CHAPTER 1

1.1. GiventhevectorsM = —10a, + 4a, — 8a, and N = 8a, + 7a, — 2a,, find:
a) aunit vector in the direction of —M + 2N.

—M + 2N = 10a, — 4a, + 8a, + 16a, + 14a, — 4a, = (26, 10, 4)

Thus
B (26, 10, 4)

= =1(0.92,0.36,0.14
2= 26,10, 4) ~ 292050019

b) the magnitude of 5a, + N — 3M:
(5,0,0)+ (8,7, —2) — (=30, 12, —24) = (43, —5, 22), and |(43, —5, 22)| = 48.6.
c) IM[I2N|(M + N):

(=10, 4, —8)]|(16, 14, —4)|(—2, 11, —10) = (13.4)(21.6)(—2, 11, —10)
= (—580.5, 3193, —2902)

1.2. Giventhreepoints, A(4, 3,2), B(—2,0,5),and C(7, —2, 1):

a) Specify the vector A extending from the origin to the point A.

A=(432 =4a, +3a, + 2a,

b) Give aunit vector extending from the origin to the midpoint of line AB.
The vector from the origin to the midpoint is given by
M=(1/2)(A+B)=(1/2)(4—2,340,2+5) = (1,15, 3.5)

The unit vector will be
_(1,15,35)

m=————=- = (0.25, 0.38, 0.89)
(1, 1.5, 3.5)|

¢) Calculate the length of the perimeter of triangle ABC:

Beginwith AB = (-6, —3, 3), BC = (9, -2, —4), CA = (3, -5, —1).
Then

|AB| + |BC| + |CA| = 7.35+ 10.05 + 5.91 = 23.32

1.3. The vector from the origin to the point A is given as (6, —2, —4), and the unit vector directed from the

origin toward point B is (2, —2, 1)/3. If points A and B are ten units apart, find the coordinates of point
B.

With A = (6, —2, —4) and B = 1 B(2, -2, 1), we use thefact that |B — A| = 10, or
|(6—2B)a, — (2— 2B)a, — (4+ 1B)a,| = 10

Expanding, obtain

36— 8B+ B> +4— 3B+ gB?+16+ 5B + §B% =100

or B2 — 8B — 44 = 0. Thus B = 38176 — 11 75 (taking positive option) and so

2 2 1
B = (11752, — (1175, + ~(1175)a. = 7.83a — 7.83a, + 3.92a,
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1.4. given points A(8, —5, 4) and B(—2, 3, 2), find:
a) thedistancefrom A to B.

IB—-A|=](-10,8, —2)| = 12.96

b) aunit vector directed from A towards B. Thisis found through

B—A
IB—Al

asp = = (-0.77,0.62, —0.15)

c) aunit vector directed from the origin to the midpoint of the line AB.

_ (A+B)2 _ (3,-13)
MTIA¥BY2 T J19

= (0.69, —0.23, 0.69)

d) the coordinates of the point on the line connecting A to B at which the lineintersectsthe planez = 3.
Note that the midpoint, (3, —1, 3), asdetermined from part ¢ happensto have z coordinate of 3. This
is the point we are looking for.

1.5. A vector field is specified as G = 24xya, + 12(x? + 2)a, + 18z%a,. Given two points, P(1, 2, —1) and
0(-2. 1, 3), find:
a Gat P: G(1,2, —1) = (48, 36, 18)

b) aunit vector inthedirectionof G at Q: G(—2, 1, 3) = (—48, 72, 162), s0

| (—48,72,162)

= = (—-0.26, 0.39, 0.88
[(—48, 72, 162)| ( : : )

¢) aunit vector directed from Q toward P:

P-Q (3-14

= = (0.59, 0.20, —0.78)
IP—Ql V26

dgp =

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z2)|, or
10 = |(4xy, 2x2 + 4, 3z2)|, so the equation is

100 = 16x2y? + 4x* + 16x2 + 16 + 9z*




1.6. For the G field in Problem 1.5, make sketches of G, G, G, and |G| along theliney = 1, z = 1, for
0 <x <2 Wefind G(x,1,1) = (24x, 12x2 + 24, 18), from which G, = 24x, G, = 12x? + 24,
G, = 18, and |G| = 6+/4x* + 32x2 + 25. Plots are shown below.

Problem 1.6

1.7. Giventhe vector field E = 4zy? cos2xa, + 2zy Sin2xa, + y2 sin2xa, for theregion |x|, |y, and |z| less
than 2, find:
a) the surfaces on which E, = 0. With E, = 2zy sin2x = 0, the surfaces are 1) the plane z = 0, with
x| < 2, |y| < 2; 2)theplaney = 0, with |x| < 2, |z| < 2; 3)theplanex = 0, with|y| < 2, |z] < 2;
4) theplane x = /2, with |y| < 2, |z] < 2.

b) theregioninwhich E, = E,: Thisoccurswhen 2zy sin2x = y?sin 2x, or on the plane 2z = y, with
x| <2, [yl <2zl < L. E—

c) the region in which E = 0: We would have E, = E, = E; = 0, or zy?cos2x = zySn2x =
y2sin2x = 0. This condition ismet on the plane y = 0, with |x| < 2, |z| < 2.

1.8. Two vector fieldsareF = —10a, +20x(y — 1)a, and G = 2x?ya, —4a, +za,. Forthepoint P(2, 3, —4),
find:
a) |F|: Fat (2,3, —4) =(-10, 80, 0), so |F| = 80.6.
b) |IG]: Gat(2, 3, —4) = (24, -4, -4),s0 |G| = 24.7.
¢) aunit vector inthedirectionof F — G: F — G = (—10,80,0) — (24, —4, —4) = (—34, 84, 4). So

4o F-G (34,844
IF=G| 90.7

= (—0.37,0.92, 0.04)

d) aunit vector inthedirectionof F+ G: F+ G = (—10, 80, 0) + (24, —4, —4) = (14, 76, —4). So

4. FTG _ (14764
F+G] 774

= (0.18,0.98, —0.05)
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19. Afieldisgivenas

G = m(xax + yay)

Find:
a) aunit vector inthedirectionof G at P(3, 4, —2): Have G, = 25/(9+ 16) x (3, 4,0) = 3a, + 4a,,
and |G,| =5. Thusag = (0.6, 0.8, 0).

b) the angle between G and a, a P: The angle is found through a; - a, = cosf. So cosf =
(0.6,0.8,0) - (1,0,0) = 0.6. Thusg = 53°.

¢) the value of the following double integral on the planey = 7:

4 p2
//G-aydzdx
0 JO
/4/2 25 (xay + yay) - a,dzd f4/2 25 Tdzd /4 350d
———5 (X . ) X = X X = X
o Jo x2+y2 * TSy yaz o Jo X2—|-49 ¢ 0 x2+49

1 4
=350x = |tan"l(=)—-0|=26
X?[a” <7> } =

1.10. Use the definition of the dot product to find the interior angles at A and B of the triangle defined by the
threepoints A(1, 3, —2), B(—2,4,5),and C(0, —2, 1):
a) UseRsp = (-3, 1,7 and Rsc = (-1, —5,3) toform R4p - Rac = |Ra||Rac|cosb4. Obtain
3+ 5+ 21 = +/59//35c0s6,. Solvetofind 64 = 65.3°.
b) UseRps = (3, -1, -7) and Rgc = (2, -6, —-4) toformRg4 - Rpec = IRga||IRBC| COSOB. Obtain
6+ 6+ 28 = v/59./56 cosf. Solvetofind 6z = 45.9°.

1.11. Giventhepoints M (0.1, —0.2, —0.1), N(—0.2,0.1, 0.3), and P (0.4, 0, 0.1), find:
a) thevector Ryv: Ryny =(—0.2,0.1,0.3) — (0.1, —0.2, —0.1) = (—0.3,0.3,0.4).

b) the dot pl'OdUCt Ry~ -Rup: Ryp =(04,0,0.1) — (0.1, -0.2,-0.1) = (0.3,0.2,0.2). Ryn -
Rup = (—0.3,0.3,0.4) - (0.3,0.2,0.2) = —0.09 + 0.06 + 0.08 = 0.05.

¢) the scalar projection of Ry;y on Ry p:

(0.3,0.2,0.2) 0.05 012

Ruyn - arup = (—0.3,0.3,0.4) - =
MN - apmp = ( )\/0.09+o.04+0.04 V017 T

d) the angle between Ry;y and Ry p:

_1( Run -Rup ) 1 ( 0.05 )
Oy = COS 1 (— = COS - | =78
Y IRy IRupl J0.34/0.17




1.12. Given points A(10, 12, —6), B(16, 8, —2), C(8, 1, —4), and D(—2, —5, 8), determine;
a) the vector projection of Rap + Rgc 0N R4p: Rap + Rpe = Rac = (8,1, 4) — (10,12, —6) =
(—2,-11,10) ThenRsp = (-2, -5, 8) — (10, 12, —6) = (—12, —17, 14). So the projection will
be:

= (—6.7,-9.5,7.8)

(—12, —17,14) 7 (=12, —17, 14)
(Rac - arap)arap = |:(—2, —11,10) - ]

/629 /629

b) thevector projectionof R4 + Rgc onRpc: Rpe = (8, —1,4) — (-2, -5, 8) = (10, 6, —4). The
projectioniis:

= (—8.3,-5.0,3.3)

(109 65 _4) (10’ 65 _4)
(Rac -arpc)arpc = [(—2, —-11, 10) - ]

/152 /152

C) the angle between Rp4 and Rpc: UseRps = —Rup = (12,17, —14) and Rpc = (10, 6, —4).
The angleis found through the dot product of the associated unit vectors, or:

(12,17, -14) - (10, 6, —4)>
/6294152

= 26°

0p = cos Y(arpa - arpc) = cos ! <

1.13. a) Find the vector component of F = (10, —6, 5) that is paralel to G = (0.1, 0.2, 0.3):

_F-G_  (10,-6,5-(0.1,0.2,0.3)
T |GI2T  0.01+0.04+0.09

Flo (0.1,0.2,0.3) = (0.93, 1.86, 2.79)

b) Find the vector component of F that is perpendicular to G:
Foc = F — Fjjc = (10, —6,5) — (0.93, 1.86, 2.79) = (9.07, —7.86, 2.21)

¢) Find the vector component of G that is perpendicular to F:

G-F 13
Gpr =G—Gjp =G— ——F=(01,0203 - ——— (10, -6, 5) = (0.02, 0.25,0.26
e e =l )" 100436+ 25" )= { )

1.14. The four vertices of a regular tetrahedron are located at O(0, 0, 0), A(O, 1, 0), B(O.5J§, 0.5,0), and
C(+/3/6,0.5, /2/3).
a) Find aunit vector perpendicular (outward) to the face ABC: First find
Rga x Rpe = [(0, 1, 0) — (0.5v/3, 0.5, 0)] x [(+/3/6, 0.5, /2/3) — (0.5v/3, 0.5, 0)]
= (—0.5v/3,0.5,0) x (—/3/3,0,/2/3) = (0.41, 0.71, 0.29)
The required unit vector will then be:
Rpa x Rpe

= (0.47,0.82,0.33)
IRpa X Rpcl|

b) Find the area of theface ABC:

1
Area = §|RBA x Rgc| = 0.43



1.15. Threevectorsextendingfromtheoriginaregivenasr, = (7,3, —2),r> = (2,7, —3),andr3 = (0, 2, 3).
Find:

a) aunit vector perpendicular to bothr1 and r:

. 1 Xrp . (5, 25,55)
~Irixral 606

ap12 = (0.08,0.41, 0.91)

b) aunit vector perpendicular to the vectorsry —roandro —r3: r1—r2 = (9, —4,1) andrp —r3 =
(=2,5,—6). Sor; —ro xrp —rz = (19, 52, 32). Then

_(19,52,32) (19,52, 32)
?7(19,52,32)| ~ 6395

= (0.30, 0.81, 0.50)

¢) theareaof thetriangle defined by rq and r:

1
Area = §|r1 x o] = 30.3
d) the areaof the triangle defined by the heads of r1, r, and rs:

1 1
Area = El(rz —r1) x(rz—r3)| = §|(_9’ 4,-1) x (=2,5, —6)| = 32.0
1.16. Describe the surfaces defined by the equations:
a r-a, =2 wherer = (x, y, z): Thiswill bethe planex = 2.

b) Irxa, =2 rxa, =(0,z,—y),and |r x a,| = +/z2 + y2 = 2. Thisisthe equation of acylinder,
centered on the x axis, and of radius 2.

1.17. Point A(—4, 2, 5) and the two vectors, R4 = (20, 18, —10) and R4y = (—10, 8, 15), define atriangle.
a) Find aunit vector perpendicular to the triangle: Use

. RAM X RAN . (350, —200, 340)

"~ |Ram x Ran| 527.35
The vector in the opposite direction to this oneis also avalid answer.

b) Find aunit vector in the plane of the triangle and perpendicular to R4 n:

_ (=10, 8, 15)

V389

p = (0.664, —0.379, 0.645)

asy — (—0.507, 0.406, 0.761)
Then

apan = a, x aay = (0.664, —0.379, 0.645) x (—0.507, 0.406, 0.761) = (—0.550, —0.832, 0.077)

The vector in the opposite direction to this oneis also avalid answer.

¢) Find aunit vector in the plane of the triangle that bisects the interior angleat A: A non-unit vector
in the required direction is (1/2)(aay + aan), Where

(20, 18, —10)

= ———— = (0.697,0.627, —0.348
[(20, 18, —10)| ( )

aam



1.17c. (continued) Now
1 1
E(aAM +asn) = E[(O'697’ 0.627, —0.348) + (—0.507, 0.406, 0.761)] = (0.095, 0.516, 0.207)

Finally,
(0.095, 0.516, 0.207)

&is = 110,095, 0.516, 0.207)]

= (0.168, 0.915, 0.367)

1.18. Givenpoints A(p =5,¢ = 70°,z = —3) and B(p = 2, ¢ = —30°, z = 1), find:

a) unit vector in cartesian coordinates at A toward B: A(5cos70°,5sin70°, —3) = A(1.71,4.70, —3), In
the same manner, B(1.73, —1,1). SoRsp = (1.73, —-1,1) — (1.71, 4.70, —3) = (0.02, —5.70, 4) and

therefore (0.02, —5.70, 4)
agp= —— " _(0.003, —0.82,0.57
48 = 1(0.02, =5.70, 4)| ( )

b) avector in cylindrical coordinates at A directed toward B: asp - a, = 0.003cos70° — 0.82sin70° =
—0.77. ayp - 8y = —0.003sin 70° — 0.82cos70° = —0.28. Thus

asp = —0.77a, — 0.283,4 + 0.574a,

¢) aunit vector in cylindrical coordinates at B directed toward A:
Useags = (—0, 003, 0.82, —0.57). Thenag,4 -a, = —0.003 cos(—30°) +0.82sin(—30°) = —0.43, and
apa - a4 = 0.003sin(—30°) + 0.82cos(—30°) = 0.71. Finaly,

aga = —0.43a, + 0.71a, — 0.57a,

1.19 &) Expressthe fidld D = (x2 + y2)~1(xa, + ya,) in cylindrical components and cylindrical variables:
Havex = pcos¢, y = psing, and x2 + y2 = p2. Therefore

1
D = —(cos¢a, + singay)
P

Then
1 1 1
D,=D-a, = A [cose(as - a,) +sing(ay, -a,)] = B [Cosz(p +sin2¢] =

and
Dy=D-a; = % [cosg(a, - ag) +sing(ay - ay) ] = %[cos¢(—sin¢) +sing cos¢] =0

Therefore



1.19b. Evaluate D at the point where p = 2, ¢ = 0.2, and z = 5, expressing the result in cylindrical and
cartesian coordinates: At the given point, and in cylindrical coordinates, D = 0.5a,. To express thisin
cartesian, we use

D = 0.5(a, - a,)a, + 0.5(a, - ay)a, = 0.5cos36°a, + 0.5sin36°a, = 0.41a, + 0.29a,

1.20. Expressin cartesian components:
a) the vector at A(p = 4,¢ = 40°,z = —2) that extendsto B(p = 5,¢ = —110°,z = 2): We
have A(4cos40°,4sin40°, —2) = A(3.06,2.57, —2), and B(5c0s(—110°),5sn(—110°),2) =
B(—1.71, —4.70, 2) in cartesian. ThusR 5 = (—4.77, —7.30, 4).

b) aunit vector at B directed toward A: HaveRps = (4.77,7.30, —4), and sO

(4.77,7.30, —4)
- — (0.50,0.76, —0.42
A4 = 1477,7.30, )~ 022076, 2049)

C) a unit vector at B directed toward the origin. Haverp = (—1.71,-4.70,2), and O —rpg =
(1.71,4.70, —2). Thus

_(1.71,4.70, -2)

a= = (0.32,0.87, —0.37
[(1.71, 4.70, —2)| ( )

1.21. Expressin cylindrical components:

a) thevector from C (3,2, —7) to D(—1, —4, 2):
C@3,2,-7 - C(p=361,¢=337°,z=-7)and
D(-1,-4,2) > D(p =4.12,¢p = —-104.0°, z = 2).
Now Recp = (—4,—-6,9) and R, = Rcp - a, = —4c0s(33.7) — 6sin(33.7) = —6.66. Then
Ry =Rcp -ay =48in(33.7) — 6¢0s(33.7) = —2.77. SOR¢cp = —6.66a, — 2.77a4 + 9a,

b) aunit vector at D directed toward C:
Rep = (4,6, -9) and R, = Rpc - @, = 4cos(—104.0) + 6sin(—104.0) = —6.79. Then Ry =
Rpc - ag = 4[—sin(—104.0)] + 6cos(—104.0) = 2.43. SoRpc = —6.79a, + 2.43a4 — 9a,
Thusapc = —0.59a, + 0.21a; — 0.784a,

C) aunit vector at D directed toward the origin: Start withr p = (—1, —4, 2), and so the vector toward
the origin will be —rp = (1, 4, —2). Thusin cartesian the unit vector isa = (0.22, 0.87, —0.44).
Convert to cylindrical:

a, = (0.22,0.87, —0.44) - a, = 0.22 cos(—104.0) + 0.87sin(—104.0) = —0.90, and
ag = (0.22,0.87, -0.44) - a4 = 0.22[—sin(—104.0)] + 0.87cos(—104.0) = O, so that finally,
a= —0.90a, — 0.44a,.

1.22. A fieldisgivenin cylindrical coordinates as
40 . :
F= p2—+1 + 3(cos¢ +sing) | a, + 3(cos¢ — sing)ay — 2a,

where the magnitude of F isfound to be;

1600 240 1/2
Fl=+vF-F= Cos¢ + sin 22
a [(p2+1)2+p2+1( prsnd)+ }



Sketch |F|:
a) vs. ¢ with p = 3: inthis case the above simplifiesto

IF(p = 3)| = |Fa| = [38 + 24(cos¢ + sing)]Y/?

b) vs. p with¢ = 0, in which:

1 24 1/2
600 0 2 2}

IF(¢p = 0)| = |[Fb| = [(pzﬂ)z t o

C) vs. p with ¢ = 45°, inwhich

1/2
1600 240+/2
V2 22:|

F@=a01=1rd = [(p2+1>2 e

Problem 1.22a

0 1.57" 3.14 471 6.28
angle (rad)
— |Fa
Problem 1.22b and ¢
50 1 T ] |




1.23. Thesurfacesp =3, p =5, ¢ = 100°, ¢ = 130°, z = 3, and z = 4.5 define a closed surface.

a) Find the enclosed volume:
45 £130° (5
Vol :/ [ / pdpdpdz = 6.28
3 Jiwo J3

NOTE: The limits on the ¢ integration must be converted to radians (as was done here, but not shown).

b) Find the total area of the enclosing surface:

130° 5 4.5 130°
Area=2/ / pdpdg +f f 3de dz
100° 3 3 100°

45 (130° 45 5
+ / / S5dpdz + 2/ / dpdz =20.7
3 100° 3 3

¢) Findthetotal length of the twelve edges of the surfaces:

(o} o}

30
Length=4x15 + 4x2 + 2X[360° x 2m x 3 + 360°

X 27T X 5i| = 22.4

d) Find the length of the longest straight line that lies entirely within the volume: Thiswill be between
the points A(p = 3, ¢ = 100°, z = 3) and B(p = 5, ¢ = 130°, z = 4.5). Performing point
transformations to cartesian coordinates, these become A(x = —0.52, y = 2.95, z = 3) and B(x =

—3.21, y = 3.83,z = 4.5). Taking A and B as vectors directed from the origin, the requested length
is

Length = [B — A| = |(—2.69, 0.88, 1.5)| = 3.21

1.24. At point P(—3, 4, 5), express the vector that extendsfrom P to Q(2, 0, —1) in:

a) rectangular coordinates.
Rpp =Q—P=05a, —4a, — 6a,

Then |RPQ| =4/25+16+36=8.8
b) cylindrical coordinates. At P, p =5, ¢ = tan~1(4/ — 3) = —53.1°, and z = 5. Now,

Rpo-a, = (5a, —4a, —6a,;) -a, = 5c0S¢ —4sing = 6.20

Rpo -ay = (5a, —4a, — 6a;) - ay = —5sin¢ — 4cos¢ = 1.60
Thus
Rpo = 6.20a, + 1.60ay — 6a,

and |Rpo| = /6.202 + 1.602 + 62 = 8.8

c) spherical coordinates. At P, r = +/9+ 16+ 25 = /50 = 7.07, 6 = cos 1(5/7.07) = 45°, and
¢ =tan1(4/ — 3) = —53.1°.

Rpo -a- = (5a, —4a, — 6a;) - a, = 5sin6 cos¢ — 4sinf sing — 6¢cosé = 0.14

Rpo -a = (5a, —4a, — 6a,) - & = 5c0s6 cos¢ — 4cosh sing — (—6) sind = 8.62
Rpo -ay = (58, — 4a, — 6a;) - ay = —5sin¢ — 4cos¢ = 1.60

10



1.24. (continued)

Thus
RPQ = 0.14a, + 8.62ay + 160845

and |Rpg| = +/0.142 + 8.622 + 1.602 = 8.8

d) Show that each of these vectors has the same magnitude. Each does, as shown above.

1.25. Given point P(r = 0.8, 6 = 30°, ¢ = 45°), and

1 sing
E=—|(cos -

r2 ( oo+ sinf a¢)
a) FindE at P: E = 1.10a, + 2.21a.

b) Find |[E| at P: |E| = +/1.102 + 2.212 = 2.47.

¢) Find aunit vector inthedirection of E at P:

E
ag = E = 0.45a, + 0.89a,

1.26. a) Determine an expression for a, in spherical coordinates at P(r = 4, 6 = 0.27, ¢ = 0.87): Use
a,-a, =sindsing =0.35,a, -8y = cosf sing = 0.48,and a, - ay = cos¢ = —0.81 to obtain

a, = 0.35a, + 0.482y — 0.81a4

b) Express a, in cartesian componentsat P: Find x = rsinf cos¢ = —1.90, y = rsiné sing = 1.38,
and z = rcosf = —3.24. Thenuse a, - a, = sinfcos¢p = —0.48, a, - a, = sindsing = 0.35, and
a, -a, = cosd = 0.81 to obtain

a- = —0.48a, + 0.35a, + 0.81a,

1.27. Thesurfacesr = 2and 4, 6 = 30° and 50°, and ¢ = 20° and 60° identify a closed surface.
a) Find the enclosed volume: Thiswill be

60° 50° 4
Vol = / / r’sin0drdode = 2.91
200 Jaoe J2
where degrees have been converted to radians.
b) Find thetotal areaof the enclosing surface:
60° 50° 4 60°
Area = (4% + 2°)sin6dod¢ + / / r(sin30° 4 sin50°)drd¢
200 Jao 2 Jooe

50° 4
+ 2/ / rdrdd = 12.61
30° 2

¢) Find thetotal length of the twelve edges of the surface:

4 50° 60°
Length = 4/ dr + 2/ (44 2)do +/ (4sin50° +4sin30° 4- 2sin50° + 2sin30°)d¢
2 30° 20°
= 17.49
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1.27. (continued)

d) Find the length of the longest straight line that lies entirely within the surface: This will be from
A(r=2,0 =50°, ¢ =20°)to B(r = 4,6 = 30°, ¢ = 60°) or

A(x = 2sin50° cos20°, y = 2sin50° sin20°, z = 2c0s50°)

to
B(x = 4sin30° cos60°, y = 4sin30° sin60°, z = 4c0s30°)

or finally A(1.44,0.52, 1.29) to B(1.00, 1.73, 3.46). ThusB — A = (—0.44, 1.21, 2.18) and
Length=|B — A| = 253
1.28. @) Determine the cartesian components of the vector from A(r = 5,0 = 110°, ¢ = 200°) to B(r =
7,0 = 30°, ¢ = 70°): First transform the points to cartesian: x4 = 5sin110° cos200° = —4.42,
ya = 58n110°sin200° = —1.61, and z4 = 5c0s110° = —1.71; xp = 7sin30°cos70° = 1.20,
yg = 7sin30°sin70° = 3.29, and zz = 7c0s30° = 6.06. Now

Rap =B — A =5.62a¢ +4.90a, + 7.77a,

b) Find the spherical components of the vector at P (2, —3, 4) extending to Q(—3, 2,5): First, Rpgp =
Q—-P = (-551). Thena P, r = /4+9+ 16 = 5.39, 6 = cos 1(4/+/29) = 42.0°, and ¢ =
tan~1(—3/2) = —56.3°. Now

Rpo - a8 = —5sin(42°) cos(—56.3°) 4+ 5sin(42°) sin(—56.3°) 4+ 1cos(42°) = —3.90
Rpo - @ = —5c0s(42°) cos(—56.3°) 4 5c0s(42°) sin(—56.3") — 1sin(42°) = —5.82

Rpo - ap = —(—5) sin(—56.3°) + 5c0s(—56.3°) = —1.39

So findly,
Rpo = —3.90a, — 5.82a9 — 1.39%

c) If D = 5a, — 3ay + 4ay, find D - a, a M(1, 2, 3): First convert a, to cartesian coordinates at the
specified point. Usea, = (a, - a,)a, + (&, - ay)a,. At A(1,2,3), p = VB, ¢ = tan"1(2) = 63.4°,
r = /14, and § = cos 1(3/+/14) = 36.7°. So a, = cos(63.4°)a, + sin(63.4°)a, = 0.45a, + 0.89,.

Then
(53, — 33y + 4ay) - (0.45a, + 0.89,) =

5(0.45)sinf cos¢ + 5(0.89)sindsing — 3(0.45) cosé cos¢
— 3(0.89) cosfsing + 4(0.45)(—sing) + 4(0.89) cos¢ = 0.59

1.29. Expressthe unit vector a, in spherical components at the point:
a r=20=1rad, ¢ = 0.8rad: Use

a = (ax : ar)ar + (ax ' a@)aﬁ + (ax ' aqb)agb =
sin(1) cos(0.8)a, + cos(1) cos(0.8)ag + (—sin(0.8))a, = 0.59a, + 0.38a9 — 0.72a

12



1.29 (continued) Express the unit vector a, in spherical components at the point:
b) x = 3,y = 2,z = —1 Firgt, transform the point to spherical coordinates. Have r = /14,
6 = cos 1(—1/4/14) = 105.5°, and ¢ = tan—1(2/3) = 33.7°. Then

a, = sin(105.5°) cos(33.7°)a, + c0s(105.5°) cos(33.7°)ay + (— Sin(33.7°))ay
= 0.80a, — 0.22ay — 0.55a

c) p=25¢ =0.7rad, z = 1.5: Again, convert the point to spherical coordinates. r = /p2 + z2 =
V85, 6 = cos1(z/r) = cos1(1.5/4/8.5) = 59.0°, and ¢ = 0.7rad = 40.1°. Now

a, = sin(59°) cos(40.1%)a, + cos(59°) cos(40.1°)ag + (—sin(40.1%))ay
= 0.66a, + 0.39ay — 0.64a,4

1.30. Given A(r = 20,0 = 30°, ¢ = 45°) and B(r = 30, 6 = 115°, ¢ = 160°), find:

a) |Rapl: First convert A and B to cartesian: Have x4 = 20sin(30°) cos(45°) = 7.07, ya =
20sin(30°) sin(45°) = 7.07, and z4 = 20co0s(30°) = 17.3. xg = 30sin(115°) cos(160°) = —25.6,
yg = 30sin(115°) sin(160°) = 9.3, and zz = 30cos(115°) = —12.7. Now Ry = Rz — R4 =
(—32.6,2.2, —30.0), and s0 |R4 | = 44.4.

b) |Racl, given C(r = 20,0 = 90°,¢ = 45°). Again, converting C to cartesian, obtain x¢ =
20sin(90°) cos(45°) = 14.14, y¢ = 20sin(90°) sin(45°) = 14.14, and z¢ = 20¢0s(90°) = 0. So
Rac = Rc — Ra = (7.07,7.07, —17.3), and |[Rs¢| = 20.0.

¢) thedistancefrom A to C onagreat circle path: Notethat A and C sharethe samer and ¢ coordinates;
thus moving from A to C involves only achangein 6 of 60°. The requested arc length is then

21
distance 0 x [60 (360)} 0.9

13



CHAPTER 2

2.1

2.2.

2.3.

Four 10nC positive charges are located in the z = 0O plane at the corners of a square 8cm on a side.
A fifth 10nC positive charge is located at a point 8cm distant from the other charges. Calculate the
magnitude of the total force on thisfifth charge for € = €o:

Arrange the charges in the xy plane at locations (4,4), (4,-4), (-4,4), and (-4,-4). Then the fifth charge
will be on the z axis at location z = 4+/2, which puts it at 8cm distance from the other four. By
symmetry, the force on the fifth charge will be z-directed, and will be four times the z component of
force produced by each of the four other charges.

4 q° 4 (1082
— X —— =X
V2  4mepd? /2 4m(8.85x 10-12)(0.08)2

—40x 104N

A charge Q1 = 0.1 uC islocated at the origin, while Q> = 0.2 uCisat A(0.8, —0.6, 0). Find the
locus of pointsinthe z = 0 plane at which the x component of the force on athird positive charge is
zero.

To solve this problem, the z coordinate of the third charge is immaterial, so we can place it in the
xy plane at coordinates (x, y, 0). We take its magnitude to be Q3. The vector directed from the first
charge to the third is Ri3 = xa, + ya,; the vector directed from the second charge to the third is
Roz = (x — 0.8)a, + (y + 0.6)a,. Theforce on the third charge is now

_ Qs [Q1R13 Q2R23]
°7 4neo [ IRl [Ral?

_ 03x10°°[0.1(xa, +ya,)  0.2[(x —0.8)a, + (y + 0.6)a,]
- [ (x2 4 yA)L> [(x —0.8)2+ (y +0.6)7]1> ]

4meq

We desire the x component to be zero. Thus,

B [ 0.1xa, N 0.2(x — 0.8)a, }
L (249215 T [(x — 0.8)2 + (y + 0.6)2]15

or
x[(x — 0.82+ (y + 0.6)2]5 = 2(0.8 — x)(x2 + y?)15

Point charges of 50nC each are located at A(1, 0, 0), B(—1, 0, 0), C(0, 1,0), and D(0, —1, 0) in free
space. Find the total force on the chargeat A.

The force will be:

F_ (50 x 1079)2 [ Rca Rpa Rga ]
T 4re IRcal® * IRpal®  IRpal®

whereRca = a, —ay, Rpa = a, +a,, and Rp4 = 2a,. Themagnitudesare |[Rca| = [Rpal = V2,
and [Rpa| = 2. Substituting these leads to

F_(50><10—9)2[ 1 1 2

+ + - |ay =21.5a, uN

4meg

where distances are in meters.
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24. Let Q1 =8 uCbelocated at P1(2, 5, 8) while Q2 = -5 uCisat P»(6, 15, 8). Let € = ¢q.
a) Find F2, theforce on Q2: Thisforcewill be
0102 Rz (8x107°°(-5x 107°) (4a, 4 10a,)
" dmeg |R123 4y e (116)15

= (—1.15a, — 2.88a,) MmN

b) Find the coordinates of Ps if a charge Q3 experiences atotal force F3 = 0 at P3: Thisforcein
general will be:

= 03 [Q1R13 Q2R23}
4reg | |IR13l®  |Ro3f3

where Ri3 = (x — 2)a, + (y — 5)a, and Rz = (x — 6)a, + (y — 15)a,. Note, however, that
all three charges must lie in a straight line, and the location of Q3 will be along the vector R
extended past Q». The slope of thisvector is (15 — 5)/(6 — 2) = 2.5. Therefore, we look for P3
at coordinates (x, 2.5x, 8). With thisrestriction, the force becomes:

03 [ 8l(x —2)ay +2.5(x — 2)ay] B 5[(x — B)a, + 2.5(x — 6)a,]

Cdmeg [[(x — 22+ (25)2(x — 2215 [(x — 6)2 + (25)2(x — 6)q]15
where we require the term in large brackets to be zero. Thisleadsto

8(x — 2[((2.5)% + 1 (x — 6)7]*° = 5(x — B)[((2.5)° + DH(x — 2)]*° =0
which reducesto

8(x —6)2—5x—2°=0
or

64/8 — 24/5
—\/_ \/_= 11

S BB
The coordinates of P3 arethus P3(21.1, 52.8, 8)

X

2.5. Let apoint charge 0125 nC belocated at P1(4, —2, 7) and acharge Q2 = 60 nC be at P>(—3, 4, —2).
a) If e =¢p, findE a P3(1, 2, 3): Thisfield will be
1079 [25R13  60Rp3
e [|R13|3 |R23|3}

whereR13 = —3a, +4a, —4a; andRy3 = 4a, —2a,+5a;. Also, |R13| = v/4land |Ro3| = v/45.
So

g_10° [25 x (38, +4ay — da;) | 60 x (4a; —2a, + 5az)]

= e (41)1'5 (45)1,5
= 4.58a, — 0.15a, + 5.51a,

b) Atwhat point onthey axisis E, = 0? Pzisnow at (0, y, 0), S0 R13 = —4a, + (y + 2)a, — 73,

and Roz = 3a, + (y — 4)a, + 2a;. Also, |R13| = /65 + (y + 2)2and |R23| = 13+ (v — 4)2.

Now the x component of E at the new Ps will be:
_ 1079 Bx(H 60 x 3
T 4meo [[65+ (y + 2215 T [134 (y — 42O

To obtain E, = 0, we require the expression in the large brackets to be zero. This expression
simplifies to the following quadratic:

0.48y? + 13.92y + 73.10 = 0
which yieldsthetwo values: y = —6.89, —22.11

E
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2.6. Point charges of 120 nC arelocated at A(0, 0, 1) and B(0, 0, —1) in free space.
a) FindE at P(0.5,0,0): Thiswill be

120 x 10—9[ Rap Rgp }
" RapP " Rppl3

4meq
whereR4p = 0.5a, —a, and Rgp = 0.5a, + a,. Also, |[Rap| = |Rpp| = +~/1.25. Thus:

120 x 10~ %a,

P = 4 (1.25)15¢,

= 772V/m

b) What single charge at the origin would provide the identical field strength? We require

Qo

— =772
477€0(0.5)2

from which wefind Qg = 21.5nC.

2.7. A 2 uC point chargeislocated at A(4, 3, 5) infree space. Find E,, E4, and E; a P(8, 12, 2). Have

2x107® Rap  2x10°°[4a, +9a, —3a
Ep = - | = 65.9a, + 148.3a, — 49.4a
"= Tanee RapP - dneo [ (106)15 } s Sy ‘

Then, at point P, p = V& + 122 = 14.4, ¢ = tan—1(12/8) = 56.3°, and z = z. Now,
E,=E,-a, =659, -a,) + 148.3(a, - a,) = 65.9c0s(56.3") + 148.3sin(56.3°) = 159.7
and

Ey =E, -ay =65.9(a, - ay) + 148.3(a, - ay) = —65.9sin(56.3°) + 148.3c0s(56.3°) = 27.4

Finally, E, = —49.4

2.8. Given point chargesof —1 uC at P1(0, 0, 0.5) and P»(0, 0, —0.5), and acharge of 2 . C at the origin,
findE a P (0, 2, 1) in spherical components, assuming € = «o.
Thefield will take the general form:

10—6[ R1 2R» Rg]

Ep - + —
IRi®  |R2®  |Rs®

o 4req

whereR1, R2, Rz arethevectorsto P from each of the chargesintheir original listed order. Specifically,
R1=1(0,2,05),R2=1(0,2,1),and R3 = (0, 2, 1.5). The magnitudes are |R1| = 2.06, |R2| = 2.24,
and |R3| = 2.50. Thus

106 [—(o, 2,05 20,21 (0,215

Ep (2.06)3 (2243 (2503

= = 89.9a, + 179.8a
4 eg ] v+ ¢

Now, at P, r = /5,6 = cos 1(1/4/5) = 63.4°, and ¢ = 90°. So
E, =Ep-a =89.9(a, - &) + 179.8(a, - &) = 89.9sind sin¢ + 179.8cosd = 160.9

Eg =Ep-ay =89.9(a, - ag) + 179.8(a; - ay) = 89.9cosh sing + 179.8(—sinh) = —120.5
Ey =Ep-a5 =89.9(a, - ay) +179.8(a; - ay) = 89.9cos¢ = 0

16



2.9. A 100 nC point chargeislocated at A(—1, 1, 3) in free space.
a) Findthelocus of al points P(x, y, z) a which E, = 500 V/m: Thetotal field at P will be:

100 x 1079 Ryp
Ep =

dreg  |Rapl®

whereRsp = (x + Da, + (y — Da, + (z — 3)a;, and where [Rap| = [(x + D2+ (y — 1%+
(z — 3)4]%2. The x component of the field will be

100 x 107° [ (x 4+ 1)

X — [(x+1)2+(y_1)2+(Z_3)2]151| :5OOV/m

4 e

And so our condition becomes:

(x+1) =056[(x + D2+ (y — D% + (z — 3

b) Find y; if P(—2, y1, 3) lieson that locus: At point P, the condition of part a becomes
RE
319 = [1+ (y1— 1) ]

from which (y1 — 1)2 = 0.47, or y; = 1.69 or 0.31

2.10. Charges of 20 and -20 nC are located at (3, 0, 0) and (—3, 0, 0), respectively. Let € = ¢p.
Determine |E| a P (0, y, 0): Thefield will be

_20x10_9[ Ri R ]

P7 ey [R1PR2P

where R1, the vector from the positive charge to point P is (—3, y, 0), and R», the vector from
the negative charge to point P, is (3, y, 0). The magnitudes of these vectors are |R1| = |R2| =
V9 + y2. Substituting these into the expression for E » produces

_20x107°[  —6a,
4mreq

P = 9+ y2)L5
from which
1079

= (9 4 y2)1.5 V/m

|Ep]|

2.11. A charge Qo located at the origin in free space produces a field for which £, = 1 kV/m at point
P(-2,1,-1).

a) Find Qq: Thefield at P will be

Ep— Qo [-2a,+ay—a,
4 eg 615

Since the z component is of value 1 kV/m, wefind Q¢ = —4mreg6-° x 103 = —1.63 uC.
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2.11. (continued)
b) FindE at M (1, 6, 5) in cartesian coordinates: Thisfield will be:

Ey =

~1.63x 107 [ a, + 6a, + 5a, }

4 e [1+ 36 + 25]15

or Ey = —30.11a, — 180.63a, — 150.53a;.

¢) FindE at M(1, 6,5) in cylindrical coordinates: At M, p = +/1+ 36 = 6.08, ¢ = tan~1(6/1) =
80.54°, and z = 5. Now

E, =Em-a, =—-30.11cos¢ — 180.63sin¢y = —183.12

Ey =Epy -8y = —30.11(—sing) — 180.63cos¢ = 0 (as expected)
so that Ey = —183.12a, — 150.53a;.

d) FindE at M (1, 6, 5) in spherical coordinates. At M, r = /1+ 36+ 25 = 7.87, ¢ = 80.54° (as
before), and # = cos~1(5/7.87) = 50.58°. Now, since the charge is at the origin, we expect to
obtain only aradial component of E,;. Thiswill be:

E, =Ey -a, = —30.11sin6 cos¢ — 180.63sin6 sin¢g — 150.53cosf = —237.1

2.12. The volume charge density p, = poe~*I~VI1=2l exists over all free space. Calculate the total charge
present: Thiswill be 8 timestheintegral of p, over the first octant, or

o0 [e.e] 0
0= 8/0 /0 /o poe ¥ "*dxdydz = 8po

2.13. A uniform volume charge density of 0.2 ©C/m? (note typo in book) is present throughout the spherical
shell extending fromr» = 3cmtor = 5cm. If p, = 0 elsewhere:

a) find the total charge present throughout the shell: Thiswill be

2 T .05 I”3 .05
0= f f f 0.2r2sin0 dr do dg = [471(0.2)—} — 821 x 1075 uC = 82.1pC
o Jo Jos 3103 E—

b) find r1 if half thetotal chargeislocated intheregion 3cm < r < r1: If theintegral over r in part
a istaken to r1, we would obtain

3771
[471 (0.2)r—} —4105x 1075
3 .03

Thus

1/3
3 x 4.105 x 105 1Y
ri = 02 x4 + (.03) =4.24cm
L X 47T
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214. Let

py = 5e O (x uC/md

[d)) !
72+ 10
intheregion0 < p < 10, -7 < ¢ < 7, dl z, and p, = 0 elsewhere.

a) Determine the total charge present: This will be the integral of p, over the region where it exists;

specifically,
0 /wfnflof"‘””( ) o~ pdpdéd
= e (T —
B 24107 P

which becomes

efO.lp 10 . T 1

or © 1
=5x 264 ——=d
) X /_Oon 21 10%

Finally,

1 * 526411
—o0

b) Calculate the charge withintheregion0 < p <4, —7/2 < ¢ < /2, —10 < z < 10: With the
limits thus changed, the integral for the charge becomes:

10 /2 4 o1 1
' = 2 5¢ 7 (1 —¢) ———=pdpdpdz
0 /_10/0 /0 e (T = ¢) 5 qgPdrdddz
Following the same evaulation procedure as in part a, we obtain Q' = 0.182 mC.

2.15. A spherical volume having a 2 um radius contains a uniform volume charge density of 10%° C/mq.

a) What total charge is enclosed in the spherical volume?
Thiswill be Q = (4/3)7(2 x 107%)3 x 10 =3.35 x 102 C.

b) Now assumethat alarge region contains one of theselittle spheresat every corner of acubical grid
3mm on a side, and that there is no charge between spheres. What is the average volume charge
density throughout this large region? Each cube will contain the equivalent of one little sphere.
Neglecting the little sphere volume, the average density becomes

3.35x 1072

pv,avg = —(0003)3 =124 x 106 C/m3

2.16. Theregioninwhich4 <r < 5,0 <6 < 25°,and 0.97 < ¢ < 1.1w contains the volume charge
density of p, = 10(r — 4)(r — 5) sin6 sin(¢/2). Outside the region, p, = 0. Find the charge within
theregion: Theintegral that gives the charge will be

1.1x 25° 5
Q:lOf / / (r — &) (r —5)sin@sin(¢/2) r2sind dr do do
9 0 4
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2.16. (continued) Carrying out the integral, we obtain

5 o
I ST 1 25 o\ L1

=10| = —-9— 4205 | (56— -sin2 -2 =
0 0|:5 94 + O3 4[20 4sm( 9)]0 [ cos<2>]gn

= 10(—3.39)(.0266)(.626) = 0.57 C

2.17. A uniform line charge of 16 nC/mislocated along theline defined by y = —2,z = 5. If € = ¢q:

a) FindE at P(1, 2, 3): Thiswill be
_ . Re
P~ 2reo IRpI2

whereRp = (1,2,3) — (1, —2,5) = (0,4, —2), and |Rp|2 = 20. So

_ 16x107° [4ay — 2a,

Ep = 5 ] = 57.5a, — 28.8a, V/m

2meg

b) Find E at that point in the z = 0 plane where the direction of E is given by (1/3)a, — (2/3)a;:
With z = 0, the general field will be

E o [ (y+2a, —5a
z=0 = 2
2reo | 0+ 2+ 25
Werequire |E;| = —|2E,|,02(y + 2) = 5. Thusy = 1/2, and the field becomes:
o [ 2.5a, — 5a,
E..o= = 23a, — 46a
=0~ 2re [ (252425 | =%

2.18. Uniform line charges of 0.4 uC/m and —0.4 «C/m are located inthe x = O planeat y = —0.6 and
y = 0.6 mrespectively. Let € = «p.

a) FindE at P(x, 0, z): Ingenera, we have

01 [ Rip R_p ]

P= -
2reo LIR+pl  |R-p|

where R, p and R_p are, respectively, the vectors directed from the positive and negative line
charges to the point P, and these are normal to the z axis. Wethushave R.p = (x,0,z) —
(0’ _'67 Z) = ('x’ '6’ O)l and R—P = ('x’ O’ Z) - (Oa -67 Z) = (x’ _~65 0) &)

Ep kV/m

2+ (062 x2+(06)2 |  2weg | x2+0.36] x2+0.36

_ pm [xa +06a, xa,—06a,] 04x10°[ 12a, ] 863a,
T 27eq o
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2.18. (continued)
b) FindE at Q(2, 3, 4): Thisfield will in general be:

Ep= L [R+Q B R—Q}
2meo [ IR+ol  IR-gl

whereR o = (2,3,4)— (0, —.6,4) = (2,3.6,0),andR_p = (2, 3,4) — (0, .6, 4) = (2, 2.4, 0).
Thus

£ 01 [Zax +36a, 2a.+ 2.4ay]
0

21 (362 21 (a2 | 8 —24lea, V/m

T 27eq

2.19. A uniform line charge of 2 wC/m islocated on the z axis. Find E in cartesian coordinates at P (1, 2, 3)
if the charge extends from
a) —oo < z < oo: With theinfinite line, we know that the field will have only aradial component
in cylindrical coordinates (or x and y components in cartesian). The field from an infinite line on
thez axisisgeneraly E = [p;/(2megp)]a,. Therefore, at point P:

o, Rp  (2x107% a +2a,
P= 2meg |R,p|2 N 2meQ 5

where R, p isthe vector that extends from the line charge to point P, and is perpendicular to the z
axis;i.e,R,p =(1,2,3) — (0,0,3) = (1, 2,0).

= 7.2a, + 14.4a, kV/m

b) —4 < z < 4: Herewe use the general relation
oidz I — r’
Ep = _—
P / dreg|r —1/|3
wherer = a, + 2a, + 3a, andr’ = za,. So theintegral becomes

_ (2x107°) /4 a +2a, + (3—2)a
B 4 [B+B-2)7*1

Ep

d
4 eg ¢

Using integral tables, we obtain:
(ay + 2ay)(z -3+ 5az
(z2 — 6z + 14)

The student isinvited to verify that when evaluating the above expression over the limits —oco <
7 < 00, the z component vanishes and the x and y components become those found in part a.

4
Ep = 3597|: ] V/m = 4.9a, + 9.8a, + 4.9a, kV/m
—4

2.20. Uniform line charges of 120 nC/m lie along the entire extent of the three coordinate axes. Assuming
free space conditions, find E at P(—3, 2, —1): Since al line charges are infinitely-long, we can write;

P |: Rxp Ryp R:p i|
2re0 LIR:pI?  IRypIZ  IR.pI?

where R, p, R, p, and R, p are the normal vectors from each of the three axes that terminate on point
P. Specificaly, R,p = (=3,2,-1) — (-3,0,0) = (0,2, -1), Ryp = (-3,2,-1) - (0,2,0) =
(=3,0,-1),andR,p = (—3,2,-1) — (0,0, —1) = (-3, 2, 0). Substituting these into the expression

Ep

for Ep gives
o [2a,—a, —3a,—a, —3a,+ 23
Ep = = —1.15a, + 1.20a, — 0.65a, kV/m
P~ 2ne [ 5 10 ' 13 s+ 28 < KV/
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2.21. Twoidentical uniform line chargeswith p; = 75 nC/m arelocated infreespaceat x =0, y = +£0.4 m.
What force per unit length does each line charge exert on the other? The charges are parallel to the z
axis and are separated by 0.8 m. Thus the field from the charge at y = —0.4 evaluated at the location
of the charge at y = +0.4 will be E = [p;/(27€0(0.8))]a,. The force on a differential length of the
line at the positive y location isdF = dgE = p;dzE. Thusthe force per unit length acting on the line
at postive y arising from the charge at negative y is

1 2
F=/ P 196% 10-%a, N/m = 1264, uN/m
o 27€0(0.8) y ke Hoah/ALL

Theforce on the line at negative y is of course the same, but with —a,.

2.22. A uniform surface charge density of 5nC/m? is present intheregionx = 0, =2 < y < 2, and all z. If
€ = €, find E at:
a) P4(3,0,0): We use the superposition integral:

E://‘psda r—r’
dreg|r — /)3
wherer = 3a, andr’ = ya, + za,. Theintegral becomes:

2
,OS o0 / 3ax - yay - Zaz
E = d dZ
PA= Areo /_OO 5 [9+4 y2 +z2]15 Y

Since the integration limits are symmetric about the origin, and since the y and z components of
theintegrand exhibit odd parity (change sign when crossing the origin, but otherwise symmetric),
these will integrate to zero, leaving only the x component. Thisis evident just from the symmetry
of the problem. Performing the z integration first on the x component, we obtain (using tables):

o
B, oy = 3ps fz dy z _ 3p /2 dy
" Areo )2 O+ | JO+y2+22|  2me0)2(9+)?)
305 1 —1({Y\ |2
- a1 (2 =106 V/m
27r60(3) (3>‘—2 106V/m

The student is encouraged to verify that if the y limits were —oo to oo, the result would be that of
the infinite charged plane, or £, = py/(2¢0).

b) Pg(0,3,0): Inthiscase, r = 3a,, and symmetry indicates that only a y component will exist.
The integral becomes

Eoppe P /"0/2 (B—y)dydz _ b 2 3-ydy
> 4en J oo )2 [(22+9) — 6y +y?]1°  2meg J_» (3—y)?
Ps

= —52-In@-y) |2_2 — 145V /m
TeQ _—
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2.23. Giventhesurfacechargedensity, p; = ZMC/mz, intheregionp < 0.2m, z = 0, andiszero elsewhere,
find E at:

a) Pa(p = 0,z = 0.5): First, we recognize from symmetry that only a z component of E will be
present. Considering a general point z on the z axis, we haver = za,. Then, withr’ = pa,, we
obtainr —r’ = za, — pa,. The superposition integral for the z component of E will be:

0

2r 0.2 02
E.p =" / / zpdpdg __27rpsz 1
S dmeo Jo Joo (p2+2DLS dreo | /22 + p2
Ps

1 1
= —Z —
2€0 L&‘Z V2t 0.4}
With z = 0.5 m, the above evaluatesas E; p, = 8.1 kV/m.
b) With z at —0.5 m, we evaluate the expression for E, to obtain E,; p, = —8.1kV/m.

2.24. Surface charge density is positioned in free space as follows: 20nC/m?2 at x = —3, —30nC/m? at
y =4, and 40 nC/m2 at z = 2. Find the magnitude of E at the three points, (4, 3, —2), (—2, 5, —1),
and (0, 0, 0). Since al three sheets are infinite, the field magnitude associated with each one will be
0s/(2€0), which is position-independent. For this reason, the net field magnitude will be the same
everywhere, whereas the field direction will depend on which side of a given sheet one is positioned.
We take the first point, for example, and find

20 x 1079 30 x 1079 40 x 1079
Ea= 0 a +>-— a - —~— 3 =1130a, + 1695a, — 2260, V/m
2¢0 2¢q 2¢0

The magnitude of E 4 isthus 3.04kV /m. Thiswill be the magnitude at the other two points as well.

2.25. Find E at the origin if the following charge distributions are present in free space: point charge, 12nC
a P (2,0, 6); uniform line charge density, 3nC/m at x = —2, y = 3; uniform surface charge density,
0.2nC/m? at x = 2. The sum of the fields at the origin from each charge in order is:

E_ (12 x 1079) (—2a, — 6a,) (3x 1079 (2a, — 3a,) _[02x 10~ 9a,
4 eg (4+36)L° 2meg (449 2¢0
= —-3.9a, — 12.4a, — 2.5a, V/m

2.26. A uniform line charge density of 5nC/misat y = 0, z = 2 min free space, while —5nC/m islocated
aty = 0,z = —2m. A uniform surface charge density of 0.3nC/m?isat y = 0.2m, and —0.3nC/m?
isat y = —0.2m. Find |E| at the origin: Since each pair consists of equal and opposite charges, the
effect at the origin is to double the field produce by one of each type. Taking the sum of the fields at
the origin from the surface and line charges, respectively, we find:

0.3x10°° 5x 107°
X —_—

E0,0,0) = -2 — -
( ) 2¢0 & % 2me0(2) %

= —33.9a, — 89.9a,

sothat |[E| = 96.1V/m.
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2.27. Giventheeélectricfield E = (4x — 2y)a, — (2x + 4y)a,, find:
a) the equation of the streamline that passes through the point P (2, 3, —4): We write

dy Ey —(2x+4y)
dx E,  (4x —2y)

Thus
2xdy+ydx) =ydy — xdx
or 1 1
2d(xy) = Zd(y?) — = d(x?
(xy) = 5d(y%) = 5d(x7)
=0 1 1
C1+2xy=§y2—§x2
or

y2—x2=4xy+Cs
Evaluating at P (2, 3, —4), obtain:

9-4=24+4Cp, or Co =-19
Finaly, at P, the requested equation is

y2—x2=4xy—19

b) aunit vector specifying thedirectionof E at Q(3, -2, 5): HaveEp = [4(3) + 2(2)]a, — [2(3) —

4(2)]a, = 16a, + 2a,. Then [E| = +/162 + 4 = 16.12 So

_ 16a, + 2a,

ap = = 0.99a 0.12a
Q 16.12 s Y

2.28. Let E = 5x3a, — 15x2y a,, and find:
a) the equation of the streamline that passes through P (4, 2, 1): Write

d_y _E, _ —15x2y _ —3y

dx E, 5x3 X
So d d
@ _ _3—x = Iny=-3Inx+InC
y X
Thus
y = ef3lnernC — %
X

At P,have2 = C/(4)® = C = 128. Findly, a P,

128
y= 3
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2.28. (continued)
b) aunit vector ag specifying the direction of E at Q(3, -2, 5): At Q, Ep = 135a, + 270a,, and

|[Egl = 301.9. Thusag = 0.45a, + 0.89a,.

¢) aunitvectoray = (I, m, 0) thatisperpendiculartoag at Q: Sincethisvector isto haveno z compo-
nent, wecanfinditthroughay = +(ag xa,). Performingthis, wefinday = 4-(0.89a, — 0.45a,).

2.29. If E = 20¢~* (cos5xa, — sin5xay), find:
a) |Elat P(m/6,0.1, 2): Substituting this point, we obtain Ep = —10.6a, — 6.1a,, and 0 |Ep| =

12.2.
b) aunitvector inthedirection of E p: Theunit vector associated with E isjust (cosSxax —sin 5xay),
which evaluated at P becomesag = —0.87a, — 0.50a,.

¢) the equation of the direction line passing through P: Use

d —snb5
ay _ X = —tan5x = dy = —tanbxdx
dx cosbx

Thusy = %IncosSx + C. Evaluating at P, wefind C = 0.13, and so

1
y = 3 Incos5x 4 0.13

2.30. Giventheelectricfield intensity E = 400ya, + 400xa, V/m, find:
a) the equation of the streamline passing through the point A(2, 1, —2): Write:

dy_Ey

_ dx = yd
dx _ E, T orar=ya

< | =

Thusx? = y2 + C. Evaluating at A yields C = 3, so the equation becomes

x2

2
r oY
3 3

b) the equation of the surface on which |E| = 800 V/m: Have |E| = 400,/x2 + y2 = 800. Thus
x? 4+ y? = 4, or we have acircular-cylindrical surface, centered on the z axis, and of radius 2.

¢) A sketch of the part a equation would yield a parabola, centered at the origin, whose axis is the
positive x axis, and for which the slopes of the asymptotes are +-1.

d) A sketch of the trace produced by the intersection of the surface of part » with the z = 0 plane
would yield acircle centered at the origin, of radius 2.
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2.31. Incylindrical coordinateswithE(p, ¢) = E,(p, ¢)a, + E4(p, ¢)ay, thedifferential equation describ-
ing the direction linesis E,/E4 = dp/(pd¢) in any constant-z plane. Derive the equation of the line
passing through the point P(p = 4, ¢ = 10°, z = 2) inthefiedd E = 2p? cos3¢a, + 2p25in3¢a¢,:
Using the given information, we write

E, dp

——=——=Cot3¢
Ey  pdo

Thus

d 1
& =cot3pdp = Inp= élnsin3¢+InC
P

or p = C(sin3¢)1/3. Evaluatethisat P to obtain C = 7.14. Finally,

03 = 364sin3¢
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CHAPTER 3

3.1. Anempty metal paint canis placed on amarbletable, thelid isremoved, and both parts are discharged
(honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid,
and a penny, anickel, and adime are glued to the thread so that they are not touching each other. The
penny is given a charge of +5 nC, and the nickel and dime are discharged. The assembly is lowered
into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is
again touched momentarily to ground. The deviceis carefully disassembled with insulating gloves and
tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated during the
entire procedure, so they will retain their original charges: Penny: +-5nC; nickel: O; dime: 0. The
penny’s charge will haveinduced an equal and opposite negative charge (-5 nC) on theinside wall
of the can and lid. Thisleft acharge layer of +5 nC on the outside surface which was neutralized
by the ground connection. Therefore, the can retained a net charge of —5nC after disassembly.

b) If the penny had been given a charge of +5nC, the dime a charge of —2nC, and the nickel a
charge of —1nC, what would the final charge arrangement have been? Again, since the coins are
insulated, they retain their original charges. The charge induced on the inside wall of the can and
lid is equal to negative the sum of the coin charges, or —2nC. Thisis the charge that the can/lid
contraption retains after grounding and disassembly.

3.2. A point charge of 12 nC is located at the origin. four uniform line charges are located inthe x = 0
plane asfollows. 80nC/maty = —1land —5m, -50nC/mat y = —2and —4 m.
a) FindD at P(0, —3, 2): Note that this point lies in the center of a symmetric arrangement of line
charges, whose fields will all cancel at that point. Thus D arise from the point charge alone, and
will be

D_ 12 x 107%(—3ay + 2a,)
4 (3 + 2215
= —61.1a, + 40.7a, pC/m?

= —6.11 x 10 Ha, 4 4.07 x 107"a, C/m?

b) How much electric flux crossesthe plane y = —3 and in what direction? The plane intercepts all
flux that entersthe —y half-space, or exactly half the total flux of 12 nC. The answer isthus 6 nC
and inthe —a, direction.

¢) How much electric flux leavesthe surface of asphere, 4minradius, centered at C (0, —3, 0)? This
sphere encloses the point charge, so its flux of 12 nC isincluded. The line charge contributions
are most easily found by trandating the whole assembly (sphere and line charges) such that the
sphereis centered at the origin, with line chargesnow at y = 41 and +2. The flux from the line
chargeswill equal the total line charge that lies within the sphere. The length of each of the inner
two line charges (at y = £1) will be

1
h1 = 2r cosf1 = 2(4) cos [sin‘1 (Z)] =194m
That of each of the outer two line charges (at y = £2) will be

2
ho = 2r cOSO, = 2(4) cos [sin‘1 (Z)] =173m
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3.2c. (continued) Thetotal charge enclosed in the sphere (and the outward flux fromit) is now

Q1+ Q) = 2(1.94) (=50 x 107%) 4 2(1.73)(80 x 107%) 4 12 x 107° = 348nC

3.3. Thecylindrical surface p = 8 cm contains the surface charge density, ps = 5e =29l nC/m?2.
a) What isthe total amount of charge present? We integrate over the surface to find:

o0

=0.25nC
0

00 2 -1
0=2 f / 5e~2%2(.08)d¢ dz NC = 207 (.08) [ — | e=2*
o Jo 20

b) How much flux leavesthe surface p = 8cm, 1cm < z < 5cm, 30° < ¢ < 90°? Wejust integrate
the charge density on that surface to find the flux that leavesiit.

.05

05 o 90 — 30 -1
®=0 = —20z ) — 2 ] —20z
o'= | /300 5¢~2%(.08) d¢ dz nC ( 360 ) n(5)(08)(20>e

.01
= 9.45 x 1073nC = 9.45pC

3.4. The cylindrical surfaces p = 1, 2, and 3 cm carry uniform surface charge densities of 20, —8, and 5
nC/m?, respectively.
a) How much electric flux passes through the closed surface p = 5¢m, 0 < z < 1 m? Since the
densities are uniform, the flux will be

® = 27 (aps1 + bpsz + cps3)(1m) = 27 [(.01)(20) — (.02)(8) + (.03)(5)] x 1072 = 1.2nC

b) Find D at P(1cm, 2cm, 3cm): This point lies at radius +/5 cm, and is thus inside the outermost
charge layer. Thislayer, being of uniform density, will not contributeto D at P. We know that in
cylindrical coordinates, the layersat 1 and 2 cm will produce the flux density:

aps1+ b,
D=Dpap=uap
0

or
_ (.0DH(20) + (.02)(—9)

D, =
g V.05
At P, ¢ =tan~1(2/1) = 63.4°. Thus D, = 1.8cos¢ = 0.8and D, = 1.8sing = 1.6. Finaly,

= 1.8nC/m?

Dp = (0.8a, + 1.6a,) nC/m?
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3.5. Let D = 4xya, + 2(x2 + z2)ay + 4yza, C/m? and evaluate surface integrals to find the total charge
enclosed in the rectangular parallelepiped 0 < x < 2,0 <y < 3,0 < z < 5m: Of the 6 surfacesto
consider, only 2 will contribute to the net outward flux. Why? First consider the planesat y = 0 and 3.
The y component of D will penetrate those surfaces, but will beinward at y = 0 and outward at y = 3,
while having the same magnitude in both cases. These fluxes will thus cancel. At the x = 0 plane,
D, = 0and at the z = 0 plane, D, = 0, so there will be no flux contributions from these surfaces.
This leaves the 2 remaining surfaces at x = 2 and z = 5. The net outward flux becomes:

5 3 3 2
<I>:/ / D‘x_z'axdydz—i-//D{_5~azdxdy
o Jo = o Jo T
3

3
:5/ 42)ydy + 2/ 4(5)ydy =360 C
0 0

3.6. Two uniform line charges, each 20 nC/m, arelocated at y = 1, z = £1 m. Find the total flux leaving a
sphere of radius 2 mif it is centered at
a) A(S,1,0): Theresult will be the sameif we move the sphere to the origin and the line charges to
(0,0, 1). The length of the line charge within the sphere is given by I = 4sin[cos™%(1/2)] =
3.46. With two line charges, symmetrically arranged, the total charge enclosed isgivenby Q =
2(3.46)(20nC/m) = 139nC

b) B(3,2,0): Inthis case the result will be the same if we move the sphere to the origin and keep
the charges where they were. The length of the line joining the origin to the midpoint of the line
charge (in the yz plane) isl1 = /2. The length of the line joining the origin to either endpoint
of the line charge is then just the sphere radius, or 2. The half-angle subtended at the origin by
the line charge isthen ¥ = cos1(v/2/2) = 45°. The length of each line charge in the sphere
isthenl» = 2 x 2siny = 2/2. The total charge enclosed (with two line charges) is now
Q' = 2(24/2)(20nC/m) = 113nC

3.7. Volume charge density islocated in free space as p, = 2¢ 190" nC/m3for0 < r < 1mm,andp, =0

elsewhere.
a) Findthetotal charge enclosed by the spherical surfacer = 1 mm: To find the charge we integrate:

2 T .001
0 =/ / / 2¢7100" .2 500 dr do dg
0 0 0

Integration over the angles gives a factor of 4. The radial integration we evaluate using tables;
we obtain

2,—1000r | go1 2 e—lOOOr 001
L

—r-e
< —1000r — 1
o T 1000 1000)2° r=1

re _ -9
1000 ] 40x 10°nC

Q=87r|:

b) By using Gauss's law, calculate the value of D, on the surface r = 1 mm: The gaussian surface
is a spherical shell of radius 1 mm. The enclosed charge is the result of part a. We thus write
4rr2D, = Q, or

0 40x107°

— - = 3.2 x 1074 nC/m?
42 = 47 (001)2 x /

D,
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3.8. Uniform line charges of 5 nC/m ar located infreespaceat x = 1,z =1, andaty =1,z = 0.
a) Obtain an expression for D in cartesian coordinates at P (0, 0, z). In general, we have

D() = P ro—rj ro—ro
(Z) — 2_ — 72 — 72
L Irs—rql [r2 — 15|

wherery =rp =za,, r; = a,,andr, = a, +a,. Thus

_ps [lzac —a]  [z—Da; —a]
Pl = Zn[ i+2 " L+ G-D7 ]

_&[ A +( =) oz )a]
T2t 14— [1+z8 \[1+G:z-1?7 [1+2z9)F

b) Plot |D|vs. za P, —3 < z < 10: Using part a, we find the magnitude of D to be

1/2
ps 1 1 ( (z—1 >2
Dl =—
o= [[1+(z 02 T2 \Ire-03 " [1+7
A plot of this over the specified range is shown in Prob3.8.pdf.

