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Fundamental Equations

2.1 INTRODUCTION

The basic equations of fluid mechanics are derived by considering conservation
statements (i.e., of mass, momentum, energy, etc.) applied to a finite volume
of fluid continuum which is called a system or material volume and consists
of a collection of infinitesimal fluid particles. Quantities involving space and
time only are associated with the kinematics of the fluid particles. Examples
of variables related to the kinematics of the fluid particles are displacement,
velocity, acceleration, rate of strain, and rotation. Such variables represent
the motion of the fluid particles, in response to applied forces. All variables
connected with these forces involve space, time, and mass dimensions. These
are related to the dynamics of the fluid particles.

In the following sections of this chapter we provide information
concerning the basic representation of kinematic and dynamic variables and
concepts associated with fluid particles and fluid systems.

2.2 FLUID VELOCITY, PATHLINES, STREAMLINES, AND
STREAKLINES

A pathline represents the trajectory of a fluid particle. At a time of reference
t0, consider a fluid particle to be at position Er0. In Cartesian coordinates this
location is represented by (x0, y0, z0). Due to its motion, the fluid particle is
at position Er at time t, and this new position is represented by coordinates (x,
y, z). The functional representation of the pathline is given by

Er D Er�Er0, t� or Ex D Ex�Ex0, t� �2.2.1�

The vector Er0 (or Ex0) represents the label of the particular fluid particle. The
concept of pathline is a basic feature of the Lagrangian approach, which is
explained in greater detail in Sec. 2.4.
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As an example of the pathline concept, consider the following description
of pathlines in a two-dimensional flow field:

x D x0 e
�at y D y0 e

at �2.2.2�

It is possible to eliminate t from these expressions and obtain an equation
describing the shape of the pathline in the x–y plane, as

xy D x0y0 �2.2.3�

This expression shows that pathlines are hyperbolas whose asymptotes are the
coordinate axes.

By differentiating the equation of the pathline with regard to time we
obtain the Lagrangian expressions for the velocity components. By further
differentiating the latter expressions with regard to time, we obtain the
Lagrangian expressions for the acceleration components:

EV D EV�Er0, t� D ∂Er
∂t

Ea D a�Er0, t� D ∂2Er
∂t2

�2.2.4�

For the example pathlines of Eq. (2.2.2), the Lagrangian velocity components
are

u�x0, y0, t� D �ax0 e
�at v�x0, y0, t� D ay0 e

at �2.2.5�

By eliminating x0 and y0 from Eq. (2.2.5), we obtain the Eulerian presentation
(which will be discussed hereinafter) of the velocity components,

u�x, y, t� D �ax v�x, y, t� D ay �2.2.6�

The Eulerian presentation is the most common way of describing a flow field,
where a spatial distribution of velocity values is given (note that velocities
do not depend on an initial position in this presentation). It should be further
noted that the pathline equation given by Eq. (2.2.2) can be obtained by direct
integration of Eq. (2.2.5) or integration of Eq. (2.2.6), while considering that
x D x�x0, y0, t�; y D y�x0, y0, t�.

By differentiation of Eq. (2.2.5) with regard to time, we obtain the
Lagrangian presentation of the acceleration component,

ax�x0, y0, t� D a2x0 e
�at ay�x0, y0, t� D a2y0 e

at �2.2.7�

Again, by eliminating x0 and y0 from Eq. (2.2.7), the Eulerian presentation of
the acceleration components is

ax�x, y, t� D a2x ay�x, y, t� D a2y �2.2.8�

Flow fields are often depicted using streamlines. Streamlines are curves
that are everywhere tangent to the velocity vector, as shown in Fig. 2.1. A
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Figure 2.1 Example of streamline.

streamline is associated with a particular time and may be considered as an
instantaneous “photograph” of the velocity vector directions for the entire flow
field.

As implied in Fig. 2.1 (since the streamlines are tangent to the velocity),
a streamline may be described by

EVð dEr D 0 where EV D EV�Ex, t� �2.2.9�

where
⇀
V is the velocity vector, dEr is an infinitesimal element along the

streamline, and Ex is the coordinate vector. In a Cartesian coordinate system,
Eq. (2.2.9) yields

dx

u
D dy

v
D dz

w
�2.2.10�

where u, v, and w are the velocity components in the x, y, and z directions,
respectively.

According to Eq. (2.2.10), the shape of the streamlines is constant if
the velocity vector can be expressed as a product of a spatial function and a
temporal function. Such a case is represented by either one of the following
conditions:

EV�Ex, t� D EU�Ex�f�t�
EV

j EVj 6D f�t� �2.2.11�

If EV is solely a spatial function [i.e., f�t� is a constant], then the flow field is
subject to steady state conditions and the shape of the streamlines is identical
to that of the pathlines. As an example, consider the velocity vector represented
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Figure 2.2 Four pathlines and a streakline at a chimney.

by Eq. (2.2.6). The differential equation of the streamlines is

� dx

x
D dy

y
�2.2.12�

Direct integration of this equation yields

xy D C �2.2.13�

where C is a constant of the particular streamline. Since Eq. (2.2.6) refers to
steady state conditions, the shape of the streamlines represented by Eq. (2.2.13)
is identical to that of the pathlines, which is given by Eq. (2.2.3).

A streakline is defined as a line connecting a series of fluid particles
with their point source. An example of pathlines and a streakline that might
be produced by smoke particles is presented in Fig. 2.2. In this figure the
pathlines are enumerated. Pathline (1) refers to the first particle that left the
chimney outlet. Pathline (2) refers to the second particle, etc.

2.3 RATE OF STRAIN, VORTICITY, AND CIRCULATION

In this section we discuss variables characterizing the kinematics of the flow
field, which are associated with the velocity vector distribution in the domain.
All such variables originate from the Eulerian presentation of the velocity
vector.

In Fig. 2.3 are described two points in a flow field, A and B. The rates
of change of the coordinate intervals between these points are represented by
the following expressions given in Cartesian indicial format:

d

dt
�xi� D ui D ∂ui

∂xj
dxj �2.3.1�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.3 Rate of change of distance between two points.

Applying this expression, we obtain a second-order tensor that describes the
rate of change of the coordinate intervals per unit length. This second-order
tensor can be separated into symmetric and asymmetric tensors,

∂ui
∂xj

D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
C 1

2

(
∂ui
∂xj

� ∂uj
∂xi

)
�2.3.2�

The first tensor on the right-hand side of Eq. (2.3.2) is the symmetric tensor,
called the rate of strain tensor. The second tensor is the asymmetric one, called
the vorticity tensor. Each of these tensors has a distinct physical meaning, as
described below.

The rate of strain tensor is represented by

eij D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
�2.3.3�

In Fig. 2.4 the rate of elongation of an elementary fluid volume in a two-
dimensional flow field is illustrated. The rate of elongation per unit length of
that elementary volume in the xi direction is called the linear or normal strain
rate. It is represented by

u1 Cu1 � u1

x1
D �∂u1/∂x1�x1

x1
D ∂u1

∂x1
�2.3.4�
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Figure 2.4 Elongation of an elementary fluid volume.

This expression gives the component e11 of the strain rate tensor. The compo-
nents e22 and e33 represent the linear strain in the x2 and x3 directions. They
are given, respectively, by

e22 D ∂u2

∂x2
e33 D ∂u3

∂x3
�2.3.5�

Thus it is seen that diagonal components of the rate of strain tensor describe
the linear rate of strain. The volumetric strain rate of an elementary volume
is given by the trace of the strain rate tensor, i.e., the sum of the diagonal
components, since

1

x1y1z1

d

dt
�x1y1z1�

D 1

x1

d

dt
�x1�C 1

x2

d

dt
�x2�C 1

x3

d

dt
�x3�

D ∂u1

∂x1
C ∂u2

∂x2
C ∂u3

∂x3
D e11 C e22 C e33 �2.3.6�

With regard to components of the rate of strain tensor that are not on
the diagonal, we consider in Fig. 2.5 the rate of change of the angle of the
elementary rectangle, which is called the shear strain rate. The expression for
the shear strain rate is

u1 Cu1 � u1

x2
C u2 Cu2 � u2

x1

D �∂u1/∂x2�x2

x2
C �∂u2/∂x1�x1

x1
D ∂u1

∂x2
C ∂u2

∂x1
�2.3.7�
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Figure 2.5 Elementary fluid volume subject to shear strain.

This expression is proportional to e12, where

e12 D 1

2

(
∂u1

∂x2
C ∂u2

∂x1

)
�2.3.8�

Components of the strain rate tensor that are off the main diagonal thus represent
deformation of shape. They are equal to half of the corresponding shear rate.

The vorticity tensor is an asymmetric tensor given in Cartesian coordi-
nates by

ωij D
(
∂ui
∂xj

� ∂uj
∂xi

)
�2.3.9�

By considering Fig. 2.5, it is possible to visualize the physical meaning
of the vorticity tensor. In this figure the velocity components that lead to
rotation of an elementary fluid volume in a two-dimensional flow field are
shown. The average angular velocity of that volume in the counterclockwise
direction is given by

1

2

(
u2 Cu2 � u2

x1
� u1 Cu1 � u1

x2

)

D 1

2

(
�∂u2/∂x1�x1

x1
� �∂u1/∂x2�x2

x2

)

D 1

2

(
∂u2

∂x1
� ∂u1

∂x2

)
D ω21 D �ω12 �2.3.10�
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This expression indicates that the vorticity tensor is associated with rotation
of the fluid particles.

In general, a second-order asymmetric tensor has three pairs of nonzero
components. Each pair of components has identical magnitudes but opposite
signs. Such a tensor also can be represented by a vector that has three compo-
nents. Components of the vorticity tensor are proportional to components of
the vorticity vector, which is the curl of the velocity vector,

Eω D r ð EV or ωi D εijk
∂uk
∂xj

�2.3.11�

According to this expression, components of the vorticity vector are given by

ω1 D ∂u3

∂x2
� ∂u2

∂x3
ω2 D ∂u1

∂x3
� ∂u3

∂x1
ω3 D ∂u2

∂x1
� ∂u1

∂x2
�2.3.12�

Irrotational flow is a flow in which all components of the vorticity vector are
equal to zero. In such a flow the velocity vector originates from a potential
function, namely

EV D r or ui D ∂

∂xi
�2.3.13�

Potential flows are discussed in greater detail in Chap. 4.
The circulation is defined as the line integral of the tangential component

of velocity. It is given by

 D
∮
c

EV Ð dEs or  D
∮
c
ui dsi �2.3.14�

By applying the Stokes theorem, the line integral of Eq. (2.3.14) is converted
to an area integral,∮

c

EV Ð dEs D
∫
A
�r ð EV� Ð dEA or

∮
c
ui dsi D

∫
A
εijk

∂uk
∂xj

dAi �2.3.15�

This form of the equation is sometimes more useful.

2.4 LAGRANGIAN AND EULERIAN APPROACHES

2.4.1 General Presentation of the Approaches

Some basic concepts of the Lagrangian and Eulerian approaches have already
been represented in the previous section. In the present section we expand
on those concepts and describe some derivations of the basic conceptual
approaches.
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In the Lagrangian approach interest is directed at fluid particles and
changes of properties of those particles. The Eulerian approach refers to spatial
and temporal distributions of properties in the domain occupied by the fluid.
Whereas the Lagrangian approach represents properties of individual fluid
particles according to their initial location and time, the Eulerian approach
represents the distribution of such properties in the domain with no reference
to the history of the fluid particles. The concept of pathlines originates from
the Lagrangian approach, while the concept of streamlines is associated with
the Eulerian approach.

Every property F of an individual fluid particle can be represented in
the Lagrangian approach by

F D F�Ex0, t� �2.4.1�

where Ex0 is the location of the fluid particle at time t0 and t is the time. The
property F, according to the Eulerian approach, is distributed in the domain
occupied by the fluid. Therefore its functional presentation is given by

F D F�Ex, t� �2.4.2�

where Ex and t are the spatial coordinates and time, respectively.
According to the Lagrangian approach, the rate of change of the property

F of the fluid particle is given by

∂F�Ex0, t�

∂t
�2.4.3�

Therefore the velocity and acceleration of the fluid particle are given by

ui�Ex0, t� D ∂xi�Ex0, t�

∂t
ai�Ex0, t� D ∂ui�Ex0, t�

∂t
D ∂2xi�Ex0, t�

∂t2
�2.4.4�

For example, consider the flow field defined by the pathlines given in
Eq. (2.2.2). The Lagrangian velocity components are given by Eq. (2.2.5),
and the Lagrangian acceleration components are given by Eq. (2.2.7).

The rate of change of the property F of the fluid particles, according
to the Eulerian approach, can be expressed through use of the material or
absolute derivative. This derivative expresses the rate of change of the property
F by an observer moving with the fluid particle. The expression of the material
derivative is given by

DF[Ex�t�, t]
Dt

D ∂F

∂t
C �rF�dEx

dt
D ∂F

∂t
C ∂F

∂xi

dxi
dt

�2.4.5�
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Therefore the velocity and acceleration distributions in the flow field, according
to the Eulerian approach, are given, respectively, by

EV D dEx
dt

Ea D ∂ EV
∂t

C EV Ð rEV

or ui D dxi
dt

ai D ∂ui
∂t

C uk
∂ui
∂xk

�2.4.6�

As an example, consider the Eulerian velocity distribution given by Eq. (2.2.6).
By introducing the expressions of Eq. (2.2.6) into Eq. (2.4.6) we obtain the
Eulerian acceleration distribution given by Eq. (2.2.8).

