Learning Physics
Modeling with PhysX

Master the PhysX 3 Physics Engine and learn how to program
your very own physics simulation

http://www.it-ebooks.info/

Learning Physics Modeling
with PhysX

Master the PhysX 3 Physics Engine and learn how
to program your very own physics simulation

Krishna Kumar

PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Physics Modeling with PhysX

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013
Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-814-6
www . packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

[FM-2]

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Krishna Kumar

Reviewers
Devin Kelly-Collins

Rui Wang

Acquisition Editor
Kevin Colaco

Commissioning Editor
Deepika Singh

Technical Editors
Rosmy George

Jinesh Kampani
Shruti Rawool

Aman Preet Singh

Copy Editors
Mradula Hegde

Kirti Pai
Alfida Paiva
Adithi Shetty

Laxmi Subramanian

[FM-3]

Project Coordinator
Sherin Padayatty

Proofreader
Dirk Manuel

Indexer
Hemangini Bari

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Krishna Kumar is a Graphics and Game Programmer. He completed his Bachelor
of Engineering in Computer Science in 2010. Since then, he has been working in the
field of graphics, game programming, 3D interactive applications, and virtual reality.
He feeds on the advancement of graphics and game technologies. In his free time

he learns new things or plays FPS games such as Crysis, Far Cry, and COD. He

also maintains a website at www.gfxguru.org, which is dedicated to graphics

and game programming.

I would like to thank my parents for tolerating me since my birth,
giving me opportunities, and making me look at the world from
a different perspective. I would like to thank my brother, Pawan,
and my sister, Sangeeta, who have always acted as my backbone;
they keep on fueling my determination. I would like to thank my
brother-in-law, Chandrika Prasad, for his motivation.

I would also like to thank Sumeet Sawant, Yogesh Dalvi, and Sherin
Padayatty; without their contributions, this book would not have
been written.

[FM-4]

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Devin Kelly-Collins is currently a student at Kansas State University, pursuing
his undergraduate degree in Computer Science. He has mostly worked with Java
and C#, developing multithreaded desktop applications and Web applications.

He also has experience in developing games using XNA and Unity.

He is currently working with Surface Systems and Instruments, developing software
that is used to process road profiling data in real-time. He has also worked with
Kansas State University, developing web-based tools.

I would like to thank my girlfriend, Kalen Wright, for providing me
with a base of operations.

Rui Wang is the founder and CTO of Beijing iLyres Technology Co. Ltd. He is in
charge of new media interactive applications development. He is one of the most
active members of the official OpenSceneGraph community, and contributes to this
open source 3D engine regularly. He wrote the books OpenSceneGraph 3.0 Beginners'
Guide, OpenSceneGraph 3 Cookbook, and Augment Reality with Kinect, all of which

are published by Packt Publishing. He is also a novel writer and a guitar lover in

his spare time.

Many thanks to the writer and the Packt Publishing team for making
such a great book about PhysX, the world-famous Physics Engine.
And my deep gratitude to my family, for their love and spiritual
support.

[FM-5]

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

[ﬂ]PACKT

@

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[FM-6]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Starting with PhysX 3 SDK 7
Brief history 7
PhysX features 8
New in PhysX 3 9
Downloading PhysX SDK and tools 10
The PhysX SDK license 11
System requirements for PhysX 11
Configuring with VC++ Express 2010 1"
Summary 15
Chapter 2: Basic Concepts 17
Scene and Actors 17
Materials 18
Shapes 19
Creating the first PhysX 3 program 20
Initializing PhysX 20
Creating scene 21
Creating actors 22
Simulating PhysX 23
Shutting down PhysX 24
Summary 25
Chapter 3: Rigid Body Dynamics 27
Exploring a rigid body 27
Mass 27
Density 28
Gravity 28
Velocity 28
Force and Torque 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Damping 30
Kinematic actors 31
Sleeping state 31
Solver accuracy 32
Summary 32
Chapter 4: Collision Detection 33
Collision shapes 33
Geometry 33
Sphere 34

Box 34
Capsule 34
Plane 35
Trigger shapes 35
Simulation event 36
Trigger event 36
Contact event 37
Filter shader 38
Broad-Phase collision detection 39
Sweep-and-prune (SAP) 40
Multi box pruning (MBP) 40
Narrow-Phase collision detection 40
Continuous collision detection 41
Summary 42
Chapter 5: Joints 43
Joints in PhysX 43
Fixed joints 44
Revolute joints 46
Spherical joints 47
Distance joints 48
Prismatic joints 49

D6 joints 50
Summary 51
Chapter 6: Scene Queries 53
Raycast queries 53
Sweep queries 55
Overlap queries 58
Summary 59
Chapter 7: Character Controller 61
Character controller basics 61
The need of a character controller 61

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating a character controller 62
Moving a character controller 63
Useful methods and properties 64
Position update 64
Shapes of a character controller 64

Size update 65
Auto-stepping 66
Slope limit 66
Summary 66
Chapter 8: Particles 67
Exploring particles 67
Creating a particle system 67
Particles without intercollision 68
Particles with intercollision 68
Particle system properties 69
Creating particles 7
Updating particles 72
Releasing particles 73
Particle drains 73
Collision filtering 74
Summary 74
Chapter 9: Cloth 75
Exploring a cloth 75
Creating a cloth fabric 75
Creating a cloth 77
Tweaking the cloth properties 77
Cloth collision 77
Cloth particle motion constraint 78
Cloth particle separation constraint 79
Cloth self-collision 79
Cloth intercollision 80
Cloth GPU acceleration 80
Summary 80
Chapter 10: PhysX Visual Debugger (PVD) 81
PhysX Visual Debugger (PVD) basics 81
Connecting PVD using a network 82
Saving PVD data as a file 83
Connection flags 84
Summary 84
Index 85

Liii]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Welcome to Learning Physics Modeling with PhysX. Video games are emerging as a
new form of entertainment, and are developed for all kind of platforms, such as PCs,
consoles, Tablet PC, mobile phones, and other hand-held devices. Current-generation
games are much more sophisticated and complex than ever. Third- party physics
engines are widely used in video games as middleware to achieve a physically-
realistic world behavior such as gravity, acceleration, collision, force, friction, and so
on. Nvidia PhysX is the state-of-the-art cross-platform physics engine that is widely
used by top-notch game studios and developers. It contains virtually all of the
physics-related components that a developer may want to integrate into their game.
PhysX Physics Engine exploits the parallel-processing capability of a modern GPU as
well as multi-core CPUs to make a game as physically realistic as possible.

PhysX Physics Engine is not only useful for game developers but also for developers
who want to make an interactive walkthrough, training, or any other 3D application
that requires real-time physics simulation.

What this book covers

Chapter 1, Starting with PhysX 3 SDK, covers a brief history, features, licence terms,
system requirements, and what's new in PhysX SDK. We will also learn how to
configure PhysX SDK with VC++ 2010 compiler.

Chapter 2, Basic Concepts, covers the basic concepts of PhysX SDK, including
terminologies such as scenes, actors, materials, shapes, and how they are created,
updated, and destroyed in PhysX SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 3, Rigid Body Dynamics, covers rigid body properties such as mass, density,
gravity, velocity, force, torque, and damping, and how we can modify these in
PhysX SDK. We will also learn about kinematic actors, sleeping state, and the solver
accuracy of a rigid body.

Chapter 4, Collision Detection, covers collision shapes and their types, trigger shapes,
collision detection phases such as Broad-Phase Collision Detection, Narrow Phase
Collision Detection, Enabling Continuous Collision Detection (CCD), and so on.

Chapter 5, Joints, explains exploring joints and their types, such as a fixed joint,
revolute joint, spherical joint, distance joint, prismatic joint, and D6 joint.

Chapter 6, Scene Queries, covers types of scene queries such as raycast queries,
sweep queries and overlap queries, and their mode operations.

Chapter 7, Character Controller, covers the basics of a character controller, including
creating and moving a character controller, updating its size, and other related
properties such as auto stepping and slope limit.

Chapter 8, Particles, covers the creation of particles, and particle systems, and their
types. We will learn about particle system properties and particle creation, updating,
and releasing. We will also cover particle drains and collision filtering.

Chapter 9, Cloth, covers creation of cloth and cloth fabric, tweaking cloth properties
such as cloth collision, cloth particle motion constraint and separation constraint,
cloth self-collision, intercollision, and GPU acceleration.

Chapter 10, PhysX Visual Debugger (PVD), covers the basics of PVD, connecting
to PVD using TCP/IP network, saving a PVD datafile to a disk, and PVD
connection flags.

What you need for this book

You need a Windows PC (preferably with Windows 7 OS or higher) with Microsoft
Visual C++ 2010 Express compiler installed on it. You can download VC++ 2010
Express for free from http://www.microsoft.com. You also need to download
Nvidia PhysX SDK 3.3.0 from https://developer.nvidia.com/physx-downloads,
which requires you to register for the Nvidia Developer Program. You may also
want to download the freeglut library for Windows, which is freely available at
http://freeglut.sourceforge.net. This library is used in the example code

to render the PhysX components.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

This book is for game developers, hobbyists, or anybody who wants to learn about
the PhysX Physics Engine with minimal prior knowledge of it. You don't have to be
a die-hard programmer to get started with this book. Basic knowledge of C++, 3D
mathematics, and OpenGL will be fine.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "We
can explicitly wake an actor by calling PxRigidDynamic: :wakeUp (), which requires
an optional real value that determines how long until the body is put to sleep."

A block of code is set as follows:

PxMaterial* mMaterial = gPhysicsSDK->createMaterial(0.5,0.5,0.5);
PxRigidDynamic* sphere = gPhysicsSDK->createRigidDynamic (spherePos) ;
sphere->createShape (PxSphereGeometry (0.5f), *mMaterial) ;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "We have
to include the PhysX library files and header files in VC++ Directories that can be
found at View | Property Pages."

% Warnings or important notes appear in a box like this.
s

Al

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and on which you are interested in
either writing or contributing to a book, see our author guide on www.packtpub.
com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,

you can save other readers from frustration and help us to improve subsequent
versions of this book. If you find any errata, please report them by visiting http://
www . packtpub.com/submit -errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata

are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that
title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we

can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with PhysX 3 SDK

This chapter sheds some light on the history, features, license terms, and system
requirements of PhysX. In it, we will learn how to download the PhysX SDK and
configure it with MS Visual C++ 2010 for compiling PhysX programs.

Brief history

PhysX SDK is a mature physics engine, which has been under development

since 2004. It was developed by Ageia with the purchase of ETH Zurich spin-off
NovodeX. Ageia was a fabless semiconductor company and the first company that
developed a dedicated co-processor capable of performing physics calculations,
which was much faster than the general purpose CPUs available at that time.

The intention of Ageia was to sell PPU (Physics Processing Unit) cards much like the
dedicated GPU (Graphics Processing Unit) cards that we buy today. It developed
the PhysX software SDK (formerly NovodeX SDK) to harness the processing power
of a PPU. The company also licensed out the PhysX SDK as a physics middleware
library for game production. Unfortunately, the PPU cards didn't sell very well
commercially in the market. On February 4, 2008, Nvidia announced that it would
acquire Ageia. On February 13, 2008, the merger was finalized. The PhysX engine is
now known as Nvidia PhysX. The potential reason of Ageia acquisition by Nvidia
was to implement PhysX on top of their CUDA architecture enabled GPU(s), for
hardware-accelerated physics processing. The PhysX GPU acceleration is exclusive
to Nvidia GPU(s), which gives Nvidia an edge over its competitors; that is, GPU
manufacturers such as ATI/ AMD.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with PhysX 3 SDK

PhysX SDK 3.3.0 is the latest release at the time of writing this book. PhysX 3.x
features a new modular architecture and a completely rewritten PhysX engine.

It provides a significant boost in overall performance as well as efficiency. It is a
heavily-modified version written to support multiple platforms but has a single base
code. Supported platforms include Windows; Linux; Mac OS X; game consoles such
as XBOX 360 and PS3; and even Android-powered handheld devices. PhysX 3.3.0
added support for new platforms such as Xbox One, PS 4, Nintendo Wii U, Apple
iOS, PS Vita, and Windows RT. PhysX SDK 3.x has undergone architecture and API
improvement, and the code is cleaned at many levels to get rid of obsolete and legacy
features and to integrate new physics capabilities.

PhysX features

Nvidia PhysX is a state-of-the-art physics engine, which provides the
following features:

* Rigid body dynamics: Rigid body dynamics is the most essential aspect
of physics simulation, and makes use of physics concepts such as position,
velocity, acceleration, forces, momentum, impulse, friction, collision,
constraints, and gravity. These properties give us the power to simulate
or mimic real-world physics scenarios.

* Character controller: Character controller is a special type of physics collider,
which is mainly used for third-person or first-person player control, or any
other kinematic body that may want to take advantage of the properties
associated with the character controller.

* Vehicle dynamics: Vehicle dynamics gives you the capability to
simulate vehicle physics by using spherical wheel shapes that can simulate
sophisticated tire friction models. A joint-based suspension system is
used for vehicle suspension.

* Particles and fluid simulation: Two of the most exciting features of PhysX
are particles and fluid simulation. These features can be used to achieve
a vast variety of cinematic effects. Particles can used for creating effects
such as fire, spark, and debris, whereas fluid particles, also known as SPH
(Smoothed Particle Hydrodynamics), are used to simulate liquid, gases,
smoke, or any other SPH-based particle effect.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Cloth simulation: This feature allows you to simulate realistic cloth, which
can be used for cloth simulation of the characters in the game or any other
cloth-based objects, such as flags and curtains. These cloth objects can also
be stretched, torn, or attached to other physical bodies.

Softbody simulation: This feature allows you to simulate volumetric
deformable objects.

New in PhysX 3

Notable features in PhysX 3 are as follows:

Automatic and efficient multithreading, and a unified code base for all
supported platforms.

Improved task manager and a managed-thread pool that is optimized to
harness the processing capability of multi-core processors on all platforms.

A new aggregate concept in which multiple PhysX actors can be combined
into one entity having a common collision boundary, which simplifies
processing when large numbers of objects are involved.

A new binary in-place serialization by which we can efficiently insert the
PhysX actors into a scene with minimal data copying and without extra
memory allocation. Creation and destruction of actors is now decoupled
from the insertion and removal of scenes, thus allowing flexible asset
management strategies.

A highly optimized physics runtime that has better a response time,
with lower memory footprints.

A new release of PhysX Visual Debugger (PVD) that allows for better
performance profiling and in-depth memory analysis with enhanced
visualization of all PhysX content across all major platforms.

A full vehicle model that includes components such as engine, clutch,
gears, autobox, differential, wheels, tires, suspension, and chassis.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with PhysX 3 SDK

Downloading PhysX SDK and tools

Downloading PhysX SDK requires you to register as an Nvidia developer, which
you can do for free at https://developer.nvidia.com. Once you have successfully
created a Nvidia developer account, you need to apply for the APEX/PhysX
Registered Developer Program, which you can find by clicking on My Account on
the top right of the Nvidia developer web page. The approval request may take one
to three business days to process.

REGISTERED DEVELOPER PROGRAMS STATUS

Basic Registered Developer Profile

This is your basic user profile data that is needed to process any of the Registered Developer .
Program applications. It's important that you keep this information up-to-date. You cannot)
apply for a specific program until this information is completed.

APEX/PhysX Registered Developer Program
Sign up for free access to the latest versions of APEX/PhysX tools and binary SDKs. APEX
provides powerful authoring tools to quickly generate interactive content (Clothing,

Destruction, Turbulence) in games. APEX is integrated into UE3 and can be easily integrated
into any other proprietary game engine. The PhysX SDK is a scalable multi-platform game e
physics solution which supports a wide range of devices, from smartphones to high-end

multicore CPUs and GPUs. The PhysX SDK provides real time collision detection and simulation
of rigid bodies, cloth and fluid particle systems. Register to file bugs and gain access to
exclusive events.

