
CHAPTER 1

1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find:
a) a unit vector in the direction of −M + 2N.

−M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (26, 10, 4)

Thus

a = (26, 10, 4)

|(26, 10, 4)| = (0.92, 0.36, 0.14)

b) the magnitude of 5ax + N − 3M:

(5, 0, 0)+ (8, 7,−2)− (−30, 12,−24) = (43,−5, 22), and |(43,−5, 22)| = 48.6.

c) |M||2N|(M + N):

|(−10, 4,−8)||(16, 14,−4)|(−2, 11,−10) = (13.4)(21.6)(−2, 11,−10)

= (−580.5, 3193,−2902)

1.2. Given three points, A(4, 3, 2), B(−2, 0, 5), and C(7,−2, 1):

a) Specify the vector A extending from the origin to the point A.

A = (4, 3, 2) = 4ax + 3ay + 2az

b) Give a unit vector extending from the origin to the midpoint of line AB.

The vector from the origin to the midpoint is given by

M = (1/2)(A + B) = (1/2)(4 − 2, 3 + 0, 2 + 5) = (1, 1.5, 3.5)
The unit vector will be

m = (1, 1.5, 3.5)

|(1, 1.5, 3.5)| = (0.25, 0.38, 0.89)

c) Calculate the length of the perimeter of triangle ABC:

Begin with AB = (−6,−3, 3), BC = (9,−2,−4), CA = (3,−5,−1).
Then

|AB| + |BC| + |CA| = 7.35 + 10.05 + 5.91 = 23.32

1.3. The vector from the origin to the point A is given as (6,−2,−4), and the unit vector directed from the
origin toward point B is (2,−2, 1)/3. If points A and B are ten units apart, find the coordinates of point
B.

With A = (6,−2,−4) and B = 1
3B(2,−2, 1), we use the fact that |B − A| = 10, or

|(6 − 2
3B)ax − (2 − 2

3B)ay − (4 + 1
3B)az| = 10

Expanding, obtain
36 − 8B + 4

9B
2 + 4 − 8

3B + 4
9B

2 + 16 + 8
3B + 1

9B
2 = 100

or B2 − 8B − 44 = 0. Thus B = 8±√
64−176
2 = 11.75 (taking positive option) and so

B = 2

3
(11.75)ax − 2

3
(11.75)ay + 1

3
(11.75)az = 7.83ax − 7.83ay + 3.92az
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1.4. given points A(8,−5, 4) and B(−2, 3, 2), find:

a) the distance from A to B.

|B − A| = |(−10, 8,−2)| = 12.96

b) a unit vector directed from A towards B. This is found through

aAB = B − A
|B − A| = (−0.77, 0.62,−0.15)

c) a unit vector directed from the origin to the midpoint of the line AB.

a0M = (A + B)/2

|(A + B)/2| = (3,−1, 3)√
19

= (0.69,−0.23, 0.69)

d) the coordinates of the point on the line connecting A to B at which the line intersects the plane z = 3.
Note that the midpoint, (3,−1, 3), as determined from part c happens to have z coordinate of 3. This
is the point we are looking for.

1.5. A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z2az. Given two points, P(1, 2,−1) and
Q(−2, 1, 3), find:

a) G at P : G(1, 2,−1) = (48, 36, 18)

b) a unit vector in the direction of G at Q: G(−2, 1, 3) = (−48, 72, 162), so

aG = (−48, 72, 162)

|(−48, 72, 162)| = (−0.26, 0.39, 0.88)

c) a unit vector directed from Q toward P :

aQP = P − Q
|P − Q| = (3,−1, 4)√

26
= (0.59, 0.20,−0.78)

d) the equation of the surface on which |G| = 60: We write 60 = |(24xy, 12(x2 + 2), 18z2)|, or
10 = |(4xy, 2x2 + 4, 3z2)|, so the equation is

100 = 16x2y2 + 4x4 + 16x2 + 16 + 9z4
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1.6. For the G field in Problem 1.5, make sketches of Gx , Gy , Gz and |G| along the line y = 1, z = 1, for
0 ≤ x ≤ 2. We find G(x, 1, 1) = (24x, 12x2 + 24, 18), from which Gx = 24x, Gy = 12x2 + 24,
Gz = 18, and |G| = 6

√
4x4 + 32x2 + 25. Plots are shown below.

1.7. Given the vector field E = 4zy2 cos 2xax + 2zy sin 2xay + y2 sin 2xaz for the region |x|, |y|, and |z| less
than 2, find:

a) the surfaces on which Ey = 0. With Ey = 2zy sin 2x = 0, the surfaces are 1) the plane z = 0, with
|x| < 2, |y| < 2; 2) the plane y = 0, with |x| < 2, |z| < 2; 3) the plane x = 0, with |y| < 2, |z| < 2;
4) the plane x = π/2, with |y| < 2, |z| < 2.

b) the region in which Ey = Ez: This occurs when 2zy sin 2x = y2 sin 2x, or on the plane 2z = y, with
|x| < 2, |y| < 2, |z| < 1.

c) the region in which E = 0: We would have Ex = Ey = Ez = 0, or zy2 cos 2x = zy sin 2x =
y2 sin 2x = 0. This condition is met on the plane y = 0, with |x| < 2, |z| < 2.

1.8. Two vector fields are F = −10ax +20x(y−1)ay and G = 2x2yax −4ay +zaz. For the point P(2, 3,−4),
find:

a) |F|: F at (2, 3,−4) = (−10, 80, 0), so |F| = 80.6.

b) |G|: G at (2, 3,−4) = (24,−4,−4), so |G| = 24.7.

c) a unit vector in the direction of F − G: F − G = (−10, 80, 0)− (24,−4,−4) = (−34, 84, 4). So

a = F − G
|F − G| = (−34, 84, 4)

90.7
= (−0.37, 0.92, 0.04)

d) a unit vector in the direction of F + G: F + G = (−10, 80, 0)+ (24,−4,−4) = (14, 76,−4). So

a = F + G
|F + G| = (14, 76,−4)

77.4
= (0.18, 0.98,−0.05)
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1.9. A field is given as

G = 25

(x2 + y2)
(xax + yay)

Find:
a) a unit vector in the direction of G at P(3, 4,−2): Have Gp = 25/(9 + 16)× (3, 4, 0) = 3ax + 4ay ,

and |Gp| = 5. Thus aG = (0.6, 0.8, 0).

b) the angle between G and ax at P : The angle is found through aG · ax = cos θ . So cos θ =
(0.6, 0.8, 0) · (1, 0, 0) = 0.6. Thus θ = 53◦.

c) the value of the following double integral on the plane y = 7:

∫ 4

0

∫ 2

0
G · aydzdx

∫ 4

0

∫ 2

0

25

x2 + y2 (xax + yay) · aydzdx =
∫ 4

0

∫ 2

0

25

x2 + 49
× 7 dzdx =

∫ 4

0

350

x2 + 49
dx

= 350 × 1

7

[
tan−1

(
4

7

)
− 0

]
= 26

1.10. Use the definition of the dot product to find the interior angles at A and B of the triangle defined by the
three points A(1, 3,−2), B(−2, 4, 5), and C(0,−2, 1):

a) Use RAB = (−3, 1, 7) and RAC = (−1,−5, 3) to form RAB · RAC = |RAB ||RAC | cos θA. Obtain
3 + 5 + 21 = √

59
√

35 cos θA. Solve to find θA = 65.3◦.

b) Use RBA = (3,−1,−7) and RBC = (2,−6,−4) to form RBA · RBC = |RBA||RBC | cos θB . Obtain
6 + 6 + 28 = √

59
√

56 cos θB . Solve to find θB = 45.9◦.

1.11. Given the points M(0.1,−0.2,−0.1), N(−0.2, 0.1, 0.3), and P(0.4, 0, 0.1), find:

a) the vector RMN : RMN = (−0.2, 0.1, 0.3)− (0.1,−0.2,−0.1) = (−0.3, 0.3, 0.4).

b) the dot product RMN · RMP : RMP = (0.4, 0, 0.1) − (0.1,−0.2,−0.1) = (0.3, 0.2, 0.2). RMN ·
RMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2) = −0.09 + 0.06 + 0.08 = 0.05.

c) the scalar projection of RMN on RMP :

RMN · aRMP = (−0.3, 0.3, 0.4) · (0.3, 0.2, 0.2)√
0.09 + 0.04 + 0.04

= 0.05√
0.17

= 0.12

d) the angle between RMN and RMP :

θM = cos−1
(

RMN · RMP

|RMN ||RMP |
)

= cos−1
(

0.05√
0.34

√
0.17

)
= 78◦
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1.12. Given points A(10, 12,−6), B(16, 8,−2), C(8, 1,−4), and D(−2,−5, 8), determine:

a) the vector projection of RAB + RBC on RAD: RAB + RBC = RAC = (8, 1, 4) − (10, 12,−6) =
(−2,−11, 10) Then RAD = (−2,−5, 8) − (10, 12,−6) = (−12,−17, 14). So the projection will
be:

(RAC · aRAD)aRAD =
[
(−2,−11, 10) · (−12,−17, 14)√

629

]
(−12,−17, 14)√

629
= (−6.7,−9.5, 7.8)

b) the vector projection of RAB + RBC on RDC : RDC = (8,−1, 4)− (−2,−5, 8) = (10, 6,−4). The
projection is:

(RAC · aRDC)aRDC =
[
(−2,−11, 10) · (10, 6,−4)√

152

]
(10, 6,−4)√

152
= (−8.3,−5.0, 3.3)

c) the angle between RDA and RDC : Use RDA = −RAD = (12, 17,−14) and RDC = (10, 6,−4).
The angle is found through the dot product of the associated unit vectors, or:

θD = cos−1(aRDA · aRDC) = cos−1
(
(12, 17,−14) · (10, 6,−4)√

629
√

152

)
= 26◦

1.13. a) Find the vector component of F = (10,−6, 5) that is parallel to G = (0.1, 0.2, 0.3):

F||G = F · G
|G|2 G = (10,−6, 5) · (0.1, 0.2, 0.3)

0.01 + 0.04 + 0.09
(0.1, 0.2, 0.3) = (0.93, 1.86, 2.79)

b) Find the vector component of F that is perpendicular to G:

FpG = F − F||G = (10,−6, 5)− (0.93, 1.86, 2.79) = (9.07,−7.86, 2.21)

c) Find the vector component of G that is perpendicular to F:

GpF = G−G||F = G− G · F
|F|2 F = (0.1, 0.2, 0.3)− 1.3

100 + 36 + 25
(10,−6, 5) = (0.02, 0.25, 0.26)

1.14. The four vertices of a regular tetrahedron are located at O(0, 0, 0), A(0, 1, 0), B(0.5
√

3, 0.5, 0), and
C(

√
3/6, 0.5,

√
2/3).

a) Find a unit vector perpendicular (outward) to the face ABC: First find

RBA × RBC = [(0, 1, 0)− (0.5
√

3, 0.5, 0)] × [(
√

3/6, 0.5,
√

2/3)− (0.5
√

3, 0.5, 0)]

= (−0.5
√

3, 0.5, 0)× (−
√

3/3, 0,
√

2/3) = (0.41, 0.71, 0.29)

The required unit vector will then be:

RBA × RBC

|RBA × RBC | = (0.47, 0.82, 0.33)

b) Find the area of the face ABC:

Area = 1

2
|RBA × RBC | = 0.43
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1.15. Three vectors extending from the origin are given as r1 = (7, 3,−2), r2 = (−2, 7,−3), and r3 = (0, 2, 3).
Find:

a) a unit vector perpendicular to both r1 and r2:

ap12 = r1 × r2

|r1 × r2| = (5, 25, 55)

60.6
= (0.08, 0.41, 0.91)

b) a unit vector perpendicular to the vectors r1 − r2 and r2 − r3: r1 − r2 = (9,−4, 1) and r2 − r3 =
(−2, 5,−6). So r1 − r2 × r2 − r3 = (19, 52, 32). Then

ap = (19, 52, 32)

|(19, 52, 32)| = (19, 52, 32)

63.95
= (0.30, 0.81, 0.50)

c) the area of the triangle defined by r1 and r2:

Area = 1

2
|r1 × r2| = 30.3

d) the area of the triangle defined by the heads of r1, r2, and r3:

Area = 1

2
|(r2 − r1)× (r2 − r3)| = 1

2
|(−9, 4,−1)× (−2, 5,−6)| = 32.0

1.16. Describe the surfaces defined by the equations:

a) r · ax = 2, where r = (x, y, z): This will be the plane x = 2.

b) |r × ax | = 2: r × ax = (0, z,−y), and |r × ax | =
√
z2 + y2 = 2. This is the equation of a cylinder,

centered on the x axis, and of radius 2.

1.17. Point A(−4, 2, 5) and the two vectors, RAM = (20, 18,−10) and RAN = (−10, 8, 15), define a triangle.

a) Find a unit vector perpendicular to the triangle: Use

ap = RAM × RAN

|RAM × RAN | = (350,−200, 340)

527.35
= (0.664,−0.379, 0.645)

The vector in the opposite direction to this one is also a valid answer.

b) Find a unit vector in the plane of the triangle and perpendicular to RAN :

aAN = (−10, 8, 15)√
389

= (−0.507, 0.406, 0.761)

Then

apAN = ap × aAN = (0.664,−0.379, 0.645)× (−0.507, 0.406, 0.761) = (−0.550,−0.832, 0.077)

The vector in the opposite direction to this one is also a valid answer.

c) Find a unit vector in the plane of the triangle that bisects the interior angle at A: A non-unit vector
in the required direction is (1/2)(aAM + aAN), where

aAM = (20, 18,−10)

|(20, 18,−10)| = (0.697, 0.627,−0.348)
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1.17c. (continued) Now

1

2
(aAM + aAN) = 1

2
[(0.697, 0.627,−0.348)+ (−0.507, 0.406, 0.761)] = (0.095, 0.516, 0.207)

Finally,

abis = (0.095, 0.516, 0.207)

|(0.095, 0.516, 0.207)| = (0.168, 0.915, 0.367)

1.18. Given points A(ρ = 5, φ = 70◦, z = −3) and B(ρ = 2, φ = −30◦, z = 1), find:

a) unit vector in cartesian coordinates at A toward B: A(5 cos 70◦, 5 sin 70◦,−3) = A(1.71, 4.70,−3), In
the same manner, B(1.73,−1, 1). So RAB = (1.73,−1, 1) − (1.71, 4.70,−3) = (0.02,−5.70, 4) and
therefore

aAB = (0.02,−5.70, 4)

|(0.02,−5.70, 4)| = (0.003,−0.82, 0.57)

b) a vector in cylindrical coordinates at A directed toward B: aAB · aρ = 0.003 cos 70◦ − 0.82 sin 70◦ =
−0.77. aAB · aφ = −0.003 sin 70◦ − 0.82 cos 70◦ = −0.28. Thus

aAB = −0.77aρ − 0.28aφ + 0.57az

.

c) a unit vector in cylindrical coordinates at B directed toward A:
Use aBA = (−0, 003, 0.82,−0.57). Then aBA ·aρ = −0.003 cos(−30◦)+0.82 sin(−30◦) = −0.43, and
aBA · aφ = 0.003 sin(−30◦)+ 0.82 cos(−30◦) = 0.71. Finally,

aBA = −0.43aρ + 0.71aφ − 0.57az

1.19 a) Express the field D = (x2 + y2)−1(xax + yay) in cylindrical components and cylindrical variables:
Have x = ρ cosφ, y = ρ sin φ, and x2 + y2 = ρ2. Therefore

D = 1

ρ
(cosφax + sin φay)

Then

Dρ = D · aρ = 1

ρ

[
cosφ(ax · aρ)+ sin φ(ay · aρ)

] = 1

ρ

[
cos2 φ + sin2 φ

]
= 1

ρ

and

Dφ = D · aφ = 1

ρ

[
cosφ(ax · aφ)+ sin φ(ay · aφ)

] = 1

ρ
[cosφ(− sin φ)+ sin φ cosφ] = 0

Therefore

D = 1

ρ
aρ
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1.19b. Evaluate D at the point where ρ = 2, φ = 0.2π , and z = 5, expressing the result in cylindrical and
cartesian coordinates: At the given point, and in cylindrical coordinates, D = 0.5aρ . To express this in
cartesian, we use

D = 0.5(aρ · ax)ax + 0.5(aρ · ay)ay = 0.5 cos 36◦ax + 0.5 sin 36◦ay = 0.41ax + 0.29ay

1.20. Express in cartesian components:
a) the vector at A(ρ = 4, φ = 40◦, z = −2) that extends to B(ρ = 5, φ = −110◦, z = 2): We

have A(4 cos 40◦, 4 sin 40◦,−2) = A(3.06, 2.57,−2), and B(5 cos(−110◦), 5 sin(−110◦), 2) =
B(−1.71,−4.70, 2) in cartesian. Thus RAB = (−4.77,−7.30, 4).

b) a unit vector at B directed toward A: Have RBA = (4.77, 7.30,−4), and so

aBA = (4.77, 7.30,−4)

|(4.77, 7.30,−4)| = (0.50, 0.76,−0.42)

c) a unit vector at B directed toward the origin: Have rB = (−1.71,−4.70, 2), and so −rB =
(1.71, 4.70,−2). Thus

a = (1.71, 4.70,−2)

|(1.71, 4.70,−2)| = (0.32, 0.87,−0.37)

1.21. Express in cylindrical components:

a) the vector from C(3, 2,−7) to D(−1,−4, 2):
C(3, 2,−7) → C(ρ = 3.61, φ = 33.7◦, z = −7) and
D(−1,−4, 2) → D(ρ = 4.12, φ = −104.0◦, z = 2).
Now RCD = (−4,−6, 9) and Rρ = RCD · aρ = −4 cos(33.7) − 6 sin(33.7) = −6.66. Then
Rφ = RCD · aφ = 4 sin(33.7)− 6 cos(33.7) = −2.77. So RCD = −6.66aρ − 2.77aφ + 9az

b) a unit vector at D directed toward C:
RCD = (4, 6,−9) and Rρ = RDC · aρ = 4 cos(−104.0) + 6 sin(−104.0) = −6.79. Then Rφ =
RDC · aφ = 4[− sin(−104.0)] + 6 cos(−104.0) = 2.43. So RDC = −6.79aρ + 2.43aφ − 9az
Thus aDC = −0.59aρ + 0.21aφ − 0.78az

c) a unit vector at D directed toward the origin: Start with rD = (−1,−4, 2), and so the vector toward
the origin will be −rD = (1, 4,−2). Thus in cartesian the unit vector is a = (0.22, 0.87,−0.44).
Convert to cylindrical:
aρ = (0.22, 0.87,−0.44) · aρ = 0.22 cos(−104.0)+ 0.87 sin(−104.0) = −0.90, and
aφ = (0.22, 0.87,−0.44) · aφ = 0.22[− sin(−104.0)] + 0.87 cos(−104.0) = 0, so that finally,
a = −0.90aρ − 0.44az.

1.22. A field is given in cylindrical coordinates as

F =
[

40

ρ2 + 1
+ 3(cosφ + sin φ)

]
aρ + 3(cosφ − sin φ)aφ − 2az

where the magnitude of F is found to be:

|F| =
√

F · F =
[

1600

(ρ2 + 1)2
+ 240

ρ2 + 1
(cosφ + sin φ)+ 22

]1/2
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Sketch |F|:
a) vs. φ with ρ = 3: in this case the above simplifies to

|F(ρ = 3)| = |Fa| = [38 + 24(cosφ + sin φ)]1/2

b) vs. ρ with φ = 0, in which:

|F(φ = 0)| = |Fb| =
[

1600

(ρ2 + 1)2
+ 240

ρ2 + 1
+ 22

]1/2

c) vs. ρ with φ = 45◦, in which

|F(φ = 45◦)| = |Fc| =
[

1600

(ρ2 + 1)2
+ 240

√
2

ρ2 + 1
+ 22

]1/2
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1.23. The surfaces ρ = 3, ρ = 5, φ = 100◦, φ = 130◦, z = 3, and z = 4.5 define a closed surface.
a) Find the enclosed volume:

Vol =
∫ 4.5

3

∫ 130◦

100◦

∫ 5

3
ρ dρ dφ dz = 6.28

NOTE: The limits on the φ integration must be converted to radians (as was done here, but not shown).

b) Find the total area of the enclosing surface:

Area = 2
∫ 130◦

100◦

∫ 5

3
ρ dρ dφ +

∫ 4.5

3

∫ 130◦

100◦
3 dφ dz

+
∫ 4.5

3

∫ 130◦

100◦
5 dφ dz + 2

∫ 4.5

3

∫ 5

3
dρ dz = 20.7

c) Find the total length of the twelve edges of the surfaces:

Length = 4 × 1.5 + 4 × 2 + 2 ×
[

30◦

360◦ × 2π × 3 + 30◦

360◦ × 2π × 5

]
= 22.4

d) Find the length of the longest straight line that lies entirely within the volume: This will be between
the points A(ρ = 3, φ = 100◦, z = 3) and B(ρ = 5, φ = 130◦, z = 4.5). Performing point
transformations to cartesian coordinates, these become A(x = −0.52, y = 2.95, z = 3) and B(x =
−3.21, y = 3.83, z = 4.5). Taking A and B as vectors directed from the origin, the requested length
is

Length = |B − A| = |(−2.69, 0.88, 1.5)| = 3.21

1.24. At point P(−3, 4, 5), express the vector that extends from P to Q(2, 0,−1) in:

a) rectangular coordinates.
RPQ = Q − P = 5ax − 4ay − 6az

Then |RPQ| = √
25 + 16 + 36 = 8.8

b) cylindrical coordinates. At P , ρ = 5, φ = tan−1(4/− 3) = −53.1◦, and z = 5. Now,

RPQ · aρ = (5ax − 4ay − 6az) · aρ = 5 cosφ − 4 sin φ = 6.20

RPQ · aφ = (5ax − 4ay − 6az) · aφ = −5 sin φ − 4 cosφ = 1.60

Thus
RPQ = 6.20aρ + 1.60aφ − 6az

and |RPQ| = √
6.202 + 1.602 + 62 = 8.8

c) spherical coordinates. At P , r = √
9 + 16 + 25 = √

50 = 7.07, θ = cos−1(5/7.07) = 45◦, and
φ = tan−1(4/− 3) = −53.1◦.

RPQ · ar = (5ax − 4ay − 6az) · ar = 5 sin θ cosφ − 4 sin θ sin φ − 6 cos θ = 0.14

RPQ · aθ = (5ax − 4ay − 6az) · aθ = 5 cos θ cosφ − 4 cos θ sin φ − (−6) sin θ = 8.62

RPQ · aφ = (5ax − 4ay − 6az) · aφ = −5 sin φ − 4 cosφ = 1.60
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1.24. (continued)

Thus
RPQ = 0.14ar + 8.62aθ + 1.60aφ

and |RPQ| = √
0.142 + 8.622 + 1.602 = 8.8

d) Show that each of these vectors has the same magnitude. Each does, as shown above.

1.25. Given point P(r = 0.8, θ = 30◦, φ = 45◦), and

E = 1

r2

(
cosφ ar + sin φ

sin θ
aφ

)

a) Find E at P : E = 1.10aρ + 2.21aφ .

b) Find |E| at P : |E| = √
1.102 + 2.212 = 2.47.

c) Find a unit vector in the direction of E at P :

aE = E
|E| = 0.45ar + 0.89aφ

1.26. a) Determine an expression for ay in spherical coordinates at P(r = 4, θ = 0.2π, φ = 0.8π): Use
ay · ar = sin θ sin φ = 0.35, ay · aθ = cos θ sin φ = 0.48, and ay · aφ = cosφ = −0.81 to obtain

ay = 0.35ar + 0.48aθ − 0.81aφ

b) Express ar in cartesian components at P : Find x = r sin θ cosφ = −1.90, y = r sin θ sin φ = 1.38,
and z = r cos θ = −3.24. Then use ar · ax = sin θ cosφ = −0.48, ar · ay = sin θ sin φ = 0.35, and
ar · az = cos θ = 0.81 to obtain

ar = −0.48ax + 0.35ay + 0.81az

1.27. The surfaces r = 2 and 4, θ = 30◦ and 50◦, and φ = 20◦ and 60◦ identify a closed surface.
a) Find the enclosed volume: This will be

Vol =
∫ 60◦

20◦

∫ 50◦

30◦

∫ 4

2
r2 sin θdrdθdφ = 2.91

where degrees have been converted to radians.
b) Find the total area of the enclosing surface:

Area =
∫ 60◦

20◦

∫ 50◦

30◦
(42 + 22) sin θdθdφ +

∫ 4

2

∫ 60◦

20◦
r(sin 30◦ + sin 50◦)drdφ

+ 2
∫ 50◦

30◦

∫ 4

2
rdrdθ = 12.61

c) Find the total length of the twelve edges of the surface:

Length = 4
∫ 4

2
dr + 2

∫ 50◦

30◦
(4 + 2)dθ +

∫ 60◦

20◦
(4 sin 50◦ + 4 sin 30◦ + 2 sin 50◦ + 2 sin 30◦)dφ

= 17.49
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1.27. (continued)

d) Find the length of the longest straight line that lies entirely within the surface: This will be from
A(r = 2, θ = 50◦, φ = 20◦) to B(r = 4, θ = 30◦, φ = 60◦) or

A(x = 2 sin 50◦ cos 20◦, y = 2 sin 50◦ sin 20◦, z = 2 cos 50◦)

to
B(x = 4 sin 30◦ cos 60◦, y = 4 sin 30◦ sin 60◦, z = 4 cos 30◦)

or finally A(1.44, 0.52, 1.29) to B(1.00, 1.73, 3.46). Thus B − A = (−0.44, 1.21, 2.18) and

Length = |B − A| = 2.53

1.28. a) Determine the cartesian components of the vector from A(r = 5, θ = 110◦, φ = 200◦) to B(r =
7, θ = 30◦, φ = 70◦): First transform the points to cartesian: xA = 5 sin 110◦ cos 200◦ = −4.42,
yA = 5 sin 110◦ sin 200◦ = −1.61, and zA = 5 cos 110◦ = −1.71; xB = 7 sin 30◦ cos 70◦ = 1.20,
yB = 7 sin 30◦ sin 70◦ = 3.29, and zB = 7 cos 30◦ = 6.06. Now

RAB = B − A = 5.62ax + 4.90ay + 7.77az

b) Find the spherical components of the vector at P(2,−3, 4) extending to Q(−3, 2, 5): First, RPQ =
Q − P = (−5, 5, 1). Then at P , r = √

4 + 9 + 16 = 5.39, θ = cos−1(4/
√

29) = 42.0◦, and φ =
tan−1(−3/2) = −56.3◦. Now

RPQ · ar = −5 sin(42◦) cos(−56.3◦)+ 5 sin(42◦) sin(−56.3◦)+ 1 cos(42◦) = −3.90

RPQ · aθ = −5 cos(42◦) cos(−56.3◦)+ 5 cos(42◦) sin(−56.3◦)− 1 sin(42◦) = −5.82

RPQ · aφ = −(−5) sin(−56.3◦)+ 5 cos(−56.3◦) = −1.39

So finally,
RPQ = −3.90ar − 5.82aθ − 1.39aφ

c) If D = 5ar − 3aθ + 4aφ , find D · aρ at M(1, 2, 3): First convert aρ to cartesian coordinates at the
specified point. Use aρ = (aρ · ax)ax + (aρ · ay)ay . At A(1, 2, 3), ρ = √

5, φ = tan−1(2) = 63.4◦,
r = √

14, and θ = cos−1(3/
√

14) = 36.7◦. So aρ = cos(63.4◦)ax + sin(63.4◦)ay = 0.45ax + 0.89ay .
Then

(5ar − 3aθ + 4aφ) · (0.45ax + 0.89ay) =
5(0.45) sin θ cosφ + 5(0.89) sin θ sin φ − 3(0.45) cos θ cosφ

− 3(0.89) cos θ sin φ + 4(0.45)(− sin φ) + 4(0.89) cosφ = 0.59

1.29. Express the unit vector ax in spherical components at the point:
a) r = 2, θ = 1 rad, φ = 0.8 rad: Use

ax = (ax · ar )ar + (ax · aθ )aθ + (ax · aφ)aφ =
sin(1) cos(0.8)ar + cos(1) cos(0.8)aθ + (− sin(0.8))aφ = 0.59ar + 0.38aθ − 0.72aφ
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1.29 (continued) Express the unit vector ax in spherical components at the point:

b) x = 3, y = 2, z = −1: First, transform the point to spherical coordinates. Have r = √
14,

θ = cos−1(−1/
√

14) = 105.5◦, and φ = tan−1(2/3) = 33.7◦. Then

ax = sin(105.5◦) cos(33.7◦)ar + cos(105.5◦) cos(33.7◦)aθ + (− sin(33.7◦))aφ
= 0.80ar − 0.22aθ − 0.55aφ

c) ρ = 2.5, φ = 0.7 rad, z = 1.5: Again, convert the point to spherical coordinates. r =
√
ρ2 + z2 =√

8.5, θ = cos−1(z/r) = cos−1(1.5/
√

8.5) = 59.0◦, and φ = 0.7 rad = 40.1◦. Now

ax = sin(59◦) cos(40.1◦)ar + cos(59◦) cos(40.1◦)aθ + (− sin(40.1◦))aφ
= 0.66ar + 0.39aθ − 0.64aφ

1.30. Given A(r = 20, θ = 30◦, φ = 45◦) and B(r = 30, θ = 115◦, φ = 160◦), find:

a) |RAB |: First convert A and B to cartesian: Have xA = 20 sin(30◦) cos(45◦) = 7.07, yA =
20 sin(30◦) sin(45◦) = 7.07, and zA = 20 cos(30◦) = 17.3. xB = 30 sin(115◦) cos(160◦) = −25.6,
yB = 30 sin(115◦) sin(160◦) = 9.3, and zB = 30 cos(115◦) = −12.7. Now RAB = RB − RA =
(−32.6, 2.2,−30.0), and so |RAB | = 44.4.

b) |RAC |, given C(r = 20, θ = 90◦, φ = 45◦). Again, converting C to cartesian, obtain xC =
20 sin(90◦) cos(45◦) = 14.14, yC = 20 sin(90◦) sin(45◦) = 14.14, and zC = 20 cos(90◦) = 0. So
RAC = RC − RA = (7.07, 7.07,−17.3), and |RAC | = 20.0.

c) the distance fromA toC on a great circle path: Note thatA andC share the same r and φ coordinates;
thus moving from A to C involves only a change in θ of 60◦. The requested arc length is then

distance = 20 ×
[

60

(
2π

360

)]
= 20.9
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CHAPTER 2

2.1. Four 10nC positive charges are located in the z = 0 plane at the corners of a square 8cm on a side.
A fifth 10nC positive charge is located at a point 8cm distant from the other charges. Calculate the
magnitude of the total force on this fifth charge for ε = ε0:

Arrange the charges in the xy plane at locations (4,4), (4,-4), (-4,4), and (-4,-4). Then the fifth charge
will be on the z axis at location z = 4

√
2, which puts it at 8cm distance from the other four. By

symmetry, the force on the fifth charge will be z-directed, and will be four times the z component of
force produced by each of the four other charges.

F = 4√
2

× q2

4πε0d2 = 4√
2

× (10−8)2

4π(8.85 × 10−12)(0.08)2 = 4.0 × 10−4 N

2.2. A charge Q1 = 0.1 µC is located at the origin, while Q2 = 0.2 µC is at A(0.8,−0.6, 0). Find the
locus of points in the z = 0 plane at which the x component of the force on a third positive charge is
zero.

To solve this problem, the z coordinate of the third charge is immaterial, so we can place it in the
xy plane at coordinates (x, y, 0). We take its magnitude to be Q3. The vector directed from the first
charge to the third is R13 = xax + yay ; the vector directed from the second charge to the third is
R23 = (x − 0.8)ax + (y + 0.6)ay . The force on the third charge is now

F3 = Q3

4πε0

[
Q1R13

|R13|3 + Q2R23

|R23|3
]

= Q3 × 10−6

4πε0

[
0.1(xax + yay)
(x2 + y2)1.5

+ 0.2[(x − 0.8)ax + (y + 0.6)ay]

[(x − 0.8)2 + (y + 0.6)2]1.5

]

We desire the x component to be zero. Thus,

0 =
[

0.1xax
(x2 + y2)1.5

+ 0.2(x − 0.8)ax
[(x − 0.8)2 + (y + 0.6)2]1.5

]

or
x[(x − 0.8)2 + (y + 0.6)2]1.5 = 2(0.8 − x)(x2 + y2)1.5

2.3. Point charges of 50nC each are located at A(1, 0, 0), B(−1, 0, 0), C(0, 1, 0), and D(0,−1, 0) in free
space. Find the total force on the charge at A.

The force will be:

F = (50 × 10−9)2

4πε0

[
RCA

|RCA|3 + RDA

|RDA|3 + RBA

|RBA|3
]

where RCA = ax − ay , RDA = ax + ay , and RBA = 2ax . The magnitudes are |RCA| = |RDA| = √
2,

and |RBA| = 2. Substituting these leads to

F = (50 × 10−9)2

4πε0

[
1

2
√

2
+ 1

2
√

2
+ 2

8

]
ax = 21.5ax µN

where distances are in meters.
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2.4. Let Q1 = 8 µC be located at P1(2, 5, 8) while Q2 = −5 µC is at P2(6, 15, 8). Let ε = ε0.
a) Find F2, the force on Q2: This force will be

F2 = Q1Q2

4πε0

R12

|R12|3 = (8 × 10−6)(−5 × 10−6)

4πε0

(4ax + 10ay)
(116)1.5

= (−1.15ax − 2.88ay)mN

b) Find the coordinates of P3 if a charge Q3 experiences a total force F3 = 0 at P3: This force in
general will be:

F3 = Q3

4πε0

[
Q1R13

|R13|3 + Q2R23

|R23|3
]

where R13 = (x − 2)ax + (y − 5)ay and R23 = (x − 6)ax + (y − 15)ay . Note, however, that
all three charges must lie in a straight line, and the location of Q3 will be along the vector R12
extended past Q2. The slope of this vector is (15 − 5)/(6 − 2) = 2.5. Therefore, we look for P3
at coordinates (x, 2.5x, 8). With this restriction, the force becomes:

F3 = Q3

4πε0

[
8[(x − 2)ax + 2.5(x − 2)ay]

[(x − 2)2 + (2.5)2(x − 2)2]1.5
− 5[(x − 6)ax + 2.5(x − 6)ay]

[(x − 6)2 + (2.5)2(x − 6)2]1.5

]
where we require the term in large brackets to be zero. This leads to

8(x − 2)[((2.5)2 + 1)(x − 6)2]1.5 − 5(x − 6)[((2.5)2 + 1)(x − 2)2]1.5 = 0

which reduces to
8(x − 6)2 − 5(x − 2)2 = 0

or

x = 6
√

8 − 2
√

5√
8 − √

5
= 21.1

The coordinates of P3 are thus P3(21.1, 52.8, 8)

2.5. Let a point charge Q125 nC be located at P1(4,−2, 7) and a charge Q2 = 60 nC be at P2(−3, 4,−2).

a) If ε = ε0, find E at P3(1, 2, 3): This field will be

E = 10−9

4πε0

[
25R13

|R13|3 + 60R23

|R23|3
]

where R13 = −3ax+4ay−4az and R23 = 4ax−2ay+5az. Also, |R13| = √
41 and |R23| = √

45.
So

E = 10−9

4πε0

[
25 × (−3ax + 4ay − 4az)

(41)1.5
+ 60 × (4ax − 2ay + 5az)

(45)1.5

]
= 4.58ax − 0.15ay + 5.51az

b) At what point on the y axis is Ex = 0? P3 is now at (0, y, 0), so R13 = −4ax + (y + 2)ay − 7az
and R23 = 3ax + (y − 4)ay + 2az. Also, |R13| =

√
65 + (y + 2)2 and |R23| =

√
13 + (y − 4)2.

Now the x component of E at the new P3 will be:

Ex = 10−9

4πε0

[
25 × (−4)

[65 + (y + 2)2]1.5
+ 60 × 3

[13 + (y − 4)2]1.5

]
To obtain Ex = 0, we require the expression in the large brackets to be zero. This expression
simplifies to the following quadratic:

0.48y2 + 13.92y + 73.10 = 0

which yields the two values: y = −6.89,−22.11
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2.6. Point charges of 120 nC are located at A(0, 0, 1) and B(0, 0,−1) in free space.

a) Find E at P(0.5, 0, 0): This will be

EP = 120 × 10−9

4πε0

[
RAP

|RAP |3 + RBP

|RBP |3
]

where RAP = 0.5ax − az and RBP = 0.5ax + az. Also, |RAP | = |RBP | = √
1.25. Thus:

EP = 120 × 10−9ax
4π(1.25)1.5ε0

= 772 V/m

b) What single charge at the origin would provide the identical field strength? We require

Q0

4πε0(0.5)2 = 772

from which we find Q0 = 21.5 nC.

2.7. A 2 µC point charge is located at A(4, 3, 5) in free space. Find Eρ , Eφ , and Ez at P(8, 12, 2). Have

EP = 2 × 10−6

4πε0

RAP

|RAP |3 = 2 × 10−6

4πε0

[
4ax + 9ay − 3az

(106)1.5

]
= 65.9ax + 148.3ay − 49.4az

Then, at point P , ρ = √
82 + 122 = 14.4, φ = tan−1(12/8) = 56.3◦, and z = z. Now,

Eρ = Ep · aρ = 65.9(ax · aρ) + 148.3(ay · aρ) = 65.9 cos(56.3◦) + 148.3 sin(56.3◦) = 159.7

and

Eφ = Ep · aφ = 65.9(ax · aφ) + 148.3(ay · aφ) = −65.9 sin(56.3◦) + 148.3 cos(56.3◦) = 27.4

Finally, Ez = −49.4

2.8. Given point charges of −1 µC at P1(0, 0, 0.5) and P2(0, 0,−0.5), and a charge of 2 µC at the origin,
find E at P(0, 2, 1) in spherical components, assuming ε = ε0.

The field will take the general form:

EP = 10−6

4πε0

[
− R1

|R1|3 + 2R2

|R2|3 − R3

|R3|3
]

where R1, R2, R3 are the vectors toP from each of the charges in their original listed order. Specifically,
R1 = (0, 2, 0.5), R2 = (0, 2, 1), and R3 = (0, 2, 1.5). The magnitudes are |R1| = 2.06, |R2| = 2.24,
and |R3| = 2.50. Thus

EP = 10−6

4πε0

[−(0, 2, 0.5)

(2.06)3 + 2(0, 2, 1)

(2.24)3 − (0, 2, 1.5)

(2.50)3

]
= 89.9ay + 179.8az

Now, at P , r = √
5, θ = cos−1(1/

√
5) = 63.4◦, and φ = 90◦. So

Er = EP · ar = 89.9(ay · ar ) + 179.8(az · ar ) = 89.9 sin θ sin φ + 179.8 cos θ = 160.9

Eθ = EP · aθ = 89.9(ay · aθ ) + 179.8(az · aθ ) = 89.9 cos θ sin φ + 179.8(− sin θ) = −120.5

Eφ = EP · aφ = 89.9(ay · aφ) + 179.8(az · aφ) = 89.9 cosφ = 0
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2.9. A 100 nC point charge is located at A(−1, 1, 3) in free space.
a) Find the locus of all points P(x, y, z) at which Ex = 500 V/m: The total field at P will be:

EP = 100 × 10−9

4πε0

RAP

|RAP |3

where RAP = (x + 1)ax + (y − 1)ay + (z − 3)az, and where |RAP | = [(x + 1)2 + (y − 1)2 +
(z − 3)2]1/2. The x component of the field will be

Ex = 100 × 10−9

4πε0

[
(x + 1)

[(x + 1)2 + (y − 1)2 + (z − 3)2]1.5

]
= 500 V/m

And so our condition becomes:

(x + 1) = 0.56 [(x + 1)2 + (y − 1)2 + (z − 3)2]1.5

b) Find y1 if P(−2, y1, 3) lies on that locus: At point P , the condition of part a becomes

3.19 =
[
1 + (y1 − 1)2

]3

from which (y1 − 1)2 = 0.47, or y1 = 1.69 or 0.31

2.10. Charges of 20 and -20 nC are located at (3, 0, 0) and (−3, 0, 0), respectively. Let ε = ε0.
Determine |E| at P(0, y, 0): The field will be

EP = 20 × 10−9

4πε0

[
R1

|R1|3 − R2

|R2|3
]

where R1, the vector from the positive charge to point P is (−3, y, 0), and R2, the vector from
the negative charge to point P , is (3, y, 0). The magnitudes of these vectors are |R1| = |R2| =√

9 + y2. Substituting these into the expression for EP produces

EP = 20 × 10−9

4πε0

[ −6ax
(9 + y2)1.5

]

from which

|EP | = 1079

(9 + y2)1.5
V/m

2.11. A charge Q0 located at the origin in free space produces a field for which Ez = 1 kV/m at point
P(−2, 1,−1).

a) Find Q0: The field at P will be

EP = Q0

4πε0

[−2ax + ay − az
61.5

]

Since the z component is of value 1 kV/m, we find Q0 = −4πε061.5 × 103 = −1.63 µC.
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2.11. (continued)

b) Find E at M(1, 6, 5) in cartesian coordinates: This field will be:

EM = −1.63 × 10−6

4πε0

[
ax + 6ay + 5az
[1 + 36 + 25]1.5

]

or EM = −30.11ax − 180.63ay − 150.53az.

c) Find E at M(1, 6, 5) in cylindrical coordinates: At M , ρ = √
1 + 36 = 6.08, φ = tan−1(6/1) =

80.54◦, and z = 5. Now

Eρ = EM · aρ = −30.11 cosφ − 180.63 sin φ = −183.12

Eφ = EM · aφ = −30.11(− sin φ) − 180.63 cosφ = 0 (as expected)

so that EM = −183.12aρ − 150.53az.

d) Find E at M(1, 6, 5) in spherical coordinates: At M , r = √
1 + 36 + 25 = 7.87, φ = 80.54◦ (as

before), and θ = cos−1(5/7.87) = 50.58◦. Now, since the charge is at the origin, we expect to
obtain only a radial component of EM . This will be:

Er = EM · ar = −30.11 sin θ cosφ − 180.63 sin θ sin φ − 150.53 cos θ = −237.1

2.12. The volume charge density ρv = ρ0e
−|x|−|y|−|z| exists over all free space. Calculate the total charge

present: This will be 8 times the integral of ρv over the first octant, or

Q = 8
∫ ∞

0

∫ ∞

0

∫ ∞

0
ρ0e

−x−y−z dx dy dz = 8ρ0

2.13. A uniform volume charge density of 0.2 µC/m3 (note typo in book) is present throughout the spherical
shell extending from r = 3 cm to r = 5 cm. If ρv = 0 elsewhere:

a) find the total charge present throughout the shell: This will be

Q =
∫ 2π

0

∫ π

0

∫ .05

.03
0.2 r2 sin θ dr dθ dφ =

[
4π(0.2)

r3

3

].05

.03
= 8.21 × 10−5 µC = 82.1 pC

b) find r1 if half the total charge is located in the region 3 cm < r < r1: If the integral over r in part
a is taken to r1, we would obtain

[
4π(0.2)

r3

3

]r1

.03
= 4.105 × 10−5

Thus

r1 =
[

3 × 4.105 × 10−5

0.2 × 4π
+ (.03)3

]1/3

= 4.24 cm
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2.14. Let

ρv = 5e−0.1ρ (π − |φ|) 1

z2 + 10
µC/m3

in the region 0 ≤ ρ ≤ 10, −π < φ < π , all z, and ρv = 0 elsewhere.

a) Determine the total charge present: This will be the integral of ρv over the region where it exists;
specifically,

Q =
∫ ∞

−∞

∫ π

−π

∫ 10

0
5e−0.1ρ (π − |φ|) 1

z2 + 10
ρ dρ dφ dz

which becomes

Q = 5

[
e−0.1ρ

(0.1)2 (−0.1 − 1)

]10

0

∫ ∞

−∞
2
∫ π

0
(π − φ)

1

z2 + 10
dφ dz

or

Q = 5 × 26.4
∫ ∞

−∞
π2 1

z2 + 10
dz

Finally,

Q = 5 × 26.4 × π2
[

1√
10

tan−1
(

z√
10

)]∞

−∞
= 5(26.4)π3

√
10

= 1.29 × 103 µC = 1.29 mC

b) Calculate the charge within the region 0 ≤ ρ ≤ 4, −π/2 < φ < π/2, −10 < z < 10: With the
limits thus changed, the integral for the charge becomes:

Q′ =
∫ 10

−10
2
∫ π/2

0

∫ 4

0
5e−0.1ρ (π − φ)

1

z2 + 10
ρ dρ dφ dz

Following the same evaulation procedure as in part a, we obtain Q′ = 0.182 mC.

2.15. A spherical volume having a 2 µm radius contains a uniform volume charge density of 1015 C/m3.

a) What total charge is enclosed in the spherical volume?
This will be Q = (4/3)π(2 × 10−6)3 × 1015 = 3.35 × 10−2 C.

b) Now assume that a large region contains one of these little spheres at every corner of a cubical grid
3mm on a side, and that there is no charge between spheres. What is the average volume charge
density throughout this large region? Each cube will contain the equivalent of one little sphere.
Neglecting the little sphere volume, the average density becomes

ρv,avg = 3.35 × 10−2

(0.003)3 = 1.24 × 106 C/m3

2.16. The region in which 4 < r < 5, 0 < θ < 25◦, and 0.9π < φ < 1.1π contains the volume charge
density of ρv = 10(r − 4)(r − 5) sin θ sin(φ/2). Outside the region, ρv = 0. Find the charge within
the region: The integral that gives the charge will be

Q = 10
∫ 1.1π

.9π

∫ 25◦

0

∫ 5

4
(r − 4)(r − 5) sin θ sin(φ/2) r2 sin θ dr dθ dφ
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2.16. (continued) Carrying out the integral, we obtain

Q = 10

[
r5

5
− 9

r4

4
+ 20

r3

3

]5

4

[
1

2
θ − 1

4
sin(2θ)

]25◦

0

[
−2 cos

(
θ

2

)]1.1π

.9π

= 10(−3.39)(.0266)(.626) = 0.57 C

2.17. A uniform line charge of 16 nC/m is located along the line defined by y = −2, z = 5. If ε = ε0:

a) Find E at P(1, 2, 3): This will be

EP = ρl

2πε0

RP

|RP |2
where RP = (1, 2, 3) − (1,−2, 5) = (0, 4,−2), and |RP |2 = 20. So

EP = 16 × 10−9

2πε0

[
4ay − 2az

20

]
= 57.5ay − 28.8az V/m

b) Find E at that point in the z = 0 plane where the direction of E is given by (1/3)ay − (2/3)az:
With z = 0, the general field will be

Ez=0 = ρl

2πε0

[
(y + 2)ay − 5az
(y + 2)2 + 25

]

We require |Ez| = −|2Ey |, so 2(y + 2) = 5. Thus y = 1/2, and the field becomes:

Ez=0 = ρl

2πε0

[
2.5ay − 5az
(2.5)2 + 25

]
= 23ay − 46az

2.18. Uniform line charges of 0.4 µC/m and −0.4 µC/m are located in the x = 0 plane at y = −0.6 and
y = 0.6 m respectively. Let ε = ε0.

a) Find E at P(x, 0, z): In general, we have

EP = ρl

2πε0

[
R+P

|R+P | − R−P

|R−P |
]

where R+P and R−P are, respectively, the vectors directed from the positive and negative line
charges to the point P , and these are normal to the z axis. We thus have R+P = (x, 0, z) −
(0,−.6, z) = (x, .6, 0), and R−P = (x, 0, z) − (0, .6, z) = (x,−.6, 0). So

EP = ρl

2πε0

[
xax + 0.6ay
x2 + (0.6)2 − xax − 0.6ay

x2 + (0.6)2

]
= 0.4 × 10−6

2πε0

[
1.2ay

x2 + 0.36

]
= 8.63ay

x2 + 0.36
kV/m
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2.18. (continued)
b) Find E at Q(2, 3, 4): This field will in general be:

EQ = ρl

2πε0

[
R+Q

|R+Q| − R−Q

|R−Q|
]

where R+Q = (2, 3, 4)−(0,−.6, 4) = (2, 3.6, 0), and R−Q = (2, 3, 4)−(0, .6, 4) = (2, 2.4, 0).
Thus

EQ = ρl

2πε0

[
2ax + 3.6ay
22 + (3.6)2 − 2ax + 2.4ay

22 + (2.4)2

]
= −625.8ax − 241.6ay V/m

2.19. A uniform line charge of 2 µC/m is located on the z axis. Find E in cartesian coordinates at P(1, 2, 3)
if the charge extends from

a) −∞ < z < ∞: With the infinite line, we know that the field will have only a radial component
in cylindrical coordinates (or x and y components in cartesian). The field from an infinite line on
the z axis is generally E = [ρl/(2πε0ρ)]aρ . Therefore, at point P :

EP = ρl

2πε0

RzP

|RzP |2 = (2 × 10−6)

2πε0

ax + 2ay
5

= 7.2ax + 14.4ay kV/m

where RzP is the vector that extends from the line charge to point P , and is perpendicular to the z
axis; i.e., RzP = (1, 2, 3) − (0, 0, 3) = (1, 2, 0).

b) −4 ≤ z ≤ 4: Here we use the general relation

EP =
∫

ρldz

4πε0

r − r′

|r − r′|3
where r = ax + 2ay + 3az and r′ = zaz. So the integral becomes

EP = (2 × 10−6)

4πε0

∫ 4

−4

ax + 2ay + (3 − z)az
[5 + (3 − z)2]1.5

dz

Using integral tables, we obtain:

EP = 3597

[
(ax + 2ay)(z − 3) + 5az

(z2 − 6z + 14)

]4

−4
V/m = 4.9ax + 9.8ay + 4.9az kV/m

The student is invited to verify that when evaluating the above expression over the limits −∞ <

z < ∞, the z component vanishes and the x and y components become those found in part a.

2.20. Uniform line charges of 120 nC/m lie along the entire extent of the three coordinate axes. Assuming
free space conditions, find E at P(−3, 2,−1): Since all line charges are infinitely-long, we can write:

EP = ρl

2πε0

[
RxP

|RxP |2 + RyP

|RyP |2 + RzP

|RzP |2
]

where RxP , RyP , and RzP are the normal vectors from each of the three axes that terminate on point
P . Specifically, RxP = (−3, 2,−1) − (−3, 0, 0) = (0, 2,−1), RyP = (−3, 2,−1) − (0, 2, 0) =
(−3, 0,−1), and RzP = (−3, 2,−1)− (0, 0,−1) = (−3, 2, 0). Substituting these into the expression
for EP gives

EP = ρl

2πε0

[
2ay − az

5
+ −3ax − az

10
+ −3ax + 2ay

13

]
= −1.15ax + 1.20ay − 0.65az kV/m
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2.21. Two identical uniform line charges with ρl = 75 nC/m are located in free space at x = 0, y = ±0.4 m.
What force per unit length does each line charge exert on the other? The charges are parallel to the z

axis and are separated by 0.8 m. Thus the field from the charge at y = −0.4 evaluated at the location
of the charge at y = +0.4 will be E = [ρl/(2πε0(0.8))]ay . The force on a differential length of the
line at the positive y location is dF = dqE = ρldzE. Thus the force per unit length acting on the line
at postive y arising from the charge at negative y is

F =
∫ 1

0

ρ2
l dz

2πε0(0.8)
ay = 1.26 × 10−4 ay N/m = 126 ay µN/m

The force on the line at negative y is of course the same, but with −ay .

2.22. A uniform surface charge density of 5 nC/m2 is present in the region x = 0, −2 < y < 2, and all z. If
ε = ε0, find E at:

a) PA(3, 0, 0): We use the superposition integral:

E =
∫ ∫

ρsda

4πε0

r − r′

|r − r′|3

where r = 3ax and r′ = yay + zaz. The integral becomes:

EPA = ρs

4πε0

∫ ∞

−∞

∫ 2

−2

3ax − yay − zaz
[9 + y2 + z2]1.5

dy dz

Since the integration limits are symmetric about the origin, and since the y and z components of
the integrand exhibit odd parity (change sign when crossing the origin, but otherwise symmetric),
these will integrate to zero, leaving only the x component. This is evident just from the symmetry
of the problem. Performing the z integration first on the x component, we obtain (using tables):

Ex,PA = 3ρs
4πε0

∫ 2

−2

dy

(9 + y2)

[
z√

9 + y2 + z2

]∞

−∞
= 3ρs

2πε0

∫ 2

−2

dy

(9 + y2)

= 3ρs
2πε0

(
1

3

)
tan−1

(y
3

) ∣∣∣2−2 = 106 V/m

The student is encouraged to verify that if the y limits were −∞ to ∞, the result would be that of
the infinite charged plane, or Ex = ρs/(2ε0).

b) PB(0, 3, 0): In this case, r = 3ay , and symmetry indicates that only a y component will exist.
The integral becomes

Ey,PB = ρs

4πε0

∫ ∞

−∞

∫ 2

−2

(3 − y) dy dz

[(z2 + 9) − 6y + y2]1.5
= ρs

2πε0

∫ 2

−2

(3 − y) dy

(3 − y)2

= − ρs

2πε0
ln(3 − y)

∣∣∣2−2 = 145 V/m

22



2.23. Given the surface charge density, ρs = 2µC/m2, in the region ρ < 0.2 m, z = 0, and is zero elsewhere,
find E at:

a) PA(ρ = 0, z = 0.5): First, we recognize from symmetry that only a z component of E will be
present. Considering a general point z on the z axis, we have r = zaz. Then, with r′ = ρaρ , we
obtain r − r′ = zaz − ρaρ . The superposition integral for the z component of E will be:

Ez,PA = ρs

4πε0

∫ 2π

0

∫ 0.2

0

z ρ dρ dφ

(ρ2 + z2)1.5
= −2πρs

4πε0
z

[
1√

z2 + ρ2

]0.2

0

= ρs

2ε0
z

[
1√
z2

− 1√
z2 + 0.4

]

With z = 0.5 m, the above evaluates as Ez,PA = 8.1 kV/m.

b) With z at −0.5 m, we evaluate the expression for Ez to obtain Ez,PB = −8.1 kV/m.

2.24. Surface charge density is positioned in free space as follows: 20 nC/m2 at x = −3, −30 nC/m2 at
y = 4, and 40 nC/m2 at z = 2. Find the magnitude of E at the three points, (4, 3,−2), (−2, 5,−1),
and (0, 0, 0). Since all three sheets are infinite, the field magnitude associated with each one will be
ρs/(2ε0), which is position-independent. For this reason, the net field magnitude will be the same
everywhere, whereas the field direction will depend on which side of a given sheet one is positioned.
We take the first point, for example, and find

EA = 20 × 10−9

2ε0
ax + 30 × 10−9

2ε0
ay − 40 × 10−9

2ε0
az = 1130ax + 1695ay − 2260az V/m

The magnitude of EA is thus 3.04 kV/m. This will be the magnitude at the other two points as well.

2.25. Find E at the origin if the following charge distributions are present in free space: point charge, 12 nC
at P(2, 0, 6); uniform line charge density, 3nC/m at x = −2, y = 3; uniform surface charge density,
0.2 nC/m2 at x = 2. The sum of the fields at the origin from each charge in order is:

E =
[
(12 × 10−9)

4πε0

(−2ax − 6az)
(4 + 36)1.5

]
+
[
(3 × 10−9)

2πε0

(2ax − 3ay)
(4 + 9)

]
−
[
(0.2 × 10−9)ax

2ε0

]
= −3.9ax − 12.4ay − 2.5az V/m

2.26. A uniform line charge density of 5 nC/m is at y = 0, z = 2 m in free space, while −5 nC/m is located
at y = 0, z = −2 m. A uniform surface charge density of 0.3 nC/m2 is at y = 0.2 m, and −0.3 nC/m2

is at y = −0.2 m. Find |E| at the origin: Since each pair consists of equal and opposite charges, the
effect at the origin is to double the field produce by one of each type. Taking the sum of the fields at
the origin from the surface and line charges, respectively, we find:

E(0, 0, 0) = −2 × 0.3 × 10−9

2ε0
ay − 2 × 5 × 10−9

2πε0(2)
az = −33.9ay − 89.9az

so that |E| = 96.1 V/m.
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2.27. Given the electric field E = (4x − 2y)ax − (2x + 4y)ay , find:
a) the equation of the streamline that passes through the point P(2, 3,−4): We write

dy

dx
= Ey

Ex

= −(2x + 4y)

(4x − 2y)

Thus
2(x dy + y dx) = y dy − x dx

or

2 d(xy) = 1

2
d(y2) − 1

2
d(x2)

So

C1 + 2xy = 1

2
y2 − 1

2
x2

or
y2 − x2 = 4xy + C2

Evaluating at P(2, 3,−4), obtain:

9 − 4 = 24 + C2, or C2 = −19

Finally, at P , the requested equation is

y2 − x2 = 4xy − 19

b) a unit vector specifying the direction of E at Q(3,−2, 5): Have EQ = [4(3)+ 2(2)]ax − [2(3)−
4(2)]ay = 16ax + 2ay . Then |E| = √

162 + 4 = 16.12 So

aQ = 16ax + 2ay
16.12

= 0.99ax + 0.12ay

2.28. Let E = 5x3 ax − 15x2y ay , and find:
a) the equation of the streamline that passes through P(4, 2, 1): Write

dy

dx
= Ey

Ex

= −15x2y

5x3 = −3y

x

So
dy

y
= −3

dx

x
⇒ ln y = −3 ln x + lnC

Thus

y = e−3 ln xelnC = C

x3

At P , have 2 = C/(4)3 ⇒ C = 128. Finally, at P ,

y = 128

x3
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2.28. (continued)
b) a unit vector aE specifying the direction of E at Q(3,−2, 5): At Q, EQ = 135ax + 270ay , and

|EQ| = 301.9. Thus aE = 0.45ax + 0.89ay .

c) a unit vector aN = (l, m, 0) that is perpendicular to aE atQ: Since this vector is to have no z compo-
nent, we can find it through aN = ±(aE×az). Performing this, we find aN = ±(0.89ax − 0.45ay).

2.29. If E = 20e−5y
(
cos 5xax − sin 5xay

)
, find:

a) |E| at P(π/6, 0.1, 2): Substituting this point, we obtain EP = −10.6ax − 6.1ay , and so |EP | =
12.2.

b) a unit vector in the direction of EP : The unit vector associated with E is just
(
cos 5xax − sin 5xay

)
,

which evaluated at P becomes aE = −0.87ax − 0.50ay .

c) the equation of the direction line passing through P : Use

dy

dx
= − sin 5x

cos 5x
= − tan 5x ⇒ dy = − tan 5x dx

Thus y = 1
5 ln cos 5x + C. Evaluating at P , we find C = 0.13, and so

y = 1

5
ln cos 5x + 0.13

2.30. Given the electric field intensity E = 400yax + 400xay V/m, find:
a) the equation of the streamline passing through the point A(2, 1,−2): Write:

dy

dx
= Ey

Ex

= x

y
⇒ x dx = y dy

Thus x2 = y2 + C. Evaluating at A yields C = 3, so the equation becomes

x2

3
− y2

3
= 1

b) the equation of the surface on which |E| = 800 V/m: Have |E| = 400
√
x2 + y2 = 800. Thus

x2 + y2 = 4, or we have a circular-cylindrical surface, centered on the z axis, and of radius 2.

c) A sketch of the part a equation would yield a parabola, centered at the origin, whose axis is the
positive x axis, and for which the slopes of the asymptotes are ±1.

d) A sketch of the trace produced by the intersection of the surface of part b with the z = 0 plane
would yield a circle centered at the origin, of radius 2.

25



2.31. In cylindrical coordinates with E(ρ, φ) = Eρ(ρ, φ)aρ +Eφ(ρ, φ)aφ , the differential equation describ-
ing the direction lines is Eρ/Eφ = dρ/(ρdφ) in any constant-z plane. Derive the equation of the line
passing through the point P(ρ = 4, φ = 10◦, z = 2) in the field E = 2ρ2 cos 3φaρ + 2ρ2 sin 3φaφ :
Using the given information, we write

Eρ

Eφ

= dρ

ρdφ
= cot 3φ

Thus
dρ

ρ
= cot 3φ dφ ⇒ ln ρ = 1

3
ln sin 3φ + lnC

or ρ = C(sin 3φ)1/3. Evaluate this at P to obtain C = 7.14. Finally,

ρ3 = 364 sin 3φ
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CHAPTER 3

3.1. An empty metal paint can is placed on a marble table, the lid is removed, and both parts are discharged
(honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid,
and a penny, a nickel, and a dime are glued to the thread so that they are not touching each other. The
penny is given a charge of +5 nC, and the nickel and dime are discharged. The assembly is lowered
into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is
again touched momentarily to ground. The device is carefully disassembled with insulating gloves and
tools.

a) What charges are found on each of the five metallic pieces? All coins were insulated during the
entire procedure, so they will retain their original charges: Penny: +5 nC; nickel: 0; dime: 0. The
penny’s charge will have induced an equal and opposite negative charge (-5 nC) on the inside wall
of the can and lid. This left a charge layer of +5 nC on the outside surface which was neutralized
by the ground connection. Therefore, the can retained a net charge of −5 nC after disassembly.

b) If the penny had been given a charge of +5 nC, the dime a charge of −2 nC, and the nickel a
charge of −1 nC, what would the final charge arrangement have been? Again, since the coins are
insulated, they retain their original charges. The charge induced on the inside wall of the can and
lid is equal to negative the sum of the coin charges, or −2 nC. This is the charge that the can/lid
contraption retains after grounding and disassembly.

3.2. A point charge of 12 nC is located at the origin. four uniform line charges are located in the x = 0
plane as follows: 80 nC/m at y = −1 and −5 m, −50 nC/m at y = −2 and −4 m.

a) Find D at P(0,−3, 2): Note that this point lies in the center of a symmetric arrangement of line
charges, whose fields will all cancel at that point. Thus D arise from the point charge alone, and
will be

D = 12 × 10−9(−3ay + 2az)
4π(32 + 22)1.5

= −6.11 × 10−11ay + 4.07 × 10−11az C/m2

= −61.1ay + 40.7az pC/m2

b) How much electric flux crosses the plane y = −3 and in what direction? The plane intercepts all
flux that enters the −y half-space, or exactly half the total flux of 12 nC. The answer is thus 6 nC
and in the −ay direction.

c) How much electric flux leaves the surface of a sphere, 4m in radius, centered at C(0,−3, 0)? This
sphere encloses the point charge, so its flux of 12 nC is included. The line charge contributions
are most easily found by translating the whole assembly (sphere and line charges) such that the
sphere is centered at the origin, with line charges now at y = ±1 and ±2. The flux from the line
charges will equal the total line charge that lies within the sphere. The length of each of the inner
two line charges (at y = ±1) will be

h1 = 2r cos θ1 = 2(4) cos

[
sin−1

(
1

4

)]
= 1.94 m

That of each of the outer two line charges (at y = ±2) will be

h2 = 2r cos θ2 = 2(4) cos

[
sin−1

(
2

4

)]
= 1.73 m
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3.2c. (continued) The total charge enclosed in the sphere (and the outward flux from it) is now

Ql +Qp = 2(1.94)(−50 × 10−9)+ 2(1.73)(80 × 10−9)+ 12 × 10−9 = 348 nC

3.3. The cylindrical surface ρ = 8 cm contains the surface charge density, ρs = 5e−20|z| nC/m2.
a) What is the total amount of charge present? We integrate over the surface to find:

Q = 2
∫ ∞

0

∫ 2π

0
5e−20z(.08)dφ dz nC = 20π(.08)

(−1

20

)
e−20z

∣∣∣∣∣
∞

0

= 0.25 nC

b) How much flux leaves the surface ρ = 8 cm, 1 cm < z < 5cm, 30◦ < φ < 90◦? We just integrate
the charge density on that surface to find the flux that leaves it.

� = Q′ =
∫ .05

.01

∫ 90◦

30◦
5e−20z(.08) dφ dz nC =

(
90 − 30

360

)
2π(5)(.08)

(−1

20

)
e−20z

∣∣∣∣∣
.05

.01

= 9.45 × 10−3 nC = 9.45 pC

3.4. The cylindrical surfaces ρ = 1, 2, and 3 cm carry uniform surface charge densities of 20, −8, and 5
nC/m2, respectively.

a) How much electric flux passes through the closed surface ρ = 5 cm, 0 < z < 1 m? Since the
densities are uniform, the flux will be

� = 2π(aρs1 + bρs2 + cρs3)(1 m) = 2π [(.01)(20)− (.02)(8)+ (.03)(5)] × 10−9 = 1.2 nC

b) Find D at P(1 cm, 2 cm, 3 cm): This point lies at radius
√

5 cm, and is thus inside the outermost
charge layer. This layer, being of uniform density, will not contribute to D at P . We know that in
cylindrical coordinates, the layers at 1 and 2 cm will produce the flux density:

D = Dρaρ = aρs1 + bρs2

ρ
aρ

or

Dρ = (.01)(20)+ (.02)(−8)√
.05

= 1.8 nC/m2

At P , φ = tan−1(2/1) = 63.4◦. Thus Dx = 1.8 cosφ = 0.8 and Dy = 1.8 sin φ = 1.6. Finally,

DP = (0.8ax + 1.6ay) nC/m2
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3.5. Let D = 4xyax + 2(x2 + z2)ay + 4yzaz C/m2 and evaluate surface integrals to find the total charge
enclosed in the rectangular parallelepiped 0 < x < 2, 0 < y < 3, 0 < z < 5 m: Of the 6 surfaces to
consider, only 2 will contribute to the net outward flux. Why? First consider the planes at y = 0 and 3.
The y component of D will penetrate those surfaces, but will be inward at y = 0 and outward at y = 3,
while having the same magnitude in both cases. These fluxes will thus cancel. At the x = 0 plane,
Dx = 0 and at the z = 0 plane, Dz = 0, so there will be no flux contributions from these surfaces.
This leaves the 2 remaining surfaces at x = 2 and z = 5. The net outward flux becomes:

� =
∫ 5

0

∫ 3

0
D
∣∣
x=2 · ax dy dz+

∫ 3

0

∫ 2

0
D
∣∣
z=5 · az dx dy

= 5
∫ 3

0
4(2)y dy + 2

∫ 3

0
4(5)y dy = 360 C

3.6. Two uniform line charges, each 20 nC/m, are located at y = 1, z = ±1 m. Find the total flux leaving a
sphere of radius 2 m if it is centered at

a) A(3, 1, 0): The result will be the same if we move the sphere to the origin and the line charges to
(0, 0,±1). The length of the line charge within the sphere is given by l = 4 sin[cos−1(1/2)] =
3.46. With two line charges, symmetrically arranged, the total charge enclosed is given by Q =
2(3.46)(20 nC/m) = 139 nC

b) B(3, 2, 0): In this case the result will be the same if we move the sphere to the origin and keep
the charges where they were. The length of the line joining the origin to the midpoint of the line
charge (in the yz plane) is l1 = √

2. The length of the line joining the origin to either endpoint
of the line charge is then just the sphere radius, or 2. The half-angle subtended at the origin by
the line charge is then ψ = cos−1(

√
2/2) = 45◦. The length of each line charge in the sphere

is then l2 = 2 × 2 sinψ = 2
√

2. The total charge enclosed (with two line charges) is now
Q′ = 2(2

√
2)(20 nC/m) = 113 nC

3.7. Volume charge density is located in free space as ρv = 2e−1000r nC/m3 for 0 < r < 1 mm, and ρv = 0
elsewhere.

a) Find the total charge enclosed by the spherical surface r = 1 mm: To find the charge we integrate:

Q =
∫ 2π

0

∫ π

0

∫ .001

0
2e−1000r r2 sin θ dr dθ dφ

Integration over the angles gives a factor of 4π . The radial integration we evaluate using tables;
we obtain

Q = 8π

[−r2e−1000r

1000

∣∣∣.001

0
+ 2

1000

e−1000r

(1000)2
(−1000r − 1)

∣∣∣.001

0

]
= 4.0 × 10−9 nC

b) By using Gauss’s law, calculate the value of Dr on the surface r = 1 mm: The gaussian surface
is a spherical shell of radius 1 mm. The enclosed charge is the result of part a. We thus write
4πr2Dr = Q, or

Dr = Q

4πr2 = 4.0 × 10−9

4π(.001)2
= 3.2 × 10−4 nC/m2
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3.8. Uniform line charges of 5 nC/m ar located in free space at x = 1, z = 1, and at y = 1, z = 0.
a) Obtain an expression for D in cartesian coordinates at P(0, 0, z). In general, we have

D(z) = ρs

2π

[
r1 − r′

1

|r1 − r′
1|2

+ r2 − r′
2

|r2 − r′
2|2
]

where r1 = r2 = zaz, r′
1 = ay , and r′

2 = ax + az. Thus

D(z) = ρs

2π

[
[zaz − ay]

[1 + z2]
+ [(z− 1)az − ax]

[1 + (z− 1)2]

]

= ρs

2π

[ −ax
[1 + (z− 1)2]

− ay
[1 + z2]

+
(

(z− 1)

[1 + (z− 1)2]
+ z

[1 + z2]

)
az

]

b) Plot |D| vs. z at P , −3 < z < 10: Using part a, we find the magnitude of D to be

|D| = ρs

2π

[
1

[1 + (z− 1)2]2 + 1

[1 + z2]2 +
(

(z− 1)

[1 + (z− 1)2]
+ z

[1 + z2]

)2
]1/2

A plot of this over the specified range is shown in Prob3.8.pdf.