2.4.2 System and Control Volume

The previous paragraphs refer to individual fluid particles and their properties.
Presently we will refer to aggregates of fluid particles comprising a finite fluid
volume. A finite volume of fluid incorporating a constant quantity of fluid
particles (or matter) is called a system or material volume. A system may
change shape, position, thermal condition, etc., but it always incorporates the
same matter. In contrast, a control volume is an arbitrary volume designated
in space. A control volume may possess a variable shape, but in most cases it
is convenient to consider control volumes of constant shape. Therefore fluid
particles may pass into or out of the fixed control volume across its surface.

Figure 2.6 shows an arbitrary flow field. Several streamlines describing
the flow direction at time t are depicted. The figure shows a system at time
t. A control volume (CV) identical to the system at time t also is shown. At
time t Ct the system has a shape different from its shape at time t, but the
control volume has its original fixed shape from time t. We may identify three
partial volumes, as indicated by Fig. 2.6: volume I represents the portion of the
control volume evacuated by particles of the system during the time interval
t; volume II is the portion of the control volume occupied by particles of
the system at time t Ct; volume III is the space to which particles of the
system have moved during the time interval t. Particles of the system also
convey properties of the flow. In the following paragraphs we consider the
presentation of the rate of change of an arbitrary property � in the system by
reference to a control volume.

2.4.3 Reynolds Transport Theorem

The Reynolds transport theorem represents the use of a control volume to
calculate the rate of change of a property of a material volume. The rate of
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Figure 2.6 System (material volume) and control volume.

change of a property, �, of a material volume is represented by

D

Dt

∫
M.V.

� dU �2.4.7�

where M.V. represents material volume and dU is an elementary volume
element. In Fig. 2.6, the integral of Eq. (2.4.7) incorporates two parts. One part
consists of the control volume, CV, namely volume I and the material volume
of Fig. 2.6, and the second part incorporates volumes I and III. An elementary
volume U of volumes I and III, as shown in Fig. 2.6, is represented by
U D � EV Ð Ends�t, where En is a unit vector normal to the surface of the
control volume (by convention, the direction of this vector is outward of the
control volume) and ds is an elementary surface element. Summation of all
elementary volumes U leads to a surface integral, which is taken over the
surface of the control volume, also known as the control surface (S). Therefore
the rate of change of the material volume property, �, which is expressed by
Eq. (2.4.7), can be given, by reference to the control volume, as

D

Dt

∫
M.V.

� dU D ∂

∂t

∫
U
� dUC

∫
S
�� EV Ð En� ds �2.4.8�

where U is the volume of the control volume. If a fixed control volume is
considered, then the partial derivative of the first term of the RHS of Eq. (2.4.8)
can be moved inside the volume integral of that expression. It should be noted
that the property � can be a scalar as well as a vector quantity. This is illustrated
in the following sections.
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2.5 CONSERVATION OF MASS

2.5.1 The Finite Control Volume Approach

By definition, the total mass of a material volume or system is constant.
Therefore,

D

Dt

∫
M.V.

� dU D 0 �2.5.1�

Comparison of this expression with Eq. (2.4.7) indicates that the property � of
Eq. (2.4.7) was replaced by the density � in Eq. (2.4.8). We may, therefore,
apply the transport theorem of Reynolds, namely Eq. (2.4.8), to obtain

∂

∂t

∫
U
� dUC

∫
S
�� EV Ð En� ds D 0 or

∂

∂t

∫
U
� dUC

∫
S
��uini� ds D 0

�2.5.2�

Here, the first term represents the rate of change of mass included in the control
volume. The second term represents the mass flux flowing through the surface
of the control volume. Equation (2.5.2) represents the integral expression for
the conservation of mass.

If we refer to a fixed control volume, and the density � of the fluid is
constant, then the first term of Eq. (2.5.2) vanishes, and∫

S
� EV Ð En�ds D 0 or

∫
S
uini ds D 0 �2.5.3�

This equation represents the integral expression for continuity. It indicates that
if the fluid density is constant, then the total mass flux entering the control
volume is identical to the total mass flux flowing out of the control volume
(for a fixed volume). When applied to a control volume of a stream tube, as
shown in Fig. 2.7, Eq. (2.5.3) leads to

⇀
V Ð EnA D const �2.5.4�

2.5.2 The Differential Approach

Consider again a fixed control volume. We transform the surface integral of the
second term on the RHS of Eq. (2.5.2) to a volume integral by the divergence
theorem and obtain∫

U

[
∂�

∂t
C r Ð ��⇀V�

]
dU D 0 �2.5.5�
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Figure 2.7 The integral continuity expression for a stream tube.

If the control volume is an arbitrarily small elementary volume, then
Eq. (2.5.5) yields

∂�

∂t
C r Ð �� EV� D 0 or

∂�

∂t
C ∂��ui�

∂xi
D 0 or

D�

Dt
C ��r Ð ⇀V� D 0

�2.5.6�

This expression represents the differential equation of mass conservation. If
the density of the fluid is fixed (i.e., D�/Dt D 0), then the flow is called
incompressible flow, and Eq. (2.5.6) gives

r Ð EV D 0 or
∂ui
∂xi

D 0 �2.5.7�

This expression represents the differential continuity equation.

2.5.3 The Stream Function

If the flow field is two dimensional, and a Cartesian coordinate system is
assumed, then Eq. (2.5.7) implies

∂u

∂x
C ∂v

∂y
D 0 �2.5.8�

Then a stream function  may be defined that satisfies Eq. (2.5.8),

u D ∂

∂y
v D ∂

∂x
�2.5.9�
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Then, introducing Eq. (2.5.9) into Eq. (2.2.10), it is seen that streamlines are
defined by

∂

∂x
dx C ∂

∂y
dy D 0 �2.5.10�

This expression indicates that the differential of the stream function vanishes
on the streamlines. Therefore the stream function has a constant value on a
streamline, and the value of the stream function can be used for the identifi-
cation of particular streamlines in the flow field.

Figure 2.8 shows two streamlines, which are identified by A and B.
The discharge per unit width flowing through the stream tube bounded by the
streamlines A and B is given by

q D
∫ B

A
�u dy � vdx� D

∫ B

A

(
∂

∂y
dy C ∂

∂x
dx

)

D
∫ B

A
d D B �A �2.5.11�

Figure 2.8 Illustration of volumetric flux between two streamlines.
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Thus the difference between values of the stream function for two streamlines
represents the discharge flowing between those streamlines.

If the flow field is represented by a cylindrical coordinate system, then
the employment of the covariant derivative and the relevant scale yield the
following expression for the differential continuity equation:

r Ð EV D ∂ur
∂r

C ur
r

C 1

r

∂v�
∂�

C ∂wz
∂z

D 1

r

∂�rur�

∂r
C 1

r

∂v�
∂�

C 1

r

∂�rwz�

∂z
D 0 �2.5.12�

where ur , v� , and wz are physical components of the velocity vector in the r,
�, and z directions, respectively. We may use the concept of stream function
in cylindrical coordinates for two types of flow field. One type is a two-
dimensional flow field expressed by reference to coordinates r and �. The
other type is an axisymmetric flow field expressed by coordinates r and z.

In the case of two-dimensional flow, there is no flow in the z-direction,
and velocity components do not depend on the z coordinate. Therefore the
term referring to z and wz of Eq. (2.5.12) vanishes, and the expressions for ur
and v� are given by the stream function as

ur D 1

r

∂

∂�
v� D �∂

∂r
�2.5.13�

In cases of axisymmetric flow, there is no flow in the �-direction, and velocity
components do not depend on the � coordinate. Then the presentation of ur
and wz by the stream function is given as

ur D 1

r

∂

∂z
wz D �1

r

∂

∂r
�2.5.14�

Note that the stream function of Eq. (2.5.13) has dimensions of discharge per
unit width, whereas the stream function of Eq. (2.5.14) has dimensions of
volumetric discharge.

2.5.4 Stratified Flow

In cases of stratified flow, where the density field is not constant, the differ-
ential equation of mass conservation, namely Eq. (2.5.6), is still

∂�

∂t
C EV Ð r� C �r Ð EV D 0 or

∂�

∂t
C ui

∂�

∂xi
C �

∂ui
∂xi

D 0 �2.5.15�
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(Recall that there were no constraints placed on density in deriving the mass
conservation expression.) In particular, consider the second of these expres-
sions, which is rewritten as

D�

Dt
C �r Ð EV D 0 or

D�

Dt
C �

∂ui
∂xi

D 0 �2.5.16�

This expression indicates that incompressible flow is identified by the
vanishing material derivative of the density. In other words, density is constant,
following a fluid particle. In cases of steady stratified flow, the temporal
derivative of the density is zero. If the flow is also incompressible, namely
r Ð EV D 0 [Eq. (2.5.7)], then according to Eq. (2.5.15), the velocity vector is
perpendicular to the density gradient.

In cases of steady two-dimensional flow, Eq. (2.5.6) yields

∂��u�

∂x
C ∂��v�

∂y
D 0 �2.5.17�

This equation can be identically satisfied by a stream function defined by

�u D ∂

∂y
�v D �∂

∂x
�2.5.18�

This stream function has dimensions of mass flux per unit width.

2.6 CONSERVATION OF MOMENTUM

The property � EV represents the momentum of a unit volume of the fluid. The
rate of change of momentum of a fluid material volume is equal to the sum of
forces acting on that material volume. Using the Reynolds transport theorem,
Eq. (2.4.8) applied to � EV yields

∂

∂t

∫
U
� EVdUC

∫
S
� EV� EV Ð En� ds

D
∫
U
�Eg dU C

∫
S

QS Ð EndsC EFs �2.6.1a�

or
∂

∂t

∫
U
�ui dUC

∫
S
�ui�uknk� ds

D
∫
U
�gi dUC

∫
S
Siknk dsC Fsi �2.6.1b�

where QS is the stress tensor, which refers to forces acting on the fluid surface
of the control volume, and EFs represents forces acting on solid surfaces
comprising portions of the surface of the control volume.

The first RHS term of Eq. (2.6.1) represents body forces originating
from gravity. The gravitational acceleration vector, Eg, is equal to the gravity,
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Figure 2.9 Components of the stress tensor acting on a small rectangle.

g, multiplied by a unit vector in the negative direction of the normal to the
earth’s surface. The second RHS term represents surface forces.

The stress tensor at each point of the surface of the control volume
can be completely defined by the nine components of the stress tensor, QS.
Figure 2.9 shows an infinitesimal rectangular parallelepiped with faces having
normal unit vectors parallel to the coordinate axes. The force per unit area
acting on each face of the parallelepiped is divided into a normal component
and two shear components (shear stresses) that are perpendicular to the normal
component. Figure 2.9 exemplifies the decomposition of the force per unit area
over four different faces. Directions of the stress tensor components shown
in Fig. 2.9 are considered positive, by convention. The first subscript of the
stress component represents the direction of the normal of the particular face
on which the stress acts. The second subscript represents the direction of the
component of the stress.

In Fig. 2.10 are shown components of the shear stress creating torque,
which may lead to rotation of the elementary rectangle around its center of
gravity, G. The total torque is expressed by

Torque D
(
S12 C 1

2

∂S12

∂x1
dx1

)
dx2

dx1

2
C

(
S12 � 1

2

∂S12

∂x1
dx1

)
dx2

dx1

2

�
(
S21 C 1

2

∂S21

∂x2
dx2

)
dx1

dx2

2
�

(
S21 � 1

2

∂S21

∂x2
dx2

)
dx1

dx2

2
�2.6.2�
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Figure 2.10 Torque applied on an elementary rectangle of fluid.

Also the total torque is equal to the moment of inertia multiplied by the angular
acceleration. Therefore, Eq. (2.6.2) yields

�S12 � S21� dx1 dx2 D �

12
dx1 dx2

[
�dx1�

2 C �dx2�
2]˛ �2.6.3�

where ˛ is the angular acceleration.
Upon dividing Eq. (2.6.3) by the area of the elementary rectangle and

allowing dx1 and dx2 to approach zero, the RHS of Eq. (2.6.3) vanishes. This
result indicates that the stress tensor is a symmetric tensor, namely

Sij D Sji �2.6.4�

The stress tensor can be decomposed into two tensors, as

QS D �pQIC Q� or Sij D �pυij C �ij �2.6.5�

where QI is a unit matrix, which also can be represented by υij, p is the pressure,
and Q� is the deviator stress tensor, related to shear stresses (see below).

The first term on the RHS of Eq. (2.6.5) is an isotropic tensor, namely a
tensor that has components only on its diagonal, and all diagonal components
are identical, provided that we apply a Cartesian coordinate system. Compo-
nents of the isotropic tensor are not modified by rotation of the coordinate
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system. The pressure, p, is equal to the negative one-third of the trace of the
stress tensor,

p D �1

3
�S11 C S22 C S33� �2.6.6�

where the trace of a tensor is defined as the sum of its diagonal components.
Note that the trace of the deviator stress tensor is zero. Positive normal stress
means tension. However, fluids can only resist and convey negative normal
stresses. The definition of Eq. (2.6.6) yields a positive value for the pressure.

Incorporating the definitions and expressions developed in the preceding
paragraphs, Eq. (2.6.1) is rewritten to express conservation of momentum in
a fluid material volume:

∂

∂t

∫
U
�ui dU C

∫
s
�ui�uknk� ds

D �
∫
s
pni dsC

∫
s
�iknk ds�

∫
U
�gki dUC FSi �2.6.7�

where ki represents the component of a unit vector perpendicular to the earth,
directed toward the atmosphere. For a fixed control volume, the derivative of
the first term on the LHS of Eq. (2.6.7) can be moved into the integral of that
term.