After the successful approval of your APEX/PhysX Registered Developer

Program request, click on PhysX/Tools Download, select your platform, and then
download the PhysX SDK. Please note that for this book, we will download the SDK
for PC (Windows) platform. Configuration to include the PhysX SDK's Include files
and Library files that are covered in this chapter is also for the Windows platform.

eram, where you have exclusive access to the latest versions of
eports, send feedback and requests, read latest news, and invites to

PhysX/Tools Downloads

t focused sX SDKEs an ¥=X is a scalable
o quickly multi-platform game physics solution supporting a wide
ns. APEX range of devices, from smartphones to high-end
h tablets, multicore CPUs and GPUs. The PhysX SDK provides real
DCC-plug- time collision detection and simulation of rigid bodies,

cloth and fluid particle systems.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The PhysX SDK license

The Nvidia PhysX SDK is totally free for the Windows platform, both commercial
and noncommercial use. For Linux, OS X, and Android platforms, the Nvidia
binary PhysX SDK and tools are free for educational and noncommercial use. For
commercial use, the binary SDK is free for developers who work on their respective
PhysX applications and make less than $100K in gross revenue. More information
on license agreements can be found at https://developer.nvidia.com/content/
physx-sdk-eula.

System requirements for PhysX

The minimum requirements to support the hardware-accelerated PhysX is an Nvidia
GeForce 8 series or later GPU with a minimum of 32 CUDA cores and a minimum

of 256 MB of dedicated graphics memory. However, each PhysX application has its
own GPU and memory recommendations. In general, 512 MB of graphics memory

is recommended unless you have a GPU that is dedicated to PhysX. The Nvidia
graphics drivers are made in such a way that they can also take advantage of
multiple GPU(s) in a system. These can be configured to use one GPU for rendering
graphics and the second GPU only for processing PhysX physics.

Configuring with VC++ Express 2010

We will use Microsoft Visual C++ 2010 Express for compiling the PhysX program.
It is freely available at www.microsoft.com. We have to include the PhysX library
files and header files in VC++ Directories that can be found at View | Property
Pages. Property Pages can also be modified from Property Manager. A Property
Manager window enables us to modify project settings that are defined in property
sheets. A project property sheet is basically an . xm1 file that is used to save project
configurations and can also be applied to multiple projects because it is inheritable.

Configuring VC++ 2010 Express requires the following steps:

1. After downloading the PhysX 3.x SDK for the Windows platform, which
comes in a ZIP file, you need to extract it to any preferred location on your
PC. For this book, we will extract the PhysX SDK's ZIP file to C: \dev. Finally,
our PhysX SDK location will look like ¢: \dev\PhysX-3.3.0_PC_SDK_Core.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with PhysX 3 SDK

2. Before including the PhysX library files and header files in Property
Manager, we first need to create a new Visual C++ Win32 Console
application. To do this, open your MS VC++ compiler from the toolbar and
navigate to File | New | Project. Then, a New Project window will pop up.
Select Win32 Console Application and also provide Name and Location for
the project. Finally, click on the OK button to proceed further as shown in the
following screenshot:

Recent Templates

[.NEI' Framework 4 - |Sort by: [Default A | Search In|

Installed Templates T Vicual C
: ++
i - # Win32 Console Application J Visual C++ ype: Hisua
4 Visual C++ = A project for creating a Wing

ATL) .) application
CLR 3 Win32 Project Visual C++

General

MFC

Test

Win32
Other Languages
Other Project Types

Database -

m

Online Templates

px3_Hello
Chdevisamplecode

px3_Hello

Mame:

- Browse... |

|| Create directory for solution
[Add to source control

3. Soon after, a Win32 Application Wizard window will pop up. Here,
click on the Next button to get the Application Settings screen, where
you need to make sure that the Empty project option is checked under
Additional options. Finally, click on the Finish button as shown in the
following screenshot:

Location:

Solution name:

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Win32 Application Wizard - px3_Hello

[—
N Application Settings
Overview Application type: Add common heg

Application Settings *) Windows application
@ Console application
@) DLL

*) Static library

Additiopal optiops:

V| Empty project

Next, we need to configure our project's VC++ directories so that it can find
the PhysX SDK header files and libraries that are required for compiling the
PhysX program. We will include the absolute path for PhysX SDK Include
Directories and Library Directories. To do this in VC++ 2010 Express,
navigate to View | Property Manager. If the Property Manager option is
not visible there, navigate to Tools | Settings and select Expert Settings; this
will enable the Property Manager option in View. In the Property Manager
window, double-click on a configuration-and-platform node, for example,
Debug | Win32 or Release | Win32, as shown in the following screenshot:

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze
IR AR A ™ | l§| bR T S A _:ﬂ'__;'Ll 2 |Debug '!l_‘ﬁfinBZ

Property Manager - px3_Hello

= a5
a Eﬂ_pﬁ_Hellu

- Debug | Win32

| Release | Win32

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Starting with PhysX 3 SDK

5. Double-clicking on a configuration-and-platform node, such as Debug |
Win32 or Release | Win32, will open Property pages for the respective node
configuration, such as, Debug Property Pages or Release Property Pages.
This can also be opened by navigating to View | Property pages.

6. When configuration-specific Property Pages (namely Debug Property Pages
or Release Property Pages) will pop up, select VC++ Directories and add the
following entries:

1. Select Include Directories and then click on <Edit...> to add c:\dev\
PhysX-3.3.0_PC _SDK Core\Include.

2. Select Library Directories and then click on <Edit...> to add ¢:\dev\
PhysX-3.3.0_PC_SDK_Core\Lib\win32 (for a 32-bit platform) or C:\
dev\PhysX-3.3.0_PC_SDK_Core\Lib\winé4 (for a 64-bit platform).

For this book, we will include libraries for a 32-bit platform
L because it can run on either a 32-bit machine or a 64-bit machine.

Debug Property Pages

MN/A M/

4 Common Properties 4
General Executable Directories S(VCInstallDir)bin;
Debugging R TEE freeglut-2.8.\inc
VC++ Directories Reference Directories m
+ Linker Library Directories ; =7
- Manifest Toel Source Directories §(VCInstallDir)atl
- XML Document Generator Exclude Directories $(VClnstallDirlincl
- Browse Information
- Build Events
- Custom Build Step
- Code Analysis

7. Finally, click on the OK button to save your changes and close the window.

These PhysX SDK directory settings are saved on a per user basis and not on per
project basis. So whenever you create a new VC++ project in VC++ 2010 Express,
PhysX directories will automatically be added to your Include Directories
project. We are now finally done with the PhysX configuration in VC++ 2010
Express. In the next chapter, we will create our first PhysX program.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Summary

This chapter enlightened us with all of the basic PhysX-related information
that is needed to proceed with the rest of this book. We learned how to register
as a Nvidia developer and download the PhysX SDK from the Nvidia website.
We also learned how to include the PhysX SDK files in Visual C++ 2010 for

compiling PhysX programs.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Concepts

This chapter provides an overview of the concepts that we use in PhysX. It will
familiarize you with terms such as scene, actor, material, shape, and so on.

The topics covered in this chapter are as follows:

* Initializing PhysX and creating the scene and actors
* Creating shapes and materials and then assigning them to actors

* Simulating and then shutting down PhysX

Scene and Actors

You must have heard the quote written by William Shakespeare:

"All the world's a stage, and all the men and women merely players: they have
their exits and their entrances; and one man in his time plays many parts, his
acts being seven ages."

As per my interpretation, he wanted to say that this world is like a stage, and human
beings are like players or actors who perform our role in it. Every actor may have his
own discrete personality and influence, but there is only one stage, with a finite area,
predefined props, and lighting conditions.

In the same way, a world in PhysX is known as scene and the players performing
their role are known as actors. A scene defines the property of the world in which a
simulation takes place, and its characteristics are shared by all of the actors created
in the scene. A good example of a scene property is gravity, which affects all of

the actors being simulated in a scene. Although different actors can have different
properties, independent of the scene. An instance of a scene can be created using the
PxScene class.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Concepts

An actor is an object that can be simulated in a PhysX scene. It can have properties,
such as shape, material, transform, and so on. An actor can be further classified as a
static or dynamic actor; if it is a static one, think of it as a prop or stationary object on
a stage that is always in a static position, immovable by simulation; if it is dynamic,
think of it as a human or any other moveable object on the stage that can have its
position updated by the simulation. Dynamic actors can have properties like mass,
momentum, velocity, or any other rigid body related property. An instance of static
actor can be created by calling PxPhysics::createRigidStatic()function, similarly an
instance of dynamic actor can be created by calling PxPhysics::createRigid Dynamic()
function. Both functions require single parameter of PxTransform type, which define
the position and orientation of the created actor.

Scene
Actor
Static Actors Dynamic Actors
-Static position -Can change position
-Can’t have properties and rotation.
such as mass, velocity, -Have properties such
force as mass, velocity, force

Materials

In PhysX, a material is the property of a physical object that defines the friction

and restitution property of an actor, and is used to resolve the collision with other
objects. To create a material, call PxPhysics: :createMaterial (), which requires
three arguments of type PxReal; these represent static friction, dynamic friction and
restitution, respectively.

A typical example for creating a PhysX material is as follows:

PxMaterial* mMaterial = gPhysicsSDK->createMaterial(0.5,0.5,0.5);

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Downloading the example code
\ You can download the example code files for all Packt books you
~ have purchased from your account at http: //www.packtpub.
Q com. If you purchased this book elsewhere, you can visit http://
www . packtpub. com/support and register to have the files
e-mailed directly to you.

Static friction represents the friction exerted on a rigid body when it is in a rest
position, and its value can vary from 0 to infinity. On the other hand, dynamic
friction is applicable to a rigid body only when it is moving, and its value should
always be within 0 and 1. Restitution defines the bounciness of a rigid body and its
value should always be between 0 and 1; the body will be more bouncy the closer its
value is to 1. All of these values can be tweaked to make an object behave as bumpy
as a Ping-Pong ball or as slippery as ice when it interacts with other objects.

Shapes

When we create an actor in PhysX, there are some other properties, like its shape and
material, that need to be defined and used further as function parameters to create an
actor. A shape in PhysX is a collision geometry that defines the collision boundaries
for an actor. An actor can have more than one shape to define its collision boundary.
Shapes can be created by calling PxRigidActor: : createShape (), which needs at
least one parameter each of type pxGeometry and PxMaterial respectively.

A typical example of creating a PhysX shape of an actor is as follows:

PxMaterial* mMaterial = gPhysicsSDK->createMaterial(0.5,0.5,0.5);
PxRigidDynamic* sphere = gPhysicsSDK->createRigidDynamic (spherePos) ;
sphere->createShape (PxSphereGeometry (0.5f), *mMaterial) ;

An actor of type pPxRigidstatic, which represents static actors, can have shapes
such as a sphere, capsule, box, convex mesh, triangular mesh, plane, or height field.
Permitted shapes for actors of the PxRigidDynamic type that represents dynamic
actors depends on whether the actor is flagged as kinematic (the kinematic actor is
explained in the next chapter) or not. If the actor is flagged as kinematic, it can have
all of the shapes of an actor of the PxrigidStatic type; otherwise it can have shapes
such as a sphere, capsule, box, convex mesh,

but not a triangle mesh, a plane, or a height field.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Concepts

Creating the first PhysX 3 program

Now we have enough understanding to create our first PhysX program. In this
program, we initialize PhysX SDK, create a scene, and then add two actors. The first
actor will be a static plane that will act as a static ground, and the second will be a
dynamic cube positioned a few units above the plane. Once the simulation starts,
the cube should fall on to the plane under the effect of gravity.

Because this is our first PhysX code, to keep it simple, we will not draw any actor
visually on the screen. We will just print the position of the falling cube on the
console until it comes to rest.

We will start our code by including the required header files. PxPhysicsAPI.his

the main header file for PhysX, and includes the entire PhysX API in a single header.
Later on, you may want to selectively include only the header files that you need,
which will help to reduce the application size. We also load the three most frequently
used precompiled PhysX libraries for both the Debug and Release platform
configuration of VC++ 2010 Express compiler shown as follows:

In addition to the std namespace, which is a part of standard C++, we also need to
add the physx namespace for PhysX, as follows:

#include <iostream>
#include <PxPhysicsAPI.h> //PhysX main header file

//-=---=--- Loading PhysX libraries----------]
#ifdef DEBUG

#pragma comment (1ib, "PhysX3DEBUG x86.l1ib")
#pragma comment (lib, "PhysX3CommonDEBUG x86.1ib")
#pragma comment (1lib, "PhysX3ExtensionsDEBUG.lib")
#else

#pragma comment (1ib, "PhysX3 x86.1ib")

#pragma comment (lib, "PhysX3Common x86.1ib")
#pragma comment (1lib, "PhysX3Extensions.lib")
#endif

using namespace std;

using namespace physx;

Initializing PhysX

For initializing PhysX SDK, we first need to create an object of type PxFoundation
by calling the pxCreateFoundation () function. This requires three parameters: the
version ID, an allocator callback, and an error callback. The first parameter prevents
a mismatch between the headers and the corresponding SDK DLL(s).

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The allocator callback and error callback are specific to an application, but the
SDK also provides a default implementation, which is used in our program. The
foundation class is needed to initialize higher-level SDKs.

The code snippet for creating a foundation of PhysX SDK is as follows:

static PxDefaultErrorCallback gDefaultErrorCallback;
static PxDefaultAllocator gDefaultAllocatorCallback;
static PxFoundation* gFoundation = NULL;

//Creating foundation for PhysX

gFoundation = PxCreateFoundation
(PX_PHYSICS VERSION, gDefaultAllocatorCallback,
gDefaultErrorCallback) ;

After creating an instance of the foundation class, we finally create an instance

of PhysX SDK by calling the pxCreatePhysics () function. This requires three
parameters: the version ID, the reference of the PxFoundation object we created
earlier, and PxTolerancesScale. The PxTolerancesScale parameter makes it easier
to author content on different scales and still have PhysX work as expected; however,
to get started, we simply pass a default object of this type. We make sure that the
PhysX device is created correctly by comparing it with NULL. If the object is not equal
to NULL, the device was created successfully.

The code snippet for creating an instance of PhysX SDK is as follows:
static PxPhysics* gPhysicsSDK = NULL;
//Creating instance of PhysX SDK

gPhysicsSDK = PxCreatePhysics
(PX_PHYSICS_VERSION, *gFoundation, PxTolerancesScale());

if (gPhysicsSDK == NULL)

{

cerr<<"Error creating PhysX3 device, Exiting..."<<endl;
exit (1) ;

}

Creating scene

Once the PhysX device is created, it's time to create a PhysX scene and then add
the actors to it. You can create a scene by calling pxPhysics: :createScene (),
which requires an instance of the PxSceneDesc class as a parameter. The object of
pxSceneDesc contains the description of the properties that are required to create a
scene, such as gravity.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Concepts

The code snippet for creating an instance of the PhysX scene is given as follows:

PxScene* gScene = NULL;

//Creating scene
PxSceneDesc sceneDesc (gPhysicsSDK->getTolerancesScale()) ;

sceneDesc.gravity = PxVec3(0.0f, -9.8f, 0.0f);
sceneDesc.cpuDispatcher = PxDefaultCpuDispatcherCreate(1);
sceneDegc.filterShader = PxDefaultSimulationFilterShader;

gScene = gPhysicsSDK->createScene (sceneDesc) ;

Then, one instance of PxMaterial is created, which will be used as a parameter for
creating the actors.

//Creating material

PxMaterial* mMaterial =

//static friction, dynamic friction, restitution
gPhysicsSDK->createMaterial (0.5,0.5,0.5);

Creating actors

Now it's time to create actors; our first actor is a plane that will act as a ground.
When we create a plane in PhysX, its default orientation is vertical, like a wall, but
we want it to act like a ground. So, we have to rotate it by 90 degrees so that its
normal will face upwards. This can be done using the pxTransform class to position
and rotate the actor in 3D world space. Because we want to position the plane at the
origin, we put the first parameter of PxTransformas PxVec3 (0.0£,0.0£,0.0£); this
will position the plane at the origin. We also want to rotate the plane along the z-axis
by 90 degrees, so we will use PxQuat (PxHalfPi, PxVec3 (0.0£f,0.0£f,1.0£f)) as the
second parameter.