3.9. A uniform volume charge density of 80 .C/m? is present throughout the region 8mm < r < 10mm.

Let p, =0for0 <r < 8mm.
a) Findthetotal charge inside the spherical surface r = 10 mm: Thiswill be

.010

21 T .010 r3
0= / / / (80 x 107%)r?sin6 dr d6 d¢ = 47 x (80 x 1078 —
0 o J.o 3 l.oos

08
=1.64 x 10719C = 164pC

b) Find D, a r = 10 mm: Using a spherical gaussian surface at »r = 10, Gauss' law is written as
47r’D, = Q = 164 x 107%2, or

164 x 10712

(007 1.30 x 10~/ C/m? = 130nC/m?
TT (. -

D,(10mm) =

c) If thereisno chargefor » > 10 mm, find D, a r = 20 mm: Thiswill be the same computation
asin part b, except the gaussian surface now lies at 20 mm. Thus

164 x 10712

02 = 3.25 x 1078 C/m? = 32.5nC/m?
TT (. -

D,(20mm) =

3.10. Let p; = 8uC/m? intheregionwherex = 0and —4 < z < 4m, and let p; = 0 elsewhere. Find D at
P(x,0, z), wherex > 0: The sheet charge can be thought of as an assembly of infinitely-long parallel
strips that lie parallel to the y axisin the yz plane, and where each is of thickness dz. The field from
each strip isthat of an infinite line charge, and so we can construct thefield at P from asingle strip as:

osdz r—r’
dDp = —
P 2 |r —r/)2
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3.10 (continued) wherer = xa, + za, andr’ = z’a, We distinguish between the fixed coordinate of P, z,
and the variable coordinate, 7/, that determines the location of each charge strip. To find the net field at
P, we sum the contributions of each strip by integrating over z':

_— /4 8 x 107°d7’ (xa, + (z — 2)a)
P= _a 2n[x2 + (z — )]

We can re-arrange this to determine the integral forms:

D il _ ( )/ / 2 ELZ/ 2 2—2/z+22]
= xay + za,
P 2 X Z (xz ZZ) 227 + (2) “Jog (x5 +2z9) 27/ +(Z)

Using integral tables, we find

4x 10 1 27 — 2
Dp =X |:(xax +zaz)—tan_1( < Z)
T X 2x

1 271 27 — 27 4
_ _|n 2 2_2 / /2 ——tan_l a
|:2 x4z 44 +(z))+2x > |,

which evaluates as

4x 106 7+ 4 z—4 1 [x24(z+49)?
Dp=—"—"J|tan? —tan~?! a +=In| ————=|a C/m?
p= o e (0F) e (50 e an G e ©

The student is invited to verify that for very small x or for avery large sheet (allowing 7’ to approach
infinity), the above expression reduces to the expected form, Dp = p,/2. Note also that the expression
isvalid for al x (positive or negative values).

3.11. Incylindrical coordinates, let p, = 0 for p < 1 mm, p, = 2siN(200077p) NC/m?3 for 1mm < p <
1.5mm, and p, = Ofor p > 1.5mm. Find D everywhere: Since the charge varies only with radius,
and isintheform of acylinder, symmetry tells usthat the flux density will be radially-directed and will
be constant over a cylindrical surface of a fixed radius. Gauss' law applied to such a surface of unit
length in z gives:

a) for p < 1 mm, D, =0, since no charge is enclosed by a cylindrical surface whose radius lies
withinthisrange.

b) for 1mm < p < 1.5mm, we have

o)
2npD, = 21 /0012 x 1072 sin(20007p") p’ dp’
_9 1 . 0 p
=4 x 10 ———— sin(20007p) — 20000 €0s(2000r p)

(20007 )2 007 ool

or finally,

—15
D, =

- [Sin(ZOOOJTp) t2on [1 —10% COS(ZOOOJT,O)H c/m? (1mm < p < 1L5mm)
n2p
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3.11. (continued)
¢) for p > 1.5mm, the gaussian cylinder now lies at radius p outside the charge distribution, so
the integral that evaluates the enclosed charge now includes the entire charge distribution. To
accomplish this, we change the upper limit of the integral of part » from p to 1.5 mm, finaly
obtaining:

25x 10715
D, = i—p C/m? (p > 1.5mm)

3.12. A nonuniform volume charge density, p, = 120r C/m3, lies within the spherical surfacer = 1m, and
0y = 0 everywhere else.
a) Find D, everywhere. For r < 1 m, we apply Gauss' law to a spherical surface of radius r within
this range to find
A7r°D, = 47r/ 1207’ (') dr’ = 1207 r*
0
Thus D, = (30r2) for r < 1 m. For r > 1 m, the gaussian surface lies outside the charge
distribution. The set up is the same, except the upper limit of the above integral is 1 instead of r.
Thisresultsin D, = (30/r2) forr > 1 m.

b) What surface charge density, ps2, should be onthe surfacer = 2 suchthat D, ,—»— = 2D, ,—24?
Atr =2, wehave D, ,—>_ = 30/2? = 15/2, from part a. The flux density in the regionr > 2
arising from a surface charge at r = 2 isfound from Gauss' law through

4ps 2

A7r?D,s = 41 (2)%ps2 = Dy = >

Thetotal flux density intheregion r > 2 arising from the two distributionsis

@ + 4/Os2

D, =
r r2 72

Our requirement that D, ,—p— = 2D, ,—»+ becomes

30 30 15
?:2(?+ps2> = pSZZ_ZC/m

¢) Make asketch of D, vs. r for 0 < r < 5 m with both distributions present. With both charges,
D,(r <1)=30r%, D,(1 <r < 2) =30/r? and D,(r > 2) = 15/r2. These are plotted on the
next page.
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Problem 3.12
40 T T T T

D(r)

3.13. Spherical surfacesat r = 2, 4, and 6 mcarry uniform surfacechargedensitiesof 20nC/m?, —4nC/m?,
and py0, respectively.
a) FindD at r = 1, 3and 5 m: Noting that the charges are spherically-symmetric, we ascertain that
D will beradially-directed and will vary only with radius. Thus, we apply Gauss' law to spherical
shellsin the following regions. r < 2: Here, no charge is enclosed, and so D, = 0.

80 x 1079

2<r<4: 47r’D, =47(2%(20x 10°% = D, = —>—C/m*
r
So D, (r =3) =8.9x10°9C/m?.
16 x 109
4<r<6: dur’D, =4r(22(20 x 1079 + dr (AP (—4x 10 = D, = =
"

So D, (r =5) = 6.4 x 10710C/m2.

b) Determine pso suchthat D = O at r = 7 m. Sincefieldswill decrease as 1/r2, the question could
be re-phrased to ask for p,0 suchthat D = 0 at all pointswherer > 6 m. In thisregion, the total

field will be
16 x 1079 N 050(6)2

D,(r > 6) = ;" 2

Requiring this to be zero, wefind pso = —(4/9) x 1072 C/m?.

3.14. If p, = 5nC/m?3for 0 < p < 1 mm and no other charges are present:
a) find D, for p < 1 mm: Applying Gauss' law to a cylindrical surface of unit length in z, and of
radius p < 1 mm, wefind

2npD, = 1p*(5x 107 = D, =25p x 10°°C/m?
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3.14b. find D, for p > 1 mm: The Gaussian cylinder now lies outside the charge, so

25x 1071
p
¢) What line charge p;, a p = 0 would give the same result for part »? The line charge field will be

pr _ 25x 1071
2tp

2npD, = 7(.001)>(5x 10°% = D, = C/m?

D, =

(part b)

Thus p;, = 57 x 107 C/m. In al answers, p is expressed in meters.

3.15. Volumechargedensity islocated asfollows: p, = Ofor p < Immandfor p > 2mm, p, = 4p uC/m3
forl < p <2mm.

a) Calculatethetota chargeintheregion0 < p < p1,0 < z < L, wherel < p1 < 2mm: Wefind

L 2 o 8L
o= [ [" [ avpdpasaz =" 15 - 1079 uc
0 0 .001

where p1 isin meters.

b) Use Gauss' law to determine D, at p = p1: Gauss law states that 2rp1 LD, = Q, where Q is
the result of part a. Thus

where p1 isin meters.

c) Evaluate D, a p = 0.8mm, 1.6mm, and 2.4mm: At p = 0.8 mm, no charge is enclosed by a
cylindrical gaussian surface of that radius, so D,(0.8mm) = 0. At p = 1.6 mm, we evaluate the
part b result at p; = 1.6 to obtain:

4[(.0016)2 — (.0010)3]
Dy (1.6mm) = 3(.0016)

At p = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss' law iswritten
as

=3.6x 107% uC/m?

8L
21pLD, = ”T[(.ooz)2 — (.00)3] uC

from which D, (2.4mm) = 3.9 x 1076 uC/m?.

3.16. Given the electric flux density, D = 2xy a, + x2a, + 6z3a, C/m?:

a) use Gauss' law to evaluate the total charge enclosed in the volume O < x, vy, z < a: Wecall the
surfacesat x = a and x = 0 the front and back surfaces respectively, thoseat y =aandy =0
the right and left surfaces, and those at z = a and z = 0 the top and bottom surfaces. To evaluate
the total charge, we integrate D - n over al six surfaces and sum the results:

a a a a
¢:Q:¢D.nda=/ / Zaydydz-i-/ / —2(0)ydydz
0 JO 0 JO

front

back
a a a a a a a a
+/ / —xzdxdz-l-/ / xzdxdz-l-/ / —6(0)3dxdy+/ / 6a°dx dy
0 0 0 0 0 0 0 0
left top

right bottom
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3.16a. (continued) Noting that the back and bottom integrals are zero, and that the left and right integrals
cancel, we evaluate the remaining two (front and top) to obtain Q = 64° + a*.

b) use Eq. (8) to find an approximate value for the above charge. Evaluate the derivatives at
P(a/2,a/2,a/2): Inthis application, Eq. (8) statesthat Q = (V - D\P)Av. WefindV -D =
2x + 1822, whichwhen evaluated at P becomesV-D|, = a+4.5q%. Thus Q = (a+4.5a%)a® =
4.5a° 4 a*

¢) Show that the results of partsa and b agreein thelimit asa — 0. In thislimit, both expressions
reduceto Q = a*, and so they agree.

3.17. A cubeisdefinedby 1 < x, y, z < 1.2. If D = 2x2ya, + 3x2y%a, C/m?:

a) apply Gauss' law to find the total flux leaving the closed surface of the cube. We call the surfaces
at x = 1.2 and x = 1 the front and back surfaces respectively, thoseat y = 1.2 and y = 1 the
right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom surfaces. To evaluate
the total charge, we integrate D - n over al six surfaces and sum the results. We note that there
is no z component of D, so there will be no outward flux contributions from the top and bottom
surfaces. The fluxes through the remaining four are

12 p12 12 p12
d=Q= 7§ D nda :/ / 2(1.2)%y dy dz+/ / —2(1)%ydydz
1 1 1 1

front back
1.2 1.2 1.2 1.2
+ / / —3x2(1)%dx dz + f / 3x2(1.2)%2dx dz = 0.1028C
1 1 1 1

left right

b) evaluate V - D at the center of the cube: Thisis

V-D=[4 62] — 4(1.1)% + 6(1.1)% = 12.83
Xy + xy<1.1,1.1> (1.1)° +6(1.1)° = 12.83

¢) Estimate the total charge enclosed within the cube by using Eq. (8): Thisis

Q0 =V.D| x Av = 12.83 x (0.2)° = 0.1026 Close!

center

3.18. Let avector field by given by G = 5x%y“#z*a,. Evaluate both sides of Eq. (8) for this G field and the
volumedefinedby x =3and 3.1, y = 1and 1.1, and z = 2 and 2.1. Evaluate the partial derivatives at
the center of the volume. First find

3G
V.G =—2 =20x%34
dy

The center of the cube is located at (3.05,1.05,2.05), and the volumeis Av = (0.1)2 = 0.001. Eq. (8)
then becomes
® = 20(3.05)*(1.05)%(2.05)*(0.001) = 35.4
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3.19. A spherical surface of radius3 mmiscentered at P (4, 1, 5) infree space. Let D = xa, C/m?2. Usethe
results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: Weuse ® = V - DAv,
whereinthiscase V- D = (3/dx)x = 1 C/m?3. Thus

4
= §7r(.003)3(1) =113 x 107’ C = 113nC
3.20. A cube of volume a3 has its faces parallel to the cartesian coordinate surfaces. It is centered at

P(3,—2,4). Giventhefiedd D = 2x3a, C/m?:
a) caculatedivD at P: Inthe present case, thiswill be

_8Dx_de
T 9x  dx

vV-D

=54C/m3

b) evaluate the fraction in the rightmost side of Eq. (13) for @ = 1 m, 0.1 m, and 1 mm: With the
field having only an x component, flux will pentrate only the two surfacesat x = 3+ a/2, each
of which has surface areaa?. The cube volumeis Av = 8. The equation reads:

§D-dS i[2<3+%)3a2_2<3_%)3a2} ZS[(3+%)3_(3_6_21)3]

Av a8
evaluating the above formulaat a = 1 m, .1 m, and 1 mm, yields respectively

54.50, 54.01, and 54.00 C/m®,

thus demonstrating the approach to the exact value as Av gets smaller.

3.21. Calculate the divergence of D at the point specified if
a D= (1/z%) [10xyz a, + 5x%za, + (223 — 5x2y) a.] at P(—2, 3, 5): Wefind

=8.96

10 10x2
V-D:[—y+0+2+ xy}
< < (—2,3,5)

b) D= 5zzap + 10pz @, at P(3, —45°,5): In cylindrical coordinates, we have

19 19Dy 9D 572
V-D:——(pr)+—_¢+ Z:|:_
p ap P

+ 10 =71.67
o 0¢ 0z p]

(3,—45°,5)

c) D=2rsindsinga, +rcosé sing ag +r cos¢ as a P (3, 45°, —45°): In spherical coordinates,

we have
vo=2202py+ -2 9 sinopy) + 9Dy
. = ——(r _ - -
r2are 7T 1 dn6 90 97T Sne 9e
€0s20 sin sin
=|6sindsing + . ¢ _ : ¢ =-2
sino Sin6 | 3450 a5y

36



3.22. LetD = 8psinga, + 4pcos¢g ay C/m?.
a) Finddiv D: Using the divergence formulafor cylindrical coordinates (see problem 3.21), we find
V.D =12sn¢.

b) Find the volume charge density at P (2.6, 38°, —6.1): Since p, = V - D, we evaluate the result of
part a at this point to find p,p = 12sin38° = 7.39C/m5.

¢) How much charge is located inside the region defined by 0 < p < 1.8, 20° < ¢ < 70°,
24 <z < 3.1?Weuse

31 ,70° ,18 70° ,02 18
0= / oydv = / / / 12singpdpdedz = —(3.1 — 2.4)12cos¢) —’
vol 2.4 J2 0 20°

0° 2 1lo
=813C

3.23. &) A point charge Q lies at the origin. Show that div D is zero everywhere except at the origin. For
a point charge at the origin we know that D = Q/(4rnr?)a.. Using the formula for divergence in
spherical coordinates (see problem 3.21 solution), we find in this case that

1d
V.D=—-—(r2 =0
r2dr (r 4nr2>

The above is true provided » > 0. When r = 0, we have asingularity in D, so its divergence is not
defined.

b) Replace the point charge with a uniform volume charge density p,0 for 0 < r < a. Relate pyo
to Q and a so that the total charge is the same. Find div D everywhere: To achieve the same net
charge, we require that (4/3)ma3p,0 = Q, SO pyo = 3Q/(4wa®) C/mS. Gauss law tells us that
inside the charged sphere

4 3
47'[}"2Dr = :-—))77,'1"3,01)0 = Qa—g

Thus

1d 3 3
D, =-2 c/mladv.p= >4 (L) 2 3¢
4 a3 r2dr \ 4ma3 47 a3

as expected. Outside the charged sphere, D = Q/(4nr?) a, as before, and the divergenceis zero.
3.24. Inside the cylindrical shell, 3 < p < 4 m, the electric flux density is given as
D =5(p — 3)%a, C/m?
a) What isthe volume charge density at p = 4 m? In this case we have

1d 1d
pp=V-D==—(pD,) ==—[5p(p — ] =
pdp

2
Sp=3° (4p — 3) C/m°
pdp P

Evaluating thisat p = 4 m, wefind p,(4) = 16.25 C/m?3

b) What is the dectric flux density at p = 4 m? We evaluate the given D at this point to find
D(4) =5a, C/m?
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3.24c. How much éectric flux leavesthe closed surface3 < p < 4,0 < ¢ < 27, —2.5 < z < 2.5? We note
that D has only aradial component, and so flux would leave only through the cylinder sides. Also, D
does not vary with ¢ or z, so the flux is found by a simple product of the side area and the flux density.
We further notethat D = O at p = 3, so only the outer side (at p = 4) will contribute. We use the result
of part b, and write the flux as

® = [2.5— (=2.5)]27(4)(5) = 2007 C

d) How much charge is contained within the volume used in part ¢? By Gauss' law, thiswill be the
same as the net outward flux through that volume, or again, 200r C.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D =5( —3)%a, C/m?

a) What isthe volume charge density at » = 4? In this case we have
1d 5
py=V-D=S—@?D,) = =(r — 3)*(5r — 6) C/m°
rédr r

which we evaluate at r = 4 to find p, (r = 4) = 17.50 C/mq.

b) What isthe electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5a, C/m?

¢) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be & =
47 (4)%(5) = 3207 C

d) How much charge is contained within the sphere, r = 4? From Gauss' law, this will be the same
as the outward flux, or again, Q = 320z C.

3.26. Giventhefield

5sin6
p _ >Snocosé c/m2,
find:
a) the volume charge density: Use
1d 5sn0 cos
py=V.D==22p,) = 2N o
r2dr r2

b) thetota charge contained within the region r < 2 m: To find this, we integrate over the volume:

2 T 2 H
5sn6 cos .
Q:/ //—2¢r23n9drd9d¢
o Jo Jo r

Before plunging into this one notice that the ¢ integration is of cos¢ from zeroto 2. Thisyields
azero result, and so the total enclosed chargeis Q = 0.

¢) thevalue of D at the surfacer = 2: Substituting r = 2 into the given field produces

5.
Dir =2) = 5 sino cosga, C/m?
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3.26d. thetotal electric flux leaving the surface r = 2 Sincethetotal enclosed chargeis zero (from part 4), the
net outward flux is also zero, from Gauss' law.

3.27. Let D = 5.00r2a, mC/m? for r < 0.08 mand D = 0.205a, /r2 ©C/m? for r > 0.08 m (note error in
problem statement).
a) Find p, for r = 0.06 m: Thisradius lies within the first region, and so

1d o 1d A 2

which when evaluated at » = 0.06 yields pu(r = .06) = 1.20 mC/m?3.

Py =V- D—

b) Find p, for » = 0.1 m: Thisisin the region where the second field expression isvalid. The 1/r?
dependence of this field yields a zero divergence (shown in Problem 3.23), and so the volume
charge density is zero at 0.1 m.

¢) What surface charge density could be located at » = 0.08 mto cause D = Oforr > 0.08 m? The
total surface charge should be equal and opposite to the total volume charge. The latter is

2 .08
0= / / / 20r(mC/m3) r2sinf dr d6 d¢ = 2.57 x 1073 mC = 2.57 uC
0 0

So now

2.57
Ps =

(. 08)2} —32uC/m*

3.28. Thedectric flux density isgiven asD = 20p3a, C/m?for p < 100 um, and k a,/p for p > 100 m.
a) Find k sothat D iscontinuous at p = 100 um: We require

k
20x107 =1 = k=2x10""C/m

b) Find and sketch p, asafunction of p: In cylindrical coordinates, with only aradial component of D,
we use

10 10
py=V-D==—(pD,) = =—(20p") =80p*> C/m* (p < 100m)
p ap p op

For p > 100 um, we obtain

ov=——(p— )_
pop - p

The sketch of p, vs. p would be a parabola, starting at the origin, reaching a maximum value of
8 x 10~ C/m3 at p = 100 um. The plot is zero at larger radii.
3.29. Intheregion of free space that includesthevolume2 < x, y,z < 3,

2
D= Z_Z(yzax +xzay —2xya;) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above: In
cartesian, wefind V - D = 8xy/z3. The volume integral sideis now

/v de_ff/&c—ydxdydz_(9 4)(9— 4)(3_%)=3.47C
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3.290.

3.30.

3.31.

Evaluate the surface integral side for the corresponding closed surface: We call the surfacesat x = 3
and x = 2 thefront and back surfacesrespectively, thoseat y = 3and y = 2 theright and | eft surfaces,
and those a z = 3 and z = 2 the top and bottom surfaces. To evaluate the surface integral side, we
integrate D - n over al six surfaces and sum the results. Note that since the x component of D does not
vary with x, the outward fluxes from the front and back surfaces will cancel each other. The sameis
true for the left and right surfaces, since D, does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:

3 13 _4yy 3 13 _4dyy 1 1
D.-dS= dxdy — dxdy =O—-4H©9—4 (> - >)=347C
$ [t aar- [[ ] 5 anav == e )<4 9)
top

bottom

If D = 15p2sin2¢ a, + 10p? cos2¢ a, C/m?, evaluate both sides of the divergence theorem for the
regionl < p <2m,1< ¢ < 2rad, 1 < z < 2m: Taking the surface integral side first, the six sides
over which the flux must be evaluated are only four, since there is no z component of D. We are | eft
withthesidesat ¢ = 1and ¢ = 2 rad (left and right sides, respectively), and thoseat p = 1and p = 2
(back and front sides). We evaluate

2 2 2 p2
?g D.dS= / / 15(2)2 Sin(2¢) (2)dpdz — / / 15(1)2sin(2¢) (L)dpdz
1 1 1 1

front back
2 2 2 p2
— f / 1002 cos(2) dpdz + / f 10p? cos(4) dpdz = 6.93C
1 1 1 1

left right

For the volume integral side, we first evaluate the divergence of D, which is
10 . 190 .
V.D==—(15p3sin2¢) + — —(10p? cos2¢) = 25p sin2¢
p 9p p 3¢

Next

2 r2 2 25 .12 —cos(2¢) 1?
/ V.Ddv = / / / 250 5in(29) pdp d dz = = p°| —C0S29) 1" _6a3cC
vol 1 J1 1 3° 1 2 1

Given the flux density
16
D = — cos(20) ag C/m?,
r

use two different methods to find the total charge withintheregionl <r <2m,1 < 6 < 2rad,
1 < ¢ < 2rad: We use the divergence theorem and first evaluate the surface integral side. We are
evaluating the net outward flux through a curvilinear “cube’, whose boundaries are defined by the
specified ranges. The flux contributionswill be only through the surfaces of constant 6, however, since
D has only a9 component. On a constant-theta surface, the differential areais da = r sinfdrde,
where 6 isfixed at the surface location. Our flux integral becomes

2 p2 16 2 p2 16
f D.-dS=— f / —cos(2) r sin(l) drd¢ + / / — cos(4) r Sin(2) drd¢
1 J1r 1 J1 7

o=1 9=2
= —16[cos(2) sin(1) — cos(4) sin(2)] = —3.91C
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3.31. (continued) We next evaluate the volume integral side of the divergence theorem, where in this case,

V-D= 1 d(nD)— 1 d 16coszesm9
"~ rsing do 9= ysing 4o

16 [cos 26 cosé

- —2sin26
r2 sing

r

We now evaluate:
2
16 [ cos20 coso : .
/ V. de_/ / / [ —25|n29} r2sino drdodg
1 sing
Theintegra simplifiesto

2
f / / 16[c0s26 cosf — 2sin20 sinf] drdfd¢ = 8/ [3cos39 — cosf]dh = —3.91C
1 1 1

3.32. If D = 2r a. C/m?, find the total electric flux leaving the surface of thecube, 0 < x, y, z < 0.4: This
is where the divergence theorem really saves you time! First find
1
V.-D= (r X 2r) =26

Then the net outward flux will be

/ V-Ddv =6(0.4)°=0.38C
vol
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CHAPTER 4

4.1. Thevalueof Eat P(p = 2, ¢ =40°, z = 3)isgivenasE = 100a, — 200a, 4 300a, V/m. Determine
the incremental work required to move a 20 1. C charge a distance of 6 um:

a) inthe direction of a,: The incremental work is given by dW = —q E - dL, wherein this case,
dL =dpa, =6x10"%a,. Thus

dW = —(20 x 107°C)(100V/m)(6 x 1076m) = —12 x 107°%J= —12nJ
b) inthe direction of a,: InthiscasedL = 2d¢ a; = 6 x 10 %a,, and so
dW = —(20 x 1078)(—200)(6 x 1070 = 2.4 x 1078J=24nJ
¢) inthedirection of a,: Here, dL = dza, = 6 x 10%a,, and so

dW = —(20 x 107%)(300)(6 x 107%) = —3.6 x 10783 = —36nJ

d) inthedirection of E: Here, dL = 6 x 10-®ag, where

_ 100, — 200a, + 3002,
~ [1002 + 2002 + 3002]1/2

arg = 0.267a, — 0.535a, + 0.8024a,

Thus

dW = —(20 x 10‘6)[100ap — 200a, + 300a.] - [0.267a, — 0.535a4 + 0.8024a,](6 x 1075
=—-449nJ

€) Inthedirectionof G = 2a, — 3a, + 44a;: Inthiscase, dL = 6 x 10-%a;, where

_ 2a,—3ay +4a
- [22 +32 4+ 42]1/2

ag = 0.371a, — 0.557a, + 0.743a,

So now

dW = —(20 x 107°)[100a, — 200a, 4 300a,] - [0.371a, — 0.557a, + 0.743a.](6 x 107°)
= —(20 x 107°)[37.1(a, - &) — 55.7(a, - a,) — 74.2(ay - ;) + 111.4(ay - a,)
+ 222.9] (6 x 107%)

where, a P, (a, - a,) = (a4 - ay,) = cos(40°) = 0.766, (a, - a,) = sin(40°) = 0.643, and
(ay - ac) = —sin(40°) = —0.643. Substituting these resultsin

dW = —(20 x 107%)[28.4 — 35.8 + 47.7 + 85.3 4 222.9](6 x 107%) = —41.8nJ
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4.2. Let E = 400a, — 300a, + 500a, in the neighborhood of point P (6, 2, —3). Find theincremental work
donein moving a 4-C charge adistance of 1 mm in the direction specified by:
a) a, +a, +a;: Wewrite

(@ +ay +a)

dW = —qE - dL = —4(400a, — 300a, + 500a) - /3

(1073)

__(4x1079)

(400 — 300 + 500) = —1.39J
V3

b) —2a, + 3a, — a,: Thecomputation is similar to that of part a, but we change the direction:

(—2a, +3a, — a,)

dW = —qE - dL = —4(400a, — 300a, + 500a,) -
) 14

(1073)

4% 103
_ —(X—\/1—4)(_800 — 900 — 500) = 2.35J

4.3. If E = 1204, V/m, find the incremental amount of work done in moving a 50 um charge a distance
of 2 mm from:

a) P(1,2,3) toward Q(2, 1, 4): The vector along this direction will be Q — P = (1, —1, 1) from
whichapg = [a, — a, + a;]/+/3. We now write

dW = —gE -dL = —(50 x 10°°) [120a,, : W%“"Z] (2 x 10°%)
. 1 )
= —(50 x 107°)(120) [(a, - &) — (&, - &y)] 73(2 x 1073

At P, ¢ =tan~1(2/1) = 63.4°. Thus (a, -a,) = cos(63.4) = 0.447 and (a, - a,) = Sin(63.4) =
0.894. Substituting these, we obtain dW = 3.1 uJ.

b) 0(2,1,4) toward P(1, 2, 3): A littlethought isin order here: Note that the field hasonly aradial
component and does not depend on ¢ or z. Note also that P and Q are at the same radius (v/5)
from the z axis, but have different ¢ and z coordinates. We could just as well position the two
points at the same z location and the problem would not change. If this were so, then moving
along astraight line between P and Q would thus involve moving along achord of acircle whose
radius is +/5. Halfway along this line is a point of symmetry in the field (make a sketch to see
this). This means that when starting from either point, theinitial force will be the same. Thusthe
answer isdW = 3.1pJasin part a. Thisis also found by going through the same procedure as
in part a, but with the direction (roles of P and Q) reversed.

4.4. Find the amount of energy required to move a 6-C charge from the originto P(3, 1, —1) in the field
E = 2xa, — 3y2ay + 4a, V/m aong the straight-line path x = —3z, y = x + 2z: We set up the
computation as follows, and find the the result does not depend on the path.

W=—q / E-dL = —6/(2an — 3y2ay +4a,) - (dxa, +dyay + dza;)

3 1 -1
:—6/ 2xdx+6/ 3y2a’y—6/ Adz = —24]
0 0 0
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4.5. Compute the value of fAP G -dL for G = 2ya, with A(1, —1, 2) and P(2, 1, 2) using the path:
a) straight-line segments A(1, —1,2) to B(1, 1, 2) to P(2, 1, 2): In general we would have

P P
/ G-dL:/ 2ydx
A A

The change in x occurs when moving between B and P, during which y = 1. Thus

P P 2
/ G-dL:/ Zydx:/ 2(L)ydx = 2
A B 1

b) straight-linesegments A(1, —1, 2)toC(2, —1, 2) to P(2, 1, 2): Inthiscasethechangein x occurs
when moving from A to C, during which y = —1. Thus

P C 2
/ G- dL :/ 2y dx :/ 2(—1dx = -2
A A 1 T

4.6. LetG = 4xa, +2za, +2ya,. Givenaninitial point (2, 1, 1) and afinal point Q (4, 3, 1),findf G-dL
using the path: a) straight line: y = x — 1, z = 1; b) parabola: 6y = x2 + 2,z = 1:

With G as given, thelineintegra will be
4 3 1
/G-dL:f 4xdx+/ ZZdy—l-/ 2ydz
2 1 1
Clearly, we are going nowhere in z, so the last integral is zero. With z = 1, thefirst two evaluate as
5|4 3
[on-2iiaf-m

The paths specified in partsa and b did not play arole, meaning that the integral between the specified
pointsis path-independent.

4.7. Repeat Problem 4.6 for G = 3xy3a, + 2za,. Now things are different in that the path does matter:
a) straightline: y =x — 1,z = 1. Weobtain:

4 3 4 3
/G~dL:f 3xy2dx+/ ZZdy:/ 3x(x—l)2dx+/ 2(1)dy =90
2 1 2 1
b) parabola: 6y = x2 + 2, z = 1: We obtain:

4 3 4 1 3
/G-dL:/ 3xy2dx+/ 21dy=/ —x<x2+2>2dx+/ 2(1) dy = 82
2 1 2 12 1



4.8. A pointcharge Q1 islocated at theorigininfreespace. Findthework donein carrying acharge Q» from:

(@) B(rp, 0B, ¢p) 10 C(ra, 0p, ¢p) With 6 and ¢ held constant; (b) C(r4, 6, ¢p) t0 D(ra, 04, ¢p)
with r and ¢ held constant; (C) D(r4, 64, ¢B) t0 A(ra, 64, ¢4) Withr and 6 held constant: The general
expression for the work donein thisinstance is

. d
QLo . (dra, +rdoas +rsinddea,) — — 2222 [ &
4 eqr?

2

W=-0z [E-dl =0

4meq r

We see that only changes in r will produce non-zero results. Thusfor part a we have

W =

_Q1Q2/”d_r_% R
4req Jp, 12 Areg |ra 1B

The answers to parts b and ¢ (involving paths over which r is held constant) are both 0.

4.9. A uniform surface charge density of 20 nC/m? is present on the spherical surface r = 0.6cm in free

4.10.

space.

a) Find the absolute potential a& P(r = 1cm, 6 = 25°, ¢ = 50°): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The potential
function for » > 0.6 cm will be that of apoint charge of Q = 4wa?py, or

47(0.6 x 1009?20 x 109  0.081

Vv =
) 4 eqr r

V with r in meters

Atr = 1cm, thisbecomesV(r =1cm) =814V

b) Find V4p given points A(r = 2cm, 6 = 30°, ¢ = 60°) and B(r = 3cm, 6 = 45°, ¢ = 90°):
Again, the angles do not matter because of the spherical symmetry. We use the part a result to
obtain

1 1

Given a surface charge density of 8 n\C/m? on the plane x = 2, aline charge density of 30 nC/m on
thelinex = 1, y = 2, and a1-uC point chargeat P(—1, —1, 2), find V45 for points A(3, 4, 0) and
B(4, 0, 1): We need to find apotential function for the combined charges. That for the point charge we
know to be 0

A egr

Vp(r) =

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

wmz—f P gp+C1= -

In C
2megp 2meQ (o) + €1

For the sheet charge, we have

Vi(x) = —/z'o—esodx+C2= _2p_€s0x+C2
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4.10.

4.11.

(continued) The total potential function will be the sum of the three. Combining the integration con-
stants, we obtain:
o In(p) — Ll +C

A egr 27'[ €0 2¢0

V=

The terms in this expression are not referenced to a common origin, since the charges are at different
positions. The parameters r, p, and x are scalar distances from the charges, and will be treated
as such here. For point A we have ry = /(3— (=1)24+ (4— (=1))2+ (—2)2 = /45, py =
V(B =12+ (4—2)2 = /8, and its distance from the sheet chargeisx4 = 3 — 2 = 1. The potential
a A isthen

106 30 x 107° 8x 107°
——InVB———— () +C

A egn/45 B 2meq 2¢0

Atpoint B, rg = /(4= (=1)2+ (0— (-1))> + (1 - 2)2 = V27,
o8 = +/(4—1)2 + (0 — 2)2 = /13, and the distance from the sheet chargeisxp = 4 — 2 = 2.
The potentia at A isthen

Vi =

106 30 x 1079 x 1079
Vg = Inv/1 3— ——— @+cC
BT dnegy27  27meo 20 2
Then
1067 1 1 30 x 1079 8 8x 1079
Vi— Vg = — — | — |- (1-2) =193V
A B 4meg |:4/45 4/27:| 2meg n( 13) 2¢0 ( )

Let auniform surface charge density of 5nC/m? be present at the z = 0 plane, a uniform line charge
density of 8nC/m be located at x = 0, z = 4, and a point charge of 2 uC be present at P(2, 0, 0).
IfVv =0a M(,0,5), find V a N(1, 2, 3): We need to find a potential function for the combined
chargeswhichiszeroat M. That for the point charge we know to be

Y

4 eqr

Vp(r) =

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

Vz(p)=—f dp+ C1 = _lln(l))‘FCl
2mwegp 2meg
For the sheet charge, we have

Vi(z) = /—d —|—C2———Z+C2
2¢0

The total potential function will be the sum of the three. Combining the integration constants, we

obtain:
0 In(p )——z—l—C

V =
4 eqr 271 €0 2¢0
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4.11. (continued) The termsin this expression are not referenced to a common origin, since the charges are
at different positions. The parameters r, p, and z are scalar distances from the charges, and will be
treated as such here. To evaluate the constant, C, we first look at point M, where V; = 0. At M,
r=+22+52 =29 p=1,andz = 5 Wethushave

2x10% 8x10°° 5x 107°
= — Inl) - ——5+C = C=-193x10%V
A e0/29 2meq 2¢0

Atpoint N,r = V14 4+ 9= 14, p = /2, and z = 3. The potential at N isthus

2x10% 8x10°° 5x 107°
X X In(v?2) — 22—~

5 (3) — 1.93 x 10% = 1.98 x 10V = 1.98kV
€0

Vy = —
N 4reg/ 14 2meg

4.12. Three point charges, 0.4 1 C each, are located at (0, 0, —1), (0, 0, 0), and (0, 0, 1), in free space.
a) Find an expression for the absolute potential as a function of z along thelinex = 0, y = 1:
From a point located at position z aong the given line, the distances to the three charges are

Ri=+(z—124+1, Ry =+z24+1,and Rz = /(z + 1)2 + 1. Thetota potential will be

V(z) = 1 1+1+1
Z_47'[60 Ri R» R3

Using ¢ = 4 x 107 C, this becomes

1 1 1
V(2) = (3.6 x 10° + + v
(z) = (36 x )[\/(2_1)2+1 VZ+1 %(z+1)2+1}

b) Sketch V (z). The sketch will show that V maximizesto avalue of 8.68 x 102 at z = 0, and then
monotonically decreases with increasing |z| symmetrically on either side of z = 0.

4.13. Threeidentical point charges of 4 pC each are located at the corners of an equilateral triangle 0.5 mm
on asidein free space. How much work must be done to move one charge to a point equidistant from
the ather two and on the line joining them? Thiswill be the magnitude of the charge times the potential
difference between the finishing and starting positions, or

A4x10712211 1
W=-——"_"" " |——
25 5

—] x 10* =5.76 x 107193 = 576pJ
2meQ —_—

4.14. two 6-nC point charges are located at (1, 0, 0) and (—1, 0, 0) in free space.
a) FindV at P(0, 0, z): Sincethe chargesare positioned symmetrically about the 7 axis, the potential
at z will be double that from one charge. This becomes:

V() =2

q B q
4regn/72 4+ 1 B 2meov/z2 + 1

b) Find V,,.x: Itisclear fromthe part a result that V will maximizeat z = 0, Of vj,qx = g/ (27 €g) =
108V.
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4.14. (continued)

c) Calculate |dV /dz| onthe z axis: Differentiating the part a result, we find

dv qz

—_— = —=V/m
dz meg(z2 + 1)3/2 /

d) Find |dV /dz|max: Tofind this we need to differentiate the part ¢ result and find its zero:

d dv g(1—272) 1
dzldz meg(z2 4+ 1)5/2 = 2 V2
Substituting z = 1/+/2 into the part ¢ result, we find
i 4 _g1y/m
dz lmax  /27€q(3/2)3/2

4.15. Two uniform line charges, 8 nC/m each, arelocatedat x = 1,z = 2, andat x = —1, y = 2infree

space. If the potential at theoriginis 100V, find V at P (4, 1, 3): The net potentia function for the two
charges would in genera be:

__p In(Ry) — P

V =
2meQ 2meg

In(R2) + C

At theorigin, R1 = R» = +/5,and V = 100 V. Thus, with p; = 8 x 1079,

2(8 x 1079)
TTEQ

100 = — INvV5)+C = C=33L6V

At P(4,1,3),R1=1(4,1,3) —(1,1,2)| = v/10and R2 = |(4, 1,3) — (-1, 2, 3)| = +/26. Therefore

-9
Vp = _8x107) [In(«/FJ) + |n(¢2_6)] +331.6=-684V
2 eg
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4.16. Uniform surface charge densities of 6, 4, and 2 nC/m2 arepresent at r = 2, 4, and 6 cm, respectively,
in free space.

a)

b)

<)

Assume V = 0 at infinity, and find V (). We keep in mind the definition of absolute potential
as the work done in moving a unit positive charge from infinity to location r. At radii outside all
three spheres, the potential will be the same as that of a point charge at the origin, whose charge
is the sum of the three sphere charges:

q1+q2+q3 _ [47(.02)%(6) + 47 (.04)%(4) + 47 (.06)2(2)] x 10~°
A egr o 4 egr
_ (96+256+288)7 x 1013 181
N 47 (8.85 x 10-12) o
As the unit charge is moved inside the outer sphere to positions4 < r < 6 cm, the outer sphere
contribution to the energy isfixed at itsvalue at » = 6. Therefore,
atge 93 _ 0.994
4 egr 4eg(.06) 1

In moving inside the sphere at » = 4 cm, the contribution from that sphere becomes fixed at its
potential function at r = 4:

V() (r >6cm) =

V wherer isin meters

V)4 <r <bcem) = + 136V

q1 n q2 n q3 _0.271
Aregr  4dmepg(.04) 47'[60(.06)_ r

Finally, using the same reasoning, the potential inside the inner sphere becomes

0.271
V@) (r <2cm) = 02 + 31.7 = 45.3V

V)2 <r <4cm) = + 317V

Cdculate V atr =1, 3,5, and 7 cm: Using the results of part a, we substitute these distances (in
meters) into the appropriate formulasto obtain: V(1) = 45.3V,
V(3 =40.7V,V(5) =335V,and V(7) = 25.9V.

Sketch V versusr for 0 < » < 10 cm.

Problem 4.16

50 T T T T

V()

10 1 | | L
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4.17. Uniform surface charge densities of 6 and 2 nC/m? are present at p = 2 and 6 cm respectively, in free
space. Assume V = 0at p = 4 cm, and calculate V at:

a) p =5cm: Since V = 0at 4 cm, the potential at 5 cm will be the potential difference between
points 5 and 4:

5 5 —9
02)(6 x 10 5
v5=_/ E-dL =_f apﬂdp:—wln<—) — —3.026V
4 4 €op €0 4

b) o = 7 cm: Here we integrate piecewisefrom p = 4top = 7:

Vo= — /6 APsa dp — /7 (apsa + bpsb)dp
4 6

€op €0p

With the given values, this becomes

[(.02)(6 x 10—9)} (6) [(.02)(6 x 1079) + (.06)(2 x 10—9)} (7)
Vo= — |22 Hin( =) - In( =
€0 4 €0 6
— 9678V

4.18. A nonuniform linear charge density, p; = 8/(z% + 1) nC/m lies dong the z axis. Find the potential at
P(p =1,0,0) infree spaceif V = O at infinity: This last condition enables usto write the potential
at P asasuperposition of point charge potentials. The result isthe integral:

/oo prdz
Vp =
—oo dmegR

where R = +/z2 + 1 isthe distance from a point z on the z axisto P. Substituting the given charge
distribution and R into the integral gives us

£
<

v _/00 8x10%z  2x107°% 7z o
P7 e dmeo@@+ 132~ meg JZill-o

4.19. The annular surface, 1cm < p < 3cm, z = 0, carries the nonuniform surface charge density p; =
5pnC/m2. Find V at P(0, 0, 2cm) if V = 0 at infinity: We use the superposition integral form:

oe ] [t
Ameglr — 1’|

wherer = za, andr’ = pa,. We integrate over the surface of the annular region, withda = p dp d¢.
Substituting the given values, we find

/271/03 (5 x 10~ g)pzdpd¢
Vp =
01 47'[60 02+ 72

Substituting z = .02, and using tables, the integral evauates as
03

9
[—(5)(10 >][2¢W oer In(p+m>} =081V

2¢0
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4.20. Fig. 4.11 shows three separate charge distributions in the z = 0 plane in free space.
a) find thetotal charge for each distribution: Line charge along the y axis:

5
01 = / 7 x 107%dy = 27 x 10°C = 6.28nC
3
Linechargeinanarcatradiusp = 3:

70°
szf (107°)3d¢ = 4.5 x 1079 (70 — 10)%_471x10 9C=4.71nC
00

Sheet charge:

70° 35
Q3= / / (10~%) pdp d¢p = 5.07 x 1079C = 5.07nC
10° J16

b) Findthe potentia at P (0, 0, 6) caused by each of the three charge distributions acting alone: Line
charge along y axis:

5 5 9 3
prdL / m x 107°dy 10 5
Vo — _ _ In 24 62 ‘ —7.83V

Linechargeinanarc aradius p = 3:

70° 9
VPZZ[ (15x10793d¢ Q2 631V
100 4dmweg/ 32 + 62 47T60v
Sheet charge:
v /70° /35 (109 pdpdp 60 x 1079 <2n ) 35 sdp
5= il _prap
7 o |6 aneo/p?+62 4n(8854x1072\360) )16 /o2 + 36

—9.42./0% + 36‘16 — 6.93V

¢) Find Vp: Thiswill be the sum of the three results of part b, or

Vp =Vp1+ Vpr+ Vp3 =783+ 6.31+6.93 =211V

4.21. Let V = 2xy%z3 4+ 3In(x2 + 2y2 + 3z%) V in free space. Evaluate each of the following quantities at
P@3, 2, -1):

a) V: Substitute P directly to obtain: V = —15.0V
b) |V|. Thiswill bejust 15.0V.

¢) E: Wehave
6x 12y
E‘ =—VV’ =—|(2y°+ ——— 4 —————— ] a
P P [( R N il x2+42y24+322) 7
18z
2.2 —
+ (6)6)1 -+ m) a.z:|P =7.1a, +22.83.y —711a,V/m
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4.21d. |E|p: taking the magnitude of the part ¢ result, wefind |E|p = 75.0V/m.
€) ay: By definition, thiswill be

E
av|, = ~g = ~0.095a, 03042, +0.M8a,

f) D: Thisis D‘P - eoE|P = 62.8a, + 202a, — 629a, pC/m?.

4.22. It isknown that the potential is given as V = 80r%° V. Assuming free space conditions, find:
a) E: Weuse

dv
E=-VV=-—-a= —(0.6)80r%%a, = —48-"%%a, V/m
r

b) the volume charge density at » = 0.5 m: Begin by finding
D = oE = —48r %% a, C/m?

We next find

pv:V‘D:

L9 (2p,) = L (~asert®) = -2 oy

Q.|Q~

Thenatr = 0.5m,

—76.8(8.854 x 1012)
(O. 5) 14

pv(0.5) = =-179x107°C/m® = —1.79 nC/m°®

¢) thetotal chargelyingwithinthesurfacer = 0.6: Theeasiest way isto use Gauss' law, and integrate
the flux density over the spherical surface r = 0.6. Sincethefield is constant at constant radius,
we obtain the product:

0 = 47(0.6)%(—48¢0(0.6) %% = —2.36 x 10°° C = —2.36 nC

4.23. It isknown that the potential is given as V = 80,6 V. Assuming free space conditions, find:
a) E: Wefind this through

dv
E=-VV=—"—a,=-48*V/m
dp —

b) the volume charge density at p = .5m: Using D = ¢gE, we find the charge density through

1\ d
=[V-Dls= (= D — —28.8¢0p 14 = —673pC/m®
[ 15 ( )dp (o )‘5 op™ | pC/m

52



4.23c. thetotal chargelying withintheclosed surfacep = .6,0 < z < 1: Theeasiest way to dothiscalculation
istoevaluate D, at p = .6 (noting that it is constant), and then multiply by the cylinder area: Using part

a,wehave D, .= —4860(.6) "4 = —521pC/m2. Thus Q = —27(.6)(1)521x10~12C = —1.96nC.

4.24. Giventhepotential field V = 80r2 cosé and apoint P (2.5, = 30°, ¢ = 60°) infreespace, findat P:
a) V: Substitute the coordinatesinto the function and find V» = 80(2.5)2 cos(30) = 433 V.
b) E:
aVv 10V

E=-VV=—-——a — ——ay = —160r cosfa, + 80r sinfag V/m
or r 060

Evaluating thisat P yieldsE, = —346a, + 100ay, V/m.

c) D: Infreespace, Dp = gEp = (—346a, + 100ay)eg = —3.07 &, + 0.885a; nC/m?.
d) pu:

0
r2sing 96

19 .
pu=V.D:60V.E:eo|:—2—(r2Er>+ (EgSInG):|
ré or

Substituting the components of E, we find

160 coso 1 .
oy = [——23r2 + ———80r(2sind cos@)} €0 = —320¢g cosO = —2.45 nC/m°
r rsing —_—
with 6 = 30°.
€) dV/dN: Thiswill bejust |E| evaluated at P, whichis

dv
T |, = — 3468+ 100ay| = V/(346)2 + (100)2 = 360 V/m

f) ayn: Thiswill be

ay =

E —346a, + 100
_Er _ &+ 0% | _0.961a, — 0.278a
|Ep| V(346)2 4 (100)2

4.25. Withinthe cylinder p = 2,0 < z < 1, the potential isgivenby V = 100 + 50p + 150p sin¢ V.
a) FindV, E, D, and p, a P(1,60°, 0.5) in free space: First, substituting the given point, we find
Vp = 279.9V. Then,

A% 19V

E=-VV=—-a,—~—
ap p o

as = —[50 + 150sin¢] a, — [150cos¢] a,

Evaluate the above at P tofind Ep = —179.9a, — 75.0a4 V/m
Now D = €oE, so Dp = —1.59a, — .664a5 nC/m?. Then

1\ d 14D 1 . 1 .
pp=V-D= (—) — (pr)+——¢ = [——(50+ 150sin¢) + —1503m¢} €0 =——¢C
p) dp p 0¢ P o o

At P, thisis p,p = —443 pC/mq.
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4.25b. How much charge lies within the cylinder? We will integrate p,, over the volume to obtain:

1 2 2 50
= / / / _ 20 dpdp dz = —27(50)€p(2) = —5.56nC
0 JO 0 1Y

4.26. A dipole having Qd/(4meg) = 100V - m? islocated at the origin in free space and aligned so that its
moment isinthea, direction. a) Sketch |V (r = 1, 0, ¢ = 0)| versusé on polar graph paper (homemade
if youwish). b) Sketch |[E(r = 1,60, ¢ = 0)| versus6 on polar graph paper:

Qdcost  100cost

V=
2

[Vir =1,0,¢ = 0)| = |100coso|
4 eqr? _

E =

. 100 .
3 (2cosf a, +sinf ag) = = (2cosf a, + sinb ay)

4 eqr

1/2 1/2
IEG-=1,6, ¢ = 0)| = 100 (400529 + sin29> — 100 <1+300320)

These results are plotted below:

Problem 4.26

N\
\ o-fvjﬁ\*fﬂn.

180

270



4.27. Two point charges, 1nC at (0,0, 0.1) and —1nC at (0, 0, —0.1), arein free space.
a) Calculate V at P(0.3,0,0.4): Use

Ve 4 4
P = 4neolRY|  4meo|R|

whereR+ = (.3,0,.3) and R~ = (.3,0, .5), sothat |R*| = 0.424 and |R~| = 0.583. Thus

10°°7 1 1
Vp = — = 5.78V
P aneg [.424 .583] ==
b) Cdculate [E| at P: Use

£ __qg3ax+.3@q__qp3ax+.5@)__10*9
P Taneo(424)3 T 4meo(583)°  4rmeo

[2.42a + 1.41a,] V/m

Taking the magnitude of the above, wefind |[Ep| = 25.2V/m.

¢) Now treat the two charges as a dipole at the origin and find V at P: In spherical coordinates, P
islocated at r = /.32 4+ .42 = 5and 6 = sin~1(.3/.5) = 36.9°. Assuming adipolein far-field,
we have

gdcosd  1079(.2) cos(36.9°)
= = =576V
P 4 eqr? 47 €0(.5)2

4.28. A dipole located at the origin in free space has a moment p2 x 10~°a, C- m. At what points on the
liney =z, x =0is
a) |Eg| = 1mV/m? Wenotethat theliney = z liesat & = 45°. Begin with

E = 2 x lo_Q(Zcosea, +sinfay) = 107 (2a, + ay) at 6 = 45°
 Adweord B 22 eqr B
from which
10°° -3 : 3 —4
Ey = ——= =10"°V/m (required) = r° =127 x 10 "orr =23.3m
27'[60}”3

They and z valuesarethus y = z = +£23.3/4/2 = £16.5m

b) |E,| = 1 mV/m? From the above field expression, the radial component magnitude is twice that
of the theta component. Using the same development, we then find

1079
2w eor3

E, =2 =10"3V/m (required) = r3=2(127 x 1074 or r = 29.4m

They and z valuesarethus y = z = £29.4/+/2 = £20.8m
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4.29. A dipole having amoment p = 3a, — 5a, + 10a, nC - mislocated at Q(1, 2, —4) in free space. Find
V a P(2, 3, 4): We use the general expression for the potential in the far field:

_p-(r=r)
~ dreglr — /)3

wherer —r'=P—-0=(1,1,8). So

_ (Ba,—5a,+10a) @ +a +8a)x10°

1%
: Areg[12 4 12 + 8215

4.30. A dipole, having amoment p = 2a, nC - m islocated at the origin in free space. Give the magnitude
of E and itsdirection ag in cartesian componentsat »r = 100 m, ¢ = 90°, and 6 =: a) 0°; b) 30°; c)

90°. Beginwith
E= 4nfor3 [2cos6 a, + sind ay]
from which 12 12
[ — [4c0320+sin20} :L[1+300520]
4 eqr3 4 eqr3
Now
E,=E.a = P [2cosfa, -a, +Shbay-a,] = p [3cosh sin6 cosg]
4y eqr3 A7 eqr3
then
E,—E.a, = % [2cosea,-a +sin9a9-a]:L[3cosesinesin¢]
) YT Aeqr Y Y 4 eqr3
and
E,—E.a.= " [ZCOSQar~aZ+Sin9a,9-aZ]=L[ZCOSZQ—SH‘]Z@]
4 eqr3 4 eqr3

Since ¢ isgiven as 90°, E, = 0, and the field magnitude becomes

. _ 1/2
E(p =90°)| = JE2 + E2 = 4n‘:0r3 [9c03293m20 + (200826 — sm29)2]

Then the unit vector becomes (again at ¢ = 90°):

3cosd sind a, + (2cos? 0 — sn?0) a,

ar =
[9c0s?6 sin?6 + (2cos? 6 — sin? 0)2]1/2

Now with» = 100mand p = 2 x 1079,

p 2x107°

— —=180x10°°
Areord . 4m(8.854 x 10-12)106 %

Using the above formulas, we find at & = 0°, |E| = (1.80 x 107°)(2) = 36.0uV/mand ar = a.
At 9 = 30° wefind |[E| = (180 x 107°)[1.69 + 1.56]%/2 = 32.5uV/m and az = (1.30a, +
1.25a,)/1.80 = 0.72a, + 0.69a.. Atd = 90°, |E| = (1.80x 107°)(1) = 18.0 uV/mandag = —&.
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4.31. A potential field in free spaceisexpressed as V = 20/(xyz) V.

a) Findthetotal energy stored withinthecube 1l < x, y, z < 2. Weintegrate the energy density over
the cube volume, where wg = (1/2)¢oE - E, and where

1 1 1
E=-VV =20 2—ax =+ —zay + —zaz V/m
x2yz xy?z xyz

The energy is now

1 1
Wg = 20060/ / / [X4y2Z2 22y472 + x2y2z4} dxdydz

Theintegral evaluates as follows:

Z
2 7\ 1 1\ 1 1\ 172
= 200¢ =)= —-(Z)—=-(2)=| 4«
ofl [ (24> yz2 6) y322 <2> yZ4:|1 :
2r/77\ 1 7\ 1 1\ 1
= 200 )+ (=)=+(=)=|4a
60/1 [(48> 2t <48> 27 (4> Z“] ‘

= 200¢0(3) [ ! ] = 387pJ
b) What value would be obtained by assuming a uniform energy density equal to the value at the
center of the cube? At C (1.5, 1.5, 1.5) the energy density is

1
(1.5)4(1.5)2(1.5)2

wg = 20060(3) [ ] =207 x 10719 y/m3

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

4.32. Intheregion of free spacewhere2 < r < 3,0.47 <6 < 0.6m,0 < ¢ < /2, |6t E = k/r?a,.
a) Findapositivevaluefor k so that thetotal energy stored isexactly 1 J: The energy isfound through

w/2 p0.6r
WE_/ eoEsz—/ / / —éo—r 25in0 drdo dé
0.4;

& (1\ L,/ 1\/2 06l6r
= —(— — —_— = - l
2( COS@)‘A” (2)60]‘ ( r)‘z oq €ok"=1J

Solvefor k tofindk = 1.18 x 105V - m.
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4.32b. Show that the surface® = 0.6 isan equipotential surface: Thiswill be the surface of acone, centered
at the origin, along which E, in the a, direction, will exist. Therefore, the given surface cannot be an
equipotential (the problem was ill-conceived). Only a surface of constant » could be an equipotential
inthisfield.

¢) Find V4, givenpoints A(2,0 = n /2, ¢ = n/3) and B(3, n/2, w/4): Use

A 3
k 1 1\ &k
Vip=—| E-dL=—| Za .adr=k(=-Z2)=2
AB /B fzrzararr (2 3>6

Using the result of part a, wefind V45 = (1.18 x 106)/6 = 197 kV.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5 ,C in free space.
a) Use Gauss law to find D external to the sphere: with a spherical Gaussian surface at radius r, D
will be the total charge divided by the area of this sphere, and will be a,-directed. Thus

0 5x 106

- C/m?
47'rr2ar A7 r2 & ¢/

D=

b) Calculate thetotal energy stored in the electrostatic field: Use

% 1 (5 x 10762
WE_/ °D. Edv_/ // ©x )rsmedrded¢

2 167 2¢qr
5 x 1076)2 d 25x 10712 1
—am (2) X0 / G _2X DT o819
167 2¢q oa 12 8reg .04

¢) Use Wr = 02?/(2C) to calculate the capacitance of the isolated sphere: We have

0?2 (5x10°%)?2 1
C= - — 4.45 x 1072 F = 4.45pF
owp  22.81) X &4opr

4.34. Given the potential field in free space, V = 80¢ V (note that a,, i should not be present), find:
a) theenergy storedintheregion2 < p <4cm,0< ¢ < 0.27,0 < z < 1 m: First wefind

1dv 80
E=—-VV=—-""—3;,=—83;V/m
pd¢a¢ pa¢ /
Then
0.27 041 802 04
WE—/wEdv—/ / / —eo( ) pdpd¢dz—6407reoln(02) =12.3nJ
02 p?

b) the potential difference, Va5, for A(3cm, ¢ = 0, z = 0) and B(3cm, 0.2, 1m): Use

A 0 80
VAB=—/ E-dL:—/ —Zay a5 pdep = —80(0.27) = —167 V
B 2 1Y
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4.34c. the maximum value of the energy density in the specified region: The energy density is

1 > 1 6400
wg = =gk = =¢o 5
0

2 2
Thiswill maximize at the lowest value of p in the specified range, which is p = 2 cm. So

1 6400

— —5 3 _ 3

WE, max =

4.35. Four 0.8nC point charges are located in free space at the corners of a square 4 cm on aside.
a) Find thetotal potentia energy stored: Thiswill be given by

1 4
WE = EHZ;CInVn

where V,, inthiscaseisthe potentia at the location of any one of the point chargesthat arisesfrom
the other three. Thiswill be (for charge 1)

g [1 1 1
i=VatVatVa 4neo[.04 04 ,04\/2}

Taking the summation produces a factor of 4, since the situation is the same at all four points.
Consequently,

1 .8 x 1079)2 1
We = > (@q1V1 = (8x 107 [z

— | =7.79%x10773=0.779 1J
oreo0d) |°T ﬁ} x sy

b) A fifth 0.8 uC chargeisinstalled at the center of the square. Again find the total stored energy:
This will be the energy found in part a plus the amount of work done in moving the fifth charge
into position from infinity. The latter is just the potential at the square center arising from the
original four charges, times the new charge value, or

4(.8 x 1079)2
AWg = =

=~ = 813uJ
4 en(.04/2/2) o

Thetotal energy is now

WEner = Wg(parta) + AWg = .779 4 .813 = 1.59 1J
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CHAPTER 5

5.1. Given the current density J = —10%[sin(2x)e~?"a, + cos(2x)e~ 2> a,] KA/m?:

a) Find the total current crossing the plane y = 1 in the a, direction in the region 0 < x < 1,
0 < z < 2: Thisisfound through

2 rl 2 rl
I=//J-n‘ da:/ / J-ay) dxdz:/ / —104COS(2x)e_2dxdz
s S 0 Jo y=1 0 Jo

1 1
= -10'23 sjn(zx)‘oe*2 — _1.23MA

b) Find the total current leaving theregion 0 < x,x < 1,2 < z < 3 by integrating J - dS over
the surface of the cube: Note first that current through the top and bottom surfaces will not exist,
since J has no z component. Also note that there will be no current through the x = 0 plane, since
J, = Othere. Current will pass through the three remaining surfaces, and will be found through

3 1 3 1 3 1
1=/ / J-(—ay)‘ dxdz-i—/ / J-(ay)| dxdz—i—/ / J-@)
2 Jo y=0 2 Jo y=1 2 Jo

3 1 3 1
- 10° / / [cos(zx)e—o — COS(Zx)e_z] dx dz — 10° / / sin@)e? dy dz
2 0 2 0

dyd
x:lyZ

a1 1 -2 a1\ oyt _
_ 10 <§> n2n| 3-2)[1-e2]+10 (§> n@e 2| 3-2 =0

¢) Repeat part b, but use the divergence theorem: We find the net outward current through the surface
of the cube by integrating the divergence of J over the cube volume. We have

g ol

V.J= = -10"* [ZCOS(Z)C)e_Zy — ZCOS(Zx)e_Zy] =0 asexpected

ox ay

5.2. Let the current density be J = 2¢ cos? pa, — p sin2¢a, A/m? within the region 2.1 < p < 2.5,
0< ¢ <0.1rad, 6 < z < 6.1. Find thetotal current / crossing the surface:
a p=220<¢<016<z<61linthea, direction: Thisis asurface of constant p, so only
the radial component of J will contribute: At p = 2.2 we write:

6.1 0.1 0.1 1
I = / J-dS= / / 2(2)cos? p a, - a, 2dedz = 2(2.2)%(0.1) / 51+ cos2¢) do
6 0 0

B 21 1 01]
—0.22.2) [2(0.1)+4S|n2¢>‘0 ]_97mA

b) ¢ =0.0522 < p < 25,6 <z < 6.1intheay direction: Inthis case only the ¢ component of
J will contribute:

6.1 25 2,02 25
I=]J-dS= —pSin2 capdpdz = —(0.1)"— =—7mA
./ /(; ~/2.2 pan ¢‘¢=0.05 8 - 8 apaz O 2 122 m
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5.2c. EvauateV -Jat P(p = 2.4, ¢ = 0.08, z = 6.05):

19 Lidy 10
vV.J= —(,0 Jp) + % =2 COSZ¢)———¢(,OSII’12¢) 4¢0S° ¢ — 2C0S2¢ oo

:.A/m

5.3. Let :
_ 400sin6@

A/m?
r2+4 & A/

a) Find thetota current flowing through that portion of the spherical surface r = 0.8, bounded by
0.1t <6 <0.37,0 < ¢ < 27: Thiswill be

I= f/J nl fZﬂ/Sﬂ 40080 02 4o a6 d A0CB)%2m [T o
_ 4 _
1z ( 8)2 + 4 4.64 Ar

1
= 346.5/ —[1— cos(20)]d6 = 77.4A
Ar 2

b) Find the average value of J over the defined area. The areais

.37
Area = / / (.8)°sin0 do dp = 1.46m?
0 Ar
The average current density isthus J,,, = (77.4/1.46) a, = 53.04a, A/m?.

5.4. The cathode of a planar vacuum tubeisat z = 0. Let E = —4 x 10%a, V/mfor z > 0. An electron
(e = 1.602 x 10712 C, m = 9.11 x 1031 kg) is emitted from the cathode with zero initia velocity at
t=0.

a) Find v(z): Using Newton's second law, we write:

—1.602 x 10719)(—4 x 10%)a

Thenv(t) = ar = 7.0 x 10 m/s.

b) Find z(¢), the electron location as a function of time: Use
! 1
(1) = / v(t)dt' = 5(7.0x 10"y = 35 x 1042 m
0
c) Determine v(z): Solve theresult of part b for ¢, obtaining

vz 9
= —————=17x10°z
v/3.5 x 1017 Ve

Substitute into the result of part a tofind v(z) = 7.0 x 10%"(1.7 x 107%) /z = 1.2 x 10°,/z m/s.
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5.4d. Make the assumption that the electrons are emitted continuously as a beam with a 0.25 mm radius and
atotal current of 60 uA. Find J(z) and p(2):

—60 x 10°6

XY 4 = 31x 1028, A/m?
7(0.25)2(10-6) °* x 1078, A/

J(@) =

(negative since we have electrons flowing in the positive z direction) Next we use J(z) = p,(z)V(2), Of

—3.1 x 102 2.6 x 1077

—26
po(@) 12 x 1092 N Nl
55. Let
B D
R 21001

a) Findthetotal current crossing the plane z = 0.2 in the a, direction for p < 0.4: Use

2
= ol = [ [ e

— (2)20|n(01+p)‘ (27) = —207 In(17) = —178.0A

b) Cdculate dp,/a¢: Thisisfound using the equation of continuity:

oy 19 8. 1, a(—20>:Q

=-V.-J=——(pJ —=——25)+ — | —=
ot pap(p 2 0z pap( )+8Z p2+ .01

¢) Find the outward current crossing the closed surface defined by p = 0.01, p = 0.4,z = 0, and
z = 0.2: Thiswill be

2 p2rn 25 2 p2rn 25
I :/ / —a, - (—a,)(.01) d¢dz+f f — 8 - (8y)(Adpdz

27‘[ : _20 277.’ 4 _20
———a& - (—a)pdpd ———& - (@) pdpdp =0
+/o /o p2+.01°° (=&) pdp ¢+/0 /0 PEa T (@) pdpdgp =0

since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for J and the surface specified in part 5. In part c,
the net outward flux was found to be zero, and in part b, the divergence of J was found to be zero
(aswill beitsvolumeintegral). Therefore, the divergence theorem is satisfied.