When Eq. (2.6.7) is applied to an elementary volume of fluid, the last
term vanishes since there are no solid surfaces. Then, using the divergence
theorem to convert surface integrals to volume integrals, we have∫

U

[
∂��ui�

∂t
C ∂��uiuk�

∂xk
C ∂p

∂xi
� ∂�ik
∂xk

C �gki

]
D 0 �2.6.8�

By introducing the conservation of mass, expressed by Eq. (2.5.6), into
Eq. (2.6.8), and considering that U is small but different from zero,

�

[
∂ui
∂t

C uk
∂ui
∂xk

]
D � ∂p

∂xi
C ∂�ik
∂xk

� �gki �2.6.9a�

or �

[
∂ EV
∂t

C � EV Ð r�EV
]

D �r�pC �gZ�C r Ð Q� �2.6.9b�

where Z is the elevation with regard to an arbitrary level of reference.
Equation (2.6.9) is the equation of motion, or the differential equation of
conservation of momentum.

The Bernoulli equation can be derived by direct integration of
Eq. (2.6.9). First, note that the nonlinear term of the LHS of Eq. (2.6.9) can
be expressed as

� EV Ð r�EV D rV
2

2
� EVð �r ð EV� �2.6.10�
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If the velocity vector is derived from a potential function, then shear stresses
also are negligible, and r ð EV D 0. Therefore, in such a case Eqs. (2.6.9) and
(2.6.10) yield

�

[
∂

∂t
�r�C rV

2

2

]
D �r�pC �gZ� �2.6.11�

where  is the potential function, defined in Eq. (2.3.13). For steady state
cases, direct integration of Eq. (2.6.11) and division by the specific weight of
the fluid yield

V2

2g
C p

�
C Z D const �2.6.12�

where � D �g is the specific weight of the fluid. This is called the Bernoulli
equation. The sum of the terms on the LHS of this equation is called the
total head, which incorporates the velocity head, the pressure head, and the
elevation (or elevation head). The sum of pressure head and elevation is called
the piezometric head. According to Eq. (2.6.12) the total head is constant in
a domain of steady potential flow.

In cases of steady flow with negligible effect of the shear stresses,
consider a natural coordinate system that incorporates a coordinate, s, tangen-
tial to the streamline, and a coordinate, n, perpendicular to the streamline. The
velocity vector has only a component tangential to the streamline. Therefore,
Eq. (2.6.9) yields for the tangential direction,

�

[
V
∂V

∂s

]
D � ∂

∂s
�pC �gZ� �2.6.13�

Direct integration of this expression indicates that the total head is constant
along the streamline even if the flow is nonpotential flow, provided that the
effect of shear stresses is negligible.

A moving coordinate system is sometimes applied to calculate
momentum conservation. All basic equations applicable to a stationary
coordinate system also can be applied to cases in which the coordinate system
moves with a constant velocity. It should be noted that the Bernoulli equation,
represented by Eq. (2.6.12), is applicable only in cases of steady state. The
application of a moving coordinate system may sometimes enable use of
Bernoulli’s equation in cases of unsteady state conditions.

A noninertial coordinate system is one that is subject to acceleration.
All momentum quantities in the conservation of momentum equation must be
written with respect to an inertial coordinate system. If a noninertial system
is used, then the acceleration measured by a fixed observer, EaF.O., is given by

EaF.O. D EaM.O. C Eat C 2Eω ð EVM.O C dEω
dt

ð ErM.O. C Eω ð �Eω ð ErM.O.� �2.6.14�
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where subscript F.O. refers to a fixed observer, M.O. refers to an observer
moving with the coordinate system, at is the translational acceleration of the
moving coordinate system, ω is the angular velocity of the moving coordinate
system, VM.O. is the velocity of the fluid particle measured by the moving
observer, and rM.O. is the position of the fluid particle measured by the moving
observer. The momentum conservation Eq. (2.6.7) can be applied, with minor
modification, to cases in which noninertial coordinate systems are used. In
such cases, the integral equation of momentum conservation is given by

∂

∂t

∫
U
� EVdU C

∫
s
� EV� EV Ð En� ds

D �
∫
s
pEndsC

∫
s
E� Ð Ends�

∫
U
�gEk dUC EFs

�
∫
U

[
Eat C 2Eω ð EVC dEω

dt
ð Er C Eω ð �Eω ð Er�

]
� dU �2.6.15�

The following section provides further discussion of coordinate systems
subject to rotational velocity originating from the earth’s rotation. This is also
described in further detail, using a dimensional scaling approach, in Sec. 2.9.3.

2.7 THE EQUATIONS OF MOTION AND CONSTITUTIVE
EQUATIONS

In the preceding section it was shown that the equations of motion represent
the conservation of momentum in an elementary fluid volume. The general
form of the equations of motion is represented by Eq. (2.6.9), which is again
given as

�

[
∂ui
∂t

C uk
∂ui
∂xk

]
D � ∂p

∂xi
C ∂�ik
∂xk

� �gki �2.7.1a�

or �

[
∂

r
V

∂t
C �

r
V Ð r� r

V

]
D �r�pC �gZ�C r Ð Q� �2.7.1b�

Different types of fluids are identified by their constitutive equations,
which provide the relationships between the deviatoric stress tensor, �ij, and
kinematic parameters. For a Newtonian fluid the shear stress is assumed to
be proportional to the rate of strain, and the constitutive equation for such a
fluid is

�ij D �
(
pC 1

3
�
∂uk
∂xk

)
υij C 2�eij �2.7.2�
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where eij is the rate of strain tensor,

eij D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
�2.7.3�

By introducing Eq. (2.7.2) into Eq. (2.7.1), the general form of the
Navier–Stokes equations is obtained,

�
Dui
Dt

D � ∂p
∂xi

� �gki C 2�
[
∂eij
∂xj

� 1

3

∂2ui
∂xi∂xj

]

D � ∂p
∂xi

� �gki C �

[
∂2ui
∂x2
j

C 1

3

∂2ui
∂xi∂xj

]
�2.7.4�

For incompressible flow, Eq. (2.7.4) reduces to

�
D EV
Dt

D �r�pC �gZ�C �r2 EV �2.7.5a�

or �
Dui
Dt

D � ∂

∂xi
�pC �gZ�C �

∂2ui
∂x2
j

�2.7.5b�

Non-Newtonian fluids are characterized by constitutive equations different
from Eq. (2.7.2). These types of fluids are not considered here.

The equations of motion given in the preceding paragraphs are valid
in an inertial or fixed frame of reference. In comparatively small hydraulic
systems, it is possible to refer to such equations of motion, while considering
that the frame of reference, namely the earth, is stationary. In geophysical
applications the rotation of the earth must be considered.

Figure 2.11 shows two coordinate systems: coordinate system (X1, X2,
X3), which is stationary, and coordinate system (x1, x2, x3), which rotates at
angular velocity � with regard to the fixed coordinate system. Any vector
associated with the point G has three components in each of the coordi-
nate systems. As an example, the decomposition of the vector Er into three
components of the rotating coordinate system is shown. A general vector ER is
represented in the rotating coordinate system by

ER D R1Ei1 C R2Ei2 C R3Ei3 �2.7.6�

A fixed observer, F.O., observes the rate of change of the vector ER as(
dER
dt

)
F.O.

D d

dt
�R1Ei1 C R2Ei2 C R3Ei3�

D Ei1dR1

dt
C Ei2dR2

dt
C Ei3dR3

dt
C R1

dEi1
dt

C R2
dEi2
dt

C R3
dEi3
dt
�2.7.7�
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Figure 2.11 Coordinate system x1, x2, x3 rotates with angular velocity � with regard
to the stationary coordinate system X1, X2, X3.

The first three terms on the RHS represent the rate of change of the
vector, as observed by an observer, R.O., rotating with the rotating coordi-
nate system. The second group of three terms represents the rate of change
of the vector, originating from rotation of the coordinate system. Therefore
Eq. (2.7.7) can be expressed as(

dER
dt

)
F.O.

D
(
dER
dt

)
R.O.

C R1
dEi1
dt

C R2
dEi2
dt

C R3
dEi3
dt

�2.7.8�

Due to its rotation around the axis, E�, each unit vector Ei traces a cone
as shown in Fig. 2.12. The rate of change of this vector is given by∣∣∣∣∣d

Ei
dt

∣∣∣∣∣ D sin ˇ
(
d�

dt

)
D � sin ˇ �2.7.9�

The direction of the rate of change of the vector Ei is perpendicular to the plane
made by the vectors Ei and E�. Therefore

dEi
dt

D E�ð Ei �2.7.10�
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Figure 2.12 Cone of rotation of a unit vector.

The sum of the last three terms of Eq. (2.7.8) is given by

R1 E�ð Ei1 C R2 E�ð Ei2 C R3 E�ð Ei3 D E�ð ER �2.7.11�

Introducing Eq. (2.7.11) into Eq. (2.7.8), we obtain(
dER
dt

)
F.O.

D
(
dER
dt

)
R.O.

C E�ð ER �2.7.12�

This expression gives the relationship between the velocity vector measured
by the fixed and rotating observers as

EVF.O. D EVR.O. C E�ð Er �2.7.13�

Equation (2.7.12) also implies that acceleration can be expressed as(
dEVF.O.

dt

)
F.O.

D
(
dEVF.O.

dt

)
R.O.

C E�ð EVF.O. �2.7.14�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



By introducing Eq. (2.7.13) into Eq. (2.7.14), we obtain

dEVF.O.

dt
D d

dt
[ EVR.O. C E�ð Er]R.O. C E�ð � EVR.O. C E�ð Er�

D
(
dEVR.O.

dt

)
R.O.

C E�ð
(
dEr
dt

)
R.O.

C E�ð EVR.O. C E�ð � E�ð Er�
�2.7.15�

Thus the relationship between the acceleration in the two coordinate systems is

EaF.O. D EaR.O. C 2 E�ð EVR.O. C E�ð � E�ð Er� �2.7.16�

Upon introducing the vector ER, which is perpendicular to the axis of rotation
represented by the vector E� (also refer to Fig. 2.13), we find

E�ð Er D E�ð ER �2.7.17�

Also, using the vector identity,

E�ð � E�ð ER� D � E� Ð ER� E�� � E� Ð E��ER D �� E� Ð E��ER D ��2 ER �2.7.18�

Figure 2.13 Relationships between vectors r, R and the centripetal acceleration.
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with Eq. (2.7.16), we obtain

EaF.O. D EaC 2 E�ð EV��2 ER �2.7.19�

where EV and Ea are the velocity and acceleration vectors, respectively, in the
rotating coordinate system. The second term on the RHS of this last result
represents the Coriolis acceleration. The last term on the RHS of this equation
represents centripetal acceleration.

The preceding paragraphs indicate that the equations of motion for
geostrophic (or, “earth-turned”) scales should incorporate terms originating
from the rotation of earth. Introducing Eq. (2.7.17) into Eq. (2.7.5) yields

D EV
Dt

D � 1

�
r�pC �gZ�C vr2 EV2 C�2 ER� 2 E�ð EV �2.7.20�

Normally, the centrifugal acceleration term is considered as a minor adjustment
to Newtonian gravity, with the sum of these two terms referred to as effective
gravitational acceleration, Egeff,

Egeff D r��gZ�C�2 ER �2.7.21�

The relationships between the vectors E�, ER, Eg, �2 ER, and Egeff in the northern
hemisphere are shown in Fig. 2.14.

Figure 2.14 Relationships between the vectors �, R, g, �2R, and geff.
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Figure 2.15 Relationships between the vectors �, V, and -�ð V.

In Fig. 2.15 we show the relationships between the vectors E�, EV, and
� E�ð EV. This figure indicates that Coriolis force induces a deflection of
pathlines of the fluid particles to the right of their direction in the Northern
Hemisphere.

The equation of motion represented by Eq. (2.7.20) is applicable in cases
of geostrophic flows, in which the effect of the centrifugal acceleration and
Coriolis force are significant. For small-scale flows, in small hydraulic systems,
such effects are usually negligible. It is usually possible to determine the
relative importance of different terms in the equations of motion by scaling
analysis, as demonstrated in Sec. 2.9.

2.8 CONSERVATION OF ENERGY

Consider the material volume shown in Fig. 2.16. In general, this material
volume may be subject to movement and deformation. The net heat added to
the material volume during a short time period dt is dQ. During that time
interval, the material volume exerts work dW on its surroundings. According
to the first law of thermodynamics,

dE D dQ� dW �2.8.1�
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Figure 2.16 Heat Q added to a material volume and work W done by this volume.

where E is the total energy stored within the material volume. This variable
incorporates the kinetic, potential, and internal energy [see Eq. (2.8.4) below].
Note that the normal convention is used to express work as a positive quantity
when the material volume does work on its surroundings.

The variables Q and W are not point functions, whereas the variable
E is a point function distributed within the material volume. Therefore the
relationship between the rates of change of the variables given in Eq. (2.8.1)
is represented by

DE

Dt
D dQ

dt
� dW

dt
�2.8.2�

By applying the Reynolds transport theorem, written for energy, we obtain

DE

Dt
D ∂

∂t

∫
U
�e dU C

∫
S
�e� EV Ð En� dS �2.8.3�

where e is the stored energy per unit mass, given by

e D V2

2
C gz C u �2.8.4�

The first term on the RHS of this equation represents kinetic energy, the second
term represents potential energy, and the third term represents internal energy.