Now we have created a rigid static actor, but we don't have any shape defined

for it. So, we will do this by calling the createshape () function and putting
PxPlaneGeometry () as the first parameter, which defines the plane shape and a
reference to the mMaterial that we created before as the second parameter. Finally,
we add the actor by calling PxScene: :addActor and putting the reference of plane,
as shown in the following code:

//1-Creating static plane

PxTransform planePos = PxTransform(PxVec3 (0.0f, O,
0.0f) ,PxQuat (PxHalfPi, PxVec3(0.0f, 0.0f, 1.0f)));
PxRigidStatic* plane = gPhysicsSDK->createRigidStatic (planePos) ;
plane->createShape (PxPlaneGeometry (), *mMaterial) ;

gScene->addActor (*plane) ;

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The next actor we want to create is a dynamic actor having box geometry, situated
10 units above our static plane. A rigid dynamic actor can be created by calling the
pPxCreateDynamic () function, which requires five parameters of type: PxPhysics,
PxTransform, PxGeometry, PxMaterial, and PxReal respectively. Because we
want to place it 10 units above the origin, the first parameter of PxTransform will
be pPxvec3 (0.0£,10.0£,0.0£). Notice that they component of the vector is 10,
which will place it 10 units above the origin. Also, we want it at its default identity
rotation, so we skipped the second parameter of the PxTransform class. An instance
of PxBoxGeometry also needs to be created, which requires Pxvec3 as a parameter,
which describes the dimension of a cube in half extent. We finally add the created
actor to the PhysX scene by calling pxScene: :addActor () and providing the
reference of gBox as the function parameter.

PxRigidDynamic*gBox) ;

//2) Create cube
PxTransform boxPos (PxVec3 (0.0f, 10.0f, 0.0f));
PxBoxGeometry boxGeometry (PxVec3(0.5f,0.5f,0.5f));

gBox = PxCreateDynamic (*gPhysicsSDK, boxPos, boxGeometry, *mMaterial,
1.0£f);
gScene->addActor (*gBox) ;

Simulating PhysX

Simulating a PhysX program requires calculating the new position of all of the
PhysX actors that are under the effect of Newton's law, for the next time frame.
Simulating a PhysX program requires a time value, also known as time step, which
forwards the time in the PhysX world. We use the pxScene: : simulate () method
to advance the time in the PhysX world. Its simplest form requires one parameter of
type PxReal, which represents the time in seconds, and this should always be more
than 0, of else the resulting behavior will be undefined. After this, you need to call
PxScene: : fetchResults (), which will allow the simulation to finish and return the
result. The method requires an optional Boolean parameter, and setting this to true
indicates that the simulation should wait until it is completed, so that on return the
results are guaranteed to be available.

//Stepping PhysX
PxReal myTimestep = 1.0£/60.0f;
void StepPhysX ()
{
gScene->simulate (myTimestep) ;
gScene->fetchResults (true) ;

}

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Concepts

We will simulate our PhysX program in a loop until the dynamic actor (box) we
created 10 units above the ground falls to the ground and comes to an idle state.

The position of the box is printed on the console for each time step of the PhysX
simulation. By observing the console, you can see that initially the position of the box
is (0, 10, 0), but the y component, which represents the vertical position of the box,

is decreasing under the effect of gravity during the simulation. At the end of loop, it
can also be observed that the position of the box in each simulation loop is the same;
this means the box has hit the ground and is now in an idle state.

//Simulate PhysX 300 times
for(int 1=0; i<=300; i++)
{
//Step PhysX simulation
if (gScene)
StepPhysX () ;

//Get current position of actor (box) and print it

PxVec3 boxPos = gBox->getGlobalPose() .p;
cout<<"Box current Position ("<<boxPos.x <<" "<<boxPos.y <<"
"<<boxPos.z<<")\n";

}

Shutting down PhysX

Now that our PhysX simulation is done, we need to destroy the PhysX related objects
and release the memory.

Calling the pxScene: :release () method will remove all actors, particle
systems, and constraint shaders from the scene. Calling PxPhysics: :release ()
will shut down the entire physics. Soon after, you may want to call
PxFoundation: :release () to release the foundation object, as follows:

void ShutdownPhysX ()

{
gScene->release() ;
gPhysicsSDK->release() ;
gFoundation->release() ;

}

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Summary

We finally created our first PhysX program and learned its steps from start to finish.
To keep our first PhysX program short and simple, we just used a console to display
the actor's position during simulation, which is not very exciting; but it was the
simplest way to start with PhysX. In subsequent chapters, we will also

visualize simulation by using the OpenGL library.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Rigid Body Dynamics

The topics that are covered in this chapter are as follows:

* Basics of rigid body dynamics.

* Changing rigid body properties, namely mass, density, velocity,
acceleration, and angular motion.

* Rigid body sleeping state and solver accuracy.

Exploring a rigid body

A rigid body is a physical body having definite mass and a fixed shape. One
important property of a rigid body is that it always retains its original shape when
we apply external force to it. This property greatly simplifies the physics-related
calculations performed on a body (actor), assuming that it follows the properties of
a perfect rigid body. A rigid body can also be made of multiple interconnected rigid
bodies, and can have properties, such as velocity, force, torque, center of gravity,
angular motion, and others. In this chapter we will learn methods and parameters
for changing the properties of rigid body dynamics.

Mass

Mass is one of the essential properties of a rigid body; other properties, such as
moment of inertia and momentum also depend on it. In PhysX the easiest way

to set the mass of a rigid body is by calling PxRigidBody: : setMass (), which
requires a single parameter of type PxReal, which represents the mass. The function
PxRigidBody: :getMass () can also be used for getting the current mass of any
rigid body.

www.it-ebooks.info

http://www.it-ebooks.info/

Rigid Body Dynamics

Density

The density of a rigid dynamic actor is the mass per unit size of its colliding

shape. The mass of a rigid dynamic actor is proportional to the size of its shape.
This means that if you increase the size of its shape, the mass of the object will

also increase. The density of a rigid body can be set by calling PxRigidBodyExt : :
updateMassAndInertia (), which takes two parameters. The first parameter is of
type PxRigidBody and takes the reference of a rigid body whose density needs to be
updated. The second parameter is of type PxReal and sets the density of the body.

Gravity

Gravity is an essential and simple-to-use property for realistic physics simulation.
We have already used this property in our first PhysX program. To set the gravity
for a scene, simply call the PxScene: : setGravity () method, which requires a
parameter of type PxVec3 containing three real numbers. These three numbers
represent acceleration due to gravity in the x, y, and z axes respectively. Here,
distance is represented in meters, and time is represented in seconds.

In a typical physics simulation, gravity is generally set at Pxvec3 (0.0£f, -9.8f,
0.0f), which is the same as the Earth's gravity. PhysX has the ability to enable
or disable gravity for each dynamic rigid body created. To do this, just set the
following flag to true:

PxActor: :setActorFlag (PxActorFlag: :eDISABLE GRAVITY, true) ;

Velocity

In PhysX we can set the linear velocity of a dynamic rigid body at any point of time
by calling PxRigidBody: : setLinearVelocity () . Inits simplest form, this requires
a parameter of type 'PxVec3 ', which contains three real numbers representing
velocity in the x, y, and z axes respectively. We can also set the angular rotation

of a rigid dynamic body by calling PxRigidBody: : setAngularVelocity () and
providing pPxvec3 as a parameter, which represents the magnitude of angular
velocity in the x, y, and z axes respectively.

Force and Torque

In PhysX one way to move a rigid dynamic actor is by applying a force at its center
of mass, which causes it to move in a linear motion. We can also rotate a dynamic
actor about its axis by applying a torque to it.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This can be done in PhysX using the following two functions:

void PxRigidBody::addForce
(const PxVec3& force, PxForceMode: :Enum mode, bool autowake) ;

void PxRigidBody: :addTorque
(const PxVec3& torque, PxForceMode: :Enum mode, bool autowake) ;

The simplest form of PxRigidBody: :addForce () requires a 3D vector, which
represents the magnitude of force and its direction in the x, y, and z axes of the 3D
world. The second and third parameters are optional. The second parameter is an
enum of type PxForceMode, which defaults to PxForceMode: : eFORCE . The other
possibilities are PxForceMode : : eIMPULSE, which applies an impulsive force, and
PxForceMode: : eVELOCITY CHANGE, which applies force on a rigid body without
taking its mass into consideration. The third parameter is a Boolean value, which
defaults to true, which wakes the actor up, if it is sleeping.

There are some more member functions of class PxRigidBodyExt, which provide a
more fine-grained way to apply force on dynamic rigid bodies, as follows:

void PxRigidBodyExt::addForceAtPos
(PxRigidBodyé& body, const PxVec3& force,
const PxVec3& pos, PxForceMode::Enum mode, bool wakeup) ;

void PxRigidBodyExt::addForceAtLocalPos
(PxRigidBodyé& body, const PxVec3& force,
const PxVec3& pos, PxForceMode::Enum mode, bool wakeup) ;

void PxRigidBodyExt::addLocalForceAtPos
(PxRigidBodyé& body, const PxVec3& force,
const PxVec3& pos, PxForceMode::Enum mode, bool wakeup) ;

void PxRigidBodyExt::addLocalForceAtLocalPos
(PxRigidBody& body, const PxVec3& force,
const PxVec3& pos, PxForceMode::Enum mode, bool wakeup) ;

PxRigidBodyExt : :addForceAtPos () applies a force defined in the global coordinate
frame, acting at a particular point in global coordinates to the actor.

PxRigidBodyExt : :addForceAtLocalPos () applies a force defined in the local
coordinate frame, acting at a particular point in global coordinates to the actor.

PxRigidBodyExt : :addLocalForceAtPos () applies a force defined in the actor local
coordinate frame, acting at a particular point in global coordinates to the actor.

PxRigidBodyExt : :addLocalForceAtLocalPos () applies a force defined in the actor
local coordinate frame, acting at a particular point in local coordinates to the actor.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Rigid Body Dynamics

Please note that the global coordinate (world coordinate) here is the PhysX scene
coordinate. On the other hand, the local coordinate will always be referred to some
PhysX actor's local coordinate system. This is explained in the following figure:

AY

7 Local Coordinates

>

X

World Coordinates

Damping

Damping is a property that reduces the linear and angular momentum of a rigid
dynamic actor until it comes to rest, assuming that no external force is applied. The
functions that are used to set the linear and angular momentum of a rigid actor are
in shown the following lines of code:

void PxRigidDynamic::setLinearDamping (PxReal linDamp) ;

void PxRigidDynamic::setAngularDamping (PxReal angDamp) ;

PxRigidDynamic: :setLinearDamping () sets linear damping for a rigid body,
and requires a parameter of type pxReal, which represents the magnitude of the
damping force, which is equal to 1inDamp times the velocity. In the same way, px
RigidDynamic: :setAngularDamping () sets angular damping, and requires a
parameter of type PxReal, which represents a damping torque equal to angDamp
times the angular velocity.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Kinematic actors

Kinematic actors are rigid dynamic actors that move in the physics world by calling
an explicit update function, and that don't follow Newton's law of motion directly.

A kinematic actor can influence any other rigid dynamic body in the scene but the
opposite is not true. Kinematic actors are mostly used for character controllers in a
physics engine, which update the game's character position and collision boundaries.
To make a rigid dynamic actor kinematic, the following function is called:

PxRigidDynamic: :setRigidDynamicFlag (PxRigidDynamicFlag: :
eKINEMATIC, true

This function basically sets the PxRigidDynamicFlag: : eKINEMATIC flag to true.

Once an actor is made kinematic, its position is updated by calling PxRigidDyna
mic::setKinematicTarget (), which requires a parameter of type PxTransform
and contains the next destination to move to. The setKinematicTarget () function
is called in every simulation step, which will move the kinematic body in the
physics world regardless of external force, gravity, or collision acting on the body.
A kinematic body will always be treated as if it has infinite mass, and will push any
dynamic actor that gets in its way.

Sleeping state

In PhysX, a rigid dynamic actor can have a sleeping state, which decides whether

it will be simulated or not. This is done to enhance the performance of PhysX
simulation by avoiding unnecessary calculations. An actor comes to a sleeping

state when its kinetic energy is below some threshold value for a certain period

of time. Once a rigid body is in a sleeping state, it can wake up only if it comes

in contact with another awake object, or if the application of the rigid body

changes its position or velocity. We can explicitly wake an actor up by calling
PxRigidDynamic: :wakeUp (), which requires an optional real value that determines
how long until the body is put to sleep. We can also put an actor in the sleep state
by explicitly calling PxRigidDynamic: :putToSleep (). To check whether an actor
is sleeping or not in the PhysX scene, we can call PxRigidDynamic: :isSleeping(),
which returns true if the actor is sleeping.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Rigid Body Dynamics

Solver accuracy

When a collision is detected in the physics engine, a proper response has to be
calculated, depending on the properties of the colliding objects. Solvers come into
play to resolve the collision response. Solvers try to satisfy the constraints applied to
a body and restrict the body motion by iterating through all of the constraints of the
body. Increasing the number of iterations will result in a more accurate simulation.
By default, the PhysX solver iteration is set to 4 for position iteration and 1 for
velocity iteration. These iterations can be individually set for each actor by using the
following function:

void PxRigidDynamic: :setSolverIterationCounts (PxU32 minPositionIters,
PxU32 minVelocityIters) ;

In general, increasing the iteration count is only required for actors with a large
number of joints and a lower tolerance for joint inaccuracy.

Summary

In this chapter we learnt about many properties that are related to rigid dynamic
bodies. These properties include sleeping state and solver accuracy. We learnt how
to set the mass, density, and gravity for a rigid dynamic body, and how to apply
force, torque, and damping on it. We also learnt about kinematic bodies and
where they can be used.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

The topics covered in this chapter are as follows:

* Collision shapes and types of geometries available in PhysX.
* Trigger shapes, simulation events, and filter shader.
¢ Broad-Phase collision detection and Narrow-Phase collision detection.

e Continuous collision detection.

Collision shapes

This chapter covers collision detection and some other important topics related to
it. A collision can only occur when two or more bodies having definite shape collide
with (hit) each other. Therefore, for a PhysX rigid body actor, a shape is always
required to define its spatial volume.

We have already learnt about shapes and materials in Chapter 2, Basic Concepts,
where we saw that creating a shape in PhysX requires an object of PxGeometry and
a reference to PxMaterial. Here, the spatial volume of a PhysX actor (geometry)

is defined by the PxGeometry class. PhysX SDK provides some commonly-used
geometries for defining the shape of an actor, as explained in the following sections.

Geometry

As we know, an instance of geometry is required for creating a shape in PhysX, and
this defines the collision boundary (spatial volume) of a PhysX actor. The types of
geometries available in PhysX are given in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

Sphere

The function PxSphereGeometry () defines a sphere geometry for an actor's shape,
and requires a single parameter of type PxReal, which represents the radius of
the sphere.

The code snippet for creating a sphere shape out of sphere geometry is as follows:

PxReal radius = 2.0f;
gPhysicsSDK->createShape (PxSphereGeometry (radius) ,gMaterial) ;

Here, gPhysicsSDK is the instance of the created PhysX SDK and gMaterial the
instance of the created PhysX material.

Box

The function PxBoxGeometry () defines a box geometry for an actor's shape, and
requires three parameters of type PxReal, which represent side lengths of a box in
half extent. That means if you want a side of length a, you have to give its value in
the parameter as a/2.

The code snippet for creating a box shape out of a box geometry is as follows:

PxReal hx = 0.5f; //half-extent x
PxReal hy = 0.5f; //half-extent y
PxReal hz = 0.5f; //half-extent =z

gPhysicsSDK->createShape (PxBoxGeometry (hx, hy,hz) ,gMaterial) ;

Capsule

The function PxCapsuleGeometry () defines a capsule geometry, and requires two
parameters of type PxReal. The first parameter represents the radius of the capsule,
and the second parameter represents the height in half extent.

The code snippet for creating a capsule shape out of a capsule geometry is as follows:

PxReal r = 0.5f; // capsule radius
PxReal h = 1.0f; // capsule half-extent height

gPhysicsSDK->createShape (PxCapsuleGeometry (r,h) ,gMaterial) ;

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Plane

The function pxPlaneGeometry () divides the PhysX space into above and below.
Everything below the plane will collide with it. The function doesn't require any
parameters, and the plane's collision volume totally depends on its position.

The code snippet for creating a plane shape out of plane geometry is as follows:

gPhysicsSDK->createShape (PxPlaneGeometry () ,gMaterial) ;

Trigger shapes

All shapes that can be created in PhysX can be flagged as a trigger shape. A trigger
shape doesn't participate in the simulation, but can be configured to participate in
scene queries. Its shape doesn't involve any physical collision. A trigger shape is
mainly used to detect if any rigid body overlapped its spatial volume or not. If yes,
it triggers a callback function. This feature is frequently used in games. For example,
let's say you are making a sci-fi game in which whenever a player comes in front of
any door, it is automatically opened for the player. To do this, simply place an actor
with a cube shape in front of the door and flag it as triggerShape. Then write a
game logic that plays the door opening animation whenever the cube actor detects
an overlap between the player's shape and its own shape.