5.6. Lete = egand V = 90z%/2 in theregion z = 0.
a) Obtain expressionsfor E, D, and p, asfunctions of z: First,

dv 4
E=-VV=-—a=- §,(90)11/3:5[1 = —12073a, V/m
Z
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5.6a. (continued)
Next, D = oE = 1.06z1/3a, nC/m?. Then

dD 1
pp=V-D=— L= §(120).soz—2/3 = —354;72/3 pC/m?3
Z

b) If the velocity of the charge density isgivenasv, = 5x 106223 m/s, find J, atz = 0Oandz = 0.1
m (notethat v, iswritten as v, through amissprint): Use J, = p,v, = (—354 x 10~12)772/3(5 x
10%)z2/3 = —1.8 mA/m? at any z.

5.7. Assuming that there is no transformation of mass to energy or vice-versa, it is possible to write a
continuity equation for mass.

a) If we usethe continuity equation for charge as our model, what quantities correspond to J and o, ?
These would be, respectively, mass flux density in (kg/m? — s) and mass density in (kg/m?3).

b) Given acube 1 cm on aside, experimental data show that the rates at which massisleaving each
of the six faces are 10.25, -9.85, 1.75, -2.00, -4.05, and 4.45 mg/s. If we assume that the cubeis
an incremental volume element, determine an approximate value for the time rate of change of
density at its center. We may write the continuity equation for mass as follows, also invoking the

divergence theorem:
ad
/ Pm gy = /v I dv_—y{Jm-dS
N

Jm -dS=10.25—-9.85+ 1.75— 2.00 — 4.05 + 4.45 = 0.550 mg/s

N

where

Treating our 1 cm? volume as differential, we find

dpm . 0.550 x 10~ 3g/s
= —550g/m?

5.8. The continuity equation for mass equates the divergence of the mass rate of flow (mass per second
per sguare meter) to the negative of the density (mass per cubic meter). After setting up a cartesian
coordinate system inside a star, Captain Kirk and hisintrepid crew make measurements over the faces
of a cube centered at the origin with edges 40 km long and parallel to the coordinate axes. They find
the mass rate of flow of material outward across the six facesto be -1112, 1183, 201, -196, 1989, and
-1920 kg/m? - s.

a) Estimate the divergence of the mass rate of flow at the origin: We make the estimate using the
definition of divergence, but without taking the limit as the volume shrinks to zero:

In-dS  (—1112+ 1183 + 201 — 196 + 1989 — 1920)(40)2
Divy, = ¢ n ( +est o + VA0 _ 3 63kg/km? - s
- 3.63kg/km? - s

b) Estimate the rate of change of the density at the origin: The continuity equation for mass reads:
Div J,, = — dp,,/0t. Therefore, the rate of change of density at the origin will bejust the negative
of the part a result, or dp,, /9t = — 3.63 kg/km?® - s.
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5.9a. Using datatabulated in Appendix C, calculate the required diameter for a 2-m long nichrome wire that
will dissipate an average power of 450 W when 120V rmsat 60 Hz is applied to it:
The required resistance will be
V2 !

R = ———
P o(mra?)

Thus the diameter will be

P [ 2(450) L
d=2a=2]—"— =2 |0 _58x10%m=0.28mm
. o V2 (106)7(120)2 x =<oMm

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 = 3.75A.

Thus 375
J= : 5 = 6.0 x 10" A/m?
7 (2.8 x 1074/2)

5.10. A steel wire has aradius of 2 mm and a conductivity of 2 x 108 S/m. The steel wire has an aluminum
(0 = 3.8 x 10’ S/m) coating of 2 mm thickness. Let the total current carried by this hybrid conductor
be 80 A dc. Find:

a) Jy:. We begin with the fact that electric field must be the same in the aluminum and steel regions.
This comes from the requirement that E tangent to the boundary between two media must be
continuous, and from the fact that when integrating E over the wire length, the applied voltage
value must be obtained, regardless of the medium within which thisintegral is evaluated. We can

therefore write J ]
Al st O Al
Ep=Egy=—=— = Jy=—Jy
OAl Oyt Ost

The net current is now expressed as the sum of the currents in each region, written as the sum of
the products of the current densities in each region times the appropriate cross-sectiona area:

I =72 x10732J, + 7[(4 x 1073)% — (2 x 1073)?]J4, = 80A

Using the above relation between J;, and J4;, we find

3.8 x 10/ 3.8 x 10/
i _3\2 . —3\2
80_7'r|:(2><10 ) [1 <—6x106 >i|+(4><10 ) (6x106 )] Jst

Solve for Jy; tofind J;, = 3.2 x 10° A/m?.
b)

3.8 x 107
“ o (32 109 = 20x 10° A/m?

Ty =t
AL= e 1

cd) Eg = Ea = Jyi/oge = Jar/oa =5.3x 1072V /m.

e) thevoltagebetweentheendsof theconductor ifitis1milong: Usingthefactthat 1mi = 1.61x 103
m, wehave V = El = (5.3 x 1072)(1.61 x 10%) = 85.4 V.



5.11. Two perfectly-conducting cylindrical surfaces are located at p = 3 and p = 5 cm. The total current
passing radially outward through the medium between the cylindersis 3 A dc. Assume the cylinders
are both of length I.
a) Find the voltage and resistance between the cylinders, and E in the region between the cylinders,
if a conducting material having o = 0.05S/m is present for 3 < p < 5 cm: Given the current,
and knowing that it isradially-directed, we find the current density by dividing it by the area of a
cylinder of radius p and length /:

3
J=-—"—a, A/m?
271',01 b A/

Then the electric field is found by dividing thisresult by o':
3 9.55

= a=—a,V/m
2nopl " ol * /

The voltage between cylinders is now:

3 5955 9.55 5 4.88
V=— E.dL = —a,-a,do=—In|=)=—V
/5 /3 pl P =T (3) I

Now, the resistance will be

3 [

4. 1
v_4m_16,

b) Show thatintegratingthepower dissipated per unit volumeover thevolumegivesthetotal dissipated
power: We calculate

3 5 14.64
= Jd”_// /03 @0 2<05>12"d”d"’dzzzn<.05>z n(5) =5

We also find the power by taking the product of voltage and current:

4.88 14.64

which isin agreement with the power density integration.

5.12. The spherical surfacesr = 3 and r = 5 cm are perfectly conducting, and the total current passing
radially outward through the medium between the surfacesis 3 A dc.
a) Find the voltage and resistance between the spheres, and E in the region between them, if a
conducting material having o = 0.05 S/m is present for 3 < r < 5 cm. Wefirst find J as a
function of radius by dividing the current by the area of a sphere of radius r:

1 3
J= = A/m?
4nr2ar 4nr2ar /
Then
J 3 477
E="= —om®="2&V/m

o 4rr?(0.05)
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5.12a. (continued)

r1 0B 477 1 1
V=—| EdL=—| —dr=477|-——-—|=637V
/,2 Jo e [ 03 05}

Finaly, R =V /I =63.7/3=21.2 Q.

b) Repeatif o = 0.0005/r for 3 < r < 5cm: First, J = 3a, /(4nr2) asbefore. The electric field is

now J 3 _ 477
ra,
oo Y% V/m
o = Zn(o005)2 = ;& V/

n 03 477 .03
V=—/ E-dL:—/ —dr = —477In =244V
T 0 05

2 .05 r
Findly, R = V/I = 244/3 = 81.3 Q.

¢) Show that integrating the power dissipated per unit volume in part b over the volume gives the
total dissipated power: The dissipated power density is

R 3 3 _114W
pa=E-I=\ 3 ro00s)y ) \amr2 ) = 3 W/

We integrate this over the volume between spheres:

051 5
Pd_/ /f = r2sn0drdo dg = 4n(114)|n(3):732W
03

r

The dissipated power should bejust I2R = (3)%(81.3) = 732 W. So it works.

5.13. A hollow cylindrical tube with arectangular cross-section has external dimensionsof 0.5inby 1inand
awall thickness of 0.05 in. Assume that the material is brass, for which o = 1.5 x 10’ S/m. A current
of 200 A dc isflowing down the tube.

a) What voltage drop is present across a 1m length of the tube? Converting all measurements to
meters, the tube resistance over a1 m length will be:

1
(1.5 x 107) [(2.54)(2.54/2) x 10~ — 2.54(1 — .1)(2.54/2)(1 — .2) x 10~*]
=738x 1074 Q

R1 =

The voltage dropisnow V = I Ry = 200(7.38 x 10~% = 0.147 V.

b) Find the voltage drop if the interior of the tube is filled with a conducting material for which
o = 1.5 x 10° S/m: The resistance of the filling will be:

— 1 B »

Thetotal resistance is now the parallel combination of R1 and R»:
Rr = R1R2/(R1+ R») = 7.19 x 10~* ©, and the voltage drop isnow V = 200R; = .144V.
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5.14. Find the magnitude of the electric field intensity in a conductor if:
a) thecurrent density is5MA /m?, the electron mobility is3x 10~3 m?/V - s, and the volume charge
density is —2.4 x 1019 C/m3: In magnitude, we have

J 5 x 10°

- - =6.9x 1072V/m
opy (24 % 1010)(3 x 10-93) x /

E

b) J = 3 MA/m? and the resistivity is3 x 1078 Q- m: E = Jp = (3 x 108)(3 x 1078) =
9x 102V/m.

5.15. Let V = 10(p + 1)z%cos¢ V in free space.

a) Let the equipotential surface V. = 20V define a conductor surface. Find the equation of the
conductor surface: Set the given potential function egqual to 20, to find:

(o + )72 cos¢p = 2

b) Find p and E at that point on the conductor surface where ¢ = 0.27 and z = 1.5: At the given
values of ¢ and z, we solve the equation of the surface found in part a for p, obtaining p = .10.

Then
E__vy— 8Va 19V aVa
- T o’ ,08¢a¢ dz ©
2 pP+1,
= —10z“cos¢ a, + 10 zesing ag — 20(p + 1)z cos¢ a,
Then

E(.10, .27, 1.5) = —-18.2a, + 14538, — 26.7a,V/m

¢) Find |ps| at that point: Since E is at the perfectly-conducting surface, it will be normal to the
surface, so we may write:

E.E
ps = €0E - N — 0 = eoVE - E = ¢0v/(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m?

surface |E|

5.16. A potential fieldinfreespaceisgivenasV = (80cosf sing)/r3V.Point P(r = 2,0 = n/3, ¢ = /2)
lies on a conducting surface.
a) Writethe equation of the conducting surface: The surfacewill be an equipotential, wherethe value
of the potentia is Vp:
_ 80cos(r/3)sin(n/2) 5

v PE

So the equation of the surfaceis

80cosf sing
3

=5 or 16cosf sing = r°
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5.16¢. (I will work parts b and ¢ in reverse order)

FindE at P:
E__uy__ Y 19V 1 9V
B ST Y T ¥ rSin98qba¢
80(3) cosh sing 80sindsing 80 cos6b cos¢
= a + - .
ré r4 r4sing
Now Y
80(1/2)(1)(3 80(+/3/2)(1
Ep— (/)()()arJr ( /)()a9—0a¢:7.5a,+4.3a9V/m

16 16

b) Find aunit vector directed outward to the surface, assuming the origin isinside the surface: Such
aunit normal can be construced from the result of part c:

75a + 4.3y
ay=———"—=0.87 0.50
N 133 a + A

5.17. Giventhe potential field
_ 100xz

 x2+4
in free space:
a) Find D at the surfacez = 0: Use

0 X 100x
E=-VV=-100z— [ —— ) a, —0a, — ——a, V/m
“ox <x2—|—4) ! Yx2447 /
At z = 0, we use thisto find

100eqx

Diz=0)=eE(z=0) = ——— =
(z=0) =€E(z=0) 214

a, C/m?

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this, 1) E at
z = 0 iseverywhere z-directed, and so moving a charge around on the surface involves doing no
work; 2) When evaluating the given potential function at z = 0, theresultisOfor al x and y.

¢) Assume that the z = 0 surface is a conductor and find the total charge on that portion of the
conductor defined by 0 < x < 2, —3 < y < 0: We have

100
_ EQX C/ m2

Ps ZZ:O 244

So

0 2

100 1 2

sz / _ 0 v dy = —(3)(100)eo ( = In(x2+4)‘ — _150¢pIn2 = —0.92nC
-3Jo x2 44 2 0
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5.18. Let usassumeafield E = 3y2z3a, + 6xyz3a, + 9xy?z2a, V/min free space, and also assume that
point P(2, 1, 0) lies on a conducting surface.

a) Find p, just adjacent to the surface at P:
oo =V -D=¢V-E=6x:3+ 18xy2z C/m3

Thenat P, p, =0,sincez =0.
b) Find p, at P:
:D.n‘ - Eh)
Ps p €0 p

Note however, that this computation involves evaluating E at the surface, yielding a value of 0.
Therefore the surface charge density at P isO.

c) Show that V = —3xy?z3 V: The simplest way to show thisisjust to take —V V, which yields the
given field: A more general method involves deriving the potential from the given field: We write

av

E, = = 3?2 = v=-302+f(r.2)
A%

Ey = oy 6xyz® = V=-30%3+ f(x,2)
A%

zz_gzgxyzzz = V=-30"+ f(x,y)

where the integration “ constants’ are functions of all variables other than the integration variable.
The general procedure is to adjust the functions, f, such that the result for V isthe samein al

three integrations. In this case we seethat f(x, y) = f(x,z) = f(y,z) = 0 accomplishes this,
and the potential functionis V = —3xy?2z3 asgiven.

d) Determine Vpg, given Q(1, 1, 1): Using the potential function of part ¢, we have

Vpop=Vp—-Vp=0-(-3) =3V

5.19. Let V = 20x%yz — 10z2V in free space.

a) Determine the equations of the equipotentia surfaces on which V = 0 and 60 V: Setting the given
potential function equal to 0 and 60 and simplifying resultsin:

AtOV: 2x%y—z=0

6
At60V : 2x%y —z= -
Z

b) Assume these are conducting surfaces and find the surface charge density at that point on the
V =60V surfacewherex =2andz = 1. Itisknownthat 0 < V < 60V isthe field-containing
region: First, on the 60V surface, we have

6 7
2x2y—z—Z=O:> 2(2)%2y(1) —1-6=0 = Y=g
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5.19b. (continued) Now

E=—-VV = —40xyza, — 20x°z a, — [20xy — 20z] a,

Then, at the given point, we have
D(2,7/8,1) = €0E(2,7/8, 1) = —eo[70a, + 80a, + 50a,] C/m?

We know that since this is the higher potential surface, D must be directed away from it, and so
the charge density would be positive. Thus

ps = /D - D = 1069/ 72 + 8 + 52 = 1.04nC/m?

¢) Give the unit vector at this point that is normal to the conducting surface and directed toward the
V = O surface: Thiswill bein the direction of E and D asfound in part b, or

_ [7ax + 8a, + 5a,

e } = —[0.60a, + 0.68a, + 0.43a,]

5.20. A conducting planeislocated at z = 0 in free space, and a 20 nC point chargeis present at Q(2, 4, 6).
a) Ifv=0az=0findV a P(5, 3, 1): The plane can be replaced by an image charge of -20 nC
a Q'(2,4, —6). VectorsR and R’ directed from Q and Q"to P areR = (5,3,1) — (2,4,6) =
(3,-1, -5 andR’ = (5,3,1) — (2,4, —6) = (3, —1, 7). Their magnitudes are R = /35 and
R’ = /59. The potential at P is given by

q q 20x 1072 20 x 1079
dreoR  4dmeoR’  4megV/35  dmegV/59
b) Find E at P:
£, gR gR"  (20x1079(3,-1,-5 (20x 10793, -1,7)
P= AregR3  Ameg(R)3 477 €0 (35)3/2 477 €0(59)3/2

~ 20x107° 3 a( 1 1 ) ( 7 5 )a
T e [( x —8y) (35)32  (59)32) (59)3/2+(35)3/2 Z]

= 14a, — 0.47a, — 7.1a, V/m

c) Find p, a A(5, 3, 0): First, find the electric field there:

20x 1079 (5,3,0)— (2,4,6) (5,3,0)— (2,4, —6)
E = — — —6.9a, V
A= e [ (46)3/2 (26)372 } 3 V/m
Thenp, =D -n race = —6.9¢0a, - a, = —61 pC/m?.
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5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges of 30
nC/meacharelocatedatx =0,y =1,andx =0, y = 2.
a) LetV =0atheplaney = 0,and find V at P(1, 2, 0): The line charges will image across the
plane, producing image line charges of -30 nC/meachatx =0,y = -1, andx =0, y = —2.
We find the potential at P by evaluating the work done in moving a unit positive charge from the
y = 0 plane (we choose the origin) to P: For each line charge, thiswill be:

01 final distance from charge
Vp —Voo0=—

N| ==
21 €g initial distance from charge

where Vp,0.0 = 0. Considering the four charges, we thus have

n=gia[n(3) () () (7]

= 2:60 [In(Z) +In <%2) + In(@) +In (g)} = 30;12_9 In [ﬁj_jﬁ}

= 1.20kV

b) FindE at P: Use

E _ Pl (l’ 25 0) - (Oa l, O) (19 2, 0) - (0’ 2’ 0)
P neo | 1L LO)P (1,0,0)[2
o (17 29 O) - (09 _17 O) _ (1’ 2, 0) - (0’ _25 0)
I(1,3,0)|? (1, 4,0)|?
o [LL0 | (L0,0) (130 (L407]
= e [ 5 + 1 10 17 } = 723a, — 18.9a, V/m

5.22. Lettheplane x = 0 be aperfect conductor in free space. Locate a point charge of 4nC at P1(7, 1, —2)
and a point charge of —3nC at P2(4, 2, 1).
a) FindE at A(5, 0, 0): Image charges will be located at Pj(—7, 1, —2) (-4nC) and at P,(—4, 2, 1)
(38nC). Vectors from all four chargesto point A are:

R1=(5,0,00—-(7,1,-2) = (-2,-1,2)
R1=(5,0,0)—(-7,1,-2) = (12, -1, 2)
R>=(5,0,00—-(4,2,1) = (1, -2, -1)

and
R/Z =(5,0,00-(-4,2,1) =9, -2,-1)

Replacing the plane by the image charges enables the field at A to be calculated through:

" dreq 93/2 63/2 (149)3/2 (86)3/2
= —4.43a, + 2.23a, + 4.42a, V/m

Ea

_10—9[(4)(—2, 12 @)L -2-1) @#I2-12) (3O -2 —1)]
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5.22b. Find |ps| @ B(0, 0, 0) (note error in problem statement): First, E at the origin is done as per the setup
in part a, except the vectors are directed from the charges to the origin:

Eg

_10—9[(4)(—7,—1,2) 3(-4,-2,-1) (T, -12 (3)(4,—2,—1)]

" 4ne (5432 (21)3/2 ~ (54)32 + (21)3/2

Now pg = D - N|surrace = D - @, inour case (note the other components cancel anyway as they must,
but we still need to express p, asascalar):

psg = €oEp - ay =

o [(54)3/2 ERCIELANCT R (21)3/2] = 8.62pC/m?

5.23. A dipolewithp = 0.1a, uC- mislocated at A(1, O, 0) in free space, and the x = 0 planeis perfectly-
conducting.

a) FindV at P(2,0,1). We use the far-field potential for a z-directed dipole:

y_ Pooso _ p z
 Ameor?  Ame [x2 + y2 + Z15

Thedipole at x = 1 will image in the plane to produce a second dipole of the opposite orientation
at x = —1. The potential at any point is now:

P Z _ z
~ dreo |:[(x —D2+y2+ 22 [+ D2+ 32+ z2]1'5}

Substituting P (2, 0, 1), wefind

Ax105T 1 1
v== [ _ } — 289.5V
dreg | 24/2 104/10

b) Find the equation of the 200-V equipotential surface in cartesian coordinates. We just set the
potential exression of part a equal to 200V to obtain:

¢ z
|:[(X — 1242422115 [(x + 1)2+y2+12]1-5} = 0.222

5.24. The mobilities for intrinsic silicon at a certain temperature are u, = 0.14 m?/V-sand uy =
0.035 m2/V -s. The concentration of both holes and electrons is 2.2 x 10 m=3. Determine both
the conductivity and the resistivity of this silicon sample: Use

0 = —pete + pritn = (1.6 x 107°C)(2.2 x 10 m~3)(0.14 m?/V - s+ 0.035m?/V - 9)
=6.2x 1074 S/m

Conductivity isp = 1/o = 1.6 x 103 Q - m.
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5.25. Electron and hole concentrations increase with temperature. For pure silicon, suitable expressions are
pon = —pe = 62007 1-5¢=7000/T C/m3, The functional dependence of the mobilities on temperatureis
givenby puj, = 2.3 x 10°7-27 m?/V - sand p, = 2.1 x 10°T 25 m2/V - s, where the temperature,
T, isin degrees Kelvin. The conductivity will thus be

O = —pofte + papin = 6200TL5=7000/T [2.1 x 1057725 1 2.3 x 105T—2~7]

_ 130 X 109677000/7“

. [1 + 1.095T*~2] S/m

Find o at:
a) 0° C: With T = 273°K, the expression evaluates as o (0) = 4.7 x 10~° S/m.

b) 40° C: With T = 273+ 40 = 313, we obtain o (40) = 1.1 x 1073 S/m.

) 80° C: With T = 273 + 80 = 353, we obtain o (80) = 1.2 x 102 S/m.

5.26. A little donor impurity, such as arsenic, is added to pure silicon so that the electron concentration
is 2 x 10 conduction electrons per cubic meter while the number of holes per cubic meter is only
1.1x10%. If u, = 0.15m?/V - sforthissample, and 1, = 0.045m?/V - s, determinethe conductivity
and resistivity:

0 = —popie + papin = (16 x 1079 [(2 « 107)(0.15) 4 (1.1 x 10%5) (0.045)] — 48x 103 S/m

Thenp =1/0 =2.1x10°Q-m.

5.27. Atomic hydrogen contains5.5 x 1025 atoms/m? at acertain temperature and pressure. When an electric
field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus has an effective
length of 7.1 x 10~ m.

a) Find P: With all identical dipoles, we have

P = Ngd = (5.5 x 10%°)(1.602 x 10719)(7.1 x 1071%) = 6.26 x 1071? C/m? = 6.26 pC/m?

b) Find eg: Weuse P = ¢gx.E, and so

P 6.26 x 10712
coE  (8.85x 10-12)(4 x 103)

Theneg = 1+ . = 1.000176.

=176 x 1074

Xe =

5.28. Inacertain region where the relative permittivity is 2.4, D = 2a, — 4a, + 5a, nC/m?2. Find:

D (2a —4a, +5a) x 107°
E=—= = 94a, — 188a, + 235a, V/m
@) p (2.4)(8.85 x 10-12) y + 2358 V/

(2a, — 4a, + 5a;) x 107°
2.4

b) P=D—eE =eoE(eg — 1) = (24— 1)

= 1.2a, — 2.3a, + 2.9a, nC/m?

¢)  |VV|=I|E| =[(94.1)% + (188)% + (235)2]¥/2 = 315V/m
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5.29. A coaxia conductor has radii ¢ = 0.8 mm and » = 3 mm and a polystyrene dielectric for which
er = 2.56. If P = (2/p)a, nC/m? in the dielectric, find:
a) D and E asfunctionsof p: Use

P 2 109 144.
E= __@nx1078 _ 9apV/m
eo(eg —1)  (8.85 x 10-12)(1.56) P
Then
2 x 10 % 1 3.28 x 10 % 3.28a
D=cE+P=2" p = 20X % oym2 = 2% hoym2
0 1.56 P

b) Find V,; and yx.: Use

08 144.9

Vap = —/ " dp =1449In 3 Z100v
3 1Y 0.8

Xe = €, — 1 =156, asfoundin part a.

c) If thereare 4 x 10% molecules per cubic meter in the dielectric, find p(p): Use

P (2x1079)p) 5.0 x 10720
P=N= axid *»= , »CM

5.30. Given the potential field V = 200 — 50x + 20y V in adielectric material for which egx = 2.1, find:
a E=-VV =50a, — 20a, V/m.

b) D = ¢E = (2.1)(8.85 x 10~'?)(50a, — 20a,) = 930a, — 372a, pC/m?.

¢) P = eoE(eg — 1) = (8.85 x 10712)(50a, — 20a,)(1.1) = 487a, — 195a, pC/m?.
d op=V-D=0.

e pp=—V-P=0

f) pr =V-eE=0

5.31. The surface x = 0 separates two perfect dielectrics. For x > 0, let eg = €p1 = 3, whileegy = 5
wherex < 0. If E; = 80a, — 60a, — 30a, V/m, find:
a) En1: Thiswill beE; -a, = 80V/m.

b) Er1. Thisconsistsof componentsof E1 not normal to the surface, or Ery = —60a, — 30a, V/m.

¢) Er1=+/(60)2 + (30)2 = 67.1V/m.

d) E1 =+/(80)2 + (60)2 + (30)2 = 104.4V /m.

€) Theangle 61 between E1 and anorma to the surface: Use

Ei-a 80

C0SH1 = =
! Eq 104.4

= 601 =40.0°
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5.31 (continued)
f) Dyo = Dy1 = eg1e0En1 = 3(8.85 x 10712)(80) = 2.12nC/m?.
0) D72 = epoegEr1 = 5(8.85 x 10712)(67.1) = 2.97nC/m?.

h) D2 = er1e0En1ay + €rzeoEr1 = 2.12a, — 2.66a, — 1.33a, n"C/m?.

i) Py =Dy — eoE2 = D2 [1— (1/€r2)] = (4/5)D2 = 1.70a, — 2.13a, — 1.06a, nC/m2,

j) the angle 6, between E, and anormal to the surface: Use

coSy = Eora Da-ar 212 — 581
E> D> V(2.12)2 = (2.66)2 4 (1.33)2

Thus6, = cos1(.581) = 54.5°.

5.32. InFig. 5.18, let D = 3a, — 4a, + 5a, nC/m? and find:
a) Do: First, theelectricfieldinregion 1is

3 4 5
E;j=|—a, ——a, +-—a 107°V/m
! |:260 * 2¢0 y + 2¢0 Z:| x /

Since, at the dielectric interface, tangential electric field and normal electric flux density are
continuous, we may write

5 5
D2 = €p2epET1 + D1 = (§> 3a, — <§> 4a, + 5a, = 7.5a, — 10a, + 5a, nC/m?

b) Dn2 = 5a, as explained above.

) Dr2 = egpeoEr2 = €g2e0Er1 = 7.5a, — 10a, NC/m?.

d) the energy density in each region:

1 1 [/ 3\2 5
We1 = Z€r1€0EL - E1 2( )eo <2€0> + (260) (2

_ )
)

1 1 [/ 3\2
= — Es - Er==(5 —
Wez = Z€r2€0E2 - B2 2( )€o (260) +(2€0> (560

x 1078 = 1.41 pJym?3

x 1078 = 2.04 pJ/m3

€) the angle that D, makes with a,: Use D, - a, = |Dz|cosé = D, = 5. where |Dy| =
[(7.5)2 4 (10)2 + (5)2]"/* = 13.5. S0 6 = cos~1(5/13.5) = 68°.
211/2

f) Da/D1 = [(7.52+ (102 + 5)2]"?/[32 + (42 + (5)%]"% = 1.91.
g) P2/P1. First P; = ¢gE1(eg1 — 1) = 1.5a, — 2a, + 2.5a, nC/mZ.
Then Py = ¢gEa(ep2 — 1) = 6a, — 8ay + 4a, nC/m2. So
2 2 211/2
P [O®°+®°+*] — 304

P [(152+(22+253Y2
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5.33. Two perfect dielectrics have relative permittivitiese g1 = 2 and eg2 = 8. The planar interface between
them is the surface x — y + 2z = 5. The origin liesin region 1. If E; = 100a, + 200a, — 50a,
V/m, find E2: We need to find the components of E4 that are normal and tangent to the boundary, and
then apply the appropriate boundary conditions. The normal component will be Ey1 = E1 - n. Taking
f = x — y + 2z, the unit vector that is normal to the surfaceis

\% 1
—f——[ax—ay+2az]

"SIV T 7

Thisnormal will pointinthedirection of increasing f, whichwill beaway fromtheorigin, or intoregion
2 (you can visualize a portion of the surface as a triangle whose vertices are on the three coordinate
axesatx =5,y = —5,andz = 2.5). S0 Ey1 = (1/+4/6)[100 — 200 — 100] = —81.7V/m. Since the
magnitude is negative, the norma component points into region 1 from the surface. Then

1
Ey1 = —8165 (%) [a, —a, + 2a,] = —33.33a, + 33.33a, — 66.67a, V/m

Now, the tangential component will be
Er1 =E1 — Ey1=133.3a, + 166.7a, + 16.674a,
Our boundary conditions statethat E72 = E71 and Ex2 = (eg1/€r2)En1 = (1/4)En1. Thus

1
Eo=Ero+En2=Em+ ZENI = 133.3a, + 166.7a, + 16.67a, — 8.3a, + 8.3a, — 16.67a,
= 125a, + 175a, V/m

5.34. Letthe spherical surfacesr = 4cmand r = 9 cm be separated by two perfect dielectric shells, eg1 = 2
for4 <r <6cmandegy = 5for 6 < r < 9cm. If E; = (2000/r2)a, V/m, find:
a) Eo: Since E is normal to the interface between eg1 and eg2, D will be continuous across the

boundary, and so
D: = 2¢9(2000)

a =D
1 /2 2
" D 2\ 2000 800
2
Er=—"=(=)—~ a V/m
2~ Bep (5) 2 &= o /

b) thetotal electrostatic energy stored in each region: In region 1, the energy density is

(2000)2

J/md
ré /

1 1

Wel = §€R160|E1|2 = 5(2)60

Inregion 2:

(800)?
4

1 2 1 3
We2 = —€r2eplEn|” = 5(5)60 J/m

2
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5.34. (continued)
The energiesin each region are then

2
Region1: W.1 = (2000) eo/ / / 7T smedrdedqb

— 477¢0(2000)2 [74 - 0—6} —3.7mJ

2
Region 2 : Wez=(800)2( )60/ / / = r?sinfdrdo d¢
06 r

2 e
= 41 €0(800) ( )|:.06 .09] 0.99mJ

5.35. Letthecylindrical surfaces p = 4 cmand p = 9 cm enclose two wedges of perfect dielectrics, eg1 = 2
forO< ¢ <m/2,andegr =5form/2 < ¢ < 2m. If Ex = (2000/p)a, V/m, find:
a) E»: Theinterfaces between the two mediawill lie on planes of constant ¢, to which E; isparallel.
Thus the field is the same on either side of the boundaries, and so E> = Ej.

b) the total electrostatic energy stored in a 1m length of each region: In general we have wg =
(1/2)eregE?. Soinregion 1:

1 pm/2 91 2000)2 9
We1 =/ / / -(2)60( ) pdpdpdz = z60(2000)2|n (—) =45.11J
oJo Ja2 02 2 a) —

In region 2, we have

1 p2n 91 2000)2 15 9
W = / / / -(5)60( ) pdpdpdz = —7[60(2000)2”1 (-) =338J
0 Jrp2Ja 2 02 4 4, —

5.36. Let § = 120cm?, d = 4 mm, and ex = 12 for a parallel-plate capacitor.

a) Caculate the capacitance:
C = €genS/d = [1260(120 x 10~4)]/[4 x 1073] = 3.19 x 10~10 = 319pF.

b) After connecting a 40 V battery across the capacitor, calculate E, D, Q, and the total stored
electrostatic energy: E = V/d = 40/(4 x 107%) = 10°V/m. D = eregE = 12¢¢ x 10* =
1.06 £C/m?. Then Q = D - N|surface X S = 1.06 x 107 x (120 x 107%) = 1.27 x 1078C =
12.7nC. Finaly W, = (1/2)CVZ = (1/2)(319 x 10712)(40)2 = 255nJ.

¢) Thesourceisnow removed and thedielectriciscarefully withdrawn from between theplates. Again
calculate E, D, Q, and the energy: With the source disconnected, the charge is constant, and thus
so is D: Therefore, Q = 12.7nC, D = 1.06 uC/m?, and E = D/eg = 10%/8.85 x 10712 =
1.2 x 10°V/m. The energy isthen

1 1
W, = ED ExS§= 5(1.06 x 107%)(1.2 x 10°)(120 x 10~%)(4 x 1073) = 3.051J

d) What isthe voltage between the plates? V = E x d = (1.2 x 10°)(4 x 10~3) = 480V.

77



5.37.

5.38.

5.39.

Capacitors tend to be more expensive as their capacitance and maximum voltage, V., increase. The
voltage V. is limited by the field strength at which the dielectric breaks down, Egp. Which of
these dielectrics will give the largest CV,,,4 product for equal plate areas: (a) air: eg = 1, Egp = 3
MV/m; (b) barium titanate: eg = 1200, Egp = 3 MV/m; (c) silicon dioxide: eg = 3.78, Egp = 16
MV/m; (d) polyethylene: eg = 2.26, Egp = 4.7 MV/m? Notethat V,,,, = EBDd, whered isthe
plate separation. Also, C = egegA/d, and SO V4 C = €regAEgp, Where A isthe plate area. The
maximum C'V,,,., product is found through the maximum eg E g p product. Trying this with the given
materials yields the winner, which is barium titanate.

A diélectric circular cylinder used between the plates of a capacitor has a thickness of 0.2 mm and a
radius of 1.4 cm. The dielectric propertiesareeg = 400 and ¢ = 10> S/m.
a) Calculate C:

_ €reoS _ (400)(8.854 x 10 2)7r (1.4 x 1072)2

y > 104 =1.09x 10°®=109nF

C

b) Find the quality factor Qor (QoF = wRC) of the capacitor at f = 10 kHz: Use the relation
RC = €¢/o towrite

2nfe  (2m x 10%)(400)(8.854 x 10~12)
= =223
o 10-°

Qor =wRC =

c) If the maximum field strength permitted in the dielectric is 2 MV/m, what is the maximum per-
missible voltage across the capacitor? V,,,,, = Eppd = (2 x 10%)(2 x 10~%) = 400 V.

d) What energy is stored when this voltage is applied?

1 1
Wemar = =CV2, = 5(10.9 x 1079)(400)% = 8.7 x 107* = 0.87 mJ

2 max

A parallel plate capacitor is filled with a nonuniform dielectric characterized by eg = 2 + 2 x 10%x2,
where x is the distance from one plate. If § = 0.02m?, andd = 1 mm, find C: Start by assuming
charge density p; on the top plate. D will, as usual, be x-directed, originating at the top plate and
terminating on the bottom plate. The key here is that D will be constant over the distance between
plates. This can be understood by considering the x-varying dielectric as constructed of many thin
layers, each having constant permittivity. The permittivity changes from layer to layer to approximate
the given function of x. The approximation becomes exact as the layer thicknesses approach zero.
We know that D, which is normal to the layers, will be continuous across each boundary, and so D is
constant over the plate separation distance, and will be given in magnitude by p;. The electric field

magnitude is now
D Ps

" €0er  €0(2+ 2 x 105x2)

The voltage beween platesis then

Vo= /103 ps dx _p L g (EVAXIO° ‘103 _ps 1 (Z)
0o €(2+2x10%?) e /4x10° 2 4

0 €2x 103
Now Q = p,(.02), and so

(.02)€0(2 x 10%)(4
_ 2 _ pl09e@x 109 _ )51 10-10F — 451 pF
Vo PsT E—

C
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5.40a. The width of the region containing ez1 in Fig. 5.191is1.2 m. Find eg1 if eg2 = 2.5 and the total
capacitance is 60 nF: The plate areas associated with each capacitor are A1 = 1.2(2) = 2.4 m? and
A> = 0.8(2) = 1.6 m2. Having parallel capacitors, the capacitances will add, so

€r1€0(2.4)  2.5¢9(1.6)

C=C1+C 60 x 1079 =
1+C2 = Bx 2x103 ' 2x103

Solve thisto obtain g1 = 4.0.

b) Find the width of each region (containing eg1 and eg2) if Crorar = 80 NF, €g2 = 3eg1, and C1 = 2Co2:
Let w1 be the width of region 1. The above conditions enable usto write:

er1€ow1(2) | 5 3er1€0(2 — w1)(2)
2x10-3 | 2 x 103

] = w1 =6(2— w1)
Sothat w1 = 12/7 = 1.7m and wy = 0.3m.

541. Letegs =25for0 <y <1mm,err =4forl <y <3mm,andegszfor3 < y < 5mm. Conducting
surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square meter of surface
areaif: a) egzisthat of air; b) eg3 = €r1; C) €g3 = €g2; d) egz issilver: The combination will bethree
capacitorsin series, for which

+ = + + =
C C1 Co C3 e€preo(l) €roeo(l)  egrzen(1) €0

1 1 1 1 di do d3 1031 2 2
25 4 ep3
. (5 x 10_3)€0€R3
10+ 4.5¢p3
Evaluating this for the four cases, wefind @) C = 3.05nF for egz = 1, b) C = 5.21nF for eg3 = 2.5,
C) C = 6.32nF for eg3 = 4, and d) C = 9.83nF if silver (taken as a perfect conductor) forms region

3; this hasthe effect of removing the term involving € g3 from the original formula (first equation line),
or equivalently, allowing € g3 to approach infinity.

5.42. Cylindrical conducting surfaces are located at p = 0.8 cm and 3.6 cm. Theregion 0.8 < p < a
contains adielectric for whicheg = 4, whileeg = 2fora < p < 3.6.
a) Find a so that the voltage across each dielectric layer is the same: Assuming charge density p; on
the inner cylinder, we have D = p,(0.8)/p a,, which givesE(0.8 < p < a) = (0.8p5)/(4e0p)a,
and E(a < p < 3.6) = (0.8p,)/(2¢0p)a,. The voltage between conductors is now

@ 0.8ps 0.8 0.8, 0.8p5 36\ 1 a
Vo=— > dp — ~dp=——|In{ — | +5In{—
0 /3.6 2¢0p P « Aeop P 2¢0 [ n( a ) + 2 n <0.8>]

We require
3.6 1 a 3.6 a
”(a) > (5s) = Vyog — ¢T=£Mm

b) Find the total capacitance per meter: Using the part a result, have
0.8p; 3.6 1 2.2 0.4p;

Vo= In{ — —Inl—= || =
0~ 26 [ (2.2>+2 (o.s)] €0
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5.42b. (continued) The charge on aunit length of the inner conductor is Q = 27 (0.8)(1) ps. The capacitance
is how
Q9 _ 27 (0.8)(1) o5
Vo 0.4p4 /€0

Note that throughout this problem, | left al dimensionsin cm, knowing that all cm units would cancel,
leaving the units of capacitance to be those used for €.

C= = 47 e = 111 pF/m

5.43. Two coaxia conducting cylinders of radius 2 cm and 4 cm have a length of 1m. The region between
the cylinders contains alayer of dielectric from p = ¢ to p = d with eg = 4. Find the capacitance if
a) ¢ =2cm,d = 3cm: Thisistwo capacitorsin series, and so

1 1 1 1 T1 /3 4
r_t. 1 Sn(2) +in(2 C = 143pF
c= 6 2ne [4 <2) + (3)] = =220

b) d = 4 cm, and thevolume of thedielectricisthe sameasin part a: Having equal volumesrequires
that 3° — 22 = 4% — ¢?, from which ¢ = 3.32 cm. Now

101 1 1 332\ 1, [ 4
1_t,.1_ In(224) + 2in( 2 C = 101pF
c-a’e 27760[ ( 2 >+4 <3.32)] = L=k

5.44. Conducting cylinderslieat p = 3 and p = 12 mm; both extend from z = 0to z = 1 m. Perfect
dielectrics occupy the interior region: eg = 1for3 < p < 6mm,exg = 4for6 < p < 9mm, and
cg =8for9 < p < 12mm.

a) Calculate C: First weknow that D = (3p,/p)a, C/m?, with p expressed in mm. Then, with p in

mm, 3
Er=a,V/m 3<p <6
€0p
Ex = 30, aV/m B6<p<9
4eop
and
£ 3ps
3= a,V/m 9<p<12)
8eop

The voltage between conductors will be:

9 3p, 6 3p, 3 30,
VOZ[_/l P dp — P dp—/G p: dp}x10‘3(m/mm)

2 8Beop 9 4eop €0p
0030, [1. /12 1. /9 6 .003p;
= —In{ — —In{ = In{=]]|= 0.830) V
- [8 (9)*4 (6>+ (3” o o)

Now, the charge on the 1 m length of the inner conductor is Q = 27 (.003) (1) o,. The capacitance

isthen
0  27(003)(Dps  2meo

~ Vo (.003)p,(.830)/eo _ .830

— 67 pF
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5.44b. If the voltage between the cylindersis 100V, plot [E, | vs. p:
Have O = CVy = (67 x 10712)(100) = 6.7nC. Then

6.7 x 1079

_ _ 2
= 270030 355 nC/m

Ps

Then, using the el ectric field expressions from part a, we find

3
E = — =
! (;;) 8.854 x 10~ 12

where p is expressed in mm. Similarly, we find E> = E1/4 = 30/p kVim (6 < p < 9) and
E3z = E1/8=15kV/m (9 < p < 12). Thesefields are plotted below.

107°  12x1 12
355 x 10 X O4V/m:_0kV/m(3<,o<6)
0

Problem 5.44
50 T T T
- -
30 —
g
>
i
m
20 —
10 —
\
i I i
0 0 3 6 9 12
tho (mm)
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5.45. Two conducting spherical shellshaveradii « = 3cmand b = 6 cm. Theinterior is aperfect dielectric
for which er = 8.

a) Find C: For aspherical capacitor, we know that:

4 47(8
C = iTERiO _— ng )€o — 1.097¢o — 53.3pF
a—5 (3—3) 100 —_

b) A portion of the dielectric is now removed so that e = 1.0,0 < ¢ < 7/2, and eg = 8,
/2 < ¢ < 2. Again, find C: We recognize here that removing that portion leaves us with two
capacitors in paralel (whose C’s will add). We use the fact that with the dielectric completely
removed, the capacitance would be C(eg = 1) = 53.3/8 = 6.67pF. With one-fourth the
dielectric removed, the total capacitance will be

1 3
C = 7(6.67) + ,(534) = 4L.7pF

5.46. (see Problem 5.44).

5.47. Withreferenceto Fig. 5.17,let b = 6 m, 1 = 15 m, and the conductor potential be 250V. Takee = ¢p.
Find valuesfor K1, pr., a, and C: We have

=23.0

B |:h+\/h2+b2T {15+ (15)2+(6)2T
1=|— =
b 6

We then have
_ 4 egVo _ 47 €0(250)

PL=nk; ~ " In23)

=8.87nC/m

Next, a = vh? — b2 = \/(15)2 — (6)2 = 13.8m. Finally,

2me 2meg
C = 1 = 1 = 35
cosh™(h/b) cosh™(15/6) ———
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5.48. A potential function in free space is given by

5 2 2
V:—20+10In[( +) ”]

(5—y)?+x2
a) Describethe 0-V equipotential surface: Setting the given expression equal to zero, we find

5+ )2+ x? ’
[m ==

S0 6.39x2 + 6.39y2 — 83.9y 4+ 160 = 0. Completing the square in the y trinomial leads to
x? 4+ (y — 6.56)% = 18.1 = (4.25)2, which we recognize as aright circular cylinder whose axis
islocated at x = 0, y = 6.56, and whose radiusis 4.25.

b) Describe the 10-V equipotential surface: In this case, the given expression is set equal to ten,
leading to

G+ )2 +x?

(5—y)2+x?

S0 19.1x2 4 19.1y? — 211y + 477 = 0. Following the same procedure asin part , this becomes

x? 4+ (y — 5.52)2 = 5,51 = (2.35)2, which we recognize again as a right circular cylinder with
axisat x = 0, y = 5.52, and of radius 2.35.

} —e3=201

5.49. A 2 cm diameter conductor is suspended in air with its axis 5 cm from a conducting plane. Let the
potential of the cylinder be 100V and that of the plane be 0 V. Find the surface charge density on the:

a) cylinder at a point nearest the plane: The cylinder will image across the plane, producing an
equivalent two-cylinder problem, with the second one at location 5 cm below the plane. We will
take the plane as the zy plane, with the cylinder positionsat x = 5. Nowb = 1cm, 2 =5
cm, and Vo = 100 V. Thusa = vh?2 — b2 = 4.90 cm. Then K1 = [(h + a)/b]? = 98.0, and
pL = (AregVp)/IN K1 = 2.43nC/m. Now

PL
D=¢kE=——
0 (x—l—a)2+y2 (x—a)2+y2

(x +a)a, + yay (x —a)a, + yay
2r

and

Ps, max = D-(—ay)

_pL[h—b+a h—b—a

= — — 473NnC/m?
x=h-by=0 27 |(h—b+a)®> (h—b— a)z} 4r3nc/m-

b) plane at a point nearest the cylinder: Atx = y = 0,

D(0, 0) = _%[

X

aa, —aay pL 2
a? a? - 2na

from which

ps =D(0,0)-a, = — 2L — _15.8nC/m?
ma -
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CHAPTER 6.

6.1 Construct a curvilinear square map for acoaxia capacitor of 3-cm inner radius and 8-cm outer radius.
These dimensions are suitable for the drawing.
a) Use your sketch to calculate the capacitance per meter length, assuming eg = 1: The sketch is
shown below. Notethat only a9° sector was drawn, since this would then be duplicated 40 times
around the circumference to compl ete the drawing. The capacitance is thus

NQ 40
C =ep— =e€o— =59pF/m
EONV €0 pF/

?o

b) Calculate an exact value for the capacitance per unit length: Thiswill be

2meg
= =57 pF
In(8/3) 5p—/m



6.2 Construct a curvilinear-square map of the potential field about two parallel circular cylinders, each of
2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are suitable for the
actual sketchif symmetry isconsidered. Asacheck, compute the capacitance per meter both from your
sketch and from the exact formula. Assumeeg = 1.

Symmetry alows usto plot thefield linesand equipotentialsover just thefirst quadrant, asisdonein the
sketch below (shown to one-half scal€). The capacitance is found from the formula C = (Ng /Ny )eo,
where N istwice the number of squares around the perimeter of the half-circle and Ny is twice the
number of sguares between the half-circle and the left vertical plane. Theresult is

Ng 32
C=—=¢€=—€g=2¢g=17.7pF/m
Ny €0 = 7z€0 = 2€0 pF/

We check this result with that using the exact formula:

TE€Q T€Q
C = =
cosh™1(d/2a)  cosh~1(13/5)

— 1.95¢p = 17.3 pF/m
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6.3. Construct a curvilinear square map of the potential field between two parallel circular cylinders, one
of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm. These dimensions
are suitable for the drawing. As a check on the accuracy, compute the capacitance per meter from the
sketch and from the exact expression:

C— 2me
~ cosh™1[(a2 + b2 — D?)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of C =
11.5¢9 F/m. Use of the drawing produces:

. 22x2
C =

€0 = 11g F/m

4
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6.4. A solid conducting cylinder of 4-cm radiusis centered within arectangular conducting cylinder with a
12-cm by 20-cm cross-section.

a) Make afull-size sketch of one quadrant of this configuration and construct a curvilinear-square
map for itsinterior: The result below could still be improved alittle, but is nevertheless sufficient
for areasonable capacitance estimate. Note that the five-sided region in the upper right corner has
been partially subdivided (dashed line) in anticipation of how it would look when the next-level
subdivision is done (doubling the number of field lines and equipotentials).

r-—""—-—-—-=

b) Assumee = ¢g and estimate C per meter length: Inthiscase N isthe number of squares around
the full perimeter of the circular conductor, or four times the number of sguares shown in the
drawing. Ny isthe number of squares between the circle and the rectangle, or 5. The capacitance

is estimated to be N 413
C="L¢= X5 €0 = 10.4¢0 = 90 pF/m
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6.5. The inner conductor of the transmission line shown in Fig. 6.12 has a sguare cross-section 2a x 2a,
while the outer square is 5a x 5a. The axes are displaced as shown. (@) Construct a good-sized
drawing of the transmission line, say with @ = 2.5 cm, and then prepare a curvilinear-square plot of
the electrostatic field between the conductors. (b) Use the map to calculate the capacitance per meter
length if ¢ = 1.6¢p. (¢) How would your result to part b changeif a = 0.6 cm?

a) Theplotisshownbelow. Someimprovement ispossible, depending on how much time onewishes
to spend.

._1.—-4P—"’—
L

b) From the plot, the capacitance is found to be

L 16x2
T4

C (1.6)eo = 12.8¢0 = 110 pF/m

¢) If a ischanged, theresult of part b would not change, since al dimensions retain the samerelative
scale.
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6.6. Let theinner conductor of the transmission line shown in Fig. 6.12 be at a potential of 100V, while the
outer is at zero potential. Construct agrid, 0.5z on aside, and useiteration to find V at apoint that is
a units above the upper right corner of the inner conductor. Work to the nearest volt:

The drawing is shown below, and we identify the requested voltageas 38 V.

0
(o} le) (o] (] (o] (o) lo) o]
8 14 18 20 20 18 14 10 5
(o] (o) O (o] O (@] (o] (o] O
18 32 40 43 42 38 30 20 10
O O @) O O o] (0] o O
30 57 67 70 69 64 47 30 14
O O (o] (o]
44 100 64 38 18
0 o} o} o) o) 0
48 69 42 20
o 100 100 o) fo) o
49 70 43 20
O (@) (@) O
48 67 40 18
100
(o (o] (o} (]
42 57 32 14
o] O O O O O () O O
21 42 48 49 48 44 30 18 8
0
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6.7. Use the iteration method to estimate the potentials at points x and y in the triangular trough of Fig.
6.13. Work only to the nearest volt: The result is shown below. The mirror image of the values shown
occur at the points on the other side of the line of symmetry (dashed line). Note that V, = 78V and

V, = 26V.

V=0

V=0
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6.8. Useiteration methods to estimate the potential at point x in the trough shown in Fig. 6.14. Working to
the nearest volt is sufficient. The result is shown below, where we identify the voltage at x to be 40V.
Note that the potentials in the gaps are 50 V.

100V
[o] [e]
50 67 78
(o] e} [o) [e]
8 28 40 46 50
o) o] (o] e}
5 12 17 16

oV

6.9. Usingthe grid indicated in Fig. 6.15, work to the nearest volt to estimate the potential at point A: The
voltages at the grid points are shown below, where V4 isfound to be 19 V. Half the figure is drawn
since mirror images of all values occur across the line of symmetry (dashed line).

ov

5 13

o o)

6 14

o o

oV |

|

5 11 19 27

o] o o Q 32

A

|

3 6 10 13 !

o o 1) o 6 14
|
|
I

oV
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6.10. Conductors having boundaries that are curved or skewed usualy do not permit every grid point to
coincide with the actual boundary. Figure 6.16aillustrates the situation where the potential at Vg isto
be estimated in terms of V1, Vo, V3, and V4, and the unequal distances i1, ko, h3, and hg.

a) Show that
Vo = h + Y2 + Vs
(1+Z—;)(1+%) (1+Z—§>(1+%> (1+Z—f)<1+%)
+ Va note error, corrected here, in the equation (second term)

(e 8) (o BE)

Referring to the figure, we write:

A% ;Vl—Vo A% ;Vo—Vg
ox My o h1 ox M3 B h3
Then
PV . (Vi—Vo/hi—Vo—Va)/h3 2% L 2V 2Vo
ax2 vy (h1 + h3)/2 "~ hi(h1+h3)  ha(hi+h3)  hihs

We perform the same procedure along the y axis to obtain:

0%V . Ve=Vo/he=Vo—Va/ha _ _ 2V2 __ 2Va 2Vo
ay? o (h2 +ha)/2 "~ ho(ho+ha)  ha(ho+hs)  hoha
Then, knowing that
Y Y
g — | =0
9x2 Vo 8y2 Vo

the two equations for the second derivatives are added to give

2V, n 2Vo n 2V3 4 2Vy _v <h1h3 + h2h4)
hi(hy +h3)  haotho+ha)  h3(h1i+h3)  ha(hz + ha) hihoh3ha
Solve for Vy to obtain the given equation.

b) Determine Vg in Fig. 6.16b: Referring to the figure, we note that 41 = ho = a. The other two
distances are found by writing equations for the circles:

(0.5a + h3)? + a? = (1.50)2 and (a + hs)? + (0.5a)2 = (1.5a)2

Thesearesolvedtofind 43 = 0.618a and 24 = 0.414a. Thefour distances and potentials are now
substituted into the given equation:

80 N 60 N 100
(1+ o) (1+28) 1+ 2 (1+:34) 1+ .618 (1+ £8)
100
+ =90V
(1+.414) (1+ -2y —

Vo =
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6.11. Consider the configuration of conductorsand potentialsshowninFig. 6.17. Usingthe method described
in Problem 10, write an expression for V, (not Vp): Theresult is shown below, where V, = 70V.

6.12a) After estimating potentialsfor the configuation of Fig. 6.18, use theiteration method with a square grid
1 cmon asideto find better estimates at the seven grid points. Work to the nearest volt:
25 50 75 50 25
48 100 48
42 100 42
19 34 19
0O 0 O

o O o o
o O o o

b) Construct a 0.5 cm grid, establish new rough estimates, and then use the iteration method on the
0.5cmgrid. Again, work to the nearest volt: Theresult isshown below, with valuesfor the original
grid points underlined:

25 50 50 50 75 50 50 50 25
0 32 50 68 100 68 50 32 O
0O 26 48 72 100 72 48 26 O
0 23 45 70 100 70 45 23 0O
0O 20 40 64 100 64 40 20 O
0 15 30 44 54 44 30 15 O
0O 10 19 26 30 26 19 10 O
0 5 9 12 14 12 9 5 0
O 0 0 0 0O 0O 0 0 O
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6.12c. Use the computer to obtain values for a 0.25 cm grid. Work to the nearest 0.1 V: Values for the left
half of the configuration are shown in the table below. Values along the vertical line of symmetry are
included, and the original grid values are underlined.

25 50 50 50 50 50 50 50 75
0 26.5 38.0 44.6 49.6 54.6 61.4 73.2 100
0 18.0 31.0 40.7 49.0 57.5 67.7 81.3 100
0 145 271 38.1 48.3 58.8 70.6 84.3 100
0 12.8 24.8 36.2 47.3 58.8 714 85.2 100
0 11.7 231 34.4 45.8 57.8 70.8 85.0 100
0 10.8 21.6 325 43.8 55.8 69.0 83.8 100
0 10.0 20.0 30.2 40.9 52.5 65.6 81.2 100
0 9.0 18.1 274 37.1 47.6 59.7 75.2 100
0 7.9 159 24.0 324 41.2 50.4 59.8 67.2
0 6.8 13.6 204 27.3 34.2 40.7 46.3 49.2
0 5.6 11.2 16.8 222 274 32.0 354 36.8
0 4.4 8.8 13.2 174 21.2 244 26.6 274
0 3.3 6.6 9.8 12.8 154 17.6 19.0 195
0 2.2 4.4 6.4 8.4 10.0 114 12.2 125
0 11 22 3.2 4.2 50 5.6 6.0 6.1
0 0 0 0 0 0 0 0 0
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6.13. Perfectly-conducting concentric spheres have radii of 2 and 6 cm. Theregion 2 < r < 3 cmiisfilled
with a solid conducting material for which o = 100 S/m, while the portion for which3 < » < 6 cm
haso = 25 S/m. Theinner sphereisheld at 1V whilethe outerisat V = 0.

a Find E and J everywhere: From symmetry, E and J will be radially-directed, and we note the
fact that the current, I, must be constant at any cross-section; i.e., through any spherical surface
at radius r between the spheres. Thus we require that in both regions,

I

J=——
47rr2ar

The fields will thus be

1
Ei=——>a 2<r <3 and Ex= a (3<r <6

" Amorr

4 oor?

where o1 = 100 S/m and o2 = 25 S/m. Since we know the voltage between spheres (1V), we can
find the value of I through:

BT 02 I [1 1
1V = — dr — dr = — 4+ —
06 Amoor? 03 Amoyr? 0247 |01 o2

_ 0.24x
 (L/o1+1/02)
Then finally, with I = 15.08 A substituted into the field expressions above, we find

and so
= 15.08 A

.012
E1:0—2a,V/m 2<r<?3
r-

and 048
Ex=-—%a&V/m 3<r<6
r=

The current density is now
12
J=01E1=02E2=—2A/m 2<r <6
r-

b) What resistance would be measured between the two spheres? We use

Vv

. __~—Y _&. 1072 Q
7 = 15.08A 6.63 x 10" Q@

c) WhatisV atr = 3cm? Thiswe find through
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6.14. The cross-section of the transmission line shown in Fig. 6.12 is drawn on a sheet of conducting paper
with metallic paint. The sheet resistance is 2000 2 /sq and the dimension a is2 cm.

a) Assuming aresult for Prob. 6b of 110 pF/m, what total resistance would be measured between
the metallic conductors drawn on the conducting paper? We assume a paper thickness of ¢+ m, so
that the capacitanceis C = 110¢ pF, and the surface resistanceis Ry = 1/(ot) = 2000 2/sq. We
now use

€ €Rgt  (16x 8854 x1071%)(2000)

RC = _—= —
oC 110 x 1012 110 x 1012

~ R=— 257.6 Q

€
o

b) What would the total resistance be if @ = 2 cm? The result is independent of a, provided the
proportions are maintained. So again, R = 257.6 2.

6.15. two concentric annular rings are painted on a sheet of conducting paper with ahighly conducting metal
paint. The four radii are 1, 1.2, 3.5, and 3.7 cm. Connections made to the two rings show a resistance
of 215 ohms between them.

a) What is R; for the conducting paper? Using the two radii (1.2 and 3.5 cm) at which therings are
at their closest separation, we first evaluate the capacitance:

2meqt

=~ =519x10%F
In(35/1.2) *

where ¢ isthe unknown paper coating thickness. Now use

€0 8.85 x 10712
RC = — R=—"—""_ 215
=5 = 5.19 x 10 o7
Thus 1 51.9)(215
R, =~ = GLIELS) 1.26kQ2/sq

ot 8.85

b) If the conductivity of the material used as the surface of the paper is2 S/m, what is the thickness
of the coating? We use

1 1

= =
oR, 2x1.26x 103

= 3.97 x 1074 m = 0.397 mm
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6.16. The square washer shown in Fig. 6.19 is 2.4 mm thick and has outer dimensions of 2.5 x 2.5 cm
and inner dimensions of 1.25 x 1.25 cm. The inside and outside surfaces are perfectly-conducting. If
the material has a conductivity of 6 S/m, estimate the resistance offered between the inner and outer
surfaces (shown shaded in Fig. 6.19). A few curvilinear squares are suggested: First wefind the surface
resistance, Ry = 1/(o1) = 1/(6 x 2.4 x 10~3) = 69.4 Q/sq. Having found this, we can construct
thetotal resistance by using the fundamental square asabuilding block. Specifically, R = Ry (N;/Ny,)
where N; isthe number of squares between theinner and outer surfacesand N, isthe number of squares
around the perimeter of the washer. These numbers are found from the curvilinear square plot shown
below, which covers one-eighth the washer. Theresistanceisthus R = 69.4[4/(8 x 5)] = 6.9 Q.

6.17. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each having a
radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium surrounding the wires
haser = 3and o = 1.5 mS/m. A 100-V battery is connected between the wires. Calculate:

a) the magnitude of the charge per meter length on each wire: Use

C— e _7'[X3X8.85X 10712
~ coshi(h/b)  cosh1(1/0.2)

=3.64x 107°C/m

Then the charge per unit length will be

0 = CVp = (3.64 x 10711)(100) = 3.64 x 1072 C/m = 3.64nC/m

b) the battery current: Use

RC — € ~ R= 3x885x 10712 T
o "~ (L5x 10-3)(3.64 x 10~11)
Then Vo 100
0
I = ~ =18 = 0.206 A = 206 mA
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6.18. A coaxial transmission lineis modelled by the use of arubber sheet having horizontal dimensions that
are 100 times those of the actual line. Let the radial coordinate of the model be p,,,. For the line itsdlf,
let theradial dimension be designated by p asusual; also, leta = 0.6 mmand b = 4.8 mm. The model
is8 cmin height at the inner conductor and zero at the outer. If the potential of the inner conductor is
100V:

a) Findthe expressionfor V (p): Assuming charge density p; on the inner conductor, we use Gauss
Law to find 2rpD = 2map,, from which E = D/e = ap,/(ep) in the radia direction. The
potential difference between inner and outer conductorsis

b
Vap = Vo= — / %d ——apsl ( >
a

Vo £ Vo
aln(b/a) = ~ pln®/a)

Now, as a function of radius, and assuming zero potential on the outer conductor, the potential
function will be:

Vi) — _/p Vo ' = v/ In(b/p) — 100 In(.0048/p) 48.1|n('0048) v
b

o in/a) = Cinw/a) In(.0048/.0006) P

from which
Ps =

b) Writethe model height asafunction of p,, (not p): We usethe part a result, since the gravitational
function must be the same asthat for the el ectric potential. We replace Vg by the maximum height,
and multiply all dimensions by 100 to obtain:

IN(.48/ om)

48
h(oy) = 0.08—————= = 0.038| —
(om) In(.48/.06) ”(pm) "
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CHAPTER 7
7.1. Let V = 2xy%z3 and € = €. Given point P (1, 2, —1), find:
a) V a P: Substituting the coordinatesinto V, find Vp = —8V.

b) Ea P: WeuseE = —VV = —2y%7%a, — 4xyz3a, — 6xy?z2a,, which, when evaluated at P,
becomesEp = 8a, + 8a, — 24a, V/m

) py a P: Thisisp, = V-D = —eqV2V = —4xz(z2 + 3y?) C/m3

d) the equation of the equipotential surface passing through P: At P, we know V = —8V, so the
equation will be xy?z3 = —4.

e) the equation of the streamline passing through P: First,

Ey dy 4xyz3 X
E, B

dx  2y273 y

Thus 1
ydy = 2xdx, and so éyz =x24+C

Evaluating at P, wefind C; = 1. Next,

Thus

3 1
3xdx = zdz, and sO éxz = Ezz + Co
Evaluating at P, wefind Co = 1. The streamlineis now specified by the equations:

y2—2%2=2and 3x2—72=2

f) Does V satisfy Laplace’s equation? No, since the charge density is not zero.

7.2. A potential field V existsin aregion wheree = f(x). Find V2V if p, = 0.
Firt, D=€¢(x)E=—f(x)VV. ThenV-D=p,=0=V .- (—f(x)VV).

So
df 3V 2y a2v a2v
0=V-(—f(x)VV)=—[(d—8—+f(x) )f(x)a_))z+f(x)8_z2]
. 2y,
= [d W + f(x)V ]
Therefore,
vy _ L dfav
f(x)dx x
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7.3. Let V(x, y) = 4¢® + f(x) — 3y2in aregion of free space where p, = 0. It is known that both E,
and V are zero at the origin. Find f(x) and V (x, y): Since p, = 0, we know that V2V = 0, and so

%V 9%V d?f
VWV =0+ — =162+ —5 —-6=0
0x2 + dy? et dx?
Therefore 5
d d
—f:—16e2"+6 = —f:—8e2x+6x+C1
dx? dx
Now v if
E, = — =82 + =~
* 0x et dx
and at the origin, this becomes
d .
E.(0) =8+ —f = O(asgiven)
dx 1x=0

Thusdf/dx |c—0 = —8, and so it follows that C; = 0. Integrating again, we find

flx,y) = —4e® 4+ 3x% + 7
which at the origin becomes f(0,0) = —4 + C2. However, V(0,00 = 0 = 4+ f(0,0). So
£(0,0) = —4andC, = 0. Finally, f(x, y) = —4e® + 3x%,and V (x, y) = 4e% —4¢* 4+-3x2—3y? =
3(x2— yz).