The workW done by the control volume on its surroundings incorporates
flow work Wf, which is associated with stresses acting at the surface of the
control volume, and shaft work, which is transferred from the control volume,
for instance by turbomachines. The rate of change of the flow work can be
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represented by

dWf

dt
D �

∫
S

QS Ð En Ð EVdS D
∫
S
p EV Ð EndS�

∫
S

Q� Ð En Ð EVdS �2.8.5�

where QS is the stress tensor, p is the pressure, and Q� is the deviator stress
tensor. It should be noted that the product Q� Ð En represents stresses normal
to the control volume surface. The velocity vector of viscous flow vanishes
at solid surfaces, and has no component perpendicular to a solid surface.
Therefore, the last term of Eq. (2.8.5) almost vanishes. The only contribution
of this term is due to diagonal components of the deviator stress tensor at
fluid surfaces subject to flow. In the following development, the last term of
Eq. (2.8.5) is neglected.

Introducing Eqs. (2.8.3)–(2.8.5) into Eq. (2.8.2), we obtain

dQ

dt
� dWs

dt
�

∫
S
p EV Ð EndS

D ∂

∂t

∫
U
�e dUC

∫
S

(
V2

2
C gz C u

)
�� EV Ð EndS� �2.8.6�

Using the divergence theorem to rewrite the last term on the LHS of
Eq. (2.8.6), an integral expression for conservation of energy is obtained as

dQ

dt
� dWs

dt
D ∂

∂t

∫
U
�e dUC

∫
S

(
V2

2
C gzC uC p

�

)
�� EV Ð EndS� �2.8.7�

Application of this equation is illustrated by considering Fig. 2.17, which
shows a control volume with two openings. The fluid enters the control volume
through one of the openings, of cross-sectional area A1, with velocity V1,
pressure p1, and temperature T1. The fluid flows out of the control volume
through the second opening, of cross-sectional area A2, with velocity V2,
pressure p2, and temperature T2.

Referring to this control volume, under steady state conditions Eq. (2.8.7)
yields

dQ

dt
� dWs

dt
D �

[
V2

1

2
C g�zc�1 C h1

]
�1V1A1

C
[
V2

2

2
C g�zc�2 C h2

]
�2V2A2 �2.8.8�

where zc is the elevation of the center of gravity of the cross-sectional area,
and h is the specific enthalpy, which is defined by

h D uC p

�
D CpT D CvTC p

�
�2.8.9�
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Figure 2.17 Energy conservation in a control volume (C.V.) with a single entrance
and a single exit.

where Cp and Cv are the specific heats for constant pressure and constant
volume, respectively.

Due to conservation of mass, �1V1A1 D �2V2A2 D dm/dt, where dm/dt
is the mass flow rate which enters and leaves the control volume of Fig. 2.17.
Dividing Eq. (2.8.8) by the mass flow rate and rearranging terms,[

V2
1

2
C g�zc�1 C h1

]
C dQ/dt

dm/dt
D
[
V2

2

2
C g�zc�2 C h2

]
C dWs/dt

dm/dt
�2.8.10�

The second term on the LHS of this equation represents the ratio between the
heat flux into the control volume and the mass flow rate through the control
volume. It also can be represented by dQ/dm, namely the net heat added to
the control volume per unit mass of flow. The last term of Eq. (2.8.10) can be
represented by dWs/dm, namely the net work done by the control volume per
unit mass of flow through the control volume. In the case of incompressible
fluid, if the control volume is insulated and does not perform work on its
surrounding, then Eq. (2.8.10) indicates[

V2
1

2
C g�zc�1 C p1

�

]
�

[
V2

2

2
C g�zc�2 C p2

�

]
D C�T2 � T1� �2.8.11�

where C is the specific heat of the incompressible fluid. For both Eq. (2.8.10)
and Eq. (2.8.11), terms within the square brackets represent the total head in
the entrance and exit cross sections, respectively.
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Equation (2.8.11) indicates that the difference in total head between cross
section 1 and cross section 2, in an insulated control volume, is represented by
a raise in temperature multiplied by the specific heat of the fluid. On the other
hand, if the control volume is kept at constant temperature, namely isothermal
conditions, then Eq. (2.8.10) yields[

V2
1

2
C g�zc�1 C p1

�

]
�

[
V2

2

2
C g�zc�2 C p2

�

]
D �dQ

dm
�2.8.12�

This expression shows that for an isothermal control volume of incompressible
fluid, the head difference between the entrance and exit represents the net
heat per unit mass of flow that is transferred from the control volume into its
surrounding. The heat transferred from the control volume into the surrounding
is created in the control volume due to friction (viscous) forces.

Equations (2.8.11) and (2.8.12) indicate that Bernoulli’s equation is
approximately satisfied if the control volume does not perform any work
on its surrounding and if heat transfer between the control volume and the
surroundings is negligible. These equations also show that the conservation of
energy with some approximation leads to Bernoulli’s equation. Section 2.9.3
extends this discussion with the basic issues of thermal energy sources and
transport in the environment.

2.9 SCALING ANALYSES FOR GOVERNING EQUATIONS

As described in Sec. 1.4, it is possible to apply dimensional reasoning to
the general governing equations in order to simplify them for most ordinary
applications. This process requires that characteristic values for various quan-
tities must be defined (characteristic scales) and that the analysis be based on
developing order-of-magnitude estimates for different terms in the equation.
For now, we define the following characteristic scales for a fluid flow problem:

L D length (for some problems both vertical and horizontal length

scales are needed)

U D velocity

p0 D pressure difference

T D time

�0 D density

�0 D density difference

�0 D temperature difference

C0 D dissolved solids concentration difference

�0 D rotation rate
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These scales will be used in the following discussion to estimate the typical
order of magnitude for various terms in each of the basic equations discussed in
the preceding sections of this chapter. To some extent, the material is parallel
to the previous discussions, though the emphasis here is on relative orders
of magnitude of different terms in the equations. First, we consider the mass
conservation, or continuity equation.

2.9.1 Mass Conservation

The general statement of continuity, or mass conservation, is given by
Eq. (2.5.6),

∂�

∂t
C ⇀
V Ð ⇀r� C �

⇀r Ð ⇀V D 0

or, dividing by �,

1

�

∂�

∂t
C 1

�
⇀
V Ð ⇀r� C ⇀r Ð ⇀V D 0 �2.9.1�

The scaling quantities defined above are then substituted to estimate the rela-
tive magnitudes for each of the terms and, to provide a simpler means of
comparison, we divide all the terms in Eq. (2.9.1) by the divergence term,
so that the first and second terms will be compared with 1. The respective
relative magnitudes for each of the terms are then[

1

T

�0

�0

]
C

[
U

L

�0

�0

]
C

[
U

L

]
³ 0

)
[
L

UT

�0

�0

]
C

[
�0

�0

]
C [1] ³ 0 �2.9.2�

The procedure is then to compare the probable magnitudes of the first two
terms in brackets with [1]. Except in certain cases, where compressible effects
become important, the controlling factor is the possible relative change in
density that may exist in a flow. Thus it is necessary to estimate the expected
changes in density resulting from changes in environmental conditions.

In general, the density of natural water depends on its temperature,
salinity and, to a much lesser extent, pressure. Other dissolved solids may
affect water density, but the largest variations are due to salt. The rate of
change of density with temperature is given by the thermal expansion coeffi-
cient,

˛ D � 1

�

∂�

∂�
�2.9.3�
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where the negative sign indicates that density decreases with increasing
temperature. (It should be noted that this is true only when temperature is
above the temperature of maximum density, which for pure water is 4°C, so
there is the potential that ˛ changes sign for certain problems.) In terms of
the scaling quantities defined above, the magnitude of the relative change in
density is[

�0

�0

]
³ [˛�0] �2.9.4�

In water, ˛ is generally a function of temperature (water density is
a parabolic function of temperature, at least over a range of normal envi-
ronmental temperatures), with magnitude approximately 10�4 °C�1. A typical
large temperature variation might be of order 10°C so, using Eq. (2.9.4), the
expected magnitude of relative density variations is of order 0.001 (0.1%),
which is insignificant compared with 1. Even temperature changes as high
as 30–50°C would produce only a relatively negligible change in density for
water.

As with temperature, a salinity expansion coefficient can be defined by

ˇ D 1

�

∂�

∂C
�2.9.5�

and [
�0

�0

]
³ [ˇC0] �2.9.6�

where C indicates the concentration of dissolved solids, primarily salts. Rela-
tively sophisticated expressions have been developed to calculate density in
the ocean as a function of temperature and salinity, and a typical value for ˇ
is about 8 ð 10�4 ppt�1. Density is approximately linearly related to salinity
except when concentrations start to approach saturation, but that is not a
condition of major interest for most environmental applications. Typical ocean
salinity is approximately 30 ppt (parts per thousand) �C D 0.03�, so the rela-
tive density variation is estimated according to Eq. (2.9.6) as 0.024, or 2.4%.
Hypersaline lakes exist in some parts of the world, where C may be as high
as 200 or 250 ppt. This would result in ��0/�0� being of order 20%, but for
most natural conditions this result is much less than 1 and may be ignored.

The possible effect of pressure is somewhat more complicated. First, we
note that the definition of sonic velocity,

c0 D
√
∂p

∂�
�2.9.7�
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can be rearranged to obtain[
p0

�0c2
0

]
³ 1 )

[
�0

�0

]
³

[
p0

�0c2
0

]
�2.9.8�

The value for c0 is approximately 1,500 m/s in water and with �0 D
1,000 kg/m3, a pressure difference of order 2.25 ð 106 kPa is needed before
�υ�0/�0� becomes of order 1. This is equivalent to the pressure at a depth of
225 km under water, which is clearly unreasonable. This result is, however,
consistent with the assumption of incompressible flow that is normally applied
for water. Further estimates for υp0 or �υ�0/�0� can be obtained under special
conditions by looking at possible balances between terms in scaling analyses
of the momentum equation. Results from such an exercise show that pressure
effects can be neglected for normal environmental conditions in water. In fact,
the only circumstances under which this term becomes important are with high-
speed flows, when U approaches c0, with very high frequency oscillatory flow,
or with large-scale atmospheric motions or temperature changes.

Thus it may be concluded that �υ�0/�0� is small for normal environ-
mental conditions. Also, the factor (LU/T) appears in Eq. (2.9.2), but this
ratio is usually of order 1, and when it is multiplied by �υ�0/�0�, it becomes
very small and may be neglected. Since both the first two terms in Eq. (2.9.2)
are negligibly small, and the right-hand side is zero, the only way to balance
the equation is to have the third term also equal 0, i.e.,

⇀r Ð ⇀V D 0 �2.9.9�

which is the continuity equation for an incompressible fluid, as defined
previously in Eq. (2.5.7). Equivalently, referring back to Eq. (2.9.1), we may
conclude that D�/Dt D 0, i.e., the density “following a fluid particle” remains
constant. This is consistent with the conclusion found in Sec. 2.5.4.

2.9.2 Momentum Conservation

In vector notation, the general momentum equation is (refer to Sec. 2.7)

D
⇀
V

Dt
C 2

⇀
�ð D⇀r

Dt
C D

⇀
�

Dt
ð ⇀r C ⇀

�ð �
⇀
�ð ⇀r �

D ⇀g � 1

�
⇀rpC �

�

[
r2⇀VC 1

3
⇀r Ð �⇀r Ð ⇀V�

]
�2.9.10�

In general, this equation would have a term added to the LHS, D2⇀R/Dt2, to
account for translational acceleration of the coordinate system, but for prob-
lems of practical interest this term can be neglected. The time derivative term
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for position also can be replaced by D⇀r /Dt D ⇀
V, and incompressible fluid will

be assumed, as shown above. With these assumptions, Eq. (2.9.10) reduces to

D
⇀
V

Dt
C 2

⇀
�ð ⇀

VC D
⇀
�

Dt
ð⇀r C ⇀

�ð �
⇀
�ð⇀r � D ⇀g � 1

�
⇀rpC vr2⇀V

�2.9.11�

For problems in environmental fluid mechanics, the frame of reference is
the earth’s surface, so that

⇀
� represents the rotation of the earth. The earth

rotates at a nearly constant rate, so the time derivative term for
⇀
� vanishes.

The resulting equation is then similar to Eq. (2.7.20). We now consider the
remaining terms.

Figure 2.18 shows a cross section of the earth along a north–south
axis, along with the centripetal acceleration vector. The total magnitude of
this term is (�2R cos �), where � is the latitude. The components, normal
(pointing towards the earth’s center) and tangential to the earth’s surface,
are (�2R cos2 �) and (�2R cos � sin �), respectively. Similarly, Fig. 2.19
illustrates the components of the Coriolis term,

⇀
�ð ⇀

V. The normal and

Figure 2.18 Cross section of earth, showing centripetal acceleration term.
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Figure 2.19 Components of Coriolis acceleration, for velocity tangent to surface
(note: Coriolis term is

⇀
�ð ⇀

V).

tangential components of this term are (�
⇀
� cos ��ð ⇀

V) and (�
⇀
� sin ��ð ⇀

V),
respectively.

We first compare the normal components with gravity, using values for�
and R appropriate for rotation of the earth:� D 2��rad/day� ¾D 7 ð 10�5 �s�1�
and R ¾D 6 ð 106 m. The magnitude of the centripetal term is then ��2R� ¾D
0.03 m/s2, which is much less than g �¾D 10 m/s2�. Also, in order for the
normal Coriolis term to be comparable to g, the velocity magnitude would
have to be of order O�105 m/s�, which is obviously too large for practical
consideration.

