd the required information on Java from different sources and then
try to merge it. This will not be simple, because in order to build NFC applications using Java lan-
guage, the practitioner needs to collect scattered information, and then merge it for a better under-
standing. Even in this case, the amount of information the user would collect would be very small
indeed. Some basic information exists in the public domain, but much more exists only in academic
literature, which is either not publicly available or not easy for non-academic people to combine
with the public information. Although some basic information exists in the current literature, there
is much information that is not yet available at all. For example, we have performed extensive eco-
system analysis in this work and hence recognize the lack of and need for a solid source that con-
tains accurate information and addresses entrepreneurs and programmers.

This book is for anyone who is interested in developing projects, ranging from projects that are very
simple to those that potentially have worldwide application. The reader may be an entrepreneur who
is ambitious to promote their ideas for any reason; or they may be a member of a development team
in a company that is eager to fi re up an NFC service. In either case, this book is well designed to sat-
isfy every type of reader who is interested in writing any amount code on NFC.

WHAT THIS BOOK COVERS

Chapter 1 consists of introductory information on NFC technology. It gives some technical history
and background information in NFC technology, and continues with the components of an NFC
services setup. The component knowledge covers NFC-enabled mobile phones, NFC reader,
NFC tags, and other complementary parts. This chapter will provide readers with enough knowledge
on NFC at a macro level.

Chapter 2 contains the technical details of NFC technology that an NFC programmer will probably
need. Details of NFC devices are initially covered in detail. This chapter consists of the technical
details of three NFC operating modes, providing the reader with suffi cient technical background,
as well as the standards that must be followed when creating compatible programs within a devel-
opment team. Details of the record types to be exchanged among NFC devices are included in the
chapter for the same reason.

Chapter 3 and Chapter 4 consist of details of Android programming, for those who know Java but
are not acquainted with Android in enough detail. The coverage of Android programming in this
chapter is not extensive, but is enough to enable readers to continue with the later chapters on NFC
programming using Android, as well as developing NFC applications further. All the necessary infor-
mation on the Android development environment is included as well, to provide the necessary prepa-
ration for readers without knowledge about Android programming. Those who are already confi dent
about Android programming can skip these chapters and proceed to the material that follows.

Chapter 5 and Chapter 6 contain instructions on how to program NFC in reader/writer mode, along
with some examples. You should follow these instructions in sequence, in order to prevent overlook-
ing important details.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

INTRODUCTION

Chapter 7 and Chapter 8 contain material on peer-to-peer mode, in a format similar to the previous
two chapters.

Chapter 9 contains some information on card emulation (CE) mode. The details of CE mode are not
covered in this book for two main reasons. The potential audience for CE mode seems very small
when compared to the other modes. The standards of the other modes (i.e., reader/writer and peer-
to-peer) are mostly well established, whereas fi nalized standards for CE mode programming on
Android technology are still missing. Hence, it will be better to wait for the introduction of fi nalized
CE programming standards for Android.

HOW THIS BOOK IS STRUCTURED

This book is structured in a top-down fashion. The chapters are isolated from each other, so that
readers who have enough knowledge on the topic can just skip that chapter. The chapters are not inte-
grated with each other in any way. The only exception is that dual chapters are created for the reader/
writer (Chapter 5 and Chapter 6) and peer-to-peer (Chapter 7 and Chapter 8) operating modes — the
earlier chapter explains how to program using the related mode, and the later one provides examples
of that mode. Hence, the reader who does not have a complete understanding of programming using
the related mode should read both chapters, while the reader who is confi dent about the programming
of that mode can skip the earlier chapter and browse the later one containing the examples.

WHAT YOU NEED TO USE THIS BOOK

For NFC programming on Android, fi rst you need to create an Android development environment.
The most suitable way to do that is to install Android Development Tools (ADT) Bundle. ADT is
available on Windows, MAC, and Linux operating systems. Moreover, in order to test NFC reader/
writer mode applications, you need to have an NFC-enabled mobile phone and an NFC tag; in order
to test NFC peer-to-peer mode applications, you need to have two NFC-enabled mobile phones; and
in order to test card emulation mode applications, you need to have an additional Java Card that can
be plugged-in to the mobile phone.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE This is used for notes, tips, hints, tricks, or and asides to the current
discussion.

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

INTRODUCTION

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

www.wrox.com/remtitle.cgi?isbn=1118380096

Throughout each chapter, you’ll also fi nd references to the names of code fi les as needed in listing
titles and text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with an appropriate
compression tool.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-38009-3.

Alternately, you can go to the main Wrox code download page at www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to

www.wrox.com/remtitle.cgi?isbn=1118380096

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.it-ebooks.info/

xxiv

INTRODUCTION

And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
Web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.it-ebooks.info

http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://P2P.WROX.COM
http://www.it-ebooks.info/

Overview of Near Field
Communication

WHAT’S IN THIS CHAPTER?

 ➤ A background for NFC technology

 ➤ Ubiquitous computing and wireless communication aspects for NFC

 ➤ Evolution of NFC technology: RFID and contactless smart card

technologies

 ➤ An introduction to NFC technology and NFC devices: NFC tag,

NFC reader, and NFC mobile

 ➤ NFC operating modes with generic usage models

 ➤ Examples for NFC applications in terms of operating modes

Currently, Near Field Communication (NFC) is one of the enablers for ubiquitous computing.
This technology simplifi es and secures interaction with the automation ubiquitously around
you. Many applications you use daily such as credit cards, car keys, tickets, health cards, and
hotel room access cards will presumably cease to exist because NFC-enabled mobile phones
will provide all these functionalities.

The NFC ecosystem is designed from the synergy of several technologies, including wireless
communications, mobile devices, mobile applications, and smart card technologies. Also,
server-side programming, web and cloud services, and XML technologies contribute to the
improvement and spread of NFC technology and its applications.

This chapter provides a brief background of the fundamentals and evolution of NFC
technology. Then it gives a brief overview of NFC technology and the touching paradigm,
including a comparison of NFC with other wireless technologies, and an introduction to smart
NFC devices and operating modes with novel NFC applications in the industry.

1

www.it-ebooks.info

http://www.it-ebooks.info/

2 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

UBIQUITOUS COMPUTING AND NFC

The history of modern computers comprises work that’s been performed over the past 200 years.
Personal computers (PCs) were an important step after early computers, changing the way that users
interact with computers by using keyboards and monitors for input and output instead of primitive
options such as punch cards and cables. The mouse also changed the way that humans interact with
computers because it enables users to input spatial data in to a computer. Users became accustomed
to using their hands to hold the mouse and pointing their fi ngers to click it. The movements of the
pointing device are echoed on the screen by the movements of the cursor, creating a simple and
intuitive way to navigate a computer’s graphical user interface (GUI).

Touch screens changed the form of interaction even further and did so in a dramatic way. They
removed the need for earlier input devices, and the interaction was performed by directly touching
the screen, which became the new input device. In the meantime, mobile phones were introduced,
initially for voice communication. Early forms of mobile phones contained a keypad. Those mobile
phones with touch screens are considered to be state of the art because the screen is used for both
input and output, which is more intuitive for users.

Ubiquitous computing is the highest level of interaction between humans and computers, in which
computing devices are completely integrated into everyday life. Ubiquitous computing is a model in
which humans do not design their activities according to the machines they need to use; instead, the
machines are adjusted to human needs. Eventually, the primary aim is that humans using machines
will not need to change their daily behaviors and will not even notice that they are performing
activities with the help of machines.

As in modern computers and interfaces, increasing mobility of computing devices provided by
mobile communications is also an important step in the development of ubiquitous computing
capabilities and NFC. Mobile phones already had several communications options with the external
environments before the introduction of NFC. When mobile phones were initially introduced, their
primary goal was to enable voice communication. GSM (Global System for Mobile) communication
further enabled functionality of mobile phones for several services, such as voice communication,
short messaging service (SMS), multimedia message service (MMS), and Internet access. Also, the
introduction of Global Positioning System (GPS) and Wireless Fidelity (WiFi) technologies (e.g.,
Infrared Data Association or IrDA) changed the way we use mobile phones. One communication
option between mobile phones and computers was data transfer by USB — a physical port was used
for this purpose, and cable was used for data transfer.

Later, Bluetooth technology was introduced, creating personal area networks that connect
peripherals with computing devices such as mobile phones. Bluetooth became very popular in the
early 2000s. Perhaps the most widely used function of Bluetooth is data exchange among mobile
phones or between a mobile phone and another Bluetooth-enabled device such as a computer.
Bluetooth enables communication among devices within a particular vicinity. However, secure data
transfer cannot be performed completely with this technology because it is designed for wireless
communication up to 10 meters, which allows malicious devices to alter the communication.

Currently, a new way of interacting has entered everyone’s daily life: NFC technology can be
identifi ed as a combination of contactless identifi cation and interconnection technologies. NFC
operates between two devices in a short communication range via a touching paradigm. It requires

www.it-ebooks.info

http://www.it-ebooks.info/

Wireless Communication as NFC ❘ 3

touching two NFC-compatible devices together over a few centimeters. NFC communication occurs
between an NFC mobile device on one side and an NFC tag (a passive RFID tag), an NFC reader,
or an NFC mobile device on the other side. RFID is capable of accepting and transmitting beyond a
few meters and has a wide range of uses. However, NFC is restricted for use within close proximity
(up to a few centimeters) and also designed for secure data transfer. Currently, integration of NFC
technology into mobile phones is considered a practical solution because almost everyone carries a
mobile phone.

The main vision of NFC is the integration of personal and private information such as credit card
or cash card data into the mobile phones. Therefore, security is the most important concern, and
even the short wireless communication range provided by RFID technology is considered too long.
Shielding is necessary to prevent unauthorized people from eavesdropping on private conversations
because even nonpowered, passive tags still can be read over 10 meters. This is the point where NFC
comes in.

NFC integrates RFID technology and contactless smart technologies within mobile phones. The
evolution of NFC technology is illustrated in Figure 1-1. The gray areas in the fi gure indicate the
technological developments that support the NFC environment directly. This chapter provides
a brief overview of the technologies that make NFC evolution possible.

FIGURE 1-1

Barcodes

(1940s)

RFID

(1960s-1970s)

RFID Tag

Active

RFID

Tag

Passive

RFID Tag

(NFC Tag)
NFC Reader

Near Field Communication

(2002)

NFC-Enabled

Mobile Phone

Proximity

Coupling

Smart

Card

Close

Coupling

Smart

Card

Vicinity

Coupling

Smart Card

RFID Reader
Mobile Phones

(1990s)

Contact

Smart Card
Contactless Smart Card

Smart Cards

(1970s)

Magnetic Stripe Cards

(1960s)

WIRELESS COMMUNICATION AS NFC

NFC technology also can be evaluated using a wireless communication aspect. Wireless
communication refers to data transfer without using any cables. When communication is impossible
or impractical through the use of cables, wireless communication is the solution. The range may
vary from a few centimeters to many kilometers.

www.it-ebooks.info

http://www.it-ebooks.info/

4 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

Wireless communication devices include various types of fi xed, mobile, and portable two-
way radios, cellular telephones, personal digital assistants, GPS units, wireless computer mice,
keyboards and headsets, satellite television, and cordless telephones. Wireless communication allows
communication without requiring a physical connection to the network.

Wireless communication introduces challenges that are somewhat harder to handle compared
to wired communication; these challenges include interference, attenuation, unreliability, cost, and
security. Wireless communication makes use of transmission of data over electromagnetic waves
within the electromagnetic spectrum, as depicted in Figure 1-2.

FIGURE 1-2

Frequency (Hertz)

101 102

ELF VF VLF LF MF HF VHF UHF SHF EHF

103 104 105 106 107 108 109 1010 1011 1012 1013 1014

107

Wavelength in space (meters)

ELF : Extremely Low Frequency

VF : Voice Frequency

VLF: Very Low Frequency

LF : Low Frequency

MF : Medium Frequency

HF : High Frequency

VHF: Very High Frequency

UHF: Ultra High Frequency

SHF : Super High Frequency

EHF : Extremely High Frequency

106 105 104 103 102 101 100 10–1 10–2 10–3 10–4 10–5 10–6

Power and

Telephone

Radio

NFC

Microwave

Terrestrial

and Satellite

Transmission

Fiber

Optics

Visible

Light

Maritime

Coaxial Cable

Twisted Pair

AM

Radio
FM Radio

and TV

Infrared

The most straightforward benefi t of wireless communication is mobility, which, indeed, has a
big impact on everyone’s daily life. Mobile communication supports not only the productivity
and fl exibility of organizations but also the social life of individuals because people can stay
continuously connected to their social networks. Widely used wireless technologies include GSM,
3G, LTE (Long Term Evolution), Bluetooth, WiFi, WiMAX, and ZigBee.

Table 1-1 gives a brief summary and comparison of popular wireless technologies currently used
around the world, according to their operating frequency, data rate, and operating range. GPRS,
EDGE, and UMTS technologies represent wireless wide area networks (WWANs). Wireless local
area networks (WLAN) follow these technologies with different frequencies and range, and then
come the wireless personal area network (WPAN) technologies such as ZigBee and Bluetooth 2.0.
NFC has the shortest communication range, which is followed by RFID technology.

www.it-ebooks.info

http://www.it-ebooks.info/

RFID Technology ❘ 5

TABLE 1-1: Overview of Some Wireless Technologies

WIRELESS TECHNOLOGY OPERATING FREQUENCY DATA RATE OPERATING RANGE

UMTS 900, 1800, 1900 MHz 2 Mbps Wide range

EDGE 900, 1800, 1900 MHz 160 Kbps Wide range

GPRS 900, 1800, 1900 MHz 160 Kbps Wide range

802.16 WiMAX 10–66 GHz 134 Mbps 1–3 miles

802.11b/g WiFi 2.4 GHz 54 Mbps 100 m

802.11a WiFi 5 GHz 54 Mbps 100 m

802.15.1 Bluetooth 2.0 2.4 GHz 3 Mbps 10 m

802.15.4 ZigBee 2.4 GHz 250 Kbps 70 m

NFC 13.56 MHz 106, 212, 424 Kbps 0–4 cm

RFID 125–134 kHz (LF)

13.56 MHz (HF)

400–930 MHz (UF)

2.5 GHz and 5 GHz

(microwave)

1–200 Kbps 20 cm for passive

400 cm for active

RFID TECHNOLOGY

RFID is a wireless communication technology for exchanging data between an RFID reader and an
electronic RFID tag through radio waves. These tags are traditionally attached to an object, mostly
for the purposes of identifi cation and tracking.

Figure 1-3 illustrates a simple RFID system and its components. The data transmission results from
electromagnetic waves, which can have different ranges depending on the frequency and magnetic
fi eld. RFID readers can read data from, or write it to, tags.

FIGURE 1-3

RFID

Application

Transponder

(Contactless Data
Carrier)

Coupling Element

(Coil, Microwave Antenna)

RFID Reader
Data

Power

www.it-ebooks.info

http://www.it-ebooks.info/

6 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

The connection between RFID readers and RFID applications uses wired or wireless networks in
different sections of the communication. In the backend system, an RFID application is assigned
specifi c information. RFID tags generally contain an integrated circuit (IC) and an antenna. The IC
enables storing and processing data, modulating and demodulating radio frequency (RF) signals,
and performing other functions. The antenna enables receiving and transmitting (reception and
transmission of) the signal.

Essentials of an RFID System

An RFID system is made up of two major components: the transponder and reader. The transponder
is a component that is located on a product or object to be identifi ed, and the reader is a component
that reads data from the transponder or writes to the transponder (as previously shown in
Figure 1-3).

NOTE For more information on RFID systems, refer to RFID Handbook:
Fundamentals and Applications in Contactless Smart Cards, Radio Frequency
Identifi cation and Near-Field Communication by Klaus Finkenzeller
(Wiley, 2010).

The transponder consists of a coupling element and an IC that carries the data to be transferred. The
transponder is generally an RFID tag. RFID tags have a high capacity to store large amounts of
data. They are divided into two major groups: passive tags, which have no power supply, and active
tags, which have their own power supply. If the transponder is within the range of an RFID reader,
it is powered by the incoming signal.

The reader typically contains a transceiver (high-frequency module) with a decoder for interpreting
data, a control unit, and an antenna. Many RFID readers consist of an additional interface to send
the received data to another system.

Common RFID Applications

RFID technology is being used all over the world for a wide variety of applications. Following are
some examples:

 ➤ Inventory systems: Inventory tracking is a main area of RFID usage. RFID technology
enables companies to manage inventory quickly and easily. It also enables companies to
track reductions in out-of-stock items, increases in-product selling, as well as reductions
in labor costs, simplifi cation of business processes, and reduction of inventory inaccuracies.

 ➤ Human implants: Implantable RFID chips designed for animal-tagging are also being used
in humans.

 ➤ Animal identifi cation: Using RFID tags to identify animals is one of the oldest RFID
applications. RFID provides identifi cation management for large ranch operations and those
with rough terrain, where tracking animals is diffi cult. An implantable variety of RFID tags
located on animals is also used for animal identifi cation.

www.it-ebooks.info

http://www.it-ebooks.info/

Smart Card Technology ❘ 7

 ➤ Casino chip-tracking: Some casinos are placing RFID tags on their high-value chips to track
and detect counterfeit chips, observe and analyze betting habits of individual players, speed
up chip tallies, and determine dealers’ counting mistakes.

 ➤ Hospital operating rooms: An RFID reader and RFID-tagged disposable gauze, sponges,
and towels are designed to improve patient safety and operational effi ciency in hospitals.

SMART CARD TECHNOLOGY

A smart card includes an embedded IC that can be a memory unit with or without a secure
microcontroller. It is a promising solution for effi cient data storing, processing, and transfer and
for providing a secure multiapplication environment. A typical smart card system contains smart
cards, card readers, and a backend system. It may communicate with a reader using physical contact
(contact smart card case) or a remote contactless RF interface (contactless smart card case). The
reader connects to the backend system, which stores, processes, and manages the information.

NOTE For more information on smart cards, visit the website of Smart Card
Alliance, www.smartcardalliance.org/.

In terms of processing capability, smart cards are divided into two groups: memory-based and
microprocessor-based. Memory-based smart cards can store data but need an external processing
unit to do the processing. Smart cards with an embedded microcontroller can store large amounts
of data and perform their own on-card functions, such as security-related operations and mutual
authentication. These smart cards can interact intelligently with a smart card reader. These cards
also have their own smart card operating system (SCOS). In terms of operating mechanisms, smart
cards are divided into three groups: contact, contactless, and hybrid smart cards.

Types of Smart Cards: Capability-Based Classifi cation

Smart cards are plastic cards with an embedded microprocessor and memory. Some smart cards
have only nonprogrammable memory; thus, they have limited capabilities. Those smart cards with
embedded or integrated microprocessors have various functionalities.

Memory-Based Smart Cards

Memory-based smart cards can store any kind of data, such as fi nancial, personal, and other private
information. However, they do not have any processing capability. These cards need to communicate
with an external device such as a card reader using synchronous protocols to manipulate the data on
the cards. These cards are widely used, for example, as prepaid telephone cards.

Microprocessor-Based Smart Cards

Microprocessor-based smart cards have on-card dynamic data processing capabilities. They have
a microprocessor, as well as a memory. The microprocessor within the card manages the memory
allocation and data management. Microprocessor-based smart cards are comparable with tiny

www.it-ebooks.info

http://www.smartcardalliance.org/
http://www.it-ebooks.info/

8 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

computers, ones without an internal power source. These smart cards have an operating system
(OS), namely SCOS, enabling you to manage the data on the smart card and allowing the smart
cards to be multifunctional. They can store and process information and perform even complex
calculations on the stored data. Unlike memory-based smart cards, they can record, modify, and
process the data. Also, microprocessor-based smart cards have the capability to store large amounts
of data when compared with memory cards.

SCOS

Until the end of the 1990s, it was very diffi cult to have more than one application running on
a smart card due to the memory constraints of the IC chips. With the development of SCOSs,
implementing several applications, running them simultaneously, and loading new ones during a
card’s active life became possible. Now, SCOSs enable more dynamic multiapplication platforms,
and they are considered to be a really smart and powerful, secure computing environment for many
new application domains.

Today each smart card has its own SCOS, which can be defi ned as a set of instructions embedded in
the ROM of the smart card. Smart card architecture is depicted in Figure 1-4. The basic functions of
SCOS include:

 ➤ Managing interchanges between a smart
card and an external device such as a
POS terminal

 ➤ Managing the data stored in memory

 ➤ Controlling the access to information
and functions

 ➤ Managing security of the smart card,
especially in terms of data integrity

 ➤ Managing the smart card’s life cycle
from its personalization to usage and
termination

NOTE For more information on SCOSs, refer to Damien Sauveron’s
article,“Multiapplication smart card: Towards an open smart card?”
(Information Security Technical Report, Volume 14, Issue 2, May 2009, pages
70–78).

Earlier in SCOS evolution, an application or a service on a smart card was written for a specifi c
OS. Thus, the card issuer had to agree with a specifi c application developer as well as an operating
system provider. This solution was costly and infl exible. Consumers needed to carry different smart
cards for each service. Today the trend is toward an open operating system that supports multiple
applications running on a single smart card. Currently, the most notable OSs that have bigger
market exposure are MULTOS and JavaCard OS.

FIGURE 1-4

Application 1 Application 2

Smart Card Operating System (SCOS)

Hardware

Application n
. . .

Sauveron, D., “Multiapplication Smart Card:

Towards an Open Smart Card?,” INFORMATION SECURITY

TECHNICAL REPORT, 14(2), May 2009, 70-78

www.it-ebooks.info

http://www.it-ebooks.info/

Smart Card Technology ❘ 9

Types of Smart Cards: Mechanism-Based Classifi cation

Smart cards are divided into three major groups in terms of the communication mechanism with
outer devices: contact smart cards, contactless smart cards, and hybrid models.

Contact Smart Cards

Contact smart cards are embedded with a micro module containing a single silicon IC card
that contains memory and a microprocessor. This IC card is a conductive contact plate placed
on the surface of the smart card, which is typically gold plated. An external device provides a direct
electrical connection to the conductive contact plate when the contact smart card is inserted into
it. Transmission of commands, data, and card status information takes place over these physical
contact points. Cards do not contain any embedded power source; hence, energy is supplied by
the external device that the card currently interacts with. These external devices are used as a
communications medium between the contact smart card and a host computer. These external
devices can be computers, POS terminals, or mobile devices. Contact smart cards interacting with
POS devices are typically used for payment purposes. Actually, the IC cards used on contact smart
cards for payment purposes have the same hardware structure as those used in subscriber identity
modules (SIMs) in mobile phones. They are just programmed differently.

The standards most related to contact smart cards are ISO/IEC 7810 and ISO/IEC 7816. They
defi ne the physical shape and characteristics of contact smart cards, electrical connector positions
and shapes, electrical characteristics, communication protocols including commands exchanged
with the cards, and basic functionality.

According to the ISO/IEC 7816 standard, the IC card has eight electrical gold-plated contact pads
on its surface; they include VCC (power supply voltage),
RST (reset the microprocessor), CLK (clock signal), GND
(ground), VPP (programming or write voltage), and I/O
(serial input/output line). Only the I/O and GND contacts
are mandatory on a typical smart card; the others are
optional. Two contacts (RFU) are reserved for future use
(see Figure 1-5).

Contactless Smart Cards

A contactless smart card is a type of smart card that
is processed without a need for physical contact with an external device. It is a combination of a
microchip embedded within it and an antenna, which allows the card to be tracked (see Figure 1-6).
Several wires form this antenna. In contactless smart cards,
information is stored in the microchip, which has a secure
microcontroller and internal memory. Unlike the contact
smart card, the power supply to the contactless smart card
is achieved with its embedded antenna. Data exchange
between the smart card and an external device such as
a smart card reader is performed with the help of this
antenna. Electromagnetic fi elds for the card provide the
power; hence, data exchange occurs between the card and
the external device.

FIGURE 1-5

VCC

RST

CLK

RFU

GND

VPP

I/O

RFU

FIGURE 1-6

Microchip

Smart Card

Antenna

www.it-ebooks.info

http://www.it-ebooks.info/

10 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

Contactless smart cards have the capability to store and manage data securely. They also provide
access to the data stored on the card; they perform on-card functions such as enabling mutual
authentication. They can easily and securely interact with a contactless external reader. The
contactless communication can be performed only with devices in close proximity. Both the external
device and contactless smart card have antennas, and they communicate using RF technology at data
rates of 106–848 Kbps. As a contactless smart card is brought within the electromagnetic fi eld of the
card reader, the energy transfer starts from the card reader to the microchip on the smart card. The
microchip is powered by the incoming signal from the card reader. After the microchip is powered, the
wireless communication is established between the smart card and the card reader for data transfer.

Contactless smart card technology is used in applications for which private information such as
health or identity data needs to be protected. It is also used in applications in which fast and secure
transactions such as transit fare payment, electronic passports, and visa control are required.
Contactless smart cards are often used for hands-free transactions. Applications using contactless
smart cards must support many security features such as mutual authentication, strong information
security through dynamic cryptographic keys, strong contactless device security, and individual
information privacy. Contactless smart card technology is available in a variety of forms such as in
plastic cards, watches, key fobs, documents, mobile phones, and other mobile devices.

Currently, three different major standards exist for contactless smart cards based on a broad
classifi cation range: ISO/IEC 10536 for close coupling contactless smart cards, ISO/IEC 14443 for
proximity coupling smart cards, and ISO/IEC 15693 for vicinity contactless smart cards.

Hybrid Models

You might see other hybrid models of smart cards such as dual interface cards and hybrid cards. A
dual interface card has both contact and contactless interfaces that contain only one chip. Such a
model enables both the contact and contactless interfaces to access the same chip with a high level
of security. A hybrid card contains two chips. One of those chips is used for a contact interface, and
the other one is used for a contactless interface. These chips are independent and not connected.

Common Smart Card Applications

The fi rst application of smart cards was prepaid telephone cards implemented in Europe in the
mid-1980s. They were actually simple memory smart cards. Later, the application areas increased
vastly. Today, some of the major application areas for microprocessor-based smart cards are fi nance,
communications, identifi cation, physical access control, transportation, loyalty, and healthcare. A
smart card can even contain several applications.

NFC TECHNOLOGY

Philips and Sony jointly introduced NFC technology for contactless communications in late
2002. Europe’s ECMA International adopted the technology as a standard in December 2002.
The International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) adopted NFC technology in December 2003. In 2004, Nokia, Philips, and
Sony founded the NFC Forum to promote NFC technology and its services. NFC technology
standards (see Table 1-2) are acknowledged by the International Organization for Standardization/

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 11

International Electrotechnical Commission (ISO/IEC), European Telecommunications Standards
Institute (ETSI), and European Computer Manufacturers Association (ECMA).

TABLE 1-2: Major Standards for NFC Technology

STANDARDIZATION

BODY STANDARD DESCRIPTION

ISO/IEC ISO/IEC 18092 Near Field Communication Interface and Protocol

(NFCIP-1)

ISO/IEC 21481 Near Field Communication Interface and Protocol

(NFCIP-2)

ISO/IEC 28361 Near Field Communication Wired Interface (NFC-WI)

ISO/IEC 14443 Contactless Proximity Smart Cards and their

technical features

ISO/IEC 15693 Contactless Vicinity Smart Cards and their technical

features

ETSI ETSI TS 102 190 Near Field Communication Interface and Protocol

(NFCIP-1)

ETSI TS 102 312 Near Field Communication Interface and Protocol

(NFCIP-2)

ETSI TS 102 541 Near Field Communication Wired Interface (NFC-WI)

ETSI TS 102 613 Contactless front end (CLF) interface for UICC,

physical and data link layer characteristics; Single

Wire Protocol (SWP)

ETSI TS 102 622 Contactless front end (CLF) interface for UICC, Host

Controller Interface (HCI)

ECMA ECMA 340 Near Field Communication Interface and Protocol

(NFCIP-1)

ECMA 352 Near Field Communication Interface and Protocol

(NFCIP-2)

ECMA 356 NFCIP-1 - RF Interface Test Methods

ECMA 362 NFCIP-1 - Protocol Test Methods

ECMA 373 Near Field Communication Wired Interface (NFC-WI)

ECMA 385 NFC-SEC: NFCIP-1 Security Services and Protocol

ECMA 386 NFC-SEC-01: NFC-SEC Cryptography Standard using

ECDH and AES

ECMA 390 Front-End Confi guration Command for NFC-WI

continues

www.it-ebooks.info

http://www.it-ebooks.info/

12 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

STANDARDIZATION

BODY STANDARD DESCRIPTION

NFC Forum NFC Digital Protocol

Specifi cation

Digital interface and the half-duplex transmission

protocol of the NFC Forum Device

NFC Activity

Specifi cation

Activities for setting up the communication protocol

NFC Analog

Specifi cation

Analog interface of the NFC Forum Device

NFC Controller

Interface (NCI)

Specifi cation

NFC Controller Interface (NCI) between an NFC

Controller (NFCC) and a Device Host (DH)

Logical Link Control

Protocol (LLCP)

Specifi cation

Supports P2P operation for NFC Applications

NFC Data Exchange

Format (NDEF)

Specifi cation

Common data format for devices and tags

NFC Record Type

Defi nition (RTD)

Specifi cation

Standard record types used in messages between

devices/ tags

Smart Poster RTD

Specifi cation

For posters with tags, text, audio, or other data

Text RTD

Specifi cation

For records containing plaintext

Uniform Resource

Identifi er (URI)

Specifi cation

For records that refer to an Internet resource

NFC Types 1-4

Tag Operation

Specifi cations

Defi nes NFC Forum Mandated Tag Types

Connection

Handover

Specifi cation

How to establish a connection with other wireless

technologies

NFC is a bidirectional and short-range wireless communication technology that uses a 13.56 MHz
signal with a bandwidth not more than 424 Kbps. NFC technology requires touching two
NFC-compatible devices together over a few centimeters.

TABLE 1-2 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 13

NOTE For more information on NFC technology and its ecosystem, visit the
NFC Forum website: www.nfc-forum.org/.

User awareness is essential to perform NFC
communication. The user fi rst interacts with a
smart object such as an NFC tag, NFC reader,
or another NFC-enabled mobile phone using a
mobile phone (see Figure 1-7). After touching
occurs, the mobile device may make use of
received data and thus may additionally use
mobile services as well, such as opening a web
page or making a web service connection.

Depending on the mentioned interaction styles, NFC technology operates in three operating
modes: reader/writer, peer-to-peer, and card emulation. Each operating mode uses its specifi c
communication interfaces (ISO/IEC 14443, FeliCa, NFCIP-1 interfaces) on the RF layer as well as
having different technical, operational, and design requirements that are explicitly presented and
illustrated in Chapter 2, “NFC Essentials for Application Developers.”

NFC Devices

NFC technology uses the following smart devices:

 ➤ NFC-enabled mobile phone: NFC-enabled mobile phones, which also are referred to
as NFC mobiles, are the most important NFC devices. Currently, integration of NFC
technology with mobile phones (thereafter introducing NFC-enabled mobile phones) creates
a big opportunity for the ease of use, acceptance, and spread of the NFC ecosystem.

 ➤ NFC reader: An NFC reader is capable of data transfer with another NFC component. The
most common example is the contactless point of sale (POS) terminal, which can perform
contactless NFC-enabled payments when an NFC device is touched against the NFC reader.

 ➤ NFC tag: An NFC tag is actually an RFID tag that has no integrated power source.

NFC works in an intuitive way. The touching action is taken as the triggering condition for NFC
communication. Two NFC devices immediately start their communication when they are touched.
The NFC application is designed so that when the mobile touches some other NFC component that
contains the expected form of data, it boots up. Hence, the user does not need to interact with the
mobile device anymore but just touches one appropriate NFC device, which may be an NFC tag,
an NFC reader, or another NFC-enabled mobile phone, because the coupling occurs intuitively and
immediately. When you consider ubiquitous computing requirements, this is a useful property of
NFC communication.

For each NFC communication session, the party who initiates the communication is called the
initiator, whereas the device that responds to the requests of the initiator is called the target.
This case is analogous to the well-known client/server architecture. Table 1-3 shows the possible
interaction styles of NFC devices in terms of initiator and target roles.

FIGURE 1-7

Mobile Service

Usage

Touch-Based

Interaction

SMART OBJECTS

NFC

Tag

NFC

Reader

NFC

Mobile

User

www.it-ebooks.info

http://www.nfc-forum.org/
http://www.it-ebooks.info/

14 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

TABLE 1-3: Interaction Styles of NFC Devices

INITIATOR TARGET

NFC Mobile NFC Tag

NFC Mobile NFC Mobile

NFC Reader NFC Mobile

In an active/passive device approach, if an NFC device has an embedded power source, it can
generate its own RF fi eld and naturally initiates and may lead communication. This device is called
an active device. On the other hand, if it does not have any embedded power source, it can only
respond to the active device; in this case, it is called a passive device.

An initiator always needs to be an active device because it requires a power source to initiate the
communication. The target, however, may be either an active or a passive device. If the target is
an active device, it uses its own power source to respond; if it is a passive device, it uses the energy
created by the electromagnetic fi eld, which is generated by the initiator that is always an active
device.

Consider an NFC tag, which is a low-cost and low-capacity device. It does not contain any power
source and needs an external power source to perform any activity. Thus, an NFC tag is always a
passive device and always a target because it does not include any energy source by design. It stores
data that an active device can read.

NFC Operating Modes

As mentioned previously, three existing NFC operating modes are the reader/writer, peer-to-peer,
and card emulation modes with different interaction styles. The reader/writer mode enables NFC-
enabled mobile devices to exchange data with NFC tags. The peer-to-peer mode enables two
NFC-enabled mobiles devices to exchange data with each other. In the card emulation mode, the
user interacts with an NFC reader to use a mobile phone as a smart card, such as a contactless
credit card.

Service usage in each NFC operating mode differs because the interacted smart objects are different
and provide distinct usage scenarios. Each operating mode has its own characteristics; therefore,
it is possible to defi ne a usage model for each operating mode. Generic usage models defi ne the
mandatory characteristics of each operating mode, along with the usage principle of the technology.
The following subsections describe each operating mode and its generic usage model in detail.

Reader/Writer Operating Mode

The reader/writer mode is about the communication of an NFC-enabled mobile phone with an NFC
tag for the purpose of either reading data from or writing it to those tags. This mode internally
defi nes two different modes as reader mode and writer mode.

In reader mode, the initiator reads data from a 13.56 MHz tag or NFC tag, which consists of the
requested data. The specifi cation of the NFC tags is defi ned by the NFC Forum; therefore, the NFC
tags may also be called NFC Forum–mandated NFC tags. The NFC tag mentioned here is one of

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 15

the NFC Forum–mandated tag types as described in Chapter 2. In addition to the requirement
that the NFC tag already consists of the requested data, it also consists of the program that
returns the requested data to the initiator.

In writer mode, the mobile phone acts as the initiator and writes data to the tag. If the tag already
contains any data prior to the writing process, it is overwritten. The algorithm may even be designed
so that the initiator will update by modifying the previously existing data instead of overwriting
it. Although it is not a common option,
an NFC reader, in addition to the mobile
phone, may also be used to read data from a
tag. You may even envisage an NFC reader
that writes data to an NFC tag. The only
possible data rate in this mode is 106 Kbps.
A schematic representation of the reader/
writer mode is given in Figure 1-8.

A mobile phone can perform several actions after it reads the data from the tag. If the tag stores
a URL, the phone can launch a web browser and display the received web page. The features of
mobile phones, such as processing power, audio/video capability, and Internet access, provide many
opportunities for both users and service providers when reader/writer mode is used. Applications in
this mode are countless and can be very innovative.

Generic Usage Model of Reader/Writer Mode

The generic usage model of the reader/writer operating mode is explained here step by step and also
illustrated in Figure 1-9:

 1. Read request: A user fi rst requests data by touching a mobile phone to an NFC tag, which
can be embedded in various components such as a smart poster or product package.

 2. Data transfer: The data that resides in the tag is transferred to the mobile phone.

 3. Processing within device: When data is transferred to the mobile phone, it can be used for
several purposes, such as pushing an application, displaying data to the user, or processing
data by an application for additional purposes.

 4. Additional service usage: This optional step takes advantage of the mobile phone’s advanced
capabilities and mostly involves Internet connectivity capability. When data is processed in
the mobile phone, it can be used for further operations via the Internet such as connecting
to a service provider by using an application’s web service.

 5. Write request: The user requests the capability to write data to an NFC tag by touching a
mobile phone to it.

 6. Acknowledgment: The NFC tag replies with the acknowledgment data, informing the user
about the success of the operation.

FIGURE 1-8

Initiator Target
NFC
Tag

Initiator generates a 13.56 MHz
magnetic field

Tag is powered by the magnetic
field and responses to the request

1

2

www.it-ebooks.info

http://www.it-ebooks.info/

16 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

Peer-to-Peer Operating Mode

Peer-to-peer mode enables two NFC-enabled mobile devices to exchange information such as a
contact record, a text message, or any other kind of data. This mode has two standardized options:
NFC Interface and Protocol-1 (NFCIP-1) and Logical Link Control Protocol (LLCP, which is used
on the top of NFCIP-1). They are described further in Chapter 2.

NFCIP-1 takes advantage of the initiator-target paradigm in which the initiator and the target
devices are defi ned prior to starting the communication. However, the devices are identical in
LLCP communication. After the initial handshake, the application running in the application layer
makes the decision. Because of the embedded power to mobile phones, both devices are in active
mode during the communication in peer-to-peer mode. Data is sent over a bidirectional half-duplex
channel, meaning that when one
device is transmitting, the other
one has to listen and should start
to transmit data after the fi rst one
fi nishes. The possible data rates in this
mode are 106, 212, and 424 Kbps. A
schematic representation of the peer-
to-peer mode is given in Figure 1-10.

Generic Usage Model of Peer-to-Peer Mode

In peer-to-peer mode, users communicate with each other using NFC-enabled mobile phones. In
the simplest option of this mode, no service provider is used. If users intend to use any services
on the Internet, a service provider also may be included in the process. The generic usage model of

FIGURE 1-9

NFC

NFC

6

5

3

4

Write Request

NFC Tag as a

Smart Object

NFC Tag as a

Smart Object

Data Transfer

Processing

within Device

Read Request

User

Additional

Service

Usage

Service

Provider

Acknowledgement

1

2

FIGURE 1-10

Initiator generates a 13.56 MHz
magnetic field

Initiator Target

Target responds to requests of initiator

1

2

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 17

peer-to-peer operating mode is explained here step
by step, and Figure 1-11 shows each step of the
generic usage model:

 1. Data request/transfer: Two users
exchange data via mobile phones.

 2. Additional service usage: When data
is shared between mobile phones,
this data can optionally be used for
additional purposes such as saving a
received business card to a database over
the Internet after a successful share or
starting a friendship on a social network.

Card Emulation Operating Mode

Card emulation mode provides the opportunity for an NFC-enabled mobile device to function as a
contactless smart card. A mobile device can even store multiple contactless smart card applications
on the same the smart card. The most implemented examples of emulated contactless smart cards
are credit cards, debit cards, and loyalty cards.

In this operating mode, an NFC-enabled mobile phone does not generate its own RF fi eld; the NFC
reader creates this fi eld instead. This behavior is surprising because the mobile is an active device
and therefore can use its own energy. Currently supported communication interfaces for the card
emulation mode are: ISO/IEC 14443 Type A and Type B, and FeliCa, which are described in
Chapter 2.

Card emulation mode is important because it enables payment and ticketing applications. It is
also practical because it is compatible with the existing smart card infrastructure. A schematic
representation of card emulation mode is given in Figure 1-12.

FIGURE 1-11

1

Service
Provider

Data Request/Transfer

Additional
service
usage

Additional
service
usage

2 2

FIGURE 1-12

NFC reader (initiator) generates a 13.56

MHz magnetic field

NFC reader reads the

Initiator Target

information stored on the card

1

2

www.it-ebooks.info

http://www.it-ebooks.info/

18 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

Generic Usage Model of Card Emulation Mode

In card emulation mode, the user interacts with an NFC reader, traditionally using a mobile phone
as a smart card. The NFC reader is owned by a service provider, which is possibly connected to the
Internet. The user connects to a service provider through an NFC reader possibly without
notifying the service provider. The generic usage model of the card emulation operating mode is
explained here step by step. Figure 1-13 illustrates the steps in the generic usage model of card
emulation mode:

 1. Service request: The user makes a request to a service provider by touching a mobile phone
to an NFC reader. Required data is transferred from the mobile phone to the service
provider through the NFC reader.

 2. Background services: The service provider runs required backend services after getting
the required data from the user’s mobile device. Examples of these services are credit card
authorization and ticket validation.

 3. Service usage + data (optional): The service provider returns a service to the user, such as
issuing a ticket that has already been purchased using the payment card or authorizing
the payment.

FIGURE 1-13

Service

Provider

Service Request

Service Usage +

Data (Optional)

Background

Services

Third-Party

Services

3

1

2

NFC Applications

NFC operating modes have different characteristics so that each mode provides different use cases.
The following sections describe some novel NFC applications depending on their operating modes.

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 19

Reader/Writer Mode Applications

In reader/writer mode, numerous use case opportunities are available. Transferred data can be text,
a URL, a product identifi cation, or some other type of data (see Figure 1-14). After the transfer
operation, the mobile phone can use the data for many purposes according to the design of the
use case.

FIGURE 1-14

Companies or professionals might design projects in this mode because of the fl exibility of
different data types to be stored on the NFC tag, as well as the fl exibility regarding how to use
that information. Hence, a wide range of applications in health, education, location-based services,
remote services, social networking, and entertainment potentially may be generated using the
reader/writer mode.

Peer-to-Peer Mode Applications

As mentioned previously, peer-to-peer mode provides easy data exchange between two NFC
mobiles. Easy data exchange between two NFC-compatible devices with high-performance
computing capabilities provides the possibility for secure exchange of private data that makes use

www.it-ebooks.info

http://www.it-ebooks.info/

20 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

of the processing power (see Figure 1-15). NFC devices can transfer data in a few centimeters, so
exchanging private and important data may be one of the key future applications of this mode.
Pairing Bluetooth devices; exchanging business cards or other data such as fi le, image, and text
messages; making new friends on online networks (Twitter, Facebook, and so on); and gaming are
examples of possible implementations using this mode.

FIGURE 1-15

Card Emulation Mode Applications

Following are some examples illustrating how you can implement card emulation mode in various
applications:

 ➤ Payment: You can have different types of NFC payment applications. There is no doubt that
the most important payment options are credit and debit card applications, which can be
triggered by NFC readers. Other opportunities for NFC payment include storing and using
vouchers, using gift cards, and so on (see Figure 1-16).

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Technology ❘ 21

 ➤ Loyalty: Users can gain loyalty points at payment points and later can use them to shop free
or obtain a gift. Also, NFC readers using this operating mode can use coupons downloaded
via smart posters using reader/writer mode.

 ➤ Ticketing: Ticketing use cases can be implemented in different forms. Users can store
different types of tickets such as theater, bus, and fl ight tickets previously downloaded via
smart posters or by some other method. Users can then use these tickets in turnstiles or
ticketing points via the card emulation mode. They can also store and validate prepaid or
monthly ticketing cards.

 ➤ Access control: Access control use cases enable users to embed their access control objects
in their mobile devices. Examples of these cases include electronic keys for cars, buildings,
secure areas, and hotel rooms. Hotel check-in is an interesting use case that enables users to
receive a room key via OTA technology prior to arriving at the hotel and enabling the users
to directly check in to the room. Thus, there is no reason to stop at the reception area on
arrival in this instance.

 ➤ Identity services: Another interesting use case of this mode is storing identity-based
information on mobile devices and enabling authorized personnel to access it. An example
of this type of service is storing patient data. A patient’s medical history can be stored on
a mobile device, and the user can then choose to give permission to a doctor to access that
data via an NFC reader. The medical data need not to be stored on the hospital’s or medical
insurance company’s servers. This use case increases user privacy because undesired third
parties such as insurance companies are not able to access the patient’s information. Even

FIGURE 1-16

www.it-ebooks.info

http://www.it-ebooks.info/

22 ❘ CHAPTER 1 OVERVIEW OF NEAR FIELD COMMUNICATION

more interesting applications can be developed in this category, such as integrating national
identifi cation cards, passports, fi ngerprints, and driver’s licenses to mobile phones.

 ➤ Smart environment: The smart environment case refers to using NFC technology in smart
environments such as a smart home or offi ce. The most common example is managing
smart environments via preconfi gured data on a mobile phone. In this case, when a user
enters a smart environment, the user can adjust specifi c smart environment settings such as
brightness level and music-melody selection through a mobile device. The device can also be
integrated with an access control mechanism so that when the user opens the door using an
NFC electronic key, that user can activate a personalized smart environment.

SUMMARY

Ubiquitous computing refers to the next level of interaction between humans and computers in
which computing devices are completely integrated into everyday life. NFC is mostly regarded as
an important step toward ubiquitous computing. NFC uses the touching paradigm for interaction.
Users need to touch their mobile phones to a reader or tag to establish a connection. NFC is an
extension of RFID technology and compatible with contactless smart card technology interfaces.

NFC technology enables communication based on RFID technology and ISO/IEC 14443
infrastructures. It operates in three modes (reader/writer, peer-to-peer, and card emulation) with an
RF of 13.56 MHz, where communication occurs between a mobile phone with NFC capability on
one side and, on the other side, an NFC tag, an NFC mobile, or an NFC reader.

NFC technology allows people to integrate their daily-use cards such as loyalty and credit cards into
their mobile phones. In addition to integrating daily-use cards into mobile devices, NFC technology
brings innovations to mobile communications. It enables users to easily communicate or exchange
data simply by touching two mobile phones to each other. Moreover, NFC technology gives NFC
reader capability to mobile phones; hence, they can read RFID tags. Mobile phones’ increasing
processing power, Internet access, and many more features gain advantage from this reader
functionality and open ways for new and innovative services.

Many NFC trials and applications have been conducted around the world. Generally, all trials
concluded that with the development of NFC technology, mobile phones are likely to become safer,
speedier, and more convenient and more fashionable physical instruments.

It is true that NFC technology brings simplicity to transactions, provides easy content delivery, and
enables information sharing. At the same time, it builds new opportunities for various stakeholders
— for example, providing mobile operators, banks, transport operators, and merchants with faster
transactions, less cash handling, and new operator services.

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Essentials
for Application Developers

WHAT’S IN THIS CHAPTER?

 ➤ Basic architecture and main components of NFC mobile

 ➤ Introduction to Secure Element (SE) and its alternatives

 ➤ Importance of over-the-air (OTA) technology

 ➤ Standards used by NFC: NFCIP-1, NFCIP-2, and proximity contactless

smart card standards

 ➤ Communication architectures and essentials of NFC operating modes

 ➤ NFC Forum tag types: Type 1, Type 2, Type 3, and Type 4

 ➤ NFC Data Exchange Format (NDEF) and record types

 ➤ Logical Link Control Protocol (LLCP) for link-level communication

 ➤ Evaluation of NFC service platforms diversity

This chapter introduces and elaborates on NFC technical essentials. It initially introduces the
NFC mobile’s architecture and its main components: Secure Elements (SEs), NFC control-
ler, Single Wire Protocol (SWP), NFC Wired Interface (NFC-WI), and so on. SE is the most
 important component of the NFC mobile because it guarantees users and service provid-
ers that transactions take place in a protected environment of NFC mobiles. The chapter
also presents various SE options and briefl y explains the importance of over-the-air (OTA)
 technology in management of SEs.

This chapter also focuses on the communication architecture of operating modes (reader/
writer, peer-to-peer, and card emulation operating modes) and protocols and standards in

2

www.it-ebooks.info

http://www.it-ebooks.info/

24 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

NFC. The NFC Forum provides valuable specifi cations and standards especially for the communi-
cation infrastructure of the reader/writer and peer-to-peer operating modes. Card emulation mode
is quite different from the others; it implicitly gives the smart card operating capability to an NFC
device that has a secure environment.

NFC MOBILE

A mobile device integrated with NFC technology is typically composed of various integrated cir-
cuits, SEs, and an NFC interface (see Figure 2-1). The NFC interface is composed of a contactless
analog/digital front end called an NFC Contactless Front End (NFC CLF), an NFC antenna, and
an integrated circuit called an NFC controller to enable NFC transactions. In addition to an NFC
controller, an NFC-enabled mobile phone has at least one SE, which is connected to the NFC con-
troller for performing secure proximity transactions with external NFC devices. The SE provides
a dynamic and secure environment for programs and data. It enables secure storage of valuable
and private data such as a user’s credit card information, and secure execution of NFC-enabled
services such as contactless payments. Also, more than one SE can be integrated into an NFC
mobile.

NFC Antenna

(1) NFC Tag

(2) NFC Mobile

(3) NFC Reader

NFC

Controller

Secure

Element

Host Controller

Host

Controller

Interface

ISO/IEC 7816

Interface

NFC-Enabled Mobile Phone
Baseband

Communication

Mobile Network

Infrastructure

NFC Contactless

Front End (CLF)

SWP or S2C

NFC Device

FIGURE 2-1

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Mobile ❘ 25

The two common interfaces currently supported between SEs and the NFC controller are the SWP
and NFC-WI. The SE can be accessed and controlled internally from the host controller as well as
externally from the RF fi eld. The host controller (baseband controller) is the heart of any mobile
phone. A host controller interface (HCI) creates a bridge between the NFC controller and host
controller. An ISO/IEC 7816 interface supports the linkage of SEs to the host controller.
The host controller sets the operating modes of the NFC controller through the HCI, processes
data that is sent and received, and establishes a connection between the NFC controller and the
SE. Furthermore, it maintains the communication interface, peripherals, and user interface.

SE

NFC-enabled services must reassure users and service providers that the transaction takes place
in a protected environment. This protection is achieved by using an SE that provides the security
required to support various business models. The SE is a combination of hardware, software, inter-
faces, and protocols embedded in a mobile handset that enables secure storage and processing.

An SE needs to have an operating system as usual. An operating system, such as MULTOS or
JavaCard OS, on a mobile device supports the secure execution of applications and secure storage of
application data. The operating system may also support the secure loading of applications. If NFC-
enabled applications are saved and executed in the memory of the NFC-enabled mobile phone’s host
controller, these applications are not protected against unintentional deletion or intentional manipu-
lation of the saved data in memory. Applications transmit data only between NFC-enabled mobile
phones or collect information from smart posters.

In contactless ticketing, payment, and other similar application cases, security is an important and
nontrivial issue. These applications use valuable data, so the storage of valuable, private information
such as credit card information in unsecured memory is unacceptable. The data could be transmit-
ted via a GSM (Global System for Mobile Communication) interface to a third party who may mis-
use the information in such a case.

To solve this issue, relevant NFC applications need to be executed and saved in the memory of an SE
of the NFC-enabled mobile phone. A variety of modules can serve as SEs, such as stickers, Universal
Integrated Circuit Cards (UICCs), memory cards, and embedded hardware. An SE is necessary
for various applications such as payment, ticketing, government, and other applications for which
secure authentication and a trusted environment are among the prerequisites.

SE Alternatives

Up to now, various SE alternatives that have entered the market can enable fi nancial institutions
and other companies to offer secure NFC-enabled services and empower the NFC ecosystem
takeoff. Mainly, SE options can be grouped as removable SEs, nonremovable SEs, software-based
SEs on dedicated hardware, and other fl exible SE solutions. Actually understanding the character-
istics of these SEs plays a signifi cant role for different stakeholders and pricing models in the
NFC value chain. The dominating SE will have a strong position to build trusted services on it.
Figure 2-2 shows the SE alternatives currently possible within the NFC ecosystem for each
category of SE.

www.it-ebooks.info

http://www.it-ebooks.info/

26 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

Embedded Hardware

An embedded hardware-based SE alternative is a smart card integrated with the mobile phone, and it
cannot be removed after production. Thus, the level of security provided by this SE is as high as the
one supported by a smart card. This chip is embedded into the mobile phone during the manufactur-
ing stage and must be personalized after the device is delivered to the end user. Due to its embedded
nature on NFC mobiles, an SE of this type obviously cannot be used in other mobile phones; it needs
to be replaced and personalized every time the mobile phone is used by any other user.

Stickers

Stickers are actually somewhat different from the other two removable SE options: Secure Memory
Card (SMC) and Universal Integrated Circuit Card (UICC). The purpose of NFC stickers is to allow
service providers to launch pilots quickly and enable deployment of NFC services such as payment,
loyalty, and transportation. Stickers are typically contactless smart cards or tags designed to be
attached on the back of mobile phones. They have a specifi cally designed NFC antenna combined
with a ferrite-backing layer to cut distortion to and from the mobile phone’s components and its
radio signal.

The two types of stickers are active and passive. Active stickers are connected to a mobile phone’s
application execution environment, namely its operating system, which makes the stickers become an
integrated part of the mobile. Passive stickers do not allow dynamic application management because
they do not have any cabled connection with the mobile. Active stickers enable all NFC services oper-
ating in reader/writer, peer-to-peer, and card emulation mode; also, OTA provisioning and life-cycle
management of active stickers are easy because of their connection with the mobile phones.

SMC

An SMC is made up of memory, an embedded smart card element, and a smart card controller.
Thereby, an SMC provides the same high level of security as a smart card, and it is compliant with
most of the main standards and interfaces of smart cards such as GlobalPlatform, ISO/IEC 7816,
and JavaCard. With the removable property and a large capacity memory, an SMC can host a large
number of applications in it. It does not need to be reissued even when the customer buys a new
NFC mobile. The user can simply insert it into the new device. An SMC can be inserted in any
device supporting NFC technology and is not limited to use by one mobile phone. It can be issued
for extended usage across a user’s electronic devices such as laptops or portable media players.

FIGURE 2-2

Secure Element Alternatives

Nonremovable SEs Nonremovable SEs Flexible SE Solutions Software-Based SEs

Embedded Hardware Sticker, Secure
Memory Card (SMC),

Universal
Integrated Circuit

Card (UICC)

Different
Combinations of SIM/

UICC, SMC,
embedded hardware,
NFC controller, and

antenna

Trusted Mobile Base

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Mobile ❘ 27

UICC

UICC is a generic multiapplication platform for smart card applications on which SIM (Subscriber
Identity Module) and USIM (Universal Subscriber Identity Module) are implemented. It was stan-
dardized by the ETSI Project Smart Card Platform with the aim of defi ning a physical and logical
platform for all smart card applications and thus to enable development of advanced security meth-
ods, especially for fi nancial transactions. UICC provides an ideal environment for NFC applications
that is personal, secure, portable, and easily managed remotely via OTA technology.

UICC-based SEs are to be issued by a party who is usually MNO (Mobile Network Operator).
Mainly, it hosts some required applications from a UICC issuer such as SIM or USIM (UMTS/3G
SIM) applications to authenticate a user in a 3G network. In addition to SIM and USIM applica-
tions, UICC can host nontelecom applications such as loyalty, ticketing, healthcare, access control,
and ID applications from various service providers.

Currently, GlobalPlatform provides the most promising standards for management of multiple
applications on the same UICC smart cards. In accordance with those standards, UICC-based
SEs provide separate security domains with a secret administrative key for each application. The
card’s OS implements a fi rewall that tries to prevent applications from accessing or sharing data
between them. However, some issues remain unsolved on UICC card management in NFC-based
services.

Flexible SE Solutions

Because of a massive lack of NFC mobiles within the market, especially until recently, several alter-
native architectures based on different communication options of SEs and NFC have been proposed.
SE manufacturers are performing some hardware improvements on the existing SE solutions, adding
NFC functionalities to those SEs, and providing mobile phone device and hardware-independent
alternatives. Especially SMC- and SIM-based SEs with built-in NFC antennas have great potential
as NFC bridge devices; they shorten the time to market for contactless payment and similar appli-
cations. These solutions seem to be a good way of promoting NFC applications; however, they are
not persistent solutions. Instead, they are mostly provided for specifi c NFC services. Some examples
from the industry are integration of NFC with SIM cards (SIM Application Toolkit); standard SIM
cards with only NFC antenna; standard SD or microSD cards hosting NFC chips, antennas, and
SEs; and standard SD or microSD cards hosting only NFC antennas and SEs.

TMB

Trusted Mobile Base (TMB) is a promising upcoming technology that is hosted at the root of mobile
phones. It is defi ned as a secure isolated section on the core processors (CPU) of mobile phones.
Various secure NFC-enabled applications can be provided fl exibly via OTA technology. Currently,
TMB is not available, but according to Mobey Forum, it has the full potential of becoming an SE in
the future.

TMBs can enable secure user interfaces and OTA-provisioning services to security domains. TMBs
can also be identifi ed as “open platforms” with standardized interfaces and assist in achieving a
required security level together with the other SE alternatives. Because TMBs are built into the CPU,
they have no additional hardware costs. TMB-related services can be provided via OTA similar to
other SE alternatives.

www.it-ebooks.info

http://www.it-ebooks.info/

28 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

NOTE For more information on SEs, refer to Mobey Forum,
Alternatives for banks to offer secure mobile payments, White Paper,
Version 1, www.mobeyforum.org/Press-Documents/Press-Releases/
Alternatives-for-Banks-to-offer-Secure-Mobile-Payments.

SE Management

Today, MNOs have the ability to remotely confi gure mobile devices; upload and install new applica-
tions based on user requests and approval; upload and execute application software and OS updates;
remotely lock a device to protect the application and application data when the mobile is, for exam-
ple, lost or stolen; troubleshoot the device remotely; and perform additional services similar to OTA
technology.

OTA technology also contributes to the dynamic spirit of NFC-based system adaptability to fl exible
environments. OTA technology enables loading and installation of new NFC applications on SEs,
especially remotely on UICCs; activation and deactivation of SEs; remote service management
(installation, personalization, update, termination); and life-cycle management (card block, unblock,
re-issuance, PIN reset, change, parameter updates) of NFC applications on SEs and other online
services.

High-capacity bearers — those being used in OTA technology — are important in providing
an NFC solution (see Figure 2-3). For example, embedded and SMC-based SEs can be accessed
via OTA only through a MIDlet proxy. This connection requires that the communication is
 initiated on the mobile handset side and a secure HTTP connection is established using 3G com-
munication. Several kilobytes’ worth of data needs to be transferred to the UICC-based SE when
 downloading activation application data or an NFC application itself. For example, when you use
GPRS/UMTS and Bearer Independent Protocol (BIP), applications are rapidly deployed over the
air to the UICC.

NFC Interface

The NFC interface is composed of a contactless analog-to-digital front end that is called an NFC
contactless front end (NFC CLF), an NFC antenna, and an IC called an NFC controller to enable
NFC transactions, as shown in Figure 2-4.

The NFC controller enables the establishment of the NFC link in a mobile phone. It works as a
modulator and demodulator between the analog RF signal and NFC antenna. The NFC controller
supports both active and passive communication with various modulation types. Typically, an NFC
controller is compliant with the NFCIP-1 (Near Field Communication Interface and Protocol - 1)
protocol (peer-to-peer mode), as well as the other two operating modes (reader/writer and card emu-
lation modes). Also, other RFID protocols such as ISO/IEC 15693 are often supported.

NFC CLF is the analog front end of the NFC controller. The NFC CLF logical interface defi nes the
protocol on top of the data link layer, as well as how the messages are transmitted between the SE
and the NFC CLF. It is theoretically independent from the underlying interface (physical and data
link interface), which carries the messages.

www.it-ebooks.info

http://www.mobeyforum.org/Press-Documents/Press-Releases/Alternatives-for-Banks-to-offer-Secure-Mobile-Payments
http://www.mobeyforum.org/Press-Documents/Press-Releases/Alternatives-for-Banks-to-offer-Secure-Mobile-Payments
http://www.it-ebooks.info/

NFC Mobile ❘ 29

FIGURE 2-3

Loyalty

Application

Credit/Debit

Application

Service Provider

Trusted Service Manager

SSL/TLS, other encryption

techniques

Secure Channel Protocol

SSL/TLS

Secure Channel Protocol, SSL/

TLS, other encryption

techniques

Mobile Phone with UICC-Based SE

OTA Platform

Transport

Application

FIGURE 2-4

NFC
Controller

NFC Antenna
NFC Contactless
Front End (CLF)

All SE design models have an interface between the SE and NFC controller and also between the
host controller and NFC controller. The data transmitted via the contactless interface is directly for-
warded by the NFC controller to the SE and vice versa. The host, which is the nonsecure part of the
system, is not involved in the transaction.

Interface Between SE and NFC Controller

Various technical options exist for designing the interface between the SE and NFC controller. The
most promising two options are: NFC-WI and SWP. The most important difference between them is
that SWP uses one physical line, whereas NFC-WI uses two lines. It is worth mentioning that these

www.it-ebooks.info

http://www.it-ebooks.info/

30 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

two options are not alternatives to each other but options to be used in certain and appropriate
places instead (e.g., NFC-WI is more for embedded SE-based mobiles while SWP is for UICC-
based mobiles).

NFC-WI

NFC-WI (also called S2C) is a digital wire interface standardized by ECMA 373, ISO/IEC 28361,
and ETSI TS 102 541. Three transmission rates supported by NFC-WI are: 106, 212 and 424 Kbps.
The SE is defi ned as a transceiver, and the NFC controller is defi ned as a front end in this
protocol. The SE is connected to the NFC controller via two wires. NFC-WI defi nes the
Signal-In (SIGIN) and Signal-Out (SIGOUT) wires between the transceiver and front end, as
illustrated in Figure 2-5. The transceiver is the entity that drives the SIGIN wire and receives
on the SIGOUT wire. The front end is the entity that drives the SIGOUT wire and receives on
the SIGIN wire.

This digital wire interface carries two binary signals that are defi ned as HIGH and LOW. Both of
them transmit modulation signals between the NFC controller and SE and are digitally received
and sent by the RF interface. The transceiver drives the SIGIN wire with a binary signal of either
HIGH or LOW. The front end receives the binary signal that is on the SIGIN wire, and it drives
the SIGOUT wire with a binary signal of either HIGH or LOW. The transceiver receives the binary
 signal that is on the SIGOUT wire.

NFC-WI is fully compliant and directly coupled with all modes, types, and data rates of ISO/IEC
18092 and ISO/IEC 14443, and no additional adaptation and no protocol conversion are required.
It is a reliable concept that is feasible for immediate implementation.

NOTE For more information on NFC-WI, refer to ECMA International, ECMA
373: Near Field Communication Wired Interface (NFC-WI), www.ecma-inter-
national.org/memento/TC47-M.htm.