3.9. A uniform volume charge density of 80µC/m3 is present throughout the region 8 mm < r < 10 mm.
Let ρv = 0 for 0 < r < 8 mm.

a) Find the total charge inside the spherical surface r = 10 mm: This will be

Q =
∫ 2π

0

∫ π

0

∫ .010

.008
(80 × 10−6)r2 sin θ dr dθ dφ = 4π × (80 × 10−6)

r3

3

∣∣∣.010

.008

= 1.64 × 10−10 C = 164 pC

b) Find Dr at r = 10 mm: Using a spherical gaussian surface at r = 10, Gauss’ law is written as
4πr2Dr = Q = 164 × 10−12, or

Dr(10 mm) = 164 × 10−12

4π(.01)2
= 1.30 × 10−7 C/m2 = 130 nC/m2

c) If there is no charge for r > 10 mm, find Dr at r = 20 mm: This will be the same computation
as in part b, except the gaussian surface now lies at 20 mm. Thus

Dr(20 mm) = 164 × 10−12

4π(.02)2
= 3.25 × 10−8 C/m2 = 32.5 nC/m2

3.10. Let ρs = 8µC/m2 in the region where x = 0 and −4 < z < 4 m, and let ρs = 0 elsewhere. Find D at
P(x, 0, z), where x > 0: The sheet charge can be thought of as an assembly of infinitely-long parallel
strips that lie parallel to the y axis in the yz plane, and where each is of thickness dz. The field from
each strip is that of an infinite line charge, and so we can construct the field at P from a single strip as:

dDP = ρs dz
′

2π

r − r′

|r − r′|2
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3.10 (continued) where r = xax + zaz and r′ = z′az We distinguish between the fixed coordinate of P , z,
and the variable coordinate, z′, that determines the location of each charge strip. To find the net field at
P , we sum the contributions of each strip by integrating over z′:

DP =
∫ 4

−4

8 × 10−6 dz′ (xax + (z− z′)az)
2π [x2 + (z− z′)2]

We can re-arrange this to determine the integral forms:

DP = 8 × 10−6

2π

[
(xax + zaz)

∫ 4

−4

dz′

(x2 + z2)− 2zz′ + (z′)2
− az

∫ 4

−4

z′ dz′

(x2 + z2)− 2zz′ + (z′)2

]

Using integral tables, we find

DP = 4 × 10−6

π

[
(xax + zaz)

1

x
tan−1

(
2z′ − 2z

2x

)

−
[

1

2
ln(x2 + z2 − 2zz′ + (z′)2)+ 2z

2

1

x
tan−1

(
2z′ − 2z

2x

)]
az

]4

−4

which evaluates as

DP = 4 × 10−6

π

{[
tan−1

(
z+ 4

x

)
− tan−1

(
z− 4

x

)]
ax + 1

2
ln

[
x2 + (z+ 4)2

x2 + (z− 4)2

]
az

}
C/m2

The student is invited to verify that for very small x or for a very large sheet (allowing z′ to approach
infinity), the above expression reduces to the expected form, DP = ρs/2. Note also that the expression
is valid for all x (positive or negative values).

3.11. In cylindrical coordinates, let ρv = 0 for ρ < 1 mm, ρv = 2 sin(2000πρ) nC/m3 for 1 mm < ρ <

1.5 mm, and ρv = 0 for ρ > 1.5 mm. Find D everywhere: Since the charge varies only with radius,
and is in the form of a cylinder, symmetry tells us that the flux density will be radially-directed and will
be constant over a cylindrical surface of a fixed radius. Gauss’ law applied to such a surface of unit
length in z gives:

a) for ρ < 1 mm, Dρ = 0, since no charge is enclosed by a cylindrical surface whose radius lies
within this range.

b) for 1 mm < ρ < 1.5 mm, we have

2πρDρ = 2π
∫ ρ

.001
2 × 10−9 sin(2000πρ′)ρ′ dρ′

= 4π × 10−9
[

1

(2000π)2
sin(2000πρ)− ρ

2000π
cos(2000πρ)

]ρ
.001

or finally,

Dρ = 10−15

2π2ρ

[
sin(2000πρ)+ 2π

[
1 − 103ρ cos(2000πρ)

] ]
C/m2 (1 mm < ρ < 1.5 mm)
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3.11. (continued)
c) for ρ > 1.5 mm, the gaussian cylinder now lies at radius ρ outside the charge distribution, so

the integral that evaluates the enclosed charge now includes the entire charge distribution. To
accomplish this, we change the upper limit of the integral of part b from ρ to 1.5 mm, finally
obtaining:

Dρ = 2.5 × 10−15

πρ
C/m2 (ρ > 1.5 mm)

3.12. A nonuniform volume charge density, ρv = 120r C/m3, lies within the spherical surface r = 1 m, and
ρv = 0 everywhere else.

a) Find Dr everywhere. For r < 1 m, we apply Gauss’ law to a spherical surface of radius r within
this range to find

4πr2Dr = 4π
∫ r

0
120r ′(r ′)2 dr ′ = 120πr4

Thus Dr = (30r2) for r < 1 m. For r > 1 m, the gaussian surface lies outside the charge
distribution. The set up is the same, except the upper limit of the above integral is 1 instead of r .
This results in Dr = (30/r2) for r > 1 m.

b) What surface charge density, ρs2, should be on the surface r = 2 such that Dr,r=2− = 2Dr,r=2+?
At r = 2−, we have Dr,r=2− = 30/22 = 15/2, from part a. The flux density in the region r > 2
arising from a surface charge at r = 2 is found from Gauss’ law through

4πr2Drs = 4π(2)2ρs2 ⇒ Drs = 4ρs2
r2

The total flux density in the region r > 2 arising from the two distributions is

DrT = 30

r2 + 4ρs2
r2

Our requirement that Dr,r=2− = 2Dr,r=2+ becomes

30

22 = 2

(
30

22 + ρs2

)
⇒ ρs2 = −15

4
C/m2

c) Make a sketch of Dr vs. r for 0 < r < 5 m with both distributions present. With both charges,
Dr(r < 1) = 30r2, Dr(1 < r < 2) = 30/r2, and Dr(r > 2) = 15/r2. These are plotted on the
next page.
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3.13. Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m2, −4 nC/m2,
and ρs0, respectively.

a) Find D at r = 1, 3 and 5 m: Noting that the charges are spherically-symmetric, we ascertain that
D will be radially-directed and will vary only with radius. Thus, we apply Gauss’ law to spherical
shells in the following regions: r < 2: Here, no charge is enclosed, and so Dr = 0.

2 < r < 4 : 4πr2Dr = 4π(2)2(20 × 10−9) ⇒ Dr = 80 × 10−9

r2 C/m2

So Dr(r = 3) = 8.9 × 10−9 C/m2.

4 < r < 6 : 4πr2Dr = 4π(2)2(20 × 10−9)+ 4π(4)2(−4 × 10−9) ⇒ Dr = 16 × 10−9

r2

So Dr(r = 5) = 6.4 × 10−10 C/m2.

b) Determine ρs0 such that D = 0 at r = 7 m. Since fields will decrease as 1/r2, the question could
be re-phrased to ask for ρs0 such that D = 0 at all points where r > 6 m. In this region, the total
field will be

Dr(r > 6) = 16 × 10−9

r2 + ρs0(6)2

r2

Requiring this to be zero, we find ρs0 = −(4/9)× 10−9 C/m2.

3.14. If ρv = 5 nC/m3 for 0 < ρ < 1 mm and no other charges are present:
a) find Dρ for ρ < 1 mm: Applying Gauss’ law to a cylindrical surface of unit length in z, and of

radius ρ < 1 mm, we find

2πρDρ = πρ2(5 × 10−9) ⇒ Dρ = 2.5 ρ × 10−9 C/m2

33



3.14b. find Dρ for ρ > 1 mm: The Gaussian cylinder now lies outside the charge, so

2πρDρ = π(.001)2(5 × 10−9) ⇒ Dρ = 2.5 × 10−15

ρ
C/m2

c) What line charge ρL at ρ = 0 would give the same result for part b? The line charge field will be

Dr = ρL

2πρ
= 2.5 × 10−15

ρ
(part b)

Thus ρL = 5π × 10−15 C/m. In all answers, ρ is expressed in meters.

3.15. Volume charge density is located as follows: ρv = 0 for ρ < 1 mm and for ρ > 2 mm, ρv = 4ρ µC/m3

for 1 < ρ < 2 mm.

a) Calculate the total charge in the region 0 < ρ < ρ1, 0 < z < L, where 1 < ρ1 < 2 mm: We find

Q =
∫ L

0

∫ 2π

0

∫ ρ1

.001
4ρ ρ dρ dφ dz = 8πL

3
[ρ3

1 − 10−9] µC

where ρ1 is in meters.

b) Use Gauss’ law to determine Dρ at ρ = ρ1: Gauss’ law states that 2πρ1LDρ = Q, where Q is
the result of part a. Thus

Dρ(ρ1) = 4(ρ3
1 − 10−9)

3ρ1
µC/m2

where ρ1 is in meters.

c) Evaluate Dρ at ρ = 0.8 mm, 1.6 mm, and 2.4 mm: At ρ = 0.8 mm, no charge is enclosed by a
cylindrical gaussian surface of that radius, so Dρ(0.8mm) = 0. At ρ = 1.6 mm, we evaluate the
part b result at ρ1 = 1.6 to obtain:

Dρ(1.6mm) = 4[(.0016)3 − (.0010)3]

3(.0016)
= 3.6 × 10−6 µC/m2

At ρ = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss’ law is written
as

2πρLDρ = 8πL

3
[(.002)2 − (.001)2] µC

from which Dρ(2.4mm) = 3.9 × 10−6 µC/m2.

3.16. Given the electric flux density, D = 2xy ax + x2 ay + 6z3 az C/m2:
a) use Gauss’ law to evaluate the total charge enclosed in the volume 0 < x, y, z < a: We call the

surfaces at x = a and x = 0 the front and back surfaces respectively, those at y = a and y = 0
the right and left surfaces, and those at z = a and z = 0 the top and bottom surfaces. To evaluate
the total charge, we integrate D · n over all six surfaces and sum the results:

� = Q =
∮

D · n da =
∫ a

0

∫ a

0
2ay dy dz︸ ︷︷ ︸

front

+
∫ a

0

∫ a

0
−2(0)y dy dz︸ ︷︷ ︸

back

+
∫ a

0

∫ a

0
−x2 dx dz︸ ︷︷ ︸
left

+
∫ a

0

∫ a

0
x2 dx dz︸ ︷︷ ︸

right

+
∫ a

0

∫ a

0
−6(0)3 dx dy︸ ︷︷ ︸
bottom

+
∫ a

0

∫ a

0
6a3 dx dy︸ ︷︷ ︸
top
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3.16a. (continued) Noting that the back and bottom integrals are zero, and that the left and right integrals
cancel, we evaluate the remaining two (front and top) to obtain Q = 6a5 + a4.

b) use Eq. (8) to find an approximate value for the above charge. Evaluate the derivatives at
P(a/2, a/2, a/2): In this application, Eq. (8) states that Q

.= (∇ · D
∣∣
P
)�v. We find ∇ · D =

2x+18z2, which when evaluated at P becomes ∇ ·D
∣∣
P

= a+4.5a2. ThusQ
.= (a+4.5a2)a3 =

4.5a5 + a4

c) Show that the results of parts a and b agree in the limit as a → 0. In this limit, both expressions
reduce to Q = a4, and so they agree.

3.17. A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2:

a) apply Gauss’ law to find the total flux leaving the closed surface of the cube. We call the surfaces
at x = 1.2 and x = 1 the front and back surfaces respectively, those at y = 1.2 and y = 1 the
right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom surfaces. To evaluate
the total charge, we integrate D · n over all six surfaces and sum the results. We note that there
is no z component of D, so there will be no outward flux contributions from the top and bottom
surfaces. The fluxes through the remaining four are

� = Q =
∮

D · n da =
∫ 1.2

1

∫ 1.2

1
2(1.2)2y dy dz︸ ︷︷ ︸
front

+
∫ 1.2

1

∫ 1.2

1
−2(1)2y dy dz︸ ︷︷ ︸
back

+
∫ 1.2

1

∫ 1.2

1
−3x2(1)2 dx dz︸ ︷︷ ︸

left

+
∫ 1.2

1

∫ 1.2

1
3x2(1.2)2 dx dz︸ ︷︷ ︸
right

= 0.1028 C

b) evaluate ∇ · D at the center of the cube: This is

∇ · D =
[
4xy + 6x2y

]
(1.1,1.1)

= 4(1.1)2 + 6(1.1)3 = 12.83

c) Estimate the total charge enclosed within the cube by using Eq. (8): This is

Q
.= ∇ · D

∣∣
center ×�v = 12.83 × (0.2)3 = 0.1026 Close!

3.18. Let a vector field by given by G = 5x4y4z4 ay . Evaluate both sides of Eq. (8) for this G field and the
volume defined by x = 3 and 3.1, y = 1 and 1.1, and z = 2 and 2.1. Evaluate the partial derivatives at
the center of the volume. First find

∇ · G = ∂Gy

∂y
= 20x4y3z4

The center of the cube is located at (3.05,1.05,2.05), and the volume is �v = (0.1)3 = 0.001. Eq. (8)
then becomes

�
.= 20(3.05)4(1.05)3(2.05)4(0.001) = 35.4
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3.19. A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. Let D = xax C/m2. Use the
results of Sec. 3.4 to estimate the net electric flux leaving the spherical surface: We use�

.= ∇ · D�v,
where in this case ∇ · D = (∂/∂x)x = 1 C/m3. Thus

�
.= 4

3
π(.003)3(1) = 1.13 × 10−7 C = 113 nC

3.20. A cube of volume a3 has its faces parallel to the cartesian coordinate surfaces. It is centered at
P(3,−2, 4). Given the field D = 2x3ax C/m2:

a) calculate div D at P : In the present case, this will be

∇ · D = ∂Dx

∂x
= dDx

dx
= 54 C/m3

b) evaluate the fraction in the rightmost side of Eq. (13) for a = 1 m, 0.1 m, and 1 mm: With the
field having only an x component, flux will pentrate only the two surfaces at x = 3 ± a/2, each
of which has surface area a2. The cube volume is �v = a3. The equation reads:

∮
D · dS
�v

= 1

a3

[
2
(

3 + a

2

)3
a2 − 2

(
3 − a

2

)3
a2
]

= 2

a

[
(3 + a

2
)3 − (3 − a

2
)3
]

evaluating the above formula at a = 1 m, .1 m, and 1 mm, yields respectively

54.50, 54.01, and 54.00 C/m3,

thus demonstrating the approach to the exact value as �v gets smaller.

3.21. Calculate the divergence of D at the point specified if
a) D = (1/z2)

[
10xyz ax + 5x2z ay + (2z3 − 5x2y) az

]
at P(−2, 3, 5): We find

∇ · D =
[

10y

z
+ 0 + 2 + 10x2y

z3

]
(−2,3,5)

= 8.96

b) D = 5z2aρ + 10ρz az at P(3,−45◦, 5): In cylindrical coordinates, we have

∇ · D = 1

ρ

∂

∂ρ
(ρDρ)+ 1

ρ

∂Dφ

∂φ
+ ∂Dz

∂z
=
[

5z2

ρ
+ 10ρ

]
(3,−45◦,5)

= 71.67

c) D = 2r sin θ sin φ ar + r cos θ sin φ aθ + r cosφ aφ at P(3, 45◦,−45◦): In spherical coordinates,
we have

∇ · D = 1

r2

∂

∂r
(r2Dr)+ 1

r sin θ

∂

∂θ
(sin θDθ)+ 1

r sin θ

∂Dφ

∂φ

=
[

6 sin θ sin φ + cos 2θ sin φ

sin θ
− sin φ

sin θ

]
(3,45◦,−45◦)

= −2
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3.22. Let D = 8ρ sin φ aρ + 4ρ cosφ aφ C/m2.
a) Find div D: Using the divergence formula for cylindrical coordinates (see problem 3.21), we find

∇ · D = 12 sin φ.

b) Find the volume charge density at P(2.6, 38◦,−6.1): Since ρv = ∇ · D, we evaluate the result of
part a at this point to find ρvP = 12 sin 38◦ = 7.39 C/m3.

c) How much charge is located inside the region defined by 0 < ρ < 1.8, 20◦ < φ < 70◦,
2.4 < z < 3.1? We use

Q =
∫
vol

ρvdv =
∫ 3.1

2.4

∫ 70◦

20◦

∫ 1.8

0
12 sin φρ dρ dφ dz = −(3.1 − 2.4)12 cosφ

∣∣∣70◦

20◦
ρ2

2

∣∣∣1.8
0

= 8.13 C

3.23. a) A point charge Q lies at the origin. Show that div D is zero everywhere except at the origin. For
a point charge at the origin we know that D = Q/(4πr2) ar . Using the formula for divergence in
spherical coordinates (see problem 3.21 solution), we find in this case that

∇ · D = 1

r2

d

dr

(
r2 Q

4πr2

)
= 0

The above is true provided r > 0. When r = 0, we have a singularity in D, so its divergence is not
defined.

b) Replace the point charge with a uniform volume charge density ρv0 for 0 < r < a. Relate ρv0
to Q and a so that the total charge is the same. Find div D everywhere: To achieve the same net
charge, we require that (4/3)πa3ρv0 = Q, so ρv0 = 3Q/(4πa3) C/m3. Gauss’ law tells us that
inside the charged sphere

4πr2Dr = 4

3
πr3ρv0 = Qr3

a3

Thus

Dr = Qr

4πa3 C/m2 and ∇ · D = 1

r2

d

dr

(
Qr3

4πa3

)
= 3Q

4πa3

as expected. Outside the charged sphere, D = Q/(4πr2) ar as before, and the divergence is zero.

3.24. Inside the cylindrical shell, 3 < ρ < 4 m, the electric flux density is given as

D = 5(ρ − 3)3 aρ C/m2

a) What is the volume charge density at ρ = 4 m? In this case we have

ρv = ∇ · D = 1

ρ

d

dρ
(ρDρ) = 1

ρ

d

dρ
[5ρ(ρ − 3)3] = 5(ρ − 3)2

ρ
(4ρ − 3) C/m3

Evaluating this at ρ = 4 m, we find ρv(4) = 16.25 C/m3

b) What is the electric flux density at ρ = 4 m? We evaluate the given D at this point to find
D(4) = 5 aρ C/m2
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3.24c. How much electric flux leaves the closed surface 3 < ρ < 4, 0 < φ < 2π , −2.5 < z < 2.5? We note
that D has only a radial component, and so flux would leave only through the cylinder sides. Also, D
does not vary with φ or z, so the flux is found by a simple product of the side area and the flux density.
We further note that D = 0 at ρ = 3, so only the outer side (at ρ = 4) will contribute. We use the result
of part b, and write the flux as

� = [2.5 − (−2.5)]2π(4)(5) = 200π C

d) How much charge is contained within the volume used in part c? By Gauss’ law, this will be the
same as the net outward flux through that volume, or again, 200π C.

3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as

D = 5(r − 3)3 ar C/m2

a) What is the volume charge density at r = 4? In this case we have

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 5

r
(r − 3)2(5r − 6) C/m3

which we evaluate at r = 4 to find ρv(r = 4) = 17.50 C/m3.

b) What is the electric flux density at r = 4? Substitute r = 4 into the given expression to
find D(4) = 5 ar C/m2

c) How much electric flux leaves the sphere r = 4? Using the result of part b, this will be � =
4π(4)2(5) = 320π C

d) How much charge is contained within the sphere, r = 4? From Gauss’ law, this will be the same
as the outward flux, or again, Q = 320π C.

3.26. Given the field

D = 5 sin θ cosφ

r
ar C/m2,

find:
a) the volume charge density: Use

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 5 sin θ cosφ

r2 C/m3

b) the total charge contained within the region r < 2 m: To find this, we integrate over the volume:

Q =
∫ 2π

0

∫ π

0

∫ 2

0

5 sin θ cosφ

r2 r2 sin θ dr dθ dφ

Before plunging into this one notice that the φ integration is of cosφ from zero to 2π . This yields
a zero result, and so the total enclosed charge is Q = 0.

c) the value of D at the surface r = 2: Substituting r = 2 into the given field produces

D(r = 2) = 5

2
sin θ cosφ ar C/m2
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3.26d. the total electric flux leaving the surface r = 2 Since the total enclosed charge is zero (from part b), the
net outward flux is also zero, from Gauss’ law.

3.27. Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205 ar/r2 µC/m2 for r ≥ 0.08 m (note error in
problem statement).

a) Find ρv for r = 0.06 m: This radius lies within the first region, and so

ρv = ∇ · D = 1

r2

d

dr
(r2Dr) = 1

r2

d

dr
(5.00r4) = 20r mC/m3

which when evaluated at r = 0.06 yields ρv(r = .06) = 1.20 mC/m3.

b) Find ρv for r = 0.1 m: This is in the region where the second field expression is valid. The 1/r2

dependence of this field yields a zero divergence (shown in Problem 3.23), and so the volume
charge density is zero at 0.1 m.

c) What surface charge density could be located at r = 0.08 m to cause D = 0 for r > 0.08 m? The
total surface charge should be equal and opposite to the total volume charge. The latter is

Q =
∫ 2π

0

∫ π

0

∫ .08

0
20r(mC/m3) r2 sin θ dr dθ dφ = 2.57 × 10−3 mC = 2.57µC

So now

ρs = −
[

2.57

4π(.08)2

]
= −32µC/m2

3.28. The electric flux density is given as D = 20ρ3 aρ C/m2 for ρ < 100µm, and k aρ/ρ for ρ > 100µm.
a) Find k so that D is continuous at ρ = 100µm: We require

20 × 10−12 = k

10−4 ⇒ k = 2 × 10−15 C/m

b) Find and sketch ρv as a function of ρ: In cylindrical coordinates, with only a radial component of D,
we use

ρv = ∇ · D = 1

ρ

∂

∂ρ
(ρDρ) = 1

ρ

∂

∂ρ
(20ρ4) = 80ρ2 C/m3 (ρ < 100µm)

For ρ > 100µm, we obtain

ρv = 1

ρ

∂

∂ρ
(ρ
k

ρ
) = 0

The sketch of ρv vs. ρ would be a parabola, starting at the origin, reaching a maximum value of
8 × 10−7 C/m3 at ρ = 100 µm. The plot is zero at larger radii.

3.29. In the region of free space that includes the volume 2 < x, y, z < 3,

D = 2

z2 (yz ax + xz ay − 2xy az) C/m2

a) Evaluate the volume integral side of the divergence theorem for the volume defined above: In
cartesian, we find ∇ · D = 8xy/z3. The volume integral side is now∫

vol

∇ · D dv =
∫ 3

2

∫ 3

2

∫ 3

2

8xy

z3 dxdydz = (9 − 4)(9 − 4)

(
1

4
− 1

9

)
= 3.47 C
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3.29b. Evaluate the surface integral side for the corresponding closed surface: We call the surfaces at x = 3
and x = 2 the front and back surfaces respectively, those at y = 3 and y = 2 the right and left surfaces,
and those at z = 3 and z = 2 the top and bottom surfaces. To evaluate the surface integral side, we
integrate D · n over all six surfaces and sum the results. Note that since the x component of D does not
vary with x, the outward fluxes from the front and back surfaces will cancel each other. The same is
true for the left and right surfaces, since Dy does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:∮

D · dS =
∫ 3

2

∫ 3

2

−4xy

32 dxdy︸ ︷︷ ︸
top

−
∫ 3

2

∫ 3

2

−4xy

22 dxdy︸ ︷︷ ︸
bottom

= (9 − 4)(9 − 4)

(
1

4
− 1

9

)
= 3.47 C

3.30. If D = 15ρ2 sin 2φ aρ + 10ρ2 cos 2φ aφ C/m2, evaluate both sides of the divergence theorem for the
region 1 < ρ < 2 m, 1 < φ < 2 rad, 1 < z < 2 m: Taking the surface integral side first, the six sides
over which the flux must be evaluated are only four, since there is no z component of D. We are left
with the sides at φ = 1 and φ = 2 rad (left and right sides, respectively), and those at ρ = 1 and ρ = 2
(back and front sides). We evaluate∮

D · dS =
∫ 2

1

∫ 2

1
15(2)2 sin(2φ) (2)dφdz︸ ︷︷ ︸

front

−
∫ 2

1

∫ 2

1
15(1)2 sin(2φ) (1)dφdz︸ ︷︷ ︸

back

−
∫ 2

1

∫ 2

1
10ρ2 cos(2) dρdz︸ ︷︷ ︸

left

+
∫ 2

1

∫ 2

1
10ρ2 cos(4) dρdz︸ ︷︷ ︸

right

= 6.93 C

For the volume integral side, we first evaluate the divergence of D, which is

∇ · D = 1

ρ

∂

∂ρ
(15ρ3 sin 2φ)+ 1

ρ

∂

∂φ
(10ρ2 cos 2φ) = 25ρ sin 2φ

Next ∫
vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1
25ρ sin(2φ) ρdρ dφ dz = 25

3
ρ3
∣∣∣2
1

[− cos(2φ)

2

]2

1
= 6.93 C

3.31. Given the flux density

D = 16

r
cos(2θ) aθ C/m2,

use two different methods to find the total charge within the region 1 < r < 2 m, 1 < θ < 2 rad,
1 < φ < 2 rad: We use the divergence theorem and first evaluate the surface integral side. We are
evaluating the net outward flux through a curvilinear “cube”, whose boundaries are defined by the
specified ranges. The flux contributions will be only through the surfaces of constant θ , however, since
D has only a θ component. On a constant-theta surface, the differential area is da = r sin θdrdφ,
where θ is fixed at the surface location. Our flux integral becomes∮

D · dS = −
∫ 2

1

∫ 2

1

16

r
cos(2) r sin(1) drdφ︸ ︷︷ ︸

θ=1

+
∫ 2

1

∫ 2

1

16

r
cos(4) r sin(2) drdφ︸ ︷︷ ︸

θ=2

= −16 [cos(2) sin(1)− cos(4) sin(2)] = −3.91 C
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3.31. (continued) We next evaluate the volume integral side of the divergence theorem, where in this case,

∇ · D = 1

r sin θ

d

dθ
(sin θ Dθ) = 1

r sin θ

d

dθ

[
16

r
cos 2θ sin θ

]
= 16

r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]

We now evaluate:

∫
vol

∇ · D dv =
∫ 2

1

∫ 2

1

∫ 2

1

16

r2

[
cos 2θ cos θ

sin θ
− 2 sin 2θ

]
r2 sin θ drdθdφ

The integral simplifies to

∫ 2

1

∫ 2

1

∫ 2

1
16[cos 2θ cos θ − 2 sin 2θ sin θ ] drdθdφ = 8

∫ 2

1
[3 cos 3θ − cos θ ] dθ = −3.91 C

3.32. If D = 2r ar C/m2, find the total electric flux leaving the surface of the cube, 0 < x, y, z < 0.4: This
is where the divergence theorem really saves you time! First find

∇ · D = 1

r2

d

dr
(r2 × 2r) = 6

Then the net outward flux will be ∫
vol

∇ · D dv = 6(0.4)3 = 0.38 C
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CHAPTER 4

4.1. The value of E at P(ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ −200aφ +300az V/m. Determine
the incremental work required to move a 20µC charge a distance of 6 µm:

a) in the direction of aρ : The incremental work is given by dW = −q E · dL, where in this case,
dL = dρ aρ = 6 × 10−6 aρ . Thus

dW = −(20 × 10−6 C)(100 V/m)(6 × 10−6 m) = −12 × 10−9 J = −12 nJ

b) in the direction of aφ : In this case dL = 2 dφ aφ = 6 × 10−6 aφ , and so

dW = −(20 × 10−6)(−200)(6 × 10−6) = 2.4 × 10−8 J = 24 nJ

c) in the direction of az: Here, dL = dz az = 6 × 10−6 az, and so

dW = −(20 × 10−6)(300)(6 × 10−6) = −3.6 × 10−8 J = −36 nJ

d) in the direction of E: Here, dL = 6 × 10−6 aE , where

aE = 100aρ − 200aφ + 300az
[1002 + 2002 + 3002]1/2 = 0.267 aρ − 0.535 aφ + 0.802 az

Thus

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.267 aρ − 0.535 aφ + 0.802 az](6 × 10−6)

= −44.9 nJ

e) In the direction of G = 2 ax − 3 ay + 4 az: In this case, dL = 6 × 10−6 aG, where

aG = 2ax − 3ay + 4az
[22 + 32 + 42]1/2 = 0.371 ax − 0.557 ay + 0.743 az

So now

dW = −(20 × 10−6)[100aρ − 200aφ + 300az] · [0.371 ax − 0.557 ay + 0.743 az](6 × 10−6)

= −(20 × 10−6)
[
37.1(aρ · ax)− 55.7(aρ · ay)− 74.2(aφ · ax)+ 111.4(aφ · ay)

+ 222.9] (6 × 10−6)

where, at P , (aρ · ax) = (aφ · ay) = cos(40◦) = 0.766, (aρ · ay) = sin(40◦) = 0.643, and
(aφ · ax) = − sin(40◦) = −0.643. Substituting these results in

dW = −(20 × 10−6)[28.4 − 35.8 + 47.7 + 85.3 + 222.9](6 × 10−6) = −41.8 nJ
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4.2. Let E = 400ax − 300ay + 500az in the neighborhood of point P(6, 2,−3). Find the incremental work
done in moving a 4-C charge a distance of 1 mm in the direction specified by:

a) ax + ay + az: We write

dW = −qE · dL = −4(400ax − 300ay + 500az) · (ax + ay + az)√
3

(10−3)

= − (4 × 10−3)√
3

(400 − 300 + 500) = −1.39 J

b) −2ax + 3ay − az: The computation is similar to that of part a, but we change the direction:

dW = −qE · dL = −4(400ax − 300ay + 500az) · (−2ax + 3ay − az)√
14

(10−3)

= − (4 × 10−3)√
14

(−800 − 900 − 500) = 2.35 J

4.3. If E = 120 aρ V/m, find the incremental amount of work done in moving a 50µm charge a distance
of 2 mm from:

a) P(1, 2, 3) toward Q(2, 1, 4): The vector along this direction will be Q − P = (1,−1, 1) from
which aPQ = [ax − ay + az]/

√
3. We now write

dW = −qE · dL = −(50 × 10−6)

[
120aρ · (ax − ay + az√

3

]
(2 × 10−3)

= −(50 × 10−6)(120)
[
(aρ · ax)− (aρ · ay)

] 1√
3
(2 × 10−3)

At P , φ = tan−1(2/1) = 63.4◦. Thus (aρ · ax) = cos(63.4) = 0.447 and (aρ · ay) = sin(63.4) =
0.894. Substituting these, we obtain dW = 3.1µJ.

b) Q(2, 1, 4) toward P(1, 2, 3): A little thought is in order here: Note that the field has only a radial
component and does not depend on φ or z. Note also that P and Q are at the same radius (

√
5)

from the z axis, but have different φ and z coordinates. We could just as well position the two
points at the same z location and the problem would not change. If this were so, then moving
along a straight line between P and Q would thus involve moving along a chord of a circle whose
radius is

√
5. Halfway along this line is a point of symmetry in the field (make a sketch to see

this). This means that when starting from either point, the initial force will be the same. Thus the
answer is dW = 3.1µJ as in part a. This is also found by going through the same procedure as
in part a, but with the direction (roles of P and Q) reversed.

4.4. Find the amount of energy required to move a 6-C charge from the origin to P(3, 1,−1) in the field
E = 2xax − 3y2ay + 4az V/m along the straight-line path x = −3z, y = x + 2z: We set up the
computation as follows, and find the the result does not depend on the path.

W = −q
∫

E · dL = −6
∫
(2xax − 3y2ay + 4az) · (dxax + dyay + dzaz)

= −6
∫ 3

0
2xdx + 6

∫ 1

0
3y2dy − 6

∫ −1

0
4dz = −24 J
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4.5. Compute the value of
∫ P
A

G · dL for G = 2yax with A(1,−1, 2) and P(2, 1, 2) using the path:
a) straight-line segments A(1,−1, 2) to B(1, 1, 2) to P(2, 1, 2): In general we would have

∫ P

A

G · dL =
∫ P

A

2y dx

The change in x occurs when moving between B and P , during which y = 1. Thus

∫ P

A

G · dL =
∫ P

B

2y dx =
∫ 2

1
2(1)dx = 2

b) straight-line segmentsA(1,−1, 2) toC(2,−1, 2) toP(2, 1, 2): In this case the change in x occurs
when moving from A to C, during which y = −1. Thus

∫ P

A

G · dL =
∫ C

A

2y dx =
∫ 2

1
2(−1)dx = −2

4.6. Let G = 4xax+2zay+2yaz. Given an initial pointP(2, 1, 1) and a final pointQ(4, 3, 1), find
∫

G ·dL
using the path: a) straight line: y = x − 1, z = 1; b) parabola: 6y = x2 + 2, z = 1:

With G as given, the line integral will be

∫
G · dL =

∫ 4

2
4x dx +

∫ 3

1
2z dy +

∫ 1

1
2y dz

Clearly, we are going nowhere in z, so the last integral is zero. With z = 1, the first two evaluate as

∫
G · dL = 2x2

∣∣∣4
2
+ 2y

∣∣∣3
1

= 28

The paths specified in parts a and b did not play a role, meaning that the integral between the specified
points is path-independent.

4.7. Repeat Problem 4.6 for G = 3xy3ax + 2zay . Now things are different in that the path does matter:

a) straight line: y = x − 1, z = 1: We obtain:

∫
G · dL =

∫ 4

2
3xy2 dx +

∫ 3

1
2z dy =

∫ 4

2
3x(x − 1)2 dx +

∫ 3

1
2(1) dy = 90

b) parabola: 6y = x2 + 2, z = 1: We obtain:

∫
G · dL =

∫ 4

2
3xy2 dx +

∫ 3

1
2z dy =

∫ 4

2

1

12
x(x2 + 2)2 dx +

∫ 3

1
2(1) dy = 82
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4.8. A point chargeQ1 is located at the origin in free space. Find the work done in carrying a chargeQ2 from:
(a) B(rB, θB, φB) to C(rA, θB, φB) with θ and φ held constant; (b) C(rA, θB, φB) to D(rA, θA, φB)
with r and φ held constant; (c)D(rA, θA, φB) toA(rA, θA, φA)with r and θ held constant: The general
expression for the work done in this instance is

W = −Q2

∫
E · dL = −Q2

∫
Q1

4πε0r2 ar · (drar + rdθaθ + r sin θdφaφ) = −Q1Q2

4πε0

∫
dr

r2

We see that only changes in r will produce non-zero results. Thus for part a we have

W = −Q1Q2

4πε0

∫ rA

rB

dr

r2 = Q1Q2

4πε0

[
1

rA
− 1

rB

]
J

The answers to parts b and c (involving paths over which r is held constant) are both 0.

4.9. A uniform surface charge density of 20 nC/m2 is present on the spherical surface r = 0.6 cm in free
space.

a) Find the absolute potential at P(r = 1 cm, θ = 25◦, φ = 50◦): Since the charge density
is uniform and is spherically-symmetric, the angular coordinates do not matter. The potential
function for r > 0.6 cm will be that of a point charge of Q = 4πa2ρs , or

V (r) = 4π(0.6 × 10−2)2(20 × 10−9)

4πε0r
= 0.081

r
V with r in meters

At r = 1 cm, this becomes V (r = 1 cm) = 8.14 V

b) Find VAB given points A(r = 2 cm, θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦):
Again, the angles do not matter because of the spherical symmetry. We use the part a result to
obtain

VAB = VA − VB = 0.081

[
1

0.02
− 1

0.03

]
= 1.36 V

4.10. Given a surface charge density of 8 nC/m2 on the plane x = 2, a line charge density of 30 nC/m on
the line x = 1, y = 2, and a 1-µC point charge at P(−1,−1, 2), find VAB for points A(3, 4, 0) and
B(4, 0, 1): We need to find a potential function for the combined charges. That for the point charge we
know to be

Vp(r) = Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ)+ C1

For the sheet charge, we have

Vs(x) = −
∫

ρs

2ε0
dx + C2 = − ρs

2ε0
x + C2
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4.10. (continued) The total potential function will be the sum of the three. Combining the integration con-
stants, we obtain:

V = Q

4πε0r
− ρl

2πε0
ln(ρ)− ρs

2ε0
x + C

The terms in this expression are not referenced to a common origin, since the charges are at different
positions. The parameters r , ρ, and x are scalar distances from the charges, and will be treated
as such here. For point A we have rA =

√
(3 − (−1))2 + (4 − (−1))2 + (−2)2 = √

45, ρA =√
(3 − 1)2 + (4 − 2)2 = √

8, and its distance from the sheet charge is xA = 3 − 2 = 1. The potential
at A is then

VA = 10−6

4πε0
√

45
− 30 × 10−9

2πε0
ln

√
8 − 8 × 10−9

2ε0
(1)+ C

At point B, rB =
√
(4 − (−1))2 + (0 − (−1))2 + (1 − 2)2 = √

27,
ρB =

√
(4 − 1)2 + (0 − 2)2 = √

13, and the distance from the sheet charge is xB = 4 − 2 = 2.
The potential at A is then

VB = 10−6

4πε0
√

27
− 30 × 10−9

2πε0
ln

√
13 − 8 × 10−9

2ε0
(2)+ C

Then

VA − VB = 10−6

4πε0

[
1√
45

− 1√
27

]
− 30 × 10−9

2πε0
ln

(√
8

13

)
− 8 × 10−9

2ε0
(1 − 2) = 193 V

4.11. Let a uniform surface charge density of 5 nC/m2 be present at the z = 0 plane, a uniform line charge
density of 8 nC/m be located at x = 0, z = 4, and a point charge of 2µC be present at P(2, 0, 0).
If V = 0 at M(0, 0, 5), find V at N(1, 2, 3): We need to find a potential function for the combined
charges which is zero at M . That for the point charge we know to be

Vp(r) = Q

4πε0r

Potential functions for the sheet and line charges can be found by taking indefinite integrals of the
electric fields for those distributions. For the line charge, we have

Vl(ρ) = −
∫

ρl

2πε0ρ
dρ + C1 = − ρl

2πε0
ln(ρ)+ C1

For the sheet charge, we have

Vs(z) = −
∫

ρs

2ε0
dz+ C2 = − ρs

2ε0
z+ C2

The total potential function will be the sum of the three. Combining the integration constants, we
obtain:

V = Q

4πε0r
− ρl

2πε0
ln(ρ)− ρs

2ε0
z+ C
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4.11. (continued) The terms in this expression are not referenced to a common origin, since the charges are
at different positions. The parameters r , ρ, and z are scalar distances from the charges, and will be
treated as such here. To evaluate the constant, C, we first look at point M , where VT = 0. At M ,
r = √

22 + 52 = √
29, ρ = 1, and z = 5. We thus have

0 = 2 × 10−6

4πε0
√

29
− 8 × 10−9

2πε0
ln(1)− 5 × 10−9

2ε0
5 + C ⇒ C = −1.93 × 103 V

At point N , r = √
1 + 4 + 9 = √

14, ρ = √
2, and z = 3. The potential at N is thus

VN = 2 × 10−6

4πε0
√

14
− 8 × 10−9

2πε0
ln(

√
2)− 5 × 10−9

2ε0
(3)− 1.93 × 103 = 1.98 × 103 V = 1.98 kV

4.12. Three point charges, 0.4µC each, are located at (0, 0,−1), (0, 0, 0), and (0, 0, 1), in free space.
a) Find an expression for the absolute potential as a function of z along the line x = 0, y = 1:

From a point located at position z along the given line, the distances to the three charges are
R1 =

√
(z− 1)2 + 1, R2 = √

z2 + 1, and R3 =
√
(z+ 1)2 + 1. The total potential will be

V (z) = q

4πε0

[
1

R1
+ 1

R2
+ 1

R3

]

Using q = 4 × 10−7 C, this becomes

V (z) = (3.6 × 103)

[
1√

(z− 1)2 + 1
+ 1√

z2 + 1
+ 1√

(z+ 1)2 + 1

]
V

b) Sketch V (z). The sketch will show that V maximizes to a value of 8.68 × 103 at z = 0, and then
monotonically decreases with increasing |z| symmetrically on either side of z = 0.

4.13. Three identical point charges of 4 pC each are located at the corners of an equilateral triangle 0.5 mm
on a side in free space. How much work must be done to move one charge to a point equidistant from
the other two and on the line joining them? This will be the magnitude of the charge times the potential
difference between the finishing and starting positions, or

W = (4 × 10−12)2

2πε0

[
1

2.5
− 1

5

]
× 104 = 5.76 × 10−10 J = 576 pJ

4.14. two 6-nC point charges are located at (1, 0, 0) and (−1, 0, 0) in free space.
a) Find V at P(0, 0, z): Since the charges are positioned symmetrically about the z axis, the potential

at z will be double that from one charge. This becomes:

V (z) = (2)
q

4πε0
√
z2 + 1

= q

2πε0
√
z2 + 1

b) Find Vmax : It is clear from the part a result that V will maximize at z = 0, or vmax = q/(2πε0) =
108 V.
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4.14. (continued)
c) Calculate |dV/dz| on the z axis: Differentiating the part a result, we find

∣∣∣dV
dz

∣∣∣ = qz

πε0(z2 + 1)3/2 V/m

d) Find |dV/dz|max : To find this we need to differentiate the part c result and find its zero:

d

dz

∣∣∣dV
dz

∣∣∣ = q(1 − 2z2)

πε0(z2 + 1)5/2
= 0 ⇒ z = ± 1√

2

Substituting z = 1/
√

2 into the part c result, we find

∣∣∣dV
dz

∣∣∣
max

= q√
2πε0(3/2)3/2

= 83.1 V/m

4.15. Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at x = −1, y = 2 in free
space. If the potential at the origin is 100 V, find V at P(4, 1, 3): The net potential function for the two
charges would in general be:

V = − ρl

2πε0
ln(R1)− ρl

2πε0
ln(R2)+ C

At the origin, R1 = R2 = √
5, and V = 100 V. Thus, with ρl = 8 × 10−9,

100 = −2
(8 × 10−9)

2πε0
ln(

√
5)+ C ⇒ C = 331.6 V

At P(4, 1, 3), R1 = |(4, 1, 3)− (1, 1, 2)| = √
10 and R2 = |(4, 1, 3)− (−1, 2, 3)| = √

26. Therefore

VP = − (8 × 10−9)

2πε0

[
ln(

√
10)+ ln(

√
26)
]

+ 331.6 = −68.4 V
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4.16. Uniform surface charge densities of 6, 4, and 2 nC/m2 are present at r = 2, 4, and 6 cm, respectively,
in free space.

a) Assume V = 0 at infinity, and find V (r). We keep in mind the definition of absolute potential
as the work done in moving a unit positive charge from infinity to location r . At radii outside all
three spheres, the potential will be the same as that of a point charge at the origin, whose charge
is the sum of the three sphere charges:

V (r) (r > 6 cm) = q1 + q2 + q3

4πε0r
= [4π(.02)2(6)+ 4π(.04)2(4)+ 4π(.06)2(2)] × 10−9

4πε0r

= (96 + 256 + 288)π × 10−13

4π(8.85 × 10−12)r
= 1.81

r
V where r is in meters

As the unit charge is moved inside the outer sphere to positions 4 < r < 6 cm, the outer sphere
contribution to the energy is fixed at its value at r = 6. Therefore,

V (r) (4 < r < 6 cm) = q1 + q2

4πε0r
+ q3

4πε0(.06)
= 0.994

r
+ 13.6 V

In moving inside the sphere at r = 4 cm, the contribution from that sphere becomes fixed at its
potential function at r = 4:

V (r) (2 < r < 4 cm) = q1

4πε0r
+ q2

4πε0(.04)
+ q3

4πε0(.06)
= 0.271

r
+ 31.7 V

Finally, using the same reasoning, the potential inside the inner sphere becomes

V (r) (r < 2 cm) = 0.271

.02
+ 31.7 = 45.3 V

b) Calculate V at r = 1, 3, 5, and 7 cm: Using the results of part a, we substitute these distances (in
meters) into the appropriate formulas to obtain: V (1) = 45.3 V,
V (3) = 40.7 V, V (5) = 33.5 V, and V (7) = 25.9 V.

c) Sketch V versus r for 0 < r < 10 cm.
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4.17. Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and 6 cm respectively, in free
space. Assume V = 0 at ρ = 4 cm, and calculate V at:

a) ρ = 5 cm: Since V = 0 at 4 cm, the potential at 5 cm will be the potential difference between
points 5 and 4:

V5 = −
∫ 5

4
E · dL = −

∫ 5

4

aρsa

ε0ρ
dρ = − (.02)(6 × 10−9)

ε0
ln

(
5

4

)
= −3.026 V

b) ρ = 7 cm: Here we integrate piecewise from ρ = 4 to ρ = 7:

V7 = −
∫ 6

4

aρsa

ε0ρ
dρ −

∫ 7

6

(aρsa + bρsb)

ε0ρ
dρ

With the given values, this becomes

V7 = −
[
(.02)(6 × 10−9)

ε0

]
ln

(
6

4

)
−
[
(.02)(6 × 10−9)+ (.06)(2 × 10−9)

ε0

]
ln

(
7

6

)
= −9.678 V

4.18. A nonuniform linear charge density, ρL = 8/(z2 + 1) nC/m lies along the z axis. Find the potential at
P(ρ = 1, 0, 0) in free space if V = 0 at infinity: This last condition enables us to write the potential
at P as a superposition of point charge potentials. The result is the integral:

VP =
∫ ∞

−∞
ρLdz

4πε0R

where R = √
z2 + 1 is the distance from a point z on the z axis to P . Substituting the given charge

distribution and R into the integral gives us

VP =
∫ ∞

−∞
8 × 10−9dz

4πε0(z2 + 1)3/2 = 2 × 10−9

πε0

z√
z2 + 1

∣∣∣∞−∞
= 144 V

4.19. The annular surface, 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface charge density ρs =
5ρ nC/m2. Find V at P(0, 0, 2 cm) if V = 0 at infinity: We use the superposition integral form:

VP =
∫ ∫

ρs da

4πε0|r − r′|
where r = zaz and r′ = ρaρ . We integrate over the surface of the annular region, with da = ρ dρ dφ.
Substituting the given values, we find

VP =
∫ 2π

0

∫ .03

.01

(5 × 10−9)ρ2 dρ dφ

4πε0
√
ρ2 + z2

Substituting z = .02, and using tables, the integral evaluates as

VP =
[
(5 × 10−9)

2ε0

] [
ρ

2

√
ρ2 + (.02)2 − (.02)2

2
ln(ρ +

√
ρ2 + (.02)2)

].03

.01
= .081 V
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4.20. Fig. 4.11 shows three separate charge distributions in the z = 0 plane in free space.
a) find the total charge for each distribution: Line charge along the y axis:

Q1 =
∫ 5

3
π × 10−9dy = 2π × 10−9 C = 6.28 nC

Line charge in an arc at radius ρ = 3:

Q2 =
∫ 70◦

10◦
(10−9) 3 dφ = 4.5 × 10−9 (70 − 10)

2π

360
= 4.71 × 10−9 C = 4.71 nC

Sheet charge:

Q3 =
∫ 70◦

10◦

∫ 3.5

1.6
(10−9) ρ dρ dφ = 5.07 × 10−9 C = 5.07 nC

b) Find the potential at P(0, 0, 6) caused by each of the three charge distributions acting alone: Line
charge along y axis:

VP1 =
∫ 5

3

ρLdL

4πε0R
=
∫ 5

3

π × 10−9dy

4πε0
√
y2 + 62

= 103

4 × 8.854
ln(y +

√
y2 + 62)

∣∣∣5
3

= 7.83 V

Line charge in an arc a radius ρ = 3:

VP2 =
∫ 70◦

10◦

(1.5 × 10−9) 3 dφ

4πε0
√

32 + 62
= Q2

4πε0
√

45
= 6.31 V

Sheet charge:

VP3 =
∫ 70◦

10◦

∫ 3.5

1.6

(10−9) ρ dρ dφ

4πε0
√
ρ2 + 62

= 60 × 10−9

4π(8.854 × 10−12

(
2π

360

)∫ 3.5

1.6

ρ dρ√
ρ2 + 36

= 9.42
√
ρ2 + 36

∣∣∣3.5
1.6

= 6.93 V

c) Find VP : This will be the sum of the three results of part b, or

VP = VP1 + VP 2 + VP 3 = 7.83 + 6.31 + 6.93 = 21.1 V

4.21. Let V = 2xy2z3 + 3 ln(x2 + 2y2 + 3z2)V in free space. Evaluate each of the following quantities at
P(3, 2,−1):

a) V : Substitute P directly to obtain: V = −15.0 V
b) |V |. This will be just 15.0 V.
c) E: We have

E
∣∣∣
P

= −∇V
∣∣∣
P

= −
[(

2y2z3 + 6x

x2 + 2y2 + 3z2

)
ax +

(
4xyz3 + 12y

x2 + 2y2 + 3z2

)
ay

+
(

6xy2z2 + 18z

x2 + 2y2 + 3z2

)
az

]
P

= 7.1ax + 22.8ay − 71.1az V/m
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4.21d. |E|P : taking the magnitude of the part c result, we find |E|P = 75.0 V/m.

e) aN : By definition, this will be

aN
∣∣∣
P

= − E
|E| = −0.095 ax − 0.304 ay + 0.948 az

f) D: This is D
∣∣∣
P

= ε0E
∣∣∣
P

= 62.8 ax + 202 ay − 629 az pC/m2.

4.22. It is known that the potential is given as V = 80r0.6 V. Assuming free space conditions, find:
a) E: We use

E = −∇V = −dV

dr
ar = −(0.6)80r−0.4 ar = −48r−0.4 ar V/m

b) the volume charge density at r = 0.5 m: Begin by finding

D = ε0E = −48r−0.4ε0 ar C/m2

We next find

ρv = ∇ · D = 1

r2

d

dr

(
r2Dr

)
= 1

r2

d

dr

(
−48ε0r

1.6
)

= −76.8ε0

r1.4 C/m3

Then at r = 0.5 m,

ρv(0.5) = −76.8(8.854 × 10−12)

(0.5)1.4
= −1.79 × 10−9 C/m3 = −1.79 nC/m3

c) the total charge lying within the surface r = 0.6: The easiest way is to use Gauss’ law, and integrate
the flux density over the spherical surface r = 0.6. Since the field is constant at constant radius,
we obtain the product:

Q = 4π(0.6)2(−48ε0(0.6)
−0.4) = −2.36 × 10−9 C = −2.36 nC

4.23. It is known that the potential is given as V = 80ρ.6 V. Assuming free space conditions, find:

a) E: We find this through

E = −∇V = −dV

dρ
aρ = −48ρ−.4 V/m

b) the volume charge density at ρ = .5 m: Using D = ε0E, we find the charge density through

ρv

∣∣∣
.5

= [∇ · D].5 =
(

1

ρ

)
d

dρ

(
ρDρ

) ∣∣∣
.5

= −28.8ε0ρ
−1.4

∣∣∣
.5

= −673 pC/m3
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4.23c. the total charge lying within the closed surface ρ = .6, 0 < z < 1: The easiest way to do this calculation
is to evaluateDρ at ρ = .6 (noting that it is constant), and then multiply by the cylinder area: Using part

a, we haveDρ

∣∣∣
.6

= −48ε0(.6)−.4 = −521 pC/m2. ThusQ = −2π(.6)(1)521×10−12 C = −1.96 nC.

4.24. Given the potential field V = 80r2 cos θ and a point P(2.5, θ = 30◦, φ = 60◦) in free space, find at P :
a) V : Substitute the coordinates into the function and find VP = 80(2.5)2 cos(30) = 433 V.

b) E:

E = −∇V = −∂V

∂r
ar − 1

r

∂V

∂θ
aθ = −160r cos θar + 80r sin θaθ V/m

Evaluating this at P yields Ep = −346ar + 100aθ V/m.

c) D: In free space, DP = ε0EP = (−346ar + 100aθ )ε0 = −3.07 ar + 0.885 aθ nC/m2.

d) ρv:

ρv = ∇ · D = ε0∇ · E = ε0

[
1

r2

∂

∂r

(
r2Er

)
+ 1

r2 sin θ

∂

∂θ
(Eθ sin θ)

]

Substituting the components of E, we find

ρv =
[
−160 cos θ

r2 3r2 + 1

r sin θ
80r(2 sin θ cos θ)

]
ε0 = −320ε0 cos θ = −2.45 nC/m3

with θ = 30◦.

e) dV/dN : This will be just |E| evaluated at P , which is

dV

dN

∣∣∣
P

= | − 346ar + 100aθ | =
√
(346)2 + (100)2 = 360 V/m

f) aN : This will be

aN = − EP

|EP | = −
[

−346ar + 100aθ√
(346)2 + (100)2

]
= 0.961 ar − 0.278 aθ

4.25. Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 + 50ρ + 150ρ sin φ V.
a) Find V , E, D, and ρv at P(1, 60◦, 0.5) in free space: First, substituting the given point, we find

VP = 279.9 V. Then,

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ = − [50 + 150 sin φ] aρ − [150 cosφ] aφ

Evaluate the above at P to find EP = −179.9aρ − 75.0aφ V/m

Now D = ε0E, so DP = −1.59aρ − .664aφ nC/m2. Then

ρv = ∇ ·D =
(

1

ρ

)
d

dρ

(
ρDρ

)+ 1

ρ

∂Dφ

∂φ
=
[
− 1

ρ
(50 + 150 sin φ)+ 1

ρ
150 sin φ

]
ε0 = −50

ρ
ε0 C

At P , this is ρvP = −443 pC/m3.
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4.25b. How much charge lies within the cylinder? We will integrate ρv over the volume to obtain:

Q =
∫ 1

0

∫ 2π

0

∫ 2

0
−50ε0

ρ
ρ dρ dφ dz = −2π(50)ε0(2) = −5.56 nC

4.26. A dipole having Qd/(4πε0) = 100 V · m2 is located at the origin in free space and aligned so that its
moment is in the az direction. a) Sketch |V (r = 1, θ, φ = 0)| versus θ on polar graph paper (homemade
if you wish). b) Sketch |E(r = 1, θ, φ = 0)| versus θ on polar graph paper:

V = Qd cos θ

4πε0r2 = 100 cos θ

r2 ⇒ |V (r = 1, θ, φ = 0)| = |100 cos θ |

E = Qd

4πε0r3 (2 cos θ ar + sin θ aθ ) = 100

r3 (2 cos θ ar + sin θ aθ )

|E(r = 1, θ, φ = 0)| = 100
(

4 cos2 θ + sin2 θ
)1/2 = 100

(
1 + 3 cos2 θ

)1/2

These results are plotted below:
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4.27. Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0,−0.1), are in free space.
a) Calculate V at P(0.3, 0, 0.4): Use

VP = q

4πε0|R+| − q

4πε0|R−|

where R+ = (.3, 0, .3) and R− = (.3, 0, .5), so that |R+| = 0.424 and |R−| = 0.583. Thus

VP = 10−9

4πε0

[
1

.424
− 1

.583

]
= 5.78 V

b) Calculate |E| at P : Use

EP = q(.3ax + .3az)
4πε0(.424)3

− q(.3ax + .5az)
4πε0(.583)3

= 10−9

4πε0

[
2.42ax + 1.41az

]
V/m

Taking the magnitude of the above, we find |EP | = 25.2 V/m.

c) Now treat the two charges as a dipole at the origin and find V at P : In spherical coordinates, P
is located at r = √

.32 + .42 = .5 and θ = sin−1(.3/.5) = 36.9◦. Assuming a dipole in far-field,
we have

VP = qd cos θ

4πε0r2 = 10−9(.2) cos(36.9◦)
4πε0(.5)2

= 5.76 V

4.28. A dipole located at the origin in free space has a moment p2 × 10−9 az C · m. At what points on the
line y = z, x = 0 is:

a) |Eθ | = 1 mV/m? We note that the line y = z lies at θ = 45◦. Begin with

E = 2 × 10−9

4πε0r3 (2 cos θ ar + sin θ aθ ) = 10−9

2
√

2πε0r3
(2ar + aθ ) at θ = 45◦

from which

Eθ = 10−9

2πε0r3 = 10−3 V/m (required) ⇒ r3 = 1.27 × 10−4 or r = 23.3 m

The y and z values are thus y = z = ±23.3/
√

2 = ±16.5 m

b) |Er | = 1 mV/m? From the above field expression, the radial component magnitude is twice that
of the theta component. Using the same development, we then find

Er = 2
10−9

2πε0r3 = 10−3 V/m (required) ⇒ r3 = 2(1.27 × 10−4) or r = 29.4 m

The y and z values are thus y = z = ±29.4/
√

2 = ±20.8 m
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4.29. A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at Q(1, 2,−4) in free space. Find
V at P(2, 3, 4): We use the general expression for the potential in the far field:

V = p · (r − r′)
4πε0|r − r′|3

where r − r′ = P −Q = (1, 1, 8). So

VP = (3ax − 5ay + 10az) · (ax + ay + 8az)× 10−9

4πε0[12 + 12 + 82]1.5
= 1.31 V

4.30. A dipole, having a moment p = 2az nC · m is located at the origin in free space. Give the magnitude
of E and its direction aE in cartesian components at r = 100 m, φ = 90◦, and θ =: a) 0◦; b) 30◦; c)
90◦. Begin with

E = p

4πε0r3 [2 cos θ ar + sin θ aθ ]

from which

|E| = p

4πε0r3

[
4 cos2 θ + sin2 θ

]1/2 = p

4πε0r3

[
1 + 3 cos2 θ

]1/2

Now

Ex = E · ax = p

4πε0r3 [2 cos θ ar · ax + sin θ aθ · ax] = p

4πε0r3 [3 cos θ sin θ cosφ]

then

Ey = E · ay = p

4πε0r3

[
2 cos θ ar · ay + sin θ aθ · ay

] = p

4πε0r3 [3 cos θ sin θ sin φ]

and

Ez = E · az = p

4πε0r3

[
2 cos θ ar · az + sin θ aθ · az

] = p

4πε0r3

[
2 cos2 θ − sin2 θ

]
Since φ is given as 90◦, Ex = 0, and the field magnitude becomes

|E(φ = 90◦)| =
√
E2
y + E2

z = p

4πε0r3

[
9 cos2 θ sin2 θ + (2 cos2 θ − sin2 θ)2

]1/2

Then the unit vector becomes (again at φ = 90◦):

aE = 3 cos θ sin θ ay + (2 cos2 θ − sin2 θ) az[
9 cos2 θ sin2 θ + (2 cos2 θ − sin2 θ)2

]1/2

Now with r = 100 m and p = 2 × 10−9,

p

4πε0r3 = 2 × 10−9

4π(8.854 × 10−12)106 = 1.80 × 10−5

Using the above formulas, we find at θ = 0◦, |E| = (1.80 × 10−5)(2) = 36.0µV/m and aE = az.
At θ = 30◦, we find |E| = (1.80 × 10−5)[1.69 + 1.56]1/2 = 32.5µV/m and aE = (1.30ay +
1.25az)/1.80 = 0.72 ax + 0.69 az. At θ = 90◦, |E| = (1.80×10−5)(1) = 18.0 µV/m and aE = −az.
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4.31. A potential field in free space is expressed as V = 20/(xyz)V.

a) Find the total energy stored within the cube 1 < x, y, z < 2. We integrate the energy density over
the cube volume, where wE = (1/2)ε0E · E, and where

E = −∇V = 20

[
1

x2yz
ax + 1

xy2z
ay + 1

xyz2 az

]
V/m

The energy is now

WE = 200ε0

∫ 2

1

∫ 2

1

∫ 2

1

[
1

x4y2z2 + 1

x2y4z2 + 1

x2y2z4

]
dx dy dz

The integral evaluates as follows:

WE = 200ε0

∫ 2

1

∫ 2

1

[
−
(

1

3

)
1

x3y2z2 − 1

xy4z2 − 1

xy2z4

]2

1
dy dz

= 200ε0

∫ 2

1

∫ 2

1

[(
7

24

)
1

y2z2 +
(

1

2

)
1

y4z2 +
(

1

2

)
1

y2z4

]
dy dz

= 200ε0

∫ 2

1

[
−
(

7

24

)
1

yz2 −
(

1

6

)
1

y3z2 −
(

1

2

)
1

yz4

]2

1
dz

= 200ε0

∫ 2

1

[(
7

48

)
1

z2 +
(

7

48

)
1

z2 +
(

1

4

)
1

z4

]
dz

= 200ε0(3)

[
7

96

]
= 387 pJ

b) What value would be obtained by assuming a uniform energy density equal to the value at the
center of the cube? At C(1.5, 1.5, 1.5) the energy density is

wE = 200ε0(3)

[
1

(1.5)4(1.5)2(1.5)2

]
= 2.07 × 10−10 J/m3

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

4.32. In the region of free space where 2 < r < 3, 0.4π < θ < 0.6π , 0 < φ < π/2, let E = k/r2 ar .
a) Find a positive value for k so that the total energy stored is exactly 1 J: The energy is found through

WE =
∫
v

1

2
ε0E

2 dv =
∫ π/2

0

∫ 0.6π

0.4π

∫ 3

2

1

2
ε0
k2

r2 r
2 sin θ dr dθ dφ

= π

2
(− cos θ)

∣∣∣.6π
.4π

(
1

2

)
ε0k

2
(

−1

r

) ∣∣∣3
2

= 0.616π

24
ε0k

2 = 1 J

Solve for k to find k = 1.18 × 106 V · m.
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4.32b. Show that the surface θ = 0.6π is an equipotential surface: This will be the surface of a cone, centered
at the origin, along which E, in the ar direction, will exist. Therefore, the given surface cannot be an
equipotential (the problem was ill-conceived). Only a surface of constant r could be an equipotential
in this field.

c) Find VAB , given points A(2, θ = π/2, φ = π/3) and B(3, π/2, π/4): Use

VAB = −
∫ A

B

E · dL = −
∫ 3

2

k

r2 ar · ar dr = k

(
1

2
− 1

3

)
= k

6

Using the result of part a, we find VAB = (1.18 × 106)/6 = 197 kV.

4.33. A copper sphere of radius 4 cm carries a uniformly-distributed total charge of 5µC in free space.
a) Use Gauss’ law to find D external to the sphere: with a spherical Gaussian surface at radius r , D

will be the total charge divided by the area of this sphere, and will be ar -directed. Thus

D = Q

4πr2 ar = 5 × 10−6

4πr2 ar C/m2

b) Calculate the total energy stored in the electrostatic field: Use

WE =
∫
vol

1

2
D · E dv =

∫ 2π

0

∫ π

0

∫ ∞

.04

1

2

(5 × 10−6)2

16π2ε0r4 r2 sin θ dr dθ dφ

= (4π)

(
1

2

)
(5 × 10−6)2

16π2ε0

∫ ∞

.04

dr

r2 = 25 × 10−12

8πε0

1

.04
= 2.81 J

c) Use WE = Q2/(2C) to calculate the capacitance of the isolated sphere: We have

C = Q2

2WE

= (5 × 10−6)2

2(2.81)
= 4.45 × 10−12 F = 4.45 pF

4.34. Given the potential field in free space, V = 80φ V (note that aphi should not be present), find:
a) the energy stored in the region 2 < ρ < 4 cm, 0 < φ < 0.2π , 0 < z < 1 m: First we find

E = −∇V = − 1

ρ

dV

dφ
aφ = −80

ρ
aφ V/m

Then

WE =
∫
v

wEdv =
∫ 1

0

∫ 0.2π

0

∫ .04

.02

1

2
ε0
(80)2

ρ2 ρ dρ dφ dz = 640πε0 ln

(
.04

.02

)
= 12.3 nJ

b) the potential difference, VAB , for A(3 cm, φ = 0, z = 0) and B(3cm, 0.2π, 1m): Use

VAB = −
∫ A

B

E · dL = −
∫ 0

.2π
−80

ρ
aφ · aφ ρ dφ = −80(0.2π) = −16π V
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4.34c. the maximum value of the energy density in the specified region: The energy density is

wE = 1

2
ε0E

2 = 1

2
ε0

6400

ρ2

This will maximize at the lowest value of ρ in the specified range, which is ρ = 2 cm. So

wE,max = 1

2
ε0

6400

.022 = 7.1 × 10−5 J/m3 = 71 µJ/m3

4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.
a) Find the total potential energy stored: This will be given by

WE = 1

2

4∑
n=1

qnVn

where Vn in this case is the potential at the location of any one of the point charges that arises from
the other three. This will be (for charge 1)

V1 = V21 + V31 + V41 = q

4πε0

[
1

.04
+ 1

.04
+ 1

.04
√

2

]

Taking the summation produces a factor of 4, since the situation is the same at all four points.
Consequently,

WE = 1

2
(4)q1V1 = (.8 × 10−9)2

2πε0(.04)

[
2 + 1√

2

]
= 7.79 × 10−7 J = 0.779µJ

b) A fifth 0.8µC charge is installed at the center of the square. Again find the total stored energy:
This will be the energy found in part a plus the amount of work done in moving the fifth charge
into position from infinity. The latter is just the potential at the square center arising from the
original four charges, times the new charge value, or

2WE = 4(.8 × 10−9)2

4πε0(.04
√

2/2)
= .813µJ

The total energy is now

WEnet = WE(part a)+2WE = .779 + .813 = 1.59µJ
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CHAPTER 5

5.1. Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2:

a) Find the total current crossing the plane y = 1 in the ay direction in the region 0 < x < 1,
0 < z < 2: This is found through

I =
∫ ∫

S

J · n
∣∣∣
S
da =

∫ 2

0

∫ 1

0
J · ay

∣∣∣
y=1

dx dz =
∫ 2

0

∫ 1

0
−104 cos(2x)e−2 dx dz

= −104(2)
1

2
sin(2x)

∣∣∣1
0
e−2 = −1.23 MA

b) Find the total current leaving the region 0 < x, x < 1, 2 < z < 3 by integrating J · dS over
the surface of the cube: Note first that current through the top and bottom surfaces will not exist,
since J has no z component. Also note that there will be no current through the x = 0 plane, since
Jx = 0 there. Current will pass through the three remaining surfaces, and will be found through

I =
∫ 3

2

∫ 1

0
J · (−ay)

∣∣∣
y=0

dx dz +
∫ 3

2

∫ 1

0
J · (ay)

∣∣∣
y=1

dx dz +
∫ 3

2

∫ 1

0
J · (ax)

∣∣∣
x=1

dy dz

= 104
∫ 3

2

∫ 1

0

[
cos(2x)e−0 − cos(2x)e−2

]
dx dz − 104

∫ 3

2

∫ 1

0
sin(2)e−2y dy dz

= 104
(

1

2

)
sin(2x)

∣∣∣1
0
(3 − 2)

[
1 − e−2

]
+ 104

(
1

2

)
sin(2)e−2y

∣∣∣1
0
(3 − 2) = 0

c) Repeat part b, but use the divergence theorem: We find the net outward current through the surface
of the cube by integrating the divergence of J over the cube volume. We have

∇ · J = ∂Jx

∂x
+ ∂Jy

∂y
= −10−4

[
2 cos(2x)e−2y − 2 cos(2x)e−2y

]
= 0 as expected

5.2. Let the current density be J = 2φ cos2 φaρ − ρ sin 2φaφ A/m2 within the region 2.1 < ρ < 2.5,
0 < φ < 0.1 rad, 6 < z < 6.1. Find the total current I crossing the surface:

a) ρ = 2.2, 0 < φ < 0.1, 6 < z < 6.1 in the aρ direction: This is a surface of constant ρ, so only
the radial component of J will contribute: At ρ = 2.2 we write:

I =
∫

J · dS =
∫ 6.1

6

∫ 0.1

0
2(2) cos2 φ aρ · aρ 2dφdz = 2(2.2)2(0.1)

∫ 0.1

0

1

2
(1 + cos 2φ) dφ

= 0.2(2.2)2
[

1

2
(0.1) + 1

4
sin 2φ

∣∣∣0.1
0

]
= 97 mA

b) φ = 0.05, 2.2 < ρ < 2.5, 6 < z < 6.1 in the aφ direction: In this case only the φ component of
J will contribute:

I =
∫

J · dS =
∫ 6.1

6

∫ 2.5

2.2
−ρ sin 2φ

∣∣
φ=0.05 aφ · aφ dρ dz = −(0.1)2 ρ

2

2

∣∣∣2.5
2.2

= −7 mA
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5.2c. Evaluate ∇ · J at P(ρ = 2.4, φ = 0.08, z = 6.05):

∇ · J = 1

ρ

∂

∂ρ
(ρJρ) + 1

ρ

∂Jφ

∂φ
= 1

ρ

∂

∂ρ
(2ρ2 cos2 φ) − 1

ρ

∂

∂φ
(ρ sin 2φ) = 4 cos2 φ − 2 cos 2φ

∣∣∣
0.08

= 2.0 A/m3

5.3. Let

J = 400 sin θ

r2 + 4
ar A/m2

a) Find the total current flowing through that portion of the spherical surface r = 0.8, bounded by
0.1π < θ < 0.3π , 0 < φ < 2π : This will be

I =
∫ ∫

J · n
∣∣∣
S
da =

∫ 2π

0

∫ .3π

.1π

400 sin θ

(.8)2 + 4
(.8)2 sin θ dθ dφ = 400(.8)22π

4.64

∫ .3π

.1π
sin2 dθ

= 346.5
∫ .3π

.1π

1

2
[1 − cos(2θ)] dθ = 77.4 A

b) Find the average value of J over the defined area. The area is

Area =
∫ 2π

0

∫ .3π

.1π
(.8)2 sin θ dθ dφ = 1.46 m2

The average current density is thus Javg = (77.4/1.46) ar = 53.0 ar A/m2.