For the tangential components, first note that the centripetal term is
a constant, while the Coriolis term depends on the magnitude of

⇀
V. The

centripetal term is usually considered as a minor adjustment to gravity,
as previously noted (see Eq. 2.7.21) and as shown in Fig. 2.20 (see also
Fig. 2.14). For now, we retain the Coriolis term and show in the following
discussion under what circumstances it needs to be included. A simplified
version of Eq. (2.9.11) is thus

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V D ⇀g � 1

�
⇀rpC vr2⇀V �2.9.12�

Note that this is essentially the same result as Eq. (2.7.20), with Eq. (2.7.21)
substituted for ⇀g eff (note also that ⇀g eff

¾D ⇀g ).
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Figure 2.20 Relative importance of the effect of centripetal acceleration as an adjust-
ment to gravity.

This analysis can be extended by considering the pressure term as
consisting of hydrostatic and dynamic contributions. Referring to Fig. 2.21,
hydrostatic pressure is defined by

pz D pr �
∫ z

zr

�g dz �2.9.13�

where pr is a reference value.
The total pressure is the sum of pz and pd D dynamic pressure, so the pressure
term in Eq. (2.9.12) can be written as

1

�
⇀rp D 1

�
⇀rpr � g

�
⇀r

∫ z

zr

�dz C 1

�
⇀rpd

D 1

�
⇀rpr � g

�

∫ z

zr

⇀r�dz � g
⇀rz C g

�r

�
⇀rzr C 1

�
⇀rpd �2.9.14�

where this last result is obtained using the fact that � D �r at z D zr. Then,
substituting Eq. (2.9.14) into Eq. (2.9.12), we obtain

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V

D � 1

�
⇀rpr C g

�

∫ z

zr

⇀r�dh� �r

�
g
⇀rzr � 1

�
⇀rpd C vr2⇀V �2.9.15�
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Figure 2.21 Illustration of hydrostatic pressure variations.

If we now let � D �0 C υ�, where �0 is the constant base, or character-
istic value previously defined for density, then

1

�
D 1

�0 C�
D 1

�0


 1

1 C �

�0


 and

�

�0
− 1

(from previous scaling of mass conservation equation), so

1

�
¾D 1

�0
and �r ¾D �0 �2.9.16�

This last result is a statement of the Boussinesq approximation, which says
density variations are negligible except in the buoyancy terms, as will be
shown below. Eq. (2.9.15) is thus written as

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V

D � 1

�0

⇀r�pr C pd�C g

�0

∫ Z

Zr

⇀r�dz � g
⇀rzr C vr2⇀V �2.9.17�

The first term on the RHS of Eq. (2.9.17) is the net force due to pressure
gradients, the second term is the effect of density variations (important for
stratified fluids), and the third term is the effect of reference surface gradients
(such as waves).

Using the same characteristic scaling variables as in Sec. 2.9.1, the
magnitudes of the terms in Eq. (2.9.17) may be compared under different
scenarios. Dividing by the convective term �

⇀
V Ð ⇀r⇀

V�, which has characteristic
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magnitude �U2/L�, results in relative magnitudes as[
L

UT

]
C [1] C

[
�0L

U

]
³

[
p0

�0U2

]
C

[
g��/�0�L

U2

]
�

[
gL

U2

]
C

[
v

UL

]
�2.9.18�

where [
U

�0L

]
D Rossby number, Ro[

p0

�0U2

]
D Euler number, Eu[

Up
g��0/�0�L

]
D densimetric Froude number, Frd[

Up
gL

]
D Froude number, Fr[

UL

v

]
D Reynolds number, Re

Thus, for example, if Ro is large, Coriolis effects should be negligible in
the momentum equation. Similarly, pressure effects are small if Eu is small,
density effects are negligible if Frd is very large, changes in surface elevation
may be neglected if Fr is very large, and viscous effects are small when Re
is large.

The time-dependent term [L/UT] is the Strouhal number, and it should
be clear that a problem may be treated as being steady for large times, T ! 1,
when this ratio is small. The values of Ro (order of magnitude) for several
representative situations are listed in Table 2.1 using �0 ³ 10�4s�1, which is
valid for mid-latitudes. It is clear from these examples that the Coriolis effect
is expected to be important only in systems with larger L (estuaries, large
lakes, and ocean currents), depending also on U and �0.

Table 2.1 Estimates of Ro for Different Environmental
Systems

L(m) U(m/s) Ro

Stream 1–10 0.1–1 102 –104

Pond 10–100 0.1 10–102

River 100 0.1–1 10–102

Estuary 103 –104 1 1–10
Large lake 103 –105 0.1 10�2 –1
Ocean current 105 –106 0.01–0.1 10�4 –10�2
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The relative importance of density gradients can be estimated by
assuming Frd ³ 1. This is easily shown to be equivalent to assuming that
the convective term is balanced by the buoyancy term in Eq. (2.9.18), i.e.,

⇀
V Ð ⇀r⇀

V ³ g

�0

∫ z

zr

⇀r� dz ) U ³
[
g
�

�0
L

]1/2

�2.9.19�

Then, for a typical value of �/�0
¾D 10�3 (corresponding to a temperature

difference of about 10°C), and g ¾D 10 m/s2, L D �1–100 m�, gives U ¾D
�0.1–1 m/s�. Thus, at least in the buoyancy term, even a small density
difference can generate an appreciable velocity. The Boussinesq approach of
neglecting density variations does not apply to the buoyancy term, unless very
small characteristic lengths (L) are involved.

As a special case of the general result shown in Eq. (2.9.17), consider
a situation of steady, constant density flow, with � D rzr D 0. Then

⇀
V Ð ⇀r⇀

V D �⇀r
(
p

�0
C gz

)
C vr2⇀V �2.9.20�

where �p/�0� represents dynamic pressure and (gz) is the hydrostatic pressure.
This equation is then multiplied by (i.e., take dot product with)

⇀
V, to obtain

a mechanical energy equation,

⇀
V Ð ⇀r

(
1

2
V2

)
C 1

�0
�
⇀
V Ð ⇀rp�C ⇀

V Ð ⇀r�gz� D v�
⇀rV�2 D �ε �2.9.20�

where ε is the viscous dissipation rate for mechanical energy. If we now define
total head as

H D V2

2g
C p

�0g
C z �2.9.21�

(refer to Eq. 2.8.11), then Eq. (2.9.20) becomes
⇀
V Ð ⇀r�gH� D �ε �2.9.22�

If ε ¾D 0, then this is the Bernoulli equation, also derived in Sec. 2.8.
Note that for steady flow, the left-hand-side of Eq. (2.9.22) is the same

as the material derivative, �gDH/Dt�, and if inviscid conditions are assumed
�ε D 0�, then

DH

Dt
D 0 ) V2

2g
C p

�0g
C z D K �a constant� �2.9.23�

which is the usual form of the Bernoulli equation used in many introductory
textbooks. In general, this result holds along a streamline (i.e., following a
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fluid particle). If, however, the flow is also irrotational �⇀ω D ⇀
0 �, the vector

identity

r2⇀V D ⇀r�⇀r Ð ⇀V�� ⇀r ð �
⇀r ð ⇀

V� �2.9.24�

can be used to show that the Bernoulli result (2.9.23) is valid everywhere in
the flow field. This is because the RHS of Eq. (2.9.24) is 0, due to continuity
for the first term and irrotationality for the second.

It is interesting to note that r2⇀V D 0 for an irrotational flow field, inde-
pendent of the value of Re. However, the value of Re controls the rate at which
vorticity grows outward from solid boundaries, which may be important for
boundary layer analysis (see Chap. 6).

Another special case of interest is when the velocity vanishes, so
Eq. (2.9.17) becomes

⇀
0 D � 1

�0

⇀rpC g
⇀rz ) 0 D � 1

�0

∂p

∂z
� g �2.9.25�

which gives the hydrostatic pressure field (assuming boundary conditions are
known).

One additional case of interest is that of geostrophic flow. For this case,
there is a balance in the momentum equation between the Coriolis and pressure
terms, so

2
⇀
�ð ⇀

V ³ � 1

�0

⇀rp �2.9.26�

This balance has many applications in meteorology and in the oceans. When
this balance occurs, large-scale pressure differences (gradients), for example,
can be related to corresponding characteristic velocities by

p0

L
³ �0�0U �2.9.27�

These flows are discussed further in Chap. 9.

2.9.3 Thermal Energy Equation

The thermal energy equation is derived from the general conservation of
energy equation and may be written as (see Sec. 12.3.1 for further discussion)

D�

Dt
D ∂�

∂t
C ⇀
V Ð ⇀r� D �

�c
r2� � 1

�c
⇀r Ð ⇀ϕ r C 1

�c
��0ε�� ˛c2

0�

c
�
⇀r Ð ⇀V�
�2.9.28�

where � is temperature, c is specific heat, � is thermal conductivity, ϕr is
radiation heat flux, ε is the kinematic viscous dissipation rate of mechanical
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energy, ˛ is the thermal expansion coefficient, and c0 is the sonic velocity. The
terms on the RHS of this equation relate to conduction (diffusion), radiative
heat transfer, viscous heating, and compression or expansion heating, respec-
tively. Following a similar procedure as in the preceding sections, we introduce
characteristic values for this equation to derive

[
υ�0

T

]
C
[
U�0

L

]
³

[
��0

�cL2

]
�
[
ϕ0

�cL

]
C
[ε
c

]
�
[
˛c2

0�0

c

U

L

�0

�0

]
�2.9.29�

where the compression/expansion term is scaled as in Sec. 2.9.1, to substitute
�υ�0/�0� for �

⇀r Ð ⇀V�. To nondimensionalize the equation, each term is divided
by the advection term, so

[
L

UT

]
C [1] ³

[
�/�c

UL

]
�
[

ϕ0

�0cU�0

]
C
[
U2

c�0

]
C
[
˛2c2

0�0

c

1

˛�0

�0

�0

]

�2.9.30�

where ε ³ U3/L has been substituted for the dissipation rate (see Chap. 5).
Typical magnitudes for the terms on the right-hand side are estimated as

follows:

Heat conduction: First, note that a thermal diffusivity may be defined as

kt D �

�c
�2.9.31�

and the conduction term may be rewritten as[
kt
UL

]
D

[
kt
v

] [
v

UL

]
D

(
1

Pr

)(
1

Re

)
�2.9.32�

where Pr is the Prandtl number and signifies the ratio of heat transport to
momentum transport. Re is the Reynolds number as defined previously. In
water, Pr has a value of about 7 (a fixed value), so conductive heat transfer
depends on Re.

Radiative heating: The prime heating source by radiation is the sun,
and a typical value for ϕ0 in temperate latitudes is about 200–250 W/m2. The
amount of heating that takes place for any given radiative input depends on
the length of time over which the heating takes place and, of course, the depth
(or volume) of the water body under consideration.

Viscous heating: In water the specific heat is c ¾D 1J/g°C. If �U2/c�0�
is to be of order 1 (i.e., the magnitude of the viscous heating term would
be sufficient to require it to be included in the temperature equation), then
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estimates for �0 may be obtained based on U. At the upper range of environ-
mental flow conditions, water velocities may be of order 1–10 m/s. The char-
acteristic temperature change associated with this range of values is 2.5 ð 10�4

to 2.5 ð 10�2°C, which may be ignored under most circumstances.

Compression heating: Because of its dependence on fluid compress-
ibility, this term is generally important only for atmospheric studies, or possibly
in the deep oceans. Otherwise it can be neglected.

Thus the final usual form of the temperature equation is

∂�

∂t
C ⇀
V Ð r� D ktr2� � 1

�c
r Ð ⇀ϕr �2.9.33�

and this is examined further in Chap. 12.

PROBLEMS

Solved Problems

Problem 2.1 A two-dimensional flow field is given by the following velocity
components:

u D V cos�ωt� v D V sin�ωt�

where u and v represent the velocity in the x and y directions, respectively;
V and ω are constant coefficients. Provide expressions for the streamlines and
pathlines.

Solution

As velocity components are time dependent, the flow is unsteady. The differ-
ential equation for the streamlines is

dx

V cos�ωt�
D dy

V sin�ωt�

By rearranging this expression to solve for dy, we obtain

dy D tan�ωt�dx

Direct integration of this expression then gives the equation of the
streamlines as

y D tan�ωt�x CC

where C is an integration constant. This expression indicates that streamlines
are straight lines whose slope is time dependent. The differential equations of
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the streamlines are

dx

dt
D V cos�ωt�

dy

dt
D V sin�ωt�

Direct integration of these expressions, and considering that at time t D 0 the
fluid particle is located at x D x0 and y D y0, yields

x D x0 C V

ω
sin�ωt� y D y0 C V

ω
� V

ω
cos�ωt�

Eliminating time from these expressions, we obtain

�x � x0�
2 C

(
y � y0 � V

ω

)2

D
(
V

ω

)2

This expression indicates that the pathlines are circles with radius V/ω and
that the center of each pathline is located at x D x0 and y D y0 C V/ω.

Problem 2.2 A two-dimensional flow field is given by the following velocity
components:

u D ˛y v D ˛x

where u and v represent the velocity in the x and y directions, respectively,
and ˛ is a constant. Provide expressions for the streamlines and pathlines.

Solution

As velocity components are not time dependent, the flow is steady. Therefore
the shape of the streamlines does not change with time, and that shape is
identical to that of the pathlines. The differential equation for the streamlines is

dx

˛y
D dy

˛x

and upon rearranging,

y dy D x dx

Direct integration of this expression yields the following equation of the
streamlines:

x2 � y2 D C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As expected, the shape
of the streamlines does not change with time (since the flow is steady).
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The differential equations of the pathlines are

dx

dt
D ˛y

dy

dt
D ˛x

Differentiating the first expression with regard to time, we obtain

d2x

dt2
D ˛

dy

dt

Introducing the first two expressions into the last one then gives

d2x

dt2
� ˛2x D 0

The solution of this differential equation is

x D C1 exp�˛t�C C2 exp��˛t�
where C1 CC2 D x0.
Introducing this expression into the basic equation of dy/dt D ˛x and inte-
grating, we obtain

y D C1 exp�˛t��C2 exp��˛t�
where C1 �C2 D y0.