FIGURE 2-5

NFC

Transceiver

NFC

Front End
Device (e.g. NFCIP-1)

NFC Wired

Interface

(NFC-WI)

Signal-Out

Signal-In

In Scope

Out of

Scope
Out of Scope

ECMA International (2006), ECMA 373: Near Field Communication Wired Interface

(NFC-WI), June 2006.

www.it-ebooks.info

http://www.ecma-international.org/memento/TC47-M.htm
http://www.ecma-international.org/memento/TC47-M.htm
http://www.it-ebooks.info/

NFC Mobile ❘ 31

SWP

The other physical interface option is SWP, which defi nes a single-wire connection between the SE
and NFC controller in the mobile phone. Remember that NFC-WI uses a double-wire connection.
ETSI TS 102 613 defi nes the SWP standard. SWP is a digital full-duplex protocol. The SWP inter-
face is a bit-oriented and point-to-point communication protocol between an SE and NFC control-
ler. The working principle is similar to that of master and slave: the NFC controller is comparable
with the master, and the SE is comparable with the slave.

The SWP is mainly intended for use by UICC cards in mobile phones because only one of the stan-
dard eight contact paths is available for the SWP function. A special case occurs here, as shown in
Figure 2-6, so that the voltage (Vcc) of the UICC card is not directly supplied by the mobile phone
but is supplied through the NFC interface instead. This arrangement is necessary to enable contact-
less data transmission with SEs even when the battery is exhausted. If the NFC interface is close to
an NFC reader, the reader fi eld supplies energy to the SE through the NFC interface.

NOTE For more information on SWP, refer to ETSI TS 102 613, Smart Cards;
UICC — Contactless Front-end (CLF) Interface; Part 1: Physical and data link
layer characteristics.

HCI

HCI is a logical interface that allows an NFC interface to communicate directly with the application
processor and SE. The HCI may be used in various electronic devices such as mobile devices, PDAs,
and PC peripherals. For NFC-enabled mobile phones, it enables faster integration of NFC function-
ality. The HCI is standardized in ETSI TS 102 622.

FIGURE 2-6

C1

Gnd

SWIO

Vcc

Power
supply

Terminal

Coupling
Coil

C2
CLF UICC

RST

C3CLK I/O

D+ D-C4

C5

C6

C7

C8

© European Telecommunications Standards Institute 2008. Further use, modi-

fication, copy and/or distribution are strictly prohibited. ETSI standards are

available from http://pda.etsi.org/pda/.

www.it-ebooks.info

http://pda.etsi.org/pda/
http://www.it-ebooks.info/

32 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

The HCI defi nes the interface between logical entities called hosts that operate one or more services.
According to the ETSI terminology, a network of two or more hosts is called a host network,
and the host that is also responsible for managing a host network is called a host controller. In
a host network that has a star topology, all hosts are connected to the host controller. The HCI
has three components: a collection of gates that exchange commands, responses, and events; a
Host Controller Protocol (HCP) messaging mechanism; and an HCP routing mechanism that may
 optionally segment messages when required. Figure 2-7 shows the simple HCP stack in a host
network.

NOTE For more information on HCI, refer to ETSI TS 102 622, Smart Cards;
UICC — Contactless Front-end (CLF) Interface; Host Controller Interface
(HCI), Technical Specifi cation.

STANDARDS USED BY NFC

As mentioned in Chapter 1, “Overview of Near Field Communication,” NFC technology is based on
RFID technology in a proximity range of 13.56 MHz. NFC enables data transfer up to 424 Kbps.
The communication between two NFC devices is standardized as NFCIP-1 in the ISO/IEC 18092
standard. This standard defi nes only device-to-device communication for both active and passive
communication modes.

The RF layer of NFC is a superset of the standard protocols, which are also compatible with the
ISO/IEC 14443 standard (contactless proximity smart card standard) and JIS X 6319 standard as

FIGURE 2-7

Gate

PacketPacket HCP
Routing

HCP
Routing

HCP
Messaging

HCP
Routing

SWP SWP

Other
Physical and

Data
Link Layer

Other
Physical and

Data
Link Layer

UICC Host Controller Terminal
Host

Gate

HCP
Messaging

HCP
Routing

Commands, Responses, and Events

Message

© European Telecommunications Standards Institute 2008. Further use, modification,

copy and/or distribution are strictly prohibited. ETSI standards are available from

http://pda.etsi.org/pda/.

www.it-ebooks.info

http://pda.etsi.org/pda/
http://www.it-ebooks.info/

Standards Used by NFC ❘ 33

FeliCa (another contactless proximity smart card standard by Sony) as well as the ISO/IEC 15693
standard (contactless vicinity smart card standard).

These smart card interfaces operate at 13.56 MHz from card reader to card with different data
rates and communication ranges. Table 2-1 gives a short summary and comparison of ISO/IEC
14443, ISO/IEC 15693, and ISO/IEC 18092 communication interfaces. This section provides
brief information about the proximity range communication interfaces and other important NFC
standards.

TABLE 2-1: Summary of Communication Interface Standards

PARAMETERS ISO/IEC 14443 ISO/IEC 15693 ISO/IEC 18092

Operating Mode Reader to card Reader to card Peer-to-Peer

Communication Mode Passive Passive Active and Passive

Range Proximity Vicinity Proximity

Data Rate 106 Kbps Up to 26 Kbps 106, 212, 424 Kbps

Proximity Contactless Smart Card Standards

As described in ISO/IEC 14443, proximity transactions are based on electromagnetic coupling
between a proximity card and an RFID reader that uses an embedded microcontroller (including its
own processor and one of several types of memory) and a magnetic loop antenna that operates at
13.56 MHz. ISO/IEC 14443 enables contactless transactions between a reader device and a proxim-
ity card used for identifi cation.

The ISO/IEC 14443 standard contains four major parts (Table 2-2): the physical characteristics are
explained in the fi rst part of the standardization document, radio frequency power and signal inter-
face are explained in the second part, initialization and anticollision protocols constitute the third
part, and the transmission protocol is defi ned in the fourth part. This standard also defi nes two
major contactless cards, namely Type A and Type B.

TABLE 2-2: Parts of ISO/IEC 14443 Standard

PART NAME CONTENT

Part 1: Physical Characteristics of

Contactless Smart Cards (PICC)

Defi nes physical characteristics of a contactless smart card, lists

several requirements and tests that need to be performed at card

level for construction of the card, antenna design, etc.

Part 2: RF Power and Signal

Interface

Defi nes the RF power and signal interface, Type A and Type B

 signaling schemes, and also determines how the card is powered

by RF fi eld, etc.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

34 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

PART NAME CONTENT

Part 3: Initialization and

Anticollision

Defi nes the initialization and anticollision protocols for Type A and

Type B, as well as anticollision commands, responses, data frame

and timing.

Part 4: Transmission Protocol Determines the high-level data transmission protocols for Type

A and Type B, which are optional protocols, thus proximity cards

may be designed with or without support for Part 4 protocols.

Major Proximity Contactless Smart Card Technologies

Up to now, various proximity coupling smart card technologies have emerged; however, only a few
of them are compatible with the ISO/IEC 14443 standard. Currently, the most famous and compet-
ing contactless smart cards are MIFARE, Calypso, and FeliCa.

MIFARE

MIFARE is a well-known and widely used 13.56 MHz contactless proximity smart card sys-
tem developed and owned by NXP Semiconductors, which is a spin-off company of Philips
Semiconductors. MIFARE is an ISO/IEC 14443 Type A standard. The MIFARE family contains
different types of cards, such as Ultralight, Standard, DESfi re, Classic, Plus, and SmartMX.
MIFARE Classic cards have varying memory sizes. MIFARE-based smart cards are being used in
an increasingly broad range of applications, mostly in public transport ticketing and also for access
management, e-payment, road tolling, and loyalty applications.

NOTE For more information on MIFARE products, visit the website
www.MIFARE.net/products.

FeliCa

FeliCa is a 13.56 MHz contactless proximity high-speed smart card system from Sony and is primar-
ily used in electronic money cards. The name FeliCa comes from the word felicity, suggesting that the
technology will make your daily life more convenient and enjoyable. FeliCa complies only with the
Japanese Industrial Standard (JIS) X 6319 Part 4, which defi nes high-speed proximity cards.

NOTE For more information on FeliCa, visit the website www.sony.net/
Products/felica/.

Calypso

Calypso is another example of a contactless proximity smart card that conforms to the international
public transportation standard. It was originally designed by a group of European transit operators

TABLE 2-2 (continued)

www.it-ebooks.info

http://www.MIFARE.net/products
http://www.sony.net/Products/felica/
http://www.sony.net/Products/felica/
http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 35

from Belgium, Germany, France, Italy, and Portugal. It enables interoperability between several
transport operators in the same area.

NOTE For more information on Calypso, visit the website
www.calypsonet-asso.org/index.php.

NFCIP

NFCIP (Near Field Communication Interface and Protocol) is standardized in two forms: NFCIP-1,
which defi nes the NFC communication modes on the RF layer and other technical features of the
RF layer, and NFCIP-2, which supports mode-switching by detecting and selecting one of the com-
munication modes.

NFCIP-1

NFCIP-1 is standardized in ISO/IEC 18092, ECMA 340, and ETSI TS 102 190. This standard
defi nes two communication modes as active and passive. It also defi nes the RF fi eld, RF communica-
tion signal interface, general protocol fl ow, and initialization conditions for the supported data rates
of 106, 212, and 424 Kbps in detail. Moreover, it defi nes the transport protocol, including protocol
activation, data exchange protocol with frame architecture and error-detecting code calculation
(CRC for both communication modes at each data rate), and protocol deactivation methods.

NOTE For more information on NFCIP-1, refer to ECMA 340: Near Field
Communication Interface and Protocol (NFCIP-1), www.ecma-international
.org/memento/TC47-M.htm.

NFCIP-2

NFCIP-2 is a standard specifi ed in ISO/IEC 21481, ECMA 352, and ETSI TS 102 312. The standard
specifi es the communication mode selection mechanism and is designed not to disturb any ongoing
communication at 13.56 MHz for devices implementing ISO/IEC 18092 (NFCIP-1), ISO/IEC 14443
(such as MIFARE), or ISO/IEC 15693 (long-range vicinity communication by RFID tags).

NOTE For more information on NFCIP-2, refer to ECMA 352: Near Field
Communication Interface and Protocol (NFCIP-2), www.ecma-international
.org/memento/TC47-M.htm.

NFC OPERATING MODE ESSENTIALS

In this section, technical essentials of three operating modes of NFC and their protocol stack
 architectures are described.

www.it-ebooks.info

http://www.calypsonet-asso.org/index.php
http://www.ecma-international.org/memento/TC47-M.htm
http://www.ecma-international.org/memento/TC47-M.htm
http://www.ecma-international.org/memento/TC47-M.htm
http://www.ecma-international.org/memento/TC47-M.htm
http://www.it-ebooks.info/

36 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

Reader/Writer Mode

In reader/writer operating mode, an active NFC-enabled mobile phone initiates the wireless commu-
nication and either reads or alters data stored in the NFC tags afterward. In reader operating mode,
an NFC-enabled mobile phone is capable of reading NFC Forum–mandated tag types, such as NFC
smart poster tags. This capability enables the mobile user to retrieve data stored in the tag and take
appropriate actions afterward. The writer operating mode enables NFC mobiles to write data on
NFC Forum–mandated tag types.

As illustrated in Figure 2-8, the reader/writer mode’s RF interface is compliant with ISO/IEC 14443
Type A, Type B, and FeliCa schemes. The NFC Forum has standardized tag types, operation of
those tag types, and the data exchange format between components. The reader/writer operat-
ing mode usually does not need a secure area — SE, in other words — of the NFC-enabled mobile
phone. The process consists of only reading data stored inside the passive tag and writing data to
the passive tag. The protocol stack architecture of the reader/writer operating mode, the NFC Data
Exchange Format (NDEF), and record types are explained in the following sections.

FIGURE 2-8

Electromagnetic Field

up to 4 cm

Target

(Passive Device)

Initiator

(Active Device)

ISO/IEC 14443 Type A, Type B, and FeliCa

Communication Interface on RF Layer

NFC Forum

NDEF Data Exchange Format and

RTD Record Type Definition
NFC TAG

NFC Forum-

Mandated Tag

Type 1, 2, 3

or 4

NFC MOBILE

Host Controller

Host
Controller
Interface

ISO 7816
Interface

SWP or
S2C

NFC
Controller

Antenna

Contactless
Front End

Applications

Secure
Element

Protocol Stack Architecture

Figure 2-9 provides a useful protocol stack illustration of the reader/writer mode. The NFC device
operating in reader/writer mode has the following protocol stack elements:

 ➤ Analog is related to RF characteristics of NFC devices and determines the operating range
of devices. Digital protocols refer to the digital aspects of ISO/IEC 18092 and ISO/IEC
14443 standards and defi ne building blocks of the communication. There is yet another
important specifi cation by the NFC Forum at this level: the NFC Activities Specifi cation.
This specifi cation defi nes the required activities that set up communication in an interop-
erable manner based on a digital protocol specifi cation such as polling cycles or when to
 perform collision detection.

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 37

 ➤ Tag operations indicate the commands and instructions NFC devices use to operate NFC
Forum–mandated tags, which are Type 1, Type 2, Type 3, and Type 4. They enable read/
write operations by using the NDEF data format and record type defi nitions (RTDs), such
as smart poster, and URI RTDs from or to the tag.

 ➤ NDEF applications are based on NDEF specifi cations, such as using smart posters and
 reading product information from NFC-enabled smart-shopping fl iers.

 ➤ Non-NDEF applications are vendor specifi c and are not based on NDEF standard specifi ca-
tions such as an electronic purse balance reader or contactless ticket reader.

FIGURE 2-9

Non-NDEF Applications

Digital Protocol

Analog

NFC Forum-Mandated
Tag Operations

NDEF Applications

NFC Forum Tag Types

The NFC Forum defi nes four tag types and gives them designations between 1 and 4. Each tag type
has a different format and capacity. NFC tag type formats are based on ISO/IEC 14443 Type A,
ISO/IEC 14443 Type B, or Sony FeliCa. All currently available NFC tag type defi nitions are listed
here, and Table 2-3 gives a summary of the tag types.

 ➤ Type 1 tag: The NFC Type 1 tag is based on the ISO/IEC 14443 Type A standard. These
NFC tags are both readable and writable. Users can modify data on these tags and can con-
fi gure the tags to become read-only when required. Memory availability is up to 1 KB, which
is only just enough to store a website URL or similar amount of data. The memory size can
be expanded up to 2 KB. The communication speed of this NFC tag is 106 Kbps. As a result
of its simplicity, this tag type is cost effective and still can be used in most NFC applications.

 ➤ Type 2 tag: The NFC Type 2 tag also is based on the ISO/IEC 14443 Type A standard.
These NFC tags are also both readable and writable, and users can confi gure them to
become read-only when required. Again, the communication speed is 106 Kbps. The major
difference between this tag and Type 1 tag is that its memory size is expanded up to 2 KB.

 ➤ Type 3 tag: The NFC Type 3 tag is based on the Sony FeliCa contactless smart card interface.
It currently has a 2 KB memory capacity, and the data communications speed is 212 Kbps.
This tag type is more suitable for complex applications, but it is more expensive compared
with other tag types.

www.it-ebooks.info

http://www.it-ebooks.info/

38 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

 ➤ Type 4 tag: The NFC Type 4 tag is compatible with both ISO 14443 Type A and Type B
standards. These NFC tags are preconfi gured during the manufacturing phase, and they
are either writable or read-only; the type is defi ned during the manufacturing phase. The
memory capacity can be up to 32 KB, and the communication speed is between 106 and
424 Kbps.

TABLE 2-3: Comparison of NFC Forum Tag Types

PARAMETER TYPE 1 TYPE 2 TYPE 3 TYPE 4

Based On ISO/IEC 14443

Type A

ISO/IEC 14443

Type A

FeliCa ISO/IEC 14443

Type A, Type B

Chip Name Topaz MIFARE FeliCa DESFire,

SmartMX-JCOP

Memory Size Up to 1 KB Up to 2 KB Up to 1 MB Up to 64 KB

Data Rate 106 106 212 106–424

Cost Low Low High Medium/High

Security 16- or 32-bit

digital signature

Insecure 16- or 32-bit digital

signature

Variable

Use Cases Tags with small memory for a single

application

Tags with small memory for a single

application

NDEF

NDEF is a data format to exchange information between NFC devices — namely, between an active
NFC device and a passive tag or between two active NFC devices. The NDEF specifi cation is a stan-
dard defi ned by the NFC Forum. The NDEF message is exchanged when an NFC device is in the
proximity of an NFC Forum–mandated tag, the NDEF message is received from the NFC Forum–
mandated tag, or it is received from the NFC Forum Logical Link Control Protocol (LLCP). The
data format is the same in all cases.

NDEF is a binary message format that encapsulates one or more application-defi ned payloads into
a single message. An NDEF message contains one or more NDEF records (see Figure 2-10). Each
record consists of a payload up to 232-1 octets in size. You can further chain together records to sup-
port larger payloads. Consequently, the maximum number of NDEF records that can be carried is
unlimited.

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 39

In an NDEF message, the fi rst record is marked with the MB (Message Begin) fl ag set, and the last
record is marked with the ME (Message End) fl ag set (see Figure 2-11). The minimum message length
is one record, which you can achieve by setting both the MB and ME fl ags in the same record.

FIGURE 2-10

Application-

defined payload

NDEF

Record

1 2 3 4 n

NDEF

Record

NDEF

Record

NDEF

Record
NDEF

Record

The message head reads from left (head) to right (tail).
Index 1 refers to the fi rst fl ag set (MB), and index t refers
to the last one (ME). So, the logical record indices are in
the following order: t > s > r > 1 (as shown previously in
Figure 2-11).

A record is the unit for carrying a payload within an
NDEF message. Each NDEF record carries three param-
eters for describing its payload: payload length, payload
type, and an optional payload identifi er. The purposes of
using these parameters are as follows:

 ➤ The payload length indicates the total number
of octets in the current payload.

 ➤ The payload type identifi er indicates the type
of payload. NDEF supports URIs, MIME media
type constructs, and an NFC-specifi c type for-
mat as type identifi ers. By indicating the type
of a payload, you are able to dispatch the
payload to the appropriate application.

 ➤ The optional payload identifi er allows user appli-
cations to identify the payload carried within an
NDEF record.

NDEF records are variable length records with a com-
mon format, as illustrated in Figure 2-12. Each individ-
ual fi eld in a record has different features. The details of
each record are explained in the following list.

FIGURE 2-11

NDEF Message

R1 MB=1 Rt ME=1Rr Rs... ...

Reproduced by permission of NFC Forum. Copyright © 2013 by NFC Forum.

01234567

MB ME CF SR IL

TYPE LENGTH

PAYLOAD LENGTH 3

PAYLOAD LENGTH 2

PAYLOAD LENGTH 1

PAYLOAD LENGTH 0

ID LENGTH

TYPE

ID

PAYLOAD

TNF

FIGURE 2-12

Reproduced by permission of NFC Forum.

Copyright © 2013 by NFC Forum.

www.it-ebooks.info

http://www.it-ebooks.info/

40 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

 ➤ MB (Message Begin): The MB fl ag is a 1-bit fi eld which indicates the start of an NDEF
message.

 ➤ ME (Message End): The ME fl ag is a 1-bit fi eld which indicates the end of an NDEF
message.

 ➤ CF (Chunk Flag): The CF fl ag is a 1-bit fi eld which indicates that this is either the fi rst-record
chunk or a middle-record chunk of a chunked payload.

 ➤ SR (Short Record): The SR fl ag is a 1-bit fi eld which indicates that the PAYLOAD_LENGTH fi eld
is a single octet.

 ➤ IL: The IL fl ag is a 1-bit fi eld which indicates that the ID_LENGTH fi eld is present in the
header as a single octet.

 ➤ TNF (Type Name Format): The TNF fi eld value represents the structure of the value of the
TYPE fi eld. The TNF fi eld is a 3-bit fi eld with values defi ned in Table 2-4.

 ➤ TYPE_LENGTH: This fi eld is an unsigned 8-bit integer that specifi es the length in octets of
the TYPE fi eld. The TYPE_LENGTH fi eld is always zero for certain values of the TNF fi eld.

 ➤ ID_LENGTH: This fi eld is an unsigned 8-bit integer that specifi es the length in octets of the
ID fi eld.

 ➤ PAYLOAD_LENGTH: This fi eld is an unsigned integer that specifi es the length in octets of
the PAYLOAD fi eld (the application payload). The size of the PAYLOAD_LENGTH fi eld is deter-
mined by the value of the SR fl ag.

 ➤ TYPE: This fi eld describes the type of the payload.

 ➤ ID: The value of the ID fi eld is an identifi er in the form of a URI reference.

 ➤ PAYLOAD: This fi eld carries the payload intended for the NDEF user application.

TABLE 2-4: Type Name Format (TNF) Field Values

TYPE NAME FORMAT VALUE

Empty 0×00

NFC Forum well-known type 0×01

Media-type 0×02

Absolute URI 0×03

NFC Forum external type 0×04

Unknown 0×05

Unchanged 0×06

Reserved 0×07

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 41

Record Types for NDEF

The NDF Forum defi nes various record types for NDEF messaging. The record type string fi eld con-
tains the name of the record type as record type name. NDEF applications use record type names to
identify the semantics and structure of the record content. You can specify record type names in sev-
eral formats in the TNF fi eld of the NDEF record header. Record type names may be MIME media
types, absolute URIs, NFC Forum external type names, or well-known NFC type names. Each
record type defi nition is identifi ed by its record type name:

 ➤ NFC Forum Well-Known Type: This dense format is designed for using tags and creating
primitives or common types. You identify it inside an NDEF message by setting the TNF fi eld
of a record to the value 0×01. An NFC Forum well-known type is a URN (Uniform Resource
Name) with the “nfc” namespace identifi er (NID). The namespace-specifi c string (NSS) of
an NFC Forum well-known type is prefi xed with “wkt:” (see Table 2-5). When you encode
it in an NDEF message, you must write it as a relative-URI construct in which the NID and
“wkt:” prefi xes are discarded. For instance, urn:nfc:wkt:very-complicated-type as a
NFC Forum well-known type is encoded as very-complicated-type. The two major types
are as follows:

 ➤ NFC Forum Global Type: The NFC Forum defi nes and manages this type. NFC
Forum global types start with an uppercase letter in a character set that can be
found in the RTD specifi cation — for instance, A, Trip-to-Istanbul.

 ➤ NFC Forum Local Type: The NFC Forum local types start with a lowercase char-
acter in a character set or with a number in a character set that can be found in the
RTD specifi cation — for instance, 2, a, trip. An NFC Forum local type can be
reused by another application in a different context and with a different content.

 ➤ NFC Forum External Type: The external type name is identifi ed inside an NDEF mes-
sage by setting the TNF fi eld or a record to the value 0×04. The NFC Forum external
type is a URN with the nfc NID. The NSS part is prefi xed with ext: — for instance,
urn:nfc:ext:yourcompany.com:f. As with NFC Forum well-known types, the binary
encoding of NFC Forum external type discards the NID and NSS prefi x ext:.

The NFC Forum defi nes various record types for specifi c cases: smart posters, URIs, digital signa-
tures, and text. You can fi nd more details on these RTDs on the NFC Forum’s website. The follow-
ing sections provide short descriptions for each one.

TABLE 2-5: Well-Known NDEF Record Type Examples

NDEF RECORD TYPE DESCRIPTION URI REFERENCE

Sp Smart Poster urn:nfc:wkt:Sp

T Text urn:nfc:wkt:T

U URI urn:nfc:wkt:U

Sig Signature urn:nfc:wkt:Sig

www.it-ebooks.info

http://www.it-ebooks.info/

42 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

URI RTD

The URI Service RTD defi nes a record to be used with the NDEF to retrieve a URI stored on an
NFC tag or to transport a URI from one NFC device to another. The well-known type for a URI
record is “U” (0×55 in the NDEF binary representation). There are 256 URI identifi er codes, the
details of which you can fi nd in the URI RTD specifi cation of the NFC Forum. Some examples of
URI identifi er codes are shown in Table 2-6. All defi ned URIs are listed in Appendix A. The URI
fi eld is defi ned by the UTF-8 coding, which is also called NFC binary-encoding in specifi cations.

TABLE 2-6: Some Examples for URI Identifi er Codes

DECIMAL HEX PROTOCOL TYPE

1 0x01 http://www.

2 0x02 https//www.

5 0x05 tel:

6 0x06 mailto:

Table 2-7 shows a simple example on launching NFC Lab-Istanbul’s website, http://www.nfclab
.com, where the URI identifi er code fi eld is 0×01. If the content of this fi eld is 0×02, and the content
of the URI fi eld reads as nfclab.com, the resulting URI is https://www.nfclab.com.

TABLE 2-7: Storing a URL

OFFSET CONTENT EXPLANATION FIELD

0 0xD1 SR=1, TNF=0x01 (NFC Forum

well-known type), ME=1, MB=1

Header (MB, ME, CF, SR,

IL, TNF)

1 0x01 Length of the Record Type (1

byte)

Type Length

2 0x0B Length of the payload (11 bytes) Payload Length

3 0x55 The URI record type (“U”) Type

4 0x01 URI identifi er code as

“http://www.”

Payload

5 0x6e 0x66 0x63 0x6c

0x61 0x62 0x2e 0x63

0x6f 0x6d

The string “nfclab.com” in

UTF-8

Payload

www.it-ebooks.info

http://www.nfclab.com
http://www.nfclab.com
https://www.nfclab.com
http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 43

Smart Poster RTD

The Smart Poster RTD defi nes an NFC Forum well-known type on how to put URLs, SMSs, or
phone numbers on an NFC Forum–mandated tag or how to transport them between devices. Smart
posters are popular use cases for NFC-enabled applications. The idea is that an object can be made
“smart” so that it is capable of storing additional information in the form of an NFC Forum–man-
dated tag. When a user touches an NFC device to the tag, this information can be read and pro-
cessed afterward. The smart poster contains data that will trigger an application in the device such
as launching a browser to view a website, sending an SMS to a premium service to receive a ring
tone, and so on. The smart poster concept is mostly built around URIs, which became the standard
for referencing information around the Internet. URIs are very powerful, and as already mentioned,
they can represent anything from unique identifi ers and web addresses to SMS messages, phone
calls, and so on. The content of a smart poster payload is an NDEF message. The content of this
message consists of several NDEF records. The most important ones are as follows:

 ➤ Title record for the service

 ➤ URI record that is the core of the smart poster

 ➤ Action record that describes how the service should be treated

 ➤ Icon record that refers to one or many MIME-type image records (icons) within the
smart poster

 ➤ Size record for telling the size of the URI references that has an external entity such
as a URL

 ➤ Type record for declaring the MIME type of the URI references that has an external entity
such as a URL

As shown in Table 2-8, the content of this message represents a web address for the NFC Lab-
Istanbul, so that when the user touches the tag on this smart poster, it triggers a browser on the
NFC device and displays the NFC Lab-Istanbul’s website.

TABLE 2-8: URI Example on a Smart Poster

OFFSET CONTENT LENGTH EXPLANATION FIELD

0 0xD1 1 TNF=0x01 (well-known type), SR=1, MB=1,

ME=1

Header

1 0x02 1 Record Name Length (2 bytes) Type Length

2 0x12 1 Length of the Smart Poster data (18 bytes) Payload

Length

3 Sp 2 The record name Type

5 0xD1 1 TNF=0x01 (well-known type), SR=1, MB=1,

ME=1

Header

continues

www.it-ebooks.info

http://www.it-ebooks.info/

44 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

OFFSET CONTENT LENGTH EXPLANATION FIELD

6 0x01 1 Record Name Length (1 bytes) Type Length

7 0x0A 1 Length of the URI payload (11 bytes) Payload

Length

8 U 1 Record Type: “U” Type

9 0x01 1 Abbreviation: “http://www.” Payload

10 nfclab.com 10 The URI itself Payload

Text RTD

The text record contains free-form plain text. The text record may appear as the sole record in an
NDEF message, but in this case the behavior is undefi ned and the application should handle this
occurrence. Typically, the text record should be used in conjunction with other record types to
provide explanatory text. The NFC Forum well-known type for the text record is “T,” which is
0×54 in UTF-8 encoding. In text record types, the text can be encoded in either UTF-8 or UTF-
16, which is defi ned by the status byte in the text record. The text record is composed typically of
an NDEF record header, a payload, and the actual body text in UTF format. In the payload, the
status byte defi nes the encoding structure. Table 2-8 shows an example for storing a simple text
record.

The status byte encoding is shown in Table 2-9. To discover the language code from the status byte,
the status byte should be masked with the value 0x3F. The most signifi cant bit defi nes the encoding
scheme (UTF-8 or UTF-16), so that to decode the actual text, the most signifi cant bit should be dis-
covered from the status byte.

TABLE 2-9: Status Byte Encoding

BIT NUMBER CONTENT

7 0: The text is encoded in UTF-8

1: The text is encoded in UTF-16

6 RFU (must be set to zero)

5...0 The length of the IANA language code

TABLE 2-8 (continued)

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 45

The text record is composed typically of an NDEF record header, a payload, and the actual body
text in UTF format. In the payload, the status byte defi nes the encoding structure. Table 2-10 shows
an example for storing a simple text record.

TABLE 2-10: Storing a Text Record

OFFSET CONTENT EXPLANATION FIELD

0 Not Available IL fl ag = 0 (no ID fi eld), SF=1 (Short format) NDEF Record

Header
1 0x01 Record Name Length

2 0x12 Payload Data Length (18 bytes)

3 T Binary encoding of the name

4 0x02 Status byte, which means that this is UTF-8 and has a

2-byte language code

Payload

5 en “en” is the ISO code for “English”

7 Hello, world! UTF-8 string Text

NOTE For more information on NDEF and RTDs, refer to NFC Forum
 specifi cations: NFC Data Exchange Format (NDEF), Technical Specifi cation,
Record Type Defi nition (RTD), Smart Poster Record Type Defi nition, Text
Record Type Defi nition, URI Record Type Defi nition, Signature Record Type
Defi nition, www.nfc-forum.org/specs/.

Peer-to-Peer Mode

In peer-to-peer mode, two NFC-enabled mobile phones establish a bidirectional connection to
exchange information, as depicted in Figure 2-13. They can exchange virtual business cards, digital
photos, or other kinds of data. ISO/IEC 18092 defi nes the standard for the peer-to-peer operating
mode’s RF communication interface as NFCIP-1.

www.it-ebooks.info

http://www.nfc-forum.org/specs/
http://www.it-ebooks.info/

46 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

Protocol Stack Architecture

According to the NFC Forum specifi cations, an NFC device that is operating in peer-to-peer mode
has the following protocol stack elements (see Figure 2-14):

 ➤ Analog and digital protocols are lower layer protocols standardized by NFCIP-1.

 ➤ LLCP allows transferring upper layer information units between two NFC devices.

 ➤ Protocol bindings provide standard bindings to NFC Forum protocols and allow interoper-
able use of registered protocols.

 ➤ NFC Forum protocols are the ones that the NFC Forum defi nes as binding to LLCP, such as
OBEX and IP.

 ➤ The simple NDEF exchange protocol allows exchange of NDEF messages. It is also possible
to run other protocols over the data link layer provided by LLCP.

 ➤ Applications may run over the simple NDEF exchange protocol, other protocols, or NFC
Forum protocols. These applications include printing from a camera, exchanging business
cards, and so on.

LLCP

The LLCP defi nes an OSI data link protocol to support peer-to-peer communication between two
NFC-enabled devices. LLCP is essential for any NFC application that involves a bidirectional com-
munication. LLCP provides a solid ground. It also enhances the basic functionalities provided by the
NFCIP-1 protocol.

The NFCIP-1 protocol provides a Segmentation and Reassembly (SAR) capability, as well as
data fl ow control, depending on the “Go and Wait” principle usual for half-duplex protocols.
Furthermore, the NFCIP-1 protocol allows error handling by using an acknowledgment frame
(ACK frame) and a negative acknowledgment frame (NACK frame) and provides an ordered data
fl ow. It provides a link layer that is reliable and error free.

FIGURE 2-13

NFC MOBILE

Host Controller

Host
Controller
Interface

ISO 7816
Interface

SWP or
S2C

NFC
Controller

Antenna

Contactless
Front End

Up to 4 cm

Electromagnetic Field

NDEF Data Exchange Format

NFC Forum
Logical Link Control Protocol

Initiator
(Active Device)

Applications

Secure
Element

NFC MOBILE

Host Controller

ISO 7816
Interface

Host
Controller
Interface

SWP or
S2C

NFC
Controller

Antenna

Contactless
Front End

Target
(Active Device)

ISO/IEC 18092 NFCIP-1
Communication Interface on RF Layer

Applications

Secure
Element

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Operating Mode Essentials ❘ 47

LLCP provides fi ve important services: connectionless transport; connection-oriented transport;
link activation, supervision, and deactivation; asynchronous balanced communication; and protocol
multiplexing. They operate as follows:

 ➤ Connectionless transport: Connectionless transport provides an unacknowledged data
transmission service. This transport mode can be used if upper protocol layers implement
their own fl ow control mechanisms. Therefore, these layers do not need to rely on the data
link layer’s fl ow control mechanism.

 ➤ Connection-oriented transport: This mode provides a data transmission service with
sequenced and guaranteed delivery of service data units. Data transmission is controlled
through a sliding window protocol.

 ➤ Link activation, supervision, and deactivation: LLCP specifi es how two NFC Forum devices
within communication range recognize compatible LLCP implementations, establish an
LLCP link, supervise the connection to the remote peer device, and deactivate the link when
requested.

 ➤ Asynchronous balanced communication: Typical NFC MACs (Medium Access and Control)
operate in Normal Response Mode where only a master, called the initiator, is allowed to
send data to the target and also request data from the tag. The LLCP enables Asynchronous
Balanced Mode (ABM) between service endpoints in the two peer devices by using a sym-
metry mechanism. Using ABM, service endpoints may initialize, supervise, recover from
errors, and send information at any time.

 ➤ Protocol multiplexing: The LLCP is able to accommodate several instances of higher level
protocols at the same time.

NOTE For more information on LLCP, refer to NFC Forum, Logical Link
Control Protocol, Technical Specifi cation, Version 1.1.

FIGURE 2-14

Logical Link Control Protocol (LLCP)

NDEF Exchange Protocol
and Other Protocols

Digital Protocol

Applications

NFC Forum Protocols

Analog

Protocol Bindings

www.it-ebooks.info

http://www.it-ebooks.info/

48 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

Card Emulation Mode

In card emulation mode, the NFC-enabled mobile phone acts as a smart card. Either an NFC-
enabled mobile phone that emulates an ISO/IEC 14443 smart card or a smart card chip integrated
in a mobile phone is connected to the antenna of the NFC module. As the user touches a mobile
phone to an NFC reader, the NFC reader initiates the communication immediately. The communi-
cation architecture of this mode is illustrated in Figure 2-15.

FIGURE 2-15

Electromagnetic Field

Smart Card Capability

for Mobile Devices

up to 4 cm

Server

NFC READER

Initiator

(Active Device)

Initiator

(Passive Device)

ISO/IEC 14443 Type A, Type B, and FeliCa

Communication Interface on RF Layer

NFC

NFC MOBILE

Host Controller

Host
Controller
Interface

ISO 7816
Interface

SWP or
S2C

NFC
Controller

Antenna

Contactless
Front End

Applications

Secure
Element

Protocol Stack Architecture

NFC devices that are operating in card emulation mode use similar digital protocol and analog
 techniques as smart cards, and they are completely compatible with the smart card standards
(see Figure 2-16). Card emulation mode includes proprietary contactless card applications such as
payment, ticketing, and access control. These applications are based on ISO/IEC 14443 Type A,
Type B, and FeliCa communication interfaces.

FIGURE 2-16

Applications

Digital Protocol

Analog

www.it-ebooks.info

http://www.it-ebooks.info/

Standardization of NFC ❘ 49

When an NFC reader interacts with an NFC mobile, the NFC mobile behaves like a standard
smart card; thus, the NFC reader interacts with the payment applications on the SE. This scenario
is depicted in Figure 2-15. Only card emulation mode uses an SE effi ciently and securely,
performing functions that require high security. Various studies and specifi cations, such as those by
GlobalPlatform, GSMA, and Mobey Forum, are available to help you manage SE content remotely
via over-the-air (OTA) technology.

STANDARDIZATION OF NFC

NFC technology benefi ts from various elements such as smart cards, mobile phones, card read-
ers, and payment systems. All these elements need to acquire accreditation from an assortment of
governing bodies that have the responsibility for the security and interoperability of various NFC
devices. As mobile phones became the best solution for NFC technology, especially for secure trans-
actions, various standardization bodies defi ned how the NFC technology should be integrated into
mobile phones. Some other bodies defi ned the architectures and standards for the security as well
as the ancillary technologies for NFC-enabled mobile phones, such as smart cards for NFC transac-
tions. The common vision of all standardization bodies is to increase the ease of access, interoper-
ability, and security for NFC technology. Table 2-11 gives a summary of the standardization bodies
that play a role in the development of NFC technology and NFC mobile.

TABLE 2-11: Summary of Standardization Bodies

ORGANIZATION

STANDARDS OR ACTIVITIES GOVERNED

WITHIN NFC ENVIRONMENT

RESPONSIBILITY

ONLY MOBILE

PHONES

SUPPORTIVE

TECHNOLOGY

NFC

TECHNOLOGY

GSMA ✓ ✓ Engages in technical, commer-

cial, and public policy initiatives

to ensure that mobile services

are interoperable worldwide

OMA ✓ ✓ Develops specifi cations for

mobile service enabler to pro-

mote interoperability

JCP ✓ ✓ Established specifi cations for

the development of Java tech-

nology on mobile phones

ETSI and its

Smart Card

Platform

✓ ✓ Develops globally applicable

standards for information and

communication technologies

and handles SIM specifi cations

continues

www.it-ebooks.info

http://www.it-ebooks.info/

50 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

ORGANIZATION

STANDARDS OR ACTIVITIES GOVERNED

WITHIN NFC ENVIRONMENT

RESPONSIBILITY

ONLY MOBILE

PHONES

SUPPORTIVE

TECHNOLOGY

NFC

TECHNOLOGY

3GPP ✓ ✓ Develops globally applicable

technical specifi cations for

third-generation GSM

EMVCo ✓ ✓ Provides specifi cations to

ensure interoperability of smart

card-based payment systems

worldwide as well as mobile

payment standards

Global Platform ✓ ✓ Provides open and interopera-

ble infrastructure and standards

for transactions performed on

smart cards

NFC Forum ✓ ✓ ✓ Develops specifi cations for NFC

devices that are based on the

ISO/IEC 18092 contactless inter-

face ensuring interoperability

among devices and services

ISO/IEC ✓ ✓ ✓ Provides worldwide interna-

tional standards for business,

government, and society

ECMA

International

✓ ✓ ✓ Provides international standards

and technical reports in order

to facilitate and standardize the

use of information communica-

tion technology and consumer

electronics

TABLE 2-11 (continued)

Smart Card Alliance, “Security of Proximity Mobile Payments: A Smart Card Alliance Contactless

and Mobile Payments Council White Paper,” May 2009.

DIVERSITY OF NFC PLATFORMS

The NFC ecosystem includes a wide range of stakeholders or actors, depending on the types of
provided services such as smart posters, payment, and ticketing. The type of NFC-enabled service
defi nes the complexity in terms of which business model is applied, which stakeholders are involved,
the appropriate collaboration model, the revenue model among players, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 51

In this ecosystem, developing innovative NFC applications and deploying them for use by people are
important issues that the participating actors within the ecosystem need to handle effectively.

To develop NFC applications, you need a complete understanding of NFC technology and operating
modes. The two different types of applications in NFC services are graphical user interface (GUI)
applications and SE applications. GUI applications exist in all operating mode applications and pro-
vide an interface that allows users to interact with a mobile device. This interface also provides the
capability to read from and write to NFC components. In the case of SE applications, the applica-
tion is needed to provide a secure and trusted environment for security-requiring applications such
as payment, loyalty, and ticketing.

Today, various development tools on the market target different mobile phones. Some of these
development tools include the Android software development kit (SDK) for Android mobile phones,
Qt SDK for Symbian 3 mobile phones, Bada SDK for Bada operating system phones, and Series 40
Nokia 6212 NFC SDK for Nokia 6212 devices. Each development tool has a unique SDK and uses a
different language. The developer who wants to develop an application on a specifi c platform needs
to know that platform’s programming language and NFC application programming interfaces
(NFC APIs) built for that platform. Fortunately, today operating principles of different platforms’
NFC APIs are similar to each other. Therefore, developers can easily work and develop NFC appli-
cations on different platforms.

In the case of deploying NFC applications, companies need to work together and create a unique,
interoperable platform that will operate in all NFC mobiles and all SEs. Sustainable and collab-
orative ecosystem and business models are needed, and therefore, harmonizing the interests of all
participants in these business models is essential. Without this, confl icting solutions that are not
interoperable will be developed, and thus the technology cannot possibly be improved.

SUMMARY

NFC occurs between different types of smart NFC devices that can play either an initiator or a
target role. These NFC devices are NFC-enabled mobile phones, NFC tags, and NFC readers. The
NFC-enabled mobile phone is the major device for NFC transactions that exist in each interaction
type. NFC-enabled mobile phones have a detailed, complex architecture with rich interfaces, includ-
ing the NFC interface, which is the major component of NFC devices; secure elements with diverse
alternatives; a host controller; and the host controller interface.

NFC operates at 13.56 MHz and transfers data up to 424 Kbps. Communication between
two NFC devices is standardized in the ISO/IEC 18092 standard as NFCIP-1, which includes
only device-to-device communication, peer-to-communication, and active/passive communication
reader/writer modes. However, the RF layer of NFC communication is also compatible with the
ISO/IEC 14443 standard (contactless proximity smart card standard), Japanese JIS X 6319 stan-
dard as FeliCa (another contactless proximity smart card standard by Sony), and ISO/IEC 15693
standard (contactless vicinity smart card standard). These smart card interfaces operate at 13.56
MHz with distinct data rates, communication ranges, as well as different modulation and coding
features.

www.it-ebooks.info

http://www.it-ebooks.info/

52 ❘ CHAPTER 2 NFC ESSENTIALS FOR APPLICATION DEVELOPERS

NFC technology offers three operating modes: reader/writer operating mode, peer-to-peer operating
mode, and card emulation operating mode. Each operating mode’s communications essentials are
described in this chapter.

In reader/writer operating mode, an active NFC-enabled mobile phone initiates the wireless com-
munication and reads and/or alters data stored in the NFC tag afterward. In this mode, an NFC-
enabled mobile phone is capable of reading NFC Forum–mandated tag types. It is compatible with
the ISO/IEC 14443 Type A, Type B, and FeliCa communication interface on the RF layer. The
NFC Forum standardized the NFC Forum–mandated tag types as well as the NFC Data Exchange
Format and various record types from the application layer to the RF layer.

In the case of peer-to-peer mode, communication occurs between two active NFC devices. One
of the active devices initiates the communication, and a link-level communication is established
between them thereafter. This mode uses the ISO/IEC 18092 NFCIP-1 standard for the communica-
tion. The NFC Forum standardized the Logical Link Control Protocol from the application layer to
the physical layer.

Card emulation mode enables security- and privacy-required transactions with NFC. It gives smart
card capability to mobile phones and uses ISO/IEC 14443 Type A, Type B, and FeliCa. The SE con-
cept is an important issue in this mode to store and process valuable data and applications.

Because NFC technology relies on many other technologies, different components are needed to
enable an NFC-based system, such as smart cards, NFC chips, tags, and development platforms
for different vendors. For the development of NFC technology, various standardization bodies are
providing specifi cations and standards to increase the ease of access, interoperability, and security
of NFC technology and its supportive technologies. However, the standardization process is not yet
complete. Therefore, various alternatives for different components of NFC systems have been pro-
duced. Thus, in the NFC ecosystem, developing innovative NFC applications and deploying them
for use by people are important issues that the participating actors within the ecosystem need to
handle effectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Android

WHAT’S IN THIS CHAPTER?

 ➤ Introduction to the Android operating system and its architecture

 ➤ Installation of Android SDK

 ➤ Structure and components of Android applications

 ➤ Intents and intent fi lters

 ➤ Fundamentals of the manifest fi le and application resources

 ➤ Essentials of the Dalvik Virtual Machine

 ➤ Background information for platform tools, SDK Tools, and Android

Virtual Devices

This chapter provides introductory information to help you start development on Android
platforms. It describes the preliminary requirements for Android application development,
installation of the required development tools, and the Android application structure. This
content is suffi cient to help you start developing Android applications.

The information in this chapter also provides suffi cient background information to help
you understand the next chapter, “Android Software Development Primer.” If you do not
need information on the installation of the Android platform on computers, components of
the Android operating system (OS), structure of Android applications, Android application
packaging, Android SDK details, platform and SDK tools, or Android Virtual Devices (AVDs),
you can skip this chapter and continue to Chapter 4.

The Android developers’ offi cial portal, http://developer.android.com/, is currently the
resource most commonly used by Android developers in the world. We recommend you
navigate through this site to get additional knowledge, resources, and up-to-date information
on the Android platform as you need it.

3

www.it-ebooks.info

http://developer.android.com/
http://www.it-ebooks.info/

54 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

Developing Android applications is mainly a platform-independent process. The programmers are
free to use operating systems such as Windows, Linux, or Mac OS X. Accordingly, you may use any
operating system you prefer. The software described in this book is not dependent on any OS and is
usable on any one.

WHAT IS ANDROID?

Android is one of the world’s most popular mobile platforms which is also used by mobile phones.
Internally, it is a modifi ed version of Linux with an integrated programming interface using the Java
language. Android is owned by Open Handset Alliance, and it is indeed completely open sourced.
Currently, Google leads the project, and most of the code is released under the Apache License. The
application development environment includes a compiler, debugger, device emulator, and virtual
machine named the Dalvik Virtual Machine (DVM) to execute the code.

If you are a Java programmer, you likely remember that Java codes are converted to byte codes and
executed on a Java Virtual Machine (JVM) in the Java environment. Java byte codes, however,
are not executed in Android. Instead, classes are complied into Dalvik executable fi les and run on
the DVM. When you code your application, the Android SDK compiles the code into an Android
package fi le with .apk extension which is to be uploaded and installed to the mobile device prior to
execution.

Every Android mobile device has an installed Android OS version. The OS versions among different
mobile devices may be different. When developing applications for specifi c Android devices, you
should consider the platform version of that device. When you write an application for a targeted
platform, some properties (for example, methods) may not be available for that specifi c version.
Therefore, it is always a good practice to check the available resources in the application with the
targeted platform’s properties.

An Android application running on a mobile may perform all the services by itself or, alternatively,
may use a previously available service on the mobile to perform some of the intended functionalities.
For example, an application that requires a phone call may include the embedded code within the
application or may fi re — actually request fi ring — the already existing service on the mobile for
this purpose.

As another example, if you implement an application that needs to record an image, it may make
use of any available service that can take pictures. Consequently, you do not have to write any code
for any service that is already available on the mobile. Your application simply activates the camera
component; the component takes the picture and returns the result to your application. Activation
of the camera service and data exchange is seamless, so the user does not notice that the main
application uses a separate camera service. In other words, it is assumed that the camera service is a
part of your application.

The major components of the Android OS are the Linux kernel, Android run time, libraries,
application framework, and applications, as shown in Figure 3-1.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Android? ❘ 55

FIGURE 3-1

Applications

Home

Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Notification
Manager

Location
Manager

Resource
Manager

Telephone
Manager

Surface
Manager

OpenGL |
ES

SGL SSL Libc

Webkit

SQLite Core Libraries

Dalvik Virtual
Machine

Display Driver

Keypad Driver

Camera Driver

WiFi Driver

Flash Memory
Driver

Audio Driver

Binder (IPC)
Driver

Power
Management

Media
Framework

FreeType

Contacts Phone Browser ...

Application Framework

Libraries

Linux Kernel

Android Run Time

NOTE For more information on Android and its major components (Linux ker-
nel, Android run time, libraries, application framework, and applications), refer
to http://developer.android.com/guide/basics/what-is-android.html.

Linux Kernel

The Linux kernel acts as an abstraction layer between the hardware and the software stack. Android
consists of a Linux kernel version 2.6 to provide core system services. Starting with Android version
4.0 (Ice Cream Sandwich), Linux kernel version 3.x is being used.

www.it-ebooks.info

http://developer.android.com/guide/basics/what-is-android.html
http://www.it-ebooks.info/

56 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

Android Runtime

Android includes a set of core libraries that have most of the functionalities available in the core
libraries of the Java programming language. Every Android application runs in its own process
with its own instance of the DVM. Dalvik enables a device to run multiple VMs effi ciently. DVM
executes fi les in the Dalvik executable (.dex) format, which optimizes memory use.

Libraries

Android includes a set of C/C++ libraries that provide the necessary capabilities for the Android
system. These capabilities are provided to developers through the application framework. Some of
the core libraries are shown in Figure 3-1.

Application Framework

Because Android provides an open development platform, it enables developers to build rich and
innovative applications. Developers can benefi t from various Android components and services,
such as accessing device hardware, using location information, running background services, setting
alarms, and adding notifi cations to the status bar.

All the developers have access to the framework API, and the application architecture is designed
in such a way that an application can publish its capabilities and then others can make use of those
capabilities. Thus the reuse of components is simplifi ed.

Applications

Android includes a set of core applications such as an e-mail client, SMS program, calendar, maps,
browser, and contacts. All these applications are written using the Java programming language.

ANDROI D SDK

For developers, the Android SDK provides a rich set of tools, including the debugger, libraries,
handset emulator, documentation, sample code, and tutorials. Android applications can be easily
developed using Eclipse (Android’s offi cial development platform). Eclipse provides rich features
such as content assist, Java search, open resources, JUnit integration, and different views and
perspectives for developing Android applications.

WHAT YOU NEED TO START

To develop Android applications, you need to install Java Development Kit (JDK) and Android
Development Tools (ADT) Bundle.

Prior to installing the ADT Bundle to your computer, you should install JDK which also consists of
the Java Runtime Environment (JRE).

www.it-ebooks.info

http://www.it-ebooks.info/

What You Need to Start ❘ 57

ADT Bundle contains the required Android development tools and Eclipse as an Integrated
Development Environment (IDE) which provides the necessary tools for computer programmers in
order to develop new software.

Android also gives you the fl exibility to integrate ADT into an existing IDE. At this time, you
shouldn’t download the bundle; instead you need to download ADT separately.

JDK and JRE

Android applications are developed in the Java programming language. Java is an object-oriented
programming technology that is primarily designed to be object based and platform independent. It
was introduced by Sun Microsystems in 1995 and is a trademark of the same company.

Java programs are written into fi les with the .java extension. Java programs are not converted to
machine codes of the target platform for execution, but they are executed on interpreters instead.
The Java interpreter varies according to the execution platforms. The converters on personal
computers and similar machines are named Java Virtual Machines (JVMs). Before running a Java
program with .java extension, you should compile and convert it to byte code with the .class
extension using a Java compiler. Java byte code programs are then executed on top of the virtual
machine.

Java technology is made up of the following three elements, the combination of which composes
the Java platform:

 ➤ Java programming language standards, which defi ne the rules to write a Java program

 ➤ JVM to execute Java programs written by satisfying the Java language standards

 ➤ An extensive set of application programming interfaces (APIs) that support a wide range of
sources that a programmer needs

To install the JDK package, download the related package from http://www.oracle.com/
technetwork/java/javase/downloads/ and install it on your computer.

Android SDK

After installation of the Java SDK, you may install the Android SDK. Android SDK can be freely
downloaded from http://developer.android.com/sdk/. From this site, you may download the
ADT Bundle for any OS or download the SDK tools if you already have an existing IDE.

If you download the ADT Bundle, you will have all the related tools confi gured, so we recommend
that you install the SDK using this bundle.

When you download the ADT Bundle and extract it, you will have two folders named Eclipse
and sdk. The Eclipse folder contains the Eclipse IDE that you will use for software development.
The sdk folder contains the latest Android tools and latest Android platform.

In order to run Eclipse, you simply click on Eclipse.exe in the Eclipse folder. When you run
Eclipse, it needs to know where to write and read the project fi les, so it asks you to enter
a workspace folder to store your Eclipse projects and all related development fi les. You may
create a workspace folder anywhere on your computer or on the network where your computer is

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://developer.android.com/sdk/
http://www.it-ebooks.info/

58 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

connected. To enter a name to be used as a default folder for all projects, you should select it as the
default workspace (see Figure 3-2). In this case that folder is used for all further projects without
asking you to enter another for each project. After you select a workspace, you see the Android IDE
welcome screen that informs you of the successful installation (see Figure 3-3).

FIGURE 3-2

FIGURE 3-3

NOTE If you download SDK tools separately for an existing IDE, you need to
perform additional steps. Please refer to the steps described at http://devel-
oper.android.com/sdk/installing/.

www.it-ebooks.info

http://developer.android.com/sdk/installing/
http://developer.android.com/sdk/installing/
http://www.it-ebooks.info/

What You Need to Start ❘ 59

Adding More Platforms and Other Components to the SDK

Android SDK initially contains only the latest Android platform and required tools. However, you
may also need to develop and test applications for an earlier Android SDK platform that matches
your target device. Therefore, the last step in setting up your SDK is installing these components.

To install components, you should run the SDK Manager using one of the following methods:

 ➤ From ADT (Eclipse), select Window ➪ Android SDK Manager.

 ➤ On Windows, double-click the SDK Manager.exe fi le.

 ➤ On Mac OS X or Linux, open a terminal and navigate to the sdk/tools/ directory in the
Android SDK; then execute android.

To install or update the components, you should click the checkbox next to them and click Install
(see Figure 3-4). There is not any inconvenience to install more than one Android platform.
Especially if you consider deploying your application to different platforms, it is better to install all
the platforms.

FIGURE 3-4

You can check the success of the installation from the SDK Manager (see Figure 3-5). You also
can see installed SDKs from ADT (Eclipse) by opening Window ➪ Preferences (Mac OS X:
Eclipse ➪ Preferences) and by selecting Android from the left panel (see Figure 3-6). You can
identify the installed components from the Target Name header for this purpose.

www.it-ebooks.info

http://www.it-ebooks.info/

60 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

FIGURE 3-5

FIGURE 3-6

www.it-ebooks.info

http://www.it-ebooks.info/

What You Need to Start ❘ 61

When you launch Android SDK Manager, you will see that various components exist. Most popular
components are described in Table 3-1.

TABLE 3-1: Android SDK Package Components

SDK COMPONENT DEFINITION REQUIRED

SDK Tools This package contains the required tools

to debug and test your applications. These

tools are located in the tools directory

under the root directory of Android SDK

(sdk/tools/).

SDK Tools is a required

package. It is installed as part

of the downloaded default SDK

package. It should be updated

as a new update is provided.

SDK

Platform-tools

These tools are platform dependent

and are needed to develop Android

applications. These tools are located in

the platform-tools directory under

the root directory of Android SDK (sdk/

platform-tools/).

SDK Platform-tools is another

required package. It is installed

as part of the downloaded

default SDK package.

Android

Platforms

An SDK platform actually corresponds

to an Android platform. Each platform

includes a system image, libraries,

and sample codes. An Android Virtual

Device (AVD) is also created based on

an SDK platform. Platforms are located

in the platforms directory under the

root directory of Android SDK (sdk/

platforms/).

At least one Android platform

must be installed into your

environment. It is reasonable

to download and install the

latest platform version. After

developing the application,

you also should install older

platforms and test under those

platforms if you plan to publish

the application for older

versions.

Samples This package contains the sample

applications with their source code. They

are available for each platform. Samples

are located in the platforms directory

under the root directory of Android SDK

(sdk/platforms/platform-X/).

The Samples package is not

mandatory; however, it is nice

to have one. You can load an

example as a project and then

run and test it. You may also

use some parts of it in your

own application as required.

Documentation This package contains the documentation

for the SDK. After downloading the

package, you can work with the

documentation offl ine. Documentation is

located in the platforms directory under

the root directory of Android SDK (sdk/

platforms/platform-X/).

The Documentation package

is not mandatory, but it is a

useful one because it enables

you to work offl ine with the API

reference.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

62 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

SDK COMPONENT DEFINITION REQUIRED

Google APIs This package contains the Google Maps

external library API.

The Google APIs package

enables your application to

access the Maps external

library. You can display and

manipulate Maps data in your

application.

USB Driver for

Windows

This package contains the driver fi les to

run and debug your application in a real

Android device. Under Linux and Mac OS

X, you do not need this driver.

You need the USB Driver

package if you are developing

on Windows and want to run

and debug your application in a

corresponding Android device.

SDK PACKAGES

After you have successfully downloaded and extracted ADT Bundle and installed additional
components, many fi les are installed in several directories under sdk directory. Table 3-2 gives the
description and the contents of each directory.

TABLE 3-2: Directories

FOLDER DESCRIPTION

add-ons/ Contains the add-ons to the Android SDK

docs/
Contains a full set of documentation including the Developer’s Guide and

the API Reference

platform-tools/ Contains Android SDK Platform-tools

platforms/
Contains the installed Android platforms; each platform is displayed in a

separate directory

samples/
Contains the installed SDK package for Samples; each platform’s Samples

are displayed in a separate directory

tools/ Contains the default SDK package for Tools

Inside the tools and platform-tools directories, you can fi nd executable fi les for various
objectives. To run these executable fi les from the command line without providing a full path name,
you should add these folders to the PATH environment of the operating system.

TABLE 3-1 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android API Levels ❘ 63

Depending on your installed operating system, you can include these directories in your PATH in
several ways:

 ➤ On Windows: Click Start and then right click My Computer and then select Properties.
Click Advanced System Settings ➪ Environment Variables. Find the Path under System
Variables and double-click it. At the end of the line, insert a semicolon, add the path to the
tools directory, add a semicolon, and then add the path to the platform-tools directory
as follows:

….;C:\android-sdk\tools;C:\android-sdk\platform-tools

 ➤ On Linux: Edit either the .bash_profile or .bashrc fi le in your home directory. Locate
the line that sets the PATH environment variable and add the tools and platform-tools
directories. If you do not fi nd one, you can add one as follows:

export PATH=$PATH:~/android-sdk/tools:~/android-sdk/ /platform-tools

 ➤ On Mac OS X: Look in your home directory for the .bash_profile fi le and proceed as
described for Linux. You can create the .bash_profile fi le if you do not have one.

ANDROID API LEVELS

The Android OS’s platform versions are identifi ed by API level numbers. It is important to know the
API level of the target Android OS device before attempting to write an application for it. When you
develop an application for a specifi c targeted mobile device, you should check the Android OS’s API
level of the target mobile device to ensure the project will work after production. An API level is an
integer greater than zero that uniquely identifi es the corresponding Android platform.

Android applications are upward compatible, which ensures that when an application runs in
an Android API level, say X, it also runs on all Android devices with higher API levels of X.
Applications developed in a lower API level are compatible with higher level platforms. There is one
exception to this, though: If a component available on that API level X is removed from the API
level Y where Y > X, the application, or that component, depending on the case, does not run on the
devices with API levels Y and higher. On the other hand, downward compatibility is not provided.
It is important to note that the user of the actual mobile device may upgrade the mobile phone to
newer versions of the Android OS for some reason, but downgrading the device to a lower version
is unlikely. As a developer, you should take into account this possibility and use only components
that are still available, are targeted, and use higher API levels, but should not use deprecated
components.

Table 3-3 represents currently available API levels. Remember that at the installation stage of the
SDK, API levels are displayed on the screen (as previously shown in Figure 3-4).

www.it-ebooks.info

http://www.it-ebooks.info/

64 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

TABLE 3-3: Android API Levels

PLATFORM VERSION API LEVEL VERSION_CODE

Android 4.2 17 JELLY_BEAN_MR1

Android 4.1, 4.1.1 16 JELLY_BEAN

Android 4.0.3 , 4.0.4 15 ICE_CREAM_SANDWICH_MR1

Android 4.0, 4.0.1, 4.0.2 14 ICE_CREAM_SANDWICH

Android 3.2 13 HONEYCOMB_MR2

Android 3.1.x 12 HONEYCOMB_MR1

Android 3.0.x 11 HONEYCOMB

Android 2.3.4, 2.3.3 10 GINGERBREAD_MR1

Android 2.3.2, 2.3.1, 2.3 9 GINGERBREAD

Android 2.2.x 8 FROYO

Android 2.1.x 7 ECLAIR_MR1

Android 2.0.1 6 ECLAIR_0_1

Android 2.0 5 ECLAIR

Android 1.6 4 DONUT

Android 1.5 3 CUPCAKE

Android 1.1 2 BASE_1_1

Android 1.0 1 BASE

Android packages are indexed on the Android reference site: http://developer.android.com/
reference/. When you navigate through packages, classes, and methods at the site, on the right
side of the header, you can see their availability in terms of API levels (see Figure 3-7). For example,
the android package and android.Manifest.permission classes have been available since API
level 1; however, the WRITE_EXTERNAL_STORAGE constant inside the android.Manifest
.permission class has been available only since API level 4.

FIGURE 3-7

www.it-ebooks.info

http://developer.android.com/reference/
http://developer.android.com/reference/
http://www.it-ebooks.info/

Structure of Android Applications ❘ 65

NOTE For more information on Android API levels, refer to http://developer
.android.com/guide/appendix/api-levels.html.

STRUCTURE OF ANDROID APPLICATIONS

Android applications are formed from various components. Understanding these components
is an important step toward developing applications. You need and use these components at the
development stage. The following sections describe these components and their functions.

Android Application Components

The four different building blocks of Android applications are activities, services, broadcast
receivers, and content providers. Each Android application uses at least one activity and also may
further use any number of other components. Furthermore, intents and intent fi lters, a manifest fi le,
and applications resources are used along with these components.

Activities

Activities represent the user interface of the application. An application contains at least one activity
and may use additional activities as required. Each activity presents one screen view to the user;
therefore, the number of activities is equal to the number of different views required. With triggering
actions, different screens are displayed to the user. For example, if you consider a phonebook
application, the list of the addresses in the book is one activity. If the user selects one of the contacts
from the initial view that is provided by one activity, the contact details may be displayed on
another screen, which indeed is another activity.

In an Android application, typically there should be at least one main activity, which is the initial
screen that appears when the user launches the application. The application obviously may trigger
other activities as required.

Services

A service is a background task that does not provide any user interface to the user but performs
operations in the background. Services persist even if the user exits from the application. For
example, a mail service may continue getting e-mails when you play a game, or a GPS application
may continue to fi x the mobile’s position when a phone call is made.

Android services can take two forms, so a service can be in one form of it at any given time:

 ➤ Started: A service is started when an application component invokes it using the
startService() method. The service keeps running in the background, even if the
component that invoked the service is killed. For a service to stop, the service itself should
complete the intended operation. A service in the started form does not return a result to the
caller component. A network operation may be an example of this kind of service.

www.it-ebooks.info

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http://www.it-ebooks.info/

66 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

 ➤ Bound: A service enters into a bound form when an application component calls it using the
bindService() method. This form of service interacts with application components such
as returning results to the application and sending requests. Multiple components can bind
to this type of service, and when all the components unbind the service, the bound service is
destroyed.