7.4. Given the potential field V = A Intan?(9/2) + B:
a) Show that V2V = 0: Since V isafunction only of 6,

) 1 d (. dv
VeV = - — | sng—
r2sing) do do

where
v d d A 24
— = (AIntan?(9/2) + B) = — (2AIntan(6/2)) = =
a0 d0< ntan’(6/2) + B) o AAINNG/2) = G os@72) — snd
Then

1 d . 2A
VWV=———(sng—)=0
r2sing) do siné

b) Select Aand B sothat V =100V and Eg =500V/mat P(r = 5,6 = 60°, ¢ = 45°):
First,

avi_ 24 24 44624 — 500
r do rsing 5sn60

S0 A = —1082.5V. Then
Vp = —(1082.5) Intan®(30°) + B = 100 = B = —1089.3V
Summarizing, V (0) = —1082.5Intan(6/2) — 1089.3.
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7.5. Given the potential field V = (Ap* + Bp~%) sin4g:
a) Show that V2V = 0: In cylindrical coordinates,

g2y _ L0 ( av>Jr 1 9%V
= - — p— —_—

pop \"dp ) p?0¢?
19 e 1 4

= (p(4Ap _4Bp ))S|n4¢——16(Ap + Bp~%) sin4g
pap

= ;(A,o + Bp~°)sind¢ — F(Ap + Bp % sindg =0

b) Select A and B sothat V = 100V and |E| = 500V/mat P(p = 1, ¢ = 22.5°, 7 = 2): Firgt,

v 19V
E=-VV=——a,— ~—
ap p o¢

=—4 [(A,o3 — Bp~®)sindg a, + (Ap> + Bp~°) cos4sp a¢]

andat P,Ep = —4(A—B)a,. Thus|Ep| = £4(A — B). Also, Vp = A+ B. Our two equations
are:
4(A — B) = +£500

and
A+ B =100

We thus have two pairs of valuesfor A and B:

A=1125 B=-125 0o A=-125 B =1125

7.6. If V. =20sin6/r3V in free space, find:
a) pya P(r = 2,0 = 30°, ¢ = 0): We use Poisson’s equation in free space, V2V = —pv/€0,
where, with no ¢ variation:

s 18 [ ,0V 1 a8 (. v
VWV =S — (= |+ 5——(sno—
r2ar ' ar )" r2sin6 96 36

Substituting:
V2V — 1090 ,60sin6 n 1 9 Sin020cos€
= —— | —r —_—
r2 or r4 r2sing 90 r3
19 (-60sin6 N 1 9 [10sin26
r2 or r2 r2sind 90 r3
120sn6 | 20c0s29 _ 20(4sin’6+1)  py
o ro r5sng rosing T e
So 2
20(4sin“6 + 1
PvP = —€0 [%} = —25¢p=—-221 pC/m3
rasng r=2,0=30 -
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7.6b. the total charge within the spherical shell 1 < r < 2 m: We integrate the charge density found in part
a over the specified volume:

2 20(4sin?6 + 1
—60/ ff ( +)25|n0drd6d¢

rosing
4sn?6 + 1 237 12
/ %dr df = —40m¢qg —dr = 6072 €©0—= > = —457'[260
1 r 1

= —27'[(20)60/
0
=-39nC

7.7. Let V = (cos2¢)/p in free space.
a) Find the volume charge density at point A (0.5, 60°, 1): Use Poisson’s equation:

I <1 3 (pav>+ 1 82V)
= —¢€0 = —€0 L YY)
pdp \" dp p? 992

(1 d <—c052¢> 4 c032¢>) 3ep COS2¢
= —EO —_—— =
p op P P p3

02

So at A wefind:
3¢ €c0s(120°)

53 = —12¢ = —106pC/m?

PvA =

b) Find the surface charge density on a conductor surface passing through B(2, 30°, 1): First, we

find E:

A% 10V
E=-VV=——a,— ——

ap " p g
_ C0S2¢ 2sin2¢

a, +
p2 7 p?

At point B the field becomes

cos60° 2sin60°
Ep = 2 a, + 7 ay = 0.125a, + 0.433 a4

The surface charge density will now be
psg = £|Dp| = +eo|Ep| = £0.451¢¢ = +£0.399 pC/m?

The chargeis positive or negative depending on which side of the surface we are considering. The
problem did not provide information necessary to determine this.

7.8. Let Vi(r, 6, ¢) = 20/r and Vo(r, 0, ) = (4/r) + 4.
a) State whether V; and V» satisfy Laplace's equation:

1d dv: 1d -20
V2V1= —_— r2—1 = |2 == =0
r2dr dr r2dr r2

1d dVvy
2 2

ﬁ
5
S
~
I
o =
S~
1
\l\)
—
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~
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7.8b. Evaluate V1 and V> on the closed surface r = 4:

20 4
Vir =4 =7 =5 Vor=4 =, +4=5

c) Conciliate your results with the uniqueness theorem: Uniqueness specifies that there is only one
potential that will satisfy al the given boundary conditions. While both potentials have the same
value at r = 4, they do not asr — oo. So they apply to different situations.

7.9. The functions V1(p, ¢, z) and Va(p, ¢, z) both satisfy Laplace’s equation in theregiona < p < b,
0<¢ <2n,—L <z < L;eachiszeroonthesurfacesp = b for —-L < z < L; z = —L for
a<p<b,andz=Lfora < p < b;andeachis100V onthesurfacep =afor—L <z < L.

a) In the region specified above, is Laplace's equation satisfied by the functions Vy + Vo, Vi — Vo,
V1 + 3, and V1 V»? Yesfor thefirst three, since Laplace’'s equation islinear. No for V1 V.

b) Ontheboundary surfacesspecified, arethe potential val uesgiven above obtained from thefunctions
Vi+ Vo, V1 — Vo, V1+3,and V1 Vo? Atthe 100V surface (p = a), No for al. AttheOV surfaces,
yes, except for V1 + 3.

¢) Arethefunctions Vi + Vo, Vi — V>, V1 4+ 3, and V1 V> identical with V1? Only V2 is, sinceit is
given assatisfying all the boundary conditionsthat V1 does. Therefore, by the uniquenesstheorem,
Vo = V1. The others, not satisfying the boundary conditions, are not the same as V.

7.10. Conducting planes at z = 2cm and z = 8cm are held at potentials of —3V and 9V, respectively. The
region between the platesis filled with a perfect dielectric with e = 5¢¢. Find and sketch:

a) V(z): We begin with the general solution of the one-dimensional Laplace equation in rectangular

coordinates: V(z) = Az + B. Applying the boundary conditions, we write —3 = A(2) + B and

9 = A(8) + B. Subtracting the former equation from the latter, wefind 12 = 6A or A = 2V/cm.

Usingthiswefind B = —7V.Findly, V(z) =2z — 7V (zincm) or V(z) = 200z — 7V (z inm).

b) E.(z): WeuseE = —VV = —(dV/dz)a, = -2V /cm = —200V/m.
©) D.(z): Working in meters, have D, = € E, = —200e¢ = —1000¢9 C/m?
7.11. The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials of 100V and O, respectively.
Let e = ¢g and find:

a) Va P(5,2,6): The planes are paralel, and so we expect variation in potentia in the direction
normal to them. Using the two boundary condtions, our general potential function can be written:

V(x,y) =A(2x +3y—12)+ 100 = A(2x + 3y — 18) + 0

and so A = —100/6. We then write
100 100
Vix,y) = —?(Zx +3y—18) = — 3 - S0y + 300

and Vp = —1%°(5) — 100 + 300 = 33.33 V.

b) FiIndE at P: Use
100
E=-VV= ?ax +9504a, V/m
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7.12. Conducting cylindersat p = 2 cmand p = 8 cm in free space are held at potentials of 60mV and
-30mV, respectively.
a) Find V(p): Working in volts and meters, we write the general one-dimensional solution to the
Laplace equation in cylindrical coordinates, assuming radial variation: V(p) = AlIn(p) + B.
Applying the given boundary conditions, this becomes V (2cm) = .060 = AIn(.02) + B and
V(8cm) = —.030 = AIn(.08) + B. Subtracting the former equation from the latter, we find
—.090 = AIn(.08/.02) = AIn4 = A = —.0649. B isthen found through either equation;
e.g., B = .060 + .0649In(.02) = —.1940. Finally, V(p) = —.06491n p — .1940.

b) Find E,(p): E = —VV = —(dV /dp)a, = (.0649/p)a, V/m.

¢) Find the surface on which V. =30mV:
Use.03 = —.0649Inp —.1940 = p =.0317m = 3.17cm.

7.13. Coaxia conducting cylinders are located at p = 0.5 cmand p = 1.2 cm. The region between the

cylindersisfilled with ahomogeneous perfect dielectric. If the inner cylinder isat 100V and the outer
at oV, find:

a) thelocation of the 20V equipotential surface: From Eqg. (16) we have

In(.012/p)

Vip) = 10075127 005)

We seek p at which V = 20V, and thus we need to solve:

In(.012/p) 012

In(2.4) P = 2402

=1.01cm

b) E,max: Wehave

ov.dv 100

p  dp  plIn2.4d)
whose maximum value will occur at the inner cylinder, or at p = .5 cm:

E,=

100

—228x10*V/m=228kV/m
005In(2.4) x /m=228kV/m

Epmax =

C) eg if the charge per meter length on the inner cylinder is 20 nC/m: The capacitance per meter
lengthis
B 2T e€nER B 2
T In24) W

We solvefor eg:

(20 x 1079 In(2.4)
= = 3.15
“R 277€0(100) 22
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7.14. Two semi-infinite planesarelocated at ¢ = —« and ¢ = o, wherea < /2. A narrow insulating strip
separates them along the z axis. The potential at ¢ = —« is Vo, whileV =0at ¢ = «.
a) Find V(¢) intermsof « and Vp: We use the one-dimensional solution form for Laplace’s equation
assuming variation along ¢: V(¢) = A¢ + B. The boundary conditions are then substituted:
Vo = —Aa + B and 0 = Aa + B. Subtract the latter equation from the former to obtain:
Vo= —-24Aa = A=-Vy/(2a). Then0=—-Vy/QRa)a + B = B = Vp/2. Finally

V(p) = (1 - f) v
o

b) Find Eg at ¢ = 20°, p = 2cm, if Vo =100V and oo = 30°:

14V Vo 100
Ey=———=—-V/m Then E(2cm, 20°) = =4.8kV/m
T T odp  2ap / ( ) = 2@0x 27/360)(.02) 48KkV/m

7.15. Thetwo conducting planesillustrated in Fig. 7.8 aredefined by 0.001 < p < 0.120m,0 < z < 0.1 m,
¢ = 0.179 and 0.188 rad. The medium surrounding the planesisair. For region 1, 0.179 < ¢ < 0.188,
neglect fringing and find:

a) V(¢): The general solution to Laplace's equation will be V. = C1¢ + Co, and so

20 = (C1(.188) + C2 and 200 = C1(.179) + C>
Subtracting one equation from the other, we find
—180 = C1(.188 — .179) = C1 = —2.00 x 10*

Then
20 = —2.00 x 10*(.188) + C, = C» =3.78 x 10°

Finaly, V (¢) = (—2.00 x 10%¢ + 3.78 x 103 V.
b) E(p): Use

E( )__VV__Ed_V_Z.OOX].O‘l v/m
P= T Tpde . p ¥

) D(p) = €0E(p) = (2.00 x 10%q/p) ay C/m?.

d) ps onthe upper surface of the lower plane: We use

2.00 x 1 2.00 x 10*
pe=D-n _ 00 x 04a¢,-a¢: 00 x 10 C/m?
surface P 14

€) Q on the upper surface of the lower plane: Thiswill be

120 2.00 x 10*
Q: = / / S0 dpdz = 2.00 x 10%0(.1) In(120) = 8.47 x 10~8 C = 84.7nC
f) Repeat a) to ¢) for region 2 by letting the location of the upper plane be ¢ = .188 — 27, and then
find p; and Q on the lower surface of the lower plane. Back to the beginning, we use

20 = C}(.188 — 27) + C5 and 200 = C1(.179) + C5
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7.15f (continued) Subtracting one from the other, we find
—180 = C1(.009 — 27) = C;=287
Then 200 = 28.7(.179) + C;, = C, = 194.9. Thus V(¢) = 28.7¢ + 194.9 inregion 2. Then

28.7 28.7¢0

E:—T%V/m and D = — ag C/m?

0s on the lower surface of the lower plane will now be

28.7 28.7
— 60{;14).(—51(15): ,060 C/m?

Ps =

The charge on that surface will then be Q, = 28.7¢0(.1) In(120) = 122 pC.

g) Findthetota charge onthe lower plane and the capacitance between the planes: Total charge will
be Qner = O + Qp = 84.7NnC + 0.122 nC = 84.8 nC. The capacitance will be

_ Qne 848 0.471 nF = 471 pF
AV~ 200— 20 ==

7.16. a) Solve Laplace's equation for the potential field in the homogeneous region between two concentric
conducting spheres with radii e and b, b > a,if V=0ar =bandV = Vg a r = a. With radia
variation only, we have

r2dr dr
Multiply by r2:
d dv
A (24VN _ o 2V _ 4
dr dr dr
Divide by r2:
W_4 S v==p
dr  r2 or

Note that in the last integration step, | dropped the minus sign that would have otherwise occurred in
front of A, since we can choose A aswe wish. Next, apply the boundary conditions:

0=445 = 5=t

vo=A_ A L 4 W

a b (-5
Finaly, Vo Vo (% - %)
V(r)=r(%_%)_b(%—%):Vo(%_%)
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7.16b. Find the capacitance between them: Assume permittivity €. First, the electric field will be

The capacitance is now
0 47 a? pq _ Arme

C== =
oW (-

7.17. Concentric conducting spheres are located at » = 5 mm and r = 20 mm. The region between the
spheresisfilled with a perfect dielectric. If theinner sphereisat 100V and the outer sphereat 0V:
a) Find the location of the 20V equipotential surface: Solving Laplace’'s equation gives us

1_1
r b
1_1
a b

V(r)=Wo

where Vo = 100, ¢ = 5and b = 20. Setting V (r) = 20, and solving for r producesr = 12.5mm.

b) Find E; jax: Use

_ _dav__ Voa
T T e ey

a

Then

Vo _ 100
a(l—(a/b))  5(1— (5/20))

Er,max =E(r=a)= = 26.7 V/mm = 26.7 kV/m

) Find ey if the surface charge density on the inner sphere is 100 xC/m?: p, will be equal in
magnitude to the electric flux density at r = a. S0 p; = (2.67 x 10* V/m)egep = 10~4 C/m?.
Thusegr = 423! (obviously abad choice of numbershere—possibly amisprint. A morereasonable
charge on the inner sphere would have been 1 uC/m?, leading to ez = 4.23).

7.18. Concentric conducting spheres have radii of 1 and 5 cm. Thereisaperfect dielectric for whicheg = 3
between them. The potential of theinner sphereis 2V and that of the outer is-2V. Find:
a) V(r): We use the genera expression derived in Problem 7.16: V(r) = (A/r) + B. Attheinner
sphere, 2 = (A/.01) + B, and at the outer sphere, —2 = (A/.05) + B. Subtracting the latter
equation from the former gives

11
4=A(—= - =) =804
(.01 .05)

so A = .05. Substitute A into either of the two potential equations at the boundaries to find
B = —3. Findly, V(r) = (.05/r) — 3.
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7.18b. E(r) = —(dV /dr)a, = (.05/r%)a, V/m.
c) Var=3cm: V(03) = (.05.03) —3=—-1.33V.

d) thelocation of the 0-V equipotentia surface: Use

0=(.05/rp) —3 = ro=(.05/3) =.0167m = 1.67cm

€) the capacitance between the spheres:

A e 4 (3)eo 127 €g
G-% (a-w 80 ——

7.19. Two coaxial conducting cones have their vertices at the origin and the z axis astheir axis. Cone A has
the point A(1, 0, 2) on its surface, while cone B has the point B(0, 3, 2) onits surface. Let V4 = 100
V and Vg = 20V. Find:

a) « for each cone: Have oy = tan=1(1/2) = 26.57° and ap = tan—1(3/2) = 56.31°.

b) Va P(1,1,1): Thepotential function between cones can be written as
V() = C1Intan(9/2) + Co

Then
20 = C1Intan(56.31/2) + C2> and 100 = C;1Intan(26.57/2) + C»

Solving these two equations, wefind C; = —97.7and C> = —41.1. Nowat P, 0 = tan~1(v/2) =
54.7°. Thus
Vp = —97.7Intan(54.7/2) — 41.1 = 23.3V

7.20. A potentia field in free spaceisgivenas V = 100Intan(6/2) + 50 V.
a) Find the maximum value of |Eg| on the surface & = 40° for 0.1 < r < 0.8 m, 60° < ¢ < 90°.
First

14V 100 100 100
E=—-——— S — y=——a
2r Sin(B/2) cos(6/2) rsing

F a0 T T 2rtan0/2) c00/2)
Thiswill maximize at the smallest value of r, or 0.1:

100

Emax = °)=E(r = A, =40°) = ————
(6 =400 =Er=0L0=40) =4 7gna0n®

= 1568y kV/m

b) Describethesurface V = 80V: Set 100Intan6/2+ 50 = 80 and solvefor 6: ObtainIntan6/2 =
0.3 = tanf/2=e3=135 = 60 = 107° (theconesurfaceat # = 107 degrees).
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7.21. Infree space, let p, = 200eq/r%4.

a) Use Poisson’s equation to find V (r) if it is assumed that 7°E, — 0 when r — 0, and also that
V — Qasr — oo: With r variation only, we have

1d [ ,dV
vzv_—z—(z )— Pv 200724
d €

dr
o d av
— (r?==) = —200-~*
dr dr
I ntegrate once:
dv 200
) =— 6401 =-333°%+ 0,
dr .6
o dV C
~333.3 14 4+ =1 — vV (inthiscase) = —
dr r2
Our first boundary condition states that r2E, — 0 when r — 0 Therefore C1 = 0. Integrate
again to find:
333 _,
V(r)= 7 )

From our second boundary condition, V — Qasr — oo, we seethat C» = 0. Finally,

V(r) = 833.3r—*V

b) Now find V (r) by using Gauss Law and alineintegral: Gauss' law applied to a spherical surface
of radiusr gives.

42D, = 4 (2??263( "Vdr = 8007160%
Thus D 8007 eor©
E, = 6—0’ - W — 33334 v/m
Now

Vi(r) = —/ 333.3(+") " 14dr’ = 833.3r—4V
o

7.22. Letthevolumechargedensity inFig. 7.3abegivenby p, = pyo(x/a)e™*/% (noteerror in the exponent
in the formula stated in the book).
a) Determine p, yax and p, min andtheir locations: Let x’ = x/a. Then p, = x’e~¥'I. Differentiate
with respect to x’ to obtain:
dpy
dx’

This derivative is zero at x” = £1, or the minimum and maximum occur at x = ta respectively.

The values of p, at these points will be py max = pvoe~t = 0.368p,0, Occurring a x = a.

Pv,min = _,Ovoe_l = —0.368p,0, occurring ax =—

= puoe (L~ )
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7.22b. Find Ex and V(x) if V(0) =0and E, — O0asx — oco: We use Poisson’s equation:

2
vy = P o 4V o ()t
€ dx? € \a

For x > 0, this becomes

I ntegrate once over x:

dv
—(x>0):—@ <)—C>e_x/adx+C1:ap—voe_x/“ (£+1)+C1
dx € a € a

Noting that E, = —dV /dx, we use thefirst boundary condition, E, — 0asx — oo, to establish that
C1 = 0. Over therange x < 0, we have

dv -
e N T R
dx € a € a

where C; = 0, since, by symmetry, £, — Oasx — —oo. Thesetwo equations can be unified to cover
the entire range of x; the final expression for the electric field becomes:

E. - dV._ apwo <|x|

—— = = +1> e ey /m
dx € a

The potential function is now found by a second integration. For x > O, thisis

2
Vix) = 2P0 / [(f) ey e—x/a] dx + Cp = P10 [—_Xe_x/a _ ze—x/a:| LG,
€

a € a

We use the second boundary condition, V (0) = 0, fromwhich C2 = 242p,0/€. Substituting thisyields
azpvo X —x/a —x/a
VX)) (x>0 =——| —e +2(1—e )
€ a

We repeat the procedure for x < O to obtain

2
V) = 2P0 / [(i) el 4 ex/“] dx +C5H = 4 o |:__xex/“ - 2ex/“i| + G,
€

€ a a

Again, with the V (0) = 0boundary condition, wefind C;, = —2a?pyo/€, which when substituted |eads
to

2 _
Vx)(x <0) = a fvo |:7xex/a —2(1— ex/a)]

Combining the results for both ranges of x, we write

Vix) = _azpvo |:()_C> e~ Xl/a _ E (1_ elxl/a)j|

a |x|
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7.22c.

7.23.

Use a development similar to that of Sec. 7.4 to show that C = dQ/dVy = €S/8a ( note error in
problem statement): First, the overall potential differenceis

202,0110 . 4612/01;0

Vo=Visoo = Visoo =2 %
€ €

Fromthiswefind a = /(e Vo)/(4py0). Then thetotal charge on one side will be

o0 X —Xx 00 1
0= S/o 0v0 (Z> e~/ dx = Spyoae™/“ [— - 1] ‘o = Spyoa = ES\/EVOpUO

a

dQ d 1 S Pv0 €

dVo  dVo <2 A Op”o) & Vo
But a = /(eVo)/(@pyo), from which (py0/ Vo) = €/(4a?). Substituting this into the capacitance
expression gives

A rectangular trough is formed by four conducting planeslocated at x = 0Oand8cmand y = 0and 5
cminair. Thesurfaceat y = 5cmisat apotential of 100V, the other three are at zero potential, and the
necessary gaps are placed at two corners. Find the potential at x = 3cm, y = 4 cm: Thissituation is
the same asthat of Fig. 7.6, except the non-zero boundary potential appears on the top surface, rather
than the right side. The solution isfound from Eq. (39) by simply interchanging x and y, and b and d,
obtaining:

4Vy 1 sinh(mry/d) . mmx

Vix,y) = — - sin
. ) T lOddmsmh(mnb/d) d

where Vo = 100V, d = 8 cm, and b = 5 cm. We will use the first three terms to eval uate the potential
a (3,4):

. 400 [ sinh(z/2) 1 sinh(3r/2) . 1 sinh(5r/2) .
400

= —[.609 —.040 — .011] = 71.1V
b4

Additional accuracy is found by including more terms in the expansion. Using thirteen terms, and
using six significant figure accuracy, the result becomes V (3, 4) = 71.9173 V. The series converges
rapidly enough so that terms after the sixth one produce no change in the third digit. Thus, quoting
three significant figures, 71.9 V requires six terms, with subsequent terms having no effect.
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7.24.

7.25.

The four sides of a square trough are held at potentials of 0, 20, -30, and 60 V; the highest and lowest
potentials are on opposite sides. Find the potentia at the center of the trough: Here we can make good
use of symmetry. The solution for asingle potential on the right side, for example, with al other sides
at OV isgiven by Eq. (39):

Vix,y) =

o0 .
4Vo lenh(mnx/b) Sin(mﬂy)

™ sinh(mmd/b) b
In the current problem, we can account for the three voltages by superposing three solutions of the
above form, suitably modified to account for the different locations of the boundary potentials. Since
we want V at the center of a square trough, it no longer matters on what boundary each of the given
potentialsis, and we can smply write:

4(0+ 20 — 30 + 60) i 1 sinh(mr /2)

T ™M sinh(m)

V (center) = sin(mm/2) = 12.5V

The series converges to this value in three terms.

InFig. 7.7, change the right side so that the potential varies linearly from 0 at the bottom of that side
to 100V at thetop. Solvefor the potential at the center of the trough: Since the potential reaches zero
periodically in y and also iszero at x = 0, we use the form:

o0
Now, at x = d, V = 100(y/b). Thus
y > mmd My
1005:2:1Vmsinh( ; )sin( ; )

We then multiply by sin(nry/b), where n isafixed integer, and integrate over y from 0 to b:

[} 2005 sn(52) = 32 vsion (25) [7sin (%52 n (%52

=b/2 if m=n, zero if m#n

Theintegral on the right hand side picks the nth term out of the series, enabling the coefficients, V,,, to
be solved for individually aswe vary n. Wefind in general,

nny)

1002 sm( ) dy

A — /
bsmh(mn/d)

Theintegral evaluates as

b nwy —100/mm (m even) 100
100= dy = = (—pmti=
/O bs'”< b ) v { 100/m (m odd) } D
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7.25 (continued) Thus

7.26.

_200(—pm+t
" mnb sinh(mmd/b)

So that finally,

Vicy) = 200 2, (=1L sinh (mmx/b) Sin(mny)
BV T %h & snhnad/b) b

m=

Now, with asquaretrough, setb =d = 1,andso00 < x < 1and 0 < y < 1. The potential becomes

200 o (=)™ + sinh (mrx)

Vi y) = o= m sinh (mm)

sin (mmy)

Now at the center of thetrough, x = y = 0.5, and, using four terms, we have

=125V

V5 5);200 sinh(z/2) 1sinh(3r/2) 1sinh(57/2) 1sinh(77/2)
T x| @nh(r) 3 sinh@3z) | 5 sinh(57) 7 sinh(7x)

where additional terms do not affect the three-significant-figure answer.

If X isafunctionof x and X" + (x — 1) X — 2X = 0, assume asolution in the form of an infinite power
series and determine numerical valuesfor ay to ag if ag = 1 and a; = —1: The series solution will be

of theform:
0
X = Z apx™
m=0

Thefirst 8 terms of this are substituted into the given equation to give:

(2ap — a1 — 2ag) + (6az + a1 — 2ap — 2a1)x + (12a4 + 2az — 3ag — 2az)x>
+ (a3 — 4ag — 2a3 + 20as)x> 4 (30ag + dag — Sas — 2az)x* + (42a7 + 5as — 6ag — 2as)x°
+ (56ag + 6ag — Ta7 — 2ag)x® + (Taz — 8ag — 2a7)x” + (8ag — 2ag)x® =0

For this equation to be zero, each coefficient term (in parenthesis) must be zero. Thefirst of theseis
200 —ay —2a0=2a2+1-2=0 = ax=1/2
The second coefficient is
6az+a1—2ap —2a1 =6a3—1—-14+2=0 = az3=0

Third coefficient:

12a4 4 2a — 3a3 — 2ap =124 +1—-0—-1=0 = a4 =0
Fourth coefficient:

3a3 —4dag — 2a3+20a5 =0—0—0+2005 =0 = a5=0
Inasimilar manner, wefindag = a7 =ag =0
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7.27. Itisknown that V = XY isasolution of Laplace’s equation, where X is a function of x alone, and
Y isafunction of y alone. Determine which of the following potential function are also solutions of

Laplace's equation:
a) V = 100X: Weknow that V2XY = 0, or
32 82 X" Vi

_ " " _ 2

Therefore, V2X = 100X” # 0 — No.
b) V =50XY: Would have V2V = 50V2XY =0 — Yes.
C) V=2XY+x—3y: V2V =2V2XY +0-0=0 — Yes.
d) V=xXY: V2V =xV2XY 4+ XYV? =0 — Yes.
€ V=X%Y: V2V = XV?XY + XYV2X =0+ XYV?X — No.

7.28. Assume a product solution of Laplace's equation in cylindrical coordinates, V = P F, where V is not
afunction of z, P isafunction only of p, and F isafunction only of ¢.
a) Obtain the two separated equations if the separation constant is n2. Select the sign of n? so that
the solution of the ¢ equation leads to trigonometric functions: Begin with Laplace’s equation in
cylindrical coordinates, in which thereisno z variation:

) 19 ( a8V 1 9%V
ViV==—|p— |+ 5-—5=0
ap pc 9¢

We substitute the product solution V = P F to obtain:

Fd ( dP\ szF_FdP+Fd2P+ Pd’F _
pdp \"dp ) " p2ag? = pdp dp? = p?d¢?
Next, multiply by p? and divide by F P to obtain

pdP p?d?P 1d°F
s Tt i =
Pdp = P dp? Fd¢

~——

}12 —n2

The equation is now grouped into two parts as shown, each a function of only one of the two
variables; each is set equal to plus or minus n2, asindicated. The ¢ equation now becomes

2
% +n’F=0 = F= C, cos(ng) + D, sin(ng) (n > 1)

Note that  is required to be an integer, since physically, the solution must repeat itself every 2z
radiansin ¢. If n = 0, then

sz—O = F=Copp+D

dp2 =Co 0
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7.28b. Show that P = Ap" + Bp " sdtisfiesthe p eguation: From part a, the radial equation is:

Substituting Ap", we find

pZn(n_l)pn—2+pnpn—l_n2pn :ann _npn +l’lpn—l’l2,0n =0

Substituting Bp ™"

n

pZn(n + 1)pf(n+2) _ pnpf(nJrl) _ anfn — anfn + I’l,Oin _ I’l,Oin _ n2pf -0

So it works.

¢) Construct thesolution V (p, ¢). Functionsof thisform arecalled circular harmonics. To assemble
the complete solution, we need the radial solution for the case in which n = 0. The equation to
solveis

d?Pp N dP

dp? dp

Let S =dP/dp,and sodS/dp = d?P/dp?. The equation becomes

o =0

ds dp dS
Pdp * p S
Integrating, find
Ag Ao dP
—Inp+InAg=InS = InS=Ih{— ) = S§=—=—
P P dp
where Ag isaconstant. So now
dp dP

= — Pnzoonln,O+BO
P Ao

We may now construct the solution in its complete form, encompassing n > 0:

V(p,#) = (AoInp + Bo)(Co¢ + Do) + Z[Anp" + Bup~"][Cy cOS(ng) + Dy Sin(ng)]
n=1

n=0 solution
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CHAPTER 8

8.1a. Find H in cartesian componentsat P(2, 3, 4) if thereisa current filament on the z axis carrying 8 mA
inthe a, direction:
Applying the Biot-Savart Law, we obtain

" _/OO ldL xag /‘X’ Idza; x [2a, + 3a, + (4 — 2)a,] _/00 Idz[2a, — 3a]
T ) 4TR2 T ) _o 47 (z2 — 8z + 29)%/2 "~ J_oo A (z2 — 87 4 29)3/2

Using integral tables, this evaluates as

1 |:2(22 - 8)(2a, — 3ay)

oo
I
- = —(2a, — 3a,
4 | 52(z%2 — 8z + 29)1/2 }Oo 267 X )

a:

Thenwith 7 = 8 mA, wefinally obtain H, = —294a, + 196a, ©A/m

b. Repeat if thefilament islocated at x = —1, y = 2: In this case the Biot-Savart integral becomes

H. — /00 ldza; x[(2+ Da, + (3—2ay, + (4—z)a] /"0 ldz[3a, — a(]
A 47 (22 — 87 + 26)3/2 T ) 47(z2 — 87 + 26)3/2

Evaluating as before, we obtain with 7 = 8 mA:

I [Z(ZZ —8)(3a, — ax)]OO
b =

I
— = —(3a, —a,) = —127a, + 382a, uA/m
47 | 40(z2 — 87 + 26)1/2 207 5% ~ &) x 3828y uA/

—o0
c. Find H if both filaments are present: Thiswill be just the sum of the results of partsa and b, or

Hr =H, + H, = —421a, + 578a, nA/m

This problem can also be done (somewhat more simply) by using the known result for H from an
infinitely-long wire in cylindrical components, and transforming to cartesian components. The Biot-
Savart method was used here for the sake of illustration.

8.2. A current filament of 3a, A liesalong the x axis. Find H in cartesian componentsat P(—1, 3, 2): We
use the Biot-Savart law,
H— / IdL x ag

47 R?
where IdL = 3dxa,, ag = [—(1+ x)a, + 33, + 2&.]/R, and R = +/x2 + 2x + 14. Thus

oo foo 3dxa, x [-(1+x)a, + 3a, + 2a] _ /00 (93, — 6ay) dx
A A (x2 + 2x + 14)3/2 =)o dn(x2 1 2x + 14)32
(92, —6ay)(x+1) (o  2(%, —6ay)

4 (13)V/x2 + 2x + 14 |- 4 (13)

= 0.110a, — 0.073a, A/m
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8.3. Two semi-infinite filaments on the z axisliein theregions —oo < z < —a (note typographical error in
problem statement) and a < z < oco. Each carriesacurrent I in the a, direction.
a) Calculate H as afunction of p and ¢ at z = 0: One way to do thisis to use the field from an
infinite line and subtract from it that portion of the field that would arise from the current segment
at —a < z < a, found from the Biot-Savart law. Thus,

1 _/“ ldza; x[pa, —za,]

H=
21 p o Am[p?+ 7232

Theintegral part simplifies and is eval uated:

/" Idzpay _Ip z
A2+ 2P ag 02,/ 02 + 72

a

la
—a 27p/p2 + a2 %

Finally,
1

a
:E{l—m}% A/m

b) What value of a will cause the magnitudeof H a p = 1, z = 0, to be one-half the value obtained
for an infinite filament? We require

H

a 1 a 1
1- —— = = —— =2 = a=1/V3
|: \/p2+a2:|p_1 2 Vi+a?2 2

8.4a.) A filament is formed into a circle of radius «, centered at the origin in the plane z = 0. It carries a
current 7 in the ay direction. Find H at the origin: We use the Biot-Savart law, which in this case

becomes: ,
IdL x a T lad —a 1
H=/ fdL x &g R=/ adpdy X (=8) _ o507 5 A/m
loop 4 R? 0 47 a2 a

b.) A filament of the same length is shaped into a square in the z = 0 plane. The sides are parallel to the
coordinate axes and a current / flows in the general a, direction. Again, find H at the origin: Since
the loop is the same length, its perimeter is 2ra, and so each of the four sides is of length wa/2.
Using symmetry, we can find the magnetic field at the origin associated with each of the 8 half-sides
(extending from 0 to +ma /4 along each coordinate direction) and multiply the result by 8: Taking one
of the segmentsin the y direction, the Biot-Savart law becomes

H _/ ldL x ag 8/”0/4 Idyay, x [—(ra/4a, — ya,]
loop 4 R? 0 47 [yz + (7'[(1/4)2]3/2
_al ma/4 dya, al ya,

2 Jo 2t a2 P 2 (na/m2/37 + (najdy

wa/4

1
=057—-a,A/m
0 a
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8.5. Theparall€ filamentary conductorsshowninFig. 8.21lieinfreespace. Plot |H| versusy, —4 < y < 4,
alongthelinex = 0, z = 2: Weneed an expression for H in cartesian coordinates. We can start with the
known H in cylindrical for an infinite filament along the z axis. H = 1/(2mp) ag, which we transform

to cartesian to obtain:
-1y Ix

H=——~>———>a+-—5——2a
2r(x2+y2) " * 2m(x2+y2)
If we now rotate the filament so that it liesalong the x axis, with current flowing in positive x, weobtain
the field from the above expression by replacing x with y and y with z:
-1z Iy
H=—————a+ -———-a
2n(y?+2%) 7 2n(y?+2%)
Now, with two filaments, displaced from the x axisto lieat y = 41, and with the current directions as
shown in the figure, we use the previous expression to write

_[ Iz 3 Iz i| |: I(y—1) B I(y+1) }
Cl2n[+D2+22 2n[(y—D2+22 ] L 2n[(y - D2+ 2n[(y+ D2+

We now evaluate thisat z = 2, and find the magnitude (vH - H), resulting in

|H|—L 2 B 2 n oG-  O+D
27 | \y2+2y+5 y2-2y+5 y2—2y+5 y2+2y+5

Thisfunction is plotted below

[H(y)| (Problem 8.5)
T T T

0.1

0.075

[H(y)|

0.05

0.025

8.6a. A current filament 7 isformed into circle, p = a, inthez = 7/ plane. Find H; at P(0, 0, z) if I flows
inthe ay direction: Use the Biot-Savart law,

H— / IdL x ag
47 R?
whereinthiscase IdL = Id¢ay, ag = [—aa, + (z — 2)&;]/R, and R = /a?+ (z — /). The

setup becomes

H— /2” ladp ay x [—aa, + (z — 2)a] B /‘2” lalaa; + (z — Z))a,] d¢
—Jo Ar[a? + (z — 2)?]3/2 ~Jo An[a?+ (z—2)?%2
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Atthispoint weneedto beespecially careful. Notethat weareintegrating avector withan a,, component
around acomplete circle, where the vector has no ¢ dependence. Thissum of all a, componentswill be
zero — even though this doesn’t happen when we go ahead with the integration without this knowledge.
The problem isthat the integral “interprets’ a, asaconstant direction, when in fact —as we know —a,
continually changes direction as ¢ varies. We drop the a, component in the integral to give

H_ /2” Ia?a, d¢ na®la, m A/m
0

dnfa + (z—2)232 ~ 2n[a? + (z — 2)232 ~ 2n[a? + (z — 7)2)3/2

wherem = a1 a, isthe magnetic moment of the loop.

b) Find H, at P caused by a uniform surface current density K = Koay, flowing on the cylindrical
surface, p = a,0 < z < h. Theresultsof part a should help: Using part a, we can write down the
differential field at P arising from acircular current ribbon of differential height, dz’, at location
z'. Theribbon is of radius a and carries current Kodz'ag A:

wa?Kodz7'a,

dH =
zﬂ[az +(z — Z/)Z]S/Z

A/m

The total magnetic field at P is now the sum of the contributions of all differential rings that
comprise the cylinder:

o /h na?Kodz' _ a’Ko /h dz’
o 2n[a?+ z—-2)¥2 T 2 Jo [a?+ 72— 277 + (/)32
_ a%Ko 2(22' — 22) )h _ Ko(@ -2 ‘h
2 4a?\Ja? + 72— 227 + ()20 2y/a? + (' —2)210

- 29 h—2) + < A/m
2 | a2+ (h—22 a?2+72

8.7. Given points C(5, —2, 3) and P(4, —1, 2); acurrent element IdL = 10—4(4, -3, D)A -matC pro-
ducesafielddH at P.
a) Specify the direction of dH by aunit vector ag: Using the Biot-Savart law, we find

- IdL xacp _ 107%[4a, —3a, +a;] x [-a, +a, — a] _ [2a: +3a, +a] x 104

4nRZ, 47 33/2 65.3
from which 2, + 33, + a
ay = T = 0.53a, + 0.80a, + 0.27a,
b) Find |dH].
|dH| = % =573x10°A/m =573 A/m

¢) What direction a; should IdL have at C so that dH = 0? IdL should be collinear with acp,
thus rendering the cross product in the Biot-Savart law equal to zero. Thus the answer isa =
:l:(_ax + a-y - a—z)/\/:_3
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8.8. For the finite-length current element on the z axis, as shown in Fig. 8.5, use the Biot-Savart law to
derive Eq. (9) of Sec. 8.1: The Biot-Savart law reads:

o fzz IdL xag /Pta”"‘z ldza, x (pa, —za;) /"‘a”” Ipag dz
Z P

. 4nR? tnay  47(0%+ 2232 ptanay 47 (0% + 2232

Theintegral is evaluated (using tables) and gives the desired result:

H =

Iza¢ ‘Ptaﬂaz tanao tano
47r,0

I . .
— ay = —(Sina2 — Sina1)ay
4 py/p? + 72 \/1+tan2a2 \/1+tan2a1:| 4rp

ptanog

8.9. A current sheet K = 8a, A/m flowsin theregion —2 < y < 2intheplanez = 0. Calculate H at
P (0, 0, 3): Using the Biot-Savart law, we write

K x agdxdy _ 2 > 8a, x (—xa, — ya, +3a;)
Hp = B 2. 2 32 dxdy
47 R o) Ar(xc+y“+9)

Taking the cross product gives:

H / foo 8(—ya;, — 3ay)dx dy
P= 47 (x2 + y2 + 9)3/2

We note that the z component is anti-symmetric in y about the origin (odd parity). Sincethe limits are
symmetric, the integral of the z component over y is zero. We are |eft with

/ f —24a, dx dy 6a /2 x ‘oo
A+ y24+9%2 T 1) 5 (249 /a2 f 2+ 9l
2 12 1 Y\ |2 4
. _° gy=—"%a,tan? ) — (2059 a, = —1.50a, A
ﬂay/_2y2+9 Y nay3an ( )-2 7'[()( )2y M
8.10. Let afilamentary current of 5 mA be directed from infinity to the origin on the positive z axis and then

back out to infinity on the positive x axis. Find H at P (0, 1, 0): The Biot-Savart law is applied to the
two wire segments using the following setup:

Ho = / IdL x ag /00 —ldza; x (—za; + ay) /OO Idxa, x (—xa, + a,)
P=) Tarrz Ty 4t (22 + 1)372 0 4t (x2 + 1)372

o ldzay 0 ldxa, 1 za, | NS
= I I Ar (2 + 132 — 4r + ‘
o 4m(z2+ 1% o 4r(x2+1)% 4 [ /72410 Jx241lo
1
= E(a’“ +a;) = 0.40(a, + a;) mMA/m
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8.11.

8.12.

Aninfinite filament on the z axis carries 20r mA inthe a, direction. Three uniform cylindrical current
sheets are also present: 400 mA/mat p = 1cm, —250mA/mat p = 2cm, and —300 mA/mat p = 3
cm. Caculate Hy a p = 0.5, 1.5, 2.5, and 3.5 cm: We find H, at each of the required radii by
applying Ampere's circuital law to circular paths of those radii; the paths are centered on the z axis.
So,at pp =0.5cm:

f H-dL = 27p1Hp1r = Ienet = 207 x 1073 A

Thus 3 3
10 x 10~ 10 x 10~
Hyq = = =20A/m
¢l o1 05x 102~ 20A/m
At p = p2 = 1.5 cm, we enclose thefirst of the current cylindersat p = 1 cm. Ampere’slaw becomes:
10+ 4.00
21 p2Hgz = 207 + 271 (1072)(400) mA Hyp= ————5 = 933mA
702 Hpo  + 27(107°)(400) MA = Hyo 15 % 102 mA/m
Following this method, at 2.5 cm:
10 + 4.00 — (2 x 1072)(250)
= = 360 mA
93 2.5 x 102 300 mA/m

and at 3.5 cm,
10 + 4.00 — 5.00 — (3 x 10~2)(300)

3.5x 102

InFig. 8.22, lettheregions0 < z < 0.3mand 0.7 < z < 1.0 m be conducting slabs carrying uniform
current densitiesof 10 A /m? in opposite directions as shown. The problem asksyouto find H at various
positions. Before continuing, we need to know how to find H for thistype of current configuration. The
sketch below shows one of the slabs (of thickness D) oriented with the current coming out of the page.
The problem statement implies that both slabs are of infinite length and width. To find the magnetic
field inside a slab, we apply Ampere's circuital law to the rectangular path of height 4 and width w, as
shown, since by symmetry, H should be oriented horizontally. For example, if the sketch below shows
the upper slab in Fig. 8.22, current will be in the positive y direction. ThusH will be in the positive x
direction above the slab midpoint, and will bein the negative x direction below the midpoint.

Hout
[0 00000 Jd|o
T e
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8.12 (continued) Intaking the lineintegral in Ampere’s law, the two vertical path segmentswill cancel each
other. Ampere'scircuital law for the interior loop becomes

Jd
%H-dL:ZHinxwzlmclzjxwxd = Hm=7

The field outside the dlab is found similarly, but with the enclosed current now bounded by the slab
thickness, rather than the integration path height:

JD
2HOMZX'LU=JXU)XD = Hout:?

where H,,,; isdirected from right to left below the slab and from left to right above the slab (right hand
rule). Reversethe current, and thefields, of course, reverse direction. We are now in a position to solve

the problem.
Find H at:
a) z = —0.2m: Herethefieldsfrom the top and bottom slabs (carrying opposite currents) will cancel,
andsoH = 0.

b) z = 0.2m. This point lieswithin the lower slab aboveits midpoint. Thusthefield will be oriented
in the negative x direction. Referring to Fig. 8.22 and to the sketch on the previous page, we find
that d = 0.1. Thetotal field will be thisfield plus the contribution from the upper slab current:

_ —1001)  1003)
2 2
lower slab upper slab

H

a, = —2a, A/m

C) z = 0.4m: Herethefields from both slabs will add constructively in the negative x direction:

10(0.3)

H=-2
2

a, = —3a, A/m

d) z = 0.75m: Thisisin theinterior of the upper slab, whose midpoint liesat z = 0.85. Therefore
d = 0.2. Since 0.75 lies below the midpoint, magnetic field from the upper dab will liein the
negative x direction. Thefield from the lower slab will be negative x-directed as well, leading to:

210002)  10(0.3)
H = -
2 &5

upper slab lower slab

a, = —25a, A/m

€) z = 1.2m: Thispoint lies above both sabs, where again fields cancel completely: ThusH = 0.
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8.13. A hollow cylindrical shell of radius a is centered on the z axis and carries a uniform surface current
density of K,a,.

a)

b)

d)

€)

Show that H isnot afunction of ¢ or z: Consider this situation asillustrated in Fig. 8.11. There
(sec. 8.2) it was stated that the field will be entirely z-directed. We can see this by applying
Ampere's circuital law to a closed loop path whose orientation we choose such that current is
enclosed by the path. The only way to enclose current isto set up the loop (which we choose to be
rectangular) such that it is oriented with two parallel opposing segments lying in the z direction;
one of these liesinside the cylinder, the other outside. The other two parallel segmentsliein the p
direction. Theloop isnow cut by the current sheet, and if we assume alength of theloopin z of d,
then the enclosed current will be given by Kd A. There will be no ¢ variation in the field because
where we position the loop around the circumference of the cylinder does not affect the result of
Ampere'slaw. If weassume an infinite cylinder length, there will be no z dependencein thefield,
since as we lengthen the loop in the z direction, the path length (over which the integral is taken)
increases, but then so does the enclosed current — by the same factor. Thus H would not change
with z. There would aso be no change if the loop was simply moved along the z direction.

Show that Hy and H,, are everywhere zero. First, if Hy were to exist, then we should be able to
find a closed loop path that encloses current, in which all or or portion of the path liesin the ¢
direction. This we cannot do, and so Hy must be zero. Another argument is that when applying
the Biot-Savart law, there is no current element that would produce a¢ component. Again, using
the Biot-Savart law, we note that radial field components will be produced by individual current
elements, but such components will cancel from two elementsthat lie at symmetric distancesin z
on either side of the observation point.

Show that H, = 0 for p > a: Suppose the rectangular loop was drawn such that the outside
z-directed segment is moved further and further away from the cylinder. We would expect H,
outside to decrease (as the Biot-Savart law would imply) but the same amount of current is always
enclosed no matter how far away the outer segment is. We therefore must conclude that the field
outsideis zero.

Show that H, = K, for p < a: With our rectangular path set up as in part a, we have no path
integral contributionsfrom thetwo radial segments, and no contribution from the outside z-directed
segment. Therefore, Ampere’s circuital law would state that

fH.szszz el = Kod = H, =K,

where d isthe length of the loop in the z direction.

A second shell, p = b, carries acurrent K,a4. Find H everywhere: For p < a we would have
both cylinders contributing, or H,(p < a) = K, + K. Between the cylinders, we are outside the
inner one, so itsfield will not contribute. Thus H,(a < p < b) = Kj. Outside (o > b) thefield
will be zero.
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8.14. A toroid having across section of rectangular shape is defined by the following surfaces. the cylinders
p =2and p = 3cm, andtheplanesz = 1and z = 2.5 cm. Thetoroid carries asurface current density
of —50a, A/m on the surface p = 3 cm. Find H at the point P(p, ¢, z): The construction is similar
to that of the toroid of round cross section as done on p.239. Again, magnetic field exists only inside
the toroid cross section, and is given by

Iencl
2mp

H=

a (2<p<3com (I<z<25cm

where I,,,.; is found from the given current density: On the outer radius, the current is
Loyter = —50(2m x 3 x 10_2) =-37 A

This current is directed along negative z, which means that the current on the inner radius (p = 2) is
directed along positive z. Inner and outer currents have the same magnitude. It istheinner current that
is enclosed by the circular integration path in as within the toroid that is used in Ampere’s law. So
Loyt = +3m A. We can now proceed with what is requested:

a) P4(1.5cm, 0, 2cm): Theradius, p = 1.5 cm, lies outside the cross section, and soH4 = 0.

b) Pg(2.1cm, 0, 2cm): This point does lie inside the cross section, and the ¢ and z values do not
matter. We find
Iencl _ 3a¢

Hrp = =
B= 200 ™= 221102

=7l4ay A/m
C) Pc(2.7cm, /2, 2cm): again, ¢ and z values make no difference, so

3ay
He=— % _ _556a,A
€= 227x 102 ~ >0%A/M

d) Pp(3.5cm, /2, 2cm). This point lies outside the cross section, and soHp = 0.

8.15. Assume that there is a region with cylindrical symmetry in which the conductivity is given by o =
1.5¢ 1507 kS/m. An electric field of 30a, V/m is present.
a) FindJ: Use
J=0E = 45¢"1% 3, kA/m?

b) Find thetotal current crossing the surface p < pg, z = 0, dl ¢:
2n 277 (45)
[ = J-dS= 4507100 p dp dgp = e 1500 [—150p — 1
/ / / / ¢ TIPApdd = gt T 1)
- 12.6[ 14+ 150,00)6_150'00] A

C) Make use of Ampere'scircuital law to find H: Symmetry suggeststhat H will be ¢-directed only,
and so we consider a circular path of integration, centered on and perpendicular to the z axis.
Ampere’slaw becomes: 2rpHy = Ienc1, Where 1o, isthe current found in part b, except with pg
replaced by the variable, p. We obtain

2.00 [1

Hy=""[1-@a+ 150p)e_150p] A/m
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8.16. The cylindrical shell, 2mm < p < 3mm, carries a uniformly-distributed total current of 8A in the
—a, direction, and afilament on the z axis carries 8A in the a, direction. Find H everywhere: We use
Ampere'scircuital law, noting that from symmetry, H will be a, directed. Insidethe shell (0 < 2mm),
A circular integration path centered on the z axis encloses only the filament current along z: Therefore

4 .
H(p<2mm)=%a¢=n—pa¢A/m (o Inm)

With the circular integration path within (2 < p < 3mm), the enclosed current will consist of the
filament plusthat portion of the shell current that liesinside p. Ampere’scircuital law applied to aloop

of radius p is:
fH'dL=1filament+f/ J-dS
shell area

where the current density is

8 8 x 108

J=— a=——a A m2
7(3x 10732 — 7(2 x 10-3)2 ° 57 © /
So
2 si [ [ —8 106 'dp'de = 8— 1.6 x 10° (0)2|”
H = e . = — 1.
TP 11g +/0 /2><10_3 (57_[ X >az a:p dpde X (") 93 10-3

Solve for Hy to find:

HQ2 < p < 3mm) = % [1— (2 % 10%) (02 — 4 x 10*6)] as A/m (pinm)

Outside (p > 3mm), the total enclosed current is zero, and so H(p > 3mm) = 0.
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8.17. A current filament on the z axiscarriesacurrent of 7 mA inthea, direction, and current sheetsof 0.5a,
A/mand —0.2a, A/marelocated at p = 1 cmand p = 0.5 cm, respectively. Calculate H at:
a) p = 0.5cm: Here, we are either just inside or just outside the first current sheet, so both we will
calculate H for both cases. Just inside, applying Ampere’s circuital law to acircular path centered
on the z axis produces:

7 x 1073

—1

2npHy =7x 1073 = H(justinside) =

Just outside the current sheet at .5 cm, Ampere's law becomes

2npHy =7 x 1073 — 27(0.5 x 107%)(0.2)
7.2 x 1074

_C T a,=23x102%a, A/m
27(05 x 10-2) x 10 75y A/

= H(just outside) =

b) o = 1.5 cm: Here, al three currents are enclosed, so Ampere’s law becomes

2m(1.5 x 1072)Hy = 7 x 1072 — 6.28 x 1073 + 27(1072)(0.5)
= H(p =15 =34x101a, A/m

C) p =4cm: Ampere'slaw asused in part b applies here, except wereplace p = 1.5cmwithp =4
cmontheleft hand side. TheresultisH(p = 4) = 1.3 x 10—1a¢ A/m.

d) What current sheet should belocatedat p = 4cmsothatH = Ofor al p > 4cm? Werequirethat
the total enclosed current be zero, and so the net current in the proposed cylinder at 4 cm must be
negative the right hand side of the first equation in part 5. Thiswill be —3.2 x 10~2, so that the
surface current density at 4 cm must be

—32x 102

=T _a =-13x101a A/m
27(4 x 10-2) x : A/

8.18. Current density is distributed as follows. J = O for |y| > 2m, J = 8ya, A/m? for |y| < 1m,
J=82—-y)a, A/m?forl <y <2m,J =—82+y)a. A/m?for—2 < y < —1 m. Use symmetry
and Ampere's law to find H everywhere.

Symmetry does help significantly in this problem. The current densitiesin theregions0 < y < 1 and
—1 < y < 0 are mirror images of each other across the plane y = 0 — thisin addition to being of
oppositesign. Thisisalso true of the current densitiesintheregionsl <y <2and -2 <y < —1. As
a consequence of this, we find that the net current in region 1, I; (seethe diagram on the next page), is
equal and opposite to the net current in region 4, 14. Also, I isequal and oppositeto 3. This means
that when applying Ampere's law to the patha — b — ¢ — d — a, as shown in the figure, zero current
isenclosed, sothat § H - dL = 0 over the path. In addition, the symmetry of the current configuration
impliesthat H = 0 outside the slabs along the vertical pathsa — b and ¢ — d. H from all sources should
completely cancel along the two vertical paths, as well as along the two horizontal paths.
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8.18. (continued) To find the magnetic field in region 1, we apply Ampere’s circuital law to the path ¢ —
d — e — f — ¢, again noting that H will be zero along the two horizontal segments and along the right
vertical segment. This leaves only the left vertical segment, e — f, pointing in the +x direction, and
along which is field, H,1. The counter-clockwise direction of the path integral is chosen using the
right-hand convention, where we take the normal to the path in the +z direction, which is the same as
the current direction. Assuming the height of the path is Ax, we find

2 2
HAx = Ax/ 8(2— y)dy = Ax [16y — 4y2]
Yy

Y1

= Ax [16(2 —y) — 44— yf)]

1
Replacing y1 with y, wefind

Ha=48-4y—4+)" = Hil<y<2=4(-2%a A/m

H1 liesin the positive x direction, since the result of the integration is net positive.

H inregion 2 isnow found through the line integral over thepathd — g — h — ¢, enclosing al of region
1 within Ax and part of region 2 from y = y, to 1:

2 1
82— y)dy + Ax/ 8ydy = Ax [4(1 — 224 41— yg)] — 42— y2)Ax

HooAx = Ax/
1 y2

sothat intermsof y,
Ho(0 <y < 1) = 42— y%)a, A/m

4 3 2 1
R e LT EE T S N S S
]
: N -
1 1 1 1
I R D R A N 4' ______ .
HR i 0 Jy2 [t hyr 2T y
|
: o ,
I
b{ ——————————————————— ——i———--——'-———-———i»c
h f
® ® Q) O)
l4 I3 E 2 l1
x4
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8.18. (continued) The procedure isrepeated for the remaining two regions, —2 <y < —land -1 < y < 0,
by taking the integration path with its right vertical segment within each of these two regions, while
the left vertical path isa — b. Again the integral is taken counter-clockwise, which means that the
right vertical path will be directed along —x. But the current is now in the opposite direction of that
for y > 0, making the enclosed current net negative. Therefore, H will be in the opposite direction
from that of the right vertical path, which isthe positive x direction. The magnetic field will therefore
be symmetric about the y = 0 plane. We can use the results for regions 1 and 2 to construct the field
everywhere:

H=0(y>2 and(y < -2

H=4@2-|yPa A/m O <yl <1

H =4(ly| - 2%a, A/m (1< |y| <2

8.19. Calculate V x [V(V - G)] if G = 2x2yza, — 20y &, + (x? — z?) &,: Proceding, wefirstfind v -G =
4xyz — 20— 2z. Then V(V - G) = 4yza, +4xza, + (4xy — 2) a;. Then

VX[V(V-G)] =4 —4)a, — 4y —4y)a, + (4z—42)a, =0

8.20. The magnetic field intensity is given in the squareregionx = 0,05 <y < 1,1 < z < 1.5by
H = z%a, + x%a, + y*a, A/m.
a) evaluate § H - dL about the perimeter of the square region: Using dL = dxa, + dya, + dza;,
and using the given field, wefind, in the x = 0 plane:

1 15 5 1
fH .dL =/ 0dy +/ (L)*dz +f 0dy +/ (.5)*dz = 0.46875
5 1 1 1.5

b) Find V x H:

0H, 0H 0H 0H. oH, 0H
VxH= o —at|— - )+ - )a
ay 0z 0z ax ox ay

= 4y3ax —+ Zzay + 3x2az

c) Caculate (V x H), at the center of the region: Here, y = 0.75 and so (V x H), = 4(.75)% =
1.68750.

d) Does(VxH), =[§ H-dL]/AreaEnclosed? Usingtheparta result, [ H-dL]/Area Enclosed =
0.46875/0.25 = 1.8750, which is off the value found in part c. Answer: No. Reason: the limit
of the area shrinking to zero must be taken before the results will be equal.

8.21. PointsA, B, C, D, E, and F are each 2 mm from the origin on the coordinate axes indicated in Fig.
8.23. The value of H at each point is given. Calculate an approximate value for V x H at the origin:

We use the approximation:

H.dL
curIHﬁgg

a

where no limit as Aa — 0 is taken (hence the approximation), and where Aa = 4mm?. Each curl
component is found by integrating H over a square path that is normal to the component in question.
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8.21. (continued) Each of the four segments of the contour passes through one of the given points. Along
each segment, the field is assumed constant, and so the integral is evaluated by summing the products
of the field and segment Iength (4 mm) over the four segments. The x component of the curl isthus:

. (Hyc—Hyp— H;p+ Hy p)(4x 1073
v H = ) B ) )
(Vo Hx (4 x 10-3)2

= (15.69 + 13.88 — 14.35 — 13.10)(250) = 530 A/m?

The other components are;

. (H,p+H,p—H, o — Hep)(4x 1079
(V X H)y = (4 = 10_3)2

— (15.82 4+ 11.11 — 14.21 — 10.88)(250) = 460 A/m?

and 3
. (HyA_HxC_HyBHxD)(4X1O_)
V xH), = : : : :
(V> H): (4 x 10-3)2

= (—13.78 — 10.49 + 12.19 + 11.49)(250) = —148 A/m?
Finally we assemble the results and write:

V x H =530a, +460a, — 1484,

8.22. Inthe cylindrical region p < 0.6 mm, Hy = (2/p) + (p/2) AIm, while Hy = (3/p) Almfor p > 0.6
mm.
a) Determine J for p < 0.6mm: We have only a ¢ component that varies with p. Therefore

2

[2+ p—] a =J=1la A/m

_ld(pHy _14d
T p dp ° pdp 2

V xH , =
p dp pdp

b) DetermineJ for p > 0.6 mm: In this case

1d7[ 3
SN ) P
pdp | p

c) Isthere afilamentary current at p = 0? If so, what isitsvalue? As p — 0, Hy — oo, which
impliesthe existence of acurrent filament alongthez axis: So, YES. Thevalueisfound by through
Ampere'scircuital law, by integrating Hy around acircular path of vanishingly-small radius. The
current enclosed istherefore I = 2p(2/p) = 4 A.

d) WhatisJ at p = 0? Sinceafilament current liesalong z a p = 0, thisformsasingularity, and so
the current density thereisinfinite.

8.23. GiventhefieldH = 20p?ay A/m:
a) Determinethe current density J: Thisisfound through the curl of H, which simplifiesto asingle
term, since H varies only with p and has only a ¢ component:
_ Ld(pHy)
p dp

1d
a =-2 (20,03> a, = 60pa, A/m?

J=V xH =
pdp
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8.23. (continued)

b) Integrate J over the circular surface p = 1, 0 < ¢ < 2w, z = 0, to determine the total current
passing through that surface in the a, direction: Theintegral is:

2r p1
I:/fJ-dS:/ / 60pa, - pdp dopa, = 40 A
0 0

¢) Find the total current once more, this time by a line integral around the circular path p = 1,
O<¢p<2m,z=0:

2w o
I=%H.dL:/ zopzacb\pzl'(l)d‘p%:/ 20d¢p = 407 A
0 0

8.24. Evaluateboth sidesof Stokes' theoremfor thefield G = 10sin6 a, andthesurfacer = 3,0 < 6 < 90°,
0 < ¢ < 90°. Let the surface have the a, direction: Stokes' theorem reads.

$oa=[[vx6 nd
C N

Considering the given surface, the contour, C, that forms its perimeter consists of three joined arcs of
radius 3 that sweep out 90° inthe xy, xz, and zy planes. Their centersare at the origin. Of these three,
only thearcinthexy plane (which liesalong a) isin the direction of G; the other two (in the —ay and
ay directions respectively) are perpendicular to it, and so will not contribute to the path integral. The
left-hand side therefore consists of only the xy plane portion of the closed path, and evaluates as

/2
7§G -dL :/ 105in9\n/2a¢-a¢3s1n0\,,/2d¢ = 157
0

To evaluate the right-hand side, wefirst find

1 d . . 20cos6
\% - = _
x G Snd .40 [(sn6)10sind] a, a,
The surface over which weintegrate thisis the one-eighth spherical shell of radius 3 in the first octant,
bounded by the three arcs described earlier. The right-hand side becomes

7/2 r7/2 20 cos 5 .
//(VxG)-nda=/ / a2 (978N d0 dg = 15
S 0 0

It would appear that the theorem works.
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8.25. (This problem was discovered to be flawed — I will proceed with it and show how). Given thefield
¢ ¢

H= %cosiap —sinEa(,)A/m
evaluate both sides of Stokes' theorem for the path formed by the intersection of the cylinder p = 3
and the plane z = 2, and for the surface defined by p = 3,0 < ¢ < 27r,andz =0,0 < p < 3: This
surface resemblesthat of an open tin can whose bottom liesin the z = 0 plane, and whose open circular
edge, at z = 2, definesthe line integral contour. We first evaluate § H - dL over the circular contour,
where we take the integration direction as clockwise, looking down on the can. We do this because the
outward normal from the bottom of the can will be in the —a, direction.

2 2 ¢
fH.szf H-3d¢(—a¢)=/ 3sn2dg =1
0 0 2

With our choice of contour direction, thisindicates that the current will flow in the negative z direction.
Notefor futurereferencethat only the ¢ component of the given field contributed here. Next, we evalute
[ [V x H -dS, over the surface of thetin can. Wefind

1 /0(pH 0H 1 . 1. 3 .
VxH=J== (pHy) _0H, a, =— —smer—sm9 az=——sm?aZA/m
P ap ¢ P 2 4 2 4p 2

Note that both field components contribute here. The integral over the tin can is now only over the
bottom surface, since V x H has only az component. We use the outward normal, —a,, and find

3 2 31 9 2
//VxH-dS:——/ / —sin?az-(—az)pdpdqﬁ:—/ sin?dqbzg_
4Jo Jo p 2 4 Jo 2

Note that if the radial component of H were not included in the computation of V x H, then the factor
of 3/4 in front of the above integral would changeto afactor of 1, and the result would have been 12 A.
What would appear to be aviolation of Stokes' theorem is likely the result of a missing term in the ¢
component of H, having zero curl, which would have enabled the original lineintegral to have avalue
of 9A. Thereader isinvited to explore this further.

‘N
>

8.26. Let G = 15ray.
a) DeterminefG -dL forthecircular pathr = 5,60 = 25°,0 < ¢ < 27

2
%G -dL = / 15(5)ay - a4(5) Sin(25°) d¢ = 27(375) Sin(25°) = 995.8
0

b) EvaIuatefS(VxG)-dSoverthesphericaI capr =5,0=<6 <25°,0 < ¢ < 27: Whenevaluating
the curl of G using the formulain spherical coordinates, only one of the six terms survives:

1 o sinéd
rsing 20 rsing

15r cos6 a, = 15cot 6 a;

Then
2 25°
/(VxG)-dS:/ / 15cot6 a, - a, (5)2sin6 do d¢
S 0 0

25°
= an 15¢c0s6(25) d6 = 27 (15)(25) sin(25°) = 995.8
0
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8.27. The magnetic field intensity is given in a certain region of space as

a)

b)

<)

d)

X+ 2y 2
H="%—a,+-aA/m
z z
Find V x H: For thisfield, the general curl expression in rectangular coordinates simplifiesto
oH oH 2 2 1
V x H :——yax+—yazzuax+—azA/m
3z dx 23 z2

Find J: Thiswill be the answer of part a, sihceV x H = J.