5.4. The cathode of a planar vacuum tube is at z = 0. Let E = −4 × 106 az V/m for z > 0. An electron
(e = 1.602 × 10−19 C, m = 9.11 × 10−31 kg) is emitted from the cathode with zero initial velocity at
t = 0.

a) Find v(t): Using Newton’s second law, we write:

F = ma = qE ⇒ a = (−1.602 × 10−19)(−4 × 106)az

(9.11 × 10−31)
= 7.0 × 1017az m/s2

Then v(t) = at = 7.0 × 1017t m/s.

b) Find z(t), the electron location as a function of time: Use

z(t) =
∫ t

0
v(t ′)dt ′ = 1

2
(7.0 × 1017)t2 = 3.5 × 1017t2 m

c) Determine v(z): Solve the result of part b for t , obtaining

t =
√
z√

3.5 × 1017
= 1.7 × 109√z

Substitute into the result of part a to find v(z) = 7.0 × 1017(1.7 × 10−9)
√
z = 1.2 × 109√z m/s.
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5.4d. Make the assumption that the electrons are emitted continuously as a beam with a 0.25 mm radius and
a total current of 60 µA. Find J(z) and ρ(z):

J(z) = −60 × 10−6

π(0.25)2(10−6)
az = −3.1 × 102 az A/m2

(negative since we have electrons flowing in the positive z direction) Next we use J(z) = ρv(z)v(z), or

ρv(z) = J

v
= −3.1 × 102

1.2 × 109√z
= −2.6 × 10−7

√
z

C/m3 = −26√
z

µC/m3

5.5. Let

J = 25

ρ
aρ − 20

ρ2 + 0.01
az A/m2

a) Find the total current crossing the plane z = 0.2 in the az direction for ρ < 0.4: Use

I =
∫ ∫

S

J · n
∣∣∣
z=.2

da =
∫ 2π

0

∫ .4

0

−20

ρ2 + .01
ρ dρ dφ

= −
(

1

2

)
20 ln(.01 + ρ2)

∣∣∣.4
0
(2π) = −20π ln(17) = −178.0 A

b) Calculate ∂ρv/∂t : This is found using the equation of continuity:

∂ρv

∂t
= −∇ · J = 1

ρ

∂

∂ρ
(ρJρ) + ∂Jz

∂z
= 1

ρ

∂

∂ρ
(25) + ∂

∂z

( −20

ρ2 + .01

)
= 0

c) Find the outward current crossing the closed surface defined by ρ = 0.01, ρ = 0.4, z = 0, and
z = 0.2: This will be

I =
∫ .2

0

∫ 2π

0

25

.01
aρ · (−aρ)(.01) dφ dz +

∫ .2

0

∫ 2π

0

25

.4
aρ · (aρ)(.4) dφ dz

+
∫ 2π

0

∫ .4

0

−20

ρ2 + .01
az · (−az) ρ dρ dφ +

∫ 2π

0

∫ .4

0

−20

ρ2 + .01
az · (az) ρ dρ dφ = 0

since the integrals will cancel each other.

d) Show that the divergence theorem is satisfied for J and the surface specified in part b. In part c,
the net outward flux was found to be zero, and in part b, the divergence of J was found to be zero
(as will be its volume integral). Therefore, the divergence theorem is satisfied.

5.6. Let ε = ε0 and V = 90z4/3 in the region z = 0.
a) Obtain expressions for E, D, and ρv as functions of z: First,

E = −∇V = − dV

dz
az = − 4

3
(90)z1/3az = −120z1/3az V/m
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5.6a. (continued)
Next, D = ε0E = 1.06z1/3az nC/m2. Then

ρv = ∇ · D = dDz

dz
= − 1

3
(120)ε0z

−2/3 = −354z−2/3 pC/m3

b) If the velocity of the charge density is given as vz = 5×106z2/3 m/s, find Jz at z = 0 and z = 0.1
m (note that vz is written as vx through a missprint): Use Jz = ρvvz = (−354 × 10−12)z−2/3(5 ×
106)z2/3 = −1.8 mA/m2 at any z.

5.7. Assuming that there is no transformation of mass to energy or vice-versa, it is possible to write a
continuity equation for mass.

a) If we use the continuity equation for charge as our model, what quantities correspond to J and ρv?
These would be, respectively, mass flux density in (kg/m2 − s) and mass density in (kg/m3).

b) Given a cube 1 cm on a side, experimental data show that the rates at which mass is leaving each
of the six faces are 10.25, -9.85, 1.75, -2.00, -4.05, and 4.45 mg/s. If we assume that the cube is
an incremental volume element, determine an approximate value for the time rate of change of
density at its center. We may write the continuity equation for mass as follows, also invoking the
divergence theorem: ∫

v

∂ρm

∂t
dv = −

∫
v

∇ · Jm dv = −
∮
s

Jm · dS

where ∮
s

Jm · dS = 10.25 − 9.85 + 1.75 − 2.00 − 4.05 + 4.45 = 0.550 mg/s

Treating our 1 cm3 volume as differential, we find

∂ρm

∂t

.= −0.550 × 10−3 g/s

10−6 m3 = −550 g/m3 − s

5.8. The continuity equation for mass equates the divergence of the mass rate of flow (mass per second
per square meter) to the negative of the density (mass per cubic meter). After setting up a cartesian
coordinate system inside a star, Captain Kirk and his intrepid crew make measurements over the faces
of a cube centered at the origin with edges 40 km long and parallel to the coordinate axes. They find
the mass rate of flow of material outward across the six faces to be -1112, 1183, 201, -196, 1989, and
-1920 kg/m2 · s.

a) Estimate the divergence of the mass rate of flow at the origin: We make the estimate using the
definition of divergence, but without taking the limit as the volume shrinks to zero:

Div Jm
.=
∮

Jm · dS
$v

= (−1112 + 1183 + 201 − 196 + 1989 − 1920)(40)2

(40)3 = 3.63 kg/km3 · s

b) Estimate the rate of change of the density at the origin: The continuity equation for mass reads:
Div Jm = − ∂ρm/∂t . Therefore, the rate of change of density at the origin will be just the negative
of the part a result, or ∂ρm/∂t

.= − 3.63 kg/km3 · s.
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5.9a. Using data tabulated in Appendix C, calculate the required diameter for a 2-m long nichrome wire that
will dissipate an average power of 450 W when 120 V rms at 60 Hz is applied to it:

The required resistance will be

R = V 2

P
= l

σ (πa2)

Thus the diameter will be

d = 2a = 2

√
lP

σπV 2 = 2

√
2(450)

(106)π(120)2 = 2.8 × 10−4 m = 0.28 mm

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 = 3.75 A.
Thus

J = 3.75

π
(
2.8 × 10−4/2

)2 = 6.0 × 107 A/m2

5.10. A steel wire has a radius of 2 mm and a conductivity of 2 × 106 S/m. The steel wire has an aluminum
(σ = 3.8 × 107 S/m) coating of 2 mm thickness. Let the total current carried by this hybrid conductor
be 80 A dc. Find:

a) Jst . We begin with the fact that electric field must be the same in the aluminum and steel regions.
This comes from the requirement that E tangent to the boundary between two media must be
continuous, and from the fact that when integrating E over the wire length, the applied voltage
value must be obtained, regardless of the medium within which this integral is evaluated. We can
therefore write

EAl = Est = JAl

σAl

= Jst

σst

⇒ JAl = σAl

σst

Jst

The net current is now expressed as the sum of the currents in each region, written as the sum of
the products of the current densities in each region times the appropriate cross-sectional area:

I = π(2 × 10−3)2Jst + π [(4 × 10−3)2 − (2 × 10−3)2]JAl = 80 A

Using the above relation between Jst and JAl , we find

80 = π

[
(2 × 10−3)2

[
1 −

(
3.8 × 107

6 × 106

)]
+ (4 × 10−3)2

(
3.8 × 107

6 × 106

)]
Jst

Solve for Jst to find Jst = 3.2 × 105 A/m2.

b)

JAl = 3.8 × 107

6 × 106 (3.2 × 105) = 2.0 × 106 A/m2

c,d) Est = EAl = Jst /σst = JAl/σAl = 5.3 × 10−2 V/m.

e) the voltage between the ends of the conductor if it is 1 mi long: Using the fact that 1 mi = 1.61×103

m, we have V = El = (5.3 × 10−2)(1.61 × 103) = 85.4 V.
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5.11. Two perfectly-conducting cylindrical surfaces are located at ρ = 3 and ρ = 5 cm. The total current
passing radially outward through the medium between the cylinders is 3 A dc. Assume the cylinders
are both of length l.

a) Find the voltage and resistance between the cylinders, and E in the region between the cylinders,
if a conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm: Given the current,
and knowing that it is radially-directed, we find the current density by dividing it by the area of a
cylinder of radius ρ and length l:

J = 3

2πρl
aρ A/m2

Then the electric field is found by dividing this result by σ :

E = 3

2πσρl
aρ = 9.55

ρl
aρ V/m

The voltage between cylinders is now:

V = −
∫ 3

5
E · dL =

∫ 5

3

9.55

ρl
aρ · aρdρ = 9.55

l
ln

(
5

3

)
= 4.88

l
V

Now, the resistance will be

R = V

I
= 4.88

3l
= 1.63

l
*

b) Show that integrating the power dissipated per unit volume over the volume gives the total dissipated
power: We calculate

P =
∫
v

E · J dv =
∫ l

0

∫ 2π

0

∫ .05

.03

32

(2π)2ρ2(.05)l2
ρ dρ dφ dz = 32

2π(.05)l
ln

(
5

3

)
= 14.64

l
W

We also find the power by taking the product of voltage and current:

P = V I = 4.88

l
(3) = 14.64

l
W

which is in agreement with the power density integration.

5.12. The spherical surfaces r = 3 and r = 5 cm are perfectly conducting, and the total current passing
radially outward through the medium between the surfaces is 3 A dc.

a) Find the voltage and resistance between the spheres, and E in the region between them, if a
conducting material having σ = 0.05 S/m is present for 3 < r < 5 cm. We first find J as a
function of radius by dividing the current by the area of a sphere of radius r:

J = I

4πr2 ar = 3

4πr2 ar A/m2

Then

E = J
σ

= 3

4πr2(0.05)
ar = 4.77

r2 ar V/m
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5.12a. (continued)

V = −
∫ r1

r2

E · dL = −
∫ .03

.05

4.77

r2 dr = 4.77

[
1

.03
− 1

.05

]
= 63.7 V

Finally, R = V/I = 63.7/3 = 21.2 *.

b) Repeat if σ = 0.0005/r for 3 < r < 5 cm: First, J = 3ar/(4πr2) as before. The electric field is
now

E = J
σ

= 3rar

4π(.0005)r2 = 477

r
ar V/m

Now

V = −
∫ r1

r2

E · dL = −
∫ .03

.05

477

r
dr = −477 ln

(
.03

.05

)
= 244 V

Finally, R = V/I = 244/3 = 81.3 *.

c) Show that integrating the power dissipated per unit volume in part b over the volume gives the
total dissipated power: The dissipated power density is

pd = E · J =
(

3

4π(.0005)r

)(
3

4πr2

)
= 114

r3 W/m2

We integrate this over the volume between spheres:

Pd =
∫ 2π

0

∫ π

0

∫ .05

.03

114

r3 r2 sin θ dr dθ dφ = 4π(114) ln

(
5

3

)
= 732 W

The dissipated power should be just I 2R = (3)2(81.3) = 732 W. So it works.

5.13. A hollow cylindrical tube with a rectangular cross-section has external dimensions of 0.5 in by 1 in and
a wall thickness of 0.05 in. Assume that the material is brass, for which σ = 1.5 × 107 S/m. A current
of 200 A dc is flowing down the tube.

a) What voltage drop is present across a 1m length of the tube? Converting all measurements to
meters, the tube resistance over a 1 m length will be:

R1 = 1

(1.5 × 107)
[
(2.54)(2.54/2) × 10−4 − 2.54(1 − .1)(2.54/2)(1 − .2) × 10−4

]
= 7.38 × 10−4 *

The voltage drop is now V = IR1 = 200(7.38 × 10−4 = 0.147 V.

b) Find the voltage drop if the interior of the tube is filled with a conducting material for which
σ = 1.5 × 105 S/m: The resistance of the filling will be:

R2 = 1

(1.5 × 105)(1/2)(2.54)2 × 10−4(.9)(.8)
= 2.87 × 10−2 *

The total resistance is now the parallel combination of R1 and R2:
RT = R1R2/(R1 + R2) = 7.19 × 10−4 *, and the voltage drop is now V = 200RT = .144 V.
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5.14. Find the magnitude of the electric field intensity in a conductor if:
a) the current density is 5 MA/m2, the electron mobility is 3×10−3 m2/V · s, and the volume charge

density is −2.4 × 1010 C/m3: In magnitude, we have

E = J

µeρv

= 5 × 106

(2.4 × 1010)(3 × 10−3)
= 6.9 × 10−2 V/m

b) J = 3 MA/m2 and the resistivity is 3 × 10−8 * · m: E = Jρ = (3 × 106)(3 × 10−8) =
9 × 10−2 V/m.

5.15. Let V = 10(ρ + 1)z2 cosφ V in free space.

a) Let the equipotential surface V = 20 V define a conductor surface. Find the equation of the
conductor surface: Set the given potential function equal to 20, to find:

(ρ + 1)z2 cosφ = 2

b) Find ρ and E at that point on the conductor surface where φ = 0.2π and z = 1.5: At the given
values of φ and z, we solve the equation of the surface found in part a for ρ, obtaining ρ = .10.
Then

E = −∇V = −∂V

∂ρ
aρ − 1

ρ

∂V

∂φ
aφ − ∂V

∂z
az

= −10z2 cosφ aρ + 10
ρ + 1

ρ
z2 sin φ aφ − 20(ρ + 1)z cosφ az

Then
E(.10, .2π, 1.5) = −18.2 aρ + 145 aφ − 26.7 az V/m

c) Find |ρs | at that point: Since E is at the perfectly-conducting surface, it will be normal to the
surface, so we may write:

ρs = ε0E · n
∣∣∣
surface

= ε0
E · E
|E| = ε0

√
E · E = ε0

√
(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m2

5.16. A potential field in free space is given asV = (80 cos θ sin φ)/r3 V. PointP(r = 2, θ = π/3, φ = π/2)
lies on a conducting surface.

a) Write the equation of the conducting surface: The surface will be an equipotential, where the value
of the potential is VP :

VP = 80 cos(π/3) sin(π/2)

(2)3 = 5

So the equation of the surface is

80 cos θ sin φ

r3 = 5 or 16 cos θ sin φ = r3
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5.16c. (I will work parts b and c in reverse order)
Find E at P :

E = −∇V = −∂V

∂r
ar − 1

r

∂V

∂θ
aθ − 1

r sin θ

∂V

∂φ
aφ

= 80(3) cos θ sin φ

r4 ar + 80 sin θ sin φ

r4 aθ − 80 cos θ cosφ

r4 sin θ
aφ

Now

EP = 80(1/2)(1)(3)

16
ar + 80(

√
3/2)(1)

16
aθ − 0 aφ = 7.5 ar + 4.3 aθ V/m

b) Find a unit vector directed outward to the surface, assuming the origin is inside the surface: Such
a unit normal can be construced from the result of part c:

aN = 7.5 ar + 4.3 aθ

4.33
= 0.87 ar + 0.50 aθ

5.17. Given the potential field

V = 100xz

x2 + 4
V

in free space:
a) Find D at the surface z = 0: Use

E = −∇V = −100z
∂

∂x

(
x

x2 + 4

)
ax − 0 ay − 100x

x2 + 4
az V/m

At z = 0, we use this to find

D(z = 0) = ε0E(z = 0) = −100ε0x

x2 + 4
az C/m2

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this: 1) E at
z = 0 is everywhere z-directed, and so moving a charge around on the surface involves doing no
work; 2) When evaluating the given potential function at z = 0, the result is 0 for all x and y.

c) Assume that the z = 0 surface is a conductor and find the total charge on that portion of the
conductor defined by 0 < x < 2, −3 < y < 0: We have

ρs = D · az

∣∣∣
z=0

= −100ε0x

x2 + 4
C/m2

So

Q =
∫ 0

−3

∫ 2

0
−100ε0x

x2 + 4
dx dy = −(3)(100)ε0

(
1

2

)
ln(x2 + 4)

∣∣∣2
0

= −150ε0 ln 2 = −0.92 nC
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5.18. Let us assume a field E = 3y2z3 ax + 6xyz3 ay + 9xy2z2 az V/m in free space, and also assume that
point P(2, 1, 0) lies on a conducting surface.

a) Find ρv just adjacent to the surface at P :

ρv = ∇ · D = ε0∇ · E = 6xz3 + 18xy2z C/m3

Then at P , ρv = 0, since z = 0.

b) Find ρs at P :

ρs = D · n
∣∣∣
P

= ε0Eṅ
∣∣∣
P

Note however, that this computation involves evaluating E at the surface, yielding a value of 0.
Therefore the surface charge density at P is 0.

c) Show that V = −3xy2z3 V: The simplest way to show this is just to take −∇V , which yields the
given field: A more general method involves deriving the potential from the given field: We write

Ex = −∂V

∂x
= 3y2z3 ⇒ V = −3xy2z3 + f (y, z)

Ey = −∂V

∂y
= 6xyz3 ⇒ V = −3xy2z3 + f (x, z)

Ez = −∂V

∂z
= 9xy2z2 ⇒ V = −3xy2z3 + f (x, y)

where the integration “constants” are functions of all variables other than the integration variable.
The general procedure is to adjust the functions, f , such that the result for V is the same in all
three integrations. In this case we see that f (x, y) = f (x, z) = f (y, z) = 0 accomplishes this,
and the potential function is V = −3xy2z3 as given.

d) Determine VPQ, given Q(1, 1, 1): Using the potential function of part c, we have

VPQ = VP − VQ = 0 − (−3) = 3 V

5.19. Let V = 20x2yz − 10z2 V in free space.

a) Determine the equations of the equipotential surfaces on which V = 0 and 60 V: Setting the given
potential function equal to 0 and 60 and simplifying results in:

At 0 V : 2x2y − z = 0

At 60 V : 2x2y − z = 6

z

b) Assume these are conducting surfaces and find the surface charge density at that point on the
V = 60 V surface where x = 2 and z = 1. It is known that 0 ≤ V ≤ 60 V is the field-containing
region: First, on the 60 V surface, we have

2x2y − z − 6

z
= 0 ⇒ 2(2)2y(1) − 1 − 6 = 0 ⇒ y = 7

8
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5.19b. (continued) Now

E = −∇V = −40xyz ax − 20x2z ay − [20xy − 20z] az

Then, at the given point, we have

D(2, 7/8, 1) = ε0E(2, 7/8, 1) = −ε0[70 ax + 80 ay + 50 az] C/m2

We know that since this is the higher potential surface, D must be directed away from it, and so
the charge density would be positive. Thus

ρs =
√

D · D = 10ε0

√
72 + 82 + 52 = 1.04 nC/m2

c) Give the unit vector at this point that is normal to the conducting surface and directed toward the
V = 0 surface: This will be in the direction of E and D as found in part b, or

an = −
[

7ax + 8ay + 5az√
72 + 82 + 52

]
= −[0.60ax + 0.68ay + 0.43az]

5.20. A conducting plane is located at z = 0 in free space, and a 20 nC point charge is present at Q(2, 4, 6).
a) If V = 0 at z = 0, find V at P(5, 3, 1): The plane can be replaced by an image charge of -20 nC

at Q′(2, 4,−6). Vectors R and R′ directed from Q and Q′ to P are R = (5, 3, 1) − (2, 4, 6) =
(3,−1,−5) and R′ = (5, 3, 1) − (2, 4,−6) = (3,−1, 7). Their magnitudes are R = √

35 and
R′ = √

59. The potential at P is given by

VP = q

4πε0R
− q

4πε0R′ = 20 × 10−9

4πε0
√

35
− 20 × 10−9

4πε0
√

59
= 7.0 V

b) Find E at P :

EP = qR
4πε0R3 − qR′

4πε0(R′)3 = (20 × 10−9)(3,−1,−5)

4πε0(35)3/2 − (20 × 10−9)(3,−1, 7)

4πε0(59)3/2

= 20 × 10−9

4πε0

[
(3ax − ay)

(
1

(35)3/2 − 1

(59)3/2

)
−
(

7

(59)3/2 + 5

(35)3/2

)
az

]
= 1.4ax − 0.47ay − 7.1az V/m

c) Find ρs at A(5, 3, 0): First, find the electric field there:

EA = 20 × 10−9

4πε0

[
(5, 3, 0) − (2, 4, 6)

(46)3/2 − (5, 3, 0) − (2, 4,−6)

(46)3/2

]
= −6.9az V/m

Then ρs = D · n
∣∣∣
surf ace

= −6.9ε0az · az = −61 pC/m2.
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5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges of 30
nC/m each are located at x = 0, y = 1, and x = 0, y = 2.

a) Let V = 0 at the plane y = 0, and find V at P(1, 2, 0): The line charges will image across the
plane, producing image line charges of -30 nC/m each at x = 0, y = −1, and x = 0, y = −2.
We find the potential at P by evaluating the work done in moving a unit positive charge from the
y = 0 plane (we choose the origin) to P : For each line charge, this will be:

VP − V0,0,0 = − ρl

2πε0
ln

[
final distance from charge

initial distance from charge

]

where V0,0,0 = 0. Considering the four charges, we thus have

VP = − ρl

2πε0

[
ln

(
1

2

)
+ ln

(√
2

1

)
− ln

(√
10

1

)
− ln

(√
17

2

)]

= ρl

2πε0

[
ln (2) + ln

(
1√
2

)
+ ln

(√
10
)

+ ln

(√
17

2

)]
= 30 × 10−9

2πε0
ln

[√
10

√
17√

2

]

= 1.20 kV

b) Find E at P : Use

EP = ρl

2πε0

[
(1, 2, 0) − (0, 1, 0)

|(1, 1, 0)|2 + (1, 2, 0) − (0, 2, 0)

|(1, 0, 0)|2

− (1, 2, 0) − (0,−1, 0)

|(1, 3, 0)|2 − (1, 2, 0) − (0,−2, 0)

|(1, 4, 0)|2
]

= ρl

2πε0

[
(1, 1, 0)

2
+ (1, 0, 0)

1
− (1, 3, 0)

10
− (1, 4, 0)

17

]
= 723 ax − 18.9 ay V/m

5.22. Let the plane x = 0 be a perfect conductor in free space. Locate a point charge of 4nC at P1(7, 1,−2)
and a point charge of −3nC at P2(4, 2, 1).

a) Find E at A(5, 0, 0): Image charges will be located at P ′
1(−7, 1,−2) (-4nC) and at P ′

2(−4, 2, 1)
(3nC). Vectors from all four charges to point A are:

R1 = (5, 0, 0) − (7, 1,−2) = (−2,−1, 2)

R′
1 = (5, 0, 0) − (−7, 1,−2) = (12,−1, 2)

R2 = (5, 0, 0) − (4, 2, 1) = (1,−2,−1)

and
R′

2 = (5, 0, 0) − (−4, 2, 1) = (9,−2,−1)

Replacing the plane by the image charges enables the field at A to be calculated through:

EA = 10−9

4πε0

[
(4)(−2,−1, 2)

93/2 − (3)(1,−2,−1)

63/2 − (4)(12,−1, 2)

(149)3/2 + (3)(9,−2,−1)

(86)3/2

]
= −4.43ax + 2.23ay + 4.42az V/m
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5.22b. Find |ρs | at B(0, 0, 0) (note error in problem statement): First, E at the origin is done as per the setup
in part a, except the vectors are directed from the charges to the origin:

EB = 10−9

4πε0

[
(4)(−7,−1, 2)

(54)3/2 − (3)(−4,−2,−1)

(21)3/2 − (4)(7,−1, 2)

(54)3/2 + (3)(4,−2,−1)

(21)3/2

]

Now ρs = D · n|surf ace = D · ax in our case (note the other components cancel anyway as they must,
but we still need to express ρs as a scalar):

ρsB = ε0EB · ax = 10−9

4π

[
(4)(−7)

(54)3/2 − (3)(−4)

(21)3/2 − (4)(7)

(54)3/2 + (3)(4)

(21)3/2

]
= 8.62 pC/m2

5.23. A dipole with p = 0.1az µC · m is located at A(1, 0, 0) in free space, and the x = 0 plane is perfectly-
conducting.

a) Find V at P(2, 0, 1). We use the far-field potential for a z-directed dipole:

V = p cos θ

4πε0r2 = p

4πε0

z

[x2 + y2 + z2]1.5

The dipole at x = 1 will image in the plane to produce a second dipole of the opposite orientation
at x = −1. The potential at any point is now:

V = p

4πε0

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]

Substituting P(2, 0, 1), we find

V = .1 × 106

4πε0

[
1

2
√

2
− 1

10
√

10

]
= 289.5 V

b) Find the equation of the 200-V equipotential surface in cartesian coordinates: We just set the
potential exression of part a equal to 200 V to obtain:

[
z

[(x − 1)2 + y2 + z2]1.5
− z

[(x + 1)2 + y2 + z2]1.5

]
= 0.222

5.24. The mobilities for intrinsic silicon at a certain temperature are µe = 0.14 m2/V · s and µh =
0.035 m2/V · s. The concentration of both holes and electrons is 2.2 × 1016 m−3. Determine both
the conductivity and the resistivity of this silicon sample: Use

σ = −ρeµe + ρhµh = (1.6 × 10−19C)(2.2 × 1016 m−3)(0.14 m2/V · s + 0.035 m2/V · s)

= 6.2 × 10−4 S/m

Conductivity is ρ = 1/σ = 1.6 × 103 * · m.
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5.25. Electron and hole concentrations increase with temperature. For pure silicon, suitable expressions are
ρh = −ρe = 6200T 1.5e−7000/T C/m3. The functional dependence of the mobilities on temperature is
given by µh = 2.3 × 105T −2.7 m2/V · s and µe = 2.1 × 105T −2.5 m2/V · s, where the temperature,
T , is in degrees Kelvin. The conductivity will thus be

σ = −ρeµe + ρhµh = 6200T 1.5e−7000/T
[
2.1 × 105T −2.5 + 2.3 × 105T −2.7

]
= 1.30 × 109

T
e−7000/T

[
1 + 1.095T −.2

]
S/m

Find σ at:
a) 0◦ C: With T = 273◦K, the expression evaluates as σ(0) = 4.7 × 10−5 S/m.

b) 40◦ C: With T = 273 + 40 = 313, we obtain σ(40) = 1.1 × 10−3 S/m.

c) 80◦ C: With T = 273 + 80 = 353, we obtain σ(80) = 1.2 × 10−2 S/m.

5.26. A little donor impurity, such as arsenic, is added to pure silicon so that the electron concentration
is 2 × 1017 conduction electrons per cubic meter while the number of holes per cubic meter is only
1.1×1015. Ifµe = 0.15 m2/V · s for this sample, andµh = 0.045 m2/V · s, determine the conductivity
and resistivity:

σ = −ρeµe + ρhµh = (1.6 × 10−19)
[
(2 × 1017)(0.15) + (1.1 × 1015)(0.045)

]
= 4.8 × 10−3 S/m

Then ρ = 1/σ = 2.1 × 102 * · m.

5.27. Atomic hydrogen contains 5.5×1025 atoms/m3 at a certain temperature and pressure. When an electric
field of 4 kV/m is applied, each dipole formed by the electron and positive nucleus has an effective
length of 7.1 × 10−19 m.

a) Find P: With all identical dipoles, we have

P = Nqd = (5.5 × 1025)(1.602 × 10−19)(7.1 × 10−19) = 6.26 × 10−12 C/m2 = 6.26 pC/m2

b) Find εR: We use P = ε0χeE, and so

χe = P

ε0E
= 6.26 × 10−12

(8.85 × 10−12)(4 × 103)
= 1.76 × 10−4

Then εR = 1 + χe = 1.000176.

5.28. In a certain region where the relative permittivity is 2.4, D = 2ax − 4ay + 5az nC/m2. Find:

a) E = D
ε

= (2ax − 4ay + 5az) × 10−9

(2.4)(8.85 × 10−12)
= 94ax − 188ay + 235az V/m

b) P = D − ε0E = ε0E(εR − 1) = (2ax − 4ay + 5az) × 10−9

2.4
(2.4 − 1)

= 1.2ax − 2.3ay + 2.9az nC/m2

c) |∇V | = |E| = [(94.1)2 + (188)2 + (235)2]1/2 = 315 V/m
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5.29. A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene dielectric for which
εR = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find:

a) D and E as functions of ρ: Use

E = P
ε0(εR − 1)

= (2/ρ) × 10−9aρ

(8.85 × 10−12)(1.56)
= 144.9

ρ
aρ V/m

Then

D = ε0E + P = 2 × 10−9aρ

ρ

[
1

1.56
+ 1

]
= 3.28 × 10−9aρ

ρ
C/m2 = 3.28aρ

ρ
nC/m2

b) Find Vab and χe: Use

Vab = −
∫ 0.8

3

144.9

ρ
dρ = 144.9 ln

(
3

0.8

)
= 192 V

χe = εr − 1 = 1.56, as found in part a.

c) If there are 4 × 1019 molecules per cubic meter in the dielectric, find p(ρ): Use

p = P
N

= (2 × 10−9/ρ)

4 × 1019 aρ = 5.0 × 10−29

ρ
aρ C · m

5.30. Given the potential field V = 200 − 50x + 20y V in a dielectric material for which εR = 2.1, find:
a) E = −∇V = 50ax − 20ay V/m.

b) D = εE = (2.1)(8.85 × 10−12)(50ax − 20ay) = 930ax − 372ay pC/m2.

c) P = ε0E(εR − 1) = (8.85 × 10−12)(50ax − 20ay)(1.1) = 487ax − 195ay pC/m2.

d) ρv = ∇ · D = 0.

e) ρb = −∇ · P = 0

f) ρT = ∇ · ε0E = 0

5.31. The surface x = 0 separates two perfect dielectrics. For x > 0, let εR = εR1 = 3, while εR2 = 5
where x < 0. If E1 = 80ax − 60ay − 30az V/m, find:

a) EN1: This will be E1 · ax = 80 V/m.

b) ET 1. This consists of components of E1 not normal to the surface, or ET 1 = −60ay − 30az V/m.

c) ET 1 =
√
(60)2 + (30)2 = 67.1 V/m.

d) E1 =
√
(80)2 + (60)2 + (30)2 = 104.4 V/m.

e) The angle θ1 between E1 and a normal to the surface: Use

cos θ1 = E1 · ax

E1
= 80

104.4
⇒ θ1 = 40.0◦
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5.31 (continued)

f) DN2 = DN1 = εR1ε0EN1 = 3(8.85 × 10−12)(80) = 2.12 nC/m2.

g) DT 2 = εR2ε0ET 1 = 5(8.85 × 10−12)(67.1) = 2.97 nC/m2.

h) D2 = εR1ε0EN1ax + εR2ε0ET 1 = 2.12ax − 2.66ay − 1.33az nC/m2.

i) P2 = D2 − ε0E2 = D2 [1 − (1/εR2)] = (4/5)D2 = 1.70ax − 2.13ay − 1.06az nC/m2.

j) the angle θ2 between E2 and a normal to the surface: Use

cos θ2 = E2 · ax

E2
= D2 · ax

D2
= 2.12√

(2.12)2 = (2.66)2 + (1.33)2
= .581

Thus θ2 = cos−1(.581) = 54.5◦.

5.32. In Fig. 5.18, let D = 3ax − 4ay + 5az nC/m2 and find:
a) D2: First, the electric field in region 1 is

E1 =
[

3

2ε0
ax − 4

2ε0
ay + 5

2ε0
az

]
× 10−9 V/m

Since, at the dielectric interface, tangential electric field and normal electric flux density are
continuous, we may write

D2 = εR2ε0ET 1 + DN1 =
(

5

2

)
3ax −

(
5

2

)
4ay + 5az = 7.5ax − 10ay + 5az nC/m2

b) DN2 = 5az, as explained above.

c) DT 2 = εR2ε0ET 2 = εR2ε0ET 1 = 7.5ax − 10ay nC/m2.

d) the energy density in each region:

we1 = 1

2
εR1ε0E1 · E1 = 1

2
(2)ε0

[(
3

2ε0

)2

+
(

4

2ε0

)2

+
(

5

2ε0

)2
]

× 10−18 = 1.41 µJ/m3

we2 = 1

2
εR2ε0E2 · E2 = 1

2
(5)ε0

[(
3

2ε0

)2

+
(

4

2ε0

)2

+
(

5

5ε0

)2
]

× 10−18 = 2.04 µJ/m3

e) the angle that D2 makes with az: Use D2 · az = |D2| cos θ = Dz = 5. where |D2| =[
(7.5)2 + (10)2 + (5)2

]1/2 = 13.5. So θ = cos−1(5/13.5) = 68◦.

f) D2/D1 = [
(7.5)2 + (10)2 + (5)2

]1/2
/
[
(3)2 + (4)2 + (5)2

]1/2 = 1.91.

g) P2/P1: First P1 = ε0E1(εR1 − 1) = 1.5ax − 2ay + 2.5az nC/m2.
Then P2 = ε0E2(εR2 − 1) = 6ax − 8ay + 4az nC/m2. So

P2

P1
= [(6)2 + (8)2 + (4)2]1/2

[(1.5)2 + (2)2 + (2.5)2]1/2 = 3.04
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5.33. Two perfect dielectrics have relative permittivities εR1 = 2 and εR2 = 8. The planar interface between
them is the surface x − y + 2z = 5. The origin lies in region 1. If E1 = 100ax + 200ay − 50az

V/m, find E2: We need to find the components of E1 that are normal and tangent to the boundary, and
then apply the appropriate boundary conditions. The normal component will be EN1 = E1 · n. Taking
f = x − y + 2z, the unit vector that is normal to the surface is

n = ∇f

|∇f | = 1√
6

[
ax − ay + 2az

]
This normal will point in the direction of increasing f , which will be away from the origin, or into region
2 (you can visualize a portion of the surface as a triangle whose vertices are on the three coordinate
axes at x = 5, y = −5, and z = 2.5). So EN1 = (1/

√
6)[100 − 200 − 100] = −81.7 V/m. Since the

magnitude is negative, the normal component points into region 1 from the surface. Then

EN1 = −81.65

(
1√
6

)
[ax − ay + 2az] = −33.33ax + 33.33ay − 66.67az V/m

Now, the tangential component will be

ET 1 = E1 − EN1 = 133.3ax + 166.7ay + 16.67az

Our boundary conditions state that ET 2 = ET 1 and EN2 = (εR1/εR2)EN1 = (1/4)EN1. Thus

E2 = ET 2 + EN2 = ET 1 + 1

4
EN1 = 133.3ax + 166.7ay + 16.67az − 8.3ax + 8.3ay − 16.67az

= 125ax + 175ay V/m

5.34. Let the spherical surfaces r = 4 cm and r = 9 cm be separated by two perfect dielectric shells, εR1 = 2
for 4 < r < 6 cm and εR2 = 5 for 6 < r < 9 cm. If E1 = (2000/r2)ar V/m, find:

a) E2: Since E is normal to the interface between εR1 and εR2, D will be continuous across the
boundary, and so

D1 = 2ε0(2000)

r2 ar = D2

Then

E2 = D2

5ε0
=
(

2

5

)
2000

r2 ar = 800

r2 ar V/m

b) the total electrostatic energy stored in each region: In region 1, the energy density is

we1 = 1

2
εR1ε0|E1|2 = 1

2
(2)ε0

(2000)2

r4 J/m3

In region 2:

we2 = 1

2
εR2ε0|E2|2 = 1

2
(5)ε0

(800)2

r4 J/m3
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5.34. (continued)
The energies in each region are then

Region 1 : We1 = (2000)2ε0

∫ 2π

0

∫ π

0

∫ .06

.04

1

r2 r2 sin θ dr dθ dφ

= 4πε0(2000)2
[

1

.04
− 1

.06

]
= 3.7 mJ

Region 2 : We2 = (800)2
(

5

2

)
ε0

∫ 2π

0

∫ π

0

∫ .09

.06

1

r2 r2 sin θ dr dθ dφ

= 4πε0(800)2
(

5

2

)[
1

.06
− 1

.09

]
= 0.99 mJ

5.35. Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of perfect dielectrics, εR1 = 2
for 0 < φ < π/2, and εR2 = 5 for π/2 < φ < 2π . If E1 = (2000/ρ)aρ V/m, find:

a) E2: The interfaces between the two media will lie on planes of constant φ, to which E1 is parallel.
Thus the field is the same on either side of the boundaries, and so E2 = E1.

b) the total electrostatic energy stored in a 1m length of each region: In general we have wE =
(1/2)εRε0E

2. So in region 1:

WE1 =
∫ 1

0

∫ π/2

0

∫ 9

4

1

2
(2)ε0

(2000)2

ρ2
ρ dρ dφ dz = π

2
ε0(2000)2 ln

(
9

4

)
= 45.1µJ

In region 2, we have

WE2 =
∫ 1

0

∫ 2π

π/2

∫ 9

4

1

2
(5)ε0

(2000)2

ρ2
ρ dρ dφ dz = 15π

4
ε0(2000)2 ln

(
9

4

)
= 338µJ

5.36. Let S = 120 cm2, d = 4 mm, and εR = 12 for a parallel-plate capacitor.

a) Calculate the capacitance:
C = εRε0S/d = [12ε0(120 × 10−4)]/[4 × 10−3] = 3.19 × 10−10 = 319 pF.

b) After connecting a 40 V battery across the capacitor, calculate E, D, Q, and the total stored
electrostatic energy: E = V/d = 40/(4 × 10−3) = 104 V/m. D = εRε0E = 12ε0 × 104 =
1.06µC/m2. Then Q = D · n|surf ace × S = 1.06 × 10−6 × (120 × 10−4) = 1.27 × 10−8C =
12.7 nC. Finally We = (1/2)CV 2

0 = (1/2)(319 × 10−12)(40)2 = 255 nJ.

c) The source is now removed and the dielectric is carefully withdrawn from between the plates. Again
calculate E, D, Q, and the energy: With the source disconnected, the charge is constant, and thus
so is D: Therefore, Q = 12.7 nC, D = 1.06µC/m2, and E = D/ε0 = 104/8.85 × 10−12 =
1.2 × 105 V/m. The energy is then

We = 1

2
D · E × S = 1

2
(1.06 × 10−6)(1.2 × 105)(120 × 10−4)(4 × 10−3) = 3.05µJ

d) What is the voltage between the plates? V = E × d = (1.2 × 105)(4 × 10−3) = 480 V.
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5.37. Capacitors tend to be more expensive as their capacitance and maximum voltage, Vmax , increase. The
voltage Vmax is limited by the field strength at which the dielectric breaks down, EBD . Which of
these dielectrics will give the largest CVmax product for equal plate areas: (a) air: εR = 1, EBD = 3
MV/m; (b) barium titanate: εR = 1200, EBD = 3 MV/m; (c) silicon dioxide: εR = 3.78, EBD = 16
MV/m; (d) polyethylene: εR = 2.26, EBD = 4.7 MV/m? Note that Vmax = EBDd, where d is the
plate separation. Also, C = εRε0A/d, and so VmaxC = εRε0AEBD , where A is the plate area. The
maximum CVmax product is found through the maximum εREBD product. Trying this with the given
materials yields the winner, which is barium titanate.

5.38. A dielectric circular cylinder used between the plates of a capacitor has a thickness of 0.2 mm and a
radius of 1.4 cm. The dielectric properties are εR = 400 and σ = 10−5 S/m.

a) Calculate C:

C = εRε0S

d
= (400)(8.854 × 10−12)π(1.4 × 10−2)2

2 × 10−4 = 1.09 × 10−8 = 10.9 nF

b) Find the quality factor QQF (QQF = ωRC) of the capacitor at f = 10 kHz: Use the relation
RC = ε/σ to write

QQF = ωRC = 2πf ε

σ
= (2π × 104)(400)(8.854 × 10−12)

10−5
= 22.3

c) If the maximum field strength permitted in the dielectric is 2 MV/m, what is the maximum per-
missible voltage across the capacitor? Vmax = EBDd = (2 × 106)(2 × 10−4) = 400 V.

d) What energy is stored when this voltage is applied?

We,max = 1

2
CV 2

max = 1

2
(10.9 × 10−9)(400)2 = 8.7 × 10−4 = 0.87 mJ

5.39. A parallel plate capacitor is filled with a nonuniform dielectric characterized by εR = 2 + 2 × 106x2,
where x is the distance from one plate. If S = 0.02 m2, and d = 1 mm, find C: Start by assuming
charge density ρs on the top plate. D will, as usual, be x-directed, originating at the top plate and
terminating on the bottom plate. The key here is that D will be constant over the distance between
plates. This can be understood by considering the x-varying dielectric as constructed of many thin
layers, each having constant permittivity. The permittivity changes from layer to layer to approximate
the given function of x. The approximation becomes exact as the layer thicknesses approach zero.
We know that D, which is normal to the layers, will be continuous across each boundary, and so D is
constant over the plate separation distance, and will be given in magnitude by ρs . The electric field
magnitude is now

E = D

ε0εR
= ρs

ε0(2 + 2 × 106x2)

The voltage beween plates is then

V0 =
∫ 10−3

0

ρs dx

ε0(2 + 2 × 106x2)
= ρs

ε0

1√
4 × 106

tan−1

(
x
√

4 × 106

2

) ∣∣∣10−3

0
= ρs

ε0

1

2 × 103

(π
4

)

Now Q = ρs(.02), and so

C = Q

V0
= ρs(.02)ε0(2 × 103)(4)

ρsπ
= 4.51 × 10−10 F = 451 pF
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5.40a. The width of the region containing εR1 in Fig. 5.19 is 1.2 m. Find εR1 if εR2 = 2.5 and the total
capacitance is 60 nF: The plate areas associated with each capacitor are A1 = 1.2(2) = 2.4 m2 and
A2 = 0.8(2) = 1.6 m2. Having parallel capacitors, the capacitances will add, so

C = C1 + C2 ⇒ 60 × 10−9 = εR1ε0(2.4)

2 × 10−3 + 2.5ε0(1.6)

2 × 10−3

Solve this to obtain εR1 = 4.0.

b) Find the width of each region (containing εR1 and εR2) if Ctotal = 80 nF, εR2 = 3εR1, and C1 = 2C2:
Let w1 be the width of region 1. The above conditions enable us to write:[

εR1ε0w1(2)

2 × 10−3

]
= 2

[
3εR1ε0(2 − w1)(2)

2 × 10−3

]
⇒ w1 = 6(2 − w1)

So that w1 = 12/7 = 1.7 m and w2 = 0.3 m.

5.41. Let εR1 = 2.5 for 0 < y < 1 mm, εR2 = 4 for 1 < y < 3 mm, and εR3 for 3 < y < 5 mm. Conducting
surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square meter of surface
area if: a) εR3 is that of air; b) εR3 = εR1; c) εR3 = εR2; d) εR3 is silver: The combination will be three
capacitors in series, for which

1

C
= 1

C1
+ 1

C2
+ 1

C3
= d1

εR1ε0(1)
+ d2

εR2ε0(1)
+ d3

εR3ε0(1)
= 10−3

ε0

[
1

2.5
+ 2

4
+ 2

εR3

]

So that

C = (5 × 10−3)ε0εR3

10 + 4.5εR3

Evaluating this for the four cases, we find a) C = 3.05 nF for εR3 = 1, b) C = 5.21 nF for εR3 = 2.5,
c) C = 6.32 nF for εR3 = 4, and d) C = 9.83 nF if silver (taken as a perfect conductor) forms region
3; this has the effect of removing the term involving εR3 from the original formula (first equation line),
or equivalently, allowing εR3 to approach infinity.

5.42. Cylindrical conducting surfaces are located at ρ = 0.8 cm and 3.6 cm. The region 0.8 < ρ < a

contains a dielectric for which εR = 4, while εR = 2 for a < ρ < 3.6.
a) Find a so that the voltage across each dielectric layer is the same: Assuming charge density ρs on

the inner cylinder, we have D = ρs(0.8)/ρ aρ , which gives E(0.8 < ρ < a) = (0.8ρs)/(4ε0ρ)aρ

and E(a < ρ < 3.6) = (0.8ρs)/(2ε0ρ)aρ . The voltage between conductors is now

V0 = −
∫ a

3.6

0.8ρs

2ε0ρ
dρ −

∫ 0.8

a

0.8ρs

4ε0ρ
dρ = 0.8ρs

2ε0

[
ln

(
3.6

a

)
+ 1

2
ln
( a

0.8

)]

We require

ln

(
3.6

a

)
= 1

2
ln
( a

0.8

)
⇒ 3.6

a
=
√

a

0.8
⇒ a = 2.2 cm

b) Find the total capacitance per meter: Using the part a result, have

V0 = 0.8ρs

2ε0

[
ln

(
3.6

2.2

)
+ 1

2
ln

(
2.2

0.8

)]
= 0.4ρs

ε0
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5.42b. (continued) The charge on a unit length of the inner conductor is Q = 2π(0.8)(1)ρs . The capacitance
is now

C = Q

V0
= 2π(0.8)(1)ρs

0.4ρs/ε0
= 4πε0 = 111 pF/m

Note that throughout this problem, I left all dimensions in cm, knowing that all cm units would cancel,
leaving the units of capacitance to be those used for ε0.

5.43. Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length of 1m. The region between
the cylinders contains a layer of dielectric from ρ = c to ρ = d with εR = 4. Find the capacitance if

a) c = 2 cm, d = 3 cm: This is two capacitors in series, and so

1

C
= 1

C1
+ 1

C2
= 1

2πε0

[
1

4
ln

(
3

2

)
+ ln

(
4

3

)]
⇒ C = 143 pF

b) d = 4 cm, and the volume of the dielectric is the same as in part a: Having equal volumes requires
that 32 − 22 = 42 − c2, from which c = 3.32 cm. Now

1

C
= 1

C1
+ 1

C2
= 1

2πε0

[
ln

(
3.32

2

)
+ 1

4
ln

(
4

3.32

)]
⇒ C = 101 pF

5.44. Conducting cylinders lie at ρ = 3 and ρ = 12 mm; both extend from z = 0 to z = 1 m. Perfect
dielectrics occupy the interior region: εR = 1 for 3 < ρ < 6 mm, εR = 4 for 6 < ρ < 9 mm, and
εR = 8 for 9 < ρ < 12 mm.

a) Calculate C: First we know that D = (3ρs/ρ)aρ C/m2, with ρ expressed in mm. Then, with ρ in
mm,

E1 = 3ρs

ε0ρ
aρ V/m (3 < ρ < 6)

E2 = 3ρs

4ε0ρ
aρ V/m (6 < ρ < 9)

and

E3 = 3ρs

8ε0ρ
aρ V/m (9 < ρ < 12)

The voltage between conductors will be:

V0 =
[
−
∫ 9

12

3ρs

8ε0ρ
dρ −

∫ 6

9

3ρs

4ε0ρ
dρ −

∫ 3

6

3ρs

ε0ρ
dρ

]
× 10−3(m/mm)

= .003ρs

ε0

[
1

8
ln

(
12

9

)
+ 1

4
ln

(
9

6

)
+ ln

(
6

3

)]
= .003ρs

ε0
(0.830) V

Now, the charge on the 1 m length of the inner conductor is Q = 2π(.003)(1)ρs . The capacitance
is then

C = Q

V0
= 2π(.003)(1)ρs

(.003)ρs(.830)/ε0
= 2πε0

.830
= 67 pF
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5.44b. If the voltage between the cylinders is 100 V, plot |Eρ | vs. ρ:
Have Q = CV0 = (67 × 10−12)(100) = 6.7nC. Then

ρs = 6.7 × 10−9

2π(.003)(1)
= 355 nC/m2

Then, using the electric field expressions from part a, we find

E1 =
(

3

ρ

)
355 × 10−9

8.854 × 10−12 = 12 × 104

ρ
V/m = 120

ρ
kV/m (3 < ρ < 6)

where ρ is expressed in mm. Similarly, we find E2 = E1/4 = 30/ρ kV/m (6 < ρ < 9) and
E3 = E1/8 = 15 kV/m (9 < ρ < 12). These fields are plotted below.
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5.45. Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The interior is a perfect dielectric
for which εR = 8.

a) Find C: For a spherical capacitor, we know that:

C = 4πεRε0
1
a

− 1
b

= 4π(8)ε0( 1
3 − 1

6

)
(100)

= 1.92πε0 = 53.3 pF

b) A portion of the dielectric is now removed so that εR = 1.0, 0 < φ < π/2, and εR = 8,
π/2 < φ < 2π . Again, find C: We recognize here that removing that portion leaves us with two
capacitors in parallel (whose C’s will add). We use the fact that with the dielectric completely
removed, the capacitance would be C(εR = 1) = 53.3/8 = 6.67 pF. With one-fourth the
dielectric removed, the total capacitance will be

C = 1

4
(6.67) + 3

4
(53.4) = 41.7 pF

5.46. (see Problem 5.44).

5.47. With reference to Fig. 5.17, let b = 6 m, h = 15 m, and the conductor potential be 250 V. Take ε = ε0.
Find values for K1, ρL, a, and C: We have

K1 =
[
h + √

h2 + b2

b

]2

=
[

15 +
√
(15)2 + (6)2

6

]2

= 23.0

We then have

ρL = 4πε0V0

ln K1
= 4πε0(250)

ln(23)
= 8.87 nC/m

Next, a = √
h2 − b2 =

√
(15)2 − (6)2 = 13.8 m. Finally,

C = 2πε

cosh−1(h/b)
= 2πε0

cosh−1(15/6)
= 35.5 pF
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5.48. A potential function in free space is given by

V = −20 + 10 ln

[
(5 + y)2 + x2

(5 − y)2 + x2

]

a) Describe the 0-V equipotential surface: Setting the given expression equal to zero, we find

[
(5 + y)2 + x2

(5 − y)2 + x2

]
= e2 = 7.39

So 6.39x2 + 6.39y2 − 83.9y + 160 = 0. Completing the square in the y trinomial leads to
x2 + (y − 6.56)2 = 18.1 = (4.25)2, which we recognize as a right circular cylinder whose axis
is located at x = 0, y = 6.56, and whose radius is 4.25.

b) Describe the 10-V equipotential surface: In this case, the given expression is set equal to ten,
leading to [

(5 + y)2 + x2

(5 − y)2 + x2

]
= e3 = 20.1

So 19.1x2 + 19.1y2 − 211y + 477 = 0. Following the same procedure as in part a, this becomes
x2 + (y − 5.52)2 = 5.51 = (2.35)2, which we recognize again as a right circular cylinder with
axis at x = 0, y = 5.52, and of radius 2.35.

5.49. A 2 cm diameter conductor is suspended in air with its axis 5 cm from a conducting plane. Let the
potential of the cylinder be 100 V and that of the plane be 0 V. Find the surface charge density on the:

a) cylinder at a point nearest the plane: The cylinder will image across the plane, producing an
equivalent two-cylinder problem, with the second one at location 5 cm below the plane. We will
take the plane as the zy plane, with the cylinder positions at x = ±5. Now b = 1 cm, h = 5
cm, and V0 = 100 V. Thus a = √

h2 − b2 = 4.90 cm. Then K1 = [(h + a)/b]2 = 98.0, and
ρL = (4πε0V0)/ ln K1 = 2.43 nC/m. Now

D = ε0E = −ρL

2π

[
(x + a)ax + yay

(x + a)2 + y2 − (x − a)ax + yay

(x − a)2 + y2

]

and

ρs,max = D · (−ax)

∣∣∣
x=h−b,y=0

= ρL

2π

[
h − b + a

(h − b + a)2 − h − b − a

(h − b − a)2

]
= 473 nC/m2

b) plane at a point nearest the cylinder: At x = y = 0,

D(0, 0) = −ρL

2π

[
aax

a2 − −aax

a2

]
= −ρL

2π

2

a
ax

from which
ρs = D(0, 0) · ax = − ρL

πa
= −15.8 nC/m2
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CHAPTER 6.

6.1 Construct a curvilinear square map for a coaxial capacitor of 3-cm inner radius and 8-cm outer radius.
These dimensions are suitable for the drawing.

a) Use your sketch to calculate the capacitance per meter length, assuming εR = 1: The sketch is
shown below. Note that only a 9◦ sector was drawn, since this would then be duplicated 40 times
around the circumference to complete the drawing. The capacitance is thus

C
.= ε0

NQ

NV

= ε0
40

6
= 59 pF/m

b) Calculate an exact value for the capacitance per unit length: This will be

C = 2πε0

ln(8/3)
= 57 pF/m
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6.2 Construct a curvilinear-square map of the potential field about two parallel circular cylinders, each of
2.5 cm radius, separated by a center-to-center distance of 13cm. These dimensions are suitable for the
actual sketch if symmetry is considered. As a check, compute the capacitance per meter both from your
sketch and from the exact formula. Assume εR = 1.

Symmetry allows us to plot the field lines and equipotentials over just the first quadrant, as is done in the
sketch below (shown to one-half scale). The capacitance is found from the formula C = (NQ/NV )ε0,
where NQ is twice the number of squares around the perimeter of the half-circle and NV is twice the
number of squares between the half-circle and the left vertical plane. The result is

C = NQ

NV

ε0 = 32

16
ε0 = 2ε0 = 17.7 pF/m

We check this result with that using the exact formula:

C = πε0

cosh−1(d/2a)
= πε0

cosh−1(13/5)
= 1.95ε0 = 17.3 pF/m
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6.3. Construct a curvilinear square map of the potential field between two parallel circular cylinders, one
of 4-cm radius inside one of 8-cm radius. The two axes are displaced by 2.5 cm. These dimensions
are suitable for the drawing. As a check on the accuracy, compute the capacitance per meter from the
sketch and from the exact expression:

C = 2πε

cosh−1
[
(a2 + b2 − D2)/(2ab)

]
where a and b are the conductor radii and D is the axis separation.

The drawing is shown below. Use of the exact expression above yields a capacitance value of C =
11.5ε0 F/m. Use of the drawing produces:

C
.= 22 × 2

4
ε0 = 11ε0 F/m
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6.4. A solid conducting cylinder of 4-cm radius is centered within a rectangular conducting cylinder with a
12-cm by 20-cm cross-section.

a) Make a full-size sketch of one quadrant of this configuration and construct a curvilinear-square
map for its interior: The result below could still be improved a little, but is nevertheless sufficient
for a reasonable capacitance estimate. Note that the five-sided region in the upper right corner has
been partially subdivided (dashed line) in anticipation of how it would look when the next-level
subdivision is done (doubling the number of field lines and equipotentials).

b) Assume ε = ε0 and estimate C per meter length: In this case NQ is the number of squares around
the full perimeter of the circular conductor, or four times the number of squares shown in the
drawing. NV is the number of squares between the circle and the rectangle, or 5. The capacitance
is estimated to be

C = NQ

NV

ε0 = 4 × 13

5
ε0 = 10.4ε0

.= 90 pF/m

87



6.5. The inner conductor of the transmission line shown in Fig. 6.12 has a square cross-section 2a × 2a,
while the outer square is 5a × 5a. The axes are displaced as shown. (a) Construct a good-sized
drawing of the transmission line, say with a = 2.5 cm, and then prepare a curvilinear-square plot of
the electrostatic field between the conductors. (b) Use the map to calculate the capacitance per meter
length if ε = 1.6ε0. (c) How would your result to part b change if a = 0.6 cm?

a) The plot is shown below. Some improvement is possible, depending on how much time one wishes
to spend.

b) From the plot, the capacitance is found to be

C
.= 16 × 2

4
(1.6)ε0 = 12.8ε0

.= 110 pF/m

c) If a is changed, the result of part b would not change, since all dimensions retain the same relative
scale.
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6.6. Let the inner conductor of the transmission line shown in Fig. 6.12 be at a potential of 100V, while the
outer is at zero potential. Construct a grid, 0.5a on a side, and use iteration to find V at a point that is
a units above the upper right corner of the inner conductor. Work to the nearest volt:

The drawing is shown below, and we identify the requested voltage as 38 V.
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6.7. Use the iteration method to estimate the potentials at points x and y in the triangular trough of Fig.
6.13. Work only to the nearest volt: The result is shown below. The mirror image of the values shown
occur at the points on the other side of the line of symmetry (dashed line). Note that Vx = 78 V and
Vy = 26 V.
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6.8. Use iteration methods to estimate the potential at point x in the trough shown in Fig. 6.14. Working to
the nearest volt is sufficient. The result is shown below, where we identify the voltage at x to be 40 V.
Note that the potentials in the gaps are 50 V.

6.9. Using the grid indicated in Fig. 6.15, work to the nearest volt to estimate the potential at point A: The
voltages at the grid points are shown below, where VA is found to be 19 V. Half the figure is drawn
since mirror images of all values occur across the line of symmetry (dashed line).
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6.10. Conductors having boundaries that are curved or skewed usually do not permit every grid point to
coincide with the actual boundary. Figure 6.16a illustrates the situation where the potential at V0 is to
be estimated in terms of V1, V2, V3, and V4, and the unequal distances h1, h2, h3, and h4.

a) Show that

V0
.= V1(

1 + h1
h3

) (
1 + h1h3

h4h2

) + V2(
1 + h2

h4

) (
1 + h2h4

h1h3

) + V3(
1 + h3

h1

) (
1 + h1h3

h4h2

)
+ V4(

1 + h4
h2

) (
1 + h4h2

h3h1

) note error, corrected here, in the equation (second term)

Referring to the figure, we write:

∂V

∂x

∣∣∣
M1

.= V1 − V0

h1

∂V

∂x

∣∣∣
M3

.= V0 − V3

h3

Then

∂2V

∂x2

∣∣∣
V0

.= (V1 − V0)/h1 − (V0 − V3)/h3

(h1 + h3)/2
= 2V1

h1(h1 + h3)
+ 2V3

h3(h1 + h3)
− 2V0

h1h3

We perform the same procedure along the y axis to obtain:

∂2V

∂y2

∣∣∣
V0

.= (V2 − V0)/h2 − (V0 − V4)/h4

(h2 + h4)/2
= 2V2

h2(h2 + h4)
+ 2V4

h4(h2 + h4)
− 2V0

h2h4

Then, knowing that
∂2V

∂x2

∣∣∣
V0

+ ∂2V

∂y2

∣∣∣
V0

= 0

the two equations for the second derivatives are added to give

2V1

h1(h1 + h3)
+ 2V2

h2(h2 + h4)
+ 2V3

h3(h1 + h3)
+ 2V4

h4(h2 + h4)
= V0

(
h1h3 + h2h4

h1h2h3h4

)

Solve for V0 to obtain the given equation.

b) Determine V0 in Fig. 6.16b: Referring to the figure, we note that h1 = h2 = a. The other two
distances are found by writing equations for the circles:

(0.5a + h3)2 + a2 = (1.5a)2 and (a + h4)2 + (0.5a)2 = (1.5a)2

These are solved to find h3 = 0.618a and h4 = 0.414a. The four distances and potentials are now
substituted into the given equation:

V0
.= 80(

1 + 1
.618

) (
1 + .618

.414

) + 60(
1 + 1

.414

) (
1 + .414

.618

) + 100

(1 + .618)
(
1 + .618

.414

)
+ 100

(1 + .414)
(
1 + .414

.618

) = 90 V
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6.11. Consider the configuration of conductors and potentials shown in Fig. 6.17. Using the method described
in Problem 10, write an expression for Vx (not V0): The result is shown below, where Vx = 70 V.

6.12a) After estimating potentials for the configuation of Fig. 6.18, use the iteration method with a square grid
1 cm on a side to find better estimates at the seven grid points. Work to the nearest volt:

25 50 75 50 25

0 48 100 48 0

0 42 100 42 0

0 19 34 19 0

0 0 0 0 0

b) Construct a 0.5 cm grid, establish new rough estimates, and then use the iteration method on the
0.5 cm grid. Again, work to the nearest volt: The result is shown below, with values for the original
grid points underlined:

25 50 50 50 75 50 50 50 25

0 32 50 68 100 68 50 32 0

0 26 48 72 100 72 48 26 0

0 23 45 70 100 70 45 23 0

0 20 40 64 100 64 40 20 0

0 15 30 44 54 44 30 15 0

0 10 19 26 30 26 19 10 0

0 5 9 12 14 12 9 5 0

0 0 0 0 0 0 0 0 0
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6.12c. Use the computer to obtain values for a 0.25 cm grid. Work to the nearest 0.1 V: Values for the left
half of the configuration are shown in the table below. Values along the vertical line of symmetry are
included, and the original grid values are underlined.

25 50 50 50 50 50 50 50 75

0 26.5 38.0 44.6 49.6 54.6 61.4 73.2 100

0 18.0 31.0 40.7 49.0 57.5 67.7 81.3 100

0 14.5 27.1 38.1 48.3 58.8 70.6 84.3 100

0 12.8 24.8 36.2 47.3 58.8 71.4 85.2 100

0 11.7 23.1 34.4 45.8 57.8 70.8 85.0 100

0 10.8 21.6 32.5 43.8 55.8 69.0 83.8 100

0 10.0 20.0 30.2 40.9 52.5 65.6 81.2 100

0 9.0 18.1 27.4 37.1 47.6 59.7 75.2 100

0 7.9 15.9 24.0 32.4 41.2 50.4 59.8 67.2

0 6.8 13.6 20.4 27.3 34.2 40.7 46.3 49.2

0 5.6 11.2 16.8 22.2 27.4 32.0 35.4 36.8

0 4.4 8.8 13.2 17.4 21.2 24.4 26.6 27.4

0 3.3 6.6 9.8 12.8 15.4 17.6 19.0 19.5

0 2.2 4.4 6.4 8.4 10.0 11.4 12.2 12.5

0 1.1 2.2 3.2 4.2 5.0 5.6 6.0 6.1

0 0 0 0 0 0 0 0 0
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6.13. Perfectly-conducting concentric spheres have radii of 2 and 6 cm. The region 2 < r < 3 cm is filled
with a solid conducting material for which σ = 100 S/m, while the portion for which 3 < r < 6 cm
has σ = 25 S/m. The inner sphere is held at 1 V while the outer is at V = 0.

a. Find E and J everywhere: From symmetry, E and J will be radially-directed, and we note the
fact that the current, I , must be constant at any cross-section; i.e., through any spherical surface
at radius r between the spheres. Thus we require that in both regions,

J = I

4πr2 ar

The fields will thus be

E1 = I

4πσ1r2 ar (2 < r < 3) and E2 = I

4πσ2r2 ar (3 < r < 6)

where σ1 = 100 S/m and σ2 = 25 S/m. Since we know the voltage between spheres (1V), we can
find the value of I through:

1 V = −
∫ .03

.06

I

4πσ2r2 dr −
∫ .02

.03

I

4πσ1r2 dr = I

0.24π

[
1

σ1
+ 1

σ2

]

and so

I = 0.24π

(1/σ1 + 1/σ2)
= 15.08 A

Then finally, with I = 15.08 A substituted into the field expressions above, we find

E1 = .012

r2 ar V/m (2 < r < 3)

and

E2 = .048

r2 ar V/m (3 < r < 6)

The current density is now

J = σ1E1 = σ2E2 = 1.2

r2 A/m (2 < r < 6)

b) What resistance would be measured between the two spheres? We use

R = V

I
= 1 V

15.08 A
= 6.63 × 10−2 �

c) What is V at r = 3 cm? This we find through

V = −
∫ .03

.06

.048

r2 dr = .048

(
1

.03
− 1

.06

)
= 0.8 V
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6.14. The cross-section of the transmission line shown in Fig. 6.12 is drawn on a sheet of conducting paper
with metallic paint. The sheet resistance is 2000 �/sq and the dimension a is 2 cm.

a) Assuming a result for Prob. 6b of 110 pF/m, what total resistance would be measured between
the metallic conductors drawn on the conducting paper? We assume a paper thickness of t m, so
that the capacitance is C = 110t pF, and the surface resistance is Rs = 1/(σ t) = 2000 �/sq. We
now use

RC = ε

σ
⇒ R = ε

σC
= εRst

110 × 10−12t
= (1.6 × 8.854 × 10−12)(2000)

110 × 10−12 = 257.6 �

b) What would the total resistance be if a = 2 cm? The result is independent of a, provided the
proportions are maintained. So again, R = 257.6 �.

6.15. two concentric annular rings are painted on a sheet of conducting paper with a highly conducting metal
paint. The four radii are 1, 1.2, 3.5, and 3.7 cm. Connections made to the two rings show a resistance
of 215 ohms between them.

a) What is Rs for the conducting paper? Using the two radii (1.2 and 3.5 cm) at which the rings are
at their closest separation, we first evaluate the capacitance:

C = 2πε0t

ln(3.5/1.2)
= 5.19 × 10−11t F

where t is the unknown paper coating thickness. Now use

RC = ε0

σ
⇒ R = 8.85 × 10−12

5.19 × 10−11σ t
= 215

Thus

Rs = 1

σ t
= (51.9)(215)

8.85
= 1.26 k�/sq

b) If the conductivity of the material used as the surface of the paper is 2 S/m, what is the thickness
of the coating? We use

t = 1

σRs

= 1

2 × 1.26 × 103 = 3.97 × 10−4 m = 0.397 mm
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6.16. The square washer shown in Fig. 6.19 is 2.4 mm thick and has outer dimensions of 2.5 × 2.5 cm
and inner dimensions of 1.25 × 1.25 cm. The inside and outside surfaces are perfectly-conducting. If
the material has a conductivity of 6 S/m, estimate the resistance offered between the inner and outer
surfaces (shown shaded in Fig. 6.19). A few curvilinear squares are suggested: First we find the surface
resistance, Rs = 1/(σ t) = 1/(6 × 2.4 × 10−3) = 69.4 �/sq. Having found this, we can construct
the total resistance by using the fundamental square as a building block. Specifically, R = Rs(Nl/Nw)

where Nl is the number of squares between the inner and outer surfaces and Nw is the number of squares
around the perimeter of the washer. These numbers are found from the curvilinear square plot shown
below, which covers one-eighth the washer. The resistance is thus R

.= 69.4[4/(8 × 5)]
.= 6.9 �.

6.17. A two-wire transmission line consists of two parallel perfectly-conducting cylinders, each having a
radius of 0.2 mm, separated by center-to-center distance of 2 mm. The medium surrounding the wires
has εR = 3 and σ = 1.5 mS/m. A 100-V battery is connected between the wires. Calculate:

a) the magnitude of the charge per meter length on each wire: Use

C = πε

cosh−1(h/b)
= π × 3 × 8.85 × 10−12

cosh−1 (1/0.2)
= 3.64 × 10−9 C/m

Then the charge per unit length will be

Q = CV0 = (3.64 × 10−11)(100) = 3.64 × 10−9 C/m = 3.64 nC/m

b) the battery current: Use

RC = ε

σ
⇒ R = 3 × 8.85 × 10−12

(1.5 × 10−3)(3.64 × 10−11)
= 486 �

Then

I = V0

R
= 100

486
= 0.206 A = 206 mA
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6.18. A coaxial transmission line is modelled by the use of a rubber sheet having horizontal dimensions that
are 100 times those of the actual line. Let the radial coordinate of the model be ρm. For the line itself,
let the radial dimension be designated by ρ as usual; also, let a = 0.6 mm and b = 4.8 mm. The model
is 8 cm in height at the inner conductor and zero at the outer. If the potential of the inner conductor is
100 V:

a) Find the expression for V (ρ): Assuming charge density ρs on the inner conductor, we use Gauss’
Law to find 2πρD = 2πaρs , from which E = D/ε = aρs/(ερ) in the radial direction. The
potential difference between inner and outer conductors is

Vab = V0 = −
∫ a

b

aρs

ερ
dρ = aρs

ε
ln

(
b

a

)

from which

ρs = εV0

a ln(b/a)
⇒ E = V0

ρ ln(b/a)

Now, as a function of radius, and assuming zero potential on the outer conductor, the potential
function will be:

V (ρ) = −
∫ ρ

b

V0

ρ′ ln(b/a)
dρ′ = V0

ln(b/ρ)

ln(b/a)
= 100

ln(.0048/ρ)

ln(.0048/.0006)
= 48.1 ln

(
.0048

ρ

)
V

b) Write the model height as a function of ρm (not ρ): We use the part a result, since the gravitational
function must be the same as that for the electric potential. We replace V0 by the maximum height,
and multiply all dimensions by 100 to obtain:

h(ρm) = 0.08
ln(.48/ρm)

ln(.48/.06)
= 0.038 ln

(
.48

ρm

)
m
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CHAPTER 7

7.1. Let V = 2xy2z3 and ε = ε0. Given point P(1, 2,−1), find:
a) V at P : Substituting the coordinates into V , find VP = −8 V.

b) E at P : We use E = −∇V = −2y2z3ax − 4xyz3ay − 6xy2z2az, which, when evaluated at P ,
becomes EP = 8ax + 8ay − 24az V/m

c) ρv at P : This is ρv = ∇ · D = −ε0∇2V = −4xz(z2 + 3y2) C/m3

d) the equation of the equipotential surface passing through P : At P , we know V = −8 V, so the
equation will be xy2z3 = −4.

e) the equation of the streamline passing through P : First,

Ey

Ex
= dy

dx
= 4xyz3

2y2z3 = 2x

y

Thus

ydy = 2xdx, and so
1

2
y2 = x2 + C1

Evaluating at P , we find C1 = 1. Next,

Ez

Ex
= dz

dx
= 6xy2z2

2y2z3 = 3x

z

Thus

3xdx = zdz, and so
3

2
x2 = 1

2
z2 + C2

Evaluating at P , we find C2 = 1. The streamline is now specified by the equations:

y2 − 2x2 = 2 and 3x2 − z2 = 2

f) Does V satisfy Laplace’s equation? No, since the charge density is not zero.

7.2. A potential field V exists in a region where ε = f (x). Find ∇2V if ρv = 0.
First, D = ε(x)E = −f (x)∇V . Then ∇ · D = ρv = 0 = ∇ · (−f (x)∇V ).