Broadcast Receivers

Broadcast receivers are the components that receive and react to broadcast announcements.
Applications receive those broadcasts as they are announced, and sometimes applications need to
react accordingly. Most of the broadcasts originate from the operating system, such as a time zone
change, low battery announcement, or turned-off screen. Broadcasts do not have user interfaces;
however, they may create a notifi cation in the Android status bar.

Content Providers

A content provider makes an application’s data available to other platforms as required. In another
way, it can store and retrieve data, and make it available to other applications. Using content
providers, your application can share data with others, and other applications may even modify it if
your application allows such changes. Android contains the SQLite database, which can be used in
this context.

Intents

Activities, services, and broadcast receivers are triggered by intents. For activities and services,
intents defi ne the actions to perform. For example, a service may make a request to open
a webpage. For broadcast receivers, an intent defi nes the announcement that will be broadcast.
However, content providers cannot be activated by intents.

Intents can be either explicit or implicit. An explicit intent calls a specifi c service or activity
explicitly; whereas an implicit intent just gives the defi nition of the required service, and the Android
OS selects one appropriate service among the registered available services. To register an intent of an
application, you use an intent fi lter.

Intent Filters

Activities, services, and broadcast receivers can have one or more intent fi lters to inform the system.
Each intent fi lter describes a capability of the component and a set of intents that the component is
willing to receive. An intent fi lter fi lters the desired implicit intents, and unwanted implicit intents
are fi ltered out automatically. Only the implicit intents that pass from the intent fi lters are delivered
to the component. However, explicit intents are not fi ltered by the intent fi lters.

An intent fi lter is an instance of the IntentFilter class. Intent fi lters are defi ned in the application’s
manifest fi le inside <intent-filter> elements. The action fi eld of the intent fi lter is mandatory,
whereas data and category fi elds are optional. If all the fi elds are defi ned, the intents are tested for
all fi lters and must pass all fi lters to be delivered to the component.

www.it-ebooks.info

http://www.it-ebooks.info/

Structure of Android Applications ❘ 67

Manifest File

Before the Android OS starts an application component, the system must know that the application
component exists by reading the application’s manifest fi le, AndroidManifest.xml. This fi le
includes information about all components of the corresponding application, which is at the root
of the application project directory. In addition to declaration of application components such as
activities, the manifest fi le also provides various other functions:

 ➤ Identifying user permissions that the application requires, such as Internet access

 ➤ Declaring minimum API levels required by the application based on APIs used by the
application

 ➤ Declaring hardware and software features used or required by the application, such as
camera and Bluetooth services

 ➤ Providing API libraries that the application needs to be linked, such as the Google Maps
library

NOTE For more information on application fundamentals and the manifest fi le,
refer to http://developer.android.com/guide/topics/fundamentals.html.

The primary task of the manifest fi le is to inform the system about the application’s components.
Following is a manifest fi le example for declaring an activity’s components:

<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <application android:icon="@drawable/app_icon.png" ... >
 <activity android:name="com.example.project.ExampleActivity"
 android:label="@string/example_label" ... >
 </activity>
 ...
 </application>
</manifest>

According to the example, the android:icon attribute in the <application> element refers to the
resources for an icon that identifi es the application. In the <activity> element, the android:name
attribute specifi es the fully qualifi ed class name of an activity. The android:label attribute
specifi es a string to use as the user-visible label for the activity. All application components need to
be declared in the manifest fi le through the following elements:

 ➤ <activity>: elements for activities

 ➤ <service>: elements for services

 ➤ <receiver>: elements for broadcast receivers

 ➤ <provider>: elements for content providers

www.it-ebooks.info

http://developer.android.com/guide/topics/fundamentals.html
http://www.it-ebooks.info/

68 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

NOTE For more information about how to structure the manifest fi le for your
application, refer to http://developer.android.com/guide/topics/mani-
fest/manifest-intro.html.

Another important note is that in activating components, you can use intents to start activities,
services, and broadcast receivers. To declare a component in your application’s manifest, you can
optionally include intent fi lters that declare the capabilities of the component. An intent fi lter
can be declared for a component through the <intent-filter> element as a child of the
component’s declaration element.

NOTE For more information about declaring intent fi lters in the manifest fi le,
refer to http://developer.android.com/guide/topics/intents/intents-
filters.html.

Application Requirements

Currently, various devices powered by Android have different features and capabilities. To prevent
your applications from being installed on the devices that your application cannot run, you should
defi ne the device and software requirements in a manifest fi le. For example, if your application
requires NFC service and uses APIs introduced in Android 2.3.4, you need to declare them as
requirements in the manifest fi le of the application. So, devices that do not have NFC capability
and have an Android version lower than 2.3.4 cannot install your application from Google
Play (previously known as Android Market). Google Play uses these declarations to fi lter which
applications can be installed to the user’s device.

Screen Size and Density

You need to consider two important device characteristics while designing and developing an
Android application: screen size and screen density.

Screen size defi nes the physical dimensions of the screen, and screen density defi nes the physical
density of the pixels on the screen or dots per inch. To simplify all the different types of screen
confi gurations, the Android system generalizes them into categorical groups. The screen size options
are small, normal, large, and extra large; and the screen density options are low density, medium
density, high density, and extra high density. Although, by default, your application is compatible
with all screen sizes and densities, you need to create customized layouts for certain screen sizes and
provide images for certain densities to increase effi ciency. Therefore, you need to declare these in the
manifest fi le of your application through the <supports-screens> element.

Input Confi gurations

Devices provide various input mechanisms such as a hardware keyboard, trackball, and fi ve-way
navigation pad. If your application requires input hardware, you need to declare it in the manifest
fi le of the application using the <uses-configuration> element.

www.it-ebooks.info

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://www.it-ebooks.info/

Structure of Android Applications ❘ 69

Device Features

Many hardware and software features such as a camera, light sensor, Bluetooth, or touch screen
may exist in an Android device. In this case, you need to use the <uses-feature> element for
declaring device features of your application in your manifest fi le.

Platform Version

The relationships between Android OS versions and Android API levels were defi ned previously.
Upward compatibility of Android applications was also explained. Be aware that you need to
declare a minimum API level using the <uses-sdk> element. This API level needs to be the
minimum Android API level that your application can run on.

Application Resources

An Android application is composed of various resources that are separate from the source code,
such as images, audio fi les, and anything relating to the visual presentation of the application. For
an Android application, you need to defi ne animations, menus, styles, colors, and the layout of user
interfaces within the related XML fi les.

Using application resources helps you update various characteristics of your application easily
without modifying your source code. These resources enable you to optimize your application for
a variety of device confi gurations such as different languages and screen sizes. For every resource
that is included in an Android application, the SDK build tools defi ne a unique integer ID. This ID
can be used to reference the resource from your application code or from other resources defi ned
in XML.

NOTE For more details about different kinds of resources that you can include
in your Android application and how to create alternative resources for various
device confi gurations, refer to http://developer.android.com/guide/topics/
resources/index.html.

Processes and Threads

When an application component is invoked and if the application does not have any other
components running, the Android system starts a new process for the application with a single
thread of execution. By default, all components of the same application run in the same process
and thread (called the “main” thread). If an application component starts and a process already
exists for that application (because another component from the application exists), the component
is started within that process and uses the same thread of execution. However, you can arrange for
different components in your application to run in separate processes, and you can create additional
threads for any process.

The Android system tries to maintain an application process and needs to remove old processes to
reclaim memory for new or more important processes. When a memory chunk is required for a new
process, to determine which processes to keep and which processes to kill, the system assesses the

www.it-ebooks.info

http://developer.android.com/guide/topics/resources/index.html
http://developer.android.com/guide/topics/resources/index.html
http://www.it-ebooks.info/

70 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

importance hierarchy for each process based on the components running in the process and the state
of those components. Processes with the lowest importance are discarded fi rst, and then those with
the next lowest importance are discarded, and so on.

Processes are divided into fi ve levels of importance. Each process type is described here according to
its order of importance.

Foreground Process

The foreground process is directly related to what the user is currently doing. Generally, only a few
foreground processes exist at any given time. When the device reaches a memory paging state, some
of the foreground processes need to be killed to keep the user interface responsive.

A process is considered to be a foreground process if it hosts any of the following activities or
services:

 ➤ An activity that the user is currently interacting with, where the activity has called the
onResume() method

 ➤ A service that is bound to the activity that the user is currently interacting with

 ➤ A service that is running in the foreground where the service has called startForeground()

 ➤ A service that is executing one of its life-cycle callbacks: onCreate(), onStart(), or
onDestroy()

 ➤ A broadcast receiver that’s executing its onReceive() method

Visible Process

A visible process does not have any foreground components, but it still can affect what the user sees
on the screen. Thus, a visible process is considered as the next most important after foreground
processes.

A process is considered to be visible if it hosts any activity or service presented here:

 ➤ An activity that is not in the foreground but is still visible to the user where the onPause()
method has been called

 ➤ A service that is bound to a visible (or foreground) activity

Service Process

A service process is a service that has been started with the startService() method. The system
keeps service processes running until there is not enough memory to retain them along with all
foreground and visible processes.

Background Process

A background process runs an activity that is not visible to the user where the activity has called the
onStop() method. These processes have no direct impact on the user experience, and the system
can kill them any time to reclaim memory for a foreground, visible, or service process.

www.it-ebooks.info

http://www.it-ebooks.info/

Platform Tools ❘ 71

Empty Process

An empty process does not hold any active application components. The only reason to keep this
kind of process alive is for caching purposes, to improve startup time the next time the same
component needs to run. The system often kills these processes to balance overall system resources
between process caches and the underlying kernel caches.

NOTE For more information on processes and threads, refer to http://devel-
oper.android.com/guide/topics/fundamentals/processes-and-threads
.html.

DALVIK VIRTUAL MACHINE (DVM)

As mentioned previously, Android uses a special virtual
machine named DVM. This virtual machine uses a special
byte code system called dex bytecode developed specifi cally
for Android executable fi les.

When an Android application is implemented, the Java
compiler converts the code into bytecode (class fi le), and
then a “dx” converter converts it into Dalvik executables
(dex). Finally, the dex fi le is packed into an Android
package fi le (apk fi le) by using an archiver prior to installing
it on a mobile phone (see Figure 3-8). When the Eclipse IDE
and ADT plug-ins are used, the process to convert the code
to an apk fi le is automated (see Figure 3-9). As a matter of fact, an
apk fi le is a renamed zip fi le, so you may rename its extension to zip
and then open to see its contents using a decompression utility.

PLATFORM TOOLS

Platform tools are typically updated every time you install a new SDK platform. Each update of
the platform tools is backward compatible with older platforms. Platform tools are located in the
sdk/platform-tools/ directory. One of the most common platform tools is adb:

adb (Android Debug bridge): adb is a command-line tool that acts as a bridge between your
machine and either an emulated device or a physical device at a given time. Using adb,
you can install new applications to the mobile device, browse the log fi les of the current
applications, and so on. You can fi nd the adb tool in sdk/platform-tools/.

NOTE For more information about adb and how to use it, refer to http://
developer.android.com/guide/developing/tools/adb.html.

FIGURE 3-8

.java (code)

javac (compiler)

.class (bytecode)

dx (converter)

.dex (Dalvik Executable)

.apk (Android package)

zip, aapt, etc. (archiver)

FIGURE 3-9

.java (code)

Android IDE

.apk (Android Package)

www.it-ebooks.info

http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html
http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html
http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html
http://www.it-ebooks.info/

72 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

Other platform tools such as aidl, aapt, dexdump, and dx are called by Android built tools of the
Android Development Tool (ADT). However, you rarely use them explicitly.

SDK TOOLS

SDK tools are installed by default when you install the Android SDK. If you are developing Android
applications, you also need to use these tools, which are updated periodically. These tools are
located in the sdk/tools/ directory. The most important SDK tools are described here.

NOTE For more information about SDK tools and other available tools, refer to
http://developer.android.com/guide/developing/tools/.

DDMS: The Dalvik Debug Monitor Server (DDMS) is a debugging tool that provides vari-
ous services for the Android, such as port-forwarding services, screen capture on the device,
thread and heap information on the device, logcat, radio state information, incoming call
and SMS spoofi ng, and location data spoofi ng. In Android OS, every application runs in its
own process and, as usual, in its own VM. Hence, each VM exposes a unique port that a
debugger can attach to.

DDMS can be used within Eclipse and also from the sdk/tools/ directory. To run it from
Eclipse, you should click Window ➪ Open Perspective ➪ DDMS. To run it from the com-
mand line, you need to go to the sdk/tools/ directory and then type ddms (or ./ddms on
Mac/Linux).

android: android is a development tool that enables you to create, delete, or view AVDs.
Using android, you can also update your Android SDK components. The android tool can
be found in the sdk/tools/ directory. You do not need to use this tool directly because its
features are already integrated into Eclipse through the ADT plug-in. However, if you want
to use it from the command line, you fi rst need to go to the sdk/tools/ directory and type
android (or ./android on Mac/Linux).

NOTE For more information on android, refer to http://developer.android
.com/guide/developing/tools/android.html.

emulator: emulator is a virtual mobile device that allows AVDs to run in an emulated
window. It simply enables you to develop and test Android applications without using any
actual mobile device. Using the emulator, you can interact with the emulated device as you
would interact with the actual device.

www.it-ebooks.info

http://developer.android.com/guide/developing/tools/
http://developer.android.com/guide/developing/tools/android.html
http://developer.android.com/guide/developing/tools/android.html
http://www.it-ebooks.info/

SDK Tools ❘ 73

NOTE For more information on Android emulator, refer to http://developer
.android.com/guide/developing/tools/emulator.html.

sqlite3: sqlite3 is a command-line shell that you can use to manage SQLite databases from
Android applications.

NOTE For more information on sqlite3, refer to http://developer.android
.com/guide/developing/tools/adb.html#sqlite and http://www.sqlite
.org/sqlite.html.

hierarchyviewer: Hierarchy Viewer enables you to debug and optimize the user interface. It
provides a visual representation of the layout’s View hierarchy (that is, Layout view) and a
magnifi ed inspector of the display (that is, Pixel Perfect view). The hierarchyviewer tool
can be found in the sdk/tools/ directory. To run it from the command line, you fi rst need
to go to the sdk/tools/ directory and then type hierarchyviewer (or ./hierarchyviewer on
Mac/Linux).

NOTE For more information on the Hierarchy Viewer, refer to http://devel-
oper.android.com/guide/developing/tools/hierarchy-viewer.html.

zipalign: This archive alignment tool provides important optimization to Android
application (.apk) fi les. The purpose is to ensure that all uncompressed data starts
with a particular alignment relative to the start of the fi le. The zipalign tool can be found
in the sdk/tools/ directory. To run it from the command line, you fi rst need to browse the
sdk/tools/ directory and then type zipalign (or ./zipalign on Mac/Linux).

NOTE For more information on zipalign, refer to http://developer
.android.com/guide/developing/tools/zipalign.html.

draw9patch: This tool allows you to easily create a NinePatch graphic using a WYSIWYG
editor. It can be found in the sdk/tools/ directory. To run it from the command line, you
fi rst need to go to the sdk/tools/ directory and then type draw9patch (or ./draw9patch on
Mac/Linux).

NOTE For more information on draw9patch and how to use it, refer to http://
developer.android.com/guide/developing/tools/draw9patch.html.

www.it-ebooks.info

http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/emulator.html
http://developer.android.com/guide/developing/tools/adb.html#sqlite
http://developer.android.com/guide/developing/tools/adb.html#sqlite
http://www.sqlite.org/sqlite.html
http://www.sqlite.org/sqlite.html
http://developer.android.com/guide/developing/tools/hierarchy-viewer.html
http://developer.android.com/guide/developing/tools/hierarchy-viewer.html
http://developer.android.com/guide/developing/tools/zipalign.html
http://developer.android.com/guide/developing/tools/zipalign.html
http://developer.android.com/guide/developing/tools/draw9patch.html
http://developer.android.com/guide/developing/tools/draw9patch.html
http://www.it-ebooks.info/

74 ❘ CHAPTER 3 GETTING STARTED WITH ANDROID

ANDROID VIRTUAL DEVICE

To test your applications in an emulator, you need to create an Android mobile phone emulator
which is called an AVD. When the Android Development Tool is installed, no AVD is created
automatically. To create an AVD, follow these steps:

 1. In Eclipse, click Window ➪ Android Virtual Device Manager.

 2. The Android Virtual Device Manager window should be open. Click New in the open
window to open the Create New AVD window.

 3. Input the properties of your AVD as follows (see Figure 3-10):

AVD Name: Give a new name to your virtual
device.

Device: This fi eld enables you to set some
properties of the AVD. A drop-down list
gives all devices known in the current SDK
installation.

Target: You should select the API Level of
the virtual device. It simply represents the
installed Android OS version on the mobile
phone. For example, if you are developing for
a mobile phone that has an installed Android
API Level 12, you may select API Level 12,
or you can simply choose the highest API
level.

SD Card: Additionally, you may create an SD
card in your AVD.

 4. To fi nish, click the Create AVD button at the
bottom.

After you perform these steps, your fi rst AVD is
created. When running your application, you may
test it in different appropriate API levels and in
different screen-sized AVDs so that you can create
additional AVDs in the future.

The screen size of some AVDs may be very large, so
it might not fi t into the screen of the development computer. To solve this issue, you should open
AVD Manager ➪ AVD ➪ Start. In the open window, click Scale display to real size and then select
the screen size in inches. Based on the selected screen size, the AVD’s screen size is reduced or
increased.

FIGURE 3-10

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 75

SUMMARY

Android is one of the most popular operating systems used in mobile phones. It is a modifi ed version
of Linux, owned by Open Handset Alliance and completely open sourced.

The operating system versions of Android are identifi ed by API level numbers. When developing
applications, you should consider the OS version of the target device, because some properties of the
latest API levels might not have been introduced in the target version.

Android provides an SDK to write applications for Android mobile devices. The SDK provides a
rich set of tools including debugger, libraries, mobile phone emulator with different API levels,
documentation, sample codes, and tutorials. Android also provides an easy installation and IDE
integration with a software package called ADT Bundle.

There are four different building blocks of Android applications; activities, services, broadcast
receivers and content providers. Each android application uses at least one activity and may further
use any number of other components as well. Furthermore, intents and intent fi lters, manifest fi le,
and applications resources are used along with these components.

Manifest fi le is one of the most important components of Android applications. The device
requirements, activities, and permissions should be defi ned in the manifest fi le for a successful
installation. For example, in order to enable NFC service, the requirement of the NFC antenna in
the mobile device must be defi ned in the manifest fi le. So, devices that do not have NFC capability
cannot install your application.

Android uses a special virtual machine named DVM. This virtual machine uses a special byte code
system called Dalvik executables developed specifi cally for Android executable fi les. When you
develop an Android application, java compiler converts the source code into bytecode, and then dx
converter converts it into Dalvik executables. Finally, the executable fi le is packed into an Android
package fi le by using an archiver prior to installing it on a mobile phone. When the Eclipse IDE and
ADT plug-in are used, the process to convert the code to an Android package fi le is automated.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Android Software
Development Primer

WHAT’S IN THIS CHAPTER?

 ➤ Creating your fi rst Android application

 ➤ Running Android applications on mobile phones

 ➤ Distributing applications on Google Play

 ➤ Creating layouts for Android applications

 ➤ Using multiple layouts

 ➤ Using the event listener, linear layout, relative layout, grid layout,

and dialog builders

 ➤ Implementing multiple activities

 ➤ Using menu items

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118380096 on the Download Code tab. The code is in the Chapter 4 download
and individually named according to the names throughout the chapter.

This chapter introduces application development in Android platforms for Java
programmers. The chapter focuses specifi cally on how to develop, test, and distribute
Android applications, mainly by incorporating commonly used Android APIs. The
development environment is mainly the preferred IDE, which is Eclipse in this case; and
the testing environments are emulators and mobile devices. This content is certainly
suffi cient to help Java programmers develop Android applications. Moderately skilled

4

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://wrox.com
http://www.it-ebooks.info/

78 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

programmers can implement and run Android applications on both emulators and actual mobile
phones after thoroughly studying and internalizing all the content here. The information in this
chapter also provides suffi cient background to understand the remaining chapters of the book and
also to develop NFC-enabled Android applications afterward. Users who want to become more
experienced Android programmers and pursue a proper career should use additional resources for
that purpose after reading this book.

To understand this content, you must be able to create moderate-sized Java programs; however, no
Android knowledge is required. If you do not have any experience on Android, you should start
from Chapter 3, “Getting Started with Android”; there, you learn how to install the Android SDK
and learn basic information with respect to being able to create and run Android projects before
starting this chapter. If you have suffi cient Android programming skills, you can skip this chapter
and continue with Chapter 5, “NFC Programming: Reader/Writer Mode.”

The Android developers’ portal, http://developer.android.com/, is extremely useful; it
is currently the resource most commonly used by Android developers around the world. We
recommend that you navigate through this portal to get additional resources and up-to-date
information.

The Android application development structure is based on the Java programming language.
Therefore, we assume that you have the required Java knowledge. If you need to review, check out
http://docs.oracle.com/javase/tutorial/java/, Oracle’s site tutorial, for starters.

CREATING YOUR FIRST ANDROID APPLICATION

Before you can create an Android application, you fi rst need to set up the environment as described
in Chapter 3. The next step is to create an Android project. To do this, in Eclipse, select File ➪
New ➪ Project ➪ Android Application Project (see Figure 4-1). This opens a New Android Project
Wizard. If you are using an existing sample or an existing source, select the related item.

To continue creating your new project, enter the
following required information (see Figure 4-2):

 ➤ Application Name: This is the
name that you want to assign to the
application. When you install the
application to the actual mobile device
after development, this name appears
in menu icons, application shortcuts,
the title bar, and so on. For this
example, we used Hello World for the
application’s name.

 ➤ Project Name: This is the name that
you want to assign to your project.

 ➤ Package Name: Each Android package
should have a unique name throughout
the world. Therefore, you should be
sure to follow this naming rule. The FIGURE 4-1

www.it-ebooks.info

http://developer.android.com/
http://docs.oracle.com/javase/tutorial/java/
http://www.it-ebooks.info/

Creating Your First Android Application ❘ 79

name generally consists of the publisher’s domain name plus the application-specifi c name.
In the Hello World example, we named the package com.nfclab.helloworld.

 ➤ Minimum Required SDK: This is the minimum version of the SDK that the application
expects to execute. It generally should be the API level that you checked in the Build Target
screen. We checked API level 3 in the Build Target screen, so the Minimum SDK for this
application should be 3.

 ➤ Target SDK: In the Target SDK section, choose the Android platform and API level
for which you are developing the project. Also, remember that because of the upward
compatibility of Android applications, devices that use higher-level APIs can use your
application, but it is not available for devices using lower-level APIs. Therefore, it is always
safer to choose the earliest version that your application can run. For the Hello World
application here, choose API level 3 because this API level is enough to run the application.
If you have not installed API level 3 yet, you need to either install it or select a higher
API level.

 ➤ Compile With: This is the platform version that the ADT will compile your application
with. You will be able to use the features that this version provides.

 ➤ Theme: This part is the user interface style to apply for your application.

FIGURE 4-2

After you input the required data and click Next, you need to input the following data to confi gure
your project (see Figure 4-3):

 ➤ Create custom launcher icon: If you wish to create a custom launcher icon for your
application, you need to check the corresponding checkbox.

 ➤ Create activity: If you wish to create a new activity in your application, you need to check
the corresponding checkbox.

www.it-ebooks.info

http://www.it-ebooks.info/

80 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

 ➤ Create Project in Workspace:
Workspace is the folder in which your
project information and all related data
are saved. You may either choose the
default workspace location or any other
specifi c folder into which you want to
save project data.

When you click Next, if you checked the
“Create custom launcher icon” checkbox,
you need to select an image fi le for your
application’s launcher icon. If you checked
the “Create activity” checkbox, you will see
a Create Activity dialog box as shown in
Figure 4-4. In this screen you need to select
an activity type. The selected activity type
will automatically set up your activity’s screen
layout, add code to the activity to handle layout
objects, and so on. For the fi rst project, select BlankActivity as shown in Figure 4-4.

When you select the BlankActivity type and click Next, the name of the activity and layout are asked.
As described in Chapter 3, an activity is the user interface that the user interacts with. It is actually the
most basic component that the programmer uses for each project. Each project should have at least
one activity that interacts with the user as the application is invoked. The initial activity may further
call other activities, depending on the complexity and the design parameters of the application. An
activity is a Java class, so you have to name it using the same Java conventions you use for Java class
names. You may also specify a custom layout for the activity from the drop-down list as shown in
Figure 4-5. When you input the required data and click Finish, your project will be created.

FIGURE 4-4 FIGURE 4-5

FIGURE 4-3

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First Android Application ❘ 81

Components of the Project

After you’ve created an Android project, Eclipse automatically adds the
necessary components for that specifi c project and displays them in
the Package Explorer on the left side of the window (see Figure 4-6).

The project components include the following:

 ➤ The source folder, src, consists of all the Java classes —
activities, for example — created by the user.

 ➤ The gen folder holds the automatically generated Java fi les.
Eclipse creates these fi les, so you should not modify them.

 ➤ Android 2.3.3 is the Target SDK version selected for the
project.

 ➤ The assets folder is the place where you can put some fi les and
later retrieve them for the application.

 ➤ The res folder contains the resources, which include drawable, layout, and values folders
by default:

 ➤ The drawable folders store the image fi les depending on the density of the screens.

 ➤ The layout folder contains the layouts that the project will use. When an Android
project is created, a main.xml fi le is automatically generated for the layout of the
activity. When you want to defi ne additional screens for different reasons, you
should defi ne additional fi les in the same folder. Names of the layouts can consist
of only lowercase letters. When you want to defi ne new layout fi les, right-click
Layout and then click New ➪ Other ➪ Android ➪ Android XML Layout File. Using
different layouts in different activities is described later.

 ➤ The values folder holds the variable names and their value pairs, such as strings
and colors. When the project is created, the strings.xml fi le is automatically
created with two parameters. You can add all required values you want in the same
fi le. All layout fi les can use the same fi le, strings.xml, and therefore no additional
value fi le is necessary afterward.

 ➤ AndroidManifest.xml, as described in Chapter 3, consists of important
information about the current project. If the application makes any attempt to
access the Internet, the related code (intent fi lter) must be inserted into the manifest
fi le fi rst. There is a similar requirement for making calls. The XML fi le needs to
declare all components of the project that are activities, services, content providers,
and broadcast receivers. Also, it needs to contain the required permissions for the
application. As you defi ne activity class fi les, do not forget to register any activity
into the manifest fi le.

Figure 4-7 shows the Android Manifest fi le. To open this fi le, simply double-click
AndroidManifest.xml in Package Explorer. The screen shows the general manifest attributes, such
as the package name, version code, and version name.

FIGURE 4-6

www.it-ebooks.info

http://www.it-ebooks.info/

82 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Version code contains important data to keep track of version numbers of applications to inform
users about new versions. This capability is especially important for the applications uploaded to
Google Play. For each version of an application, you should increment this number so that users
are able to update the application to the next version from Google Play. When you fi rst develop
an application, its version code is initially set to 1. If you upgrade that application, the version
number is incremented before it is made available so that the Android system understands that
the application is upgraded by looking at the version number. When a new version of an existing
application is available, Android either
downloads it automatically or informs users
to download the new version, based on user
preference. The version name is a string that
gives information only about the version.

On the bottom of the window, you can
see additional tabs for the manifest fi le,
such as Application, Permissions,
and AndroidManifest.xml. The
AndroidManifest.xml tab at the bottom
of the window displays the XML code
for the manifest fi le. When you open the
AndroidManifest.xml tab, you see the
XML source for the fi le (see Figure 4-8). We
generally use this tab to edit the manifest fi le.

FIGURE 4-7

FIGURE 4-8

www.it-ebooks.info

http://www.it-ebooks.info/

Running Applications on Your Mobile Phone ❘ 83

In this fi le, the package attribute defi nes the base package name for the following Java elements.
You can see that the version code and version name are also set in the android:versionCode and
android:versionName attributes, respectively.

As you can see in Figure 4-8, the uses-sdk part of the AndroidManifest.xml fi le indicates the
minimal version of the SDK that is valid for your application. The <application> tag provides the
characteristics of your application:

 ➤ The android:icon element describes the icon of the application that is displayed in the
Android applications menu. The @drawable/ic_launcher value refers to the ic_launcher
.png fi le in the res/drawable folder.

 ➤ The android:label element describes the application name. The @string/app_name value
refers to the app_name value in the resource fi les.

 ➤ The <activity> tag defi nes an Activity that points to the HelloWorldActivity class.
An intent fi lter is registered for this class. This intent fi lter defi nes that this activity is started
when the application starts with the action android:name="android.intent.action
.MAIN". Also, the category category android:name="android.intent.category
.LAUNCHER" is defi ned for this intent fi lter; this category
indicates that this application is added to the application
directory on the Android device.

Running the Project

To run the project, click the Run button on the upper-left of the Eclipse
window. When you run the project, Eclipse launches the emulator fi rst
and then the application, as described in previous sections. If you already
have created an AVD as described previously, the application runs
without asking any questions. However, if you have not created one yet,
Eclipse requests that you create a new AVD. Refer to Chapter 3 to learn
how to create a new AVD.

After running your application successfully, you should see output like
that shown in Figure 4-9.

RUNNING APPLICATIONS ON YOUR MOBILE PHONE

There are two major options to test an application on your actual mobile phone. For the fi rst
option, while in the Eclipse environment, you may connect your mobile phone to a computer via
a USB cable and immediately test it by running the application on the mobile device while it is still
connected to the computer via the cable. The other option is manual installation by transferring
the .apk fi le to the mobile and running the application inside the mobile.

Currently, the emulator does not simulate NFC, so you should run your NFC applications in your
mobile device. For this reason, this step is important in NFC application development.

FIGURE 4-9

www.it-ebooks.info

http://www.it-ebooks.info/

84 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Running Applications Instantly

To run NFC-based Android applications instantly on your mobile phone, follow these steps:

 1. Add the following code inside the <application> tag:

<application android:debuggable="true" >

 2. By default, your Android device does not allow the installation of applications from external
sources. Allow installation by applying the following settings in the device. Go to Settings ➪
Applications (for Android 4.0, go to Settings ➪ Security) and enable Unknown Sources.

 3. Turn on USB Debugging in your device. To do so, go to Settings ➪ Applications ➪
Development (for Android 4.0, go to Settings ➪ Developer Options) and enable USB
Debugging. Additionally, you need to enable the Stay Awake option to disable screen
sleeping.

 4. Set up your system to detect the mobile device as follows. If you are developing with Mac
OS X, this step is not needed. If your development environment is Windows, install the USB
driver of the mobile device to your computer to use the USB cable for data transfer.
If your mobile phone is Nexus One or Nexus S, you can visit http://developer.android
.com/sdk/win-usb.html to download the USB driver. Otherwise, you can visit http://
developer.android.com/sdk/oem-usb.html. Moreover, if your development environment
is Linux, create a fi le named /etc/udev/rules.d/51-android.rules and then add the
following line to this fi le:

SUBSYSTEM=="usb", ATTR{idVendor}==" 04E8", MODE="0666", GROUP="plugdev"

NOTE The vendor ID given in this example is for Samsung. For other vendors’
IDs, refer to http://developer.android.com/guide/developing/device
.html#VendorIds.

After completing these steps, you are ready to run your application on the actual mobile device.
For this purpose, select Run ➪ Run Confi gurations. In the Target tab, select Always Prompt to Pick
Device under Deployment Target Selection Mode and then click Run. The Android Device Chooser
menu opens, and you should see your connected Android mobile device in the menu. Select your
device and then click the OK button. Then the application is installed to your device and run.

NOTE For more information on using hardware devices, refer to http://developer
.android.com/guide/developing/device.html.

Running Applications by Manual Installation

The second option to test an application on the mobile device is to transfer the .apk fi le to the
mobile device, install it, and execute it on the mobile as explained previously. Follow these steps to
run your application on the mobile device after transferring the .apk fi le:

www.it-ebooks.info

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/oem-usb.html
http://developer.android.com/sdk/oem-usb.html
http://developer.android.com/guide/developing/device.html#VendorIds
http://developer.android.com/guide/developing/device.html#VendorIds
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html
http://www.it-ebooks.info/

Distributing Android Applications ❘ 85

 1. By default, your Android device does not allow the installation of applications from external
sources. Allow the installation by going to Settings ➪ Applications (for Android 4.0, go to
Settings ➪ Security and enable Unknown Sources).

 2. When you run your project in Eclipse, the required .apk fi le is created in the project’s
workspace’s bin folder. Copy and paste the .apk fi le to your mobile phone storage.

 3. Locate the fi le using a fi le manager, double-click the .apk fi le, and install it.

DISTRIBUTING ANDROID APPLICATIONS

To distribute your application to users, you need to fi rst create a release-ready package that users
can install and run on their Android-powered devices. The package includes the same components
as the debug .apk fi le (for example, compiled source code, resources, manifest fi le). This package
is built using the same build tools; however, it is signed with your own certifi cate and optimized
with the zipalign tool. If you build your application on Eclipse with ADT plugging and an Ant build
script, the signing and optimization processes are simple. You can use the Eclipse Export Wizard to
compile, sign, and optimize the application.

This section summarizes how to distribute your Android applications to users and provides useful
guidelines.

1. Gathering Materials and Resources

To release your application, you need to obtain the following supporting materials and resources for
the application:

 ➤ Cryptographic keys: The application should be digitally signed with a certifi cate by the
application’s developer. It is important to establish trust between applications and identify
the author of the application.

 ➤ Application icon: The application icon should meet the recommended icon guidelines. This
icon helps users identify the application on the device’s Home screen and in the Launcher
window, as well as on Google Play.

 ➤ End-user license agreement: This agreement helps to protect personal, organizational, and
intellectual property.

 ➤ Miscellaneous materials: You also need to prepare promotional and marketing materials,
text, or screenshots to distribute the application effectively.

2. Confi guring the Application for Release

After collecting all required materials, you can start to confi gure the application for release. You
may need to perform some confi gurations on the source code, resource fi les, and application

www.it-ebooks.info

http://www.it-ebooks.info/

86 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

manifest fi le. Some of the following confi gurations are optional, and some of them may have already
been performed during the development process:

 ➤ Choose a nice package name: The package name cannot be changed after distribution, even
for new versions. Therefore, you should select the package name carefully.

 ➤ Turn off logging and debugging: You need to deactivate logging by removing calls to
log methods in the source fi les, and you also need to disable debugging by removing
android:debuggable attribute from the <application> tag or by setting the
android:debuggable attribute to false in the manifest fi le before building the
application for release.

 ➤ Clean up project directories: The project should conform to the directory structure
described for Android projects. Doing this is essential because leaving stray or orphaned
fi les in the project may lead to the application creating problems during execution or
behaving unpredictably.

 ➤ Review and update manifest settings: You should ensure that some manifest items are
set correctly — particularly the <uses-permission> element, android:icon and
android:label attributes in the <application> element, and android:versionCode and
android:versionName attributes. You should also set several additional manifest elements
before releasing the application on Google Play, such as android:minSdkVersion and
android:targetSdkVersion attributes in the <uses-sdk> element.

 ➤ Address compatibility issues: Android provides several tools to make the application
compatible with various devices. You can:

 ➤ Add support for multiple screen confi gurations

 ➤ Optimize your application for Android 3.0 devices

 ➤ Consider using the Support Library

 ➤ Update URLs for servers and services: If the application accesses remote servers and
services, you should use a production URL or path for the server or service.

 ➤ Implement licensing for Google Play release: You should also consider adding support
for Google Play Licensing, especially for paid applications. This is actually an optional
confi guration. Licensing enables application developers to control access to the application
based on whether the user has purchased it.

3. Compiling and Signing with Eclipse ADT

As mentioned previously, you can use the Eclipse Export Wizard to export a signed .apk fi le. The
Export Wizard performs all the interaction with the Keytool and Jarsigner, and allows developers
to sign the package using a GUI instead of performing the manual procedures to compile, sign,
and align. After compiling and signing the package, the wizard performs package alignment with
zipalign. At this point, your application is ready for distribution. To create a signed and aligned
.apk in Eclipse, select the project in Package Explorer and then select File ➪ Export. Then open the
Android folder and select Export Android Application ➪ Next. The Export Android Application
wizard starts.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Hello World ❘ 87

4. Publishing on Google Play

Google Play is a robust publishing platform that helps you publish, sell, and distribute Android
applications throughout the world. Before publishing an application, you need to register as a
Google Play developer. You need to create a developer profi le, pay a registration fee, and agree to
the Google Play Developer Distribution Agreement. After registration, you can access the Google
Play Developer Console. This console enables you to upload applications, confi gure publishing
options, and more. If you want to sell your applications, you also need to set up a Google Checkout
Merchant account.

NOTE For more information on Android application publishing, refer to
http://developer.android.com/guide/publishing/publishing.html.

UNDERSTANDING HELLO WORLD

The fi rst project, Hello World, consists of only one Java class, HelloWorldActivity. Listing 4-1
shows the code for this class, which is also the main activity of the project.

LISTING 4-1: Hello World Activity (Hello World Project\src\com\nfclab\helloworld\

HelloWorldActivity.java)

package com.nfclab.helloworld;
import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class HelloWorldActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

The HelloWorldActivity class in this example extends the Activity. The onCreate method of
the activity is invoked as the fi rst statement. The setContentView method enables you to set the
activity content from a layout resource, which has already been defi ned. R.layout
.main refers to the main.xml resource fi le, which resides in the res/layout folder. Morever, the
onCreateOptionsMenu method is also defi ned automatically in the code, which gets the menu

www.it-ebooks.info

http://developer.android.com/guide/publishing/publishing.html
http://www.it-ebooks.info/

88 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

items from the res/menu/main.xml fi le and displays in the settings menu of the application. The
layout and menu fi les are created automatically as the project is generated. The resources for an
Android project, such as layout fi les, images, and so on, should be stored in the res folder of that
project. Listing 4-2 gives the main.xml layout fi le.

LISTING 4-2: Hello World Layout Resource (Hello World Project\res\layout\main.xml)

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".HelloWorldActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world" />

</RelativeLayout>

Figure 4-10 illustrates how layouts are
organized. ViewGroup includes different
views and ViewGroups. The ViewGroup class
provides a base for subclasses called layouts.
These layouts also offer different kinds of
layout architecture such as linear, tabular, and
relative. Moreover, the View object stores layout
parameters and content for a specifi c area of
the project.

In the example, ViewGroup is defi ned
using RelativeLayout, which orients the
positions of each element in relation to each
other. Other commonly used ViewGroups
are LinearLayout, AbsoluteLayout,
AdapterView, and GridLayout.

In the example, the android:layout_width and android:layout_height attributes specify the
width and height of the view. The match_parent constant value means that the view can be as big
as its parent, minus the parent’s padding, if any. Another available constant value is wrap_content,
which means that the view can be just large enough to fi t its own internal content, taking its own
padding into account.

Inside the ViewGroup, a TextView is created whose purpose is to display some text to the user. You
can see that there are new elements in the tag. android:layout_centerHorizontal centers the
view horizontally with its parent. On the other hand, android:layout_centerVertical centers
the view vertically. The last element android:text describes the default text of the TextView. It

FIGURE 4-10

ViewGroup

ViewGroup View

ViewViewView

View

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

Understanding Hello World ❘ 89

is set to @string/hello_world, which indicates that the value is the hello_world constant’s value,
which is defi ned in res/values/strings.xml fi le. Instead of defi ning a constant, you can defi ne the
string for TextView in the XML fi le:

android:text="Hello world!"

Constants are stored in an XML fi le in the res/values folder of the project, but the name of the
XML fi le does not matter. By default, constants are stored in the strings.xml fi le in the fi rst
example, which is shown in Listing 4-3.

LISTING 4-3: Hello World Strings Resource (Hello World Project\res\values\strings.xml)

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">Hello World</string>
 <string name="hello_world">Hello world!</string>
 <string name="menu_settings">Settings</string>
</resources>

As you can see from Listing 4-3, ADT automatically defi nes three strings in the fi le when creating
the project. The hello_world variable is further used in the main.xml layout fi le, whereas the
app_name variable is used in the manifest fi le and menu_settings is used in the res/values/main
.xml to give a name to the menu item.

To access the user interface elements in the code such as hello and app_name, add identifi er
attributes in the layout fi le. The following line adds the ID of myTextView to the TextView:

android:id="@+id/myTextView"

You can then access it in the code by using the findViewById method:

TextView myTextView=(TextView) findViewById(R.id.myTextView);

You have two options to create layouts. The fi rst one is to defi ne them in XML fi les, and the other
option is to defi ne them in the program code.

An example to create layouts inside the code is shown here. As you can see, the setContentView
method is not called to set the layout to an XML fi le in this case; LinearLayout and TextView are
created instead. A TextView object is then added to the LinearLayout and is set as the content:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.setOrientation(LinearLayout.VERTICAL);
 TextView myView = new TextView(this);
 myView.setText("Hello World!");
 linearLayout.addView(myView);
 setContentView(linearLayout);
}

Using XML fi les is a better approach and the preferred option to create layouts instead of using
code. Throughout the book, we create layouts in XML fi les.

www.it-ebooks.info

http://www.it-ebooks.info/

90 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

USING MULTIPLE VIEWS

You will also use multiple views in the layout fi le. In the following code snippet, three different
TextViews are created with different IDs and different default texts. Additional properties of the
TextViews, such as text size and text color are also defi ned in the code. You can discover many
other properties for a layout object online at http://developer.android.com/reference or
by adding "android:" inside the <TextView> tag in the XML fi le. Eclipse displays the available
properties for the layout object:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView
 android:id="@+id/hello1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/helloWorld1"
 android:textSize="12pt"/>
 <TextView
 android:id="@+id/hello2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/helloWorld2"
 android:textSize="10pt" />
 <TextView
 android:id="@+id/hello3"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/helloWorld3"
 android:textColor="@color/red"/>
</LinearLayout>

The layout fi le defi nes four different constants: @string/helloWorld1, @string/helloWorld2,
@string/helloWorld3, and @color/red. These constants should be defi ned in an XML fi le in the
res/values folder. The required code snippet is shown here:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Hello World</string>
 <string name="helloWorld1">Hello World </string>
 <string name="helloWorld2">Hello World again with smaller font</string>
 <string name="helloWorld3">Hello World again in default font,
 but in red color </string>
 <color name="red">#FF0000</color>
</resources>

ANDROID PROJECT RESOURCES

In Android projects, you should externalize your application resources such as images, colors,
and strings from your source code so that you can manage them independently. Notice that the
Model-View-Controller (MVC) concept also is satisfi ed here. Moreover, it is important to provide
alternative resources for specifi c device confi gurations.

www.it-ebooks.info

http://developer.android.com/reference
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Android Project Resources ❘ 91

After externalizing application resources, you can access them using resource IDs that are generated
in the project’s R class. Table 4-1 summarizes the resource directories supported inside the project
and provides alternative resources for specifi c device confi gurations.

TABLE 4-1: Resource Directories Supported Inside the Project res/ Directory

DIRECTORY RESOURCE TYPE

animator/ XML fi les that defi ne property animations.

anim/ XML fi les that defi ne tween animations.

color/ XML fi les that defi ne a state list of colors.

drawable/ XML fi les or Bitmap fi les such as .png, .jpg, .gif that are compiled into

the drawable subtypes (that is, bitmap fi les, nine patches, shapes, animation

drawables, state lists, and other drawables).

layout/ XML fi les that defi ne a user interface layout.

menu/ XML fi les that defi ne application menus that are described in the “Using Menu

Items” section later in this chapter.

raw/ A directory for saving arbitrary fi les.

values/ XML fi les that contain simple values such as strings, integers, and colors.

Files in the values/ directory describe multiple resources. For a fi le in this

directory, each child of the <resources> element defi nes a single resource.

For example, a <string> element creates an R.string resource, and a

<color> element creates an R.color resource.

xml/ Arbitrary XML fi les and confi guration fi les that can be read at run time through

Resources.getXML().

Alternative Resources

Every application needs to provide alternative resources to support specifi c device confi gurations.
For example, the application may include alternative drawable resources for different screen
resolutions as well as alternative string resources for different languages. At run time, the Android
loads the appropriate resources for the application based on these alternative resources.

To specify alternative resources for specifi c device confi gurations, you fi rst need to create a new
directory named <resources_name>-<config_qualifier> in the res folder. Here,
<resources_name> is the directory name of the corresponding default resources, and <qualifier>
is a name that specifi es an individual confi guration for which these resources are to be used. You
can add more than one <qualifier>. Then you should save the respective alternative resources
in the newly created directory. You need to name the resource fi les exactly the same as the default
resource fi les.

www.it-ebooks.info

http://www.it-ebooks.info/

92 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

NOTE For more information on providing project resources, refer to http://
developer.android.com/guide/topics/resources/providing-resources
.html.

Accessing Resources

After creating the related resource fi les, you can use them either in XML fi les or in the code. You
may refer to the resources in the code to place them in the layout or make modifi cations to them. To
use the resources in the code, refer to them as follows:

R.<resource_type>.<resource_name>

Following are some examples for accessing resources in your code:

 ➤ R.string.table_title, which calls a string value from the resource fi le

 ➤ R.drawable.background_image, which calls a drawable image

To use the resources in XML fi les, refer to them through @<resource_type>/<resource_name>.

Here are some examples for accessing resources in XML fi les:

 ➤ @color/blue, which calls a color value from the resource fi le

 ➤ @string/hello, which calls a string value from the resource fi le

USING AN EVENT LISTENER

In the following example, you build a miles-to-kilometers converter,
which converts the inputted value based on the selected converter type.
The application is shown in Figure 4-11.

Layout

The layout fi le for this example has two radio buttons to select the
converter, an EditText to input a value, a Button to submit the value,
and a TextView to display the result. The layout XML fi le for the
application is shown in Listing 4-4.

LISTING 4-4: Miles-to-Kilometers Converter Layout Resource (MileAndMeterConverter\res\

layout\main.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioGroup

FIGURE 4-11

www.it-ebooks.info

http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Using an Event Listener ❘ 93

 android:id="@+id/radioGroup1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 >
 <RadioButton
 android:id="@+id/radio0"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/meter"/>
 <RadioButton
 android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/mile"
 />
</RadioGroup>

<EditText
 android:id="@+id/inputField"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:inputType="numberDecimal|numberSigned" >
 <requestFocus/>
</EditText>

<Button
 android:id="@+id/convertButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onClickHandler"
 android:text="@string/convert"
/>

<TextView
 android:id="@+id/outputText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="#cc0000"
 android:textSize="9pt"
/>

</LinearLayout>

NOTE The IDs in the XML fi le are further used in codes to retrieve the contents
of the elements and change their contents if needed.

As you can see from the layout fi le, the screen is designed using LinearLayout. Two RadioButtons
are defi ned inside a RadioGroup. Defi ning the radio buttons in a group ensures that when one radio
button is checked, all other radio buttons are automatically unchecked.

www.it-ebooks.info

http://www.it-ebooks.info/

94 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Following the buttons, the EditText element is created; this element enables users to input values
from a text box. In addition, the <requestFocus/> element gives initial focus to the EditText
element on the screen. If you want users to input only numeric values, add the following line inside
the EditText element:

android:inputType="numberDecimal|numberSigned"

The Convert button implements an event handler using android:onClick. So, when the button is
clicked, the onClickHandler method is invoked; it is defi ned as a value in the onClick attribute in
the layout fi le. Finally, a TextView element is defi ned to display the results on the screen.

NOTE The android:onClick attribute is added in API level 4 (Android 1.6).
Thus, you should create your project with at least API level 4.

Resources

Resources are created in an XML fi le in the res/values folder. Listing 4-5 shows the implemented
resources. Note that these resources are used in the layout fi le.

LISTING 4-5: Miles-to-Kilometers Converter Strings Resource (MileAndMeterConverter\res\

values\strings.xml)

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Mile And Meter Converter</string>
 <string name="mile">Mile to Kilometer</string>
 <string name="meter">Kilometer to Mile</string>
 <string name="convert">Convert</string>
</resources>

Code

RadioButton, EditText, and TextView objects are created inside the main class to retrieve the
contents of the views when a user submits the form:

public class MileAndMeterConverter extends Activity {
 private RadioButton meterToMileButton;
 private RadioButton mileToMeterButton;
 private EditText input;
 private TextView output;

Inside the onCreate method, the content is set to the main.xml fi le. The objects, which are
created in the main class, are initialized with the layout views. You retrieve the contents of the views
later in the code by using methods such as getText() and isChecked(). For example, the input
from the user is identifi ed as R.id.inputField, and you get this value and save it as input for ease
of use:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Relative Layout ❘ 95

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 meterToMileButton = (RadioButton) findViewById(R.id.radio0);
 mileToMeterButton = (RadioButton) findViewById(R.id.radio1);
 input = (EditText) findViewById(R.id.inputField);
 output = (TextView) findViewById(R.id.outputText);
}

The onClickHandler method is invoked when the user presses the Convert button (see following
code). The current view is then passed to the method as a parameter. The view.getId() method
returns the current view’s identifi er. The ID of the current view is checked if the Convert button is
pressed. Then the length of the input value for EditText is checked. If the length is 0, the application
requests the user to enter a new number; otherwise, the checked RadioButton is compared to
determine the convert operation that the user requested. If the Kilometer To Mile box is checked,
the result is obtained from the meterToMile method. Otherwise, the result is obtained from the
mileToMeter method. The result is displayed by setting the value of the TextView with the setText
method:

public void onClickHandler(View view) {
 if(view.getId() == R.id.convertButton){
 if (input.getText().length() == 0) {
 output.setText("Please enter a number");
 return;
 }
 float inputValue = Float.parseFloat(input.getText().toString());
 if (meterToMileButton.isChecked()) {
 output.setText(inputValue + " kilometers equal to " +
 String.format("%.2f", meterToMile(inputValue)) + " miles");
 } else if(mileToMeterButton.isChecked()){
 output.setText(inputValue+" miles equal to " +
 String.format("%.2f", mileToMeter(inputValue)) + " kilometers");
 }
 }
}

The meterToMile and mileToMeter methods simply get the parameter (kilometer or mile) and
return the result of the conversion, as shown here:

private float meterToMile(float kilometer) {
 return (float) (kilometer/1.609);
}

private float mileToMeter(float mile) {
 return (float) (mile*1.609);
}

USING RELATIVE LAYOUT

In this example, the previous example is modifi ed to create a relative layout. In relative layouts, the
positions of the views are defi ned in relation to each other and are placed on the screen accordingly.
The screen view of this example is the same as the previous example (refer to Figure 4-11), and the

www.it-ebooks.info

http://www.it-ebooks.info/

96 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

layout fi le is shown in Listing 4-6. Hence, both layout options display the same visual effect, except
that different layout codes are used in the background layout code.

LISTING 4-6: RelativeLayout Layout Resource (MileAndMeterConverter_Relative\res\layout|main.xml)

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<RadioGroup
 android:id="@+id/radioGroup1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
>
 <RadioButton
 android:id="@+id/radio0"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/meter"
 />
 <RadioButton
 android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/mile"
 />
</RadioGroup>

<EditText
 android:id="@+id/inputField"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:inputType="numberDecimal|numberSigned"
 android:layout_below="@+id/radioGroup1" >
 <requestFocus/>
</EditText>

<Button
 android:id="@+id/convertButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/convert"
 android:onClick="onClickHandler"
 android:layout_below="@+id/inputField"
/>

<TextView
 android:id="@+id/outputText"
 android:textSize="9pt"

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Using Dialog Builders ❘ 97

 android:textColor="#cc0000"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/convertButton"
/>

</RelativeLayout>

As you can see in the listing, a relative layout is defi ned with the <RelativeLayout> tag. The most
signifi cant difference for this example is the android:layout_below attributes, which position the
top edge of the view below the given view. For example, EditText is positioned below the radio
group with an ID of radioGroup1 by defi ning its layout as:

android:layout_below="@+id/radioGroup1"

NOTE More attributes are available for relative layouts. For more informa-
tion, refer to http://developer.android.com/reference/android/widget/
RelativeLayout.html.

Similar to android:layout_below, android:layout_above positions the bottom edge of the view
above the given view. Both android:layout_toRightOf and android:layout_toLeftOf work in
a similar way and likewise position the view’s left or right edge to the right or left of the given view.

USING DIALOG BUILDERS

Dialogs are the small windows that appear in front of an activity and gain focus for user input.
In this section, the example given in the “Using Relative Layout” section is modifi ed to provide a
better-organized user interface using an additional Exit option (see Figure 4-12) and an alert dialog
box (see Figure 4-13).

FIGURE 4-12 FIGURE 4-13

www.it-ebooks.info

http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://www.it-ebooks.info/

98 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Layout

To provide a better user interface, you edit the layout fi le of the example given in the “Using Relative
Layout” section. Everything remains the same except the Convert button. Additionally, you set the
Cancel button to provide an option for the user to quit the application.

You modify the Convert button and set layout_alignParentRight to true, which makes the right
edge of the button match with the right edge of the EditText:

<Button
 android:id="@+id/convertButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/convert"
 android:onClick="onClickHandler"
 android:layout_below="@+id/inputField"
 android:layout_alignParentRight="true"
/>

An additional Cancel button is added afterward. Also, an onClick attribute is added that invokes
the onClickHandler method when the Cancel button is pressed. You align this button to the left
of the Convert button by setting the layout_toLeftOf attribute. You also align the top of this
button the same as the Convert button by setting the layout_alignTop attribute. These two
attributes enable you to place these buttons beside each other:

<Button
 android:id="@+id/cancelButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/exit"
 android:onClick="onClickHandler"
 android:layout_toLeftOf="@+id/convertButton"
 android:layout_alignTop="@+id/convertButton"
/>

Resources

In the resource fi le, a string resource is added, which is used for the Exit button’s text attribute in
the layout fi le:

<string name="exit">Exit</string>

Code

In the source code, you need to add the required codes to handle pressing the Cancel button.
When the Cancel button is pressed, the application opens an alert dialog asking whether the user
actually wants to exit the application (see Figure 4-13). To perform this action, you modify the
onClickHandler method, because the Cancel button’s onClick attribute also invokes this method
in the same way as it does for the Convert button:

public void onClickHandler(View view) {
 if(view.getId() == R.id.cancelButton){
 AlertDialog.Builder newAlert = new AlertDialog.Builder(this);
 newAlert.setTitle("Exiting Application");

www.it-ebooks.info

http://www.it-ebooks.info/

Using Dialog Builders ❘ 99

 newAlert.setMessage("Are you sure?");
 newAlert.setPositiveButton("OK", new DialogInterface.OnClickListener(){
 public void onClick(DialogInterface dialog, int which) {
 MileandMeterConverterwithCancel.this.finish();
 }
 });

 newAlert.setNegativeButton("Cancel", new
 DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 dialog.cancel();
 }
 });

 newAlert.show();
 } else if(view.getId()==R.id.convertButton){
 if (input.getText().length() == 0) {
 output.setText("");
 Toast.makeText(this,
 "Please enter a number",Toast.LENGTH_LONG).show();
 return;
 }
 float inputValue = Float.parseFloat(input.getText().toString());
 if (meterToMileButton.isChecked()) {
 output.setText(inputValue + " kilometers equal to " +
 String.format("%.2f", meterToMile(inputValue)) + " miles");
 } else if(mileToMeterButton.isChecked()) {
 output.setText(inputValue + " miles equal to " +
 String.format("%.2f", mileToMeter(inputValue)) + " kilometers");
 }
 }
}

Because click events of two buttons, namely OK and Cancel, are handled in the same event handler,
the same event handler is invoked when either of the two buttons is pressed. Hence, you should
understand which button is clicked to perform required actions in the event handler method.
When the event handler is invoked, the reference to the View component that is clicked is sent to
the method as a parameter. You actually compare that reference with the two button components,
namely OK and Cancel, to understand which button is pressed. More specifi cally, you compare
the view.getId() method with R.id.cancelButton because the ID of the Cancel button is
cancelButton. Then an AlertDialog named newAlert is built with title text, message text, and
two buttons. One of the buttons is the PositiveButton, which fi nishes the activity, and the other
one is the NegativeButton, which cancels the exit process. Also, listeners are added to these
buttons to get the user input. Finally, the alert is shown using the newAlert.show() method.

After performing the Cancel button operation, you check whether the pressed button is the Convert
button. The remainder of the code operates in the same way.

www.it-ebooks.info

http://www.it-ebooks.info/

100 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

To provide a better user interface, you may add a Toast to the warning message. A Toast is a view
that contains a small message for the user and shows it for some period of time. To display a Toast,
modify the related code as follows:

if (input.getText().length() == 0) {
 output.setText("");
 Toast.makeText(this, "Please enter a number",
 Toast.LENGTH_LONG).show();
 return;
}

USING GRID LAYOUT

In this section you learn how to use the grid layout. GridLayout is a layout option that places
elements in a rectangular grid and has been available since API level 14. A number of available
rows and columns are defi ned initially, and the coordinate of the item’s cell is explicitly given in
the layout fi le to place that component in the desired cell. The width of each column is resized
automatically to encapsulate all items in that column. Therefore, inserting a wider component than
the previous components in that column automatically increases the width of that column. You
can use columnSpan to enable one single component to occupy more than one cell in the same row.
Remember that in LinearLayout there is no width-sizing problem because all items are placed one
after the other in one row. In GridLayout, columnSpan may be required to adjust the items. When
compared to LinearLayout, GridLayout requires more effort to handle the positions, but it also is
more fl exible. Indexes of rows and columns start with 0. You can leave any cell empty, so you do not
need to fi ll all cells in the grid.

Here is the good news from Android that follows the MVC (Model-View-Controller) concept: you
need only the View part, the layout XML fi le, to change the display. Because the M and C parts are
the same, you do not even open the related fi les.

Consequently, you can modify the previous example’s layout XML fi le
to see how to use the grid layout. The application is shown in
Figure 4-14. Because GridLayout was introduced starting in API level 14,
you should also change the API level of the application and set it to an
API level of 14 or higher because the application won’t work otherwise.

The layout fi le’s source is given in Listing 4-7. Inside the GridLayout
element are some attributes that were not used previously. The
android:alignmentMode element is set to alignBounds so that the
component is aligned between the edges of the view. The default value is
alignMargins, which sets the alignment between the outer boundaries
of a view. The android:rowCount and android:columnCount attributes
defi ne the number of available rows and columns in the grid. The
indexes of the components should be {from 0 to rowcount-1} and {from
0 to columncount-1}, respectively. If the boundaries are exceeded, the
application does not run. Also note that the index starts from 0, which
means that four indices represent the indices 0, 1, 2, and 3.

FIGURE 4-14

www.it-ebooks.info

http://www.it-ebooks.info/

Using Grid Layout ❘ 101

LISTING 4-7: GridLayout Layout Resource (MileAndMeterConverter_Grid\res\layout\main.xml)

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:alignmentMode="alignBounds"
 android:rowCount="4"
 android:columnCount="3"
>

<RadioGroup
 android:id="@+id/radioGroup1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="0"
 android:layout_column="0"
>
 <RadioButton
 android:id="@+id/radio0"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="@string/meter"
 />
 <RadioButton
 android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 and roid:text="@string/mile"
 />
</RadioGroup>

<EditText
 android:id="@+id/inputField"
 android:layout_height="wrap_content"
 android:layout_row="1"
 android:layout_column="0"
 android:inputType="numberDecimal|numberSigned" >
 <requestFocus/>
</EditText>

<Button
 android:id="@+id/convertButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="2"
 android:layout_column="1"
 android:text="@string/convert"
 android:onClick="onClickHandler"
/>

<Button
 android:id="@+id/cancelButton"

continues

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

102 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_row="2"
 android:layout_column="2"
 android:text="@string/exit"
 android:onClick="onClickHandler"
/>

<TextView
 android:id="@+id/outputText"
 android:layout_row="3"
 android:layout_column="0"
 android:layout_columnSpan="3"
 android:textSize="9pt"
 android:textColor="#cc0000"
/>

</GridLayout>

In this example, four row and three column indices are created. After defi ning each index, you
need to add android:layout_row and android:layout_column attributes to each element. These
attributes set each element’s position between indices.

For example, a Button element with the ID convertButton is in the second index of the row and in
the fi rst index of the column. An EditText element with the ID inputField is in the fi rst index
of the row and in the zeroth index of the column.

ANDROID ACTIVITY LIFECYCLE

In an Android system, activities are managed in a stack. When an activity starts, it moves to the
front of the activity stack and becomes visible. The other running activities still run if you do not
quit them, but they stay in lower levels in the stack and thus become invisible. When you stop the
current activity, the previous activity returns to the front.

An activity mainly has four important states, which are illustrated in Figure 4-15:

 ➤ Active: An activity is active when it is at the top of the activity stack.

 ➤ Paused: An activity is paused when it is visible but another activity is at the top of the
stack with a non-full-sized or transparent window. An activity in this state still maintains
the information but can be killed when the Android OS requires memory for some other
process.

 ➤ Stopped: An activity is stopped when another activity is started and moves to the front of
the stack. An activity in this state is not visible and often may be killed when memory is
needed elsewhere.

 ➤ Destroyed: An activity is destroyed when the system asks it to fi nish its process or kills its
process. When the activity is launched, it is started from scratch.

LISTING 4-7 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android Activity Lifecycle ❘ 103

FIGURE 4-15

Activity

starts

User

navigates

back to

the

activity

onCreate()

onStart() onReStart()

onResume()

onPause()

onStop()

onDestroy()

Activity is

shut down

Other

applications

need

memory

Process is

killed

Activity is

running

The activity

comes to

the

foreground

The activity

comes to

the

foreground

Another activity

comes

in front of activity

The activity is

no longer

visible

www.it-ebooks.info

http://www.it-ebooks.info/

104 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Table 4-2 describes the methods used along with the activity lifecycle. The table includes
information on when an activity is called and which method may follow the current method.

NOTE For more information on the activity lifecycle, refer to http://developer
.android.com/reference/android/app/Activity.html.