The code snippet to flag the shape of an actor as a trigger is as follows:

//Setting trigger flag true for 'triggerShape'

PxShape* triggerShape;

triggerActor->getShapes (&triggerShape, 1) ;
triggerShape->setFlag (PxShapeFlag: :eSIMULATION SHAPE, false);
triggerShape->setFlag (PxShapeFlag: :eTRIGGER SHAPE, true);

The important thing in the code snippet is that we are setting

PxShapeFlag: : eSIMULATION SHAPE to false, which will disable its participation in
physical simulation, and are setting its PxShapeFlag: : eTRIGGER SHAPE flag to true
, which will make it act as a trigger shape.

The overlapping of the trigger shape with other rigid dynamic bodies is reported
through the implementation of PxSimulationEventCallback: :onTrigger. Thus,
you have to inherit your program class from the pxSimulationEventCallback class.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

Simulation event

Whenever a rigid body overlaps with a trigger shape, or when two rigid bodies
collide with each other, a function callback is called, providing the required
filter shader. These simulation events can be received by inheriting the
PxSimulationEventCallback class. This is basically an interface class that
helps us listen to simulation events. Once you create a derived class from the
PxSimulationEventCallback class, an instance of it is used to register the
simulation callback in PhysX.

The code snippet for registering the simulation event callback is as follows:

// sceneDesc is an instance of 'PxSceneDesc'
sceneDesc.simulationEventCallback = &gContactReportCallback;

In this example, sceneDesc is the instance of the PxSceneDesc class, and the
function gContactReportCallback is the instance of a class derived from
PxSimulationEventCallback.

The PxSimulationEventCallback class provides two collision query-related
function callbacks, which are explained in the following sections.

Trigger event

The function PxSimulationEventCallback: :onTrigger () is called whenever a
trigger shape is overlapped by any rigid body shape that provides some filter shader
configuration. The callback function has two parameters. The first parameter is of
type PxTriggerPair, and provides an array of all of the trigger pairs of the PhysX
simulation. The second parameter is of type PxU32, and is the total number of trigger
pairs in the PhysX simulation. The pxTriggerpair class contains information for
two actors that form trigger-pairs, for example, the shape, which is marked as a
trigger, the actor attached with the trigger shape, and the other shape, which caused
the trigger event.

By using the PxSimulationEventCallback: :onTrigger () callback function we can
iterate through all of the trigger pairs of the PhysX scene and perform any trigger
event dependent task.

The code snippet for getting information about the trigger actor and overlapped an
actor from the trigger-pair is given as follows:

void onTrigger (PxTriggerPair* pairs, PxU32 nbPairs)

{

//loop through all trigger-pairs of PhysX simulation
for (PxU32 1=0; i < nbPairs; i++)

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

//get current trigger actor & other actor info
//from current trigger-pair
const PxTriggerPair& curTriggerPair = pairs[i];

PxRigidActor* triggerActor = curTriggerPair.triggerActor;
PxRigidActor* otherActor = curTriggerPair.otherActor;

Contact event

The function PxSimulationEventCallback: :onContact () is called whenever two
rigid bodies collide with each other. It has three parameters. The first parameter is
of type PxContactPairHeader, and contains information about two actors forming
a contact-pair, and related flag information. The second parameter is of type
PxContactPair, and provides all of the contact-pairs of the PhysX simulation.

The third parameter is of type pPxU32, and is the total count of contact-pairs in

the PhysX simulation.

The code snippet for printing contact positions of all contact-pairs is given as follows:

void ContactReportCallback::onContact
(const PxContactPairHeader& pairHeader,
const PxContactPair* pairs, PxU32 nbPairs)

const PxU32 buff = 64; //buffer size
PxContactPairPoint contacts [buff];

//loop through all contact pairs of PhysX simulation
for (PxU32 1=0; i < nbPairs; i++)
{
//extract contant info from current contact-pair
const PxContactPair& curContactPair = pairsl([il];
PxU32 nbContacts = curContactPair.extractContacts
(contacts, buff);

for (PxU32 j=0; j < nbContacts; j++)

{

//print all positions of contact.

PxVec3 point = contacts[j].position;
cout<<"Contact point
("<<point.x <<" "<< point.y<<" "<<point.x<<")\n";
[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

Filter shader

The filter shader in PhysX is used for collision filtering, and to customize the
collection of flags describing the actions to take on a collision pair, such as whether
to report the collision of rigid bodies or not. PhysX 3 also provides a default
implementation of the filter shader using the PxDefaultSimulationFilterShader
class, which basically emulates the PhysX 2.8.x collision filtering. The PhysX filter
shader basically customizes the collection of flags defined in the pxpairFlag
structure. We can use it to customize the callback events of the PhysX simulation
that we are interested in.

The code snippet of a user-defined filter shader is as follows:

PxFilterFlags contactReportFilterShader (PxFilterObjectAttributes
attributes0, PxFilterData filterDatao,
PxFilterObjectAttributes attributesl, PxFilterData filterDatal,

PxPairFlagsé& pairFlags, const void* constantBlock, PxU32
constantBlockSize)

{

// all initial and persisting reports for
//everything, with per-point data

pairFlags = PxPairFlag::eCONTACT DEFAULT
| PxPairFlag::eTRIGGER DEFAULT
| PxPairFlag::eNOTIFY TOUCH PERSISTS
| PxPairFlag::eNOTIFY CONTACT POINTS;

return PxFilterFlag: :eDEFAULT;

}

Once you have defined a custom filter shader, you need to assign it to the PhysX
scene descriptor class, as follows:

sceneDesc.filterShader = customFilterShader;

In this code, sceneDesc is the instance of the PxSceneDesc class and
customFilterShader is the user-defined filter shader.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Broad-Phase collision detection

An axis aligned bounding box (AABB) for a PhysX object is the smallest box
that can enclose that object provided the box edges are always parallel to the
coordinate axes. The AABB of an object never rotates, although the object itself
can rotate in any axis.

AABB (axis aligned bounding box) of a heart shaped object

If the AABB of two objects are not overlapping or colliding with each other,

under no circumstances objects of AABB can collide with each other. On the other
hand if AABB of two objects are overlapping/colliding, collision between actual
objects can happen but it's not guaranteed. Checking collision using AABB is much
cheaper than checking collision of actual objects because it's just a box, but the object
itself may be made of a large numbers of polygons, which is expensive in terms

of CPU processing.

)

AABB of two objects without overlapping and with overlapping

In broad phase collision detection, we can avoid the unnecessary calculation of object
to object collision check for the objects that are found to be negative to the AABB
collision test. Objects pairs that are found positive to the test are further tested

for Narrow-Phase collision detection, which is more expensive but is essential for
determining whether the objects are actually colliding with each other or not.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

The Broad-Phase algorithms supported in PhysX 3.3.0 are:

* Sweep-and-prune (SAP)
* Multi box pruning (MBP)

Sweep-and-prune (SAP)

This is also known as the sort-and-sweep algorithm, and is a very popular
Broad-Phase collision detection algorithm. Typically, its performance is very
good when a large numbers of objects are in a sleeping state. Performance is
degraded when the majority of the objects in the scene are either moving, or are
being added to or removed from the scene. This algorithm doesn't require any
world bound definition to work.

Multi box pruning (MBP)

The Multi-box-pruning Narrow-Phase collision detection algorithm is new to
PhysX SDK and was added in PhysX version (3.3.0). It can perform better than
the sweep-and-prune algorithm when the majority of objects in the scene are
either moving or being removed from or added to the scene. However, its
performance can be worse than SAP when the majority of the objects in the scene
are in a sleeping state. This algorithm requires a world bound definition to work.

We can select the broad phase algorithm as per our requirements, by using
PxBroadPhaseType enum, within the PxSceneDesc structure.

Narrow-Phase collision detection

Object pairs that are found to be positive in the Broad-Phase collision detection
algorithm are further tested for Narrow-Phase collision detection. In this phase,

the actual object pairs are tested for collision instead of their AABB, which can be
expensive because the object's polygon count can vary from 3 to n vertices. Other
information that is calculated in this phase are point of intersection, collision normal,
and penetration depth. These properties are important for the collision response phase.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Continuous collision detection

There are two collision detection techniques that are typically used in the physics
engine. The first one is Discrete Collision Detection (DCD), and the second one is
Continuous Collision Detection (CCD). DCD gives better performance because it
checks for collision between two time steps. Collision is only detected after some
level of intersection of colliding objects. However, it is also prone to missing the
collision of fast moving objects because of its non-continuous collision technique. On
the other hand, CDD considers a continuous motion of moving objects and does not
miss any collision during motion between two time steps. Because of its continuous
nature, CCD is more performance hungry than DCD.

In PhysX, by default, DCD is enabled because it is more performance friendly than
CCD. However, there may be situations where we need to enable CCD, in order to
take advantage of its collision detection accuracy and reliability.

To enable CCD in PhysX, the following things are done:

1. Enable CCD in the scene descriptor, as follows:

PxPhysics* physx;

PxSceneDesc desc;
desc.flags |= PxSceneFlag::eENABLE CCD;

2. Enable CCD in pair filter:

static PxFilterFlags testCCDFilterShader (

PxFilterObjectAttributes attributesO,
PxFilterData filterDataoO,
PxFilterObjectAttributes attributesl,
PxFilterData filterDatal,

PxPairFlagsé& pairFlags,

const void* constantBlock,

PxU32 constantBlockSize)

pairFlags = PxPairFlag::eRESOLVE CONTACTS;
pairFlags |= PxPairFlag::eCCD_LINEAR;
return PxFilterFlags() ;

desc.filterShader = testCCDFilterShader;
physx->createScene (desc) ;

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Collision Detection

3. Lastly, CCD needs to be enabled for the dynamic rigid body, as follows:

PxRigidBody* body;

body->setRigidBodyFlag (PxRigidBodyFlag: :eENABLE CCD, true);

CDD is only activated between objects whose relative speeds are greater than
the sum of their respective CCD velocity thresholds. These velocity thresholds
are automatically calculated based on the shape's properties, and supports
non-uniform scales.

Summary

In this chapter we learnt about collision detection and available collision shapes in
PhysX. We learnt about trigger shapes, simulation events, and the filter shader. We
also went through Broad-Phase collision detection, Narrow-Phase collision detection,
DCD, and CCD.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Joints

In this chapter, we will learn about the various joints available in PhysX and
their properties and configurations. Topics that are covered in this chapter
are as follows:

* Fixed joints

* Revolute joints
* Spherical joints
* Distance joints

* Prismatic joints

* D6 joints

Joints in PhysX

Joints in PhysX are constraints that set the properties of two interconnected actors
and their interaction with each other. Joints can be used in many ways in physics
simulation, for example, making a ragdoll using joints for a game character,
connecting doors and windows with a hinge joint, and creating chains or ropes

by connecting a series of joints. Joints are always created between two actors,

out of which at least one must be movable. This means that it should be either of
type PxRigidDynamic or PxArticulationLink, and the other actor of that joint
may be any of those as well as PxRigidstatic. The pPxArticulationLink class

is used for creating articulated joints and currently is in the experimental stage.
Articulated joints are specifically used for creating joints of actuated characters. The
PxRigidStatic class is used for creating static actors having spatial volume, but
they remain fixed in the PhysX scene. Static actors can be used as a fixed support in
world space and can be further connected to a rigid dynamic actor by using joints.

www.it-ebooks.info

http://www.it-ebooks.info/

Joints

In PhysX 3, there are six different types of joints available; they are as follows:

A fixed joint: A fixed joint has fixed orientation and movement along the
connected bodies. It doesn't allow any linear movement or rotation along any
axis of the joint. The pxFixedJoint class is used for creating a fixed joint.

A revolute joint: This is also called a hinge joint. It doesn't allow linear
motion along it, but allows free rotation around one common axis. A
swinging door connected with a wall is a good example of a hinge joint.
The pxrRevolutedoint class is used for creating revolute joints.

A spherical joint: This is also known as a ball-socket joint. It doesn't allow
linear movement along the joint, but allows the orientation to vary freely.
An adjustable mirror connected to a vehicle is a good example of a spherical
joint. The pxSphericaldoint class is used for creating spherical joints.

A distance joint: A distance joint always keeps the origins of connected
bodies within a certain distance range. The pxDistanceJoint class is
used for creating distance joints.

A prismatic joint: This is also known as a slider joint. It always has fixed
orientation, but allows linear movement along the common x axis. The
PxPrismaticJoint class is used for creating prismatic joints.

A D6 joint: A D6 joint is a highly flexible and highly configurable joint
that provides all six degrees of freedom for customizing the joint. Many
types of joints can be derived from a D6 joint as per your requirements
and configuration. The pxDé6Joint class is used for creating D6 joints.

Fixed joints
A fixed joint in PhysX connects two actors so that they can't move or change their
orientation in relation to each other.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In an ideal condition, the connected bodies will maintain their spatial relationship;
however, there may be circumstances that can disrupt the stability of a fixed joint,
thus causing a drift. A fixed joint is useful where we want to show the breakage of
two connected actors by some external force during simulation.

The PxFixedJointCreate () function is used for creating a fixed joint between two
actors. It requires five parameters. The first parameter is of the PxPhysics type, and
requires the instance of the created PhysX SDK. The second parameter is of type
PxRigidActor, and requires the reference of the first actor to which the joint will be
attached. The third parameter is of type PxTransform, and represents the position
and orientation (transform) of a joint relative to the first actor. Similarly, the fourth
and fifth parameters represent the reference of the second actor and the transform
of the joint relative to the second actor. On success, the function returns the instance
of the joint that was created. Same signature of function parameters are followed
for creating other PhysX joints.

The code snippet for creating a fixed joint is given as follows:

PxVec3 pos = PxVec3(0,10,3); //position of static actor
PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating actors
PxRigidActor* staticActor = PxCreateStatic (*gPhysicsSDK,
PxTransform(pos), PxSphereGeometry(0.5f), *mMaterial);

PxRigidDynamic* connectedActor = PxCreateDynamic (*gPhysicsSDK,
PxTransform(PxVec3(0)), PxBoxGeometry(0.5,0.5,2), *mMaterial,
1.0f);

//creating fixed joint between actors

PxFixedJoint* fixedJoint =
PxFixedJointCreate (*gPhysicsSDK, staticActor,
PxTransform(offset), connectedActor, PxTransform(-offset));

//adding actors to scene
gScene->addActor (*staticActor) ;
gScene->addActor (*connectedActor) ;

Here, gPhysicssDK is the instance of the created PhysX SDK and mMaterial is an
instance of the PhysX material.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Joints

Revolute joints

A revolute joint prevents all movements except rotational, which is common to
the connected bodies.

The code snippet for creating a revolute joint is given as follows:

//creating actors

PxRigidActor* staticActor =

PxRigidDynamic* connectedActor =

PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating Revolute joint between actors

PxRevoluteJoint* revoluteJoint =

PxRevoluteJointCreate (*gPhysicsSDK, staticActor,
PxTransform(offset), connectedActor, PxTransform(-offset)) ;

We can also set the upper and lower rotational limits for a revolute joint. The
setLimit () function is used to set the limit of a revolute joint. This function
requires a parameter of type PxJointLimitPair. The PxJointLimitPair parameter
itself requires three parameters of type pxReal, where lowerLimit specifies the
lower value of the limit, upperLimit specifies the upper value of the limit, and
limitContactDistance specifies the distance from the upper or lower limit at
which the limit constraint becomes active. The lower limit value must always be

less than the upper limit value. We enable the defined limits of a revolute joint by
calling setRevolutedointFlag () and setting the PxRevoluteJointFlag: :eLIMIT_
ENABLED flag to true.

The code snippet for setting the upper and lower rotational limits for a revolute joint
is given as follows:

revoluteJoint->setLimit (PxJointLimitPair (lowerLimit, upperLimit,
limitContactDistance)) ;

revolutedoint ->setRevolutedJointFlag (PxRevoluteJointFlag: :

eLIMIT ENABLED, true);

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Spherical joints
A spherical joint restrains linear movement along the connected bodies, but allows
swinging and twisting of the joint.

The code snippet for creating a spherical joint is given as follows:

//creating actors

PxRigidActor* actorl =

PxRigidDynamic* actor2 =

PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating Spherical joint between actors

PxSphericalJoint* sphericalJoint =

PxSphericalJointCreate (*gPhysicsSDK, actorl, PxTransform(offset),
actor2, PxTransform(-offset)) ;

The spherical joint supports a cone limit, which specifies how far the connected
body can swing from a given axis, and a twist limit, which limits the twisting of the
connected body around its own axis.