So

0 = ∇ · (−f (x)∇V ) = −
[(
df

dx

∂V

∂x
+ f (x)∂

2V

∂x2

)
f (x)

∂2V

∂y2 + f (x)∂
2V

∂z2

]

= −
[
df

dx

∂V

∂x
+ f (x)∇2V

]

Therefore,

∇2V = − 1

f (x)

df

dx

∂V

∂x
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7.3. Let V (x, y) = 4e2x + f (x) − 3y2 in a region of free space where ρv = 0. It is known that both Ex
and V are zero at the origin. Find f (x) and V (x, y): Since ρv = 0, we know that ∇2V = 0, and so

∇2V = ∂2V

∂x2 + ∂2V

∂y2 = 16e2x + d2f

dx2 − 6 = 0

Therefore
d2f

dx2 = −16e2x + 6 ⇒ df

dx
= −8e2x + 6x + C1

Now

Ex = ∂V

∂x
= 8e2x + df

dx

and at the origin, this becomes

Ex(0) = 8 + df

dx

∣∣∣
x=0

= 0(as given)

Thus df/dx |x=0 = −8, and so it follows that C1 = 0. Integrating again, we find

f (x, y) = −4e2x + 3x2 + C2

which at the origin becomes f (0, 0) = −4 + C2. However, V (0, 0) = 0 = 4 + f (0, 0). So
f (0, 0) = −4 andC2 = 0. Finally, f (x, y) = −4e2x + 3x2, andV (x, y) = 4e2x−4e2x+3x2−3y2 =
3(x2 − y2).

7.4. Given the potential field V = A ln tan2(θ/2)+ B:

a) Show that ∇2V = 0: Since V is a function only of θ ,

∇2V = 1

r2 sin θ)

d

dθ

(
sin θ

dV

dθ

)

where

dV

dθ
= d

dθ

(
A ln tan2(θ/2)+ B

)
= d

dθ
(2A ln tan(θ/2)) = A

sin(θ/2) cos(θ/2)
= 2A

sin θ

Then

∇2V = 1

r2 sin θ)

d

dθ

(
sin θ

2A

sin θ

)
= 0

b) Select A and B so that V = 100 V and Eθ = 500 V/m at P(r = 5, θ = 60◦, φ = 45◦):

First,

Eθ = −∇V = −1

r

dV

dθ
= − 2A

r sin θ
= − 2A

5 sin 60
= −0.462A = 500

So A = −1082.5 V. Then

VP = −(1082.5) ln tan2(30◦)+ B = 100 ⇒ B = −1089.3 V

Summarizing, V (θ) = −1082.5 ln tan2(θ/2)− 1089.3.

100



7.5. Given the potential field V = (Aρ4 + Bρ−4) sin 4φ:
a) Show that ∇2V = 0: In cylindrical coordinates,

∇2V = 1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2

= 1

ρ

∂

∂ρ

(
ρ(4Aρ3 − 4Bρ−5)

)
sin 4φ − 1

ρ2 16(Aρ4 + Bρ−4) sin 4φ

= 16

ρ
(Aρ3 + Bρ−5) sin 4φ − 16

ρ2 (Aρ
4 + Bρ−4) sin 4φ = 0

b) Select A and B so that V = 100 V and |E| = 500 V/m at P(ρ = 1, φ = 22.5◦, z = 2): First,

E = −∇V = −∂V
∂ρ

aρ − 1

ρ

∂V

∂φ
aφ

= −4
[
(Aρ3 − Bρ−5) sin 4φ aρ + (Aρ3 + Bρ−5) cos 4φ aφ

]
and at P , EP = −4(A−B) aρ . Thus |EP | = ±4(A−B). Also, VP = A+B. Our two equations
are:

4(A− B) = ±500

and
A+ B = 100

We thus have two pairs of values for A and B:

A = 112.5, B = −12.5 or A = −12.5, B = 112.5

7.6. If V = 20 sin θ/r3 V in free space, find:
a) ρv at P(r = 2, θ = 30◦, φ = 0): We use Poisson’s equation in free space, ∇2V = −ρv/ε0,

where, with no φ variation:

∇2V = 1

r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)

Substituting:

∇2V = 1

r2

∂

∂r

(
−r2 60 sin θ

r4

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

20 cos θ

r3

)

= 1

r2

∂

∂r

(−60 sin θ

r2

)
+ 1

r2 sin θ

∂

∂θ

(
10 sin 2θ

r3

)

= 120 sin θ

r5
+ 20 cos 2θ

r5 sin θ
= 20(4 sin2 θ + 1)

r5 sin θ
= −ρv

ε0

So

ρvP = −ε0
[

20(4 sin2 θ + 1)

r5 sin θ

]
r=2,θ=30

= −2.5ε0 = −22.1 pC/m3
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7.6b. the total charge within the spherical shell 1 < r < 2 m: We integrate the charge density found in part
a over the specified volume:

Q = −ε0
∫ 2π

0

∫ π

0

∫ 2

1

20(4 sin2 θ + 1)

r5 sin θ
r2 sin θ dr dθ dφ

= −2π(20)ε0

∫ π

0

∫ 2

1

(4 sin2 θ + 1)

r3 dr dθ = −40πε0

∫ 2

1

3π

r3 dr = 60π2ε0
1

r2

∣∣∣2
1

= −45π2ε0

= −3.9 nC

7.7. Let V = (cos 2φ)/ρ in free space.
a) Find the volume charge density at point A(0.5, 60◦, 1): Use Poisson’s equation:

ρv = −ε0∇2V = −ε0
(

1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2

)

= −ε0
(

1

ρ

∂

∂ρ

(− cos 2φ

ρ

)
− 4

ρ2

cos 2φ

ρ

)
= 3ε0 cos 2φ

ρ3

So at A we find:

ρvA = 3ε0 cos(120◦)
0.53 = −12ε0 = −106 pC/m3

b) Find the surface charge density on a conductor surface passing through B(2, 30◦, 1): First, we
find E:

E = −∇V = −∂V
∂ρ

aρ − 1

ρ

∂V

∂φ
aφ

= cos 2φ

ρ2 aρ + 2 sin 2φ

ρ2 aφ

At point B the field becomes

EB = cos 60◦

4
aρ + 2 sin 60◦

4
aφ = 0.125 aρ + 0.433 aφ

The surface charge density will now be

ρsB = ±|DB | = ±ε0|EB | = ±0.451ε0 = ±0.399 pC/m2

The charge is positive or negative depending on which side of the surface we are considering. The
problem did not provide information necessary to determine this.

7.8. Let V1(r, θ, φ) = 20/r and V2(r, θ, φ) = (4/r)+ 4.
a) State whether V1 and V2 satisfy Laplace’s equation:

∇2V1 = 1

r2

d

dr

(
r2 dV1

dr

)
= 1

r2

d

dr

[
r2
(−20

r2

)]
= 0

∇2V2 = 1

r2

d

dr

(
r2 dV2

dr

)
= 1

r2

d

dr

[
r2
(−4

r2

)]
= 0
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7.8b. Evaluate V1 and V2 on the closed surface r = 4:

V1(r = 4) = 20

4
= 5 V2(r = 4) = 4

4
+ 4 = 5

c) Conciliate your results with the uniqueness theorem: Uniqueness specifies that there is only one
potential that will satisfy all the given boundary conditions. While both potentials have the same
value at r = 4, they do not as r → ∞. So they apply to different situations.

7.9. The functions V1(ρ, φ, z) and V2(ρ, φ, z) both satisfy Laplace’s equation in the region a < ρ < b,
0 ≤ φ < 2π , −L < z < L; each is zero on the surfaces ρ = b for −L < z < L; z = −L for
a < ρ < b; and z = L for a < ρ < b; and each is 100 V on the surface ρ = a for −L < z < L.

a) In the region specified above, is Laplace’s equation satisfied by the functions V1 + V2, V1 − V2,
V1 + 3, and V1V2? Yes for the first three, since Laplace’s equation is linear. No for V1V2.

b) On the boundary surfaces specified, are the potential values given above obtained from the functions
V1 +V2, V1 −V2, V1 +3, and V1V2? At the 100 V surface (ρ = a), No for all. At the 0 V surfaces,
yes, except for V1 + 3.

c) Are the functions V1 + V2, V1 − V2, V1 + 3, and V1V2 identical with V1? Only V2 is, since it is
given as satisfying all the boundary conditions thatV1 does. Therefore, by the uniqueness theorem,
V2 = V1. The others, not satisfying the boundary conditions, are not the same as V1.

7.10. Conducting planes at z = 2cm and z = 8cm are held at potentials of −3V and 9V, respectively. The
region between the plates is filled with a perfect dielectric with ε = 5ε0. Find and sketch:

a) V (z): We begin with the general solution of the one-dimensional Laplace equation in rectangular
coordinates: V (z) = Az + B. Applying the boundary conditions, we write −3 = A(2)+ B and
9 = A(8)+B. Subtracting the former equation from the latter, we find 12 = 6A or A = 2 V/cm.
Using this we find B = −7 V. Finally, V (z) = 2z− 7 V (z in cm) or V (z) = 200z− 7 V (z in m).

b) Ez(z): We use E = −∇V = −(dV/dz)az = −2 V/cm = −200 V/m.

c) Dz(z): Working in meters, have Dz = εEz = −200ε = −1000ε0 C/m2

7.11. The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials of 100 V and 0, respectively.
Let ε = ε0 and find:

a) V at P(5, 2, 6): The planes are parallel, and so we expect variation in potential in the direction
normal to them. Using the two boundary condtions, our general potential function can be written:

V (x, y) = A(2x + 3y − 12)+ 100 = A(2x + 3y − 18)+ 0

and so A = −100/6. We then write

V (x, y) = −100

6
(2x + 3y − 18) = −100

3
x − 50y + 300

and VP = − 100
3 (5)− 100 + 300 = 33.33 V.

b) Find E at P : Use

E = −∇V = 100

3
ax + 50 ay V/m
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7.12. Conducting cylinders at ρ = 2 cm and ρ = 8 cm in free space are held at potentials of 60mV and
-30mV, respectively.

a) Find V (ρ): Working in volts and meters, we write the general one-dimensional solution to the
Laplace equation in cylindrical coordinates, assuming radial variation: V (ρ) = A ln(ρ) + B.
Applying the given boundary conditions, this becomes V (2cm) = .060 = A ln(.02) + B and
V (8cm) = −.030 = A ln(.08) + B. Subtracting the former equation from the latter, we find
−.090 = A ln(.08/.02) = A ln 4 ⇒ A = −.0649. B is then found through either equation;
e.g., B = .060 + .0649 ln(.02) = −.1940. Finally, V (ρ) = −.0649 ln ρ − .1940.

b) Find Eρ(ρ): E = −∇V = −(dV /dρ)aρ = (.0649/ρ)aρ V/m.

c) Find the surface on which V = 30 mV:
Use .03 = −.0649 ln ρ − .1940 ⇒ ρ = .0317 m = 3.17 cm.

7.13. Coaxial conducting cylinders are located at ρ = 0.5 cm and ρ = 1.2 cm. The region between the
cylinders is filled with a homogeneous perfect dielectric. If the inner cylinder is at 100V and the outer
at 0V, find:

a) the location of the 20V equipotential surface: From Eq. (16) we have

V (ρ) = 100
ln(.012/ρ)

ln(.012/.005)
V

We seek ρ at which V = 20 V, and thus we need to solve:

20 = 100
ln(.012/ρ)

ln(2.4)
⇒ ρ = .012

(2.4)0.2
= 1.01 cm

b) Eρmax : We have

Eρ = −∂V
∂ρ

= −dV
dρ

= 100

ρ ln(2.4)

whose maximum value will occur at the inner cylinder, or at ρ = .5 cm:

Eρmax = 100

.005 ln(2.4)
= 2.28 × 104 V/m = 22.8 kV/m

c) εR if the charge per meter length on the inner cylinder is 20 nC/m: The capacitance per meter
length is

C = 2πε0εR
ln(2.4)

= Q

V0

We solve for εR:

εR = (20 × 10−9) ln(2.4)

2πε0(100)
= 3.15
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7.14. Two semi-infinite planes are located at φ = −α and φ = α, where α < π/2. A narrow insulating strip
separates them along the z axis. The potential at φ = −α is V0, while V = 0 at φ = α.

a) Find V (φ) in terms of α and V0: We use the one-dimensional solution form for Laplace’s equation
assuming variation along φ: V (φ) = Aφ + B. The boundary conditions are then substituted:
V0 = −Aα + B and 0 = Aα + B. Subtract the latter equation from the former to obtain:
V0 = −2Aα ⇒ A = −V0/(2α). Then 0 = −V0/(2α)α + B ⇒ B = V0/2. Finally

V (φ) = V0

2

(
1 − φ

α

)
V

b) Find Eφ at φ = 20◦, ρ = 2 cm, if V0 = 100 V and α = 30◦:

Eφ = − 1

ρ

dV

dρ
= V0

2αρ
V/m Then E(2cm, 20◦) = 100

2(30 × 2π/360)(.02)
= 4.8 kV/m

7.15. The two conducting planes illustrated in Fig. 7.8 are defined by 0.001 < ρ < 0.120 m, 0 < z < 0.1 m,
φ = 0.179 and 0.188 rad. The medium surrounding the planes is air. For region 1, 0.179 < φ < 0.188,
neglect fringing and find:

a) V (φ): The general solution to Laplace’s equation will be V = C1φ + C2, and so

20 = C1(.188)+ C2 and 200 = C1(.179)+ C2

Subtracting one equation from the other, we find

−180 = C1(.188 − .179) ⇒ C1 = −2.00 × 104

Then
20 = −2.00 × 104(.188)+ C2 ⇒ C2 = 3.78 × 103

Finally, V (φ) = (−2.00 × 104)φ + 3.78 × 103 V.

b) E(ρ): Use

E(ρ) = −∇V = − 1

ρ

dV

dφ
= 2.00 × 104

ρ
aφ V/m

c) D(ρ) = ε0E(ρ) = (2.00 × 104ε0/ρ) aφ C/m2.

d) ρs on the upper surface of the lower plane: We use

ρs = D · n
∣∣∣
surf ace

= 2.00 × 104

ρ
aφ · aφ = 2.00 × 104

ρ
C/m2

e) Q on the upper surface of the lower plane: This will be

Qt =
∫ .1

0

∫ .120

.001

2.00 × 104ε0

ρ
dρ dz = 2.00 × 104ε0(.1) ln(120) = 8.47 × 10−8 C = 84.7 nC

f) Repeat a) to c) for region 2 by letting the location of the upper plane be φ = .188 − 2π , and then
find ρs andQ on the lower surface of the lower plane. Back to the beginning, we use

20 = C′
1(.188 − 2π)+ C′

2 and 200 = C′
1(.179)+ C′

2
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7.15f (continued) Subtracting one from the other, we find

−180 = C′
1(.009 − 2π) ⇒ C′

1 = 28.7

Then 200 = 28.7(.179)+ C′
2 ⇒ C′

2 = 194.9. Thus V (φ) = 28.7φ + 194.9 in region 2. Then

E = −28.7

ρ
aφ V/m and D = −28.7ε0

ρ
aφ C/m2

ρs on the lower surface of the lower plane will now be

ρs = −28.7ε0
ρ

aφ · (−aφ) = 28.7ε0
ρ

C/m2

The charge on that surface will then beQb = 28.7ε0(.1) ln(120) = 122 pC.

g) Find the total charge on the lower plane and the capacitance between the planes: Total charge will
beQnet = Qt +Qb = 84.7 nC + 0.122 nC = 84.8 nC. The capacitance will be

C = Qnet

(V
= 84.8

200 − 20
= 0.471 nF = 471 pF

7.16. a) Solve Laplace’s equation for the potential field in the homogeneous region between two concentric
conducting spheres with radii a and b, b > a, if V = 0 at r = b and V = V0 at r = a. With radial
variation only, we have

∇2V = 1

r2

d

dr

(
r2 dV

dr

)
= 0

Multiply by r2:
d

dr

(
r2 dV

dr

)
= 0 or r2 dV

dr
= A

Divide by r2:
dV

dr
= A

r2 ⇒ V = A

r
+ B

Note that in the last integration step, I dropped the minus sign that would have otherwise occurred in
front of A, since we can choose A as we wish. Next, apply the boundary conditions:

0 = A

b
+ B ⇒ B = −A

b

V0 = A

a
− A

b
⇒ A = V0( 1

a
− 1
b

)
Finally,

V (r) = V0

r
( 1
a

− 1
b

) − V0

b
( 1
a

− 1
b

) = V0

( 1
r

− 1
b

)
( 1
a

− 1
b

)
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7.16b. Find the capacitance between them: Assume permittivity ε. First, the electric field will be

E = −∇V = −dV
dr

ar = V0

r2
( 1
a

− 1
b

)ar V/m

Next, on the inner sphere, the charge density will be

ρs = D
∣∣∣
r=a

· ar = εV0

a2
( 1
a

− 1
b

) C/m2

The capacitance is now

C = Q

V0
= 4πa2ρs

V0
= 4πε( 1

a
− 1
b

) F

7.17. Concentric conducting spheres are located at r = 5 mm and r = 20 mm. The region between the
spheres is filled with a perfect dielectric. If the inner sphere is at 100 V and the outer sphere at 0 V:

a) Find the location of the 20 V equipotential surface: Solving Laplace’s equation gives us

V (r) = V0

1
r

− 1
b

1
a

− 1
b

where V0 = 100, a = 5 and b = 20. Setting V (r) = 20, and solving for r produces r = 12.5 mm.

b) Find Er,max : Use

E = −∇V = −dV
dr

ar = V0 ar
r2
( 1
a

− 1
b

)
Then

Er,max = E(r = a) = V0

a(1 − (a/b)) = 100

5(1 − (5/20))
= 26.7 V/mm = 26.7 kV/m

c) Find εR if the surface charge density on the inner sphere is 100µC/m2: ρs will be equal in
magnitude to the electric flux density at r = a. So ρs = (2.67 × 104 V/m)εRε0 = 10−4 C/m2.
Thus εR = 423 ! (obviously a bad choice of numbers here – possibly a misprint. A more reasonable
charge on the inner sphere would have been 1 µC/m2, leading to εR = 4.23).

7.18. Concentric conducting spheres have radii of 1 and 5 cm. There is a perfect dielectric for which εR = 3
between them. The potential of the inner sphere is 2V and that of the outer is -2V. Find:

a) V (r): We use the general expression derived in Problem 7.16: V (r) = (A/r) + B. At the inner
sphere, 2 = (A/.01) + B, and at the outer sphere, −2 = (A/.05) + B. Subtracting the latter
equation from the former gives

4 = A
(

1

.01
− 1

.05

)
= 80A

so A = .05. Substitute A into either of the two potential equations at the boundaries to find
B = −3. Finally, V (r) = (.05/r)− 3.
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7.18b. E(r) = −(dV /dr)ar = (.05/r2)ar V/m.

c) V at r = 3 cm: V (.03) = (.05/.03)− 3 = −1.33 V.

d) the location of the 0-V equipotential surface: Use

0 = (.05/r0)− 3 ⇒ r0 = (.05/3) = .0167 m = 1.67 cm

e) the capacitance between the spheres:

C = 4πε( 1
a

− 1
b

) = 4π(3)ε0( 1
.01 − 1

.05

) = 12πε0
80

= 4.2 pF

7.19. Two coaxial conducting cones have their vertices at the origin and the z axis as their axis. Cone A has
the point A(1, 0, 2) on its surface, while cone B has the point B(0, 3, 2) on its surface. Let VA = 100
V and VB = 20 V. Find:

a) α for each cone: Have αA = tan−1(1/2) = 26.57◦ and αB = tan−1(3/2) = 56.31◦.

b) V at P(1, 1, 1): The potential function between cones can be written as

V (θ) = C1 ln tan(θ/2)+ C2

Then
20 = C1 ln tan(56.31/2)+ C2 and 100 = C1 ln tan(26.57/2)+ C2

Solving these two equations, we findC1 = −97.7 andC2 = −41.1. Now at P , θ = tan−1(
√

2) =
54.7◦. Thus

VP = −97.7 ln tan(54.7/2)− 41.1 = 23.3 V

7.20. A potential field in free space is given as V = 100 ln tan(θ/2)+ 50 V.
a) Find the maximum value of |Eθ | on the surface θ = 40◦ for 0.1 < r < 0.8 m, 60◦ < φ < 90◦.

First

E = −1

r

dV

dθ
aθ = − 100

2r tan(θ/2) cos2(θ/2)
aθ = − 100

2r sin(θ/2) cos(θ/2)
aθ = − 100

r sin θ
aθ

This will maximize at the smallest value of r , or 0.1:

Emax(θ = 40◦) = E(r = 0.1, θ = 40◦) = − 100

0.1 sin(40)
aθ = 1.56 aθ kV/m

b) Describe the surface V = 80 V: Set 100 ln tan θ/2 +50 = 80 and solve for θ : Obtain ln tan θ/2 =
0.3 ⇒ tan θ/2 = e.3 = 1.35 ⇒ θ = 107◦ (the cone surface at θ = 107 degrees).
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7.21. In free space, let ρv = 200ε0/r2.4.

a) Use Poisson’s equation to find V (r) if it is assumed that r2Er → 0 when r → 0, and also that
V → 0 as r → ∞: With r variation only, we have

∇2V = 1

r2

d

dr

(
r2 dV

dr

)
= −ρv

ε
= −200r−2.4

or
d

dr

(
r2 dV

dr

)
= −200r−.4

Integrate once: (
r2 dV

dr

)
= −200

.6
r.6 + C1 = −333.3r.6 + C1

or
dV

dr
= −333.3r−1.4 + C1

r2 = ∇V (in this case) = −Er

Our first boundary condition states that r2Er → 0 when r → 0 Therefore C1 = 0. Integrate
again to find:

V (r) = 333.3

.4
r−.4 + C2

From our second boundary condition, V → 0 as r → ∞, we see that C2 = 0. Finally,

V (r) = 833.3r−.4 V

b) Now find V (r) by using Gauss’ Law and a line integral: Gauss’ law applied to a spherical surface
of radius r gives:

4πr2Dr = 4π
∫ r

0

200ε0
(r ′)2.4

(r ′)2dr = 800πε0
r.6

.6

Thus

Er = Dr

ε0
= 800πε0r.6

.6(4π)ε0r2 = 333.3r−1.4 V/m

Now

V (r) = −
∫ r

∞
333.3(r ′)−1.4dr ′ = 833.3r−.4 V

7.22. Let the volume charge density in Fig. 7.3a be given by ρv = ρv0(x/a)e
−|x|/a (note error in the exponent

in the formula stated in the book).
a) Determine ρv,max and ρv,min and their locations: Let x′ = x/a. Then ρv = x′e−|x′|. Differentiate

with respect to x′ to obtain:
dρv

dx′ = ρv0e
−|x′|(1 − |x′|)

This derivative is zero at x′ = ±1, or the minimum and maximum occur at x = ±a respectively.
The values of ρv at these points will be ρv,max = ρv0e

−1 = 0.368ρv0, occurring at x = a.
ρv,min = −ρv0e

−1 = −0.368ρv0, occurring at x = −a.
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7.22b. Find Ex and V (x) if V (0) = 0 and Ex → 0 as x → ∞: We use Poisson’s equation:

∇2V = −ρv
ε

⇒ d2V

dx2 = −ρv0

ε

(x
a

)
e−|x|/a

For x > 0, this becomes
d2V

dx2 = −ρv0

ε

(x
a

)
e−x/a

Integrate once over x:

dV

dx
(x > 0) = −ρv0

ε

∫ (x
a

)
e−x/a dx + C1 = aρv0

ε
e−x/a

(x
a

+ 1
)

+ C1

Noting that Ex = −dV/dx, we use the first boundary condition, Ex → 0 as x → ∞, to establish that
C1 = 0. Over the range x < 0, we have

dV

dx
(x < 0) = −ρv0

ε

∫ (x
a

)
ex/a dx + C′

1 = aρv0

ε
ex/a

(−x
a

+ 1

)
+ C′

1

where C′
1 = 0, since, by symmetry, Ex → 0 as x → −∞. These two equations can be unified to cover

the entire range of x; the final expression for the electric field becomes:

Ex = −dV
dx

= −aρv0

ε

( |x|
a

+ 1

)
e−|x|/a V/m

The potential function is now found by a second integration. For x > 0, this is

V (x) = aρv0

ε

∫ [(x
a

)
e−x/a + e−x/a

]
dx + C2 = a2ρv0

ε

[−x
a
e−x/a − 2e−x/a

]
+ C2

We use the second boundary condition, V (0) = 0, from whichC2 = 2a2ρv0/ε. Substituting this yields

V (x) (x > 0) = a2ρv0

ε

[−x
a
e−x/a + 2(1 − e−x/a)

]

We repeat the procedure for x < 0 to obtain

V (x) = aρv0

ε

∫ [(x
a

)
ex/a + ex/a

]
dx + C′

2 = a2ρv0

ε

[−x
a
ex/a − 2ex/a

]
+ C′

2

Again, with the V (0) = 0 boundary condition, we findC′
2 = −2a2ρv0/ε, which when substituted leads

to

V (x) (x < 0) = a2ρv0

ε

[−x
a
ex/a − 2(1 − ex/a)

]

Combining the results for both ranges of x, we write

V (x) = −a2ρv0

ε

[(x
a

)
e−|x|/a − 2x

|x|
(

1 − e−|x|/a
)]

110



7.22c. Use a development similar to that of Sec. 7.4 to show that C = dQ/dV0 = εS/8a ( note error in
problem statement): First, the overall potential difference is

V0 = Vx→∞ − Vx→−∞ = 2 × 2a2ρv0

ε
= 4a2ρv0

ε

From this we find a = √
(εV0)/(4ρv0). Then the total charge on one side will be

Q = S
∫ ∞

0
ρv0

(x
a

)
e−x/a dx = Sρv0 ae

−x/a
[−x
a

− 1

] ∣∣∣∞
0

= Sρv0 a = 1

2
S
√
εV0ρv0

Now

C = dQ

dV0
= d

dV0

(
1

2
S
√
εV0ρv0

)
= S

4

√
ρv0 ε

V0

But a = √
(εV0)/(4ρv0), from which (ρv0/V0) = ε/(4a2). Substituting this into the capacitance

expression gives

C = S

4

√
ε2

4a2 = εS

8a

7.23. A rectangular trough is formed by four conducting planes located at x = 0 and 8 cm and y = 0 and 5
cm in air. The surface at y = 5 cm is at a potential of 100 V, the other three are at zero potential, and the
necessary gaps are placed at two corners. Find the potential at x = 3 cm, y = 4 cm: This situation is
the same as that of Fig. 7.6, except the non-zero boundary potential appears on the top surface, rather
than the right side. The solution is found from Eq. (39) by simply interchanging x and y, and b and d ,
obtaining:

V (x, y) = 4V0

π

∞∑
1,odd

1

m

sinh(mπy/d)

sinh(mπb/d)
sin
mπx

d

where V0 = 100 V, d = 8 cm, and b = 5 cm. We will use the first three terms to evaluate the potential
at (3,4):

V (3, 4)
.= 400

π

[
sinh(π/2)

sinh(5π/8)
sin(3π/8)+ 1

3

sinh(3π/2)

sinh(15π/8)
sin(9π/8)+ 1

5

sinh(5π/2)

sinh(25π/8)
sin(15π/8)

]

= 400

π
[.609 − .040 − .011] = 71.1 V

Additional accuracy is found by including more terms in the expansion. Using thirteen terms, and
using six significant figure accuracy, the result becomes V (3, 4)

.= 71.9173 V. The series converges
rapidly enough so that terms after the sixth one produce no change in the third digit. Thus, quoting
three significant figures, 71.9 V requires six terms, with subsequent terms having no effect.
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7.24. The four sides of a square trough are held at potentials of 0, 20, -30, and 60 V; the highest and lowest
potentials are on opposite sides. Find the potential at the center of the trough: Here we can make good
use of symmetry. The solution for a single potential on the right side, for example, with all other sides
at 0V is given by Eq. (39):

V (x, y) = 4V0

π

∞∑
1,odd

1

m

sinh(mπx/b)

sinh(mπd/b)
sin
(mπy
b

)

In the current problem, we can account for the three voltages by superposing three solutions of the
above form, suitably modified to account for the different locations of the boundary potentials. Since
we want V at the center of a square trough, it no longer matters on what boundary each of the given
potentials is, and we can simply write:

V (center) = 4(0 + 20 − 30 + 60)

π

∞∑
1,odd

1

m

sinh(mπ/2)

sinh(mπ)
sin(mπ/2) = 12.5 V

The series converges to this value in three terms.

7.25. In Fig. 7.7, change the right side so that the potential varies linearly from 0 at the bottom of that side
to 100 V at the top. Solve for the potential at the center of the trough: Since the potential reaches zero
periodically in y and also is zero at x = 0, we use the form:

V (x, y) =
∞∑
m=1

Vm sinh
(mπx
b

)
sin
(mπy
b

)

Now, at x = d, V = 100(y/b). Thus

100
y

b
=

∞∑
m=1

Vm sinh

(
mπd

b

)
sin
(mπy
b

)

We then multiply by sin(nπy/b), where n is a fixed integer, and integrate over y from 0 to b:

∫ b

0
100

y

b
sin
(nπy
b

)
dy =

∞∑
m=1

Vm sinh

(
mπd

b

)∫ b

0
sin
(mπy
b

)
sin
(nπy
b

)
dy︸ ︷︷ ︸

=b/2 if m=n, zero if m �=n

The integral on the right hand side picks the nth term out of the series, enabling the coefficients, Vn, to
be solved for individually as we vary n. We find in general,

Vm = 2

b sinh(mπ/d)

∫ b

0
100

y

b
sin
(nπy
b

)
dy

The integral evaluates as

∫ b

0
100

y

b
sin
(nπy
b

)
dy =

{−100/mπ (m even)

100/mπ (m odd)

}
= (−1)m+1 100

mπ
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7.25 (continued) Thus

Vm = 200(−1)m+1

mπb sinh(mπd/b)

So that finally,

V (x, y) = 200

πb

∞∑
m=1

(−1)m+1

m

sinh (mπx/b)

sinh (mπd/b)
sin
(mπy
b

)

Now, with a square trough, set b = d = 1, and so 0 < x < 1 and 0 < y < 1. The potential becomes

V (x, y) = 200

π

∞∑
m=1

(−1)m+1

m

sinh (mπx)

sinh (mπ)
sin (mπy)

Now at the center of the trough, x = y = 0.5, and, using four terms, we have

V (.5, .5)
.= 200

π

[
sinh(π/2)

sinh(π)
− 1

3

sinh(3π/2)

sinh(3π)
+ 1

5

sinh(5π/2)

sinh(5π)
− 1

7

sinh(7π/2)

sinh(7π)

]
= 12.5 V

where additional terms do not affect the three-significant-figure answer.

7.26. IfX is a function of x andX′′ + (x− 1)X− 2X = 0, assume a solution in the form of an infinite power
series and determine numerical values for a2 to a8 if a0 = 1 and a1 = −1: The series solution will be
of the form:

X =
∞∑
m=0

amx
m

The first 8 terms of this are substituted into the given equation to give:

(2a2 − a1 − 2a0)+ (6a3 + a1 − 2a2 − 2a1)x + (12a4 + 2a2 − 3a3 − 2a2)x
2

+ (3a3 − 4a4 − 2a3 + 20a5)x
3 + (30a6 + 4a4 − 5a5 − 2a4)x

4 + (42a7 + 5a5 − 6a6 − 2a5)x
5

+ (56a8 + 6a6 − 7a7 − 2a6)x
6 + (7a7 − 8a8 − 2a7)x

7 + (8a8 − 2a8)x
8 = 0

For this equation to be zero, each coefficient term (in parenthesis) must be zero. The first of these is

2a2 − a1 − 2a0 = 2a2 + 1 − 2 = 0 ⇒ a2 = 1/2

The second coefficient is

6a3 + a1 − 2a2 − 2a1 = 6a3 − 1 − 1 + 2 = 0 ⇒ a3 = 0

Third coefficient:

12a4 + 2a2 − 3a3 − 2a2 = 12a4 + 1 − 0 − 1 = 0 ⇒ a4 = 0

Fourth coefficient:

3a3 − 4a4 − 2a3 + 20a5 = 0 − 0 − 0 + 20a5 = 0 ⇒ a5 = 0

In a similar manner, we find a6 = a7 = a8 = 0.
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7.27. It is known that V = XY is a solution of Laplace’s equation, where X is a function of x alone, and
Y is a function of y alone. Determine which of the following potential function are also solutions of
Laplace’s equation:

a) V = 100X: We know that ∇2XY = 0, or

∂2

∂x2XY + ∂2

∂y2XY = 0 ⇒ YX′′ +XY ′′ = 0 ⇒ X′′

X
= −Y

′′

Y
= α2

Therefore, ∇2X = 100X′′ �= 0 – No.

b) V = 50XY : Would have ∇2V = 50∇2XY = 0 – Yes.

c) V = 2XY + x − 3y: ∇2V = 2∇2XY + 0 − 0 = 0 – Yes.

d) V = xXY : ∇2V = x∇2XY +XY∇2x = 0 – Yes.

e) V = X2Y : ∇2V = X∇2XY +XY∇2X = 0 +XY∇2X – No.

7.28. Assume a product solution of Laplace’s equation in cylindrical coordinates, V = PF , where V is not
a function of z, P is a function only of ρ, and F is a function only of φ.

a) Obtain the two separated equations if the separation constant is n2. Select the sign of n2 so that
the solution of the φ equation leads to trigonometric functions: Begin with Laplace’s equation in
cylindrical coordinates, in which there is no z variation:

∇2V = 1

ρ

∂

∂ρ

(
ρ
∂V

∂ρ

)
+ 1

ρ2

∂2V

∂φ2 = 0

We substitute the product solution V = PF to obtain:

F

ρ

d

dρ

(
ρ
dP

dρ

)
+ P

ρ2

d2F

dφ2 = F

ρ

dP

dρ
+ F d

2P

dρ2 + P

ρ2

d2F

dφ2 = 0

Next, multiply by ρ2 and divide by FP to obtain

ρ

P

dP

dρ
+ ρ2

P

d2P

dρ2︸ ︷︷ ︸
n2

+ 1

F

d2F

dφ2︸ ︷︷ ︸
−n2

= 0

The equation is now grouped into two parts as shown, each a function of only one of the two
variables; each is set equal to plus or minus n2, as indicated. The φ equation now becomes

d2F

dφ2 + n2F = 0 ⇒ F = Cn cos(nφ)+Dn sin(nφ) (n ≥ 1)

Note that n is required to be an integer, since physically, the solution must repeat itself every 2π
radians in φ. If n = 0, then

d2F

dφ2 = 0 ⇒ F = C0φ +D0
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7.28b. Show that P = Aρn + Bρ−n satisfies the ρ equation: From part a, the radial equation is:

ρ2 d
2P

dρ2 + ρ dP
dρ

− n2P = 0

Substituting Aρn, we find

ρ2n(n− 1)ρn−2 + ρnρn−1 − n2ρn = n2ρn − nρn + nρn − n2ρn = 0

Substituting Bρ−n:

ρ2n(n+ 1)ρ−(n+2) − ρnρ−(n+1) − n2ρ−n = n2ρ−n + nρ−n − nρ−n − n2ρ−n = 0

So it works.

c) Construct the solution V (ρ, φ). Functions of this form are called circular harmonics. To assemble
the complete solution, we need the radial solution for the case in which n = 0. The equation to
solve is

ρ
d2P

dρ2 + dP

dρ
= 0

Let S = dP/dρ, and so dS/dρ = d2P/dρ2. The equation becomes

ρ
dS

dρ
+ S = 0 ⇒ −dρ

ρ
= dS

S

Integrating, find

− ln ρ + lnA0 = ln S ⇒ ln S = ln

(
A0

ρ

)
⇒ S = A0

ρ
= dP

dρ

where A0 is a constant. So now

dρ

ρ
= dP

A0
⇒ Pn=0 = A0 ln ρ + B0

We may now construct the solution in its complete form, encompassing n ≥ 0:

V (ρ, φ) = (A0 ln ρ + B0)(C0φ +D0)︸ ︷︷ ︸
n=0 solution

+
∞∑
n=1

[Anρ
n + Bnρ−n][Cn cos(nφ)+Dn sin(nφ)]
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CHAPTER 8

8.1a. Find H in cartesian components at P(2, 3, 4) if there is a current filament on the z axis carrying 8 mA
in the az direction:
Applying the Biot-Savart Law, we obtain

Ha =
∫ ∞

−∞
IdL × aR

4πR2 =
∫ ∞

−∞
Idz az × [2ax + 3ay + (4 − z)az]

4π(z2 − 8z+ 29)3/2
=
∫ ∞

−∞
Idz[2ay − 3ax]

4π(z2 − 8z+ 29)3/2

Using integral tables, this evaluates as

Ha = I

4π

[
2(2z− 8)(2ay − 3ax)
52(z2 − 8z+ 29)1/2

]∞

−∞
= I

26π
(2ay − 3ax)

Then with I = 8 mA, we finally obtain Ha = −294ax + 196ay µA/m

b. Repeat if the filament is located at x = −1, y = 2: In this case the Biot-Savart integral becomes

Hb =
∫ ∞

−∞
Idz az × [(2 + 1)ax + (3 − 2)ay + (4 − z)az]

4π(z2 − 8z+ 26)3/2
=
∫ ∞

−∞
Idz[3ay − ax]

4π(z2 − 8z+ 26)3/2

Evaluating as before, we obtain with I = 8 mA:

Hb = I

4π

[
2(2z− 8)(3ay − ax)
40(z2 − 8z+ 26)1/2

]∞

−∞
= I

20π
(3ay − ax) = −127ax + 382ay µA/m

c. Find H if both filaments are present: This will be just the sum of the results of parts a and b, or

HT = Ha + Hb = −421ax + 578ay µA/m

This problem can also be done (somewhat more simply) by using the known result for H from an
infinitely-long wire in cylindrical components, and transforming to cartesian components. The Biot-
Savart method was used here for the sake of illustration.

8.2. A current filament of 3ax A lies along the x axis. Find H in cartesian components at P(−1, 3, 2): We
use the Biot-Savart law,

H =
∫
IdL × aR

4πR2

where IdL = 3dxax , aR = [−(1 + x)ax + 3ay + 2az]/R, and R = √
x2 + 2x + 14. Thus

HP =
∫ ∞

−∞
3dxax × [−(1 + x)ax + 3ay + 2az]

4π(x2 + 2x + 14)3/2
=
∫ ∞

−∞
(9az − 6ay) dx

4π(x2 + 2x + 14)3/2

= (9az − 6ay)(x + 1)

4π(13)
√
x2 + 2x + 14

∣∣∣∞−∞
= 2(9az − 6ay)

4π(13)
= 0.110az − 0.073ay A/m
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8.3. Two semi-infinite filaments on the z axis lie in the regions −∞ < z < −a (note typographical error in
problem statement) and a < z <∞. Each carries a current I in the az direction.

a) Calculate H as a function of ρ and φ at z = 0: One way to do this is to use the field from an
infinite line and subtract from it that portion of the field that would arise from the current segment
at −a < z < a, found from the Biot-Savart law. Thus,

H = I

2πρ
aφ −

∫ a

−a
I dz az × [ρ aρ − z az]

4π [ρ2 + z2]3/2

The integral part simplifies and is evaluated:

∫ a

−a
I dz ρ aφ

4π [ρ2 + z2]3/2 = Iρ

4π
aφ

z

ρ2
√
ρ2 + z2

∣∣∣a−a = Ia

2πρ
√
ρ2 + a2

aφ

Finally,

H = I

2πρ

[
1 − a√

ρ2 + a2

]
aφ A/m

b) What value of a will cause the magnitude of H at ρ = 1, z = 0, to be one-half the value obtained
for an infinite filament? We require

[
1 − a√

ρ2 + a2

]
ρ=1

= 1

2
⇒ a√

1 + a2
= 1

2
⇒ a = 1/

√
3

8.4a.) A filament is formed into a circle of radius a, centered at the origin in the plane z = 0. It carries a
current I in the aφ direction. Find H at the origin: We use the Biot-Savart law, which in this case
becomes:

H =
∫
loop

IdL × aR
4πR2 =

∫ 2π

0

Ia dφ aφ × (−aρ)
4πa2 = 0.50

I

a
az A/m

b.) A filament of the same length is shaped into a square in the z = 0 plane. The sides are parallel to the
coordinate axes and a current I flows in the general aφ direction. Again, find H at the origin: Since
the loop is the same length, its perimeter is 2πa, and so each of the four sides is of length πa/2.
Using symmetry, we can find the magnetic field at the origin associated with each of the 8 half-sides
(extending from 0 to ±πa/4 along each coordinate direction) and multiply the result by 8: Taking one
of the segments in the y direction, the Biot-Savart law becomes

H =
∫
loop

IdL × aR
4πR2 = 8

∫ πa/4

0

Idy ay × [−(πa/4) ax − y ay
]

4π
[
y2 + (πa/4)2]3/2

= aI

2

∫ πa/4

0

dy az[
y2 + (πa/4)2]3/2 = aI

2

y az

(πa/4)2
√
y2 + (πa/4)2

∣∣∣πa/4
0

= 0.57
I

a
az A/m
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8.5. The parallel filamentary conductors shown in Fig. 8.21 lie in free space. Plot |H| versus y, −4 < y < 4,
along the line x = 0, z = 2: We need an expression for H in cartesian coordinates. We can start with the
known H in cylindrical for an infinite filament along the z axis: H = I/(2πρ) aφ , which we transform
to cartesian to obtain:

H = −Iy
2π(x2 + y2)

ax + Ix

2π(x2 + y2)
ay

If we now rotate the filament so that it lies along the x axis, with current flowing in positive x, we obtain
the field from the above expression by replacing x with y and y with z:

H = −Iz
2π(y2 + z2)

ay + Iy

2π(y2 + z2)
az

Now, with two filaments, displaced from the x axis to lie at y = ±1, and with the current directions as
shown in the figure, we use the previous expression to write

H =
[

Iz

2π [(y + 1)2 + z2]
− Iz

2π [(y − 1)2 + z2]

]
ay+

[
I (y − 1)

2π [(y − 1)2 + z2]
− I (y + 1)

2π [(y + 1)2 + z2]

]
az

We now evaluate this at z = 2, and find the magnitude (
√

H · H), resulting in

|H| = I

2π

[(
2

y2 + 2y + 5
− 2

y2 − 2y + 5

)2

+
(

(y − 1)

y2 − 2y + 5
− (y + 1)

y2 + 2y + 5

)2
]1/2

This function is plotted below

8.6a. A current filament I is formed into circle, ρ = a, in the z = z′ plane. Find Hz at P(0, 0, z) if I flows
in the aφ direction: Use the Biot-Savart law,

H =
∫
IdL × aR

4πR2

where in this case IdL = Idφaφ , aR = [−aaρ + (z − z′)az]/R, and R =
√
a2 + (z− z′)2. The

setup becomes

H =
∫ 2π

0

Iadφ aφ × [−aaρ + (z− z′)az]
4π [a2 + (z− z′)2]3/2 =

∫ 2π

0

Ia[aaz + (z− z′)aρ] dφ

4π [a2 + (z− z′)2]3/2
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At this point we need to be especially careful. Note that we are integrating a vector with an aρ component
around a complete circle, where the vector has no φ dependence. This sum of all aρ components will be
zero – even though this doesn’t happen when we go ahead with the integration without this knowledge.
The problem is that the integral “interprets” aρ as a constant direction, when in fact – as we know – aρ
continually changes direction as φ varies. We drop the aρ component in the integral to give

H =
∫ 2π

0

Ia2az dφ
4π [a2 + (z− z′)2]3/2 = πa2Iaz

2π [a2 + (z− z′)2]3/2 = m
2π [a2 + (z− z′)2]3/2 A/m

where m = πa2Iaz is the magnetic moment of the loop.

b) Find Hz at P caused by a uniform surface current density K = K0aφ , flowing on the cylindrical
surface, ρ = a, 0 < z < h. The results of part a should help: Using part a, we can write down the
differential field at P arising from a circular current ribbon of differential height, dz′, at location
z′. The ribbon is of radius a and carries current K0dz

′aφ A:

dH = πa2K0dz
′az

2π [a2 + (z− z′)2]3/2 A/m

The total magnetic field at P is now the sum of the contributions of all differential rings that
comprise the cylinder:

Hz =
∫ h

0

πa2K0dz
′

2π [a2 + (z− z′)2]3/2 = a2K0

2

∫ h

0

dz′

[a2 + z2 − 2zz′ + (z′)2]3/2

= a2K0

2

2(2z′ − 2z)

4a2
√
a2 + z2 − 2zz′ + (z′)2

∣∣∣h
0

= K0(z
′ − z)

2
√
a2 + (z′ − z)2

∣∣∣h
0

= K0

2

[
(h− z)√

a2 + (h− z)2
+ z√

a2 + z2

]
A/m

8.7. Given points C(5,−2, 3) and P(4,−1, 2); a current element IdL = 10−4(4,−3, 1) A · m at C pro-
duces a field dH at P .

a) Specify the direction of dH by a unit vector aH : Using the Biot-Savart law, we find

dH = IdL × aCP
4πR2

CP

= 10−4[4ax − 3ay + az] × [−ax + ay − az]
4π33/2 = [2ax + 3ay + az] × 10−4

65.3

from which

aH = 2ax + 3ay + az√
14

= 0.53ax + 0.80ay + 0.27az

b) Find |dH|.
|dH| =

√
14 × 10−4

65.3
= 5.73 × 10−6 A/m = 5.73 µA/m

c) What direction al should IdL have at C so that dH = 0? IdL should be collinear with aCP ,
thus rendering the cross product in the Biot-Savart law equal to zero. Thus the answer is al =
±(−ax + ay − az)/

√
3
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8.8. For the finite-length current element on the z axis, as shown in Fig. 8.5, use the Biot-Savart law to
derive Eq. (9) of Sec. 8.1: The Biot-Savart law reads:

H =
∫ z2

z1

IdL × aR
4πR2 =

∫ ρ tan α2

ρ tan α1

Idzaz × (ρaρ − zaz)
4π(ρ2 + z2)3/2

=
∫ ρ tan α2

ρ tan α1

Iρaφ dz
4π(ρ2 + z2)3/2

The integral is evaluated (using tables) and gives the desired result:

H = Izaφ

4πρ
√
ρ2 + z2

∣∣∣ρ tan α2

ρ tan α1
= I

4πρ

[
tan α2√

1 + tan2 α2

− tan α1√
1 + tan2 α1

]
aφ = I

4πρ
(sin α2 − sin α1)aφ

8.9. A current sheet K = 8ax A/m flows in the region −2 < y < 2 in the plane z = 0. Calculate H at
P(0, 0, 3): Using the Biot-Savart law, we write

HP =
∫ ∫

K × aR dx dy
4πR2 =

∫ 2

−2

∫ ∞

−∞
8ax × (−xax − yay + 3az)

4π(x2 + y2 + 9)3/2
dx dy

Taking the cross product gives:

HP =
∫ 2

−2

∫ ∞

−∞
8(−yaz − 3ay) dx dy
4π(x2 + y2 + 9)3/2

We note that the z component is anti-symmetric in y about the origin (odd parity). Since the limits are
symmetric, the integral of the z component over y is zero. We are left with

HP =
∫ 2

−2

∫ ∞

−∞
−24 ay dx dy

4π(x2 + y2 + 9)3/2
= − 6

π
ay

∫ 2

−2

x

(y2 + 9)
√
x2 + y2 + 9

∣∣∣∞−∞
dy

= − 6

π
ay

∫ 2

−2

2

y2 + 9
dy = −12

π
ay

1

3
tan−1

(y
3

) ∣∣∣2−2
= − 4

π
(2)(0.59) ay = −1.50 ay A/m

8.10. Let a filamentary current of 5 mA be directed from infinity to the origin on the positive z axis and then
back out to infinity on the positive x axis. Find H at P(0, 1, 0): The Biot-Savart law is applied to the
two wire segments using the following setup:

HP =
∫
IdL × aR

4πR2 =
∫ ∞

0

−Idzaz × (−zaz + ay)
4π(z2 + 1)3/2

+
∫ ∞

0

Idxax × (−xax + ay)
4π(x2 + 1)3/2

=
∫ ∞

0

Idzax
4π(z2 + 1)3/2

+
∫ ∞

0

Idxaz
4π(x2 + 1)3/2

= I

4π

[
zax√
z2 + 1

∣∣∣∞
0

+ xaz√
x2 + 1

∣∣∣∞
0

]

= I

4π
(ax + az) = 0.40(ax + az) mA/m
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8.11. An infinite filament on the z axis carries 20π mA in the az direction. Three uniform cylindrical current
sheets are also present: 400 mA/m at ρ = 1 cm, −250 mA/m at ρ = 2 cm, and −300 mA/m at ρ = 3
cm. Calculate Hφ at ρ = 0.5, 1.5, 2.5, and 3.5 cm: We find Hφ at each of the required radii by
applying Ampere’s circuital law to circular paths of those radii; the paths are centered on the z axis.
So, at ρ1 = 0.5 cm: ∮

H · dL = 2πρ1Hφ1 = Iencl = 20π × 10−3 A

Thus

Hφ1 = 10 × 10−3

ρ1
= 10 × 10−3

0.5 × 10−2 = 2.0 A/m

At ρ = ρ2 = 1.5 cm, we enclose the first of the current cylinders at ρ = 1 cm. Ampere’s law becomes:

2πρ2Hφ2 = 20π + 2π(10−2)(400) mA ⇒ Hφ2 = 10 + 4.00

1.5 × 10−2 = 933 mA/m

Following this method, at 2.5 cm:

Hφ3 = 10 + 4.00 − (2 × 10−2)(250)

2.5 × 10−2 = 360 mA/m

and at 3.5 cm,

Hφ4 = 10 + 4.00 − 5.00 − (3 × 10−2)(300)

3.5 × 10−2 = 0

8.12. In Fig. 8.22, let the regions 0 < z < 0.3 m and 0.7 < z < 1.0 m be conducting slabs carrying uniform
current densities of 10 A/m2 in opposite directions as shown. The problem asks you to find H at various
positions. Before continuing, we need to know how to find H for this type of current configuration. The
sketch below shows one of the slabs (of thicknessD) oriented with the current coming out of the page.
The problem statement implies that both slabs are of infinite length and width. To find the magnetic
field inside a slab, we apply Ampere’s circuital law to the rectangular path of height d and width w, as
shown, since by symmetry, H should be oriented horizontally. For example, if the sketch below shows
the upper slab in Fig. 8.22, current will be in the positive y direction. Thus H will be in the positive x
direction above the slab midpoint, and will be in the negative x direction below the midpoint.

�
�

�

����

����
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8.12 (continued) In taking the line integral in Ampere’s law, the two vertical path segments will cancel each
other. Ampere’s circuital law for the interior loop becomes

∮
H · dL = 2Hin × w = Iencl = J × w × d ⇒ Hin = Jd

2

The field outside the slab is found similarly, but with the enclosed current now bounded by the slab
thickness, rather than the integration path height:

2Hout × w = J × w ×D ⇒ Hout = JD

2

whereHout is directed from right to left below the slab and from left to right above the slab (right hand
rule). Reverse the current, and the fields, of course, reverse direction. We are now in a position to solve
the problem.

Find H at:
a) z = −0.2m: Here the fields from the top and bottom slabs (carrying opposite currents) will cancel,

and so H = 0.

b) z = 0.2m. This point lies within the lower slab above its midpoint. Thus the field will be oriented
in the negative x direction. Referring to Fig. 8.22 and to the sketch on the previous page, we find
that d = 0.1. The total field will be this field plus the contribution from the upper slab current:

H = −10(0.1)

2
ax︸ ︷︷ ︸

lower slab

− 10(0.3)

2
ax︸ ︷︷ ︸

upper slab

= −2ax A/m

c) z = 0.4m: Here the fields from both slabs will add constructively in the negative x direction:

H = −2
10(0.3)

2
ax = −3ax A/m

d) z = 0.75m: This is in the interior of the upper slab, whose midpoint lies at z = 0.85. Therefore
d = 0.2. Since 0.75 lies below the midpoint, magnetic field from the upper slab will lie in the
negative x direction. The field from the lower slab will be negative x-directed as well, leading to:

H = −10(0.2)

2
ax︸ ︷︷ ︸

upper slab

− 10(0.3)

2
ax︸ ︷︷ ︸

lower slab

= −2.5ax A/m

e) z = 1.2m: This point lies above both slabs, where again fields cancel completely: Thus H = 0.
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8.13. A hollow cylindrical shell of radius a is centered on the z axis and carries a uniform surface current
density of Kaaφ .

a) Show that H is not a function of φ or z: Consider this situation as illustrated in Fig. 8.11. There
(sec. 8.2) it was stated that the field will be entirely z-directed. We can see this by applying
Ampere’s circuital law to a closed loop path whose orientation we choose such that current is
enclosed by the path. The only way to enclose current is to set up the loop (which we choose to be
rectangular) such that it is oriented with two parallel opposing segments lying in the z direction;
one of these lies inside the cylinder, the other outside. The other two parallel segments lie in the ρ
direction. The loop is now cut by the current sheet, and if we assume a length of the loop in z of d ,
then the enclosed current will be given by Kd A. There will be no φ variation in the field because
where we position the loop around the circumference of the cylinder does not affect the result of
Ampere’s law. If we assume an infinite cylinder length, there will be no z dependence in the field,
since as we lengthen the loop in the z direction, the path length (over which the integral is taken)
increases, but then so does the enclosed current – by the same factor. Thus H would not change
with z. There would also be no change if the loop was simply moved along the z direction.

b) Show that Hφ and Hρ are everywhere zero. First, if Hφ were to exist, then we should be able to
find a closed loop path that encloses current, in which all or or portion of the path lies in the φ
direction. This we cannot do, and so Hφ must be zero. Another argument is that when applying
the Biot-Savart law, there is no current element that would produce a φ component. Again, using
the Biot-Savart law, we note that radial field components will be produced by individual current
elements, but such components will cancel from two elements that lie at symmetric distances in z
on either side of the observation point.

c) Show that Hz = 0 for ρ > a: Suppose the rectangular loop was drawn such that the outside
z-directed segment is moved further and further away from the cylinder. We would expect Hz
outside to decrease (as the Biot-Savart law would imply) but the same amount of current is always
enclosed no matter how far away the outer segment is. We therefore must conclude that the field
outside is zero.

d) Show that Hz = Ka for ρ < a: With our rectangular path set up as in part a, we have no path
integral contributions from the two radial segments, and no contribution from the outside z-directed
segment. Therefore, Ampere’s circuital law would state that

∮
H · dL = Hzd = Iencl = Kad ⇒ Hz = Ka

where d is the length of the loop in the z direction.

e) A second shell, ρ = b, carries a current Kbaφ . Find H everywhere: For ρ < a we would have
both cylinders contributing, orHz(ρ < a) = Ka +Kb. Between the cylinders, we are outside the
inner one, so its field will not contribute. Thus Hz(a < ρ < b) = Kb. Outside (ρ > b) the field
will be zero.
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8.14. A toroid having a cross section of rectangular shape is defined by the following surfaces: the cylinders
ρ = 2 and ρ = 3 cm, and the planes z = 1 and z = 2.5 cm. The toroid carries a surface current density
of −50az A/m on the surface ρ = 3 cm. Find H at the point P(ρ, φ, z): The construction is similar
to that of the toroid of round cross section as done on p.239. Again, magnetic field exists only inside
the toroid cross section, and is given by

H = Iencl

2πρ
aφ (2 < ρ < 3) cm, (1 < z < 2.5) cm

where Iencl is found from the given current density: On the outer radius, the current is

Iouter = −50(2π × 3 × 10−2) = −3π A

This current is directed along negative z, which means that the current on the inner radius (ρ = 2) is
directed along positive z. Inner and outer currents have the same magnitude. It is the inner current that
is enclosed by the circular integration path in aφ within the toroid that is used in Ampere’s law. So
Iencl = +3π A. We can now proceed with what is requested:

a) PA(1.5cm, 0, 2cm): The radius, ρ = 1.5 cm, lies outside the cross section, and so HA = 0.

b) PB(2.1cm, 0, 2cm): This point does lie inside the cross section, and the φ and z values do not
matter. We find

HB = Iencl

2πρ
aφ = 3aφ

2(2.1 × 10−2)
= 71.4 aφ A/m

c) PC(2.7cm, π/2, 2cm): again, φ and z values make no difference, so

HC = 3aφ
2(2.7 × 10−2)

= 55.6 aφ A/m

d) PD(3.5cm, π/2, 2cm). This point lies outside the cross section, and so HD = 0.

8.15. Assume that there is a region with cylindrical symmetry in which the conductivity is given by σ =
1.5e−150ρ kS/m. An electric field of 30 az V/m is present.

a) Find J: Use
J = σE = 45e−150ρ az kA/m2

b) Find the total current crossing the surface ρ < ρ0, z = 0, all φ:

I =
∫ ∫

J · dS =
∫ 2π

0

∫ ρ0

0
45e−150ρρ dρ dφ = 2π(45)

(150)2
e−150ρ [−150ρ − 1]

∣∣∣ρ0

0
kA

= 12.6
[
1 − (1 + 150ρ0)e

−150ρ0
]

A

c) Make use of Ampere’s circuital law to find H: Symmetry suggests that H will be φ-directed only,
and so we consider a circular path of integration, centered on and perpendicular to the z axis.
Ampere’s law becomes: 2πρHφ = Iencl , where Iencl is the current found in part b, except with ρ0
replaced by the variable, ρ. We obtain

Hφ = 2.00

ρ

[
1 − (1 + 150ρ)e−150ρ

]
A/m
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8.16. The cylindrical shell, 2mm < ρ < 3mm, carries a uniformly-distributed total current of 8A in the
−az direction, and a filament on the z axis carries 8A in the az direction. Find H everywhere: We use
Ampere’s circuital law, noting that from symmetry, H will be aφ directed. Inside the shell (ρ < 2mm),
A circular integration path centered on the z axis encloses only the filament current along z: Therefore

H(ρ < 2mm) = 8

2πρ
aφ = 4

πρ
aφ A/m (ρ in m)

With the circular integration path within (2 < ρ < 3mm), the enclosed current will consist of the
filament plus that portion of the shell current that lies inside ρ. Ampere’s circuital law applied to a loop
of radius ρ is: ∮

H · dL = If ilament +
∫ ∫

shell area

J · dS

where the current density is

J = − 8

π(3 × 10−3)2 − π(2 × 10−3)2
az = −8 × 106

5π
az A/m2

So

2πρHφ = 8 +
∫ 2π

0

∫ ρ

2×10−3

(−8

5π
× 106

)
az · az ρ′ dρ′dφ = 8 − 1.6 × 106 (ρ′)2

∣∣∣ρ
2×10−3

Solve for Hφ to find:

H(2 < ρ < 3 mm) = 4

πρ

[
1 − (2 × 105)(ρ2 − 4 × 10−6)

]
aφ A/m (ρ in m)

Outside (ρ > 3mm), the total enclosed current is zero, and so H(ρ > 3mm) = 0.
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8.17. A current filament on the z axis carries a current of 7 mA in the az direction, and current sheets of 0.5 az
A/m and −0.2 az A/m are located at ρ = 1 cm and ρ = 0.5 cm, respectively. Calculate H at:

a) ρ = 0.5 cm: Here, we are either just inside or just outside the first current sheet, so both we will
calculate H for both cases. Just inside, applying Ampere’s circuital law to a circular path centered
on the z axis produces:

2πρHφ = 7 × 10−3 ⇒ H(just inside) = 7 × 10−3

2π(0.5 × 10−2 aφ = 2.2 × 10−1aφ A/m

Just outside the current sheet at .5 cm, Ampere’s law becomes

2πρHφ = 7 × 10−3 − 2π(0.5 × 10−2)(0.2)

⇒ H(just outside) = 7.2 × 10−4

2π(0.5 × 10−2)
aφ = 2.3 × 10−2aφ A/m

b) ρ = 1.5 cm: Here, all three currents are enclosed, so Ampere’s law becomes

2π(1.5 × 10−2)Hφ = 7 × 10−3 − 6.28 × 10−3 + 2π(10−2)(0.5)

⇒ H(ρ = 1.5) = 3.4 × 10−1aφ A/m

c) ρ = 4 cm: Ampere’s law as used in part b applies here, except we replace ρ = 1.5 cm with ρ = 4
cm on the left hand side. The result is H(ρ = 4) = 1.3 × 10−1aφ A/m.

d) What current sheet should be located at ρ = 4 cm so that H = 0 for all ρ > 4 cm? We require that
the total enclosed current be zero, and so the net current in the proposed cylinder at 4 cm must be
negative the right hand side of the first equation in part b. This will be −3.2 × 10−2, so that the
surface current density at 4 cm must be

K = −3.2 × 10−2

2π(4 × 10−2)
az = −1.3 × 10−1 az A/m

8.18. Current density is distributed as follows: J = 0 for |y| > 2 m, J = 8yaz A/m2 for |y| < 1 m,
J = 8(2 −y) az A/m2 for 1 < y < 2 m, J = −8(2 +y) az A/m2 for −2 < y < −1 m. Use symmetry
and Ampere’s law to find H everywhere.

Symmetry does help significantly in this problem. The current densities in the regions 0 < y < 1 and
−1 < y < 0 are mirror images of each other across the plane y = 0 – this in addition to being of
opposite sign. This is also true of the current densities in the regions 1 < y < 2 and −2 < y < −1. As
a consequence of this, we find that the net current in region 1, I1 (see the diagram on the next page), is
equal and opposite to the net current in region 4, I4. Also, I2 is equal and opposite to I3. This means
that when applying Ampere’s law to the path a − b − c − d − a, as shown in the figure, zero current
is enclosed, so that

∮
H · dL = 0 over the path. In addition, the symmetry of the current configuration

implies that H = 0 outside the slabs along the vertical paths a−b and c−d. H from all sources should
completely cancel along the two vertical paths, as well as along the two horizontal paths.
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8.18. (continued) To find the magnetic field in region 1, we apply Ampere’s circuital law to the path c −
d − e− f − c, again noting that H will be zero along the two horizontal segments and along the right
vertical segment. This leaves only the left vertical segment, e − f , pointing in the +x direction, and
along which is field, Hx1. The counter-clockwise direction of the path integral is chosen using the
right-hand convention, where we take the normal to the path in the +z direction, which is the same as
the current direction. Assuming the height of the path is .x, we find

Hx1.x = .x
∫ 2

y1

8(2 − y)dy = .x
[
16y − 4y2

]2

y1
= .x

[
16(2 − y1)− 4(4 − y2

1 )
]

Replacing y1 with y, we find

Hx1 = 4[8 − 4y − 4 + y2] ⇒ H1(1 < y < 2) = 4(y − 2)2 ax A/m

H1 lies in the positive x direction, since the result of the integration is net positive.

H in region 2 is now found through the line integral over the path d− g−h− c, enclosing all of region
1 within .x and part of region 2 from y = y2 to 1:

Hx2.x = .x
∫ 2

1
8(2 − y) dy +.x

∫ 1

y2

8y dy = .x
[
4(1 − 2)2 + 4(1 − y2

2 )
]

= 4(2 − y2
2 ).x

so that in terms of y,
H2(0 < y < 1) = 4(2 − y2)ax A/m

y

x

1 20-1-2

a

b c

d
e

f

g

h

x x . .

I1I2I3I4

4 3 2 1

�	 �
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8.18. (continued) The procedure is repeated for the remaining two regions, −2 < y < −1 and −1 < y < 0,
by taking the integration path with its right vertical segment within each of these two regions, while
the left vertical path is a − b. Again the integral is taken counter-clockwise, which means that the
right vertical path will be directed along −x. But the current is now in the opposite direction of that
for y > 0, making the enclosed current net negative. Therefore, H will be in the opposite direction
from that of the right vertical path, which is the positive x direction. The magnetic field will therefore
be symmetric about the y = 0 plane. We can use the results for regions 1 and 2 to construct the field
everywhere:

H = 0 (y > 2) and (y < −2)

H = 4(2 − |y|2)ax A/m (0 < |y| < 1)

H = 4(|y| − 2)2ax A/m (1 < |y| < 2)

8.19. Calculate ∇ × [∇(∇ · G)] if G = 2x2yz ax − 20y ay + (x2 − z2) az: Proceding, we first find ∇ · G =
4xyz− 20 − 2z. Then ∇(∇ · G) = 4yz ax + 4xz ay + (4xy − 2) az. Then

∇ × [∇(∇ · G)] = (4x − 4x) ax − (4y − 4y) ay + (4z− 4z) az = 0

8.20. The magnetic field intensity is given in the square region x = 0, 0.5 < y < 1, 1 < z < 1.5 by
H = z2ax + x3ay + y4az A/m.

a) evaluate
∮

H · dL about the perimeter of the square region: Using dL = dxax + dyay + dzaz,
and using the given field, we find, in the x = 0 plane:

∮
H · dL =

∫ 1

.5
0 dy +

∫ 1.5

1
(1)4 dz+

∫ .5

1
0 dy +

∫ 1

1.5
(.5)4 dz = 0.46875

b) Find ∇ × H:

∇ × H =
(
∂Hz

∂y
− ∂Hy

∂z

)
ax +

(
∂Hx

∂z
− ∂Hz

∂x

)
ay +

(
∂Hy

∂x
− ∂Hx

∂y

)
az

= 4y3ax + 2zay + 3x2az

c) Calculate (∇ × H)x at the center of the region: Here, y = 0.75 and so (∇ × H)x = 4(.75)3 =
1.68750.

d) Does (∇×H)x = [
∮

H·dL]/Area Enclosed? Using the part a result, [
∮

H·dL]/Area Enclosed =
0.46875/0.25 = 1.8750, which is off the value found in part c. Answer: No. Reason: the limit
of the area shrinking to zero must be taken before the results will be equal.

8.21. Points A, B, C, D, E, and F are each 2 mm from the origin on the coordinate axes indicated in Fig.
8.23. The value of H at each point is given. Calculate an approximate value for ∇ × H at the origin:
We use the approximation:

curl H .=
∮

H · dL
.a

where no limit as .a → 0 is taken (hence the approximation), and where .a = 4 mm2. Each curl
component is found by integrating H over a square path that is normal to the component in question.
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8.21. (continued) Each of the four segments of the contour passes through one of the given points. Along
each segment, the field is assumed constant, and so the integral is evaluated by summing the products
of the field and segment length (4 mm) over the four segments. The x component of the curl is thus:

(∇ × H)x
.= (Hz,C −Hy,E −Hz,D +Hy,F )(4 × 10−3)

(4 × 10−3)2

= (15.69 + 13.88 − 14.35 − 13.10)(250) = 530 A/m2

The other components are:

(∇ × H)y
.= (Hz,B +Hx,E −Hz,A −Hx,F )(4 × 10−3)

(4 × 10−3)2

= (15.82 + 11.11 − 14.21 − 10.88)(250) = 460 A/m2

and

(∇ × H)z
.= (Hy,A −Hx,C −Hy,BHx,D)(4 × 10−3)

(4 × 10−3)2

= (−13.78 − 10.49 + 12.19 + 11.49)(250) = −148 A/m2

Finally we assemble the results and write:

∇ × H .= 530 ax + 460 ay − 148 az

8.22. In the cylindrical region ρ ≤ 0.6 mm, Hφ = (2/ρ)+ (ρ/2)A/m, while Hφ = (3/ρ)A/m for ρ > 0.6
mm.

a) Determine J for ρ < 0.6mm: We have only a φ component that varies with ρ. Therefore

∇ × H = 1

ρ

d(ρHφ)

dρ
az = 1

ρ

d

dρ

[
2 + ρ2

2

]
az = J = 1az A/m2

b) Determine J for ρ > 0.6 mm: In this case

J = 1

ρ

d

dρ

[
ρ

3

ρ

]
az = 0

c) Is there a filamentary current at ρ = 0? If so, what is its value? As ρ → 0, Hφ → ∞, which
implies the existence of a current filament along the z axis: So, YES. The value is found by through
Ampere’s circuital law, by integrating Hφ around a circular path of vanishingly-small radius. The
current enclosed is therefore I = 2πρ(2/ρ) = 4π A.

d) What is J at ρ = 0? Since a filament current lies along z at ρ = 0, this forms a singularity, and so
the current density there is infinite.

8.23. Given the field H = 20ρ2 aφ A/m:
a) Determine the current density J: This is found through the curl of H, which simplifies to a single

term, since H varies only with ρ and has only a φ component:

J = ∇ × H = 1

ρ

d(ρHφ)

dρ
az = 1

ρ

d

dρ

(
20ρ3

)
az = 60ρ az A/m2
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8.23. (continued)

b) Integrate J over the circular surface ρ = 1, 0 < φ < 2π , z = 0, to determine the total current
passing through that surface in the az direction: The integral is:

I =
∫ ∫

J · dS =
∫ 2π

0

∫ 1

0
60ρaz · ρ dρ dφaz = 40π A

c) Find the total current once more, this time by a line integral around the circular path ρ = 1,
0 < φ < 2π , z = 0:

I =
∮

H · dL =
∫ 2π

0
20ρ2 aφ

∣∣
ρ=1 · (1)dφaφ =

∫ 2π

0
20 dφ = 40π A

8.24. Evaluate both sides of Stokes’ theorem for the field G = 10 sin θ aφ and the surface r = 3, 0 ≤ θ ≤ 90◦,
0 ≤ φ ≤ 90◦. Let the surface have the ar direction: Stokes’ theorem reads:∮

C

G · dL =
∫ ∫

S

(∇ × G) · n da

Considering the given surface, the contour, C, that forms its perimeter consists of three joined arcs of
radius 3 that sweep out 90◦ in the xy, xz, and zy planes. Their centers are at the origin. Of these three,
only the arc in the xy plane (which lies along aφ) is in the direction of G; the other two (in the −aθ and
aθ directions respectively) are perpendicular to it, and so will not contribute to the path integral. The
left-hand side therefore consists of only the xy plane portion of the closed path, and evaluates as

∮
G · dL =

∫ π/2

0
10 sin θ

∣∣
π/2 aφ · aφ 3 sin θ

∣∣
π/2 dφ = 15π

To evaluate the right-hand side, we first find

∇ × G = 1

r sin θ

d

dθ
[(sin θ)10 sin θ ] ar = 20 cos θ

r
ar

The surface over which we integrate this is the one-eighth spherical shell of radius 3 in the first octant,
bounded by the three arcs described earlier. The right-hand side becomes

∫ ∫
S

(∇ × G) · n da =
∫ π/2

0

∫ π/2

0

20 cos θ

3
ar · ar (3)2 sin θ dθ dφ = 15π

It would appear that the theorem works.
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8.25. (This problem was discovered to be flawed – I will proceed with it and show how). Given the field

H = 1

2
cos

φ

2
aρ − sin

φ

2
aφ A/m

evaluate both sides of Stokes’ theorem for the path formed by the intersection of the cylinder ρ = 3
and the plane z = 2, and for the surface defined by ρ = 3, 0 ≤ φ ≤ 2π , and z = 0, 0 ≤ ρ ≤ 3: This
surface resembles that of an open tin can whose bottom lies in the z = 0 plane, and whose open circular
edge, at z = 2, defines the line integral contour. We first evaluate

∮
H · dL over the circular contour,

where we take the integration direction as clockwise, looking down on the can. We do this because the
outward normal from the bottom of the can will be in the −az direction.∮

H · dL =
∫ 2π

0
H · 3dφ(−aφ) =

∫ 2π

0
3 sin

φ

2
dφ = 12 A

With our choice of contour direction, this indicates that the current will flow in the negative z direction.
Note for future reference that only the φ component of the given field contributed here. Next, we evalute∫ ∫ ∇ × H · dS, over the surface of the tin can. We find

∇ × H = J = 1

ρ

(
∂(ρHφ)

∂ρ
− ∂Hρ

∂φ

)
az = 1

ρ

(
− sin

φ

2
+ 1

4
sin
φ

2

)
az = − 3

4ρ
sin
φ

2
az A/m

Note that both field components contribute here. The integral over the tin can is now only over the
bottom surface, since ∇ × H has only a z component. We use the outward normal, −az, and find∫ ∫

∇ × H · dS = −3

4

∫ 2π

0

∫ 3

0

1

ρ
sin
φ

2
az · (−az)ρ dρ dφ = 9

4

∫ 2π

0
sin
φ

2
dφ = 9 A

Note that if the radial component of H were not included in the computation of ∇ × H, then the factor
of 3/4 in front of the above integral would change to a factor of 1, and the result would have been 12 A.
What would appear to be a violation of Stokes’ theorem is likely the result of a missing term in the φ
component of H, having zero curl, which would have enabled the original line integral to have a value
of 9A. The reader is invited to explore this further.