TABLE 4-2: Methods in the Activity Lifecycle

METHOD WHEN IT IS CALLED FOLLOWED BY

onCreate() When an activity is initially created Always onStart()

onStart() When an activity is becoming

visible, which includes the time

after it is created and the time it is

coming back to the screen after

being stopped

onResume() when the activity moves to

the front of the activity stack

onStop() when the activity becomes

hidden

onRestart() When an activity is stopped and

before it is started again

Always onStart()

onResume() When an activity starts interacting

with the user

Always onPause()

onPause() When another activity starts

resuming

onResume() when the activity returns

to the front

onStop() when the activity becomes

invisible to the user

onStop() When the activity is no longer

visible

onRestart() when the activity is

coming back to interact with the user

onDestroy() when the activity exits

onDestroy() When the activity is destroyed Nothing

IMPLEMENTING MULTIPLE ACTIVITIES AND INTENTS

In this section, you create an application that consists of multiple activities. The main activity
displays a list, which consists of three options: Mile & Meter Converter, Celsius & Fahrenheit
Converter, and Foot & Yard Converter, as shown in Figure 4-16. When the application is executed,
the list is displayed. When a user selects an option from the list, the related activity comes to the
front, as shown in Figure 4-17. A total of four activities are defi ned in this example: three activities
to handle each selection and one activity to display the menu items and call the requested activity.

www.it-ebooks.info

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.it-ebooks.info/

Implementing Multiple Activities and Intents ❘ 105

Step 1: Creating the Layout File

In the main activity, you display a list of the options (refer to Figure 4-16). In the layout, the
description for the list items should be given as shown in Listing 4-8. Each list item’s text size is
16sp and padding is 10dp.

NOTE Be aware that sp stands for scale-independent pixel, and dp stands for
density-independent pixel. You can fi nd more information on dimension values
at http://developer.android.com/guide/practices/screens_support
.html

LISTING 4-8: ListView Layout Resource (MultipleActivities\res\layout\main.xml)

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16sp" >
</TextView>

Step 2: Building the ListView

In the main class fi le, you display a list to the user and also implement onClickListener to listen
to user input and react accordingly. In the onCreate method, you implement a setListAdapter
method, which automatically adds a ListView, as shown here:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(this, R.layout.main, CONVERTERS));
 ListView myList = getListView();

FIGURE 4-16 FIGURE 4-17

www.it-ebooks.info

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

106 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

 myList.setTextFilterEnabled(true);
 myList.setOnItemClickListener(this);
}

static final String[] CONVERTERS = new String[] {
 "Mile & Meter Converter",
 "Celsius & Fahrenheit Converter",
 "Foot & Yard Converter"
};

The method takes the ArrayAdapter, which is a special kind of ListAdapter that supplies data
to ListView. The ListView provides a nice user interface for displaying the list of elements one
by one, and ListAdapter supplies the required data to ListView. Thus, ArrayAdapter manages
the list items that will be placed in ListView. The ArrayAdapter constructor takes the current
application context, the resource ID for the layout fi le (R.layout.main) containing a TextView to
use for each list item, and objects to be represented in the ListView (CONVERTERS array). Despite the
fact that you have a layout fi le, you do not need the setContentView method because the layout fi le
loads the properties of each list item.

The getListView method saves the built ListView to a ListView object named myList, and then
OnItemClickListener is added via the myList.setOnItemClickListener method to get the user’s
selection on the list.

Step 3: Implementing onItemClick

When a user selects one of the items in the list, the onItemClick method is invoked automatically.
The position of the selected item in the list is sent to the onItemClick method via a parameter
named position. Using the position integer, you can determine the selected item from the list.

To start a new activity based on the user’s selection, you need to use Intents. Remember that
Intents are normally used to trigger an already-existing service available in the current device.
When the user selects Mile & Meter Converter with a position of 0, a new intent is created from
the MileToMeter class and is started using the startActivity method as shown here:

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 if(position==0){
 Intent intent = new Intent(this, MileToMeter.class);
 startActivity(intent);
 } else if(position==1){
 Intent intent = new Intent(this, CelsiusToFahrenheit.class);
 startActivity(intent);
 } else if(position==2){
 Intent intent = new Intent(this, FootToYard.class);
 startActivity(intent);
 }
}

Step 4: Editing AndroidManifest.xml

All activities defi ned in the current project must be properly defi ned in the AndroidManifest.xml fi le of
the project, as described earlier. The minimum defi nition of each additional activity should be as follows:

<activity android:name="CLASS_NAME"></activity>

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Multiple Activities and Intents ❘ 107

Since three additional activities are required for this project: MileToMeter, CelsiusToFahrenheit,
and FootToYard, you need to defi ne these activities in the manifest fi le, which is shown in Listing 4-9.

LISTING 4-9: Manifest File to Create Multiple Activities (MultipleActivities\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.multipleactivities"
 android:versionCode="1"
 android:versionName="1.0"
>

<uses-sdk android:minSdkVersion="4" />

<application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
>

<activity
 android:name=".MultipleActivities"
 android:label="@string/app_name"
>
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

<activity
 android:name="com.nfclab.multipleactivities.MileToMeter">
</activity>

<activity
 android:name="com.nfclab.multipleactivities.CelsiusToFahrenheit">
</activity>

<activity
 android:name="com.nfclab.multipleactivities.FootToYard">
</activity>

</application>
</manifest>

Step 5: Creating a New Layout

To create a new layout for another activity in your project, do the following:

 1. Right-click the layout folder of the current project in the Package Explorer and then click
New ➪ Other.

 2. Select Android XML File from the Android menu and then click Next.

 3. Name your layout fi le and then click Finish.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

108 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

You should see that the new XML fi le is added to your project’s layout folder. You add one new
layout for each activity using the same methodology defi ned previously. Alternatively, you may also
use one single layout for all three activities. The layout fi les are the same as those in the previous
example, and you can see them by downloading
the project’s source code at www.wrox.com/
remtitle.cgi?isbn=1118380096.

Step 6: Creating a New Activity

To create a new activity in your project, do the
following:

 1. Right-click your project name in Package
Explorer and then click
New ➪ Class. A new window opens (see
Figure 4-18).

 2. Give a name to the class, and be sure to
follow Java naming conventions (such as
MileToMeter).

 3. Click Browse near Superclass and
type activity in the text box (see
Figure 4-19).

 4. Select Activity-android.app from the
list and click OK.

 5. Click Finish to complete the creation of
the activity.

A new class fi le is added to your project’s src
folder. You should implement the following
classes to complete your project: MileToMeter,
CelsiusToFahrenheit, and FootToYard.

All three activities are nearly the same as
those in the previous example, so we do not
describe them again. You can see them
by downloading the project’s source
code at www.wrox.com/remtitle.
cgi?isbn=1118380096

USING MENU ITEMS

Menus are an important part and the most commonly used user interface component in many
applications. To create a consistent user experience, you should use menu APIs to present user
actions and other options in your activities. Currently, Android provides a standard XML format
to defi ne menu items for all menu types. You should defi ne a menu and all its items in an XML

FIGURE 4-18

FIGURE 4-19

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.it-ebooks.info/

Using Menu Items ❘ 109

menu resource in your activity’s code so that you can load it as a menu object in your activity. It is
benefi cial to use a menu as a resource; this way, you can more easily visualize the menu structure in
XML and separate the content for the menu from the application’s code. Furthermore, using a menu
this way enables you to perform menu confi guration easily for different platform versions, screen
sizes, and so on.

Three types of menus are defi ned in Android:

 ➤ Options Menu and Action Bar: The options menu is the primary collection of
menu items for an activity. It’s the place where you should place actions that have a
global impact on the app. Since Android 3.0, the Menu button is deprecated and the
options menu is presented by the action bar.

 ➤ Context Menu and Contextual Action Mode: A context menu is a fl oating menu
that appears when the user presses an element on the screen and holds for a second.
It provides actions that affect the selected content or context frame.

 ➤ Pop-up Menu: This type of menu displays a list of items in a vertical list that is
anchored to the view that invoked the menu. A pop-up menu is good for providing
an overfl ow of actions that relate to specifi c content or to provide options for a
second part of a command.

In the following example, you build an application with an options menu and an image displayer.
We do not describe the other menu types in this chapter, and we leave it to you to fi nd more
information. Remember that you can use http://developer.android.com/ for this purpose.

NOTE For more information on menus, refer to http://developer.android
.com/guide/topics/ui/menus.html.

The main screen of the application is shown in Figure 4-20. In the main screen, an image is
displayed. When you press the menu button, the menu is displayed with two options: Card
Emulation Mode and Peer to Peer Mode (see Figure 4-21).

FIGURE 4-20 FIGURE 4-21

www.it-ebooks.info

http://developer.android.com/
http://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/guide/topics/ui/menus.html
http://www.it-ebooks.info/

110 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

Creating a Menu XML File

To create the menu fi le, perform the following steps:

 1. Create a menu folder in your project’s res folder, if you do not already have one.

 2. Create an XML fi le in your project’s res/menu folder.

 3. Add the code shown in Listing 4-10 to your XML menu fi le.

LISTING 4-10: Layout Resource to Create Menu Items (ImageDisplayerwithMenu\res\menu\menu.xml)

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/ceMode"
 android:title="Card Emulation Mode"/>
 <item
 android:id="@+id/p2pMode"
 android:title="Peer to Peer Mode"/>
</menu>

In this listing, <menu> defi nes a menu, which is a container for menu items. A <menu> element must
be the root node for the fi le and can hold one or more <item> and <group> elements. The <item>
element creates a MenuItem, which represents a single item in a menu. This element may contain a
nested <menu> element used to create a submenu.

Another optional item named <group> is an invisible container for <item> elements. It allows you
to categorize menu items so they share properties such as active state and visibility.

In the example, android:id and android:title attributes are defi ned for menu items:

 ➤ android:id is a resource ID that’s unique to the item, which allows the application to
recognize the item when the user selects it.

 ➤ android:title is a reference to a string to use as the item’s title.

Additionally, the example contains two other important attributes: android:icon and
android:showAsAction:

 ➤ android:icon is a reference to a drawable to use as the item’s icon.

 ➤ android:showAsAction specifi es when and how this item should appear as an action item
in the action bar.

Layout

Actually, layout fi les do not need to be modifi ed based on the created menus. However, in this
example, you use ImageView to load images onto the screen and should modify the layout fi le to
enable this capability. The layout fi le contains two TextView objects and an ImageView. In Listing 4-11,
ImageView has two different attributes: android:src and android:contentDescription. The
android:src attribute sets a drawable as the content of the ImageView. It may reference another

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

Using Menu Items ❘ 111

resource or a color. In this example, it references an image fi le named cemode. You need to add
the image fi le with the extension.png, .jpg, or .gif to the res/drawable folder in the project
hierarchy. The other attribute, android:contentDescription, defi nes the text describing the
content of the view.

LISTING 4-11: Layout Resource to Create ImageView (ImageDisplayerwithMenu\res\layout\main.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical"
>

<TextView
 android:id="@+id/myHeaderText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/headerText"
 android:textStyle="italic"
 android:gravity="center"
/>

<ImageView
 android:id="@+id/NFCImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/cemode"
 android:layout_gravity="center"
 android:contentDescription="@string/imageDesc"
/>

<TextView
 android:id="@+id/myinfoText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/infoText"
 android:gravity="center"
/>

</LinearLayout>

Code

To create the menu in the source code, defi ne the onCreateOptionsMenu method as shown in
Listing 4-12. This method is called only once, when the options menu is displayed for the fi rst
time. When you use MenuInflater, the menu is instantiated, and the menu.xml fi le inside
res/menu folder is loaded. When an item from the menu is selected, onOptionsItemSelected
is called, and the method receives the selected MenuItem as a parameter. In the
onOptionsItemSelected method, the changeImage method is invoked to change the image fi le,
as shown in Listing 4-12. In the changeImage method, the selected menu item’s ID is compared

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

112 ❘ CHAPTER 4 ANDROID SOFTWARE DEVELOPMENT PRIMER

with all the menu items’ IDs, and when the selected ID is found, the image and the header text
are changed. Also note that image is an ImageView and a header is a TextView created within the
constructer and instantiated in the onCreate method.

LISTING 4-12: Layout Resource to Create ImageView (ImageDisplayerwithMenu\src\com\nfclab\

imagedisplayer\ImageDisplayerwithMenu.java)

public class ImageDisplayerwithMenu extends Activity {

 private ImageView image;
 private TextView header;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 image = (ImageView) findViewById(R.id.NFCImage);
 header = (TextView) findViewById(R.id.myHeaderText);
 }

 public void changeImage(int id) {
 if(id == R.id.ceMode){
 image.setImageResource(R.drawable.cemode);
 header.setText("Displaying Card Emulation Mode Image");
 } else if(id == R.id.p2pMode){
 image.setImageResource(R.drawable.p2pmode);
 header.setText("Displaying Peer to Peer Mode Image");
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater menuInflater = getMenuInflater();
 menuInflater.inflate(R.menu.menu, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 changeImage(item.getItemId());
 return true;
 }
}

SUMMARY

When an Android project is created in Eclipse, Eclipse automatically adds the necessary components
and displays them in the Package Explorer. These components are the src folder for all the Java
classes; the gen folder to hold the automatically generated fi les; the Android SDK version; the
assets folder to put some fi les and later retrieve them; the res folder to hold resources, which
includes the drawable, layout, and values folders by default; and AndroidManifest.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 113

You can run Android applications in two ways: on emulators and on mobile phones. In order to run
on an emulator, you need to create an AVD. In order to run on a mobile phone, you need to connect
the mobile to your computer and make the related confi guration settings in the Android operating
system.

There are different layout options that can be used to organize the screen. These are LinearLayout,
AbsoluteLayout, AdapterView, GridLayout, and RelativeLayout. Also, you have two options to
create layouts. The fi rst option is to defi ne them in XML fi les, and the other option is to defi ne them
in the program code. Using XML fi les for organizing layouts is the preferred option to create layouts
instead of organizing them in program code.

In your application, you should externalize the application resources such as images, colors, and
strings from your source code so that you can manage them independently. When you defi ne your
application resources, you can access them using resource IDs that are generated in the project’s
R class.

An event listener is an interface and can be registered to an item. When the registered item is
triggered by the user, a related method is called by Android to perform the required actions.

A dialog is a small window that appears in front of an activity and gains focus for user input.

Activities are managed in a stack in Android. When an activity starts, it moves to the front of
the activity stack and becomes visible. The other running activities still run if you do not quit
them, but they stay in lower levels in the stack and thus become invisible. An activity mainly
has four important states: active, paused, stopped, and destroyed. The onCreate(), onStart(),
onRestart(), onResume(), onPause(), onStop(), and onDestroy() methods are used to change
the states of the activities.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Programming:
Reader/Writer Mode

WHAT’S IN THIS CHAPTER?

 ➤ Introduction to the NFC APIs in Android: android.nfc and

android.nfc.tech packages

 ➤ Introduction to NFC tag dispatch system

 ➤ NFC properties in the Android manifest fi le

 ➤ Filtering NFC intents

 ➤ Introduction to the tag writing essentials: preparing NDEF data and

writing NDEF data tags

 ➤ Introduction to the tag reading essentials: getting and processing

NDEF data

 ➤ Android Application Record

 ➤ Introduction to the foreground dispatch system

 ➤ Working with supported tag technologies

In this chapter, reader/writer mode application programming is demonstrated. The tag intent
dispatch system, tag foreground dispatch system, and Android Application Records (AARs)
are described in detail. The chapter mainly focuses on reading and writing NDEF messages
from and to NFC tags. In order to write an NDEF message to a tag, at least one NDEF
record needs to be created to form an NDEF message. The NDEF records are formatted

5

www.it-ebooks.info

http://www.it-ebooks.info/

116 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

with one of the Type Name Formats defi ned by NFC Forum. For example, if you wish to create
an NDEF record containing a website URI, you may use TNF_ABSOLUTE_URI or TNF_WELL_KNOWN
with RTD_URI type records. So this chapter also explains how to create required NDEF records
and how to read them.

The chapter starts by describing the NFC APIs in the Android platform, and then continues with the
tag dispatch system, NFC properties in the Android manifest fi le, and NFC intents. Then, writing
data to tags and reading data from tags are described in detail. Finally, AARs and performing I/O
operations on different tag types are described.

NFC APIS IN ANDROID

Currently, there are two packages for NFC application development in the Android platform. The
fi rst is the main package that you will use, android.nfc, which includes necessary classes to enable
applications to read and write NDEF messages in/to NFC tags.

The second is the android.nfc.tech package, which includes necessary classes to provide access
to different tag technologies such as MIFARE Classic, NfcA, NfcV, and so on. This package also
provides input and output operations on these tags in raw bytes.

NFC-related APIs in Android are introduced to users starting from API level 9 including the
android.nfc package. Most of the classes and methods in this package are introduced in API level
10 and more are added in API level 14 and 16. For example, in order to work with NDEF-formatted
tags, you should at least use API level 10, since ACTION_NDEF_DISCOVERED constants to handle
NDEF-formatted tags are introduced in API level 10.

On the other hand, the android.nfc.tech package is introduced in API level 10 and a
few methods are added to the package in API level 14. The details of the packages, including
the API levels, descriptions, and parameters of each class, method, and constant, are given in
Appendix B.

android.nfc package

The classes and methods in the android.nfc package allow NFC-enabled mobile phones to read
and write NDEF messages from and to supported tags. This package also enables data exchange
with other NFC-enabled mobile phones. There are six classes in this package to provide these
functionalities (see also Table 5-1). The fi rst is the Tag class, which represents the discovered NFC
tag. The second is the NfcAdapter class, which represents the NFC adapter of the mobile phone.
The NfcManager class is also related to the NfcAdapter class and is used to obtain an instance
of the NFC adapter. The two other important classes are NdefMessage and NdefRecord, which
represent an NDEF message and an NDEF record, respectively. The last class is the NFCEvent,
which wraps information associated with an NFC event.

www.it-ebooks.info

http://www.it-ebooks.info/

Tag Intent Dispatch System vs. Foreground Dispatch System ❘ 117

TABLE 5-1: Classes in the android.nfc Package

CLASS NAME DESCRIPTION

Tag Represents the discovered NFC tag

NfcAdapter Represents the NFC adapter of the mobile phone

NfcManager Obtains an instance of the NFC adapter

NdefMessage Represents an NDEF message

NdefRecord Represents an NDEF record

NfcEvent Wraps information associated with an NFC event

android.nfc.tech package

When a mobile phone scans a tag, the tag may not be compatible with the NDEF format. In
this situation, the applications can access this tag’s data in raw bytes. However, this access and
I/O operation in raw bytes should be different in different tag types. This package includes the
classes required by different tag types in order to perform I/O operations on them. Some of the
classes are IsoDep, MifareClassic, MifareUltralight, and NfcV. The package also includes the
TagTechnology interface, which is needed in order to obtain the tag and connect to it. The details
of this package will be described in the next sections, together with examples.

 TAG INTENT DISPATCH SYSTEM VS. FOREGROUND
DISPATCH SYSTEM

The tag intent dispatch system is used to launch applications when the predefi ned tags or
NDEF data are identifi ed in tags. In short, you scan to an NFC tag, and if any application
is registered to handle the tag, then the registered application launches. If more than one
application is registered to handle the tag, a pop-up to select the application (Activity Chooser)
is displayed. For example, if your application is coded with the tag intent dispatch system to
detect any MIME type data and a tag is discovered that contains the text/plain data type your
application is launched. However, when your application is in active state and the same tag is
discovered, Android will again run your application, or if there is more than one application that
can handle the text/plain data type, it will ask you to select one of the applications that can
handle the tags by displaying Activity Chooser. However, in modifi ed versions of Android (as
in some OEM implementations), this can be changed so that if one application is in active state,
that application can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

118 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

The foreground dispatch system, on the other hand, is designed to handle tags when the application
is running. When you run an application that uses the foreground dispatch system and is registered
to detect tags with any MIME type, and a tag is discovered that contains the text/plain data type
your application will handle the tag. Moreover, Android will not display Activity Chooser, even
though there are other applications that can handle the tag.

The difference in the coding is that the tag intent dispatch system registers the tag types and NDEF
data that the application can handle in the application’s manifest fi le using intent fi lters, whereas the
foreground dispatch system registers inside the activity.

NFC TAG INTENT DISPATCH SYSTEM

When an NFC tag is scanned, the desired action is to launch the corresponding application
automatically. Then the application should perform the required activities with the data transferred
from the tag. In this way, the usability of the NFC technology will be high.

In Android, when NFC is not disabled from settings, the mobile phone always looks for NFC tags
to discover. When an NFC tag is discovered in proximity, the type and payload data in the tag will
be encapsulated to intent, and the tag intent dispatch system in Android will run the corresponding
application that can handle the tag. For this reason, applications can register the type of the data that
they can handle. Also, in order to handle only the tags that your activity looks for, you should register
only the data that your application can handle. If multiple applications are registered to handle the
same type of data, the Activity Chooser will be displayed for the user to select one of the applications.

The NFC tag dispatch system in Android works in the following way:

 1. It parses the NFC tag and tries to fi gure out the type of the payload data inside the tag
(for example, MIME type or URI).

 2. It encapsulates the type and the payload in an intent.

 3. If an installed activity is registered to handle this payload (based on the type of the payload),
related activity is started.

How NFC Tags Are Dispatched to Applications

In a typical Android NFC application that scans an NFC tag, there can be three different options:

 ➤ The scanned tag contains NDEF payload that can be mapped to a MIME type or URI

 ➤ The scanned tag contains NDEF payload that cannot be mapped to a MIME type or URI

 ➤ The scanned tag does not contain NDEF payload but is of a known tag technology

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Tag Intent Dispatch System ❘ 119

Based on these options, three different intents are developed: ACTION_NDEF_DISCOVERED,
ACTION_TECH_DISCOVERED, and ACTION_TAG_DISCOVERED.

ACTION_NDEF_DISCOVERED

This intent is the highest priority among the others. When a tag contains NDEF data, the tag
dispatch system tries to run an activity with this intent. If at least one application is registered
to handle the type of the discovered NDEF payload, Android system runs the corresponding
application.

ACTION_TECH_DISCOVERED

This intent has the second highest priority. If the discovered payload is NDEF and no application is
registered to handle the discovered NDEF payload type, then intent with ACTION_TECH_DISCOVERED
is created, and the tag dispatch system tries to start an activity with this intent.

If the type of the payload in the discovered tag is not NDEF and the type of the tag can be recognized
by Android system, then the tag intent dispatch system creates ACTION_TECH_DISCOVERED intent.

ACTION_TAG_DISCOVERED

This intent has the lowest priority. If no activities in the mobile device can handle the corresponding
ACTION_NDEF_DISCOVERED or ACTION_TECH_DISCOVERED intents, ACTION_TAG_DISCOVERED is created.

When the device scans the tag, the tag dispatch system prepares an intent that encapsulates the NFC
tag and its identifying information. Then the applications that can handle the prepared intent are
found. If only one application is found that can handle the intent, the application is started. If more
than one application is found, the Activity Chooser is displayed so that the user can select the one
that they want.

The tag dispatch system works as follows (which is also shown in Figure 5-1):

 ➤ If the payload contains NDEF data, do the following:

 1. Try to start an activity with the ACTION_NDEF_DISCOVERED intent.

 2. If no activities fi lter for the discovered NDEF data, try to start an activity with the
ACTION_TECH_DISCOVERED intent.

 ➤ If the payload does not contain NDEF data but is of a known tag technology, do the
following:

 1. Try to start an activity with the ACTION_TECH_DISCOVERED intent.

 2. If no activities fi lter for that intent, try to start an activity with the ACTION_TAG_
DISCOVERED intent.

 ➤ If there’s no applications fi lter for the encapsulated intent, do nothing.

www.it-ebooks.info

http://www.it-ebooks.info/

120 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

How Android Handles NDEF-Formatted Tags

As described in Chapter 2, “NFC Essentials for Application Developers,” NDEF data is encapsulated
inside an NDEF message that contains one or more NDEF records. When a tag is discovered, the fi rst
thing that an Android-powered device does is to create intent of ACTION_NDEF_DISCOVERED.
It can create this intent if the device can determine the type of the data based on the fi rst NDEF
record. For example, if the type of the data is a MIME type or a URI, the device creates the
ACTION_NDEF_DISCOVERED intent. In order for an Android device to determine the type of the data,
the Type Name Format (TNF) of the data should be one of the formats given in Table 5-2.

TABLE 5-2: Supported TNFs and their Mappings

TNF MAPPING

TNF_ABSOLUTE_URI Absolute URI based on the type fi eld

TNF_EMPTY Falls back to ACTION_TECH_DISCOVERED intent

TNF_EXTERNAL_TYPE URI based on the Uniform Resource Name (URN) in the type fi eld;

the URI is saved to the tag in <domain_name>:<service_name>

form; Android converts it automatically to the form of vnd.

android

.nfc://ext/<domain_name>:<service_name>

TNF_MIME_MEDIA Data with a MIME type based on the type fi eld

TNF_UNCHANGED Falls back to ACTION_TECH_DISCOVERED intent

TNF_UNKNOWN Falls back to ACTION_TECH_DISCOVERED intent

TNF_WELL_KNOWN Described in Table 5-3

FIGURE 5-1

NDEF-Formatted Tag NDEF_DISCOVERED
Activity registered to

handle
NDEF_DISCOVERED?

No

No

Yes

Yes

YesUnmapped or Non-
NDEF-Formatted Tag

TECH_DISCOVERED
Activity registered to

handle
TECH_DISCOVERED?

Intent delivered to
Activity

TAG_DISCOVERED
Activities registered to

handle
TAG_DISCOVERED?

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Properties in the Android Manifest File ❘ 121

TABLE 5-3: Supported RTDs for TNF_WELL_KNOWN and Their Mappings

RECORD TYPE DEFINITION (RTD) MAPPING

RTD_ALTERNATIVE_CARRIER Falls back to ACTION_TECH_DISCOVERED intent

RTD_HANDOVER_CARRIER Falls back to ACTION_TECH_DISCOVERED intent

RTD_HANDOVER_REQUEST Falls back to ACTION_TECH_DISCOVERED intent

RTD_HANDOVER_SELECT Falls back to ACTION_TECH_DISCOVERED intent

RTD_SMART_POSTER URI based on parsing the payload

RTD_TEXT Data with a MIME type of text/plain

RTD_URI URI based on payload

If the discovered tag contains NDEF data but has a data format other than the ones listed in
Table 5-2, then the device cannot create the intent of ACTION_NDEF_DISCOVERED. This time the
device creates ACTION_TECH_DISCOVERED intent instead.

Some of the TNFs cannot be mapped to a MIME type or URI, and when these formats are
discovered, the tag intent dispatch system creates ACTION_TECH_DISCOVERED instead of
ACTION_NDEF_DISCOVERED intent. For example, if the TNF of the record is TNF_EMPTY, then it
falls back to ACTION_TECH_DISCOVERED intent.

NFC PROPERTIES IN THE ANDROID MANIFEST FILE

In order to enable NFC technology in an application, you should give the required permissions
to the application to use the NFC hardware. Giving this permission will enable your application to
handle the intents and use NFC hardware.

First, you should enable NFC by declaring the following line in the Android manifest fi le:

 <uses-permission android:name="android.permission.NFC" />

For the minimum SDK version that your application can support, we suggest that you use at least
API level 10, because most of the functions are provided in API level 10. In API level 9, only
ACTION_TAG_DISCOVERED intent is introduced, and other intents such as ACTION_NDEF_DISCOVERED
and ACTION_TECH_DISCOVERED are introduced in API level 10. Foreground NDEF pushing, which
will be described later, is also introduced in API level 10.

On the other hand, in API level 14, extra methods and Android Beam are introduced, which enable
two devices to share NDEF messages. The details of each method, including their API levels, are
given in Appendix B.

You need to give interest in the manifest fi le. You should modify the uses-sdk element and at least
use API level 10, as shown here:

<uses-sdk android:minSdkVersion="10"/>

www.it-ebooks.info

http://www.it-ebooks.info/

122 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

When you publish your NFC application in the Android market, all users will be able to download
and install your application. If you wish only the users who have a mobile with the required NFC
hardware to see and download your application, you should add the following line to the Android
manifest fi le:

<uses-feature android:name="android.hardware.nfc" android:required="true" />

You may also omit the uses-feature element and allow all users to download your application
from the Android market. This time, you should check if the mobile phone has an NFC antenna in
your application. If the mobile phone doesn’t have an NFC antenna, then you should warn the user
that the mobile device doesn’t have the required NFC functionality.

FILTERING NFC INTENTS

You generally want your application to start when a tag that your application can handle is scanned.
Inside three different intents, you want ACTION_NDEF_DISCOVERED intent, since it has the highest
priority. Let’s say you deploy a tag that contains RTD_URI data. You need to register your application
to handle RTD_URI with ACTION_NDEF_DISCOVERED intent. If you register your application with
ACTION_TECH_DISCOVERED intent, then your application will probably not start automatically
when the tag is scanned, since ACTION_TECH_DISCOVERED intent is a fallback for
ACTION_NDEF_DISCOVERED and there will probably be at least one application installed on the
mobile phone that handles RTD_URI with ACTION_NDEF_DISCOVERED intent.

On the other hand, you should generally never use ACTION_TAG_DISCOVERED intent, since it is too
general to fi lter and your application will be able to fi lter only the tags that cannot be handled by
other applications.

In most of the situations, especially when you control and deploy NFC tags, you should use
NDEF data in your tags, and you should always use ACTION_NDEF_DISCOVERED intents in your
applications. In the following subsections, fi ltering for three different intents is described.

NOTE Android intent fi ltering is always case sensitive.

ACTION_NDEF_DISCOVERED

In order to fi lter ACTION_NDEF_DISCOVERED intents, the intent should be defi ned along with the
type of the data that need to be fi ltered. The type of the data may be the TNFs that are described in
previous sections, such as RTD_TEXT, RTD_URI, TNF_EXTERNAL_TYPE, and so on.

A general declaration to fi lter ACTION_NDEF_DISCOVERED is shown here:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering NFC Intents ❘ 123

 <data ...
 ... />
 </intent-filter>
...
</activity>

The action element is set to android.nfc.action.NDEF_DISCOVERED, because the action specifi ed
in the intent fi lter must match one of the actions listed in the fi lter. This means that when a tag that
has NDEF-formatted data in it, the action will match the intent fi lter. The category element is set
to android.intent.category.DEFAULT, because the activities that need to receive implicit intents
need to include android.intent.category.DEFAULT in the intent fi lter. The data element needs to
change based on the TNFs that are to be fi ltered. The detailed manifests to fi lter each TNF are given
in the following subsections.

Declaring an Intent Filter for TNF_WELL_KNOWN with RTD_URI

In order to fi lter RTD_URI records, the intent fi lter should be declared as follows:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http"
 android:host="nfclab.com"
 android:pathPrefix="" />
 </intent-filter>
...
</activity>

As you can see in the code, the data element includes attributes to fi lter RTD_URI. android:scheme
fi lters for the scheme of the URI (for example, http, ftp, etc.) and android:host fi lters for the host
of the domain (for example, nfclab.com). When a tag’s fi rst record is the NDEF RTD_URI record of
http://nfclab.com, the intent fi lter will fi lter the intent and launch the corresponding activity. If
the NDEF record inside the tag has a www. prefi x, then the host should be www.nfclab.com.

Declaring an Intent Filter for TNF_WELL_KNOWN with RTD_TEXT

In order to fi lter RTD_TEXT records, the intent fi lter should be declared as follows:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="text/plain" />
 </intent-filter>
...
</activity>

www.it-ebooks.info

http://nfclab.com
http://www.nfclab.com
http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

124 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

As shown in the code, the data element has an android:mimeType attribute with its value set to text/
plain. When the fi rst NDEF record in the NDEF message has TNF_WELL_KNOWN TNF and its RTD is
RTD_TEXT, the given intent-filter will fi lter the intent and launch the corresponding activity.

Declaring an Intent Filter for TNF_ABSOLUTE_URI

In order to fi lter TNF_ABSOLUTE_URI records, the intent fi lter should be declared as follows:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http"
 android:host="nfclab.com"
 android:pathPrefix="/index.html" />
 </intent-filter>
...
</activity>

As you can see in the code, the intent-filter is very similar to the intent fi lter of RTD_URI. The only
difference is that the android:pathPrefix attribute is not empty and its value is set to the fi lename
and the extension. When a tag has the fi rst record of TNF_ABSOLUTE_URI of http://nfclab.com/
index.html, the intent-filter will fi lter the intent and launch the corresponding activity.

Declaring an Intent Filter for TNF_MIME_MEDIA

In order to fi lter TNF_MIME_MEDIA records, the intent fi lter should be declared as shown here:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/NFCLabApp" />
 </intent-filter>
...
</activity>

As shown in the code, the data element has an android:mimeType attribute with its value set to
application/NFCLabApp. When a tag has the fi rst record of TNF_MIME_MEDIA, the intent fi lter will
fi lter the intent and launch the corresponding activity.

The following code gives another intent fi lter for a known TNF_MIME_MEDIA record: text/
x-vCard, which is a standard fi le format for electronic business cards. When a business card with
text/x-vCard is discovered inside the fi rst NDEF record, the corresponding activity will be launched:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />

www.it-ebooks.info

http://nfclab.com/index.html
http://nfclab.com/index.html
http://nfclab.com
http://www.it-ebooks.info/

Filtering NFC Intents ❘ 125

 <data android:mimeType="text/x-vCard" />
 </intent-filter>
...
</activity>

If you defi ne */* value in the android:mimeType, then your application will fi lter for all
TNF_MIME_MEDIA records.

Declaring an Intent Filter for TNF_EXTERNAL_TYPE

URNs for TNF_EXTERNAL_TYPE have the format of urn:nfc:ext:<domain_name>:<service_
name>. However the NDEF record in the tag should not store the urn:nfc:ext: part. So, when
you’re creating a TNF_EXTERNAL_TYPE record, you should only provide the domain name and service
name of the record. When Android processes an NDEF record that contains TNF_EXTERNAL_TYPE, it
converts the URN of urn:nfc:ext:<domain_name>:<service_name> into vnd.android.nfc://
ext/<domain_name>:<service_name>. So, in order to fi lter TNF_EXTERNAL_TYPE records, the intent
fi lter should be formed as shown here:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:customService" />
 </intent-filter>
...
</activity>

As shown in the code, the data element includes three attributes: android:scheme, android:host,
and android:pathPrefix. The android:scheme and android:host attributes should stay the
same, and the android:pathPrefix attribute should be personalized. This is where the self-
allocation of the record is performed. When a tag has the fi rst record of TNF_EXTERNAL_TYPE
with nfclab.com:customService, the intent-filter will fi lter the intent and launch the
corresponding activity.

If you defi ne *:* value in the android:pathPrefix, then your application will fi lter for all
TNF_EXTERNAL_TYPE records.

ACTION_TECH_DISCOVERED

Remember that ACTION_TECH_DISCOVERED is used when NDEF data cannot be mapped to a MIME
type or a URI, or when the tag does not contain NDEF data. In order to fi lter for ACTION_TECH_
DISCOVERED intents, the AndroidManifest.xml fi le should be described as follows:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.TECH_DISCOVERED" />

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

126 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

 </intent-filter>
 <meta-data android:name="android.nfc.action.TECH_DISCOVERED"
 android:resource="@xml/nfc_tech_list" />
...
</activity>

The android:resource attribute in the meta-data element points to an XML fi le that consists of
the tag technologies searched for and described in the following paragraphs.

The android.nfc.tech package consists of 10 classes: Ndef, NdefFormatable, IsoDep, Mifare
Classic, MifareUltralight, NfcA, NfcB, NfcBarcode, NfcF, and NfcV. Each class represents a
different tag technology. These tag technologies are used for ACTION_TECH_DISCOVERED intent.

NOTE For more information about the android.nfc.tech package, refer to
Appendix B.

When your application fi lters for ACTION_TECH_DISCOVERED intent, the intent created by the tag
dispatch system searches for the available tag technologies defi ned by the application. The application
needs to defi ne these available tag technologies within a tech-list set inside an XML fi le (the fi lename
does not matter) in the /res/xml folder. The following code gives an example tech-list set containing
all the technologies:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.IsoDep</tech>
 <tech>android.nfc.tech.NfcA</tech>
 <tech>android.nfc.tech.NfcB</tech>
 <tech>android.nfc.tech.NfcF</tech>
 <tech>android.nfc.tech.NfcV</tech>
 <tech>android.nfc.tech.Ndef</tech>
 <tech>android.nfc.tech.NdefFormatable</tech>
 <tech>android.nfc.tech.MifareClassic</tech>
 <tech>android.nfc.tech.MifareUltralight</tech>
<tech>android.nfc.tech.NfcBarcode</tech>
 </tech-list>
</resources>

When a tag is scanned and the ACTION_TECH_DISCOVERED intent is fi ltered, the defi ned tech-list
should be a subset of the scanned tag’s supported technologies. For example, if the scanned tag’s
supported technologies are IsoDep, NfcA, and MifareClassic, the defi ned tech-list should specify
one, two, or three of these technologies but nothing else.

The technologies supported by the tag can be obtained using the getTechList() method, which will
be described later.

More than one tech-list can be defi ned in a tech-list XML fi le, and if one of the tech-lists is a subset
of the tag’s technologies, it is considered a match.

www.it-ebooks.info

http://www.it-ebooks.info/

Checking the NFC Adapter ❘ 127

For example, consider the following tech-list XML fi le:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.NfcB</tech>
 <tech>android.nfc.tech.Ndef</tech>
 </tech-list>
</resources>

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.MifareClassic</tech>
 <tech>android.nfc.tech.NfcA</tech>
 </tech-list>
</resources>

Consider also that the scanned tag supports MifareClassic, NdefFormatable, and NfcA
technologies. Then there will be a match, because the second tech-list in the XML fi le contains
MifareClassic and NfcA and it is a subset of the tag’s technologies.

ACTION_TAG_DISCOVERED

ACTION_TAG_DISCOVERED intent is started if no activities handle the ACTION_NDEF_DISCOVERED or
ACTION_TECH_DISCOVERED intents; however, your application should be well designed so that you
should not need to use this intent. The required XML code for the AndroidManifest.xml fi le to
fi lter for ACTION_TAG_DISCOVERED intent is as follows:

<activity>
...
 <intent-filter>
 <action android:name="android.nfc.action.TAG_DISCOVERED"/>
 </intent-filter>
...
</activity>

CHECKING THE NFC ADAPTER

The NFCAdapter class in the android.nfc package represents the NFC adapter for the local
machine. Checking if the NFCAdapter is available is the fi rst thing to do in an NFC application.
Here is the code to create the necessary NfcAdapter:

private NfcAdapter myNfcAdapter;
private TextView myText;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 myText= (TextView) findViewById(R.id.myText);
 myNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (myNfcAdapter == null)
 myText.setText("NFC is not available for the device!!!");
 else
 myText.setText("NFC is available for the device");
}

www.it-ebooks.info

http://www.it-ebooks.info/

128 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

As you can see from the code, a new NFCAdapter named myNfcAdapter is created.
getDefaultAdapter(Context) is used to get the default NFC adapter for the device. The method
returns the default NFC adapter or returns null if the NFC adapter does not exist. In this context,
the NfcAdapter.getDefaultAdapter(this) method returns null or the current NFC adapter to
the myNfcAdapter object. Finally, informative text is displayed on the screen to notify the user if the
NFC adapter exists.

TAG WRITING

When the application discovers a tag, it starts an activity that is defi ned in the AndroidManifest.xml
fi le. Inside the activity, you may perform different operations based on the discovered tag. You may
start an intent with ACTION_NDEF_DISCOVERED (when the tag with NDEF payload is discovered),
with ACTION_TECH_DISCOVERED (when non-NDEF data is discovered or NDEF data cannot be
mapped to a TNF and the tag technology is identifi ed by Android), or with
ACTION_TAG_DISCOVERED (when a tag is discovered).

In the following code, the basic write operation to a tag is shown, in which the discovered tag has
NDEF payload:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())){
 Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

 // PREPARE THE NDEF MESSAGE

 // WRITE DATA TO TAG
}

First, the intent is checked if it was launched from an NFC interaction of NDEF_DISCOVERED:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())){

Then the instance of the discovered tag is received and saved to the detectedTag object:

Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

Tag represents the state of an NFC tag at the time of discovery. The getParcelableExtra method
is used to retrieve the extended data from the intent. Moreover, NfcAdapter.EXTRA_TAG is used as a
parameter to get the tag information.

After getting the instance of the detected tag, fi rst the NDEF message needs to be prepared and then
it should be written to the tag. These operations are described in the following sections.

Preparing NDEF Data

In order to write NDEF messages to tags, the corresponding NDEF records and NDEF message
need to be prepared based on the desired data type. The data preparation needs to be made based
on the NFC Forum standards. The standards are described in Chapter 2 and can also be accessed
online via the NFC Forum website (http://www.nfc-forum.org).

www.it-ebooks.info

http://www.nfc-forum.org
http://www.it-ebooks.info/

Tag Writing ❘ 129

After preparing the message, the message will be written to the tag, which is described after this
section.

TNF_WELL_KNOWN with RTD_URI

In order to create a TNF_WELL_KNOWN record with RTD_URI, you need to create the URL together with
its prefi x. Prefi xes can be, for example, "http://www.", "http://", or "https://". Each prefi x
has its own byte code; for example, "http://www." equals 1, "http://" equals 3, and no prefi x
equals 0. Available prefi xes and their equivalent bytes can be seen in Appendix A. For each record,
the prefi xes should be included before the URI data. In the following code, a TNF_WELL_KNOWN record
with RTD_URI is created with the payload data of nfclab.com and with the prefi x of 0x01:

byte[] uriField = "nfclab.com".getBytes(Charset.forName("US-ASCII"));
byte[] payload = new byte[uriField.length + 1];
payload[0] = 0x01;
System.arraycopy(uriField, 0, payload, 1, uriField.length);
NdefRecord uriRecord = new NdefRecord(
 NdefRecord.TNF_WELL_KNOWN, NdefRecord.RTD_URI, new byte[0], payload);
NdefMessage newMessage= new NdefMessage(new NdefRecord[] { uriRecord });

In the code, fi rst the URI is created and saved into the uriField byte array by encoding it with
the US-ASCII character set. Then the payload byte array to store the entire payload is created
with the size of the URI and an additional byte to store the prefi x. Since the prefi x of
"http://www." is used for this example, the fi rst byte of the payload is set to 0x01. Then,
the URI data is added to the payload array using the System.arraycopy method. This method
simply copies uriField.length elements from the array uriField, starting at offset 0, into the
array payload, starting at offset 1.

At API level 14, two new methods are defi ned for shortly creating RTD_URI records. The fi rst one is
the createUri (String) method, and the second one is the createUri (Uri) method. Instead of
manually creating the RTD_URI NDEF record, you may use one of the following codes below:

NdefRecord uriRecord = NdefRecord.createUri ("http://www.nfclab.com/");
NdefRecord uriRecord = NdefRecord.createUri (Uri.parse("http://www.nfclab.com/"));

Then, the last thing to do is to create an NDEF message by creating the NDEF record with
RTD_URI. In order to perform this, you need to create an NdefRecord using the NdefRecord class.
An NdefRecord that is not constructed from the raw bytes should contain the following:

 ➤ 3-bit TNF fi eld, which indicates how to interpret the type fi eld

 ➤ Variable length type, which describes the format of the record

 ➤ Variable length ID, which is the identifi er of record

 ➤ Variable length payload, which is the actual data

The TNF for the RTD_URI is TNF_WELL_KNOWN and the record type format is RTD_URI. Since this
NDEF record will be the fi rst record in the NDEF message, the ID of 0 is given. Finally, the actual
payload is given to the NdefRecord constructor as a last parameter, as shown here:

NdefRecord(NdefRecord.TNF_WELL_KNOWN,NdefRecord.RTD_URI,new byte[0],payload)

www.it-ebooks.info

http://www.nfclab.com/
http://www.nfclab.com/
http://nfclab.com
http://www.it-ebooks.info/

130 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

In order to form the NDEF message that will be written to the tag, you need to use the NdefMessage
class. An NDEF message may contain one or more NDEF records. In the example, only one NDEF
record is stored using the following line of code:

NdefMessage newMessage= new NdefMessage(new NdefRecord[] { uriRecord });

In order to store more than one NDEF record, the NdefMessage can be constructed as follows:

NdefMessage newMessage= new NdefMessage(
 new NdefRecord[] { uriRecord1,uriRecord2, uriRecord3 });

TNF_WELL_KNOWN with RTD_TEXT

As described in Chapter 2, in RTD_TEXT records, the fi rst four bytes form the NDEF record header
whereas the remaining part is the payload. The payload consists of the status byte (1 byte), the
language code of the text (the size is gathered from the status byte), and the actual text.

In RTD_TEXT records, the text can be encoded in either UTF-8 or UTF-16, which is defi ned by the
status byte in the text record. Additionally, the status byte also includes the length of the language
code, which is used to identify the language code of the text. UTF-8 is identifi ed by the bytes of
0x00 whereas UTF-16 is identifi ed by -0x80. For example, if you select the encoding as UTF-8 and a
language code with a length of 2 bytes; then the status byte becomes 0x02 (0x00 plus 0x02).

In the following code, the RTD_TEXT record is created in such a way that it matches with the
requirements of the RTD_TEXT record:

Locale locale= new Locale("en","US");
byte[] langBytes = locale.getLanguage().getBytes(Charset.forName("US-ASCII"));
boolean encodeInUtf8=false;
Charset utfEncoding = encodeInUtf8 ? Charset.forName("UTF-8") :
 Charset.forName("UTF-16");
int utfBit = encodeInUtf8 ? 0 : (1 << 7);
char status = (char) (utfBit + langBytes.length);
String RTD_TEXT= "This is an RTD_TEXT";
byte[] textBytes = RTD_TEXT.getBytes(utfEncoding);
byte[] data = new byte[1 + langBytes.length + textBytes.length];
data[0] = (byte) status;
System.arraycopy(langBytes, 0, data, 1, langBytes.length);
System.arraycopy(textBytes, 0, data, 1 + langBytes.length, textBytes.length);
NdefRecord textRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_TEXT, new byte[0], data);
NdefMessage newMessage= new NdefMessage(new NdefRecord[] { textRecord });

First, a new Locale is created with US English. (Detailed information about Locale can be found
at: http://developer.android.com/reference/java/util/Locale.html.) Then a new byte
array named langBytes is created from the Locale.

In this example, UTF-16 is preferred and a boolean encodeInUtf8 value is created and initialized
as false. Then, a charset is created named utfEncoding to store the charset of the UTF-8 or
UTF-16. In the example, it stores the charset of UTF-16. In order to create the status byte, again
the encodeInUtf8 value is checked and the status byte is created which also includes the length
of the language code.

www.it-ebooks.info

http://developer.android.com/reference/java/util/Locale.html
http://www.it-ebooks.info/

Tag Writing ❘ 131

Since there are two options for encoding, the actual text is encoded with the selected encoding.
Then the byte array that will contain the actual payload data is created, named data. One byte for
the status, the bytes required for the language code, and the bytes required for the actual text are
reserved. Then the status byte, language code, and actual text are copied to the data array.

The last thing to do is to create the required NDEF record and save it into the NDEF message. The
NDEF record is created in the same way as RTD_URI; the only difference is that the variable length
type is defi ned as RTD_TEXT.

TNF_ABSOLUTE_URI

TNF_ABSOLUTE_URI indicates the absolute form of a URI that follows the absolute-URI rule
defi ned by RFC 3986. The required code to create an absolute URI record is as follows:

byte[] uri = "http://nfclab.com/index.html".getBytes(Charset.forName("US-ASCII"));
NdefRecord uriRecord = new NdefRecord(NdefRecord.TNF_ABSOLUTE_URI,
 uri, new byte[0], new byte[0]);
NdefMessage newMessage= new NdefMessage(new NdefRecord[] { uriRecord });

As you can see in the code, fi rst a byte array named uri containing the absolute URI is created by
encoding it with the US-ASCII charset and is then used to create a TNF_ABSOLUTE_URI record by
selecting the record type as NdefRecord.TNF_ABSOLUTE_URI.

TNF_MIME_MEDIA

The following related code is used to create a TNF_MIME_MEDIA record:

String mimeType = "application/nfclabapp";
String payload = "This is a TNF_MIME_MEDIA";
NdefRecord mimeRecord = new NdefRecord(NdefRecord.TNF_MIME_MEDIA ,
 mimeType.getBytes(), new byte[0],
 payload.getBytes(Charset.forName("US-ASCII")));
NdefMessage newMessage= new NdefMessage(new NdefRecord[] { mimeRecord });

As you can see in the code, the record has a MIME type of application/nfclabapp, which is
stored in the mimeType string. In order to create the NdefRecord, the TNF to create the record is
defi ned as NdefRecord.TNF_MIME_MEDIA and the variable length type of the NDEF record is defi ned
as the bytes of the MIME type. Finally, the identifi er of the record is given as 0, since it will be the
fi rst record in the NdefMessage, and the payload that will be written to the tag is retrieved from the
payload string.

At API level 16, a new method is defi ned to create TNF_MIME_MEDIA in a short way. The method
gets two parameters — the MIME type and the payload — as a byte array, and creates the
corresponding NDEF record. You may use the method as follows:

NdefRecord mimeRecord = NdefRecord.createMime("application/nfclabapp",
 payload.getBytes());

www.it-ebooks.info

http://nfclab.com/index.html
http://www.it-ebooks.info/

132 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

TNF_EXTERNAL_TYPE

In order to create a TNF_EXTERNAL_TYPE record, you need to create the NDEF message as shown here:

String externalType = "nfclab.com:customService";
String payload = "texttowrite";
NdefRecord extRecord = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(), new byte[0], payload.getBytes());
NdefMessage newMessage = new NdefMessage(new NdefRecord[] { extRecord });

The registered service for the record is given in the string of the externalType whereas the registered
payload is given in the string of the payload. The type name format to create the record is defi ned
as TNF_EXTERNAL_TYPE, and the variable length type is defi ned as the bytes of the registered service.

Starting from API level 16, you may use a new createExternal () method, which automatically
creates the TNF_EXTERNAL_TYPE NDEF record. The method requires three parameters as a byte
array: the domain name, the domain-specifi c data type, and the payload.

NdefRecord extRecord = NdefRecord.createExternal("nfclab.com", "customService",
 payload.getBytes());

Writing NDEF Data to Tags

This section describes how to write NDEF data to tags. Each NDEF record should be prepared
based on its type. For example, RTD_URI records and TNF_MIME_MEDIA records are to be prepared
differently. Since the tag dispatch system prepares the intent from the discovered tag based on the
fi rst NDEF record, the given NDEF record examples need to be placed in the fi rst NDEF record in
order for intent fi lters to fi lter those intents.

When the data is prepared, the write operation is the same for all record types. When an NDEF
message is prepared, the writeNdefMessageToTag method is called with two parameters, which are
the prepared NDEF message and the detected tag as shown here:

writeNdefMessageToTag(newMessage, detectedTag);

The writeNdefMessageToTag method that writes the NDEF message to the tag is as follows:

boolean writeNdefMessageToTag(NdefMessage message, Tag detectedTag) {
 int size = message.toByteArray().length;
 try {
 Ndef ndef = Ndef.get(detectedTag);
 if (ndef != null) {
 ndef.connect();
 if (!ndef.isWritable()) {
 Toast.makeText(this, "Tag is read-only.", Toast.LENGTH_SHORT).show();
 return false;
 }
 if (ndef.getMaxSize() < size) {
 Toast.makeText(this, "The data cannot written to tag,
 Tag capacity is " + ndef.getMaxSize() + " bytes, message is "
 + size + " bytes.", Toast.LENGTH_SHORT).show();
 return false;
 }

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

Tag Writing ❘ 133

 ndef.writeNdefMessage(message);
 ndef.close();
 Toast.makeText(this, "Message is written tag.",
 Toast.LENGTH_SHORT).show();
 return true;
 } else {
 NdefFormatable ndefFormat = NdefFormatable.get(detectedTag);
 if (ndefFormat != null) {
 try {
 ndefFormat.connect();
 ndefFormat.format(message);
 ndefFormat.close();
 Toast.makeText(this, "The data is written to the tag ",
 Toast.LENGTH_SHORT).show();
 return true;
 } catch (IOException e) {
 Toast.makeText(this, "Failed to format tag",
 Toast.LENGTH_SHORT).show();
 return false;
 }
 } else {
 Toast.makeText(this, "NDEF is not supported",
 Toast.LENGTH_SHORT).show();
 return false;
 }
 }
 } catch (Exception e) {
 Toast.makeText(this, "Write opreation is failed",
 Toast.LENGTH_SHORT).show();
 }
 return false;
}

In Android, Ndef is a class in the android.nfc.tech package and provides access to NDEF content
on a tag. Inside the method, fi rst the instance of the Ndef object is acquired from the tag and saved
into the ndef object with the following code:

Ndef ndef = Ndef.get(detectedTag);

Then the method checks the ndef object to see if it’s null or not. If it is null it means that it is not
NDEF-formatted and you cannot use Ndef class. If it is already NDEF-formatted, you will use Ndef
class; otherwise, you need to use NdefFormatable class:

if (ndef != null){ … }

In order to enable I/O operations on the tag, the connect() method is applied on the ndef object.
When the I/O operations are completed, the object should be closed with the close() method:

ndef.connect();
…
ndef.close();

www.it-ebooks.info

http://www.it-ebooks.info/

134 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

Then the isWritable() method is used to fi nd out if the tag is writable. If the tag is write-
protected, the operation is cancelled:

if (!ndef.isWritable()) { }

The tag is checked if it is large enough to store the size of the NDEF message that is to be written to
the tag. If the message is bigger than the tag’s available size, then the operation is cancelled:

if (ndef.getMaxSize() < size) {}

Then the NDEF message is written to the tag using the following code:

ndef.writeNdefMessage(message);

The next part of the code (the fi rst else block) is for the tags whose ndef object is found as null.
It means that the tag is not NDEF-formatted. In this case, you need to get the instance of the tag to
the NdefFormatable object. NdefFormatable is a class in the android.nfc.tech package:

NdefFormatable ndefFormat = NdefFormatable.get(detectedTag);

In this part of the code, fi rst the ndefFormat object is checked to see if it is null. If it is null it means
that the tag does not support NDEF and you need to break the operation. If the tag supports NDEF,
you continue:

if (ndefFormat != null) { … }

In order to enable I/O operations on the tag, the connect() method is applied on the instance of the
tag. When the I/O operations are completed, the object should be closed with the close() method.

ndefFormat.connect();
…
ndefFormat.close();

Since the tag is not NDEF-formatted, you fi rst need to format the tag as NDEF and then write the
NDEF message. Android provides two operations with one method as shown here:

ndefFormat.format(message);

The Ndef and NdefFormatable classes also enable you to make a tag read-only. In the Ndef class,
the makeReadOnly() method makes a tag read-only. In the NdefFormatable class, the
formatReadOnly(NdefMessage) method makes a tag read-only by saving an NDEF message into it.

In order to write NDEF messages to tags, the described operations are suffi cient. Now, you are able
to write NDEF messages to tags, and the next section describes the how to read NDEF messages
from tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Tag Reading ❘ 135

TAG READING

As described earlier, when an application discovers a tag, it starts an activity that is defi ned in the
AndroidManifest.xml fi le. Inside the activity you may perform different operations based on the
discovered tag. This section describes how to read NDEF data from tags.

In the following code, the basic read operation from a tag is shown in which the discovered tag has
NDEF payload:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())){
 Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

 // GET NDEF MESSAGES IN THE TAG

 // PROCESS NDEF MESSAGE

 // DO WHAT EVER YOU WANT WITH THE DATA
}

First, you check whether the intent was launched from an NFC interaction of NDEF_DISCOVERED:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())){

Then, the instance of the discovered tag is obtained and saved to the detectedTag object:

Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

Then, you need to get the NDEF messages from the tag, process the records inside the message, and
do whatever you want with the application.

Getting an NDEF Message

In order to get the NDEF messages from the tag, you need to use the NdefMessage class. As shown
in the following code, you fi rst create an NdefMessage array to store the messages and call the
getNdefMessages method to retrieve messages from the tag:

NdefMessage[] messages = getNdefMessages(getIntent());

NdefMessage[] getNdefMessages(Intent intent) {
 NdefMessage[] message = null;
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction())) {
 Parcelable[] rawMessages =
 intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
 if (rawMessages != null) {
 message = new NdefMessage[rawMessages.length];
 for (int i = 0; i < rawMessages.length; i++) {
 message[i] = (NdefMessage) rawMessages[i];
 }
 } else {
 byte[] empty = new byte[] {};
 NdefRecord record = new NdefRecord (NdefRecord.TNF_UNKNOWN,

www.it-ebooks.info

http://www.it-ebooks.info/

136 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

 empty, empty, empty);
 NdefMessage msg = new NdefMessage(new NdefRecord[] { record });
 message = new NdefMessage[] { msg };
 }
 } else {
 Log.d("", "Unknown intent.");
 finish();
 }
 return message;
}

Inside the getNdefMessages method, you retrieve the extended data from the intent by using the
intent.getParcelableArrayExtra method. This method will get the data contained in the intent:

Parcelable[] rawMessages =
intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

Then, a check is made of whether the rawMessages array is null for extended control. If it is not
null, it means that the tag contains NDEF messages. Then, NDEF messages are saved into the
message array, which is from the NdefMessage type:

if (rawMessages != null) {
 message = new NdefMessage[rawMessages.length];
 for (int i = 0; i < rawMessages.length; i++) {
 message[i] = (NdefMessage) rawMessages[i];
 }
}

If rawMessages equals null, it means that the tag is from an unknown type. In this situation, an
empty message with the record of TNF_UNKNOWN is created and returned to the main program.

Processing an NDEF Message

In order to process the NDEF message, you need to know the contained record types. Since most
of the record types need to be created in different ways, you should process them differently. In this
section, you will process different record types, such as TNF_WELL_KNOWN with RTD_URI, TNF_WELL_
KNOWN with RTD_TEXT, TNF_ABSOLUTE_URI, TNF_MIME_MEDIA, and TNF_EXTERNAL_TYPE.

Processing TNF_WELL_KNOWN with RTD_URI

As described in the “Preparing NDEF Data” section, TNF_WELL_KNOWN with RTD_URI includes
the prefi x in the fi rst byte of the record, and the rest of the bytes in the record save the URL. So,
for each record, you need to get the fi rst byte and process it to fi nd the corresponding prefi x, and
then append the rest of the bytes as the URL. Assume that the fi rst byte of the record equals 1
and the rest of the bytes give nfclab.com. After processing the data in the tag, it is found that the
corresponding prefi x is 1, which means "http://www." Appending nfclab.com to the prefi x gives
the record of "http://www. nfclab.com". The following code processes the records of an NDEF
message:

for(int i=0;i<messages.length;i++){
 myText.append("Message "+(i+1)+":\n");

www.it-ebooks.info

http://www.nfclab.com
http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

Tag Reading ❘ 137

 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 myText.append((j+1)+"th. Record Tnf: "+record.getTnf()+"\n");
 myText.append((j+1)+"th. Record type: " +
 new String(record.getType())+"\n");
 myText.append((j+1)+"th. Record id: " +
 new String(record.getId())+"\n");
 payload = new String(record.getPayload(), 1,
 record.getPayload().length-1, Charset.forName("UTF-8"));
 myText.append((j+1)+"th. Record payload: "+payload+"\n");
 payloadHeader = record.getPayload()[0];
 myText.append((j+1)+"th. Record payload header: " +
 payloadHeader+"\n");
 }
}

Remember that messages is an NdefMessage array that stores the messages by invoking the
getNdefMessages method, which retrieves NDEF messages from the tag. As you can see from the
record, fi rst you start a loop to process all of the messages retrieved from the tag. Inside the loop,
you start a second loop to process all of the records inside the message, because multiple records
may exist in an NDEF message:

for(int i=0;i<messages.length;i++){
 …
 for(int j=0;j<messages[0].getRecords().length;j++){
 …
 }
}

For each record, you create an NdefRecord object to store the current record and get the jth record
in the ith message with the getRecords() method:

NdefRecord record = messages[i].getRecords()[j];

Then, you print some data about the record to the screen, such as TNF, record type, and/or record
ID. This step is not mandatory; however, it is good to know this information about the record. The
important part is the step where you get the payload. The record’s payload is retrieved with the
getPayload() method. However, you need to split the payload into two parts: the fi rst byte that
stores the prefi x and the rest of it that stores the URL. For this purpose, you save the record’s bytes
starting from index 1 to the end of the payload string variable and save its 0-indexed byte to the
payloadHeader byte variable:

payload = new String(record.getPayload(), 1, record.getPayload().length-1,
 Charset.forName("UTF-8"));
payloadHeader = record.getPayload()[0];

Now, you have the URL in a payload string (for example, "nfclab.com"), and the prefi x in
payloadHeader byte (for example, 0x01). Furthermore, you need to process the payloadHeader in
order to get the prefi x and select the required operation. For example, if the payloadHeader value is

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

138 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

0x01 (http://www.) or 0x03 (http://), you may activate the browser to display the webpage. If the
payloadHeader value is 0x06 (mailto:), you may run an e-mail program to send the e-mail. The
following code describes the required operation for a prefi x value of 0x01:

if(payloadHeader==0x01){
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse("http://"+payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
}

Processing TNF_WELL_KNOWN with RTD_TEXT

As described in the “Preparing NDEF Data” section, TNF_WELL_KNOWN with RTD_TEXT record
payload includes a status byte, the language code of the text that can vary in size, and the actual
text message. The required code to handle an RTD_TEXT record is as follows:

for(int i=0;i<messages.length;i++){
 myText.append("Message " + (i+1) + ":\n");
 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 statusByte=record.getPayload()[0];
 int languageCodeLength = statusByte & 0x3F;
 myText.append("Language Code Length:" + languageCodeLength+"\n");
 String languageCode = new String(record.getPayload(), 1,
 languageCodeLength, Charset.forName("UTF-8"));
 myText.append("Language Code:" + languageCode+"\n");
 int isUTF8 = statusByte-languageCodeLength;
 if(isUTF8 == 0x00){
 myText.append((j+1) + "th. Record is UTF-8\n");
 payload = new String(record.getPayload(), 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-8"));
 } else if (isUTF8==-0x80){
 myText.append((j+1) + "th. Record is UTF-16\n");
 payload = new String(record.getPayload(), 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-16"));
 }
 myText.append((j+1) + "th. Record Tnf: " + record.getTnf() + "\n");
 myText.append((j+1) + "th. Record type: " +
 new String(record.getType()) + "\n");
 myText.append((j+1) + "th. Record id: " +
 new String(record.getId()) + "\n");
 myText.append((j+1) + "th. Record payload: " + payload + "\n");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Tag Reading ❘ 139

In order to process an RTD_TEXT record payload, fi rst you need to gather the record’s fi rst byte.
When creating the RTD_TEXT record, remember that you have added the UTF bit and the language
code length. In order to fi nd out the length of the language code, you need to mask the record’s fi rst
byte (status byte) with the value 0x3F:

statusByte = record.getPayload()[0];
int languageCodeLength = statusByte & 0x3F;

Finding the length of the language code’s length is important since the next bytes are language code.
In order to fi nd the language code, you need to get the record’s bytes from 1 until the language code
length. For example; if the language code’s length is 3, then the bytes from 1 to 3 give the language
code:

String languageCode = new String(record.getPayload(), 1,
 languageCodeLength, Charset.forName("UTF-8"));

Remember also that the text in RTD_TEXT records can be encoded either in UTF-8 or in UTF-16.
In order to fi nd the actual text’s encoding, you need to process the status byte further. First, you
subtract the language code length from the status byte:

int isUTF8 = statusByte-languageCodeLength;

If the resulting byte equals 0x00, the text’s encoding is UTF-8; if the resulting byte equals 0x80
then the encoding is UTF-16. After identifying the text encoding, the last thing to do is
to process the actual text. The actual text starts from the bytes of (1+ the language code length)
and lasts up to the end of the payload. For example, if the language code’s length is 3 and the total
size of the payload is 14, then the bytes from 4 to 13 give the actual text:

if(isUTF8 == 0x00){
 payload = new String(record.getPayload(), 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength, Charset.forName("UTF-8"));
} else if (isUTF8 == -0x80){
 payload = new String(record.getPayload(), 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength, Charset.forName("UTF-16"));
}

Processing TNF_ABSOLUTE_URI

In order to process a TNF_ABSOLUTE_URI record, all you need to do is to gather the record payload.
The required code to handle TNF_ABSOLUTE_URI record is as follows:

for(int i=0;i<messages.length;i++){
 myText.append("Message "+(i+1)+":\n");
 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 myText.append((j+1)+"th. Record Tnf: " + record.getTnf()+"\n");
 myText.append((j+1)+"th. Record type: " +
 new String(record.getType())+"\n");
 myText.append((j+1)+"th. Record id: " + new String(record.getId())+"\n");
 payload = new String(record.getPayload());
 myText.append((j+1)+"th. Record payload: "+payload+"\n");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

140 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

Processing TNF_MIME_MEDIA

In order to process a TNF_MIME_MEDIA record, you need to gather the record payload similarly to
the way it is done with the TNF_ABSOLUTE_URI. The required code to handle a TNF_ABSOLUTE_URI
record is as follows:

for(int i=0;i<messages.length;i++){
 myText.append("Message "+(i+1)+"\n");
 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 myText.append((j+1)+"th. Record Tnf: " + record.getTnf()+"\n");
 myText.append((j+1)+"th. Record type: " +
 new String(record.getType()) + "\n");
 myText.append((j+1)+"th. Record id: " + new String(record.getId())+"\n");
 payload = new String(record.getPayload());
 myText.append((j+1)+"th. Record payload: "+payload+"\n");
 }
}

Processing TNF_EXTERNAL_TYPE

An NDEF record with a TNF_EXTERNAL_TYPE is handled in a similar way to the TNF_MIME_MEDIA and
TNF_ABSOLUTE_URI records. The required code to handle a TNF_EXTERNAL_TYPE record is as follows:

for(int i=0;i<messages.length;i++){
 myText.append("Message "+(i+1)+":\n");
 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 myText.append((j+1)+"th. Record Tnf: " + record.getTnf()+"\n");
 myText.append((j+1)+"th. Record type: " +
 new String(record.getType())+"\n");
 myText.append((j+1)+"th. Record id: " + new String(record.getId())+"\n");
 payload = new String(record.getPayload());
 myText.append((j+1)+"th. Record payload: "+payload+"\n");
 }
}

ANDROID APPLICATION RECORD

Android Application Record (AAR) is introduced in API level 14 and is a very powerful property
of Android NFC. The main objective of AAR is to start the application when an NFC tag is
scanned. Despite the fact that the manifest fi le gives this property to NFC, AAR strengthens the
property because more than one application may have been registered for, and may fi lter, the same
intents on a mobile phone. Additionally, AAR helps users to download and install the application
automatically after scanning NFC tags.