Use J tofind the total current passing through thesurfacez = 4,1 < x < 2,3 <y < 5,inthea,
direction: Thiswill be

5 p2 1
I=/fJ|Z:4-azdxdy=/3 /; zdxdy:l/SA

Show that the same result is obtained using the other side of Stokes' theorem: Wetake ¢ H - dL
over the square path at z = 4 asdefined in part ¢. Thisinvolvestwo integrals of the y component
of H over therange 3 < y < 5. Integrals over x, to complete the loop, do not exist since thereis
no x component of H. We have

5242y 3142y 1 1
I=¢H|_, dL= d dy ==-(2) — —(2) =1/8A
f|,7,:4 /3 y+/5 y=5@ -~ @ =1/8A

16 16

8.28. GivenH = (3r2/sin#)ay + 54r cosfa, A/min free space:

a)

b)

find the total current in the ay direction through the conical surface & = 20°, 0 < ¢ < 27,
0 < r < 5, by whatever side of Stokes' theorem you like best. | chosethelineintegral side, where
the integration path is the circular path in ¢ around the top edge of the cone, at r = 5. The path
direction is chosen to be clockwise looking down on the xy plane. This, by convention, leads to
the normal from the cone surface that pointsin the positive ay direction (right hand rule). Wefind

2
?gH -dL :/ [(Brz/sine)ag + 54r cos@a¢] 0 5sin(20°) d¢ (—ay)
0
— —27(54)(25) cos(20°) in(20°) = —2.73 x 10° A

r=5,0=

This result means that there is a component of current that enters the cone surface in the —ay
direction, to which is associated a component of H in the positive a, direction.

Check the result by using the other side of Stokes' theorem: We first find the current density
through the curl of the magnetic field, where three of the six terms in the spherical coordinate
formula survive:

1 0

VxH=—
rsing 06

19 19 (33
54r cosd sind)) a, — — — (542 cosd i i =]
(54r cos6 §in6)) a, rar( rcos>a9+rar(sin0>a¢

Thus 9
J =54cotf a, — 108cosh ay + .—ra¢
sing
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8.28b. (continued)

The calculation of the other side of Stokes' theorem now involves integrating J over the surface of the
cone, where the outward normal is positive ay, as defined in part a:

2 5 9
/(VxH)-dS:/ / [5400t9a,—1080059a9+_—ra¢} -8y rsin(20°) dr d¢
S 0 0 sné 6=20°

21 5
= — / / 108 cos(20°) sin(20°)rdrd¢ = —2m (54)(25) cos(20°) sin(20°)
o Jo

— _273x 10°A

8.29. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed current of 2
A dc.
a) Find J within the conductor: Assuming the current is +z directed,

2

J=—— " __a =159x10"a A/m?
7(0.2 x 10-3)2% x 1073 A/

b) Use Ampere'scircuital law to find H and B within the conductor: Inside, at radius p, we have

J
2npHy = np2) = H= %a¢ = 7.96 x 10°0a, A/m

Then B = uoH = (47 x 1077)(7.96 x 10%)pa, = 10p a; Wh/m?.

¢) Show that V x H = J within the conductor: Using the result of part b, wefind,

ld

VxH=2%0m)a <
X = —— o J—
pdp T pdp

1.59 x 107p2

5 )aZ:1.59x107aZ A/m? =

d) Find H and B outside the conductor (note typo in book): Outside, the entire current is enclosed
by aclosed path at radius p, and so

1 1
H=—a,=—a,A/m
2o npa¢ /

Now B = uoH = po/(p) 8 Wh/m?.

e) Show that V x H = J outside the conductor: Here we use H outside the conductor and write:

1d 1d 1
VxH=>—(pHp)a, =~— (p—) a; = 0 (asexpected)
pdp pdp \' 7p
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8.30. A solid nonmagnetic conductor of circular cross-section has a radius of 2mm. The conductor is inho-
mogeneous, with o = 10°(1 + 10%p2) S/m. If the conductor is 1m in length and has a voltage of 1mV
between its ends, find:

a) H inside: With current along the cylinder length (along a;, and with ¢ symmetry, H will be ¢-
directed only. Wefind E = (Vp/d)a, = 10~3a, V/m. ThenJ = o E = 10%(1+ 10%p%)a, A/m?.
Next we apply Ampere's circuital law to a circular path of radius p, centered on the z axis and
normal to the axis:

2t pp
7{H -dL = 2wpH, ://J-dS:/ / 103(1 + 10%(p")?)a, - a,p'dp’d¢
S 0 0

Thus

103 [° 103 [p2 108
_ 1% il ,04
2 4

Hy="— [ p +10%"3dp = —
p Jo P

Finaly, H = 500p(1+ 5 x 10°p%)a, A/m (0 < p < 2mm).

b) thetotal magnetic flux inside the conductor: With field in the ¢ direction, a plane normal to B will
bethat intheregion0 < p < 2mm, 0 < z < 1 m. Theflux will be

1 2x10°3
® = / / B-dS = uo f / <500p +25x 108p3> dpdz = 87 x 10" Wb = 2.5nWh
S 0 0

8.31. The cylindrical shell defined by 1 cm < p < 1.4 cm consists of a non-magnetic conducting material
and carries atotal current of 50 A in the a, direction. Find the total magnetic flux crossing the plane
¢=00<z<1l

a) 0 < p < 1.2cm: Wefirst need to find J, H, and B: The current density will be:

50

J= =1.66 x 10°a, A/m?
7[(14 x 1022 — (1.0 x 10-97] = x 10%a; A/m

Next we find Hy at radius p between 1.0 and 1.4 cm, by applying Ampere’s circuital law, and
noting that the current density is zero at radii lessthan 1 cm:

2 pp
2npHy = loper = / / 1.66 x 10%0' dp’ d¢
0 102

_4)

4(p* =10 2 2
= H¢=8.30X10fA/m 107“m<p<1l4x10“m)

Then B = ugH, or

(%2 —107%

B =0.104 ay Wb/m?

Now,

1 p1.2x10°2 104
cpa://B.dSZ/ f 0.104[;)——] dp dz
0 J102 P

(1.2 x 02) 0 —10_4'”(5)] =3.92 x 107" Wb = 0.392 Wb

= 0.104[
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8.31b) 1.0cm < p < 1.4cm (notetypo in book): Thisis part a over again, except we change the upper limit
of theradia integration:

1.4x1072 10—4
Dy, = //B dS = / f 0.104[,0——:| dpdz
10- o

(14 x 10722104
2

1.4
= 0.104[ —10"%In (ﬁ)] = 1.49 x 107°Wb = 1.49 Wb

c) 1.4cm < p < 20cm: Thisis entirely outside the current distribution, so we need B there: We
modify the Ampere's circuital law result of part a to find:

14 x 10722 - 104 10-°
Bour = 0.104[( X ) ] ay = ——2ay Wb/m
P
We now find
20x 102 —5 20
P, _f / —dpdz—lO 5In( ):2.7x10_5Wb=27qu
1.4x10-2 14 —

8.32. The free space region defined by 1 < z < 4cmand 2 < p < 3 cm is atoroid of rectangular
cross-section. Let the surface at p = 3 cm carry a surface current K = 2a, KA/m.

a) Specify the current densities on the surfacesat p = 2 cm, z = 1cm, and z = 4cm. All surfaces
must carry equal currents. With this requirement, we find: K(p = 2) = —3a; kA/m. Next, the
current densities on the z = 1 and z = 4 surfaces must transistion between the current density
vauesat p = 2 and p = 3. Knowing the the radial current density will vary as 1/, we find
K(z =1) = (60/p)a, A/mwith p in meters. Similarly, K (z = 4) = —(60/p)a, A/m.

b) Find H everywhere: Outside the toroid, H = 0. Inside, we apply Ampere's circuital law in the
manner of Problem 8.14:

2
jﬁH -dL =27pH, :/ K(p=2)-a, (2x1072)d¢
0

H— _m% = —60/p ay A/m (inside)

c) Calculatethetotal flux within the toriod: We have B = —(60u0/p)ay Wb/m2. Then

04 (.03 _
B /.01 f.oz
8.33. Use an expansion in cartesian coordinates to show that the curl of the gradient of any scalar field G is
identically equal to zero. We begin with

(g) —0.92 Wb
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8.34. A filamentary conductor on the z axis carries a current of 16A in the a, direction, a conducting shell
a p = 6 carriesatotal current of 12A inthe —a, direction, and another shell at p = 10 carries atota
current of 4A in the —a, direction.

a) FindH for0 < p < 12: Ampere'scircuital law statesthat f H - dL = I.,;, wherethelineintegral
and current direction are related in the usual way through the right hand rule. Therefore, if I isin
the positive z direction, H isin the a, direction. We proceed as follows:

O<p<6: 21pHy =16 = H =16/(2np)ay

6<p<10: 2npHy =16—-12 = H =4/(2np)ay
p>10: 2npHy =16—-12-4=0 = H=0

b) Plot Hy vs. p:

Problem 8.34

15 T T T T T
1.25 —
l — ja—
T 075+ -~
05 F —
025 1

0 1 | I —

0 2 4 6 8 10 12
rho

¢) Findthetotal flux ® crossing thesurfacel < p < 7,0 < z < 1: Thiswill be

//—d dz //—d dz _2M0[4In6+ln(7/6)]:5.9;LWb
2rp b4 —_—

8.35. A current sheet, K = 20a, A/m, islocated at p = 2, and a second sheet, K = —10a, A/mislocated
ap=4.

a)LetV, =0a P(p =3,¢ =0,z =05) and placeabarrier at ¢ = n. Find V,,(p, ¢, z) for

—m < ¢ < m: Since the current is cylindrically-symmetric, we know that H = 1/(27p) a4,

where I isthe current enclosed, equal in thiscaseto 27 (2) K = 80x A. Thus, using the result of

Section 8.6, we find

I 80
Vi = ——p = — " = —40p A
o on P72 R

which isvalid over theregion2 < p < 4, -1 < ¢ < m,and —o0 < 7z < o0. For p > 4, the
outer current contributes, leading to atotal enclosed current of

Lner = 21(2)(20) — 27(4)(10) =

With zero enclosed current, H, = 0, and the magnetic potential is zero as well.
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8.35h.

8.36.

8.37.

LetA=0at PandfindA(p, ¢, z) for 2 < p < 4: Again, weknow that H = Hy(p), since the current
is cylindrically symmetric. With the current only in the z direction, and again using symmmetry, we
expect only az component of A which varies only with p. We can then write:

A 1
VA= g gt
dp 2P
Thus JA / /
z Mo Mo
=—— A, =———1In C
dp 27 p = 2 (o) +
Werequirethat A, = 0at p = 3. Therefore C = [(uol)/(2m)] In(3), Then, with I = 80x, wefinally
obtain
_ 10(80m)

A= [In(p) —In(3)] a, = 40uoln <§> a, Wb/m

2m

Let A = (3y — z)a, + 2xza, Wh/min acertain region of free space.
a) Showthatv-A =0:

d ]
V-A=—Q@y—-2+ —2xz=0
ox ay

b) At P(2,-1,3),findA, B, H, and J: First Ap = —6a, + 12a,. Then, using the curl formulain
cartesian coordinates,

B=VxA=-2xa —a,+ (2z—3a, = Bp=—4a, —a, +3a Wh/m?

Now
Hp = (1/10)Bp = —3.2 x 10%, — 8.0 x 10°a, + 2.4 x 10%, A/m

ThenJ =V xH = (1/uo)V x B = 0, asthe curl formulain cartesian coordinates shows.

Let N = 1000, I = 0.8A, pg = 2cm, and a = 0.8 cm for the toroid shown in Fig. 8.12b. Find V,,, in
theinterior of thetoroid if V,,, = 0at p = 25¢cm, ¢ = 0.37. Keep ¢ withintherange 0 < ¢ < 27:
Well-within the toroid, we have

NI 14V,
H= —"a,=-VV, =—=
2rp p do
Thus
NI¢
Vp=———+C
2
Then, 1000(0.8)(0.3
0= _ (0.8)(0.3m) L
2
or C=120. Findly
400
Vin = |:120— —d>i| A O<¢ <21)
T
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8.38. The solenoid shown in Fig. 8.11b contains 400 turns, carriesacurrent I = 5 A, has alength of 8cm,
and aradiusa = 1.2 cm (hope it doesn’'t blow up!).
a) Find H within the solenoid. Assuming the current flows in the a direction, H will then be along
the positive z direction, and will be given by

_ NI (400)(5)

H=—a Tazz2.5x104A/m

b) If V,, = Oattheorigin, specify V,,(p, ¢, z) insidethe solenoid: SinceH isonly inthe z direction,
Vi should vary with z only. Use

H=—VV,,,=—d—maZ = Vy=—-—Hz+C
z

Atz=0,V,, =0,sC =0. Therefore V,,(z) = —2.5 x 10%z A

c) Let A = Oattheorigin, and specify A(p, ¢, z) inside the solenoid if the medium isfree space. A
should beinthe samedirection asthe current, and so would havea¢ component only. Furthermore,
since V x A = B, the curl will be z-directed only. Therefore

10
VxA=——(pAg)a; = noH;a,
p ap

Then
noH;p

c
5 +

G
ap(;o o) = noHp = Ap
Ay = Oattheorigin,so C = 0. Finaly,

_ (4r x 10~7)(2.5 x 10%)p

A
2

ay = 15.7a5, mWb/m

8.39. Planar current sheets of K = 30a, A/m and —30a, A/m are located in free space at x = 0.2 and
x = —0.2 respectively. For theregion —0.2 < x < 0.2:
a) Find H: Since we have paralel current sheets carrying equal and opposite currents, we use Eq.
(12), H = K x ay, where ay is the unit normal directed into the region between currents, and
where either one of the two currents are used. Choosing the sheet at x = 0.2, we find

H = 30a, x —a, = —30a, A/m

b) Obtain and expression for V,,, if V,, = 0at P(0.1,0.2,0.3): Use

dv,
H=-30a, =-VV, =—-———a,
dy
=0 dv,
—2 =30 = V,=30y+C;
dy
Then

0=3002+C1 = C1=-6 = V,=30y—-6A
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8.39¢) FindB: B = uoH = —30u0a, Wh/m?.

d) Obtainan expressionfor A if A = 0at P: We expect A to be z-directed (with the current), and so
fromV x A = B, where B is y-directed, we set up

dA,

dx

=—-30up = A;=30uox +C2
Then
0=30uo(0.)) + C2 = C2=—-3uo

So finally
A = uo(30x — 3)a, Wb/m

8.40. Let A = (3y? — 27)a, — 2x?za, + (x + 2y)a, Whiminfreespace. FindV x V x A at P(—2, 3, —1):
Firs V x A =

3 2 d(—2x2 3(3y% — 2 3 2 d(—2x2 3(3y% -2

((x-i- y) ( z)>ax+((y z)  dx + y)>ay+<( z) 9@y z))aZ
ay 0z 0z ox ax ay

= (24 2x?a, — 3a, — (4xz + 6y)a,

Then

d(4 6 a(4 6
(e + y)ay— (e + y)ax:—Gax+4zay
ox dy

At P thishecomesV x V x A|p = —6a, — 4a, Wb/m?3.

VxVxA=

8.41. Assumethat A = 50p2a, Wb/m in a certain region of free space.
a) FindH and B: Use

A
B:VxA:—aa ‘ay = —100p a5 Wh/m?
0

ThenH = B/uo = —100p/oay A/m.

b) FindJ: Use

19 19
J=VxH=>=—(pHpa, = ——
p op p ap

—100p2 200
P )azz——aZ A/m?
Mo Mo

¢) UseJtofindthetotal current crossing thesurface0 < p <1,0< ¢ < 2w,z = 0: Thecurrentis
2r 1 _200 —200
I://J'dS:/ / e ca pdpdg = T A = —500 kA
0 0 MO Mo -

d) Usethevalueof H, a p = 1tocaculate f H - dL for p = 1, z = 0: Have

27 _100 —200:
%H-dL:I:/ e - ap (Dde = " A = —500 kA
0 MO0 1 2%0]
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8.42.

8.43.

Show that V2(1/R12) = —Vi(1/R12) = Ra1/R3,. First

1 -1/2
V2 (R_> =V [(xz —x1)% + (2 — y? + (z2 — 21)2]
12

_ 1 [2()62 — x1)ac + 2(y2 — yDay + 2(z2 — Zl)az] _ —Rz _Ra
2 [(2—=x0%+ (2 — y1)? + (z2 — 21)?]3/2 R}, R},

Also note that V1(1/R12) would give the same result, but of opposite sign.

Compute the vector magnetic potential within the outer conductor for the coaxial line whose vector
magnetic potential is shown in Fig. 8.20 if the outer radius of the outer conductor is 7a. Select the
proper zero reference and sketch the results on the figure: We do this by first finding B within the outer
conductor and then “uncurling” the result to find A. With —z-directed current I in the outer conductor,
the current density is

1 1
Tra? —nGa2E T 24mar™

Since current I flowsin both conductors, but in opposite directions, Ampere's circuital law inside the
outer conductor gives:

2npHy = I /2n/p L pdpdg = Hy= - 49" — p?
ThHe = 0 5a2471a2'0 P ¢_27T,0 24a2

Jout =

Now, with B = uoH, we note that V x A will have a ¢ component only, and from the direction and
symmetry of the current, we expect A to be z-directed, and to vary only with p. Therefore

dA,
VxA=-— = poH
X dp ap = 1o

and so

dA. ol [49a® — p?
dp  2np 24a2

Then by direct integration,

— ol (49) / polp pol [ p?
A, = | ——=d d C=—|—= —98In C
¢ 48 p pt 48 a? pt 96 | a2 Pt

As per Fig. 8.20, we establish a zero reference at p = 5a, enabling the evaluation of the integration
constant:

mol
=———1[25—-98In(5a
C 96n[ n(5a)]

ol [ ( p? Sa
A,=—1||l—=—-25 9B8In{ — ) [ Wb/m
= tor | (52 =) oo (51) ] wor
A plot of this continues the plot of Fig. 8.20, in which the curve goes negative at p = 5a, and then
approaches aminimum of —.09uol /7 a p = 7a, a which point the slope becomes zero.

Finally,
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8.44. By expanding Eq.(58), Sec. 8.7 in cartesian coordinates, show that (59) is correct. Eq. (58) can be
rewritten as
VZA=V(V-A) -V xVxA

We begin with
0A,  0A, 0A;

8x+8y+82

V- A=
Then the x component of V(V - A) is

3%A, 924,  9%A,
> + +
ox oxdy  9x0z

0A dA dA 0A d0A 0A
VxA= - a+ (- =)+ - )
ay 0z 0z ax ax ay

and the x component of V x V x Ais

[V(V A =

%A, %A, %A, %A
[VxVxA]= > _ L 4 <
dxdy dy? 072 020y

Then, using the underlined results

32A,  3%A, 0%A,
+ 2 + 8Z2

= V?A
9x2 ay *

[V(V-A)—V xVxA] =

Similar results will be found for the other two components, leading to

V(V-A) -V x VxA=V?A,a, + V?A,a, + V?Aa, = V2A QED
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CHAPTER 9

9.1. A point charge, Q = —0.3uCandm = 3 x 10~16 kg, ismoving through thefield E = 30a, V/m. Use
Eg. (1) and Newton’'s laws to devel op the appropriate differential equations and solve them, subject to
theinitial conditionsat t = 0: v = 3 x 10°a, m/s at the origin. At¢t = 3us, find:

a) the position P(x, y, z) of the charge: The force on the chargeis given by F = gE, and Newton's
second law becomes:

2

z
F=ma= = gE = (0.3 x 107%)(304a,)

a2
describing motion of the charge in the z direction. Theinitial velocity in x is constant, and so no
forceis applied in that direction. We integrate once:

dz qE
— =v,=—1t+C
dt om T

Theinitia velocity along z, v, (0) is zero, and so C1 = 0. Integrating a second time yields the z

coordinate:

E
z= q—t2+C2
2m

The chargelies at the origin at t = 0, and so C> = 0. Introducing the given values, we find

(0.3 x1075(30)

2 10,2
= t“=-15x10"r"m
LT Ty 3x10-16 x

Atr =3 us z = —(1.5 x 1019)(3 x 1076)2 = —.135cm. Now, considering theinitial constant
velocity in x, thechargein 3 usattainsan x coordinate of x = vr = (3x 10°)(3x 10-6) = .90 m.
Insummary, at t = 3 uswehave P(x, y, z) = (.90, 0, —.135).

b) thevelocity, v: After thefirst integration in part a, we find
_9E. 10 6y _ 4
v, = t=—Bx107)Bx10°) =-9x 10" m/s
m

Including the intial x-directed velocity, we finally obtain v = 3 x 10°a, — 9 x 10%a, m/s.

¢) thekinetic energy of the charge: Have

1 1
K.E = Em|v|2 = 5@x 10716)(1.13 x 10°)? = 1.5 x 10°°J

9.2. A point charge, Q = —0.3uCandm = 3 x 10716 kg, ismoving through the field B = 30a, mT. Make
use of EQ. (2) and Newton's laws to develop the appropriate differential equations, and solve them,
subject to the initial condition at r = 0, v = 3 x 10° m/s at the origin. Solve these equations (perhaps
with the help of an example given in Section 7.5) to evaluate at + = 3us. a) the position P (x, y, z) of
the charge; b) its velocity; ¢) and its kinetic energy:

We begin by visualizing the problem. Using F = ¢gv x B, wefind that a positive charge moving along
positive a,, would encounter the z-directed B field and be deflected into the negative y direction.
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9.2 (continued) Motion along negative y through the field would cause further deflection into the negative
x direction. We can construct the differential equations for the forcesin x andin y asfollows:

dvy
F.a, = mgax = quay X BaZ = qvaax
dvy
Fyay = mway = quyay X Baz = _qBUxay
or p 5
Ux q
a m @
nd d B
vy ¢
Fria @

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

dt2 m dt

d%v, qB dvy (qB)2

m

Therefore, v, = Asin(gBt/m) + A’ cos(qBt/m). However, at t = 0, v, = 0,and so A" = 0, leaving
vy = Asin(gBt/m). Then, using (2),

Now att = 0, v, = vyo = 3 x 10°. Therefore A = —v,o, and SO v, = vy COS(¢ Bt/m), and
vy = —vx0 SiN(g Bt/m). The positions are then found by integrating v, and v, over time:

Bt . Bt
x(1) :/vxocos<q—) dt+ C = Msm<q—> +C
m gB m

where C = 0, sincex(0) = 0. Then

. Bt Bt
y(t) = / —v,08SiN (q—) dt + D = 20 o (q—) +D
m gB m

We requirethat y(0) = 0,50 D = —(mvy,0)/(gB), andfinally y(r) = —muv,o/qgB[1 — cos(qg Bt/ m)].
Summarizing, wehave, usingg = —3x 10~/ C,m = 3x10 kg, B = 30x 1073 T,andv,g = 3x 10°
m/s.

muso (th

x(t) = S ) =-10"2sin(-3x 107’1y m
qgB m

x B _
(1) = — 10 [1 — cos(q—t)] = 1072[1 — cos(—3 x 1071)] m
qB m

Bt
V(1) = V50 cos(q—> = 3 x 10° cos(—3 x 10’r) m/s
m
. Bt .
vy (1) = —vyo SN (%) = —3x 10°sin(—3 x 10’r) m/s
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9.2 (continued) The answers are now:

a) Atr =3x10%s x=89mm, y=145mm, andz = 0.

b) Atr =3x10%s, v, = -1.3x 10°m/s, vy, = 2.7 x 10°m/s, and so

v(t = 3us) = —1.3 x 10°a, 4 2.7 x 10°a, m/s

whose magnitudeisv = 3 x 10° m/s aswould be expected.

c) Kinetic energy iskK.E. = (1/2)mv? = 1.35 pJ at al times.

9.3. A point charge for which Q0 = 2 x 10716 Cand m = 5 x 10720 kg is moving in the combined fields
E = 100a, — 200a, + 300a, V/m and B = —3a, + 2a, — a, mT. If the charge velocity at = O is
v(0) = (2a, — 3a, — 4a;) x 10° m/s.

a) give the unit vector showing the direction in which the charge is accelerating at + = 0: Use
F(t = 0) = ¢[E + (v(0) x B)], where

v(0) x B = (2a, — 3a, — 4a,)10° x (—3a, + 2a, — a,)10~3 = 1100a, + 1400a, — 500a,
So the force in newtons becomes
F(0) = (2x1071)[(100+-1100)a, +(1400—200)a, +(300—500)a,] = 4x 10~ **[6a, +6a, —a]
The unit vector that gives the acceleration direction is found from the force to be

_ 6a, +6a, —a,

aF = = .70a, + .70a, — .12a.
F m X y 4

b) find the kinetic energy of the chargeat ¢ = O:

1 1
K.E. = Em|v(0)|2 = 5(5 x 1072 kg)(5.39 x 10°m/s)® = 7.25 x 107 °J= 7.25fJ

9.4. An electron (g, = —1.60219 x 10719 C, m = 9.10956 x 103! kg) is moving at a constant velocity
v = 4.5 x 107ay m/s adong the negative y axis. At the origin it encounters the uniform magnetic field
B = 2.5a, mT, andremainsinituptoy = 2.5 cm. If we assume (with good accuracy) that the electron
remains on the y axis while it is in the magnetic field, find its x-, y-, and z-coordinate values when
y = 50 cm: The procedure isto find the electron velocity as it leaves the field, and then determine its
coordinates at the time corresponding to y = 50 cm. The force it encounters whilein thefield is

F=gv x B =(—160219 x 1071%)(4.5 x 10")(2.5 x 107 3)(a, x a;) = —1.80 x 10~ %4, N

This force will be constant during the time the electron traverses the field. It establishes a negative
x-directed velocity asit leaves the field, given by the acceleration times the transit time, #;:

m

Fi1, ( —1.80 x 104N ) (2.5 x 1072 m
Vy = — =

= —1.09 x 10’
9.10956 x 10-31kg ) \ 4.5 x 107 m/s) x 107 m/s
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9.4 (continued) The time for the electron to travel along y between 2.5 and 50 cmis

(50 — 2.5) x 1072
I5p = =
45 x 10

In that time, the electron moves to an x coordinate given by

x = vytsg = —(1.09 x 107)(1.06 x 1078) = —.115m

=106 x 10 8s

The coordinates at the time the electron reaches y = 50 cm are then:

x=-11.5cm, y =50cm, z =0

9.5. A rectangular loop of wirein free spacejoins points A(1, 0, 1) to B(3,0, 1) to C(3,0,4) to D(1, 0, 4)
to A. Thewirecarriesacurrent of 6 mA, flowing inthea, directionfrom B to C. A filamentary current
of 15 A flows along the entire z axisin the a, direction.

a) FindF onside BC:

C
Fsc 2/ Iloopdl— X BtromwireatBC
B

Thus
150

—~" a,=-18x 108, N = —18a, nN
27(3) x AR AL

4
Fgc = / (6 x 1073 dza, x
1

b) Find F onside AB: Thefield from the long wire now varies with position along the loop segment.
We include that dependence and write

15u0 45 x 103
ay =

3
Fap = / (6 x 1073 dx a, x poln3a, = 19.8a, nN
1

27 x

¢) Find Fiia on the loop: Thiswill be the vector sum of the forces on the four sides. Note that by
symmetry, the forces on sides AB and C D will be equal and opposite, and so will cancel. This
leaves the sum of forceson sides BC (part a) and DA, where

1510
27 (1)

Thetotal forceisthen Fiota = Fpa + Fpc = (54 — 18)a, = 36a, NN

4
Fpa =/ —(6x 1073 dza, x a, = 54a, NN
1

9.6 The magnetic flux density in aregion of free space is given by B = —3xa, + 5ya, — 2za, T. Find
the total force on the rectangular loop shown in Fig. 9.15if it liesin the plane z = 0 and is bounded
byx=1,x =3 y=2andy =5, adl dimensionsin cm: First, note that in the plane z = 0, the z
component of the given field is zero, so will not contribute to the force. We use

F=/ IdL x B
loop

which in our case becomes, with I = 30 A:

.03 .05
F= / 30dxa, x (—3xa, + 5y|y:.02 ay) + / 3Odyay X (=3x|x=.03 & + Syay)
.01 .02
.01 .02
—I—f 30dxa, x (—3xa, + 5yly=.05 ay) —1—/ 30dya, x (—3x|y=01 & + 5ya,)
.03 .05
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9.6. (continued) Simplifying, this becomes

.03 .05

F :/ 30(5)(.02) a, dx +/ —30(3)(.03)(—a,) dy
.01 .02
.02

.01
+ / 30(5)(.05) a, dx + / —30(3)(.01)(—a,) dy = (.060 + .081 — .150 — .027)a, N
.03 .05

= —36a, mN
9.7. Uniform current sheets are located in free space asfollows: 8a, A/maty =0, —4a, A/maty = 1,
and —4a, A/mat y = —1. Findthevector force per meter length exerted on a current filament carrying
7 mA inthe a; direction if the filament is located at:

a x =0,y =0.5 and a; = a,: Wefirst note that within the region —1 < y < 1, the magnetic
fieldsfrom the two outer sheets (carrying —4a, A /m) cancel, leaving only thefield from the center
sheet. Therefore, H = —4a, A/m(0 <y < D) andH =4a,A/m (-1 < y < 0). Outside
(y > 1and y < —1) thefields from all three sheets cancel, leavingH =0(y > 1,y < —1). So
at x =0, y = .5, theforce per meter length will be

F/m=la, x B=(7x10"%)a, x —4u0a, = —35.2a, nN/m
b) y=05z=0anda; =a,: F/m=Ia, x —4upa, = 0.
¢) x=0,y=15a =a,: Sincey = 1.5, wearein theregion in which B = 0, and so theforceis
Zero.
9.8. Filamentary currents of —25a, and 25a, A arelocated inthe x = O planein free spaceat y = —1 and
y = 1m respectively. A third filamentary current of 10~3a, A islocated at x = k, y = 0. Find the

vector force on a 1-m length of the 1-mA filament and plot |F| versus k: Thetotal B field arising from
the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian components:

2510 25110 251103
= —— > (kay+ )+ —— 5 (—kay+ ) = ———5-
271(1+k2)( v+ )+27r(1—|—k2)( y +8) 7 (1+k?)
lineat y=+1 lineat y=—1
The force on the 1m length of 1-mA lineis now
_ 251108, (25 x 1072)(4 x 1077) 10~8a 10a,
F=103(Da = a,=——>a,N= Y nN
e 1+ k2 i Ry
Problem 9.8
10 T T T T
8 -— —
~~ 6 _— o=
d
=
= 4 —
2 -
| I ]
% 2 4 6 8 10
k (m)
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9.9.

9.10.

9.11.

A current of —100a, A/m flows on the conducting cylinder p = 5 mm and +500a, A/m is present
on the conducting cylinder o = 1 mm. Find the magnitude of the total force acting to split the outer
cylinder apart along its length: The differential force acting on the outer cylinder arising from the field
of theinner cylinder isdF = Kgyer x B, where B isthe field from the inner cylinder, evaluated at the
outer cylinder location:

27 (1)(500) o

21 (5)

ThusdF = —100a; x 100uoay = 104uoap N/mZ2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of the
cylinder. We choose the “upper” half (0 < ¢ < m), and integrate the y component of dF over this
range, and over aunit length in the z direction:

ay = 100upay T

1 pm T
Fy = /O /0 10*08, - a,(5 x 10-3) dp dz = /0 5000 SiN¢ dp = 10010 = 4 x 1075 N/m

Notethat we did not include the“ self force” arising from the outer cylinder’sB field onitself. Sincethe
outer cylinder isatwo-dimensional current sheet, itsfield existsonly just outsidethe cylinder, and so no
force exists. If this cylinder possessed a finite thickness, then we would need to include its self-force,
since there would be an interior field and a volume current density that would spatially overlap.

Two infinitely-long paralle filaments each carry 50 A in the a, direction. If the filaments lie in the
planey = O at x = 0 and x = 5mm (note bad wording in problem statement in book), find the vector
force per meter length on the filament passing through the origin: The force will be

1
F=/ IdL x B
0

where IdL isthat of the filament at the origin, and B is that arising from the filament at x = 5mm
evaluated at the location of the other filament (along the z axis). We obtain

—50u0ay

1
F= | 50dza, x ——H0% _
/0 X B x 1079

= 0.10a, N/m

a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two filamentary
conductors in free space with currents Ih1a, at x = 0, y = d/2,and lba, aa x = 0,y = —d/2, is
uol1l2/(2rd): Theforceon I isgiven by

11 a dL
F2=Mo£ %—Rlzz 1 X dLo
4 R

Let z; indicate the z coordinate along 11, and z» indicate the z coordinate along I,. We then have

R12 = /(22 — z1)%2 + d? and

ar12 =
V(22 — 21)% + d?

Also, dL1 = dzia, and dLo = dzoa, The“inside” integral becomes:

f agiz xdL1 [ [(z2 —z1)8 —da)] xdzia, /oo _ddzia
RG [(z2— 202 +d?1Y5  — J_o [(z2 — z1)2 + d?]15
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9.11a (continued) The force expression now becomes

= I f |:/°O —ddz1ay J ai| I / / ddzidzza,
= _— X Z =
2= R0y —oo [(z2 — 21)% + d?]15 25| TRy oo [(z2 — z1)% + d?]15

Note that the “outside” integral is taken over aunit length of current 7. Evaluating, obtain,

ay, N/m

I1I>da 01112
Fo = 110 > (2) / “

4rd?

as expected.

b) Show how a simpler method can be used to check your result: WeusedF2 = I>dL > x B1o, where
the field from current 1 at the location of current 2 is
mol1

B = —=a
12 2dx

so over aunit length of I,, we obtain

mol1 111>

0
Fo = ha, x —a, = Ho=——
2 ZZXZHdX 'u027rd

ay, N/m
This second method isreally just thefirst over again, since we recognize the inside integral of the
first method as the Biot-Savart law, used to find the field from current 1 at the current 2 location.

9.12. A conducting current strip carrying K = 12a, A/mliesinthex = Oplanebetweeny = 0.5andy = 1.5
m. Thereisaso acurrent filament of 7 = 5A inthe a, direction on the z axis. Find the force exerted
on the:

a) filament by the current strip: We first need to find the field from the current strip at the filament
location. Consider the strip as made up of many adjacent strips of width dy, each carrying
current dfa, = Kdy. The field along the z axis from each differential strip will be dB =
[(Kdyuo)/(2ry)]a,. Thetotal B field from the strip evaluated along the z axisistherefore

1512u0a 6 15
B:f HO% 4y = 240 a, = 2.64 x 10~%a, Wh/m?
05 21wy T 0.5

1 1
F=/ I1dL xB:/ 5dza, x 2.64 x 10°%a, dz = 13.2a, uN/m
0 0 -

b) strip by thefilament: Inthiscaseweintegrate K x B over aunit lengthin z of the strip area, where
B isthe field from the filament evaluated on the strip surface:

—5uea -30
F =f K x Bda _/ / 123, x —0 gy = 0 n@)a, = —13.2a, uN/m
Area 0.5 77:y v
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9.13. A current of 6A flows from M (2, 0,5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the a, direction. Compute the vector
torque on the wire segment using:

a) anoriginat (0, 0, 5): The B field from the long wire at the short wireis B = (uol;ay)/(2nx) T.
Then the force acting on a differential length of the wire segment is

I I,1
dF = I,dL x B = Iydxa, x =oa, = 2002 gy g N
27 x 21w x
Now the differential torque about (0, 0, 5) will be
I,1 1,1
dT =Ry x dF = xa, x 2082 gy g, = —HOW= gy g
TX 2

The net torgque is now found by integrating the differential torque over the length of the wire
segment:

-4
- = o ay,=-18x10"a, N-m

5
T=/ _polwly o 3p0(6)(S0)
2

b) an origin at (0, 0, 0): Here, the only maodification isin Ry, whichisnow Ry = xa, + 5a, So
now

dT =Ry x dF = [xa, +5a,] x

I, Iy1
,U«szdva:_PLszdxay
T X 2

Everything from hereisthe sameasin part ¢, so again, T = —1.8 x 10—4ay N-m.

¢) anoriginat (3,0,0): Inthiscase, Rr = (x — 3)a, + 5a,, and the differential torqueis

I ILI(x—3
4T = [(x — Ba, + 5a,] x “Owle g — HOWECZD o
21 x
Thus
5
Ll(x—3 5
T=/ —Mowz—(x)dxay=—6.0x10_5[3—3|n<—)] a,=-15x10"5a, N-m
2 2w x 2

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 =400a, A/matz =2, andK, = 300a; A/mat y = 0infree space. Find the vector torque on the
loop, referred to an origin:

a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.
They will add together to give, in the loop plane:

Ki K
B=—puo (71 + 72) a, = —1u0(200 + 150) a, = —350p0 &, Wh/m?

With thisfield, forces will be acting only on the wire segmentsthat are parallel to the y axis. The
force on the segment nearer to the y axiswill be

F1=1IL x B=—30(3 x 10%a, x —350u0a, = —315u0a, N
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9.14a (continued) The force acting on the segment farther from the y axiswill be
Fo = IL x B =30(3 x 10 %)a, x —350u0a, = 315404, N

Thetorque about the originisnow T = R1 x F1 4+ Rz x F2, where R1 isthe vector directed from the
origin to the midpoint of the nearer y-directed segment, and R> is the vector joining the origin to the
midpoint of the farther y-directed segment. So Ri(cm) = a, + 3.5a, and Ra(cm) = 3a, + 3.5a,.
Therefore

To.0.0 = [(@ + 3.58,) x 107] x —315u0a, 4 [(3a, + 3.5a,) x 107%] x 315u0 &,
= —6.30u0a, = —7.92 x 10 %a, N—m

b) at the center of theloop: Use T = IS x B whereS= (2 x 3) x 10~%a, m?. So

T =30(6 x 10~%a,) x (—350upa,) = —7.92 x 10 %a, N—m

9.15. A solid conducting filament extendsfrom x = —b tox = b dongtheliney = 2, z = 0. Thisfilament
carries a current of 3 A in the a, direction. An infinite filament on the z axis carries 5 A in the a,
direction. Obtain an expression for the torque exerted on the finite conductor about an origin located
a (0, 2, 0): Thedifferential force on the wire segment arising from the field from the infinite wire is

Spmo . 1dpocos¢dx 15u0x dx

R — (R A— = —— Q4
2np ¥ X2+ 4 - 2n(x2+4+4)
So now the differential torque about the (0, 2, 0) originis

dF = 3dxa, x

15u0x dx _ 15p0x2 dx

dT =Ry x dF =xa, x — o0t 2_5 _ HOT T 4
T A T+ ) T 22+ )

Thetorqueisthen

b 15p0x2dx 150 x\1°
T= a, = a,|x —2tan~ (=
f_b m(x2+4) YT om Y [x (2)]_,,

= (6x 1079 [b —2tan?! (g)] a, N-m

9.16. Assumethat an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment is
ea’w/2, where o isthe electron’s angular velocity: The current magnitude will be I = 7, Where
e isthe electron charge and T isthe orbital period. Thelatter isT = 27 /w, and s0 I = ew/(27).
Now the dipole moment magnitude will bem = I A, where A isthe loop area. Thus
ew 2

_ — —,,2
m_znna 2eaa)//

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea?wB /2:
With B assumed constant over the loop area, we would have T = m x B. With B paraléel to the
loop plane, m and B are orthogonal, and so T = mB. So, using parta, T = ea’wB/2.
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9.16. (continued)
¢) by equating the Coulomb and centrifugal forces, show that w is (4w egm.a®/e?)~1/2, wherem, is
the electron mass: The force balance iswritten as

-1/2
4neomea3) /

2

e2

=mwla = a)=< //

2

4 epa e

d) Findvauesfor theangular velocity, torque, and the orbital magnetic moment for ahydrogen atom,
where a isabout 6 x 10~ m; let B = 0.5T: First

B [ (1.60 x 107192

1/2
= 3.42 x 10 rad
47(8.85 x 10-12)(9.1 x 10-31)(6 x 1011)3} x 107 rad/s

1
T = 5(3'42 x 10%6)(1.60 x 107)(0.5)(6 x 107112 = 493 x 107%* N - m

Finally,

T
m = E=9.86x10—24A.m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by ¢ B/(2m,) and adecreasein the orbital moment by e?a?B/(4m.). What are these decreases
for the hydrogen atom in parts per million for an external magnetic flux density of 0.5 T? We first write
down all forces on the electron, in which we equate its coulomb force toward the nucleus to the sum
of the centrifugal force and the force associated with the applied B field. With the field applied in the
same direction as that of the atom, this would yield a Lorentz force that is radially outward — in the
same direction as the centrifugal force.

2

F,=Feont + Fg = = mea)za + ewaB

47 ega’
QvB
With B = 0, we solve for w to find:
e2
w=wg=
4t egma3
Then with B present, we find
2 e? ewB , ewB
4megm.a Mg ne
Therefore
ewB ewB
w=wq [1— > =wo|1l-— 5
w§ime 2wgme,

But w = wg, and so
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9.17. (continued) Asfor the magnetic moment, we have

IS ew 2 1 2 . 1 2 eB 1 2 1@26123
m = = —7Ta = —wead = —eda wo — = — ea — —
o 2 2 0" om, ) T 2™ 4" m,

Finaly, fora = 6 x 1001 m, B = 0.5 T, we have

Aw eB 1 . eB 1 160x 101 x05 . o o6
o  2mew 2m,wy 2x91x103x34x106 T —

where wp = 3.4 x 1016 sec~1 isfound from Problem 16. Finally,

A 2a°B 2 B
Mol 22 % _13x10°

m 4m, wea 2m.wo

9.18. Calculate the vector torgque on the square loop shown in Fig. 9.16 about an origin at A in the field B,
given:
a) A(0,0,0) and B = 100a, mT: Thefield isuniform and so does not produce any translation of the
loop. Therefore, we may use T = IS x B about any origin, where I = 0.6 A and S = 16a, m?.
Wefind T = 0.6(16)a, x 0.100a, = —0.96a, N—m.

b) A(0, 0, 0) and B = 200a, + 100a, mT: Using the same reasoning asin part a, we find

T =0.6(16)a, x (0.200a, + 0.100a,) = —0.96a, + 1.92a, N—m

c) A(1,2,3) andB = 200a, + 100a, — 300a, mT: We observe two things here: 1) Thefieldisagain
uniform and so again the torque isindependent of the origin chosen, and 2) Thefield differs from
that of part b only by the addition of az component. With Sinthe z direction, this new component
of B will produce no torque, so theanswer isthesameaspartb, or T = —0.96a, + 1.92a, N—m.

d) A(1,2,3) and B = 200a, + 100a, — 300a, mT for x > 2 and B = O elsewhere: Now, force
is acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential wire
segment at location (2,y) isdT = R(y) x dF, where

dF =1dL x B =0.6dya, x [0.2a, 4+ 0.1a, — 0.3a;] =[-0.18a, — 0.12a;] dy
andR(y) =(2,y,00 - (1,2,3) = a, + (y — 2)a, — 3a,. Wethusfind

dT =R(y) x dF = [a; + (y — 2)ay — 3a;] x [-0.18a, — 0.12a.] dy
= [-0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a.] dy

The net torque is now

2
T= / [-0.12(y — 2)a, + 0.66a, + 0.18(y — 2)a,] dy = 0.96a, + 2.64a, — 1.44a, N—m
-2
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9.19. Given amateria for which x,, = 3.1 and within which B = 0.4ya, T, find:
a) H: WeuseB = uo(1+ xm)H, or

0.4ya,

= ——F——— =77.6ya, KA/m
(1+3Dpuo #

b) u=(1+31)uo=515x 10" H/m.
0 nr=(1+31) =41
d) M = x,H = (3.1)(77.6ya,) = 241ya, KA/m

€ J=V xH = (dH.)/(dy)a, = 77.6a, kA/m?.
f) J, =V xM = (dM,)/(dy) a, = 241a, KA/mZ.
g) Jr =V x B/uo = 318a, kA/m?.

9.20. Find H in amaterial where:
a ug = 4.2, thereare 2.7 x 10%° atoms'm?, and each atom has a dipole moment of 2.6 x 10~¥ a,
A -m?. Sinceall dipolesareidentical, we may writeM = Nm = (2.7 x 10%)(2.6 x 10~%a,) =
0.70a, A/m. Then
H— M _ 0.70a,
ur—1 421

=0.22a, A/m

b) M = 270a, A/mand i = 2 uH/m: Have ugr = u/po = (2 x 1076) /(47 x 10~7) = 1.59.
ThenH = 270a,/(1.59 — 1) = 456a, A/m.
C) xm =07andB =2a, T: Use
B B B 2a,
o4 xn)  (Am x 10-7)(1.7)

— 9363, KA/m

d) Find M in amaterial where bound surface current densities of 12a, A/m and —9a, A/m exist at
p =0.3mand p = 0.4 m, respectively: Weuse § M - dL = I, where, since currents are in the
z direction and are symmetric about the z axis, we chose the path integrals to be circular loops
centered on and normal to z. From the symmetry, M will be ¢-directed and will vary only with
radius. Note first that for o < 0.3 m, no bound current will be enclosed by a path integral, so we
conclude that M = Ofor p < 0.3m. At radii between the currents the path integral will enclose
only theinner current so,

3.6
%M -dL =2npMy =27(0.3)12 = M = —as A/m (0.3 < p < 0.4m)
0

Finally, for p > 0.4 m, thetotal enclosed bound currentisy ;,; = 27(0.3)(12) —27(0.4)(9) = 0,
so thereforeM = 0 (p > 0.4m).

9.21. Find the magnitude of the magnetization in amaterial for which:
a) the magnetic flux density is 0.02 Wb/m? and the magnetic susceptibility is 0.003 (note that this
latter quantity is missing in the origina problem statement): From B = uo(H + M) and from
M = x,,H, wewrite

B ( 1 >—1 B 0.02
mo \ Xm no(334)  (4m x 10~7)(334)

= 47.7A/m
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9.21b) themagneticfieldintensity is1200A/mand therelative permeability is1.005: FromB = uo(H+M) =
o grH, wewrite

M = (ug — 1)H = (.005)(1200) = 6.0 A/m

c) thereare 7.2 x 10%® atoms per cubic meter, each having a dipole moment of 4 x 10730 A . m?in
the same direction, and the magnetic susceptibility is0.0003: With al dipolesidentical the dipole
moment density becomes

M=nm= (7.2 x 10%)(4 x 107%°) = 0.288 A/m

9.22. Three current sheets are located asfollows: 160a, A/mat x = 1cm, —40a, A/m at x = 5cm, and 50a,
A/matx = 8cm. Let u = poforx < Iemandx > 8cm; for 1 < x < 5cm, u = 3uo, and for
5 < x < 8cm, u = 2ug. Find B everywhere: We know that the H field from an infinite current sheet
will be given in magnitude by H = K /2, and will be directed parallel to the sheet and perpendicular
to the current, with the directions on either side of the sheet determined by the right hand rule. With
thisin mind, we can construct the following expressions for the B field in al four regions:

1
B(x < 1) = 5/10(~160+ 40 — 50) = ~1.07 x 107%a, T

1
Bl<x<b) = E(S,uo)(lGO + 40— 50) = 2.83 x 10~* a, T

1
B(5 < x < 8) = 5(210)(160 — 40 — 50) = 8.80 x 10%a, T

1
B(x > 8) = >/10(160 — 40+ 50) = 1.07 x 10%a, T

9.23. Calculate values for Hy, By, and My a p = c for acoaxial cable witha = 25 mmand b = 6 mm
if it carries current I = 12 A in the center conductor, and © = 3 uH/m for 25 < p < 3.5 mm,
uw=5uH/mfor35< p <45mm,and x = 10 uH/mfor 4.5 < p < 6 mm. Compute for:

a) ¢ = 3mm: Have
I 12

2mp  27(3 x 10-3)
Then By = nHy = (3 x 107%)(637) = 1.91 x 1073 Wh/m?.

b) ¢ = 4 mm: Have

Hy = =637 A/m

I 12
2np  27(4 x 10-3)
Then By = nHy = (5 x 107%)(478) = 2.39 x 10~3 Wh/m?.
Finaly, My = (1/110) By — Hp = 1.42 x 103 A/m.

Hy = =478 A/m

¢) ¢ = 5mm: Have
I 12

2mp  27(5 x 10-3)
Then By = nHy = (10 x 107°)(382) = 3.82 x 10~3 Wb/m?.
Finaly, My = (1/110) By — Hp = 2.66 x 103 A/m.

Hy = = 382A/m
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9.24. A coaxial transmission linehasa = 5 mm and » = 20 mm. Let its center lie on the z axis and let
adc current I flow in the a, direction in the center conductor. The volume between the conductors
containsamagnetic materia for which uz = 2.5, aswell asair. FindH, B, and M everywhere between
conductorsif Hy = 600/7 A/mat p = 10 mm, ¢ = 7/2, and the magnetic material islocated where:

a) a < p < 3a; First, weknow that Hy = 1/2mp, from which we construct:

1 600

— = — I =12A
27(1072) T =

Since the interface between the two medialiesin the a, direction, we use the boundary condition
of continuity of tangential H and write

12 6

In the magnetic material, we find

_ (25 (4r x 1077)(12)
- 2 p

B(5 < p < 15) = uH ay = (6/p)ay uT

Then, inthe free space region, B(15 < p < 20) = uoH = (2.4/p)ag nT.

b) 0 < ¢ <m;, Agan, wearegivenH = 600/7 ay A/mat p = 10 and at ¢ = /2. Now, since
the interface between medialiesin the a, direction, and noting that magnetic field will be normal
to this (a, directed), we use the boundary condition of continuity of B normal to an interface,
andwriteB(0 < ¢ < ) =By =B(r < ¢ < 27) = By, or 25ugH1 = uoH2. Now, using
Ampere'scircuital law, we write

?f H.dL =npH1+npHo =35mpH, =1

Using the given value for Hy a p = 10 mm, I = 3.5(600/x)(r x 10~2) = 21 A. Therefore,
Hy = 21/(3.5mp) = 6/(mwp), or HO < ¢ < m) = 6/(wp)ag A/m. Then H, = 2.5H, or
H(m < ¢ <2m) =15/(mp)ag A/m. Now B(0 < ¢ < 2m) = 2.5u0(6/(rp))ay = 6/pay uT.
Now, ingeneral,M = (ug—1)H,andsoM (0 < ¢ < ) = (2.5-1)6/(wp)ay = 9/(wp)as A/m
andM(z < ¢ < 2m) =0.

9.25. A conducting filament at z = O carries 12 A inthe a, direction. Let ug = 1for p < 1cm, ugp = 6 for
l<p<2cmyand ug =1for p > 2cm. Find
a) H everywhere: Thisresult will depend on the current and not the materials, and is:

1 191
H:_%:TA/m O < p <o)

b) B everywhere: Weuse B = uruoH tofind:
B(p < 1cm) = (Duo(L.91/p) = (24 x 1078/p)ay T
B(1<p <2cm) = (6)uo(1.91/p) = (L4 x 107°/p)ay T
B(p > 2cm) = (Duo(L.91/p) = (2.4 x 1078/p)ay T where p isin meters.

155



9.26. Point P(2, 3, 1) liesontheplanar boundary boundary separating region 1 fromregion 2. Theunit vector
ay12 = 0.6a, +0.48a, +-0.64a, isdirected fromregion1toregion2. Let g1 = 2, ug2 = 8,andHy =
100a, — 300a, + 200a, A/m. Find Hy: First By = 200u0a, — 600u0a, 4 40010a;. Then its normal
component at the boundary will be By = (B1-ay12)ayiz = (52.8a, +42.24a, +56.32a,) 10 = Boy .
ThenHay = Ban/(8ro) = 6.60a, +5.28a, 4 7.04a;, and Hiy = Bin /210 = 26.40a, +21.12a, +
28.16a,. Now Hir = H1 — Hyy = (100a, — 300a, + 200a,) — (26.40a, + 21.12a, + 28.16a;) =
73.60a, — 321.12a, + 171.84a; = Hor.

Finaly, Ho = Hoy 4+ Hor = 80.2a, — 315.8a, 4 178.9a, A/m.

9.27. Letugy = 2inregionl, definedby 2x+3y—4z > 1, whileugs = 5inregion2where2x+3y—4z < 1.
Inregion 1, H; = 50a, — 30a, + 20a, A/m. Find:
a) Hy1 (normal component of H4 at the boundary): We first need aunit vector normal to the surface,
found through

V(2x+3y—4z) 2ac+3a —4a; 37a. 1 56a. — 74a
= .37a, + .56a, — .74a,

anv = =
N7V @x + 3y —42)) 29

Since this vector is found through the gradient, it will point in the direction of increasing values
of 2x 4+ 3y — 4z, and so will be directed into region 1. Thus we write ay = ay21. The normal
component of H1 will now be;

Hy1 = (H1-ay21)ay21
= [(50a, — 30a, + 20a;) - (.37a, + .56a, — .74a,)] (.37a, + .56a, — .74a;)
= —4.83a, — 7.24a, + 9.66a, A/m

b) Hr1 (tangential component of H4 at the boundary):

Hri=Hi—Hn:
= (50a, — 30a, + 20a,) — (—4.83a, — 7.24a, + 9.66a,)
= 54.83a, — 22.76a, + 10.34a, A/m

¢) Hpo (tangential component of H» at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

H7o = Hyq = 54.83a, — 22.76a, + 10.34a. A/m

d) Hy2 (normal component of H» at the boundary): Since normal components of B are continuous
across a boundary between media of different permeabilities, we write u1Hy1 = u2Hpy2 or

2
Hyo = 281y = = (—4.83a, —7.24, +9.66a;) = —1.93a, — 2.90a, + 3.86a; A/m

UR2

€) 61, the angle between Hy and ay21: Thiswill be

50a, — 30a, + 20a,
(502 + 302 + 20%)1/2

H
COSHL = —= . Ay = [ ] . (.37a, + .56a, — .74a;) = —0.21

IH1l

Therefore 91 = cos 1(—.21) = 102°.
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9.27f) 02, the angle between Hy and ay»1: First,

9.28.

Hz = Hro + Hy2 = (54.83a, — 22.76a, + 10.34a,) + (—1.93a, — 2.90a, + 3.86a;)
= 52.90a, — 25.66a, + 14.20a, A/m

Now

H>
COSHr = —— - ay21 =

[52.90ax — 25.66a, + 14.20a,
[H2|

60.49 ] - (.37a, + .56ay — .74a,) = —0.09

Therefore o = cos 1(—.09) = 95°.

For values of B below the knee on the magnetization curve for silicon steel, approximate the curve by
astraight line with » = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm? and lengths of 10
cm in each outer leg, and an area of 2.5 cm? and alength of 3 cm in the central leg. A coil of 1200
turns carrying 12 mA is placed around the central leg. Find B in the:

a) center leg: Weuse mmf = ® R, where, in the centra leg,

L; 3x 1072
Ro=—" = - =24 x 10*H
wAi, (5% 1073)(2.5 x 107%)
In each outer leg, the reluctanceis
Loy 10 10_2
R, ’ . — 1.25 x 105 H

T UAgn  (5Bx 10-3)(1.6 x 104

The magnetic circuit isformed by the center leg in serieswith the parallel combination of the two
outer legs. The total reluctance seen at the coil locationis Ry = R. + (1/2)R, = 8.65 x 10* H.

We now have
mmf 14.4

Rr 865 x 10
The flux density in the center leg is now

&= = 1.66 x 1074 Wb

_®  166x1071

= = e = 0666T

b) center leg, if a0.3-mm air gap is present in the center leg: The air gap reluctance adds to the total
reluctance already calculated, where

0.3x 1073

—955x 10° H
(47 x 10-7)(25 x 104 .

Rair =

Now the total reluctance is R,;.; = R7 + Ryir = 8.56 x 10% + 9.55 x 10° = 1.04 x 106. The
flux in the center leg is now

14.4
=" _—138x10°Wb
1.04 x 106 %
and 5
1.38 x 10~
= _—553mT
2.5 x 104
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9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using thisvalue of B and the magnetization curvefor silicon steel,
what current is required in the 1200-turn coil? With B = 0.666 T, weread H;, = 120 A - t/min Fig.
9.11. Theflux in the center legis ® = 0.666(2.5 x 10~%) = 1.66 x 10~* Wh. Thisdividesequally in
the two outer legs, so that the flux density in each outer leg is

1\ 1.66 x 10~4
Boy=|2) """ —052Wb/m?
o (2) 16x 104 /m

Using Fig. 9.11 with thisresult, we find H,,;, = 90 A - t/m We now use
?gH -dL =NI

to find

(120)(3 x 1072) + (90)(10 x 1072)
1200

1
I = N (HinLin + Hour Lour) = =10.5mA

9.30. A toroidal core has acircular cross section of 4 cm? area. The mean radius of the toroid is 6 cm. The
core is composed of two semi-circular segments, one of silicon steel and the other of alinear materia
with ug = 200. Thereisadmm air gap at each of thetwo joints, and the coreiswrapped by a4000-turn
coil carrying adc current 1.

a) Find I if the flux density inthe coreis 1.2 T: | will use the reluctance method here. Reluctances
of the steel and linear materials are respectively,

7(6 x 1072) 5,1
R, = — 157 x 10°H
"= B0x 10 3@ x 109 x
6 x 1072
R (6 x 1079 — 188 x 10°H!

~ (200)(47 x 10-7)(4 x 10-4)

wherep, isfoundfromFig. 9.11,using B = 1.2, fromwhich H = 400,andso B/H = 3.0mH/m.
The reluctance of each gap is now

0.4 x 103

R, = =79 x 10°H !
¢ = 4r x 10-7)(4 x 10-4) .

We now construct
NI = ®R =12(4x 1074 [Ry + R, + 2R,] = 1.74 x 10

Thus I1 = (1.74 x 10%)/4000 = 435 mA.
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9.30b. Find the flux density in the coreif 71 = 0.3 A: We are not sure what to use for the permittivity of steel
in this case, so we use the iterative approach. Sincethe current is down from the value obtained in part
a,wecantry B = 1.0 T and see what happens. From Fig. 9.11, we find H = 200 A/m. Then, in the
linear material, 10

= =3.98x 10° A
20047 x 10-7) x 107A/m

H

and in each gap,
1.0

Hy= ————
87 4r x 107
Now Ampere'scircuital law around the toroid becomes

=7.96 x 10° A/m

NIy = 7(.06)(200 + 3.98 x 10%) + 2(7.96 x 10°)(4 x 10~%) = 1.42 x 103 A—t

Then I; = (1.42 x 10%)/4000 = .356 A. This is till larger than the given value of .3A, so we can
extrapolate down to find a better value for B:

=0.86T

.356 — .300
B=10-(12-10) [ }

435 — .356

Using this value in the procedure above to evaluate Ampere's circuital law leads to a value of I of
0.306 A. Theresult of 0.86 T for B is probably good enough for this problem, considering the limited
resolution of Fig. 9.11.

9.31. A toroid is constructed of amagnetic material having a cross-sectional areaof 2.5 cm? and an effective
length of 8 cm. Thereisalso ashort air gap 0.25 mm length and an effective area of 2.8 cm2. An mmf
of 200 A - t is applied to the magnetic circuit. Calculate the total flux in the toroid if:

a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,
R, =1/(nA), iszero, leaving only the gap reluctance. Thisis

d 0.25 x 1073
Rg = = . =71x10°H
poAg  (4m x 1077)(2.5 x 10~4)
Now 200
o= " _ - =2.8x 10 Wb
. 71x 106 ————

b) the magnetic material is assumed to be linear with ux = 1000: Now the core reluctance is no
longer zero, but

8x 102
R, = —26x 10°H
¢ = (1000) (47 x 10-7)(2.5 x 10-%) x
The flux isthen 00
mimf — 2.1 x 104 Wb

CI): =
R+ R, 9.7 x10°

¢) the magnetic material issilicon steel: In this case we use the magnetization curve, Fig. 9.11, and
employ an iterative process to arrive at the final answer. We can begin with the value of ® found
in part a, assuming infinite permeability: ®@ = 2.8 x 10~* Whb. The flux density in the core
isthen BV = (2.8 x 104)/(2.5 x 104) = 1.1 Wb/m2. From Fig. 9.11, this corresponds to

159



magnetic field strength Hc(l) = 270 A/m. We check this by applying Ampere'scircuita law to the
magnetic circuit:

f H-dL=HPL.+H d

where HV L, = (270)(8x 1072) = 22, andwhere H{’d = &M, = (2.8x 1074)(7.1x 10°) =
199. But we require that

¢H~dL=200A-t

whereas the actual result in thisfirst calculation is 199 4+ 22 = 221, which istoo high. So, for a
second trial, we reduce B to B?) = 1 Wb/m2. Thisyields H® = 200 A/m from Fig. 9.11, and
thus @@ = 2.5 x 107* Wb. Now

f H.dL=HPL,+ @R, =200(8 x 1072) + (2.5 x 10~%)(7.1 x 10°) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 x 10~4 Wh.
| will leave the answer at that, considering the lack of fineresolutionin Fig. 9.11.

9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:

a)

b)

d)

€)

H1 = —600a, A/m: First we find the energy density:
_1 R 7 2 _ 3
Wyl = 251 -Hq1 = 2M0H1 = 2(47'[ x 107 )(600)° = 0.226 J/m

The energy within the sphereis then
4 3 4 -6
W1 = w1 374)= 0.226 3" * 10 = 0.947 ud
H> = 600a, + 1200a, A/m: In this case the energy density is

1 5
w2 = S0 [ (600)2 + (1200)2] = 2 uo(600)?

or five times the energy density that was found in part a. Therefore, the stored energy in thisfield
isfive timesthe amount in part a, or W,,,2 = 4.74 nJ.

H3z = —600a, + 1200a,. Thisfield differsfrom H only by the negative x component, whichisa
non-issue since the component is squared when finding the energy density. Therefore, the stored
energy will be the same asthat in part b, or W,,,3 = 4.74 pJ.

Hs = Hz + Hs, or 2400a, A/m: The energy density is now wy,4 = (1/2)10(2400)? =
(1/2)1t0(16)(600)% J/m3, which is sixteen times the energy density in part . The stored en-
ergy istherefore sixteen times that result, or W,,,4 = 16(0.947) = 15.2 uJ.

1000a, A/m+0.001a, T: Theenergy density iSw,,5 = (1/2)110[1000+4.001/0]? = 2.03J/m?.
Then W,,,5 = 2.03[(4/3) x 10~°] = 8.49 pJ.
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9.33. A toroidal core has asquare cross section, 2.5¢cm < p < 3.5¢cm, —0.5cm < z < 0.5 cm. The upper
half of thetoroid, 0 < z < 0.5 cm, is constructed of a linear material for which uz = 10, while the
lower half, —0.5cm < z < 0, has ug = 20. Anmmf of 150 A - t establishesaflux inthe ay direction.
For z > 0O, find:

a) Hy(p): Ampere’scircuital law gives:

150
2npHy = NI =150 = Hy = % =23.9/p A/m

b) By(p): Weuse By = puruoHy = (10)(4r x 1077)(23.9/p) = 3.0 x 10~4/p Wh/m?.
C) ®,.0: Thiswill be

005 .035 3 10—4 035
Z>o_//B dS = / f 2EX T dpdz = (.005)(3.0 x 10~ )|n(025)
025

=5.0x10"" Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hy = 23.9/p A/m. Next, B, is modified only by the
new permesbility, which is twice the value used in part a: Thus By = 6.0 x 1074/p Wh/m?.
Finally, since By, is twice that of part a, the flux will be increased by the same factor, since the
area of integration for z < O isthe same. Thus ®,_¢ = 1.0 x 10~ Wh.

€) Find ®yg: This will be the sum of the values found for z < Oand z > 0, or Qg =
1.5 x 10~ Wh.

9.34. Threeplanar current sheetsarelocated in free space asfollows: —100a, A/m?atz = —1, 200a, A/m?
az=0 —100a, A/m?atz =1 Letwy = (1/2)B-H J/m?, and find wy for al z: Using the fact
that the field on either side of a current sheet is given in magnitudeby H = K /2, wefind, in A/m:

H(z > 1) = (1/2)(—200 + 100 + 100)a, = 0

H(O < z < 1) = (1/2)(—200 — 100 + 100)a, = —100a,
H(—1 < z < 0) = (1/2)(200 — 100 + 100)a, = 100a,

and
H(z < —1) = (1/2)(200 — 100 — 100)a, = 0

The energy densities are then
w(z>1) =wy(z<-1)=0

w0 <z <1) =wy(—1<z<0) = (1/2)uo(100)? = 6.28 mJ/m?