8.26. Let G = 15raφ .
a) Determine

∮
G · dL for the circular path r = 5, θ = 25◦, 0 ≤ φ ≤ 2π :∮
G · dL =

∫ 2π

0
15(5)aφ · aφ(5) sin(25◦) dφ = 2π(375) sin(25◦) = 995.8

b) Evaluate
∫
S
(∇×G)·dS over the spherical cap r = 5, 0 ≤ θ ≤ 25◦, 0 ≤ φ ≤ 2π : When evaluating

the curl of G using the formula in spherical coordinates, only one of the six terms survives:

∇ × G = 1

r sin θ

∂(Gφ sin θ)

∂θ
ar = 1

r sin θ
15r cos θ ar = 15 cot θ ar

Then ∫
S

(∇ × G) · dS =
∫ 2π

0

∫ 25◦

0
15 cot θ ar · ar (5)2 sin θ dθ dφ

= 2π
∫ 25◦

0
15 cos θ(25) dθ = 2π(15)(25) sin(25◦) = 995.8
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8.27. The magnetic field intensity is given in a certain region of space as

H = x + 2y

z2 ay + 2

z
az A/m

a) Find ∇ × H: For this field, the general curl expression in rectangular coordinates simplifies to

∇ × H = −∂Hy
∂z

ax + ∂Hy

∂x
az = 2(x + 2y)

z3 ax + 1

z2 az A/m

b) Find J: This will be the answer of part a, since ∇ × H = J.

c) Use J to find the total current passing through the surface z = 4, 1 < x < 2, 3 < y < 5, in the az
direction: This will be

I =
∫ ∫

J
∣∣
z=4 · az dx dy =

∫ 5

3

∫ 2

1

1

42 dx dy = 1/8 A

d) Show that the same result is obtained using the other side of Stokes’ theorem: We take
∮

H · dL
over the square path at z = 4 as defined in part c. This involves two integrals of the y component
of H over the range 3 < y < 5. Integrals over x, to complete the loop, do not exist since there is
no x component of H. We have

I =
∮

H
∣∣
z=4 · dL =

∫ 5

3

2 + 2y

16
dy +

∫ 3

5

1 + 2y

16
dy = 1

8
(2)− 1

16
(2) = 1/8 A

8.28. Given H = (3r2/ sin θ)aθ + 54r cos θaφ A/m in free space:
a) find the total current in the aθ direction through the conical surface θ = 20◦, 0 ≤ φ ≤ 2π ,

0 ≤ r ≤ 5, by whatever side of Stokes’ theorem you like best. I chose the line integral side, where
the integration path is the circular path in φ around the top edge of the cone, at r = 5. The path
direction is chosen to be clockwise looking down on the xy plane. This, by convention, leads to
the normal from the cone surface that points in the positive aθ direction (right hand rule). We find

∮
H · dL =

∫ 2π

0

[
(3r2/ sin θ)aθ + 54r cos θaφ

]
r=5,θ=20

· 5 sin(20◦) dφ (−aφ)

= −2π(54)(25) cos(20◦) sin(20◦) = −2.73 × 103 A

This result means that there is a component of current that enters the cone surface in the −aθ
direction, to which is associated a component of H in the positive aφ direction.

b) Check the result by using the other side of Stokes’ theorem: We first find the current density
through the curl of the magnetic field, where three of the six terms in the spherical coordinate
formula survive:

∇ × H = 1

r sin θ

∂

∂θ
(54r cos θ sin θ)) ar − 1

r

∂

∂r

(
54r2 cos θ

)
aθ + 1

r

∂

∂r

(
3r3

sin θ

)
aφ = J

Thus

J = 54 cot θ ar − 108 cos θ aθ + 9r

sin θ
aφ
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8.28b. (continued)

The calculation of the other side of Stokes’ theorem now involves integrating J over the surface of the
cone, where the outward normal is positive aθ , as defined in part a:

∫
S

(∇ × H) · dS =
∫ 2π

0

∫ 5

0

[
54 cot θ ar − 108 cos θ aθ + 9r

sin θ
aφ

]
θ=20◦

· aθ r sin(20◦) dr dφ

= −
∫ 2π

0

∫ 5

0
108 cos(20◦) sin(20◦)rdrdφ = −2π(54)(25) cos(20◦) sin(20◦)

= −2.73 × 103 A

8.29. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed current of 2
A dc.

a) Find J within the conductor: Assuming the current is +z directed,

J = 2

π(0.2 × 10−3)2
az = 1.59 × 107 az A/m2

b) Use Ampere’s circuital law to find H and B within the conductor: Inside, at radius ρ, we have

2πρHφ = πρ2J ⇒ H = ρJ

2
aφ = 7.96 × 106ρ aφ A/m

Then B = µ0H = (4π × 10−7)(7.96 × 106)ρaφ = 10ρ aφ Wb/m2.

c) Show that ∇ × H = J within the conductor: Using the result of part b, we find,

∇ × H = 1

ρ

d

dρ
(ρHφ) az = 1

ρ

d

dρ

(
1.59 × 107ρ2

2

)
az = 1.59 × 107 az A/m2 = J

d) Find H and B outside the conductor (note typo in book): Outside, the entire current is enclosed
by a closed path at radius ρ, and so

H = I

2πρ
aφ = 1

πρ
aφ A/m

Now B = µ0H = µ0/(πρ) aφ Wb/m2.

e) Show that ∇ × H = J outside the conductor: Here we use H outside the conductor and write:

∇ × H = 1

ρ

d

dρ
(ρHφ) az = 1

ρ

d

dρ

(
ρ

1

πρ

)
az = 0 (as expected)
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8.30. A solid nonmagnetic conductor of circular cross-section has a radius of 2mm. The conductor is inho-
mogeneous, with σ = 106(1 + 106ρ2) S/m. If the conductor is 1m in length and has a voltage of 1mV
between its ends, find:

a) H inside: With current along the cylinder length (along az, and with φ symmetry, H will be φ-
directed only. We find E = (V0/d)az = 10−3az V/m. Then J = σE = 103(1 + 106ρ2)az A/m2.
Next we apply Ampere’s circuital law to a circular path of radius ρ, centered on the z axis and
normal to the axis:∮

H · dL = 2πρHφ =
∫ ∫

S

J · dS =
∫ 2π

0

∫ ρ

0
103(1 + 106(ρ′)2)az · azρ′dρ′dφ

Thus

Hφ = 103

ρ

∫ ρ

0
ρ′ + 106(ρ′)3dρ′ = 103

ρ

[
ρ2

2
+ 106

4
ρ4
]

Finally, H = 500ρ(1 + 5 × 105ρ3)aφ A/m (0 < ρ < 2mm).

b) the total magnetic flux inside the conductor: With field in the φ direction, a plane normal to B will
be that in the region 0 < ρ < 2 mm, 0 < z < 1 m. The flux will be

7 =
∫ ∫

S

B ·dS = µ0

∫ 1

0

∫ 2×10−3

0

(
500ρ + 2.5 × 108ρ3

)
dρdz = 8π×10−10 Wb = 2.5 nWb

8.31. The cylindrical shell defined by 1 cm < ρ < 1.4 cm consists of a non-magnetic conducting material
and carries a total current of 50 A in the az direction. Find the total magnetic flux crossing the plane
φ = 0, 0 < z < 1:

a) 0 < ρ < 1.2 cm: We first need to find J, H, and B: The current density will be:

J = 50

π [(1.4 × 10−2)2 − (1.0 × 10−2)2]
az = 1.66 × 105 az A/m2

Next we find Hφ at radius ρ between 1.0 and 1.4 cm, by applying Ampere’s circuital law, and
noting that the current density is zero at radii less than 1 cm:

2πρHφ = Iencl =
∫ 2π

0

∫ ρ

10−2
1.66 × 105ρ′ dρ′ dφ

⇒ Hφ = 8.30 × 104 (ρ
2 − 10−4)

ρ
A/m (10−2 m < ρ < 1.4 × 10−2 m)

Then B = µ0H, or

B = 0.104
(ρ2 − 10−4)

ρ
aφ Wb/m2

Now,

7a =
∫ ∫

B · dS =
∫ 1

0

∫ 1.2×10−2

10−2
0.104

[
ρ − 10−4

ρ

]
dρ dz

= 0.104

[
(1.2 × 10−2)2 − 10−4

2
− 10−4 ln

(
1.2

1.0

)]
= 3.92 × 10−7 Wb = 0.392µWb
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8.31b) 1.0 cm < ρ < 1.4 cm (note typo in book): This is part a over again, except we change the upper limit
of the radial integration:

7b =
∫ ∫

B · dS =
∫ 1

0

∫ 1.4×10−2

10−2
0.104

[
ρ − 10−4

ρ

]
dρ dz

= 0.104

[
(1.4 × 10−2)2 − 10−4

2
− 10−4 ln

(
1.4

1.0

)]
= 1.49 × 10−6 Wb = 1.49µWb

c) 1.4 cm < ρ < 20 cm: This is entirely outside the current distribution, so we need B there: We
modify the Ampere’s circuital law result of part a to find:

Bout = 0.104
[(1.4 × 10−2)2 − 10−4]

ρ
aφ = 10−5

ρ
aφ Wb/m2

We now find

7c =
∫ 1

0

∫ 20×10−2

1.4×10−2

10−5

ρ
dρ dz = 10−5 ln

(
20

1.4

)
= 2.7 × 10−5 Wb = 27µWb

8.32. The free space region defined by 1 < z < 4 cm and 2 < ρ < 3 cm is a toroid of rectangular
cross-section. Let the surface at ρ = 3 cm carry a surface current K = 2az kA/m.

a) Specify the current densities on the surfaces at ρ = 2 cm, z = 1cm, and z = 4cm. All surfaces
must carry equal currents. With this requirement, we find: K(ρ = 2) = −3 az kA/m. Next, the
current densities on the z = 1 and z = 4 surfaces must transistion between the current density
values at ρ = 2 and ρ = 3. Knowing the the radial current density will vary as 1/ρ, we find
K(z = 1) = (60/ρ)aρ A/m with ρ in meters. Similarly, K(z = 4) = −(60/ρ)aρ A/m.

b) Find H everywhere: Outside the toroid, H = 0. Inside, we apply Ampere’s circuital law in the
manner of Problem 8.14:∮

H · dL = 2πρHφ =
∫ 2π

0
K(ρ = 2) · az (2 × 10−2) dφ

⇒ H = −2π(3000)(.02)

ρ
aφ = −60/ρ aφ A/m (inside)

c) Calculate the total flux within the toriod: We have B = −(60µ0/ρ)aφ Wb/m2. Then

7 =
∫ .04

.01

∫ .03

.02

−60µ0

ρ
aφ · (−aφ) dρ dz = (.03)(60)µ0 ln

(
3

2

)
= 0.92µWb

8.33. Use an expansion in cartesian coordinates to show that the curl of the gradient of any scalar field G is
identically equal to zero. We begin with

∇G = ∂G

∂x
ax + ∂G

∂y
ay + ∂G

∂z
az

and

∇ × ∇G =
[
∂

∂y

(
∂G

∂z

)
− ∂

∂z

(
∂G

∂y

)]
ax +

[
∂

∂z

(
∂G

∂x

)
− ∂

∂x

(
∂G

∂z

)]
ay

+
[
∂

∂x

(
∂G

∂y

)
− ∂

∂y

(
∂G

∂x

)]
az = 0 for any G
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8.34. A filamentary conductor on the z axis carries a current of 16A in the az direction, a conducting shell
at ρ = 6 carries a total current of 12A in the −az direction, and another shell at ρ = 10 carries a total
current of 4A in the −az direction.

a) Find H for 0 < ρ < 12: Ampere’s circuital law states that
∮

H ·dL = Iencl , where the line integral
and current direction are related in the usual way through the right hand rule. Therefore, if I is in
the positive z direction, H is in the aφ direction. We proceed as follows:

0 < ρ < 6 : 2πρHφ = 16 ⇒ H = 16/(2πρ)aφ

6 < ρ < 10 : 2πρHφ = 16 − 12 ⇒ H = 4/(2πρ)aφ

ρ > 10 : 2πρHφ = 16 − 12 − 4 = 0 ⇒ H = 0

b) Plot Hφ vs. ρ:

c) Find the total flux 7 crossing the surface 1 < ρ < 7, 0 < z < 1: This will be

7 =
∫ 1

0

∫ 6

1

16µ0

2πρ
dρ dz+

∫ 1

0

∫ 7

6

4µ0

2πρ
dρ dz = 2µ0

π
[4 ln 6 + ln(7/6)] = 5.9 µWb

8.35. A current sheet, K = 20 az A/m, is located at ρ = 2, and a second sheet, K = −10 az A/m is located
at ρ = 4.
a.) Let Vm = 0 at P(ρ = 3, φ = 0, z = 5) and place a barrier at φ = π . Find Vm(ρ, φ, z) for

−π < φ < π : Since the current is cylindrically-symmetric, we know that H = I/(2πρ) aφ ,
where I is the current enclosed, equal in this case to 2π(2)K = 80π A. Thus, using the result of
Section 8.6, we find

Vm = − I

2π
φ = −80π

2π
φ = −40φ A

which is valid over the region 2 < ρ < 4, −π < φ < π , and −∞ < z < ∞. For ρ > 4, the
outer current contributes, leading to a total enclosed current of

Inet = 2π(2)(20)− 2π(4)(10) = 0

With zero enclosed current, Hφ = 0, and the magnetic potential is zero as well.
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8.35b. Let A = 0 at P and find A(ρ, φ, z) for 2 < ρ < 4: Again, we know that H = Hφ(ρ), since the current
is cylindrically symmetric. With the current only in the z direction, and again using symmmetry, we
expect only a z component of A which varies only with ρ. We can then write:

∇ × A = −dAz
dρ

aφ = B = µ0I

2πρ
aφ

Thus
dAz

dρ
= −µ0I

2πρ
⇒ Az = −µ0I

2π
ln(ρ)+ C

We require that Az = 0 at ρ = 3. Therefore C = [(µ0I )/(2π)] ln(3), Then, with I = 80π , we finally
obtain

A = −µ0(80π)

2π
[ln(ρ)− ln(3)] az = 40µ0 ln

(
3

ρ

)
az Wb/m

8.36. Let A = (3y − z)ax + 2xzay Wb/m in a certain region of free space.
a) Show that ∇ · A = 0:

∇ · A = ∂

∂x
(3y − z)+ ∂

∂y
2xz = 0

b) At P(2,−1, 3), find A, B, H, and J: First AP = −6ax + 12ay . Then, using the curl formula in
cartesian coordinates,

B = ∇ × A = −2xax − ay + (2z− 3)az ⇒ BP = −4ax − ay + 3az Wb/m2

Now
HP = (1/µ0)BP = −3.2 × 106ax − 8.0 × 105ay + 2.4 × 106az A/m

Then J = ∇ × H = (1/µ0)∇ × B = 0, as the curl formula in cartesian coordinates shows.

8.37. Let N = 1000, I = 0.8 A, ρ0 = 2 cm, and a = 0.8 cm for the toroid shown in Fig. 8.12b. Find Vm in
the interior of the toroid if Vm = 0 at ρ = 2.5 cm, φ = 0.3π . Keep φ within the range 0 < φ < 2π :
Well-within the toroid, we have

H = NI

2πρ
aφ = −∇Vm = − 1

ρ

dVm

dφ
aφ

Thus

Vm = −NIφ
2π

+ C
Then,

0 = −1000(0.8)(0.3π)

2π
+ C

or C = 120. Finally

Vm =
[

120 − 400

π
φ

]
A (0 < φ < 2π)
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8.38. The solenoid shown in Fig. 8.11b contains 400 turns, carries a current I = 5 A, has a length of 8cm,
and a radius a = 1.2 cm (hope it doesn’t blow up!).

a) Find H within the solenoid. Assuming the current flows in the aφ direction, H will then be along
the positive z direction, and will be given by

H = NI

d
az = (400)(5)

.08
az = 2.5 × 104 A/m

b) If Vm = 0 at the origin, specify Vm(ρ, φ, z) inside the solenoid: Since H is only in the z direction,
Vm should vary with z only. Use

H = −∇Vm = −dVm
dz

az ⇒ Vm = −Hzz+ C

At z = 0, Vm = 0, so C = 0. Therefore Vm(z) = −2.5 × 104z A

c) Let A = 0 at the origin, and specify A(ρ, φ, z) inside the solenoid if the medium is free space. A
should be in the same direction as the current, and so would have aφ component only. Furthermore,
since ∇ × A = B, the curl will be z-directed only. Therefore

∇ × A = 1

ρ

∂

∂ρ
(ρAφ)az = µ0Hzaz

Then
∂

∂ρ
(ρAφ) = µ0Hzρ ⇒ Aφ = µ0Hzρ

2
+ C

Aφ = 0 at the origin, so C = 0. Finally,

A = (4π × 10−7)(2.5 × 104)ρ

2
aφ = 15.7aφ mWb/m

8.39. Planar current sheets of K = 30az A/m and −30az A/m are located in free space at x = 0.2 and
x = −0.2 respectively. For the region −0.2 < x < 0.2:

a) Find H: Since we have parallel current sheets carrying equal and opposite currents, we use Eq.
(12), H = K × aN , where aN is the unit normal directed into the region between currents, and
where either one of the two currents are used. Choosing the sheet at x = 0.2, we find

H = 30az × −ax = −30ay A/m

b) Obtain and expression for Vm if Vm = 0 at P(0.1, 0.2, 0.3): Use

H = −30ay = −∇Vm = −dVm
dy

ay

So
dVm

dy
= 30 ⇒ Vm = 30y + C1

Then
0 = 30(0.2)+ C1 ⇒ C1 = −6 ⇒ Vm = 30y − 6 A
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8.39c) Find B: B = µ0H = −30µ0ay Wb/m2.

d) Obtain an expression for A if A = 0 at P : We expect A to be z-directed (with the current), and so
from ∇ × A = B, where B is y-directed, we set up

−dAz
dx

= −30µ0 ⇒ Az = 30µ0x + C2

Then
0 = 30µ0(0.1)+ C2 ⇒ C2 = −3µ0

So finally
A = µ0(30x − 3)az Wb/m

8.40. Let A = (3y2 − 2z)ax − 2x2zay + (x + 2y)az Wb/m in free space. Find ∇ × ∇ × A at P(−2, 3,−1):

First ∇ × A =

(
∂(x + 2y)

∂y
− ∂(−2x2z)

∂z

)
ax +

(
∂(3y2 − 2z)

∂z
− ∂(x + 2y)

∂x

)
ay +

(
∂(−2x2z)

∂x
− ∂(3y2 − 2z)

∂y

)
az

= (2 + 2x2)ax − 3ay − (4xz+ 6y)az

Then

∇ × ∇ × A = ∂(4xz+ 6y)

∂x
ay − ∂(4xz+ 6y)

∂y
ax = −6ax + 4zay

At P this becomes ∇ × ∇ × A|P = −6ax − 4ay Wb/m3.

8.41. Assume that A = 50ρ2az Wb/m in a certain region of free space.
a) Find H and B: Use

B = ∇ × A = −∂Az
∂ρ

aφ = −100ρ aφ Wb/m2

Then H = B/µ0 = −100ρ/µ0 aφ A/m.

b) Find J: Use

J = ∇ × H = 1

ρ

∂

∂ρ
(ρHφ)az = 1

ρ

∂

∂ρ

(−100ρ2

µ0

)
az = −200

µ0
az A/m2

c) Use J to find the total current crossing the surface 0 ≤ ρ ≤ 1, 0 ≤ φ < 2π , z = 0: The current is

I =
∫ ∫

J · dS =
∫ 2π

0

∫ 1

0

−200

µ0
az · az ρ dρ dφ = −200π

µ0
A = −500 kA

d) Use the value of Hφ at ρ = 1 to calculate
∮

H · dL for ρ = 1, z = 0: Have

∮
H · dL = I =

∫ 2π

0

−100

µ0
aφ · aφ (1)dφ = −200π

µ0
A = −500 kA
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8.42. Show that ∇2(1/R12) = −∇1(1/R12) = R21/R
3
12. First

∇2

(
1

R12

)
= ∇2

[
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2
]−1/2

= −1

2

[
2(x2 − x1)ax + 2(y2 − y1)ay + 2(z2 − z1)az

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2

]
= −R12

R3
12

= R21

R3
12

Also note that ∇1(1/R12) would give the same result, but of opposite sign.

8.43. Compute the vector magnetic potential within the outer conductor for the coaxial line whose vector
magnetic potential is shown in Fig. 8.20 if the outer radius of the outer conductor is 7a. Select the
proper zero reference and sketch the results on the figure: We do this by first finding B within the outer
conductor and then “uncurling” the result to find A. With −z-directed current I in the outer conductor,
the current density is

Jout = − I

π(7a)2 − π(5a)2 az = − I

24πa2 az

Since current I flows in both conductors, but in opposite directions, Ampere’s circuital law inside the
outer conductor gives:

2πρHφ = I −
∫ 2π

0

∫ ρ

5a

I

24πa2 ρ
′ dρ′ dφ ⇒ Hφ = I

2πρ

[
49a2 − ρ2

24a2

]

Now, with B = µ0H, we note that ∇ × A will have a φ component only, and from the direction and
symmetry of the current, we expect A to be z-directed, and to vary only with ρ. Therefore

∇ × A = −dAz
dρ

aφ = µ0H

and so
dAz

dρ
= −µ0I

2πρ

[
49a2 − ρ2

24a2

]

Then by direct integration,

Az =
∫ −µ0I (49)

48πρ
dρ +

∫
µ0Iρ

48πa2 dρ + C = µ0I

96π

[
ρ2

a2 − 98 ln ρ

]
+ C

As per Fig. 8.20, we establish a zero reference at ρ = 5a, enabling the evaluation of the integration
constant:

C = −µ0I

96π
[25 − 98 ln(5a)]

Finally,

Az = µ0I

96π

[(
ρ2

a2 − 25

)
+ 98 ln

(
5a

ρ

)]
Wb/m

A plot of this continues the plot of Fig. 8.20, in which the curve goes negative at ρ = 5a, and then
approaches a minimum of −.09µ0I/π at ρ = 7a, at which point the slope becomes zero.
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8.44. By expanding Eq.(58), Sec. 8.7 in cartesian coordinates, show that (59) is correct. Eq. (58) can be
rewritten as

∇2A = ∇(∇ · A)− ∇ × ∇ × A

We begin with

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

Then the x component of ∇(∇ · A) is

[∇(∇ · A)]x = ∂2Ax

∂x2 + ∂2Ay

∂x∂y
+ ∂2Az

∂x∂z

Now

∇ × A =
(
∂Az

∂y
− ∂Ay

∂z

)
ax +

(
∂Ax

∂z
− ∂Az

∂x

)
ay +

(
∂Ay

∂x
− ∂Ax

∂y

)
az

and the x component of ∇ × ∇ × A is

[∇ × ∇ × A]x = ∂2Ay

∂x∂y
− ∂2Ax

∂y2 − ∂2Ax

∂z2 + ∂2Az

∂z∂y

Then, using the underlined results

[∇(∇ · A)− ∇ × ∇ × A]x = ∂2Ax

∂x2 + ∂2Ax

∂y2 + ∂2Ax

∂z2 = ∇2Ax

Similar results will be found for the other two components, leading to

∇(∇ · A)− ∇ × ∇ × A = ∇2Axax + ∇2Ayay + ∇2Azaz ≡ ∇2A QED
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CHAPTER 9

9.1. A point charge,Q = −0.3µC andm = 3×10−16 kg, is moving through the field E = 30 az V/m. Use
Eq. (1) and Newton’s laws to develop the appropriate differential equations and solve them, subject to
the initial conditions at t = 0: v = 3 × 105 ax m/s at the origin. At t = 3µs, find:

a) the position P(x, y, z) of the charge: The force on the charge is given by F = qE, and Newton’s
second law becomes:

F = ma = md
2z
dt2

= qE = (−0.3 × 10−6)(30 az)

describing motion of the charge in the z direction. The initial velocity in x is constant, and so no
force is applied in that direction. We integrate once:

dz

dt
= vz = qE

m
t + C1

The initial velocity along z, vz(0) is zero, and so C1 = 0. Integrating a second time yields the z
coordinate:

z = qE

2m
t2 + C2

The charge lies at the origin at t = 0, and so C2 = 0. Introducing the given values, we find

z = (−0.3 × 10−6)(30)

2 × 3 × 10−16 t2 = −1.5 × 1010t2 m

At t = 3 µs, z = −(1.5 × 1010)(3 × 10−6)2 = −.135 cm. Now, considering the initial constant
velocity in x, the charge in 3µs attains an x coordinate of x = vt = (3×105)(3×10−6) = .90 m.
In summary, at t = 3 µs we have P(x, y, z) = (.90, 0,−.135).

b) the velocity, v: After the first integration in part a, we find

vz = qE

m
t = −(3 × 1010)(3 × 10−6) = −9 × 104 m/s

Including the intial x-directed velocity, we finally obtain v = 3 × 105 ax − 9 × 104az m/s.

c) the kinetic energy of the charge: Have

K.E. = 1

2
m|v|2 = 1

2
(3 × 10−16)(1.13 × 105)2 = 1.5 × 10−5 J

9.2. A point charge,Q = −0.3µC andm = 3×10−16 kg, is moving through the field B = 30az mT. Make
use of Eq. (2) and Newton’s laws to develop the appropriate differential equations, and solve them,
subject to the initial condition at t = 0, v = 3 × 105 m/s at the origin. Solve these equations (perhaps
with the help of an example given in Section 7.5) to evaluate at t = 3µs: a) the position P(x, y, z) of
the charge; b) its velocity; c) and its kinetic energy:

We begin by visualizing the problem. Using F = qv × B, we find that a positive charge moving along
positive ax , would encounter the z-directed B field and be deflected into the negative y direction.
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9.2 (continued) Motion along negative y through the field would cause further deflection into the negative
x direction. We can construct the differential equations for the forces in x and in y as follows:

Fxax = mdvx
dt

ax = qvyay × Baz = qBvyax

Fyay = mdvy
dt

ay = qvxax × Baz = −qBvxay

or
dvx

dt
= qB

m
vy (1)

and
dvy

dt
= −qB

m
vx (2)

To solve these equations, we first differentiate (2) with time and substitute (1), obtaining:

d2vy

dt2
= −qB

m

dvx

dt
= −

(
qB

m

)2

vy

Therefore, vy = A sin(qBt/m)+A′ cos(qBt/m). However, at t = 0, vy = 0, and so A′ = 0, leaving
vy = A sin(qBt/m). Then, using (2),

vx = − m

qB

dvy

dt
= −A cos

(
qBt

m

)

Now at t = 0, vx = vx0 = 3 × 105. Therefore A = −vx0, and so vx = vx0 cos(qBt/m), and
vy = −vx0 sin(qBt/m). The positions are then found by integrating vx and vy over time:

x(t) =
∫
vx0 cos

(
qBt

m

)
dt + C = mvx0

qB
sin

(
qBt

m

)
+ C

where C = 0, since x(0) = 0. Then

y(t) =
∫

−vx0 sin

(
qBt

m

)
dt +D = mvx0

qB
cos

(
qBt

m

)
+D

We require that y(0) = 0, so D = −(mvx0)/(qB), and finally y(t) = −mvx0/qB [1 − cos (qBt/m)].
Summarizing, we have, using q = −3×10−7 C,m = 3×10−16 kg,B = 30×10−3 T, and vx0 = 3×105

m/s:

x(t) = mvx0

qB
sin

(
qBt

m

)
= −10−2 sin(−3 × 10−7t) m

y(t) = −mvx0

qB

[
1 − cos

(
qBt

m

)]
= 10−2[1 − cos(−3 × 107t)] m

vx(t) = vx0 cos

(
qBt

m

)
= 3 × 105 cos(−3 × 107t) m/s

vy(t) = −vx0 sin

(
qBt

m

)
= −3 × 105 sin(−3 × 107t) m/s
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9.2 (continued) The answers are now:

a) At t = 3 × 10−6 s, x = 8.9 mm, y = 14.5 mm, and z = 0.

b) At t = 3 × 10−6 s, vx = −1.3 × 105 m/s, vy = 2.7 × 105 m/s, and so

v(t = 3µs) = −1.3 × 105ax + 2.7 × 105ay m/s

whose magnitude is v = 3 × 105 m/s as would be expected.

c) Kinetic energy is K.E. = (1/2)mv2 = 1.35 µJ at all times.

9.3. A point charge for which Q = 2 × 10−16 C and m = 5 × 10−26 kg is moving in the combined fields
E = 100ax − 200ay + 300az V/m and B = −3ax + 2ay − az mT. If the charge velocity at t = 0 is
v(0) = (2ax − 3ay − 4az)× 105 m/s:

a) give the unit vector showing the direction in which the charge is accelerating at t = 0: Use
F(t = 0) = q[E + (v(0)× B)], where

v(0)× B = (2ax − 3ay − 4az)105 × (−3ax + 2ay − az)10−3 = 1100ax + 1400ay − 500az

So the force in newtons becomes

F(0) = (2×10−16)[(100+1100)ax+(1400−200)ay+(300−500)az] = 4×10−14[6ax+6ay−az]

The unit vector that gives the acceleration direction is found from the force to be

aF = 6ax + 6ay − az√
73

= .70ax + .70ay − .12az

b) find the kinetic energy of the charge at t = 0:

K.E. = 1

2
m|v(0)|2 = 1

2
(5 × 10−26 kg)(5.39 × 105 m/s)2 = 7.25 × 10−15 J = 7.25 fJ

9.4. An electron (qe = −1.60219 × 10−19 C, m = 9.10956 × 10−31 kg) is moving at a constant velocity
v = 4.5 × 107ay m/s along the negative y axis. At the origin it encounters the uniform magnetic field
B = 2.5az mT, and remains in it up to y = 2.5 cm. If we assume (with good accuracy) that the electron
remains on the y axis while it is in the magnetic field, find its x-, y-, and z-coordinate values when
y = 50 cm: The procedure is to find the electron velocity as it leaves the field, and then determine its
coordinates at the time corresponding to y = 50 cm. The force it encounters while in the field is

F = qv × B = (−1.60219 × 10−19)(4.5 × 107)(2.5 × 10−3)(ay × az) = −1.80 × 10−14ax N

This force will be constant during the time the electron traverses the field. It establishes a negative
x-directed velocity as it leaves the field, given by the acceleration times the transit time, tt :

vx = F tt

m
=
( −1.80 × 1014 N

9.10956 × 10−31 kg

)(
2.5 × 10−2 m

4.5 × 107 m/s

)
= −1.09 × 107 m/s
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9.4 (continued) The time for the electron to travel along y between 2.5 and 50 cm is

t50 = (50 − 2.5)× 10−2

4.5 × 107 = 1.06 × 10−8 s

In that time, the electron moves to an x coordinate given by

x = vxt50 = −(1.09 × 107)(1.06 × 10−8) = −.115 m

The coordinates at the time the electron reaches y = 50 cm are then:

x = −11.5 cm, y = 50 cm, z = 0

9.5. A rectangular loop of wire in free space joins points A(1, 0, 1) to B(3, 0, 1) to C(3, 0, 4) toD(1, 0, 4)
toA. The wire carries a current of 6 mA, flowing in the az direction from B toC. A filamentary current
of 15 A flows along the entire z axis in the az direction.

a) Find F on side BC:

FBC =
∫ C

B

IloopdL × Bfrom wire at BC

Thus

FBC =
∫ 4

1
(6 × 10−3) dz az × 15µ0

2π(3)
ay = −1.8 × 10−8ax N = −18ax nN

b) Find F on sideAB: The field from the long wire now varies with position along the loop segment.
We include that dependence and write

FAB =
∫ 3

1
(6 × 10−3) dx ax × 15µ0

2πx
ay = 45 × 10−3

π
µ0 ln 3 az = 19.8az nN

c) Find Ftotal on the loop: This will be the vector sum of the forces on the four sides. Note that by
symmetry, the forces on sides AB and CD will be equal and opposite, and so will cancel. This
leaves the sum of forces on sides BC (part a) and DA, where

FDA =
∫ 4

1
−(6 × 10−3) dz az × 15µ0

2π(1)
ay = 54ax nN

The total force is then Ftotal = FDA + FBC = (54 − 18)ax = 36 ax nN

9.6 The magnetic flux density in a region of free space is given by B = −3xax + 5yay − 2zaz T. Find
the total force on the rectangular loop shown in Fig. 9.15 if it lies in the plane z = 0 and is bounded
by x = 1, x = 3, y = 2, and y = 5, all dimensions in cm: First, note that in the plane z = 0, the z
component of the given field is zero, so will not contribute to the force. We use

F =
∫
loop

IdL × B

which in our case becomes, with I = 30 A:

F =
∫ .03

.01
30dxax × (−3xax + 5y|y=.02 ay)+

∫ .05

.02
30dyay × (−3x|x=.03 ax + 5yay)

+
∫ .01

.03
30dxax × (−3xax + 5y|y=.05 ay)+

∫ .02

.05
30dyay × (−3x|x=.01 ax + 5yay)
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9.6. (continued) Simplifying, this becomes

F =
∫ .03

.01
30(5)(.02) az dx +

∫ .05

.02
−30(3)(.03)(−az) dy

+
∫ .01

.03
30(5)(.05) az dx +

∫ .02

.05
−30(3)(.01)(−az) dy = (.060 + .081 − .150 − .027)az N

= −36 az mN

9.7. Uniform current sheets are located in free space as follows: 8az A/m at y = 0, −4az A/m at y = 1,
and −4az A/m at y = −1. Find the vector force per meter length exerted on a current filament carrying
7 mA in the aL direction if the filament is located at:

a) x = 0, y = 0.5, and aL = az: We first note that within the region −1 < y < 1, the magnetic
fields from the two outer sheets (carrying −4az A/m) cancel, leaving only the field from the center
sheet. Therefore, H = −4ax A/m (0 < y < 1) and H = 4ax A/m (−1 < y < 0). Outside
(y > 1 and y < −1) the fields from all three sheets cancel, leaving H = 0 (y > 1, y < −1). So
at x = 0, y = .5, the force per meter length will be

F/m = Iaz × B = (7 × 10−3)az × −4µ0ax = −35.2ay nN/m

b.) y = 0.5, z = 0, and aL = ax : F/m = Iax × −4µ0ax = 0.

c) x = 0, y = 1.5, aL = az: Since y = 1.5, we are in the region in which B = 0, and so the force is
zero.

9.8. Filamentary currents of −25az and 25az A are located in the x = 0 plane in free space at y = −1 and
y = 1m respectively. A third filamentary current of 10−3az A is located at x = k, y = 0. Find the
vector force on a 1-m length of the 1-mA filament and plot |F| versus k: The total B field arising from
the two 25A filaments evaluated at the location of the 1-mA filament is, in cartesian components:

B = 25µ0

2π(1 + k2)
(kay + ax)︸ ︷︷ ︸

line at y=+1

+ 25µ0

2π(1 + k2)
(−kay + ax)︸ ︷︷ ︸

line at y=−1

= 25µ0ax
π(1 + k2)

The force on the 1m length of 1-mA line is now

F = 10−3(1)az × 25µ0ax
π(1 + k2)

= (2.5 × 10−2)(4 × 10−7)

(1 + k2)
ay = 10−8ay

(1 + k2)
ay N = 10ay

(1 + k2)
nN
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9.9. A current of −100az A/m flows on the conducting cylinder ρ = 5 mm and +500az A/m is present
on the conducting cylinder ρ = 1 mm. Find the magnitude of the total force acting to split the outer
cylinder apart along its length: The differential force acting on the outer cylinder arising from the field
of the inner cylinder is dF = Kouter × B, where B is the field from the inner cylinder, evaluated at the
outer cylinder location:

B = 2π(1)(500)µ0

2π(5)
aφ = 100µ0 aφ T

Thus dF = −100az × 100µ0aφ = 104µ0aρ N/m2. We wish to find the force acting to split the outer
cylinder, which means we need to evaluate the net force in one cartesian direction on one half of the
cylinder. We choose the “upper” half (0 < φ < π), and integrate the y component of dF over this
range, and over a unit length in the z direction:

Fy =
∫ 1

0

∫ π

0
104µ0aρ · ay(5 × 10−3) dφ dz =

∫ π

0
50µ0 sin φ dφ = 100µ0 = 4π × 10−5 N/m

Note that we did not include the “self force” arising from the outer cylinder’s B field on itself. Since the
outer cylinder is a two-dimensional current sheet, its field exists only just outside the cylinder, and so no
force exists. If this cylinder possessed a finite thickness, then we would need to include its self-force,
since there would be an interior field and a volume current density that would spatially overlap.

9.10. Two infinitely-long parallel filaments each carry 50 A in the az direction. If the filaments lie in the
plane y = 0 at x = 0 and x = 5mm (note bad wording in problem statement in book), find the vector
force per meter length on the filament passing through the origin: The force will be

F =
∫ 1

0
IdL × B

where IdL is that of the filament at the origin, and B is that arising from the filament at x = 5mm
evaluated at the location of the other filament (along the z axis). We obtain

F =
∫ 1

0
50 dzaz × −50µ0ay

2π(5 × 10−3)
= 0.10 ax N/m

9.11. a) Use Eq. (14), Sec. 9.3, to show that the force of attraction per unit length between two filamentary
conductors in free space with currents I1az at x = 0, y = d/2, and I2az at x = 0, y = −d/2, is
µ0I1I2/(2πd): The force on I2 is given by

F2 = µ0
I1I2

4π

∮ [∮
aR12 × dL1

R2
12

]
× dL2

Let z1 indicate the z coordinate along I1, and z2 indicate the z coordinate along I2. We then have
R12 =

√
(z2 − z1)2 + d2 and

aR12 = (z2 − z1)az − day√
(z2 − z1)2 + d2

Also, dL1 = dz1az and dL2 = dz2az The “inside” integral becomes:∮
aR12 × dL1

R2
12

=
∮

[(z2 − z1)az − day] × dz1az
[(z2 − z1)2 + d2]1.5

=
∫ ∞

−∞
−d dz1 ax

[(z2 − z1)2 + d2]1.5
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9.11a. (continued) The force expression now becomes

F2 = µ0
I1I2

4π

∮ [∫ ∞

−∞
−d dz1 ax

[(z2 − z1)2 + d2]1.5
× dz2az

]
= µ0

I1I2

4π

∫ 1

0

∫ ∞

−∞
d dz1 dz2 ay

[(z2 − z1)2 + d2]1.5

Note that the “outside” integral is taken over a unit length of current I2. Evaluating, obtain,

F2 = µ0
I1I2d ay

4πd2 (2)
∫ 1

0
dz2 = µ0I1I2

2πd
ay N/m

as expected.

b) Show how a simpler method can be used to check your result: We use dF2 = I2dL2 × B12, where
the field from current 1 at the location of current 2 is

B12 = µ0I1

2πd
ax T

so over a unit length of I2, we obtain

F2 = I2az × µ0I1

2πd
ax = µ0

I1I2

2πd
ay N/m

This second method is really just the first over again, since we recognize the inside integral of the
first method as the Biot-Savart law, used to find the field from current 1 at the current 2 location.

9.12. A conducting current strip carrying K = 12azA/m lies in the x = 0 plane between y = 0.5 and y = 1.5
m. There is also a current filament of I = 5 A in the az direction on the z axis. Find the force exerted
on the:

a) filament by the current strip: We first need to find the field from the current strip at the filament
location. Consider the strip as made up of many adjacent strips of width dy, each carrying
current dIaz = Kdy. The field along the z axis from each differential strip will be dB =
[(Kdyµ0)/(2πy)]ax . The total B field from the strip evaluated along the z axis is therefore

B =
∫ 1.5

0.5

12µ0ax
2πy

dy = 6µ0

π
ln

(
1.5

0.5

)
ax = 2.64 × 10−6ax Wb/m2

Now

F =
∫ 1

0
IdL × B =

∫ 1

0
5dz az × 2.64 × 10−6 ax dz = 13.2 ay µN/m

b) strip by the filament: In this case we integrate K ×B over a unit length in z of the strip area, where
B is the field from the filament evaluated on the strip surface:

F =
∫
Area

K × B da =
∫ 1

0

∫ 1.5

0.5
12az × −5µ0ax

2πy
dy = −30µ0

π
ln(3) ay = −13.2 ay µN/m
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9.13. A current of 6A flows from M(2, 0, 5) to N(5, 0, 5) in a straight solid conductor in free space. An
infinite current filament lies along the z axis and carries 50A in the az direction. Compute the vector
torque on the wire segment using:

a) an origin at (0, 0, 5): The B field from the long wire at the short wire is B = (µ0Izay)/(2πx) T.
Then the force acting on a differential length of the wire segment is

dF = IwdL × B = Iwdx ax × µ0Iz

2πx
ay = µ0IwIz

2πx
dx az N

Now the differential torque about (0, 0, 5) will be

dT = RT × dF = xax × µ0IwIz

2πx
dx az = −µ0IwIz

2π
dx ay

The net torque is now found by integrating the differential torque over the length of the wire
segment:

T =
∫ 5

2
−µ0IwIz

2π
dx ay = −3µ0(6)(50)

2π
ay = −1.8 × 10−4 ay N · m

b) an origin at (0, 0, 0): Here, the only modification is in RT , which is now RT = x ax + 5 az So
now

dT = RT × dF = [
xax + 5az

]× µ0IwIz

2πx
dx az = −µ0IwIz

2π
dx ay

Everything from here is the same as in part a, so again, T = −1.8 × 10−4 ay N · m.

c) an origin at (3, 0, 0): In this case, RT = (x − 3)ax + 5az, and the differential torque is

dT = [
(x − 3)ax + 5az

]× µ0IwIz

2πx
dx az = −µ0IwIz(x − 3)

2πx
dx ay

Thus

T =
∫ 5

2
−µ0IwIz(x − 3)

2πx
dx ay = −6.0 × 10−5

[
3 − 3 ln

(
5

2

)]
ay = −1.5 × 10−5 ay N · m

9.14. The rectangular loop of Prob. 6 is now subjected to the B field produced by two current sheets,
K1 = 400 ay A/m at z = 2, and K2 = 300 az A/m at y = 0 in free space. Find the vector torque on the
loop, referred to an origin:

a) at (0,0,0): The fields from both current sheets, at the loop location, will be negative x-directed.
They will add together to give, in the loop plane:

B = −µ0

(
K1

2
+ K2

2

)
ax = −µ0(200 + 150) ax = −350µ0 ax Wb/m2

With this field, forces will be acting only on the wire segments that are parallel to the y axis. The
force on the segment nearer to the y axis will be

F1 = IL × B = −30(3 × 10−2)ay × −350µ0ax = −315µ0 az N
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9.14a (continued) The force acting on the segment farther from the y axis will be

F2 = IL × B = 30(3 × 10−2)ay × −350µ0ax = 315µ0 az N

The torque about the origin is now T = R1 × F1 + R2 × F2, where R1 is the vector directed from the
origin to the midpoint of the nearer y-directed segment, and R2 is the vector joining the origin to the
midpoint of the farther y-directed segment. So R1(cm) = ax + 3.5ay and R2(cm) = 3ax + 3.5ay .
Therefore

T0,0,0 = [(ax + 3.5ay)× 10−2] × −315µ0 az + [(3ax + 3.5ay)× 10−2] × 315µ0 az

= −6.30µ0ay = −7.92 × 10−6 ay N−m

b) at the center of the loop: Use T = IS × B where S = (2 × 3)× 10−4 az m2. So

T = 30(6 × 10−4az)× (−350µ0 ax) = −7.92 × 10−6 ay N−m

9.15. A solid conducting filament extends from x = −b to x = b along the line y = 2, z = 0. This filament
carries a current of 3 A in the ax direction. An infinite filament on the z axis carries 5 A in the az
direction. Obtain an expression for the torque exerted on the finite conductor about an origin located
at (0, 2, 0): The differential force on the wire segment arising from the field from the infinite wire is

dF = 3 dx ax × 5µ0

2πρ
aφ = −15µ0 cosφ dx

2π
√
x2 + 4

az = − 15µ0x dx

2π(x2 + 4)
az

So now the differential torque about the (0, 2, 0) origin is

dT = RT × dF = x ax × − 15µ0x dx

2π(x2 + 4)
az = 15µ0x

2 dx

2π(x2 + 4)
ay

The torque is then

T =
∫ b

−b
15µ0x

2 dx

2π(x2 + 4)
ay = 15µ0

2π
ay
[
x − 2 tan−1

(x
2

)]b
−b

= (6 × 10−6)

[
b − 2 tan−1

(
b

2

)]
ay N · m

9.16. Assume that an electron is describing a circular orbit of radius a about a positively-charged nucleus.
a) By selecting an appropriate current and area, show that the equivalent orbital dipole moment is
ea2ω/2, where ω is the electron’s angular velocity: The current magnitude will be I = e

T
, where

e is the electron charge and T is the orbital period. The latter is T = 2π/ω, and so I = eω/(2π).
Now the dipole moment magnitude will be m = IA, where A is the loop area. Thus

m = eω

2π
πa2 = 1

2
ea2ω //

b) Show that the torque produced by a magnetic field parallel to the plane of the orbit is ea2ωB/2:
With B assumed constant over the loop area, we would have T = m × B. With B parallel to the
loop plane, m and B are orthogonal, and so T = mB. So, using part a, T = ea2ωB/2.
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9.16. (continued)
c) by equating the Coulomb and centrifugal forces, show that ω is (4πε0mea

3/e2)−1/2, whereme is
the electron mass: The force balance is written as

e2

4πε0a2 = meω2a ⇒ ω =
(

4πε0mea
3

e2

)−1/2

//

d) Find values for the angular velocity, torque, and the orbital magnetic moment for a hydrogen atom,
where a is about 6 × 10−11 m; let B = 0.5 T: First

ω =
[

(1.60 × 10−19)2

4π(8.85 × 10−12)(9.1 × 10−31)(6 × 10−11)3

]1/2

= 3.42 × 1016 rad/s

T = 1

2
(3.42 × 1016)(1.60 × 10−19)(0.5)(6 × 10−11)2 = 4.93 × 10−24 N · m

Finally,

m = T

B
= 9.86 × 10−24 A · m2

9.17. The hydrogen atom described in Problem 16 is now subjected to a magnetic field having the same
direction as that of the atom. Show that the forces caused by B result in a decrease of the angular
velocity by eB/(2me) and a decrease in the orbital moment by e2a2B/(4me). What are these decreases
for the hydrogen atom in parts per million for an external magnetic flux density of 0.5 T? We first write
down all forces on the electron, in which we equate its coulomb force toward the nucleus to the sum
of the centrifugal force and the force associated with the applied B field. With the field applied in the
same direction as that of the atom, this would yield a Lorentz force that is radially outward – in the
same direction as the centrifugal force.

Fe = Fcent + FB ⇒ e2

4πε0a2 = meω2a + eωaB︸ ︷︷ ︸
QvB

With B = 0, we solve for ω to find:

ω = ω0 =
√

e2

4πε0mea3

Then with B present, we find

ω2 = e2

4πε0mea3 − eωB

me
= ω2

0 − eωB

me

Therefore

ω = ω0

√
1 − eωB

ω2
0me

.= ω0

(
1 − eωB

2ω2
0me

)

But ω
.= ω0, and so

ω
.= ω0

(
1 − eB

2ω0me

)
= ω0 − eB

2me
//
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9.17. (continued) As for the magnetic moment, we have

m = IS = eω

2π
πa2 = 1

2
ωea2 .= 1

2
ea2

(
ω0 − eB

2me

)
= 1

2
ω0ea

2 − 1

4

e2a2B

me
//

Finally, for a = 6 × 10−11 m, B = 0.5 T, we have

1ω

ω
= eB

2me

1

ω

.= eB

2me

1

ω0
= 1.60 × 10−19 × 0.5

2 × 9.1 × 10−31 × 3.4 × 1016 = 1.3 × 10−6

where ω0 = 3.4 × 1016 sec−1 is found from Problem 16. Finally,

1m

m
= e2a2B

4me
× 2

ωea2
.= eB

2meω0
= 1.3 × 10−6

9.18. Calculate the vector torque on the square loop shown in Fig. 9.16 about an origin at A in the field B,
given:

a) A(0, 0, 0) and B = 100ay mT: The field is uniform and so does not produce any translation of the
loop. Therefore, we may use T = IS × B about any origin, where I = 0.6 A and S = 16az m2.
We find T = 0.6(16)az × 0.100ay = −0.96 ax N−m.

b) A(0, 0, 0) and B = 200ax + 100ay mT: Using the same reasoning as in part a, we find

T = 0.6(16)az × (0.200ax + 0.100ay) = −0.96ax + 1.92ay N−m

c) A(1, 2, 3) and B = 200ax +100ay −300az mT: We observe two things here: 1) The field is again
uniform and so again the torque is independent of the origin chosen, and 2) The field differs from
that of part b only by the addition of a z component. With S in the z direction, this new component
of B will produce no torque, so the answer is the same as part b, or T = −0.96ax + 1.92ay N−m.

d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT for x ≥ 2 and B = 0 elsewhere: Now, force
is acting only on the y-directed segment at x = +2, so we need to be careful, since translation
will occur. So we must use the given origin. The differential torque acting on the differential wire
segment at location (2,y) is dT = R(y)× dF, where

dF = IdL × B = 0.6 dy ay × [0.2ax + 0.1ay − 0.3az] = [−0.18ax − 0.12az] dy

and R(y) = (2, y, 0)− (1, 2, 3) = ax + (y − 2)ay − 3az. We thus find

dT = R(y)× dF = [
ax + (y − 2)ay − 3az

]× [−0.18ax − 0.12az] dy

= [−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az
]
dy

The net torque is now

T =
∫ 2

−2

[−0.12(y − 2)ax + 0.66ay + 0.18(y − 2)az
]
dy = 0.96ax + 2.64ay − 1.44az N−m
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9.19. Given a material for which χm = 3.1 and within which B = 0.4yaz T, find:
a) H: We use B = µ0(1 + χm)H, or

H = 0.4yay
(1 + 3.1)µ0

= 77.6yaz kA/m

b) µ = (1 + 3.1)µ0 = 5.15 × 10−6 H/m.

c) µR = (1 + 3.1) = 4.1.

d) M = χmH = (3.1)(77.6yay) = 241yaz kA/m

e) J = ∇ × H = (dHz)/(dy) ax = 77.6 ax kA/m2.

f) Jb = ∇ × M = (dMz)/(dy) ax = 241 ax kA/m2.

g) JT = ∇ × B/µ0 = 318ax kA/m2.

9.20. Find H in a material where:
a) µR = 4.2, there are 2.7 × 1029 atoms/m3, and each atom has a dipole moment of 2.6 × 10−30 ay

A · m2. Since all dipoles are identical, we may write M = Nm = (2.7×1029)(2.6×10−30ay) =
0.70ay A/m. Then

H = M
µR − 1

= 0.70 ay
4.2 − 1

= 0.22 ay A/m

b) M = 270 az A/m and µ = 2 µH/m: Have µR = µ/µ0 = (2 × 10−6)/(4π × 10−7) = 1.59.
Then H = 270az/(1.59 − 1) = 456 az A/m.

c) χm = 0.7 and B = 2az T: Use

H = B
µ0(1 + χm) = 2az

(4π × 10−7)(1.7)
= 936 az kA/m

d) Find M in a material where bound surface current densities of 12 az A/m and −9 az A/m exist at
ρ = 0.3 m and ρ = 0.4 m, respectively: We use

∮
M · dL = Ib, where, since currents are in the

z direction and are symmetric about the z axis, we chose the path integrals to be circular loops
centered on and normal to z. From the symmetry, M will be φ-directed and will vary only with
radius. Note first that for ρ < 0.3 m, no bound current will be enclosed by a path integral, so we
conclude that M = 0 for ρ < 0.3m. At radii between the currents the path integral will enclose
only the inner current so,∮

M · dL = 2πρMφ = 2π(0.3)12 ⇒ M = 3.6

ρ
aφ A/m (0.3 < ρ < 0.4m)

Finally, for ρ > 0.4 m, the total enclosed bound current is Ib,tot = 2π(0.3)(12)−2π(0.4)(9) = 0,
so therefore M = 0 (ρ > 0.4m).

9.21. Find the magnitude of the magnetization in a material for which:
a) the magnetic flux density is 0.02 Wb/m2 and the magnetic susceptibility is 0.003 (note that this

latter quantity is missing in the original problem statement): From B = µ0(H + M) and from
M = χmH, we write

M = B

µ0

(
1

χm
+ 1

)−1

= B

µ0(334)
= 0.02

(4π × 10−7)(334)
= 47.7 A/m
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9.21b) the magnetic field intensity is 1200A/m and the relative permeability is 1.005: From B = µ0(H+M) =
µ0µRH, we write

M = (µR − 1)H = (.005)(1200) = 6.0 A/m

c) there are 7.2 × 1028 atoms per cubic meter, each having a dipole moment of 4 × 10−30 A · m2 in
the same direction, and the magnetic susceptibility is 0.0003: With all dipoles identical the dipole
moment density becomes

M = nm = (7.2 × 1028)(4 × 10−30) = 0.288 A/m

9.22. Three current sheets are located as follows: 160az A/m at x = 1cm, −40az A/m at x = 5cm, and 50az
A/m at x = 8cm. Let µ = µ0 for x < 1cm and x > 8cm; for 1 < x < 5 cm, µ = 3µ0, and for
5 < x < 8cm, µ = 2µ0. Find B everywhere: We know that the H field from an infinite current sheet
will be given in magnitude by H = K/2, and will be directed parallel to the sheet and perpendicular
to the current, with the directions on either side of the sheet determined by the right hand rule. With
this in mind, we can construct the following expressions for the B field in all four regions:

B(x < 1) = 1

2
µ0(−160 + 40 − 50) = −1.07 × 10−4 ay T

B(1 < x < 5) = 1

2
(3µ0)(160 + 40 − 50) = 2.83 × 10−4 ay T

B(5 < x < 8) = 1

2
(2µ0)(160 − 40 − 50) = 8.80 × 10−5 ay T

B(x > 8) = 1

2
µ0(160 − 40 + 50) = 1.07 × 10−4 ay T

9.23. Calculate values for Hφ , Bφ , and Mφ at ρ = c for a coaxial cable with a = 2.5 mm and b = 6 mm
if it carries current I = 12 A in the center conductor, and µ = 3 µH/m for 2.5 < ρ < 3.5 mm,
µ = 5 µH/m for 3.5 < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 < ρ < 6 mm. Compute for:

a) c = 3 mm: Have

Hφ = I

2πρ
= 12

2π(3 × 10−3)
= 637 A/m

Then Bφ = µHφ = (3 × 10−6)(637) = 1.91 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 884 A/m.

b) c = 4 mm: Have

Hφ = I

2πρ
= 12

2π(4 × 10−3)
= 478 A/m

Then Bφ = µHφ = (5 × 10−6)(478) = 2.39 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 1.42 × 103 A/m.

c) c = 5 mm: Have

Hφ = I

2πρ
= 12

2π(5 × 10−3)
= 382 A/m

Then Bφ = µHφ = (10 × 10−6)(382) = 3.82 × 10−3 Wb/m2.

Finally,Mφ = (1/µ0)Bφ −Hφ = 2.66 × 103 A/m.
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9.24. A coaxial transmission line has a = 5 mm and b = 20 mm. Let its center lie on the z axis and let
a dc current I flow in the az direction in the center conductor. The volume between the conductors
contains a magnetic material for whichµR = 2.5, as well as air. Find H, B, and M everywhere between
conductors if Hφ = 600/π A/m at ρ = 10 mm, φ = π/2, and the magnetic material is located where:

a) a < ρ < 3a; First, we know that Hφ = I/2πρ, from which we construct:

I

2π(10−2)
= 600

π
⇒ I = 12 A

Since the interface between the two media lies in the aφ direction, we use the boundary condition
of continuity of tangential H and write

H(5 < ρ < 20) = 12

2πρ
aφ = 6

πρ
aφ A/m

In the magnetic material, we find

B(5 < ρ < 15) = µH = (2.5)(4π × 10−7)(12)

2πρ
aφ = (6/ρ)aφ µT

Then, in the free space region, B(15 < ρ < 20) = µ0H = (2.4/ρ)aφ µT.

b) 0 < φ < π ; Again, we are given H = 600/π aφ A/m at ρ = 10 and at φ = π/2. Now, since
the interface between media lies in the aρ direction, and noting that magnetic field will be normal
to this (aφ directed), we use the boundary condition of continuity of B normal to an interface,
and write B(0 < φ < π) = B1 = B(π < φ < 2π) = B2, or 2.5µ0H1 = µ0H2. Now, using
Ampere’s circuital law, we write∮

H · dL = πρH1 + πρH2 = 3.5πρH1 = I

Using the given value for H1 at ρ = 10 mm, I = 3.5(600/π)(π × 10−2) = 21 A. Therefore,
H1 = 21/(3.5πρ) = 6/(πρ), or H(0 < φ < π) = 6/(πρ) aφ A/m. Then H2 = 2.5H1, or
H(π < φ < 2π) = 15/(πρ) aφ A/m. Now B(0 < φ < 2π) = 2.5µ0(6/(πρ))aφ = 6/ρ aφ µT.
Now, in general, M = (µR−1)H, and so M(0 < φ < π) = (2.5−1)6/(πρ)aφ = 9/(πρ) aφ A/m
and M(π < φ < 2π) = 0.

9.25. A conducting filament at z = 0 carries 12 A in the az direction. Let µR = 1 for ρ < 1 cm, µR = 6 for
1 < ρ < 2 cm, and µR = 1 for ρ > 2 cm. Find

a) H everywhere: This result will depend on the current and not the materials, and is:

H = I

2πρ
aφ = 1.91

ρ
A/m (0 < ρ <∞)

b) B everywhere: We use B = µRµ0H to find:

B(ρ < 1 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T

B(1 < ρ < 2 cm) = (6)µ0(1.91/ρ) = (1.4 × 10−5/ρ)aφ T

B(ρ > 2 cm) = (1)µ0(1.91/ρ) = (2.4 × 10−6/ρ)aφ T where ρ is in meters.
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9.26. PointP(2, 3, 1) lies on the planar boundary boundary separating region 1 from region 2. The unit vector
aN12 = 0.6ax+0.48ay+0.64az is directed from region 1 to region 2. LetµR1 = 2,µR2 = 8, and H1 =
100ax − 300ay + 200az A/m. Find H2: First B1 = 200µ0ax − 600µ0ay + 400µ0az. Then its normal
component at the boundary will be B1N = (B1 ·aN12)aN12 = (52.8ax+42.24ay+56.32az)µ0 = B2N .
Then H2N = B2N/(8µ0) = 6.60ax + 5.28ay + 7.04az, and H1N = B1N/2µ0 = 26.40ax + 21.12ay +
28.16az. Now H1T = H1 − H1N = (100ax − 300ay + 200az)− (26.40ax + 21.12ay + 28.16az) =
73.60ax − 321.12ay + 171.84az = H2T .

Finally, H2 = H2N + H2T = 80.2ax − 315.8ay + 178.9az A/m.

9.27. LetµR1 = 2 in region 1, defined by 2x+3y−4z > 1, whileµR2 = 5 in region 2 where 2x+3y−4z < 1.
In region 1, H1 = 50ax − 30ay + 20az A/m. Find:

a) HN1 (normal component of H1 at the boundary): We first need a unit vector normal to the surface,
found through

aN = ∇ (2x + 3y − 4z)

|∇ (2x + 3y − 4z)| = 2ax + 3ay − 4az√
29

= .37ax + .56ay − .74az

Since this vector is found through the gradient, it will point in the direction of increasing values
of 2x + 3y − 4z, and so will be directed into region 1. Thus we write aN = aN21. The normal
component of H1 will now be:

HN1 = (H1 · aN21)aN21

= [
(50ax − 30ay + 20az) · (.37ax + .56ay − .74az)

]
(.37ax + .56ay − .74az)

= −4.83ax − 7.24ay + 9.66az A/m

b) HT 1 (tangential component of H1 at the boundary):

HT 1 = H1 − HN1

= (50ax − 30ay + 20az)− (−4.83ax − 7.24ay + 9.66az)

= 54.83ax − 22.76ay + 10.34az A/m

c) HT 2 (tangential component of H2 at the boundary): Since tangential components of H are con-
tinuous across a boundary between two media of different permeabilities, we have

HT 2 = HT 1 = 54.83ax − 22.76ay + 10.34az A/m

d) HN2 (normal component of H2 at the boundary): Since normal components of B are continuous
across a boundary between media of different permeabilities, we write µ1HN1 = µ2HN2 or

HN2 = µR1

µR2
HN1 = 2

5
(−4.83ax − 7.24ay + 9.66az) = −1.93ax − 2.90ay + 3.86az A/m

e) θ1, the angle between H1 and aN21: This will be

cos θ1 = H1

|H1| · aN21 =
[

50ax − 30ay + 20az
(502 + 302 + 202)1/2

]
· (.37ax + .56ay − .74az) = −0.21

Therefore θ1 = cos−1(−.21) = 102◦.
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9.27f) θ2, the angle between H2 and aN21: First,

H2 = HT 2 + HN2 = (54.83ax − 22.76ay + 10.34az)+ (−1.93ax − 2.90ay + 3.86az)

= 52.90ax − 25.66ay + 14.20az A/m

Now

cos θ2 = H2

|H2| · aN21 =
[

52.90ax − 25.66ay + 14.20az
60.49

]
· (.37ax + .56ay − .74az) = −0.09

Therefore θ2 = cos−1(−.09) = 95◦.

9.28. For values of B below the knee on the magnetization curve for silicon steel, approximate the curve by
a straight line with µ = 5 mH/m. The core shown in Fig. 9.17 has areas of 1.6 cm2 and lengths of 10
cm in each outer leg, and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil of 1200
turns carrying 12 mA is placed around the central leg. Find B in the:

a) center leg: We use mmf = 6R, where, in the central leg,

Rc = Lin

µAin
= 3 × 10−2

(5 × 10−3)(2.5 × 10−4)
= 2.4 × 104 H

In each outer leg, the reluctance is

Ro = Lout

µAout
= 10 × 10−2

(5 × 10−3)(1.6 × 10−4)
= 1.25 × 105 H

The magnetic circuit is formed by the center leg in series with the parallel combination of the two
outer legs. The total reluctance seen at the coil location is RT = Rc + (1/2)Ro = 8.65 × 104 H.
We now have

6 = mmf

RT
= 14.4

8.65 × 104 = 1.66 × 10−4 Wb

The flux density in the center leg is now

B = 6

A
= 1.66 × 10−4

2.5 × 10−4 = 0.666 T

b) center leg, if a 0.3-mm air gap is present in the center leg: The air gap reluctance adds to the total
reluctance already calculated, where

Rair = 0.3 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 9.55 × 105 H

Now the total reluctance is Rnet = RT + Rair = 8.56 × 104 + 9.55 × 105 = 1.04 × 106. The
flux in the center leg is now

6 = 14.4

1.04 × 106 = 1.38 × 10−5 Wb

and

B = 1.38 × 10−5

2.5 × 10−4 = 55.3 mT
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9.29. In Problem 9.28, the linear approximation suggested in the statement of the problem leads to a flux
density of 0.666 T in the center leg. Using this value of B and the magnetization curve for silicon steel,
what current is required in the 1200-turn coil? With B = 0.666 T, we read Hin

.= 120 A · t/m in Fig.
9.11. The flux in the center leg is6 = 0.666(2.5 × 10−4) = 1.66 × 10−4 Wb. This divides equally in
the two outer legs, so that the flux density in each outer leg is

Bout =
(

1

2

)
1.66 × 10−4

1.6 × 10−4 = 0.52 Wb/m2

Using Fig. 9.11 with this result, we find Hout
.= 90 A · t/m We now use

∮
H · dL = NI

to find

I = 1

N
(HinLin +HoutLout ) = (120)(3 × 10−2)+ (90)(10 × 10−2)

1200
= 10.5 mA

9.30. A toroidal core has a circular cross section of 4 cm2 area. The mean radius of the toroid is 6 cm. The
core is composed of two semi-circular segments, one of silicon steel and the other of a linear material
withµR = 200. There is a 4mm air gap at each of the two joints, and the core is wrapped by a 4000-turn
coil carrying a dc current I1.

a) Find I1 if the flux density in the core is 1.2 T: I will use the reluctance method here. Reluctances
of the steel and linear materials are respectively,

Rs = π(6 × 10−2)

(3.0 × 10−3)(4 × 10−4)
= 1.57 × 105 H−1

Rl = π(6 × 10−2)

(200)(4π × 10−7)(4 × 10−4)
= 1.88 × 106 H−1

whereµs is found from Fig. 9.11, usingB = 1.2, from whichH = 400, and soB/H = 3.0 mH/m.
The reluctance of each gap is now

Rg = 0.4 × 10−3

(4π × 10−7)(4 × 10−4)
= 7.96 × 105 H−1

We now construct

NI1 = 6R = 1.2(4 × 10−4)
[
Rs + Rl + 2Rg

] = 1.74 × 103

Thus I1 = (1.74 × 103)/4000 = 435 mA.
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9.30b. Find the flux density in the core if I1 = 0.3 A: We are not sure what to use for the permittivity of steel
in this case, so we use the iterative approach. Since the current is down from the value obtained in part
a, we can try B = 1.0 T and see what happens. From Fig. 9.11, we find H = 200 A/m. Then, in the
linear material,

Hl = 1.0

200(4π × 10−7)
= 3.98 × 103 A/m

and in each gap,

Hg = 1.0

4π × 10−7 = 7.96 × 105 A/m

Now Ampere’s circuital law around the toroid becomes

NI1 = π(.06)(200 + 3.98 × 103)+ 2(7.96 × 105)(4 × 10−4) = 1.42 × 103 A−t

Then I1 = (1.42 × 103)/4000 = .356 A. This is still larger than the given value of .3A, so we can
extrapolate down to find a better value for B:

B = 1.0 − (1.2 − 1.0)

[
.356 − .300

.435 − .356

]
= 0.86 T

Using this value in the procedure above to evaluate Ampere’s circuital law leads to a value of I1 of
0.306 A. The result of 0.86 T for B is probably good enough for this problem, considering the limited
resolution of Fig. 9.11.

9.31. A toroid is constructed of a magnetic material having a cross-sectional area of 2.5 cm2 and an effective
length of 8 cm. There is also a short air gap 0.25 mm length and an effective area of 2.8 cm2. An mmf
of 200 A · t is applied to the magnetic circuit. Calculate the total flux in the toroid if:

a) the magnetic material is assumed to have infinite permeability: In this case the core reluctance,
Rc = l/(µA), is zero, leaving only the gap reluctance. This is

Rg = d

µ0Ag
= 0.25 × 10−3

(4π × 10−7)(2.5 × 10−4)
= 7.1 × 105 H

Now

6 = mmf

¨g = 200

7.1 × 105
= 2.8 × 10−4 Wb

b) the magnetic material is assumed to be linear with µR = 1000: Now the core reluctance is no
longer zero, but

Rc = 8 × 10−2

(1000)(4π × 10−7)(2.5 × 10−4)
= 2.6 × 105 H

The flux is then

6 = mmf

Rc + Rg = 200

9.7 × 105
= 2.1 × 10−4 Wb

c) the magnetic material is silicon steel: In this case we use the magnetization curve, Fig. 9.11, and
employ an iterative process to arrive at the final answer. We can begin with the value of 6 found
in part a, assuming infinite permeability: 6(1) = 2.8 × 10−4 Wb. The flux density in the core
is then B(1)c = (2.8 × 10−4)/(2.5 × 10−4) = 1.1 Wb/m2. From Fig. 9.11, this corresponds to
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magnetic field strengthH(1)c
.= 270 A/m. We check this by applying Ampere’s circuital law to the

magnetic circuit: ∮
H · dL = H(1)c Lc +H(1)g d

whereH(1)c Lc = (270)(8×10−2) = 22, and whereH(1)g d = 6(1)¨g = (2.8×10−4)(7.1×105) =
199. But we require that ∮

H · dL = 200 A · t

whereas the actual result in this first calculation is 199 + 22 = 221, which is too high. So, for a
second trial, we reduce B to B(2)c = 1 Wb/m2. This yields H(2)c = 200 A/m from Fig. 9.11, and
thus 6(2) = 2.5 × 10−4 Wb. Now∮

H · dL = H(2)c Lc +6(2)Rg = 200(8 × 10−2)+ (2.5 × 10−4)(7.1 × 105) = 194

This is less than 200, meaning that the actual flux is slightly higher than 2.5 × 10−4 Wb.
I will leave the answer at that, considering the lack of fine resolution in Fig. 9.11.