An AAR is the package name of an application. You need to insert the AAR record to an NDEF
message, similarly to the way it is done with an NDEF record.

How It Works

When an NFC tag is scanned, Android searches the entire NDEF message for AAR. If it fi nds an AAR
in any of the NDEF records, it starts the corresponding application. If the application is not installed
on the device, Google Play is launched automatically to download the corresponding application.

www.it-ebooks.info

http://www.it-ebooks.info/

Foreground Dispatch System ❘ 141

If the activity that fi lters the intent does not match the AAR, or if multiple or no activities handle
the intent, it does not matter and the application specifi ed by the AAR is started.

Intent Filters vs. AAR

Intent fi lters and AAR have some differences. First of all, AARs are supported at application level;
however, intent fi lters are supported at activity level. The reason for this is that AAR uses the
package name and cannot be lowered to the activity level. Thus, if you want to handle the intent at
activity level for any reason, you need to use intent fi lters.

The second difference is that there can be only one application that matches with an AAR; however,
there can be many applications registered to handle intents. Thus, using AAR is more powerful for
running applications automatically.

Finally, AAR can also be used to download applications automatically from Google Play if no
application with the same package name is installed. However, if there is no application registered to
handle the discovered intent, nothing is performed.

Important Notes on AAR

First of all, note that you can use AAR and intent fi lters together. If you want your application to handle
only the tags you deployed, you may use AAR without using intent fi lters. However, in this situation,
note that AAR will not work with the devices that have an API level lower than 14. If you wish to deploy
applications to the devices that have lower API levels, you may use intent fi lters together with AAR.

If you want your application to handle the tags that you deployed as well as others (such as tags with
a URI or specifi c MIME type), you must use intent fi lters. However, you can also use AAR on your
tags so that your application will run automatically when your tags that contain AAR are scanned.

Using AAR

In order to create an AAR record inside an NDEF message, use the NdefRecord
.createApplicationRecord method and give your package name as a parameter in this method.
You may perform this operation when creating the NDEF message with NDEF records. The
following example demonstrates the usage:

NdefMessage newMessage= new NdefMessage(new NdefRecord[] {
 record1, record2, ... ,
 NdefRecord.createApplicationRecord("com.nfclab.smartposter")
});

When reading the tag, you do not need any additional codes, since the operation is performed in
application level, not in activity level.

FOREGROUND DISPATCH SYSTEM

As described at the beginning of the chapter, the foreground dispatch system handles the tags when
the application is in active state. It simply gives the priority to handle the tag to the application that
is running.

www.it-ebooks.info

http://www.it-ebooks.info/

142 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

In order to implement the foreground dispatch system, you fi rst need to create a PendingIntent so
that Android can get the details of the tag:

PendingIntent pendingIntent = PendingIntent.getActivity(
 this, 0, new Intent(this,
 getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

Then you need to declare the intent fi lters to handle the tags. You can think of these intent fi lters
as being the same as the intent fi lters that are defi ned in manifest fi les in the tag intent dispatch
system. If the registered fi lters in the foreground dispatch system match with the tag, then the
active application handles the intent. If not, then the intent dispatch system looks for the available
activities that can handle the tag and runs the corresponding activity that already registered the
intent that can handle the tag.

In order to register for NDEF_DISCOVERED, use the following code:

IntentFilter ndef = new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
try {
 ndef.addDataType("*/*");
}
catch (MalformedMimeTypeException e) {
 throw new RuntimeException("fail", e);
}
intentFiltersArray = new IntentFilter[] {ndef, };

The code handles all MIME types, since the addDataType added a new intent data type of */* to
match against the discovered NDEF data. For example, in order to handle RTD_URI, you need to use
the addDataScheme method like this:

ndef.addDataScheme("http");

You can also specify a set of tag technologies to handle ACTION_TECH_DISCOVERED intents. You need
to use the format of the Object.class.getName() method to obtain the tag technologies that you
want to support. The following code adds the NfcF tag technology in order to fi lter it:

techListsArray = new String[][] { new String[] { NfcV.class.getName() } };

The following code adds MifareClassic and NfcA tag types to fi lter:

techListsArray = new String[][] { new String[] {
 MifareClassic.class.getName(), NfcA.class.getName() } };

In order to add multiple tech-lists, you may use the format in the following example. It adds a tech-
list with the NfcV tag type and another list with the MifareClassic and NfcA tag types:

techListsArray = new String[][] {
 new String[] { NfcV.class.getName() },
 new String[] { MifareClassic.class.getName(),
 NfcA.class.getName() } };

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Supported Tag Technologies ❘ 143

Finally, you need to override the following activity lifecycle callbacks and add logic to enable and
disable the foreground dispatch on onPause() and onResume():

 public void onPause() {
 super.onPause();
 NFCAdapter.disableForegroundDispatch(this);
 }

 public void onResume() {
 super.onResume();
 NFCAdapter.enableForegroundDispatch(this, pendingIntent,
 intentFiltersArray, techListsArray);
 }

 public void onNewIntent(Intent intent) {
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 }

You need to implement the required code to process the data from the scanned NFC tag in the
onNewIntent method. The following code is the implementation of reading TNF_WELL_KNOWN with
RTD_URI inside the onNewIntent method:

Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
NdefMessage[] messages = getNdefMessages(intent);
for(int i=0;i<messages.length;i++){
 for(int j=0;j<messages[0].getRecords().length;j++){
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload(), 1, record.getPayload().length-1,
 Charset.forName("UTF-8"));
 payloadHeader = record.getPayload()[0];
 }
}

if(payloadHeader == 0x01){
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse("http://"+payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
}

WORKING WITH SUPPORTED TAG TECHNOLOGIES

In NFC, you generally need to use the NDEF format to write and read to and from tags. However,
when a tag is scanned, the tag may not be NDEF-formatted or your application may not be
registered to handle the tag’s NDEF format. In these situations you should access the tag in raw
bytes and perform the required operations. The tag types to which Android gives access are
provided in the android.nfc.tech package and are also listed in Table 5-4 and Table 5-5. You can
retrieve the type of the tag using the getTechList() method and then perform the communication
to the tag with the classes provided in the android.nfc.tech package.

www.it-ebooks.info

http://www.it-ebooks.info/

144 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

TABLE 5-4: Supported Tag Technologies

TAG TYPE CLASS DESCRIPTION

TagTechnology
android.nfc.tech.

TagTechnology
The interface that all tag technology

classes must implement

NfcA android.nfc.tech.NfcA
Implements operations on NFC-A

(ISO 14443-3A) tags

NfcB android.nfc.tech.NfcB
Implements operations on NFC-B

(ISO 14443-3B) tags

NfcF android.nfc.tech.NfcF
Implements operations on NFC-F

(JIS 6319-4) tags

NfcV android.nfc.tech.NfcV
Implements operations on NFC-V

(ISO 15693) tags

IsoDep android.nfc.tech.IsoDep
Implements operations on ISO-DEP

(ISO 14443-4) tags

Ndef android.nfc.tech.Ndef Implements NDEF operations on tags

NdefFormatable
android.nfc.tech.

NdefFormatable
Implements format operations for

tags that can be NDEF formattable

NfcBarcode android.nfc.tech.NfcBarcode
Provides access to tags containing

just a barcode

TABLE 5-5: RTD_TEXT Payload

TAG TYPE CLASS DESCRIPTION

MifareClassic android.nfc.tech.MifareClassic
Implements operations on

MIFARE Classic tags

MifareUltralight
android.nfc.tech.

MifareUltralight
Implements operations on

MIFARE Ultralight tags

Getting Available Tag Technologies

In order to connect to connect to a tag, you need to know the type of the tag. If you wish to
get the available tag types that a tag owns, use the getTechList() method as shown in the
following code:

if (NfcAdapter.ACTION_TECH_DISCOVERED.equals(getIntent().getAction())) {
 Tag tag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);
 myText.setText("Technologies available in this tag=" +
 Arrays.toString(tag.getTechList()));
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Supported Tag Technologies ❘ 145

After getting the supported tag technologies of a tag, you may connect to tag one of these
technologies. For example, if a scanned tag supports NfcV and NdefFormatable, then you
can get the tag with either of the classes (android.nfc.tech.NfcV or android.nfc.tech.
NdefFormatable) and perform the required I/O operations.

NfcV Example

In this example, you will implement I/O operations on ISO 15693 type (NfcV) tags. First of all,
your application should include the required codes in the manifest fi le to fi lter for ACTION_
TECH_DISCOVERED intents. The following code is the required code in order to fi lter ACTION_TECH_
DISCOVERED intents with a predefi ned tag technology list of nfc_tech_list.xml:

<activity>
…
 <intent-filter>
 <action android:name="android.nfc.action.TECH_DISCOVERED"/>
 </intent-filter>
 <meta-data android:name="android.nfc.action.TECH_DISCOVERED"
 android:resource="@xml/nfc_tech_list"/>
</activity>

The XML fi le includes the NfcV tag type that handles the I/O operations on it:

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
 <tech-list>
 <tech>android.nfc.tech.NfcV</tech>
 </tech-list>
</resources>

After including the required code in the manifest fi le and creating the tag technology list XML fi le,
you need to implement the required code to perform I/O operations. The following code implements
a read operation on byte block 10 of the NfcV tags:

if (NfcAdapter.ACTION_TECH_DISCOVERED.equals(getIntent().getAction()))
{
 Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);
 NfcV nfcv = NfcV.get(detectedTag);
 try {
 nfcv.connect();
 if(nfcv.isConnected()){
 myText.append("Connected to the tag");
 myText.append("\nTag DSF: "+Byte.toString(nfcv.getDsfId()));
 byte[] buffer;
 buffer=nfcv.transceive(new byte[] {0x00, 0x20, (byte) 10});
 myText.append("\nByte block 10:"+buffer);
 myText.append("\nByte block 10 as string:"+new String(buffer));
 nfcv.close();
 } else
 myText.append("Not connected to the tag");
 } catch (IOException e) {
 myText.append("Error");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

146 ❘ CHAPTER 5 NFC PROGRAMMING: READER/WRITER MODE

In the example, you fi rst need to check if the tag is discovered with the ACTION_TECH_
DISCOVERED intent:

if (NfcAdapter.ACTION_TECH_DISCOVERED.equals(getIntent().getAction()))
{
 …
}

Then you need to obtain the tag object from the intent:

Tag detectedTag = getIntent().getParcelableExtra(NfcAdapter.EXTRA_TAG);

You need to get an instance of the TagTechnology (in the example it is NfcV) by calling the
corresponding get() method in the tag technology’s package:

NfcV nfcv = NfcV.get(detectedTag);

The example implements NfcV tags only; however, your application may handle more than one tag
type. In this situation, you can get the supported technologies in the tag by using the getTechList()
method before obtaining the instance of the TagTechnology. You should fi rst learn the supported
technology and then obtain the instance of the TagTechnology based on the supported types.

After this part of the code, each tag technology has different methods and each tag type needs
different implementations. You may implement any method defi ned in the tag technology’s class.

For NfcV tags, you may implement any method in android.nfc.tech class.NfcV. In order to
perform operations on NfcV tags, you need to fi rst connect to it:

nfcv.connect();

In order to get the tag’s DSF ID in bytes from tag discovery, you need to use the following:

nfcv.getDsfId()

In order to send commands to the NfcV tags, you need to use the transceive method. When
writing data to and reading data from NfcV tags, the operation is performed on the byte blocks that
consist of 4 bytes. Reading data from NfcV tags is 0x20 and writing is 0x21. In order to read the
10th byte block on the tag, the following code is required:

buffer=nfcv.transceive(new byte[] {0x00, 0x20, (byte) 10});

You may either print the data in bytes or in a string:

myText.append("\nByte block 10:"+buffer);
myText.append("\nByte block 10 as string:"+new String(buffer));

In order to write data to NfcV tags, you need to use 0x21. The following code writes the bytes of
0x00, 0x00, 0x72, 0x75 to the data 10th byte block:

Buffer = nfcv.transceive(new byte[] {0x00, 0x21, (byte) 10,0x00,
 0x00, 0x72, 0x75});

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 147

The classes in the android.nfc.tech package provide access to the tags and I/O operations in
raw bytes. Each tag technology has different implementations for I/O operations. You need to be
well aware of the implemented tag technology, the data structure of the tag, and so on, to use the
corresponding classes and to program applications for specifi c tag types.

SUMMARY

There are two packages for NFC application development in an Android platform. The fi rst package
is android.nfc, which provides mobile phones to read/write NDEF messages from/to supported
tags. This package also enables data exchange with other NFC-enabled mobile phones. There are six
classes in this package: Tag, NfcAdapter, NfcManager, NfcEvent, NdefMessage, and NdefRecord.

The other package is the android.nfc.tech package, which includes necessary classes to
provide access to different tag technologies such as MIFARE Classic, NfcA, NfcV, and so on.
This package also provides I/O operations on these tags in raw bytes, and includes the classes
required by different tag types in order to perform I/O operations. Some of the classes are IsoDep,
MifareClassic, MifareUltralight, and NfcV. The package also includes a TagTechnology
interface to obtain the tag and connect to it.

NFC APIs are introduced from API level 9, including the android.nfc package. However, most of
the classes and methods in this package are introduced in API level 10 and more are added in API
level 14. So you should use at least API level 10 to provide NFC capabilities. Refer to Appendix B for
a detailed list of packages, classes, and constants.

The tag intent dispatch system is used to launch applications when a tag or a specifi c NDEF record
is identifi ed in a tag. On the other hand, the foreground dispatch system is designed to handle tags
when the application is running. The difference in the coding is that the tag intent dispatch system
registers the tag types and NDEF data that the application can handle in the application’s manifest
fi le using intent fi lters, whereas the foreground dispatch system registers inside the activity.

There are three intents: ACTION_NDEF_DISCOVERED, ACTION_TECH_DISCOVERED, and ACTION_TAG_
DISCOVERED. ACTION_NDEF_DISCOVERED is used when the NDEF payload can be mapped to a
MIME type or URI. ACTION_TECH_DISCOVERED is used when the NDEF payload cannot be mapped
to a MIME type or URI. ACTION_TAG_DISCOVERED is used when a tag does not contain an NDEF
payload but is one of the known tag technologies.

Supported TNFs in Android are TNF_ABSOLUTE_URI, TNF_EMPTY, TNF_EXTERNAL_TYPE, TNF_MIME_
MEDIA, TNF_UNCHANGED, TNF_UNKNOWN, and TNF_WELL_KNOWN.

In order to enable an application to use the NFC adapter, you should permit the application to use
the NFC hardware in the Android manifest fi le.

The main objective of Android Application Record (AAR) is to start the application when an
NFC tag is scanned. Despite the fact that the manifest fi le gives this property using intent fi lters,
more than one application may have been registered to fi lter the same intents on a mobile phone.
However, there can be only one application that matches with an AAR, so AAR guarantees an
application will run when a specifi ed tag is scanned. Additionally, AAR helps users to download and
install the application automatically after scanning NFC tags, if it is not installed in the mobile.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader/Writer Mode
Applications

WHAT’S IN THIS CHAPTER?

 ➤ Use cases for reader/writer mode applications

 ➤ Programming an NFC Smart Poster use case

 ➤ Programming an NFC shopping use case

 ➤ Programming an NFC student transportation tracking use case

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118380096 on the Download Code tab. The code is in the Chapter 6 download
and individually named according to the names throughout the chapter.

In this chapter, three different NFC use cases are programmed using the Android APIs. All
three cases use reader/writer mode. For all cases, main applications and tag writer applications
are programmed separately.

The fi rst use case consists of a Smart Poster scenario, and includes the following subcases:

 ➤ Displaying a webpage

 ➤ Calling a phone number

 ➤ Sending an SMS

 ➤ Displaying a geolocation

 ➤ Sending an e-mail

6

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://wrox.com
http://www.it-ebooks.info/

150 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

The second use case consists of an NFC-based shopping scenario, which enables mobile shopping
by touching preformatted NFC tags. When the mobile phone is touched to an NFC tag, the
corresponding product is added to the basket.

The third use case enables tracking student transportation activities between school and home.
When a student gets on or off a school bus, they touch their NFC tag to the mobile phone in the
school bus and the mobile updates that student’s status, including the times when the student gets
on and off the bus.

NFC SMART POSTER USE CASE

Smart Poster, which makes a poster smart by integrating NFC tags to it, is one of the most popular
use cases of NFC reader/writer mode. One or more NFC tags may be placed onto the poster and
different data types may be saved into those NFC tags to trigger different services on the mobile
phone. For example, both an NFC tag containing a webpage URL and an NFC tag containing an
e-mail address can be placed onto a poster to trigger corresponding activities on the mobile.

In the design phase, it is very important to decide which applications can read the NFC tag. One
option is to allow all mobile phones to read the tag. In this case, when an NFC mobile scans the
Smart Poster, Android OS handles the data itself. Another option is to allow only one specifi c
application to handle the tag. The TNF and RTD of the NDEF record to be written to the tag need
to be selected based on the design criteria. If you use a TNF_WELL_KNOWN record, then all mobile
devices are able to handle the record. However, if you select a TNF_EXTERNAL_TYPE record, only a
specifi c application can use the data on the tag. In this Smart Poster application, the tags for three
subcases (webpage link, phone number, and e-mail) are programmed with TNF_WELL_KNOWN records,
whereas TNF_EXTERNAL_TYPE is used for SMS and geolocation scenarios with the external types of
nfclab.com:smsService and nfclab.com:geoService. Two different applications are developed
for the Smart Poster use case. The fi rst program is the writer application that enables coding of the
tags for fi ve different data types used in the use cases. The second one is the main program that
reads tags and performs action on the received data.

Smart Poster Tag Writer Application

This application is used to write the content of the NFC tags that will
be placed on Smart Poster. The main screen of the application is shown
in Figure 6-1, which includes the necessary buttons for the fi ve different
data types that will be used in this application.

The main activity of the application is NFCPosterActivity. GridLayout
is used as the activity’s layout. The layout includes fi ve buttons as menu
items, and another button to quit the application. onClick listeners
are implemented for each button using the setOnClickListener()
method. In each method except the “Quit” button, a new activity is
invoked using intents. The names of those activities are as follows:

FIGURE 6-1

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 151

 ➤ WriteUrlActivity

 ➤ WritePhoneActivity

 ➤ WriteSmsActivity

 ➤ WriteMapActivity

 ➤ WriteMailActivity

Writing a URL to an NFC Tag

When the “Write URL” button is clicked, WriteUrlActivity is called and the screen shown in
Figure 6-2 is displayed. This screen includes an EditText to input the webpage link, and a “Save
to Tag” button to save the text to the NFC tag. When the URL is written and the “Save to Tag”
button is clicked, a message is displayed indicating that the device is ready to save the data to the tag
(see Figure 6-3). As the mobile phone scans the tag, the data is saved to the tag and then the screen
shown in Figure 6-4 is displayed. If the write operation is unsuccessful for any reason, an error
message is displayed. Most of the unsuccessful operations happen when the tag’s size is not large
enough to save the data. See Figure 6-5 for the activity fl ow diagram of the WriteURLActivity.

FIGURE 6-2 FIGURE 6-3 FIGURE 6-4

FIGURE 6-5

User clicks

“Write URL”

button

Activity prepares

NDEF record and

creates NDEF

message

writeNdefMessa
geToTag()

method is invoked

writeNdefMessa
geToTag()

method handles

write operation

onNewIntent()
method is run

automatically when

the tag is

discovered

User clicks

“Save to

Tag” button

User scans

the tag

WriteUrl
Activity

is called

User inputs

Url

www.it-ebooks.info

http://www.it-ebooks.info/

152 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

In the activity, the user inputs the URL to the EditText and then clicks the “Save to Tag” button.
This button has a listener when it is clicked, which is implemented via the setOnClickListener()
method. When this button is clicked, the URL in EditText is saved to the urlAddress string and a
message is displayed telling the user to touch the tag. The code for this activity is as follows:

writeUrlButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 urlAddress = urlEditText.getText().toString();
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to write http://www."+urlAddress);
 }
});

The rest of the code is related to NFC technology. The foreground dispatch system is implemented
in this and other activities of this application. First you need to create an NfcAdapter object to get
the phone’s NFC adapter:

NfcAdapter mNfcAdapter = NfcAdapter.getDefaultAdapter(this);

As described in the previous chapter, in order to implement the foreground dispatch system, fi rst you
need to create a PendingIntent so that the activity can get the details of the tag:

PendingIntent mPendingIntent = PendingIntent.getActivity(this, 0,
 new Intent(this, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

Then you need to declare the intent fi lters to handle the tags and the tag types that your application
can handle:

IntentFilter ndef = new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
mFilters = new IntentFilter[] {ndef, };
mTechLists = new String[][] { new String[] { Ndef.class.getName() },
new String[] { NdefFormatable.class.getName() }};

Then to enable and disable the foreground dispatch on onPause() and onResume(), two methods
are implemented. The disableForegroundDispatch() method in onPause()disables the
foreground dispatch system temporarily, and the enableForegroundDispatch() method enables
the foreground dispatch system again with the given parameters of pending intent, intent fi lters, and
tag technology types:

@Override
public void onPause() {
 super.onPause();
 mNfcAdapter.disableForegroundDispatch(this);
}

@Override
public void onResume() {
 super.onResume();
 if (mNfcAdapter != null) {
 mNfcAdapter.enableForegroundDispatch(this, mPendingIntent,
 mFilters, mTechLists);
 }
}

In order to write the data to the tag when it is discovered, you need to implement the
onNewIntent() method, which is shown in the following code snippet:

www.it-ebooks.info

http://www."+urlAddress
http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 153

@Override
public void onNewIntent(Intent intent) {
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 byte[] uriField = urlAddress.getBytes(Charset.forName("US-ASCII"));
 byte[] payload = new byte[uriField.length + 1];
 payload[0] = 0x01;
 System.arraycopy(uriField, 0, payload, 1, uriField.length);
 NdefRecord URIRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_URI, new byte[0], payload);
 NdefMessage newMessage= new NdefMessage(new NdefRecord[] { URIRecord });
 writeNdefMessageToTag(newMessage, tag);
}

In this activity, you format the data that will be written to the tag as TNF_WELL_KNOWN with RTD_URI.
At fi rst, the properties of the tag are received from incoming intent and saved to a tag object. Then,
payload data is prepared by encoding the inputted data using the US-ASCII charset. Afterwards,
the header of the NDEF record is prepared according to the RTD_URI specifi cation. Since http://
www. will be used as the prefi x for the data, the fi rst byte of the header is stored as 0x01 (please see
Appendix A for prefi xes). Then the payload and the header are merged into a payload byte array
and an NDEF record is created from this byte array with the RTD_URI record type. Since you need
only one NDEF record for this tag, a new NDEF message is composed using this record by calling
the writeNdefMessageToTag() method. Please see Chapter 5, “NFC Programming: Reader/Writer
Mode,” for a detailed description of the writeNdefMessageToTag() method.

Writing a Phone Number to an NFC Tag

When the “Write Phone” button is clicked, the screen shown in Figure 6-6 is displayed. The
logical model is the same as the URL option. When the “Save to Tag” button is clicked, a message
is displayed to direct the user to touch the device to the tag (see Figure 6-7). Finally, when the
mobile device scans the tag and the data is successfully written to the tag, a confi rmation message
is displayed on the screen (see Figure 6-8). See Figure 6-9 for the activity fl ow diagram of the
WritePhoneActivity.

FIGURE 6-6 FIGURE 6-7 FIGURE 6-8

www.it-ebooks.info

http://www.it-ebooks.info/

154 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

The majority of the code to write a phone number to the NFC tag is the same as the code for writing
a URL to NFC tags. The only difference is in the onNewIntent() method, since the URI prefi x of
the NDEF message needs to be changed. Please remember that in order to write URLs to tags, you
used the prefi x 0x01 (http://www); however, in the case of phone numbers, you need to use the
tel: prefi x so that the fi rst byte needs to be created as 0x05 (please see Appendix A for prefi xes).
The complete onNewIntent() method is shown here:

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 byte[] uriField = urlAddress.getBytes(Charset.forName("US-ASCII"));
 byte[] payload = new byte[uriField.length + 1];
 payload[0] = 0x05;
 System.arraycopy(uriField, 0, payload, 1, uriField.length);
 NdefRecord URIRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_URI, new byte[0], payload);
 NdefMessage newMessage = new NdefMessage(new NdefRecord[] { URIRecord });
 writeNdefMessageToTag(newMessage, tag);
}

Writing an SMS Message to an NFC Tag

When the “Write SMS” button is clicked, the screen shown in Figure 6-10 is displayed. The
same logical model applies here, so that when the “Save to Tag” button is clicked and the mobile
device scans the tag, the data is written to the tag. Finally, a confi rmation or error message is
displayed on the screen (see Figure 6-11). See Figure 6-12 for the activity fl ow diagram of the
WriteSmsActivity.

FIGURE 6-9

User clicks

“Write Phone”

button

Activity prepares

NDEF record and

creates NDEF

message

writeNdefMessa
geToTag ()

method is invoked

writeNdefMessa
geToTag ()

method handles

write operation

onNewIntent()
method is run

automatically when

the tag is

discovered

User clicks

“Save to

Tag” button

User scans

the tag

WritePhone
Activity

is called

User inputs

Phone
Number

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 155

In order to write an SMS message to a tag, two different texts are needed: the phone number and
the SMS body. So, two EditText objects are created and used in this case. The smsNumber and
smsBody strings get the phone number and SMS body from the user. The complete code of the
setOnClickListener() method, including these strings, is as follows:

writeSmsButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View view) {
 String smsNumber = smsNumberEditText.getText().toString();
 String smsBody = smsBodyEditText.getText().toString();
 urlAddress = "sms:"+smsNumber+"?body="+smsBody;
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to share SMS\n" +
 "SMS adress: "+smsNumber+"\nSMS text: "+smsBody);
 }
});

In order to create a URI for an SMS that includes a phone number and text, you need to use the
following format:

sms:<SMS number>?body=<SMS body>

FIGURE 6-10 FIGURE 6-11

FIGURE 6-12

User clicks

“Write SMS”

button

Activity prepares

NDEF record and

creates NDEF

message

writeNdefMessa
geToTag()

method is invoked

writeNdefMessa
geToTag()

method handles

write operation

onNewIntent()
method is run

automatically when

the tag is

discovered

User clicks

“Save to

Tag” button

User scans

the tag

WriteSms
Activity

is called

User inputs Phone
Number and Message

www.it-ebooks.info

http://www.it-ebooks.info/

156 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

For example, a URI to constitute an SMS for the following information,

Phone number: +902167121460
SMS Body: Hello there

needs to be set as:

sms:+ 902167121460?body=Hello there

Thus, the urlAddress string given in the setOnClickListener method is set as follows:

urlAddress = "sms:"+smsNumber+"?body="+smsBody;

In this example, the TNF_EXTERNAL_TYPE record type needs to be used instead of TNF_WELL_
KNOWN, because the NFC Forum has not defi ned any URI identifi er code for sms: prefi x yet (see
Appendix A). Everything remains the same except the onNewIntent() method, as shown in the
following code. In this method, an NDEF record is created with a TNF_EXTERNAL_TYPE named
nfclab.com:smsService. Then an NDEF message is created from this NDEF record and the
writeNdefMessageToTag() method is called, which enables writing the message to NFC tags.

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 String externalType = "nfclab.com:smsService";
 NdefRecord extRecord = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(), new byte[0],
 urlAddress.getBytes());
 NdefMessage newMessage = new NdefMessage(new NdefRecord[] { extRecord});
 writeNdefMessageToTag(newMessage, tag);
}

Writing a Geolocation to an NFC Tag

When the “Write Map” button is clicked, the screen shown in Figure 6-13 is displayed. When the
geolocation data are successfully saved to the tag, the screen shown in Figure 6-14 is displayed. See
Figure 6-15 for the activity fl ow diagram of the WriteMapActivity.

FIGURE 6-13 FIGURE 6-14

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 157

In order to write a map location to a tag, two different texts are needed. The fi rst is latitude and
the second is longitude. latitude and longitude strings store the latitude and longitude
data inputted by the user via EditText objects. The following code shows the complete
setOnClickListener() method, which includes the strings:

writeMapButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View view) {
 String latitude = latitudeEditText.getText().toString();
 String longitude = longitudeEditText.getText().toString();
 urlAddress = "geo:" + latitude + "," + longitude;
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to share GEO location\n"+
 "Latitude: " + latitude + "\nLongitude: " + longitude);
 }
});

In order to create a URI for a geolocation that includes the phone number and text, you need to use
the following format:

"geo:"<lat>","<lon>"

For example, a URI to constitute a geo for the following information,

Latitude: 41.168898
Longitude: 29.564281

needs to be set as:

geo: 41.168898, 29.564281

Thus, the urlAddress string given in the setOnClickListener() method is set as follows:

urlAddress = "geo:" + latitude + "," + longtitude;

The TNF_EXTERNAL_TYPE record type is used in this example. Similar to the preceding SMS
example, this record type is used instead of TNF_WELL_KNOWN, because NFC Forum has not defi ned
the URI identifi er code for the geo: prefi x (see Appendix A). In the onNewIntent() method, an
NDEF record is created with TNF_EXTERNAL_TYPE and named as nfclab.com:geoService. Then
an NDEF message is created from this NDEF record, as shown in the following code:

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);

FIGURE 6-15

User clicks

“Write Map”

button

Activity prepares

NDEF record and

creates NDEF

message

writeNdefMessa
geToTag()

method is invoked

writeNdefMessa
geToTag()

method handles

write operation

onNewIntent()
method is run

automatically when

the tag is

discovered

User clicks

“Save to

Tag” button

User scans

the tag

WriteMap
Activity

is called

User inputs

Lattitude and

Longitude

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

158 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 String externalType = "nfclab.com:geoService";
 NdefRecord extRecord = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(), new byte[0],
 urlAddress.getBytes());
 NdefMessage newMessage = new NdefMessage(new NdefRecord[] { extRecord});
 writeNdefMessageToTag(newMessage, tag);
}

Writing an E-mail to an NFC Tag

When the “Write Mail” button is clicked, the screen shown in Figure 6-16 is displayed. When the
user inputs the e-mail address, subject, and body, and clicks the “Save to Tag” button, the
mobile waits for the tag. When the mobile device scans the tag, the data is written to the tag (see
Figure 6-17). See Figure 6-18 for the activity fl ow diagram of the WriteMailActivity.

FIGURE 6-16 FIGURE 6-17

FIGURE 6-18

User clicks

“Write Mail”

button

Activity prepares

NDEF record and

creates NDEF

message

writeNdefMessa
geToTag()

method is invoked

writeNdefMess
ageToTag()

method handles

write operation

onNewIntent()
method is run

automatically when

the tag is

discovered

User clicks

“Save to

Tag” button

User scans

the tag

WriteMail
Activity

is called

User inputs

Address, Subject,
and Body

Since you need to get three different texts from the user via EditText objects, you need to create
three different strings to handle the entered texts. mailAddress, mailSubject, and mailBody
strings get the address fi eld, subject fi eld, and body fi eld of the e-mail respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 159

In order to create a URI for an e-mail that includes its subject and body, you need to use the
following format:

mailto:<address>[?<header1>=<value1>[&<header2>=<value2>]]

For example, if you need to create a URI to constitute e-mail for the following information:

E-mail address (mailto): info@nfclab.com
Subject: NFC
Body: E-mail from NFC Tag

You need to set the e-mail URI as:

mailto: info@nfclab.com?subject=NFC&body=E-mail from NFC Tag

Thus, the urlAddress string given in the setOnClickListener() method is set as follows:

urlAddress = mailAddress + "?subject=" + mailSubject + "&body=" + mailBody;

Remember that the urlAddress string will be used in the NDEF record’s payload and the mailto:
prefi x will be set as the NDEF record’s fi rst byte as 0x06 (see Appendix A). So, you should not
include mailto: in the urlAddress string. The following code shows the setOnClickListener()
method:

writeMailButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View view) {
 String mailAddress = addressEditText.getText().toString();
 String mailSubject = subjectEditText.getText().toString();
 String mailBody = mailBodyEditText.getText().toString();
 urlAddress = mailAddress+"?subject=" +mailSubject+"&body="+mailBody;
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to share e-mail\n" +
 "Mail addres: " + mailAddress+
 "\nSubject: " + mailSubject + "\nBody: " + mailBody);
 }
});

The onNewIntent() method writes e-mail to the NFC tag in the same way as writing the URL and
SMS codes — the only difference is in the prefi x. The fi rst byte of the payload byte array is created as
0x06 for the mailto: prefi x. The following code shows the complete onNewIntent() method:

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 byte[] uriField = urlAddress.getBytes(Charset.forName("US-ASCII"));
 byte[] payload = new byte[uriField.length + 1];
 payload[0] = 0x06;
 System.arraycopy(uriField, 0, payload, 1, uriField.length);
 NdefRecord URIRecord = new NdefRecord(
 NdefRecord.TNF_WELL_KNOWN, NdefRecord.RTD_URI, new byte[0], payload);
 NdefMessage newMessage= new NdefMessage(new NdefRecord[] { URIRecord });
 writeNdefMessageToTag(newMessage, tag);
}

www.it-ebooks.info

mailto:info@nfclab.com
mailto:info@nfclab.com?subject=NFC&body=E-mail
http://www.it-ebooks.info/

160 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

Android Manifest

The Android manifest fi le does not include any NFC tag intent fi lters, because intent fi ltering is done
with a foreground dispatch system as described in Chapter 5. It includes an NFC permission to use
the NFC adapter and activities in order to run those activities. The manifest fi le is given in
Listing 6-1.

LISTING 6-1: NFC Poster Tag Writer Manifest File (NFCPosterTagWriter\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.nfcpostertagwriter"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".NFCPosterWriterActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity
 android:name="com.nfclab.nfcpostertagwriter.WriteUrlActivity">
 </activity>

 <activity
 android:name="com.nfclab.nfcpostertagwriter.WritePhoneActivity">
 </activity>

 <activity
 android:name="com.nfclab.nfcpostertagwriter.WriteSmsActivity">
 </activity>

 <activity
 android:name="com.nfclab.nfcpostertagwriter.WriteMapActivity">
 </activity>

 <activity
 android:name="com.nfclab.nfcpostertagwriter.WriteMailActivity">
 </activity>
 </application>

</manifest>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 161

Smart Poster Reader Application

The Smart Poster tag writer application demonstrated how NFC tags for smart posters are encoded.
Tag writing applications are used by the system developers before fi ring the projects; in fact, the
users of the projects will need the application that read the tags, not write to them. This section
explains the application that will be used by the end users who actually use the smart posters. The
application will be able to read any one of the fi ve different data types that are already encoded by
the writer application as described previously.

The initial screen of the application is shown in Figure 6-19. Since the
application will mostly be launched after NFC interaction, the main
screen does not contain much information. It only tells the user to touch
to an NFC tag if it is manually launched. Of course, you can create a
fancier main screen in your own applications.

The activities run by NFC interaction are as follows:

 ➤ UrlActivity

 ➤ PhoneActivity

 ➤ SmsActivity

 ➤ MapActivity

 ➤ MailActivity

Reading a URL from an NFC Tag

When a tag with TNF_WELL_KNOWN with RTD_URI data is discovered and its scheme is found to be
http, the application launches the UrlActivity class automatically and the screen shown in
Figure 6-20 is displayed on the mobile. When the “Open Link” button is clicked, the website
is opened in the default browser (see Figure 6-21). In order for the UrlActivity class to run
automatically, an intent fi lter in the related activity needs to be defi ned. See Figure 6-22 for the
activity fl ow diagram of the URLActivity.

FIGURE 6-19

FIGURE 6-20 FIGURE 6-21

www.it-ebooks.info

http://www.it-ebooks.info/

162 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

Intent Filter in Android Manifest when Reading a URL

Remember that the intent fi lter in the manifest fi le enables automatic execution of the related activity.
Since the URL tags are encoded with TNF_WELL_KNOWN with RTD_URI, the following intent fi lter needs
to be defi ned in the manifest fi le. The data element in the intent fi lter specifi es that all URLs with the
http scheme are fi ltered and when a related tag is discovered, the UrlActivity class is called:

<activity android:name=".UrlActivity">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="http"
 android:host="*"
 android:pathPrefix="" />
 </intent-filter>
</activity>

UrlActivity Class

Handling TNF_WELL_KNOWN with RTD_URI was described in Chapter 5. First, the intent is checked
to determine if there is an NFC interaction of NDEF_DISCOVERED. Then the getNdefMessages()
method is called, which will handle all the operations and return an NdefMessage array as a result.
Then, the payload and payload header are extracted from the NDEF record to process the data in
the tag:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
{
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i = 0; i<messages.length; i++)
 {
 for(int j = 0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload(),1,
 record.getPayload().length-1,
 Charset.forName("UTF-8"));
 messageText2.setText(payload);
 payloadHeader = record.getPayload()[0];
 }
 }
}

FIGURE 6-22

Registered intent

filters are checked
UrlActivity

class is launched

User scans the tag

containing URL

Android finds

corresponding

intent filter for

URLActivity
class

getNdef
Messages()

method handles

read operation

getNdef
Messages()

method is invoked

The URL is

displayed

in the

browser by

an intent

User clicks

“Open Link”

button

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 163

When the “Open Link” button is clicked, the onClickListener() method is invoked as shown in
the following code. The method checks the payload header again and if the header is 0x01
(http://www.), a new intent is created to open the website:

urlButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View v) {
 if(payloadHeader == 0x01)
 {
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse("http://www."+payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
 }
});

Reading a Phone Number from an NFC Tag

When RTD_URI data is discovered in the tag and its scheme is tel, the PhoneActivity class is
launched and the screen shown in Figure 6-23 is displayed. When the “Call Number” button is
clicked, the phone number is processed with an intent for the mobile phone to call (see Figure 6-24).
The intent fi lter defi ned in the manifest fi le enables the PhoneActivity class to launch automatically
when the tel scheme is discovered in the tag. See Figure 6-25 for the activity fl ow diagram of the
PhoneActivity.

FIGURE 6-23 FIGURE 6-24

www.it-ebooks.info

http://www.it-ebooks.info/

164 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

Intent Filter in Android Manifest when Reading a Phone Number

Since the tags for phone numbers are encoded with TNF_WELL_KNOWN with RTD_URI data type as
described in previous sections, the following intent fi lter needs to be defi ned in the manifest fi le in
order to fi lter the URIs with the tel scheme. In this way, as a corresponding tag is discovered, the
PhoneActivity class is invoked:

<activity android:name=".PhoneActivity">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="tel" />
 </intent-filter>
</activity>

PhoneActivity Class

Earlier in this chapter, you used the same data type as used for URLs (TNF_WELL_KNOWN with
RTD_URI) in order to fi lter phone numbers in the tags. So, most of the code for the PhoneActivity
class is similar to the code for the UrlActivity class. The difference is in the onClickListener()
method, which creates the new intent when the “Call Number” button is clicked to dial the
discovered phone number:

phoneButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View v) {
 if(payloadHeader == 0x05)
 {
 Intent data = new Intent();
 data.setAction(Intent.ACTION_DIAL);
 data.setData(Uri.parse("tel://" + payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
 }
});

FIGURE 6-25

Registered intent

filters are checked
PhoneActivity
class is launched

User scans the tag

containing phone

number

Android finds

corresponding

intent filter for

PhoneActivity
class

getNdef
Messages()

method handles

read operation

getNdef
Messages()

method is invoked

The phone

number is

processed by

an intent

to call

User clicks

“Call

Number”

button

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 165

Reading an SMS from an NFC Tag

When a TNF_EXTERNAL_TYPE record with the external type of nfclab.com:smsService is
discovered in the tag, the SmsActivity class is invoked. When the activity is fi rst executed, the
screen shown in Figure 6-26 is displayed. If the user clicks the “Send SMS” button, the Android
SMS application is run by an intent and the received data are passed to the SMS application. This
time the user sees a screen similar to the one in Figure 6-27. See Figure 6-28 for the activity fl ow
diagram of the SmsActivity.

FIGURE 6-26 FIGURE 6-27

FIGURE 6-28

Registered intent

filters are checked

SmsActivity
class

is launched

User scans the tag

containing an SMS

Android finds

corresponding

intent filter for

SmsActivity
class

getNdef
Messages()

method handles

read operation

getNdef
Messages()

method is invoked

The SMS is

sent to the

SMS application

by an intent

User clicks

“Send SMS”

button

Intent Filter in Android Manifest when Reading an SMS

Remember that the tags for SMS messages are coded with TNF_EXTERNAL_TYPE. So, the following
intent fi lter needs to be defi ned in the manifest fi le to invoke the activity when the external type of
nfclab.com:smsService is discovered inside the NDEF record:

<activity android:name=".SmsActivity">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

166 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:smsService"/>
 </intent-filter>
</activity>

SmsActivity Class

Reading tags with TNF_EXTERNAL_TYPE was described in Chapter 5. The following code processes
the NDEF message and receives the payload data:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
{
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++)
 {
 for(int j=0;j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload());
 messageText2.setText(payload);
 payloadHeader = record.getPayload()[0];
 }
 }
}

In order to send SMS with the payload, intents need to be used as shown in the following code.
The onClickListener() method creates the new intent when the “Send SMS” button is clicked to
launch the Android SMS application:

smsButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View v) {
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse(payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
});

Reading a Geolocation from an NFC Tag

When a TNF_EXTERNAL_TYPE record with the external type of nfclab.com:geoService is
discovered in the tag, the MapActivity class is launched. When the activity is fi rst run, the screen
shown in Figure 6-29 is displayed. If the user clicks the “Display on Map” button, the default
map application of Android is launched by an intent and the discovered data are passed to
the application in order to show the location on the map (see Figure 6-30). The manifest fi le
with the intent fi lter enables the MapActivity class to launch automatically when the external type
of the nfclab.com:geoService scheme is discovered. See Figure 6-31 for the activity fl ow
diagram of the MapActivity.

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

NFC Smart Poster Use Case ❘ 167

Intent Filter in Android Manifest when Reading a Geolocation

The tags for geolocations are coded with TNF_EXTERNAL_TYPE as described earlier. Therefore, the
following intent fi lter needs to be defi ned in the manifest fi le to invoke the MapActivity class when
the external type of nfclab.com:geoService is discovered inside the NDEF record:

<activity android:name=".MapActivity">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:geoService"/>
 </intent-filter>
</activity>

MapActivity Class

Earlier in this chapter, you used the same data type as used for SMS messages (TNF_EXTERNAL_TYPE)
in order to fi lter geolocations in the tags. Thus, most of the code is similar to the SmsActivity class.

FIGURE 6-29 FIGURE 6-30

FIGURE 6-31

Registered intent

filters are checked

MapActivity
class

is launched

User scans the tag

containing a

geolocation

Android finds

corresponding

intent filter for

MapActivity
class

getNdef
Messages()

method handles

read operation

getNdef
Messages()

method is invoked

Geolocation is

sent to the map

application

by an intent

User clicks

“Display on

Map” button

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

168 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

As shown in the following code, only some changes are made in the onClickListener() method to
create a new intent to display the location on a map when the “Display on Map” button is clicked:

mapButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View v) {
 Intent data = new Intent();
 data.setData(Uri.parse(payload));
 data.setAction(Intent.ACTION_VIEW);
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
});

Reading an E-mail from an NFC Tag

When an RTD_URI is discovered with a data scheme of mailto, the MailActivity class is invoked.
Then, the screen shown in Figure 6-32 is activated. When the user clicks the “Send Mail” button,
the e-mail data are passed to the default e-mail application (see Figure 6-33). Again, the manifest
fi le with the intent fi lter enables the MailActivity class to launch automatically when the mailto
scheme is discovered in the tag. See Figure 6-34 for the activity fl ow diagram of the MapActivity.

FIGURE 6-32 FIGURE 6-33

FIGURE 6-34

Registered intent

filters are checked

MapActivity
class

is launched

User scans the tag

containing a

mail address

Android finds

corresponding

intent filter for

MapActivity
class

getNdef
Messages()

method handles

read operation

getNdef
Messages()

method is invoked

Mail data is sent

 to the mail

application

by an intent

User clicks

“Send Mail”

button

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Shopping Use Case ❘ 169

Intent Filter in Android Manifest when Reading an E-mail

The tags encoded for e-mails hold the data of TNF_WELL_KNOWN with RTD_URI. Also the following
intent fi lter should be defi ned in the manifest fi le. In this way, when a tag with an NDEF message
is discovered and the fi rst NDEF record’s URI scheme is mailto, the MailActivity class is run
automatically:

<activity
 android:name=".MailActivity">
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="mailto" />
 </intent-filter>
</activity>

MailActivity Class

Earlier in this chapter, you used the same data type with the UrlActivity and PhoneActivity
classes (TNF_WELL_KNOWN with RTD_URI) in order to fi lter e-mails in the tags. So, most of the code
for the MailActivity class is similar to the code for the UrlActivity and PhoneActivity classes.
As shown in the following code, you only need to make some changes in the onClickListener()
method to create a new intent to send e-mail when the “Send Mail” button is clicked
(see Figure 6-34):

mailButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View v) {
 if(payloadHeader == 0x06)
 {
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse("mailto:" + payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
 }
});

NFC SHOPPING USE CASE

The NFC shopping use case enables remote shopping by touching tags of the products. Tags can be
placed onto the package of each product or on fl iers promoting products.

When the application is launched, the main screen directs the user to touch to an NFC tag to
read the product data (see Figure 6-35). As the mobile is touched to the tag, the product data is
transferred to the mobile and the user is asked to specify a quantity (see Figure 6-36). After the user
inputs the quantity and clicks the “Add to Basket” button, the product, together with the requested
quantity, is added to the basket.

www.it-ebooks.info

http://www.it-ebooks.info/

170 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

When the “Show Basket” button is clicked, all products in the basket
are listed on the screen (see Figure 6-37). After all the required products
have been added to the basket, the user can fi nalize their shopping and
order the contents of the basket by clicking the “Order Basket” button.

The data in the tags are encoded with a TNF_EXTERNAL_TYPE record with
the external type of nfclab.com:shopping. Both the writer and reader
applications are programmed as described in the following sections.

NFC Shopping Tag Writer Application

The NFC shopping application is a proprietary application for markets
and other shopping centers. Therefore, only the corresponding reader
application needs to be able to process the data in tags. When well-
known data types are used, many applications can process the data. So,
in order to create NDEF records, a TNF_EXTERNAL_TYPE record with a
special external type, nfclab.com:shopping, is used.

The main activity of the application includes three EditText objects: item ID, item name, and item
price (see Figure 6-38). When the fi elds are fi lled with the required data and the “Save to
Tag” button is clicked, the mobile device waits for an NFC tag to write the NDEF message (see
Figure 6-39). When the tag is discovered in proximity, the NDEF message is written to the tag
(see Figure 6-40). See Figure 6-41 for the activity fl ow diagram of the NFC shopping tag writer
application.

FIGURE 6-35 FIGURE 6-36

FIGURE 6-37

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

NFC Shopping Use Case ❘ 171

When the “Save to Tag” button is clicked, the onClickListener() method of the activity is
invoked. In this method, the values in the EditText object are saved to three different strings, and a
message is displayed instructing the user to touch to an NFC tag as shown in the following code:

writeItemButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 itemId = itemIdEditText.getText().toString();
 itemName = itemNameEditText.getText().toString();
 itemPrice = itemPriceEditText.getText().toString();
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to write \n");
 messageText.append("Item Id: "+ itemId + "\n" +
 "Item Name: " + itemName + "\nItem Price: " + itemPrice);
 }
});

The application is implemented with the foreground tag dispatch system. As explained in the
“Foreground Dispatch System” section in Chapter 5, when a desired tag is discovered in proximity,
the onNewIntent() method is invoked. In order to save three different values to one NDEF record,
these values are merged to one string named payload, and they are delimited with a colon in order

FIGURE 6-38 FIGURE 6-39 FIGURE 6-40

FIGURE 6-41

User opens NFC

Shopping Writer

Application

onNewIntent()
method is run

automatically when

the tag is discovered

Activity prepares

NDEF record and

creates NDEF

message

writeNdefmess
ageToTag()

method handles

write operation

writeNdefMessa
geToTag()

method is invoked

User clicks “ Save

to Tag” button

User scans the

tag

User inputs Item
Id,Item Name

and Item Price

www.it-ebooks.info

http://www.it-ebooks.info/

172 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

to split them easily after reading the tag backwards. As an alternative, you may save each value to
a separate NDEF record; however, this time the size of the NDEF message will grow unnecessarily.
After creating the payload string, an NDEF record is created with the TNF_EXTERNAL_TYPE record
of an nfclab.com:shopping external type. Finally, the tag and the NDEF message are sent to the
writeNdefMessageToTag() method, which writes the NDEF message to the tag. The related code
part is shown here:

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 String externalType = "nfclab.com:shopping";
 String payload = itemId+":"+itemName+":"+itemPrice;
 NdefRecord extRecord1 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(), new byte[0],
 payload.getBytes());
 NdefMessage newMessage = new NdefMessage(new NdefRecord[] { extRecord1});
 writeNdefMessageToTag(newMessage, tag);
}

NFC Shopping Main Application

The tag writer application demonstrated how NFC tags are encoded for the NFC shopping case.
This section describes how the main application will be used by the end users.

Five classes are created for the application, and three of them are activities:

 ➤ NFCShoppingActivity.java

 ➤ ShowBasketActivity.java

 ➤ OrderActivity.java

 ➤ Item.java

 ➤ Basket.java

Manifest File

The manifest fi le includes NFC permission, intent-filter to fi lter corresponding NFC tags,
and activities. Since the tags are encoded with the TNF_EXTERNAL_TYPE record with the external
type of nfclab.com:shopping, the related intent fi lter is defi ned in the manifest fi le for the
NFCShoppingActivity class. Listing 6-2 gives the content of the manifest fi le.

LISTING 6-2: NFC Shopping Tag Writer Manifest File (NFCShoppingTagWriter\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.nfcshopping"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk android:minSdkVersion="14" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

NFC Shopping Use Case ❘ 173

 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name_shopping" >
 <activity
 android:name=".NFCShoppingActivity"
 android:label="@string/app_name_shopping" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:shopping"/>
 </intent-filter>
 </activity>
 <activity android:name=".ShowBasketActivity"> </activity>
 <activity android:name=".OrderActivity"> </activity>
 </application>

</manifest>

NFCShoppingActivity Class

When the mobile is touched to the corresponding NFC tag, the following code is run:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
{
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++)
 {
 for(int j = 0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload(), 0, record.getPayload().length,
 Charset.forName("UTF-8"));
 String delimiter = ":";
 String[] temp = payload.split(delimiter);
 itemId = temp[0];
 itemName = temp[1];
 itemPrice = temp[2];
 nameTextView.setText(itemName);
 priceTextView.setText(itemPrice);
 messageText.setText("");
 }
 }
}

First, the intent is checked to see if there is an NFC interaction of NDEF_DISCOVERED. Then the
getNdefMessages() method is called to receive the NDEF message from the tag and the payload
and payload header are extracted from the NDEF record to process the data in the tag. Afterwards,

www.it-ebooks.info

http://www.it-ebooks.info/

174 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

the payload needs to be processed further, because there are three different data (item ID, item
name, and item price) in the tag, separated by a colon (:) delimiter. So, the related method is called
to split the payload to gather three different data, which are item ID, item name, and item price.
Now all the user needs to do is enter the quantity and add the product to the basket. When the user
clicks the “Add to Basket” button, the Basket.add(name, price, quantity) method is invoked.
Please see Figure 6-42 for the activity fl ow diagram of the NFC shopping application.

FIGURE 6-42

User starts NFC

Shopping

application

User scans the

tag containing

item information

Android finds

corresponding

intent filter

getNdefMessa
ges()

method is invoked

Registered intent

filters are checked

NFCShopping
Activity class is

launched

User enters the

quantity and clicks

“Add to Basket”

button

The product

is added to the

basket

ShowBasketActivity.java

The ShowBasketActivity class consists mainly of a TextView item named items and three
buttons: orderButton, emptyButton, and exitButton. items is used to display the items within
the basket; orderButton is used to trigger ordering the items of the basket; emptyButton is used to
trigger clearing the content of the basket; and exitButton is used to return to the previous activity.

When orderButton is clicked, the following code will create an instance of the OrderActivity
class, and cause the onCreate() method of the OrderActivity class to be executed:

orderButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View view) {
 Intent myIntent = new Intent(view.getContext(), OrderActivity.class);
 startActivityForResult(myIntent, 0);
 }
});

When emptyButton is clicked, the Basket.empty() method will be executed, which will
immediately clear the contents of the basket. When exitButton is clicked, the finish() method
will be invoked.

OrderActivity.java

Remember that the OrderActivity class is triggered when orderButton in the
ShowBasketActivity class is clicked. The activity should send the order in the basket to the market
or shopping center; however, the implementation of this is beyond the scope of this book and is left
to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Student Transportation Tracking Use Case ❘ 175

Item.java

The Item class is used to defi ne the item to be manipulated by the Basket class. This contains id,
name, price, and the quantity as the class attributes. The class also contains the required getter
and setter methods.

Basket.java

The Basket class manipulates the basket. It mainly contains an add() method to add an item, a
total() method to calculate the cost of the items in the basket, and an empty() method to empty
the basket.

STUDENT TRANSPORTATION TRACKING USE CASE

This use case enables tracking the students’ transportation activity from home to school and from
school to home. In order to run the application, each student needs to have an NFC tag that will be
encoded to contain the ID of that student. It is assumed that, inside the school bus, there is an NFC-
enabled mobile phone, possibly owned by the driver that reads the tags of the students. When a
student gets onto the bus, they touch their tag to the mobile and the mobile saves the getting-on time
(see Figure 6-43); when that student gets off from the bus, they again touch their tag to the mobile
and this time the mobile saves the getting-off time (see Figure 6-44).

FIGURE 6-43 FIGURE 6-44

The application can also be extended to send the getting-on and getting-off times to a server online,
so that the students’ parents can see the information via a website or mobile application that is
integrated to the system.

The data in the tags are encoded with a TNF_EXTERNAL_TYPE record with the external type of
nfclab.com:transport. Both the writer and reader applications are described in the following
sections.

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

176 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

Student Tracking Tag Writer Application

The student tracking application is a proprietary application that is in some ways similar to NFC
shopping. Therefore, a TNF_EXTERNAL_TYPE record with a special external type is used.

The writer application includes an activity to write the students’ data to tags. Two EditText objects
are included for the student ID and student name. When a student’s data are inputted and the “Save
to Tag” button is clicked, the onClickListener() method is invoked. Inputted values are saved to
two different strings and a message is displayed to the user that directs them to touch to an NFC tag
as shown in the following code:

writeStudentButton.setOnClickListener(new android.view.View.OnClickListener() {
 public void onClick(View view) {
 studentId = studentIdEditText.getText().toString();
 studentName = studentNameEditText.getText().toString();
 TextView messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Touch NFC Tag to write \n");
 messageText.append("Student id:" + studentId +
 "\nStudent Name: " + studentName);
 }
});

When the tag is discovered in proximity, the prepared NDEF message is written to the tag
(see Figure 6-45). Please see Figure 6-46 for the activity fl ow diagram of the tag writer
application.

FIGURE 6-45 FIGURE 6-46

User opens
Student Tracking

application

onNewIntent()
method is run

automatically when
the tag is discovered

Activity prepares
NDEF record and

creates NDEF
message

writeNdef
MessageToTag()
method is invoked

writeNdef
MessageToTag()

method handles
write operation

User inputs
student Id and
student Name

User clicks “Save
to Tag” button

User scans the tag

In the onNewIntent() method, the student ID and student name are merged to form a string
named payload and separated with a colon. The colon will be used as a delimiter to split them in
the reading stage. Then a new NDEF record is prepared with the payload and the external type of
nfclab.com:transport. Since there is only one NDEF record to be saved to the tag, a new NDEF
message is created from this NDEF record and the writeNdefMessageToTag() method is invoked
using the necessary parameters to write the NDEF message to the tag. The related code is
shown here:

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

Student Transportation Tracking Use Case ❘ 177

@Override
public void onNewIntent(Intent intent) {
 Log.i("Foreground dispatch", "Discovered tag with intent: " + intent);
 Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
 String externalType = "nfclab.com:transport";
 String payload = studentId + ":" + studentName;
 NdefRecord extRecord1 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(), new byte[0],
 payload.getBytes());
 NdefMessage newMessage = new NdefMessage(new NdefRecord[] { extRecord1});
 writeNdefMessageToTag(newMessage, tag);
}

Student Tracking Main Application

Within the application, a manifest fi le and the following four Java classes are created:

 ➤ TransportationActivity.java

 ➤ WebServiceActivity.java

 ➤ Group.java

 ➤ Student.java

Manifest File

The manifest fi le includes the activities, permission to use NFC adapter, and intent-filter to
fi lter NFC tags with an nfclab.com:transport external type. The content of the manifest fi le is
given in Listing 6-3.

LISTING 6-3: NFC Shopping Tag Writer Manifest File (NFCStudentTrackingTagWriter\

AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.transportation"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name_transportation" >
 <activity
 android:name=".TransportationActivity"
 android:label="@string/app_name_transportation" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>

continues

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://nfclab.com
http://www.it-ebooks.info/

178 ❘ CHAPTER 6 READER/WRITER MODE APPLICATIONS

 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:transport"/>
 </intent-filter>
 </activity>
 <activity android:name=".WebServiceActivity"> </activity>
 </application>

</manifest>

TransportationActivity Class

When a student touches their tag to the mobile phone, the data in the tag is transferred to the
mobile. After the data is read, the string is split into two parts by identifying the colon, and then the
student ID and student name are saved to two different strings as shown in the following code:

if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
{
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++)
 {
 for(int j=0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload());
 String delimiter = ":";
 String[] temp = payload.split(delimiter);
 studentId = temp[0];
 studentName = temp[1];
 }
 }
}

Remember also here that the application on the mobile phone keeps a list of the students on the
transportation service. If the student is getting on the service, the application adds the student
information to the list together with their getting-on time. When the same student gets off the
service, the mobile reads the student information from the tag for the second time, then fi nds that
student’s information in the existing student list, and updates the getting-off time. Please see
Figure 6-47 for the activity fl ow diagram of the application.

LISTING 6-3 (continued)

FIGURE 6-47

User starts

Student Tracking

application

Registered intent

filters are checked

User scans the

tag containing

student

information

Android finds

corresponding

intent filter

getNdefMessages()
method is invoked

Transportation
Activity

class is launched
Student is added

to the list with the

get-on time, or the

get-off time is

updated in the list

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 179

WebServiceActivity.java

The web service activity aims to upload the activity information of the students to a web server. This
way, parents who have the appropriate web or mobile interface will be able to track the activities of
their children. Writing source code for this web service activity is beyond the scope of this book, but
a competent software developer can easily create this code.

Group.java

This class basically maintains the list of students who are on the service bus, specifi cally their
getting-on and getting-off activities. It internally uses an ArrayList, called students. It reads
the student data that are processed and searches for the student in the currently existing list. If the
student is not on the list, the application adds the student information to the list, together with their
getting-on time. If the student is already in the list, the getting-off time is updated in the student’s
record.

Student.java

This class consists of the Student type declaration and its setter and getter methods. It is
instantiated by Group.java.

SUMMARY

In this chapter, you saw three different use cases in reader/writer mode. After reading this chapter,
you can implement many more additional cases, and many innovative ways to use this mode.