161



9.35. Theconesd = 21° and § = 159° are conducting surfaces and carry total currents of 40 A, as shownin
Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.

a) Find H intheregion 0 < r < 0.25,21° < 0 < 159°, 0 < ¢ < 27: We can apply Ampere's
circuital law and take advantage of symmetry. We expect to seeH inthe a, direction and it would
be constant at agiven distance from the z axis. Wethus perform thelineintegral of H over acircle,
centered on the z axis, and parallel to the xy plane:

2
fH-dL= H¢a¢'r§nea¢d¢=lencl.=4OA
0

Assuming that Hy is constant over the integration path, we take it outside the integral and solve:

40 20
Hy=——7— = H= —3ap A/m

2nrsing wr Siné

b) How much energy is stored in this region? Thiswill be

27 p159° (.25 20010 . 10010 159° do
WH:/ M0H¢—/ /2 / 22520 r Sﬂ@drd@dqﬁz - /210 sno

_ 100uo [tan(159/2)
N tan(21,/2)

] =1.35x107%J
b4 -

9.36. A filament carrying current I in the a, direction lies on the z axis, and cylindrical current sheets of 5a,
A/mand —2a, A/m arelocated at p = 3 and p = 10, respectively.

a) Find 7 if H =0for p > 10. Ampere'scircuital law says, for p > 10:
2npH =27(3)(5) —27(10)(2) +1 =0
fromwhich I = 27 (10)(3) — 27 (3)(5) = 107 A.
b) Usingthisvalueof I, calculateH for al p, 3 < p < 10: Again, using Ampere'scircuital law, we

find
1 20

¢) Calculateand plot Wy versus pg, where Wy isthetotal energy stored withinthevolumeO < z < 1,
0< ¢ < 2n,3< p < po: Firsttheenergy density will bewy = (1/2)uoH?2 = 2000/ p2 I/md.
Then the energy is

1 p2m prpo 20010 £0 _ £0
Wi :/0 / /3 = pdpdg dz = 400muoln () = (158 x 107 () 3
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9.36¢. (continued) A plot of the energy as afunction of pg is shown below.

1.5 —

Energy x 1000
|

05 —

radius (m)

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18. The

9.38.

inductance is that offered at the origin between the vertices of the cone: From Problem 9.35, the
magnetic flux density is By = 20uo/(rr sinf). We integrate this over the crossectional area defined
by 0 <r <0.25and 21° < 0 < 159°, to find the total flux:

15" 025 20, Suro,  [tan(159/2) 5M0
—— rdrdf = In
210 nrsing tan(21/2)

(3.37) = 6.74 x 1075 Wb

Now L = ®/I = 6.74 x 107%/40 = 0.17 puH.
Second method: Use the energy computation of Problem 9.35, and write

2Wy 2(1 35 x 1074
12 (40)2

L= = 0.17 uH

A toroidal core has arectangular cross section defined by the surfacesp = 2cm, p = 3cm, z = 4cm,
and z = 4.5 cm. The core materia has a relative permeability of 80. If the core is wound with a coil
containing 8000 turns of wire, find itsinductance: First we apply Ampere's circuital law to a circular
loop of radius p in theinterior of the toroid, and in the a direction.

NI

%H dL-27'L’,OH¢-NI = H¢—2
9

Theflux in thetoroid is then the integral over the cross section of B:

I /.
/fB dL_/ / “R“ON dp dz _(005)—“R“°N in( %
02 2 .02

The flux linkage is then given by N ®, and the inductanceis

N®  (.005)(80)(4r x 10~ 7)(8000)

L = =
1 2

In(1.5) = 2.08H
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9.39. Conducting planesinair at z = 0 and z = d carry surface currents of +Kpa, A/m.
a) Findtheenergy storedinthemagneticfield per unitlength (0 < x < 1) inawidthw (0 < y < w):
First, assuming current flows in the +a, direction in the sheet at z = d, and in —a, in the sheet
at z = 0, wefind that both currents together yield H = Kopa, for 0 < z < d and zero elsewhere.
The stored energy within the specified volume will be:

1 5 Y e 1 2
Wy = | zuoHdv = —noKgdxdydz = —wduoKg J/m
v 2 o Jo Jo 2 2 - -

b) Calculate the inductance per unit length of this transmission line from Wy = (1/2)L12, where I
isthetotal current in awidth w in either conductor: We have I = wKjg, and so

2 wd 2 2 dw

¢) Calculate the total flux passing through therectangle0 < x < 1,0 < z < d, intheplaney = 0,
and from this result again find the inductance per unit length:

d r1 d pl
= / f noHay -a,dxdz = / / woKodx dy = uodKo
o Jo o Jo

(o} dK d
=2 Hodfo pod
1 wKo w

Then

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air for
O0<¢ <m/2and < ¢ < 3r/2, and a non-conducting material having ug = 8forz/2 < ¢ < n
and 37/2 < ¢ < 2m. Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous (and
constant at constant radius) around a circular loop centered on the z axis. Ampere's circuital law can
thus be written in this form:

o= 2 () s (o) (30 e (5) = En =

and so

_ URrpol
wp(l+ ur)
The flux in the line per meter length in z is now

_ MRpol mrpol
_PREOT gpdz = BP0 ns)
/ /001 o1+ ur) 71+ ur)

And the inductance per unit length is:

_®_ memo o 84T x1070) o
L= TS In(5) = <O In(5) =572nH/m
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9.41. A rectangular coil iscomposed of 150 turns of afilamentary conductor. Find the mutual inductancein
free space between this coil and an infinite straight filament on the z axisif the four corners of the coil
arelocated at

a (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil liesin the yz plane. If we assume that
the filament current isin the +-a, direction, then the B field from the filament penetrates the cail
in the —a, direction (normal to the loop plane). The flux through the loop will thus be

_ I
// pol (ax)dydz_‘;ilns

The mutual inductance is then

NO® 150
M=—1= =

In3 =33 H

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the cail liesin the x = 1 plane, and the field from the
filament penetrates in a direction that is not normal to the plane of the coil. We write the B field
from the filament at the coil location as

wolag

2/ y2 4+ 1

B =

The flux through the coil is how

1 Isin
// _ Mol (= ax)a’de—// Mol >TP ¢ dydz
2 y +1 21 y +1

_ poly _ ol - -
/ / 27(y2 + 1) dydz =" 271 In(y +1)(1—(1.6><10 )i

The mutual inductance is then

N
M=—= (150)(1.6 x 10~7) = 24 uH

9.42. Find the mutual inductance of this conductor system in free space:

a) the solenoid of Fig. 8.11b and a square filamentary loop of side length b coaxially centered
inside the solenoid, if @ > b/+/2; With the given side length, the loop lies entirely inside the
solenoid, and so islinked over its entire cross section by the solenoid field. The latter is given by
B = noN1/d a, T. Theflux through the loop areaisnow & = Bb?, and the mutual inductanceis
M = ®/I = ugNb?/d H.

b) acylindrical conducting shell of aradius a, axis on the z axis, and afilamentat x = 0, y = d,
and where d > a (omitted from problem statement); The B field from the cylinder is B =
(nol)/(2mp) ay for p > a, and so the flux per unit length between cylinder and wireis

/f“—old dz = 1ol (g>Wb
2 a

Finally the mutual inductanceis M = ®/1 = uo/2r In(d/a) H.
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9.43.

b)

a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire of
radius a carrying a uniformly-distributed current I is wo/(87) H/m. We first find the magnetic field
inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2
P

21 a?

2 2.2
20 12
WH_/ ,uoH(pdv_// /“024pd dé dz —%J/m

Now, with Wy = (1/2)L12, wefind L;,; = po/(87) as expected.

Find the internal inductance if the portion of the conductor for which p < ¢ < a isremoved: The
hollowed-out conductor still carries current 7, so Ampere’s circuital law now reads:

2_ 2 2_ 2
T (pc —c°) I | pc—c
2npHy = ——5——>- = Hy = 20 [m] A/m

and the energy is now
1 2 2 2 2 2 B 4
pol®(p? — ¢2) pol / 3 , C
Wi = dpdgpdz = —F0 22,4 Sy
! ‘/0 fo '/C 8 pZ(a 2)2 pdpdgdz 47'[(&2 —02)2 c P co P p

2 1
= W |:Z(a4 — = 2@® - +c*n <%)} J/m

Theinternal inductanceisthen

2W 4 44%¢% + 3¢* + 4¢*In
L, = 2WH _ 1o [a ¢+ 3¢ + (a/c)] H/m

12~ 81 (a2 — c2)2
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CHAPTER 10

10.1.

10.2.

10.3.

InFig. 10.4,let B = 0.2co0s120x¢ T, and assume that the conductor joining the two ends of the resistor
is perfect. It may be assumed that the magnetic field produced by 1 (r) isnegligible. Find:
a) Vuu(1): Since B isconstant over theloop area, thefluxis® = 7(0.15)%B = 1.41x 10~2 cos1205¢
Wh. Now, emf = Vpa(t) = —d®/dt = (1207)(1.41 x 1072)sin120xs. Then Vo (t) =
—Vpa(t) = —5.33s5n 1207t V.

b) 1(¢t) = Vp,(t)/R =5.33sin(1207¢)/250 = 21.3sin(1207¢1) mA

Given the time-varying magnetic field, B = (0.5a, + 0.6a, — 0.3a;) cos5000¢ T, and a square fila-
mentary loop with its corners at (2,3,0), (2,-3,0), (-2,3,0), and (-2,-3,0), find the time-varying current
flowing in the general a4 direction if the total loop resistance is 400 k2: We write

d d
emf = ?gE dl = —— = —— // B-a;,da = —(0.3)(4)(6) cos5000¢
dt loop area dt

wheretheloop normal ischosen as positive a,, so that the path integral for E istaken around the positive
ay direction. Taking the derivative, we find

emf  —36000sin5000¢

= = —90sin 5000 mA
R 400 x 103

emf = —7.2(5000) sin5000¢ sothat I =

Given H = 300a, cos(3 x 108 — y) A/m in free space, find the emf developed in the general ay
direction about the closed path having corners at
a (0,0,0), (1,0,0), (1,1,0), and (0,1,0): The magnetic flux will be:

= /0 ’ /O 1300M0 cos(3 x 108 — y) dx dy = 30010 Sin(3 x 10%r — y)[3
— 30010 [si n(3 x 10% — 1) — sin(3 x 108r)] Wb
Then
emf = — 9% — 30003 x 1084 x 10°7) [cos(3 x 108 — 1) — cos(3 x 1081‘)]

dt
— 113 x 10° [cos(s x 108 — 1) — cos(3 x 1081‘)] Vv

b) cornersat (0,0,0), (27,0,0), (27,27,0), (0,27,0): Inthiscase, theflux is
® = 27 x 300uosin(3 x 108 — y)|2" =0

The emf istherefore 0.
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10.4. Conductor surfaces are located at p = 1cmand p = 2cmin free space. Thevolumelcm < p < 2cm
containsthefields Hy = (2/p) cos(6 x 108t —2mz) Almand E,, = (2407 /p) cos(6 x 1087t — 27 7)
V/im.
a) Show that these two fields satisfy Eq. (6), Sec. 10.1: Have

OF 27 (240 48072
VxE= 8”a¢ 7 CA07) in(6 x 1081 — 2mz)ay = ——— sin(6 x 10°%71 — 27z2)a,
Z
Then
0B 2up(6 x 1087 .
_Ezusn(leosm—an)a(p
p

87 x 107 7)(6 x 108 48072
_ B x10DC X007 46 x 10871 — 272) = 20OF
p

sin(6 x 10871 — 27z) ay

b) Evaluate both integrals in Eq. (4) for the planar surface defined by ¢ = 0, 1cm < p < 2cm,
0 < z < 0.1m (note misprint in problem statement), and its perimeter, and show that the same
results are obtained: we take the normal to the surface as positive a4, so the the loop surrounding
the surface (by the right hand rule) isin the negative a,, direction at z = 0, and is in the positive
a, direction at z = 0.1. Taking the left hand side first, we find

01 240
fE-dL:/ T cos(6 x 10871) a, - &, dp
.02 P

.02 240
+ / T cos(6 x 10871 — 27(0.1)) a, -a,dp
.01 1%

1 2
= 2407 cos(6 x 1087¢t) In (E) + 2407 cos(6 x 1087t — 0.27) In (1)
— 240(In2) [cos(e % 10871 — 0.27) — cos(6 x 108m)]

Now for the right hand side. First,

0.1 p.02 —
8r x 10~/
/B dS= f / T — —c0s(6 x 10871 — 2wz) 8y - ag dp dz
01

= / (87 x 1077) In2 cos(6 x 1087t — 2n7) dz
0
= —4x107 In2 [sin(6 x 10871 — 0.27) — sin(6 x 108m)]
Then
d
- / B.dS = 2407(In2) [cos(s « 10871 — 0.277) — cos(6 x 108m)] (check)
10.5. Thelocation of the sliding bar in Fig. 10.5isgiven by x = 5¢ + 22, and the separation of the two rails

is20 cm. Let B = 0.8x2a, T. Find the voltmeter reading at:
a) t = 0.4 s: Theflux through the loop will be

02 0.16 0.16
/ /08(x) dx dy_—x3_—(5t—|—2t3)3Wb
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Then

do

emf = - = 0‘—;6(3)(5t+213)2(5+ 6:%) = —(0.16)[5(.4) + 2(.4)%]°[5+6(.4)%] = —4.32V

b) x = 0.6 m: Have 0.6 = 5¢ + 2¢3, from which wefind r = 0.1193. Thus

emf = —(0.16)[5(.1193) + 2(.1193)%?[5 + 6(.1193)?] = —.293 V

10.6. A perfectly conducting filament containing asmall 500-<2 resistor isformed into asquare, asillustrated
inFig. 10.6. Find I (¢) if
a) B = 0.3co0s(1207r+ — 30°) a, T: First the flux through theloop is evaluated, where the unit normal
totheloopisa,. Wefind

d = / B - dS = (0.3)(0.5)? cos(120x¢ — 30°) Wb
loop

Then the current will be

emf 1do 1207)(0.3)(0.25
IH=—=———= (1207)(0-3)(0.25) sin(120xrt — 30°) = 57sin(1207¢t — 30°) mA
R R dt 500

b) B = 0.4cosn(ct — y)]a. uT wherec = 3 x 108 m/s: Since the field varies with y, the flux is
now

5
d = / B.-dS= (0.5)(0.4)/ cos(ry — met)dy = 0?2 [sin(zct — /2) — sin(zrct)] uWb
loop 0

The current isthen

1) = emf  1d® —02c
R Rdr 500
_ —0.2(3x 10°)

500

[cos(mct — w/2) — cos(mwet)] A

[sin(zrct) — cos(ret)] A = 120[cos(rct) — sin(rwct)] MA

10.7. TherailsinFig. 10.7 each have aresistance of 2.2 2/m. The bar movesto theright at a constant speed
of 9 m/sin auniform magnetic field of 0.8 T. Find 7 (),0 < r < 1, if thebarisatx =2matr =0
and

a) a0.3 Q resistor is present across the left end with the right end open-circuited: The flux in the
left-hand closed loop is
®; = B x area= (0.8)(0.2)(2+ 9r)

Then,emf; = —d®;/dt = —(0.16)(9) = —1.44 V. With the bar in motion, the loop resistanceis
increasing with time, and isgiven by R;(¢) = 0.3+ 2[2.2(2 + 9¢)]. The current is now

emf —-1.44
L) = —- = A
Ri(t) 9.1+ 39.6¢

Note that the sign of the current indicates that it is flowing in the direction opposite that shown in
the figure.
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b) Repeat part a, but with aresistor of 0.3 2 across each end: Inthiscase, therewill be acontribution
to the current from the right loop, which is now closed. The flux in the right loop, whose area
decreases with time, is

®, = (0.8)(0.2)[(16 — 2) — 9]

and emf, = —d®,/dr = (0.16)(9) = 1.44 V. The resistance of the right loop is R, () =
0.3+ 2[2.2(14 — 9r)], and so the contribution to the current from the right loop will be

—-1.44

L) = ————
=519 308

The minus sign has been inserted because again the current must flow in the opposite direction
as that indicated in the figure, with the flux decreasing with time. The total current is found by
adding the part « result, or

1 1
Ir(t) = —1.44 A
r®) [61.9 “ 396 T 91+ 39.6:]

10.8. Fig. 10.1 is modified to show that the rail separation is larger when y is larger. Specifically, let the
separationd = 0.2+ 0.02y. Given auniform velocity v, = 8 m/sand auniform magnetic flux density
B, = 11T, find V15 asafunction of timeif the bar islocated at y = O at # = 0: The flux through the
loop as afunction of y can be written as

y p.2+.02y y
P = f B -dS:/ f 1.1dxdy’ :/ 1.1(.2+.02y")dy’ = 0.22y(1 + .05y)
o Jo 0
Now, with y = vt = 8¢, the above becomes ® = 1.76¢(1 + .40¢). Finaly,

dd

10.9. A squarefilamentary loop of wireis 25 cm on aside and hasaresistance of 125 2 per meter length. The
loop liesin the z = 0 plane with its cornersat (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at
t = 0. Theloop is moving with velocity v, = 50 m/sinthefield B, = 8cos(1.5 x 108 — 0.5x) uT.
Develop afunction of time which expresses the ohmic power being delivered to the loop: First, since
the field does not vary with y, the loop motion in the y direction does not produce any time-varying
flux, and so this motion isimmaterial. We can evaluate the flux at the original loop position to obtain:

.25 .25
D) = / / 8 x 107 cos(1.5 x 10% — 0.5x) dx dy
0 0
— _(4x 1079 [s (L5 x 108 — 0.13x) — SN(L5 x 108z)] Wb

Now, emf = V(1) = —d®/dt = 6.0 x 10?[cos(1.5 x 108t — 0.13x) — cos(1.5 x 10%)], The total
loop resistanceis R = 125(0.25 + 0.25 + 0.25 + 0.25) = 125 2. Then the ohmic power is

2
P(t) = Ve

— 29 x 10° [005(1.5 « 108 — 0.13x) — cos(L.5 x 108z)] Watts
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10.10a. Show that the ratio of the amplitudes of the conduction current density and the displacement current
density iso/we for the applied field E = E,,, coswt. Assume u = uo. First, D = ¢E = €¢E,, COSwt.
Then the displacement current density isaD /9t = —we E,, Sinwt. Second, J. = 0 E = o E,;, COSwt.
Using theseresultswefind |J,.|/|J4| = o/we.

b. What is the amplitude ratio if the applied field is E = E,,e”"/", where t isrea? As before, find
D = €E = €En e /", and 0 J; = 9D/3t = —(€/T)Epne /", Also, J. = o E,,e /7. Findly,
|Jel/|Jal = ot/e.

10.11. Let the internal dimension of a coaxial capacitor bea = 1.2 cm, b = 4cm, and! = 40 cm. The
homogeneous material inside the capacitor has the parameters e = 10~ F/m, 1 = 10~° H/m, and
o = 107° S/m. If the electric field intensity is E = (10%/p) cos(10°¢)a, V/m (note missing ¢ in the
argument of the cosine in the book), find:
a) J: Use

10
J=0E = (—) cos(10°1)a, A/m?
0

b) thetotal conduction current, 1., through the capacitor: Have

I, = / / J-dS = 27plJ = 2071 cos(10%) = 87 cos(10°7) A

¢) thetotal displacement current, 1, through the capacitor: First find

5 —11 6

Now
1y = 2nplJ; = —271sin(10°t) = —0.87 sin(10°1) A

d) theratio of the amplitude of 1, to that of 1., the quality factor of the capacitor: Thiswill be

|14] 0.8
=—=01
el 8

10.12. Given a coaxia transmission line with b/a = e%5 ur = eg = 1, and an electric field intensity
E = (200/p) cos(10% — 3.3367) a, V/m, find:
a) V,», the voltage between the conductors, if it is known that electrostatic relationship E = —VV
isvalid; We use

a

4 200 9 b 9
Vap = — — ¢0s(10%r — 3.336z) dp = 2001In cos(10°r — 3.336z)
b P

= 500 cos(10°% — 3.3367) V

b) the displacement current density;

oD  —200 x 10° 1.77
Jo="= T X 70 §n(10% — 3.3362)a, = — —- sin(10°% — 3.336z)a, A/m?
P P
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10.13. Consider the region defined by |x|, |y|, and |z] < 1. Leteg = 5 ug =4, ando = 0. If J; =
20cos(1.5 x 1087 — bx)a, uA/m?;

a) find D and E: SinceJ; = aD/dr, we write
20 x 10~°

1.5 x 108
= 1.33 x 107 sin(1.5 x 10% — bx)a, C/m?

D= /Jddt +C= sin(1.5 x 10® — bx)a,

where the integration constant is set to zero (assuming no dc fields are present). Then

D 133x10°8
€ (5x885x10°1)
= 3.0 x 1073sin(1.5 x 10% — bx)a, V/m

sin(L.5 x 10% — bx)a,

b) use the point form of Faraday’s law and an integration with respect to time to find B and H: In
this case,

IE B
VxE= 8—yaz = —b(3.0 x 1073) cos(L.5 x 108 — bx)a, = —
X

Solve for B by integrating over time:

_ b(3.0x1073)

15 x 108 sin(1.5 x 10% — bx)a, = (2.0)b x 107 1sin(1.5 x 108 — bx)a, T

Now
(2.0)b x 10711

" 4x 47 x 107
= (4.0 x 107%)p sin(1.5 x 10% — bx)a, A/m

B .
H=— sin(L.5 x 10% — bx)a,
"

¢c) useV x H=1J;+JtofindJ;: Sinceo = 0, thereis no conduction current, so in this case

dH.
VxH=— : ‘a, = 4.0 x 107%? cos(1.5 x 10% — bx)a, A/m* = J,
X

d) What isthe numerical value of b? We set the given expression for J; equal to the result of part ¢
to obtain:

20x105=40x10%? = p=+650m1?

10.14. A voltage source, Vp sinwt, isconnected between two concentric conducting spheres, r = a andr = b,
b > a, where the region between them isamaterial for which ¢ = egeg, © = o, and o = 0. Find the
total displacement current through the dielectric and compare it with the source current as determined
from the capacitance (Sec. 5.10) and circuit analysis methods. First, solving Laplace's equation, we
find the voltage between spheres (see Eq. 20, Chapter 7):

Q-

V) = 1/a) — (1/b) Vosinowt
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10.14 (continued) Then

VosSinwt ereoVo Shwt
E=-— — zo—ar = — ZRO#
r“(1/a — 1/b) r“(1/a — 1/b)
Now
Iy — aD _ €r€owVp COSwi
4T % T 2(La — 1/b)
The displacement current is then
4 Vo coswt dv
I = 4xr?J; = TEREOOVOBI™OT _ c4r
(1/a —1/b) dt
where, from Eq. 47, Chapter 5,
_ 4mepeg
"~ (1/a —1/b)

The results are consistent.

10.15. Let © = 3 x 10°° H/m, ¢ = 1.2 x 10°1° F/m, and ¢ = 0 everywhere. If H = 2cos(101% —
Bx)a, Alm, use Maxwell’s equations to obtain expressions for B, D, E, and 8: First, B = uH =
6 x 107° cos(10'°% — Bx)a, T. Next we use

oH oD
V xH=——a, =28sin(10'% — x)a, = —
% gx & = 2P SnC pogy =5,
from which
2
D= / 2Bsin(10%r — Bx)dt + C = _F/io cos(10'% — Bx)a, C/m?

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

D 28

E=—=— cos(10'% — Bx)a, = —1.678 cos(10'%r — Bx)a, V/m
e = (12 x 10-10)(10m0) X px)ay b o pray V/
Now oE B
VxE=—2a =16782sin(10% — Bx)a, = ——
0x ot
So

B=— / 1.6782sin(10%°r — Bx)a,dt = (1.67 x 10719)82 cos(10%°r — Bx)a,
We require this result to be consistent with the expression for B originaly found. So

(167x 1071982 =6x 10> = B = +600rad/m
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10.16a. A certain materiad haso = Oand g = 1. If H = 4sin(10%: — 0.01z)a, A/m, make use of Maxwell’s
equationsto find wg: First find

OH oE
VxH= _8_an = 0.04cos(10%7 — 0.017)a, = €0
z

in(10%: — 0.01z)a,
1060 2

.04
E= / = cos(10% — 0.017)a, dt =
€0

where the integration constant is zero, since we assume no dc fields present. Next

OE, 04(.01) 3 oH
VxE= a, = — cos(10°r — 0.01x)a, = — —
x 9z ¥ 106, oo 28y = —URIOT,
=0 04(.01) 04(.01)
H= / " c0s(10% — 0.01z)a, df = —o— sin(10°% — 0.01z)a,
108¢o/i0m & Y 10%2€qp0/t R y

= 4sin(10°% — 0.017)a,
where the last equality is required for consistency. Therefore

.04(.01) (.01)2(9 x 10%6)
102equom p = KR 1012 -

b) Find E(z, t): Thiswe already found during the development in part a: We have

E(z,t) = 10%¢

sin(10% — 0.01z)a, V/m = 4.5sin(10% — 0.01z)a, kV/m

10.17. The electric field intensity intheregion0 < x < 5,0 <y < /12,0 < z < 0.06 min free spaceis
given by E = C sin(12y) sin(az) cos(2 x 101%) a, V/m. Beginning with the V x E relationship, use
Maxwell’s equations to find a numerical value for «, if it is known that « is greater than zero: In this

case wefind
JE oFE
VxE=—"a,——a
0z ay
: : 10 9B
= C [a sin(12y) cos(az)ay — 12cos(12y) sin(az)a; | cos(2 x 10™%) = —a
Then
1
H=—-—— | VxEdt+(C1
1o
C . . ; 10
= G 100 [a sin(12y) cos(az)a, — 12cos(12y) sin(az)a, | sin(2 x 10-°r) A/m
where the integration constant, C1 = 0, since there are no initial conditions. Using this result, we now
find
dH, H, C(144+a®) _ : . 10 D
VxH=|——-— = ——————3in(12y) sin SN2 x 10~t) a, = —
X [ 3y Py ] 110(2 % 1010 (12y) sin(az) SiN(2 x ) & a7
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10.17. (continued) Now

D 1 C (144 + a?
-2 _ [YvsHaric,= C1HATa
€0 €0 mo€o(2 x 1010)2

sin(12y) sin(az) cos(2 x 10'%) a,

where C2 = 0. Thisfield must be the same as the original field as stated, and so we require that

C(144+a?)
poeo(2 x 1010)2

Using roeo = (3 x 10%)~2, wefind

=66m~t

1042 1/2
y (2 x 10™) 1
(3 x 108)2

10.18. Theparallel platetransmission line shownin Fig. 10.8 hasdimensionsb = 4cmand d = 8 mm, while
the medium between platesis characterized by ug = 1, eg = 20, and o = 0. Neglect fields outside
the dielectric. Giventhefield H = 5cos(10°% — Bz)a, Alm, use Maxwell’s equations to help find:

a B,if B > 0: Take

oH . oE
VxH=——2a, =-58sin(10% — Bz)a, = 20ep—
0z ot
So 55 p
E=[| —2s&n10% — Bz)a, dt = ——— cos(10% — Bz)a
/2060 ( po)a (4 x 10%¢0 a po)as
Then 5
JE, B . aH
VxE= a, = sin(10%¢ — a, = —og—
. 02 &= Gx 109 o p2)ay = —mo7;
So that
—p? p?

sin(10% — Bz)a, dt = cos(10% — Bz)

~ ] @x10%u0c0 (4 x 1018) ugeq
= 500s(10% — Bz)a,
where the last equality is required to maintain consistency. Therefore
/32

S —=149m~1
@x 108, > 7 P=143m

b) the displacement current density at z = 0: Sinceo = 0, we have

V x H =J; = —58sin(10% — Bz) = —74.5sn(10% — 14.97)a,
= —745sn(10%)a, A/matz=0

¢) thetota displacement current crossing the surfacex = 0.54,0 < y < b,and0 < z < 0.1 min
the a, direction. We evaluate the flux integral of J; over the given cross section:

0.1
I = —745b / Sin(10% — 14.97) a, - &, dz = 0.20 [Cos(lOgt _1.49) — cos(109t)] A
0
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10.19. Inthefirst section of this chapter, Faraday’s law was used to show that the field E = —%kBopekla¢

results from the changing magnetic field B = Bgek’a, (note that the factor of p appearing in E was
omitted from the original problem statement).

a) Show that thesefieldsdo not satisfy Maxwell’sother curl equation: Notethat B asstated isconstant
with position, and so will have zero curl. The electric field, however, varies with time, and so
VxH= % would have a zero left-hand side and a non-zero right-hand side. The equation is
thus not valid with these fields.

b) If welet Bg = 1T and k = 10° s—1, we are establishing a fairly large magnetic flux density in 1
us. Usethe V x H equation to show that the rate at which B, should (but does not) change with
p isonly about 5 x 10~® T/min free space at r = 0: Assuming that B varies with p, we write

oH 1dB oE 1
VxH=-— Za(p = ———Oekt —€E— = __GOkZBOpekt
ap no dop ot 2
Thus 12
dByp 1 2 10~ (D)p _6
gy — Mook PBo= 5 e X P

which is near the stated value if p is on the order of 1m.

10.20. Point C(—0.1, —0.2, 0.3) lies on the surface of a perfect conductor. The electric field intensity at C is
(500a, — 300a, + 600a,) cos 107r V/m, and the medium surrounding the conductor is characterized
by ugp =5,eg = 10,and o = 0.
a) Find a unit vector normal to the conductor surface at C, if the origin lies within the conductor:
At ¢t = 0, the field must be directed out of the surface, and will be normal to it, since we have a
perfect conductor. Therefore

N +E( =0) 5a —3a, + 63
T E¢=0)] /25+9+36

= 0.60a, — 0.36a, + 0.72a,

b) Find the surface charge density at C: Use

ps = D Nlgurface = 10eo [500a, — 300a, + 600a, | cos(1077) - [.60a, — .36a, + .72a.]
= 10e( [300 + 108 + 432] cos(107r) = 7.4 x 10~ cos(10’t) C/m? = 74co0s(10”t) nC/m?

10.21. The surfaces p = 3 and 10 mm, and z = 0 and 25 cm are perfect conductors. The region en-
closed by these surfaces has © = 25 x 108 H/m, e = 4 x 101 F/m,ando = 0. LetH =
(2/p) cos(107 z) cos(wt ) ay A/m. Make use of Maxwell’s equationsto find
a) w: We start with

0Hy 20 oE
VxH= _a_z a, = Tsm(lOyrz) cos(wt)a, = 65

We then find

20 20
E= / i sin(10rz) cos(wt) dt a, = i sin(10mz) sin(wt) a,
PE wpE
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10.21a. (continued) At this point, a flaw in the problem statement becomes apparent, since this field should
vanish on the surface of the perfect conductor located at z = 0.25m. This does not happen with the
sin(10rr z) function. Nevertheless, we press on:

0E (207)(10m) . oH
VxE="gy=——"—/""/ 1 -
X % ag ope cos(10rr z) sin(wt) ay m o

—20072 _ 20072
H :/ d cos(107r z) sin(wt) 8y dt = id cos(107 z) cos(wt) ay

wp i€ w?pep

This result must equal the given H field, so we require that

20072 2 107 107 9 . 1
> =2 =5 o= = = x 107 sec
wluep P VHE /(25 x1076)(4 x 10-11) T

b) E: We use the result of part a:

20 500
E= i sin(10rz) sin(wt) a, = — sin(10xrz) sin(wt) a, V/m
Jo

wpe

10.22. Infree space, wheree = ¢g, u = o, 0 = 0,J = 0, and p, = 0, assume a cartesian coordinate system
inwhich E and H are both functions only of z and z.
a) If E = E,a, and H = H,a,, begin with Maxwell’s equations and determine the second order
partial differential equation that £, must satisfy: The procedure hereissimilar to the development
that leadsto Eq. 53. Begin by taking the curl of both sides of the Faraday |aw equation:

VxVXE=V oH 9 ¥ x H)
X X = X — _— = — J— h%
Moat Moat

where V x H = ¢gdE/dr. Therefore

92E

V><V><E:V(V-E)—szz—MoeoW

where the first equality isfound from Eq. 52. Noting that infreespace, V-D = ¢V - E = 0, we
obtain, X ) X
9°E 0°E 0°E
V2E = poco—s = ¥ — )
Ho€0 912 = 922 HO€0 972

since E variesonly with z and ¢, and is y-directed.

b) Show that £, = 5(300¢ + bz)? isasolution of that equation for a particular value of b, and find
that value: Substituting, we find

3%E,

oE
322 = 10p% = ,u,oEo?Zy =9 x 105/L0€o

Therefore
10h? = 9 x 10%°ugeg — b=10x10"m?
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10.23. Inregion1,z < 0,e1 = 2 x 1001 F/m, u1 = 2 x 107® H/m, and o1 = 4 x 10~3 S/m; in region 2,
7> 0, €2 = €1/2, u2 = 2u1, and o2 = 01/4. Itisknown that E; = (30a, + 20a, + 10a,) cos(10°%)
V/mat P1(0,0,07).

a) Find En1, E;1, Dy1, and D,1: These will be

En1 = 10c0s(10°)a, V/m E,; = (30a, + 20a,) cos(10%) V/m

Dy1 = e1En1 = (2 x 10711 (10) cos(10%)a, C/m? = 200 cos(10°%1)a, pC/m?

D;1 = e1E,1 = (2 x 10711)(30a, + 20a,) cos(10%) = (600a, -+ 400a,) cos(10°%) pC/m?

b) FindJy1 and J;1 at P1:

Jv1 = 01En1 = (4 x 1073)(10cos(10%))a, = 40cos(10%)a, mA /m?

Ji = 01E = (4 x 1073)(30a, + 20a,) cos(10%) = (120a, + 80a,) cos(10°7) mA /m?

¢) Find E;», D;», and J;» a P1: By continuity of tangentia E,

E;2 = E;1 = (30a, + 20a,) cos(10%) V/m

Then

D2 = e2E;2 = (10711)(30a, + 20a,) cos(10%) = (300a, + 200a,) cos(10%) pC/m?

Ji2 = 02E12 = (1073)(30a, + 20a,) cos(10%) = (30a, + 20a,) cos(10%) mA /m?

d) (Harder) Use the continuity equation to help show that Jy1 — Jy2 = 9Dy2/3t — 0Dy1/0t (note
misprint in problem statement) and then determine E 2, Dy2, and Jy2: We assume the existence of a
surface charge layer at the boundary having density p;, C/m2. If we draw acylindrical “pillbox” whose
top and bottom surfaces (each of area Aa) are on either side of theinterface, we may use the continuity
condition to write

aps
(Jv2 — INDAa = —EAG

where o, = Dy2 — Dy1. Therefore,

0
Jn1— In2 = E(DNZ — Dn1)

In terms of the normal electric field components, this becomes
d
01EN1 — 02EN2 = —(€2EN2 — €1EN1)

ot

Now let Ey2 = A cos(10%) + B sin(10%), while from before, Ex1 = 10 cos(10%).
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10.23.

10.24.

(continued)

These, along with the permittivities and conductivities, are substituted to obtain

(4 x 107%)(10) cos(10°%7) — 10~3[ A cos(10%) + B sin(10%1)]
2
T ot
= —(1072A sin(10%) + 1072B cos(10%) + (2 x 10~ 1) sin(10%)

| 107[4 cos(10%) + B sin(10°)] - (2 x 107)(10) cos(10°) |

We now equate coefficients of the sin and cos terms to obtain two equations:
4x 1072 -1073A = 1072B

—103B =-10"2A+2x 107}
These are solved together to find A = 20.2 and B = 2.0. Thus

Enz = [20.2 00s(10°%) + 2.Osin(109t)] a. = 20.3cos(10% + 5.6%)a. V/m

Then
Dw2 = e2Ey2 = 203¢0s(10°% + 5.6°)a, pC/m?

and
Jn2 = 02En2 = 20.3c0s(10% + 5.6%)a, mA /m?

Given the fields V = 80z cosx cos3 x 10%. kV and A = 26.7zsinx sin3 x 108 a, mWb/min free
space, find E and H: First, find E through

oA
E=-VV - —
ot
where
—VV = 80cos(3 x 10%)[z sinxa, — cosxa.] kV/m
and
—3A/dt = —(3 x 10%)(26.7)z sinx cos(3 x 10%7)a, mV/m
Finally,
E—— [7.9 x 108z sinx a, + 8.0 x 10% cosx az] cos(3 x 10%) V/m
Now
dA, o N 5
B=VxA= e 26.7sinx sin(3 x 10°t)a, mWb/m
Z
Then

B
H=— =212 x 10*sinxsin(3 x 10%)a, A/m
Ko
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10.25. Inaregionwhere ugp = eg = 1 and o = 0, theretarded potentialsare givenby V = x(z — ¢r) V and
A = x[(z/c) — t]a;, Wb/m, where ¢ = 1/, /io€o.

a) Showthat V-A = —ue(dV/at):

First,
0A; x
92 . X4/ L0€0
Second,
oV x
—_— = X = —
ot /1L0€0

soweobservethat V- A = —upep(dV/0t) in free space, implying that the given statement would
hold true in general media.

b) FindB, H, E, and D:

Use 94
B=VxA=-— xay=<t—£>ayT
ox c
Then
B 1 Z
H:—:—(t——)ayA/m
Ho Mo c
Now,
d0A
E= _VV_E = —(z —ct)a, —xa; + xa; = (ct —z2)a, V/m
Then

D = ¢E = eg(ct — z)a, C/m?

¢) Show that these results satisfy Maxwell’s equations if J and p,, are zero:
i. V.-D=V.¢(ct —2)a, =0

i. V.B=V.(t—-z/c)a, =0

oH 1
VxH=-"2a =——a=[ZLa
0z noc Ko
which we require to equal 0D/0t:
oD €0
— = €0C3y = | —3y
ot 0
iv. SE
VXxE= Bzx , = —a,
which we require to equal —0B/dz:
B a
a7

So all four Maxwell equations are satisfied.
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10.26. Let the current I = 80r A be present in the a, direction on the z axisin free space within the interval
—01<z<01lm.
a) Find A, a P(0, 2, 0): Theintegral for the retarded vector potential will in this case assume the form

1
no80(r — R/c)
A= ———"a,d
/_,1 47 R & az

where R = /72 + 4 and ¢ = 3 x 10® m/s. We obtain

80w [ 1 ¢t 11 s 1  8x10°% |1
A, = dz— | Zdz|=8x10"%In@z + 22 4‘ _exV
T 4n [f_.1¢z2+4 ¢ /_,1c . % @V~ 3108 Y

—8x10"%In 1+— V4.0l
-1+ 4/4.01

) —053x 10 =80x10""+—053x 101

Sofinally, A = [8.0 x 10~/¢ — 5.3 x 10~**] a, Wh/m.

b) Sketch A, versus: over thetimeinterval —0.1 < ¢ < 0.1 us: The sketch islinearly increasing with
time, beginning with A, = —8.53 x 10~ Wb/m at r = —0.1 us, crossing the time axis and going
positive at r = 6.6 ns, and reaching a maximum value of 7.46 x 10~ Wb/mat r = 0.1 us.
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CHAPTER 11

11.1. Show that E,; = Ae/%02+® jsa solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
ko = w./mo€g and any ¢ and A: Wetake

d2 . .
5 AT = (jko) Al = iZE,,

11.2. Let E(z,t) = 200sin0.2z cos108¢a, + 500 cos(0.2z + 50°) sin108¢a, V/m. Find:
a) Eat P(0,2,0.6)ar=25ns Obtain

Ep(t = 25) = 200sin[(0.2)(0.6)] cos(2.5)a, + 500cos[(0.2)(0.6) + 50(2r)/360] sin(2.5)ay
= —19.2a, + 164a, V/m

b) |[E|at Patr=20ns

Ep(t = 20) = 200sin[(0.2)(0.6)] cos(2.0)a, + 500 cos[(0.2)(0.6) + 50(27)/360] sin(2.0)a,
= —9.96a, + 248a, V/m

Thus |[Ep| = /(9.96)2 + (248)2 = 249 V/m.
C) Eyat P. E; = 200sin0.2za, — j500c0s(0.2z + 50°)a,. Thus

Esp = 200sin[(0.2)(0.6)] a, — j500c0s[(0.2)(0.6) + 27(50)/360] a,
=23.9a, — j273a, V/m

11.3. AnH field in free spaceis given asH (x, r) = 10cos(10% — Bx)a, A/m. Find
a) B: Since we have a uniform plane wave, 8 = w/c, where we identify @ = 10® sec™1. Thus
B = 108/(3 x 108) = 0.33 rad/m.

b) A: Weknow A = 27/8 = 18.9m.

¢) E(x,r) a P(0.1,02,03)ar =1ns Use E(x,t) = —noH (x,1) = —(377)(10) cos(10% —
Bx) = —3.77 x 10° cos(10% — Bx). The vector direction of E will be —a,, since we require that
S = E x H, where Sis x-directed. At the given point, the relevant coordinateis x = 0.1. Using
this, dlong with r = 10~° sec, we finally obtain

E(x, 1) = —3.77 x 10% cos[(108)(107°) — (0.33)(0.1)]a, = —3.77 x 10%c0s(6.7 x 10~?)a,
= —3.76 x 10°a, V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
E, = (40 — j30)e /2%, V/m. Find:
a) w: From the given expression, we identify 8 = 20 rad/m. Thenw = ¢ = (3 x 10%)(20) =
6.0 x 10° rad/s.

b) B = 20 rad/m from part a.
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11.4. (continued)
C) f=w/2r =956 MHz.

d) L =27/ =27/20=0.314m.
e) H;: Infree space, we find H by dividing E; by 1o, and assigning vector components such that
Es; x Hy givesthe required direction of wave travel: We find

40— 30

H
s 377

e~ = (0.11— j0.08)e /2% a, A/m

f) H(z,t) a P(6,—1,0.07),r = 71 ps.
Hz 1) = Re[Hsej“”] = [0.11 c0s(6.0 x 10% — 20z) + 0.08sin(6.0 x 10% — 2oz)] a,
Then

H(.07, 1 = 71ps) = [0.11 cos[(G.O x 10%)(7.1 x 10~ 11y — 20(.07)]

+.08sin[(6.0 x 10%(7.1x 1071 - 20(07) || 3,
= [0.11(0.562) — 0.08(0.827)]a, = —6.2 x 10~3a, A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hy = (4 + j10)(2a, + ja,)e /= A/m.

a) Find numerical values for w, A, and B: First, w = 27 x 150 x 10° = 37 x 108 sec™!. Second,
for a uniform plane wave in free space, A = 27c/w = ¢/f = (3 x 10%)/(1.5 x 10%) = 2m.
Third, 8 = 27 /A = 7 rad/m.

b) FindH(z,¢t)atr = 1.5ns,z =20 cm: Use

H(z, 1) = Re{H,e/®"} = Re{(4 + j10)(2a, + jay)(cos(wt — Bz) + j sin(wt — Bz)}
= [8cos(wt — Bz) — 20sin(wt — Bz)] &, — [10cos(wt — Bz) 4+ 4sin(wt — Bz)] @,

. Now at the given position and time, wr — 8z = (37 x 108)(1.5 x 10~%) — 7(0.20) = = /4. And
cos(rt/4) = sin(r/4) = 1/4/2. Sofinally,

1
H(z = 20cm, t = 1.5ns) = -7 (12a, + 14a,) = —8.5a, — 9.9a, A/m

C) What is|E|qx? Have | E|nax = 10l H |imax, Where
|Hlmax = y/Hy - Hi = [4(4+ j10)(4 = j10) + (j)(—j)(4+ j10)(4 — j10)]Y/> = 24.1A/m

Then | E |mar = 377(24.1) = 9.08 KV /m.
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116. Let ug = eg = 1forthefield E(z, t) = (25a, — 30a,) cos(wt — 50z) V/m.
a) Findw: w = ¢ = (3 x 108)(50) = 15.0 x 10° s~ L.
b) Determine the displacement current density, J;(z, t):

oD .
Ju(z, 1) = 5 = —eow(25a, — 30ay) sin(wt — 50z)

= (—3.32a, + 3.98a,) Sin(1.5 x 10'% — 50z) A/m?

¢) Find the total magnetic flux ® passing through the rectangle defined by 0 < x < 1, y = 0,
0 <z <1 atr = 0: Infree space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

25 30
H(z,t) = (—ay + —ax> cos(wt — 50z) A/m
Yl no

Then B(z,t) = pnoH(z,1) = (1/¢)(25a, + 30a,) cos(wt — 50z) Wb/m?2, where uo/ng =
Jio€o = 1/c. Theflux atr = Oisnow

O] flle a,dxd f125cos(50)d 2 sin(50) 0.44 nWb
= . X = _— = —-—— = —U.
o Jo o =) “ %= 503 x 108) ==

11.7. The phasor magneticfield intensity for a400-MHz uniform plane wave propagating in acertain lossless
material is (2a, — j5a;)e~/2>* A/m. Knowing that the maximum amplitude of E is 1500 V/m, find g,
n, A, Vp, €R, g, aNdH(x, y, z, t): First, fromthe phasor expression, weidentify g = 25 m~1 from the
argument of the exponential function. Next, we evaluate Hyp = |[H| = vH - H* = v/22 + 52 = {/29.
Thenn = Eo/Ho = 1500/4/29 = 278.5 Q. Then A = 2n/B = 27/25 = .25 m = 25 cm. Next,

27 x 400 x 10°
o= o= LT 101 % 108 mys
B 25 7
Now we note that
n=2785=2377 KR - HER _o546
€R €R

And c

v, = 1.01 x 10% = = uger =8.79

! JERER RER

We solve the above two equations simultaneously to find e = 4.01 and g = 2.19. Finally,

H(x,y,z2,1) = Re {(Zay _ j5az)e*125xejwt}

= 200s(27 x 400 x 10% — 25x)a, + 5sin(27 x 400 x 10% — 25x)a,
= 2c0s(87 x 10% — 25x)a, 4 5sin(8r x 108 — 25x)a, A/m
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11.8. Let the fields, E(z, t) = 1800cos(10’wt — Bz)a, V/m and H(z, ) = 3.8cos(10’zt — Bz)a, A/m,
represent a uniform plane wave propagating at avelocity of 1.4 x 108 m/sin aperfect dielectric. Find:
a) B =w/v=(10"7)/(1.4 x 10%) = 0.224m~1,

b) A =2r/p =2r/.224=280m.
¢) n=|E|/|H| = 1800/3.8 = 474 Q.

d) wg: Havetwo equationsinthetwo unknowns, g andeg: n = no/ur/€r and B = w./ILr€R/c.
Eliminate eg to find

2.69

C[Ben]? [(224(3x 1084747
MR_[w_no} _[ (1077) (377) } B

€) er = 1r(o/m)?* = (2.69)(377/474)* = 1.70.

11.9. A certain lossless material has ug = 4 and eg = 9. A 10-MHz uniform plane wave is propagating in
the a, direction with E.o = 400V/mand Eyo = E,o =0at P(0.6,0.6,0.6) att = 60 ns.

a) Find B, 1, v,, and n: For auniform plane wave,

27 x 107

B =w e = %/—MRGR = S5 V@ (© = 04 rad/m
Then i = (27)/8 = (27)/(0.47) = 5m. Next,
w 2w x 107 .
UP_E_—4nx10—1 =5x10"m/s

Finally,

4
n=J% =1 /@=377\/j=2519
€ €R 9

b) Find E(¢) (at P): We are given the amplitudeat t = 60nsand at y = 0.6 m. Let the maximum
amplitude be E ., sothat in general, E, = E 4 COS(wt — By). At the given position and time,

E, =400 = Ejpqy c0[(27 x 107)(60 x 107°) — (47 x 1071)(0.6)] = Enax c0S(0.967)
= —0.99E qx

S0 Eppax = (400)/(—0.99) = —403V/m. Thusat P, E(t) = —403cos(2r x 1077) V/m.

c) Find H(r): First, we note that if E at agiven instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, 7 is real, and we are
allowed to write H () = E(t)/n, where n istreated as negative and real. Thus

E((r) _ —403

51 cos(2r x 10~ 7r) = 1.61cos(2r x 10~ ') A/m

H(t) = H;(1) =
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11.10. Given a 20MHz uniform plane wave with H; = (6a, — j2ay)e‘fZ A/m, assume propagation in a
lossless medium characterized by ex = 5 and an unknown (. g.
@ Find A, vy, g, andn: First, B = 1,504 = 21/ = 2 m. Next, v, = w/p = 21 x 20 x 10° =
4 x 10’ m/s. Then, ug = (B2c?)/(w%er) = (3 x 108)2/(4n x 107)2(5) = 1.14.

Finaly, n = novir/er = 377/ 1.14/5 = 180.

b) Determine E at theorigin at 1 = 20ns. We usetherelation |E| = n|H| and note that for positive z
propagation, apositivex component of H iscoupled to anegative y component of E, and anegative
y component of H iscoupled toanegativex component of E. WeobtainE; = —n(6a,+j2a,)e /.
Then E(z, 1) = Re{Eye/“'} = —6ncos(wt — z)ay + 2nsin(wt — z)a, = 360sin(wr — z)a, —
1080 cos(wt — z)ay. Withw = 4r x 107 sec™!, + = 2 x 1078 5 and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)a, — 1080(—0.809)a, = 212a, + 874a, V/m.

11.11. A 2-GHz uniform planewave hasanamplitudeof E,o = 1.4kV/mat (0, 0, 0, r = 0) and ispropagating
inthea, directioninamediumwheree” = 1.6x 10~ F/m, ¢’ = 3.0x 10~ F/m,and x = 2.5 uH/m.
Find:

a) Ey,a P(0,0,1.8cm) at 0.2 ns: To begin, we havetheratio, €” /¢’ = 1.6/3.0 = 0.533. So

> 1/2
/Me/ ¢

—6 —11
— (27 x 2 % 109)\/(2'5 x 10730 x 1077 [\/1 ¥ (533)2 — 1]1/2 — 28.1Np/m

2

1/2
/ Y\ 2
ﬂ:w,/%[ 1+(€€—,) +1} — 112rad/m

Ey(z, 1) = Lde™ 2 cos(4r x 10% — 1127) kV/m
Evaluating thisat r = 0.2 nsand z = 1.8 cm, find

Then

Thusin general,

E,(1.8cm,0.2ns) = 0.74kV/m

b) H, a P at 0.2 ns: We use the phasor relation, H,; = —E,;/n Where

o 1 25 x 10-6 1 ,
L S — 263+ j65.7 = 271/ 14° Q@
7 \/; =) \30x10 1 /T (533 J
S0 now
3\ ,—28.1z ,—j112
H,, — _Eys _ _(1.4 X 1(;7)f jl4oze j1127 b g2l 112 14 AJm
e
Then

H,(z,1) = —5.16e%8Y cos(4r x 107°¢ — 1127 — 14°)
This, when evaluated at t = 0.2 nsand z = 1.8 cm, yields

H,(1.8cm,0.2ns) = —3.0A/m
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11.12. TheplanewaveEg; = 300e—f’”‘ay V/mispropagating in amaterial for which u = 2.25 uH/m, ¢’ =9
pF/m, and ¢” = 7.8 pF/m. If v = 64 Mrad/s, find:
a) a: Weusethe general formula, Eq. (35):

> 1/2
IME/ €

—6 —12
— (64 x 106)\/(2'25 x 1075 < 1077 [\/1 +(867)2 — 1]1/2 — 0.116 Np/m

2
b) B: Using (36), we write

12
/ A4
ﬂ:w,/%[ 1+(€E—,) +1} — 311rad/m

) v, = w/B = (64 x 108)/(.311) = 2.06 x 10® m/s.
d) A =27/8 = 27/(.311) = 20.2m.
e) n: Using (39):

B \/ﬁ 1 _ [225x 107 1
n= €’ 1— j(el//el) - (SI% 10712 ./1— ](867)

f) Hy: With E; inthe positive y direction (at agiven time) and propagating in the positive x direction,
we would have a positive z component of Hy, at the same time. We write (with jk = o + jB):

qo_ B, _ 300
YT YT 43450/
= 0.69¢116% (/31 =/ 365 A /m

= 407 + j152 = 434.5¢/

e Ikra, = O.69e_‘”e_j’g’ce_j'?"saZ

9) E(3, 2,4, 10ns): The real instantaneous form of E will be
Ex,y,z,) = Re{Ese-"“”} = 300e™** cos(wt — Bx)ay
Therefore

E(3, 2,4, 10ns) = 300e 1% cog(64 x 10°)(10~8) — .311(3)]a, = 203V/m

11.13. Let jk = 0.2+ j1.5m 1 and n = 450 + j60 2 for a uniform plane wave propagating in the a,
direction. If w = 300 Mrad/s, find u, €', and €”: We begin with

= 450 + j60

R S
= \[ S @)
and

jk = jo/ue' /11— j(€/e’) =02+ jl.5
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11.13. (continued) Then
«_ M 1

nm* = — ——— = (450 + j60)(450 — j60) = 2.06 x 10° D
€’ /1 + (6///6/)2
and
(k) (k)" = o’pe’ \J1+ (€”/€)2 = (0.2 + j1.5)(0.2 — j1.5) = 2.29 2)
Taking theratio of (2) to (1),
(]k)(]k)* 2/ 1\2 N ANE 2.29 _ —5
Then with w = 3 x 108,
1.11 x 10~° 1.23 x 1022
(€)? = = 3)

T Bx1082(1+ (¢"/€)?)  (L+(e/€)?)
Now, we use Egs. (35) and (36). Squaring these and taking their ratio gives

o J14("/€)? (027

B2 J1+ (/)2 (15?2
We solve thisto find €/ /e’ = 0.271. Substituting this result into (3) gives ¢’ = 1.07 x 10~ F/m.
Sincee” /e’ = 0.271, wethen find €” = 2.90 x 10~12 F/m. Finally, using these results in either (1) or
(2) wefind i = 2.28 x 10~% H/m. Summary: u = 2.28 x 10~H/m,
€ =1.07x 10011 F/m, and ¢” = 2.90 x 1012 F/m.

11.14. A certain nonmagnetic material has the material constantsef, = 2ande”’/e’ =4 x 104 aw = 1.5
Grad/s. Find the distance a uniform plane wave can propagate through the material before:

a) it is attenuated by 1 Np: First, ¢’ = (4 x 10%)(2)(8.854 x 10~1%) = 7.1 x 10~1° F/m. Then,

sincee” /e’ << 1, we use the approximate form for «, given by Eq. (51) (writtenin termsof €”):

4 1.5 x 10%)(7.1 x 10~15) 377
. @< fr_ (15 x 1071 x V37T _ 1 42 % 1072 Np/m

2 Ve 2 V2
The required distanceisnow z; = (1.42 x 1073)~1 = 706 m

b) the power level is reduced by one-half: The governing relation is e=2*?12 = 1/2, or 12 =
IN2/2a =1n2/2(1.42 x 10~ 3) = 244 m.

c) the phase shifts 360°: This distance is defined as one wavelength, where & = 27 /8
= (27¢) /(w@ — [27(3 x 108)]/[(L5 x 10%)+/7] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculatethewavel ength in centimetersand the attenuation in nepersper meter if thewaveispropagating
in anon-magnetic material for which

a) € = land ey = 0: Inanon-magnetic material, we would have:

ILOEOG/ e 2 12
o =w,| —2R 1+ <—,R) -1
2 €r
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11.15. (continued) and

MOGOE/ e 2 12
B=w|—X& 1+<—,R> +1
2 €r

With the given values of ¢}, and €, it is clear that B = w./moe0 = w/c, and so
r=2n/B =2nc/w =3 x 101°/1010 = 3cm. Itisaso clear that o = 0.

b) €j, = 1.04and e}, = 9.00 x 1074 Inthiscaseej/e), << 1,andso f = w,/ep/c = 2.13cm™L,
Thusi = 27/8 = 2.95cm. Then

L we’ [ weh Jioko o €f  2m x 1010 (9.00 x 1074

0=—_[/—

- — 9. - 8
2 Ve 2 /E;e 2c /6% 2 x 3 x 10 J1.04
=9.24 x 1072 Np/m

C) €, = 25and e = 7.2: Using the above formulas, we obtain

1/2

27 x 1010,/25 7.2\

g TX T Ve 1+(—> +1| =471cm™?
(3 x 1019)/2 25

andso A = 27/8 = 1.33cm. Then

1/2
27 x 1019,/2.5 7.2\?
a=—"""""Y""1 14+ (==) —1| =335Np/m

(3 x 10812 { (2.5> 335 Rp/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
oC R, where R isthe parallel resistance. Assume anidealized parallel plate capacitor having adielecric

characterized by o, €/, and wg. Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

N—"

1
S, R(ja)_C _ 1-jRoC _ 1—j0
R+(L) 1+ (RwC)? 1+ Q2

joC

Now R = d/(cA) and C = ¢’A/d, and 0 Q = we'/o = 1/1.t. Then the power factor is P.F =
cogtan(—0)] = 1/y/1+ 02,
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11.17. Letn = 250+ j30Q and jk = 0.2+ j2m~1 for auniform plane wave propagating in the a, direction
in a dielectric having some finite conductivity. If |[E;| = 400V/mat z = O, find:

a)

b)

P;.av @ z = 0and z = 60 cm: Assume x-polarization for the electric field. Then
1 1 , 400 :
P, av = éRe{Es X H;"} = ERe{4OOe_°‘Ze_”32ax X Fe_o’ze]ﬂzay}

1 1 1
— Z(400)%2e 2%Re{ —la, =80x10%202:Rel ___ = 14
54007 {n*} : e 250 — ;30

= 315¢72027 5. W/m?

Evaluating at z = 0, obtain P, ,,(z = 0) = 315a, W/m?,
andat z = 60 cm, P, 4, (z = 0.6) = 315202065 — 2483 W/m?.

the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. | will demonstrate: In the first method, we use Poynting's theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fieldsto read:

—V-P,ay=<J-E>

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting's theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

d
<J-E>=-V P4 = —d—315e—2<0~2>Z = (0.4)(315)e~2027 = 1267 9% W/m®
Z

At z = 60 cm, thisbecomes < J - E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J - E >= 0 < E2 >. Weuse

Jk = joype'J1—j"/e)

and
I S
€ VI-j€/e)
We take theratio,

k 4
JE_ jowe' |:1— j <6—/>] = jwe + we”
n €

Identifying o = we”, wefind

ik 02+ j2 s
=Re{— i =Re] ————— 1 =174x10°S/m
“ { 7 } {250+j30 % /

Now we find the dissipated power per volume:

1 2
0 <E?>=174x10"3 <§> (4ooe—0~22>
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m?3. One can show that consistency between the
two methods requires that
Re] Z1- 7
| 2«

This relation does not hold using the numbers as given in the problem statement and the value of o
found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r,r) if E; = 400e—12"ay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus H; = (400/no)e /*a, =
1.06e=/%*a, A/m. Inreal form, thefieldareE(x, t) = 400 cos(wt —2x)a, andH (x, 1) = 1.06 cos(wt —
2x)a.. Now P(r,1) = P(x,t) = E(x, 1) x H(x, t) = 424.4co(wt — 2x)a, W/m?,

b) Find P at+r = Oforr = (a,5, 10), wherea = 0,1,2, and 3: At ¢t = 0, we find from part «,
P(a,0) = 424.4cos%(2a), which leads to the values (in W/m?): 424.4ata =0, 73.5ata = 1,
181.3ata =2,and391.3ata = 3.

¢) Find P at the origin for T = 0, 0.2T, 0.4T, and 0.6T, where T is the oscillation period. At
the origin, we have P(0,t) = 424.4cos?(wt) = 424.4cos?(27¢/T). Using this, we obtain
the following values (in W/m?): 424.4att =0, 42.4a+=02T, 277.8a:=0.4T, and
277.8att = 0.67T.

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylindersisfilled with a perfect dielectric for which e = 10~°/4x F/mand g = 1. If Einthisregion
is (500/ p) cos(wt — 4z)a, VIm, find:

a) w, withthehelp of Maxwell’s equationsin cylindrical coordinates. We use the two curl equations,
beginning with V x E = —9B/d¢, wherein this case,

oE 2000 oB
VxE=—La,="—sn(wr—4 =_27
% 5y 0=, SRRy =
= 2000 2000
By = / —— sin(wt — 4z)dt = —— coS(wt —4z) T
P wp
Then

By 2000
T po (4r x 107 Nwp
Wenext use V x H = dD/d¢, where in this case

Hy cos(wt —4z) A/m

0H, 190(pH
VXH:——¢ap+— (,0 ¢)
0z o op

2k

where the second term on the right hand side becomes zero when substituting our Hy. So

oH 8000 .
VxH= ——¢ap = —Sln(a)t — 4Z)ap =

oD,
0z (4 x 10~ Hwp

a
ar "

And

8000

2
@ % 10 1a2s cos(wt — 4z) C/m

D —/ 8000 sin(wt — 4z)dt =
e (4 x 10~ NHwp @ et =
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11.19a. (continued) Finally, using the givene,

D, 8000

Ep = e (10-16)w2p

cos(wt —4z) V/m

This must be the same as the given field, so we require

8000 500
W=7 = w=4x 108rad/s

b) H(p, z, t): From part a, we have

2000

H(p, 2, 1) = —
P20 = G X 10 Tyap

4.0
cos(wt — 4z)ay = — cos(4 x 108 — 4z)a, A/m
Jol

¢) P(p, ¢, z): Thiswill be

500 4.0
P(p,¢,2) = E x H= == cos(4 x 108 — 4z)a, x — cos(4 x 10%r — 4z)ay
P P

2.0x 1073
= ;—2 cos?(4 x 108 — 4z)a, W/m?

d) the average power passing through every cross-section 8 < p < 20mm, 0 < ¢ < 2x. Using
the result of part ¢, we find P, = (1.0 x 10%)/p2%a, W/m?2. The power through the given

Cross-section is now

2 0201 13 2
f f OX 0 pdpd¢_2nx103ln(8o>:5.7kw

11.20. IfEy = (60/r) Sinf e=/%" gy VIm,andH; = (1/4rr)sind e~/2" a; AIminfreespace, find theaverage

power passing outward through the surface r = 10%,0 < § < 7/3,and0 < ¢ < 27.

15sin? 6

Tz ¥ WM

1
Puvg = éRe{Es X H;“} =
Then, the requested power will be

2t pm/3 155|n2 . /3 -
/ f S a,-a,rzsnededqs:ls/ sin®6 do
T 0

2
/3 25
_15<—§cose(sm 9+2)) ‘n :523.13W

Note that the radial distance at the surface, r = 10° m, makes no difference, since the power density

dimishesas 1/r2.
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11.21. The cylindrical shell, 1 cm < p < 1.2 cm, is composed of a conducting material for which o = 10°
S/m. The external and internal regions are non-conducting. Let Hy = 2000A/mat p = 1.2 cm.

a) Find H everywhere: Use Ampere'scircuital law, which states:
?gH -dL = 27p(2000) = 27(1.2 x 1072)(2000) = 487 A = I,;

Then in this case

I 48
J= a —1.09 x 1082, A/m?
Area ® = (144-1.00) x 104 x 1078 A/

With this result we again use Ampere's circuital law to find H everywhere within the shell as a
function of p (in meters):

2
54.5
Hy1(p) = 271p f01109 x 10% pdp dep = (104 2_1)A/m (.01 < p < .012)

Outside the shell, we would have

487
Hya(p) = 2mp 24/p A/m (p > .012)

Inside the shell (o < .01 m), Hy, = 0 since thereis no enclosed current.

b) Find E everywhere: We use

J 109 x 10°
E = ; = Taz = 1.09az V/m

which isvalid, presumeably, outside as well asinside the shell.
¢) Find P everywhere: Use

54.5
P=ExH=109a x —(10°p? — 1) a,
Jol

59.4
= -""(10%? - 1)a, W/m? (.01 < p < .012m)
P

Outside the shell,

24 26
=1.09a; x —a¢ =—-"a, W/m? (p >.012m)
P
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than 8. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

1 1

8 = =
Vrfuo o \/m(4 x 108) (4w x 10-7)(5.8 x 107)

=33x 10%m =3.3um

Now, using (70) with a unit length, we find

1 1
R' = =
" 2macs T 2m(2 x 10-3)(5.8 x 107)(3.3 x 10-6)

= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with adifferent conductor radius. Thus

2
Rous = Rin = =(0.42) = 0.12 ohms/m

¢) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, of R = R;, + R,y = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from atype of brass having a conductivity of 1.2 x 10" S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at afreguency of

a) dc: Inthiscasethe current density is uniform over the entire tube cross-section. We write:

R(dc) = L !