9.32. Determine the total energy stored in a spherical region 1cm in radius, centered at the origin in free
space, in the uniform field:

a) H1 = −600ay A/m: First we find the energy density:

wm1 = 1

2
B1 · H1 = 1

2
µ0H

2
1 = 1

2
(4π × 10−7)(600)2 = 0.226 J/m3

The energy within the sphere is then

Wm1 = wm1

(
4

3
πa3

)
= 0.226

(
4

3
π × 10−6

)
= 0.947 µJ

b) H2 = 600ax + 1200ay A/m: In this case the energy density is

wm2 = 1

2
µ0

[
(600)2 + (1200)2

]
= 5

2
µ0(600)2

or five times the energy density that was found in part a. Therefore, the stored energy in this field
is five times the amount in part a, orWm2 = 4.74 µJ.

c) H3 = −600ax + 1200ay . This field differs from H2 only by the negative x component, which is a
non-issue since the component is squared when finding the energy density. Therefore, the stored
energy will be the same as that in part b, orWm3 = 4.74 µJ.

d) H4 = H2 + H3, or 2400ay A/m: The energy density is now wm4 = (1/2)µ0(2400)2 =
(1/2)µ0(16)(600)2 J/m3, which is sixteen times the energy density in part a. The stored en-
ergy is therefore sixteen times that result, orWm4 = 16(0.947) = 15.2 µJ.

e) 1000ax A/m+0.001ax T: The energy density iswm5 = (1/2)µ0[1000+.001/µ0]2 = 2.03 J/m3.
ThenWm5 = 2.03[(4/3)π × 10−6] = 8.49 µJ.
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9.33. A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm < z < 0.5 cm. The upper
half of the toroid, 0 < z < 0.5 cm, is constructed of a linear material for which µR = 10, while the
lower half, −0.5 cm < z < 0, has µR = 20. An mmf of 150 A · t establishes a flux in the aφ direction.
For z > 0, find:

a) Hφ(ρ): Ampere’s circuital law gives:

2πρHφ = NI = 150 ⇒ Hφ = 150

2πρ
= 23.9/ρ A/m

b) Bφ(ρ): We use Bφ = µRµ0Hφ = (10)(4π × 10−7)(23.9/ρ) = 3.0 × 10−4/ρ Wb/m2.

c) 6z>0: This will be

6z>0 =
∫ ∫

B · dS =
∫ .005

0

∫ .035

.025

3.0 × 10−4

ρ
dρdz = (.005)(3.0 × 10−4) ln

(
.035

.025

)
= 5.0 × 10−7 Wb

d) Repeat for z < 0: First, the magnetic field strength will be the same as in part a, since the
calculation is material-independent. Thus Hφ = 23.9/ρ A/m. Next, Bφ is modified only by the

new permeability, which is twice the value used in part a: Thus Bφ = 6.0 × 10−4/ρ Wb/m2.
Finally, since Bφ is twice that of part a, the flux will be increased by the same factor, since the
area of integration for z < 0 is the same. Thus 6z<0 = 1.0 × 10−6 Wb.

e) Find 6total: This will be the sum of the values found for z < 0 and z > 0, or 6total =
1.5 × 10−6 Wb.

9.34. Three planar current sheets are located in free space as follows: −100ax A/m2 at z = −1, 200ax A/m2

at z = 0, −100ax A/m2 at z = 1. Let wH = (1/2)B · H J/m3, and find wH for all z: Using the fact
that the field on either side of a current sheet is given in magnitude by H = K/2, we find, in A/m:

H(z > 1) = (1/2)(−200 + 100 + 100)ay = 0

H(0 < z < 1) = (1/2)(−200 − 100 + 100)ay = −100ay

H(−1 < z < 0) = (1/2)(200 − 100 + 100)ay = 100ay

and
H(z < −1) = (1/2)(200 − 100 − 100)ay = 0

The energy densities are then
wH(z > 1) = wH(z < −1) = 0

wH(0 < z < 1) = wH(−1 < z < 0) = (1/2)µ0(100)2 = 6.28 mJ/m2
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9.35. The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total currents of 40 A, as shown in
Fig. 9.18. The currents return on a spherical conducting surface of 0.25 m radius.

a) Find H in the region 0 < r < 0.25, 21◦ < θ < 159◦, 0 < φ < 2π : We can apply Ampere’s
circuital law and take advantage of symmetry. We expect to see H in the aφ direction and it would
be constant at a given distance from the z axis. We thus perform the line integral of H over a circle,
centered on the z axis, and parallel to the xy plane:

∮
H · dL =

∫ 2π

0
Hφaφ · r sin θaφ dφ = Iencl. = 40 A

Assuming that Hφ is constant over the integration path, we take it outside the integral and solve:

Hφ = 40

2πr sin θ
⇒ H = 20

πr sin θ
aφ A/m

b) How much energy is stored in this region? This will be

WH =
∫
v

1

2
µ0H

2
φ =

∫ 2π

0

∫ 159◦

21◦

∫ .25

0

200µ0

π2r2 sin2 θ
r2 sin θ dr dθ dφ = 100µ0

π

∫ 159◦

21◦

dθ

sin θ

= 100µ0

π
ln

[
tan(159/2)

tan(21/2)

]
= 1.35 × 10−4 J

9.36. A filament carrying current I in the az direction lies on the z axis, and cylindrical current sheets of 5az
A/m and −2az A/m are located at ρ = 3 and ρ = 10, respectively.

a) Find I if H = 0 for ρ > 10. Ampere’s circuital law says, for ρ > 10:

2πρH = 2π(3)(5)− 2π(10)(2)+ I = 0

from which I = 2π(10)(3)− 2π(3)(5) = 10π A.

b) Using this value of I , calculate H for all ρ, 3 < ρ < 10: Again, using Ampere’s circuital law, we
find

H(3 < ρ < 10) = 1

2πρ
[10π + 2π(3)(5)] aφ = 20

ρ
aφ A/m

c) Calculate and plotWH versusρ0, whereWH is the total energy stored within the volume 0 < z < 1,
0 < φ < 2π , 3 < ρ < ρ0: First the energy density will bewH = (1/2)µ0H

2 = 200µ0/ρ
2 J/m3.

Then the energy is

WH =
∫ 1

0

∫ 2π

0

∫ ρ0

3

200µ0

ρ2 ρ dρ dφ dz = 400πµ0 ln
(ρ0

3

)
= (1.58 × 10−3) ln

(ρ0

3

)
J
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9.36c. (continued) A plot of the energy as a function of ρ0 is shown below.

9.37. Find the inductance of the cone-sphere configuration described in Problem 9.35 and Fig. 9.18. The
inductance is that offered at the origin between the vertices of the cone: From Problem 9.35, the
magnetic flux density is Bφ = 20µ0/(πr sin θ). We integrate this over the crossectional area defined
by 0 < r < 0.25 and 21◦ < θ < 159◦, to find the total flux:

6 =
∫ 159◦

21◦

∫ 0.25

0

20µ0

πr sin θ
r dr dθ = 5µ0

π
ln

[
tan(159/2)

tan(21/2)

]
= 5µ0

π
(3.37) = 6.74 × 10−6 Wb

Now L = 6/I = 6.74 × 10−6/40 = 0.17 µH.
Second method: Use the energy computation of Problem 9.35, and write

L = 2WH
I 2 = 2(1.35 × 10−4)

(40)2
= 0.17 µH

9.38. A toroidal core has a rectangular cross section defined by the surfaces ρ = 2 cm, ρ = 3 cm, z = 4 cm,
and z = 4.5 cm. The core material has a relative permeability of 80. If the core is wound with a coil
containing 8000 turns of wire, find its inductance: First we apply Ampere’s circuital law to a circular
loop of radius ρ in the interior of the toroid, and in the aφ direction.∮

H · dL = 2πρHφ = NI ⇒ Hφ = NI

2πρ

The flux in the toroid is then the integral over the cross section of B:

6 =
∫ ∫

B · dL =
∫ .045

.04

∫ .03

.02

µRµ0NI

2πρ
dρ dz = (.005)

µRµ0NI

2π
ln

(
.03

.02

)

The flux linkage is then given by N6, and the inductance is

L = N6

I
= (.005)(80)(4π × 10−7)(8000)2

2π
ln(1.5) = 2.08 H
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9.39. Conducting planes in air at z = 0 and z = d carry surface currents of ±K0ax A/m.
a) Find the energy stored in the magnetic field per unit length (0 < x < 1) in a widthw (0 < y < w):

First, assuming current flows in the +ax direction in the sheet at z = d, and in −ax in the sheet
at z = 0, we find that both currents together yield H = K0ay for 0 < z < d and zero elsewhere.
The stored energy within the specified volume will be:

WH =
∫
v

1

2
µ0H

2dv =
∫ d

0

∫ w

0

∫ 1

0

1

2
µ0K

2
0 dx dy dz = 1

2
wdµ0K

2
0 J/m

b) Calculate the inductance per unit length of this transmission line fromWH = (1/2)LI 2, where I
is the total current in a width w in either conductor: We have I = wK0, and so

L = 2

I 2

wd

2
µ0K

2
0 = 2

w2K2
0

dw

2
µ0K

2
0 = µ0d

w
H/m

c) Calculate the total flux passing through the rectangle 0 < x < 1, 0 < z < d , in the plane y = 0,
and from this result again find the inductance per unit length:

6 =
∫ d

0

∫ 1

0
µ0Hay · ay dx dz =

∫ d

0

∫ 1

0
µ0K0dx dy = µ0dK0

Then

L = 6

I
= µ0dK0

wK0
= µ0d

w
H/m

9.40. A coaxial cable has conductor dimensions of 1 and 5 mm. The region between conductors is air for
0 < φ < π/2 and π < φ < 3π/2, and a non-conducting material having µR = 8 for π/2 < φ < π
and 3π/2 < φ < 2π . Find the inductance per meter length: The interfaces between media all occur
along radial lines, normal to the direction of B and H in the coax line. B is therefore continuous (and
constant at constant radius) around a circular loop centered on the z axis. Ampere’s circuital law can
thus be written in this form:∮

H · dL = B

µ0

(π
2
ρ
)

+ B

µRµ0

(π
2
ρ
)

+ B

µ0

(π
2
ρ
)

+ B

µRµ0

(π
2
ρ
)

= πρB

µRµ0
(µR + 1) = I

and so

B = µRµ0I

πρ(1 + µR)aφ

The flux in the line per meter length in z is now

6 =
∫ 1

0

∫ .005

.001

µRµ0I

πρ(1 + µR) dρ dz = µRµ0I

π(1 + µR) ln(5)

And the inductance per unit length is:

L = 6

I
= µRµ0

π(1 + µR) ln(5) = 8(4π × 10−7)

π(9)
ln(5) = 572 nH/m
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9.41. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance in
free space between this coil and an infinite straight filament on the z axis if the four corners of the coil
are located at

a) (0,1,0), (0,3,0), (0,3,1), and (0,1,1): In this case the coil lies in the yz plane. If we assume that
the filament current is in the +az direction, then the B field from the filament penetrates the coil
in the −ax direction (normal to the loop plane). The flux through the loop will thus be

6 =
∫ 1

0

∫ 3

1

−µ0I

2πy
ax · (−ax) dy dz = µ0I

2π
ln 3

The mutual inductance is then

M = N6

I
= 150µ0

2π
ln 3 = 33 µH

b) (1,1,0), (1,3,0), (1,3,1), and (1,1,1): Now the coil lies in the x = 1 plane, and the field from the
filament penetrates in a direction that is not normal to the plane of the coil. We write the B field
from the filament at the coil location as

B = µ0Iaφ

2π
√
y2 + 1

The flux through the coil is now

6 =
∫ 1

0

∫ 3

1

µ0Iaφ

2π
√
y2 + 1

· (−ax) dy dz =
∫ 1

0

∫ 3

1

µ0I sin φ

2π
√
y2 + 1

dy dz

=
∫ 1

0

∫ 3

1

µ0Iy

2π(y2 + 1)
dy dz = µ0I

2π
ln(y2 + 1)

∣∣∣3
1

= (1.6 × 10−7)I

The mutual inductance is then

M = N6

I
= (150)(1.6 × 10−7) = 24 µH

9.42. Find the mutual inductance of this conductor system in free space:
a) the solenoid of Fig. 8.11b and a square filamentary loop of side length b coaxially centered

inside the solenoid, if a > b/
√

2; With the given side length, the loop lies entirely inside the
solenoid, and so is linked over its entire cross section by the solenoid field. The latter is given by
B = µ0NI/d az T. The flux through the loop area is now6 = Bb2, and the mutual inductance is
M = 6/I = µ0Nb

2/d H.

b) a cylindrical conducting shell of a radius a, axis on the z axis, and a filament at x = 0, y = d ,
and where d > a (omitted from problem statement); The B field from the cylinder is B =
(µ0I )/(2πρ) aφ for ρ > a, and so the flux per unit length between cylinder and wire is

6 =
∫ 1

0

∫ d

a

µ0I

2πρ
dρ dz = µ0I

2π
ln

(
d

a

)
Wb

Finally the mutual inductance isM = 6/I = µ0/2π ln(d/a) H.
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9.43. a) Use energy relationships to show that the internal inductance of a nonmagnetic cylindrical wire of
radius a carrying a uniformly-distributed current I is µ0/(8π) H/m. We first find the magnetic field
inside the conductor, then calculate the energy stored there. From Ampere’s circuital law:

2πρHφ = πρ2

πa2 I ⇒ Hφ = Iρ

2πa2 A/m

Now

WH =
∫
v

1

2
µ0H

2
φ dv =

∫ 1

0

∫ 2π

0

∫ a

0

µ0I
2ρ2

8π2a4 ρ dρ dφ dz = µ0I
2

16π
J/m

Now, withWH = (1/2)LI 2, we find Lint = µ0/(8π) as expected.

b) Find the internal inductance if the portion of the conductor for which ρ < c < a is removed: The
hollowed-out conductor still carries current I , so Ampere’s circuital law now reads:

2πρHφ = π(ρ2 − c2)

π(a2 − c2)
⇒ Hφ = I

2πρ

[
ρ2 − c2

a2 − c2

]
A/m

and the energy is now

WH =
∫ 1

0

∫ 2π

0

∫ a

c

µ0I
2(ρ2 − c2)2

8π2ρ2(a2 − c2)2
ρ dρ dφ dz = µ0I

2

4π(a2 − c2)2

∫ a

c

[
ρ3 − 2c2ρ + C4

ρ

]
dρ

= µ0I
2

4π(a2 − c2)2

[
1

4
(a4 − c4)− c2(a2 − c2)+ c4 ln

(a
c

)]
J/m

The internal inductance is then

Lint = 2WH
I 2 = µ0

8π

[
a4 − 4a2c2 + 3c4 + 4c4 ln(a/c)

(a2 − c2)2

]
H/m
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CHAPTER 10

10.1. In Fig. 10.4, letB = 0.2 cos 120πt T, and assume that the conductor joining the two ends of the resistor
is perfect. It may be assumed that the magnetic field produced by I (t) is negligible. Find:

a) Vab(t): SinceB is constant over the loop area, the flux is� = π(0.15)2B = 1.41×10−2 cos 120πt
Wb. Now, emf = Vba(t) = −d�/dt = (120π)(1.41 × 10−2) sin 120πt . Then Vab(t) =
−Vba(t) = −5.33 sin 120πt V.

b) I (t) = Vba(t)/R = 5.33 sin(120πt)/250 = 21.3 sin(120πt) mA

10.2. Given the time-varying magnetic field, B = (0.5ax + 0.6ay − 0.3az) cos 5000t T, and a square fila-
mentary loop with its corners at (2,3,0), (2,-3,0), (-2,3,0), and (-2,-3,0), find the time-varying current
flowing in the general aφ direction if the total loop resistance is 400 k�: We write

emf =
∮

E · dL = −d�

dt
= − d

dt

∫ ∫
loop area

B · az da = d

dt
(0.3)(4)(6) cos 5000t

where the loop normal is chosen as positive az, so that the path integral for E is taken around the positive
aφ direction. Taking the derivative, we find

emf = −7.2(5000) sin 5000t so that I = emf

R
= −36000 sin 5000t

400 × 103 = −90 sin 5000t mA

10.3. Given H = 300 az cos(3 × 108t − y) A/m in free space, find the emf developed in the general aφ
direction about the closed path having corners at

a) (0,0,0), (1,0,0), (1,1,0), and (0,1,0): The magnetic flux will be:

� =
∫ 1

0

∫ 1

0
300µ0 cos(3 × 108t − y) dx dy = 300µ0 sin(3 × 108t − y)|10

= 300µ0

[
sin(3 × 108t − 1) − sin(3 × 108t)

]
Wb

Then

emf = −d�

dt
= −300(3 × 108)(4π × 10−7)

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
= −1.13 × 105

[
cos(3 × 108t − 1) − cos(3 × 108t)

]
V

b) corners at (0,0,0), (2π ,0,0), (2π ,2π ,0), (0,2π ,0): In this case, the flux is

� = 2π × 300µ0 sin(3 × 108t − y)|2π0 = 0

The emf is therefore 0.
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10.4. Conductor surfaces are located at ρ = 1cm and ρ = 2cm in free space. The volume 1 cm < ρ < 2 cm
contains the fields Hφ = (2/ρ) cos(6×108πt −2πz)A/m and Eρ = (240π/ρ) cos(6×108πt −2πz)
V/m.

a) Show that these two fields satisfy Eq. (6), Sec. 10.1: Have

∇ × E = ∂Eρ

∂z
aφ = 2π(240π)

ρ
sin(6 × 108πt − 2πz) aφ = 480π2

ρ
sin(6 × 108πt − 2πz)aφ

Then

−∂B
∂t

= 2µ0(6 × 108)π

ρ
sin(6 × 108πt − 2πz) aφ

= (8π × 10−7)(6 × 108)π

ρ
sin(6 × 108πt − 2πz) = 480π2

ρ
sin(6 × 108πt − 2πz) aφ

b) Evaluate both integrals in Eq. (4) for the planar surface defined by φ = 0, 1cm < ρ < 2cm,
0 < z < 0.1m (note misprint in problem statement), and its perimeter, and show that the same
results are obtained: we take the normal to the surface as positive aφ , so the the loop surrounding
the surface (by the right hand rule) is in the negative aρ direction at z = 0, and is in the positive
aρ direction at z = 0.1. Taking the left hand side first, we find∮

E · dL =
∫ .01

.02

240π

ρ
cos(6 × 108πt) aρ · aρ dρ

+
∫ .02

.01

240π

ρ
cos(6 × 108πt − 2π(0.1)) aρ · aρ dρ

= 240π cos(6 × 108πt) ln

(
1

2

)
+ 240π cos(6 × 108πt − 0.2π) ln

(
2

1

)

= 240(ln 2)
[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
Now for the right hand side. First,∫

B · dS =
∫ 0.1

0

∫ .02

.01

8π × 10−7

ρ
cos(6 × 108πt − 2πz) aφ · aφ dρ dz

=
∫ 0.1

0
(8π × 10−7) ln 2 cos(6 × 108πt − 2πz) dz

= −4 × 10−7 ln 2
[
sin(6 × 108πt − 0.2π) − sin(6 × 108πt)

]
Then

− d

dt

∫
B · dS = 240π(ln 2)

[
cos(6 × 108πt − 0.2π) − cos(6 × 108πt)

]
(check)

10.5. The location of the sliding bar in Fig. 10.5 is given by x = 5t + 2t3, and the separation of the two rails
is 20 cm. Let B = 0.8x2az T. Find the voltmeter reading at:

a) t = 0.4 s: The flux through the loop will be

� =
∫ 0.2

0

∫ x

0
0.8(x′)2 dx′ dy = 0.16

3
x3 = 0.16

3
(5t + 2t3)3 Wb
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Then

emf = −d�

dt
= 0.16

3
(3)(5t+2t3)2(5+6t2) = −(0.16)[5(.4)+2(.4)3]2[5+6(.4)2] = −4.32 V

b) x = 0.6 m: Have 0.6 = 5t + 2t3, from which we find t = 0.1193. Thus

emf = −(0.16)[5(.1193) + 2(.1193)3]2[5 + 6(.1193)2] = −.293 V

10.6. A perfectly conducting filament containing a small 500-� resistor is formed into a square, as illustrated
in Fig. 10.6. Find I (t) if

a) B = 0.3 cos(120πt −30◦) az T: First the flux through the loop is evaluated, where the unit normal
to the loop is az. We find

� =
∫

loop
B · dS = (0.3)(0.5)2 cos(120πt − 30◦) Wb

Then the current will be

I (t) = emf

R
= − 1

R

d�

dt
= (120π)(0.3)(0.25)

500
sin(120πt − 30◦) = 57 sin(120πt − 30◦) mA

b) B = 0.4 cos[π(ct − y)] az µT where c = 3 × 108 m/s: Since the field varies with y, the flux is
now

� =
∫

loop
B · dS = (0.5)(0.4)

∫ .5

0
cos(πy − πct) dy = 0.2

π
[sin(πct − π/2) − sin(πct)] µWb

The current is then

I (t) = emf

R
= − 1

R

d�

dt
= −0.2c

500
[cos(πct − π/2) − cos(πct)] µA

= −0.2(3 × 108)

500
[sin(πct) − cos(πct)] µA = 120 [cos(πct) − sin(πct)] mA

10.7. The rails in Fig. 10.7 each have a resistance of 2.2 �/m. The bar moves to the right at a constant speed
of 9 m/s in a uniform magnetic field of 0.8 T. Find I (t), 0 < t < 1 s, if the bar is at x = 2 m at t = 0
and

a) a 0.3 � resistor is present across the left end with the right end open-circuited: The flux in the
left-hand closed loop is

�l = B × area = (0.8)(0.2)(2 + 9t)

Then, emf l = −d�l/dt = −(0.16)(9) = −1.44 V. With the bar in motion, the loop resistance is
increasing with time, and is given by Rl(t) = 0.3 + 2[2.2(2 + 9t)]. The current is now

Il(t) = emf l
Rl(t)

= −1.44

9.1 + 39.6t
A

Note that the sign of the current indicates that it is flowing in the direction opposite that shown in
the figure.
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b) Repeat part a, but with a resistor of 0.3 � across each end: In this case, there will be a contribution
to the current from the right loop, which is now closed. The flux in the right loop, whose area
decreases with time, is

�r = (0.8)(0.2)[(16 − 2) − 9t]

and emfr = −d�r/dt = (0.16)(9) = 1.44 V. The resistance of the right loop is Rr(t) =
0.3 + 2[2.2(14 − 9t)], and so the contribution to the current from the right loop will be

Ir (t) = −1.44

61.9 − 39.6t
A

The minus sign has been inserted because again the current must flow in the opposite direction
as that indicated in the figure, with the flux decreasing with time. The total current is found by
adding the part a result, or

IT (t) = −1.44

[
1

61.9 − 39.6t
+ 1

9.1 + 39.6t

]
A

10.8. Fig. 10.1 is modified to show that the rail separation is larger when y is larger. Specifically, let the
separation d = 0.2 + 0.02y. Given a uniform velocity vy = 8 m/s and a uniform magnetic flux density
Bz = 1.1 T, find V12 as a function of time if the bar is located at y = 0 at t = 0: The flux through the
loop as a function of y can be written as

� =
∫

B · dS =
∫ y

0

∫ .2+.02y′

0
1.1 dx dy′ =

∫ y

0
1.1(.2 + .02y′) dy′ = 0.22y(1 + .05y)

Now, with y = vt = 8t , the above becomes � = 1.76t (1 + .40t). Finally,

V12 = −d�

dt
= −1.76(1 + .80t) V

10.9. A square filamentary loop of wire is 25 cm on a side and has a resistance of 125� per meter length. The
loop lies in the z = 0 plane with its corners at (0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at
t = 0. The loop is moving with velocity vy = 50 m/s in the field Bz = 8 cos(1.5 × 108t − 0.5x) µT.
Develop a function of time which expresses the ohmic power being delivered to the loop: First, since
the field does not vary with y, the loop motion in the y direction does not produce any time-varying
flux, and so this motion is immaterial. We can evaluate the flux at the original loop position to obtain:

�(t) =
∫ .25

0

∫ .25

0
8 × 10−6 cos(1.5 × 108t − 0.5x) dx dy

= −(4 × 10−6)
[
sin(1.5 × 108t − 0.13x) − sin(1.5 × 108t)

]
Wb

Now, emf = V (t) = −d�/dt = 6.0 × 102
[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
, The total

loop resistance is R = 125(0.25 + 0.25 + 0.25 + 0.25) = 125�. Then the ohmic power is

P(t) = V 2(t)

R
= 2.9 × 103

[
cos(1.5 × 108t − 0.13x) − cos(1.5 × 108t)

]
Watts
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10.10a. Show that the ratio of the amplitudes of the conduction current density and the displacement current
density is σ/ωε for the applied field E = Em cosωt . Assume µ = µ0. First, D = εE = εEm cosωt .
Then the displacement current density is ∂D/∂t = −ωεEm sinωt . Second, Jc = σE = σEm cosωt .
Using these results we find |Jc|/|Jd | = σ/ωε.

b. What is the amplitude ratio if the applied field is E = Eme
−t/τ , where τ is real? As before, find

D = εE = εEme
−t/τ , and so Jd = ∂D/∂t = −(ε/τ)Eme

−t/τ . Also, Jc = σEme
−t/τ . Finally,

|Jc|/|Jd | = στ/ε.

10.11. Let the internal dimension of a coaxial capacitor be a = 1.2 cm, b = 4 cm, and l = 40 cm. The
homogeneous material inside the capacitor has the parameters ε = 10−11 F/m, µ = 10−5 H/m, and
σ = 10−5 S/m. If the electric field intensity is E = (106/ρ) cos(105t)aρ V/m (note missing t in the
argument of the cosine in the book), find:

a) J: Use

J = σE =
(

10

ρ

)
cos(105t)aρ A/m2

b) the total conduction current, Ic, through the capacitor: Have

Ic =
∫ ∫

J · dS = 2πρlJ = 20πl cos(105t) = 8π cos(105t) A

c) the total displacement current, Id , through the capacitor: First find

Jd = ∂D
∂t

= ∂

∂t
(εE) = − (105)(10−11)(106)

ρ
sin(105t)aρ = − 1

ρ
sin(105t) A/m

Now
Id = 2πρlJd = −2πl sin(105t) = −0.8π sin(105t) A

d) the ratio of the amplitude of Id to that of Ic, the quality factor of the capacitor: This will be

|Id |
|Ic| = 0.8

8
= 0.1

10.12. Given a coaxial transmission line with b/a = e2.5, µR = εR = 1, and an electric field intensity
E = (200/ρ) cos(109t − 3.336z) aρ V/m, find:

a) Vab, the voltage between the conductors, if it is known that electrostatic relationship E = −∇V

is valid; We use

Vab = −
∫ a

b

200

ρ
cos(109t − 3.336z) dρ = 200 ln

(
b

a

)
cos(109t − 3.336z)

= 500 cos(109t − 3.336z) V

b) the displacement current density;

Jd = ∂D
∂t

= −200 × 109ε0

ρ
sin(109t − 3.336z)aρ = −1.77

ρ
sin(109t − 3.336z)aρ A/m2
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10.13. Consider the region defined by |x|, |y|, and |z| < 1. Let εR = 5, µR = 4, and σ = 0. If Jd =
20 cos(1.5 × 108t − bx)ay µA/m2;

a) find D and E: Since Jd = ∂D/∂t , we write

D =
∫

Jddt + C = 20 × 10−6

1.5 × 108 sin(1.5 × 108 − bx)ay

= 1.33 × 10−13 sin(1.5 × 108t − bx)ay C/m2

where the integration constant is set to zero (assuming no dc fields are present). Then

E = D
ε

= 1.33 × 10−13

(5 × 8.85 × 10−12)
sin(1.5 × 108t − bx)ay

= 3.0 × 10−3 sin(1.5 × 108t − bx)ay V/m

b) use the point form of Faraday’s law and an integration with respect to time to find B and H: In
this case,

∇ × E = ∂Ey

∂x
az = −b(3.0 × 10−3) cos(1.5 × 108t − bx)az = −∂B

∂t

Solve for B by integrating over time:

B = b(3.0 × 10−3)

1.5 × 108 sin(1.5 × 108t − bx)az = (2.0)b × 10−11 sin(1.5 × 108t − bx)az T

Now

H = B
µ

= (2.0)b × 10−11

4 × 4π × 10−7 sin(1.5 × 108t − bx)az

= (4.0 × 10−6)b sin(1.5 × 108t − bx)az A/m

c) use ∇ × H = Jd + J to find Jd : Since σ = 0, there is no conduction current, so in this case

∇ × H = −∂Hz

∂x
ay = 4.0 × 10−6b2 cos(1.5 × 108t − bx)ay A/m2 = Jd

d) What is the numerical value of b? We set the given expression for Jd equal to the result of part c
to obtain:

20 × 10−6 = 4.0 × 10−6b2 ⇒ b =
√

5.0 m−1

10.14. A voltage source, V0 sinωt , is connected between two concentric conducting spheres, r = a and r = b,
b > a, where the region between them is a material for which ε = εRε0, µ = µ0, and σ = 0. Find the
total displacement current through the dielectric and compare it with the source current as determined
from the capacitance (Sec. 5.10) and circuit analysis methods: First, solving Laplace’s equation, we
find the voltage between spheres (see Eq. 20, Chapter 7):

V (t) = (1/r) − (1/b)

(1/a) − (1/b)
V0 sinωt
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10.14 (continued) Then

E = −∇V = V0 sinωt

r2(1/a − 1/b)
ar ⇒ D = εRε0V0 sinωt

r2(1/a − 1/b)
ar

Now

Jd = ∂D
∂t

= εRε0ωV0 cosωt

r2(1/a − 1/b)
ar

The displacement current is then

Id = 4πr2Jd = 4πεRε0ωV0 cosωt

(1/a − 1/b)
= C

dV

dt

where, from Eq. 47, Chapter 5,

C = 4πεRε0

(1/a − 1/b)

The results are consistent.

10.15. Let µ = 3 × 10−5 H/m, ε = 1.2 × 10−10 F/m, and σ = 0 everywhere. If H = 2 cos(1010t −
βx)az A/m, use Maxwell’s equations to obtain expressions for B, D, E, and β: First, B = µH =
6 × 10−5 cos(1010t − βx)az T. Next we use

∇ × H = −∂H
∂x

ay = 2β sin(1010t − βx)ay = ∂D
∂t

from which

D =
∫

2β sin(1010t − βx) dt + C = − 2β

1010 cos(1010t − βx)ay C/m2

where the integration constant is set to zero, since no dc fields are presumed to exist. Next,

E = D
ε

= − 2β

(1.2 × 10−10)(1010)
cos(1010t − βx)ay = −1.67β cos(1010t − βx)ay V/m

Now

∇ × E = ∂Ey

∂x
az = 1.67β2 sin(1010t − βx)az = −∂B

∂t

So

B = −
∫

1.67β2 sin(1010t − βx)azdt = (1.67 × 10−10)β2 cos(1010t − βx)az

We require this result to be consistent with the expression for B originally found. So

(1.67 × 10−10)β2 = 6 × 10−5 ⇒ β = ±600 rad/m
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10.16a. A certain material has σ = 0 and εR = 1. If H = 4 sin(106t − 0.01z)ay A/m, make use of Maxwell’s
equations to find µR: First find

∇ × H = −∂Hy

∂z
ax = 0.04 cos(106t − 0.01z)ax = ε0

∂E
∂t

So

E =
∫

.04

ε0
cos(106t − 0.01z)ax dt = .04

106ε0
sin(106t − 0.01z)ax

where the integration constant is zero, since we assume no dc fields present. Next

∇ × E = ∂Ex

∂z
ay = − .04(.01)

106ε0
cos(106t − 0.01z)ay = −µRµ0

∂H
∂t

So

H =
∫

.04(.01)

106ε0µ0µR

cos(106t − 0.01z)ay dt = .04(.01)

1012ε0µ0µR

sin(106t − 0.01z)ay

= 4 sin(106t − 0.01z)ay

where the last equality is required for consistency. Therefore

.04(.01)

1012ε0µ0µR

= 4 ⇒ µR = (.01)2(9 × 1016)

1012 = 9

b) Find E(z, t): This we already found during the development in part a: We have

E(z, t) = .04

106ε0
sin(106t − 0.01z)ax V/m = 4.5 sin(106t − 0.01z)ax kV/m

10.17. The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z < 0.06 m in free space is
given by E = C sin(12y) sin(az) cos(2 × 1010t) ax V/m. Beginning with the ∇ × E relationship, use
Maxwell’s equations to find a numerical value for a, if it is known that a is greater than zero: In this
case we find

∇ × E = ∂Ex

∂z
ay − ∂Ez

∂y
az

= C
[
a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az

]
cos(2 × 1010t) = −∂B

∂t

Then

H = − 1

µ0

∫
∇ × E dt + C1

= − C

µ0(2 × 1010

[
a sin(12y) cos(az)ay − 12 cos(12y) sin(az)az

]
sin(2 × 1010t) A/m

where the integration constant, C1 = 0, since there are no initial conditions. Using this result, we now
find

∇ × H =
[
∂Hz

∂y
− ∂Hy

∂z

]
ax = − C(144 + a2)

µ0(2 × 1010)
sin(12y) sin(az) sin(2 × 1010t) ax = ∂D

∂t
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10.17. (continued) Now

E = D
ε0

=
∫

1

ε0
∇ × H dt + C2 = C(144 + a2)

µ0ε0(2 × 1010)2 sin(12y) sin(az) cos(2 × 1010t) ax

where C2 = 0. This field must be the same as the original field as stated, and so we require that

C(144 + a2)

µ0ε0(2 × 1010)2 = 1

Using µ0ε0 = (3 × 108)−2, we find

a =
[
(2 × 1010)2

(3 × 108)2 − 144

]1/2

= 66 m−1

10.18. The parallel plate transmission line shown in Fig. 10.8 has dimensions b = 4 cm and d = 8 mm, while
the medium between plates is characterized by µR = 1, εR = 20, and σ = 0. Neglect fields outside
the dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s equations to help find:

a) β, if β > 0: Take

∇ × H = −∂Hy

∂z
ax = −5β sin(109t − βz)ax = 20ε0

∂E
∂t

So

E =
∫ −5β

20ε0
sin(109t − βz)ax dt = β

(4 × 109)ε0
cos(109t − βz)ax

Then

∇ × E = ∂Ex

∂z
ay = β2

(4 × 109)ε0
sin(109t − βz)ay = −µ0

∂H
∂t

So that

H =
∫ −β2

(4 × 109)µ0ε0
sin(109t − βz)ax dt = β2

(4 × 1018)µ0ε0
cos(109t − βz)

= 5 cos(109t − βz)ay

where the last equality is required to maintain consistency. Therefore

β2

(4 × 1018)µ0ε0
= 5 ⇒ β = 14.9 m−1

b) the displacement current density at z = 0: Since σ = 0, we have

∇ × H = Jd = −5β sin(109t − βz) = −74.5 sin(109t − 14.9z)ax

= −74.5 sin(109t)ax A/m at z = 0

c) the total displacement current crossing the surface x = 0.5d, 0 < y < b, and 0 < z < 0.1 m in
the ax direction. We evaluate the flux integral of Jd over the given cross section:

Id = −74.5b
∫ 0.1

0
sin(109t − 14.9z) ax · ax dz = 0.20

[
cos(109t − 1.49) − cos(109t)

]
A
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10.19. In the first section of this chapter, Faraday’s law was used to show that the field E = − 1
2kB0ρe

ktaφ
results from the changing magnetic field B = B0e

ktaz (note that the factor of ρ appearing in E was
omitted from the original problem statement).

a) Show that these fields do not satisfy Maxwell’s other curl equation: Note that B as stated is constant
with position, and so will have zero curl. The electric field, however, varies with time, and so
∇ × H = ∂D

∂t
would have a zero left-hand side and a non-zero right-hand side. The equation is

thus not valid with these fields.

b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large magnetic flux density in 1
µs. Use the ∇ × H equation to show that the rate at which Bz should (but does not) change with
ρ is only about 5 × 10−6 T/m in free space at t = 0: Assuming that B varies with ρ, we write

∇ × H = −∂Hz

∂ρ
aφ = − 1

µ0

dB0

dρ
ekt = ε0

∂E
∂t

= −1

2
ε0k

2B0ρe
kt

Thus
dB0

dρ
= 1

2
µ0ε0k

2ρB0 = 1012(1)ρ

2(3 × 108)2 = 5.6 × 10−6ρ

which is near the stated value if ρ is on the order of 1m.

10.20. Point C(−0.1,−0.2, 0.3) lies on the surface of a perfect conductor. The electric field intensity at C is
(500ax − 300ay + 600az) cos 107t V/m, and the medium surrounding the conductor is characterized
by µR = 5, εR = 10, and σ = 0.

a) Find a unit vector normal to the conductor surface at C, if the origin lies within the conductor:
At t = 0, the field must be directed out of the surface, and will be normal to it, since we have a
perfect conductor. Therefore

n = +E(t = 0)

|E(t = 0)| = 5ax − 3ay + 6az√
25 + 9 + 36

= 0.60ax − 0.36ay + 0.72az

b) Find the surface charge density at C: Use

ρs = D · n|surf ace = 10ε0
[
500ax − 300ay + 600az

]
cos(107t) · [.60ax − .36ay + .72az

]
= 10ε0 [300 + 108 + 432] cos(107t) = 7.4 × 10−8 cos(107t) C/m2 = 74 cos(107t) nC/m2

10.21. The surfaces ρ = 3 and 10 mm, and z = 0 and 25 cm are perfect conductors. The region en-
closed by these surfaces has µ = 2.5 × 10−6 H/m, ε = 4 × 10−11 F/m, and σ = 0. Let H =
(2/ρ) cos(10πz) cos(ωt) aφ A/m. Make use of Maxwell’s equations to find

a) ω: We start with

∇ × H = −∂Hφ

∂z
aρ = 20π

ρ
sin(10πz) cos(ωt) aρ = ε

∂E
∂t

We then find

E =
∫

20π

ρε
sin(10πz) cos(ωt) dt aρ = 20π

ωρε
sin(10πz) sin(ωt) aρ
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10.21a. (continued) At this point, a flaw in the problem statement becomes apparent, since this field should
vanish on the surface of the perfect conductor located at z = 0.25m. This does not happen with the
sin(10πz) function. Nevertheless, we press on:

∇ × E = ∂Eρ

∂z
aφ = (20π)(10π)

ωρε
cos(10πz) sin(ωt) aφ = −µ

∂H
∂t

So

H =
∫ −200π2

ωρµε
cos(10πz) sin(ωt) aφ dt = 200π2

ω2µερ
cos(10πz) cos(ωt) aφ

This result must equal the given H field, so we require that

200π2

ω2µερ
= 2

ρ
⇒ ω = 10π√

µε
= 10π√

(2.5 × 10−6)(4 × 10−11)
= π × 109 sec−1

b) E: We use the result of part a:

E = 20π

ωρε
sin(10πz) sin(ωt) aρ = 500

ρ
sin(10πz) sin(ωt) aρ V/m

10.22. In free space, where ε = ε0, µ = µ0, σ = 0, J = 0, and ρv = 0, assume a cartesian coordinate system
in which E and H are both functions only of z and t .

a) If E = Eyay and H = Hxax , begin with Maxwell’s equations and determine the second order
partial differential equation that Ey must satisfy: The procedure here is similar to the development
that leads to Eq. 53. Begin by taking the curl of both sides of the Faraday law equation:

∇ × ∇ × E = ∇ ×
(

−µ0
∂H
∂t

)
= −µ0

∂

∂t
(∇ × H)

where ∇ × H = ε0∂E/∂t . Therefore

∇ × ∇ × E = ∇(∇ · E) − ∇2E = −µ0ε0
∂2E
∂t2

where the first equality is found from Eq. 52. Noting that in free space, ∇ · D = ε0∇ · E = 0, we
obtain,

∇2E = µ0ε0
∂2E
∂t2

⇒ ∂2Ey

∂z2 = µ0ε0
∂2Ey

∂t2

since E varies only with z and t , and is y-directed.

b) Show that Ey = 5(300t + bz)2 is a solution of that equation for a particular value of b, and find
that value: Substituting, we find

∂2Ey

∂z2 = 10b2 = µ0ε0
∂Ey

∂t2
= 9 × 105µ0ε0

Therefore
10b2 = 9 × 105µ0ε0 → b = 1.0 × 10−6 m−1
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10.23. In region 1, z < 0, ε1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 = 4 × 10−3 S/m; in region 2,
z > 0, ε2 = ε1/2, µ2 = 2µ1, and σ2 = σ1/4. It is known that E1 = (30ax + 20ay + 10az) cos(109t)

V/m at P1(0, 0, 0−).

a) Find EN1, Et1, DN1, and Dt1: These will be

EN1 = 10 cos(109t)az V/m Et1 = (30ax + 20ay) cos(109t) V/m

DN1 = ε1EN1 = (2 × 10−11)(10) cos(109t)az C/m2 = 200 cos(109t)az pC/m2

Dt1 = ε1Et1 = (2 × 10−11)(30ax + 20ay) cos(109t) = (600ax + 400ay) cos(109t) pC/m2

b) Find JN1 and Jt1 at P1:

JN1 = σ1EN1 = (4 × 10−3)(10 cos(109t))az = 40 cos(109t)az mA/m2

Jt1 = σ1Et1 = (4 × 10−3)(30ax + 20ay) cos(109t) = (120ax + 80ay) cos(109t) mA/m2

c) Find Et2, Dt2, and Jt2 at P1: By continuity of tangential E,

Et2 = Et1 = (30ax + 20ay) cos(109t) V/m

Then

Dt2 = ε2Et2 = (10−11)(30ax + 20ay) cos(109t) = (300ax + 200ay) cos(109t) pC/m2

Jt2 = σ2Et2 = (10−3)(30ax + 20ay) cos(109t) = (30ax + 20ay) cos(109t) mA/m2

d) (Harder) Use the continuity equation to help show that JN1 − JN2 = ∂DN2/∂t − ∂DN1/∂t (note
misprint in problem statement) and then determine EN2, DN2, and JN2: We assume the existence of a
surface charge layer at the boundary having density ρs C/m2. If we draw a cylindrical “pillbox” whose
top and bottom surfaces (each of area 1a) are on either side of the interface, we may use the continuity
condition to write

(JN2 − JN1)1a = −∂ρs

∂t
1a

where ρs = DN2 − DN1. Therefore,

JN1 − JN2 = ∂

∂t
(DN2 − DN1)

In terms of the normal electric field components, this becomes

σ1EN1 − σ2EN2 = ∂

∂t
(ε2EN2 − ε1EN1)

Now let EN2 = A cos(109t) + B sin(109t), while from before, EN1 = 10 cos(109t).
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10.23. (continued)

These, along with the permittivities and conductivities, are substituted to obtain

(4 × 10−3)(10) cos(109t) − 10−3[A cos(109t) + B sin(109t)]

= ∂

∂t

[
10−11[A cos(109t) + B sin(109t)] − (2 × 10−11)(10) cos(109t)

]
= −(10−2A sin(109t) + 10−2B cos(109t) + (2 × 10−1) sin(109t)

We now equate coefficients of the sin and cos terms to obtain two equations:

4 × 10−2 − 10−3A = 10−2B

−10−3B = −10−2A + 2 × 10−1

These are solved together to find A = 20.2 and B = 2.0. Thus

EN2 =
[
20.2 cos(109t) + 2.0 sin(109t)

]
az = 20.3 cos(109t + 5.6◦)az V/m

Then
DN2 = ε2EN2 = 203 cos(109t + 5.6◦)az pC/m2

and
JN2 = σ2EN2 = 20.3 cos(109t + 5.6◦)az mA/m2

10.24. Given the fields V = 80z cos x cos 3 × 108t . kV and A = 26.7z sin x sin 3 × 108t ax mWb/m in free
space, find E and H: First, find E through

E = −∇V − ∂A
∂t

where
−∇V = 80 cos(3 × 108t)[z sin xax − cos xaz] kV/m

and
−∂A/∂t = −(3 × 108)(26.7)z sin x cos(3 × 108t)ax mV/m

Finally,

E = −
[
7.9 × 106z sin x ax + 8.0 × 104 cos x az

]
cos(3 × 108t) V/m

Now

B = ∇ × A = ∂Ax

∂z
ay = 26.7 sin x sin(3 × 108t)ay mWb/m2

Then

H = B
µ0

= 2.12 × 104 sin x sin(3 × 108t) ay A/m
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10.25. In a region where µR = εR = 1 and σ = 0, the retarded potentials are given by V = x(z − ct) V and
A = x[(z/c) − t]az Wb/m, where c = 1/

√
µ0ε0.

a) Show that ∇ · A = −µε(∂V/∂t):

First,

∇ · A = ∂Az

∂z
= x

c
= x

√
µ0ε0

Second,
∂V

∂t
= −cx = − x√

µ0ε0

so we observe that ∇ · A = −µ0ε0(∂V/∂t) in free space, implying that the given statement would
hold true in general media.

b) Find B, H, E, and D:

Use

B = ∇ × A = −∂Ax

∂x
ay =

(
t − z

c

)
ay T

Then

H = B
µ0

= 1

µ0

(
t − z

c

)
ay A/m

Now,

E = −∇V − ∂A
∂t

= −(z − ct)ax − xaz + xaz = (ct − z)ax V/m

Then
D = ε0E = ε0(ct − z)ax C/m2

c) Show that these results satisfy Maxwell’s equations if J and ρv are zero:
i. ∇ · D = ∇ · ε0(ct − z)ax = 0

ii. ∇ · B = ∇ · (t − z/c)ay = 0

iii.

∇ × H = −∂Hy

∂z
ax = 1

µ0c
ax =

√
ε0

µ0
ax

which we require to equal ∂D/∂t :

∂D
∂t

= ε0cax =
√
ε0

µ0
ax

iv.

∇ × E = ∂Ex

∂z
ay = −ay

which we require to equal −∂B/∂t :
∂B
∂t

= ay

So all four Maxwell equations are satisfied.
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10.26. Let the current I = 80t A be present in the az direction on the z axis in free space within the interval
−0.1 < z < 0.1 m.

a) Find Az at P(0, 2, 0): The integral for the retarded vector potential will in this case assume the form

A =
∫ .1

−.1

µ080(t − R/c)

4πR
az dz

where R = √
z2 + 4 and c = 3 × 108 m/s. We obtain

Az = 80µ0

4π

[∫ .1

−.1

t√
z2 + 4

dz −
∫ .1

−.1

1

c
dz

]
= 8 × 10−6t ln(z +

√
z2 + 4)

∣∣∣.1−.1
− 8 × 10−6

3 × 108 z

∣∣∣.1−.1

= 8 × 10−6 ln

(
.1 + √

4.01

−.1 + √
4.01

)
− 0.53 × 10−14 = 8.0 × 10−7t − 0.53 × 10−14

So finally, A = [
8.0 × 10−7t − 5.3 × 10−15

]
az Wb/m.

b) Sketch Az versus t over the time interval −0.1 < t < 0.1 µs: The sketch is linearly increasing with
time, beginning with Az = −8.53 × 10−14 Wb/m at t = −0.1 µs, crossing the time axis and going
positive at t = 6.6 ns, and reaching a maximum value of 7.46 × 10−14 Wb/m at t = 0.1 µs.
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CHAPTER 11

11.1. Show that Exs = Aejk0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for
k0 = ω

√
µ0ε0 and any φ and A: We take

d2

dz2 Ae
jk0z+φ = (jk0)

2Aejk0z+φ = −k2
0Exs

11.2. Let E(z, t) = 200 sin 0.2z cos 108tax + 500 cos(0.2z+ 50◦) sin 108tay V/m. Find:
a) E at P(0, 2, 0.6) at t = 25 ns: Obtain

EP (t = 25) = 200 sin [(0.2)(0.6)] cos(2.5)ax + 500 cos [(0.2)(0.6)+ 50(2π)/360] sin(2.5)ay
= −19.2ax + 164ay V/m

b) |E| at P at t = 20 ns:

EP (t = 20) = 200 sin [(0.2)(0.6)] cos(2.0)ax + 500 cos [(0.2)(0.6)+ 50(2π)/360] sin(2.0)ay
= −9.96ax + 248ay V/m

Thus |EP | =
√
(9.96)2 + (248)2 = 249 V/m.

c) Es at P : Es = 200 sin 0.2zax − j500 cos(0.2z+ 50◦)ay . Thus

EsP = 200 sin [(0.2)(0.6)] ax − j500 cos [(0.2)(0.6)+ 2π(50)/360] ay
= 23.9ax − j273ay V/m

11.3. An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m. Find
a) β: Since we have a uniform plane wave, β = ω/c, where we identify ω = 108 sec−1. Thus
β = 108/(3 × 108) = 0.33 rad/m.

b) λ: We know λ = 2π/β = 18.9 m.

c) E(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns: Use E(x, t) = −η0H(x, t) = −(377)(10) cos(108t −
βx) = −3.77 × 103 cos(108t − βx). The vector direction of E will be −az, since we require that
S = E × H, where S is x-directed. At the given point, the relevant coordinate is x = 0.1. Using
this, along with t = 10−9 sec, we finally obtain

E(x, t) = −3.77 × 103 cos[(108)(10−9)− (0.33)(0.1)]az = −3.77 × 103 cos(6.7 × 10−2)az

= −3.76 × 103az V/m

11.4. In phasor form, the electric field intensity of a uniform plane wave in free space is expressed as
Es = (40 − j30)e−j20zax V/m. Find:

a) ω: From the given expression, we identify β = 20 rad/m. Then ω = cβ = (3 × 108)(20) =
6.0 × 109 rad/s.

b) β = 20 rad/m from part a.
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11.4. (continued)
c) f = ω/2π = 956 MHz.

d) λ = 2π/β = 2π/20 = 0.314 m.

e) Hs : In free space, we find Hs by dividing Es by η0, and assigning vector components such that
Es × Hs gives the required direction of wave travel: We find

Hs = 40 − j30

377
e−j20zay = (0.11 − j0.08)e−j20z ay A/m

f) H(z, t) at P(6,−1, 0.07), t = 71 ps:

H(z, t) = Re
[
Hse

jωt
]

=
[
0.11 cos(6.0 × 109t − 20z)+ 0.08 sin(6.0 × 109t − 20z)

]
ay

Then

H(.07, t = 71ps) =
[
0.11 cos

[
(6.0 × 109)(7.1 × 10−11)− 20(.07)

]
+ .08 sin

[
(6.0 × 109)(7.1 × 10−11)− 20(.07)

]]
ay

= [0.11(0.562)− 0.08(0.827)]ay = −6.2 × 10−3ay A/m

11.5. A 150-MHz uniform plane wave in free space is described by Hs = (4 + j10)(2ax + jay)e−jβz A/m.

a) Find numerical values for ω, λ, and β: First, ω = 2π × 150 × 106 = 3π × 108 sec−1. Second,
for a uniform plane wave in free space, λ = 2πc/ω = c/f = (3 × 108)/(1.5 × 108) = 2 m.
Third, β = 2π/λ = π rad/m.

b) Find H(z, t) at t = 1.5 ns, z = 20 cm: Use

H(z, t) = Re{Hse
jωt } = Re{(4 + j10)(2ax + jay)(cos(ωt − βz)+ j sin(ωt − βz)}

= [8 cos(ωt − βz)− 20 sin(ωt − βz)] ax − [10 cos(ωt − βz)+ 4 sin(ωt − βz)] ay

. Now at the given position and time, ωt −βz = (3π × 108)(1.5 × 10−9)−π(0.20) = π/4. And
cos(π/4) = sin(π/4) = 1/

√
2. So finally,

H(z = 20cm, t = 1.5ns) = − 1√
2

(
12ax + 14ay

) = −8.5ax − 9.9ay A/m

c) What is |E|max? Have |E|max = η0|H |max , where

|H |max = √
Hs · H∗

s = [4(4 + j10)(4 − j10)+ (j)(−j)(4 + j10)(4 − j10)]1/2 = 24.1 A/m

Then |E|max = 377(24.1) = 9.08 kV/m.
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11.6. Let µR = εR = 1 for the field E(z, t) = (25ax − 30ay) cos(ωt − 50z)V/m.

a) Find ω: ω = cβ = (3 × 108)(50) = 15.0 × 109 s−1.

b) Determine the displacement current density, Jd(z, t):

Jd(z, t) = ∂D
∂t

= −ε0ω(25ax − 30ay) sin(ωt − 50z)

= (−3.32ax + 3.98ay) sin(1.5 × 1010t − 50z) A/m2

c) Find the total magnetic flux 	 passing through the rectangle defined by 0 < x < 1, y = 0,
0 < z < 1, at t = 0: In free space, the magnetic field of the uniform plane wave can be easily
found using the intrinsic impedance:

H(z, t) =
(

25

η0
ay + 30

η0
ax

)
cos(ωt − 50z) A/m

Then B(z, t) = µ0H(z, t) = (1/c)(25ay + 30ax) cos(ωt − 50z) Wb/m2, where µ0/η0 =√
µ0ε0 = 1/c. The flux at t = 0 is now

	 =
∫ 1

0

∫ 1

0
B · ay dx dz =

∫ 1

0

25

c
cos(50z) dz = 25

50(3 × 108)
sin(50) = −0.44 nWb

11.7. The phasor magnetic field intensity for a 400-MHz uniform plane wave propagating in a certain lossless
material is (2ay − j5az)e−j25x A/m. Knowing that the maximum amplitude of E is 1500 V/m, find β,
η, λ, vp, εR , µR , and H(x, y, z, t): First, from the phasor expression, we identify β = 25 m−1 from the
argument of the exponential function. Next, we evaluate H0 = |H| = √

H · H∗ = √
22 + 52 = √

29.
Then η = E0/H0 = 1500/

√
29 = 278.5 
. Then λ = 2π/β = 2π/25 = .25 m = 25 cm. Next,

vp = ω

β
= 2π × 400 × 106

25
= 1.01 × 108 m/s

Now we note that

η = 278.5 = 377

√
µR

εR
⇒ µR

εR
= 0.546

And
vp = 1.01 × 108 = c√

µRεR
⇒ µRεR = 8.79

We solve the above two equations simultaneously to find εR = 4.01 and µR = 2.19. Finally,

H(x, y, z, t) = Re
{
(2ay − j5az)e−j25xejωt

}
= 2 cos(2π × 400 × 106t − 25x)ay + 5 sin(2π × 400 × 106t − 25x)az

= 2 cos(8π × 108t − 25x)ay + 5 sin(8π × 108t − 25x)az A/m
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11.8. Let the fields, E(z, t) = 1800 cos(107πt − βz)ax V/m and H(z, t) = 3.8 cos(107πt − βz)ay A/m,
represent a uniform plane wave propagating at a velocity of 1.4 × 108 m/s in a perfect dielectric. Find:

a) β = ω/v = (107π)/(1.4 × 108) = 0.224 m−1.

b) λ = 2π/β = 2π/.224 = 28.0 m.

c) η = |E|/|H| = 1800/3.8 = 474
.

d) µR: Have two equations in the two unknowns, µR and εR: η = η0
√
µR/εR and β = ω

√
µRεR/c.

Eliminate εR to find

µR =
[
βcη

ωη0

]2

=
[
(.224)(3 × 108)(474)

(107π)(377)

]2

= 2.69

e) εR = µR(η0/η)
2 = (2.69)(377/474)2 = 1.70.

11.9. A certain lossless material has µR = 4 and εR = 9. A 10-MHz uniform plane wave is propagating in
the ay direction with Ex0 = 400 V/m and Ey0 = Ez0 = 0 at P(0.6, 0.6, 0.6) at t = 60 ns.

a) Find β, λ, vp, and η: For a uniform plane wave,

β = ω
√
µε = ω

c

√
µRεR = 2π × 107

3 × 108

√
(4)(9) = 0.4π rad/m

Then λ = (2π)/β = (2π)/(0.4π) = 5 m. Next,

vp = ω

β
= 2π × 107

4π × 10−1 = 5 × 107 m/s

Finally,

η =
√
µ

ε
= η0

√
µR

εR
= 377

√
4

9
= 251 


b) Find E(t) (at P ): We are given the amplitude at t = 60 ns and at y = 0.6 m. Let the maximum
amplitude be Emax , so that in general, Ex = Emax cos(ωt − βy). At the given position and time,

Ex = 400 = Emax cos[(2π × 107)(60 × 10−9)− (4π × 10−1)(0.6)] = Emax cos(0.96π)

= −0.99Emax

So Emax = (400)/(−0.99) = −403 V/m. Thus at P, E(t) = −403 cos(2π × 107t) V/m.

c) Find H(t): First, we note that if E at a given instant points in the negative x direction, while the
wave propagates in the forward y direction, then H at that same position and time must point in
the positive z direction. Since we have a lossless homogeneous medium, η is real, and we are
allowed to write H(t) = E(t)/η, where η is treated as negative and real. Thus

H(t) = Hz(t) = Ex(t)

η
= −403

−251
cos(2π × 10−7t) = 1.61 cos(2π × 10−7t) A/m
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11.10. Given a 20MHz uniform plane wave with Hs = (6ax − j2ay)e−jz A/m, assume propagation in a
lossless medium characterized by εR = 5 and an unknown µR .

a) Find λ, vp, µR , and η: First, β = 1, so λ = 2π/β = 2π m. Next, vp = ω/β = 2π × 20 × 106 =
4π × 107 m/s. Then, µR = (β2c2)/(ω2εR) = (3 × 108)2/(4π × 107)2(5) = 1.14.
Finally, η = η0

√
µR/εR = 377

√
1.14/5 = 180.

b) Determine E at the origin at t = 20ns: We use the relation |E| = η|H| and note that for positive z
propagation, a positive x component of H is coupled to a negative y component of E, and a negative
y component of H is coupled to a negativex component of E. We obtain Es = −η(6ay+j2ax)e−jz.
Then E(z, t) = Re

{
Esejωt

} = −6η cos(ωt − z)ay + 2η sin(ωt − z)ax = 360 sin(ωt − z)ax −
1080 cos(ωt − z)ay . With ω = 4π × 107 sec−1, t = 2 × 10−8 s, and z = 0, E evaluates as
E(0, 20ns) = 360(0.588)ax − 1080(−0.809)ay = 212ax + 874ay V/m.

11.11. A 2-GHz uniform plane wave has an amplitude ofEy0 = 1.4 kV/m at (0, 0, 0, t = 0) and is propagating
in the az direction in a medium where ε′′ = 1.6×10−11 F/m, ε′ = 3.0×10−11 F/m, andµ = 2.5µH/m.
Find:

a) Ey at P(0, 0, 1.8cm) at 0.2 ns: To begin, we have the ratio, ε′′/ε′ = 1.6/3.0 = 0.533. So

α = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

− 1




1/2

= (2π × 2 × 109)

√
(2.5 × 10−6)(3.0 × 10−11)

2

[√
1 + (.533)2 − 1

]1/2 = 28.1 Np/m

Then

β = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

+ 1




1/2

= 112 rad/m

Thus in general,
Ey(z, t) = 1.4e−28.1z cos(4π × 109t − 112z) kV/m

Evaluating this at t = 0.2 ns and z = 1.8 cm, find

Ey(1.8 cm, 0.2 ns) = 0.74 kV/m

b) Hx at P at 0.2 ns: We use the phasor relation, Hxs = −Eys/η where

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.5 × 10−6

3.0 × 10−11

1√
1 − j (.533)

= 263 + j65.7 = 271� 14◦ 


So now

Hxs = −Eys
η

= − (1.4 × 103)e−28.1ze−j112z

271ej14◦ = −5.16e−28.1ze−j112ze−j14◦
A/m

Then
Hx(z, t) = −5.16e−28.1z cos(4π × 10−9t − 112z− 14◦)

This, when evaluated at t = 0.2 ns and z = 1.8 cm, yields

Hx(1.8 cm, 0.2 ns) = −3.0 A/m
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11.12. The plane wave Es = 300e−jkxay V/m is propagating in a material for which µ = 2.25 µH/m, ε′ = 9
pF/m, and ε′′ = 7.8 pF/m. If ω = 64 Mrad/s, find:

a) α: We use the general formula, Eq. (35):

α = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

− 1




1/2

= (64 × 106)

√
(2.25 × 10−6)(9 × 10−12)

2

[√
1 + (.867)2 − 1

]1/2 = 0.116 Np/m

b) β: Using (36), we write

β = ω

√
µε′

2



√

1 +
(
ε′′

ε′

)2

+ 1




1/2

= .311 rad/m

c) vp = ω/β = (64 × 106)/(.311) = 2.06 × 108 m/s.

d) λ = 2π/β = 2π/(.311) = 20.2 m.

e) η: Using (39):

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
=

√
2.25 × 10−6

9 × 10−12

1√
1 − j (.867)

= 407 + j152 = 434.5ej.36 


f) Hs : With Es in the positive y direction (at a given time) and propagating in the positive x direction,
we would have a positive z component of Hs , at the same time. We write (with jk = α + jβ):

Hs = Es

η
az = 300

434.5ej.36 e
−jkxaz = 0.69e−αxe−jβxe−j.36az

= 0.69e−.116xe−j.311xe−j.36az A/m

g) E(3, 2, 4, 10ns): The real instantaneous form of E will be

E(x, y, z, t) = Re
{

Esejωt
}

= 300e−αx cos(ωt − βx)ay

Therefore

E(3, 2, 4, 10ns) = 300e−.116(3) cos[(64 × 106)(10−8)− .311(3)]ay = 203 V/m

11.13. Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 
 for a uniform plane wave propagating in the az
direction. If ω = 300 Mrad/s, find µ, ε′, and ε′′: We begin with

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)
= 450 + j60

and
jk = jω

√
µε′

√
1 − j (ε′′/ε′) = 0.2 + j1.5
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11.13. (continued) Then

ηη∗ = µ

ε′
1√

1 + (ε′′/ε′)2
= (450 + j60)(450 − j60) = 2.06 × 105 (1)

and

(jk)(jk)∗ = ω2µε′
√

1 + (ε′′/ε′)2 = (0.2 + j1.5)(0.2 − j1.5) = 2.29 (2)

Taking the ratio of (2) to (1),

(jk)(jk)∗

ηη∗ = ω2(ε′)2
(

1 + (ε′′/ε′)2
)

= 2.29

2.06 × 105
= 1.11 × 10−5

Then with ω = 3 × 108,

(ε′)2 = 1.11 × 10−5

(3 × 108)2
(
1 + (ε′′/ε′)2

) = 1.23 × 10−22(
1 + (ε′′/ε′)2

) (3)

Now, we use Eqs. (35) and (36). Squaring these and taking their ratio gives

α2

β2 =
√

1 + (ε′′/ε′)2√
1 + (ε′′/ε′)2

= (0.2)2

(1.5)2

We solve this to find ε′′/ε′ = 0.271. Substituting this result into (3) gives ε′ = 1.07 × 10−11 F/m.
Since ε′′/ε′ = 0.271, we then find ε′′ = 2.90 × 10−12 F/m. Finally, using these results in either (1) or
(2) we find µ = 2.28 × 10−6 H/m. Summary: µ = 2.28 × 10−6 H/m,

ε′ = 1.07 × 10−11 F/m, and ε′′ = 2.90 × 10−12 F/m.

11.14. A certain nonmagnetic material has the material constants ε′R = 2 and ε′′/ε′ = 4 × 10−4 at ω = 1.5
Grad/s. Find the distance a uniform plane wave can propagate through the material before:

a) it is attenuated by 1 Np: First, ε′′ = (4 × 104)(2)(8.854 × 10−12) = 7.1 × 10−15 F/m. Then,
since ε′′/ε′ << 1, we use the approximate form for α, given by Eq. (51) (written in terms of ε′′):

α
.= ωε′′

2

√
µ

ε′
= (1.5 × 109)(7.1 × 10−15)

2

377√
2

= 1.42 × 10−3 Np/m

The required distance is now z1 = (1.42 × 10−3)−1 = 706 m

b) the power level is reduced by one-half: The governing relation is e−2αz1/2 = 1/2, or z1/2 =
ln 2/2α = ln 2/2(1.42 × 10−3) = 244 m.

c) the phase shifts 360◦: This distance is defined as one wavelength, where λ = 2π/β

= (2πc)/(ω
√
ε′R) = [2π(3 × 108)]/[(1.5 × 109)

√
2] = 0.89 m.

11.15. A 10 GHz radar signal may be represented as a uniform plane wave in a sufficiently small region.
Calculate the wavelength in centimeters and the attenuation in nepers per meter if the wave is propagating
in a non-magnetic material for which

a) ε′R = 1 and ε′′R = 0: In a non-magnetic material, we would have:

α = ω

√
µ0ε0ε

′
R

2



√

1 +
(
ε′′R
ε′R

)2

− 1




1/2
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11.15. (continued) and

β = ω

√
µ0ε0ε

′
R

2



√

1 +
(
ε′′R
ε′R

)2

+ 1




1/2

With the given values of ε′R and ε′′R , it is clear that β = ω
√
µ0ε0 = ω/c, and so

λ = 2π/β = 2πc/ω = 3 × 1010/1010 = 3 cm. It is also clear that α = 0.

b) ε′R = 1.04 and ε′′R = 9.00 × 10−4: In this case ε′′R/ε
′
R << 1, and so β

.= ω

√
ε′R/c = 2.13 cm−1.

Thus λ = 2π/β = 2.95 cm. Then

α
.= ωε′′

2

√
µ

ε′
= ωε′′R

2

√
µ0ε0√
ε′R

= ω

2c

ε′′R√
ε′R

= 2π × 1010

2 × 3 × 108

(9.00 × 10−4)√
1.04

= 9.24 × 10−2 Np/m

c) ε′R = 2.5 and ε′′R = 7.2: Using the above formulas, we obtain

β = 2π × 1010
√

2.5

(3 × 1010)
√

2



√

1 +
(

7.2

2.5

)2

+ 1




1/2

= 4.71 cm−1

and so λ = 2π/β = 1.33 cm. Then

α = 2π × 1010
√

2.5

(3 × 108)
√

2



√

1 +
(

7.2

2.5

)2

− 1




1/2

= 335 Np/m

11.16. The power factor of a capacitor is defined as the cosine of the impedance phase angle, and its Q is
ωCR, whereR is the parallel resistance. Assume an idealized parallel plate capacitor having a dielecric
characterized by σ , ε′, and µR . Find both the power factor and Q in terms of the loss tangent: First,
the impedance will be:

Z =
R

(
1

jωC

)
R +

(
1

jωC

) = R
1 − jRωC

1 + (RωC)2
= R

1 − jQ

1 +Q2

Now R = d/(σA) and C = ε′A/d, and so Q = ωε′/σ = 1/l.t. Then the power factor is P.F =
cos[tan−1(−Q)] = 1/

√
1 +Q2.
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11.17. Let η = 250 + j30
 and jk = 0.2 + j2 m−1 for a uniform plane wave propagating in the az direction
in a dielectric having some finite conductivity. If |Es | = 400 V/m at z = 0, find:

a) Pz,av at z = 0 and z = 60 cm: Assume x-polarization for the electric field. Then

Pz,av = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
400e−αze−jβzax × 400

η∗ e
−αzejβzay

}

= 1

2
(400)2e−2αzRe

{
1

η∗

}
az = 8.0 × 104e−2(0.2)zRe

{
1

250 − j30

}
az

= 315 e−2(0.2)z az W/m2

Evaluating at z = 0, obtain Pz,av(z = 0) = 315 az W/m2,

and at z = 60 cm, Pz,av(z = 0.6) = 315e−2(0.2)(0.6)az = 248 az W/m2.

b) the average ohmic power dissipation in watts per cubic meter at z = 60 cm: At this point a flaw
becomes evident in the problem statement, since solving this part in two different ways gives
results that are not the same. I will demonstrate: In the first method, we use Poynting’s theorem
in point form (first equation at the top of p. 366), which we modify for the case of time-average
fields to read:

−∇ · Pz,av =< J · E >

where the right hand side is the average power dissipation per volume. Note that the additional
right-hand-side terms in Poynting’s theorem that describe changes in energy stored in the fields
will both be zero in steady state. We apply our equation to the result of part a:

< J · E >= −∇ · Pz,av = − d

dz
315 e−2(0.2)z = (0.4)(315)e−2(0.2)z = 126e−0.4z W/m3

At z = 60 cm, this becomes < J · E >= 99.1 W/m3. In the second method, we solve for the
conductivity and evaluate < J · E >= σ < E2 >. We use

jk = jω
√
µε′

√
1 − j (ε′′/ε′)

and

η =
√
µ

ε′
1√

1 − j (ε′′/ε′)

We take the ratio,
jk

η
= jωε′

[
1 − j

(
ε′′

ε′

)]
= jωε′ + ωε′′

Identifying σ = ωε′′, we find

σ = Re

{
jk

η

}
= Re

{
0.2 + j2

250 + j30

}
= 1.74 × 10−3 S/m

Now we find the dissipated power per volume:

σ < E2 >= 1.74 × 10−3
(

1

2

)(
400e−0.2z

)2
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11.17b. (continued) At z = 60 cm, this evaluates as 109 W/m3. One can show that consistency between the
two methods requires that

Re

{
1

η∗

}
= σ

2α

This relation does not hold using the numbers as given in the problem statement and the value of σ
found above. Note that in Problem 11.13, where all values are worked out, the relation does hold and
consistent results are obtained using both methods.