The code snippet for setting the limits of a spherical joint is given as follows:

sphericalJoint->setLimitCone (PxJointLimitCone (yLimitAngle,
zLimitAngle, limitContactDistance)) ;

sphericalJoint->
setSphericalJointFlag (PxSphericalJointFlag: :eLIMIT ENABLED, true) ;

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Joints

The setLimitCone () function requires a parameter of type pxJointLimitCone,
whose The PxJointLimitCone constructor itself requires three parameters of
type PxReal, where yLimitAngle represents the angle limit from the y axis of the
constraint frame, zLimitAngle represents the angle limit from the z axis of the
constraint frame, and 1imitContactDistance represents the distance from the
upper or lower limit at which the limit constraint becomes active. We enable the
defined limits of the spherical joint by calling setSphericalJdointFlag() and
setting the PxSphericalJdointFlag: :eLIMIT ENABLED flag to true.

Distance joints

A distance joint keeps the origin of the connected actors within a certain range
of distance.

The code snippet for creating a distance joint is given as follows:

//creating actors

PxRigidActor* actorl =

PxRigidDynamic* actor2 =

PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating Spherical joint between actors
PxDistancedJoint* distanceJoint =

PxDistanceJointCreate (*gPhysicsSDK, actorl, PxTransform(offset),
actor2, PxTransform(-offset)) ;

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We can also apply upper and lower bounds for distance joints as follows:

distanceJoint->setMinDistance (2.0f) ;
distanceJoint->setMaxDistance (10.0f) ;
distanceJoint->setDistanceJointFlag (eMAX DISTANCE_ENABLED, true);
distanceJoint->setDistanceJointFlag (eMIN_DISTANCE_ENABLED, true);

The setMinDistance () and setMaxDistance () functions set the minimum and
maximum allowed distance for the joint, respectively.

Prismatic joints

A prismatic joint always has a fixed relative orientation between two connected
bodies, but allows linear movement along a common axis.

The code snippet for creating a prismatic joint is given as follows:

//creating actors

PxRigidActor* actorl =

PxRigidDynamic* actor2 =

PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating Prismatic joint between actors

PxPrismaticJoint* prismaticJoint =

PxPrismaticJointCreate (*gPhysicsSDK, actorl, PxTransform(offset),
actor2, PxTransform(-offset)) ;

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Joints

Linear movement can be limited by setting upper and lower bounds on the distance
between the origins of connected bodies, as follows:

prismaticJoint->setLimit (PxJointLimitPair(-10.0f, 20.0f, 0.01f);
prismaticJoint ->

setPrismaticJointFlag (PxPrismaticJointFlag: :eLIMIT ENABLED, true);

The setLimit () function is used to set the limit of a prismatic joint and requires

a parameter of type PxJointLimitPair,which itself requires three parameters of
type PxReal, where lowerLimit specifies the lower value of the limit, upperLimit
specifies the upper value of the limit and 1imitContactDistance specifies the
distance from the upper or lower limit at which the limit constraint becomes active.
The lower limit value must always be less than the upper limit value. We enable the
defined limits of a prismatic joint by calling setPrismaticJointFlag() and setting
the pxPrismaticJointFlag: :eLIMIT ENABLED flag to true.

D6 joints

As we have already mentioned, the D6 joint is a highly flexible and highly
configurable joint, which provides all six degrees of freedom to customize; that is,
translational freedom in all x, y, and z axes as well as rotational freedom in all three
axes. Many types of joints can be made by configuring the D6 joint.

The code snippet for creating a D6 joint is given as follows:

//creating actors

PxRigidActor* actorl =

PxRigidDynamic* actor2 =

PxVec3 offset = PxVec3(0,2,0); // offset of connected actor from joint

//creating D6 joint between actors

PxDeJoint* deJoint =

PxD6JointCreate (*gPhysicsSDK, actorl, PxTransform(offset),
actor2, PxTransform(-offset)) ;

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

By default, all degrees of freedom are locked in the D6 joint and it behaves similar to
a fixed joint. The setMotion () function is required for setting the degrees of freedom
of the D6 joint, and requires two enumerable types, PxD6Axis and PxDéMotion.
The pxD6Axis parameter sets the axis around which a motion is specified, and the
possible values are as follows:

* PxD6Axis: :eX: This is motion along the x axis

* PxD6Axis: :eY: This is motion along the y axis

* PxD6Axis: :eZ: This is motion along the z axis

* PxD6Axis::eTWIST: This is motion around the x axis

* PxD6Axis::eSWING1: This is motion around the y axis

* PxD6Axis::eSWING2: This is motion around the z axis
pxDé6Mot ion defines the motion type around a specified axis. The possible values
are as follows:

e pxD6Motion: :eLOCKED: The DOF is locked; it does not allow relative motion

* PxD6Motion: :eLIMITED: The DOF is limited; it only allows motion within
a specific range

* PpxDéMotion::eFREE: The DOF is free and has its full range of motion

A number of joints can be created by configuring the D6 joint; for example, the
revolute joint, spherical joint, prismatic joint, and others that are not available
in PhysX 3, such as the cylindrical joint and pint-to-plane joint.

Summary

In this chapter, we learned about all of the types of joints that are available in PhysX
SDK and their configurations. We learned about six types of joints available in PhysX,
which are the fixed joint, revolute joint, spherical joint, distance joint, prismatic joint,
and D6 joint. We also went through their specific behavior and properties.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scene Queries

In this chapter we will learn about the various types of scene queries and their mode
of operations.

Topics that are covered in this chapter are as follows:

* Raycast queries and its mode of operation
* Sweep queries and its mode of operation

* Overlap queries and its mode of operation

Raycast queries

The raycast query is a way to detect collisions by using rays, just like how we use
the laser pointing device during any slide show presentation, which creates a red
dot on the first object its ray collides with. Raycast queries have many uses, such as
detecting bullet collision point in an FPS game, checking line of sight for the enemy
characters, and selecting in-game objects by using a mouse.

In PhysX, raycasting is done by calling the pxScene: : raycast () function and it
can be used in different modes depending on the arguments you are passing to the
function; they are described as follows:

* raycast () with PxRaycastBuffer buf and PxQueryFlag: :eANY HIT

* raycast () with PxRaycastBuffer buf and a default constructor

* raycast () with PxRaycastBuffer buf (PxRaycastBuffer, PxU32)

www.it-ebooks.info

http://www.it-ebooks.info/

Scene Queries

When using the raycast () function with pPxQueryFlag: : eANY HIT, it just returns
true on colliding with any PhysX object. It is the least expensive to call, because

it doesn't perform any calculation related to a hit shape and an impact point. It
requires six parameters. The first two parameters are of the pxvec3 type, and specify
the origin and direction of the ray. The third parameter is of the pxReal type and it
represents the maximum allowed distance of the ray. The fourth parameter is of the
PxRaycastBuffer type and contains the result of the hit.

The fifth parameter is of the pxHitFlag type and it determines which optional
fields are needed to be filled in the PxQueryHit structure. For default configuration,
we can use PxHitFlags (PxHitFlag: :eDEFAULT) and the last parameter is of

the pxRaycastBuffer type, and it must be set to PxQueryFlag: :eANY HIT to

use this mode.

A typical example for raycast () with PxRaycastBuffer buf and
PxQueryFlag: :eANY HIT is as follows:

PxVec3 origin = PxVec3(0,3,0); //[in] Ray origin

PxVec3 unitDir = PxVec3(0,1,0); //[in] Normalized ray direction
PxReal maxDistance = 1000.0f; //[in] Raycast max distance
PxRaycastBuffer hit; // [out] Raycast results
PxQueryFilterData fd; fd.flags |= PxQueryFlag::eANY HIT;

bool status = gScene-s>raycast (origin, unitDir, maxDistance, hit,
PxHitFlags (PxHitFlag: :eDEFAULT) , fd) ;

The second way of using raycast () is with PxRaycastBuffer buf and a default
constructor. This not only returns if the ray hits any shape, but it also gives the exact
information about the first collided shape and its hit information. For this method,
only the first four parameters are needed, which specify the origin, direction,

ray max distance, and raycast-buffer, which contains the raycast hit information.
The function returns true if the ray collides with a PhysX actor having a shape,
otherwise it returns false.

A typical example is as follows:

PxVec3 origin = PxVec3(0,3,0); //[in] Ray origin

PxVec3 unitDir = PxVec3(0,1,0); //[in] Normalized ray direction
PxReal maxDistance = 1000.0f; //[in] Raycast max distance
PxRaycastBuffer hit; // [out] Raycast results

bool status = gScene-s>raycast (origin, unitDir, maxDistance, hit);

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

In the third mode, we can use raycast () so that it will cast a ray, which can
penetrate all shapes that come in its way, and carries information about all the
penetrated shapes and its collision points in a buffer. For this, the first three
parameters are the same, which specify ray origin, ray direction, and ray max
distance respectively. The fourth and the last parameter will be replaced with
PxRaycastBuffer buf (hitBuffer, buffersSize), which will keep all the objects
touched by the ray along with the hit information.

The function returns a boolean value that indicates whether the hitBuffer
parameter contains a blocking hit or not.

A typical example is as follows:

const PxU32 bufferSize = 256; // [in] size of 'hitBuffer'
PxRaycastHit hitBuffer[bufferSize]l; // [out] User provided buffer for
results

PxRaycastBuffer buf (hitBuffer, bufferSize); // [out] Blocking and
touching hits will be stored here

// Raycast against all static & dynamic objects (no filtering)

// The main result from this call are all hits along the ray, //stored
in 'hitBuffer'

bool hadBlockingHit =

gScene->raycast (origin, unitDir, maxDistance, buf) ;

Sweep queries

Sweep queries are just like the raycast queries, but the only difference is that sweep
queries cast a shape or you can say sweep a shape instead of a ray. As with raycast,
in PhysX the pxScene: : sweep () function is used to perform sweep queries and can
be used in many different modes; they are as follows:

* sweep () with PxSweepBuffer buf and PxQueryFlag: :eANY HIT
* sweep () with PxSweepBuffer buf and a default constructor
* sweep () with PxSweepBuffer buf (PxSweepBuffer, PxU32)

The geometry required by the sweep function can be a box, sphere, capsule,
or convex.

The sweep function sweeps all of the specified geometry objects through space, and
finds all of the rigid actors that get hit during the sweep. Each successful collision
between a sweep shape and the scene actors generates hit information specified by
the PxSweepBuffer field.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Scene Queries

The sweep () function with PxSweepBuffer buf and PxQueryFlag: :eANY HIT is
the cheapest to call among all variants of the sweep () function, because it doesn't
perform any calculation to find the hit shape and impact point. It just returns true
on successful collision of the sweep shape with other bodies in the PhysX scene.

The function requires seven parameters. The first parameter is of the PxGeometry
type, and represents the geometry, which will be used for sweeping. The next three
consecutive parameters specify the origin, direction, and max distance of the sweep
geometry from the origin respectively. The fifth parameter is of PxSweepBuffer type,
and it stores the result of hit. The sixth parameter is of the PxHitFlag type, and it
determines which optional fields are needed to be filled in the PxQueryHit structure;
for default configuration we can use pxHitFlags (PxHitFlag: : eDEFAULT).

And the last parameter is of the PxQueryFilterData type, and must be set

to PxQueryFlag: : eANY HIT to use this mode.

A typical example for sweep () with PxSweepBuffer buf and PxQueryFlag: :eANY
HIT is as follows:

//[in] Sweep geometry

PxGeometry sphereGeometry = PxSphereGeometry (0.5f) ;

//[in] Geomery transform

PxTransform initialPos = PxTransform(PxVec3(0,5,0));

PxVec3 unitDir = PxVec3(0,-1,0); //[in] Normalized sweep direction
PxReal maxDistance = 1000.0f; //[in] Sweep max distance
PxSweepBuffer sweepBuff; // [out] Sweep result

PxQueryFilterData fd;
fd.flags |= PxQueryFlag::eANY HIT;

bool status = gScene-s>sweep (sphereGeometry,initialPos,unitDir
,maxDistance, sweepBuff, PxHitFlags (PxHitFlag: :eDEFAULT) , fd) ;

Using sweep () with PxSweepBuffer buf and a default constructor, not only
detects the collision with the sweep geometry, but it also carries the hit information
about the first object it collided with. The function requires five parameters similar to
the sweep () function mentioned previously:

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A typical example for sweep () with PxSweepBuffer buf and a default constructor is
as follows:

//[in] Sweep geometry

PxGeometry sphereGeometry = PxSphereGeometry (0.5f) ;

// [in] geomery transform

PxTransform initialPos = PxTransform(PxVec3(0,5,0));

PxVec3 unitDir = PxVec3(0,-1,0); //[in] Normalized sweep direction
PxReal maxDistance = 1000.0f; //[in] Sweep max distance
PxSweepBuffer sweepBuff; // [out] Sweep result

bool status = gScene->sweep (sphereGeometry,initialPos,
unitDir,maxDistance, sweepBuff) ;

In the third mode of the sweep () function, with PxSweepBuffer

buf (PxSweepBuffer, PxU32),itcan be used in such a way that it will penetrate
all the PhysX actors that come in its way and carry information about all the actors
it collided with until the sweep geometry reaches the max allowed distance.

A typical example for the sweep () function with PxSweepBuffer
buf (PxSweepBuffer, PxU32) is as follows:

PxGeometry sphereGeometry = PxSphereGeometry(0.5f); //[in] Sweep
geometry

PxTransform initialPos = PxTransform(PxVec3(0,5,0)); //[in] geomery
transform

PxVec3 unitDir = PxVec3(0,-1,0); //[in] Normalized sweep direction
PxReal maxDistance = 1000.0f; //[in] Sweep max distance
PxSweepBuffer buff; // [out] Sweep result

const PxU32 bufferSize = 256; // [in] size of 'sweepBuffer'
PxSweepHit sweepBuffer[bufferSize];//[out] User provided buffer for
results

PxSweepBuffer buf (sweepBuffer, bufferSize); //[out] Hits stored here

bool status = gScene->sweep (sphereGeometry,
initialPos,unitDir,maxDistance,buff) ;

Currently supported input shapes are boxes, spheres, capsules, and convex for all
types of sweep queries.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Scene Queries

Overlap queries

In an overlap query, we determine whether geometry has collided or overlapped
against any other body in a PhysX scene; if an overlap is reported, we can also find
the information about the overlapping object. The methods are similar to raycast ()
and sweep () except that it doesn't support PxHitFlags, because there's no specific
first point from where the overlap occurs. The supported shapes are box, sphere,
capsule, and convex.

In PhysX, overlap queries are done by calling the pxScene: :overlap () function,
and it can be used in different modes depending on the arguments you are passing
to the function; they are described as follows:

* overlap () with PxOverlapBuffer buf and PxQueryFlag: :eANY HIT

* overlap() with PxOverlapBuffer buf (PxOverlapBuffer, PxU32)

The overlap () function with PxOverlapBuffer buf and PxQueryFlag: :eANY HIT
just returns true if the shape volume is overlapped by any other PhysX actor. The
function has four parameters. The first one is of PxGeometry type, and it represents
the geometry of an object to check for an overlap. The second parameter is the
transformation of an object, and the third one is of PxOverlapBuffer type and it
contains the result of the overlap. The last parameter is of PxQueryFilterData type,
and it must be set to PxQueryFlag: :eANY HIT to use this mode.

A typical example for overlap () with PxOverlapBuffer buf and
PxQueryFlag: :eANY HIT is as follows:

//[in] Sweep geometry
PxGeometry sphereGeometry = PxSphereGeometry (0.5f);
//[in] geomery transform

PxTransform initialPos = PxTransform(PxVec3(0,5,0)) ;
PxOverlapBuffer buf; //[out] Buffer for overlap results

PxQueryFilterData fd;
fd.flags |= PxQueryFlag::eANY HIT;

bool status = gScene-s>overlap (sphereGeometry,initialPos,buf, fd) ;

The overlap () function with PxOverlapBuffer buf (PxOverlapBuffer, PxU32)
returns the number of objects it overlapped with its shape and has three parameters.
The first two parameters define the geometry and transformation of the object to
check for overlap, and the third one is of pxOverlapBuffer type, and it contains
information about all of the overlapped objects.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A typical example for the overlap () function with PxOverlapBuffer
buf (PxOverlapBuffer, PxU32) is as follows:

PxGeometry sphereGeometry = PxSphereGeometry (0.5f) ;
PxTransform initialPos = PxTransform(PxVec3(0,5,0));

const PxU32 bufferSize = 256
PxOverlapHit overlapBuffer [bufferSize] ;
PxOverlapBuffer buf (overlapBuffer, bufferSize) ;

bool status = gScene->overlap (sphereGeometry,initialPos,buf) ;

Summary

In this chapter we learned about raycast queries, sweep queries, and overlap queries.
We saw that these queries can perform different modes of operations depending on
the number and types of arguments fed to their functions. We also learned that each
mode has a different performance cost, and we can customize the queries as per

our requirements.