We may eliminate time from the expressions of x and y and obtain

x2 � y2 D 4C1C2

This expression indicates that pathlines and streamlines have identical shapes,
as found previously.

Problem 2.3 A two-dimensional flow field is given by the following velocity
components:

u D ˛yt v D ˛xt

where u and v represent the velocity in the x and y directions, respectively; t
is the time and ˛ is a constant. Provide expressions for the streamlines.

Solution

As velocity components are time dependent, the flow is unsteady. However,
the velocity vector can be expressed as a product of a space vector with a
time function. Therefore the shape of the streamlines does not change with
time, and that shape is identical to that of the pathlines, as shown below. The
differential equation for the streamlines is

dx

˛yt
D dy

˛xt
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Upon rearranging, this gives

y dy D x dx

Direct integration of this expression yields the equation of the streamlines as

x2 � y2 D C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As previously noted,
the shape of the streamlines does not change with time.

Problem 2.4 For each of the following flow fields, calculate components of
the rate of strain, vorticity tensor and vector, and the circulation on the sides
of a small square with sides of length 2b centered on the origin.

(a) u D ax v D �ay
(b) u D ay v D ax
(c) u D ay v D �ax

Solution

Components of the rate of strain tensor:

(a) e11 D 1

2

(
∂u

∂x
C ∂u

∂x

)
D a e12 D e21 D 1

2

(
∂u

∂y
C ∂v

∂x

)
D 0

e22 D 1

2

(
∂v

∂y
C ∂v

∂y

)
D �a

(b) e11 D 0 e12 D e21 D a e22 D 0
(c) e11 D 0 e12 D e21 D 0 e22 D 0

Components of the vorticity tensor:

(a) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D 0

(b) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D 0

(c) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D a

Components of the vorticity vector: Only case (c) is relevant, as the
flow is two-dimensional [no vorticity for cases (a) or (b)]. Thus

r ð EV D
(
∂v

∂x
� ∂u

∂y

)
Ek D �2aEk

where Ek is a unit vector in the z-direction.
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Note that the component �21 is equal to half of the corresponding vorticity
component.

Circulation values: First, note that the circulation is defined by

 D
∮
c

EV Ð dEl

where C is a closed curve and dl is a line element. As required, the closed
line integral should be performed in the counterclockwise direction along the
four sides of the small square as shown in Fig. 2.22.
For flow fields (a) and (b) the circulation vanishes. In case (c), we obtain

 D
[∫ b

�b
vdy

]
xDb

C
[∫ �b

b
u dx

]
yDb

C
[∫ �b

b
vdy

]
xD�b

C
[∫ b

�b
u dx

]
yD�b

D
∫ b

�b
�ab dy C

∫ �b

b
ab dx C

∫ �b

b
ab dy C

∫ b

�b
�ab dy D 8ab2

Figure 2.22 Line integration around square element, Problem 2.4.
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Problem 2.5 A fluid flow is given by the following pathlines:

x D x0�1 C ˛t� y D y0/�1 C ˛t�

where ˛ is a constant. Calculate the components of the velocity and acceler-
ation vectors by applying the Lagrangian and Eulerian approaches.

Solution

Lagrangian components of velocity:

u D dx

dt
D ˛x0 v D dy

dt
D �˛y0

�1 C ˛t�2

Eulerian components of velocity: These are obtained by the elimina-
tion of x0 and y0 from the Lagrangian expressions. According to the pathline
equations,

x0 D x

1 C ˛t
y0 D y�1 C ˛t�

We introduce these equations into the Lagrangian expressions of the velocity
components to obtain

u D ˛x

1 C ˛t
v D �˛y

1 C ˛t

Lagrangian components of the acceleration:

ax D d2x

dt2
D 0 ay D d2y

dt2
D 2˛2y0

�1 C ˛t�3

Eulerian components of the acceleration: It is possible to introduce
x0 and y0 into the Lagrangian expressions by x, y, t to obtain the Eulerian
expressions of the acceleration components. Alternatively, the accelerations
are obtained by direct application of the substantial derivative, as

ax�x, y, t� D ∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
D �˛2x

�1 C ˛t�2
C ˛2x

�1 C ˛t�2
D 0

ay�x, y, t� D ∂v

∂t
C u

∂v

∂x
C v

∂v

∂y
D ˛2y

�1 C ˛t�2
C ˛2y

�1 C ˛t�2
D 2˛2y

�1 C ˛t�2

Problem 2.6 Derive the differential form of the continuity equation directly
by considering a small fluid element as shown in Fig. 2.23. Density � and
fluid velocity (u, v, w) are defined at the center of the element. Use a Taylor
series expansion to express the densities and velocities on each face in terms
of �, u, v, and w.
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Figure 2.23 Definition sketch, Problem 2.6.

Solution

A general statement of conservation of mass for any control volume is the
rate of change of mass in the volume is equal to the rate at which mass is
transported into the volume across the control surface, minus the rate at which
mass is transported out of the volume, plus or minus the rates at which mass
is either created or destroyed in the volume. When applied to the fluid element
shown in Fig. 2.23 and noting that water is neither created nor destroyed, this
statement is written in mathematical terms as

∂��8�
∂t

D
{[
�u� ∂��u�

∂x

dx

2

]
�

[
�uC ∂��u�

∂x

dx

2

]}
dy dz

C
{[
�v � ∂��v�

∂y

dy

2

]
�

[
�v C ∂��v�

∂y

dy

2

]}
dx dz

C
{[
�w� ∂��w�

∂z

dz

2

]
�

[
�wC ∂��w�

∂z

dz

2

]}
dx dy

where 8 D dx dy dz is the element volume and higher order terms in the Taylor
series expansions have been neglected, with the assumption that dx, dy, and
dz are all small. Each of the terms on the right-hand side of this equation
represents the net transport of fluid mass across the control surface in each
of the three coordinate directions. Nothing that the volume is independent of
time, then by combining terms and simplifying, we have

∂�

∂t
�dx dy dz�D �∂��u�

∂x
�dx dy dz�� ∂��v�

∂y
�dx dy dz�� ∂��w�

∂z
�dx dy dz�

Dividing by the volume, dx dy dz, and bringing all terms to the left-hand
side then leads to Eq. (2.5.6), which is the desired continuity equation.
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Problem 2.7 Figure 2.24 shows a reservoir of volume U, which includes for
time t � 0 pure water with density �0. At time t D 0, effluent with volumetric
discharge 2Q and density �1 starts flowing into the reservoir. The reservoir
volume is kept constant due to infiltration of the reservoir water into the ground
with volumetric discharge Q, and evaporation of pure water (density �0), also
with volumetric discharge rate Q. What is the value of the reservoir fluid
density as a function of time? What is the value of that density as t ! 1?
Assume that the fluid is kept completely mixed in the reservoir.

Solution

The fluid is incompressible, and density is subject to variation due to dissolved
solids, which are assumed to not affect the volume of the water. Therefore,
we may refer to Eq. (2.5.2) with regard to volumetric quantities, namely, the
reservoir volume is kept constant, and volumetric discharge into the reservoir
is identical to the total flow out of the reservoir. Using the integral equation
of mass conservation (2.5.2), we obtain

d�

dt
UC Q�� C �0�� 2Q�1 D 0

Using separation of variables, this expression yields

d�

2�1 � �0 � �
D Q

U
dt

Figure 2.24 Definition sketch, Problem 2.7.
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Direct integration of this expression, while considering that � D �0 at t D t0,
yields

2�1 � �0 � �

2�1 � 2�0
D exp

(
�Q
U
t

)

For t ! 1 the RHS of this expression vanishes. Therefore the asymptotic
limit for the fluid density is

� D 2�1 � �0

Problem 2.8 Figure 2.25 shows a system of two stagnant plates and a plate
that moves downward with velocity V. Due to the movement of the third
plate, the incompressible fluid, which is located between the plates, is subject
to flow. The velocity in the x-direction is distributed uniformly between the
two horizontal plates. Calculate the velocity distribution in the fluid domain
when the gap between the two horizontal plates is h. Find the expression for
the stream function. Is the fluid domain subject to steady flow?

Solution

The velocity u in the x-direction is independent of the y-coordinate. The
integral equation of continuity (2.5.3), applied to the control volume (C.V.)

Figure 2.25 Definition sketch, Problem 2.8.
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shown in the figure yields

� Vx C uh D 0 ) u D V

h
x

Introducing this expression into the differential equation of continuity (2.5.8),
we obtain

∂v

∂y
D �∂u

∂x
D �V

h

Direct integration of this expression yields

v D �V
h
y C f�x, t�

Considering that at y D 0, the velocity component v vanishes, we obtain

v D �V
h
y

According to Eq. (2.5.9), the following relationship for the stream function is
found:

 D
∫
u dy D V

h
xy C f�x�

The derivative of this expression with regard to the y coordinate is

∂

∂x
D V

h
y C f0�x� D �v D V

h
y ) f0�x� D 0 ) f�x� D const

By choosing f�x� D 0, we obtain

 D V

h
xy

The flow is subject to unsteady state, as the value of h is time dependent.

Problem 2.9 An incompressible fluid flows past a corner making an angle
of �3�/4� as shown in Fig. 2.26. It is proposed to describe this flow by a
stream function,

 D 2r4/3 sin
(

4

3
�

)

(a) What is the magnitude of the velocity at any point in the flow field
(as a function of r)?

(b) Show that there is no flow across the solid boundaries shown.
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Figure 2.26 Flow of incompressible fluid past a corner, Problem 2.9.

Solution

(a) From Eq. (2.5.13), the velocity components are

ur D 1

r

∂

∂�
D 8

3
r1/3 cos

(
4

3
�

)

v� D �∂
∂r

D �8

3
r1/3 sin

(
4

3
�

)

The velocity magnitude is the square root of the sum of the squares
of each of the velocity components,

V D 8

3
r1/3

(b) Since both boundaries represent radial arms with respect to the
origin at the corner, it is sufficient for this problem to show simply
that v� D 0 when � D 0 or � D 3�/4. That this is the case is imme-
diately seen when we use the expression for v� from part (a). It
should also be noted that this result shows that the proposed stream
function satisfactorily describes the flow past this corner.

Problem 2.10 Figure 2.27 shows a cylinder, with weight Wc, with a piston
standing on a table. Due to a downward movement of the piston, fluid flows
out of the cylinder through a nozzle located at the bottom of the cylinder. The
cross-sectional area of the cylinder is A1, the cross-sectional area of the nozzle
outlet is A2, and the fluid density is �. Calculate the forces FH and FV, which
are needed to hold the cylinder, when the depth of the fluid volume is h.

Solution

A Cartesian coordinate system (x, y) is added for reference. We start with the
choice of the control volume (C.V.) as shown in Fig. 2.27. It should be noted
that other types of control volumes could be used as well.
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Figure 2.27 Definition sketch, Problem 2.10.

In the x-direction there is no momentum of the control volume. The force
FH is applied by the “solid hand” which is cut by the surface of the control
volume. At the exit of the nozzle, the velocity vector and the normal vector
have identical directions. Due to continuity, the speed of the jet flowing out of
the nozzle is V�A1/A2�. At the nozzle exit the pressure is equal to atmospheric
pressure. Equation (2.6.7) yields for the x-direction:

�

[
V
A1

A2

]2

D FH

In the y-direction there is a negative momentum. Its values at times t and
t Ct are given, respectively, by:

�Momentum�t D ��hA1V �Momentum�tCt D ���h� Vt�A1V

The difference in momentum between times t and t Ct, divided by t,
provides the first RHS term of Eq. (2.6.7), namely,

∂

∂t

∫
U
�Vy dU D limt!0

���h � Vt�A1VC �hA1V

t
D �V2A1
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Two solid surfaces comprise a portion of the surface of the control volume.
Through these surfaces two forces are applied. One of them is FV and the other
one is applied through the shaft of the piston. The force applied through the
shaft of the piston can be calculated using the Bernoulli equation. We consider
that the piston movement is slow, and approximately steady state conditions
prevail in the fluid. Then Bernoulli’s equation applied between point (1) and
point (2) yields

V2

2g
C p1

�
C h D [V�A1/A2�]2

2g
) p1 D �

V2

2

[(
A1

A2

)2

� 1

]
� �gh

Considering equilibrium of the piston, we obtain

p1A1 D Wp C Fp; ) Fp D p1A1 �Wp

D �
V2A1

2

[(
A1

A2

)2

� 1

]
� �ghA1 �Wp

where Wp is the weight of the piston and Fp is the force applied through the
shaft of the piston.

Introducing all the expressions developed in the preceding paragraphs
with regard to the y-direction into Eq. (2.6.7), we obtain

�V2A1 D ��ghA1 �Wc �Wp � Fp C FV

where Wc is the weight of the cylinder. Therefore the force FV is given by

FV D �V2A1 C �ghA1 CWc CWp C �
V2A1

2

[(
A1

A2

)2

� 1

]

� �ghA1 �Wp

D Wc C �
V2A1

2

[(
A1

A2

)2

C 1

]

Problem 2.11 Figure 2.28 shows a small cart moving with velocity Vv due
to the impact of a two-dimensional water jet on a plate oriented at an angle ˛
with respect to the jet direction. The velocity and width of the jet are V1 and
b1, respectively. The water jet is divided into two smaller jets, whose widths
are b1 and b2. The force applied by the water jet on the cart is perpendicular to
the impacted plate. Assuming that the effect of gravitation is negligible when
applying Bernoulli’s equation, calculate (a) The widths b1 and b2 of the two
jets-(b) the vertical and horizontal forces acting on the cart, and (c) the power
transferred to the moving cart.
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Figure 2.28 Water jet driving cart motion, Problem 2.11.