In the Smart Poster use case, the webpage, e-mail, and phone number scenarios are implemented
with TNF_WELL_KNOWN with the RTD_URI record type. However, the SMS and geolocation scenarios
are implemented with the TNF_EXTERNAL_TYPE record type, because NFC Forum has not yet defi ned
any URI identifi er code for those URIs.

The second use case is an NFC-based remote shopping application that enables mobile shopping
using NFC technology. When the mobile phone is touched to an NFC tag, the corresponding
product is added to the basket. The case is implemented using the TNF_EXTERNAL_TYPE record type
since the application needs to be a proprietary application and other applications should not handle
the corresponding tags.

The third use case tracks students’ transportation activity between school and home and vice versa.
When a student gets on or off the bus, they touch their NFC tag to the mobile phone in the bus and
their transportation status is updated. The case is implemented with the TNF_EXTERNAL_TYPE record
type since the application needs to be a proprietary application like the shopping application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Programming:
Peer-to-Peer Mode

WHAT’S IN THIS CHAPTER?

 ➤ Introduction to peer-to-peer mode programming

 ➤ How to perform a peer-to-peer transaction

 ➤ Beaming NDEF messages with the

setNdefPushMessageCallback() method

 ➤ Beaming NDEF messages with the setNdefPushMessage() method

 ➤ Beaming NDEF messages with the enableForegroundNdefPush()

method

 ➤ Receiving beams

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118380096 on the Download Code tab. The code is in the Chapter 7 download
and individually named according to the names throughout the chapter.

In this chapter, peer-to-peer mode application programming is demonstrated. In Android
OS, sending data from one mobile to another via peer-to-peer mode is called a beam.
An application that beams can be implemented in two different ways: using either the
setNdefPushMessageCallback() method or the setNdefPushMessage() method. This
chapter describes and gives examples of the properties and implementation of both of these.
It also describes the implementation of receiving beams, which is the same in both methods.

7

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://wrox.com
http://www.it-ebooks.info/

182 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

These two methods can be used in devices that have an API level of 14 or higher. Older devices that
have an API level of 10 to 13 can use foreground NDEF Push to beam messages as well. You should
keep in mind that this methodology is deprecated starting from API level 14, hence you shouldn’t
use it if you don’t have to. Moreover, in earlier versions of API level 9 and lower, sending beams
using peer-to-peer mode is not possible.

Peer-to-peer mode has some common usages with reader/writer mode. These usages are also
described in this chapter.

PERFORMING PEER-TO-PEER TRANSACTIONS

As described in Chapter 1, “Overview of Near Field Communication,” peer-to-peer mode allows
two mobile phones to exchange data when they touch each other. In order to beam between two
mobile devices, the following preconditions must be met:

 ➤ Android Beam from the settings of Android OS must be turned on in both mobile phones.

 ➤ The application on the mobile phone that wants to beam must be running in the
foreground.

 ➤ The screen of the mobile phone that will receive the beam must not be locked.

 ➤ When two mobile phones touch each other, the Touch to Beam
UI is displayed in both mobile phones (see Figure 7-1). The user
must touch to the screen of the mobile phone that will beam.

In Android, you can beam NDEF messages to other mobile devices. In
order to beam an NDEF message, you should fi rst create and prepare it
as described in Chapter 5, “NFC Programming: Reader/Writer Mode.”
It is important to note that if your activity does not implement Android
Beam, the activity will still beam to the target device but this time the
activity will beam a default NDEF message, which is the URI of your
application. If the target device’s Android API level is between 9 and
13, the device will notify the user that the target application is not
present. If its API level is 14 or higher, then the device will try to locate
the application in Google Play in order to download and install it. With
this functionality, users may also share the application with other users
without the need to search for it on Google Play, which is valid for API
level 14 or higher. Let’s assume that you have opened Google Maps from
your device and touched another mobile. The Touch to Beam UI will be displayed on your mobile’s
screen. If you touch to the screen of your mobile, the target mobile automatically opens Google
Maps. If Google Maps is not installed on the target mobile, it will open Google Play to download it.

Another important note is that when you run an activity that implements Android Beam, the tag
intent dispatch system is disabled if the activity is in the foreground. Thus, Android cannot scan any
tag. If you wish to enable tag scanning as well, you must also implement foreground tag dispatching
inside the activity. Please see Chapter 5 for the foreground dispatch system.

FIGURE 7-1

www.it-ebooks.info

http://www.it-ebooks.info/

Beaming NDEF Messages ❘ 183

In order to beam to another mobile, you need to encapsulate whatever data you want to exchange
(such as TNF_MIME_MEDIA, TNF_WELL_KNOWN with RTD_URI, an image fi le, and so on) to an
NdefMessage object. The mobile device that receives the beam must support Android’s NDEF Push
Protocol or NFC Forum’s Simple NDEF Exchange Protocol (SNEP). Also note that
NDEF Push Protocol is Android-specifi c so it is supported only by Android. However, SNEP is
also supported by other mobile operating systems since it is an NFC Forum specifi cation. If your
Android mobile device has NFC capability, both protocols are generally supported. NDEF Push
Protocol is required for devices up to API level 13 whereas NDEF Push Protocol and Simple NDEF
Exchange Protocol are both required on the devices that have an API level of 14 and later.

You can gather the information from your activity if Android Beam is enabled from the settings.
Note that if NFC is enabled for a device, it doesn’t mean that Android Beam is also enabled. The
method isNdefPushEnabled() is added in API level 14 and returns true if both NFC and Android
Beam features are enabled. Also note that, if Android Beam is disabled for a device, it can still
receive beams but cannot send any. Here is an example of the code:

if (!mNfcAdapter.isEnabled()) {
 startActivity(new Intent(Settings.ACTION_NFC_SETTINGS));
} else if (!mNfcAdapter.isNdefPushEnabled()) {
 startActivity(new Intent(Settings.ACTION_NFCSHARING_SETTINGS));
}

BEAMING NDEF MESSAGES

You have already learned how to create an NDEF message in reader/writer mode. In order to beam
messages, you also need to create an NDEF message similarly. Hence, the steps to create NDEF
records and NDEF messages are the same as with reader/writer mode.

There are two options that you can use in order to enable Android Beam in your activity: you can
implement either the setNdefPushMessageCallback() method or the setNdefPushMessage()
method.

Beaming with setNdefPushMessageCallback()

In order to beam using the setNdefPushMessageCallback() method, you should follow these
steps:

 1. Implement CreateNdefMessageCallback in your activity.

 2. Call setNdefPushMessageCallback(NfcAdapter.CreateNdefMessageCallback
callback, Activity activity, Activity ... activities). When this method is
called, the activity accepts a callback and if a mobile device is discovered to beam the data,
the createNdefMessage(NfcEvent) method is invoked automatically.

 3. Inside the createNdefMessage(NfcEvent) method, create the NDEF message and return
it. This NDEF message will be beamed to the target device.

The setNdefPushMessageCallback() method dynamically generates NDEF messages. You
may call this method anywhere in your activity. The preferred option is to call in the activity’s
onCreate() method.

www.it-ebooks.info

http://www.it-ebooks.info/

184 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

When the target mobile phone is discovered, the createNdefMessage(NfcEvent) method is
invoked, which returns an NDEF message. The NDEF message that this method returns is sent
to the target mobile. During this time, the Touch to Beam UI is displayed on top of your activity,
so you should not get any input from the user in this method. You should only create the NDEF
message that you will send, and return it.

Beaming with setNdefPushMessage()

In order to beam using the setNdefPushMessage() method, follow these steps:

 1. Create an NDEF message.

 2. Call setNdefPushMessage (NdefMessage message, Activity activity, Activity ...
activities). When this method is called, the activity sets the received NdefMessage
parameter as an NDEF message to beam. When the target mobile is discovered, it beams this
message.

The setNdefPushMessage() method normally sets the NDEF message statically because it gets the
NDEF message as a parameter. However, based on your activity’s implementation, you may prefer
to use this method.

As with the setNdefPushMessageCallback() method, you can call this method at any time.

Common Notes

setNdefPushMessageCallback() has priority over setNdefPushMessage(). So if both are
implemented in the activity, setNdefPushMessageCallback() will take the priority and the activity
will use the callback.

If neither of these two methods has been implemented in your activity, then Android OS sends a
default NDEF message (the URI of your application), which opens the same application in the target
mobile device. If the application is not installed, the target mobile device opens the application page
on Google Play if the device’s API level is 14 or higher. If the device’s API level is between 9 and 13,
it notifi es the user that the target application is not present.

If a null NDEF message is set to beam, then NDEF Push will be disabled for the activity.

In order to prevent sending default NDEF messages for all activities of your application, you can
include the related meta-data element inside the application element as follows:

<application ...>
 <meta-data
 android:name="android.nfc.disable_beam_default"
 android:value="true" />
 </application>

www.it-ebooks.info

http://www.it-ebooks.info/

An Abstract Beam with setNdefPushMessageCallback() ❘ 185

RECEIVING BEAMS

In order to receive beams you should follow these steps:

 1. Implement the onNewIntent(Intent) method, and inside this method, call the
setIntent(Intent) method. Note that the onResume() method will generally be called
after the onNewIntent(Intent) method.

 2. In the onResume() method, check if the activity is started with a beam and invoke a method
to process the received NDEF message.

AN ABSTRACT BEAM WITH SETNDEFPUSHMESSAGECALLBACK()

In the code snippet below, an abstract example to send and receive Android Beam using the
setNdefPushMessageCallback() method is given:

public class PeertoPeerActivity extends Activity
 implements CreateNdefMessageCallback
{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 finish();
 return;
 }
 mNfcAdapter.setNdefPushMessageCallback(this, this);
 }

 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 //You will write codes to create Ndef message here.
 return message;
 }

 @Override
 public void onResume() {
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 //You will write codes to process incoming Ndef message.
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

186 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

First of all, you should implement CreateNdefMessageCallback in your activity and register
a callback using the setNdefPushMessageCallback(this, this) method. Then, you need to
implement the createNdefMessage(NfcEvent event) method in order to create the NDEF
message and return it. Remember that the createNdefMessage(NfcEvent event) method is called
automatically when the setNdefPushMessageCallback() method is implemented and a mobile
device is discovered to beam to.

On the other hand, in order to handle incoming beams, you need to implement three methods,
which are onResume(), onNewIntent(Intent intent), and processIntent(Intent intent).
The content of the fi rst two methods can be the same in every activity that handles incoming beams,
but the onNewIntent() method changes according to the activity since it will handle the incoming
NDEF message.

AN ABSTRACT BEAM WITH SETNDEFPUSHMESSAGE()

In the following code snippet, an abstract example to send and receive Android Beam using the
setNdefPushMessage() method is given. At the beginning, an NDEF message is created and then
the setNdefPushMessage(message, this) method is called. This way, when a mobile device
is discovered to beam the data, the NDEF message that is sent to the setNdefPushMessage()
method will be beamed to the target device. In order to handle incoming beams, the same methods
are used with the setNdefPushMessageCallback() example: onResume(), onNewIntent(Intent
intent), and processIntent(Intent intent).

public class PeertoPeerActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 finish();
 return;
 }
 //You will write codes to create Ndef message here.
 mNfcAdapter.setNdefPushMessage(message, this);
 }

 @Override
 public void onResume() {
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);

www.it-ebooks.info

http://www.it-ebooks.info/

An Example Beam Application using setNdefPushMessageCallback() ❘ 187

 }

 void processIntent(Intent intent) {
 //You will write codes to handle Ndef Message here.
 }
}

DECLARING INTENT FILTERS

In order for the application running in the target mobile phone to handle the incoming beam, you
need to use intent fi lters. Remember that intent fi lters could be declared by using either the tag intent
dispatch system or the foreground dispatch system in reader/writer mode. However, you cannot use
the foreground dispatch system in peer-to-peer mode. This means that you cannot declare any intent
fi lter inside the activity but need to declare your intent fi lters in the manifest fi le instead. In other
words, you need to use the tag intent dispatch system.

Please refer to Chapter 5 for information about the tag intent dispatch system and how intent fi lters
are declared in the manifest fi le.

USING ANDROID APPLICATION RECORDS
IN PEER-TO-PEER MODE

You have already learned what an Android Application Record (AAR) is, and how it can be used
in NDEF records. In peer-to-peer mode, you can also use AAR in order to guarantee to run your
application.

When a device receives a beam with an AAR in it, the AAR overrides the tag intent dispatch system;
then, the corresponding activity defi ned in AAR runs. In order to create an AAR, you should add it
to any place in your NdefMessage. However, you should not make it the fi rst NDEF record of the
NDEF message, unless the AAR is the only NDEF record in the message. This is because the fi rst
record of the NDEF message is used to determine the MIME type of the data in the tag. An example
usage of the AAR is:

NdefMessage message = new NdefMessage (new NdefRecord[] {
 record1,
 NdefRecord.createApplicationRecord("com.nfclab.peertoepeer")
});

Please refer to Chapter 5 for a detailed description of AARs.

AN EXAMPLE BEAM APPLICATION USING
SETNDEFPUSHMESSAGECALLBACK()

In this example, an NDEF message is created from a TNF_WELL_KNOWN with RTD_URI and is beamed
to another mobile using the setNdefPushMessageCallback() method. The complete code of the
example is given in Listing 7-1.

www.it-ebooks.info

http://www.it-ebooks.info/

188 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

LISTING 7-1: Activity of Peer to Peer Application with setNdefPushMessageCallback()

(PeertoPeer1\src\com\nfclab\peertopeer1\PeertoPeer1.java)

public class PeertoPeer1 extends Activity implements CreateNdefMessageCallback {
 NfcAdapter mNfcAdapter;
 private TextView messageText;
 private String payload = "";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 messageText = (TextView) this.findViewById(R.id.messageText);
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 messageText.setText("NFC apdater is not available");
 finish();
 return;
 }
 messageText.setText("Touch another mobile to beam 'nfclab.com'!!!");
 mNfcAdapter.setNdefPushMessageCallback(this, this);
 }

 @Override
 public NdefMessage createNdefMessage(NfcEvent event) {
 byte[] uriField = "nfclab.com".getBytes(Charset.forName("US-ASCII"));
 byte[] payload = new byte[uriField.length + 1];
 payload[0] = 0x01;
 System.arraycopy(uriField, 0, payload, 1, uriField.length);
 NdefRecord URIRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_URI,
 new byte[0], payload);
 NdefMessage message = new NdefMessage(new NdefRecord[] { URIRecord });
 return message;
 }

 @Override
 public void onResume() {
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++){
 for(int j=0; j<messages[0].getRecords().length; j++){
 NdefRecord record = messages[i].getRecords()[j];
 payload = new String(record.getPayload(),1,

www.it-ebooks.info

http://www.it-ebooks.info/

An Example Beam Application using setNdefPushMessageCallback() ❘ 189

 record.getPayload().length-1,
 Charset.forName("UTF-8"));
 messageText.setText(payload);
 }
 }
 LinearLayout.LayoutParams params = new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.WRAP_CONTENT,
 LinearLayout.LayoutParams.WRAP_CONTENT);
 Button button = new Button(this);
 this.addContentView(button, params);
 messageText.setText("");
 button.setText("Open Link: "+ payload);

 button.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View view)
 {
 Intent data = new Intent();
 data.setAction(Intent.ACTION_VIEW);
 data.setData(Uri.parse("http://www."+payload));
 try {
 startActivity(data);
 } catch (ActivityNotFoundException e) {
 return;
 }
 }
 });
 }

 NdefMessage[] getNdefMessages(Intent intent) {
 NdefMessage[] msgs = null;

 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction()))
 {
 Parcelable[] rawMsgs = intent.getParcelableArrayExtra(
 NfcAdapter.EXTRA_NDEF_MESSAGES);
 if (rawMsgs != null)
 {
 msgs = new NdefMessage[rawMsgs.length];
 for (int i=0; i < rawMsgs.length; i++) {
 msgs[i] = (NdefMessage) rawMsgs[i];
 }
 }else {
 byte[] empty = new byte[] {};
 NdefRecord record = new NdefRecord(NdefRecord.TNF_UNKNOWN,
 empty, empty, empty);
 NdefMessage msg = new NdefMessage(new NdefRecord[] { record });
 msgs = new NdefMessage[] { msg };
 }
 }else {
 Log.d("PeertoPeer1 ", "Unknown intent.");
 finish();
 }
 return msgs;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

190 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

At the beginning, the activity implements CreateNdefMessageCallback. In the onCreate()
method, the NFC adapter of the mobile is received by the NfcAdapter object and checked if the
adapter is available. Then the setNdefPushMessageCallback() method is called. At this stage, the
mobile waits to discover another mobile in order to beam to it (see Figure 7-2). When the mobile
phone is touched to another mobile to beam, the createNdefMessage() method is invoked. Inside
this method, an NDEF record of the TNF_WELL_KNOWN with RTD_URI type is created as shown in
Chapter 5. Then an NDEF message is created using this record type. Returning the created NDEF
message in the createNdefMessage() method enables the beaming of the message. At this point,
the Touch to Beam UI is displayed on the screen (see Figure 7-3).

FIGURE 7-2 FIGURE 7-3

FIGURE 7-4 FIGURE 7-5

The onResume() and onNewIntent() methods are used in a similar way to the abstract examples given
above. In the processIntent() method, fi rst the getNdefMessages() method is invoked to extract
the incoming NDEF message from the received intent. (The getNdefMessages() method is described
and used in Chapter 5.) Then the payload is extracted from the NDEF message. The rest of the code is
optional and can be personalized based on your requirements and design. In Listing 7-1, a new layout
view and button are added to the layout (see Figure 7-4). When the button is clicked, the URL in the
payload is displayed in a browser by creating an intent (see Figure 7-5).

www.it-ebooks.info

http://www.it-ebooks.info/

An Example Beam Application using setNdefPushMessage() ❘ 191

In Listing 7-2, the manifest fi le of the example is given. You can see that NFC permission is added to
the manifest fi le and an intent fi lter to fi lter RTD_URI data is also added to the activity.

LISTING 7-2: Manifest File of Peer-to-Peer Application with setNdefPushMessageCallback()

(PeertoPeer1\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.peertopeer1"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk android:minSdkVersion="15" />
 <uses-permission android:name="android.permission.NFC"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".PeertoPeer1"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <data android:scheme="http"
 android:host="*"
 android:pathPrefix="" />
 </intent-filter>
 </activity>
 </application>

</manifest>

AN EXAMPLE BEAM APPLICATION USING
SETNDEFPUSHMESSAGE()

In this example, an NDEF message is created from a TNF_WELL_KNOWN with RTD_TEXT type record
and is beamed to another mobile using the setNdefPushMessage() method. The complete code of
the example is given in Listing 7-3.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

192 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

LISTING 7-3: Activity of Peer-to-Peer Application with setNdefPushMessage() (PeertoPeer2\src\

com\nfclab\peertopeer2\PeertoPeer2.java)

public class PeertoPeer2 extends Activity {
 NfcAdapter mNfcAdapter;
 private TextView messageText;
 private String payload = "";
 private EditText inputEditText;
 byte statusByte;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 messageText = (TextView) this.findViewById(R.id.messageText);
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 messageText.setText("NFC apdater is not available");
 finish();
 return;
 }
 messageText.setText("Write some text to share");
 }

 public void onClickHandler(View view) {
 if(view.getId() == R.id.shareButton){
 inputEditText = (EditText)this.findViewById(R.id.inputEditText);
 String inputText = inputEditText.getText().toString();
 NdefMessage message=create_RTD_TEXT_NdefMessage(inputText);
 mNfcAdapter.setNdefPushMessage(message, this);
 Toast.makeText(this, "Touch another mobile to share the message",
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onResume() {
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++)
 {
 for(int j=0; j<messages[0].getRecords().length; j++)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

An Example Beam Application using setNdefPushMessage() ❘ 193

 NdefRecord record = messages[i].getRecords()[j];
 statusByte = record.getPayload()[0];
 int languageCodeLength= statusByte & 0x3F;
 int isUTF8 = statusByte-languageCodeLength;
 if(isUTF8 == 0x00)
 {
 payload = new String(
 record.getPayload(),1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-8"));
 }
 else if (isUTF8==-0x80)
 {
 payload = new String
 (record.getPayload(),
 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-16")
);
 }
 messageText.setText("Text received: "+ payload);
 }
 }
 }

 NdefMessage create_RTD_TEXT_NdefMessage(String inputText)
 {
 Locale locale = new Locale("en","US");
 byte[] langBytes = locale.getLanguage().getBytes(
 Charset.forName("US-ASCII"));
 boolean encodeInUtf8 = false;
 Charset utfEncoding = encodeInUtf8 ?
 Charset.forName("UTF-8"):Charset.forName("UTF-16");
 int utfBit = encodeInUtf8 ? 0 : (1 << 7);
 byte status = (byte) (utfBit + langBytes.length);
 byte[] textBytes = inputText.getBytes(utfEncoding);
 byte[] data = new byte[1 + langBytes.length + textBytes.length];
 data[0] = (byte) status;
 System.arraycopy(langBytes, 0, data, 1, langBytes.length);
 System.arraycopy(textBytes, 0, data, 1 + langBytes.length, textBytes.length);
 NdefRecord textRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_TEXT, new byte[0], data);
 NdefMessage message= new NdefMessage(new NdefRecord[] { textRecord});
 return message;
 }

 NdefMessage[] getNdefMessages(Intent intent)
 {
 NdefMessage[] msgs = null;
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction()))
 {
 Parcelable[]
 rawMsgs = intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
 if (rawMsgs != null)

continues

www.it-ebooks.info

http://www.it-ebooks.info/

194 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

 {
 msgs = new NdefMessage[rawMsgs.length];
 for (int i=0; i < rawMsgs.length; i++) {
 msgs[i] = (NdefMessage) rawMsgs[i];
 }
 } else {
 byte[] empty = new byte[] {};
 NdefRecord record = new NdefRecord(NdefRecord.TNF_UNKNOWN,
 empty, empty, empty);
 NdefMessage msg = new NdefMessage(new NdefRecord[] { record });
 msgs = new NdefMessage[] { msg };
 }
 } else {
 Log.d("Peer to Peer 2", "Unknown intent.");
 finish();
 }
 return msgs;
 }
}

As you can see in this code, the activity does not implement CreateNdefMessageCallback, since it
will not use the callback. As a result, the setNdefPushMessage() method is used but it is not called
in the onCreate() method since this method receives an NDEF message as a parameter. Instead, an
EditText object named inputEditText is created to get an input from the user, as can be seen in
the Listing 7-4 layout fi le (see also Figure 7-6).

LISTING 7-4: Layout File of Peer-to-Peer Application with setNdefPushMessageCallback()

(PeertoPeer2\res\layout\main.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:id="@+id/messageText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

 <EditText
 adroid:id="@+id/inputEditText"
 android:inputType="text"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:ems="10" >
 <requestFocus/>
 </EditText>

 <Button
 android:id="@+id/shareButton"

LISTING 7-3 (continued)

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

An Example Beam Application using setNdefPushMessage() ❘ 195

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/shareMessage"
 android:onClick="onClickHandler" />

</LinearLayout>

When the user inputs the text and clicks the “Share Message” button, the onClickHandler()
method is invoked. Inside this method, the inputted text is sent to the method create_RTD_TEXT_
NdefMessage() in order to create an NDEF message using the input. Then, setNdefPushMessage()
is called since there is an NDEF message that you may now share (see Figure 7-6). At this stage,
when the mobile phone discovers another mobile to beam to, the application tries to beam the
NDEF message and the Touch to Beam UI is displayed on the screen (see Figure 7-7).

FIGURE 7-6 FIGURE 7-7

Remember that if your mobile phone discovers another mobile phone to
beam to before you register the setNdefPushMessage() method, then it
will beam a default NDEF message (the URI of your application).

The create_RTD_TEXT_NdefMessage() method creates an NDEF
message based on the input text. (Creating RTD_TEXT is described in
Chapter 5.)

The onResume() and onNewIntent() methods are used in the same
fashion with the given abstract examples. As in the previous example,
in the processIntent() method, fi rst the getNdefMessages() method
is called to extract the incoming NDEF message from the intent. (Please
refer to Chapter 5 for detailed descriptions of the getNdefMessages()
method.) After getting the NDEF message, the text inside the RTD_TEXT
NDEF record is extracted. Afterwards, the text is displayed on the
screen (see Figure 7-8). (Chapter 5 also describes how to extract the text
from an RTD_TEXT NDEF record.)

FIGURE 7-8

www.it-ebooks.info

http://www.it-ebooks.info/

196 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

Finally, in order to add the required intent fi lter, the following code snippet is added to the manifest
fi le inside the <activity> … </activity> tags:

<intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="text/plain" />
</intent-filter>

BEAM SUPPORT FOR API LEVEL 10

The setNdefPushMessageCallback() and setNdefPushMessage() methods are available in
API level 14. In order to support older mobile devices that have an API level between 10 and 13,
foreground NDEF Push is available, which provides similar functionality. Please notice that these
APIs are deprecated and should not be used for devices with an API level of 14 and higher. The
usage of this method is similar to the setNdefPushMessage() method.

Beaming with enableForegroundNdefPush()

In order to beam using the enableForegroundNdefPush() method, follow these steps:

 1. Create an NDEF message that will be beamed.

 2. Call enableForegroundNdefPush (Activity activity, NdefMessage message). When
this method is called, it sets the received NdefMessage parameter as an NDEF message to
beam. As the target mobile is discovered, the message is beamed to it.

 3. Call disableForegroundNdefPush(Activity) in the onPause() method before the
activity ends.

 4. Call enableForegroundNdefPush (Activity activity, NdefMessage message) when
the activity resumes in the onPause() method.

An Example Beam Application Using
enableForegroundNdefPush()

You will now modify the previous example that shares TNF_WELL_KNOWN with RTD_TEXT using
setNdefPushMessage(). The complete code of the activity is given in Listing 7-5. The differences
from the previous example, as highlighted in Listing 7-5, are:

 1. Inside the onClickHandler() method, the enableForegroundNdefPush() method is called
instead of the setNdefPushMessage() method.

 2. The onPause() method is created and the disableForegroundNdefPush() method is
called.

 3. The content of the onResume() method is changed and the enableForegroundNdefPush()
method is called.

www.it-ebooks.info

http://www.it-ebooks.info/

Beam Support for API Level 10 ❘ 197

LISTING 7-5: Activity of Peer-to-Peer Application with enableForegroundNdefPush() (PeertoPeer3\

src\com\nfclab\peertopeer3\PeertoPeer3.java)

public class PeertoPeer3 extends Activity {
 NfcAdapter mNfcAdapter;
 private TextView messageText;
 private String payload = "";

 private EditText inputEditText;
 byte statusByte;
 private String inputText;
 private NdefMessage message;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 messageText = (TextView) this.findViewById(R.id.messageText);
 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);
 if (mNfcAdapter == null) {
 messageText.setText("NFC apdater is not available");
 finish();
 return;
 }
 messageText.setText("Write some text to share");
 }

 public void onClickHandler(View view) {
 if(view.getId() == R.id.shareButton)
 {
 inputEditText = (EditText)this.findViewById(R.id.inputEditText);
 inputText = inputEditText.getText().toString();
 message = create_RTD_TEXT_NdefMessage(inputText);
 mNfcAdapter.enableForegroundNdefPush(this, message);
 Toast.makeText(this, "Touch another mobile to share the message",
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onResume() {
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction())) {
 processIntent(getIntent());
 }
 else{
 mNfcAdapter.enableForegroundNdefPush(this,
 create_RTD_TEXT_NdefMessage(""));
 }
 }

 @Override
 public void onPause() {

continues

www.it-ebooks.info

http://www.it-ebooks.info/

198 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

 super.onPause();
 mNfcAdapter.disableForegroundNdefPush(this);
 }

 @Override
 public void onNewIntent(Intent intent) {
 setIntent(intent);
 }

 void processIntent(Intent intent) {
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++){
 for(int j=0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 statusByte = record.getPayload()[0];
 int languageCodeLength= statusByte & 0x3F;
 int isUTF8 = statusByte-languageCodeLength;
 if(isUTF8 == 0x00)
 {
 payload = new String(record.getPayload(),
 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-8"));
 }
 else if (isUTF8 == -0x80)
 {
 payload = new String(record.getPayload(),
 1+languageCodeLength,
 record.getPayload().length-1-languageCodeLength,
 Charset.forName("UTF-16"));
 }
 messageText.setText("Text received: " + payload);
 }
 }

 NdefMessage create_RTD_TEXT_NdefMessage(String inputText)
 {
 Locale locale = new Locale("en","US");
 byte[] langBytes = locale.getLanguage().getBytes(
 Charset.forName("US-ASCII"));
 boolean encodeInUtf8 = false;
 Charset utfEncoding = encodeInUtf8 ?
 Charset.forName("UTF-8") : Charset.forName("UTF-16");
 int utfBit = encodeInUtf8 ? 0 : (1 << 7);
 byte status = (byte) (utfBit + langBytes.length);
 byte[] textBytes = inputText.getBytes(utfEncoding);
 byte[] data = new byte[1 + langBytes.length + textBytes.length];
 data[0] = (byte) status;
 System.arraycopy(langBytes, 0, data, 1, langBytes.length);

LISTING 7-5 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android OS to Handle the Incoming Beam ❘ 199

 System.arraycopy(textBytes, 0, data, 1 + langBytes.length, textBytes.length);
 NdefRecord textRecord = new NdefRecord(NdefRecord.TNF_WELL_KNOWN,
 NdefRecord.RTD_TEXT,
 new byte[0], data);
 NdefMessage message = new NdefMessage(new NdefRecord[] { textRecord});
 return message;
 }

 NdefMessage[] getNdefMessages(Intent intent)
 {
 NdefMessage[] msgs = null;
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction()))
 {
 Parcelable[] rawMsgs = intent.getParcelableArrayExtra(
 NfcAdapter.EXTRA_NDEF_MESSAGES);
 if (rawMsgs != null) {
 msgs = new NdefMessage[rawMsgs.length];
 for (int i = 0; i < rawMsgs.length; i++)
 {
 msgs[i] = (NdefMessage) rawMsgs[i];
 }
 }
 else
 {
 byte[] empty = new byte[] {};
 NdefRecord record = new NdefRecord(NdefRecord.TNF_UNKNOWN,
 empty, empty, empty);
 NdefMessage msg = new NdefMessage(new NdefRecord[] { record });
 msgs = new NdefMessage[] { msg };
 }
 }
 else {
 Log.d("Peer to Peer 3", "Unknown intent.");
 finish();
 }
 return msgs;
 }
}

ANDROID OS TO HANDLE THE INCOMING BEAM

When you create a well-known record, you can leave Android OS to do the work of receiving the
beam. This time, Android OS will handle the incoming beam with its default OS programs.

The example given in Listing 7-6 demonstrates the Android OS’s handling job process. In the
example, a contact is selected from the phone’s existing contact list, and beamed to another mobile.
Since Android OS will handle a received contact with its existing contact application, this
beam-receiving process is not implemented in the activity and is left to the receiving mobile phone’s
Android OS.

www.it-ebooks.info

http://www.it-ebooks.info/

200 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

LISTING 7-6: Activity of Peer-to-Peer Contact Sharing (PeertoPeer4\src\com\nfclab\peertopeer4\

PeertoPeer4.java)

public class PeertoPeer4 extends Activity
{
 NfcAdapter mNfcAdapter;
 private TextView messageText;
 public Button sendButton;
 private final int PICK_CONTACT = 1;
 private byte[] bytesToSend;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 messageText = (TextView)findViewById(R.id.messageText);
 messageText.setText("Select a contact to share");

 mNfcAdapter = NfcAdapter.getDefaultAdapter(this);

 if (mNfcAdapter == null) {
 finish();
 return;
 }

 sendButton = (Button) findViewById(R.id.selectButton);
 sendButton.setOnClickListener(new OnClickListener()
 {
 public void onClick(View v)
 {
 Intent intent = new Intent(Intent.ACTION_PICK);
 intent.setType(ContactsContract.Contacts.CONTENT_TYPE);
 startActivityForResult(intent, PICK_CONTACT);
 }
 });
 }

 public void onActivityResult(int reqCode, int resultCode, Intent data)
 {
 super.onActivityResult(reqCode, resultCode, data);
 String contactInfo = "";
 switch (reqCode)
 {
 case (PICK_CONTACT):
 {
 if (resultCode == Activity.RESULT_OK)
 {
 Uri contactData = data.getData();
 Cursor people = getContentResolver().query(contactData,
 null, null, null, null);
 if (people.moveToFirst())

www.it-ebooks.info

http://www.it-ebooks.info/

Android OS to Handle the Incoming Beam ❘ 201

 {
 try
 {
 String lookupKey = people.getString(people.getColumnIndex(
 Contacts.LOOKUP_KEY));
 Uri uri = Uri.withAppendedPath(
 ContactsContract.Contacts.CONTENT_VCARD_URI, lookupKey);
 AssetFileDescriptor afd;
 try {
 afd = getContentResolver().openAssetFileDescriptor
 (uri, "r");
 FileInputStream fis = afd.createInputStream();
 bytesToSend = new byte[(int) afd.getDeclaredLength()];
 fis.read(bytesToSend);
 contactInfo = new String(bytesToSend);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 } finally {
 people.close();
 }

 NdefMessage message = create_MIME_NdefMessage(
 "text/x-vcard", bytesToSend);
 mNfcAdapter.setNdefPushMessage(message, this);
 messageText.setText(contactInfo);
 Toast.makeText(this, "Touch another mobile to share the contact",
 Toast.LENGTH_SHORT).show();
 }
 } if (resultCode == Activity.RESULT_OK)
 }
 }
 }

 public NdefMessage create_MIME_NdefMessage(String mimeType, byte[] payload)
 {
 NdefRecord mimeRecord = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeType.getBytes(), new byte[0], payload);
 NdefMessage message = new NdefMessage(new NdefRecord[] { mimeRecord });
 return message;
 }

 @Override
 public void onResume() {
 super.onResume();
 if (!mNfcAdapter.isEnabled())
 {
 startActivity(new Intent(Settings.ACTION_NFC_SETTINGS));
 } else if (!mNfcAdapter.isNdefPushEnabled()) {
 startActivity(new Intent(Settings.ACTION_NFCSHARING_SETTINGS));
 }
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

202 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

In the opening screen (see Figure 7-9), a TextView and a button are created. When the user clicks
the button, the contact list is displayed and the application waits for the user to select a contact to
send (see Figure 7-10). When the user selects a contact, the contact information is extracted from
the database as a fi le input stream and saved into a byte array named bytesToSend. This byte array
is then sent to the create_MIME_NdefMessage() method in order to create the NDEF message to
beam. Since the contact has a vCard fi le format, the MIME type of the record is set as text/
x-vcard. When the NDEF message is created, the setNdefPushMessage() method is called to
set the NDEF message as a beam. Then, the mobile waits for the user to touch another mobile
to beam the message (see Figure 7-11).

FIGURE 7-9 FIGURE 7-10 FIGURE 7-11

FIGURE 7-12

After the message is beamed, the receiving phone’s Android OS handles
the received beam since the received data is a known type (text/
x-vcard). Then it adds the received contact to its contact list as shown
in Figure 7-12. Moreover, you must not defi ne any intent fi lter, since
defi ning the corresponding intent fi lter will get the incoming beam to
the activity, and Android OS will not be able to process the contact
by itself.

Additionally, in the onResume() method, the NFC and Android
Beam settings are checked. The activity fi rst checks if the NFC is turned
on or off from the Android settings. If it is turned off, the activity runs
the Wireless & Networks settings menu to force the user to enable NFC
(see Figure 7-13). After the user enables NFC, it checks if Android
Beam is turned on or off. If Android Beam is turned off, the activity
runs Android Beam settings to force the user to enable it
(see Figure 7-14). Note that the isNdefPushEnabled() method and
ACTION_NFC_SETTINGS constant require an API level of 16.

www.it-ebooks.info

http://www.it-ebooks.info/

Beaming Files ❘ 203

BEAMING FILES

In order to beam fi les such as images, videos, and so on, new methods for sending beams are added
in API level 16. In order to beam fi les, you fi rst need to save the fi le’s URI to be beamed into a URI
array, and then use the required methods described in this section. When the mobiles touch each
other, the Bluetooth of the mobiles are activated and the fi le transfer is performed over Bluetooth.

In order to beam URIs, you need to provide the fi le’s file scheme or content scheme. As with
beaming NDEF messages, there are two options to beam URIs: you can implement either with a
callback (setBeamPushUrisCallback() method) or without a callback (the setBeamPushUris()
method). setBeamPushUrisCallback() has priority over setBeamPushUris(). So if both methods
are implemented in the activity, setBeamPushUrisCallback() will take the priority and the activity
will use the callback.

When both beaming an NDEF message and beaming a URI are implemented, setBeamPushUris()
and setBeamPushUrisCallback() both have the priority over setNdefPushMessage() and
setNdefPushMessageCallback().

Beaming with setBeamPushUrisCallback()

In order to beam using the setBeamPushUrisCallback() method, you should follow these steps:

 1. Implement CreateBeamUrisCallback in your activity.

 2. Call setBeamPushUrisCallback(NfcAdapter.CreateBeamUrisCallback callback,
Activity activity). When this method is called, the activity accepts a callback and if
a mobile device is discovered to beam the data, the createBeamUris(NfcEvent) method is
invoked automatically.

 3. Inside the createBeamUris(NfcEvent) method, create the URI array and return it. The
fi les in the array will be beamed to the target device.

FIGURE 7-13 FIGURE 7-14

www.it-ebooks.info

http://www.it-ebooks.info/

204 ❘ CHAPTER 7 NFC PROGRAMMING: PEER-TO-PEER MODE

When the target mobile phone is discovered, the createBeamUris(NfcEvent) method is invoked,
which returns a URI array. When two mobiles touch, then the Touch to Beam UI is displayed on
top of your activity. At this time, when the user touches the screen, the Bluetooth connection is
established between two mobiles and the fi le is sent to the target mobile.

Beaming with setBeamPushUris()

In order to beam using the setBeamPushUris() method, you should follow these steps:

 1. Create a URI array.

 2. Call setBeamPushUris(Uri[] uris, Activity activity). When this method is called,
the activity prepares the fi les to be sent from the received URI array. When the target mobile
is discovered, it beams the fi le.

The setBeamPushUris() method normally sets the URI array statically because it gets the array as
a parameter. You may sometimes prefer to use it instead of setBeamPushUrisCallback() based on
your implementation.

An Example Beam Application Using
setBeamPushUrisCallback()

In this example, a URI of an image fi le in the phone’s storage is gathered and sent to a target
mobile phone using the setBeamPushUrisCallback() method. First the activity implements
CreateBeamUrisCallback:

public class UriShareActivity extends Activity implements CreateBeamUrisCallback {

Then the setBeamPushUrisCallback method is implemented inside the oncreate() method:

mNfcAdapter.setBeamPushUrisCallback(this, this);

At this stage, the mobile waits to discover the target mobile to beam. When it discovers the target
mobile, the activity calls createBeamUris() method and beams the returning URI array:

@Override
public Uri[] createBeamUris(NfcEvent event) {
 Uri uri = Uri.parse("file:///sdcard/Pictures/Screenshots/1.png");
 Uri[] uriArray = {uri};
 return uriArray;
}

When the uriArray is beamed to the target mobile, the Bluetooth connection is activated and the
fi le is sent over Bluetooth. The onResume() and onNewIntent() methods are used in a similar way
to the previous peer-to-peer applications.

An Example Beam Application using setBeamPushUris()

This time, the activity does not implement CreateBeamUrisCallback, since it will use the
setBeamPushUris() method. You need to implement the setBeamPushUris() as follows whenever
you want to beam the data:

www.it-ebooks.info

http://www.it-ebooks.info/

Summary ❘ 205

Uri uri = Uri.parse("file:///sdcard/Pictures/Screenshots/1.png");
Uri[] uriArray = {uri};
mNfcAdapter.setBeamPushUris(uriArray, this);

At this stage, when the mobile discovers the target, the Touch to Beam UI is displayed on the screen.
When the user touches the screen, the data is beamed to the target mobile.

The onResume() and onNewIntent() methods are used in the same fashion with the above
examples. As in the previous example, when the uriArray is beamed to the target mobile, the
Bluetooth connection is activated and the fi le is sent over Bluetooth.

SUMMARY

Peer-to-peer mode allows two mobiles to exchange data when they touch each other. Sending data
using peer-to-peer mode in Android is named Android Beam. In order to beam, there are some
preconditions. First of all, Android Beam must be turned on from the settings in both mobile
phones. Then the activity in the fi rst mobile phone must be in the foreground and the second mobile
phone’s screen must not be locked. When these conditions are met, the fi rst mobile can beam to the
second mobile.

In exactly the same way as it is done in reader/writer mode, you should create NDEF messages to
beam to the other device. In reader/writer mode, you create an NDEF message and then write to a
tag or read an NDEF message from a tag. In peer-to-peer mode, you create an NDEF message and
then beam it to another mobile or read an incoming beam; in other words, you read an incoming
NDEF message. So, in order to beam, you need to encapsulate whatever data you want to an
NdefMessage object.

When your activity implements an Android Beam, the tag intent dispatch system is disabled so that
you cannot scan any tag. However, if you also implement foreground dispatching in your activity,
your activity will also be able to scan tags.

There are two different ways to implement Android Beam. The fi rst is to implement the
setNdefPushMessageCallback() method; the second is to implement the setNdefPushMessage()
method. The setNdefPushMessageCallback() method dynamically generates NDEF
messages, whereas the setNdefPushMessage() method sets it statically. You may call
both of the methods anywhere in your activity. setNdefPushMessageCallback()
has priority over setNdefPushMessage() so, if both are implemented in the activity,
setNdefPushMessageCallback() will take priority.

Both methods are available at API level 14. In order to support mobile devices that have an API
level between 10 and 14, foreground NDEF Push is available, which provides similar functionality.
However, foreground NDEF Push is deprecated in API level 14 and should not be used when API
level 14 and higher is available.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Peer-to-Peer Mode Applications

WHAT’S IN THIS CHAPTER?

 ➤ Use cases for peer-to-peer mode applications

 ➤ NFC chatting

 ➤ NFC Guess Number

 ➤ NFC Panic Bomb

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118380096 on the Download Code tab. The code is in the Chapter 8 download
and individually named according to the names throughout the chapter.

In this chapter, three peer-to-peer use cases are implemented using Android APIs: chatting
between two parties, a number guessing game, and a ticking time bomb game.

The fi rst use case is a chatting application in which users can write chat messages and send
them to others by touching their mobile phones. This use case can be thought of as a chat
application in which two people exchange information in a location where many people exist
but where nobody else can hear their communication.

The second use case is a game about guessing a secret number. The application randomly
generates an integer between 1 and 100, and two or more players in the group try to guess
the number. After the users have made their guesses, the application directs them to suggest
a higher or lower number next time. The game ends when one of the players has guessed the
secret number.

8

www.it-ebooks.info

http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://www.wrox.com/remtitle.cgi?isbn=1118380096
http://wrox.com
http://www.it-ebooks.info/

208 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

The third use case is a game in which a bomb explodes after a randomly selected time by the
application. The user who is holding the bomb can pass it to another player only after answering a
question asked by the mobile. The user who is holding the bomb when it explodes loses the game.

NFC CHATTING

NFC chatting is an interesting use case of peer-to-peer mode, enabling one-to-one instant
messaging between two users. One user writes a message, then touches a friend’s mobile to send
the message to them. The application technically prepares an NDEF message, consisting of the chat
message, and then beams the NDEF message to the target device. When the target device receives
the beam, it displays the chat message on the screen. The users may continue exchanging chat
messages as often as they wish, and in any order.

There are two Java classes in the implemented project: ChatAdapter and ChatActivity. The
purpose of ChatAdapter is to maintain a list of the exchanged messages. It internally uses an
ArrayList of String items, or messages. When a message is sent or received, it is added to the
list of messages by invoking the void add(String message) method. Existing messages in
the database can be questioned using the String getItem(int index) method. int getCount()
returns the number of existing messages in the list, and View getView() is used to properly display
the messages on the screen. Incoming messages are aligned to the left, and outgoing messages are
aligned to the right. Incoming messages are enclosed from both left and right using < tokens, and
outgoing messages are enclosed using > tokens in order to distinguish them. When displaying the
messages, only the fi rst token that is embedded at the beginning of a message is displayed, while the
token at the end of a message is kept hidden. The complete code of the ChatAdapter class is given in
Listing 8-1.

LISTING 8-1: ChatAdapter Class (NFCChat\src\com\nfclab\chat\ChatAdapter.java)

public class ChatAdapter extends ArrayAdapter<String> {

 private TextView messageTV;
 private List<String> messagesAL = new ArrayList<String>();
 private LinearLayout lineLL;
 int size;

 @Override
 public void add(String message) {
 messagesAL.add(message);
 }

 public ChatAdapter(Context context, int textViewResourceId, int size) {
 super(context, textViewResourceId);
 this.size = size;
 }

 public int getCount() {

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Chatting ❘ 209

 return this.messagesAL.size();
 }

 public String getItem(int index) {
 return this.messagesAL.get(index);
 }

 public View getView(int position, View convertView, ViewGroup parent)
 {
 View row = convertView;
 if (row == null) {
 LayoutInflater inflater = (LayoutInflater)
 this.getContext().getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 row = inflater.inflate(R.layout.message, parent, false);
 }

 lineLL = (LinearLayout) row.findViewById(R.id.lineLL);

 String oneMessage = getItem(position);

 messageTV = (TextView) row.findViewById(R.id.messageTV);
 // oneMessage.length()-1 hides the last token in the chat message
 messageTV.setText(oneMessage.substring(0,oneMessage.length()-1));
 messageTV.setBackgroundResource(R.drawable.bubble_banana);

 if (oneMessage.charAt(0) == '<')
 lineLL.setGravity(Gravity.LEFT);
 else
 lineLL.setGravity(Gravity.RIGHT);
 return row;
 }
}

The second class is ChatActivity. The activity mainly maintains a user interface to enable sending
a message, and a ListView to display the sent and received messages on the screen. It keeps a list of
the exchanged messages using the ChatAdapter class, persistently stores the same list of messages
using SharedPreferences, and uses a string variable, namely messageList, to handle the same list
of messages internally.

As a design criterion, if the user quits the application and opens it again, previous messages are to
be displayed on the screen, which requires saving the exchanged messages in a persistent storage.
SharedPreferences is used for persistent storage of the messages. In order to satisfy that criterion,
all messages are saved in a persistent database using the SharedPreferences.Editor interface via
the saveMessages() method. The following code from the ChatActivity class saves the messages:

String PREFERENCE_NAME = "NFCChat";
SharedPreferences.Editor editor;
SharedPreferences settings;

@Override
public void onCreate(Bundle savedInstanceState)
{
 settings = getSharedPreferences(PREFERENCE_NAME, MODE_PRIVATE);

www.it-ebooks.info

http://www.it-ebooks.info/

210 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

 messageList = settings.getString("messageList", "");

 String thisMessage;
 char token;
 int start = 0;
 int end;
 while (messageList.length() > 0) {

 //get the token, which is either '<' or '>'
 token = messageList.substring(start, start+1).charAt(0);

 //find the index of the token at the end of thisMessage
 end = messageList.substring(start+1).indexOf(token) + 1;

 //retrieve thisMessage from messageList
 thisMessage = messageList.substring(start, end+1);

 //add thisMessage to the list of messages that is maintained by adapter
 adapter.add(thisMessage);

 //start of next message is the next index after end of current message.
 start = end + 1;
 if (messageList.substring(start) != null)

 //if there more unprocessed messages, clip the remaining messages
 messageList = messageList.substring(start);
 else

 //there are no more messages
 messageList = "";
 start = 0; //the story continues
 }
}

protected void saveMessages() {
 messageList = "";

 //append all messages in the adapter to messageList
 for (int i = 0; i < adapter.getCount(); i++)
 messageList += adapter.getItem(i);

 //prepare editor to save the messageList as a string, and save it.
 editor = settings.edit();
 editor.putString("messageList", messageList);
 editor.commit();
}

public void get(String messageToGet)
{
 //append all messages in the adapter to messageList
 for (int i = 0; i < adapter.getCount(); i++)
 messageList += adapter.getItem(i);

 //add the new message to the adapter

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Chatting ❘ 211

 //notice that '<' is appended to the start and end of the message,
 //the first token denotes that the message is a received message
 //and will be left aligned. The second token marks the end of the message
 //and is not displayed on the screen.
 adapter.add('<' + messageToGet + '<');

 //re-generate messageList by using the messages in the adapter,
 // including the most recent one.
 messageList = "";

 for (int i = 0; i < adapter.getCount(); i++)
 messageList += adapter.getItem(i);

 //all messages are saved to the adapter after each new sent or received message
 saveMessages();
}

public boolean onKey(View v, int keyCode, KeyEvent event)
{
 if ((event.getAction() == KeyEvent.ACTION_DOWN)
 && (keyCode == KeyEvent.KEYCODE_ENTER)) //message is inputted
 {
 if(messageToSendET.getText().length() > 0)
 {
 messageToSend = messageToSendET.getText().toString();
 adapter.add('>' + messageToSend + '>');
 saveMessages();
 messageToSendET.setText("");
 Toast.makeText(this,
 "Touch another mobile to share the chat message",
 Toast.LENGTH_LONG).show();
 }
 return true;
 }
 return false;
}

When the application is launched, the main screen contains ListView
and EditText objects (see Figure 8-1). The ListView object is used to
display the sent and received chat messages, and the EditText object is
used to get the chat message input from a user.

When a user types a chat message and presses the Enter button from
the keyboard, the text is saved in a messageToSend string that will be
beamed when the mobiles touch each other (see Figure 8-2). After the
chat message is beamed to the target device (see Figure 8-3), the chat
application on the target device is invoked and displays the chat message
on the screen (see Figure 8-4). The process continues in this way until
the parties wish to quit (see Figure 8-5). See Figure 8-6 for the activity
fl ow diagram of the application. FIGURE 8-1

www.it-ebooks.info

http://www.it-ebooks.info/

212 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

FIGURE 8-2 FIGURE 8-3

FIGURE 8-4 FIGURE 8-5

FIGURE 8-6

User starts NFC
chatting

application

The message is
saved in

messageToSend
string

TNF_MIME_MEDIA
NDEF record is

created with
messageToSend

string

NDEF message is
constituted with

one NDEF record

NDEF message is
beamed to target

mobile

NFC chatting
application is

invoked on target
mobile

NDEF record is
extracted from
NDEF message

The chat message
is displayed in the

application

User touches
another NFC

mobile

createNdefMess
age(this,

this) method is
invoked

setNdefPushMe
ssagecallback()

method is called

User types a chat
message

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Chatting ❘ 213

The NFC part of the application is developed with NdefMessageCallback so that activity
implements CreateNdefMessageCallback:

public class ChatActivity extends Activity
 implements CreateNdefMessageCallback, OnKeyListener {

In the onCreate() method, the setNdefPushMessageCallback() method is implemented using the
following code:

mNfcAdapter.setNdefPushMessageCallback(this, this);

Since the NFC part is implemented with the callback, you need to defi ne the createNdefMessage()
method that will be invoked when the mobile device starts to beam. In this method, you need to
create the NDEF message and return it in order to beam the message. TNF_MIME_MEDIA TNF is
used to format NDEF records, so in order to create the NDEF message, another method is defi ned
and named create_MIME_NdefMessage(). The required data are sent to this method, which are the
MIME media type and the chat message. This method fi rst creates the NDEF record and then the
NDEF message according to the TNF_MIME_MEDIA rules and sends the NDEF message back to the
createNdefMessage() method. Then the NDEF message is returned in the createNdefMessage()
method, which will automatically beam it when a target is discovered. Furthermore, messageToSend
is set to an empty string, since the already sent messages do not need to be sent again:

@Override
public NdefMessage createNdefMessage(NfcEvent event)
{
 NdefMessage message = create_MIME_NdefMessage("application/nfcchat",
 messageToSend);
 messageToSend = "";
 return message;
}

public NdefMessage create_MIME_NdefMessage(String mimeType, String payload)
{
 NdefRecord mimeRecord = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,
 mimeType.getBytes(), new byte[0],
 payload.getBytes(
 Charset.forName("US-ASCII"))
);
 NdefMessage message = new NdefMessage(new NdefRecord[] { mimeRecord});
 return message;
}

On the receiving side, you have already learned that you need to defi ne three methods: onResume(),
onNewIntent(Intent intent), and processIntent(Intent intent). The onResume() and
onNewIntent() methods handle the incoming beams, and the processIntent() method handles the
incoming NDEF message by calling the getNdefMessages() method:

@Override
public void onResume()
{
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
 {

www.it-ebooks.info

http://www.it-ebooks.info/

214 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

 processIntent(getIntent());
 }
}

@Override
public void onNewIntent(Intent intent) {
 setIntent(intent);
}

void processIntent(Intent intent)
{
 NdefMessage[] messages = getNdefMessages(getIntent());
 for(int i=0; i<messages.length; i++)
 {
 for(int j=0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 String payload = new String(record.getPayload());
 get(payload);
 }
 }
}

In addition, the get() method is called in the processIntent() method, which puts the chat
message on the screen in a desired display setting. You can personalize the get() method of the
code, since it affects the screen orientation and can be implemented in many other ways. The code
of the get() method is shown in the preceding code snippet.

Inside the manifest fi le, you need to add an NFC permission in order to use the NFC adapter.
Furthermore, you need to defi ne the required intent fi lter to run the application that receives the
beam. Since the application uses a TNF_MIME_MEDIA TNF for NDEF records, you need to defi ne the
corresponding intent fi lter. The manifest fi le of the application is given in Listing 8-2.

NOTE Please see Chapter 5, “NFC Programming: Reader/Writer Mode,” for
detailed information on TNF_MIME_MEDIA.

LISTING 8-2: Manifest File of the NFC Chat Project (NFCChat\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.chat"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />
 <uses-permission android:name="android.permission.NFC" />
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

NFC Guess Number ❘ 215

 android:name=".ChatActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="application/nfcchat" />
 </intent-filter>
 </activity>
 </application>
</manifest>

NFC GUESS NUMBER

The NFC Guess Number use case is an entertainment game in which two or more players try to
fi nd a secret number. The secret number is initially generated by the mobile phone in the interval of
1–100 using a random number generator. A player makes a guess at the secret number. If the guess is
incorrect, the application directs the player to make a higher or lower guess. Then the player touches
their mobile to the next player, and the secret number and previous guesses are beamed to the target
mobile. If the new player makes an incorrect guess, that player beams back to the fi rst player, and so
on. The game ends when one of the players fi nds the secret number.

When the application is initially launched, the main screen contains EditText objects, TextView
objects, and a Button object, as shown in Figure 8-7. This main screen displays the previous guesses,
the possible high and low guesses that can be made, and a button to submit the guess. The player
can also input their guess using components on this screen. When the game is initially launched on
any player’s mobile, the secret number between 1 and 100 is randomly generated. When the player
inputs their guess (see Figure 8-8) and submits it by clicking the “Guess” button, the application
checks the guess and states whether it is low or high (see Figure 8-9). At the same time, high and low
number fi elds are updated for the player who will be making the second guess.

FIGURE 8-7 FIGURE 8-8 FIGURE 8-9

www.it-ebooks.info

http://www.it-ebooks.info/

216 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

After a player makes an incorrect guess, the application asks that player to touch their mobile to
the next player’s mobile. At this point, the incorrect guesses previously made by all players, the low
and high bounds of the range for the next guess, the secret number, and the secret number’s fi nd
status are packaged into an NDEF message and beamed to the target mobile. When the second
player receives the beam, the application is launched automatically. The previous guesses and the
range for the next guess are displayed by the application using the received beam (see Figure 8-10).
Then the application waits for the user to guess the number. The application continues in this
way until the secret number is successfully found (see Figure 8-11), at which point the application
displays a success message (see Figure 8-12). If the mobile phone beams after this time, the target
mobile displays a message that a user has already found the secret number, by using the secret
number’s fi nd status in the beam (see Figure 8-13). See Figure 8-14 for the activity fl ow diagram of
the application.

FIGURE 8-10 FIGURE 8-11

FIGURE 8-12 FIGURE 8-13

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Guess Number ❘ 217

The NFC part of the application is developed with NdefMessageCallback so that activity
implements CreateNdefMessageCallback:

public class GuessNumberActivity extends Activity
 implements CreateNdefMessageCallback {

In the onCreate() method, the setNdefPushMessageCallback() method is implemented using the
following code:

mNfcAdapter.setNdefPushMessageCallback(this, this);

Then, the target integer that stores the secret number is randomly generated between 1 and 100
using the random() method. The display() method is then called, which updates the screen
objects:

if (target == 0) {
 target = random();
}
display(true);

public int random() {
 return (new Random().nextInt(100)) + 1;
}

public void display(boolean focus)
{
 previousET.setText(previous);
 highET.setText("" + high);
 lowET.setText("" + low);
 guessET.setText("");
 guessET.setFocusable(focus);
}

FIGURE 8-14

Player starts NFC
Guess Number

application
If the guess is

higher or lower
than the secret

number,
display()

method is invoked
and fields are

updated

Player touches
target mobile

If the secret
number is found,
the game ends

NDEF message is
constituted with

five NDEF records

display()
method updates
the fields on the

screen

NDEF records are
extracted from
NDEF message

NFC Guess Number
application is

invoked on target
mobile

NDEF message is
beamed to target

mobile

createNdefMess
age() is
invoked

Five
TNF_EXTERNAL_

TYPE NDEF
records are

created (previous
guesses, possible

high value,
possible low
value, secret

number, guess
status)

setNdef PushMe
ssageCallback
(this, this)
method is called

Player inputs their
guess and

presses Guess
button

onClickHandl
er()method is

invoked to check
the guess number

www.it-ebooks.info

http://www.it-ebooks.info/

218 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

When the player inputs a guess and clicks the “Guess” button, the onClickHandler() method
is invoked, which checks the guess. There are three options: the secret number is found, the
guess is higher than the secret number, or the guess is lower than the secret number. When the secret
number is found, the application displays a success message and changes the found boolean value to
true. If the guess is wrong, the low or high values are updated appropriately, and a message to direct
the user is displayed on the screen. Finally, the display() method is called, which updates the fi elds
on the screen and displays a Toast to inform the player to touch the mobile to the next player’s
mobile:

public void onClickHandler(View view)
{
 if(view.getId() == R.id.guessButton)
 {
 guess = Integer.parseInt(guessET.getText().toString());
 previous = previous + " " + guessET.getText();
 if (guess == target)
 {
 low = guess;
 high = guess;
 found = true;
 resultTV.setText("SUCCESS. You find the secret number: "+guess);
 }
 else
 {
 if (guess < target)
 {
 low = guess + 1;
 resultTV.setText("Your guess is LOW");
 }
 else
 {
 high = guess - 1;
 resultTV.setText("Your guess is HIGH");
 }
 }
 display(false);
 Toast.makeText(this, "Touch another mobile to continue playing",
 Toast.LENGTH_SHORT).show();
 }
}

As you already know, when the mobiles touch each other, the createNdefMessage() method is
invoked automatically, since the setNdefPushMessageCallback() method is implemented. In this
method, fi ve NDEF records are created: previous guesses, possible high value, possible low value,
secret number, and the guess status. Finally, a new NDEF message created from these records and
returned in order for the message to be beamed to another mobile. The NDEF records are formatted
as TNF_EXTERNAL_TYPE and the type is formatted as nfclab.com:guessNumber. The reason to
format the NDEF records as TNF_EXTERNAL_TYPE is that you only want your application to handle
the incoming beams, since the sent beam is personalized and other applications cannot understand
what the incoming data means.

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

NFC Guess Number ❘ 219

@Override
public NdefMessage createNdefMessage(NfcEvent event)
{
 String externalType = "nfclab.com:guessNumber";
 NdefRecord extRecord1 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 previous.getBytes());
 NdefRecord extRecord2 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 Integer.toString(high).getBytes());
 NdefRecord extRecord3 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 Integer.toString(low).getBytes());
 NdefRecord extRecord4 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 Integer.toString(target).getBytes());
 NdefRecord extRecord5 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 new Boolean(found).toString().getBytes());
 NdefMessage message = new NdefMessage(new NdefRecord[] { extRecord1,
 extRecord2, extRecord3,
 extRecord4, extRecord5}
);
 return message;
}

When the data are beamed to the target mobile, you need to implement the onResume(),
onNewIntent(), and processIntent() methods. Inside the processIntent() method, you need
to process all fi ve NDEF records. Remember that the fi ve NDEF records were previous guesses,
possible high value, possible low value, the secret number, and the guess status; and they were
beamed in an NDEF message. So, the records are again extracted from the NDEF message and
stored in the corresponding variable. Then, the display() method is called, which updates the
previous guesses, possible high value, and possible low value on the screen. Since these variables
are declared as private, the values inside the class are updated when they are updated in the
processIntent() method. The method also checks whether the secret number has been guessed
correctly or not by the opponent. If the opponent has found the secret number, the activity displays
a message on the screen. Otherwise, the player continues to play the game.

@Override
public void onResume()
{
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
 {
 processIntent(getIntent());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

220 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

}

@Override
public void onNewIntent(Intent intent)
{
 setIntent(intent);
}

void processIntent(Intent intent)
{
 NdefMessage[] messages = getNdefMessages(getIntent());

 for (int i=0; i<messages.length; i++)
 {
 for (int j=0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 if(j==0)
 previous=new String(record.getPayload());
 else if(j == 1)
 high=Integer.parseInt(new String(record.getPayload()));
 else if(j == 2)
 low=Integer.parseInt(new String(record.getPayload()));
 else if(j == 3)
 target=Integer.parseInt(new String(record.getPayload()));
 else if(j == 4)
 found=Boolean.parseBoolean(new String(record.getPayload()));
 }
 display(true);
 if(found == true)
 {
 resultTV.setText("Your opponent already found the secret number!!! "
 + target);
 guessET.setFocusable(false);
 }
 }
}

Inside the manifest fi le, you need to add the NFC permission in order to use the NFC adapter.
In order to run the application that receives the beam, you need to declare the required intent
fi lter in the manifest fi le. Remember that the application uses a TNF_EXTERNAL_TYPE of
nfclab.com:guessNumber, so you need to declare the related intent fi lter inside the activity tag.
You can see the manifest fi le in Listing 8-3.

NOTE Please see Chapter 5 for detailed information on TNF_EXTERNAL_TYPE.

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

NFC Panic Bomb ❘ 221

LISTING 8-3: Manifest File of the NFC Guess Number Project (NFCGuessNumber\

AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.guessnumber"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />
 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:name=".GuessNumberActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:guessNumber"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

NFC PANIC BOMB

NFC Panic Bomb is another game developed to play with NFC technology. Inside the game, there is
a bomb that will explode after a predefi ned time. When the game is launched, the application sets
the timing to explode the bomb using a random number generator. The person on whose mobile the
bomb explodes loses the game. A player can send the bomb to another mobile by beaming it, but he
or she fi rst needs to answer an autogenerated question. Only then can that player beam the bomb to
the next player. The game ends when the bomb explodes.