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Character Controller

In this chapter, we will learn the concept of a character controller and how to use
it in PhysX.

The topics that will be covered in this chapter are as follows:

e Basics and need of a character controller
* Creating and moving a character controller
* Updating the position, shape, and size of a character controller

* Auto-stepping and slope limit

Character controller basics

A character controller is a special kinematic actor with a collider shape, which we use
in games for creating the collider of a game's characters. It has dedicated properties
and methods, with fine grained control over its movement and interaction with the
surrounding environment.

A character controller can be used for simulating the movement of any character or
Al in games or simulation applications. It can be used to create playable characters
in FPS (First Person Shooter) or TPS (Third Person Shooter) games, and even for
making NPC in a strategic game.

The need of a character controller

In computer games, a character controller is intended to represent the collision
boundary of a player character or enemy Al. Although this can be done using a
kinematic rigid body, sooner or later you may get into many problems that can be
avoided by using a character controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Character Controller

Typical problems that you may face when using physics engine default rigid body
instead of a character controller are as follows:

* Typically, physics engine bodies use the DCD (Discrete Collision Detection)
algorithm for detecting the collision between objects, which may sometimes
fail to detect the collision of fast moving objects, thus causing a character
to pass through a wall.

* Arigid dynamic body can be moved by using force or impulse, but its
final position can't be controlled precisely. Thus, using it as a replacement
of character controller is not a good idea.

* Arigid dynamic body will slide down a sloping surface, but any body
that represents a character should be able to stand on an uneven and
sloping surface.

* Typical bodies in physics engine have restitution properties, which make
the bodies bounce off when it hits a surface; this is not a desirable property
for character simulation.

Creating a character controller

Before creating a character controller, you need to create a controller manager,
which will manage all character controllers and their interaction with each other
in the PhysX scene.

The code snippet for creating a controller manager is as follows:

PxScene* gScene; //Instance of PhysX scene
PxControllerManager* manager = PxCreateControllerManager (*gScene) ;

After this, we can create a character controller for each character in our game,
which is given as follows:

PxCapsuleControllerDesc desc;

//initial position

desc.position = PxExtendedVec3(0.0f,0.0f,0.0f);
//controller skin within which contacts generated
desc.contactOffset = 0.05f;

//max obstacle height the character can climb
desc.stepOffset = 0.01;

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

desc.slopelLimit 0.5f; // max slope the character can walk

desc.radius = 0.5f; //radius of the capsule

desc.height = 2; //height of the controller

desc.upDirection = PxVec3 (0, 1, 0); // Specifies the 'up' direction
desc.material = NULL;

PxController* ¢ = manager->createController (desc) ;

When we create a character controller, its bounding volume should always be

on the top of the surface or static mesh on which it will move. Overlapping of

the character controller shape with the surface on which it will move can result

in an undefined behavior such as falling of the character controller by penetrating
through the surface.

Moving a character controller

Since a character controller is a kinematic body (kinematic bodies are explained
in Chapter 3, Rigid Body Dynamics), its position can only be updated (moved)
through the explicit move () call and not by an external force exerted through
other dynamic actors in the PhysX scene. Even the effect of gravity will be created
programmatically, because PhysX gravity can't influence kinematic bodies.

To move a character controller by updating its position in each frame, the following
function is called:

collisionFlags =
PxController: :move (disp, minDist, elapsedTime, filters, obstacles);

The pxController: :move () function requires five parameters:

* The first parameter is of the pxvec3 type, and it represents the magnitude
of displacement in x, y, and z axis for the current frame. Its y component is
updated to simulate the effect of gravity, as well as jumping of the character
controller, and it is done programmatically. The x and z components are
updated for lateral movement of the character controller.

* The second parameter is of the pPx32 type, and it represents the minimal
length used to stop the recursive displacement algorithm early when the
remaining distance to travel goes below this limit.

* The third parameter is of the PxF32 type, and it represents the elapsed
time since the last call to the move function.

* The fourth parameter is of the PxControllerFilters type, and it can be
used to filter out actors the character controller is colliding with.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Character Controller

* The last parameter is of the PxObstacleContext type, and is optional; these
are the additional obstacles that the character controller should collide with.

The PxController: :move () function returns PxControllerFlag, which can be
used to detect whether the character controller is touching the ground, side walls,
or something else.

Useful methods and properties

A character controller has many properties and methods that are very useful for
precisely controlling the movement and interaction with surrounding environments.
Some essential properties are discussed next.

Position update

It is important to know the current position of a character controller so that we can
sync the visuals of our game character with it. We can find the position of a character
controller as follows:

const PxExtendedVec3& PxController::getPosition() const;

The pxController: :getPosition () function returns the current center position

of the character controller shape. It should be noted that a character controller never
rotates, therefore, we don't have any function to get the current rotation of the
character controller.

We can also get or set the bottom position, that is, the foot position of a character
controller by using the following function:

//get foot position of character controller
const PxExtendedVec3& PxController::getFootPosition() const;

//set foot position of character controller
bool PxController::setFootPosition (const PxExtendedVec3& position) ;

Shapes of a character controller

PhysX currently supports two types of shapes for defining the collision boundary
of a character controller, which is explained as follows:

* AABB (Axis Aligned Bounding Box) is a box shape defined by a position
and an extents vector. The AABB doesn't rotate even if the player graphic is
rotating. This avoids getting stuck in places too tight for the AABB to rotate.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

* A capsule shape defined by its height and radius represents the collision
volume of a character in a better way than AABB, but it is slightly more
expensive in terms of CPU use.

To make the character controller collision boundary tolerable against other colliding
shapes, which may cause some numerical issues, a skin volume is maintained
around the character controller volume. The skin width can be set through the
PxControllerDesc: :contactOffset function and can be read through the pxcont
roller: :getContactOffset () function. When visualizing the character controller
using Debug Renderer, its skin width should also be taken into consideration for
determining the rendered volume of the controller.

Size update

The size of a character controller's shape can be changed dynamically at runtime
to simulate the crouch behavior of a game's character. For example, if your game's
character height is 1.5 meters, you may want to reduce it to 1 meter on the crouch
mode, which will avoid it from colliding with low-level objects placed in a game.

The functions that can be used for changing the size of a character controller are
as follows:

* For the AABB shape, you can use the following function:

bool PxBoxController::setHalfSideExtent (PxF32 halfSideExtent)
= 0;

bool PxBoxController::setHalfForwardExtent (PxF32halfForwardExtent)
= 0;

* For the capsule shape, you can use the following function:

bool PxCapsuleController::setRadius (PxF32 radius) 0;
bool PxCapsuleController::setHeight (PxF32 height) 0;

When we decrease the height of a character controller at run-time, the character
controller may levitate for some time above the ground until it touches the ground
again. This happens because its height is reduced from the center, which affects
both the upper-half and lower-half extent of the character controller. Therefore, it's
necessary to reposition it appropriately so that it touches the ground after resizing
its height. This can be done automatically by using the following function:

void PxController::resize (PxF32 height) = 0;

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Character Controller

Auto-stepping

In PhysX, auto-stepping is a feature for a character controller, that allows the
character controller to sweep across an uneven surface without the intervention
of a user. Just like in the real world when a person walks he/she crosses small
obstacles without even thinking about them. This allows a character controller

to have some tolerance against the uniform surface or terrain when it moves
over the terrain or a static triangle mesh. This tolerance can be set by defining the
PxControllerDesc::stepOffset () function. Implementing the auto-stepping
feature requires the SDK to know about your up vector, which can be defined in
the PxController: :upDirection () function.

Slope limit

When a character controller moves on a surface that is inclined by some

angle, or moves on an uneven terrain consisting of slopes and narrow

surface, the movement of the character controller can be limited by setting

the pxControllerDesc: :SlopeLimit () function, which requires the maximum
allowed slope limit for a character controller in radians. It is expressed as the
cosine of desired limit angle.

The following code snippet allows a character controller to walk on a surface
inclined not more than 30 degrees.

slopelLimit = cosf (PxMath::degToRad (30.0f)) ;

Setting the slope limit to zero will disable any slope-related constraint on the
character controller. It should be noted that the slope limit is ignored if the touched
shape is attached to a dynamic or kinematic rigid body, or if the touched shape

is a sphere or capsule attached to a static body. Getting a contact normal from
heightfields, triangle meshes, convex meshes, and boxes is more readily supported
than with spheres and capsules, so these shape types are all involved in the slope
limit calculations, provided they are attached to a static body.

Summary

In this chapter we learned the concept of the character controller and how we use it
in PhysX. We learned how to create, update, define a shape for a character controller,
and other related properties such as auto-stepping and slope limit.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Particles

In this chapter, we will learn about particle simulation in PhysX. The topics that will
be covered in this chapter are as follows:

* Types of particle system and their creation

* Particle system properties

* Creating, updating, and releasing a particle

* Particle drains and collision filtering

Exploring particles

Particles are widely used in games and other 3D applications requiring particle
effects. They are used for simulating particle-based effects such as explosions,
smoke, fluid, debris, dust, snow, and many others. They greatly increase the
originality of a simulating world by creating photo-realistic visuals.

Creating a particle system

In PhysX, before creating actual particles, we need to create a particle system. A
particle system class manages a set of particles and the phases of their life cycle such
as creating, updating, and releasing. The created particles can interact with other
objects in the PhysX scene, whether the objects are static or dynamic. Particles can
also be influenced by gravity and force.

PhysX mainly supports two types of particle system, which are as follows:

¢ Particles without intercollision

* Particles with intercollision (Smoothed Particle Hydrodynamics)

www.it-ebooks.info

http://www.it-ebooks.info/

Particles

Particles without intercollision

The main characteristic of these particles is that they may collide with the
surrounding environment or with other PhysX actors (static or dynamic), but they
can't collide with a particle of their own type. These particles are suitable for creating
particle effects such as debris, sparks, dust, snow, flurry, and so on.

To create a particle system that doesn't support intercollision, the PxPhysics: :creat
eParticleSystem() function is called. Its simplest form requires a single parameter
of the pxReal type, which specifies maximum number of particles that can be placed
in the created particle system. On success, it returns the reference of the newly
created particle system of the pxParticleSystem type, otherwise, null is returned.

The code snippet for creating a particle system of the PxParticleSystem type is as
follows:

// set immutable properties.
PxU32 maxParticles = 100;

// create particle system in PhysX SDKs
PxParticleSystem* ps =
mPhysics->createParticleSystem(maxParticles) ;

// add particle system to scene, in case creation was successful
if (ps)
mScene->addActor (*ps) ;

Particles with intercollision

The particles with intercollision support may collide with PhysX actors (static
or dynamic) as well as with particles of their own type. Technically, this is is
SPH (Smoothed Particle Hydrodynamics) and it can precisely simulate the
behavior of dynamic (moving) fluids. More information about SPH is available
athttp://en.wikipedia.org/wiki/Smoothed particle hydrodynamics.
These particles are suitable for creating fluid-based effects such as fluid flowing,
oil spilling, water fountains, volumetric smoke, and gases.

To create a particle system that supports intercollision, the pxPhysics: :
createFluid () function is called. Its simplest form requires a single parameter

of the pxReal type, which specifies the maximum number of particles that may be
placed in the created particle system. On success, it returns the reference of the newly
created particle system of the pxParticleFluid type, otherwise, null is returned.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The code snippet for creating a particle system of the pxParticleFluid type is
as follows:

// set immutable properties.
PxU32 maxParticles = 100;

// create particle system in PhysX SDK
PxParticleFluid* pf = mPhysics->createParticleFluid (maxParticles) ;

// add particle fluid to scene, in case creation was successful
if (pf)
mScene->addActor (*ps) ;

Both particle classes, the pxParticleSystem class and the PxParticleFluid class
are derived from the PxParticleBase abstract base class, which contains abstract
methods common to both particle systems.

Particle system properties

A particle system in PhysX contains lots of properties that are used to define the
simulation behavior of a particle and its interaction with the surrounding objects.
These properties can be classified on the basis of their mutability (changeability)
when they are defined for a particle system.

The classification of properties on the basis of mutability is as follows:

* The properties that are immutable (can't be changed) after particle creation
are explained as follows:

° maxParticles: It specifies the maximum number of particles allowed
for a particle system

° particleBaseFlags, PxParticleBaseFlag: :ePER PARTICLE
REST OFFSET: It is a flag for enabling/disabling per-particle rest
offset

* The properties that are immutable when the particle system is a part of the
PhysX scene are explained as follows:

° maxMotionDistance: This property specifies the maximum distance
a particle can move in a simulation time step. Increasing this value
too much may affect the performance.

° gridsize: This property sets a grid size to subdivide particles into
special groups for optimizing performance and parallelization.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Particles

° restOffset: This property sets the minimum rest offset distance
between particles and the surface of rigid actors that is maintained
by the collision system.

° contactOffset: This property sets the minimum distance at which
contacts between particles and rigid actors are created. It is internally
used to avoid jitter and penetration. It should always be greater than
restOffset.

° particleReadDataFlags: This property allows the application/user
to read some particle-related property after simulation.

° particleBaseFlags, PxParticleBaseFlag: :eGPU: Itis a flag for
enabling/disabling GPU acceleration.

° particleBaseFlags, PxParticleBaseFlag: :eCOLLISION TWOWAY:
It is a flag for enabling/ disabling two-way interaction between rigid
bodies and particles.

° restParticleDistance: This property sets the resolution of the fluid
particle (only pxParticleFluid)
* The properties that are mutable (that can be changed at any time) are
explained as follows:
° restitution: This property specifies the restitution of particle collision

° dynamicFriction: It specifies the dynamic friction of particle
collision

° staticFriction: This property specifies the static friction of
particle collision

° damping: This property specifies the velocity damping applied
to particles

° externalAcceleration: This property specifies the acceleration
applied to particles at each time-step of PhysX simulation

° particleBaseFlags, PxParticleBaseFlag: :eENABLED: Itis a flag
for enabling/disabling particle simulation

° particleBaseFlags, PxParticleBaseFlag: :ePROJECT TO PLANE:
It is a flag for enabling/ disabling projection mode, which confines
the particles to a plane

projectionPlaneNormal, projectionPlaneDistance: This
property defines a plane for the projection mode

° particleMass: This property sets the mass of particles

° simulationFilterData: This property sets filter data used to filter
collisions between particles and rigid bodies

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* Mutable properties only applicable to PxParticleFluid are explained
as follows:

o

stiffness: This property denotes the compressibility of fluid
particles. Reducing this value will increase the compressibility of the
particle that means, it will behave like a sponge, while increasing this
value increases the rigidness of the particle. Setting this property to a
high value may cause simulation instability. Its optimal value varies
from 1 to 200.

viscosity: This is the measure of a fluid particle's resistance to
gradual deformation by any external force. Increasing the value of
this property will increase the thickness of a liquid, for example,
honey, while reducing its value, will decrease the thickness of a
liquid, for example, water. Its optimal value varies from 5 to 300.

Creating particles

Once we are done with creating a particle system, it's time to create particles. If the
particle system is of the pPxParticleSystemtype, we call the pxParticleSystem:
:createParticle () function to create a generic particle. On the other hand, if the
particle system is of the pxParticleFluid type, we call the PxParticleFluid: :
createParticle () function to create an SPH particle. Both the functions require
at least one parameter of the pxParticleCreationData type, which is basically a
descriptor-like user-side class describing buffers for particle creation. It contains a
particle-related description such as numParticles, indexBuffer, positionBuffer,
velocityBuffer, restOf fsetBuffer, and flagBuffer. Specifying the particle
indices and the position is mandatory, although other information can be skipped.
Once the particles are created, they can be accessed through constant array indices
until they are not destroyed.