Solution

We apply a coordinate system that moves with the cart. In such a coordinate
system the domain is subject to steady state, and Bernoulli’s equation is appli-
cable. The velocity of the jet that hits the cart, in the new coordinate system,
is V1 � Vv. As the effect of gravitation is negligible at the jet division, the
velocities of the two jets created by the jet division are also V1 � Vv. We
apply the control volume with boundaries as shown in the figure. The forces
FH and FV are needed to keep the control volume in its appropriate position.
By applying the equation of momentum conservation (2.6.1) in the horizontal
direction, we obtain

� ��V1 � Vv�
2b1 C ��V1 � Vv�

2�b2 � b3� cos˛ D �FH
Applying the conservation of momentum in the y-direction gives

��V1 � Vv�
2�b2 � b3� sin˛ D FV

As the resultant force is perpendicular to the oblique plate, we obtain

FV

FH
D tan˛

From continuity, we have

b1 D b2 C b3

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



The last four equations allow the determination of the four unknown quantities
b2, b3, FH, and FV. The results of the calculation are

b2 D b1

2

(
1 C 1

2 cos˛

)
b3 D b1

2

(
1 � 1

2 cos˛

)

FH D � �V1 � Vv�
2 b1

2
Fv D � �V1 � Vv�

2 b1

2
tan˛

The force that leads to the cart movement is equal to FH and acts in the
positive x direction. The power transferred from the water jet into the cart
is equal to the product of this force with the velocity Vv of the cart in the
horizontal direction. Therefore the power N is given by

N D � �V1 � Vv�
2 b1

2
Vv

Problem 2.12 Figure 2.29 shows a rocket fired from rest in outer space
along a horizontal straight line where air friction is negligible. The mass of
the body of the rocket is M and it carries an original fuel mass Mf which
burns at a mass flow rate ˛. The exhaust cross-sectional area and velocity
relative to the rocket are Ae and Ve, respectively, and the density of the fluid
at the exhaust is �e. The velocity of the rocket relative to a fixed observer is
V. Our objective is to determine the value of V as a function of time.

Solution

We apply Eq. (2.6.15) to solve this problem. The momentum due to the flow
inside the control volume is assumed to be negligible. Therefore the first LHS
term of this equation vanishes. Also, all terms of the RHS of Eq. (2.6.16)
vanish, except for the volume integral associated with the translational accel-
eration. Therefore we obtain

� �eV
2
eAe D ��MCMf � ˛t�

dV

dt

Conservation of mass yields

�eVeAe D ˛

We introduce this relationship into the equation of momentum conservation.
Separation of variables of the resulting expression yields.

dV

˛Ve
D dt

MCMf � ˛t

Direct integration of this expression and assuming that V D 0 at t D 0 yields

V D Ve ln
(

MCMf

MCMf � ˛t

)
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Figure 2.29 Rocket motion, Problem 2.12.

According to this expression, the maximum value of the rocket velocity is
obtained when all the fuel is burnt, namely when t D Mf/˛. At that time the
rocket velocity is given by

V D Ve ln
(
MCMf

M

)

Problem 2.13 Figure 2.30 shows a pump that delivers a water discharge Q
from a tank through a pipe of total length L, which is ended with a nozzle. The
pipe diameter is D1, the nozzle diameter D2. The Darcy–Weissbach friction
coefficient for the pipe flow is f. Water level in the tank is h1 and its value
is given. The exit of the nozzle is located at an elevation h2 above the pump,
which is also given. Calculate the power delivered by the pump into the
flowing water. The system is at constant temperature.
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Figure 2.30 Pumped water jet, Problem 2.13.

Solution

The total head at the exit of the nozzle, at cross section (2), is

H2 D V2
2

2g
C h2 where V2 D 4Q

�D2
2

The total head at the entrance cross section (1) is equal to h1. The power
of the pump is needed to increase the water head from its initial value h1

to its final value at the exit cross section. Part of this power is converted to
heat, which is transferred into the surroundings (so that the system remains
at constant temperature). The head loss between the entrance and exit multi-
plied by the weight discharge is equal to the rate of heat transferred into the
environment. Therefore the power delivered from the pump into the flowing
water is given by

N D �gQ

(
H2 � h1 C f

L

D1

V2
1

2g

)
where V1 D 4Q

�D2
1

Problem 2.14 Considering the flow given in Problem 2.9, find the pressure
at any point in the flow field, relative to p D p0 at the corner. Neglect gravity.

Solution

It is already known that this flow is steady and incompressible. It can also be
shown to be irrotational. In this case, pressures are found using Bernoulli’s
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equation. Since gravity effects are neglected, we have

p0

�
C V2

0

2g
D p

�
C V2

2g

From the velocity components found in Problem 2.9, it is easily seen that
V0 D 0. Then, substituting the general expression for the velocity, we find

p D p0 � 1

2
�V2 D p0 � 32

9
�r2/3

Unsolved Problems

Problem 2.15 A two-dimensional flow field is given by the following
velocity distribution:

u D a�y � b� v D a�x � b�

where a and b are constant coefficients.

(a) Develop the expression for the pathlines in the domain.
(b) Develop the expression for the streamlines. Show that streamlines

and pathlines have the same shape. Provide a schematic of the
streamlines.

Problem 2.16 Using the velocity distribution of Problem 2.15,

(a) Calculate values of components of the rate of strain tensor.
(b) Show that the fluid is subject to irrotational flow and develop the

expression for the potential function.

Problem 2.17 A two-dimensional flow field is given by

u D �a�y � b� v D a�x � b�

where a and b are constant coefficients.

(a) Determine values of components of the rate of strain tensor and
the vorticity tensor.

(b) Calculate the value of the circulation along a circle whose center
is at point (b, b), with radius b.

Problem 2.18 The velocity field for a two-dimensional flow is given by

u1 D U exp
(

�x1

L

)
sec h2

(x2

L

)
and

u2 D Cx2 CU exp
(

�x1

L

)
tanh

(x2

L

)
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Where U, C, and L are constants. Find

(a) Acceleration of a fluid particle
(b) Variation of density of a fluid particle
(c) Components of fluid vorticity
(d) Components of fluid rate of strain

Problem 2.19 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Calculate the Lagrangian components of the velocity and acceler-
ation.

(b) Calculate the Eulerian components of the velocity and acceleration.

Problem 2.20 Velocity components of the flow and density of a fluid are
given by

u D x�1 C ˛xy� v D �y�1 C ˛xy� � D �0

1 C ˛xy

where ˛ and �0 are constants.

(a) Calculate the components of the acceleration.
(b) Calculate the rate of change of density of the fluid particles,

assuming that ˛ is small and has negligible effect on u and v.

Problem 2.21 Starting with the fluid element shown in Fig. 2.31, demon-
strate graphically that the divergence ( Er Ð EV) must be zero if the fluid is

incompressible. Is it necessary that
∂u

∂x
D ∂v

∂y
D ∂w

∂z
D 0 in order to make the

same conclusion?

Problem 2.22 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Show that continuity is satisfied for incompressible flow.
(b) Determine the expression for the stream function.
(c) Calculate the flow rate between two streamlines of your choice.

Problem 2.23 For each of the velocity and density distributions of
Problem 2.20,

(a) Show that the equation of mass conservation is satisfied.
(b) Develop the expression for the stream function of the mass flux.
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Figure 2.31 Fluid element, Problem 2.21.

Problem 2.24 Derive an integral statement of the equation expressing
conservation of dissolved mass (concentration C) following the Reynolds
transport theorem approach. Where might such an equation be useful?

Problem 2.25 Figure 2.32 shows a section of a two-dimensional channel
with walls described by

y D š h

2�x C 1�

where h is the width of the channel at its entrance where x D 0. A fluid of
constant density flows through the channel. The velocity component in the
x-direction is solely a function of x. At the channel entrance the velocity in
the x-direction is given by u D u0.

(a) Determine the velocity component in the x-direction.
(b) Determine the velocity component in the y-direction.
(c) Develop the expression for the stream function in the channel. What

are reasonable values of the stream function along the walls of the
channel?

Problem 2.26 Fluid is subject to steady-state flow in an infinite domain.
In every vertical cross section of the domain, the velocity component in the
horizontal x-direction is not a function of y. In every horizontal cross section of
the domain, the velocity component in the vertical y-direction is not a function
of x. At the point (x D 8 m, y D 0) it was found that there is only velocity in
the x-direction, whose value is u D 0.1 m/s. At the point (x D �12 m, y D 0)
it was found that there is also only velocity in the x-direction, with a value of
u D �0.1 m/s.
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Figure 2.32 Two-dimensional converging flow, Problem 2.25.

(a) Apply the integral continuity equation to determine the distribution
of the velocity component in the y-direction.

(b) Apply the differential continuity equation to determine the distri-
bution of the velocity component in the x-direction.

(c) Develop the expression for the stream function. Find stagnation
points, and provide a schematic of the streamlines.

(d) Check whether the flow is a potential flow. If it is a potential flow,
determine the expression for the potential function.

(e) Determine components of the rate of strain tensor.
(f) Determine components of the rate of strain tensor in the entire

domain in the coordinate system (x, y) whose x axis bisects the
angle between the axes x and y.

Problem 2.27 A water reservoir has a volume U D 50,000 m3. At time
t D 0 the density of the water is �0 D 1000 kg/m3. At that time two effluent
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sources start to divert water into the reservoir. Both sources provide an iden-
tical volumetric discharge of Q D 36 m3/s (for each source). The density of
the fluid of the first source is �1 D 1,020 kg/m3. The density of the fluid of
the second source is �2 D 1,010 kg/m3. These sources may be assumed to
be rapidly mixed throughout the reservoir. Fluid percolates into the ground
through the bottom of the reservoir with flow rate Q and with density equal to
that of the reservoir water �. At the reservoir surface water evaporates, with
discharge Q and density �0.

(a) Prove that the reservoir volume is kept constant.
(b) Develop a general equation for the variation of the density of the

reservoir water. What is the value of this density for time t ! 1?
(c) Substitute numerical values of the variables, and find the time at

which the water density becomes 99% of its value at t ! 1.

Problem 2.28 A model is needed to predict the transient response of a
constant volume mixing tank due to a step change in influent concentration
of a conservative substance. The model is to be used to quantify the degree
of mixing and short-circuiting in the tank. Assume that a fraction m of the
total tank volume V is actually well mixed and that only a fraction n of
the inflow Q enters the zone of perfect mixing, while the remaining portion
of the inflow short-circuits directly to the outlet (i.e., it is not mixed at all
inside the tank). The concentration at any time t in the mixed zone is C0.
The material exiting from this zone is mixed with the portion of inflow that is
short-circuited and the mixture leaves the tank at flow rate Q and concentration
C. The initial concentration in the tank is C0 (everywhere). At time t D 0 the
influent concentration Ci is changed suddenly from Ci D C0 to Ci D 0.

(a) Sketch the problem, showing how n and m are incorporated.
(b) Show that, in general, the outflow concentration may be calculated

as C D nC0 C �1 � n�Ci
(c) Write the general mass balance equation for C0 (in the mixed

zone) — include Ci in the formulation.
(d) Substitute the result from part (b) into your result from part (c) and

develop a differential equation that describes the rate of change of
C with time.

(e) Solve the equation to calculate (C/C0) as a function of n, m, and
(t/tŁ), where tŁ D V/Q is the overall tank residence time.

(f) Using the experimental data plotted in Fig. 2.33, estimate the values
for n and m (note that values for C0 are obtained from the middle
of the tank, which is expected to be in the fully mixed region).
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Figure 2.33 Nondimensional concentration data, Problem 2.28.

Problem 2.29 A shallow lake has mean (depth-averaged) horizontal velocity
components U and V, in the x and y coordinate directions, respectively, and
U and V are in general functions of (x, y, t), where t D time (see Fig. 2.34).
Seepage out the bottom of the lake takes place at a rate f, where f is assumed
to be directly proportional to the depth, h, so f D kh, and h is also a function
of (x, y, t). Rain falls at rate i (units of length/time) and i D i�x, y, t�. The lake
bottom may be assumed to be flat and horizontal. Derive the two-dimensional
continuity equation for this problem.

Problem 2.30 Figure 2.35 shows a section of a two-dimensional channel,
with walls that are described by

y D š0.5�h C x�

where h D 1 m is the width of the channel at its entrance, where x D 0. A fluid
of constant density flows through the channel. The velocity component in the
x-direction is solely a function of x. At x D 0, the velocity in the x-direction
is given by u D u0 D 1 m/s.

(a) Determine the velocity component in the x-direction.
(b) Determine the velocity component in the y-direction.
(c) Calculate the discharge per unit width of the channel.

Problem 2.31 Water is subject to unsteady flow in an open channel, as shown
in Fig. 2.36. A discharge per unit area, q, flows into the channel through the
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Figure 2.34 Two-dimensional lake schematic, Problem 2.29.

Figure 2.35 Expanding two-dimensional flow, Problem 2.30.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



free surface. The water depth in the elementary control volume is h. The width
of the channel at the free surface is B.