When the application is initially launched, a bomb animation is displayed on the screen. A
chronometer also starts to count the seconds measuring the lifetime of the bomb. TextView,
EditText, and Button objects are displayed on the screen to present the user with a summation
problem and enable them to enter and submit an answer to the problem (see Figure 8-15). If the
current player cannot give the correct answer to the question, the application asks another question
until a correct answer is given (see Figure 8-16). The chronometer runs until a proper answer is given.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

222 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

When the player gives a correct answer to the question, the chronometer
stops and a directive to touch to the next player’s mobile is displayed on
the screen (see Figure 8-17). At this point, the secret lifetime and elapsed
seconds are packaged into an NDEF message by the application in order
to prepare the data to be transferred.

When a player has answered the question correctly and touched the
next player’s mobile, the prepared NDEF message is beamed to
the target mobile (see Figure 8-18). When the next player receives the
beam, the secret lifetime and seconds elapsed are extracted from the
NDEF message by the application. Then the player receiving the data
tries to give the correct answer to the question and the game continues in
this fashion. When the lifetime of the bomb expires, the bomb explodes
(see Figure 8-19). See Figure 8-20 for the activity fl ow diagram of
the application.

FIGURE 8-16FIGURE 8-15

FIGURE 8-17

FIGURE 8-18 FIGURE 8-19

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Panic Bomb ❘ 223

In the onCreate() method, the animation setup is performed, and the display objects are
prepared. The Chronometer class is used to set the chronometer which stops either when the bomb
explodes or when the user gives the correct answer to the question. When the application starts,
the chronometer begins at 00:00, but when the bomb is beamed to the next player, that player’s
chronometer proceeds from the chronometer value of the previous user.

In order to use the chronometer, a chronometer object is fi rst started and then a listener is set
up in order to check if the total elapsed time reaches the secret lifetime of the bomb. So, you need to
check the elapsedSeconds variable with the lifeTime variable; these store the total spent time and
the lifetime of the bomb respectively. If the application is run from scratch, the elapsedSeconds
variable starts from 0; however, if the application is run via the beam, the variable is updated from
the beamed NDEF message. If the elapsed seconds exceed the lifetime of the bomb, you need to
explode the bomb. The parameter elapsedMillis holds the elapsed time after the chronometer
started in milliseconds:

chronometer = (Chronometer) findViewById(R.id.chronometer);

chronometer.start();

chronometer.setOnChronometerTickListener(
 new Chronometer.OnChronometerTickListener()
{
 public void onChronometerTick(Chronometer chronometer)
 {
 chronometer.refreshDrawableState();
 elapsedMillis = SystemClock.elapsedRealtime() - chronometer.getBase();

FIGURE 8-20

Player starts NFC
Panic Bomb
application

onClickHandler()
method is

invoked to check
the answer

If the answer is
correct,

chronometer and
animation stop

Two
TNF_EXTERNAL_

TYPE NDEF
records are

created (elapsed
seconds and

secret bomb life
time)

setNdefPushMe
ssage(message,
this) method

is called

Chronometer
proceeds from the
value paused by
previous player

Player touches
target mobile and
NDEF message is
beamed to target

mobile

NFC Panic Bomb
application is

invoked on target
mobile

NDEF records are
extracted from
NDEF message

If the answer is
wrong,

display()
method is called

to generate a new
question

NDEF message is
constituted with

two NDEF records

Chronometer
class is invoked

and starts to count
the seconds

Application starts
animation and
generates an

addition question

Player inputs the
answer

www.it-ebooks.info

http://www.it-ebooks.info/

224 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

 elapsedSeconds = (int) TimeUnit.MILLISECONDS.toSeconds(elapsedMillis);

 if ((elapsedSeconds) >= lifeTime)
 {
 bombIV.setBackgroundResource(0);
 Bitmap bomb = BitmapFactory.decodeResource(context.getResources(),
 R.drawable.after);
 bombIV.setImageBitmap(bomb);
 messageText.setText("Boom!");
 chronometer.stop();
 }
 }
});

The peer-to-peer mode of this application is implemented with the setNdefPushMessage() method.
Remember that when using this method, you should also supply the NDEF message as a parameter.
So you need to use this method when your NDEF message is ready. In the application, you should
call this method when the player correctly answers the question. When the “Stop the Bomb” button
is clicked, the onClickHandler() method is invoked. The method checks the answer and if the
answer is correct, it fi rst stops the chronometer and animation. Then the activity creates two NDEF
records: the fi rst stores the total spent seconds in the elapsedSeconds variable, and the second
stores the lifetime of the bomb in the lifeTime variable. When these NDEF records are created and
the NDEF message is constituted into an NdefMessage object, setNdefPushMessage(message,
this) is called. If the answer is wrong, the display() method is called again to update the
question:

public void onClickHandler(View view)
{
 if (view.getId() == R.id.stopButton)
 {
 answer = Integer.parseInt(answerET.getText().toString());
 if (answer == (number1 + number2))
 {
 chronometer.stop();
 animation.stop();
 String externalType = "nfclab.com:panicBomb";
 NdefRecord extRecord1 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 Integer.toString(elapsedSeconds).getBytes());
 NdefRecord extRecord2 = new NdefRecord(NdefRecord.TNF_EXTERNAL_TYPE,
 externalType.getBytes(),
 new byte[0],
 Integer.toString(lifeTime).getBytes());
 NdefMessage message = new NdefMessage(new NdefRecord[] {extRecord1,
 extRecord2});
 mNfcAdapter.setNdefPushMessage(message, this);
 Toast.makeText(this,
 "Touch another mobile to send the bomb",
 Toast.LENGTH_SHORT).show();
 }
 else
 }

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Panic Bomb ❘ 225

 displayQuestion();
 answerET.setText("");
 Toast.makeText(this,
 "Wrong answer!!! Please try again",
 Toast.LENGTH_SHORT).show();
 }
 }
}

When the data are beamed to the target mobile, the onResume(), onNewIntent(), and
processIntent() methods handle the received beam:

@Override
public void onResume()
{
 super.onResume();
 if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(getIntent().getAction()))
 {
 processIntent(getIntent());
 }
}

@Override
public void onNewIntent(Intent intent)
{
 setIntent(intent);
}

void processIntent(Intent intent)
{
. . .

}

Inside the processIntent() method, you need to process the NDEF message that is constituted
from two NDEF records: the total spent seconds and the lifetime of the bomb. So, both records are
extracted from the NDEF message one by one, and stored into corresponding integer values, which
are elapsedSeconds and lifeTime:

NdefMessage[] messages = getNdefMessages(getIntent());
for (int i=0; i<messages.length; i++)
{
 for (int j=0; j<messages[0].getRecords().length; j++)
 {
 NdefRecord record = messages[i].getRecords()[j];
 if(j == 0)
 {
 elapsedSeconds = Integer.parseInt(new String(record.getPayload()));
 }
 else if(j == 1)
 {
 lifetime = Integer.parseInt(new String(record.getPayload()));
 {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

226 ❘ CHAPTER 8 PEER-TO-PEER MODE APPLICATIONS

These integers are declared as private class attributes so that when you change the value of these
variables in the processIntent() method, their values in the class are also updated. Furthermore,
you need to update the elapsedMillis variable by converting from the elapsedSeconds variable,
and update the chronometer base, in order to start the chronometer from where it stops. You do not
need to do anything else in this method, since the other screen elements (chronometer, animation,
and so on) are handled in the onCreate() method.

elapsedMillis = (long) elapsedSeconds * 1000;
chronometer.setBase(SystemClock.elapsedRealtime() - elapsedMillis);

Inside the manifest fi le, you again need to add the NFC permission. TNF_EXTERNAL_TYPE is used for
NDEF records in this game, with the prefi x of nfclab.com:panicBomb. So you should also declare
the corresponding intent fi lter in the activity tag. You can see the complete manifest fi le in Listing 8-4.

LISTING 8-4: Manifest File of the NFC Panic Bomb Project (NFCPanicBomb\AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.nfclab.panicbomb"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="15" />
 <uses-permission android:name="android.permission.NFC" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >

 <activity
 android:name=".PanicBombActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.nfc.action.NDEF_DISCOVERED" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="vnd.android.nfc"
 android:host="ext"
 android:pathPrefix="/nfclab.com:panicBomb"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://nfclab.com
http://www.it-ebooks.info/

Summary ❘ 227

SUMMARY

In this chapter, you have seen three use cases in peer-to-peer mode. The fi rst use case is an NFC
chatting application, which enables one-to-one online messaging via the peer-to-peer mode of NFC.
The application is implemented with NdefMessageCallback, and TNF_MIME_MEDIA is used for
NDEF records.

The second use case is a game in which players try to guess a secret number, which is randomly
generated by the application. When a player makes an incorrect guess, that player touches their
mobile device to the next player’s mobile, and the required values are beamed to the target mobile.
The game ends when one of the players fi nds the secret number. The application is implemented
with NdefMessageCallback, and TNF_EXTERNAL_TYPE is used for NDEF records in this game, with
the prefi x of nfclab.com:guessNumber.

The last use case is a game in which a ticking time bomb explodes after a randomly defi ned time.
Players try to answer an arithmetical question to pause the chronometer of the ticking bomb and
beam the bomb to the next player. The secret lifetime of the bomb and the elapsed seconds are
packaged into an NDEF message and sent to the target mobile when beamed. The application is
implemented with the setNdefPushMessage() method, and TNF_EXTERNAL_TYPE is used for NDEF
records with the prefi x of nfclab.com:panicBomb. The game ends when the bomb explodes on one
of the players’ mobiles.

www.it-ebooks.info

http://nfclab.com
http://nfclab.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

NFC Programming:
Card Emulation Mode

WHAT’S IN THIS CHAPTER?

 ➤ Defi nition of card emulation mode programming

 ➤ Actors and the importance of their involvement

 ➤ Use case alternatives

 ➤ Android application programming

After studying the reader/writer and peer-to-peer modes in previous chapters, this chapter
discusses NFC technology’s card emulation mode. Each NFC operating mode technically
includes various properties that need to be studied properly in order to develop applications.
Developers must study a different methodology and consider a different set of APIs for each
operating mode. Similarly, the ecosystem of possible use cases differs for each mode. When an
actor — whether it is a mobile network operator (MNO), fi nancial institute, or IT company —
aims to develop a project that requires the use of card emulation mode programming, one or
more actors probably need to be involved in the ecosystem of the targeted project.

In contrast to the technical complexity of the scenario of card emulation mode applications,
there exist no well-established standards for this mode to enable developers to produce
compatible applications. There are some good reasons for the lack of such standards: the
complexity of the ecosystem forced application developers to look for alternatives, and
the existence of these alternatives confused the developers and became a barrier to a clear
solution. These reasons eventually prevented us from exhibiting well-established results.

9

www.it-ebooks.info

http://www.it-ebooks.info/

230 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

DEFINITION OF CARD EMULATION MODE

Please remember that the two earlier modes presented different ways for NFC applications to
be developed. The reader/writer mode provided ways to communicate with an NFC tag in both
directions. It enabled data to be written to the tag, and data to be read from a previously loaded tag.
Consequently, projects using reader/writer mode integrated this type of NFC communication. Peer-
to-peer mode, on the other hand, enabled communication between two mobile phones in order to
exchange data. NFC card emulation mode enables communication between an NFC-enabled mobile
phone and a contactless card reader that provides applications based on ISO/IEC 14443 Type A,
Type B, and FeliCa communication interfaces. Applications in this NFC mode, therefore, focus
mostly on this type of NFC communication. Technically, the idea seems simple — at least as simple
as the previous two cases. Unfortunately, in terms of the ecosystem, it is not so simple. There are
several reasons for this complication. Card emulation mode applications tend to be directly involved
in fi nancial projects, such as credit card, prepaid card, and loyalty card applications. This implies
that when an application is to be developed by, say, an IT company, it is essential for the provider of
a payment card or loyalty card company, at least, to be involved. When a project involves more than
one company, it means that the project is already complex.

NOTE For detailed information on the NFC business ecosystem, refer to Near
Field Communication (NFC): From Theory to Practice by Vedat Coskun, Kerem
Ok and Busra Ozdenizci (Wiley, 2012).

BUSINESS ECOSYSTEM

The business ecosystem is where related actors exist in a model in such a way that all the actors
communicate in harmony. We leave further explanation and details of the business ecosystem to
books like Near Field Communication (see the note above), and continue with its most prominent
properties as they relate to card emulation mode. In terms of card emulation mode, in particular, the
NFC industry can obviously be considered as a new emerging business. The main actors involved
in this NFC application mode include MNOs, banking and payment companies, semiconductor
and electronic appliance companies including mobile handset makers, software developers, and
other merchants, including transport operators and retailers. Because they produce NFC devices,
hardware manufacturers affect the card emulation mode; they decide where to implement the
secure element (SE), and the way the SE is handled immediately affects the way that card emulation
mode applications can be developed. When the Universal Integrated Circuit Card (UICC) is chosen
as the place for the SE, MNO companies are immediately central to all potential card emulation
applications, because no application can be installed to the UICC without the approval of the MNO
that provided the card to the user. For this reason, fi nancial organizations such as banks do not
like to see mobile phones with UICC SE but prefer external cards, such as secure digital (SD) cards.
The reason for this is obvious; when they aim to develop applications using card emulation mode
and install them to the external SEs, it means they do not need to negotiate with the MNO. There
is yet another option for storing the SE, which is to integrate it into the mobile phone’s embedded
hardware. In this case, the manufacturer of the mobile phone may even force all other players out of
the game by integrating blocking mechanisms to prevent other actors from installing applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Stakeholders in an NFC Ecosystem ❘ 231

STAKEHOLDERS IN AN NFC ECOSYSTEM

NFC card emulation mode potentially includes a wide range of actors. Various NFC ecosystem
views are defi ned by standardization organizations, which differ in terms of defi ning authority and
responsibilities, not to mention benefi ts. For example, NFC Forum identifi es an NFC ecosystem
depending on and relating with its member portfolio. On the other hand, the GSM Association
(GSMA) describes and visualizes the ecosystem from the subjective point of view of MNOs.
However, the key players in an NFC ecosystem are mostly the same in both models (see Figure 9-1).

FIGURE 9-1

Standardization Bodies and

Other Contributors

Mobile

Network

Operators

Merchants/

Retailers

Customers
Service

Providers

Trusted Service

Managers

M
obile H

andset

M
anufacturers and

Suppliers

Read
er

M
an

ufa
ct

ure
rs

 a
nd

Supplie
rs

N
FC

 C
hi

p S
et

M
an

uf
ac

tu
re

rs
 a

nd

Sup
plie

rs

Secure Elem
ent

M
anufacturers and

Suppliers

More formally, the actors in the card emulation mode ecosystem can be listed as NFC chip set
manufacturers and suppliers, SE manufacturers and suppliers, mobile handset manufacturers and
suppliers, reader manufacturers and suppliers, MNOs, trusted service managers (TSMs), service
providers, merchants/retailers, and customers.

www.it-ebooks.info

http://www.it-ebooks.info/

232 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

BUSINESS MODELS

There are several business models that can be applied to card emulation mode applications. It is
a substantial job to work out the ecosystem details, which include which actors will play a role
in the system, what their responsibilities will be, and, of course, their profi ts. Decisions about
the actors, their responsibilities, and their profi ts are not simple; these are the most challenging
issues for projects of this kind. According to Mobey Forum, a number of requirements (i.e., initial,
operational, usability, and external requirements) need to be considered while forming business
models. When deciding on the business model, questions need to be answered such as:

 ➤ Who will issue and own the keys to the SE?

 ➤ Who will manage the life cycle of the SE platform?

 ➤ Whose over-the-air (OTA) platform will be used for the management of the SE platform?

In relation to these questions, in this section we identify three main issues that determine the
business model alternatives for NFC: the SE issuer, the platform manager, and the OTA provider.
These issues can also be referred to as functional roles and responsibilities that need to be handled
by a single entity or multiple entities in the NFC business model.

Business Model Alternatives

Based on the localization and control of the SE as defi ned above, three model options emerge: the
MNO-centric, the distributed, and the TSM-centric business models.

MNO-centric Business Model

In this model, the MNO issues and controls the SEs. Thus, the MNO performs all the capabilities
of the TSM: it owns and manages the loading, installation, and personalization processes, as well as
security domain creation on the SE. Service providers have to share their personalization data with
the MNO (see Figure 9-2).

FIGURE 9-2

Mobile Handset

with Secure Element

MNO

Service

Provider

Service

Provider

Distributed Business Model

In some cases, each actor focuses on their specialization area: the MNO is responsible for the
distribution and control of the SEs that will be used for hosting the applications; fi nancial
institutions are responsible for handling fi nancial issues; and the IT company is responsible for
handling the development and maintenance of the application as well as hosting the framework for
running the project (see Figure 9-3).

www.it-ebooks.info

http://www.it-ebooks.info/

Business Models ❘ 233

Today, in most card emulation programming use cases, the distributed business model is preferred.
This model actually creates a win-win situation in the ecosystem. However, it has some limitations
on the customer side, depending on the SE option. In the case of UICC-based SEs, NFC service
can only be offered to a limited number of the service providers’ customers, who need to be
subscribers of that MNO. To reach more customers, the service provider needs to sign agreements
with other MNOs in the market, which creates complexities.

TSM-centric Business Model

For an NFC service, a single TSM-centric business model is actually less complex and thought of
as the best model (see Figure 9-4). The involvement of a trusted third entity as the TSM reduces the
complexity of the environment, when compared with other models. It also provides fair revenue
distribution among MNOs and service providers. In the meantime, a wide range of users benefi t
from the NFC services, which are provided by different service providers.

FIGURE 9-3

Mobile Handset

with Secure Element
MNO

TSM
Service

Provider

FIGURE 9-4

Mobile Handset

with Secure Element

MNOTSM

Service

Provider

The number of TSMs may increase depending on the available services and the agreements of the
actors in the NFC ecosystem. For instance, NFC-enabled payment and transportation services
may use the same TSM platform as well as different TSM platforms. MNOs and service providers
wishing to participate in an NFC ecosystem need to sign agreements with the TSM. All entities
should share required data with the authorized TSM in the ecosystem. The TSM performs the
platform manager’s role entirely on behalf of the service providers, by realizing the loading,
installation, and personalization processes via its own OTA platform.

www.it-ebooks.info

http://www.it-ebooks.info/

234 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

 Summary of the Business Model Alternatives

Figure 9-5 summarizes all the possible combinations for the three business models discussed
above. In all three defi ned business models, all of the possible SE options can be issued and
managed. In the case of the MNO-centric business model, all key indicators are handled by the
MNO. In the case of the distributed business model, platform management is performed by
the MNO and the service provider. During platform management, the OTA platform that is used
may differ depending on the business agreement between the service provider and the MNO. In the
TSM-centric business model, the TSM has full authorization over platform management and OTA
provision in all phases. Here, the party that issues the SE and the SE option that is used are not
important. Authorization of SE management is given over to the central TSM.

FIGURE 9-5

Platform Management

Application Loading and
Installation

Installation OTA
Provider

Personalization OTA
Provider

Data Preparation and
Personalization

Business
Model

SE Option

All* MNO

MNO

MNO

MNO

MNO

MNO

Service
Provider

Service
Provider
Service
Provider
Service
Provider

Service
Provider

TSM TSM

TSM

TSMTSMService
Provider

MNO MNO

MNO

MNO MNO
Centric

Distributed

Distributed

*“All” refers to embedded hardware, SMC, and UICC-based SEs

TSM Centric

TSM Centric

MNO

MNO

MNO

All*

All*

All*

SMC,
Embedded
Hardware

Service
Provider

or Retailer

SE Issued
By

One successful story comes from a major MNO in Turkey, called Turkcell. The company equipped
many customers with NFC-capable mobile phones and provided NFC-based Cep-T Cüzdan mobile
wallets. Cep-T Cüzdan turned customers’ mobile phones into mobile wallets to hold credit cards,
debit cards, ID cards, tickets, and so on. In addition to allowing the customer to use the mobile
phone in contactless terminals, the mobile wallet also offered many services such as coupons, and
the ability to transfer funds to other consumers and purchase things online. From an m-commerce
(mobile commerce) ecosystem point of view, Turkcell was also successful in integrating different
banks in its mobile wallet service. They were the fi rst MNO in the world to provide support for
more than one bank in a mobile wallet application.

Another good example of an m-commerce ecosystem is EnStream Company in Canada. EnStream
aims to provide solutions for service providers in Canada and to become a common mobile commerce
interface between Canada’s mobile carriers and the Canadian ecosystem for NFC transactions. They

www.it-ebooks.info

http://www.it-ebooks.info/

Business Models ❘ 235

provide an SE management application which allows secure provisioning to SIM- or UICC-based
SEs. It provides safe information exchange between Canadian mobile marketplace (carriers) and all
credential issuers (e.g., banks, transit commissions, and loyalty companies).

NOTE For more information about the SE management application of
EnStream, please see http://www.enstream.com/service_provider_
solutions.php.

Furthermore, another new mobile wallet implementation is provided by Isis. Isis Mobile Wallet was
launched in 2012 in Austin, Texas, and Salt Lake City, Utah. Users need to obtain an Isis Ready
smart phone which has an NFC chip built in and requires a SIM-based SE card to operate the Isis
Mobile Wallet. Users who have an Isis Ready smartphone can use Isis Mobile Wallet easily; fi rst
they need to download the application and then load their credit cards (such as American Express,
Chase, etc.) and loyalty cards. It also allows PIN protection and remote wallet locking. Isis Mobile
Wallet can be used to pay at any Isis Ready merchants who are participating in this trial. Isis aims to
expand their mobile wallet application to other regions as well.

According to Mobey Forum, it seems unlikely that MNOs will allow a third party to take over the
platform management role of the UICC-based SEs in the case of SIM-based solutions. In fact, for
the foreseeable future, it is certain that MNOs will fully or partially take on the role of platform
management (i.e., the management of the life cycle of the SE) in business models where UICC-based
SEs are used, and MNOs will be the only entities who issue them. Since SD-based SEs are more
independent of MNOs and can be applied in all business models, it is possible that they will be
preferred by service providers and used more by them. However, from the point of view of the users,
deploying the SD cards to the users and increasing the usage of SD cards seems very hard.

In some scenarios, such as ticketing and couponing, which involve additional service providers
other than banks and fi nancial institutions, the ecosystem gets even more complex. In an optimal
ecosystem, each service provider and MNO needs to sign a business agreement with one or more
centralized platform managers in order to have an application uploaded onto SEs. This allows
consumers to have access to all available services, switch on and off any service that they choose,
switch to another operator at any time, and easily reach a specifi c service.

General Revenue/Expenditure Flow Model

In terms of the revenue/expenditure aspect of the business model, Mobey Forum has performed an
overall analysis of the revenue model. In order to extend this perspective, a useful understanding of
simple cash fl ow among NFC stakeholders is summarized in Figure 9-6.

www.it-ebooks.info

http://www.enstream.com/service_provider_solutions.php
http://www.enstream.com/service_provider_solutions.php
http://www.it-ebooks.info/

236 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

FIGURE 9-6

Stakeholder

Customer

• Gaining coupons and
 other benefits from
 financial and loyalty
 services

• NFC-enabled Mobile Phone
• Removable Secure Element;
 UICC, SMC
• Monthly Subscription Fees
 to Service Providers, and
 Other Bills

• Application Development
 and Other Application-
 related Backend Services
• Maintenance Services for
 Applications
• Customer Care Services

• New UICC Issuances
• Mobile Network Services
• OTA Management Services
 Depending on Business
 Model
• Billing Subscribers
• Customer Care Services

• Customer Care Services
• Bank Fees and Other

• TSM Infrastructure Services
• OTA Management Solutions
 Depending on Business
 Model
• Customer Care Services

• Monthly Fees Paid
 by Customers as well
 as Merchants and
 Retailers

• Monthly Fees Paid
 by Its Subscribers

• Increased Sales (due
 to new customers or
 cutomer retention)

 Fees Paid by MNOs
 and Service Providers
 Depending on
 Business Model

Service Providers

Mobile Network
Operators

Merchants/
Retailers

Trusted Service
Managers

Revenue Expenditure

CARD EMULATION MODE USE CASE ALTERNATIVES

NFC Card emulation mode enables the implementation of a wide range of applications that
potentially require the involvement of many actors. We will now list the most popular potential
applications, classifi ed according to their characteristics.

Cashless Payment

It is true that payment systems are a large part of banks’ operations, and also help them to enhance
their yearly balances. Obviously, most credit and payment card users are also mobile phone users, so
why not integrate the payment procedures into mobile phones? In this way, NFC mobile users don’t
have to carry credit cards as well as their mobiles. Most credit card users carry many credit cards at
the same time, so this integration is physically practical as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Card Emulation Mode Use Case Alternatives ❘ 237

Cashless payment models provide a very practical scenario. When a payment is to be performed, the
person with a credit or debit card integrated in their mobile simply touches it and enters a passcode
to make the transaction.

Mobile Wallet

If integrating a credit card in a mobile phone is simple, it is equally simple to integrate cash in the
same mobile. Be aware, however, that most bank cash storage and transactions are performed
digitally or virtually, and not many transactions are performed physically. That way, banks can
allow the deposit or withdrawal of any amount of money, because there is almost no risk involved in
money processing when it is performed virtually. (This excludes the security mechanisms required to
handle and transfer virtual money, of course.)

Given that banks now mostly process cash virtually, why not do the same with regular users
who own NFC-enabled mobile phones? This is equally practical. Users can store any amount
of money on mobile phones, if the required digital security mechanisms are performed, using
NFC mobile phones’ card emulation mode. Money can be transferred to the mobile wallet using
existing environments, such as bank web portals. The portals need to be modifi ed to enable this
functionality, of course. Users can withdraw money from an ATM machine as well, when the
machine is equipped with an NFC reader. Instead of physically withdrawing money, you can just
touch the mobile to the ATM’s NFC reader. When you want to transfer money to a friend, you
can do so by using a peer-to-peer mode application that enables this functionality. Stores that only
accept cash payments will need to facilitate an NFC reader for this purpose as well.

Ticketing

There have already been many improvements to the process of issuing tickets that have made
physical tickets unnecessary. Tickets for fl ights can be received by mobile via e-mail, and a scanner
to read the barcode can monitor its screen when the ticket is displayed on the mobile. NFC is yet
another technology that contributes to making mobile ticketing more seamless. After the ticket
is imported to the mobile, the mobile phone’s NFC capability can be used to transfer the ticket
information to the NFC reader that validates the ticket.

Loyalty Cards

Currently, loyalty and membership smart cards have a positive impact on the repeat purchase
behavior of loyal customers by stimulating product or service usage. Customers receive cards from
different companies, allowing them to get benefi ts when they make transactions. These might
include free miles, points, or coupons, which can be defi ned as structured marketing efforts.

NFC technology enables people to integrate their daily usage needs into their mobiles securely and
eliminates the need for physical loyalty cards to be carried by customers. Customers can simply use
loyalty applications on their NFC mobiles and benefi t from companies’ membership opportunities,
earn valuable offers, and so on.

Coupons

Giving discount tickets to potential customers is a very attractive way for companies to persuade
them to buy. Some coupons are publicly available via newspapers or leafl ets, while others are only

www.it-ebooks.info

http://www.it-ebooks.info/

238 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

acquired, for example, after a purchase has been made. It is important to be able to validate the
coupons, and NFC technology makes this easy; the user simply touches their mobile to the NFC
reader to validate the coupon.

CARD EMULATION MODE PROGRAMMING

Card emulation programming consists of three different pieces of programming: programming the
application in SE, programming the application in Android, and programming the NFC reader.

The SE program is at the center of two devices: NFC reader and Android mobile. The NFC reader
communicates with the SE to perform a transaction (for example, a credit card transaction) via
the NFC interface. The Android application communicates with the SE to give the user a graphical
interface.

In order to program the SE, you need to write an applet and then install it to the SE. The SE is
simply a Java Card, so you need to follow the Java Card instructions to write Java Card applets for
the SEs. If you already have experience in smart card programming (in other words, Java Cards),
you won’t have any diffi culty programming SEs. For those with no previous experience of Java Card
programming, we recommend you visit the offi cial Java Card page and get a book on Java Card, to
get started.

NOTE Please see http://www.oracle.com/technetwork/java/javacard/ for
the offi cial Java Card page.

An open source project named “Secure Element Evaluation Kit for the Android Platform” (SEEK)
has been developed in order to program the Android application that communicates with the SE.
The project aims to enable the deployment of secure applications on SEs. The project has completed
its major modules and is functional. The aim is to integrate the project in the newly deployed
Android mobile phones, thus making it possible to communicate with the SEs from Android OS.

NOTE Please see http://code.google.com/p/seek-for-android/ for the
Secure Element Evaluation Kit for the Android platform project.

PROGRAMMING SECURE ELEMENTS

Applications in an SE communicate with the NFC reader and the Android application. Remember
that there are various SEs that can be used: embedded hardware, SD cards, and UICCs. Please refer
to Chapter 2, “NFC Essentials for Application Developers,” for detailed descriptions of the SEs.

In order to write a program for the SE, you need to use Java Card applets. A Java Card applet is an
application on a smart card in the form of Java byte code. When you write a Java Card applet and
install it to an SE, the Java Card applet interacts with NFC readers via the NFC interface.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javacard/
http://code.google.com/p/seek-for-android/
http://www.it-ebooks.info/

Programming Secure Elements ❘ 239

Java Card technology provides a secure application environment for devices that have limited
memory and processing capabilities, such as smart cards. One or multiple applications can be
deployed to a single card. Many Java Card products also rely on GlobalPlatform specifi cations.

When you write a Java Card applet, you need to have the keys of the Java Card in order to install
the applet to the SE. An embedded hardware SE comes with the mobile phone, and the keys of the
SE are generally owned by the mobile handset manufacturer. UICCs, on the other hand, are created
and sold by MNOs, so the keys of the UICCs are owned by MNOs. In this situation, you have two
options: you can either make an agreement with one of the SE owners to install your application to
the SE, or you can distribute SD cards to your customers, which is a diffi cult and expensive process.

In order to communicate with the SEs from an Android application, you need to use application
protocol data units (APDUs). There are two types of APDU: command APDUs and response
APDUs. Command APDUs are sent by the smart card reader to send commands to the smart cards;
response APDUs are the responses sent by the smart cards.

Command APDUs and response APDUs have a standard format that is defi ned by the ISO/IEC
7816-4 standard.

In a command APDU, the fi rst byte is the application-specifi c class of instructions, which indicates
the type of the command (see Table 9-1). The second byte is the instruction code that specifi es the
given command. The third and fourth bytes are the instruction parameters for the given command.
Then comes the Lc fi eld, which defi nes the number of bytes that the command data has. For
example, if the command has 4 bytes, you need to specify the length of the command in this fi eld.
The next fi eld is the command data, in which you give the command to the SE. Finally, the Le fi eld,
which is optional, defi nes the maximum number of bytes of the response it expects from the applet.

TABLE 9-1: Format of a Command APDU

FIELD NAME LENGTH IN BYTES DESCRIPTION

CLA 1 Application-specifi c class of instructions

INS 1 Instruction

P1 1 Personal instruction parameters for the command

P2 1 Personal instruction parameters for the command

Lc 0, 1, or 3 The number of bytes of command data

Command data Nc Command data

Le 0, 1, 2, or 3 Maximum number of response bytes expected (optional)

For example, a command APDU of A0 10 05 02 07 6B 65 72 65 6D 31 32 01 can be broken down
into fi elds as shown in Table 9-2.

www.it-ebooks.info

http://www.it-ebooks.info/

240 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

TABLE 9-2: An Example Command APDU

CLA INS P1 P2 LC COMMAND DATA LE

A0 10 05 02 07 6B 65 72 65 6D 31 32 01

The fi rst bytes of the response APDU are the response data (see Table 9-3). The applet returns
the requested response with a maximum number of bytes of Le defi ned in the command APDU. The
last two bytes are the processing status of the command. For example, if the operation is performed
successfully, it returns 90 00.

TABLE 9-3: Format of a Response APDU

FIELD NAME LENGTH IN BYTES DESCRIPTION

Response data Nr (at most Ne) Response data

SW1-SW2 2 Command status

For example, a response APDU of 03 90 00 can be broken down as shown in Table 9-4.

TABLE 9-4: An Example Response APDU

RESPONSE SW1 SW2

03 90 00

PROGRAMMING NFC READER

Programming the NFC Reader is another part of the chain. There are different reader providers and
each provider may have different software implementations. In order to program the reader, you
should follow your reader supplier’s instructions. This part of card emulation mode programming is
the most vendor-dependent part. Hence, proprietary solutions have to be followed.

PROGRAMMING ANDROID APPLICATIONS

Android applications in card emulation mode communicate with the SE in order to make GUI-based
operations. Some use cases display the card transaction history, card status, changing of the default
card, inputting of the card password, and so on. In order to perform these operations, the Android
operating system should be able to communicate with the SE to send and receive commands.

In order to promote Android applications to communicate with the SEs, an open source project
named “Secure Element Evaluation Kit for the Android Platform” (SEEK) has started with Apache
License 2.0. The aim of the project is to make Android an important platform for developing and
deploying security-based applications. The project is named as the SmartCard API.

The SmartCard API aims to add necessary modules and APIs to the Android platform and allow
applications to access and use SEs. The implementation takes the SIMalliance Open Mobile API
specifi cation as a reference. See Figure 9-7 for an overview of the SmartCard API modules.

www.it-ebooks.info

http://www.it-ebooks.info/

241

FIGURE 9-7

Available / work in progress

Closed components

Third party components

Components

Android modules
CLF

Base

band

SWP

NFC API Open Mobile API Interface Service APIs

Sample
applications

NFC Service

NFC
framework

NFC library RIL library

Telephony
framework

ASSD kernel
device node

Terminal1.apk

Demo
applications

Security enabled
applications

JCE
Service

PKCS#11
Service

Keystore
Service

Service framework

WebAPI
Service

Security
exten-
sion

Security
exten-
sion

Email
client

SmartcardService

Access Control Enforcer

eSE terminal SIM terminal ASSD terminal Plugin terminal

Android
Browser

...

...

Reproduced by permission of Giesecke & Devrient. Copyright © 2013 Giesecke & Devrient

www.it-ebooks.info

http://www.it-ebooks.info/

242 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

NOTE See http://code.google.com/p/seek-for-android/ for more informa-
tion on the SmartCard API.

Some Android mobile phones have already implemented the SmartCard API to their operating
system, but most have not done so yet. Those that already have the SmartCard API are listed at
http://code.google.com/p/seek-for-android/wiki/Devices.

If you have a mobile device that does not have the SmartCard API, you can rebuild the Android
Kernel with the inclusion of the SmartCard API and then fl ash your mobile phone with the new OS
to test the SmartCard API. Note that the mobile phone’s warranty may be terminated as a result of
this operation.

Enabling Android OS Access to SE

If your mobile doesn’t have the SmartCard API, you have two options. The fi rst is to fl ash your
mobile phone with a new Android OS that has an integrated SmartCard API. The second is to use
a G&D Mobile Security Card (MSC). This micro SD card enables any Android phone with an SD
card slot to use the SmartCard API without fl ashing the phone.

Flashing the Phone

In order to fl ash your phone, you need to perform several steps. First of all you need to use Linux or
Mac OS. Then you need to set up the requirements in your OS (Linux or Mac OS) in order to build
the new mobile Android OS.

NOTE See http://source.android.com/source/initializing.html for more
information on initializing a build environment.

In order to build your new Android OS, you need to follow these steps:

 1. Get Android sources from Google.

 2. Download SmartCard API patch fi les.

 3. Apply the patches.

 4. Download the libraries for your mobile phone and extract them.

 5. Build the new Android OS for your mobile.

 6. Flash your mobile device.

NOTE See http://code.google.com/p/seek-for-android/wiki/
BuildingTheSystem for building a new Android OS with Smart Card API
support.

www.it-ebooks.info

http://code.google.com/p/seek-for-android/
http://code.google.com/p/seek-for-android/wiki/Devices
http://source.android.com/source/initializing.html
http://code.google.com/p/seek-for-android/wiki/BuildingTheSystem
http://code.google.com/p/seek-for-android/wiki/BuildingTheSystem
http://www.it-ebooks.info/

Programming Android Applications ❘ 243

When you successfully fl ash your mobile device with the built OS, your mobile is ready to use the
SmartCard API.

Note that your mobile phone’s warranty may be terminated as a result of these operations.

Using an MSC

A G&D MSC enables any Android mobile phone with an SD card slot to use SmartCard API,
without fl ashing the OS of the mobile phone. When you use this SD card, you will be able to access
and test its SE. This is a preferable way to do it for development phones, since you don’t need to
install a new OS on the mobile phone.

NOTE See http://code.google.com/p/seek-for-android/wiki/
MscSmartcardService/ for more information on using an MSC.

Setting up the Platform

After you have prepared your mobile phone to use the SmartCard API, you need to set up the
platform in order to write Android applications that communicate with the SE.

You should have already installed ADT Bundle, which also includes Eclipse IDE, in Chapter 3,
“Getting Started with Android.” In order to use the SmartCard API, you need to install the Open
Mobile API add-on package. To do this, follow these steps:

 1. Start Eclipse.

 2. Select Window ➪ Android SDK Manager.

 3. Click Tools ➪ Manage Add-on Sites.

 4. Click the User Defi ned Sites tab and then click New to add a new repository.

 5. Type the following URL into the Add Add-on Site URL dialog box and then click OK:

http://seek-for-android.googlecode.com/svn/trunk/repository/addon.xml

 6. Close the Add-On Sites dialog box.

 7. Click Packages ➪ Reload to reload the packages.

 8. Under Android 4.0.3 (API 15), you will see that Open Mobile API package is added. Select
this package and then click Install Package.

Now Eclipse is ready to develop Android applications to access SE.

NOTE If your mobile phone’s API level is lower than 15, you can download and
import org.simalliance.openmobileapi.jar to your project.

www.it-ebooks.info

http://code.google.com/p/seek-for-android/wiki/MscSmartcardService/
http://code.google.com/p/seek-for-android/wiki/MscSmartcardService/
http://seek-for-android.googlecode.com/svn/trunk/repository/addon.xml
http://www.it-ebooks.info/

244 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

Accessing SE

In order to create an Android application that communicates with SE, follow these steps:

 1. Create a new Android project from Eclipse. (See Chapter 4, “Android Software
Development Primer,” to learn how to create a new Android project.)

 2. For the Build Target, select Open Mobile API (Giesecke & Devrient GmbH) (API 15).

 3. Select API Level 15 for Minimum SDK.

Now you are ready to create an application to access SE.

Adding Attributes to the Android Manifest File

Inside the Android manifest fi le, fi rst add a new permission to use the smart card as follows:

<uses-permission android:name="android.permission.SMARTCARD"/>

Then add a uses-library element for Open Mobile API inside the application:

<application …>
 <uses-library android:name="org.simalliance.openmobileapi"
 android:required="true" />
</application>

Adding Required Codes to the Activity

Import the Open Mobile API in your activity as follows:

import org.simalliance.openmobileapi.*;

The SE service uses an asynchronous callback mechanism to inform the application when the service
is connected. So, implement SEService.Callback to the activity and defi ne the callback method
serviceConnected() as follows:

public class MainActivity extends Activity implements SEService.CallBack{
 ...
 @Override
 public void serviceConnected(SEService newSEService) {
 }

Then create an SEService object within the class:

private SEService seService;

Inside the onCreate() method, use the following code to access the SE:

try {
 seService = new SEService(this, this);
}catch (SecurityException se) {
 Log.e("Smart Card Activity Exception", se.getMessage());
}catch (Exception e) {
 Log.e("Smart Card Activity Exception", e.getMessage());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Android Applications ❘ 245

In the onDestroy() method, close the SEService as follows:

@Override
protected void onDestroy() {
 if (seService != null && seService.isConnected()) {
 seService.shutdown();
 }
 super.onDestroy();
}

From now on, you will start writing code to access the SE. In order to get the available readers, use
the following code. If no SE readers are found in the mobile phone, it will terminate the activity.

try{
Reader[] readers = seService.getReaders();
if (readers.length < 1)
 return;

In order to open a session to an SE, use the following code:

Session session = readers[0].openSession();

After you open a session to an SE, you need to select an applet from the SE. In order to do this, you
need to defi ne the Applet ID (AID). Please refer to Java Card for detailed information on AID. In the
following code example, the AID of the applet is 01 02 03 04 05 06 07 08 09 09:

Channel channel = session.openLogicalChannel(
new byte[] { (byte) 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
 0x09});

Now, you need to send the command APDU to the SE. Remember that command APDUs are sent
to the SE and response APDUs are sent by the SE. In this line of code, you send a command APDU
via the transmit() method and save the response to a byte array named responseApdu:

byte[] responseApdu = channel.transmit(new byte[] {(byte) 0xA0, 0x10, 0x05,
 0x02, 0x07, 0x6B, 0x65, 0x72, 0x65,
 0x6D, 0x31, 0x32, 0x01 });

Then, you need to close the session to the SE as follows:

channel.close();

The last thing to do is to process the response APDU. In a response APDU, the last two bytes are the
command status, as described earlier. Thereafter, the bytes before the last two bytes are the custom
bytes that your applet sent. Inside the command APDU, you have already defi ned the maximum
number of bytes expected from the applet as 1. You may also have defi ned a different maximum number
of expected bytes. In all cases, the last two bytes are the command status. So, you can remove the
last two bytes from the response APDU and process the response. Also note that the command status
needs to be 90 00, which declares that the execution on the applet is successful. If the command status
is different, the execution has not been successful.

You can use the following lines of code to get the command status and the response. After that, you
can check that the command status is 90 00 and process the response afterwards.

byte[] commandStatus = new byte[2];
System.arraycopy(responseApdu , responseApdu.length - 2, commandStatus,
 0, 2);
byte[] response = new byte[responseApdu.length - 2];
System.arraycopy(responseApdu , 0, response, 0, responseApdu.length - 2);

www.it-ebooks.info

http://www.it-ebooks.info/

246 ❘ CHAPTER 9 NFC PROGRAMMING: CARD EMULATION MODE

You also need to close the try clause and catch the exception, as follows:

}catch (Exception e) {
 Log.e("Smart Card Activity Exception", e.getMessage());
 return;
}

You have now accessed an SE from Android in order to send command APDUs and retrieve
response APDUs. In order to go further, you need to program the applet with Java Card
programming that processes the command APDUs and sends response APDUs. However, the code
needed for the Android application to communicate with the SE, sending command APDUs, and
retrieving response APDUs, will not change, since this code handles them.

SUMMARY

NFC card emulation mode enables a wide range of important applications that potentially require
the involvement of many stakeholders: NFC chip set manufacturers and suppliers, SE manufacturers
and suppliers, mobile handset manufacturers and suppliers, reader manufacturers and suppliers,
MNOs, trusted service managers (TSMs), service providers, merchants/retailers, and so on.

Currently, some important implementations of NFC card emulation mode are cashless payment,
ticketing, loyalty cards, coupons, and turnstile. Due to the complexity of NFC card emulation
mode applications in terms of the business ecosystem and technological infrastructure, it is
really important to develop suitable business models and processes. Some business models do not
encourage the cooperation of all bodies; however, an NFC ecosystem needs various stakeholders and
industries in collaboration.

There are three possible collaboration models: the MNO-centric, distributed, and TSM-centric
business models. In defi ning NFC business models, three key issues need to be handled: who will be
the SE issuer (depending on the SE alternatives); who will manage the life cycle of the SE and be the
platform manager; and, fi nally, who will be the OTA provider.

Again in terms of technological infrastructure, card emulation Android applications need to be
programmed in three parts. The fi rst is to program the application in the SE, the second is
to program the Android application, and the third is to program the NFC reader. In order to
program the SE, you need to write an applet and then install it to the SE. The SE is simply a Java
Card so you need to follow the Java Card instructions to write Java Card applets for SEs.

An open source project named “Secure Element Evaluation Kit for the Android Platform” has been
developed in order to program the Android application that communicates with the SE. The project
aims to enable the deployment of secure applications on SEs. Some parts of the project have been
completed but some are still in progress. When it is completed, the aim is to integrate the project in
the newly deployed Android mobile phones.

In order to program the NFC reader, programmers should follow the NFC reader supplier’s
instructions for that specifi c NFC reader product and its software. In order to enable SE access from
an Android mobile phone using a Smart Card API, there are two options if your mobile does not
already have the SmartCard API. The fi rst is to fl ash your mobile phone with a new Android OS that
has an integrated SmartCard API. The second is to use a G&D Mobile Security Card (MSC) that
enables an Android phone with an SD card slot to use the SmartCard API without fl ashing the phone.

www.it-ebooks.info

http://www.it-ebooks.info/

URI Prefi xes for NDEF

Table A-1 lists the URI prefi xes for NDEF records along with their descriptions. These URI
prefi xes for NDEF records are provided by NFC Forum. The codes are defi ned in the NFC
Forum technical specifi cation titled “URI Record Type Defi nition.”

TABLE A-1: URI Prefi xes

DECIMAL HEX PROTOCOL

0 0x00 N/A. No prepending is done,

and the URI fi eld contains the

unabridged URI.

1 0x01 http://www.

2 0x02 https://www.

3 0x03 http://

4 0x04 https://

5 0x05 tel:

6 0x06 mailto:

7 0x07 ftp://anonymous:anonymous@

8 0x08 ftp://ftp.

9 0x09 ftps://

10 0x0A sftp://

11 0x0B smb://

A

continues

www.it-ebooks.info

http://www.it-ebooks.info/

248 ❘ APPENDIX A URI PREFIXES FOR NDEF

DECIMAL HEX PROTOCOL

12 0x0C nfs://

13 0x0D ftp://

14 0x0E dav://

15 0x0F news:

16 0x10 telnet://

17 0x11 imap:

18 0x12 rtsp://

19 0x13 urn:

20 0x14 pop:

21 0x15 sip:

22 0x16 sips:

23 0x17 tftp:

24 0x18 btspp://

25 0x19 btl2cap://

26 0x1A btgoep://

27 0x1B tcpobex://

28 0x1C irdaobex://

29 0x1D file://

30 0x1E urn:epc:id:

31 0x1F urn:epc:tag:

32 0x20 urn:epc:pat:

33 0x21 urn:epc:raw:

34 0x22 urn:epc:

35 0x23 urn:nfc:

36 ... 255 0x24..0xFF RFU

Reproduced by permission of NFC Forum. Copyright © 2013 NFC Forum.

TABLE A-1 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages

B
In this appendix, the Android NFC packages are described: the android.nfc package in
Tables B-1 to B-9 and the android.nfc.tech package in Tables B-10 to B-20. Each package’s
classes and exceptions (if any) are briefl y explained with their constructors, fi elds, constants,
and methods. Their API levels are also indicated. Here is a short description of each table:

 ➤ Table B-1 describes the android.nfc package, its classes (NfcManager class,
NfcAdapter class, NdefMessage class, NdefRecord class, NfcEvent class, and Tag
class), and its exceptions (FormatException and TagLostException exceptions).

 ➤ Table B-2 describes methods of the NfcManager class of the android.nfc package.

 ➤ Table B-3 describes nested classes (NfcAdapter.CreateBeamUrisCallback
interface, NfcAdapter.CreateNdefMessageCallback interface, and NfcAdapter
.OnNdefPushCompleteCallback interface), constants, and methods of the
NfcAdapter class of the android.nfc package.

 ➤ Table B-4 describes fi elds, constructors, and methods of the NdefMessage class of the
android.nfc package.

 ➤ Table B-5 describes constructors, constants, fi elds, and methods of the NdefRecord
class of the android.nfc package.

 ➤ Table B-6 describes fi elds of the NfcEvent class of the android.nfc package.

 ➤ Table B-7 describes fi elds and methods of the Tag class of the android.nfc package.

 ➤ Table B-8 describes constructors of the FormatException exception of the android
.nfc package.

 ➤ Table B-9 describes constructors of the TagLostException exception of the android
.nfc package.

www.it-ebooks.info

http://www.it-ebooks.info/

250 ❘ APPENDIX B ANDROID NFC PACKAGES

 ➤ Table B-10 describes the android.nfc.tech package and its classes (Ndef class,
NdefFormatable class, IsoDep class, MifareClassic class, MifareUltralight class,
NfcA class, NfcB class, NfcV class, NfcF class, and NfcBarcode class).

 ➤ Table B-11 describes the TagTechnology interface of the android.nfc.tech package.

 ➤ Table B-12 describes constants and methods of the Ndef class of the android.nfc.tech
package.

 ➤ Table B-13 describes methods of the NdefFormatable class of the android.nfc.tech
package.

 ➤ Table B-14 describes methods of the IsoDep class of the android.nfc.tech package.

 ➤ Table B-15 describes constants, fi elds, and methods of the MifareClassic class of the
android.nfc.tech package.

 ➤ Table B-16 describes constants and methods of the MifareUltralight class of the
android.nfc.tech package.

 ➤ Table B-17 describes the methods of the NfcA class of the android.nfc.tech package.

 ➤ Table B-18 describes methods of the NfcB class of the android.nfc.tech package.

 ➤ Table B-19 describes methods of the NfcF class of the android.nfc.tech package.

 ➤ Table B-20 describes methods of the NfcV class of the android.nfc.tech package.

TABLE B-1: android.nfc Package

CLASSES AND EXCEPTIONS DESCRIPTION API LEVEL

android.nfc package Provides access to Near Field Communication (NFC)

functionality and allows applications to read NFC

Data Exchange Format (NDEF) messages in NFC tags

9

NfcManager class High-level manager used to obtain an instance of an

NfcAdapter

10

NfcAdapter class Represents the local NFC adapter 9

NdefMessage class Represents an NDEF data message that contains one

or more NdefRecords

9

NdefRecord class Represents a logical (un-chunked) NDEF record 9

NfcEvent class Wraps information associated with any NFC event 14

Tag class Represents an NFC tag that has been discovered 10

FormatException exception Exception 9

TagLostException

exception

Exception 10

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 251

TABLE B-2: NfcManager Class of android.nfc Package

METHODS DESCRIPTION API LEVEL

getDefaultAdapter () method Helper to get the default NFC Adapter 10

TABLE B-3: NfcAdapter Class of android.nfc Package

NESTED CLASSES, CONSTANTS,

AND METHODS DESCRIPTION API LEVEL

NfcAdapter.CreateBeamUris

Callback interface
A callback to be invoked when another NFC

device capable of NDEF push (Android Beam) is

within range

16

Uri[] createBeamUris

(NfcEvent event) method
Called to provide a URI array to push 16

NfcAdapter.Create

NdefMessageCallback interface
A callback to be invoked when another NFC

device capable of NDEF push (Android Beam) is

within range

14

NdefMessage

createNdefMessage (NfcEvent

event) method

Called to provide an NdefMessage to push 14

NfcAdapter.OnNdefPush

CompleteCallback interface
A callback to be invoked when the system

successfully delivers your NdefMessage to

another device

14

void onNdefPushComplete

(NfcEvent event) method
Called on successful NDEF push 14

String ACTION_NDEF_

DISCOVERED constant
Intent to start an activity when a tag with NDEF

payload is discovered

10

String ACTION_TAG_DISCOVERED

constant

Intent to start an activity when a tag is

discovered

9

String ACTION_TECH_

DISCOVERED constant
Intent to start an activity when a tag is

discovered and activities are registered for the

specifi c technologies on the tag

10

String EXTRA_ID constant Optional extra containing a byte array including

the ID of the discovered tag for the ACTION_

NDEF_DISCOVERED, ACTION_TECH_DISCOVERED,

and ACTION_TAG_DISCOVERED intents

9

String EXTRA_NDEF_MESSAGES

constant

Optional extra containing an array of NdefMessage

present on the discovered tag for the ACTION_

NDEF_DISCOVERED, ACTION_TECH_DISCOVERED,

and ACTION_TAG_DISCOVERED intents

9

continues

www.it-ebooks.info

http://www.it-ebooks.info/

252 ❘ APPENDIX B ANDROID NFC PACKAGES

NESTED CLASSES, CONSTANTS,

AND METHODS DESCRIPTION API LEVEL

String EXTRA_TAG constant Mandatory extra containing the tag that was

discovered for the ACTION_NDEF_DISCOVERED,

ACTION_TECH_DISCOVERED, and ACTION_TAG_

DISCOVERED intents

10

void disableForeground

Dispatch (Activity activity)

method

Disable foreground dispatch to the given activity 10

void disableForegroundNdef

Push (Activity activity)

method

This method is deprecated in API level 14. Use

setNdefPushMessage.

10

void enableForeground

Dispatch (Activity activity,

PendingIntent intent,

IntentFilter[] filters,

String[][] techLists) method

Enable foreground dispatch to the given activity 10

void enableForegroundNdef

Push (Activity activity,

NdefMessage message) method

This method is deprecated in API level 14. Use

setNdefPushMessage.

10

NfcAdapter getDefaultAdapter

() method
This method is deprecated in API level 10. Use

getDefaultAdapter.

9

NfcAdapter getDefaultAdapter

(Context context) method
Helper to get the default NFC adapter 10

boolean isEnabled () method Return true if this NFC adapter has any features

enabled

9

boolean isNdefPushEnabled

() method
Return true if the NDEF Push (Android Beam)

feature is enabled

16

void setBeamPushUris (Uri[]

uris, Activity activity)

method

Set one or more URIs to send using Android

Beam

16

void setBeamPushUrisCallback

(NfcAdapter.CreateBeam

UrisCallback callback,

Activity activity) method

Set a callback that will dynamically generate one

or more URIs to send using Android Beam

16

void setNdefPushMessage

(NdefMessage message,

Activity activity, Activity

... activities) method

Set a static NdefMessage to send using Android

Beam

14

TABLE B-3 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 253

NESTED CLASSES, CONSTANTS,

AND METHODS DESCRIPTION API LEVEL

void setNdefPushMessage

Callback (NfcAdapter

.CreateNdefMessageCallback

callback, Activity activity,

Activity... activities)

method

Set a callback that dynamically generates NDEF

messages to send using Android Beam

14

void setOnNdefPushComplete

Callback (NfcAdapter

.OnNdefPushCompleteCallback

callback, Activity activity,

Activity... activities)

method

Set a callback on successful Android Beam 14

TABLE B-4: NdefMessage Class of android.nfc Package

FIELDS, CONSTRUCTORS, AND METHODS DESCRIPTION API LEVEL

Creator<NdefMessage> CREATOR

fi eld

Creator 9

NdefMessage (byte[] data)

constructor

Create an NDEF message from raw

bytes

9

NdefMessage (NdefRecord record,

NdefRecord... records) constructor
Construct an NDEF message from one

or more NDEF records

16

NdefMessage (NdefRecord[]

records) constructor
Create an NDEF message from NDEF

records

9

NdefRecord[] getRecords ()

method

Get the NDEF records inside this NDEF

message

9

byte[] toByteArray () method Returns a byte array representation of

this entire NDEF message

9

TABLE B-5: NdefRecord Class of android.nfc Package

CONSTRUCTORS, CONSTANTS,

FIELDS, AND METHODS DESCRIPTION API LEVEL

NdefRecord (short tnf, byte[]

type, byte[] id, byte[]

payload) constructor

Construct an NDEF record from its

component fi elds

9

NdefRecord (byte[] data)

constructor

This constructor was deprecated in API level

16; use NdefMessage(byte[]) constructor

9

continues

www.it-ebooks.info

http://www.it-ebooks.info/

254 ❘ APPENDIX B ANDROID NFC PACKAGES

CONSTRUCTORS, CONSTANTS,

FIELDS, AND METHODS DESCRIPTION API LEVEL

short TNF_ABSOLUTE_URI

constant

Indicates the type fi eld contains a value

that follows the absolute-URI BNF construct

defi ned by RFC 3986

9

short TNF_EMPTY constant Indicates no type, ID, or payload is

associated with this NDEF record

9

short TNF_EXTERNAL_TYPE

constant

Indicates the type fi eld contains a value that

follows the RTD external name specifi cation

9

short TNF_MIME_MEDIA constant Indicates the type fi eld contains a value

that follows the media-type BNF construct

defi ned by RFC 2046

9

short TNF_UNCHANGED constant Indicates the payload is an intermediate or

fi nal chunk of a chunked NDEF record

9

short TNF_UNKNOWN constant Indicates the payload type is unknown 9

short TNF_WELL_KNOWN constant Indicates the type fi eld uses the RTD type

name format

9

Creator<NdefRecord> CREATOR

fi eld

Creator 9

byte[] RTD_ALTERNATIVE_

CARRIER fi eld
RTD alternative carrier type 9

byte[] RTD_HANDOVER_CARRIER

fi eld
RTD handover carrier type 9

byte[] RTD_HANDOVER_REQUEST

fi eld
RTD handover request type 9

byte[] RTD_HANDOVER_SELECT

fi eld

RTD handover select type 9

byte[] RTD_SMART_POSTER fi eld RTD smart poster type 9

byte[] RTD_TEXT fi eld RTD text type 9

byte[] RTD_URI fi eld RTD URI type 9

NdefRecord

createApplicationRecord

(String packageName) method

Create an Android application NDEF record 14

NdefRecord createExternal

(String domain, String type,

byte[] data) method

Create a new NDEF record containing

external (application-specifi c) data

16

TABLE B-5 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 255

CONSTRUCTORS, CONSTANTS,

FIELDS, AND METHODS DESCRIPTION API LEVEL

NdefRecord createMime (String

mimeType, byte[] mimeData)

method

Create a new NDEF record containing MIME

data

16

NdefRecord createUri (String

uriString) method
Create an NDEF record of well-known type

URI

14

NdefRecord createUri (Uri

uri) method
Create an NDEF record of well-known type

URI

14

byte[] getId () method Returns the variable length ID 9

byte[] getPayload () method Returns the variable length payload 9

short getTnf () method Returns the 3-bit TNF 9

byte[] getType () method Returns the variable length type fi eld 9

byte[] toByteArray () method This method was deprecated in API level 16;

use toByteArray()

9

String toMimeType () method Map this record to a MIME type, or return

null if it cannot be mapped

16

Uri toUri () method Map this record to a URI, or return null if it

cannot be mapped

16

TABLE B-6: NfcEvent Class of android.nfc Package

FIELDS DESCRIPTION API LEVEL

NfcAdapter nfcAdapter fi eld The NfcAdapter associated with the NFC event 14

TABLE B-7: Tag Class of android.nfc Package

FIELDS AND METHODS DESCRIPTION API LEVEL

Creator<Tag> CREATOR fi eld Creator 10

byte[] getId () method Get the tag Identifi er (if it has one) 10

String[] getTechList ()

method

Get the technologies available in this tag, as

fully qualifi ed class names

10

String toString () method Human-readable description of the tag, for

debugging

10

www.it-ebooks.info

http://www.it-ebooks.info/

256 ❘ APPENDIX B ANDROID NFC PACKAGES

TABLE B-8: FormatException Exception of android.nfc Package

CONSTRUCTORS API LEVEL

FormatException () constructor 9

FormatException (String message) constructor 9

FormatException (String message, Throwable

e) constructor
16

TABLE B-9: TagLostException Exception of android.nfc Package

CONSTRUCTORS API LEVEL

TagLostException () constructor 10

TagLostException (String message) constructor 10

TABLE B-10: android.nfc.tech Package

CLASSES DESCRIPTION API LEVEL

android.nfc.tech

package

Provides access to a tag technology’s features,

which vary by the type of tag that is scanned

10

Ndef class Provides access to NDEF content and operations

on a tag

10

NdefFormatable class Provides access to NDEF format operations on a tag 10

IsoDep class Provides access to ISO-DEP (ISO 14443-4)

properties and I/O operations on a tag

10

MifareClassic class Provides access to MIFARE Classic properties and

I/O operations on a tag

10

MifareUltralight class Provides access to MIFARE Ultralight properties and

I/O operations on a tag

10

NfcA class Provides access to NFC-A (ISO 14443-3A) properties

and I/O operations on a tag

10

NfcB class Provides access to NFC-B (ISO 14443-3B) properties

and I/O operations on a tag

10

NfcV class Provides access to NFC-V (ISO 15693) properties

and I/O operations on a tag

10

NfcF class Provides access to NFC-F (JIS 6319-4) properties

and I/O operations on a tag

10

NfcBarcode class Provides access to tags containing just a barcode 17

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 257

TABLE B-11: TagTechnology Interface of android.nfc.tech Package

INTERFACE AND METHODS DESCRIPTION API LEVEL

TagTechnology interface TagTechnology is an interface to a

technology in a tag

10

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

boolean isConnected ()

method

Helper to indicate if I/O operations should

be possible

10

TABLE B-12: Ndef Class of android.nfc.tech Package

CONSTANTS AND METHODS DESCRIPTION API LEVEL

String MIFARE_CLASSIC constant NDEF on MIFARE Classic 10

String NFC_FORUM_TYPE_1 constant NFC Forum tag type 1 10

String NFC_FORUM_TYPE_2 constant NFC Forum tag type 2 10

String NFC_FORUM_TYPE_3 constant NFC Forum tag type 3 10

String NFC_FORUM_TYPE_4 constant NFC Forum tag type 4 10

boolean canMakeReadOnly ()

method

Indicates whether a tag can be made

read-only with makeReadOnly()

10

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

Ndef get (Tag tag) method Get an instance of NDEF for the given tag 10

NdefMessage

getCachedNdefMessage () method
Get the NdefMessage that was read from

the tag at discovery time

10

int getMaxSize () method Get the maximum NDEF message size in

bytes

10

NdefMessage getNdefMessage ()

method

Read the current NdefMessage on this tag 10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

String getType () method Get the NDEF tag type 10

continues

www.it-ebooks.info

http://www.it-ebooks.info/

258 ❘ APPENDIX B ANDROID NFC PACKAGES

CONSTANTS AND METHODS DESCRIPTION API LEVEL

boolean isConnected () method Helper to indicate if I/O operations should

be possible

10

boolean isWritable () method Get the NDEF tag type 10

boolean makeReadOnly () method Make a tag read-only 10

void writeNdefMessage

(NdefMessage msg) method
Overwrite the NdefMessage on this tag 10

TABLE B-13: NdefFormatable Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag

from this TagTechnology object

10

void format (NdefMessage

firstMessage) method
Format a tag as NDEF, and write an

NdefMessage

10

void formatReadOnly (NdefMessage

firstMessage) method
Format a tag as NDEF, write an

NdefMessage, and make it

read-only

10

NdefFormatable get (Tag tag) method Get an instance of

NdefFormatable for the given tag

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

boolean isConnected () method Helper to indicate if I/O operations

should be possible

10

TABLE B-14: IsoDep Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

IsoDep get (Tag tag) method Get an instance of IsoDep for the

given tag

10

byte[] getHiLayerResponse

() method
Return the higher layer response bytes for

NfcB tags

10

TABLE B-12 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 259

byte[] getHistoricalBytes

() method
Return the ISO-DEP historical bytes for NfcA

tags

10

int getMaxTransceiveLength

() method
Return the maximum number of bytes that can

be sent with transceive(byte[])