Fluid particles falling on to sphere actor

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Particles

A typical example of creating a few particles is as follows:

//declare particle descriptor for creating new particles
PxParticleCreationData particleCreationData;
particleCreationData.numParticles = 3;

PxU32 myIndexBuffer[] = {0, 1, 2};

PxVec3 myPositionBuffer[] = { PxVec3(0,0.2,0), PxVec3(0.5,1,0),
PxVec3 (0,2,.7) };

PxVec3 myVelocityBuffer[] = { PxVec3(0.1,0,0), PxVec3(0,0.1,0),

PxVec3(0,0,0.1) };

particleCreationData.indexBuffer =
PxStrideIterator<const PxU32> (myIndexBuffer) ;

particleCreationData.positionBuffer =
PxStrideIterator<const PxVec3> (myPositionBuffer) ;

particleCreationData.velocityBuffer =
PxStrideIterator<const PxVec3> (myVelocityBuffer) ;

// create particles in *PxParticleSystem* ps
bool success = ps->createParticles (particleCreationData) ;

It should be noted that access to particles such as creating, updating, releasing, and
reading particle-related properties can only be done when the PhysX scene is not
being simulated. The indices of the particles should not exceed pPxParticleBase:
:getMaxParticles (). When creating particles of the pxParticleFluid type, the
spawning distance between the particles should be close to PxParticleFluid: :getR
estParticleDistance (), otherwise, it may spread instantly in all directions.

Updating particles

Each particle can be explicitly accessed for updating its position and velocity
immediately.

The code snippet for updating the positions of particles is given as follows:

PxVec3 particlePositions[] = {...};
PxU32 particleIndices[] = {...};

PxU32 numParticles = ...;
PxStridelterator<const PxVec3> newPositionBuff (particlePositions) ;
PxStridelterator<const PxU32> indexBuff (particlelIndices);

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

//ps is the instance of PxParticleSystem or PxParticleFluid
ps->setPositions (numParticles, indexBuff, newPositionBuff) ;

We can also update the forces on the particles by using addForces (), as follows:

PxU32 numParticles = ...;
PxStridelterator<const PxVec3> forceBuffer = ...;
PxStridelterator<const PxU32> indexBuffer = ...;

//ps 1is the instance of PxParticleSystem or PxParticleFluid

ps->addForces (numParticles, indexBuffer, forceBuffer,
PxForceMode: : eFORCE) ;

The particle rest-offset can be updated if the pxParticleBaseFlag: : ePER_
PARTICLE_REST OFFSET function is set to true on creating the particle system.

The code snippet for setting PxParticleBaseFlag is as follows:

//ps 1is the instance of PxParticleSystem or PxParticleFluid
ps->setParticleBaseFlag (PxParticleBaseFlag: :
ePER_PARTICLE REST OFFSET, true);

Releasing particles

Particles can be released by using the PxParticleBase: :releaseParticles ()
function, which require two parameters. The first parameter is of the px32 type and
holds the count of particles that have to be released. The second parameter is of the
pPxStrideIterator<PxU32> type and describes the indices of particles that should
be deleted. The indices always have to be consistent with the particle count. We can
also use the same function without any parameter, which will release all particles in
a PhysX scene.

//ps 1is the instance of PxParticleSystem or PxParticleFluid
ps->releaseParticles (numParticles, indexBuffer) ;

Particle drains

Particle drains are the PhysX objects or shapes, which act as a particle cleaner and
whenever PhysX particles come in touch with that object, particles are released from
the scene. To mark a shape as a particle drain, simply call the pxShape: : setFlag (Px
ShapeFlag: :ePARTICLE DRAIN, true) function.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Particles

Collision filtering

Particles can be selectively configured to collide with any PhysX object. Depending
on our requirement, we can ignore the collision of particles with a particular type
of actor, whether they are static or dynamic. This can be done to avoid unnecessary
performance overhead or to avoid undesired collisions.

For enabling particle-based collision filtering, the PxParticleBase: :setSimulati
onFilterData () function is called. This requires a parameter of the PxFilterData
type, which is a user-definable data that gets passed into the collision filtering shader
and/or call-back.

Summary

In this chapter, we learned about the types of particle system, the difference between
them, and how each can be used. We learned about particle properties and how to
create, update, and destroy particles. We also learned about the use of particle

drain and how we can customize the particle collision with other PhysX actors.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Cloth

In this chapter we will learn about cloth simulation in PhysX. Topics that are covered
in this chapter are as follows:

* Exploring a cloth
* Creating a cloth fabric
* Creating a cloth

* Tweaking the cloth properties, such as cloth collision, cloth particle motion
constraint, cloth particle separation constraint, cloth self-collision, cloth
intercollision, and cloth GPU acceleration

Exploring a cloth

The PhysX SDK also provides cloth simulation. It can be used for a number of
purposes such as simulating cloth behavior of a game character or for simulating
realistic behavior of a flag and curtain in a game environment.

Creating a cloth fabric

For creating a cloth in PhysX, we first require an instance of cloth fabric to be created,
which basically stores the cloth particle constraints and rest values. A cloth fabric
in PhysXis a type of PxClothFabric, and to create an instance of it, we need to
call the pxClothFabricCreate () function that requires three parameters. The first
parameter is a type of PxPhysics, it is the reference of the created PhysX SDK. The
second parameter is a type of pxClothMeshDesc, which basically is a descriptor
class for cloth mesh. The third parameter is a type of Pxvec3 and it represents the
normalized vector specifying the direction of gravity. Here, we need to fill all the
description of PxClothMeshDesc that contains the information of the cloth mesh
such as cloth particles, its inverse weight, and the primitive formed by the cloth
particles, which finally make the cloth mesh.

www.it-ebooks.info

http://www.it-ebooks.info/

Cloth

A typical example of creating a cloth fabric is given in the following code:

//Array of cloth particles containing position and inverse masses.

PxClothParticle vertices[] =

{

PxClothParticle (PxVec3(0.0f, 0.0f, 0.0f), 0.0f),
PxClothParticle (PxVec3(0.0f, 1.0f, 0.0f), 1.0f),
PxClothParticle (PxVec3(1.0f, 0.0f, 0.0f), 1.0f),
PxClothParticle (PxVec3 (1.0f, 1.0f, 0.0f), 1.0f)

Vi
PxU32 primitives[] = { 0, 1, 3, 2 };

PxClothMeshDesc meshDesc;

meshDesc.points.data = vertices;
meshDesc.points.count = 4;

meshDesc.points.stride = sizeof (PxClothParticle) ;

meshDesc.invMasses.data = &vertices->invWeight;
meshDesc.invMasses.count = 4;
meshDesc.invMasses.stride = sizeof (PxClothParticle) ;

meshDesc.quads.data = primitives;
meshDesc.quads.count = 1;
meshDesc.quads.stride = sizeof (PxU32) * 4;

PxClothFabric* fabric = PxClothFabricCreate (physics, meshDesc,
PxVec3 (0, -1, 0));

The cloth mesh mentioned in the previous code snippet is made of simple quad
but practically it can be anything from a simple polygon primitive to a full-
fledged character wardrobe. The mesh descriptor pxClothMeshDesc class requires
cloth particle information that further contains the position in local coordinates
and its inverse masses. Setting the inverse mass of a cloth particle to zero will
make it kinematic, which means that it will not be simulated and its position can
only be updated by making an explicit update call. After filling the cloth mesh
descriptor PxClothMeshDesc class, we will create the cloth fabric by calling the
PxClothFabricCreate () function.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Creating a cloth

Once we are done with the creation of the cloth fabric, we will finally create a cloth
by calling the pxPhysics: :createCloth() function that requires four parameters.
The first parameter is a type of PxTransform, and it represents the global position of
the cloth. The second parameter is a type of pxClothFabric, and here we will put
the reference of the cloth fabric we created before. The third parameter takes the first
element of the pxClothParticle array, which is also used in the mesh description
class. The last parameter is a type of PxClothFlags, and it is used to set the flag

to turn the cloth related features on/ off such as GPU acceleration and continuous
collision detection (CCD).

A typical example for creating a cloth is given in the following code:

PxTransform pose = PxTransform(PxVec3 (1.0f)) ;
PxCloth* cloth = gPhysicsSDK->createCloth(pose, fabric, vertices,
PxClothFlags ()) ;

gScene->addActor (cloth) ;

Tweaking the cloth properties

In PhysX, a cloth is made of a number of interconnected cloth particles, and each
particle can be affected by other PhysX objects as well, as it has to be in constraint

with other connected cloth particles. This makes cloth simulation very sensitive to
numerical error. Therefore, the cloth solver iterates multiple times in a single time step
to achieve physically accurate cloth simulation. We can set the solver iteration count
by calling the PxCloth: : setSolverFrequency () function that requires a parameter
of the PxReal type, and it represents the solver frequency, that is, the number of solver
iterations per second. For instance, setting the solver frequency to 120 corresponds

to two iterations per frame if your application is running at 60 frames per second.
Increasing this value will increase the cloth simulation accuracy, but the computational
requirements will increase as well. The optimal value can be from 120 to 300.

Cloth collision

PhysX cloth can collide with other actors such as spheres, capsules, planes,
convexes, and triangles. These colliding actors have to be added by using the
PxClothCollision* classes, such as PxClothCollisionSphere.Collision, with
other scene actors. These can also be enabled by using the pxClothFlag: : eSCENE_
coLLISION flag. Cloth collision with sphere and capsule are very cheap compared to
convexes and triangles. Thus, if you are integrating cloth on your game character, it
is recommended to use a combination of sphere and capsule for defining the shape
of your game character.

[771]

www.it-ebooks.info

http://www.it-ebooks.info/

Cloth

To add a cloth colliding sphere, the addCollisionSphere () function is called.
This requires a single parameter of the PxClothCollisionSphere type, which
defines properties of the added sphere. A maximum of 32 spheres can be added
to a PhysX scene.

The code snippet for adding a new cloth colliding sphere is as follows:

PxVec3 pos = PxVec3(0,0,0);

PxReal radius = 1.0f;
cloth->addCollisionSphere (
PxClothCollisionSphere (pos, radius)) ;

To add a cloth colliding capsule, the addcollisionCapsule () function is called
that requires two parameters of the pxU32 type. A collision capsule is defined

as the bounding volume of two spheres. Here, we need two spheres of the
PxClothCollisionSphere type, for defining the upper extent and lower extent

of the capsule. The first parameter is the first index of first sphere, and the second
parameter is the second index of the second sphere. A maximum of 32 capsules can
be added to a PhysX scene.

The code snippet for adding a new cloth colliding capsule is as follows:

PxClothCollisionSphere spheres[2] =

{

PxClothCollisionSphere(PxVec3(1.0f, 0.0f, 0.0f), 0.5f),
PxClothCollisionSphere(PxVec3(2.0f, 0.0f, 0.0f), 0.25f)

Vi

cloth->setCollisionSpheres (spheres, 2);
cloth->addCollisionCapsule (0, 1);

Cloth particle motion constraint

As we know that a PhysX cloth is made of many interconnected cloth particles,
there may be situations where we want to limit the movement (not rotation) of
cloth particles. In this case, although the cloth can simulate, its particles' movement
will always be within the user-defined constraint.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We can constrain the cloth particle movement by using the
PxClothParticleMotionConstraints structure, which holds the particle constraint
information. It basically constrains the motion of the particle within an imaginary
sphere whose local position and radius can be defined by the user. Setting the
constraint radius to zero will lock the movement of the cloth particle to the center of
the sphere. The PxClothParticleMotionConstraints array must either be null, to
disable motion constraints, or be the same length as the number of particles in a cloth.

The code snippet to constrain the movement of the cloth particle is as follows:

PxClothParticleMotionConstraints motionConstraints[] =

{

PxClothParticleMotionConstraints (PxVec3(0.0f, 0.0f, 0.0f), 0.0f),

PxClothParticleMotionConstraints (PxVec3(0.0f, 1.0f, 0.0f), 1.0f), PxCl
othParticleMotionConstraints (PxVec3(1.0f, 0.0f, 0.0f), 1.0f),

PxClothParticleMotionConstraints (PxVec3(1.0£f, 1.0f, 0.0f), FLT MAX)

bi

cloth->setMotionConstraints (motionConstraints) ;

Cloth particle separation constraint

The cloth particle separation constraint is exactly opposite of the cloth particle
motion constraint. It will force a cloth particle to stay outside of an imaginary

sphere. It can be used for defining any region where the cloth intersection is not
required. The pxCloth: : setSeparationConstraints () function is used to

define any separation constraints for the cloth. It requires a single parameter of the
PxClothParticleSeperationConstraint type, and its array must either be null to
disable motion constraints, or be the same length as the number of particles in a cloth.

Cloth self-collision

We can set the property of a cloth so that its cloth particles can collide with each
other. This behavior can be enabled by setting a positive value to the pxCloth: :
setSelfCollisionDistance () and PxCloth::setSelfCollisionStiffness()
functions. The pxCloth: : setSelfCollisionDistance () function requires a single
parameter of the pxReal type, which represents the diameter of an imaginary sphere
around each cloth particle.

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Cloth

During simulation, it is made sure by the solver that these spheres will not
collide with each other. The self-collision distance should always be less than
the inter-distance of cloth particles on the rest position. The larger value may
create simulation instability or jittering in cloth particles. The pxCloth: :
setSelfCollisionStiffness () function requires a single parameter of the
PxReal type, and it represents how strong the separating impulse should be
when the imaginary sphere of the constraint collides with each other.

Cloth intercollision

If there are two or more cloth actors in a PhysX scene, we can enable

cloth intercollision much like cloth self-collision, by calling the pxScene: :
setInterCollisionDistance () and PxScene::setInterCollisionStiffne

ss () functions. Both functions require a single parameter of the pxreal type, which
represents the diameter of an imaginary sphere around each cloth particle and the
separating impulse, respectively.

Cloth GPU acceleration

PhysX cloth can be accelerated by a CUDA-enabled GPU such as NVIDIA
GeForce and Quadro series GPUs. To enable GPU acceleration, we need to
call the PxCloth: :setClothFlag (PxClothFlag: : eGPU, true) function,
which will set the PxClothFlag: : eGPU flag to true.

Summary

In this chapter we explained how to create a cloth, which also requires cloth fabric
and cloth particles to be created. We learned about cloth properties, such as cloth
collision, cloth particle constraint, cloth self-collision and intercollision, and cloth
GPU acceleration. We also described various functions and parameters that are
required to create a cloth in PhysX.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

10

PhysX Visual Debugger
(PVD)

In this chapter we will learn about the PhysX Visual Debugger, which is a software
for visualization, debugging, and profiling a PhysX application. Topics that are
covered in this chapter are as follows:

* Basic concepts of PhysX Visual Debugger (PVD)
* Connecting a PhysX application with PVD

* Saving PVD streamed data to a PC
* Customizing PVD flags

PhysX Visual Debugger (PVD) basics

PVD is a software that can be installed on your PhysX development platform,

and it can be used for real-time visualization and profiling of PhysX simulation.

It can visually represent the current simulating PhysX scene and its actors in a
separate PVD window, which is independent of your PhysX application rendering
implementations. PVD can also be used to record the PhysX simulation of your
application, which you can use later on for visualization, analysis, and to find out
potential simulation-related problems.

www.it-ebooks.info

http://www.it-ebooks.info/

PhysX Visual Debugger (PVD)

PVD can be downloaded from the same page where we downloaded the PhysX SDK
(you may need to register as a developer at https://developer.nvidia.com). More
information about the PVD and the download link can be found at http://developer.
nvidia.com/physx-visual-debugger. Nvidia's official PVD video tutorial can be
found at https://developer.nvidia.com/pvd-tutorials. A PVD user interface
guide can be found by clicking on Help in the menu bar of the PVD window. At the
time of writing, PVD is only available for the PC (Windows) platform.

, _ _
— F . . P —

FEile Edit Projects View Camera Dynamic Commands Help
L 4 & = ¥ ————29

Inspector

Preferences v aXx
Capture & Playback
Temp Directory C:\Users\KK\AppData\LodBrowse|

,,,,,,,,,,,,, . Listen on Port 5425

Playback FPS 60
Renderer Select W:I \
Max Open Projects 5
Display Namespaces ‘Hlde—
Graph Filter Type ‘@I L
Navigation Scheme ‘Dl

Save Network Stream [V

Visualization
- & E
° o £
: ¥ 3 F
s z 2 7]
= A =] &
Contacts @
Bounding Boxes ©)
Center of Mass ~ ©
— @@ 0 Frames ©
DirectX Render | Profile View | ‘) i »
Log v @ X
Date Level Message I
11:57 PM Info Creating project dir: CA\Users\KK\AppData'\Local\PVD2\2013 09 17 23 57 01 843 o ||
11:57 PM Info Network stream saved to: C:\Users\KK\AppData'Local\PVD2\KK-PC 6503.pxd2 I
11:56 PM Info Creating project dir: C:\Users\Kl Data\Local\PVD2\2013 09 17 23 56 10 282 I
11:56 PM Info Network stream saved to: C:\Users\KK\AppData'\Local\PVD2\KK-PC 6502.pxd2 -
Current Frame: 1.2792E+05, Inner Frame Time: Oms, Total Frame Time: Oms

Connecting PVD using a network

Runtime visualization and analysis of a PhysX application by using PVD can be done
by streaming the simulation-related data over the TCP/IP network on your local
machine. Here, a PVD program works as a TCP/IP server and it must be launched
before running your PhysX application. The default port used for listening is 5425.