(a) Refer to the elementary control volume of the open channel shown
in part (a) of Fig. 2.36 and develop the differential equation that
represents the variation of the water depth along the channel.

(b) Part (b) of Fig. 2.36 indicates that at x D x0, the water depth is h0.
The channel has a rectangular cross section, in which B D const.
It is found that the water depth downstream of x0 is represented by
h D h0 C h1 sin�˛x C ωt�, where, h0, h1, ˛, and ω are constants. It

Figure 2.36 Open channel flow, Problem 2.31.
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is also given that q D 0, and Q D Q0 at x0. Find the discharge as
a function of x and t.

Problem 2.32 Figure 2.37 shows two containers that contain fluids. The
volume of container 1 is U1 D 30 m3 and it contains at time t < 0 pure water,
with density �1 D 1,000 kg/m3. The volume of container 2 is U2 D 20 m3 and
it includes for time t < 0 salt water, with density �2 D 1,020 kg/m3. At time
t D 0 two pumps start to circulate water between the two containers. Each
pump delivers a volumetric discharge of Q D 10 m3/s. A mixer is submerged
in each container to insure well-mixed conditions.

(a) What is the final density of the water in both containers?
(b) Develop expressions for the variation of the water density in each

container as functions of t.
(c) Show that the expressions that you developed in part (b) converge

to the result of part (a) when t ! 1.
(d) Calculate the value of the time t at which the density of the water

in container 1 is equal to 99% of the density when t ! 1. What
is the density of the water in container 2? By how many percent is
it larger than the density at t ! 1?

Problem 2.33 Figure 2.38 shows a two-dimensional incompressible flow
between two long plates. Plate (a) is stagnant. Plate (b) rotates around the
origin with constant angular velocity �. The radial flow in the domain is not
a function of the angular coordinate �. At time t D 0, the angle between the
two plates is �.

Figure 2.37 Definition sketch, Problem 2.32.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.38 Definition sketch, Problem 2.33.

(a) Determine the velocity distribution in the flow domain at time t1,
where t1 < �/�.

(b) Determine the expression for the stream function.
(c) Is the value of the stream function at the two plates subject to

variation with time? Explain.

Problem 2.34 Figure 2.39 shows viscous incompressible fluid between three
plates. Plates (a) and (b) are stagnant, while plate (c) moves downward with
constant velocity V. Due to the movement of plate (c), the fluid is subject
to flow. There is a parabolic distribution of the velocity component in the
x-direction, and it vanishes at plates (a) and (c).

(a) Determine the expressions for the velocity components in the flow
domain when the distance between plates (a) and (c) is h.

(b) Determine the expression for the stream function in the domain.
(c) Calculate the variation of the discharge flowing between plates (a)

and (c) as a function of time and x-coordinate.

Problem 2.35 A two-dimensional velocity field (u, v) may be defined in
terms of a stream function, , where

⇀
V D ⇀r ð�Ok�

Calculate
⇀r ð ⇀

V,r2⇀V, and
⇀
V Ð ⇀r⇀

V in terms of .
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Figure 2.39 Definition sketch, Problem 2.34.

Figure 2.40 Definition sketch, Problem 2.36.

Problem 2.36 A fluid two-dimensional jet of width b1 and velocity V1

is directed at a concave plate, which moves with velocity V2, as shown in
Fig. 2.40. Due to the impact with the plate, the fluid jet is divided into two
identical jets, which are oriented with angle ˛ to the longitudinal x-direction
at the edges of the plate. The fluid density is �.
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(a) Calculate the thickness of the two jets created by the impact of the
jet with the concave plate.

(b) Determine the velocity of the two jets at the edges of the plate.
(c) Determine the power delivered from the jet to the plate.
(d) What should be the relationship between V1 and V2 to deliver

maximum power?

Problem 2.37 Repeat Problem 2.36 for jet impact with a convex plate, as
shown in Fig. 2.41.

Problem 2.38 Consider plane Couette flow, with one wall (y D 0) fixed
and a second rigid wall (y D h) moving at constant speed U in its own plane.
Sketch the flow and solve the Navier–Stokes equations for the case of constant
density (also no rotation), to show that a possible flow is Eu D �Uy/h��Oi�. Also
calculate the shear stress on each wall.

Problem 2.39 A line sink (large width-to-height ratio) drains a large water
reservoir by a rectangular conduit as shown in Fig. 2.42. Assuming the flow
is fully developed in the conduit (i.e., at some distance downstream of the
reservoir), calculate the following:

(a) Velocity distribution (neglect side wall effects).
(b) Magnitude of shear stress at upper and lower surfaces and at middle

of conduit.
(c) Considering the entire length (L) as a control volume, verify that there

is zero net force acting on the fluid in the direction along the pipe.

Figure 2.41 Definition sketch, Problem 2.37.
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Figure 2.42 Flow through long rectangular conduit, Problem 2.39.

Problem 2.40 Figure 2.43 shows a hose of diameter D1, which is connected
to a nozzle by a flange. The diameter of the nozzle exit is D2. Water (density
�) flows through the hose and nozzle with discharge Q. FH and FV represent
the horizontal and vertical forces applied by the fireman, to keep the hose and
nozzle in the appropriate position.

(a) Determine the force needed to hold the two parts of the flange
together.

(b) Determine the horizontal, vertical, and total forces applied by the
fireman.

Problem 2.41 Water flows in an open rectangular channel with a constric-
tion, as shown in Fig. 2.44. The water depth and channel width before the

Figure 2.43 Flow around a bend, Problem 2.40.
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Figure 2.44 Open channel flow constriction, Problem 2.41.

constriction are h1 D 1.0 m and b1 D 1.2 m, respectively. At the constriction,
the water depth and channel width are h2 D 0.9 m and b2 D 1.0 m, respec-
tively. The pressure distribution in each vertical cross section is hydrostatic.

(a) Determine the discharge flowing through the channel.
(b) Determine the force applied by the water on the constriction.

Problem 2.42 Water flows through a gate as shown in Fig. 2.45. The channel
has a rectangular cross section and its width is 1 m. The water depth upstream
of the gate is h1 D 0.8 m. The water depth downstream of the gate is h2 D
0.2 m. At that location, the flow velocity is V2 D 3 m/s.

(a) Determine the discharge in the channel.
(b) Determine the force of the water on the gate.

Problem 2.43 A cart carries a container with water. It moves freely on an
inclined area, whose slope is ˛ D 30°, as shown in Fig. 2.46. The width of the
container is b D 2 m, and its length is L D 2 m. The top of the container is
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Figure 2.45 Flow under a sluice gate, Problem 2.42.

Figure 2.46 Water containing cart on a sloping surface, Problem 2.43.

open, and its side walls are very tall. The initial water depth, measured along
the upper wall of the container, is 0.5 m.

(a) Determine the orientation angle between the free surface of the
water with respect to horizontal.

(b) Determine the horizontal and vertical components of the pressure
gradient in the water.

(c) Determine the total force applied on the front wall, back wall, and
bottom of the container.
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Problem 2.44 Figure 2.47 shows fluid with density � flowing through a
two-dimensional conduit, whose width and length are b and h, respectively.
At the entrance of the conduit, the velocity is u0 and is uniformly distributed.
The pressure at the entrance is pA. At the exit of the conduit, the velocity
profile is a parabola, given by

u D U

[
1 �

(
2y

b

)2
]

where U is the maximum value of the velocity at the exit cross section and y D
0 represents the centerline. The pressure at the exit cross section is given by

pB D pA � 2.25�
U2

2

(a) Determine the relationship between u0 and U.
(b) Determine the force applied per unit width of the conduit.

Problem 2.45 A jet aircraft flies at a constant speed V. The jet engine
pumps air with volumetric discharge Q0 and density �0. The mixture of fuel
and air has a density almost identical to that of the air. After the burning
of the mixture, it flows out with the volumetric discharge Q1 D �2/3�Q0 and
unknown density �1. The inlet cross section area is A0. The outlet cross section
area is A1 D 0.1A0. The flow velocity through the inlet cross section is identical
to that of the outlet cross section. The volumetric discharges Q0 and Q1 are
independent of the flow velocity V.

(a) Determine the fluid density �1 at the outlet cross section.
(b) Determine the drag force that is overcome by the jet engine.
(c) What is the power of the jet engine?

Figure 2.47 Definition sketch, Problem 2.44.
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Problem 2.46 Consider that the length of the equator is 40,000 km, and that
the earth makes a complete rotation in 24 hours.

(a) Calculate the value of the effective gravitational acceleration at
a point on the earth’s surface, whose inclination angle (latitude)
is 30°.

(b) Provide the two equations of motion, based on Eq. (2.7.20), for a
two-dimensional horizontal flow at a point on the ocean with an
inclination angle of 30°.

Problem 2.47 A mass discharge of dry steam with Qm D 1 kg/s flows
through a turbine and delivers a power N D 1,000 W through the shaft of
the turbine. The entrance and exit flow velocities are V1 D 20 m/s and V2 D
10 m/s, respectively. The entrance and exit specific enthalpy values are h1 D
80 m2/s2 and h2 D 100 m2/s2, respectively. The entrance elevation is higher
than that of the exit of the turbine by 1 m.

(a) What are the values of �A (where � is the density and A is the
cross-sectional area) at the entrance and exit of the turbine?

(b) Determine the net heat transferred from the turbine into the envi-
ronment per unit mass of flow.

(c) Determine the rate of heat transferred from the turbine into the
environment.

Problem 2.48 A 3 m diameter tank is filled with water to a depth h D 10 m.
A value on a 30 cm pipe at the bottom of the tank is opened suddenly and
water is allowed to drain as shown in Fig. 2.48. Estimate the time needed for
the tank to drain halfway (until h D 5 m). State all assumptions.

Figure 2.48 Water drainage from tank, Problem 2.48.
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Problem 2.49 The pressure at the water surface of a container is 4 ð 104 Pa.
The water is pumped from the container through a pipe that ends with a
nozzle with exit diameter D D 100 mm. The water flows as a free jet through
the nozzle. As shown in Fig. 2.49, the elevation of the water surface in the
container is higher by 1.5 m than the pump. Also, the exit nozzle is elevated
by 1.5 m above the pump. The free water jet leaves the nozzle with an angle
of 45° and it reaches its maximum elevation 3 m above the nozzle exit. Effects
of friction between the air and the free jet are negligible.

(a) Determine the velocity of the water jet at the exit of the nozzle.
(b) Determine the distance between the exit of the nozzle and the point

at the same elevation, through which the water jet passes.
(c) Assuming that the efficiency of the water pump is 0.8, determine

the power needed to operate the pump.
(d) Draw a schematic of the total and piezometric heads between the

container and the exit of the nozzle.

Problem 2.50 Show that for a steady one-directional flow field (u1 D u)
of an incompressible fluid with no horizontal variations (i.e., in the x1 or x2

directions) of any property, the energy equation can be simplified to

�

(
∂u

∂z

)2

D ∂ϕz
∂z

Figure 2.49 Definition sketch, Problem 2.49.
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(i.e., viscous dissipation is balanced by radiative heating). Note that the result
could be written in terms of ordinary derivatives, since variations occur only
in the x3 D z direction.

Problem 2.51 A horizontal circular pipe 1 m in diameter carries water at
a flow rate of 10 m3/s. Neglecting heat transfer through the walls, find the
temperature increase for the water traveling a length of pipe corresponding
to a pressure drop of 5 atm. (about 500 kPa). Hint: apply the integral energy
equation to a control volume bounded by the pipe walls and sections separated
by the distance indicated above. Use cv D 4200 J/kg-°C.

Problem 2.52
(a) Write the conservation equations in rectangular coordinate form for

mass, momentum, and energy for an incompressible fluid with no
motion and no horizontal variation of any quantity. Also assume
an inertial reference system.

(b) Repeat part (a), but for conditions of steady motion in one hori-
zontal direction (x, or x1) only and, like all other quantities, uniform
in horizontal directions.

Problem 2.53 Show that heat energy changes in a fixed volume d8 are given,
for a temperature change of dT, by ��cvdTd8�. You may assume that ��cv�
is constant. Following the basic procedures in deriving the basic conservation
equations, develop an equation for temperature in a fluid at rest. Although
there is no advective flow, assume that there is an average molecular velocity
U that must be considered in the balance. Also assume there is a source of
heat Q�xi, t� per unit volume, per unit time at each point of the fluid. Your
final result should look like

∂�

∂t
D �r�U��C Q

�cv

Problem 2.54 A rotating table is built for testing a scale model of a large
lake. If the horizontal length scale ratio is 1 : 105, the vertical length scale
ration is 1 : 800 (this is a distorted scale model), and the lake is at latitude 44°

(N), how fast (in rpm) should the table be rotated in order to simulate Coriolis
effects? (Hint: first decide which are the important dimensionless numbers for
this problem, arising from scaling of the momentum equations.)

Problem 2.55 Show that in a natural water body with characteristic hori-
zontal dimension L and vertical dimension H, with H − L, the characteristic
vertical velocity W should be much less than the characteristic horizontal
velocity U.
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SUPPLEMENTAL READING

Aris, R., 1962. Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-
Hall, Englewood Cliffs, New Jersey. (Provides a comprehensive description of
differences between streamlines, pathlines, etc., as well as derivation of the basic
equations of motion and the Reynolds transport theorem.)

Batchelor, G. K., 1967. An Introduction to Fluid Dynamics, Cambridge University
Press, London. (Provides a comprehensive presentation of the basic equations
of conservation.)

Pedlosky, J., 1987. Geophysical Fluid Dynamics, Springer-Verlag, New York. (A very
good intermediate level text for geostrophic flows.)
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