11.18a. Find P(r, t) if Es = 400e−j2xay V/m in free space: A positive y component of E requires a posi-
tive z component of H for propagation in the forward x direction. Thus Hs = (400/η0)e

−j2xaz =
1.06e−j2xaz A/m. In real form, the field are E(x, t) = 400 cos(ωt−2x)ay and H(x, t) = 1.06 cos(ωt−
2x)az. Now P(r, t) = P(x, t) = E(x, t)× H(x, t) = 424.4 cos2(ωt − 2x)ax W/m2.

b) Find P at t = 0 for r = (a, 5, 10), where a = 0,1,2, and 3: At t = 0, we find from part a,
P(a, 0) = 424.4 cos2(2a), which leads to the values (in W/m2): 424.4 at a = 0, 73.5 at a = 1,
181.3 at a = 2, and 391.3 at a = 3.

c) Find P at the origin for T = 0, 0.2T , 0.4T , and 0.6T , where T is the oscillation period. At
the origin, we have P(0, t) = 424.4 cos2(ωt) = 424.4 cos2(2πt/T ). Using this, we obtain
the following values (in W/m2): 424.4 at t = 0, 42.4 at t = 0.2T , 277.8 at t = 0.4T , and
277.8 at t = 0.6T .

11.19. Perfectly-conducting cylinders with radii of 8 mm and 20 mm are coaxial. The region between the
cylinders is filled with a perfect dielectric for which ε = 10−9/4π F/m and µR = 1. If E in this region
is (500/ρ) cos(ωt − 4z)aρ V/m, find:

a) ω, with the help of Maxwell’s equations in cylindrical coordinates: We use the two curl equations,
beginning with ∇ × E = −∂B/∂t , where in this case,

∇ × E = ∂Eρ

∂z
aφ = 2000

ρ
sin(ωt − 4z)aφ = −∂Bφ

∂t
aφ

So

Bφ =
∫

2000

ρ
sin(ωt − 4z)dt = 2000

ωρ
cos(ωt − 4z) T

Then

Hφ = Bφ

µ0
= 2000

(4π × 10−7)ωρ
cos(ωt − 4z) A/m

We next use ∇ × H = ∂D/∂t , where in this case

∇ × H = −∂Hφ
∂z

aρ + 1

ρ

∂(ρHφ)

∂ρ
az

where the second term on the right hand side becomes zero when substituting our Hφ . So

∇ × H = −∂Hφ
∂z

aρ = − 8000

(4π × 10−7)ωρ
sin(ωt − 4z)aρ = ∂Dρ

∂t
aρ

And

Dρ =
∫

− 8000

(4π × 10−7)ωρ
sin(ωt − 4z)dt = 8000

(4π × 10−7)ω2ρ
cos(ωt − 4z) C/m2
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11.19a. (continued) Finally, using the given ε,

Eρ = Dρ

ε
= 8000

(10−16)ω2ρ
cos(ωt − 4z) V/m

This must be the same as the given field, so we require

8000

(10−16)ω2ρ
= 500

ρ
⇒ ω = 4 × 108 rad/s

b) H(ρ, z, t): From part a, we have

H(ρ, z, t) = 2000

(4π × 10−7)ωρ
cos(ωt − 4z)aφ = 4.0

ρ
cos(4 × 108t − 4z)aφ A/m

c) P(ρ, φ, z): This will be

P(ρ, φ, z) = E × H = 500

ρ
cos(4 × 108t − 4z)aρ × 4.0

ρ
cos(4 × 108t − 4z)aφ

= 2.0 × 10−3

ρ2 cos2(4 × 108t − 4z)az W/m2

d) the average power passing through every cross-section 8 < ρ < 20 mm, 0 < φ < 2π . Using
the result of part c, we find Pavg = (1.0 × 103)/ρ2az W/m2. The power through the given
cross-section is now

P =
∫ 2π

0

∫ .020

.008

1.0 × 103

ρ2 ρ dρ dφ = 2π × 103 ln

(
20

8

)
= 5.7 kW

11.20. If Es = (60/r) sin θ e−j2r aθ V/m, and Hs = (1/4πr) sin θ e−j2r aφ A/m in free space, find the average
power passing outward through the surface r = 106, 0 < θ < π/3, and 0 < φ < 2π .

Pavg = 1

2
Re

{
Es × H∗

s

} = 15 sin2 θ

2πr2 ar W/m2

Then, the requested power will be

	 =
∫ 2π

0

∫ π/3

0

15 sin2 θ

2πr2 ar · ar r2 sin θdθdφ = 15
∫ π/3

0
sin3 θ dθ

= 15

(
−1

3
cos θ(sin2 θ + 2)

) ∣∣∣π/3
0

= 25

8
= 3.13 W

Note that the radial distance at the surface, r = 106 m, makes no difference, since the power density
dimishes as 1/r2.
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11.21. The cylindrical shell, 1 cm < ρ < 1.2 cm, is composed of a conducting material for which σ = 106

S/m. The external and internal regions are non-conducting. Let Hφ = 2000 A/m at ρ = 1.2 cm.

a) Find H everywhere: Use Ampere’s circuital law, which states:

∮
H · dL = 2πρ(2000) = 2π(1.2 × 10−2)(2000) = 48π A = Iencl

Then in this case

J = I

Area
az = 48

(1.44 − 1.00)× 10−4 az = 1.09 × 106 az A/m2

With this result we again use Ampere’s circuital law to find H everywhere within the shell as a
function of ρ (in meters):

Hφ1(ρ) = 1

2πρ

∫ 2π

0

∫ ρ

.01
1.09 × 106 ρ dρ dφ = 54.5

ρ
(104ρ2 − 1) A/m (.01 < ρ < .012)

Outside the shell, we would have

Hφ2(ρ) = 48π

2πρ
= 24/ρ A/m (ρ > .012)

Inside the shell (ρ < .01 m), Hφ = 0 since there is no enclosed current.

b) Find E everywhere: We use

E = J
σ

= 1.09 × 106

106 az = 1.09 az V/m

which is valid, presumeably, outside as well as inside the shell.

c) Find P everywhere: Use

P = E × H = 1.09 az × 54.5

ρ
(104ρ2 − 1) aφ

= −59.4

ρ
(104ρ2 − 1) aρ W/m2 (.01 < ρ < .012 m)

Outside the shell,

P = 1.09 az × 24

ρ
aφ = −26

ρ
aρ W/m2 (ρ > .012 m)
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11.22. The inner and outer dimensions of a copper coaxial transmission line are 2 and 7 mm, respectively.
Both conductors have thicknesses much greater than δ. The dielectric is lossless and the operating
frequency is 400 MHz. Calculate the resistance per meter length of the:

a) inner conductor: First

δ = 1√
πfµσ

= 1√
π(4 × 108)(4π × 10−7)(5.8 × 107)

= 3.3 × 10−6m = 3.3µm

Now, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(2 × 10−3)(5.8 × 107)(3.3 × 10−6)
= 0.42 ohms/m

b) outer conductor: Again, (70) applies but with a different conductor radius. Thus

Rout = a

b
Rin = 2

7
(0.42) = 0.12 ohms/m

c) transmission line: Since the two resistances found above are in series, the line resistance is their
sum, or R = Rin + Rout = 0.54 ohms/m.

11.23. A hollow tubular conductor is constructed from a type of brass having a conductivity of 1.2 × 107 S/m.
The inner and outer radii are 9 mm and 10 mm respectively. Calculate the resistance per meter length
at a frequency of

a) dc: In this case the current density is uniform over the entire tube cross-section. We write:

R(dc) = L

σA
= 1

(1.2 × 107)π(.012 − .0092)
= 1.4 × 10−3 
/m

b) 20 MHz: Now the skin effect will limit the effective cross-section. At 20 MHz, the skin depth is

δ(20MHz) = [πfµ0σ ]−1/2 = [π(20 × 106)(4π × 10−7)(1.2 × 107)]−1/2 = 3.25 × 10−5 m

This is much less than the outer radius of the tube. Therefore we can approximate the resistance
using the formula:

R(20MHz) = L

σA
= 1

2πbδ
= 1

(1.2 × 107)(2π(.01))(3.25 × 10−5)
= 4.1 × 10−2 
/m

c) 2 GHz: Using the same formula as in part b, we find the skin depth at 2 GHz to be δ = 3.25×10−6

m. The resistance (using the other formula) is R(2GHz) = 4.1 × 10−1 
/m.
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11.24a. Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 × 106 S/m and µR = 500 for the
stainless steel interior, and find the depth of penetration:

δ = 1√
πfµσ

= 1√
π(2.45 × 109)(4π × 10−7)(1.2 × 106)

= 9.28 × 10−6m = 9.28µm

b) Let Es = 50 � 0◦ V/m at the surface of the conductor, and plot a curve of the amplitude of Es vs.
the angle of Es as the field propagates into the stainless steel: Since the conductivity is high, we
use (62) to write α

.= β
.= √

πfµσ = 1/δ. So, assuming that the direction into the conductor is
z, the depth-dependent field is written as

Es(z) = 50e−αze−jβz = 50e−z/δe−jz/δ = 50 exp(−z/9.28)︸ ︷︷ ︸
amplitude

exp(−j z/9.28︸ ︷︷ ︸
angle

)

where z is in microns. Therefore, the plot of amplitude versus angle is simply a plot of e−x versus
x, where x = z/9.28; the starting amplitude is 50 and the 1/e amplitude (at z = 9.28 µm) is 18.4.

11.25. A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm
and a velocity of 3 × 105 m/s. Assuming the conductor is non-magnetic, determine the frequency and
the conductivity: First, we use

f = v

λ
= 3 × 105

3 × 10−4 = 109 Hz = 1 GHz

Next, for a good conductor,

δ = λ

2π
= 1√

πfµσ
⇒ σ = 4π

λ2fµ
= 4π

(9 × 10−8)(109)(4π × 10−7)
= 1.1 × 105 S/m

11.26. The dimensions of a certain coaxial transmission line are a = 0.8mm and b = 4mm. The outer
conductor thickness is 0.6mm, and all conductors have σ = 1.6 × 107 S/m.

a) Find R, the resistance per unit length, at an operating frequency of 2.4 GHz: First

δ = 1√
πfµσ

= 1√
π(2.4 × 108)(4π × 10−7)(1.6 × 107)

= 2.57 × 10−6m = 2.57µm

Then, using (70) with a unit length, we find

Rin = 1

2πaσδ
= 1

2π(0.8 × 10−3)(1.6 × 107)(2.57 × 10−6)
= 4.84 ohms/m

The outer conductor resistance is then found from the inner through

Rout = a

b
Rin = 0.8

4
(4.84) = 0.97 ohms/m

The net resistance per length is then the sum, R = Rin + Rout = 5.81 ohms/m.
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11.26b. Use information from Secs. 5.10 and 9.10 to find C and L, the capacitance and inductance per unit
length, respectively. The coax is air-filled. From those sections, we find (in free space)

C = 2πε0

ln(b/a)
= 2π(8.854 × 10−12)

ln(4/.8)
= 3.46 × 10−11 F/m

L = µ0

2π
ln(b/a) = 4π × 10−7

2π
ln(4/.8) = 3.22 × 10−7 H/m

c) Find α and β if α + jβ = √
jωC(R + jωL): Taking real and imaginary parts of the given

expression, we find

α = Re
{√
jωC(R + jωL)

}
= ω

√
LC√
2



√

1 +
(
R

ωL

)2

− 1




1/2

and

β = Im
{√
jωC(R + jωL)

}
= ω

√
LC√
2



√

1 +
(
R

ωL

)2

+ 1




1/2

These can be found by writing out α = Re
{√
jωC(R + jωL)

} = (1/2)
√
jωC(R + jωL)+c.c.,

where c.c denotes the complex conjugate. The result is squared, terms collected, and the square root
taken. Now, using the values ofR,C, andL found in parts a and b, we find α = 3.0 × 10−2 Np/m
and β = 50.3 rad/m.

11.27. The planar surface at z = 0 is a brass-Teflon interface. Use data available in Appendix C to evaluate
the following ratios for a uniform plane wave having ω = 4 × 1010 rad/s:

a) αTef/αbrass: From the appendix we find ε′′/ε′ = .0003 for Teflon, making the material a good
dielectric. Also, for Teflon, ε′R = 2.1. For brass, we find σ = 1.5×107 S/m, making brass a good
conductor at the stated frequency. For a good dielectric (Teflon) we use the approximations:

α
.= σ

2

√
µ

ε′
=

(
ε′′

ε′

)(
1

2

)
ω
√
µε′ = 1

2

(
ε′′

ε′

)
ω

c

√
ε′R

β
.= ω

√
µε′

[
1 + 1

8

(
ε′′

ε′

)]
.= ω

√
µε′ = ω

c

√
ε′R

For brass (good conductor) we have

α
.= β

.=
√
πfµσbrass =

√
π

(
1

2π

)
(4 × 1010)(4π × 10−7)(1.5 × 107) = 6.14 × 105 m−1

Now

αTef

αbrass
=

1/2
(
ε′′/ε′

)
(ω/c)

√
ε′R√

πfµσbrass
= (1/2)(.0003)(4 × 1010/3 × 108)

√
2.1

6.14 × 105
= 4.7 × 10−8

b)

λTef

λbrass
= (2π/βTef)

(2π/βbrass)
= βbrass

βTef
= c

√
πfµσbrass

ω

√
ε′R Tef

= (3 × 108)(6.14 × 105)

(4 × 1010)
√

2.1
= 3.2 × 103
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11.27. (continued)

c)
vTef

vbrass
= (ω/βTef)

(ω/βbrass)
= βbrass

βTef
= 3.2 × 103 as before

11.28. A uniform plane wave in free space has electric field given by Es = 10e−jβxaz + 15e−jβxay V/m.

a) Describe the wave polarization: Since the two components have a fixed phase difference (in this
case zero) with respect to time and position, the wave has linear polarization, with the field vector

in the yz plane at angle φ = tan−1(10/15) = 33.7◦ to the y axis.

b) Find Hs : With propagation in forward x, we would have

Hs = −10

377
e−jβxay + 15

377
e−jβxaz A/m = −26.5e−jβxay + 39.8e−jβxaz mA/m

c) determine the average power density in the wave in W/m2: Use

Pavg = 1

2
Re

{
Es × H∗

s

} = 1

2

[
(10)2

377
ax + (15)2

377
ax

]
= 0.43ax W/m2 or Pavg = 0.43 W/m2

11.29. Consider a left-circularly polarized wave in free space that propagates in the forward z direction. The
electric field is given by the appropriate form of Eq. (80).

a) Determine the magnetic field phasor, Hs :
We begin, using (80), with Es = E0(ax + jay)e−jβz. We find the two components of Hs

separately, using the two components of Es . Specifically, the x component of Es is associated
with a y component of Hs , and the y component of Es is associated with a negative x component
of Hs . The result is

Hs = E0

η0

(
ay − jax

)
e−jβz

b) Determine an expression for the average power density in the wave in W/m2 by direct application
of Eq. (57): We have

Pz,avg = 1

2
Re(Es × H∗

s ) = 1

2
Re

(
E0(ax + jay)e−jβz × E0

η0
(ay − jax)e+jβz

)

= E2
0

η0
az W/m2 (assuming E0 is real)
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11.30. The electric field of a uniform plane wave in free space is given by Es = 10(ay + jaz)e−j25x .
a) Determine the frequency, f : Use

f = βc

2π
= (25)(3 × 108)

2π
= 1.2 GHz

b) Find the magnetic field phasor, Hs : With the Poynting vector in the positive x direction, a positive
y component for E requires a positive z component for H. Similarly, a positive z component for
E requires a negative y component for H. Therefore,

Hs = 10

η0

[
az − jay

]
e−j25x

c) Describe the polarization of the wave: This is most clearly seen by first converting the given field
to real instantaneous form:

E(x, t) = Re
{

Esejωt
}

= 10
[
cos(ωt − 25x)ay − sin(ωt − 25x)az

]
At x = 0, this becomes,

E(0, t) = 10
[
cos(ωt)ay − sin(ωt)az

]
With the wave traveling in the forward x direction, we recognize the polarization as left circular.

11.31. A linearly-polarized uniform plane wave, propagating in the forward z direction, is input to a lossless
anisotropic material, in which the dielectric constant encountered by waves polarized along y (εRy)
differs from that seen by waves polarized along x (εRx). Suppose εRx = 2.15, εRy = 2.10, and the
wave electric field at input is polarized at 45◦ to the positive x and y axes. Assume free space wavelength
λ.

a) Determine the shortest length of the material such that the wave as it emerges from the output end
is circularly polarized: With the input field at 45◦, the x and y components are of equal magnitude,
and circular polarization will result if the phase difference between the components is π/2. Our
requirement over length L is thus βxL− βyL = π/2, or

L = π

2(βx − βy)
= πc

2ω(
√
εRx − √

εRy)

With the given values, we find,

L = (58.3)πc

2ω
= 58.3

λ

4
= 14.6 λ

b) Will the output wave be right- or left-circularly-polarized? With the dielectric constant greater for
x-polarized waves, the x component will lag the y component in time at the output. The field can
thus be written as E = E0(ay − jax), which is left circular polarization.
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11.32. Suppose that the length of the medium of Problem 11.31 is made to be twice that as determined in
the problem. Describe the polarization of the output wave in this case: With the length doubled, a
phase shift of π radians develops between the two components. At the input, we can write the field as
Es(0) = E0(ax + ay). After propagating through length L, we would have,

Es(L) = E0[e−jβxLax + e−jβyLay] = E0e
−jβxL[ax + e−j (βy−βx)Lay]

where (βy − βx)L = −π (since βx > βy), and so Es(L) = E0e
−jβxL[ax − ay]. With the reversal of

the y component, the wave polarization is rotated by 90◦, but is still linear polarization.

11.33. Given a wave for which Es = 15e−jβzax +18e−jβzejφay V/m, propagating in a medium characterized
by complex intrinsic impedance, η.

a) Find Hs : With the wave propagating in the forward z direction, we find:

Hs = 1

η

[
−18ejφax + 15ay

]
e−jβz A/m

b) Determine the average power density in W/m2: We find

Pz,avg = 1

2
Re

{
Es × H∗

s

} = 1

2
Re

{
(15)2

η∗ + (18)2

η∗

}
= 275 Re

{
1

η∗

}
W/m2

11.34. Given the general elliptically-polarized wave as per Eq. (73):

Es = [Ex0ax + Ey0e
jφay]e−jβz

a) Show, using methods similar to those of Example 11.7, that a linearly polarized wave results when
superimposing the given field and a phase-shifted field of the form:

Es = [Ex0ax + Ey0e
−jφay]e−jβzejδ

where δ is a constant: Adding the two fields gives

Es,tot =
[
Ex0

(
1 + ejδ

)
ax + Ey0

(
ejφ + e−jφejδ

)
ay

]
e−jβz

=


Ex0e

jδ/2
(
e−jδ/2 + ejδ/2

)
︸ ︷︷ ︸

2 cos(δ/2)

ax + Ey0e
jδ/2

(
e−jδ/2ejφ + e−jφejδ/2

)
︸ ︷︷ ︸

2 cos(φ−δ/2)

ay


 e−jβz

This simplifies to Es,tot = 2
[
Ex0 cos(δ/2)ax + Ey0 cos(φ − δ/2)ay

]
ejδ/2e−jβz, which is lin-

early polarized.

b) Find δ in terms of φ such that the resultant wave is polarized along x: By inspecting the part a
result, we achieve a zero y component when 2φ − δ = π (or odd multiples of π ).

199



CHAPTER 12

12.1. A uniform plane wave in air,E+
x1 = E+

x10 cos(1010t−βz)V/m, is normally-incident on a copper surface
at z = 0. What percentage of the incident power density is transmitted into the copper? We need to
find the reflection coefficient. The intrinsic impedance of copper (a good conductor) is

ηc =
√
jωµ

σ
= (1 + j)

√
ωµ

2σ
= (1 + j)

√
1010(4π × 107)

2(5.8 × 107)
= (1 + j)(.0104)

Note that the accuracy here is questionable, since we know the conductivity to only two significant
figures. We nevertheless proceed: Using η0 = 376.7288 ohms, we write

� = ηc − η0

ηc + η0
= .0104 − 376.7288 + j.0104

.0104 + 376.7288 + j.0104
= −.9999 + j.0001

Now |�|2 = .9999, and so the transmitted power fraction is 1 − |�|2 = .0001, or about 0.01% is
transmitted.

12.2. The plane y = 0 defines the boundary between two different dielectrics. For y < 0, ε′R1 = 1, µ1 = µ0,
and ε′′R1 = 0; and for y > 0, ε′R2 = 5, µ2 = µ0, and ε′′R2 = 0. Let E+

z1 = 150 cos(ωt − 8y)V/m, and
find

a) ω: Have β = 8 = ω/c ⇒ ω = 8c = 2.4 × 109 sec−1.

b) H+
1 : WithE in the z direction, and propagation in the forward y direction,H will lie in the positive

x direction, and its amplitude will be Hx = Ey/η0 in region 1.
Thus H+

1 = (150/η0) cos(ωt − 8y)ax = 0.40 cos(2.4 × 109t − 8y)ax A/m.

c) H−
1 : First,

E−
z1 = �E+

z1 = η0/
√

5 − η0/1

η0/
√

5 + η0/1
= 1 − √

5

1 + √
5
E+
z1 = −0.38E+

z1

Then

H−
x1 = +(0.38/η0)E

+
z1 = 0.38(150)

377
cos(ωt + 8y)

So finally, H−
x1 = 0.15 cos(2.4 × 109t + 8y)ax A/m.

12.3. A uniform plane wave in region 1 is normally-incident on the planar boundary separating regions 1 and
2. If ε′′1 = ε′′2 = 0, while ε′R1 = µ3

R1 and ε′R2 = µ3
R2, find the ratio ε′R2/ε

′
R1 if 20% of the energy in

the incident wave is reflected at the boundary. There are two possible answers. First, since |�|2 = .20,
and since both permittivities and permeabilities are real, � = ±0.447. we then set up

� = ±0.447 = η2 − η1

η2 + η1
=
η0

√
(µR2/ε

′
R2)− η0

√
(µR1/ε

′
R1)

η0

√
(µR2/ε

′
R2)+ η0

√
(µR1/ε

′
R1)

=
√
(µR2/µ

3
R2)−

√
(µR1/µ

3
R1)√

(µR2/µ
3
R2)+

√
(µR1/µ

3
R1)

= µR1 − µR2

µR1 + µR2
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12.3. (continued) Therefore

µR2

µR1
= 1 ∓ 0.447

1 ± 0.447
= (0.382, 2.62) ⇒ ε′R2

ε′R1
=

(
µR2

µR1

)3

= (0.056, 17.9)

12.4. The magnetic field intensity in a region where ε′′ = 0 is given as H = 5 cosωt cosβz ay A/m, where
ω = 5 Grad/s and β = 30 rad/m. If the amplitude of the associated electric field intensity is 2kV/m,
find

a) µ and ε′ for the medium: In phasor form, the magnetic field is Hys = H0e
−jβz + H0e

+βz =
5 cosβz ⇒ H0 = 2.5. The electric field will be x directed, and is Exs = η(2.5)e−jβz −
η(2.5)e+jβz = (2j)η(2.5) sin βz. Given the electric field amplitude of 2 kV/m, we write 2×103 =
5η, or η = 400�. Now η = 400 = η0

√
µr/ε

′
R and we also have β = 30 = (ω/c)

√
µRε

′
R . We

solve these two equations simultaneously for µR and ε′R to find µR = 1.91 and ε′R = 1.70.
Therefore µ = 1.91 × 4π × 10−7 = 2.40µH/m and ε′ = 1.70 × 8.854 × 10−12 = 15.1 pF/m.

b) E: From part a, electric field in phasor form is Exs = j2 sin βz kV/m, and so, in real form:
E(z, t) = Re(Exsejωt )ax = 2 sin βz sinωt ax kV/m with ω and β as given.

12.5. The region z < 0 is characterized by ε′R = µR = 1 and ε′′R = 0. The total E field here is given as the
sum of the two uniform plane waves, Es = 150e−j10z ax + (50 � 20◦)ej10z ax V/m.

a) What is the operating frequency? In free space, β = k0 = 10 = ω/c = ω/3 × 108. Thus,
ω = 3 × 109 s−1, or f = ω/2π = 4.7 × 108 Hz.

b) Specify the intrinsic impedance of the region z > 0 that would provide the appropriate reflected
wave: Use

� = Er

Einc
= 50ej20◦

150
= 1

3
ej20◦ = 0.31 + j0.11 = η − η0

η + η0

Now

η = η0

(
1 + �

1 − �

)
= 377

(
1 + 0.31 + j0.11

1 − 0.31 − j0.31

)
= 691 + j177 �

c) At what value of z (−10 cm < z < 0) is the total electric field intensity a maximum amplitude?
We found the phase of the reflection coefficient to be φ = 20◦ = .349rad, and we use

zmax = −φ
2β

= −.349

20
= −0.017 m = −1.7 cm

12.6. Region 1, z < 0, and region 2, z > 0, are described by the following parameters: ε′1 = 100 pF/m,
µ1 = 25 µH/m, ε′′1 = 0, ε′2 = 200 pF/m, µ2 = 50 µH/m, and ε′′2/ε

′
2 = 0.5.

If E+
1 = 600e−α1z cos(5 × 1010t − β1z)ax V/m, find:

a) α1: From Eq. (35), Chapter 11, we note that since ε′′1 = 0, it follows that α1 = 0.

b) β1: β1 = ω
√
µ1ε

′
1 = (5 × 1010)

√
(25 × 10−6)(100 × 10−12) = 2.50 × 103 rad/m.

c) E+
s1 = 600e−j2.50×103zax V/m.

d) E−
s1: To find this, we need to evaluate the reflection coefficient, which means that we first need the

two intrinsic impedances. First, η1 = √
µ1/ε

′
1 =

√
(25 × 10−6)/(100 × 10−12) = 500.
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12.6d) (continued) Next, using Eq. (39), Chapter 11,

η2 =
√
µ2

ε′2

1√
1 − j (ε′′2/ε

′
2)

=
√

50 × 10−6

2 × 10−10

1√
1 − j0.5

= 460 + j109

Then

� = η2 − η1

η2 + η1
= 460 + j109 − 500

460 + j109 + 500
= −2.83 × 10−2 + j1.16 × 10−1 = 0.120ej104◦

Now we multiply E+
s1 by � and reverse the propagation direction to obtain

E−
s1 = 71.8ej104◦

ej2.5×103z V/m

e) E+
s2: This wave will experience loss in region 2, along with a different phase constant. We need

to evaluate α2 and β2. First, using Eq. (35), Chapter 11,

α2 = ω

√
µ2ε

′
2

2



√

1 +
(
ε′′2
ε′2

)2

− 1




1/2

= (5 × 1010)

√
(50 × 106)(200 × 10−12)

2

[√
1 + (0.5)2 − 1

]1/2 = 1.21 × 103 Np/m

Then, using Eq. (36), Chapter 11,

β2 = ω

√
µ2ε

′
2

2



√

1 +
(
ε′′2
ε′2

)2

+ 1




1/2

= 5.15 × 103 rad/m

Then, the transmission coefficient will be

τ = 1 + � = 1 − 2.83 × 10−2 + j1.16 × 10−1 = 0.972ej7◦

The complex amplitude of E+
s2 is then found by multiplying the amplitude of E+

s1 by τ . The field
in region 2 is then constructed by using the resulting amplitude, along with the attenuation and
phase constants that are appropriate for region 2. The result is

E+
s2 = 587e−1.21×103zej7◦

e−j5.15×103z V/m

12.7. The semi-infinite regions z < 0 and z > 1 m are free space. For 0 < z < 1 m, ε′R = 4, µR = 1,
and ε′′R = 0. A uniform plane wave with ω = 4 × 108 rad/s is travelling in the az direction toward the
interface at z = 0.

a) Find the standing wave ratio in each of the three regions: First we find the phase constant in the
middle region,

β2 =
ω

√
ε′R
c

= 2(4 × 108)

3 × 108 = 2.67 rad/m
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12.7a. (continued) Then, with the middle layer thickness of 1 m, β2d = 2.67 rad. Also, the intrinsic impedance

of the middle layer is η2 = η0/

√
ε′R = η0/2. We now find the input impedance:

ηin = η2

[
η0 cos(β2d)+ jη2 sin(β2d)

η2 cos(β2d)+ jη0 sin(β2d)

]
= 377

2

[
2 cos(2.67)+ j sin(2.67)

cos(2.67)+ j2 sin(2.67)

]
= 231 + j141

Now, at the first interface,

�12 = ηin − η0

ηin + η0
= 231 + j141 − 377

231 + j141 + 377
= −.176 + j.273 = .325� 123◦

The standing wave ratio measured in region 1 is thus

s1 = 1 + |�12|
1 − |�12| = 1 + 0.325

1 − 0.325
= 1.96

In region 2 the standing wave ratio is found by considering the reflection coefficient for waves incident
from region 2 on the second interface:

�23 = η0 − η0/2

η0 + η0/2
= 1 − 1/2

1 + 1/2
= 1

3

Then

s2 = 1 + 1/3

1 − 1/3
= 2

Finally, s3 = 1, since no reflected waves exist in region 3.

b) Find the location of the maximum |E| for z < 0 that is nearest to z = 0. We note that the phase
of �12 is φ = 123◦ = 2.15 rad. Thus

zmax = −φ
2β

= −2.15

2(4/3)
= −.81 m

12.8. A wave starts at point a, propagates 100m through a lossy dielectric for which α = 0.5 Np/m, reflects
at normal incidence at a boundary at which � = 0.3 + j0.4, and then returns to point a. Calculate the
ratio of the final power to the incident power after this round trip: Final power, Pf , and incident power,
Pi , are related through

Pf = Pie
−2αL|�|2e−2αL ⇒ Pf

Pi
= |0.3 + j0.4|2e−2(0.5)100 = 3.5 × 10−88(!)

Try measuring that.

12.9. Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (µ = µ0, ε′′ = 0). A uniform plane
wave traveling in the az direction has a radian frequency of 3 × 1010 rad/s. Its wavelengths in the two
regions are λ1 = 5 cm and λ2 = 3 cm. What percentage of the energy incident on the boundary is

a) reflected; We first note that

ε′R1 =
(

2πc

λ1ω

)2

and ε′R2 =
(

2πc

λ2ω

)2
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12.9a. (continued) Therefore ε′R1/ε
′
R2 = (λ2/λ1)

2. Then with µ = µ0 in both regions, we find

� = η2 − η1

η2 + η1
=
η0

√
1/ε′R2 − η0

√
1/ε′R1

η0

√
1/ε′R2 + η0

√
1/ε′R1

=
√
ε′R1/ε

′
R2 − 1√

ε′R1/ε
′
R2 + 1

= (λ2/λ1)− 1

(λ2/λ1)+ 1

= λ2 − λ1

λ2 + λ1
= 3 − 5

3 + 5
= −1

4

The fraction of the incident energy that is reflected is then |�|2 = 1/16 = 6.25 × 10−2.

b) transmitted? We use part a and find the transmitted fraction to be
1 − |�|2 = 15/16 = 0.938.

c) What is the standing wave ratio in region 1? Use

s = 1 + |�|
1 − |�| = 1 + 1/4

1 − 1/4
= 5

3
= 1.67

12.10. In Fig. 12.1, let region 2 be free space, while µR1 = 1, ε′′R1 = 0, and ε′R1 is unknown. Find ε′R! if
a) the amplitude of E−

1 is one-half that of E+
1 : Since region 2 is free space, the reflection coefficient

is

� = |E−
1 |

|E+
1 | = η0 − η1

η0 + η1
=
η0 − η0/

√
ε′R1

η0 + η0/

√
ε′R1

=
√
ε′R1 − 1√
ε′R1 + 1

= 1

2
⇒ ε′R1 = 9

.

b) P−
1,avg is one-half of P+

1,avg: This time

|�|2 =

∣∣∣∣∣∣∣
√
ε′R1 − 1√
ε′R1 + 1

∣∣∣∣∣∣∣
2

= 1

2
⇒ ε′R1 = 34

c) |E1|min is one-half |E1|max : Use

|E1|max
|E1|min = s = 1 + |�|

1 − |�| = 2 ⇒ |�| = � = 1

3
=

√
ε′R1 − 1√
ε′R1 + 1

⇒ ε′R1 = 4

12.11. A 150 MHz uniform plane wave in normally-incident from air onto a material whose intrinsic impedance
is unknown. Measurements yield a standing wave ratio of 3 and the appearance of an electric field
minimum at 0.3 wavelengths in front of the interface. Determine the impedance of the unknown
material: First, the field minimum is used to find the phase of the reflection coefficient, where

zmin = − 1

2β
(φ + π) = −0.3λ ⇒ φ = 0.2π

where β = 2π/λ has been used. Next,

|�| = s − 1

s + 1
= 3 − 1

3 + 1
= 1

2
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12.11. (continued) So we now have

� = 0.5ej0.2π = ηu − η0

ηu + η0

We solve for ηu to find
ηu = η0(1.70 + j1.33) = 641 + j501 �

12.12. A 50MHz uniform plane wave is normally incident from air onto the surface of a calm ocean. For
seawater, σ = 4 S/m, and ε′R = 78.

a) Determine the fractions of the incident power that are reflected and transmitted: First we find the
loss tangent:

σ

ωε′
= 4

2π(50 × 106)(78)(8.854 × 10−12)
= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor
at 50MHz. Then, using the approximation (Eq. 65, Chapter 11), the intrinsic impedance is
ηs = √

πfµ/σ(1 + j), and the reflection coefficient becomes

� =
√
πfµ/σ (1 + j)− η0√
πfµ/σ (1 + j)+ η0

where
√
πfµ/σ =

√
π(50 × 106)(4π × 10−7)/4 = 7.0. The fraction of the power reflected is

Pr

Pi
= |�|2 = [

√
πfµ/σ − η0]2 + πfµ/σ

[
√
πfµ/σ + η0]2 + πfµ/σ

= [7.0 − 377]2 + 49.0

[7.0 + 377]2 + 49.0
= 0.93

The transmitted fraction is then

Pt

Pi
= 1 − |�|2 = 1 − 0.93 = 0.07

b) Qualitatively, how will these answers change (if at all) as the frequency is increased? Within
the limits of our good conductor approximation (loss tangent greater than about ten), the reflected
power fraction, using the formula derived in part a, is found to decrease with increasing frequency.
The transmitted power fraction thus increases.

12.13. A right-circularly-polarized plane wave is normally incident from air onto a semi-infinite slab of plex-
iglas (ε′R = 3.45, ε′′R = 0). Calculate the fractions of the incident power that are reflected and trans-
mitted. Also, describe the polarizations of the reflected and transmitted waves. First, the impedance of
the plexiglas will be η = η0/

√
3.45 = 203�. Then

� = 203 − 377

203 + 377
= −0.30

The reflected power fraction is thus |�|2 = 0.09. The total electric field in the plane of the interface
must rotate in the same direction as the incident field, in order to continually satisfy the boundary
condition of tangential electric field continuity across the interface. Therefore, the reflected wave will
have to be left circularly polarized in order to make this happen. The transmitted power fraction is now

1 − |�|2 = 0.91. The transmitted field will be right circularly polarized (as the incident field) for the
same reasons.
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12.14. A left-circularly-polarized plane wave is normally-incident onto the surface of a perfect conductor.
a) Construct the superposition of the incident and reflected waves in phasor form: Assume positive
z travel for the incident electric field. Then, with reflection coefficient, � = −1, the incident and
reflected fields will add to give the total field:

Etot = Ei + Er = E0(ax + jay)e−jβz − E0(ax + jay)e+jβz

= E0


(e−jβz − ejβz

)
︸ ︷︷ ︸

−2j sin(βz)

ax + j
(
e−jβz − ejβz

)
︸ ︷︷ ︸

−2j sin(βz)

ay


 = 2E0 sin(βz)

[
ay − jax

]

b) Determine the real instantaneous form of the result of part a:

E(z, t) = Re
{

Etot ejωt
}

= 2E0 sin(βz)
[
cos(ωt)ay + sin(ωt)ax

]
c) Describe the wave that is formed: This is a standing wave exhibiting circular polarization in

time. At each location along the z axis, the field vector rotates clockwise in the xy plane, and has
amplitude (constant with time) given by 2E0 sin(βz).

12.15. Consider these regions in which ε′′ = 0: region 1, z < 0, µ1 = 4µH/m and ε′1 = 10 pF/m; region 2,
0 < z < 6 cm, µ2 = 2µH/m, ε′2 = 25 pF/m; region 3, z > 6 cm, µ3 = µ1 and ε′3 = ε′1.

a) What is the lowest frequency at which a uniform plane wave incident from region 1 onto the
boundary at z = 0 will have no reflection? This frequency gives the condition β2d = π , where
d = 6 cm, and β2 = ω

√
µ2ε

′
2 Therefore

β2d = π ⇒ ω = π

(.06)
√
µ2ε

′
2

⇒ f = 1

0.12
√
(2 × 10−6)(25 × 10−12)

= 1.2 GHz

b) If f = 50 MHz, what will the standing wave ratio be in region 1? At the given frequency,
β2 = (2π × 5 × 107)

√
(2 × 10−6)(25 × 10−12) = 2.22 rad/m. Thus β2d = 2.22(.06) = 0.133.

The intrinsic impedance of regions 1 and 3 is η1 = η3 =
√
(4 × 10−6)/(10−11) = 632�. The

input impedance at the first interface is now

ηin = 283

[
632 cos(.133)+ j283 sin(.133)

283 cos(.133)+ j632 sin(.133)

]
= 589 − j138 = 605� − .23

The reflection coefficient is now

� = ηin − η1

ηin + η1
= 589 − j138 − 632

589 − j138 + 632
= .12 � − 1.7

The standing wave ratio is now

s = 1 + |�|
1 − |�| = 1 + .12

1 − .12
= 1.27

12.16. A uniform plane wave in air is normally-incident onto a lossless dielectric plate of thickness λ/8, and
of intrinsic impedance η = 260 �. Determine the standing wave ratio in front of the plate. Also find
the fraction of the incident power that is transmitted to the other side of the plate: With the a thickness
of λ/8, we have βd = π/4, and so cos(βd) = sin(βd) = 1

√
2. The input impedance thus becomes

ηin = 260

[
377 + j260

260 + j377

]
= 243 − j92 �
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12.16. (continued)

The reflection coefficient is then

� = (243 − j92)− 377

(243 − j92)+ 377
= −0.19 − j0.18 = 0.26� − 2.4rad

Therefore

s = 1 + .26

1 − .26
= 1.7 and 1 − |�|2 = 1 − (.26)2 = 0.93

12.17. Repeat Problem 12.16 for the cases in which the frequency is
a) doubled: If this is true, then d = λ/4, and thus ηin = (260)2/377 = 179. The reflection coefficient

becomes

� = 179 − 377

179 + 377
= −0.36 ⇒ s = 1 + .36

1 − .36
= 2.13

Then 1 − |�|2 = 1 − (.36)2 = 0.87.

b) quadrupled: Now, d = λ/2, and so we have a half-wave section surrounded by air. Transmission
will be total, and so s = 1 and 1 − |�|2 = 1.

12.18. In Fig. 12.6, let η1 = η3 = 377�, and η2 = 0.4η1. A uniform plane wave is normally incident from
the left, as shown. Plot a curve of the standing wave ratio, s, in the region to the left:

a) as a function of l if f = 2.5GHz: With η1 = η3 = η0 and with η2 = 0.4η0, Eq. (41) becomes

ηin = 0.4η0

[
cos(βl)+ j0.4 sin(βl)

0.4 cos(βl)+ j sin(βl)

]
×
[

0.4 cos(βl)− j sin(βl)

0.4 cos(βl)− j sin(βl)

]

= η0

[
1 − j1.05 sin(2βl)

cos2(βl)+ 6.25 sin2(βl)

]

Then � = (ηin − η0)/(ηin + η0), from which we find

|�| =
√
��∗ =

[[
1 − cos2(βl)− 6.25 sin2(βl)

]2 + (1.05)2 sin2(2βl)[
1 + cos2(βl)+ 6.25 sin2(βl)

]2 + (1.05)2 sin2(2βl)

]1/2

Then s = (1 + |�|)/(1 − |�|). Now for a uniform plane wave, β = ω
√
µε = nω/c. Given that

η2 = 0.4η0 = η0/n, we find n = 2.5 (assuming µ = µ0). Thus, at 2.5 GHz,

βl = nω

c
l = (2.5)(2π)(2.5 × 109)

3 × 108 l = 12.95 l (l in m) = 0.1295 l (l in cm)

Using this in the expression for |�|, and calculating s as a function of l in cm leads to the first plot
shown on the next page.

b) as a function of frequency if l = 2cm. In this case we use

βl = (2.5)(2π)(0.02)

3 × 108 f = 1.04 × 10−10 f (f in Hz) = 0.104 f (f in GHz)

Using this in the expression for |�|, and calculating s as a function of f in GHz leads to the second
plot shown on the next page. MathCad was used in both cases.
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12.18 (continued) Plots for parts a and b

12.19. You are given four slabs of lossless dielectric, all with the same intrinsic impedance, η, known to
be different from that of free space. The thickness of each slab is λ/4, where λ is the wavelength as
measured in the slab material. The slabs are to be positioned parallel to one another, and the combination
lies in the path of a uniform plane wave, normally-incident. The slabs are to be arranged such that the
air spaces between them are either zero, one-quarter wavelength, or one-half wavelength in thickness.
Specify an arrangement of slabs and air spaces such that

a) the wave is totally transmitted through the stack: In this case, we look for a combination of half-
wave sections. Let the inter-slab distances bed1, d2, andd3 (from left to right). Two possibilities are
i.) d1 = d2 = d3 = 0, thus creating a single section of thickness λ, or ii.) d1 = d3 = 0, d2 = λ/2,
thus yielding two half-wave sections separated by a half-wavelength.

b) the stack presents the highest reflectivity to the incident wave: The best choice here is to make
d1 = d2 = d3 = λ/4. Thus every thickness is one-quarter wavelength. The impedances transform

as follows: First, the input impedance at the front surface of the last slab (slab 4) is ηin,1 = η2/η0.
We transform this back to the back surface of slab 3, moving through a distance of λ/4 in free
space: ηin,2 = η2

0/ηin,1 = η3
0/η

2. We next transform this impedance to the front surface of slab 3,
producing ηin,3 = η2/ηin,2 = η4/η3

0. We continue in this manner until reaching the front surface
of slab 1, where we find ηin,7 = η8/η7

0. Assuming η < η0, the ratio ηn/ηn−1
0 becomes smaller as

n increases (as the number of slabs increases). The reflection coefficient for waves incident on the
front slab thus gets close to unity, and approaches 1 as the number of slabs approaches infinity.

12.20. The 50MHz plane wave of Problem 12.12 is incident onto the ocean surface at an angle to the normal
of 60◦. Determine the fractions of the incident power that are reflected and transmitted for

a) s polarization: To review Problem 12, we first we find the loss tangent:

σ

ωε′
= 4

2π(50 × 106)(78)(8.854 × 10−12)
= 18.4

This value is sufficiently greater than 1 to enable seawater to be considered a good conductor at
50MHz. Then, using the approximation (Eq. 65, Chapter 11), and with µ = µ0, the intrinsic
impedance is ηs = √

πfµ/σ(1 + j) = 7.0(1 + j).
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12.20a. (continued)
Next we need the angle of refraction, which means that we need to know the refractive index of
seawater at 50MHz. For a uniform plane wave in a good conductor, the phase constant is

β = nsea ω

c

.=
√
πfµσ ⇒ nsea

.= c

√
µσ

4πf
= 26.8

Then, using Snell’s law, the angle of refraction is found:

sin θ2 = nsea

n1
sin θ1 = 26.8 sin(60◦) ⇒ θ2 = 1.9◦

This angle is small enough so that cos θ2
.= 1. Therefore, for s polarization,

�s
.= ηs2 − ηs1

ηs2 + ηs1
= 7.0(1 + j)− 377/ cos 60◦

7.0(1 + j)+ 377/ cos 60◦ = −0.98 + j0.018 = 0.98� 179◦

The fraction of the power reflected is now |�s |2 = 0.96. The fraction transmitted is then 0.04.

b) p polarization: Again, with the refracted angle close to zero, the relection coefficient for p polar-
ization is

�p
.= ηp2 − ηp1

ηp2 + ηp1
= 7.0(1 + j)− 377 cos 60◦

7.0(1 + j)+ 377 cos 60◦ = −0.93 + j0.069 = 0.93� 176◦

The fraction of the power reflected is now |�p|2 = 0.86. The fraction transmitted is then 0.14.

12.21. A right-circularly polarized plane wave in air is incident at Brewster’s angle onto a semi-infinite slab
of plexiglas (ε′R = 3.45, ε′′R = 0, µ = µ0).

a) Determine the fractions of the incident power that are reflected and transmitted: In plexiglas,
Brewster’s angle is θB = θ1 = tan−1(ε′R2/ε

′
R1) = tan−1(

√
3.45) = 61.7◦. Then the angle of

refraction is θ2 = 90◦ − θB (see Example 12.9), or θ2 = 28.3◦. With incidence at Brewster’s
angle, all p-polarized power will be transmitted — only s-polarized power will be reflected. This
is found through

�s = η2s − η1s

η2s + η1s
= .614η0 − 2.11η0

.614η0 + 2.11η0
= −0.549

where η1s = η1 sec θ1 = η0 sec(61.7◦) = 2.11η0,
and η2s = η2 sec θ2 = (η0/

√
3.45) sec(28.3◦) = 0.614η0. Now, the reflected power fraction

is |�|2 = (−.549)2 = .302. Since the wave is circularly-polarized, the s-polarized component
represents one-half the total incident wave power, and so the fraction of the total power that is
reflected is .302/2 = 0.15, or 15%. The fraction of the incident power that is transmitted is then
the remainder, or 85%.

b) Describe the polarizations of the reflected and transmitted waves: Since all the p-polarized com-
ponent is transmitted, the reflected wave will be entirely s-polarized (linear). The transmitted
wave, while having all the incident p-polarized power, will have a reduced s-component, and so
this wave will be right-elliptically polarized.
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12.22. A dielectric waveguide is shown in Fig. 12.18 with refractive indices as labeled. Incident light enters
the guide at angle φ from the front surface normal as shown. Once inside, the light totally reflects
at the upper n1 − n2 interface, where n1 > n2. All subsequent reflections from the upper an lower
boundaries will be total as well, and so the light is confined to the guide. Express, in terms of n1 and
n2, the maximum value of φ such that total confinement will occur, with n0 = 1. The quantity sin φ is
known as the numerical aperture of the guide.

From the illustration we see that φ1 maximizes when θ1 is at its minimum value. This minimum will
be the critical angle for the n1 − n2 interface, where sin θc = sin θ1 = n2/n1. Let the refracted angle
to the right of the vertical interface (not shown) be φ2, where n0 sin φ1 = n1 sin φ2. Then we see that
φ2 + θ1 = 90◦, and so sin θ1 = cosφ2. Now, the numerical aperture becomes

sin φ1max = n1

n0
sin φ2 = n1 cos θ1 = n1

√
1 − sin2 θ1 = n1

√
1 − (n2/n1)2 =

√
n2

1 − n2
2

Finally, φ1max = sin−1
(√

n2
1 − n2

2

)
is the numerical aperture angle.

12.23. Suppose that φ1 in Fig. 12.18 is Brewster’s angle, and that θ1 is the critical angle. Find n0 in terms of
n1 and n2: With the incoming ray at Brewster’s angle, the refracted angle of this ray (measured from
the inside normal to the front surface) will be 90◦ − φ1. Therefore, φ1 = θ1, and thus sin φ1 = sin θ1.
Thus

sin φ1 = n1√
n2

0 + n2
1

= sin θ1 = n2

n1
⇒ n0 = (n1/n2)

√
n2

1 − n2
2

Alternatively, we could have used the result of Problem 12.22, in which it was found that sin φ1 =
(1/n0)

√
n2

1 − n2
2, which we then set equal to sin θ1 = n2/n1 to get the same result.

12.24. A Brewster prism is designed to pass p-polarized light without any reflective loss. The prism of Fig.
12.19 is made of glass (n = 1.45), and is in air. Considering the light path shown, determine the apex
angle, α: With entrance and exit rays at Brewster’s angle (to eliminate reflective loss), the interior ray
must be horizontal, or parallel to the bottom surface of the prism. From the geometry, the angle between
the interior ray and the normal to the prism surfaces that it intersects is α/2. Since this angle is also
Brewster’s angle, we may write:

α = 2 sin−1
(

1√
1 + n2

)
= 2 sin−1

(
1√

1 + (1.45)2

)
= 1.21 rad = 69.2◦

12.25. In the Brewster prism of Fig. 12.19, determine for s-polarized light the fraction of the incident power
that is transmitted through the prism: We use �s = (ηs2 − ηs1)/(ηs2 + ηs1), where

ηs2 = η2

cos(θB2)
= η2

n/
√

1 + n2
= η0

n2

√
1 + n2

and
ηs1 = η1

cos(θB1)
= η1

1/
√

1 + n2
= η0

√
1 + n2
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12.25. (continued) Thus, at the first interface, � = (1−n2)/(1+n2). At the second interface, � will be equal
but of opposite sign to the above value. The power transmission coefficient through each interface is
1 − |�|2, so that for both interfaces, we have, with n = 1.45:

Ptr

Pinc
=

(
1 − |�|2

)2 =
[

1 −
(
n2 − 1

n2 + 1

)2
]2

= 0.76

12.26. Show how a single block of glass can be used to turn a p-polarized beam of iight through 180◦, with the
light suffering, in principle, zero reflective loss. The light is incident from air, and the returning beam
(also in air) may be displaced sideways from the incident beam. Specify all pertinent angles and use
n = 1.45 for glass. More than one design is possible here.

The prism below is designed such that light enters at Brewster’s angle, and once inside, is turned around
using total reflection. Using the result of Example 12.9, we find that with glass, θB = 55.4◦, which, by
the geometry, is also the incident angle for total reflection at the back of the prism. For this to work,
the Brewster angle must be greater than or equal to the critical angle. This is in fact the case, since
θc = sin−1(n2/n1) = sin−1(1/1.45) = 43.6◦.

12.27. Using Eq. (59) in Chapter 11 as a starting point, determine the ratio of the group and phase velocities
of an electromagnetic wave in a good conductor. Assume conductivity does not vary with frequency:
In a good conductor:

β =
√
πfµσ =

√
ωµσ

2
→ dβ

dω
= 1

2

[ωµσ
2

]−1/2 µσ

2

Thus
dω

dβ
=

(
dβ

dω

)−1

= 2

√
2ω

µσ
= vg and vp = ω

β
= ω√

ωµσ/2
=

√
2ω

µσ

Therefore vg/vp = 2.

211



12.28. Over a certain frequency range, the refractive index of a certain material varies approximately linearly
with frequency: n(ω)

.= na + nb(ω − ωa), where na , nb, and ωa are constants. Using β = nω/c:
a) determine the group velocity as a function (or perhaps not a function) of frequency:
vg = (dβ/dω)−1, where

dβ

dω
= d

dω

[
naω

c
+ nb(ω − ωa)ω

c

]
= 1

c
[na + nb(2ω − ωa)]

so that
vg(ω) = c [na + nb(2ω − ωa)]

−1

b) determine the group dispersion parameter, β2:

β2 = d2β

dω2

∣∣∣
ω0

= d

dω

1

c
[na + nb(2ω − ωa)]

∣∣∣
ω0

= 2nb/c

c) Discuss the implications of these results, if any, on pulse broadening: The point of this problem was
to show that higher order terms (involving d3β/dω3 and higher) in the Taylor series expansion,
Eq. (89), do not exist if the refractive index varies linearly with ω. These higher order terms
would be necessary in cases involving pulses of exremely large bandwidth, or in media exhibiting
complicated variations in their ω-β curves over relatively small frequency ranges. With d2β/dω2

constant, the three-term Taylor expansion of Eq. (89) describes the phase constant of this medium
exactly. The pulse will broaden and will acquire a frequency sweep (chirp) that is precisely linear
with time. Additionally, a pulse of a given bandwidth will broaden by the same amount, regardless
of what carrier frequency is used.

12.29. A T = 5 ps transform-limited pulse propagates in a dispersive channel for which β2 = 10 ps2/km.
Over what distance will the pulse spread to twice its initial width? After propagation, the width is
T ′ =

√
T 2 + (�τ)2 = 2T . Thus �τ = √

3T , where �τ = β2z/T . Therefore

β2z

T
=

√
3T or z =

√
3T 2

β2
=

√
3(5 ps)2

10 ps2/km
= 4.3 km

12.30. A T = 20 ps transform-limited pulse propagates through 10 km of a dispersive channel for which β2 =
12 ps2/km. The pulse then propagates through a second 10 km channel for which β2 = −12 ps2/km.
Describe the pulse at the output of the second channel and give a physical explanation for what hap-
pened.
Our theory of pulse spreading will allow for changes in β2 down the length of the channel. In fact, we
may write in general:

�τ = 1

T

∫ L

0
β2(z) dz

Having β2 change sign at the midpoint, yields a zero �τ , and so the pulse emerges from the output
unchanged! Physically, the pulse acquires a positive linear chirp (frequency increases with time over
the pulse envelope) during the first half of the channel. When β2 switches sign, the pulse begins to
acquire a negative chirp in the second half, which, over an equal distance, will completely eliminate
the chirp acquired during the first half. The pulse, if originally transform-limited at input, will emerge,
again transform-limited, at its original width. More generally, complete dispersion compensation is
achieved using a two-segment channel when β2L = −β ′

2L
′, assuming dispersion terms of higher order

than β2 do not exist.
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CHAPTER 13

13.1. The parameters of a certain transmission line operating at 6 × 108 rad/s are L = 0.4 µH/m, C =
40 pF/m, G = 80 mS/m, and R = 20 �/m.

a) Find γ , α, β, λ, and Z0: We use

γ =
√
ZY =

√
(R + jωL)(G+ jωC)

=
√

[20 + j (6 × 108)(0.4 × 10−6)][80 × 10−3 + j (6 × 108)(40 × 10−12)]

= 2.8 + j3.5 m−1 = α + jβ

Therefore, α = 2.8 Np/m, β = 3.5 rad/m, and λ = 2π/β = 1.8 m. Finally,

Z0 =
√
Z

Y
=
√
R + jωL

G+ jωC
=
√

20 + j2.4 × 102

80 × 10−3 + j2.4 × 10−2 = 44 + j30 �

b) If a voltage wave travels 20 m down the line, what percentage of the original amplitude remains,
and by how many degrees is it phase shifted? First,

V20

V0
= e−αL = e−(2.8)(20) = 4.8 × 10−25 or 4.8 × 10−23 percent!

Then the phase shift is given by βL, which in degrees becomes

φ = βL

(
360

2π

)
= (3.5)(20)

(
360

2π

)
= 4.0 × 103 degrees

13.2. A lossless transmission line with Z0 = 60 � is being operated at 60 MHz. The velocity on the line is
3 × 108 m/s. If the line is short-circuited at z = 0, find Zin at:

a) z = −1m: We use the expression for input impedance (Eq. 12), under the conditions Z2 = 60
and Z3 = 0:

Zin = Z2

[
Z3 cos(βl)+ jZ2 sin(βl)

Z2 cos(βl)+ jZ3 sin(βl)

]
= j60 tan(βl)

where l = −z, and where the phase constant is β = 2πc/f = 2π(3 × 108)/(6 × 107) =
(2/5)π rad/m. Now, with z = −1 (l = 1), we find Zin = j60 tan(2π/5) = j184.6 �.

b) z = −2 m: Zin = j60 tan(4π/5) = −j43.6 �

c) z = −2.5 m: Zin = j60 tan(5π/5) = 0

d) z = −1.25 m: Zin = j60 tan(π/2) = j∞ � (open circuit)

13.3. The characteristic impedance of a certain lossless transmission line is 72 �. If L = 0.5µH/m, find:
a) C: Use Z0 = √

L/C, or

C = L

Z2
0

= 5 × 10−7

(72)2
= 9.6 × 10−11 F/m = 96 pF/m
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13.3b) vp:

vp = 1√
LC

= 1√
(5 × 10−7)(9.6 × 10−11)

= 1.44 × 108 m/s

c) β if f = 80 MHz:

β = ω
√
LC = 2π × 80 × 106

1.44 × 108 = 3.5 rad/m

d) The line is terminated with a load of 60 �. Find 	 and s:

	 = 60 − 72

60 + 72
= −0.09 s = 1 + |	|

1 − |	| = 1 + .09

1 − .09
= 1.2

13.4. A lossless transmission line having Z0 = 120� is operating at ω = 5 × 108 rad/s. If the velocity on
the line is 2.4 × 108 m/s, find:

a) L: With Z0 = √
L/C and v = 1/

√
LC, we find L = Z0/v = 120/2.4 × 108 = 0.50 µH/m.

b) C: Use Z0v = √
L/C/

√
LC ⇒ C = 1/(Z0v) = [120(2.4 × 108)]−1 = 35 pF/m.

c) Let ZL be represented by an inductance of 0.6µH in series with a 100-� resistance. Find 	 and
s: The inductive impedance is jωL = j (5 × 108)(0.6 × 10−6) = j300. So the load impedance
is ZL = 100 + j300 �. Now

	 = ZL − Z0

ZL + Z0
= 100 + j300 − 120

100 + j300 + 120
= 0.62 + j0.52 = 0.808� 40◦

Then

s = 1 + |	|
1 − |	| = 1 + 0.808

1 − 0.808
= 9.4

13.5. Two characteristics of a certain lossless transmission line are Z0 = 50 � and γ = 0 + j0.2π m−1 at
f = 60 MHz.

a) Find L and C for the line: We have β = 0.2π = ω
√
LC and Z0 = 50 = √

L/C. Thus

β

Z0
= ωC ⇒ C = β

ωZ0
= 0.2π

(2π × 60 × 106)(50)
= 1

3
× 1010 = 33.3 pF/m

Then L = CZ2
0 = (33.3 × 10−12)(50)2 = 8.33 × 10−8 H/m = 83.3 nH/m.

b) A load, ZL = 60 + j80 � is located at z = 0. What is the shortest distance from the load to a
point at which Zin = Rin + j0? I will do this using two different methods:

The Hard Way: We use the general expression

Zin = Z0

[
ZL + jZ0 tan(βl)

Z0 + jZL tan(βl)

]

We can then normalize the impedances with respect to Z0 and write

zin = Zin

Z0
=
[
(ZL/Z0)+ j tan(βl)

1 + j (ZL/Z0) tan(βl)

]
=
[
zL + j tan(βl)

1 + jzL tan(βl)

]

where zL = (60 + j80)/50 = 1.2 + j1.6.
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13.5b. (continued) Using this, and defining x = tan(βl), we find

zin =
[

1.2 + j (1.6 + x)

(1 − 1.6x)+ j1.2x

] [
(1 − 1.6x)− j1.2x

(1 − 1.6x)− j1.2x

]

The second bracketed term is a factor of one, composed of the complex conjugate of the denomi-
nator of the first term, divided by itself. Carrying out this product, we find

zin =
[

1.2(1 − 1.6x)+ 1.2x(1.6 + x)− j [(1.2)2x − (1.6 + x)(1 − 1.6x)]

(1 − 1.6x)2 + (1.2)2x2

]

We require the imaginary part to be zero. Thus

(1.2)2x − (1.6 + x)(1 − 1.6x) = 0 ⇒ 1.6x2 + 3x − 1.6 = 0

So

x = tan(βl) = −3 ±
√

9 + 4(1.6)2

2(1.6)
= (.433,−2.31)

We take the positive root, and find

βl = tan−1(.433) = 0.409 ⇒ l = 0.409

0.2π
= 0.65 m = 65 cm

The Easy Way: We find

	 = 60 + j80 − 50

60 + j80 + 50
= 0.405 + j0.432 = 0.59� 0.818

Thus φ = 0.818 rad, and we use the fact that the input impedance will be purely real at the location
of a voltage minimum or maximum. The first voltage maximum will occur at a distance in front
of the load given by

zmax = φ

2β
= 0.818

2(0.2π)
= 0.65 m

13.6. The propagation constant of a lossy transmission line is 1 + j2 m−1, and its characteristic impedance
is 20 + j0� at ω = 1 Mrad/s. Find L, C, R, and G for the line: Begin with

Z0 =
√
R + jωL

G+ jωL
= 20 ⇒ R + jωL = 400(G+ jωC) (1)

Then
γ 2 = (R + jωL)(G+ jωC) = (1 + j2)2 ⇒ 400(G+ jωC)2 = (1 + j2)2 (2)

where (1) has been used. Eq. 2 now becomes G+ jωC = (1 + j2)/20. Equating real and imaginary
parts leads to G = .05 S/m and C = 1/(10ω) = 10−7 = 0.1µF/m.
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13.6. (continued) Now, (1) becomes

20 =
√
R + jωL

1 + j2

√
20 ⇒ 20 = R + jωL

1 + j2
⇒ 20 + j40 = R + jωL

Again, equating real and imaginary parts leads to R = 20�/m and L = 40/ω = 40µH/m.

13.7. The dimensions of the outer conductor of a coaxial cable are b and c, c > b. Assume σ = σc and let
µ = µ0. Find the magnetic energy stored per unit length in the region b < r < c for a uniformly
distributed total current I flowing in opposite directions in the inner and outer conductors: First, from
the inner conductor, the magnetic field will be

H1 = I

2πρ
aφ

The contribution from the outer conductor to the magnetic field within that conductor is found from
Ampere’s circuital law to be:

H2 = − I

2πρ

ρ2 − b2

c2 − b2 aφ

The total magnetic field within the outer conductor will be the sum of the two fields, or

HT = H1 + H2 = I

2πρ

[
c2 − ρ2

c2 − b2

]
aφ

The energy density is

wm = 1

2
µ0H

2
T = µ0I

2

8π2

[
c2 − ρ2

c2 − b2

]2

J/m3

The stored energy per unit length in the outer conductor is now

Wm =
∫ 1

0

∫ 2π

0

∫ c

b

µ0I
2

8π2

[
c2 − ρ2

c2 − b2

]2

ρ dρ dφ dz = µ0I
2

4π(c2 − b2)2

∫ c

b

[
c4

ρ
− 2c2ρ + ρ3

]
dρ

= µ0I
2

4π

[
c4

(c2 − b2)2
ln
( c
b

)
+ b2 − (3/4)c2

(c2 − b2)

]
J

13.8. The conductors of a coaxial transmission line are copper (σc = 5.8 × 10−7 S/m) and the dielectric is
polyethylene (ε′R = 2.26, σ/ωε′ = 0.0002). If the inner radius of the outer conductor is 4 mm, find
the radius of the inner conductor so that (assuming a lossless line):

a) Z0 = 50�: Use

Z0 = 1

2π

√
µ

ε′
ln

(
b

a

)
= 50 ⇒ ln

(
b

a

)
=

2π
√
ε′R(50)

377
= 1.25

Thus b/a = e1.25 = 3.50, or a = 4/3.50 = 1.142 mm
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13.8b. C = 100 pF/m: Begin with

C = 2πε′

ln(b/a)
= 10−10 ⇒ ln

(
b

a

)
= 2π(2.26)(8.854 × 10−2) = 1.257

So b/a = e1.257 = 3.51, or a = 4/3.51 = 1.138 mm.

c) L = 0.2µH/m: Use

L = µ0

2π
ln

(
b

a

)
= 0.2 × 10−6 ⇒ ln

(
b

a

)
= 2π(0.2 × 10−6)

4π × 10−7 = 1

Thus b/a = e1 = 2.718, or a = b/2.718 = 1.472 mm.

13.9. Two aluminum-clad steel conductors are used to construct a two-wire transmission line. Let σAl =
3.8×107 S/m, σSt = 5×106 S/m, andµSt = 100µH/m. The radius of the steel wire is 0.5 in., and the
aluminum coating is 0.05 in. thick. The dielectric is air, and the center-to-center wire separation is 4 in.
Find C, L,G, and R for the line at 10 MHz: The first question is whether we are in the high frequency
or low frequency regime. Calculation of the skin depth, δ, will tell us. We have, for aluminum,

δ = 1√
πfµ0σAl

= 1√
π(107)(4π × 10−7)(3.8 × 107)

= 2.58 × 10−5 m

so we are clearly in the high frequency regime, where uniform current distributions cannot be assumed.
Furthermore, the skin depth is considerably less than the aluminum layer thickness, so the bulk of the
current resides in the aluminum, and we may neglect the steel. Assuming solid aluminum wires of
radius a = 0.5 + 0.05 = 0.55 in = 0.014 m, the resistance of the two-wire line is now

R = 1

πaδσAl
= 1

π(.014)(2.58 × 10−5)(3.8 × 107)
= 0.023 �/m

Next, since the dielectric is air, no leakage will occur from wire to wire, and so G = 0 mho/m. Now
the capacitance will be

C = πε0

cosh−1(d/2a)
= π × 8.85 × 10−12

cosh−1 (4/(2 × 0.55))
= 1.42 × 10−11 F/m = 14.2 pF/m

Finally, the inductance per unit length will be

L = µ0

π
cosh(d/2a) = 4π × 10−7

π
cosh (4/(2 × 0.55)) = 7.86 × 10−7 H/m = 0.786 µH/m
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13.10. Each conductor of a two-wire transmission line has a radius of 0.5mm; their center-to-center distance
is 0.8cm. Let f = 150MHz and assume σ = 0 and σc → ∞ (note error in problem statement). Find
the dielectric constant of the insulating medium if

a) Z0 = 300�: Use

300 = 1

π

√
µ0

ε′Rε0
cosh−1

(
d

2a

)
⇒

√
ε′R = 120π

300π
cosh−1

(
8

2(.5)

)
= 1.107 ⇒ ε′R = 1.23

b) C = 20 pF/m: Use

20 × 10−12 = πε′

cosh−1(d/2a)
⇒ ε′R = 20 × 10−12

πε0
cosh−1(8) = 1.99

c) vp = 2.6 × 108 m/s:

vp = 1√
LC

= 1√
µ0ε0ε

′
R

= c√
ε′R

⇒ ε′R =
(

3.0 × 108

2.6 × 108

)2

= 1.33

13.11. Pertinent dimensions for the transmission line shown in Fig. 13.4 are b = 3 mm, and d = 0.2 mm.
The conductors and the dielectric are non-magnetic.

a) If the characteristic impedance of the line is 15 �, find ε′R: We use

Z0 =
√
µ

ε′

(
d

b

)
= 15 ⇒ ε′R =

(
377

15

)2
.04

9
= 2.8

b) Assume copper conductors and operation at 2 × 108 rad/s. If RC = GL, determine the loss
tangent of the dielectric: For copper, σc = 5.8 × 107 S/m, and the skin depth is

δ =
√

2

ωµ0σc
=
√

2

(2 × 108)(4π × 10−7)(5.8 × 107)
= 1.2 × 10−5 m

Then

R = 2

σcδb
= 2

(5.8 × 107)(1.2 × 10−5)(.003)
= 0.98 �/m

Now

C = ε′b
d

= (2.8)(8.85 × 10−12)(3)

0.2
= 3.7 × 10−10 F/m

and

L = µ0d

b
= (4π × 10−7)(0.2)

3
= 8.4 × 10−8 H/m

Then, with RC = GL,

G = RC

L
= (.98)(3.7 × 10−10)

(8.4 × 10−8)
= 4.4 × 10−3 mho/m = σdb

d

Thus σd = (4.4 × 10−3)(0.2/3) = 2.9 × 10−4 S/m. The loss tangent is

l.t. = σd

ωε′
= 2.9 × 10−4

(2 × 108)(2.8)(8.85 × 10−12)
= 5.85 × 10−2
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13.12. A transmission line constructed from perfect conductors and an air dielectric is to have a maximum
dimension of 8mm for its cross-section. The line is to be used at high frequencies. Specify its dimensions
if it is:

a) a two-wire line with Z0 = 300�: With the maximum dimension of 8mm, we have, using (27):

Z0 = 1

π

√
µ

ε′
cosh−1

(
8 − 2a

2a

)
= 300 ⇒ 8 − 2a

2a
= cosh

(
300π

120π

)
= 6.13

Solve for a to find a = 0.56 mm. Then d = 8 − 2a = 6.88 mm.

b) a planar line with Z0 = 15�: In this case our maximum dimension dictates that
√
d2 + b2 = 8.

So, using (34), we write

Z0 =
√
µ

ε′

√
64 − b2

b
= 15 ⇒

√
64 − b2 = 15

377
b

Solving, we find b = 7.99 mm and d = 0.32 mm.

c) a 72� coax having a zero-thickness outer conductor: With a zero-thickness outer conductor, we
note that the outer radius is b = 8/2 = 4mm. Using (18), we write

Z0 = 1

2π

√
µ

ε′
ln

(
b

a

)
= 72 ⇒ ln

(
b

a

)
= 2π(72)

120π
= 1.20 ⇒ a = be−1.20 = 4e−1.20 = 1.2

Summarizing, a = 1.2 mm and b = 4 mm.