14

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

int getTimeout () method Get the current timeout for

transceive(byte[]) in milliseconds

10

boolean isConnected ()

method
Helper to indicate if I/O operations should be

possible

10

boolean

isExtendedLengthApdu

Supported () method

Standard APDUs have a 1-byte length fi eld,

allowing a maximum of 255 payload bytes,

which results in a maximum APDU length of 261

bytes

16

void setTimeout (int

timeout) method
Set the timeout of transceive(byte[]) in

milliseconds

10

byte[] transceive (byte[]

data) method
Send raw ISO-DEP data to the tag and receive

the response

10

TABLE B-15: MifareClassic Class of android.nfc.tech Package

CONSTANTS, FIELDS, AND METHODS DESCRIPTION API LEVEL

int BLOCK_SIZE constant Size of a MIFARE Classic block (in bytes) 10

int SIZE_1K constant Tag contains 16 sectors, each with 4 blocks 10

int SIZE_2K constant Tag contains 32 sectors, each with 4 blocks 10

int SIZE_4K constant Tag contains 40 sectors 10

int SIZE_MINI constant Tag contains 5 sectors, each with 4 blocks 10

int TYPE_CLASSIC constant A MIFARE Classic tag 10

int TYPE_PLUS constant A MIFARE Plus tag 10

int TYPE_PRO constant A MIFARE Pro tag 10

int TYPE_UNKNOWN constant A MIFARE Classic compatible card of

unknown type

10

byte[] KEY_DEFAULT fi eld The default factory key 10

continues

www.it-ebooks.info

http://www.it-ebooks.info/

260 ❘ APPENDIX B ANDROID NFC PACKAGES

CONSTANTS, FIELDS, AND METHODS DESCRIPTION API LEVEL

byte[] KEY_MIFARE_

APPLICATION_DIRECTORY fi eld
The well-known key for tags formatted

according to the MIFARE Application

Directory (MAD) specifi cation

10

byte[] KEY_NFC_FORUM fi eld The well-known key for tags formatted

according to the NDEF on MIFARE Classic

specifi cation

10

boolean authenticate

SectorWithKeyA (int sector

Index, byte[] key) method

Authenticate a sector with key A 10

boolean

authenticateSectorWithKeyB

(int sectorIndex, byte[]

key) method

Authenticate a sector with key B 10

int blockToSector (int

blockIndex) method
Return the sector that contains a given block 10

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

void decrement (int

blockIndex, int value)

method

Decrement a value block, storing the result in

the temporary block on the tag

10

static MifareClassic get

(Tag tag) method
Get an instance of MifareClassic for the

given tag

10

int getBlockCount () method Return the total number of MIFARE Classic

blocks

10

int getBlockCountInSector

(int sectorIndex) method
Return the number of blocks in the given

sector

10

int getMaxTransceiveLength

() method
Return the maximum number of bytes that

can be sent with transceive(byte[])

14

int getSectorCount () method Return the number of MIFARE Classic sectors 10

int getSize () method Return the size of the tag in bytes: One of

SIZE_MINI, SIZE_1K, SIZE_2K, SIZE_4K

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

int getTimeout () method Get the current transceive(byte[])

timeout in milliseconds

14

TABLE B-15 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 261

CONSTANTS, FIELDS, AND METHODS DESCRIPTION API LEVEL

int getType () method Return the type of this MIFARE Classic

compatible tag

10

void increment (int

blockIndex, int value)

method

Increment a value block, storing the result in

the temporary block on the tag

10

boolean isConnected ()

method

Helper to indicate if I/O operations should be

possible

10

byte[] readBlock (int

blockIndex) method
Read 16-byte block 10

void restore (int

blockIndex) method
Copy from a value block to the temporary

block

10

int sectorToBlock (int

sectorIndex) method
Return the fi rst block of a given sector 10

void setTimeout (int

timeout) method
Set the transceive(byte[]) timeout in

milliseconds

14

byte[] transceive (byte[]

data) method
Send raw NfcA data to a tag and receive the

response

10

void transfer (int

blockIndex) method
Copy from the temporary block to a value

block

10

void writeBlock (int

blockIndex, byte[] data)

method

Write 16-byte block 10

TABLE B-16: MifareUltralight Class of android.nfc.tech Package

CONSTANTS AND METHODS DESCRIPTION API LEVEL

int PAGE_SIZE constant Size of a MIFARE Ultralight page in bytes 10

int TYPE_ULTRALIGHT constant A MIFARE Ultralight tag 10

int TYPE_ULTRALIGHT_C constant A MIFARE Ultralight C tag 10

int TYPE_UNKNOWN constant A MIFARE Ultralight compatible tag of

unknown type

10

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

MifareUltralight get (Tag

tag) method
Get an instance of MifareUltralight

for the given tag

10

continues

www.it-ebooks.info

http://www.it-ebooks.info/

262 ❘ APPENDIX B ANDROID NFC PACKAGES

CONSTANTS AND METHODS DESCRIPTION API LEVEL

int getMaxTransceiveLength

() method
Return the maximum number of bytes that

can be sent with transceive(byte[])

14

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

int getTimeout () method Get the current transceive(byte[])

timeout in milliseconds

14

int getType () method Return the MIFARE Ultralight type of the tag 10

boolean isConnected () method Helper to indicate if I/O operations should be

possible

10

byte[] readPages (int

pageOffset) method
Read 4 pages (16 bytes) 10

void setTimeout (int

timeout) method
Set the transceive(byte[]) timeout in

milliseconds

14

byte[] transceive (byte[]

data) method
Send raw NfcA data to a tag and receive the

response

10

void writePage (int

pageOffset, byte[] data)

method

Write 1 page (4 bytes) 10

TABLE B-17: NfcA Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

NfcA get (Tag tag) method Get an instance of NfcA for the given tag 10

byte[] getAtqa () method Return the ATQA/SENS_RES bytes from tag

discovery

10

int getMaxTransceiveLength

() method
Return the maximum number of bytes that can

be sent with transceive(byte[])

14

short getSak () method Return the SAK/SEL_RES bytes from tag

discovery

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

int getTimeout () method Get the current transceive(byte[]) timeout

in milliseconds

14

TABLE B-16 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Android NFC Packages ❘ 263

boolean isConnected ()

method

Helper to indicate if I/O operations should be

possible

10

void setTimeout (int

timeout) method
Set the transceive(byte[]) timeout in

milliseconds

14

byte[] transceive (byte[]

data) method
Send raw NFC-A commands to the tag and

receive the response

10

TABLE B-18: NfcB Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

static NfcB get (Tag tag)

method

Get an instance of NfcB for the given tag 10

byte[] getApplicationData

() method
Return the Application Data bytes from ATQB/

SENSB_RES at tag discovery

10

int getMaxTransceiveLength

() method
Return the maximum number of bytes that can

be sent with transceive(byte[])

14

byte[] getProtocolInfo ()

method

Return the Protocol Info bytes from ATQB/

SENSB_RES at tag discovery

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

boolean isConnected ()

method
Helper to indicate if I/O operations should be

possible

10

byte[] transceive (byte[]

data) method
Send raw NFC-B commands to the tag and

receive the response

10

TABLE B-19: NfcF Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

NfcF get (Tag tag) method Get an instance of NfcF for the given tag 10

byte[] getManufacturer ()

method

Return the Manufacturer bytes from tag

discovery

10

continues

www.it-ebooks.info

http://www.it-ebooks.info/

264 ❘ APPENDIX B ANDROID NFC PACKAGES

METHODS DESCRIPTION API LEVEL

int getMaxTransceiveLength

() method
Return the maximum number of bytes that can

be sent with transceive(byte[])

14

byte[] getSystemCode ()

method

Return the System Code bytes from tag

discovery

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

int getTimeout () method Get the current transceive(byte[])

timeout in milliseconds

14

boolean isConnected ()

method

Helper to indicate if I/O operations should be

possible

10

void setTimeout (int

timeout) method
Set the transceive(byte[]) timeout in

milliseconds

14

byte[] transceive (byte[]

data) method
Send raw NFC-F commands to the tag and

receive the response

10

TABLE B-20: NfcV Class of android.nfc.tech Package

METHODS DESCRIPTION API LEVEL

void connect () method Enable I/O operations to the tag from this

TagTechnology object

10

NfcV get (Tag tag) method Get an instance of NfcV for the given tag 10

byte getDsfId () method Return the DSF ID bytes from tag discovery 10

int getMaxTransceiveLength

() method
Return the maximum number of bytes that

can be sent with transceive(byte[])

14

byte getResponseFlags ()

method

Return the Response Flag bytes from tag

discovery

10

Tag getTag () method Get the Tag object backing this

TagTechnology object

10

boolean isConnected ()

method

Helper to indicate if I/O operations should be

possible

10

byte[] transceive (byte[]

data) method
Send raw NFC-V commands to the tag and

receive the response

10

TABLE B-19 (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

265

INDEX

A

AARs. See Android Application Records
ABM. See Asynchronous Balanced Mode
AbsoluteLayout, 88
access control, card emulation mode, 21
acknowledgement frame (ACK frame), 46
Action Bar, 109
ACTION_NDEF_DISCOVERED, 119, 121,

122–125
ACTION_NFC_SETTINGS, 202
ACTION_TAG_DISCOVERED, 119, 121

intent fi lters, 127
ACTION_TECH_DISCOVERED, 119, 121, 122

intent fi lters, 125–127
active activities, 102
active devices, 14
active stickers, 26
activities

Android applications, 65
card emulation mode, 244–246
multiple, Android applications, 104–108

Activity, 67, 83
<activity>, 67, 83

setNdefPushMessage(), 196
activity lifecycle, Android applications,

102–104
Activity.onCreate, 87
AdapterView, 88
adb. See Android Debug bridge
add(), 175
add-ons/, 62
ADT. See Android Development Tools
aidl, 72
alignBounds, 100

alignMargins, 100
analog interface

NFC Forum Device, 12
reader/writer mode, 36

Android
basics, 53–75
development primer, 77–113
libraries, 56

manifest fi le, 67
Linux kernel, 55
manifest fi le, permissions, 7
NDEF Push Protocol, 183
NFC

APIs, 116–117
packages, 249–264
tags, 120–121

platforms
Android SDK Manager, 61
tools, 71–72

runtime, 56
SDK, 51, 53, 56, 57–63

Eclipse, 57
IDE, 58
Mac OS X, 59
packages, 62–63
platforms, 59–62
tools, 72–73

SDK Manager, 59, 61–62
android, 72
Android API

ACTION_NFC_SETTINGS, 202
isNdefPushEnabled(), 202
levels, 63–65
manifest fi le, 67
peer-to-peer mode, 182

www.it-ebooks.info

http://www.it-ebooks.info/

266

Android Application Records (AARs) – android.nfc

Android Application Records (AARs), 115,
140–141

intent fi lters, 141
peer-to-peer mode, 187

Android applications. See also card emulation
mode; peer-to-peer mode; reader/writer mode

activities, 65
multiple, 104–108

activity lifecycle, 102–104
background process, 70
broadcast receivers, 66
confi guring for release, 85–86
content providers, 66
creating fi rst, 78–83
device features, 69
dialog builders, 97–100
distribution, 85–87
empty process, 70
event listeners, 92–95
foreground process, 70
framework, 56
GridLayout, 100–102
Hello World, 87–89
input confi gurations, 68
intent fi lters, 66, 68
intents, 66

multiple, 104–108
manifest fi le, 67–68, 121–122
menu items, 108–112

layout fi les, 110–111
XML, 108–110

mobile phones, 83–85
manual installation, 84–85
running instantly, 84

NFC, 18–22
payment

card emulation mode, 20
SEs, 25

platform version, 69
processes, 69–71
relative layout, 95–97
requirements, 68–69
resources, 69, 90–92
RFID, 6–7
screen density, 68

screen size, 68
service process, 70
services, 65–66
smart cards, 10
structure, 65–71
threads, 69–71
views, multiple, 90
visible process, 70
XML, 69, 92

Android Beam
Android OS, 182
isNdefPushEnabled(), 183
onResume(), 202

Android Debug bridge (adb), 71
Android Development Tools (ADT), 56–57, 72

DVM, 71
Eclipse, Android application release, 86

Android OS, 53, 54
Android Beam, 182
incoming beams, 199–203
peer-to-peer mode, 199–203
SEs, 242–243

Android Virtual Devices (AVDs), 53, 74
android:alignmentMode, 100
android:columnCount, 100
android:contentDescription, 110–111
android:host, 123
android:icon, 83, 86
android:id, 110
android:label, 67, 83, 86
android:layout_above, 97
android:layout_below, 97
android:layout_column, 102
android:layout_row, 102
android:layout_toLeft, 97
android:layout_toRight, 97
AndroidManifest.xml, 81, 82

editing, 106–107
NFC tags, 135

android:minSdkVersion, 86
android.nfc, 116–117, 143, 249–256

FormatException, 256
NdefMessage, 253
NdefRecord, 253–255
NfcAdapter, 251–253

www.it-ebooks.info

http://www.it-ebooks.info/

267

android.nfc.tech – cancelButton

NfcEvent, 255
NfcManager, 251
TagLostException, 256

android.nfc.tech, 117, 256–264
IsoDep, 258–259
MifareClassic, 259–261
MifareUltralight, 261–262
Ndef, 133, 257–258
NdefFormatable, 134, 258
NfcA, 262–263
NfcB, 263
NfcF, 263–264
NfcV, 264

android:pathPrefix, 125
android:resource, 126
android:rowCount, 100
android:scheme, 125
android:showsAsAction, 110
android:src, 110
android:targetSdkVersion, 86
android:text, 88
android:title, 110
android:versionCode, 83, 86
android:versionName, 83, 86
anim/, 91
animal identifi cation, 6
animator/, 91
antenna

contactless smart card, 9
NFC mobile, 24
RFID, 6
stickers, 26

APDUs. See application protocol data units
.apk, 85
Application, 82
<application>, 67
application programming interfaces (APIs)

Android
ACTION_NFC_SETTINGS, 202
isNdefPushEnabled(), 202
levels, 63–65
manifest fi le, 67
NFC, 116–117
peer-to-peer mode, 182

Google, Android SDK Manager, 62

Java, 57
NFC, 51

Android, 116–117
SmartCard, 240–242

application protocol data units (APDUs), 239–
240, 245–246

applications. See Android applications
Array, 208
ArrayAdapter, 106
ArrayList, 208
assets, 81
Asynchronous Balanced Mode (ABM), 47
AVDs. See Android Virtual Devices

B

backend systems
RFID, 6
smart cards, 7

background process, Android applications, 70
Bada, 51
Basket, 175
Basket.empty(), 174
Bearer Independent Protocol (BIP), 28
bin, .apk, 85
bindService (), 66
BIP. See Bearer Independent Protocol
Bluetooth, 2

wireless communication, 4–5
broadcast receivers, Android applications, 66
business ecosystem, card emulation mode, 230
business models

card emulation mode, 232–236
distributed, 232–233
MNO, 232
TSMs, 233

Button, 92
convertButton, 102
NFC Panic Bomb, 221

bytesToSend, 202

C

Calypso, 34–35
cancelButton, 99

www.it-ebooks.info

http://www.it-ebooks.info/

268

card emulation mode – create_MIME_NdefMessage ()

card emulation mode, 229–246
access control, 21
activities, 244–246
Android applications, 20–22, 240–246
APDUs, 239–240, 245–246
business ecosystem, 230
business models, 232–236
cashless payment, 236–237
coupons, 237–238
defi nition, 230
Eclipse, 243
FeliCa, 230
generic usage model, 18
identity services, 21–22
ISO/IEC, 48–49, 230
loyalty cards, 237
loyalty programs, 21
manifest fi le, 244
MNO, 229, 231
mobile wallet, 237
NFC, 17–18, 48–49

ecosystem, 231
payment Android applications, 20
platforms, 243
programming, 238
protocol stack, 48–49
readers, 240
revenue/expenditure fl ow model, 235–236
SD, 230
SEs, 230, 238–240, 244
smart environment, 22
ticketing, 21, 237
UICCs, 230
use case alternatives, 236–238

cashless payment, card emulation mode,
236–237

casino chip-tracking, RFID, 7
CF. See Chunk Flag
changeImage, 111
ChatActivity, 208

EditText, 211
ListView, 209, 211
onNewIntent(), 213
onResume(), 213
processIntent(), 213

ChatAdapter

ArrayList, 208
SharedPreferences, 209

chatting, NFC
NDEF messages, 208
peer-to-peer mode, 208–215

Chronometer, NFC Panic Bomb, 223
Chunk Flag (CF), 40
CLF. See contactless front end
close(), 133, 134
collision detection, reader/writer mode, 36
color/, 91
connect(), 134

ndef, 133
connection handover specifi cation, 12
connectionless transport, 47
connection-oriented transport, 47
contact smart cards, 9
contactless front end (CLF), 11

NFC CLF, 24–25, 28
contactless smart cards

antenna, 9
electromagnetic spectrum, 9
ISO/IEC, 33–35
PICC, 33
privacy, 9
readers, 9
secure data transfer, 10
security, 9

contactless technologies
NFC, 2, 3
POS, 13
smart cards, 7, 9–10

contactless ticket reader, 37
content, 203
content providers, Android applications, 66
Context Menu, 109
Contextual Action Mode, 109
convertButton, Button, 102
core processors (CPU), mobile phones, 27
coupons, card emulation mode, 237–238
CPU. See core processors
createBeamUris(), 203–204
CreateBeamUrisCallback, 203
create_MIME_NdefMessage(), 202, 213

www.it-ebooks.info

http://www.it-ebooks.info/

269

createNdefMessage () – encodeInUtf8

createNdefMessage()

NFC Guess Number, 218
setNdefPushMessageCallback(), 184, 190

CreateNdefMessageCallback, 183, 186
NdefMessageCallback, 213
NFC Guess Number, 217
setNdefPushMessage(), 194

create_RTD_TEXT_NdefMessage(), 195
createUri(), 129
cryptographic keys, Android application

distribution, 85

D

Dalvik Debug Monitor Server (DDMS), 72
Dalvik Virtual Machine (DVM), 54, 71
data link layer, 28
DDMS. See Dalvik Debug Monitor Server
debugging, 86
destroyed activities, 102
detectedTag, 135
Developer Console, Google Play, 87
Developer Distribution Agreement, Google Play,

87
dex, 71
dexdump, 72
dialog builders, 97–100
disableForegroundNdefPush(), 196
display()

NFC Guess Number, 217
NFC Panic Bomb, 224

distributed business model, 232–233
distribution, Android applications, 85–87
docs/, 62
Documentation, Android SDK Manager, 61
draw9patch, 73
drawable, 81
drawable/, 91
DVM. See Dalvik Virtual Machine
dx, 72

E

Eclipse, 56
ADT, Android application release, 86

Android SDK, 57
card emulation mode, 243
Export Wizard, 86
IDE, 57

DVM, 71
ECMA. See European Computer Manufacturers

Association
ecosystem, NFC

card emulation mode, 231
stakeholders, 231

EDGE, 4–5
EditText, 92, 94, 95

ChatActivity, 211
inputField, 102
NFC Guess Number, 215
NFC Panic Bomb, 221
setNdefPushMessage(), 194
student transportation tracking use case, 176
urlAddress, 152
WriteUrlActivity, 151

EHF. See Extremely High Frequency
elapsedMillis, NFC Panic Bomb, 223, 226
electromagnetic spectrum

contactless smart cards, 9
passive devices, 14
RFID, 5
wireless communication, 4

electronic purse balance reader, 37
ELF. See Extremely Low Frequency
e-mail. See also mailto

intent fi lters, 169
NFC tags

reading, 168–169
writing, 158–160

onNewIntent(), 159
URI, 159

embedded hardware, SEs, 26
empty process, Android applications, 70
emptyButton, 174
emulator, 72
EMVCo, 50
enableForegroundNdefPush(), 196–199

onPause(), 196
peer-to-peer mode, 196

encodeInUtf8, 130

www.it-ebooks.info

http://www.it-ebooks.info/

270

end-user license agreement, Android application distribution – GSM association (GSMA)

end-user license agreement, Android application
distribution, 85

ETSI. See European Telecommunications
Standards Institute

European Computer Manufacturers Association
(ECMA), 11

NFC, 50
NFCIP-1, 35
NFCIP-2, 35

European Telecommunications Standards Institute
(ETSI), 11

NFC, 49
NFCIP-1, 35
NFCIP-2, 35

event listeners, 92–95
exitButton, 174
Export Wizard, Eclipse, 86
External Type, NFC Forum, 41
Extremely High Frequency (EHF), 4
Extremely Low Frequency (ELF), 4

F

FeliCa, 34
card emulation mode, 230
NFC Forum tag types, 37–38
protocol stacks, 48

file, 203
Finkenzeller, Klaus, 6
fl ashing, mobile phones, 242–243
foreground dispatch system

intent fi lters, 152
intents, 152
onPause(), 152
onResume(), 152
reader/writer mode, 117–118, 141–143

foreground process, 70
FormatException, 249, 250

android.nfc, 256

G

gen, 81
generic usage model

card emulation mode, 18

peer-to-peer mode, 16–17
reader/writer mode, 15–16

geo, TNF_EXTERNAL_TYPE, 157
geolocation

intent fi lters, 17
NFC tags

reading, 166–168
writing, 156–158

get(), processIntent(), 214
getDefaultAdapter(), 128, 251
getListView, 106
getNdefMessages, 135–136

setNdefPushMessage(), 195
getNdefMessages(), 173
getTechList(), 143
getText(), 94
Global Positioning System (GPS), 2
Global System for Mobile (GSM), 2

SEs, 25
wireless communication, 4

Global Type, NFC Forum, 41
GlobalPlatform, 27

Java Card, 239
NFC standardization, 50

Google
APIs, Android SDK Manager, 62
Maps, 182

Google Play, 82
AAR, 140
Developer Console, 87
Developer Distribution Agreement, 87
licensing, 86
publishing, 87

GPRS, 4–5, 28
GPS. See Global Positioning System
graphical user interface (GUI), 2, 51

Eclipse ADT, 86
SEs, 240

GridLayout, 88
Android applications, 100–102

Group, 178
<group>, 110
GSM. See Global System for Mobile
GSM association (GSMA), 231

standards, 49

www.it-ebooks.info

http://www.it-ebooks.info/

271

Guess Number – (ISO/IEC)

Guess Number. See NFC Guess Number
GUI. See graphical user interface

H

half-duplex transmission, 12
HCI. See host controller interface
Hello World, 87–89
HF. See High Frequency
hiearchyviewer, 73
High Frequency (HF), 4
hospital operating rooms, 7
host controller interface (HCI), 11, 25

NFC interface, 31–32
human implants, 6
hybrid smart cards, 10

I

IC. See integrated circuit
ID, 40
IDE. See Integrated Development Environment
identity services, card emulation mode, 21–22
ID_LENGTH, 40
IL, 40
image, ImageView, 112
ImageView, 110

image, 112
importance hierarchy, 70
incoming beams, Android OS, 199–203
Infrared Data Association (IrDA), 2
Initialization and Anticollision standard, 34
initiators, NFC, 13–14
input confi gurations, Android applications, 68
inputEditText, setNdefPushMessage(), 194
inputField, EditText, 102
integrated circuit (IC). See also Universal

Integrated Circuit Cards
RFID, 6
smart cards, 9

Integrated Development Environment (IDE)
Android SDK, 58
Eclipse, 57

DVM, 71
intent fi lters

AAR, 141
ACTION_TAG_DISCOVERED, 127
ACTION_TECH_DISCOVERED, 125–127
Android applications, 66, 68
e-mail, 169
foreground dispatch system, 152
geolocation, 17
manifest fi le, 17, 68, 162, 164, 165–166, 169
NFC, 122–128
peer-to-peer mode, 187
phone numbers, 164
RTD_TEXT, 123–124
RTD_URI, 123
SMS, 165–166
TNF_ABSOLUTE_URI, 124
TNF_EXTERNAL_TYPE, 125
TNF_MIME_MEDIA, 124–125
TNF_WELL_KNOWN, 123–124
URI, 162

IntentFilter, 66
intent-filter

manifest fi le, 172
nfclab.com:transport, 177

<intent-filter>, 66
intents

Android applications, 66
foreground dispatch system, 152
multiple, Android applications, 104–108
NDEF_DISCOVERED, 173

International Organization for Standardization/
International Electrotechnical Commission
(ISO/IEC), 10–11

ADPUs, 239
card emulation mode, 48–49, 230
contact smart cards, 9
contactless smart cards, 9, 33–35
NFC, 32–35, 50
NFC Forum tag types, 37–38
NFCIP-1, 35
NFCIP-2, 35
NFC-WI, 30
protocol stacks, 48
reader/writer mode, 36
RF, 32
standards, 11

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

272

inventory systems, RFID – manifest fi le

inventory systems, RFID, 6
IrDA. See Infrared Data Association
isChecked(), 94
isNdefPushEnabled()

Android APIs, 202
Android Beam, 183

IsoDep, 117, 126, 144, 250
android.nfc.tech, 258–259

ISO/IEC. See International Organization for
Standardization/International Electrotechnical
Commission

isWritable(), 134
Item, 175
<item>, 110

J

Japanese Industrial Standard (JIS), 34
Java Card, 238

GlobalPlatform, 239
OS, 8

SEs, 25
Java Development Kit (JDK), 56, 57
Java Runtime Environment (JRE), 56, 57
Java Virtual Machine (JVM), 54, 57
JCP, NFC standardization, 49
JDK. See Java Development Kit
JIS. See Japanese Industrial Standard
JIS X 6319, 32–33
JRE. See Java Runtime Environment
JUnit, 56
JVM. See Java Virtual Machine

L

latitude, 157
layout, 81
layout/, 91
layout fi les

Android application event listener, 92–94
Android application menu items, 110–111
creating, 105
setContentView, 106

layout_alignTop, 98
layout_toLeftOf, 98

LF. See Low Frequency
libraries, Android, 56

manifest fi le, 67
licensing, Google Play, 86
life cycle, SCOS, 8
lifeTime, NFC Panic Bomb, 223
LinearLayout, 88, 93
link activation, supervision, and deactivation,

LLCP, 47
Linux, Android SDK packages, 63
Linux kernel, Android, 55
ListAdapter, 106
ListView

building, 105–106
ChatActivity, 209, 211

LLCP. See Logical Link Control Protocol
Local Type, NFC Forum, 41
logging, Android application confi guration, 86
Logical Link Control Protocol (LLCP), 12

NFC Forum, 38
peer-t-47o-peer mode, 46
peer-to-peer mode, 16

Long Term Evolution (LTE), wireless
communication, 4

longitude, 157
Low Frequency (LF), 4
loyalty cards, card emulation mode, 237
loyalty programs, card emulation mode, 21
LTE. See Long Term Evolution

M

MAC. See Medium Access and Control
Mac OS X, Android SDK, 59

packages, 63
MailActivity, 161, 168–169
mailAddress, 158
mailBody, 158
mailSubject, 158
mailto, RTD_URI, 168
mailto:, urlAddress, 159
main, 105
main.xml, 81, 88

onCreate, 94
manifest fi le

www.it-ebooks.info

http://www.it-ebooks.info/

273

MapActivity – NdefMessageCallback

Android, permissions, 7
Android applications, 67–68, 121–122

confi guration, 86
attributes, 244
card emulation mode, 244
intent fi lters, 17, 162, 164, 165–166, 169
intent-filter, 172
NFC tags, writing, 160
student transportation tracking use case,

177–178
MapActivity, 161, 166–168

TNF_EXTERNAL_TYPE, 167
MB. See Message Begin
ME. See Message End
Medium Access and Control (MAC), LLCP, 47
Medium Frequency (MF), 4
memory, smart cards, 7
menu, 110
menu/, 91
<menu>, 110
menu items, Android applications, 108–112

layout fi les, 110–111
MenuInflater, 111
MenuItem, 110
menu.xml, 111
Message Begin (MB), 39, 40
Message End (ME), 39, 40
messageToSend, 211
MF. See Medium Frequency
microprocessors, smart cards, 7–8
MIDlet proxy, 28
MIFARE, 34

NFC Forum tag types, 38
MifareClassic, 117, 126, 144

android.nfc.tech, 259–261
MifareUltralight, 117, 126, 144

android.nfc.tech, 261–262
MIME

NFC tags, 118
Smart Poster, 43

MMS. See multimedia message service
MNO. See mobile network operator
mobile devices, NFC, 24–25
mobile network operator (MNO), 27

business models, 232

card emulation mode, 229, 231
mobile phones

Android applications, 83–85
manual installation, 84–85
running instantly, 84

Bluetooth and, 2
CPU, 27
fl ashing, 242–243
NFC, 13
reader/writer mode, 15
SIMs, 9
smart environment, 22

Mobile Security Card (MSC), 242–243
mobile wallet, 237
Model-View-Controller (MVC), 90

GridLayout, 100
mode-switching, NFCIP-2, 35
mouse, 2
MSC. See Mobile Security Card
multimedia message service (MMS), 2
multiple activities, Android applications, 104–108
multiple intents, Android applications, 104–108
multiple views, Android applications, 90
MULTOS, 8

SEs, 25
MVC. See Model-View-Controller
myList.setOnItemClickListener, 106

N

NACK frame. See negative acknowledgement
frame

NDEF. See NFC Data Exchange Format
Ndef, 126, 144, 250

android.nfc.tech, 133, 257–258
ndef, connect(), 133
NDEF_DISCOVERED, 135

intents, 173
NdefFormatable, 126, 133, 144, 250

android.nfc.tech, 134, 258
NdefMessage, 116–117, 130, 250

android.nfc, 249, 253
NdefMessageCallback

CreateNdefMessageCallback, 213
NFC Guess Number, 217

www.it-ebooks.info

http://www.it-ebooks.info/

274

NdefRecord – NFC Data Exchange Format (NDEF) messages

NdefRecord, 116–117, 129, 249, 250
android.nfc, 249, 253–255

Near Field Communication (NFC)
Android applications, 18–22
Android packages, 249–264
APIs, 51

Android, 116–117
card emulation mode, 17–18, 48–49
chatting

NDEF messages, 208
peer-to-peer mode, 208–215

contactless technologies, 2, 3
controller

NFC mobile, 24–25
NFCIP, 28
SEs, 29–30

devices, 13–14
active, 14
NDEF, 38
passive, 14

ecosystem
card emulation mode, 231
stakeholders, 231

initiators, 13–14
intent fi lters, 122–128
interface, 28–32

HCI, 31–32
ISO/IEC, 32–35
mobile devices, 24–25
mobile phones, 13
modes, 14–18
overview, 1–22
peer-to-peer mode, 16–17, 45–47
platforms, 50–51
readers, 13

card emulation mode, 18
reader/writer mode, 15

reader/writer mode, 14–16, 36–45, 115–147
RFID, 3, 5–7, 13
shopping use case, 169–175
smart cards, 7–10
standardization, 49–50
student transportation tracking use case,

175–179

tags, 13
standards, 12

target, 13–14
technology, 10–22
touching paradigm, 2–3
ubiquitous computing and, 2–3
wireless communication, 3–5

Near Field Communication Interface and
Protocol 1 (NFCIP-1), 11, 35

NFC controller, 28
peer-to-peer mode, 16
SAR, 46

Near Field Communication Interface and
Protocol 2 (NFCIP-2), 35

Near Field Communication Wired Interface
(NFC-WI), 11

Near Field Communications Security Services
(NFC-SEC), 11

negative acknowledgement frame (NACK frame),
46

NegativeButton, 99
newAlert.show(), 99
NFC. See Near Field Communication
NFC Contactless Front End (NFC CLF),

24–25, 28
NFC Data Exchange Format (NDEF)

AAR, 140
NFC devices, 38
NFC Forum TNF, 115–116
NFC tag writing, 128–134
payloads, 39
Push Protocol, 183
reader/writer mode, 36, 37, 38–41
record types, 41
RTD_TEXT, 130–131
TNF_ABSOLUTE_URI, 131
TNF_EXTERNAL_TYPE, 132
TNF_MIME_MEDIA, 131
TNF_WELL_KNOWN, 129–131
URI prefi xes, 247–248

NFC Data Exchange Format (NDEF) messages
NFC chatting, 208
NFC Guess Number, 216
NFC Panic Bomb, 222

www.it-ebooks.info

http://www.it-ebooks.info/

275

NFC Forum – NfcEvent

peer-to-peer mode, 183–184, 203–205
receiving, 184–185

setBeamPushUris(), 204–205
setBeamPushUrisCallback(), 203–204
URI, 203

NFC Forum
device standards, 12
External Type, 41
Global Type, 41
LLCP, 38
Local Type, 41
NFC ecosystem, 231
NFC standardization, 50
SNEP, 183
tag types, reader/writer mode, 37–38
TNF, NDEF, 115–116
Well-Known Type, 41

NFC Guess Number
createNdefMessage(), 218
CreateNdefMessageCallback, 217
display(), 217
EditText, 215
NDEF messages, 216
NdefMessageCallback, 217
onClickHandler(), 218
onResume(), 219
peer-to-peer mode, 215–221
processIntent(), 219
random(), 217
setNdefPushMessageCallback(), 218
TextView, 215
TNF_EXtern, 218

NFC Panic Bomb
Button, 221
Chronometer, 223
display(), 224
EditText, 221
elapsedMillis, 223, 226
lifeTime, 223
NDEF messages, 222
onClickHandler(), 224
onCreate(), 223
onNewIntent(), 225
onResume(), 225

peer-to-peer mode, 221–226
processIntent(), 225, 226
setNdefPushMessage(), 224
TextView, 221

NFC tags
AAR, 140
Android, 120–121
AndroidManifest.xml, 135
dispatch system, reader/writer mode,

118–121
e-mail

reading, 168–169
writing, 158–160

geolocation
reading, 166–168
writing, 156–158

manifest fi le, writing, 160
onNewIntent, 143
passive devices, 14
phone numbers

reading, 163–164
writing, 153–154

reader/writer mode, 14–15
technologies, 143–147

SMS
reading, 165–166
writing, 154–156

student transportation tracking use case, 176
URL

reading, 161–163
writing, 151–153

NFC Wired Interface (NFC-WI), 23, 25
front-end confi guration, 11
ISO/IEC, 30
SWP, 29–30

NfcA, 126, 144, 250
android.nfc.tech, 262–263

NfcAdapter, 116–117, 127–128, 152, 249, 250
android.nfc, 251–253

NfcB, 126, 144, 250
android.nfc.tech, 263

NfcBarcode, 126, 144
NfcEvent, 116–117, 249, 250

android.nfc, 255

www.it-ebooks.info

http://www.it-ebooks.info/

276

NfcF – over-the-air (OTA)

NfcF, 126, 144, 250
android.nfc.tech, 263–264

NFCIP-1. See Near Field Communication
Interface and Protocol 1

NFCIP-2. See Near Field Communication
Interface and Protocol 2

nfclab.com:transport

intent-filter, 177
TNF_EXTERNAL_TYPE, 175

NfcManager, 116–117, 249, 250
android.nfc, 251

NFCPosterActivity.GridLayout, 150
NFC-SEC. See Near Field Communications

Security Services
NFCShoppingActivity, 173–174
NfcV, 117, 126, 144, 145–147, 250

android.nfc.tech, 264
NFC-WI. See Near Field Communication Wired

Interface; NFC Wired Interface

O

OMA, 49
onClick, 94, 98

setOnClickListener(), 150
onClickHandler, 94, 95, 98
onClickHandler()

NFC Guess Number, 218
NFC Panic Bomb, 224

onClickItem, 106
onClickListener, 105, 176
onClickListener()

PhoneActivity, 164
SmsActivity, 166

onCreate

main.xml, 94
setListAdapter, 105
TextView, 112

onCreate(), 70
Android application activity lifecycle,

104
NFC Panic Bomb, 223
setNdefPushMessage(), 194
setNdefPushMessageCallback(), 183,

190, 213

onCreateOptionsMenu, 87, 111
onDestroy(), 70

Android application activity lifecycle, 104
OnItemClickListener, 106
onNewIntent, 143
onNewIntent(), 152, 154, 185

ChatActivity, 213
e-mail, 159
NFC Panic Bomb, 225
setNdefPushMessage(), 195
setNdefPushMessageCallback(), 186,

190
student transportation tracking use case, 176

onOptionsItemSelected, 111
onPause()

Android application activity lifecycle, 104
disableForegroundNdefPush(), 196
enableForegroundNdefPush(), 196
foreground dispatch system, 152

onRestart(), 104
onResume(), 70

Android application activity lifecycle, 104
Android Beam, 202
ChatActivity, 213
foreground dispatch system, 152
NDEF messages, 185
NFC Guess Number, 219
NFC Panic Bomb, 225
setNdefPushMessage(), 195
setNdefPushMessageCallback(), 186

onStart(), 70
Android application activity lifecycle, 104

onStop(), 70
Android application activity lifecycle, 104

Open Handset Alliance, 54
operating system (OS). See also Android OS

Java Card, 8
SEs, 25

SMOS, 7, 8
Options Menu, 109
OrderActivity, 174
orderButton, 174
OTA. See over-the-air
over-the-air (OTA), 23

SEs, 28, 232

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

277

P2P – <provider>

P

P2P, 12
package, 83
packages

Android NFC, 249–264
Android SDK, 62–63

Panic Bomb. See NFC Panic Bomb
passive devices, 14
passive stickers, 26
paused activities, 102
PAYLOAD, 40
payload, 129
PAYLOAD_LENGTH, 40
payloads, NDEF, 39
payment Android applications

card emulation mode, 20
SEs, 25

peer-to-peer mode
AARs, 187
Android API, 182
Android applications, 19–20, 207–227
Android OS, 199–203
enableForegroundNdefPush(), 196
generic usage model, 16–17
intent fi lters, 187
LLCP, 46–47
NDEF messages, 183–184, 203–205

receiving, 184–185
NFC, 16–17, 45–47

chatting, 208–215
NFC Guess Number, 215–221
NFC Panic Bomb, 221–226
programming, 181–205
protocol stack, 46
setNdefPushMessage(), 186–187

beam application example, 191–196
setNdefPushMessageCallback(), 183–186

beam application example, 187–191
transactions, 182–183

Permissions, 82
permissions, Android manifest fi le, 7, 67
personal area networks, 2, 4
personalization, SCOS, 8
Philips, 10

phone numbers
intent fi lters, 164
NFC tags

reading, 163–164
writing, 153–154

PhoneActivity, 161, 163–164
tel, 163

Physical Characteristics of Contactless Smart
Cards (PICC), 33

platforms
Android

SDK, 59–62
tools, 71–72
version, 69

card emulation mode, 243
GlobalPlatform, 27

Java Card, 239
NFC standardization, 50

NFC, 50–51
SDK Platform-tools, 61
SEEK, 23, 240

platforms/, 62
point of sale (POS)

contact smart cards, 9
contactless technologies, 13
SCOS, 8

Pop-up Menu, 109
POS. See point of sale
PositiveButton, 99
privacy, contactless smart cards, 9
processes, Android applications, 69–71
processIntent()

ChatActivity, 213
get(), 214
NFC Guess Number, 219
NFC Panic Bomb, 225, 226
setNdefPushMessageCallback(),

186, 190
protocol multiplexing, LLCP, 47
protocol stacks

card emulation mode, 48–49
FeliCa, 48
ISO/IEC, 48
peer-to-peer mode, 46

<provider>, 67

www.it-ebooks.info

http://www.it-ebooks.info/

278

publishing, Google Play – RFID

publishing, Google Play, 87
Push Protocol, NDEF, 183

Q

<qualifier>, 91

R

radio frequency (RF), 6
ISO/IEC, 32
NFC mobile, 25
NFCIP-1, 35
reader/writer mode, 36

RadioButton, 93, 94, 95
RadioGroup, 93
random(), NFC Guess Number, 217
raw/, 91
rawMessages, 136
readers

card emulation mode, 240
NFC, 18

contactless smart cards, 9
NFC, 13

card emulation mode, 18
reader/writer mode, 15

reader/writer mode, NFC, 15
RFID, 5–6
smart cards, 7

reader/writer mode
AARs, 140–141
Android applications, 19, 149–179
foreground dispatch system, 117–118, 141–143
generic usage model, 15–16
manifest fi le, 121–122
NDEF, 38–41

record types, 41
NFC, 14–16, 36–45, 115–147

intent fi lters, 122–128
NFC Forum tag types, 37–38
NFC tags

dispatch system, 118–121
reading, 135–140
technologies, 143–147
writing, 128–134

programming, 115–147
RTD

Smart Poster, 43–44
text record, 44–45
URI, 42

shopping use case, 169–175
Smart Poster, 150–169

RTD, 43–44
student transportation tracking use case,

175–179
tag intent dispatch system, 117–118

<receiver>, 67
record type defi nition (RTD), 12, 37

Smart Poster, reader/writer mode, 43–44
text record, 44–45
TNF_WELL_KNOWN, 121
URI, 42

record types, NDEF, 41
relative layout, Android applications, 95–97
RelativeLayout, 88
<RelativeLayout>, 97
<requestFocus/>, 94
res, 81, 88

menu, 110
res/drawable, 111
res/layout, 87
res/menu, 110
res/menu/main.xml, 88
resources, Android applications, 69, 90–92

dialog builders, 98
event listener, 94

res/values, 89, 94
revenue/expenditure fl ow model, card emulation

mode, 235–236
RF. See radio frequency
RF Power and Signal Interface standard, 33
RFID

Android applications, 6–7
animal identifi cation, 6
antenna, 6
backend systems, 6
casino chip-tracking, 7
electromagnetic spectrum, 5
hospital operating rooms, 7
IC, 6

www.it-ebooks.info

http://www.it-ebooks.info/

279

RTD – setListAdapter

inventory systems, 6
NFC, 3, 5–7, 13

interface, 28
readers, 5–6
tags, 5, 6
transponder, 6
wireless communication, 4–5

RTD. See record type defi nition
RTD_ALTERNATIVE_CARRIER, 121
RTD_HANDOVER_CARRIER, 121
RTD_HANDOVER_REQUEST, 121
RTD_HANDOVER_SELECT, 121
RTD_SMART_POSTER, 121
RTD_TEXT, 121

intent fi lters, 123–124
NDEF, 130–131
NFC tag reading, 138–139
setNdefPushMessage(), 191, 195
TNF_WELL_KNOWN, 123–124, 130–131,

138–139
UTF, 139

RTD_URI, 116, 121, 122
intent fi lters, 123
mailto, 168
NDEF, 129–130
NFC tag reading, 136–138
TNF_WELL_KNOWN, 123, 129–130, 136–138,

153, 161–162
runtime, 56

S

S2C. See NFC Wired Interface
samples/, 62
Samples, Android SDK Manager, 61
SAR. See Segmentation and Reassembly
Sauveron, Damien, 8
saveMessages(), SharedPreferences.

Editor, 209
SCOS. See smart card operating system
screen density, Android applications, 68
screen size

Android applications, 68
AVDs, 74

SD. See secure digital cards

SDK. See software development kit
SDK Manager, Android, 59, 61–62
SDK Platform-tools, 61
SDK Tools, Android SDK Manager, 61
sdk/tools/, 72
secure data transfer

Bluetooth, 2
contactless smart cards, 10

secure digital cards (SD), 230
Secure Element Kit for Android Platform (SEEK),

238, 240
Secure Elements (SEs), 23

alternatives, 25–28
Android OS, 242–243
card emulation mode, 230, 238–240,

244
embedded hardware, 26
GUI, 240
management, 28
NFC controller, 29–30
NFC mobile, 24–25
OTA, 28, 232
security, 25
SMC, 26
stickers, 26
TMB, 27
UICC, 27

Secure Memory Card (SMC), SEs, 26
security

contactless smart cards, 9
SCOS, 8
SEs, 25

SEEK. See Secure Element Kit for Android
Platform

Segmentation and Reassembly (SAR),
NFCIP-1, 46

service process, Android applications, 70
services, Android applications, 65–66
SEs. See Secure Elements
setBeamPushUris(), 203

NDEF messages, 204–205
setBeamPushUrisCallback(), 203–204
setContentView, 87

layout fi les, 106
setListAdapter, 105

www.it-ebooks.info

http://www.it-ebooks.info/

280

setNdefPushMessage () – software development kit (SDK), Android

setNdefPushMessage(), 181, 202
NFC Panic Bomb, 224
peer-to-peer mode, 186–187

NDEF messages application example,
191–196

setBeamPushUris(), 203
setNdefPushMessageCallback(), 181

NFC Guess Number, 218
onCreate(), 213
peer-to-peer mode, 183–186

NDEF messages application example,
187–191

setNdePushMessage(), 184
setOnClickListener(), 155

onClick, 150
urlAddress, 157

setText, 95
SharedPreferences, ChatAdapter, 209
SharedPreferences.Editor, saveMessages(),

209
SHF. See Super High Frequency
shopping use case

Basket, 175
Item, 175
NFC, 169–175
NFCShoppingActivity, 173–174
OrderActivity, 174
ShowBasketActivity, 174

short messaging service (SMS), 2
intent fi lters, 165–166
NFC tags

reading, 165–166
writing, 154–156

Smart Poster, 43
TNF_EXTERNAL_TYPE, 156
URI, 155–156

Short Record (SR), 40
ShowBasketActivity, 174
Signal-In (SIGIN), 30
Signal-Out (SIGOUT), 30
Simple NDEF Exchange Protocol (SNEP), NFC

Forum, 183
SIMs. See subscriber identity modules
Single Wire Protocol (SWP), 23, 25

NFC-WI, 29–30
UICC, 31

smart card operating system (SCOS), 7, 8
smart cards

Android applications, 10
backend systems, 7
contact, 9
contactless, 7, 9–10

antenna, 9
electromagnetic spectrum, 9
ISO/IEC, 33–35
PICC, 33
privacy, 9
readers, 9
secure data transfer, 10
security, 9

hybrids, 10
IC, 9
memory, 7
microprocessors, 7–8
NFC, 7–10
PICC, 33
readers, 7
types, 9–10

smart environment
card emulation mode, 22
mobile phones, 22

Smart Poster
NDEF, 37
NFC tags

reading, 161–169
writing, 150–160

reader/writer mode, 150–169
RTD, 43–44

SmartCard API, 240–242
smart-shopping fl iers, 37
SMC. See Secure Memory Card
SMS. See short messaging service
SmsActivity, 161, 165–166
smsBody, 155
smsNumber, 155
SNEP. See Simple NDEF Exchange Protocol
software development kit (SDK), Android, 51, 53,

56, 57–63
Eclipse, 57
IDE, 58
Mac OS X, 59
packages, 62–63

www.it-ebooks.info

http://www.it-ebooks.info/

281

Sony – TNF_WELL_KNOWN

platforms, 59–62
tools, 72–73

Sony, 10
sqlite3, 73
SR. See Short Record
src, 81
standards. See also European Computer

Manufacturers Association; European
Telecommunications Standards
Institute; International Organization for
Standardization/International Electrotechnical
Commission

GSMA, 49
Java, 57
NFC, 49–50
NFC tags, 12

startForeground(), 70
startService(), 65, 70
stickers, SEs, 26
stopped activities, 102
String getItem(), 208
strings.xml, 89
Student, 178
student transportation tracking use case

Group, 178
main application, 177–179
manifest fi le, 177–178
NFC, 175–179
Student, 178
TransportationActivity, 178
WebServiceActivity, 178
writer application, 176–177

subscriber identity modules (SIMs), 27
mobile phones, 9

Super High Frequency (SHF), 4
<supports-screens>, 68
SWP. See Single Wire Protocol
Symbian, 51
System.arraycopy, 129

T

Tag, 116–117, 250
tag intent dispatch system, 117–118
tag operations, reader/writer mode, 37
TagLostException, 249, 250

android.nfc, 256
tags. See also NFC tags

NFC, 13
RFID, 5, 6
standards, NFC, 12

TagTechnology, 144, 250
target, 13–14
tel, 163
text record RTD, 44–45
TextView, 88, 92, 94, 110, 202

NFC Guess Number, 215
NFC Panic Bomb, 221
onCreate, 112

text/x-vcard, 202
threads, Android applications, 69–71
3GPP, 50
ticketing

card emulation mode, 21, 237
contactless ticket reader, 37
SEs, 25

TMB. See Trusted Mobile Base
TNF. See Type Name Format
TNF_ABSOLUTE_URI, 116, 120

intent fi lters, 124
NFC tags

reading, 139
writing, 131

TNF_EMPTY, 120
TNF_EXTERNAL_TYPE, 120

geo, 157
intent fi lters, 125
MapActivity, 167
NFC tag reading, 140
NFC tag writing, 132
nfclab.com:transport, 175
SMS, 156

TNF_MIME_MEDIA, 120, 213
intent fi lters, 124–125
NFC tags

reading, 140
writing, 131

TNF_UNCHANGED, 120
TNF_UNKNOWN, 120, 136
TNF_WELL_KNOWN, 116, 120

intent fi lters, 123–124
NFC tags

www.it-ebooks.info

http://nfclab.com
http://www.it-ebooks.info/

282

TNF_WELL_KNOWN – VLF

reading, 136–139
writing, 129–131

RTD, 121
RTD_TEXT, 123–124, 130–131, 138–139
RTD_URI, 123, 129–130, 136–138, 153,

161–162
setNdefPushMessage(), 191
setNdefPushMessageCallback(), 190

Toast, 100
tools/, 62
total(), 175
touch screens, 2
Touch to Beam UI, 182

setNdefPushMessageCallback(), 184
touching paradigm, 2–3
transactions, peer-to-peer mode, 182–183
Transmission Protocol standard, 34
transponder, RFID, 6
TransportationActivity, 178
Trusted Mobile Base (TMB), SEs, 27
trusted service managers (TSMs), 231

business models, 233
TYPE, 40
Type Name Format (TNF), 40

formats, 120
NFC Forum, NDEF, 115–116

U

ubiquitous computing, NFC and, 2–3
UHF. See Ultra High Frequency
UICCs. See Universal Integrated Circuit Cards
Ultra High Frequency (UHF), 4
UMTS, 4–5
Uniform Resource Identifi er (URI), 12

e-mail, 159
intent fi lters, 162
NDEF messages, 203
prefi xes, NDEF, 247–248
RTD, 42
Smart Poster, 43–44
SMS, 155–156

Universal Integrated Circuit Cards (UICCs),
25, 26

card emulation mode, 230
CLF, 11
SEs, 27
SWP, 31

Universal Subscriber Identity Module (USIM), 27
URI. See Uniform Resource Identifi er
uriField, 129
URL, NFC tags

reading, 161–163
writing, 151–153

UrlActivity, 161, 162–163
urlAddress

EditText, 152
mailto:, 159
setOnClickListener(), 157

USB, 2
USB Driver for Windows, Android SDK Manager,

62
<uses-configuration>, 68
<uses-features>, 69
<uses-permission>, 86
uses-sdk, 121
<uses-sdk>, 86
USIM. See Universal Subscriber Identity Module
UTF, 44–45

RTD_TEXT, 130–131, 139
utfEncoding, 130

V

values, 81
values/, 91
Very High Frequency (VHF), 4
Very Low Frequency (VLF), 4
VF. See Voice Frequency
VHF. See Very High Frequency
View getView(), 208
view.getId(), 95, 99
ViewGroup, 88
views, multiple, Android applications, 90
visible process, Android applications, 70
VLF. See Very Low Frequency

TNF_WELL_KNOWN (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

283

Voice Frequency (VF) – zipalign

Voice Frequency (VF), 4
void add(), 208

W

WebServiceActivity, 178
Well-Known Type, 41
WiFi. See Wireless Fidelity
WiMAX, 4–5
Windows, Android SDK packages, 63
wireless communication

electromagnetic spectrum, 4
NFC, 3–5

Wireless Fidelity (WiFi), 2
wireless communication, 4–5

wireless local area networks (WLAN), 4
wireless personal area network (WPAN), 4
wireless wide area networks (WWANs), 4
WLAN. See wireless local area networks
WPAN. See wireless personal area network

WriteMailActivity, 158
WriteMapActivity, 156
writeNdefMessageToTag(), 156

student transportation tracking use case, 176
WritePhoneActivity, 153
WriteSmsActivity, 154
WriteUrlActivity, 151
WWANs. See wireless wide area networks

X

XML
Android applications, 69, 92

menu items, 108–110
xml/, 91

Z

ZigBee, 4–5
zipalign, 73

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!
Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and

is valid for the fi rst 6 consecutive monthly billing cycles.

Safari Library is not available in all countries.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety of
software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

www.it-ebooks.info

http://www.safaribooksonline.com/wrox
http://www.it-ebooks.info/

Related Wrox Books

Professional Android Open Accessory Programming with Arduino
Andreas Goransson, David Cuartielles Ruiz
ISBN: 978-1-118-45476-3
Android Open Accessory is a new, simple, and secure protocol for connecting any
microcontroller-empowered device to an Android smartphone or tablet. This Wrox guide shows
Android programmers how to use AOA with Arduino, the microcontroller platform, to control
such systems as lighting, air conditioning, and entertainment systems from Android devices.
Furthermore, it teaches the circuit-building skills needed to create games and practical
products that also take advantage of Android technology.

Android Application Development Cookbook:
93 Recipes for Building Winning Apps
Wei-Meng Lee
ISBN: 978-1-118-17767-9
The popularity of Google Android devices is seemingly unstoppable and the Android 4 release
offers, for the first time, a single OS solution for building both phone and tablet applications.
With that exciting information in mind, veteran author Wei-Meng Lee presents you with 93
unique recipes that you can apply today in order to discover solutions to some of the most
commonly encountered problems that exist in Android programming.

Professional Android 4 Application Development
Reto Meier
ISBN: 978-1-118-10227-5
The fast-growing popularity of Android smartphones and tablets creates a huge opportunities
for developers. If you’re an experienced developer, you can start creating robust mobile
Android apps right away with this professional guide to Android 4 application development.
Written by one of Google’s lead Android developer advocates, this practical book walks you
through a series of hands-on projects that illustrate the features of the Android SDK. That
includes all the new APIs introduced in Android 3 and 4, including building for tablets, using
the Action Bar, Wi-Fi Direct, NFC Beam, and more.

Professional Android Sensor Programming
Greg Milette, Adam Stroud
ISBN: 978-1-118-18348-9
This book shows Android developers how to exploit the rich set of device sensors—locational,
physical (temperature, pressure, light, acceleration, etc.), cameras, microphones, and speech
recognition—in order to build fully human-interactive Android applications. Whether providing
hands-free directions or checking your blood pressure, Professional Android Sensor
Programming shows how to turn possibility into reality.

www.it-ebooks.info

http://www.it-ebooks.info/

Related Wrox Books

Professional Android Open Accessory Programming with Arduino
Andreas Goransson, David Cuartielles Ruiz
ISBN: 978-1-118-45476-3
Android Open Accessory is a new, simple, and secure protocol for connecting any
microcontroller-empowered device to an Android smartphone or tablet. This Wrox guide shows
Android programmers how to use AOA with Arduino, the microcontroller platform, to control
such systems as lighting, air conditioning, and entertainment systems from Android devices.
Furthermore, it teaches the circuit-building skills needed to create games and practical
products that also take advantage of Android technology.

Android Application Development Cookbook:
93 Recipes for Building Winning Apps
Wei-Meng Lee
ISBN: 978-1-118-17767-9
The popularity of Google Android devices is seemingly unstoppable and the Android 4 release
offers, for the first time, a single OS solution for building both phone and tablet applications.
With that exciting information in mind, veteran author Wei-Meng Lee presents you with 93
unique recipes that you can apply today in order to discover solutions to some of the most
commonly encountered problems that exist in Android programming.

Professional Android 4 Application Development
Reto Meier
ISBN: 978-1-118-10227-5
The fast-growing popularity of Android smartphones and tablets creates a huge opportunities
for developers. If you’re an experienced developer, you can start creating robust mobile
Android apps right away with this professional guide to Android 4 application development.
Written by one of Google’s lead Android developer advocates, this practical book walks you
through a series of hands-on projects that illustrate the features of the Android SDK. That
includes all the new APIs introduced in Android 3 and 4, including building for tablets, using
the Action Bar, Wi-Fi Direct, NFC Beam, and more.

Professional Android Sensor Programming
Greg Milette, Adam Stroud
ISBN: 978-1-118-18348-9
This book shows Android developers how to exploit the rich set of device sensors—locational,
physical (temperature, pressure, light, acceleration, etc.), cameras, microphones, and speech
recognition—in order to build fully human-interactive Android applications. Whether providing
hands-free directions or checking your blood pressure, Professional Android Sensor
Programming shows how to turn possibility into reality.

www.it-ebooks.info

http://www.it-ebooks.info/

	Professional: NFC Application Development for Android™
	Copyright
	About the Authors
	About the Technical Editors
	Credits
	Contents
	Introduction
	NFC Lab – İstanbul
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need To Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: Overview of Near Field Communication
	Ubiquitous Computing and NFC
	Wireless Communication as NFC
	RFID Technology
	Essentials of an RFID System
	Common RFID Applications

	Smart Card Technology
	Types of Smart Cards: Capability-Based Classification
	SCOS
	Types of Smart Cards: Mechanism-Based Classification
	Common Smart Card Applications

	NFC Technology
	NFC Devices
	NFC Operating Modes
	NFC Applications

	Summary

	Chapter 2: NFC Essentials for Application Developers
	NFC Mobile
	SE
	NFC Interface
	Interface Between SE and NFC Controller
	HCI

	Standards Used by NFC
	Proximity Contactless Smart Card Standards
	NFCIP

	NFC Operating Mode Essentials
	Reader/Writer Mode
	Peer-to-Peer Mode
	Card Emulation Mode

	Standardization of NFC
	Diversity of NFC Platforms
	Summary

	Chapter 3: Getting Started with Android
	What Is Android?
	Linux Kernel
	Android Runtime
	Libraries
	Application Framework
	Applications

	Android SDK
	What You Need to Start
	JDK and JRE
	Android SDK
	Adding More Platforms and Other Components to the SDK

	SDK Packages
	Android API Levels
	Structure of Android Applications
	Android Application Components
	Intents
	Intent Filters
	Manifest File
	Application Requirements
	Application Resources
	Processes and Threads

	Dalvik Virtual Machine (DVM)
	Platform Tools
	SDK Tools
	Android Virtual Device
	Summary

	Chapter 4: Android Software Development Primer
	Creating Your First Android Application
	Components of the Project
	Running the Project

	Running Applications on Your Mobile Phone
	Running Applications Instantly
	Running Applications by Manual Installation

	Distributing Android Applications
	1. Gathering Materials and Resources
	2. Configuring the Application for Release
	3. Compiling and Signing with Eclipse ADT
	4. Publishing on Google Play

	Understanding Hello World
	Using Multiple Views
	Android Project Resources
	Alternative Resources
	Accessing Resources

	Using an Event Listener
	Layout
	Resources
	Code

	Using Relative Layout
	Using Dialog Builders
	Layout
	Resources
	Code

	Using Grid Layout
	Android Activity Lifecycle
	Implementing Multiple Activities and Intents
	Step 1: Creating the Layout File
	Step 2: Building the ListView
	Step 3: Implementing onItemClick
	Step 4: Editing AndroidManifest.xml
	Step 5: Creating a New Layout
	Step 6: Creating a New Activity

	Using Menu Items
	Creating a Menu XML File
	Layout
	Code

	Summary

	Chapter 5: NFC Programming: Reader/Writer Mode
	NFC APIs in Android
	android.nfc package
	android.nfc.tech package

	Tag Intent Dispatch System vs. Foreground Dispatch System
	NFC Tag Intent Dispatch System
	How NFC Tags Are Dispatched to Applications
	How Android Handles NDEF-Formatted Tags

	NFC Properties in the Android Manifest File
	Filtering NFC Intents
	ACTION_NDEF_DISCOVERED
	ACTION_TECH_DISCOVERED
	ACTION_TAG_DISCOVERED

	Checking NFC Adapter
	Tag Writing
	Preparing NDEF Data
	Writing NDEF Data to Tags

	Tag Reading
	Getting an NDEF Message
	Processing an NDEF Message

	Android Application Record
	How It Works
	Intent Filters vs. AAR
	Important Notes on AAR
	Using AAR

	Foreground Dispatch System
	Working with Supported Tag Technologies
	Getting Available Tag Technologies
	NfcV Example

	Summary

	Chapter 6: Reader/Writer Mode Applications
	NFC Smart Poster Use Case
	Smart Poster Tag Writer Application
	Smart Poster Reader Application

	NFC Shopping Use Case
	NFC Shopping Tag Writer Application
	NFC Shopping Main Application

	Student Transportation Tracking Use Case
	Student Tracking Tag Writer Application
	Student Tracking Main Application

	Summary

	Chapter 7: NFC Programming: Peer-to-Peer Mode
	Performing Peer-to-Peer Transactions
	Beaming NDEF Messages
	Beaming with setNdefPushMessageCallback()
	Beaming with setNdefPushMessage()
	Common Notes

	Receiving Beams
	An Abstract Beam with setNdefPushMessageCallback()
	An Abstract Beam with setNdefPushMessage()
	Declaring Intent Filters
	Using Android Application Records in Peer-to-Peer Mode
	An Example Beam Application Using setNdefPushMessageCallback()
	An Example Beam Application Using setNdefPushMessage()
	Beam Support for API Level 10
	Beaming with enableForegroundNdefPush()
	An Example Beam Application Using enableForegroundNdefPush()

	Android OS to Handle the Incoming Beam
	Beaming Files
	Beaming with setBeamPushUrisCallback()
	Beaming with setBeamPushUris()
	An Example Beam Application Using setBeamPushUrisCallback()
	An Example Beam Application using setBeamPushUris()

	Summary

	Chapter 8: Peer-to-Peer Mode Applications
	NFC Chatting
	NFC Guess Number
	NFC Panic Bomb
	Summary

	Chapter 9: NFC Programming: Card Emulation Mode
	Definition of Card Emulation Mode
	Business Ecosystem
	Stakeholders in an NFC Ecosystem
	Business Models
	Business Model Alternatives
	General Revenue/Expenditure Flow Model

	Card Emulation Mode Use Case Alternatives
	Cashless Payment
	Mobile Wallet
	Ticketing
	Loyalty Cards
	Coupons

	Card Emulation Mode Programming
	Programming Secure Elements
	Programming NFC Reader
	Programming Android Applications
	Enabling Android OS Access to SE
	Setting up the Platform
	Accessing SE

	Summary

	Appendix A: URI Prefixes for NDEF
	Appendix B: Android NFC Packages
	Index
	Advertisement

NC oplcation
Devopmert for Andid