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The code snippet for connecting to PVD by using the TCP/IP network is given
as follows:

// check if PvdConnection manager is available on this platform
if (gPhysicsSDK->getPvdConnectionManager () == NULL)
return;

// setup connection parameters

const char* pvd host ip = "127.0.0.1"; // IP of local PC machine
PVD

int port = 5425; // TCP port to connect to, where PVD is listening

unsigned int timeout = 100; //time in milliseconds to wait for PVD
to respond.

PxVisualDebuggerConnectionFlags connectionFlags =
PxVisualDebuggerExt: :getAllConnectionFlags () ;

// and now try to connect

debugger: :comm: : PvdConnection* theConnection =
PxVisualDebuggerExt : :createConnection (gPhysicsSDK
->getPvdConnectionManager (), pvd host ip, port, timeout,
connectionFlags) ;

if (theConnection)
cout<<"PVD TCP/IP Connection Successful!\n";

Saving PVD data as a file

The PhysX simulation-related data can be streamed to a file, which can be saved to
your PC for later analysis of a PhysX application. When PVD is connected through a
network, there may be a situation of slow runtime visualization caused by network
limitations or a large PhysX scene. In this scenario, streaming the PVD data to a file
will be a better alternative. While saving the PVD file to a PC, it should be saved
with the file extension .pxd2, which is recognized by the PVD software, and can be
opened directly by double-clicking on it. You can save the file on your disk partition
such as D:\ but notin C:\ because of restricted writing permission.

The code snippet for saving the streamed PVD datafile is given as follows:

// check if PvdConnection manager is available on this platform

if (gPhysicsSDK->getPvdConnectionManager () == NULL)

return;

// setup connection parameters

const char* filename = "D:\\PvdCapture.pxd2"; // filename
where the stream will be written to

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

PhysX Visual Debugger (PVD)

PxVisualDebuggerConnectionFlags connectionFlags =
PxVisualDebuggerExt::getAllConnectionFlags () ;

// and now try to connect

debugger: :comm: : PvdConnection* theConnection =
PxVisualDebuggerExt : :createConnection (gPhysicsSDK
->getPvdConnectionManager (), filename, connectionFlags) ;

Connection flags

We can filter out the PVD data that we want during the PVD connection-streaming,.
This can be done by customizing pxvVisualDebuggerConnectionFlag. It also helps
to reduce the size of streaming by ignoring data that is not required.

* PxVisualDebuggerConnectionFlag: :eDEBUG: This mode transfers all
possible debug data of rigid bodies, shapes, articulations, and so on. It is
the most demanding mode in terms of streaming bandwidth.

* PxVisualDebuggerConnectionFlag: :ePROFILE: This mode populates
the PVD's profile view, and has very less streaming bandwidth
requirements when compared to DEBUG. This flag works together with a
PxCreatePhysics parameter and profileZoneManager, and it allows you
to send profile events to PVD.

* PxVisualDebuggerConnectionFlag: :eMEMORY: This mode transfers the
memory-usage data, and it allows the users to have an accurate view of the
overall memory usage of the simulation.

The code snippet for profiling PVD data is given as follows:

debugger: :comm: : PvdConnection * theConnection =
PxVisualDebuggerExt: :createConnection (mPhysics
->getPvdConnectionManager (), pvd host ip, port, timeout,
PxVisualDebuggerConnectionFlag: : ePROFILE) ;

Summary

In this chapter, we explained what a PVD is and how it can be used for visualization
and debugging of a PhysX application. We learned how to connect PVD with your
PhysX application by using the TCP/IP network. We also described how to save

a PVD-streamed datafile to your PC and customizing the PVD flags.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A visualizing, Debug Renderer used 65
cloth
AABB 39 about 75
actor creating 77
creating 22 cloth collision 77
addCollisionSphere() function 78 cloth fabric
auto-stepping, character controller 66 creating 75, 76
axis aligned bounding box. See AABB cloth GPU acceleration 80
cloth intercollision 80
B cloth particle motion constraint 78
cloth particle separation constraint 79
box geometry 34 cloth properties
Broad-Phase algorithms cloth collision 78
Multi box pruning (MBP) 40 tweaking 77
sort-and-sweep algorithm 40 cloth self-collision 79
Sweep-and-prune (SAP) 40 collision shapes
Broad-Phase collision detection 39 about 33

geometry 33
C connection flags, PVD 84
Continues Collision Detection (CCD) 41, 42

1 4
capsule geometry 3 createParticle() function 71

character controller

about 61 createShape() function 22
auto-stepping 66 D

benefits 61

code_snippet 62 D6 joints

creating 62 about 44, 50, 51

features 61 code snippet for creating 50
methods 64 damping 30

moving 63 Debug Renderer 65

positior} update 64 density 28

properties 64 Discrete Collision Detection (DCD) 41
shapes 64 distance joint

size update 65 about 44, 48

slope limit 66 code snippet for creating 48

www.it-ebooks.info

http://www.it-ebooks.info/

F

filter shader 38
fixed joint

about 44, 45

code snippet, for creating 45
force 28

G

gContactReportCallback function 36
geometries

box 34

capsule 34

plane 35

sphere 34
getMaxParticles() 72
getRestParticleDistance() 72

gravity 28
I

immutable properties, particle system

contactOffset 70

gridSize 69

maxMotionDistance 69

maxParticles 69

particleReadDataFlags 70

PxParticleBaseFlag::eCOLLISION_TWO-
WAY 70

PxParticleBaseFlag::eGPU 70

PxParticleBaseFlag::ePER_PARTICLE_
REST_OFFSET 69

restOffset 70

restParticleDistance 70

J

joints
about 43
ball-socket joint 44
D6 joint 44, 50
distance joint 44, 48
fixed joint 44
hinge joint 44
prismatic joint 44, 49
revolute joint 44, 46

slider joint 44
spherical joint 44, 47

K

kinematic actors 31

L
license, PhysX 3 SDK 11

mass 27
materials
about 18,19
creating 18
Multi box pruning (MBP) 40
mutable properties, particle system
damping 70
dynamicFriction 70
externalAcceleration 70
particleMass 70
projectionPlaneDistance 70
projectionPlaneNormal 70
PxParticleBaseFlag::eENABLED 70
PxParticleBaseFlag::ePROJECT_TO_PLANE
70
restitution 70
staticFriction 70
stiffness 71
viscosity 71

N

Narrow-Phase collision detection 39, 40
Nvidia PhysX
features 8

(0

overlap() function
about 58
example 59
using 58
overlap queries
about 58
modes 58

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

P

particle-based collision filtering
enabling 74
particle drains 73
particles
about 67
creating 71,72
exploring 67
releasing 73
updating 72
particles with intercollision
creating 68
particles without intercollision
creating 68
particle system
creating 67
particles with intercollision 68, 69
particles without intercollision 68
properties 69
PhysX 3 program
actors, creating 22, 23
creating 20
PhysX, initializing 20, 21
scene, creating 21,22
shutting down 24
simulating 23, 24
PhysX 3 SDK
about 7
cloth 75
downloading 10
features 8,9
history 7
joints 43
license 11
material 18
shapes 19
system requisites 11
tools, downloading 10
PhysX Visual Debugger. See PVD
plane geometry 35
position, character controller 64
prismatic joint
about 44, 49, 50
code snippet for creating 49
PVD
about 9, 81

connecting, TCP/IP network used 82
connection flags 84
data, saving as file 83
downloading 82
URL, for video tutorial 82
PVD datafile
saving 83
PxBoxGeometry() function 34
PxCapsuleGeometry () function 34
PxClothFabricCreate() function 75
PxClothFlag::eSCENE_COLLISION flag 77
PxClothMeshDesc 75
PxCloth::setSelfCollisionDistance()
functio 79
PxCloth::setSelfCollisionStiffness()
function 80
PxCloth::setSeparationConstraints()
function 79
PxCloth:setSolverFrequency() function 77
PxControllerDesc::contactOffset
function 65
PxControllerDesc::SlopeLimit() function 66
PxControllerDesc::stepOffset() function 66
PxController::getContactOffset()
function 65
PxController::getPosition() function 64
PxController::move() function 63
PxController::upDirection() function 66
PxCreateDynamic() function 23
PxCreatePhysics() function 21
PxD6Axis parameter 51
PxD6Joint class 44
PxD6Motion parameter 51
PxDefaultSimulationFilterShader class 38
PxDistanceJoint class 44
PxFixedJoint class 44
PxFixedJointCreate() function 45
PxFoundation object 21
PxGeometry class 33
PxJointLimitCone constructor 48
PxMaterial::createMaterial() 18
PxPhysics:createCloth() function 77
PxPhysics::createFluid() function 68
PxPhysics::createParticleSystem()
function 68
PxPhysics ::createScene() 21
PxPlaneGeometry() function 35

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

PxPrismaticJoint class 44
PxRevoluteJoint class 44
PxRigidActor::createShape() 19
PxRigidBody::addForce() 29
PxRigidBodyExt::addForceAtLocalPos() 29
PxRigidBodyExt::addForceAtPos() 29
PxRigidBodyExt::addLocalForceAtLocalP
os() 29
PxRigidBodyExt::addLocalForceAtPos() 29
PxRigidBodyExt:: updateMass AndInertia()
28
PxRigidBody::getMass() 27
PxRigidBody::setAngularVelocity() 28
PxRigidBody::setLinearVelocity() 28
PxRigidBody::setMass() 27
PxRigidDynamicFlag::eKINEMATIC flag
31
PxRigidDynamic::isSleeping() 31
PxRigidDynamic::putToSleep() 31
PxRigidDynamic::release() method 24
PxRigidDynamic::setAngularDamping() 30
PxRigidDynamic::setKinematicTarget() 31
PxRigidDynamic::setLinearDamping() 30
PxRigidDynamic:wakeUp() 31
PxScene:fetchResults() 23
PxScene:raycast() function 53
PxScene::setGravity() method 28
PxScene::setInterCollisionDistance()
function 80
PxScene::setInterCollisionStiffness()
function 80
PxScene:simulate() 23
PxScene:sweep() function 55
PxShapeFlag::eSIMULATION_SHAPE
flag 35
PxShapeFlag::eTRIGGER_SHAPE
flag 35
PxSimulationEventCallback class 35, 36
PxSimulationEventCallback::onContact()
function 37
PxSimulationEventCallback::onTrigger()
callback function 36
PxSphereGeometry() function 34
PxSphericalJoint class 44
PxTriggerPair class 36

R

raycast() function
example 54
using 54, 55
raycasting
about 53
modes 53
raycast queries 53
releaseParticles() function 73
revolute joint
about 44, 46
code snippet, for creating 46
rigid body 27
rigid body dynamics
damping 30
density 28
force 28
gravity 28
kinematic actors 31
mass 27
sleeping state 31
solver accuracy 32
torque 28
velocity 28

S

scene

creating 21
scene queries

about 53

overlap queries 58

raycast queries 53

sweep queries 55
setKinematicTarget() function 31
SetLimitCone() function 48
setLimit() function 46 50
setMaxDistance() function 49
setMinDistance() function 49
setMotion() function 51
setPrismaticJointFlag() 50
setRevoluteJointFlag() 46
setSphericalJointFlag() 48
shapes 19

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

shapes, character controller

about 64

box shape 64

capsule shape 65
simulation events

about 36

contact event 37

trigger event 36
size, character controller

updating 65
sleeping state 31
slope limit, character controller 66
sphere geometry 34
spherical joint

about 44,47

code snippet, for creating 47, 48
Sweep-and-prune (SAP) 40
sweep() function

about 55

example 56

using 56, 57
sweep queries

about 55

modes 55

T

torque 28
trigger shape 35

\"

VC++ Express 2010
configuring 11-14
velocity 28

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
rusLisnined Learning Physics Modeling
with PhysX

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

Box2D for
Flash Games

Box2D for Flash Games
ISBN: 978-1-849519-62-5 Paperback: 166 pages

Create amazing and realistic physics-based Flash
games using Box2D

1. Design blockbuster physics game and
handle every kind of collision

2. Build and destroy levels piece by piece

3. Create vehicles and bring them to life
with motors

Panda3D 1.7 Game
Developer’s Cookbook

Panda3D 1.7 Game Developer's

Cookbook
ISBN: 978-1-849512-92-3 Paperback: 336 pages

Over 80 recipes for developing 3D games with
Panda3D, a full-scale 3D game engine

1. Dive into the advanced features of the
Panda3D engine

2. Take control of the renderer and use shaders
to create stunning graphics

3. Give your games a professional look using
special effects and post-processing filters

4. Extend the core engine libraries using C++

Please check www.PacktPub.com for information on our titles

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING
Build a Game with UDK
ISBN: 978-1-849695-80-0 Paperback: 156 pages

Get started with the Unreal Development Kit and
make your very first game!

1. Make games using the Unreal Development Kit

2. Design and create worlds

Build a Game 3. Learn to use powerful tools that are currently
with UDK

being used in the industry

HTML5 Game Development with

GameMaker
ISBN: 978-1-849694-10-0 Paperback: 364 pages

Experience a captivating journey that will take you
from creating a full-on shoot 'em up to your first
social web browser game

1. Build browser-based games and share them

HTML5 Game Development with the world

with GameMaker
2. Master the GameMaker Language with easy to

follow examples

3. Every game comes with original art and audio,
including additional assets to build upon each
lesson.

Please check www.PacktPub.com for information on our titles

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with PhysX 3 SDK
	Brief history
	PhysX features
	New in PhysX 3

	Downloading PhysX SDK and tools
	The PhysX SDK license
	System requirements for PhysX

	Configuring with VC++ Express 2010
	Summary

	Chapter 2: Basic Concepts
	Scene and Actors
	Materials
	Shapes
	Creating the first PhysX 3 program
	Initializing PhysX
	Creating scene
	Creating actors

	Simulating PhysX
	Shutting down PhysX
	Summary

	Chapter 3: Rigid Body Dynamics
	Exploring a rigid body
	Mass
	Density
	Gravity
	Velocity
	Force and Torque
	Damping
	Kinematic actors
	Sleeping state
	Solver accuracy

	Summary

	Chapter 4: Collision Detection
	Collision shapes
	Geometry
	Sphere
	Box
	Capsule
	Plane

	Trigger shapes
	Simulation event
	Trigger event
	Contact event

	Filter shader
	Broad-Phase collision detection
	Sweep-and-prune (SAP)
	Multi box pruning (MBP)

	Narrow-Phase collision detection
	Continuous collision detection
	Summary

	Chapter 5: Joints
	Joints in PhysX
	Fixed joints
	Revolute joints
	Spherical joints
	Distance joints
	Prismatic joints
	D6 joints

	Summary

	Chapter 6: Scene Queries
	Raycast queries
	Sweep queries
	Overlap queries
	Summary

	Chapter 7: Character Controller
	Character controller basics
	The need of a character controller
	Creating a character controller
	Moving a character controller
	Useful methods and properties
	Position update
	Shapes of a character controller
	Size update
	Auto-stepping
	Slope limit

	Summary

	Chapter 8: Particles
	Exploring particles
	Creating a particle system
	Particles without intercollision
	Particles with intercollision

	Particle system properties
	Creating particles
	Updating particles
	Releasing particles
	Particle drains
	Collision filtering
	Summary

	Chapter 9: Cloth
	Exploring a cloth
	Creating a cloth fabric
	Creating a cloth
	Tweaking the cloth properties
	Cloth collision
	Cloth particle motion constraint
	Cloth particle separation constraint
	Cloth self-collision
	Cloth intercollision
	Cloth GPU acceleration

	Summary

	Chapter 10: PhysX Visual Debugger (PVD)
	PhysX Visual Debugger (PVD) basics
	Connecting PVD using a network
	Saving PVD data as a file
	Connection flags
	Summary

	Index