— =14x103Q
oA~ (1.2 x 1097 (.012 — .0092) X /m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is
§(20MHz) = [ f oo ] Y2 = [7(20 x 10%) (47 x 1077)(1.2 x 10)] ¥? =3.25 x 10> m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

L 1 1
R(20MHz) = —

— — —=41%x102Q
oA 2758 (1.2 x 107)(27(.01)(3.25 x 105 a /m

¢) 2GHz: Usingthesameformulaasin part b, wefind the skin depth at 2 GHztobe § = 3.25x 10~6
m. The resistance (using the other formula) is R(2GHz) = 4.1 x 1071 Q/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assumethat o = 1.2 x 10° SYm and g = 500 for the
stainless stedl interior, and find the depth of penetration:

1 1

— — =9.28 x 107®m = 9.28um
Vrfuo  /m(2.45 x 109) (4 x 10~7)(1.2 x 106)

8

b) Let £, = 50/ 0° V/m at the surface of the conductor, and plot a curve of the amplitude of E; vs.
the angle of E, asthe field propagates into the stainless steel: Since the conductivity is high, we
use (62) towritea = B8 = /mfuo = 1/8. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e %%~ /P7 = 50e /% ~/%/% = 50 exp(—z/9.28) exp(—j z/9.28)
N —

amplitude angle

where z isin microns. Therefore, the plot of amplitude versus angleis simply aplot of e versus
x, wherex = 7/9.28; the starting amplitude is 50 and the 1/¢ amplitude (at z = 9.28 um) is18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and avelocity of 3 x 10° m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

v 3x10°
=-=_"""=10"Hz=1GH
f A 3x104 z=2502
Next, for agood conductor,
A 1 Vib 4 A

= 1.1x 10° S/m

= o T Jatie T a2 T (9x 108109 (dr x 107)

11.26. The dimensions of a certain coaxial transmission line are ¢ = 0.8mm and & = 4mm. The outer
conductor thickness is 0.6mm, and all conductorshave o = 1.6 x 10’ S/m.
a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

1 1

5= -
VEfuo  \/7(2.4 x 108)(4r x 10-7)(1.6 x 107)

= 2.57 x 107®m = 2.57um

Then, using (70) with a unit length, we find

1 1
Rin = =
2racd  2m(0.8 x 10-3)(1.6 x 107)(2.57 x 10-5)

= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

0.8
Rour = %R,-n = = (4.84) = 0.97 ohms/m

The net resistance per length isthen thesum, R = R;,, + R,,; = 5.81 ohms/m.

195



11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax isair-filled. From those sections, we find (in free space)

2meo _ 2m(8.854 x 1012

=3.46 x 1071 F/m

~Inb/a) In(4/.8)
—7
= Mo In(b/a) = u In(4/.8) = 3.22 x 10~" H/m
2 2

c) Findo and B if @« + jB = /jowC(R + jwL): Taking real and imaginary parts of the given
expression, we find

- —1/2
LC R \?
(x:Re{\/ja)C(R—i—ja)L)}:wﬁ 1+(a)_L> -1
and B “1/2
VL R \?
p=m{Viwe®+ jaD | = “2E | 1w () +1

These can befound by writingouta = Re{/joC(R + jwL)} = (1/2)/jwC(R + joL)+c.c.,
wherec.c denotesthecomplex conjugate. Theresultissquared, termscollected, and the squareroot
taken. Now, usingthevaluesof R, C, and L foundin partsa and b, wefinda = 3.0 x 1072 Np/m
and 8 = 50.3rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having w = 4 x 1019 rad/s:
a) aTef /aprass. From the appendix we find €” /¢’ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, €j, = 2.1. For brass, wefindo = 1.5 x 107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations.

anm €\ (1 - 1/ a)\/T
= — — = — — € = — — — ./ €
“ 2V € € 2 OV i 2\e¢ ) ¢ VR

1 VA
B = wy/ e [14——(6—/)] ia)«/,ue/zg €
€ c

8
For brass (good conductor) we have

1
o =B = /1f1uopras = \/n <2—) (4 x 1010) (47 x 10-7)(1.5 x 107) = 6.14 x 10° m~!
T

Now
are  Y2(€"/€) (@/0)\J€r  (1/2)(.0003)(4 x 1019/3 x 108)y/2.1 s
_ _ . =47 x10
Uprass q/T[f[,LO'brass 6.14 x 10
b)
At _ (21/Pre) _ Porass _ v/ iobas _ 3x 109)(614x100) _ .

Mrass  (27/Pprass)  Pref (4 x 1010)/2.1

/
W4/ €R Tef
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11.27. (continued)

<)

vt (@/Bret) _ Porass
Ubrass (w/ Borass) Bret

— 3.2 x 10° asbefore

11.28. A uniform plane wave in free space has electric field given by E; = 10e—/#*a, + 15¢~/F*a, V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave haslinear polarization, with the field vector

inthe yz plane at angle ¢ = tan—1(10/15) = 33.7° to the y axis.

b) Find H,: With propagation in forward x, we would have

—10

15
s = 377¢ e Fra, + ——e7Pra, A/m = —26.5¢7/F*a, + 39.8¢/F*a, mA/m

377

c) determine the average power density in the wavein W/m?: Use

1
Pavg = 5Re{Eq x H

<10)2al (15)2
b= 2[377 3T

ax] = 0.43a, W/m? or Py, = 0.43W/m?

11.29. Consider aleft-circularly polarized wave in free space that propagates in the forward z direction. The
eectric field is given by the appropriate form of Eq. (80).
a) Determine the magnetic field phasor, H;:
We begin, using (80), with E; = Eg(a, + jay)e‘fﬂz. We find the two components of H;
separately, using the two components of E;. Specifically, the x component of E; is associated
with a y component of Hy, and the y component of E; is associated with anegative x component
of H,. Theresultis
_ 50 _ —jBz
H; - (ay ]ax)e

b) Determine an expression for the average power density in thewavein W/m? by direct application
of Eq. (57): We have

1 1 : E .
Pz,avg = ERe(Es X H;() = ERe <E0(ax + jay)e_JﬂZ X n—g(ay — jax)e_HﬂZ)

g2
—%a, W/m? (assuming Eg isreal)
0
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11.30. The€electric field of auniform plane wave in free spaceis given by E; = 10(a, + jay)e %%,
a) Determinethe frequency, f: Use

_ Be (5B 10%)

= = 1.2 GHz
2 27

f

b) Findthe magnetic field phasor, H,: With the Poynting vector in the positive x direction, apositive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

— E) —j25x

o

H, [a. — jay]e

¢) Describe the polarization of the wave: Thisis most clearly seen by first converting the given field
to real instantaneous form:

E(x,1) = Re{Esej“”} = 10[cos(wt — 25x)ay — sin(wt — 25x)a, |

At x = 0, this becomes,
E(0, 1) = 10 [cos(wt)ay — sin(wt)a, |

With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, isinput to alossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (egy)
differs from that seen by waves polarized along x (egy). Suppose ez, = 2.15, g, = 2.10, and the
waveelectricfield at input ispolarized at 45° tothe positivex and y axes. Assumefree spacewavelength
A.

a) Determinethe shortest length of the materia such that the wave as it emerges from the output end
iscircularly polarized: Withtheinput field at 45°, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the componentsis /2. Our
requirement over length L isthus 8, L — By,L = /2, or

T e

L = =
2(Bx — By) 2w ( /€rx — JVERY)

With the given values, we find,

58.3 A
_ O8I _ po3t _146n

L
2w 4 —
b) Will the output wave beright- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. Thefield can
thus be written asE = Eg(a, — ja,), whichisleft circular polarization.
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11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of r radians develops between the two components. At the input, we can write the field as
Es(0) = Eo(a, + a,). After propagating through length L, we would have,

E,(L) = Eole /F:la, + e~ ifrla)] = Ege P [a, + i BrPolq]

where (By — By)L = —x (since By > By), and 0 E; (L) = Ege /P+L[a, — a,]. With the reversal of
the y component, the wave polarization is rotated by 90°, but is still linear polarization.

11.33. Givenawavefor which E; = 15e~/#7a, + 18¢~/#<¢/%a, V/m, propagating in amedium characterized
by complex intrinsic impedance, 7.

a) Find Hy: With the wave propagating in the forward z direction, we find:

1 . _
Hy = = [—18ef¢ax + 15ay] eiB AJm
n

b) Determine the average power density in W/m?: Wefind

P avg = %Re{ES x H}} = }Re

2 2
- {(15) +(18)

1
g . }:275Re{—} W/m?
n n

n*

11.34. Given the general elliptically-polarized wave as per Eq. (73):
E; = [Ecoay + Eyoejd’ay]e_jﬂZ

a) Show, using methods similar to those of Example 11.7, that alinearly polarized wave resultswhen
superimposing the given field and a phase-shifted field of the form:

E, =[Er 02y + Eyoe_j"bay]e_j’gzej‘3
where § is a constant: Adding the two fields gives

Egror = [Exo (1 - ej‘s) ar + Eyo (ef¢’ - e_j¢ej8) ay] e Pz

= | E.e/%/? (e—./a/z + e.;é/z) a, + Eypel®? (e—ja/zem 4 e—jasejs/z) a, | e /P

2c0s(8/2) 2cos(¢p—68/2)

This simplifiesto Ey ;o = 2[E0C0S(8/2)a + EyoCos(¢ — 8/2)ay ] e/%/2¢=/P%, which is lin-
early polarized.

b) Find § in terms of ¢ such that the resultant wave is polarized along x: By inspecting the part a
result, we achieve azero y component when 2¢ — § = r (or odd multiples of ).
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CHAPTER 12

12.1. A uniform planewaveinair, E+ = E+0cos(1010t—,8z) V/m, isnormally-incident on acopper surface

12.2.

at z = 0. What percentage of the incident power density is transmitted into the copper? We need to
find the reflection coefficient. The intrinsic impedance of copper (a good conductor) is

1019(47 x 107) )
\/ =1+ ),/ —( J)\/ 2G8 107, = (L0104

Note that the accuracy here is questionable, since we know the conductivity to only two significant
figures. We nevertheless proceed: Using ng = 376.7288 ohms, we write

Ne = M0 _ .0104 — 376.7288 + j.0104
Ne+no 0104+ 376.7288+ j.0104

I'=

—.9999 + j.0001

Now |T'|2 = .9999, and so the transmitted power fraction is 1 — |I'|2 = .0001, or about 0.01% is
transmitted.

Theplaney = Odefinestheboundary between two different dielectrics. Fory < 0, €%, = 1, u1 = o,
and e}, = 0;andfor y > 0, €, =5, u2 = o, and €j, = 0. Let £} = 150cos(wr — 8y) V/m, and
find

a) w Havep=8=w/c = w =8 =24x10°sec” L.

b) Hf: With E inthez direction, and propagation in theforward y direction, H will lieinthe positive
x direction, and its amplitude will be H, = E /ng inregion 1.
ThusH} = (150/n0) cos(wt — 8y)a, = 0.40cos(2.4 x 10% — 8y)a, A/m.

c) Hi: First,
- +_no/\/§—no/1 1- \/_ +
E;=TE} = E} = —0.38E}
no/v5+mno/1  1++5
Then 0.38(150)
H =+(. 38/;70)EZl = T cos(wt + 8y)

Sofinally, H_; = 0.15c0s(2.4 x 10% + 8y)a, A/m.

12.3. A uniform planewavein region lis normally inci dent on the planar boundary separating regions 1 and

2. If €] = ) = 0, while €y = p3; and eh, = 13, find the ratio €, /€4 if 20% of the energy in
the incident wave is reflected at the boundary. There are two possible answers. First, since |T'|2 = .20,
and since both permittivities and permeabilitiesarereal, I' = +0.447. we then set up

wo—m oy (R2/€hg) = 10y (er1/€y)

I' =+0.447 = =
12H I o [(ira/elg) + oy (k1 €Ry)

B \/(MRZ/Msl;z) - \/(MRl//Lil) kL — o
\/(ILRZ/,U«:;;Z) + \/(HRl/lLs;gl) MR1+ UR2

200



12.3. (continued) Therefore

17 0.447 / 3
pr2 _ 1F — (0.382,2.62) = 6ﬂ:(@) = (0.056, 17.9)
wr1 1£0.447 €r1 MR1 -

12.4. The magnetic field intensity in aregion wheree” = Oisgiven asH = 5coswr cosz a, A/Im, where
w = 5 Grad/sand 8 = 30 rad/m. If the amplitude of the associated electric field intensity is 2kV/m,
find

@ w and ¢’ for the medium: In phasor form, the magnetic field is Hy, = Hoe /#* + Hpe™F? =
5cosfz = Ho = 2.5. The electric field will be x directed, and is E,;, = n(2.5)e /F* —
n(2.5)etiP? = (2j)n(2.5) sin Bz. Giventheelectricfield amplitudeof 2kV/m, wewrite2x 10° =

5n, or n = 4002. Now n = 400 = no,/ i, /€, and we also have B = 30 = (w/c),/LreR. We
solve these two equations simultaneously for ug and €} to find g = 1.91 and €}, = 1.70.
Therefore u = 1.91 x 47 x 1077 = 2.40 uH/m and ¢’ = 1.70 x 8.854 x 1012 = 15.1 pF/m.

b) E: From part a, electric field in phasor form is E,; = j2sin Bz kV/m, and so, in real form:
E(z,t) = Re(E,se/?)a, = 2sin Bz Sinwt a, kV/m with  and B as given.

12.5. Theregion z < Oischaracterized by €}, = ugr = 1and e, = 0. Thetotal E field hereis given as the
sum of the two uniform plane waves, E; = 150e /1% a, + (50/20°)e/1% a, V/m.
a) What is the operating frequency? In free space, 8 = ko = 10 = w/c = w/3 x 108. Thus,
w=3x10%s1 or f = w/27m = 4.7 x 108 Hz

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected

wave: Use e
E,  50e/ 1 0 -
P= = 2¢ 2,02 _031+ j011= 110
Eme 150 3 n+ 0
14T 1+0.31+0.11
o (21 ) = 377 — 691+ j177 Q
7 ’7°<1—r) (1—0.31—]'0.31) S S

c) At what value of z (—10cm < z < 0) isthe total electric field intensity a maximum amplitude?
We found the phase of the reflection coefficient to be ¢ = 20° = .349rad, and we use
—¢ —.349

max = =—=-0017m=-17cm
¢ 28~ 20 —===

12.6. Region 1, z < 0, and region 2, z > O, are described by the following parameters: €7 = 100 pF/m,
pu1=25uH/m, €] =0, e, = 200 pF/m, 2 = 50 uH/m, and €5 /¢5 = 0.5.
If Ef = 600e=%% cos(5 x 107 — B1z)a, V/m, find:
@) a1: From Eq. (35), Chapter 11, we note that since ] = 0, it follows that o1 = 0.
b) B1: 1 = wy/p1€] = (5 x 10%9),/(25 x 10-6)(100 x 10-12) = 2.50 x 10° rad/m.

0) Ej; = 600¢ /250104, v/ /m,

d) E,;: Tofindthis, we need to evaluate the refl ection coefficient, which means that we first need the
two intrinsic impedances. First, n1 = /j11/€; = /(25 x 10-6)/(100 x 10-12) = 500.
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12.6d) (continued) Next, using Eq. (39), Chapter 11,

12 1 50x 106 1 .
_ K2 — = 460 + j109
12 €5 /11— j(ey/€h) 2x 10710 y1-j05 !
Then
- 460 4 j109 — 500 104°
polezm _ 40+ = —2.83x 1072 + j1.16 x 107! = 0.120¢/1%*

n2+n1 460+ j109 + 500

Now we multiply Ejl by I" and reverse the propagation direction to obtain

E;p = 71.8¢/104 ¢/25:10% v /m

e) E/,: Thiswave will experience lossin region 2, along with a different phase constant. We need
to evaluate oz and B». First, using Eq. (35), Chapter 11,

1/2
ILZG/ el 2
o) =W £e2 1+ (—3) -1
2 €

6 —12 1/2
= (5x 1010)\/(50 < 10 )(2200 x 1077 [\/1 t (0572 — 1] "% _ 1,21 x 10° Np/m

Then, using Eq. (36), Chapter 11,

1/2
/ 7N 2
B2 = w/’“‘zTez |:\/l+ C—Z) + 1} — 5.15 x 10° rad/m
2

Then, the transmission coefficient will be

1=14T=1-283x10"2+ j1.16 x 101 = 0.972¢/"
The complex amplitude of Ejz is then found by multiplying the amplitude of Ejl by z. Thefield
in region 2 is then constructed by using the resulting amplitude, along with the attenuation and
phase constants that are appropriate for region 2. Theresult is

E+2 — 587, 121x10% ,j7° ,—j5.15x10%; V/m
N

12.7. The semi-infiniteregionsz < 0Oandz > 1 marefreespace. For0 < z < 1m, e}e =4, ug =1,

and e = 0. A uniform plane wave with w = 4 x 108 rad/sistravelling in the a, direction toward the
interfaceat z = 0.

a) Find the standing wave ratio in each of the three regions. First we find the phase constant in the
middle region,
O\[€R  2(4 x 108)

P2 = c  3x108

= 2.67rad/m
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12.7a. (continued) Then, withthemiddlelayerthicknessof 1 m, Sod = 2.67 rad. Also, theintrinsicimpedance

12.8.

12.9.

of the middle layer isn2 = no/,/€x = no/2. We now find the input impedance:

2

_— [nocos(ﬁzd)—i-jnzsin(ﬁzd)] 377 [2cos(2.67)+jsin(2.67)

— = —— ] =231+ j141
n2 CoS(Bad) + jno SiN(Bad) C0S(2.67) + j29In(2.67)
Now, at the first interface,

Nin —no0 _ 231+ j141—-377
Nin +n0 231+ j1414+377

o = —.176 + j.273 = .325/123°

The standing wave ratio measured in region 1 is thus

1+ | 1+ 0.325
1+ 1+ _ 196

LT M 1-03% =

In region 2 the standing wave ratio is found by considering the reflection coefficient for wavesincident
from region 2 on the second interface:

_Mmo—m/2 _1-1/2 1

r — _ =
B o+no/2 1412 3
Then
1+1/3
§2 = =2
1-1/3 -~

Finally, s3 = 1, since no reflected waves exist in region 3.

b) Find the location of the maximum |E| for z < O that is nearest to z = 0. We note that the phase
of ' is¢ = 123° = 2.15rad. Thus

—¢ 215

Zmax = — = =—.81m
28 24/3) —

A wave starts at point a, propagates 100m through a lossy dielectric for which o = 0.5 Np/m, reflects
at normal incidence at a boundary at which I' = 0.3 + 0.4, and then returns to point a. Calculate the
ratio of thefinal power to the incident power after thisround trip: Final power, Py, and incident power,
P;, are related through

P
Pp = Pe LD Re 2L = 7{” — |0.3 4 j0.42.7209100 _ 35, 10-881)
Try measuring that.

Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (u = g, €’ = 0). A uniform plane
wave traveling in the a, direction has aradian frequency of 3 x 10%° rad/s. Its wavelengths in the two
regionsare A1 = 5cmand A2 = 3 cm. What percentage of the energy incident on the boundary is

a) reflected; We first note that
27c\ 2 27c)\ 2
ri=—] and e =—
€R1 (Mw) €R2 <A2w)
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12.9a. (continued) Therefore €y, /€, = (A2/11)2. Then with i = uo in both regions, we find

p_m—m _ noy/1/€ga = ’70\/1/le _ \/6321/6}32_ 1 _ (2/a) -1
2T g 1/6532""70\/1/6;31 \/eﬁel/ffez"‘l (Ga/r) +1
_)\.2_)\.1_3_5_ 1
2+ 345 4

The fraction of the incident energy that is reflected isthen |I'|2 = 1/16 = 6.25 x 102,

b) transmitted? We use part ¢ and find the transmitted fraction to be
1—|T')?2 = 15/16 = 0.938.

¢) What isthe standing wave ratio in region 1? Use

_1+r 1+1/4
S 1—-r 1-1/4

12.10. InFig. 12.1, let region 2 be free space, while ug1 = 1, €, = 0, and €, isunknown. Find e, if
a) theamplitude of E] isone-half that of Ef: Since region 2 is free space, the reflection coefficient

IS
ETl  mo—m M0 M0/\/€rr  yer—1 1 /
YT T orm o =2 7 m=2
1 770+770/ €Rr1 €R1+1

b) Pi,,, isone-halfof P’ : Thistime

2
/ JR—
|F|2 — —VeRll — }

€p1+1 2

/

= €R1=3—4

C) |E1lmin isone-haf |E1|pq: Use

|El|max — = 1+ |F| _
|E1lmin 1T

m
=~
[y

-1
= — = E;elzé
1+1

1N

Il
!
|
wl -
m
o

12.11. A 150 MHz uniform planewavein normally-incident fromair onto amaterial whoseintrinsicimpedance
is unknown. Measurements yield a standing wave ratio of 3 and the appearance of an electric field
minimum at 0.3 wavelengths in front of the interface. Determine the impedance of the unknown
material: First, the field minimum is used to find the phase of the reflection coefficient, where

1
Zmin:_%(¢+ﬂ)=—0.3)n = (]5:027[

where 8 = 27 /) has been used. Next,




12.11. (continued) Sowe now have
I = 0.5/02r — 10
Nu + Mo
We solve for 5, to find
ny = no(L.70+ j1.33) = 641 + ;501 Q2

12.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For
seawater, o =4 S/m, and ¢, = 78.
a) Determine the fractions of the incident power that are reflected and transmitted: First we find the
loss tangent:
o 4
we’  2m(50 x 10°)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor
at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic impedance is
ns = /mfu/o L+ j), and the reflection coefficient becomes

_ ATIT A+ ) = o
VETIT L+ ) + 110

184

where /7 fiujo = /7 (50 x 108) (4 x 10-7)/4 = 7.0. The fraction of the power reflected is

P pp = WEIRG - nol2 +7fujo  [7.0— 3772 +49.0

P, WA fnjo + o2+ rfujo  [7.04+ 37712 +49.0 =093

The transmitted fraction is then

P
F’:l_|r|2:1—0.93=0._07

i

b) Qualitatively, how will these answers change (if at all) as the frequency is increased? Within
the limits of our good conductor approximation (loss tangent greater than about ten), the reflected
power fraction, using theformuladerived in part a, isfound to decrease with increasing frequency.
The transmitted power fraction thus increases.

12.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab of plex-
iglas (e, = 3.45, ¢ = 0). Calculate the fractions of the incident power that are reflected and trans-
mitted. Also, describe the polarizations of the reflected and transmitted waves. First, the impedance of
the plexiglaswill ben = ng/+/3.45 = 2032. Then

203 — 377
==~ _030
203 + 377

The reflected power fraction is thus [I'|2 = 0.09. The total eectric field in the plane of the interface
must rotate in the same direction as the incident field, in order to continually satisfy the boundary
condition of tangential electric field continuity across the interface. Therefore, the reflected wave will
haveto beleft circularly polarized in order to make this happen. The transmitted power fraction is now

1—|T'|? = 0.91. The transmitted field will be right circularly polarized (as the incident field) for the
same reasons.
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12.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect conductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume positive
z travel for the incident electric field. Then, with reflection coefficient, I' = —1, the incident and
reflected fields will add to give the total field:

Eior = Ei + Er = Eo(ac + jay)e /P — Eo(a, + jay)et/F*

=Ep (e_j’sz — ejﬁz) a, +Jj (e_jﬂZ — ejﬁz) a, | = 2Epsin(Bz) [ay — jax]
~— —_—
—2jsin(Bz) —2jsin(Bz)

b) Determine thereal instantaneous form of the result of part a:

E(z,1) = Re{Ew,ef“”} = 2Epsin(Bz) [cos(wt)ay + sin(wt)ax]

¢) Describe the wave that is formed: This is a standing wave exhibiting circular polarization in
time. At each location along the 7 axis, the field vector rotates clockwise in the xy plane, and has
amplitude (constant with time) given by 2Eqsin(8z).

12.15. Consider theseregionsinwhiche” = 0: region 1, z < 0, u1 = 4uH/m and €; = 10 pF/m; region 2,
O<z<b6em, ux=2uH/m,e,=25pF/m;region3,z > 6cm, u3 = pu1 and eg = €.
a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto the
boundary at z = 0 will have no reflection? This frequency gives the condition 8>d = 7, where
d = 6.¢cm, and B2 = w,/ 26, Therefore

1
Bod =1 = w=

T
- = f= = 1.2 GHz
(.06) /1126 0.12/(2 x 10-6)(25 x 10-12) —

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
B2 = (2r x 5 x 107),/(2 x 10-6)(25 x 10-12) = 2.22 rad/m. Thus B2d = 2.22(.06) = 0.133.
The intrinsic impedance of regions 1 and 3isn; = n3 = /(4 x 10-6)/(10-11) = 632Q. The
input impedance at the first interface is now

pin = 2 3[632cos(.133) + j283sin(.133)
" 283 c0s(.133) + j632sin(.133)
The reflection coefficient is now

Nin =11 _ 589 — ]:138— 632 12/ 17

nin +m1 589 — j138 + 632

The standing wave ratio is now

] — 589 — j138 = 605/ — .23

I' =

1 .
RS
1—|1 1-.12 ==

12.16. A uniform plane wave in air is normally-incident onto alossless dielectric plate of thickness A/8, and
of intrinsic impedance n = 260 2. Determine the standing wave ratio in front of the plate. Also find
the fraction of the incident power that is transmitted to the other side of the plate: With the athickness
of 1/8, we have Bd = m/4, and so cos(B8d) = sin(Bd) = 1+/2. The input impedance thus becomes

377 + j260

=60 | 2L/
in [26o+ 377

]:243—]'929
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12.16. (continued)
The reflection coefficient is then

(243 j92) - 377
T (243- j92) + 377

—0.19 — j0.18 = 0.26/ — 2.4rad

Therefore
_1+.26

= — 2: — 2:
T og =L7and 1-|P?=1-(26%=09

N

12.17. Repeat Problem 12.16 for the casesin which the frequency is
a) doubled: If thisistrue, thend = /4, andthusn;, = (260)2/377 = 179. Thereflection coefficient

becomes
179 — 377 _ 1+.36_

=————=-036 = s=
179 + 377 g
Thenl— |12 =1— (.36)2 = 0.87.

=21
1-36

b) quadrupled: Now, d = A/2, and so we have a half-wave section surrounded by air. Transmission
will betotal, andsos = 1and1— |T|2 = 1.

12.18. InFig. 12.6, let n1 = n3 = 37722, and n2 = 0.4n1. A uniform plane wave is normally incident from
the left, as shown. Plot a curve of the standing waveratio, s, in the region to the | eft:
a) asafunction of [ if f = 2.5GHz: With n1 = n3 = no and with n2 = 0.4no, Eq. (41) becomes

04 cos(Bl) + jO.4sin(Bl) 0.4cos(Bl) — jsin(Bl)
Nin = 710 [0.4cos(ﬂl) ¥ jsin(/Sl)] x [0.4cos(ﬂl) - jsin(ﬁl)]
B 1— j1.05sin(281)
=0 [cosz(ﬂl) n 6.255in2(ﬂl)]

ThenT = (n;, — no)/(Min + no), from which we find

| = T = {[1 — co(Bl) — 6.255n%(BD)]% + (1.05)Zsin2(2[31):|1/2

[1+ co?(Bl) + 6.25sin%(B1)]° + (1.05)2 sin?(2p1)

Thens = (1 +|I"|)/(1 — |T']). Now for auniform plane wave, 8 = w./ite = nw/c. Given that
n2 = 0.4no = no/n, wefindn = 2.5 (assuming i = o). Thus, at 2.5 GHz,

2.5)(27)(2.5 x 10° _ .
pr ="y = 2DE@OECSXA0), ) 051 (inm) = 0.12951 (f in cm)
c 3% 10°

Using thisin the expression for |T°|, and calculating s asafunction of 7 in cm leadsto the first plot
shown on the next page.

b) asafunction of frequency if I = 2cm. In this case we use

_(25)(27)(0.02)

— -10 - _ _
Bl = 3% 108 f=104x10"" f (finHz) =0.104 f (f in GHz)

Using thisinthe expression for |T"|, and calculating s asafunction of f in GHz leadsto the second
plot shown on the next page. MathCad was used in both cases.
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12.18 (continued) Plotsfor partsa and b

Problem 12.18a Problem 12.18b
3 T T T T 8 T T T
ol ot - 7 — -
8 [}
g B=1
& 2
L o
3 5
3 =
£ 2
b= =]
5 8
Lz 7
0 i | ] i 0 } | i
0 10 20 30 40 50 0 20 40 60
Length (cm) : Frequency (GHz)

12.19. You are given four slabs of lossless dielectric, al with the same intrinsic impedance, », known to
be different from that of free space. The thickness of each slab is A /4, where A is the wavelength as
measured intheslab material. Thedabsareto bepositioned parallel to oneanother, and the combination
liesin the path of a uniform plane wave, normally-incident. The slabs are to be arranged such that the
air spaces between them are either zero, one-quarter wavelength, or one-half wavelength in thickness.
Specify an arrangement of slabs and air spaces such that

a) the waveistotaly transmitted through the stack: In this case, we look for a combination of half-
wavesections. Lettheinter-dabdistancesbeds, d», andds (fromlefttoright). Two possibilitiesare
i.) d1 = d> = d3 = 0, thuscreating asingle section of thickness A, orii.) dy = d3 =0, d» = 1/2,
thus yielding two half-wave sections separated by a half-wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here is to make
d1 = do = d3 = A /4. Thusevery thicknessisone-quarter wavelength. Theimpedancestransform

asfollows: First, theinput impedance at the front surface of the last slab (dlab 4) isn;,.1 = n%/no.
We transform this back to the back surface of slab 3, moving through a distance of A/4 in free
SPace: nin,2 = 13/nin,1 = n3/n> Wenext transform thisimpedance to the front surface of dab 3,
producing nin.3 = n?/nin,2 = n*/n3. We continue in this manner until reaching the front surface
of slab 1, where we find 7, 7 = 18/ng. Assuming < no, theratio n” /n~* becomes smaller as
n increases (as the number of slabsincreases). The reflection coefficient for wavesincident on the
front slab thus gets close to unity, and approaches 1 as the number of slabs approaches infinity.

12.20. The 50MHz plane wave of Problem 12.12 is incident onto the ocean surface at an angle to the normal
of 60°. Determine the fractions of the incident power that are reflected and transmitted for
a) spolarization: To review Problem 12, we first we find the loss tangent:

4
o _ =184
we'  2m(50 x 108)(78)(8.854 x 10-12)

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor at
50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with © = o, the intrinsic
impedanceisn, = o/mfu/o(1+ j) =7.0(1+ j).
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12.20a. (continued)
Next we need the angle of refraction, which means that we need to know the refractive index of
seawater at 50MHz. For auniform plane wave in a good conductor, the phase constant is

ﬂzwivnf,uo— = Nfgeq =C ﬂ:268
c 4r f

Then, using Snell’s law, the angle of refraction is found:

Nsea

ni

sinfy =

Sinfy = 26.8sN(60°) = 6, = 1.9°

Thisangle is small enough so that cos@, = 1. Therefore, for s polarization,

o—ns1  7.0(1+ j) — 377/ cos60°
o M2 — st _ 70+ ) / — —0.98 + j0.018 = 0.98/179°

I', = = =
ST 2+ m1 7.0(L+ j) + 377/ cos60°

The fraction of the power reflected is now |Ty|? = 0.96. The fraction transmitted is then 0.04.
b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for p polar-
izationis
ro= np2 —np1 _ 1.0(1+ j) —377cos60°
P 2+ mp 7.0(1+ j) + 377cos60°

= —0.93 + j0.069 = 0.93/176°

The fraction of the power reflected isnow |I"), |2 = 0.86. Thefraction transmitted is then 0.14.

12.21. A right-circularly polarized plane wave in air is incident at Brewster's angle onto a semi-infinite slab
of plexiglas (e, = 3.45, €z =0, u = o).

a) Determine the fractions of the incident power that are reflected and transmitted: In plexiglas,
Brewster's angle is 05 = 61 = tan (e} /€py) = tan~1(+/3.45) = 61.7°. Then the angle of
refraction is 6> = 90° — 0p (see Example 12.9), or 6, = 28.3°. With incidence at Brewster’s
angle, al p-polarized power will be transmitted — only s-polarized power will bereflected. This
is found through

m2s —n1s _ -614no — 2.11ng

$T m2s +m1s  -61dng + 2.11ng

where n1, = n15ec61 = 1o sec(61.7°) = 2.11x,

and n2;, = n2seclr = (no/+/3.45) sec(28.3°) = 0.614n9. Now, the reflected power fraction
is|I'|2 = (—.549)2 = .302. Since the wave is circularly-polarized, the s-polarized component
represents one-half the total incident wave power, and so the fraction of the total power that is
reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that is transmitted is then
the remainder, or 85%.

I = —0.549

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized com-
ponent is transmitted, the reflected wave will be entirely s-polarized (linear). The transmitted
wave, while having all the incident p-polarized power, will have areduced s-component, and so
this wave will be right-elliptically polarized.
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12.22.

12.23.

12.24.

12.25.

A dielectric waveguide is shown in Fig. 12.18 with refractive indices as labeled. Incident light enters
the guide at angle ¢ from the front surface normal as shown. Once inside, the light totally reflects
a the upper n1 — n» interface, where n1 > n». All subsequent reflections from the upper an lower
boundaries will be total as well, and so the light is confined to the guide. Express, in terms of n; and
n2, the maximum value of ¢ such that total confinement will occur, with ng = 1. The quantity sin¢ is
known as the numerical aperture of the guide.

From the illustration we see that ¢ maximizes when 61 is at its minimum value. This minimum will
be the critical angle for the ny — n2 interface, wheresinf, = sin61 = na/nj. Let the refracted angle
to the right of the vertical interface (not shown) be ¢, where ngsings = n1 Sin¢2. Then we see that
¢2 + 61 = 90°, and so Sinf; = cos¢2. Now, the numerical aperture becomes

. ny . .
SING1max = n—OS|n¢2 =n1C0801 =niy/1— sm291 = nl\/l— (np/n1)? = \/n% — n%

Finaly, ¢1nax = Sin~t ( n% — n%) isthe numerical aperture angle.

Suppose that ¢1 in Fig. 12.18 is Brewster’s angle, and that 6; is the critical angle. Find ng in terms of
n1 and no: With the incoming ray at Brewster's angle, the refracted angle of this ray (measured from
the inside normal to the front surface) will be 90° — ¢1. Therefore, ¢1 = 61, and thussing; = sin6;.
Thus

SN¢g1 = ——— =9NnbH; = = no = (n1/n2)y/n7 —n5

/.2 2 ni
no—l-n1

Alternatively, we could have used the result of Problem 12.22, in which it was found that sin¢; =

(1/n0),/n? — n3, which we then set equal to sinf; = n/n1 to get the same result.

A Brewster prismis designed to pass p-polarized light without any reflective loss. The prism of Fig.
12.19 ismade of glass (n = 1.45), and isin air. Considering the light path shown, determine the apex
angle, «: With entrance and exit rays at Brewster's angle (to eliminate reflective |0ss), the interior ray
must be horizontal, or parallel to the bottom surface of the prism. From the geometry, the angle between
the interior ray and the normal to the prism surfaces that it intersectsis «/2. Since this angle is also
Brewster’s angle, we may write:

azzsin—1<

1 1
—2sn 1 —— ) =121rad = 69.2°
Vit n2) (,/1+ (1.45)2> -

In the Brewster prism of Fig. 12.19, determine for s-polarized light the fraction of the incident power
that is transmitted through the prism: Weuse I'y = (52 — n51)/(ns2 + ns1), Where

12 n2 n %
Ng2 = = = —=V1+n
Y cosp2)  n/V1t+nZ  n?

and

n n J1gn2
Ns1 = = =novl+n
cos(0p1)  1/v/1+ n2
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12.25.

12.26.

12.27.

(continued) Thus, at thefirstinterface, I' = (1—n?)/(14n?). Atthe second interface, I" will be equal
but of opposite sign to the above value. The power transmission coefficient through each interface is
— |T"|2, so that for both interfaces, we have, with n = 1.45:

2
P 2 2_1\?
s :<1—|F|2> —l1-(2==) | =076
Pine n2+1

Show how asingle block of glass can be used to turn a p-polarized beam of iight through 180°, with the
light suffering, in principle, zero reflective loss. The light isincident from air, and the returning beam
(alsoin air) may be displaced sideways from the incident beam. Specify al pertinent angles and use
n = 1.45for glass. More than one design is possible here.

The prism below isdesigned such that light enters at Brewster’s angle, and onceinside, isturned around
using total reflection. Using the result of Example 12.9, we find that with glass, 65 = 55.4°, which, by
the geometry, is also the incident angle for total reflection at the back of the prism. For this to work,
the Brewster angle must be greater than or equal to the critical angle. Thisisin fact the case, since
0. = sin"Y(na/n1) = sin~1(1/1.45) = 43.6°.

Using Eg. (59) in Chapter 11 as a starting point, determine the ratio of the group and phase velocities
of an electromagnetic wave in a good conductor. Assume conductivity does not vary with frequency:
In agood conductor:

B=Jafuo = M7 ﬁ:%[w]—l/zﬂ

2 dw 2 2
Thus
< ,8) Za) and 1) 1) 2w
_— et = 1) = = = —
d no & P B Jouo /2 no
Therefore vg /v, =
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12.28. Over acertain frequency range, the refractive index of a certain material varies approximately linearly
with frequency: n(w) = n, + np(w — w,), wheren,, np, and w,, are constants. Using 8 = nw/c:
a) determine the group velocity as afunction (or perhaps not afunction) of frequency:
vy = (df/dw), where

do dow

g d |nqw n np(w — wg)w
c c

} = %[”a + np (20 — wq)]

s0 that
vg(@) = ¢[ng +np 2w — w,)] ™t

b) determine the group dispersion parameter, 3>:

d? d 1
= d_a)i v doc [na + np (20 — w4)] oy 2np/c

B2

¢) Discusstheimplicationsof theseresults, if any, on pulsebroadening: The point of thisproblemwas
to show that higher order terms (involving d®8/d® and higher) in the Taylor series expansion,
Eqg. (89), do not exist if the refractive index varies linearly with w. These higher order terms
would be necessary in casesinvolving pulses of exremely large bandwidth, or in media exhibiting
complicated variationsin their w-p curves over relatively small frequency ranges. With d28/dw?
constant, the three-term Taylor expansion of Eq. (89) describes the phase constant of this medium
exactly. The pulse will broaden and will acquire afrequency sweep (chirp) that is precisaly linear
withtime. Additionally, a pulse of agiven bandwidth will broaden by the same amount, regardless
of what carrier frequency is used.

12.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which > = 10 ps?/km.
Over what distance will the pulse spread to twice its initial width? After propagation, the width is

T' = /T2 + (A1)2 = 2T. Thus At = /3T, where At = Boz/T. Therefore

2 2
@—@Torz:ﬁT _ /36ps°® _

= = =4.3Kk
T Bo 10ps?/km Skm

12.30. A T = 20 pstransform-limited pulse propagates through 10 km of a dispersive channel for which 8, =
12 ps?/km. The pulse then propagates through a second 10 km channel for which > = —12 ps?/km.
Describe the pulse at the output of the second channel and give a physical explanation for what hap-
pened.

Our theory of pulse spreading will allow for changesin g2 down the length of the channel. In fact, we
may writein genera:

1 L
AT = ?/(; B2(2) dz

Having B> change sign at the midpoint, yields a zero A, and so the pulse emerges from the output
unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases with time over
the pulse envelope) during the first half of the channel. When B> switches sign, the pulse begins to
acquire a negative chirp in the second half, which, over an equal distance, will completely eliminate
the chirp acquired during the first half. The pulse, if originally transform-limited at input, will emerge,
again transform-limited, at its original width. More generally, complete dispersion compensation is
achieved using atwo-segment channel when oL = —B,L’, assuming dispersion terms of higher order
than 8> do not exist.
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CHAPTER 13

13.1. The parameters of a certain transmission line operating at 6 x 108 rad/sare L = 0.4 uH/m, C =
40 pF/m, G = 80 mS/m, and R = 20 Q2/m.
a) Findy, «, B8, A, and Zg: We use

y =vZY = /(R + joL)(G + joC)

= \/ [20 + j (6 x 108)(0.4 x 10-6)][80 x 10-3 + j (6 x 108)(40 x 10-12)]
=28+ j35mi=a+ /B

Therefore, « = 2.8 Np/m, g = 3.5rad/m,and A = 27/8 = 1.8 m. Findly,

Zz R+ joL 20+ j2.4 x 102 .
Zo=.2 = - — 444 j30Q
0=y \/G—i—ja)C \/sox 103+ j24x102 /0%

b) If avoltage wave travels 20 m down the line, what percentage of the original amplitude remains,
and by how many degreesisit phase shifted? First,

Vao _

> e ¢l = ¢80 = 48 x 1072 or 4.8 x 1072 percent!
0

Then the phase shift is given by 8L, which in degrees becomes

2 2

¢ = BL (360) = (3.5)(20) (360> = 4.0 x 10° degrees

13.2. A lossless transmission line with Zg = 60 2 is being operated at 60 MHz. The velocity on thelineis
3 x 108 m/s. If thelineis short-circuited at z = 0, find Z;,, at:
a) z = —1m: We use the expression for input impedance (Eg. 12), under the conditions Z> = 60
and Z3 = O:

g g [chos(ﬁl)Jerzsin(ﬂl)
in =221 7 cos(Bl) + j ZzSn(Bl)

where I = —z, and where the phase constant is 8 = 27¢/f = 27(3 x 108)/(6 x 10) =
(2/5)7 rad/m. Now, withz = —1 (I = 1), wefind Z;, = j60tan(2x/5) = j184.6 2.

b) z=-2m: Z;, = j60tan(4r/5) = —j43.6 Q
Cc) z=-25m: Z;, = j60tan(5zx/5) =0
d) z=-125m: Z;, = j60tan(xr/2) = joo 2 (Open circuit)

} — j60tan(Bl)

13.3. The characteristic impedance of a certain lossless transmission lineis 72 . If L = 0.5uH/m, find:
a) C:UseZo=./L/C,o0r

L _5x10_7

C=—=""1—
z3 (72)2

= 9.6 x 1071 F/m = 96 pF/m
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13.3b) v,:
1 1

VIC  JBx10-7)(96 x 10-1)

vy = = 1.44 x 108 m/s

c) gif f =80MHz

27 x 80 x 10°
=oVvVIilC=—"————44-—/-=3.
'B @ ¢ 1.44 x 108 w

d) Thelineisterminated with aload of 60 2. Find " and s:

60 — 72 1+T] 1+4.09
- — —0.09 - - =12
60+72 —— STIor T 109 =

13.4. A lossless transmission line having Zo = 120%2 is operating at w = 5 x 108 rad/s. If the velocity on
thelineis 2.4 x 108 my/s, find:
a) L: With Zg= /L/C andv = 1/+/LC,wefind L = Zo/v = 120/2.4 x 10% = 0.50 H/m.

b) C: Use Zgv = V/L/C/VLC = C = 1/(Zov) = [120(2.4 x 108)]~1 = 35 pF/m.

¢) Let Z; berepresented by an inductance of 0.6 H in series with a 100-$2 resistance. Find I and

s: The inductive impedanceis jowL = j(5 x 108)(0.6 x 10-%) = ;300. So the load impedance
isZy = 100 + ;300 2. Now

r_ Zp —Zo 100+ 7300 — 120

"~ Zp+Zo 100+ j300+ 120

= 0.62 + j0.52 = 0.808/40°

Then
_1+|r] 140808

T 11 T 1-0808

=94

13.5. Two characteristics of a certain lossless transmission lineare Zg =50 Q andy = 0+ j0.2r m~t at

f =60 MHz.
a) Find L and C for theline: Wehave 8 = 0.27 = w+/LC and Zp =50 = /L/C. Thus
B B 0.27 1 10
— =wC C = = = - x 10" = 33.3pF/m
7S wZo (27 x 60 x 10(50) 3 < 33.3pF/m

Then L = CZ2 = (33.3 x 1071?)(50)? = 8.33 x 10~8 H/m = 83.3nH/m.

b) Aload, Z; = 60+ j80 Q2 islocated at z = 0. What is the shortest distance from the load to a
point at which Z;,, = R;,, + j0? | will do this using two different methods:

The Hard Way: We use the general expression
ZL+jZo tan(ﬂl)]
Zo+ jZptan(Bl)
We can then normalize the impedances with respect to Zg and write

Zin _ [ (Z1/Zo0) + j tan(Bl) } _ [ 21 + j tan(Bl) ]
Zo 1+ j(ZL/Zo) tan(Bl) 1+ jzp tan(Bl)
wherez; = (60+ j80)/50 = 1.2+ j1.6.

Zin = ZO|:

Zin =
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13.5b. (continued) Using this, and defining x = tan(g1), wefind

[ 124 (L6+x) J[(1—16x) — jL2x
“n = 1= 16x0) +jLl2x || (1= 16x) — jl2x

The second bracketed term is afactor of one, composed of the complex conjugate of the denomi-
nator of the first term, divided by itself. Carrying out this product, we find

o [1.2(1 —16x) +1.2v(L6 4+ x) — j[(1.2)%x — (1.6 4 x)(1 — 1.6x)] }
Lin = (1— 1.6x)2 1 (L2)%x2

We require the imaginary part to be zero. Thus

(1.2)% — (16+x)(1—16x)=0 = 16x°+3x—16=0

-3+ .,/9+4(1.6)2
x = tan(Bl) = AT 433 —23)
2(1.6)

We take the positive root, and find

0.409
Bl =tan~1(433) = 0409 = = ——— =0.65m=65cm

0.27

The Easy Way: We find

60+ j80 — 50

= I T O 0,405 + j0.432 = 0.59/0.818
60 + /80 + 50 +J

Thus¢ = 0.818rad, and we usethefact that the input impedance will be purely real at thelocation
of a voltage minimum or maximum. The first voltage maximum will occur at a distance in front
of the load given by

10) 0.818

@ _ — 065
28 = 2(0.27) m

Zmax =

13.6. The propagation constant of alossy transmission lineis 1+ j2 m~1, and its characteristic impedance
is20+ jOQ atw = 1 Mrad/s. Find L, C, R, and G for theline: Begin with

R+ joL
Zo= |~ I 50 o R4 jwL = 400G + joC) D
G+ joL

Y2 =(R+ joL)(G + joC) = (1+ j2)°> = 400(G + joC)?> = (1+ j2)° 2)

Then

where (1) has been used. Eq. 2 now becomes G + jwC = (1+ j2)/20. Equating real and imaginary
partsleadsto G = .05S/mand C = 1/(10w) = 10~7 = 0.1 uF/m.
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13.6. (continued) Now, (1) becomes

R+ joL R+]a)L . :
0= |——V2 _ 20 40 =R L
1+ ;2 1+r2 ot/ tJjo

Again, equating real and imaginary partsleadsto R = 20Q2/mand L = 40/w = 40 uH/m.

13.7. The dimensions of the outer conductor of a coaxial cableareb and ¢, ¢ > b. Assume o = o, and let
uw = uo. Find the magnetic energy stored per unit length in the region b < r < ¢ for a uniformly
distributed total current I flowing in opposite directionsin the inner and outer conductors: First, from
the inner conductor, the magnetic field will be

Hi=—
! 20

The contribution from the outer conductor to the magnetic field within that conductor is found from
Ampere'scircuital law to be:

Thetotal magnetic field within the outer conductor will be the sum of the two fields, or

Hr=Hy+Hy = — | S =7
T=H1 2_271,0 2_ 2 ay

C

The energy density is
2

1 1272 _ o2
2 MO |:C ,0:| J/m3

wn = SOl =g |2y

The stored energy per unit length in the outer conductor is now

2 2 2 c 4
mol= [ ¢ —p mol / c 2 3
W, = dopdpd; = —————— R d
m / f / 87T2 [C —b2i| pdpdodz 42— b2 ), [p c“p+p° | dp

_ wol? c b% — (3/4)c?
= [<c g " (5) + W} ’

13.8. The conductors of a coaxial transmission line are copper (0. = 5.8 x 10~/ S/m) and the dielectric is
polyethylene (¢, = 2.26, o/we’ = 0.0002). If the inner radius of the outer conductor is 4 mm, find
the radius of the inner conductor so that (assuming alossless line):

a) Zo=50Q: Use

1 27 /€7 (50)
Zo=— ﬁ/ln(é)zso = |n(9):—R:1.25
€ a a

2 377

Thusb/a = 2% = 3.50, or a = 4/3.50 = 1.142mm
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13.8b. C = 100 pF/m: Begin with

B 2ne’
~In(b/a)

—10710 = |n <9) — 27(2.26)(8.854 x 1072) = 1.257
a

Sob/a = 1?7 =351, ora = 4/3.51 = 1.138 mm.
¢) L=02uH/m: Use

po. (b 6 b 27(0.2 x 1079)
L=—In|-)=02x10 nf-)=———=1
2w (a) x = (a) 4 x 107

Thush/a = ¢! = 2.718, or a = b/2.718 = 1.472mm.

13.9. Two aluminum-clad steel conductors are used to construct a two-wire transmission line. Let o4 =

3.8x 10" Sm, o5; = 5x 10° S/m, and us; = 100 uH/m. Theradiusof the steel wireis0.5in., and the
aluminum coating is0.05in. thick. Thedielectricisair, and the center-to-center wire separationis4in.
Find C, L, G, and R for thelineat 10 MHz: Thefirst question iswhether we are in the high frequency
or low freguency regime. Calculation of the skin depth, 8, will tell us. We have, for aluminum,

1 1

6 = =
Vrfrooar  /7(107) (47 x 10-7)(3.8 x 107)

—258x10°m

so we are clearly in the high frequency regime, where uniform current distributions cannot be assumed.
Furthermore, the skin depth is considerably less than the aluminum layer thickness, so the bulk of the
current resides in the auminum, and we may neglect the steel. Assuming solid aluminum wires of
radiusa = 0.5+ 0.05 = 0.55in = 0.014 m, the resistance of the two-wire lineis now

1 1
wados  w(.014)(2.58 x 107%)(3.8 x 107) ———

Next, since the dielectric is air, no leakage will occur from wire to wire, and so G = 0 mho/m. Now
the capacitance will be

8.85 x 10712
€= nfo == Xl x =142 x 100 F/m = 14.2 pF/m
cosh™(d/2a)  cosh™!(4/(2 x 0.55)) il VAL

Finally, the inductance per unit length will be

4 x 1077
L =0 coshd/2a) = 22X cosh (4/(2 x 0.55)) = 7.86 x 10~ H/m = 0.786 uH/m
T T -
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13.10. Each conductor of atwo-wire transmission line has aradius of 0.5mm; their center-to-center distance
is0.8cm. Let f = 150M Hz and assume o = 0 and o, — oo (note error in problem statement). Find
the dielectric constant of the insulating medium if

a) Zp=300Q: Use

1 d 1207 8
300 = = |-H9 cosn™ Jebo==—=——cosh™t(—— ) =1107 =123
T\ €xeo <2a) = VT 3007 <2(.5)> = R =

b) C =20 pF/m: Use

! 20 x 10712
e = =" cosh }(8) = 1.99

20x10P=—"+—
cosh™(d/2a) TEQ

) v, = 2.6 x 108 m/s:

g\ 2
y :<3.0x10) s

1 1 c
Up = = = = R 3
~LC /,LLO€()6;? /6% 2.6 x 10

13.11. Pertinent dimensions for the transmission line shown in Fig. 13.4areb = 3 mm, andd = 0.2 mm.
The conductors and the dielectric are non-magnetic.
a) If the characteristic impedance of thelineis 15 &, find €},: We use

o fwfdY ,_ (377\°.04
Zo = 6/(b)_15¢e,€_<15 o =28

b) Assume copper conductors and operation at 2 x 108 rad/s. If RC = GL, determine the loss
tangent of the dielectric: For copper, o. = 5.8 x 10’ S/m, and the skin depth is

2 2
8= = =12x107°m
\/ oo, \/ 2x 10%)(4n x 10H(58x 107) "

Then 5 5
0:8b (5.8 x 107)(1.2 x 10-5)(.003) /
Now / 12
b  (2.8)(8.85x 1071%)(3
c= L _ 968X IO _ 37, 100 F/m
d 0.2
and 5
L= ”Zd _ G x 12 )02 _ 641078 H/m
Then, with RC = GL,
RC  (.98)(3.7 x 10719 3 oab
G=—= =44 x 10° mho/m = —
L (8.4 x 10-8) x /m=-y
Thusoy = (4.4 x 107%)(0.2/3) = 2.9 x 10~* S/m. The loss tangent is
—4
L. =24 — 29 x 10 — 5.85 x 1072

we’ (2 x 108)(2.8)(8.85 x 10-12)
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13.12. A transmission line constructed from perfect conductors and an air dielectric is to have a maximum
dimension of 8mmfor itscross-section. Thelineistobeusedat highfrequencies. Specify itsdimensions
ifitis:

a) atwo-wirelinewith Zg = 300 2: With the maximum dimension of 8mm, we have, using (27):

1 /u _1(8—2a 8—2a 3007

Solvefor a tofinda = 0.56 mm. Thend = 8 — 2a = 6.88mm.

b) aplanar linewith Zg = 15Q: In this case our maximum dimension dictates that v/d? + b2 = 8.
So, using (34), we write

[ /64 — b2 15
€

Solving, wefind b = 7.99mm and d = 0.32mm.

c) a72< coax having a zero-thickness outer conductor: With a zero-thickness outer conductor, we
note that the outer radiusis b = 8/2 = 4mm. Using (18), we write

1 b b 27 (72
Zo= 5 ﬁ/ In{~)=72 = In{—) = 7(72) =120 = a=be ?0 =410 =12
2V e a a 1207

Summarizing, a = 1.2Zmmand b = 4mm.

13.13. Theincident voltagewave on acertain losslesstransmission linefor which Zo = 50 Q and v, = 2x 108
m/sis VT (z, t) = 200cos(wt — z) V.
@ Findw: Weknow 8 = 7 = w/v,, S0w = (2 x 10%) = 6.28 x 108 rad/s.
b) Find I7(z, t): Since Zg isrea, we may write

V*t(z, 1)

It(z,1) = =4cos(wt —mwz) A

The section of linefor which z > Oisreplaced by aload Z; =50+ j30 Q2 at z = 0. Find
c) I'.: Thiswill be

50+ j30 — 50
_ 2t = .0825 + j0.275 = 0.287/1.28 rad

L7 50+ j30+50

d) V, (z) = 'L V" (2)e/?P? = 0.287(200)¢/ "%/ 128 = 57.5¢/ (7:+1.28)
e Viatz=-22m:

Vi(—=2.2) = V. (=2.2) + V, (=2.2) = 200e/%?" 4 57.5¢~/(227=128) _ 757 5,/0.63
= 257.5/36°
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13.14. Coaxial lines 1 and 2 have the following parameters. 1 = p2 = po, 01 = 02 = 0, €, = 2.25,
E;QZ =4, a1 = ap = 0.8mm, by = 6mm, bo = 3mM, Z; 2 = Zgp, and Z;1 iS Z;,2.
a) Find Zo1 and Zgp. For either line, we have

Zo 1 ﬁIn<é)= 317 In(é) leading to

=5 /
27\ € a 2 /‘5;{ a

377 6 377 3
Zoi= — in(2)=s069 ad Zp= " In(2)=30790
o V2.5 (.8) 2= a4 <.8)

b) Find s on line 1. Line 1's load is line 2's input impedance (they are connected end-to-end).
Also, sinceline 2 is matched, itsinput impedanceisjust it's characteristic impedance. Therefore,
Z11 = Ziy2 = Zo2. Thereflection coefficient encountered by wavesincident on Z; 1 fromline 1
can now be found, along with the standing wave ratio:

39.7—-80.6 1+.34

_ 397806 5., — 203
39.7+ 80.6 = S

T1-3

'

c) Ifa20cmlengthof linelisinsertedimmediately infrontof Z; 2 and f = 300MHz, finds online2:
Theline 1 length now hasaload impedance of 39.7 €2 and it is20cm long. We need to find itsinput
impedance. At 300 MHz, thefree spacewavelengthis1m. Inline 1, having adielectric constant of
2.25, thewavelengthisi = 1m/+/2.25 = 0.67m. Therefore 81 = 2xl /A = 27 (20)/(67) = 1.87.
We now find the input impedance for this situation through

7 _ 7 Ziacos(Bl) + jZorSIN(B) | 80.6 39.7cos(1.87) + j80.6sin(1.87)
in = A0L| Zicos(Bl) + jZiasn(Bl) | ~ | 80.6c0s(1.87) + j39.75n(1.87)
= 128.7 — j55.8 = 140.3/ — 23.4°

Now for wavesincident at theline 1 - line 2 junction from line 2, the reflection coefficient will be

Zin—Zoz _ 128.7—39.7— j55.8
Zin +Zop 12874 39.7 — j55.8

'y = =0.58 — j0.14 = 0.59/ — 13.7°

The standing wave ratio is now
_1+.59 3.9

1-5 —

N
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13.15. For thetransmission line represented in Fig. 13.26, find Vs, if f =:

a)

b)

60 Hz: At this frequency,

w 27 x 60

B=—

— T —19x10 %rad/m Sopl = (1.9x 107%)(80) = 15x 1074 << 1
v, (2/3)(3x 109) x 107 rad/m So pl = (1.9 x 107°)(80) x107% <<

Thelineisthus essentially alumped circuit, where Z;,, = Z; = 80 Q. Therefore

80
V. =120 =104V
s,out |:12 T 80i| LV

500 kHz: In thiscase

_27'rx5><105

108 = 157 102 rad/s So Bl = 1.57 x 107%(80) = 1.26 rad
X

Now

7. 80cos(1.26) + j50sin(1.26)
" 77| 50cos(1.26) + j80sin(1.26)

The equivalent circuit is now the voltage source driving the series combination of Z;, and the 12
ohm resistor. The voltage across Z;,, isthus

i| =33.17— j9.57 =345/ - .28

Zin 17 — j9.57
vm:lzo[ ]: [ 33 j9.5

_Lin__ — 80.5— j6.46 = 89.7/ — .071
121 Z 12+ 3317 — j9.57] J

The voltage at the line input is now the sum of the forward and backward-propagating waves just
to theright of theinput. We referencetheload at z = 0, and so theinput islocated at z = —80 m.
In general we write Vi, = Vi e /% + V; e/P%, where

80-50 . 3 .
1270

Vo =TwLVy = 80150 0 ~ 13

At z = —80 m we thus have

=42.7— j100V

. 3 89.5 — j6.46
v+ 126, 3 126 +_
Vin =V, [6 + 13 } = Vy = /126 1 (3/13)¢— /126

Now
Vs.out = V0+(1 +T'p) =(42.7—- j100)(1 + 3/(13)) = 134/ — 1.17rad = 52.6 — j123V
As acheck, we can evaluate the average power reaching the load:

1|Vsowl?  1(134)2
Py = = =5 == = 112W
ag.L = 5""R, 2 80

This must be the same power that occurs at the input impedance:

1 1
Pavg.in = 5Re{Vinlj,} = SRe((89.5 — j6.46)(2.54 + j0.54)) = 112 W

where I, = Vin/Zin = (89.5 — j6.46)/(33.17 — j9.57) = 2.54 + j0.54.
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13.16. A 300 chm transmission lineis 0.8 m long and is terminated with a short circuit. The line is operating
in air with awavelength of 0.3 m (incorrectly stated as 0.8 min early printings) and islossless.

a) If theinput voltage amplitudeis 10V, what is the maximum voltage amplitude at any point on the
line? The net voltage anywhere on the lineis the sum of the forward and backward wave voltages,
and is written as V(z) = Vg e /P% 4+ V e/P%. Since the line is short-circuited at the load end
(z =0), wehave Vj” = —V,, and so

V(Z) — V0+ (e_jﬂz _ ejﬁz) — _2.]‘/(;_ Sln(]ﬁz)

We now evaluate the voltage at the input, where z = —0.8m, and A = 0.3m.

27(—0.8) S
IO a7
03 ) JL73V

Vip = —2j V4 sin (
The magnitude of V;,, isgiven as 10V, so we find VO+ = 10/1.73 = 5.78V. The maximum voltage
amplitude on the line will be twice this value (where the sine function is unity),
SO |V |max = 2(5.78) = 11.56 V.

b) What is the current amplitude in the short circuit? At the shorted end, the current will be

Ve Vg 2vf 1156

I — "
L Zo Zo Zo 300

= 0.0394 = 39mA

13.17. Determinetheaveragepower absorbed by eachresistorinFig. 13.27: Theproblemismadeeasier by first
converting the current source/100 ohm resistor combination to its Thevenin equivalent. Thisisa50/0
V voltage source in serieswith the 100 ohm resistor. The next step isto determine the input impedance
of the 2.6A length line, terminated by the 25 ohm resistor: We use gl = (27 /1)(2.6)) = 16.33 rad.
This value, modulo 27 is (by subtracting 27 twice) 3.77 rad. Now

Zin =

[ 25¢0s(3.77) 4+ j50sin(3.77)

_ 337+ 240
50C0s(3.77) + j255in(3.77)} tJ

The equivalent circuit now consists of the series combination of 50 V source, 100 ohm resistor, and
Zin, as caculated above. The current in thiscircuit will be

50

1= — 0.368/ — .178
100 + 33.7 + j24.0

The power dissipated by the 25 ohm resistor is the same as the power dissipated by the real part of Z;,,,
or

1 1
Pos = Pa37 = §|I|2R = E(.368)2(33.7) =2.28W

To find the power dissipated by the 100 ohm resistor, we need to return to the Norton configuration,
with the origina current source in parallel with the 100 ohm resistor, and in paralel with Z;,. The
voltage across the 100 ohm resistor will be the same as that across Z;,,, or

V =17Z;, = (.368/ — .178)(33.7 + j24.0) = 15.2/0.44. The power dissipated by the 100 ohm
resistor is now

1|1V|?  1(15.2)?2
2 R 2 100

Pioo = =116 W
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13.18 Theline shownin Fig. 13.28 islossless. Find s on both sections 1 and 2: For section 2, we consider
the propagation of one forward and one backward wave, comprising the superposition of all reflected
waves from both ends of the section. The ratio of the backward to the forward wave amplitude is given
by the reflection coefficient at the load, which is

50— j100—-50 —; 1 _
L= . = -=-(1-j)
50— j1004+50  1—j 2
Then |I'z| = (1/2)/@A = ))[A + j) = 1//2. Findly
1+ 1+1/42
+IML]  1+1/2 _ 583

§2 = = .
1-1Tl  1-1/v2 —

For section 1, we need the reflection coefficient at the junction (location of the 100 2 resistor) seen by
waves incident from section 1. We first need the input impedance of the .21 length of section 2:

, [(50— j100) cos(Bol) + jSOSin(ﬂzl)} 50[(1— j2)(0.309) + j0.951}
in2 = =

50 cos(Bal) + j (50 — j100) Sin(Bal) 0.309 + j (1 — j2)(0.951)
— 8.63+ j3.82 = 9.44/0.42rad

Now, thisimpedanceisin parallel with the 1002 resistor, leading to a net junction impedance found by

11 1
- S 4~ 7. . —806+ 323 =869/0.38rad
Zor 100 " 863+ j382 T +

The reflection coefficient will be

tnT 50

= ———— =—-0.717+ j0.096 = 0.723/3.0rad
! lnT + 50 + /

and the standing wave ratioiss1 = (14 0.723) /(1 — 0.723) = 6.22.

13.19. A lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The line
parametersare L = 0.2 uH/m and C = 80 pF/m. Theline is terminated by a short circuit at z = O,
and thereisaload, Z; = 50+ j20 ohmsacrosstheline at location z = —20 cm. What average power
isdelivered to Z; if theinput voltageis 1000 V? With the given capacitance and inductance, we find

and
1 1

) — =

P VIC /(2% 1077)(9 x 10-11)
Now B = w/v, = (27 x 10%)/(2.5 x 108) = 2.5 rad/s. We then find the input impedance to the
shorted line section of length 20 cm (putting this impedance at the location of Z; , so we can combine

them): We have gl = (2.5)(0.2) = 0.50, and so, using the input impedance formula with a zero load
impedance, wefind Z;,1 = j50tan(0.50) = j27.4 ohms.

=25x 108 m/s
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13.19 (continued) Now, at thelocation of Z; , the net impedance there isthe parallel combination of Z; and

Zin1: Zner = (50+ j20)||(j27.4) = 7.93+ j19.9. We now transform thisimpedance to the lineinput,
30 cm to the left, obtaining (with g1 = (2.5)(.3) = 0.75):

. [(7.93 + j19.9) cos(.75) + j50sin(.75)
in2 =

— 359+ j98.0 = 104.3/1.22
50c0os(.75) + j(7.93 + j19.9) sin(.75)] T

The power delivered to Z; is the same as the power delivered to Z;,,2: The current magnitude is
|I| = (100)/(104.3) = 0.96 A. Sofinally,

1 1
P= EIIIZR = 5(0.96)2(35.9) —165W

13.20. This problem was originally posed incorrectly. The corrected version should have an inductor in the
input circuit instead of a capacitor. | will proceed with this replacement understood, and will change
the wording as appropriate in parts ¢ and d:

a) Determine s on the transmission line of Fig. 13.29. Note that the dielectric is air: The reflection
coefficient at the load is

40+ j30—50

1+.383 _,
~ 40+ j30+50 '

= jO0. =0. 1.57 Th = =
j0.333 = 0.333/1.57rad en s 1 333~ 20

L

b) Find the input impedance: With the length of theline at 2.7, we have 81 = (27)(2.7) = 16.96 rad.
The input impedance is then

Zin =

[(40 + j30) cos(16.96) + j503in(16.96)}

—1.236 — j5.682
50 cos(16.96) + /(40 + ;30) Sin(16.96)

— 68— j37.5Q
1.308 — j3.804 ] il

c) If wL = 10%2, find I;: The source drives a total impedance given by Z,.,; = 20+ jwL + Z;, =
20+ 10+61.8—37.5 = 81.8— j27.5. Thecurrentisnow I, = 100/(81.8—j27.5) = 1.10 + j0.37A.

d) What valueof L will produceamaximum valuefor |I;| at w = 1 Grad/s? To achievethis, theimaginary
part of the total impedance of part ¢ must be reduced to zero (so we need an inductor). The inductor
impedance must be equal to negative the imaginary part of the lineinput impedance, or wL = 37.5, s0
that L = 37.5/w = 37.5nH. Continuing, for thisvalue of L, calculate the average power:

e) supplied by the source: P; = (1/2)Re{V; I} = (1/2)(100)2/(81.8) = 61.1W.

f) deliveredto Z; = 40+ j30Q2: The power delivered to theload will be the same asthe power delivered
to the input impedance. We write

1 1
PL = SRe(Zin)|Is|* = 5(61.8)(1.22)° = 46.1W
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13.21. A lossless line having an air dielectric has a characteristic impedance of 400 2. The line is operating
a 200 MHz and Z;,, = 200 — ;200 2. Use analytic methods or the Smith chart (or both) to find: (a)
s; (b) Z; if thelineis 1 mlong; (c) the distance from the load to the nearest voltage maximum: | will
first use the analytic approach. Using normalized impedances, Eq. (13) becomes

Zin =

Zin [zL cos(BL) +jsin(ﬁL)} [ 2+ jtan(BL) ]
Zo | cos(BL) + jzz SN(BL) | 1+ jzz tan(BL)

Solvefor z;:

. [ zin — jtan(BL)
71— jzmtan(BL) |
where, with & = ¢/f = 3 x 108/2 x 108 = 1.50 m, we find BL = (27)(1)/(1.50) = 4.19, and so
tan(BL) = 1.73. Also, z;, = (200 — j200)/400 = 0.5 — j0.5. So
05— j0.5— j1.73
1— j(0.5— j0.5)(1.73)

2 = = 2.61+ j0.174

Finaly, Z; = z;(400) = 1.04 x 103 + j69.8 2. Next

Zr —Zo 6.42 x 102+ j69.8 _ 5 )
r— _ — 446+ j2.68 x 1072 = 447/6.0 x 102 rad
7L+ Zo  144x 10° + j69.8 HE Rk %

Now 1+ T 14 .447
i+l 1+, = 2.62

ST T 1— 4 =

Finally

—2
¢ A _ _(60x 1079150 =-72x10°m=—-72mm

Zmax = _ﬁ T 47 4

We next solvethe problem using the Smith chart. Referring to the figure on the next page, wefirst locate
and mark the normalized input impedance, z;, = 0.5 — j0.5. A line drawn from the origin through
this point intersects the outer chart boundary at the position 0.0881 A on the wavelengths toward load
(WTL) scadle. With a wavelength of 1.5 m, the 1 meter line is 0.6667 wavelengths long. On the
WTL scale, we add 0.66672., or equivalently, 0.16672 (since 0.5 is once around the chart), obtaining
(0.0881+0.1667)1) = 0.2548), whichisthe position of theload. A straight lineisnow drawnfromthe
origin though the 0.2548). position. A compassisthen used to measure the distance between the origin
and z;,,. With this distance set, the compass is then used to scribe off the same distance from the origin
to the load impedance, aong the line between the origin and the 0.2548% position. That point is the
normalized |oad impedance, whichisreadtobez; = 2.6+ j0.18. ThusZ; = z;(400) = 1040+ j72.
Thisisin reasonable agreement with the analytic result of 1040 + j69.8. The difference in imaginary
parts arises from uncertainty in reading the chart in that region.

In transforming from the input to the load positions, we crossther > 1 real axis of the chart at r=2.6.
Thisis close to the value of the VSWR, as we found earlier. We aso see that the r > 1 rea axis (at
whichthefirst V,,,,, occurs) isadistance of 0.0048A (marked as .005) on the chart) in front of the load.
The actua distanceis z,,x = —0.0048(1.5) m = —0.0072m = —7.2mm.
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3.4 s =2.6 Vinax location:
N 1672 2502
667\ (.00481
_| from load)
Zin = 5 - ].5
%”"o;,
3! V4
N S/ L
%% Zin location 2
0.81A (WTL)

13.22. A losdless two-wire line has a characteristic impedance of 300 2 and a capacitance of 15 pF/m. The
load at z = O consists of a 600-<2 resistor in parallel with a 10-pF capacitor. |f » = 108 rad/s and the
lineis 20m long, use the Smith chart to find @) |T".|; b) s; ¢) Z;,,. First, the wavelength on thelineis

found using A = 27 v, /w, where v, = 1/(C Zg). Assuming higher accuracy in the given values than
originally stated, we obtain

_ 2 2

_ _ — 13.96
wCZ0 . (109)(15 x 10 12)(300) m

The line length in wavelengths is therefore 20/13.96 = 1.433A. The normalized load admittance is
now

1 1
yL =Y. Zo=Zo| — + joC | =300 — + j(10%)(10) | = 0.50 4 j0.30
R 600
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The y;, valueis plotted on the chart and labeled as y;. . Next, y; isinverted to find z;, by transforming
the point halfway around the chart, using the compass and a straight edge. Theresult, labeled z;, onthe
chartisreadtobez; = 1.5— j0.87. Thisisclosetothe computed inverseof y; , whichis1.47— j0.88.
Scribing the compass arc length along the bottom scale for reflection coefficient yields |z | = 0.38.
The VSWR is found by scribing the compass arc length either along the bottom SWR scale or along
the positive real axis of the chart, both methods yielding s = 2.2.

Now, the position of z;, isread on the outer edge of the chart as 0.3081 onthe WTG scale. The pointis
now transformed through the line length distance of 1.433A toward the generator (the net chart distance
will be 0.433A, since a full wavelength is two complete revolutions). The final reading on the WTG
scale after the transformation is found through (0.308 + 0.433 — 0.500)1 = 0.241x. Drawing aline
between this mark on the WTG scale and the chart center, and scribing the compass arc length on this
line, yields the normalized input impedance. Thisisread as z;, = 2.2 + j0.21 (the computed value
found through the analytic solution is z;;, = 2.21 + j0.219. The input impedance is now found by
multiplying the chart reading by 300, or Z;, = 660 + ;63 .

AL NN XN A -'l— By
. ¢ 0
T Prpblem 13.22 )
' j 7 Input Location: 0.2411 (WTG)
3 " g .
Zin = 2.2+ j0.21
q ' Plaxd H gl
+), OR conbucTance compolent(E-) s =22 . , g g B
. e
&
0.433% (WTL) zp = 1.5 — j0.87 Bt 1181,

%

Invert yz to obtain z,

RADIALLY SCALED PARAMETERS
s 1 4 [ N TOWARD LOAD —
ll - " i, [R]
f . ! ge 'I || |I I »
IT'z| = .38 v :
lell'a‘t|:1‘P1114‘|’|A|1'1‘| 14:“?1-1t"an.;‘?xnln";n-|'P:-||"111'1'\" L
oman

227



13.23. Thenormalized load on alossesstransmissionlineisz; = 2+ j1. Let! = 20 m (there was amissprint
in the problem statement, since A = 20 m should have been stated. | will specify answers in terms of
wavelength). Make use of the Smith chart to find:

a) the shortest distance from theload to the point at which z;,, = r;, + jO, wherer;,, > 1 (not greater
than 0 as stated): Referring to the figure below, we start by marking the given z; on the chart and
drawing a line from the origin through this point to the outer boundary. On the WTG scale, we
read the z; location as 0.213)1. Moving from here toward the generator, we cross the positive I'g
axis (at which the impedance is purely real and greater than 1) at 0.2501. The distance is then
(0.250 — 0.213)A = 0.037) from the load. If we use A = 20 m, the actual distance would be
20(0.037) = 0.74 m.

b) Find z;, at the point found in part a: Using a compass, we set its radius at the distance between
the origin and z; . We then scribe this distance along the real axisto find z;, = r;;, = 2.61.

1t ISONNN

Q
Load position: g
2130 (WTG)
© oAD
o) N
Problem 13.23 \ _
. o\%
. ) ﬂ a
*3 =2+ L037x 2ol ol
E
ars o 3 7 2 2] 1slol
E(‘?‘) - 1 1 L_ - L 4
v : rin =5 =2.61 rin position: }3
m
2500 (WTG) I13] o1,
» /%83

¢) Thelineiscut at this point and the portion containing z; isthrown away. A resistor r = r;, of
part a is connected across the line. What is s on the remainder of the line? This will be just s

for the line as it was before. Aswe know, s will be the positive real axis value of the normalized
impedance, or s = 2.61.

d) What is the shortest distance from this resistor to a point at which z;, = 2+ j1? Thiswould
return us to the original point, requiring a complete circle around the chart (one-half wavelength
distance). The distance from the resistor will therefore be: d = 0.500A — 0.037 A = 0.463\.
With A = 20 m, the actual distance would be 20(0.463) = 9.26 m.
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13.24. Withthe aid of the Smith chart, plot acurveof | Z;,,| vs. [ for thetransmission line shownin Fig. 13.30.

Cover therange 0 < I/1 < 0.25. The required input impedance is that at the actual line input (to the
left of the two 20<2 resistors. The input to the line section occurs just to the right of the 20<2 resistors,
and the input impedance there we first find with the Smith chart. Thisimpedanceisin series with the
two 202 resistors, so we add 40%2 to the calculated impedance from the Smith chart to find the net
line input impedance. To begin, the 202 load resistor represents a normalized impedance of z; = 0.4,
which we mark on the chart (see below). Then, using a compass, draw a circle beginning at z; and
progressing clockwise to the positive real axis. The circle tracesthe locus of z;, valuesfor linelengths
over therange0 </ < A /4.

) (X3 3
038 Ol O
AW L AL
455 248) S N
s 3 22\ Problem 13.24 B
‘i" e
&\;‘
Sl 2 S\
pf &
4 & %
i 5 3 o
§ &
] ' 2
] R T, — 041 L LLI ' H

On the chart, radial lines are drawn at positions corresponding to .025A increments on the WTG scale.
The intersections of the lines and the circle give atotal of 11 z;,, values. To these we add normalized
impedance of 40/50 = 0.8 to add the effect of the 40<2 resistors and obtain the normalized impedance
at the lineinput. The magnitudes of these values are then found, and the results are multiplied by 50%2.
The table below summarizes the results.

L/ zin (toright of 402) Zin = Zinl + 0.8 |Zin| = 50|zin|
0 0.40 1.20 60
025 0.41+].13 121+].13 61
050 043+].27 123+.27 63
075 048 +].41 128+].41 67
100 0.56 +.57 1.36+].57 74
125 0.68+j.73 148 +.73 83
150 0.90+.90 1.70+].90 9%
175 1.20+j1.05 2.00+j1.05 113
.200 1.65+j1.05 245+ j1.05 134
225 2247 30+j.7 154
.250 25 3.3 165
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13.24. (continued) As acheck, the lineinput input impedance can be found analytically through

2 2l /A j in(2el/A 2l /) j in(2xl/A
Z :40+50[ 0cos(2rl/A) + j50sin(2xl/ )} _50[60cos( wl/A) + j66sin(2rl/ )}

50cos(2l/)) + j20sin(2xl/x) | 50cos(2rl/)) + j20sin(2xl/))

from which

36 co? (271 /1) + 43.6Sin2(21 /) } 1/2
25c0s2(2rl /1) + 4sin? (2wl /)

This function is plotted below aong with the results obtained from the Smith chart. A fairly good
comparison is obtained.

| Zin| = 50[

Problem 13.24

165 T T T T T T T T =
//
1545 -1
144 - =
1335 -
123 =
& 1m2st —
102 - / -
915 1
81~ N
70.5 [ .
PR I I L 1 1 1 l
0 0025 005 0075 01 013 015 018 02 023 025
length/wavelength
— Smith Chart
=== Analytic
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13.25. A 300-ohm transmission lineis short-circuited at z = 0. A voltage maximum, |V |;,qx = 10V, isfound
a z = —25 cm, and the minimum voltage, |V |,,i» = 0, isfound at z = —50 cm. Use the Smith chart
tofind Z (with the short circuit replaced by the load) if the voltage readings are:

a)

b)

[Vipax = 12V a z = -5 cm, and vertV|,;;, = 5V: First, we know that the maximum and
minimum voltages are spaced by 1 /4. Since this distanceis given as 25 cm, we seethat A = 100
cm=1m. Thusthe maximum voltagelocationis5/100 = 0.05x infront of theload. The standing
wave ratioiss = |Vinax/|VImin = 12/5 = 2.4. We mark this on the positive real axis of the
chart (see next page). Theload positionis now 0.05 wavelengths toward the load from the | V |4
position, or at 0.30 A on the WTL scale. A lineisdrawn from the origin through this point on the
chart, as shown. We next set the compass to the distance between the originandthez = r = 2.4
point on the real axis. We then scribe this same distance along the line drawn through the .30 1
position. Theintersectionisthe value of z;, whichweread asz; = 1.65+ ;j.97. The actual load
impedanceisthen Z; = 300z, = 495+ ;290 .

[Vipax = 17V @ z = =20 cm, and |V |, = 0. In this case the standing wave ratio is infinite,
which putsthe starting point onther — oo point on the chart. The distance of 20 cm corresponds
to 20/100 = 0.20 A, placing the load position at 0.45A on the WTL scale. A line is drawn
from the origin through this location on the chart. An infinite standing wave ratio places us on
the outer boundary of the chart, so we read z; = j0.327 at the 0.45A WTL position. Thus
Zp = j300(0.327) = j98%2.

2 i

2L = j.327
Y/a e et ) \
/ 4 “
/4 . Problem 13.25 o\
e \
) :
ié’ k { 05%  h\s
’ f » 0.202 (part b) 121 =1.65+ ;.97 fl] (part a)
;3 A (parta) ‘ia g
: i : : 5
= X .'.'.‘,.i.l {-45-), OR_cono <ol : ) : | E
e Ty s = 2.4 (part a) § = 00
art b
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13.26. A lossless 50€2 transmission line operates with a velocity that is 3/4c. A load, Z; = 60 + j30Q2 is
located at z = 0. Use the Smith chart to find:
a) s: First wefind the normalized load impedance, z;, = (60+ j30)/50 = 1.2+ 0.6, whichisthen

b)

marked on the chart (see below). Drawing aline from the chart center through this point yieldsits
location at 0.328A onthe WTL scale. The distance from the origin to the load impedance point is
now set on the compass; the standing wave ratio is then found by scribing this distance along the
positive real axis, yielding s = 1.76, as shown. Alternately, use the s scale at the bottom of the
chart, setting the compass point at the center, and scribing the distance on the scale to the | eft.

the distance from the load to the nearest voltage minimum if f = 300 MHz: This distance is
found by transforming the load impedance clockwise around the chart until the negative real axis
is reached. This distance in wavelengths is just the load position on the WTL scale, since the
starting point for this scale is the negative real axis. So the distance is 0.328).. The wavelength is

3
_v_ 3/4)c _ 3(3 x 10°) —0.75m
f  300MHz  4(3 x 108)

So the actual distance to the first voltage minimum is d,,;,, = 0.328(0.75) m = 24.6cm.

the input impedance if f = 200 MHz and the input is a z = —110cm: The wavelength at this
frequency isx = (3/4)(3 x 108)/(2 x 108) = 1.125 m. The distance to the input in wavelengths
isthen d;, = (1.10)/(1.125) = 0.9778\. Transforming the load through this distance toward
the generator involves revolution once around the chart (0.5001) plus the remainder of 0.4778A,
which leads to afinal position of 0.1498). = 0.150A on the WTG scale, or 0.350A on the WTL
scale. A lineis drawn between this point and the chart center. Scribing the compass arc length
through this line yields the normalized input impedance, read as z;,, = 1.03 + j0.56. The actua
input impedanceis Z;, = z;, x 50 = 51.5+ j28.0 2.

- 0.2 43
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13.27. Thecharacteristicadmittance (Yo = 1/Zp) of alossesstransmissionlineis20 mS. Thelineisterminated
inaload Y; = 40 — j20 mS. Make use of the Smith chart to find:
a) s: Wefirst find the normalized |oad admittance, whichisy;, = Y, /Yo = 2 — j1. Thisisplotted
on the Smith chart below. We then set on the compass the distance between y; and the origin.
The same distance is then scribed along the positive real axis, and the value of s isread as 2.6.

b) Y;, if I = 0.15A: First we draw aline from the origin through z; and note its intersection with
the WTG scale on the chart outer boundary. We note areading on that scale of about 0.287 A. To
thiswe add 0.15 1, obtaining about 0.437 A, which we then mark on the chart (0.287 1 is not the
precise value, but | have added 0.15 1 to that mark to obtain the point shown on the chart that is
near to 0.437 A. This“eyeballing” method increases the accuracy alittle). A line drawn from the
0.437 A position on the WTG scale to the origin passes through the input admittance. Using the
compass, we scribe the distance found in part a across this line to find y;, = 0.56 — j0.35, or
Yin = 20y;, = 11— j7.0mS.

¢) the distance in wavelengths from Y, to the nearest voltage maximum: On the admittance chart,
the V,,,.x position is on the negative I, axis. Thisis at the zero position on the WTL scale. The
load is at the approximate 0.213 . point on the WTL scale, so this distance is the one we want.
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use the Smith chart to determine;

13.28. The wavelength on acertain lossesslineis 10cm. If the normalized input impedanceisz;, = 1+ j2,

a) s: We begin by marking z;,, on the chart (see below), and setting the compass at its distance from
the origin. We then use the compass at that setting to scribe amark on the positivereal axis, noting
the value there of s = 5.8.

b) zz,if thelengthof thelineis12 cm: First, useastraight edgeto draw alinefrom the origin through
zin, @nd through the outer scale. We read the input location as slightly more than 0.312%. on the
WTL scale (this additional distance beyond the .312 mark is not measured, but isinstead used to
add asimilar distancewhen theimpedanceistransformed). Thelinelength of 12cm correspondsto
1.2 wavelengths. Thus, to transform to the load, we go counter-clockwise twice around the chart,
plus 0.24, finally arriving at (again) slightly more than 0.0121 onthe WTL scale. A lineisdrawn
to the origin from that position, and the compass (with its previous setting) is scribed through the
line. Theintersection isthe normalized load impedance, which weread asz; = 0.173 — j0.078.

C) xr,if zp = 2+ jxp, where xy > 0. For this, use the compass at its original setting to scribe
through the r = 2 circlein the upper half plane. At that point weread x; = 2.62.

Load Location (part b):
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13.29. A standing wave ratio of 2.5 exists on a lossless 60 2 line. Probe measurements locate a voltage
minimum on the line whose location is marked by asmall scratch on theline. When theload isreplaced
by ashort circuit, the minimaare 25 cm apart, and one minimum is located at a point 7 cm toward the
source from the scratch. Find Z;: We note first that the 25 cm separation between minimaimply a
wavelength of twice that, or A = 50 cm. Suppose that the scratch locates the first voltage minimum.
With the short in place, thefirst minimum occursat theload, and the second at 25 cmin front of theload.
The effect of replacing the short with the load isto move the minimum at 25 cm to anew location 7 cm
toward theload, or at 18 cm. Thisisapossible location for the scratch, which would otherwise occur at
multiples of ahalf-wavelength farther away from that point, toward the generator. Our assumed scratch
position will be 18 cm or 18/50 = 0.36 wavelengths from the load. Using the Smith chart (see below)
we first draw aline from the origin through the 0.36A point on the wavel engths toward load scale. We
set the compass to the length corresponding to the s = r = 2.5 point on the chart, and then scribe this
distance through the straight line. Weread z; = 0.79 + j0.825, from which Z; = 47.4 + j49.5 Q.
Asacheck, | will do the problem analytically. First, we use

1 4(18)
min = —18cm = —— =|——=—-1|7 =1.382rad = 79.2°
Z 28 Pp+m) = ¢ [ 0 i| b4
Now 1 25-1
IMpl= " =22~ —0.4286
s+1 2541
andsoI';, = 0.4286/1.382. Using this, wefind
1+T
=1L _ 0798+ j0.823
1-1Ty
andthus Z; = 77 (60) = 47.8 + j49.3 Q.
o o2 o3 4
o-‘“ 03. 038 = 0.37 Qla
0“ 040 s Q35 °-I‘
D) (3 0,
o5 & 3 he! o oq/,
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13.30. A 2-wire line, constructed of lossless wire of circular cross-section is gradually flared into a coupling
loop that looks like an egg beater. At the point X, indicated by the arrow in Fig. 13.31, a short circuit
is placed across the line. A probeis moved along the line and indicates that the first voltage minimum
to the left of X is 16cm from X. With the short circuit removed, a voltage minimum is found 5¢cm to
the left of X, and avoltage maximum is located that is 3 times voltage of the minimum. Usethe Smith
chart to determine:

a) f: No Smith chart is needed to find f, since we know that the first voltage minimum in front of
a short circuit is one-half wavelength away. Therefore, A = 2(16) = 32cm, and (assuming an
air-filled ling), f = ¢/A» = 3 x 108/0.32 = 0.938 GHz.

b) s: Again, no Smith chart is needed, since s is the ratio of the maximum to the minimum voltage
amplitudes. Since we are given that V,,,,x = 3Vyuin, wefinds = 3.

¢) the normalized input impedance of the egg beater as seen looking the right at point X: Now we
need the chart. From thefigure below, s = 3 ismarked on the positivereal axis, which determines
the compass radius setting. This point isthen transformed, using the compass, to the negative rea
axis, which corresponds to the location of avoltage minimum. Sincethefirst V,,,;,, is5cmin front
of X, this corresponds to (5/32)A = 0.1563A to the left of X. On the chart, we now move this
distance from the V,,,;,, location toward the load, using the WTL scale. A lineis drawn from the
origin through the 0.1563A mark onthe WTL scale, and the compass is used to scribe the original
radius through this line. The intersection is the normalized input impedance, which is read as
zin = 0.86 — j1.06.

Vimin position

& CoMi T{51-), 08 conpucTande co (&) .

s = 3: Set compass}
radius at this point

Transform .1563A
towards load to z;,

-

Zin = 0.86 — j1.06

) Problem 13.30 \

<) ey

Nzin position: .1563A (WTLESh
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13.31. In order to compare the relative sharpness of the maxima and minima of a standing wave, assume a
loadz;, =4+ jOislocatedat z = 0. Let |V = L and & = 1 m. Determine the width of the
a) minimum, where |V | < 1.1: We begin with the general phasor voltage in the line:

b)

V(z) = V(e /P 4 Te/F?)

Withz; = 4+ jO, werecognizetherea part asthe standing waveratio. Sincetheload impedance
isreal, the reflection coefficient is also real, and so we write

1 4-1
S e e e Y

== =
I s+1 441

The voltage magnitude is then
V@I = V@V @ = V* [ 4 Tel e 4 re )]
—yt [1 + 2" cos(28z) + Fz]l/z
Note that with cos(28z) = +1, we obtain |V| = V(14 I') as expected. Withs = 4 and

With |V |min = 1, wefind | V] = 4. Thenwith T = 0.6, it follows that V+ = 2.5. The net
expression for |V (z)| isthen

V(z) = 2.5,/1.36 + 1.2 c0s(2Bz)

To find the width in z of the voltage minimum, defined as |V| < 1.1, we set |V (z)| = 1.1 and
solve for z: Wefind

1.1)\?
(2—5) =136+ 1.2cos(28z) = 2Bz = cos 1(—0.9726)

Thus28z = 2.904. At thisstage, wenotethethe |V |,,;,, point will occur at 28z = . Wetherefore
compute the range, Az, over which |V| < 1.1 through the equation:

—2.904
2mA@=an—2%@::zn=ZE7T—=ammm=3&m
JT

where A = 1 m has been used.

Determine the width of the maximum, where |V| > 4/1.1: We use the same equation for |V (z)],
which in this case reads:

4/1.1 = 2.5\/ 1.36+ 1.2cos(28z) = cos(28z) = 0.6298

Since the maximum corresponds to 28z = 0, we find the range through

0.8896
2BAz = 2cos 1(0.6298) = Az = 2—/1 =0.142m = 14.2cm
T
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13.32. A lossless lineis operating with Zg = 4092, f = 20 MHz, and 8 = 7.5 rad/m. With a short circuit
replacing the load, a minimum is found at a point on the line marked by a small spot of puce paint.
With theload installed, it isfound that s = 1.5 and avoltage minimum islocated 1m toward the source
from the puce dot.

a)

b)

Find Z;: First, the wavelength is given by A = 27/8 = 2/7.5 = 0.2667m. The 1m distance
is therefore 3.751. With the short installed, the V,,,;, positions will be at multiples of A /2 to the
left of the short. Therefore, with the actual load installed, the V,,,;,, position as stated would be
3.75\1 + nA /2, which means that a maximum voltage occurs at the load. This being the case, the
normalized load impedance will lie on the positive real axis of the Smith chart, and will be equal
to the standing wave ratio. Therefore, Z; = 40(1.5) = 60 2.

Wheat load would produce s = 1.5 with |V, @ the paint spot? With |V, at the paint spot
and with the spot an integer multiple of A /2 to the left of the load, |V |4 Must also occur at the
load. The answer istherefore the sameaspart a, or Z;, = 60 L.

13.33. InFig. 13.14,let Z;, = 40— j102, Zo =502, f = 800 MHz, and v = c.

a)

Find the shortest length, d1, of a short-circuited stub, and the shortest distance 4 that it may be
located from the load to provide a perfect match on the main line to the left of the stub: The Smith
chart construction is shown on the next page. First we find z; = (40 — j10)/50 = 0.8 — ;0.2
and plot it on the chart. Next, wefind y; = 1/z; by transforming this point halfway around the
chart, whereweread y; = 1.17+ j0.30. Thispoint isto betransformed to alocation at which the
real part of the normalized admittance is unity. The g = 1 circleis highlighted on the chart; y;
transformsto two locationsoniit: y;,1 = 1 — j0.32 and y;,» = 1+ j0.32. The stub is connected
at either of these two points. The stub input admittance must cancel the imaginary part of theline
admittance at that point. If y;,2 is chosen, the stub must have input admittance of —;0.32. This
point is marked on the outer circle and occursat 0.452 1 onthe WTG scale. Thelength of the stub
is found by computing the distance between its input, found above, and the short-circuit position
(stub load end), marked as P,.. Thisdistanceisdi = (0.452— 0.250)A» = 0.202 A. With f = 800
MHzand v = ¢, thewavelengthis i = (3 x 108) /(8 x 108) = 0.375m. Thedistanceisthusd; =
(0.202)(0.375) = 0.758m = 7.6cm. Thisisthe shortest of the two possible stub lengths, since
if we had used y;,,1, we would have needed a stub input admittance of + j0.32, which would have
required alonger stub length to realize. The length of the main line between itsload and the stub
attachment point is found on the chart by measuring the distance between y; and y;,2, in moving
clockwise (toward generator). This distance will bed = [0.500 — (0.178 — 0.138)] A = 0.46 A.
The actual lengthisthen d = (0.46)(0.375) = 0.173m = 17.3cm.
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13.33b) Repeat for an open-circuited stub: In thiscase, everything isthe same, except for the load-end position
of the stub, which now occursat the P, point on the chart. To use the shortest possible stub, we need to
useyin1 = 1— j0.32, requiring y; = +;0.32. Wefind the stub length by moving from P, to the point
at which the admittanceis j0.32. Thisoccurs at 0.048 » on the WTG scale, which thus determines the
required stub length. Now d; = (0.048)(0.375) = 0.18 m = 1.8 cm. The attachment point isfound by
transforming y;, to y;,1, wherethe former pointislocated at 0.178 1. onthe WTG scale, and the latter is
at 0.362 A on the same scale. The distanceisthend = (0.362 — 0.178)1 = 0.184).. The actual length
isd = (0.184)(0.375) = 0.069m = 6.9cm.

c Yin2 ‘e
o o . S
o location D
24 3 o) = 0.138) [p oS
% ym‘“ , | (WTG) 2
A X A : : ly L tion B2
) ! ocation P
S,g: stub 2 ‘ =0.178Ap N
location y, (WTG) N
= 0480 : :
/ </ (WTG) v : ' %

f : » HiE
: 5 f yinz =1+ j0.32 X : ‘
(3t yL = 117+ j0.30
t ) | ®us {
¥ i\" Poc BN SClroa R ) o oo { » i
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t) 1 3 L yin1 = 1—j0.32 SUEe §

=0.8-j02 !

£ 't
S

)
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13.34. The lossless line shown in Fig. 13.32 is operating with A = 100cm. If d1 = 10cm, d = 25cm, and
the line is matched to the left of the stub, what is Z; ? For the line to be matched, it is required that
the sum of the normalized input admittances of the shorted stub and the main line at the point where
the stub is connected be unity. So the input susceptances of the two lines must cancel. To find the stub
input susceptance, use the Smith chart to transform the short circuit point 0.1A toward the generator,
and read the input value as by = —1.37 (note that the stub length is one-tenth of a wavelength). The
main lineinput admittance must now be y;, = 1+ j1.37. Thislineisone-quarter wavelength long, so
the normalized load impedance is equal to the normalized input admittance. Thusz; = 1+ j1.37, s0
that Z; = 300z, = 300 + j411 Q.

Heh
s Problem 13.34 i
&) . ima . E
< Ps.: Location of shorted
end of stub line _
Transform 0.1A WTG to obtain
admittance of stub input
' /%,
Read stub input
susceptance as
2 3 bs = - 1 .37
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13.35. Alload, Z; = 25+ j75 2, islocated a z = 0 on alossless two-wire line for which Zg = 50 2 and

vV = C.

a) If f = 300MHz, find the shortest distanced (z = —d) at which theinput impedancehasarea part
equal to 1/Zg and a negative imaginary part: The Smith chart construction is shown below. We
begin by calculating z; = (25+ j75)/50 = 0.5+ 1.5, which we then locate on the chart. Next,
this point istransformed by rotation halfway around the chart tofind y; = 1/z; = 0.20 — j0.60,
whichislocated at 0.088 A onthe WTL scale. Thispoint isthen transformed toward the generator
until it intersectsthe ¢ = 1 circle (shown highlighted) with anegativeimaginary part. Thisoccurs
at point y;,, = 1.0 — j2.23, located at 0.308 A onthe WTG scale. Thetotal distance between load
and input isthen d = (0.088 + 0.308)» = 0.396. At 300 MHz, and with v = ¢, the wavelength
isA = 1m. Thusthedistanceisd = 0.396 m = 39.6cm.

b) What value of capacitance C should be connected acrossthelineat that point to provide unity stand-
ing wave ratio on the remaining portion of the line? To cancel the input normalized susceptance
of -2.23, we need a capacitive normalized susceptance of +2.23. We therefore write

2.23 2.23
wC = —= = =24x 107 F=24pF
Zo (50)(27 x 3 x 108) il
\ 3
o o2 o »
o o 2%
% AW 2 3 Q) 3
(o 2 e8) PR
e‘i’, ""&.ﬁ“ Q“.’o
& % %
el N4
\O: .
J’ \;‘ 2L =0.5+]1.5 ib
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# X
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B
£ §= A
2w . i
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13.36. The two-wire lines shown in Fig. 13.33 are al lossess and have Zg = 2002. Find 4 and the

shortest possible value for d1 to provide a matched load if A = 100cm. In this case, we have a series
combination of the loaded line section and the shorted stub, so we use impedances and the Smith chart
as an impedance diagram. The requirement for matching is that the total normalized impedance at the
junction (consisting of the sum of the input impedances to the stub and main loaded section) is unity.
First, wefind z;, = 100/200 = 0.5 and mark thison the chart (see below). We then transform this point
toward the generator until we reach the »r = 1 circle. This happens at two possible points, indicated
aszip1 =1+ j.71and z;,2 = 1 — j.71. The stub input impedance must cancel the imaginary part of
the loaded section input impedance, or z;,; = £j.71. The shortest stub length that accomplishes this
is found by transforming the short circuit point on the chart to the point z;,; = +j0.71, which yields
astub length of d1 = .0981 = 9.8cm. The length of the loaded section is then found by transforming
z;, = 0.5tothepoint z;,2 = 1— .71, sothat z;;,s + zin2 = 1, asrequired. Thistransformation distance
isd = 0.347x = 37.7cm.
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13.37.

13.38.

In the transmission line of Fig. 13.17, Ry = Zg = 50 Q2. Determine and plot the voltage at the
load resistor and the current in the battery as functions of time by constructing appropriate voltage and
current reflection diagrams. Referring to the figure, closing the switch launches a voltage wave whose
valueisgiven by Eqg. (50):

yi= %0 0y, 2y

1 " Re+2 7° 3°

We note that T';, = 0, since the load impedance is matched to that of the line. So the voltage wave
traverses the line and does not reflect. The voltage reflection diagram would be that shown in Fig.
13.18a, except that no waves are present after timer = [/v. Likewise, the current reflection diagram
isthat of Fig. 13.19a, except, again, no waves exist after t = [ /v. The voltage at the load will be just
Vfr = (2/3) Vg for times beyond [ /v. The current through the battery is found through

+
1T = V_l — E
Y7z 775
This current initiates at + = 0, and continues indefinitely.

Repeat Problem 37, with Zg = 5022, and R;, = R, = 25Q. Carry out the analysis for the time period
0 <t < 8l/v. At the generator end, we have I';, = —1/3, as before. The difference is at the load
end, whereI'; = —1/3, whereasin Problem 37, the load was matched. Theinitial wave, asin the last
problem, is of magnitude V* = (2/3) V. Using these values, voltage and current reflection diagrams
are constructed, and are shown below:

t t
3’ v+ (3)° v/s0
81/v 81 /v
—()v+ (1) v+/50
‘ ‘ /v ‘ ‘ v
B°v+ (3)° v*/s0
6l /v 6l/v
- ve (1) v+/s0
Slfv Slfv
(3) v (3)" v*/s0
4lfv 4l /v
-3’ (1) v+/s0
3l/v 3l/v
(1P v+ (1’ v+/50
20 /v 2/
~ly+ 1v+/s50
1fjv v
v V*/50
Voltage Pl Current Pl
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13.38. (continued) From the diagrams, voltage and current plots are constructed. First, the load voltage is
found by adding voltages along the right side of the voltage diagram at the indicated times. Second,
the current through the battery is found by adding currents along the left side of the current reflection
diagram. Both plots are shown below, where currents and voltages are expressed to three significant
figures. The steady state values, V;, = 0.5V and I = 0.02A, are expected ast — oo.

VL J
0.499 Vo 0.500 Vi
0.494 V
0444V,
T | | | e
/v 3l/v 5lfv 7/
IB“
0.0193 Vg
0.0133 ¥
| 1 T ! | T T ! by
2l/v 4l /v 6l/v 8l/v

13.39. Inthetransmissionlineof Fig. 13.17, Zo = 502 and R;, = R, = 25Q. Theswitchisclosedatr =0
andisopened again at timer = [ /4v, thus creating arectangular voltage pulsein theline. Construct an
appropriate voltage reflection diagram for this case and use it to make a plot of the voltage at the load
resistor asafunction of timefor 0 < r < 8!/v (note that the effect of opening the switchisto initiate a
second voltage wave, whose value is such that it leaves anet current of zero in itswake): The value of
theinitial voltage wave, formed by closing the switch, will be

v 2y 0y,
T Re+720 0 25450 °

On opening the switch, a second wave, V1, is generated which leaves a net current behind it of zero.
Thismeansthat V' = —V+ = —(2/3)Vp. Note also that when the switch is opened, the reflection
coefficient at the generator end of the line becomes unity. The reflection coefficient at the load end is
'y = (25—50)/(25+ 50) = —(1/3). Thereflection diagram is now constructed in the usual manner,
and is shown on the next page. The path of the second wave as it reflects from either end is shown in
dashed lines, and is a replica of the first wave path, displaced later in time by //(4v).aAll values for
the second wave after each reflection are equal but of opposite sign to the immediately preceding first
wave values. Theload voltage asafunction of timeisfound by accumulating voltage values asthey are
read moving up along the right hand boundary of the chart. The resulting function, plotted just below
the reflection diagram, is found to be a sequence of pulses that alternate signs. The pulse amplitudes
are calculated asfollows:
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13.39. (continued)
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13.40. Inthe charged line of Fig. 13.22, the characteristic impedance is Zg = 1002, and R, = 300%2. The
line is charged to initial voltage Vo = 160V, and the switch is closed at ¢+ = 0. Determine and plot
the voltage and current through the resistor for time 0 < ¢ < 8//v (four round trips). This problem
accompanies Example 13.6 as the other special case of the basic charged line problem, in which now
R, > Zp. On closing the switch, theinitial voltage waveis

4 100
Vo2 — = —160— = —40V
R, + Zo 400
Now, withT", = 1/2and ", = 1, the voltage and current reflection diagrams are constructed as shown
below. Plots of the voltage and current at the resistor are then found by accumulating values from the

left sides of the two charts, producing the plots as shown.

t t
7.5 -2.5 —.025 —.025
8l/v _5 8l/v 05
15 5 /v ~.05 05 /v
6l/v —10 6l/v 1
30 —10 Sl/v -1 -1 5l/v
4l /v —20 al/v 2
60 —20 3l -2 -2 31y
20/ 40 2/v 4
120 ~40 l/v —4 —4 Ifv
Vo = 160 !z [
Voltage Current
Vi 120
60
30
15 75
[ [ | | i
Ipg
2i/v 4ljv 6l /v 8l/v
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13.41. In the transmission line of Fig. 13.34, the switch is located midway down the line, and is closed at
t = 0. Construct a voltage reflection diagram for this case, where R;, = Zp. Plot the load resistor
voltage as a function of time: With the left half of the line charged to Vp, closing the switch initiates
(at the switch location) two voltage waves: Thefirst is of value —Vp/2 and propagates toward the | eft;
the second is of value Vy/2 and propagates toward the right. The backward wave reflects at the battery
withT", = —1. Noreflection occursat theload end, since theload is matched to theline. Thereflection
diagram and load voltage plot are shown below. The results are summarized as follows:

O<t<—: V=0
<<2 L

l . 3 v Vo
— <t < — = —
2v 2v L 2
t 3. % Vi
> — =
2 L 0
tu
-31/2v
Vo/2
—1/v
~1/2v
<Vo/2 Vo/2
12 Iz
vit
Vo
Vo/2
1/2v l}v 31)20 !
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13.42. A simple frozen wave generator is shown in Fig. 13.35. Both switches are closed simultaneoudly at
t = 0. Construct an appropriate voltage reflection diagram for the case in which R;, = Zg. Determine
and plot the load voltage asafunction of time: Closing the switches setsup atotal of four voltage waves
as shown in the diagram below. Note that the first and second waves from the |eft are of magnitude Vo,
sincein fact we are superimposing voltage waves from the — Vg and + V charged sections acting alone.
The reflection diagram is drawn and is used to construct the load voltage with time by accumulating
voltages up the right hand vertical axis.

| | | .,
s L oo
Zy : : Zy : : Zo l:]Zo
=1 +—p  1— —  i— rL=0
A “Vo/2 Vo2

— /v
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CHAPTER 14

14.1. A pardllel-plate waveguide is known to have a cutoff wavelength for them = 1 TE and TM modes of

Ac1 = 0.4 cm. The guide is operated at wavelength 2 = 1 mm. How many modes propagate? The
cutoff wavelength for mode m is L., = 2nd/m, where n is the refractive index of the guide interior.
For the first mode, we are given

_ 2nd 04 0.2

A1 = — =04cm d=—=—20Ccm
cl 1 = 2n n

Now, for mode m to propagate, we require

2nd 0.4 0.4 0.4
< = m < = =

A _— = — =
~ m m - A 0.1

So, accounting for 2 modes (TE and TM) for each value of m, and the single TEM mode, we will have
atotal of 9 modes.

14.2. A paralel-plate guideisto be constructed for operationinthe TEM mode only over the frequency range

0 < f < 3GHz. The dielectric between plates is to be teflon (¢, = 2.1). Determine the maximum
allowable plate separation, d: Werequirethat f < f.1, which, using (7), becomes

1 8
¢ = 3x 10 = 3.45cm
2fmax  2+/2.1(3 x 109)

C
f<% = dmax:

14.3. A lossless parallel-plate waveguide is known to propagate them = 2 TE and TM modes at frequencies

as low as 10GHz. If the plate separation is 1 cm, determine the dielectric constant of the medium
between plates. Use

c _3x1010

— =10 =3 =9
nd n(1) = n or e =9

chZ

14.4. A d = 1 cm pardlel-plate guide is made with glass (n = 1.45) between plates. If the operating

14.5.

frequency is 32 GHz, which modes will propagate? For a propagating mode, we require f > f.
Using (7) and the given values, we write

me 2fnd  2(32 x 10°)(1.45)(.01)
> — < =
2nd "= 3 x 10°8

f —3.09

The maximum allowed m in this case is thus 3, and the propagating modes will be TM1, TE;, TMy,
TE», TM3, and TEs.

For the guide of Problem 14.4, and at the 32 GHz frequency, determinethe diff erence between the group
delays of the highest order mode (TE or TM) and the TEM mode. Assume a propagation distance of 10
cm: From Problem 14.4, we found m . = 3. The group velocity of aTE or TM modefor m = 3is

3(3 x 1019

=3.1x 10 = 31GHz
2(1.45)(1)

¢ Je3 2
Vg3 = ; 1-— <7) where fc3 =
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14.5. (continued) Thus
3x 101 31\? °
Vg3 = W — <3—2> =513x 10 Cm/S

For the TEM mode (assuming no material dispersion) ve 7y = ¢/n = 3 x 100/1.45 = 2.07 x 10'°
cm/s. The group delay difference is now

1 1 1 1
At, =z — — =10 - =15ns
g =% <vg3 vg,TEM> (5.13 % 10°  2.07 x 1010>

14.6. The cutoff frequency of them = 1 TE and TM modesin aparallel-plate guideisknowntobe f.1 = 7.5
GHz. The guideisused at wavelength » = 1.5 cm. Find the group velocity of them = 2 TEand TM
modes. First we know that f.» = 2f.1 = 15 GHz. Then f = ¢/1» = 3 x 108/.015 = 20 GHz. Now,

using (23),
N2 15\ 2
Vg2 = %,/1— (%) - %‘/1— (Z‘)) —2x10%/nm/s

n was not specified in the problem.

14.7. A parallel-plate guide is partialy filled with two lossless dielectrics (Fig. 14.23) where €},; = 4.0,
€ro = 2.1, and d = 1 cm. At acertain frequency, it is found that the TM1 mode propagates through
the guide without suffering any reflective loss at the dielectric interface.

a) Find thisfrequency: Theray angleis such that the wave isincident on the interface at Brewster’'s
angle. Inthiscase

2.1
= -1 —‘ = °©
0p = tan 20 35.9
Theray angleisthus = 90 — 35.9 = 54.1°. The cutoff frequency for them = 1 modeis

c 3 x 1010

24 . 2D@

Thefrequency isthus f = f.1/cosé = 7.5/ cos(54.1°) = 12.8 GHz.

faa= = 7.5GHz

b) Istheguide operating at asingle TM mode at the frequency found in part a? The cutoff frequency
for the next higher mode, TM2 is f.» = 2f.1 = 15 GHz. The 12.8 GHz operating frequency is
below this, so TM2 will not propagate. So the answer isyes.

14.8. Inthe guide of Problem 14.7, it isfound that m = 1 modes propagating from left to right totally reflect
at the interface, so that no power is transmitted into the region of dielectric constant €.,

a) Determine the range of frequencies over which thiswill occur: For total reflection, the ray angle
measured from the normal to the interface must be greater than or equal to the critical angle, 6.,
Wheresing. = (€p,/€r1)Y2. Theminimummoderay angleisthen 61, = 90° —6,.. Now, using
(5), wewrite

T C C
90° — 6, = cos 1 ( ) —cos ! (—) —cos ! ( )
kmind 2nfm,~nd\/71 4dfmin
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14.8a. (continued)
Now

€ c
cos(90 — 6,) =snf, = | K2 — ——
6;31 4dfmin
Therefore f.i, = ¢/(2+/2.1d) = (3 x 108)/(24/2.1(.01)) = 10.35GHz. The frequency rangeis
thus f > 10.35GHz.

b) Doesyour part a answer in any way relate to the cutoff frequency for m = 1 modesin any region?
We note that f,,i, = ¢/(2+/2.1d) = f.1 in guide 2. To summarize, as frequency is lowered, the
ray angle in guide 1 decreases, which leads to the incident angle at the interface increasing to
eventually reach and surpass the critical angle. At the critical angle, the refracted angle in guide 2
is90°, which correspondsto azero degreeray angleinthat guide. Thisdefinesthe cutoff condition
inguide 2. So it would make sensethat f,,;, = fc1(Quide 2).

14.9. A rectangular waveguide has dimensionsa = 6 cmand b = 4 cm.
a) Over what range of frequencies will the guide operate single mode? The cutoff frequency for

modemp is, using Eq. (54):
2 2
fc,mn = % (%) + (%)

where n isthe refractive index of the guide interior. We require that the frequency lie between the
cutoff frequencies of the T E1g and T Eg1 modes. These will be:

¢  3x10® 25x10°

fao=737= 2n(06)  n

c  3x10® 375x10°
2nb  2n(.04) n
Thus, the range of frequencies over which single mode operation will occur is

chl =

2. 7
—5 GHz < f < 3—5 GHz
n n

b) Over what frequency range will the guide support both T E1g and T Eg1 modes and no others? We
note first that f must be greater than f.01 to support both modes, but must be less than the cutoff
frequency for the next higher order mode. Thiswill be f.11, given by

e (L 2+ 1\? 30c 45x10°
T 20\ \ 06 04) T 20 T

The allowed frequency rangeis then

7 4.
3—5GHZ< f < —5GHZ
n n
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14.10.

Two rectangular waveguides are joined end-to-end. The guides have identical dimensions, where
a = 2b. One guideis air-filled; the other isfilled with alossless dielectric characterized by €/,
a) Determine the maximum allowable value of €, such that single mode operation can be simultane-
ously ensured in both guides at some frequency: Sincea = 2b, the cutoff frequency for any mode
in either guide is written using (54):

o = ()" + ()

wheren = linguidelandn = \/g inguide 2. We seethat, witha = 2b, the next modes (having
the next higher cutoff frequency) above TEjo with be TEzp and TEg;. We also seethat in general,
femp(Quide 2) < femp(guide 1). To assure single mode operation in both guides, the operating
frequency must be above cutoff for TE1g in both guides, and below cutoff for the next mode in
both guides. The alowed frequency range is therefore f.10(guidel) < f < f.oo(guide 2). This

leadsto c/(2a) < f < c/(a,/€y). For thisrangeto beviable, it isrequired that €, < 4.

b) Write an expression for the frequency range over which single mode operation will occur in both
guides; your answer should be in terms of €}, guide dimensions as needed, and other known
constants: Thiswas aready found in part a:

c c

— < f<

2a e a
R

where e, < 4.

14.11. An air-filled rectangular waveguide isto be constructed for single-mode operation at 15 GHz. Specify

14.12.

the guide dimensions, a and b, such that the design frequency is 10/while being 10% lower than the
cutoff frequency for the next higher-order mode: For an air-filled guide, we have

fom = (52) + (5

For TE1p we have f.10 = c¢/2a, while for the next mode (TEq1), fr01 = ¢/2b. Our requirements state
that f = 1.1f.10 = 0.9f.01. SO fe10 = 15/1.1 = 13.6 GHz and f.01 = 15/0.9 = 16.7 GHz. The
guide dimensions will be

c 3 x 1010 c 3 x 1010

= = =11cm and b = = —0.90cm
‘T 2% 2(136 x 109 21 2(16.7 x 109

Using therelation P, = (1/2)Re{E; x H}}, and Egs. (44) through (46), show that the average power
density in the TE1g mode in arectangular waveguide is given by

P,y = @Egsinz(xlox) a, W/m?
2w

(note that the sin term is erroneously to the first power in the original problem statement). Inspecting
(44) through (46), we see that (46) includes afactor of j, and so would lead to an imaginary part of the
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14.13.

14.14.

14.15.

total power when the cross product with E, is taken. Therefore, the real power in this case is found
through the cross product of (44) with the complex conjugate of (45), or

1 B10 .
Pav = ERe{EyS X H:s} = mEgsnz(Klox) az W/m2

Integrate the result of Problem 14.12 over the guide cross-section 0 < x < a,0 < y < b, to show that
the power in Watts transmitted down the guide is given as

p— Bioab Eg _ %

dou 4n

where n = /u/e (hote misprint in problem statement), and 619 is the wave angle associated with the
TE10 mode. Interpret. First, the integration:

E(%Sinelo W

b a
B0 o . > Bioab -
P = ——E§sn a-a,dxdy = E
/O L 20011 0 (k10x) @; - a; dx dy Aot 0

Next, from (20), we have 810 = w. /i€ Sin61g, which, on substitution, leads to

b : .
P = a—E(Z)smalo W withy = /2
4n €

The sinf,p dependence demonstrates the principle of group velocity as energy velocity (or power).
Thiswas considered in the discussion leading to Eq. (23).

Show that the group dispersion parameter, d28/dw?, for given mode in a parallel-plate or rectangular
waveguide is given by
2 2 27173/2
Th_ () [1_ () ]
dw wc \ w w

where w, isthe radian cutoff frequency for the mode in question (note that the first derivative form was
aready found, resulting in Eq. (23)). First, taking the reciprocal of (23), we find

-1/2
&t ()]

Taking the derivative of this equation with respect to » leads to
2 1 21-3/2 /9,2 N2 07-3/2
@B _n( 1 1_(&) W :_1(‘0_) 1_(&)
dw? c 2 w w3 wc \ w w

Consider a transform-limited pulse of center frequency f = 10 GHz and of full-width 27 = 1.0 ns.
The pulse propagates in a lossless single mode rectangular guide which is air-filled and in which the
10 GHz operating frequency is 1.1 times the cutoff frequency of the T E1p mode. Using the result of
Problem 14.14, determine the length of the guide over which the pulse broadens to twice its initial
width: The broadened pulse will have width givenby 7' = /T2 + (A1)2, where At = B,L/T for a
transform limited pulse (assumed gaussian). 2 isthe Problem 14.14 result evaluated at the operating
frequency, or

d2p 1 1\? 1\2]%?
= —5|w= = — _ 1 — _
P2 = alo=106H = — 5 = 510) 3 % 108) (1.1) <1.1)

=6.1x 107 ¢?/m = 0.61 n’/m
Now At = 0.61L/0.5 = 1.2L ns. For the pulse width to double, we have T’ = 1 ns, and
V(0524 (1202 =1 = L=072m=72cm
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14.15.

14.16.

14.17.

14.18.

14.19.

14.20.

(continued)

What simple step can betaken to reduce the amount of pulse broadening in thisguide, whilemaintaining
thesameinitial pulsewidth? It can be seenthat 82 can bereduced by increasing the operating frequency
relative to the cutoff frequency; i.e., operate as far above cutoff as possible, without allowing the next
higher-order modes to propagate.

A symmetric dielectric slab waveguide hasaslab thicknessd = 10 um, withny = 1.48andny = 1.45.
If the operating wavelengthis A = 1.3 um, what modeswill propagate? We use the condition expressed

through (77): kod\/n% — n3 > (m — 1)x. Since ko = 27/, the condition becomes

2d 2(10
— n2—n3>m-1 = %\/(1.48)2 — (1452 =456>m—1

Therefore, m,,., = 5, and we have TE and TM modes for whichm = 1, 2, 3, 4, 5 propagating (ten
total).

A symmetric slab waveguide is known to support only asingle pair of TE and TM modes at wavel ength
A = 155 um. If the dab thicknessis 5 um, what is the maximum value of n1 if no = 3.3 (assume
3.30)? Using (78) we have

2d [ A /1.55
> n1 n%<7r = n1< ﬁ—i_ 2(5)—i-(330)2—332

n1 = 1.50,ny = 1.45, and d = 10 um in asymmetric slab waveguide (note that the index values were
reversed in the original problem statement).

a) What isthe phase velocity of them = 1 TE or TM mode at cutoff? At cutoff, the mode propagates
in the slab at the critical angle, which means that the phase velocity will be equal to that of a
planewavein the upper or lower mediaof index n,. Phase velocity will therefore be v, (cutoff) =
c/n> = 3 x 108/1.45 = 2.07 x 108 m/s.

b) What is the phase velocity of the m = 2 TE or TM modes at cutoff? The reasoning of part a
appliesto all modes, so the answer isthe same, or 2.07 x 108 m/s.

An asymmetric slab waveguide is shown in Fig. 14.24. In this case, the regions above and below the
dlab have unequal refractive indices, where n, > n3 > no (note error in problem statement).

a) Write, interms of the appropriate indices, an expression for the minimum possiblewave angle, 61,
that a guided mode may have: The wave angle must be equal to or greater than the critical angle
of total reflection at both interfaces. The minimum wave angle is thus determined by the greater
of thetwo critical angles. Sincenz > np, wefind 6,,;, = 6,13 = sin*l(ng/nl).

b) Write an expression for the maximum phase velocity a guided mode may have in this structure,
using given or known parameters. We have vy, jax = ©/Bmin, Where Bpin = nikoSinéy in =
nikonz/ny = nzko. ThUS v, ax = w/(n3ko) = c/n3.

A step index optical fiber is known to be single mode at wavelengths A > 1.2 um. Another fiber is
to be fabricated from the same materials, but is to be single mode at wavelengths A > 0.63 um. By
what percentage must the core radius of the new fiber differ from the old one, and should it be larger or
smaller? We use the cutoff condition, given by (80):

2ra 5 5

b > a0V
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14.20. (continued) With A reduced, the core radius, a, must aso be reduced by the same fraction. Therefore,
the percentage reduction required in the core radius will be
1.2 - .63

% = T x 100 = 47.5%

14.21. A short dipole carrying current Io coswt in the a, direction islocated at the origin in free space.
a) Ifg=1rad/m,r =2m,0 = 45°, ¢ = 0,and ¢ = 0, giveaunit vector in rectangular components
that shows the instantaneous direction of E: In spherical coordinates, the components of E are
given by (82) and (83):

E, = ——cosfe /¥ = 4
" 2n ¢ r2 + j2mr3

Iodn . _i2 27T 1 A
Eg = ——sin@e /7 [ j— + S 4 ——
0= "4 e L

Since we want aunit vector at ¢+ = 0, we need only the relative amplitudes of the two components,
but we need the absolute phases. Since § = 45°, sing = cosf = 1/4/2. Also, with p = 1 =
27 /A, itfollowsthat A = 27 m. The above two equations can be smplified by these substitutions,
while dropping all amplitude terms that are common to both. Obtain

101\
Ar= r—2+1?€

A—l .1+1+1 —jr
9_2 Jr r2 jr3 ¢

Now with » = 2 m, we obtain

1 1\ _. 1 SOV
Ay = (Z - é) e % = Z(l.lZ)e j26.6° =2
1 1 1 . 1 emo
Ap = iZ+Z— i )e 72 = =(0.90)/%3 /2
0 <]4+8 ]16)6 4( )e e
The total vector isnow A = A,a. + Agpay. We can normalize the vector by first finding the

magnitude:

1
Al = VA A* = 21\/(1.12)2 + (0.90)2 = 0.359

Dividing thefield vector by this magnitude and converting 2 rad to 114.6°, wewritethe normalized

Vector as )
Ay, = 0.780e /14125 1 0.627¢ 8% 5,

In real instantaneous form, this becomes
Ay (f) = Re (A Nsefwf) = 0.780 cos(wt — 141.2°)a, + 0.627 cos(wt — 58.3%)ay

We evaluate thisat + = O to find

Ay (0) = 0.780cos(141.2°)a, + 0.627 cos(58.3%)as = —0.608a, + 0.330ay
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14.21a. (continued)

Dividing by the magnitude, \/ (0.608)2 + (0.330)2 = 0.692, we obtain the unit vector at t = O:
ay (0) = —0.879a, + 0.477a9. We next convert thisto cartesian components:

. 1
ayy = ay(0)-a, = —0.879sn0 cos¢ + 0.477 cosé cos¢ = ﬁ (—0.879+ 0.477) = —0.284

ayy = ay(0) -a, = —0.879sin6 sing + 0.477cosf singp =0 since¢ =0
1
an, = ay(0) -a, = —0.879cos6 — 0.477sin6 = 72 (—0.879 — 0.477) = —0.959

Thefinal result isthen
ay(0) = —0.284a, — 0.959a,

b) What fraction of the total average power is radiated in the belt, 80° < 6 < 100°? We use the
far-zone phasor fields, (84) and (85), and first find the average power density:

2

1 i
Pavg = SRl Egs Hj,] = 80

d*n
2smGW/m

We integrate this over the given belt, an at radius r:

P / /100 lod®n g2, 25n60.do dep = mlgd®n flooosin%de
belt = o 812r2 " T T2 Jy

Evaluating the integral, we find

1 100 2d2
— = cosf (sinze +2)] — (0.3a4) 0% 1

7 12d%n
Ppety = —2 [3
80

4.2

The total power is found by performing the same integral over 6, where 0 < 6 < 180°. Doing
this, it isfound that

JTIOd2

Pror = (1.333) —5—

The fraction of the total power in the belt isthen f = 0.344/ 1.333 = 0.258.

14.22. Prepareacurve, r vs. 6 in polar coordinates, showing the locusin the ¢ = 0 plane where;
a) theradiation field |Ey,| is one-half of itsvalueat r = 10* m, 6 = 7/2: Assuming the far field
approximation, we use (84) to set up the equation:
Todn 1 lodn

Eoyl = 2 Ging = = x 1041 _ _ 2% 10%sing
EBosl = 55 2 X ox108 T

b) the average radiated power density, P, ., isone-half of itsvalueat r = 10* m, 6 = 7/2. Tofind
the average power, we use (84) and (85) in

1 L L118d%n _, 1 1 I3d% 4
Pr’avzéRe{EQSH¢s}:§4)\,2r2 :é XEW = r=\/§x10 sné
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14.22. (continued) The polar plots for field (- = 2 x 10%sin®) and power (r = /2 x 10* sin) are shown
below. Both arecircles.

Problem 14.22

180

210

240 : 300

270
= |E| x 10,000

------- IPI X 10,000

14.23. Two short antennas at the origin in free space carry identical currents of 5coswt A, one in the &,
direction, oneinthe a, direction. Let A = 27 mandd = 0.1 m. Find E; at the distant point:

@ (x = 0,y = 1000,z = 0): This point lies aong the axial direction of the a, antenna, o its
contribution to the field will be zero. This leavesthe a, antenna, and since 8 = 90°, only the Egy,
component will be present (as (82) and (83) show). Since we arein the far zone, (84) applies. We
used =90° d = 0.1, A = 27, n = no = 120, and r = 1000 to write;

lodn . /5(0.1)(1207) _ .
snde’ Tr/A — j1000

20 onve % = 4ra000) ¢

= j(15x 1072 /1005, = _j (1.5 x 1072)¢ /1003 v/m

Es = Egsa9 = J

b) (O, 0, 1000): Along the z axis, only the a, antennawill contribute to the field. Since the distance
is the same, we can apply the part a result, modified such the the field direction is in —a,:
Ey = —j(L5x 1072)e=/10%03, v/m

€) (1000, 0, 0): Here, both antennas will contribute. Applying the results of parts a and b, we find
E, = —j(L5x 107%)(ay + &,).

d) Find E at (1000, 0, 0) at = 0: Thisisfound through

E(r) = Re(Esej‘”’> = (1.5 x 10-2) sin(ewr — 1000)(a, + a;)
Evaluating at r = 0, wefind
E(0) = (1.5 x 1072)[— sin(1000)](a, + a;) = —(1.24 x 10~2)(a, + a;) V/m.

e) Find |E| at (1000, 0,0) at ¢+ = 0: Taking the magnitude of the part d result, we find |[E| =
1.75x 1072 V/m.
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14.24. A short current element has d = 0.03A. Calculate the radiation resistance for each of the following
current distributions:
a) uniform: In this case, (86) applies directly and we find

d 2
Ryaq = 802 (X) = 8072(.03)> = 0.711Q

b) linear, I(z) = I0(0.5d — |z])/0.5d: Here, the average current is 0.51p, and so the average power
drops by afactor of 0.25. Theradiation resistance therefore is down to one-fourth the value found
inpart a, or R,qq = (0.25)(0.711) = 0.178 Q2.

C) step, Ipfor 0 < |z| < 0.25d and 0.51 for 0.25d < |z| < 0.5d: Inthis casethe average current on
the wireis 0.751p. The radiated power (and radiation resistance) are down to afactor of (0.75)2
times their values for a uniform current, and so R4y = (0.75)%(0.711) = 0.400 2.

14.25. A dipole antennain free space has alinear current distribution. If the length is 0.02, what value of Iy
isrequired to:

a) provide aradiation-field amplitude of 100 mV/m at a distance of one mile, at 6 = 90°: With a
linear current distribution, the peak current, I, occursat the center of the dipole; current decreases
linearly to zero at the two ends. The average current isthus /Io/2, and we use Eq. (84) to write:

lodn

_ 0 . on 10(0.02)(1207)
Eol = 5, SO0 = 0 5280) (12)(0.0254)

—01 = Iop=854A

b) radiate atotal power of 1 watt? We use

1\ /1,
Pavg: Z EIoRrad

where the radiation resistance is given by Eqg. (86), and where the factor of 1/4 arises from the
average current of Io/2: We obtain Pay, = 107212(0.02)> =1 = Io=5.03A.

14.26. A monopole antenna in free space, extending vertically over a perfectly conducting plane, has alinear
current distribution. If the length of the antennais 0.011, what value of I isrequired to
a) provide aradiation field amplitude of 100 mV/m at a distance of 1 mi, at 6 = 90°: The image
antenna below the plane provides aradiation pattern that isidentical to a dipole antenna of length
0.021. Theradiationfield isthusgiven by (84) in free space, where6 = 90°, and with an additional
factor of 1/2 included to account for the linear current distribution:

—3
1 Todno L e 4r|Eg| _ 4(5289)(12 x .0254)(100 x 10~%) _ g5 4 A
2 2ur (d/Mno (.02)(377)

b) radiate atotal power of 1W: For the monopole over the conducting plane, power is radiated only
over the upper half-space. This reduces the radiation resistance of the equivalent dipole antenna
by afactor of one-half. Additionally, thelinear current distribution reducesthe radiation resistance
of a dipole having uniform current by a factor of one-fourth. Therefore, R, .4 IS one-eighth the
value obtained from (86), or R,.q = 107r%(d/2)?. The current magnitude is now

Io= [Zpﬂv]l/z_ [L}m_i
"7 Raa] ~ L1022@/02] T J107(02)

=7.1A
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14.27. Theradiation field of acertain short vertical current element is Eg, = (20/r) sin6 e /1977 Vimifitis
located at the origin in free space.

a)

b)

Find Eg, a P(r = 100, 6 = 90°, ¢ = 30°): Substituting these valuesinto the given formula, find

20 . .
Eps = H) Sin(QOO)e—]lOn(loo) — 0.26_]1000” V/m

Find Ey; at P if the vertical element is located at A(0.1, 90°, 90°): This places the element on
they axisat y = 0.1. Asaresult of moving the antennafrom the originto y = 0.1, the changein
distance to point P is negligible when considering the changein field amplitude, but is not when
considering the change in phase. Consider lines drawn from the origin to P and from y = 0.1
to P. These lines can be considered essentially parallel, and so the difference in their lengths is
[ = 0.1sin(30°), with the line from y = 0.1 being shorter by this amount. The construction and
arguments are similar to those used in the discussion of the electric dipolein Sec. 4.7. Theelectric
field isnow the result of part a, modified by including a shorter distance, r, in the phase term only.
We show this as an additional phase factor:

Epy = 0.2¢710007 ,j107(0.18n30 _ () 5,—j10007 ,jO57 \/ /pmy

Find Ey, a P if identica elements are located at A(0.1, 90°, 90°) and B(0.1, 90°, 270°): The
origina element of part b is till in place, but a new one has been added at y = —0.1. Again,
constructing a line between B and P, we find, using the same arguments as in part b, that the
length of thislineisapproximately 0.1 sin(30°) longer than the distance from the originto P. The
part b result isthus modified to include the contribution from the second el ement, whose field will
add to that of thefirst:

Eps = 0.2¢7 /10007 (o108 . (=J05T) — 0.2¢=/10007 2 cog(0.57) = 0

The two fields are out of phase at P under the approximations we have used.
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