13.13. The incident voltage wave on a certain lossless transmission line for whichZ0 = 50� and vp = 2×108

m/s is V +(z, t) = 200 cos(ωt − πz)V.
a) Find ω: We know β = π = ω/vp, so ω = π(2 × 108) = 6.28 × 108 rad/s.
b) Find I+(z, t): Since Z0 is real, we may write

I+(z, t) = V +(z, t)
Z0

= 4 cos(ωt − πz) A

The section of line for which z > 0 is replaced by a load ZL = 50 + j30 � at z = 0. Find
c) 	L: This will be

	L = 50 + j30 − 50

50 + j30 + 50
= .0825 + j0.275 = 0.287� 1.28 rad

d) V −
s (z) = 	LV

+
s (z)e

j2βz = 0.287(200)ejπzej1.28 = 57.5ej (πz+1.28)

e) Vs at z = −2.2 m:

Vs(−2.2) = V +
s (−2.2)+ V −

s (−2.2) = 200ej2.2π + 57.5e−j (2.2π−1.28) = 257.5ej0.63

= 257.5� 36◦
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13.14. Coaxial lines 1 and 2 have the following parameters: µ1 = µ2 = µ0, σ1 = σ2 = 0, ε′R1 = 2.25,
ε′R2 = 4, a1 = a2 = 0.8mm, b1 = 6mm, b2 = 3mm, ZL2 = Z02, and ZL1 is Zin2.

a) Find Z01 and Z02. For either line, we have

Z0 = 1

2π

√
µ

ε′
ln

(
b

a

)
= 377

2π
√
ε′R

ln

(
b

a

)
leading to

Z01 = 377

2π
√

2.25
ln

(
6

.8

)
= 80.6 � and Z02 = 377

2π
√

4
ln

(
3

.8

)
= 39.7 �

b) Find s on line 1: Line 1’s load is line 2’s input impedance (they are connected end-to-end).
Also, since line 2 is matched, its input impedance is just it’s characteristic impedance. Therefore,
ZL1 = Zin2 = Z02. The reflection coefficient encountered by waves incident on ZL1 from line 1
can now be found, along with the standing wave ratio:

	12 = 39.7 − 80.6

39.7 + 80.6
= −0.34 ⇒ s = 1 + .34

1 − .34
= 2.03

c) If a 20cm length of line 1 is inserted immediately in front ofZL2 and f = 300MHz, find s on line 2:
The line 1 length now has a load impedance of 39.7� and it is 20cm long. We need to find its input
impedance. At 300 MHz, the free space wavelength is 1m. In line 1, having a dielectric constant of
2.25, the wavelength is λ = 1m/

√
2.25 = 0.67m. Therefore βl = 2πl/λ = 2π(20)/(67) = 1.87.

We now find the input impedance for this situation through

Zin = Z01

[
ZL2 cos(βl)+ jZ01 sin(βl)

Z01 cos(βl)+ jZL2 sin(βl)

]
= 80.6

[
39.7 cos(1.87)+ j80.6 sin(1.87)

80.6 cos(1.87)+ j39.7 sin(1.87)

]
= 128.7 − j55.8 = 140.3� − 23.4◦

Now for waves incident at the line 1 - line 2 junction from line 2, the reflection coefficient will be

	21 = Zin − Z02

Zin + Z02
= 128.7 − 39.7 − j55.8

128.7 + 39.7 − j55.8
= 0.58 − j0.14 = 0.59� − 13.7◦

The standing wave ratio is now

s = 1 + .59

1 − .59
= 3.9
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13.15. For the transmission line represented in Fig. 13.26, find Vs,out if f =:
a) 60 Hz: At this frequency,

β = ω

vp
= 2π × 60

(2/3)(3 × 108)
= 1.9 × 10−6 rad/m So βl = (1.9 × 10−6)(80) = 1.5 × 10−4 << 1

The line is thus essentially a lumped circuit, where Zin
.= ZL = 80 �. Therefore

Vs,out = 120

[
80

12 + 80

]
= 104 V

b) 500 kHz: In this case

β = 2π × 5 × 105

2 × 108 = 1.57 × 10−2 rad/s So βl = 1.57 × 10−2(80) = 1.26 rad

Now

Zin = 50

[
80 cos(1.26)+ j50 sin(1.26)

50 cos(1.26)+ j80 sin(1.26)

]
= 33.17 − j9.57 = 34.5� − .28

The equivalent circuit is now the voltage source driving the series combination of Zin and the 12
ohm resistor. The voltage across Zin is thus

Vin = 120

[
Zin

12 + Zin

]
= 120

[
33.17 − j9.57

12 + 33.17 − j9.57

]
= 89.5 − j6.46 = 89.7� − .071

The voltage at the line input is now the sum of the forward and backward-propagating waves just
to the right of the input. We reference the load at z = 0, and so the input is located at z = −80 m.
In general we write Vin = V +

0 e
−jβz + V −

0 e
jβz, where

V −
0 = 	LV

+
0 = 80 − 50

80 + 50
V +

0 = 3

13
V +

0

At z = −80 m we thus have

Vin = V +
0

[
ej1.26 + 3

13
e−j1.26

]
⇒ V +

0 = 89.5 − j6.46

ej1.26 + (3/13)e−j1.26 = 42.7 − j100 V

Now

Vs,out = V +
0 (1 + 	L) = (42.7 − j100)(1 + 3/(13)) = 134 � − 1.17 rad = 52.6 − j123 V

As a check, we can evaluate the average power reaching the load:

Pavg,L = 1

2

|Vs,out |2
RL

= 1

2

(134)2

80
= 112 W

This must be the same power that occurs at the input impedance:

Pavg,in = 1

2
Re
{
VinI

∗
in

} = 1

2
Re {(89.5 − j6.46)(2.54 + j0.54)} = 112 W

where Iin = Vin/Zin = (89.5 − j6.46)/(33.17 − j9.57) = 2.54 + j0.54.
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13.16. A 300 ohm transmission line is 0.8 m long and is terminated with a short circuit. The line is operating
in air with a wavelength of 0.3 m (incorrectly stated as 0.8 m in early printings) and is lossless.

a) If the input voltage amplitude is 10V, what is the maximum voltage amplitude at any point on the
line? The net voltage anywhere on the line is the sum of the forward and backward wave voltages,
and is written as V (z) = V +

0 e
−jβz + V −

0 e
jβz. Since the line is short-circuited at the load end

(z = 0), we have V −
0 = −V +

0 , and so

V (z) = V +
0

(
e−jβz − ejβz

)
= −2jV +

0 sin(jβz)

We now evaluate the voltage at the input, where z = −0.8m, and λ = 0.3m.

Vin = −2jV +
0 sin

(
2π(−0.8)

0.3

)
= −j1.73V +

0

The magnitude of Vin is given as 10V, so we find V +
0 = 10/1.73 = 5.78V. The maximum voltage

amplitude on the line will be twice this value (where the sine function is unity),
so |V |max = 2(5.78) = 11.56 V.

b) What is the current amplitude in the short circuit? At the shorted end, the current will be

IL = V +
0

Z0
− V −

0

Z0
= 2V +

0

Z0
= 11.56

300
= 0.039A = 39 mA

13.17. Determine the average power absorbed by each resistor in Fig. 13.27: The problem is made easier by first
converting the current source/100 ohm resistor combination to its Thevenin equivalent. This is a 50 � 0
V voltage source in series with the 100 ohm resistor. The next step is to determine the input impedance
of the 2.6λ length line, terminated by the 25 ohm resistor: We use βl = (2π/λ)(2.6λ) = 16.33 rad.
This value, modulo 2π is (by subtracting 2π twice) 3.77 rad. Now

Zin = 50

[
25 cos(3.77)+ j50 sin(3.77)

50 cos(3.77)+ j25 sin(3.77)

]
= 33.7 + j24.0

The equivalent circuit now consists of the series combination of 50 V source, 100 ohm resistor, and
Zin, as calculated above. The current in this circuit will be

I = 50

100 + 33.7 + j24.0
= 0.368� − .178

The power dissipated by the 25 ohm resistor is the same as the power dissipated by the real part of Zin,
or

P25 = P33.7 = 1

2
|I |2R = 1

2
(.368)2(33.7) = 2.28 W

To find the power dissipated by the 100 ohm resistor, we need to return to the Norton configuration,
with the original current source in parallel with the 100 ohm resistor, and in parallel with Zin. The
voltage across the 100 ohm resistor will be the same as that across Zin, or
V = IZin = (.368 � − .178)(33.7 + j24.0) = 15.2 � 0.44. The power dissipated by the 100 ohm
resistor is now

P100 = 1

2

|V |2
R

= 1

2

(15.2)2

100
= 1.16 W
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13.18 The line shown in Fig. 13.28 is lossless. Find s on both sections 1 and 2: For section 2, we consider
the propagation of one forward and one backward wave, comprising the superposition of all reflected
waves from both ends of the section. The ratio of the backward to the forward wave amplitude is given
by the reflection coefficient at the load, which is

	L = 50 − j100 − 50

50 − j100 + 50
= −j

1 − j
= 1

2
(1 − j)

Then |	L| = (1/2)
√
(1 − j)(1 + j) = 1/

√
2. Finally

s2 = 1 + |	L|
1 − |	L| = 1 + 1/

√
2

1 − 1/
√

2
= 5.83

For section 1, we need the reflection coefficient at the junction (location of the 100 � resistor) seen by
waves incident from section 1: We first need the input impedance of the .2λ length of section 2:

Zin2 = 50

[
(50 − j100) cos(β2l)+ j50 sin(β2l)

50 cos(β2l)+ j (50 − j100) sin(β2l)

]
= 50

[
(1 − j2)(0.309)+ j0.951

0.309 + j (1 − j2)(0.951)

]
= 8.63 + j3.82 = 9.44 � 0.42 rad

Now, this impedance is in parallel with the 100� resistor, leading to a net junction impedance found by

1

ZinT
= 1

100
+ 1

8.63 + j3.82
⇒ ZinT = 8.06 + j3.23 = 8.69� 0.38 rad

The reflection coefficient will be

	j = ZinT − 50

ZinT + 50
= −0.717 + j0.096 = 0.723� 3.0 rad

and the standing wave ratio is s1 = (1 + 0.723)/(1 − 0.723) = 6.22.

13.19. A lossless transmission line is 50 cm in length and operating at a frequency of 100 MHz. The line
parameters are L = 0.2 µH/m and C = 80 pF/m. The line is terminated by a short circuit at z = 0,
and there is a load, ZL = 50 + j20 ohms across the line at location z = −20 cm. What average power
is delivered to ZL if the input voltage is 100 � 0 V? With the given capacitance and inductance, we find

Z0 =
√
L

C
=
√

2 × 10−7

8 × 10−11 = 50 �

and

vp = 1√
LC

= 1√
(2 × 10−7)(9 × 10−11)

= 2.5 × 108 m/s

Now β = ω/vp = (2π × 108)/(2.5 × 108) = 2.5 rad/s. We then find the input impedance to the
shorted line section of length 20 cm (putting this impedance at the location of ZL, so we can combine
them): We have βl = (2.5)(0.2) = 0.50, and so, using the input impedance formula with a zero load
impedance, we find Zin1 = j50 tan(0.50) = j27.4 ohms.
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13.19 (continued) Now, at the location of ZL, the net impedance there is the parallel combination of ZL and
Zin1: Znet = (50+ j20)||(j27.4) = 7.93+ j19.9. We now transform this impedance to the line input,
30 cm to the left, obtaining (with βl = (2.5)(.3) = 0.75):

Zin2 = 50

[
(7.93 + j19.9) cos(.75)+ j50 sin(.75)

50 cos(.75)+ j (7.93 + j19.9) sin(.75)

]
= 35.9 + j98.0 = 104.3� 1.22

The power delivered to ZL is the same as the power delivered to Zin2: The current magnitude is
|I | = (100)/(104.3) = 0.96 A. So finally,

P = 1

2
|I |2R = 1

2
(0.96)2(35.9) = 16.5 W

13.20. This problem was originally posed incorrectly. The corrected version should have an inductor in the
input circuit instead of a capacitor. I will proceed with this replacement understood, and will change
the wording as appropriate in parts c and d:

a) Determine s on the transmission line of Fig. 13.29. Note that the dielectric is air: The reflection
coefficient at the load is

	L = 40 + j30 − 50

40 + j30 + 50
= j0.333 = 0.333� 1.57 rad Then s = 1 + .333

1 − .333
= 2.0

b) Find the input impedance: With the length of the line at 2.7λ, we have βl = (2π)(2.7) = 16.96 rad.
The input impedance is then

Zin = 50

[
(40 + j30) cos(16.96)+ j50 sin(16.96)

50 cos(16.96)+ j (40 + j30) sin(16.96)

]
= 50

[−1.236 − j5.682

1.308 − j3.804

]
= 61.8 − j37.5 �

c) If ωL = 10�, find Is : The source drives a total impedance given by Znet = 20 + jωL + Zin =
20+j10+61.8−j37.5 = 81.8−j27.5. The current is now Is = 100/(81.8−j27.5) = 1.10 + j0.37 A.

d) What value ofLwill produce a maximum value for |Is | atω = 1 Grad/s? To achieve this, the imaginary
part of the total impedance of part c must be reduced to zero (so we need an inductor). The inductor
impedance must be equal to negative the imaginary part of the line input impedance, or ωL = 37.5, so
that L = 37.5/ω = 37.5 nH. Continuing, for this value of L, calculate the average power:

e) supplied by the source: Ps = (1/2)Re{VsIs} = (1/2)(100)2/(81.8) = 61.1 W.

f) delivered toZL = 40+ j30�: The power delivered to the load will be the same as the power delivered
to the input impedance. We write

PL = 1

2
Re{Zin}|Is |2 = 1

2
(61.8)(1.22)2 = 46.1 W
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13.21. A lossless line having an air dielectric has a characteristic impedance of 400 �. The line is operating
at 200 MHz and Zin = 200 − j200 �. Use analytic methods or the Smith chart (or both) to find: (a)
s; (b) ZL if the line is 1 m long; (c) the distance from the load to the nearest voltage maximum: I will
first use the analytic approach. Using normalized impedances, Eq. (13) becomes

zin = Zin

Z0
=
[
zL cos(βL)+ j sin(βL)

cos(βL)+ jzL sin(βL)

]
=
[
zL + j tan(βL)

1 + jzL tan(βL)

]

Solve for zL:

zL =
[
zin − j tan(βL)

1 − jzin tan(βL)

]

where, with λ = c/f = 3 × 108/2 × 108 = 1.50 m, we find βL = (2π)(1)/(1.50) = 4.19, and so
tan(βL) = 1.73. Also, zin = (200 − j200)/400 = 0.5 − j0.5. So

zL = 0.5 − j0.5 − j1.73

1 − j (0.5 − j0.5)(1.73)
= 2.61 + j0.174

Finally, ZL = zL(400) = 1.04 × 103 + j69.8 �. Next

	 = ZL − Z0

ZL + Z0
= 6.42 × 102 + j69.8

1.44 × 103 + j69.8
= .446 + j2.68 × 10−2 = .447� 6.0 × 10−2 rad

Now

s = 1 + |	|
1 − |	| = 1 + .447

1 − .447
= 2.62

Finally

zmax = − φ

2β
= −λφ

4π
= − (6.0 × 10−2)(1.50)

4π
= −7.2 × 10−3 m = −7.2 mm

We next solve the problem using the Smith chart. Referring to the figure on the next page, we first locate
and mark the normalized input impedance, zin = 0.5 − j0.5. A line drawn from the origin through
this point intersects the outer chart boundary at the position 0.0881 λ on the wavelengths toward load
(WTL) scale. With a wavelength of 1.5 m, the 1 meter line is 0.6667 wavelengths long. On the
WTL scale, we add 0.6667λ, or equivalently, 0.1667λ (since 0.5λ is once around the chart), obtaining
(0.0881+0.1667)λ) = 0.2548λ, which is the position of the load. A straight line is now drawn from the
origin though the 0.2548λ position. A compass is then used to measure the distance between the origin
and zin. With this distance set, the compass is then used to scribe off the same distance from the origin
to the load impedance, along the line between the origin and the 0.2548λ position. That point is the
normalized load impedance, which is read to be zL = 2.6+j0.18. ThusZL = zL(400) = 1040+j72.
This is in reasonable agreement with the analytic result of 1040 + j69.8. The difference in imaginary
parts arises from uncertainty in reading the chart in that region.

In transforming from the input to the load positions, we cross the r > 1 real axis of the chart at r=2.6.
This is close to the value of the VSWR, as we found earlier. We also see that the r > 1 real axis (at
which the first Vmax occurs) is a distance of 0.0048λ (marked as .005λ on the chart) in front of the load.
The actual distance is zmax = −0.0048(1.5)m = −0.0072 m = −7.2 mm.
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13.22. A lossless two-wire line has a characteristic impedance of 300 � and a capacitance of 15 pF/m. The
load at z = 0 consists of a 600-� resistor in parallel with a 10-pF capacitor. If ω = 108 rad/s and the
line is 20m long, use the Smith chart to find a) |	L|; b) s; c) Zin. First, the wavelength on the line is
found using λ = 2πvp/ω, where vp = 1/(CZ0). Assuming higher accuracy in the given values than
originally stated, we obtain

λ = 2π

ωCZ0
= 2π

(108)(15 × 10−12)(300)
= 13.96 m

The line length in wavelengths is therefore 20/13.96 = 1.433λ. The normalized load admittance is
now

yL = YLZ0 = Z0

[
1

RL
+ jωC

]
= 300

[
1

600
+ j (108)(10−11)

]
= 0.50 + j0.30
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The yL value is plotted on the chart and labeled as yL. Next, yL is inverted to find zL by transforming
the point halfway around the chart, using the compass and a straight edge. The result, labeled zL on the
chart is read to be zL = 1.5−j0.87. This is close to the computed inverse of yL, which is 1.47−j0.88.
Scribing the compass arc length along the bottom scale for reflection coefficient yields |	L| = 0.38.
The VSWR is found by scribing the compass arc length either along the bottom SWR scale or along
the positive real axis of the chart, both methods yielding s = 2.2.

Now, the position of zL is read on the outer edge of the chart as 0.308λ on the WTG scale. The point is
now transformed through the line length distance of 1.433λ toward the generator (the net chart distance
will be 0.433λ, since a full wavelength is two complete revolutions). The final reading on the WTG
scale after the transformation is found through (0.308 + 0.433 − 0.500)λ = 0.241λ. Drawing a line
between this mark on the WTG scale and the chart center, and scribing the compass arc length on this
line, yields the normalized input impedance. This is read as zin = 2.2 + j0.21 (the computed value
found through the analytic solution is zin = 2.21 + j0.219. The input impedance is now found by
multiplying the chart reading by 300, or Zin = 660 + j63�.
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13.23. The normalized load on a lossless transmission line is zL = 2+j1. Let l = 20 m (there was a missprint
in the problem statement, since λ = 20 m should have been stated. I will specify answers in terms of
wavelength). Make use of the Smith chart to find:

a) the shortest distance from the load to the point at which zin = rin+ j0, where rin > 1 (not greater
than 0 as stated): Referring to the figure below, we start by marking the given zL on the chart and
drawing a line from the origin through this point to the outer boundary. On the WTG scale, we
read the zL location as 0.213λ. Moving from here toward the generator, we cross the positive 	R
axis (at which the impedance is purely real and greater than 1) at 0.250λ. The distance is then
(0.250 − 0.213)λ = 0.037λ from the load. If we use λ = 20 m, the actual distance would be
20(0.037) = 0.74 m.

b) Find zin at the point found in part a: Using a compass, we set its radius at the distance between
the origin and zL. We then scribe this distance along the real axis to find zin = rin = 2.61.

c) The line is cut at this point and the portion containing zL is thrown away. A resistor r = rin of
part a is connected across the line. What is s on the remainder of the line? This will be just s
for the line as it was before. As we know, s will be the positive real axis value of the normalized
impedance, or s = 2.61.

d) What is the shortest distance from this resistor to a point at which zin = 2 + j1? This would
return us to the original point, requiring a complete circle around the chart (one-half wavelength
distance). The distance from the resistor will therefore be: d = 0.500 λ − 0.037 λ = 0.463 λ.
With λ = 20 m, the actual distance would be 20(0.463) = 9.26 m.
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13.24. With the aid of the Smith chart, plot a curve of |Zin| vs. l for the transmission line shown in Fig. 13.30.
Cover the range 0 < l/λ < 0.25. The required input impedance is that at the actual line input (to the
left of the two 20� resistors. The input to the line section occurs just to the right of the 20� resistors,
and the input impedance there we first find with the Smith chart. This impedance is in series with the
two 20� resistors, so we add 40� to the calculated impedance from the Smith chart to find the net
line input impedance. To begin, the 20� load resistor represents a normalized impedance of zl = 0.4,
which we mark on the chart (see below). Then, using a compass, draw a circle beginning at zL and
progressing clockwise to the positive real axis. The circle traces the locus of zin values for line lengths
over the range 0 < l < λ/4.

On the chart, radial lines are drawn at positions corresponding to .025λ increments on the WTG scale.
The intersections of the lines and the circle give a total of 11 zin values. To these we add normalized
impedance of 40/50 = 0.8 to add the effect of the 40� resistors and obtain the normalized impedance
at the line input. The magnitudes of these values are then found, and the results are multiplied by 50�.
The table below summarizes the results.

l/λ zinl (to right of 40�) zin = zinl + 0.8 |Zin| = 50|zin|
0 0.40 1.20 60

.025 0.41 + j.13 1.21 + j.13 61

.050 0.43 + j.27 1.23 + j.27 63

.075 0.48 + j.41 1.28 + j.41 67

.100 0.56 + j.57 1.36 + j.57 74

.125 0.68 + j.73 1.48 + j.73 83

.150 0.90 + j.90 1.70 + j.90 96

.175 1.20 + j1.05 2.00 + j1.05 113

.200 1.65 + j1.05 2.45 + j1.05 134

.225 2.2 + j.7 3.0 + j.7 154

.250 2.5 3.3 165

229



13.24. (continued) As a check, the line input input impedance can be found analytically through

Zin = 40 + 50

[
20 cos(2πl/λ)+ j50 sin(2πl/λ)

50 cos(2πl/λ)+ j20 sin(2πl/λ)

]
= 50

[
60 cos(2πl/λ)+ j66 sin(2πl/λ)

50 cos(2πl/λ)+ j20 sin(2πl/λ)

]

from which

|Zin| = 50

[
36 cos2(2πl/λ)+ 43.6 sin2(2πl/λ)

25 cos2(2πl/λ)+ 4 sin2(2πl/λ)

]1/2

This function is plotted below along with the results obtained from the Smith chart. A fairly good
comparison is obtained.
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13.25. A 300-ohm transmission line is short-circuited at z = 0. A voltage maximum, |V |max = 10 V, is found
at z = −25 cm, and the minimum voltage, |V |min = 0, is found at z = −50 cm. Use the Smith chart
to find ZL (with the short circuit replaced by the load) if the voltage readings are:

a) |V |max = 12 V at z = −5 cm, and vertV |min = 5 V: First, we know that the maximum and
minimum voltages are spaced by λ/4. Since this distance is given as 25 cm, we see that λ = 100
cm = 1 m. Thus the maximum voltage location is 5/100 = 0.05λ in front of the load. The standing
wave ratio is s = |V |max/|V |min = 12/5 = 2.4. We mark this on the positive real axis of the
chart (see next page). The load position is now 0.05 wavelengths toward the load from the |V |max
position, or at 0.30 λ on the WTL scale. A line is drawn from the origin through this point on the
chart, as shown. We next set the compass to the distance between the origin and the z = r = 2.4
point on the real axis. We then scribe this same distance along the line drawn through the .30 λ
position. The intersection is the value of zL, which we read as zL = 1.65 + j.97. The actual load
impedance is then ZL = 300zL = 495 + j290 �.

b) |V |max = 17 V at z = −20 cm, and |V |min = 0. In this case the standing wave ratio is infinite,
which puts the starting point on the r → ∞ point on the chart. The distance of 20 cm corresponds
to 20/100 = 0.20 λ, placing the load position at 0.45 λ on the WTL scale. A line is drawn
from the origin through this location on the chart. An infinite standing wave ratio places us on
the outer boundary of the chart, so we read zL = j0.327 at the 0.45 λ WTL position. Thus
ZL = j300(0.327)

.= j98�.
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13.26. A lossless 50� transmission line operates with a velocity that is 3/4c. A load, ZL = 60 + j30� is
located at z = 0. Use the Smith chart to find:

a) s: First we find the normalized load impedance, zL = (60 + j30)/50 = 1.2 + j0.6, which is then
marked on the chart (see below). Drawing a line from the chart center through this point yields its
location at 0.328λ on the WTL scale. The distance from the origin to the load impedance point is
now set on the compass; the standing wave ratio is then found by scribing this distance along the
positive real axis, yielding s = 1.76, as shown. Alternately, use the s scale at the bottom of the
chart, setting the compass point at the center, and scribing the distance on the scale to the left.

b) the distance from the load to the nearest voltage minimum if f = 300 MHz: This distance is
found by transforming the load impedance clockwise around the chart until the negative real axis
is reached. This distance in wavelengths is just the load position on the WTL scale, since the
starting point for this scale is the negative real axis. So the distance is 0.328λ. The wavelength is

λ = v

f
= (3/4)c

300MHz
= 3(3 × 108)

4(3 × 108)
= 0.75 m

So the actual distance to the first voltage minimum is dmin = 0.328(0.75)m = 24.6 cm.

c) the input impedance if f = 200 MHz and the input is at z = −110cm: The wavelength at this
frequency is λ = (3/4)(3 × 108)/(2 × 108) = 1.125 m. The distance to the input in wavelengths
is then din = (1.10)/(1.125) = 0.9778λ. Transforming the load through this distance toward
the generator involves revolution once around the chart (0.500λ) plus the remainder of 0.4778λ,
which leads to a final position of 0.1498λ

.= 0.150λ on the WTG scale, or 0.350λ on the WTL
scale. A line is drawn between this point and the chart center. Scribing the compass arc length
through this line yields the normalized input impedance, read as zin = 1.03 + j0.56. The actual
input impedance is Zin = zin × 50 = 51.5 + j28.0�.
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13.27. The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is 20 mS. The line is terminated
in a load YL = 40 − j20 mS. Make use of the Smith chart to find:

a) s: We first find the normalized load admittance, which is yL = YL/Y0 = 2 − j1. This is plotted
on the Smith chart below. We then set on the compass the distance between yL and the origin.
The same distance is then scribed along the positive real axis, and the value of s is read as 2.6.

b) Yin if l = 0.15 λ: First we draw a line from the origin through zL and note its intersection with
the WTG scale on the chart outer boundary. We note a reading on that scale of about 0.287 λ. To
this we add 0.15 λ, obtaining about 0.437 λ, which we then mark on the chart (0.287 λ is not the
precise value, but I have added 0.15 λ to that mark to obtain the point shown on the chart that is
near to 0.437 λ. This “eyeballing” method increases the accuracy a little). A line drawn from the
0.437 λ position on the WTG scale to the origin passes through the input admittance. Using the
compass, we scribe the distance found in part a across this line to find yin = 0.56 − j0.35, or
Yin = 20yin = 11 − j7.0 mS.

c) the distance in wavelengths from YL to the nearest voltage maximum: On the admittance chart,
the Vmax position is on the negative 	r axis. This is at the zero position on the WTL scale. The
load is at the approximate 0.213 λ point on the WTL scale, so this distance is the one we want.
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13.28. The wavelength on a certain lossless line is 10cm. If the normalized input impedance is zin = 1 + j2,
use the Smith chart to determine:

a) s: We begin by marking zin on the chart (see below), and setting the compass at its distance from
the origin. We then use the compass at that setting to scribe a mark on the positive real axis, noting
the value there of s = 5.8.

b) zL, if the length of the line is 12 cm: First, use a straight edge to draw a line from the origin through
zin, and through the outer scale. We read the input location as slightly more than 0.312λ on the
WTL scale (this additional distance beyond the .312 mark is not measured, but is instead used to
add a similar distance when the impedance is transformed). The line length of 12cm corresponds to
1.2 wavelengths. Thus, to transform to the load, we go counter-clockwise twice around the chart,
plus 0.2λ, finally arriving at (again) slightly more than 0.012λ on the WTL scale. A line is drawn
to the origin from that position, and the compass (with its previous setting) is scribed through the
line. The intersection is the normalized load impedance, which we read as zL = 0.173 − j0.078.

c) xL, if zL = 2 + jxL, where xL > 0. For this, use the compass at its original setting to scribe
through the r = 2 circle in the upper half plane. At that point we read xL = 2.62.
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13.29. A standing wave ratio of 2.5 exists on a lossless 60 � line. Probe measurements locate a voltage
minimum on the line whose location is marked by a small scratch on the line. When the load is replaced
by a short circuit, the minima are 25 cm apart, and one minimum is located at a point 7 cm toward the
source from the scratch. Find ZL: We note first that the 25 cm separation between minima imply a
wavelength of twice that, or λ = 50 cm. Suppose that the scratch locates the first voltage minimum.
With the short in place, the first minimum occurs at the load, and the second at 25 cm in front of the load.
The effect of replacing the short with the load is to move the minimum at 25 cm to a new location 7 cm
toward the load, or at 18 cm. This is a possible location for the scratch, which would otherwise occur at
multiples of a half-wavelength farther away from that point, toward the generator. Our assumed scratch
position will be 18 cm or 18/50 = 0.36 wavelengths from the load. Using the Smith chart (see below)
we first draw a line from the origin through the 0.36λ point on the wavelengths toward load scale. We
set the compass to the length corresponding to the s = r = 2.5 point on the chart, and then scribe this
distance through the straight line. We read zL = 0.79 + j0.825, from which ZL = 47.4 + j49.5 �.
As a check, I will do the problem analytically. First, we use

zmin = −18 cm = − 1

2β
(φ + π) ⇒ φ =

[
4(18)

50
− 1

]
π = 1.382 rad = 79.2◦

Now

|	L| = s − 1

s + 1
= 2.5 − 1

2.5 + 1
= 0.4286

and so 	L = 0.4286� 1.382. Using this, we find

zL = 1 + 	L

1 − 	L
= 0.798 + j0.823

and thus ZL = zL(60) = 47.8 + j49.3 �.
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13.30. A 2-wire line, constructed of lossless wire of circular cross-section is gradually flared into a coupling
loop that looks like an egg beater. At the point X, indicated by the arrow in Fig. 13.31, a short circuit
is placed across the line. A probe is moved along the line and indicates that the first voltage minimum
to the left of X is 16cm from X. With the short circuit removed, a voltage minimum is found 5cm to
the left of X, and a voltage maximum is located that is 3 times voltage of the minimum. Use the Smith
chart to determine:

a) f : No Smith chart is needed to find f , since we know that the first voltage minimum in front of
a short circuit is one-half wavelength away. Therefore, λ = 2(16) = 32cm, and (assuming an
air-filled line), f = c/λ = 3 × 108/0.32 = 0.938 GHz.

b) s: Again, no Smith chart is needed, since s is the ratio of the maximum to the minimum voltage
amplitudes. Since we are given that Vmax = 3Vmin, we find s = 3.

c) the normalized input impedance of the egg beater as seen looking the right at point X: Now we
need the chart. From the figure below, s = 3 is marked on the positive real axis, which determines
the compass radius setting. This point is then transformed, using the compass, to the negative real
axis, which corresponds to the location of a voltage minimum. Since the first Vmin is 5cm in front
of X, this corresponds to (5/32)λ = 0.1563λ to the left of X. On the chart, we now move this
distance from the Vmin location toward the load, using the WTL scale. A line is drawn from the
origin through the 0.1563λmark on the WTL scale, and the compass is used to scribe the original
radius through this line. The intersection is the normalized input impedance, which is read as
zin = 0.86 − j1.06.
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13.31. In order to compare the relative sharpness of the maxima and minima of a standing wave, assume a
load zL = 4 + j0 is located at z = 0. Let |V |min = 1 and λ = 1 m. Determine the width of the

a) minimum, where |V | < 1.1: We begin with the general phasor voltage in the line:

V (z) = V +(e−jβz + 	ejβz)

With zL = 4+j0, we recognize the real part as the standing wave ratio. Since the load impedance
is real, the reflection coefficient is also real, and so we write

	 = |	| = s − 1

s + 1
= 4 − 1

4 + 1
= 0.6

The voltage magnitude is then

|V (z)| =
√
V (z)V ∗(z) = V +

[
(e−jβz + 	ejβz)(ejβz + 	e−jβz)

]1/2

= V +
[
1 + 2	 cos(2βz)+ 	2

]1/2

Note that with cos(2βz) = ±1, we obtain |V | = V +(1 ± 	) as expected. With s = 4 and
with |V |min = 1, we find |V |max = 4. Then with 	 = 0.6, it follows that V + = 2.5. The net
expression for |V (z)| is then

V (z) = 2.5
√

1.36 + 1.2 cos(2βz)

To find the width in z of the voltage minimum, defined as |V | < 1.1, we set |V (z)| = 1.1 and
solve for z: We find

(
1.1

2.5

)2

= 1.36 + 1.2 cos(2βz) ⇒ 2βz = cos−1(−0.9726)

Thus 2βz = 2.904. At this stage, we note the the |V |min point will occur at 2βz = π . We therefore
compute the range, �z, over which |V | < 1.1 through the equation:

2β(�z) = 2(π − 2.904) ⇒ �z = π − 2.904

2π/1
= 0.0378 m = 3.8 cm

where λ = 1 m has been used.

b) Determine the width of the maximum, where |V | > 4/1.1: We use the same equation for |V (z)|,
which in this case reads:

4/1.1 = 2.5
√

1.36 + 1.2 cos(2βz) ⇒ cos(2βz) = 0.6298

Since the maximum corresponds to 2βz = 0, we find the range through

2β�z = 2 cos−1(0.6298) ⇒ �z = 0.8896

2π/1
= 0.142 m = 14.2 cm
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13.32. A lossless line is operating with Z0 = 40�, f = 20 MHz, and β = 7.5π rad/m. With a short circuit
replacing the load, a minimum is found at a point on the line marked by a small spot of puce paint.
With the load installed, it is found that s = 1.5 and a voltage minimum is located 1m toward the source
from the puce dot.

a) Find ZL: First, the wavelength is given by λ = 2π/β = 2/7.5 = 0.2667m. The 1m distance
is therefore 3.75λ. With the short installed, the Vmin positions will be at multiples of λ/2 to the
left of the short. Therefore, with the actual load installed, the Vmin position as stated would be
3.75λ+ nλ/2, which means that a maximum voltage occurs at the load. This being the case, the
normalized load impedance will lie on the positive real axis of the Smith chart, and will be equal
to the standing wave ratio. Therefore, ZL = 40(1.5) = 60�.

b) What load would produce s = 1.5 with |V |max at the paint spot? With |V |max at the paint spot
and with the spot an integer multiple of λ/2 to the left of the load, |V |max must also occur at the
load. The answer is therefore the same as part a, or ZL = 60�.

13.33. In Fig. 13.14, let ZL = 40 − j10 �, Z0 = 50 �, f = 800 MHz, and v = c.

a) Find the shortest length, d1, of a short-circuited stub, and the shortest distance d that it may be
located from the load to provide a perfect match on the main line to the left of the stub: The Smith
chart construction is shown on the next page. First we find zL = (40 − j10)/50 = 0.8 − j0.2
and plot it on the chart. Next, we find yL = 1/zL by transforming this point halfway around the
chart, where we read yL = 1.17+ j0.30. This point is to be transformed to a location at which the
real part of the normalized admittance is unity. The g = 1 circle is highlighted on the chart; yL
transforms to two locations on it: yin1 = 1 − j0.32 and yin2 = 1 + j0.32. The stub is connected
at either of these two points. The stub input admittance must cancel the imaginary part of the line
admittance at that point. If yin2 is chosen, the stub must have input admittance of −j0.32. This
point is marked on the outer circle and occurs at 0.452 λ on the WTG scale. The length of the stub
is found by computing the distance between its input, found above, and the short-circuit position
(stub load end), marked as Psc. This distance is d1 = (0.452−0.250)λ = 0.202 λ. With f = 800
MHz and v = c, the wavelength is λ = (3×108)/(8×108) = 0.375 m. The distance is thus d1 =
(0.202)(0.375) = 0.758 m = 7.6 cm. This is the shortest of the two possible stub lengths, since
if we had used yin1, we would have needed a stub input admittance of +j0.32, which would have
required a longer stub length to realize. The length of the main line between its load and the stub
attachment point is found on the chart by measuring the distance between yL and yin2, in moving
clockwise (toward generator). This distance will be d = [0.500 − (0.178 − 0.138)] λ = 0.46 λ.
The actual length is then d = (0.46)(0.375) = 0.173m = 17.3 cm.
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13.33b) Repeat for an open-circuited stub: In this case, everything is the same, except for the load-end position
of the stub, which now occurs at the Poc point on the chart. To use the shortest possible stub, we need to
use yin1 = 1 − j0.32, requiring ys = +j0.32. We find the stub length by moving from Poc to the point
at which the admittance is j0.32. This occurs at 0.048 λ on the WTG scale, which thus determines the
required stub length. Now d1 = (0.048)(0.375) = 0.18 m = 1.8 cm. The attachment point is found by
transforming yL to yin1, where the former point is located at 0.178 λ on the WTG scale, and the latter is
at 0.362 λ on the same scale. The distance is then d = (0.362 − 0.178)λ = 0.184λ. The actual length
is d = (0.184)(0.375) = 0.069 m = 6.9 cm.
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13.34. The lossless line shown in Fig. 13.32 is operating with λ = 100cm. If d1 = 10cm, d = 25cm, and
the line is matched to the left of the stub, what is ZL? For the line to be matched, it is required that
the sum of the normalized input admittances of the shorted stub and the main line at the point where
the stub is connected be unity. So the input susceptances of the two lines must cancel. To find the stub
input susceptance, use the Smith chart to transform the short circuit point 0.1λ toward the generator,
and read the input value as bs = −1.37 (note that the stub length is one-tenth of a wavelength). The
main line input admittance must now be yin = 1 + j1.37. This line is one-quarter wavelength long, so
the normalized load impedance is equal to the normalized input admittance. Thus zL = 1 + j1.37, so
that ZL = 300zL = 300 + j411 �.
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13.35. A load, ZL = 25 + j75 �, is located at z = 0 on a lossless two-wire line for which Z0 = 50 � and
v = c.

a) If f = 300 MHz, find the shortest distance d (z = −d) at which the input impedance has a real part
equal to 1/Z0 and a negative imaginary part: The Smith chart construction is shown below. We
begin by calculating zL = (25 + j75)/50 = 0.5 + j1.5, which we then locate on the chart. Next,
this point is transformed by rotation halfway around the chart to find yL = 1/zL = 0.20 − j0.60,
which is located at 0.088 λ on the WTL scale. This point is then transformed toward the generator
until it intersects the g = 1 circle (shown highlighted) with a negative imaginary part. This occurs
at point yin = 1.0 − j2.23, located at 0.308 λ on the WTG scale. The total distance between load
and input is then d = (0.088 + 0.308)λ = 0.396λ. At 300 MHz, and with v = c, the wavelength
is λ = 1 m. Thus the distance is d = 0.396 m = 39.6 cm.

b) What value of capacitanceC should be connected across the line at that point to provide unity stand-
ing wave ratio on the remaining portion of the line? To cancel the input normalized susceptance
of -2.23, we need a capacitive normalized susceptance of +2.23. We therefore write

ωC = 2.23

Z0
⇒ C = 2.23

(50)(2π × 3 × 108)
= 2.4 × 10−11 F = 24 pF
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13.36. The two-wire lines shown in Fig. 13.33 are all lossless and have Z0 = 200�. Find d and the
shortest possible value for d1 to provide a matched load if λ = 100cm. In this case, we have a series
combination of the loaded line section and the shorted stub, so we use impedances and the Smith chart
as an impedance diagram. The requirement for matching is that the total normalized impedance at the
junction (consisting of the sum of the input impedances to the stub and main loaded section) is unity.
First, we find zL = 100/200 = 0.5 and mark this on the chart (see below). We then transform this point
toward the generator until we reach the r = 1 circle. This happens at two possible points, indicated
as zin1 = 1 + j.71 and zin2 = 1 − j.71. The stub input impedance must cancel the imaginary part of
the loaded section input impedance, or zins = ±j.71. The shortest stub length that accomplishes this
is found by transforming the short circuit point on the chart to the point zins = +j0.71, which yields
a stub length of d1 = .098λ = 9.8 cm. The length of the loaded section is then found by transforming
zL = 0.5 to the point zin2 = 1−j.71, so that zins +zin2 = 1, as required. This transformation distance
is d = 0.347λ = 37.7 cm.
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13.37. In the transmission line of Fig. 13.17, RL = Z0 = 50 �. Determine and plot the voltage at the
load resistor and the current in the battery as functions of time by constructing appropriate voltage and
current reflection diagrams: Referring to the figure, closing the switch launches a voltage wave whose
value is given by Eq. (50):

V +
1 = V0Z0

Rg + Z0
= 50

75
V0 = 2

3
V0

We note that 	L = 0, since the load impedance is matched to that of the line. So the voltage wave
traverses the line and does not reflect. The voltage reflection diagram would be that shown in Fig.
13.18a, except that no waves are present after time t = l/v. Likewise, the current reflection diagram
is that of Fig. 13.19a, except, again, no waves exist after t = l/v. The voltage at the load will be just
V +

1 = (2/3)V0 for times beyond l/v. The current through the battery is found through

I+
1 = V +

1

Z0
= V0

75
A

This current initiates at t = 0, and continues indefinitely.

13.38. Repeat Problem 37, with Z0 = 50�, and RL = Rg = 25�. Carry out the analysis for the time period
0 < t < 8l/v. At the generator end, we have 	g = −1/3, as before. The difference is at the load
end, where 	L = −1/3, whereas in Problem 37, the load was matched. The initial wave, as in the last
problem, is of magnitude V + = (2/3)V0. Using these values, voltage and current reflection diagrams
are constructed, and are shown below:
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13.38. (continued) From the diagrams, voltage and current plots are constructed. First, the load voltage is
found by adding voltages along the right side of the voltage diagram at the indicated times. Second,
the current through the battery is found by adding currents along the left side of the current reflection
diagram. Both plots are shown below, where currents and voltages are expressed to three significant
figures. The steady state values, VL = 0.5V and IB = 0.02A, are expected as t → ∞.

13.39. In the transmission line of Fig. 13.17, Z0 = 50� and RL = Rg = 25�. The switch is closed at t = 0
and is opened again at time t = l/4v, thus creating a rectangular voltage pulse in the line. Construct an
appropriate voltage reflection diagram for this case and use it to make a plot of the voltage at the load
resistor as a function of time for 0 < t < 8l/v (note that the effect of opening the switch is to initiate a
second voltage wave, whose value is such that it leaves a net current of zero in its wake): The value of
the initial voltage wave, formed by closing the switch, will be

V + = Z0

Rg + Z0
V0 = 50

25 + 50
V0 = 2

3
V0

On opening the switch, a second wave, V +′, is generated which leaves a net current behind it of zero.
This means that V +′ = −V + = −(2/3)V0. Note also that when the switch is opened, the reflection
coefficient at the generator end of the line becomes unity. The reflection coefficient at the load end is
	L = (25 − 50)/(25 + 50) = −(1/3). The reflection diagram is now constructed in the usual manner,
and is shown on the next page. The path of the second wave as it reflects from either end is shown in
dashed lines, and is a replica of the first wave path, displaced later in time by l/(4v).a All values for
the second wave after each reflection are equal but of opposite sign to the immediately preceding first
wave values. The load voltage as a function of time is found by accumulating voltage values as they are
read moving up along the right hand boundary of the chart. The resulting function, plotted just below
the reflection diagram, is found to be a sequence of pulses that alternate signs. The pulse amplitudes
are calculated as follows:
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13.39. (continued)

l

v
< t <

5l

4v
: V1 =

(
1 − 1

3

)
V + = 0.44V0

3l

v
< t <

13l

4v
: V2 = −1

3

(
1 − 1

3

)
V + = −0.15V0

5l

v
< t <

21l

4v
: V3 =

(
1

3

)2 (
1 − 1

3

)
V + = 0.049V0

7l

v
< t <

29l

4v
: V4 = −

(
1

3

)3 (
1 − 1

3

)
V + = −0.017V0
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13.40. In the charged line of Fig. 13.22, the characteristic impedance is Z0 = 100�, and Rg = 300�. The
line is charged to initial voltage V0 = 160 V, and the switch is closed at t = 0. Determine and plot
the voltage and current through the resistor for time 0 < t < 8l/v (four round trips). This problem
accompanies Example 13.6 as the other special case of the basic charged line problem, in which now
Rg > Z0. On closing the switch, the initial voltage wave is

V + = −V0
Z0

Rg + Z0
= −160

100

400
= −40 V

Now, with 	g = 1/2 and 	L = 1, the voltage and current reflection diagrams are constructed as shown
below. Plots of the voltage and current at the resistor are then found by accumulating values from the
left sides of the two charts, producing the plots as shown.
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13.41. In the transmission line of Fig. 13.34, the switch is located midway down the line, and is closed at
t = 0. Construct a voltage reflection diagram for this case, where RL = Z0. Plot the load resistor
voltage as a function of time: With the left half of the line charged to V0, closing the switch initiates
(at the switch location) two voltage waves: The first is of value −V0/2 and propagates toward the left;
the second is of value V0/2 and propagates toward the right. The backward wave reflects at the battery
with 	g = −1. No reflection occurs at the load end, since the load is matched to the line. The reflection
diagram and load voltage plot are shown below. The results are summarized as follows:

0 < t <
l

2v
: VL = 0

l

2v
< t <

3l

2v
: VL = V0

2

t >
3l

2v
: VL = V0
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13.42. A simple frozen wave generator is shown in Fig. 13.35. Both switches are closed simultaneously at
t = 0. Construct an appropriate voltage reflection diagram for the case in which RL = Z0. Determine
and plot the load voltage as a function of time: Closing the switches sets up a total of four voltage waves
as shown in the diagram below. Note that the first and second waves from the left are of magnitude V0,
since in fact we are superimposing voltage waves from the −V0 and +V0 charged sections acting alone.
The reflection diagram is drawn and is used to construct the load voltage with time by accumulating
voltages up the right hand vertical axis.
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CHAPTER 14

14.1. A parallel-plate waveguide is known to have a cutoff wavelength for the m = 1 TE and TM modes of
λc1 = 0.4 cm. The guide is operated at wavelength λ = 1 mm. How many modes propagate? The
cutoff wavelength for mode m is λcm = 2nd/m, where n is the refractive index of the guide interior.
For the first mode, we are given

λc1 = 2nd

1
= 0.4 cm ⇒ d = 0.4

2n
= 0.2

n
cm

Now, for mode m to propagate, we require

λ ≤ 2nd

m
= 0.4

m
⇒ m ≤ 0.4

λ
= 0.4

0.1
= 4

So, accounting for 2 modes (TE and TM) for each value of m, and the single TEM mode, we will have
a total of 9 modes.

14.2. A parallel-plate guide is to be constructed for operation in the TEM mode only over the frequency range
0 < f < 3 GHz. The dielectric between plates is to be teflon (ε′R = 2.1). Determine the maximum
allowable plate separation, d: We require that f < fc1, which, using (7), becomes

f <
c

2nd
⇒ dmax = c

2nfmax
= 3 × 108

2
√

2.1 (3 × 109)
= 3.45 cm

14.3. A lossless parallel-plate waveguide is known to propagate them = 2 TE and TM modes at frequencies
as low as 10GHz. If the plate separation is 1 cm, determine the dielectric constant of the medium
between plates: Use

fc2 = c

nd
= 3 × 1010

n(1)
= 1010 ⇒ n = 3 or εR = 9

14.4. A d = 1 cm parallel-plate guide is made with glass (n = 1.45) between plates. If the operating
frequency is 32 GHz, which modes will propagate? For a propagating mode, we require f > fcm
Using (7) and the given values, we write

f >
mc

2nd
⇒ m <

2f nd

c
= 2(32 × 109)(1.45)(.01)

3 × 108 = 3.09

The maximum allowed m in this case is thus 3, and the propagating modes will be TM1, TE1, TM2,
TE2, TM3, and TE3.

14.5. For the guide of Problem 14.4, and at the 32 GHz frequency, determine the difference between the group
delays of the highest order mode (TE or TM) and the TEM mode. Assume a propagation distance of 10
cm: From Problem 14.4, we found mmax = 3. The group velocity of a TE or TM mode for m = 3 is

vg3 = c

n

√
1 −

(
fc3

f

)2

where fc3 = 3(3 × 1010)

2(1.45)(1)
= 3.1 × 1010 = 31 GHz
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14.5. (continued) Thus

vg3 = 3 × 1010

1.45

√
1 −

(
31

32

)2

= 5.13 × 109 cm/s

For the TEM mode (assuming no material dispersion) vg,T EM = c/n = 3 × 1010/1.45 = 2.07 × 1010

cm/s. The group delay difference is now

�tg = z

(
1

vg3
− 1

vg,T EM

)
= 10

(
1

5.13 × 109 − 1

2.07 × 1010

)
= 1.5 ns

14.6. The cutoff frequency of them = 1 TE and TM modes in a parallel-plate guide is known to be fc1 = 7.5
GHz. The guide is used at wavelength λ = 1.5 cm. Find the group velocity of the m = 2 TE and TM
modes. First we know that fc2 = 2fc1 = 15 GHz. Then f = c/λ = 3 × 108/.015 = 20 GHz. Now,
using (23),

vg2 = c

n

√
1 −

(
fc2

f

)2

= c

n

√
1 −

(
15

20

)2

= 2 × 108/n m/s

n was not specified in the problem.

14.7. A parallel-plate guide is partially filled with two lossless dielectrics (Fig. 14.23) where ε′R1 = 4.0,
ε′R2 = 2.1, and d = 1 cm. At a certain frequency, it is found that the TM1 mode propagates through
the guide without suffering any reflective loss at the dielectric interface.

a) Find this frequency: The ray angle is such that the wave is incident on the interface at Brewster’s
angle. In this case

θB = tan−1

√
2.1

4.0
= 35.9◦

The ray angle is thus θ = 90 − 35.9 = 54.1◦. The cutoff frequency for the m = 1 mode is

fc1 = c

2d
√
ε′R1

= 3 × 1010

2(1)(2)
= 7.5 GHz

The frequency is thus f = fc1/ cos θ = 7.5/ cos(54.1◦) = 12.8 GHz.

b) Is the guide operating at a single TM mode at the frequency found in part a? The cutoff frequency
for the next higher mode, TM2 is fc2 = 2fc1 = 15 GHz. The 12.8 GHz operating frequency is
below this, so TM2 will not propagate. So the answer is yes.

14.8. In the guide of Problem 14.7, it is found thatm = 1 modes propagating from left to right totally reflect
at the interface, so that no power is transmitted into the region of dielectric constant ε′R2.

a) Determine the range of frequencies over which this will occur: For total reflection, the ray angle
measured from the normal to the interface must be greater than or equal to the critical angle, θc,
where sin θc = (ε′R2/ε

′
R1)

1/2. The minimum mode ray angle is then θ1min = 90◦ −θc. Now, using
(5), we write

90◦ − θc = cos−1
(

π

kmind

)
= cos−1

(
πc

2πfmind
√

4

)
= cos−1

(
c

4dfmin

)
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14.8a. (continued)
Now

cos(90 − θc) = sin θc =
√
ε′R2

ε′R1
= c

4dfmin

Therefore fmin = c/(2
√

2.1d) = (3 × 108)/(2
√

2.1(.01)) = 10.35 GHz. The frequency range is
thus f > 10.35 GHz.

b) Does your part a answer in any way relate to the cutoff frequency form = 1 modes in any region?
We note that fmin = c/(2

√
2.1d) = fc1 in guide 2. To summarize, as frequency is lowered, the

ray angle in guide 1 decreases, which leads to the incident angle at the interface increasing to
eventually reach and surpass the critical angle. At the critical angle, the refracted angle in guide 2
is 90◦, which corresponds to a zero degree ray angle in that guide. This defines the cutoff condition
in guide 2. So it would make sense that fmin = fc1(guide 2).

14.9. A rectangular waveguide has dimensions a = 6 cm and b = 4 cm.
a) Over what range of frequencies will the guide operate single mode? The cutoff frequency for

mode mp is, using Eq. (54):

fc,mn = c

2n

√(m
a

)2 +
(p
b

)2

where n is the refractive index of the guide interior. We require that the frequency lie between the
cutoff frequencies of the T E10 and T E01 modes. These will be:

fc10 = c

2na
= 3 × 108

2n(.06)
= 2.5 × 109

n

fc01 = c

2nb
= 3 × 108

2n(.04)
= 3.75 × 109

n

Thus, the range of frequencies over which single mode operation will occur is

2.5

n
GHz < f <

3.75

n
GHz

b) Over what frequency range will the guide support both T E10 and T E01 modes and no others? We
note first that f must be greater than fc01 to support both modes, but must be less than the cutoff
frequency for the next higher order mode. This will be fc11, given by

fc11 = c

2n

√(
1

.06

)2

+
(

1

.04

)2

= 30c

2n
= 4.5 × 109

n

The allowed frequency range is then

3.75

n
GHz < f <

4.5

n
GHz
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14.10. Two rectangular waveguides are joined end-to-end. The guides have identical dimensions, where
a = 2b. One guide is air-filled; the other is filled with a lossless dielectric characterized by ε′R .

a) Determine the maximum allowable value of ε′R such that single mode operation can be simultane-
ously ensured in both guides at some frequency: Since a = 2b, the cutoff frequency for any mode
in either guide is written using (54):

fcmp =
√( mc

4nb

)2 +
( pc

2nb

)2

where n = 1 in guide 1 and n =
√
ε′R in guide 2. We see that, with a = 2b, the next modes (having

the next higher cutoff frequency) above TE10 with be TE20 and TE01. We also see that in general,
fcmp(guide 2) < fcmp(guide 1). To assure single mode operation in both guides, the operating
frequency must be above cutoff for TE10 in both guides, and below cutoff for the next mode in
both guides. The allowed frequency range is therefore fc10(guide 1) < f < fc20(guide 2). This

leads to c/(2a) < f < c/(a

√
ε′R). For this range to be viable, it is required that ε′R < 4.

b) Write an expression for the frequency range over which single mode operation will occur in both
guides; your answer should be in terms of ε′R , guide dimensions as needed, and other known
constants: This was already found in part a:

c

2a
< f <

c√
ε′R a

where ε′R < 4.

14.11. An air-filled rectangular waveguide is to be constructed for single-mode operation at 15 GHz. Specify
the guide dimensions, a and b, such that the design frequency is 10/while being 10% lower than the
cutoff frequency for the next higher-order mode: For an air-filled guide, we have

fc,mp =
√(mc

2a

)2 +
(pc

2b

)2

For TE10 we have fc10 = c/2a, while for the next mode (TE01), fc01 = c/2b. Our requirements state
that f = 1.1fc10 = 0.9fc01. So fc10 = 15/1.1 = 13.6 GHz and fc01 = 15/0.9 = 16.7 GHz. The
guide dimensions will be

a = c

2fc10
= 3 × 1010

2(13.6 × 109)
= 1.1 cm and b = c

2fc01
= 3 × 1010

2(16.7 × 109)
= 0.90 cm

14.12. Using the relation Pav = (1/2)Re{Es × H∗
s }, and Eqs. (44) through (46), show that the average power

density in the TE10 mode in a rectangular waveguide is given by

Pav = β10

2ωµ
E2

0 sin2(κ10x) az W/m2

(note that the sin term is erroneously to the first power in the original problem statement). Inspecting
(44) through (46), we see that (46) includes a factor of j , and so would lead to an imaginary part of the
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total power when the cross product with Ey is taken. Therefore, the real power in this case is found
through the cross product of (44) with the complex conjugate of (45), or

Pav = 1

2
Re
{
Eys × H∗

xs

} = β10

2ωµ
E2

0 sin2(κ10x) az W/m2

14.13. Integrate the result of Problem 14.12 over the guide cross-section 0 < x < a, 0 < y < b, to show that
the power in Watts transmitted down the guide is given as

P = β10ab

4ωµ
E2

0 = ab

4η
E2

0 sin θ10 W

where η = √
µ/ε (note misprint in problem statement), and θ10 is the wave angle associated with the

TE10 mode. Interpret. First, the integration:

P =
∫ b

0

∫ a

0

β10

2ωµ
E2

0 sin2(κ10x) az · az dx dy = β10ab

4ωµ
E2

0

Next, from (20), we have β10 = ω
√
µε sin θ10, which, on substitution, leads to

P = ab

4η
E2

0 sin θ10 W with η =
√
µ

ε

The sin θ10 dependence demonstrates the principle of group velocity as energy velocity (or power).
This was considered in the discussion leading to Eq. (23).

14.14. Show that the group dispersion parameter, d2β/dω2, for given mode in a parallel-plate or rectangular
waveguide is given by

d2β

dω2 = − n

ωc

(ωc
ω

)2
[

1 −
(ωc
ω

)2
]−3/2

where ωc is the radian cutoff frequency for the mode in question (note that the first derivative form was
already found, resulting in Eq. (23)). First, taking the reciprocal of (23), we find

dβ

dω
= n

c

[
1 −

(ωc
ω

)2
]−1/2

Taking the derivative of this equation with respect to ω leads to

d2β

dω2 = n

c

(
−1

2

)[
1 −

(ωc
ω

)2
]−3/2 (2ω2

c

ω3

)
= − n

ωc

(ωc
ω

)2
[

1 −
(ωc
ω

)2
]−3/2

14.15. Consider a transform-limited pulse of center frequency f = 10 GHz and of full-width 2T = 1.0 ns.
The pulse propagates in a lossless single mode rectangular guide which is air-filled and in which the
10 GHz operating frequency is 1.1 times the cutoff frequency of the T E10 mode. Using the result of
Problem 14.14, determine the length of the guide over which the pulse broadens to twice its initial
width: The broadened pulse will have width given by T ′ =

√
T 2 + (�τ)2, where �τ = β2L/T for a

transform limited pulse (assumed gaussian). β2 is the Problem 14.14 result evaluated at the operating
frequency, or

β2 = d2β

dω2 |ω=10 GHz = − 1

(2π × 1010)(3 × 108)

(
1

1.1

)2
[

1 −
(

1

1.1

)2
]−3/2

= 6.1 × 10−19 s2/m = 0.61 ns2/m

Now �τ = 0.61L/0.5 = 1.2L ns. For the pulse width to double, we have T ′ = 1 ns, and√
(.05)2 + (1.2L)2 = 1 ⇒ L = 0.72 m = 72 cm
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14.15. (continued)

What simple step can be taken to reduce the amount of pulse broadening in this guide, while maintaining
the same initial pulse width? It can be seen that β2 can be reduced by increasing the operating frequency
relative to the cutoff frequency; i.e., operate as far above cutoff as possible, without allowing the next
higher-order modes to propagate.

14.16. A symmetric dielectric slab waveguide has a slab thickness d = 10 µm, with n1 = 1.48 and n2 = 1.45.
If the operating wavelength is λ = 1.3µm, what modes will propagate? We use the condition expressed

through (77): k0d

√
n2

1 − n2
2 ≥ (m− 1)π . Since k0 = 2π/λ, the condition becomes

2d

λ

√
n2

1 − n2
2 ≥ (m− 1) ⇒ 2(10)

1.3

√
(1.48)2 − (1.45)2 = 4.56 ≥ m− 1

Therefore, mmax = 5, and we have TE and TM modes for which m = 1, 2, 3, 4, 5 propagating (ten
total).

14.17. A symmetric slab waveguide is known to support only a single pair of TE and TM modes at wavelength
λ = 1.55 µm. If the slab thickness is 5 µm, what is the maximum value of n1 if n2 = 3.3 (assume
3.30)? Using (78) we have

2πd

λ

√
n2

1 − n2
2 < π ⇒ n1 <

√
λ

2d
+ n2

2 =
√

1.55

2(5)
+ (3.30)2 = 3.32

14.18. n1 = 1.50, n2 = 1.45, and d = 10 µm in a symmetric slab waveguide (note that the index values were
reversed in the original problem statement).

a) What is the phase velocity of them = 1 TE or TM mode at cutoff? At cutoff, the mode propagates
in the slab at the critical angle, which means that the phase velocity will be equal to that of a
plane wave in the upper or lower media of index n2. Phase velocity will therefore be vp(cutoff) =
c/n2 = 3 × 108/1.45 = 2.07 × 108 m/s.

b) What is the phase velocity of the m = 2 TE or TM modes at cutoff? The reasoning of part a
applies to all modes, so the answer is the same, or 2.07 × 108 m/s.

14.19. An asymmetric slab waveguide is shown in Fig. 14.24. In this case, the regions above and below the
slab have unequal refractive indices, where n1 > n3 > n2 (note error in problem statement).

a) Write, in terms of the appropriate indices, an expression for the minimum possible wave angle, θ1,
that a guided mode may have: The wave angle must be equal to or greater than the critical angle
of total reflection at both interfaces. The minimum wave angle is thus determined by the greater
of the two critical angles. Since n3 > n2, we find θmin = θc,13 = sin−1(n3/n1).

b) Write an expression for the maximum phase velocity a guided mode may have in this structure,
using given or known parameters: We have vp,max = ω/βmin, where βmin = n1k0 sin θ1,min =
n1k0n3/n1 = n3k0. Thus vp,max = ω/(n3k0) = c/n3.

14.20. A step index optical fiber is known to be single mode at wavelengths λ > 1.2 µm. Another fiber is
to be fabricated from the same materials, but is to be single mode at wavelengths λ > 0.63 µm. By
what percentage must the core radius of the new fiber differ from the old one, and should it be larger or
smaller? We use the cutoff condition, given by (80):

λ >
2πa

2.405

√
n2

1 − n2
2
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14.20. (continued) With λ reduced, the core radius, a, must also be reduced by the same fraction. Therefore,
the percentage reduction required in the core radius will be

% = 1.2 − .63

1.2
× 100 = 47.5%

14.21. A short dipole carrying current I0 cosωt in the az direction is located at the origin in free space.
a) If β = 1 rad/m, r = 2 m, θ = 45◦, φ = 0, and t = 0, give a unit vector in rectangular components

that shows the instantaneous direction of E: In spherical coordinates, the components of E are
given by (82) and (83):

Er = I0dη

2π
cos θe−j2πr/λ

(
1

r2 + λ

j2πr3

)

Eθ = I0dη

4π
sin θe−j2πr/λ

(
j

2π

λr
+ 1

r2 + λ

j2πr3

)
Since we want a unit vector at t = 0, we need only the relative amplitudes of the two components,
but we need the absolute phases. Since θ = 45◦, sin θ = cos θ = 1/

√
2. Also, with β = 1 =

2π/λ, it follows that λ = 2π m. The above two equations can be simplified by these substitutions,
while dropping all amplitude terms that are common to both. Obtain

Ar =
(

1

r2 + 1

jr3

)
e−jr

Aθ = 1

2

(
j

1

r
+ 1

r2 + 1

jr3

)
e−jr

Now with r = 2 m, we obtain

Ar =
(

1

4
− j

1

8

)
e−j2 = 1

4
(1.12)e−j26.6◦

e−j2

Aθ =
(
j

1

4
+ 1

8
− j

1

16

)
e−j2 = 1

4
(0.90)ej56.3◦

e−j2

The total vector is now A = Arar + Aθaθ . We can normalize the vector by first finding the
magnitude:

|A| =
√

A · A∗ = 1

4

√
(1.12)2 + (0.90)2 = 0.359

Dividing the field vector by this magnitude and converting 2 rad to 114.6◦, we write the normalized
vector as

ANs = 0.780e−j141.2◦
ar + 0.627e−58.3◦

aθ

In real instantaneous form, this becomes

AN(t) = Re
(

ANsejωt
)

= 0.780 cos(ωt − 141.2◦)ar + 0.627 cos(ωt − 58.3◦)aθ

We evaluate this at t = 0 to find

AN(0) = 0.780 cos(141.2◦)ar + 0.627 cos(58.3◦)aθ = −0.608ar + 0.330aθ
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14.21a. (continued)

Dividing by the magnitude,
√
(0.608)2 + (0.330)2 = 0.692, we obtain the unit vector at t = 0:

aN(0) = −0.879ar + 0.477aθ . We next convert this to cartesian components:

aNx = aN(0) · ax = −0.879 sin θ cosφ + 0.477 cos θ cosφ = 1√
2
(−0.879 + 0.477) = −0.284

aNy = aN(0) · ay = −0.879 sin θ sin φ + 0.477 cos θ sin φ = 0 since φ = 0

aNz = aN(0) · az = −0.879 cos θ − 0.477 sin θ = 1√
2
(−0.879 − 0.477) = −0.959

The final result is then
aN(0) = −0.284ax − 0.959az

b) What fraction of the total average power is radiated in the belt, 80◦ < θ < 100◦? We use the
far-zone phasor fields, (84) and (85), and first find the average power density:

Pavg = 1

2
Re[EθsH

∗
φs] = I 2

0 d
2η

8λ2r2 sin2 θ W/m2

We integrate this over the given belt, an at radius r:

Pbelt =
∫ 2π

0

∫ 100◦

80◦

I 2
0 d

2η

8λ2r2 sin2 θ r2 sin θ dθ dφ = πI 2
0 d

2η

4λ2

∫ 100◦

80◦
sin3 θ dθ

Evaluating the integral, we find

Pbelt = πI 2
0 d

2η

4λ2

[
−1

3
cos θ

(
sin2 θ + 2

)]100

80
= (0.344)

πI 2
0 d

2η

4λ2

The total power is found by performing the same integral over θ , where 0 < θ < 180◦. Doing
this, it is found that

Ptot = (1.333)
πI 2

0 d
2η

4λ2

The fraction of the total power in the belt is then f = 0.344/1.333 = 0.258.

14.22. Prepare a curve, r vs. θ in polar coordinates, showing the locus in the φ = 0 plane where:
a) the radiation field |Eθs | is one-half of its value at r = 104 m, θ = π/2: Assuming the far field

approximation, we use (84) to set up the equation:

|Eθs | = I0dη

2λr
sin θ = 1

2
× I0dη

2 × 104λ
⇒ r = 2 × 104 sin θ

b) the average radiated power density, Pr,av , is one-half of its value at r = 104 m, θ = π/2. To find
the average power, we use (84) and (85) in

Pr,av = 1

2
Re{EθsH ∗

φs} = 1

2

I 2
0 d

2η

4λ2r2 sin2 θ = 1

2
× 1

2

I 2
0 d

2η

4λ2(108)
⇒ r =

√
2 × 104 sin θ
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14.22. (continued) The polar plots for field (r = 2 × 104 sin θ ) and power (r = √
2 × 104 sin θ ) are shown

below. Both are circles.

14.23. Two short antennas at the origin in free space carry identical currents of 5 cosωt A, one in the az
direction, one in the ay direction. Let λ = 2π m and d = 0.1 m. Find Es at the distant point:

a) (x = 0, y = 1000, z = 0): This point lies along the axial direction of the ay antenna, so its
contribution to the field will be zero. This leaves the az antenna, and since θ = 90◦, only the Eθs
component will be present (as (82) and (83) show). Since we are in the far zone, (84) applies. We
use θ = 90◦, d = 0.1, λ = 2π , η = η0 = 120π , and r = 1000 to write:

Es = Eθsaθ = j
I0dη

2λr
sin θe−j2πr/λ aθ = j

5(0.1)(120π)

4π(1000)
e−j1000 aθ

= j (1.5 × 10−2)e−j1000 aθ = −j (1.5 × 10−2)e−j1000 az V/m

b) (0, 0, 1000): Along the z axis, only the ay antenna will contribute to the field. Since the distance
is the same, we can apply the part a result, modified such the the field direction is in −ay :
Es = −j (1.5 × 10−2)e−j1000 ay V/m

c) (1000, 0, 0): Here, both antennas will contribute. Applying the results of parts a and b, we find
Es = −j (1.5 × 10−2)(ay + az).

d) Find E at (1000, 0, 0) at t = 0: This is found through

E(t) = Re
(

Esejωt
)

= (1.5 × 10−2) sin(ωt − 1000)(ay + az)

Evaluating at t = 0, we find
E(0) = (1.5 × 10−2)[− sin(1000)](ay + az) = −(1.24 × 10−2)(ay + az) V/m.

e) Find |E| at (1000, 0, 0) at t = 0: Taking the magnitude of the part d result, we find |E| =
1.75 × 10−2 V/m.
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14.24. A short current element has d = 0.03λ. Calculate the radiation resistance for each of the following
current distributions:

a) uniform: In this case, (86) applies directly and we find

Rrad = 80π2
(
d

λ

)2

= 80π2(.03)2 = 0.711�

b) linear, I (z) = I0(0.5d − |z|)/0.5d: Here, the average current is 0.5I0, and so the average power
drops by a factor of 0.25. The radiation resistance therefore is down to one-fourth the value found
in part a, or Rrad = (0.25)(0.711) = 0.178�.

c) step, I0 for 0 < |z| < 0.25d and 0.5I0 for 0.25d < |z| < 0.5d: In this case the average current on
the wire is 0.75I0. The radiated power (and radiation resistance) are down to a factor of (0.75)2

times their values for a uniform current, and so Rrad = (0.75)2(0.711) = 0.400�.

14.25. A dipole antenna in free space has a linear current distribution. If the length is 0.02λ, what value of I0
is required to:

a) provide a radiation-field amplitude of 100 mV/m at a distance of one mile, at θ = 90◦: With a
linear current distribution, the peak current, I0, occurs at the center of the dipole; current decreases
linearly to zero at the two ends. The average current is thus I0/2, and we use Eq. (84) to write:

|Eθ | = I0dη0

4λr
sin(90◦) = I0(0.02)(120π)

(4)(5280)(12)(0.0254)
= 0.1 ⇒ I0 = 85.4 A

b) radiate a total power of 1 watt? We use

Pavg =
(

1

4

)(
1

2
I 2

0Rrad

)

where the radiation resistance is given by Eq. (86), and where the factor of 1/4 arises from the
average current of I0/2: We obtain Pavg = 10π2I 2

0 (0.02)2 = 1 ⇒ I0 = 5.03 A.

14.26. A monopole antenna in free space, extending vertically over a perfectly conducting plane, has a linear
current distribution. If the length of the antenna is 0.01λ, what value of I0 is required to

a) provide a radiation field amplitude of 100 mV/m at a distance of 1 mi, at θ = 90◦: The image
antenna below the plane provides a radiation pattern that is identical to a dipole antenna of length
0.02λ. The radiation field is thus given by (84) in free space, where θ = 90◦, and with an additional
factor of 1/2 included to account for the linear current distribution:

|Eθ | = 1

2

I0dη0

2λr
⇒ I0 = 4r|Eθ |

(d/λ)η0
= 4(5289)(12 × .0254)(100 × 10−3)

(.02)(377)
= 85.4 A

b) radiate a total power of 1W: For the monopole over the conducting plane, power is radiated only
over the upper half-space. This reduces the radiation resistance of the equivalent dipole antenna
by a factor of one-half. Additionally, the linear current distribution reduces the radiation resistance
of a dipole having uniform current by a factor of one-fourth. Therefore, Rrad is one-eighth the
value obtained from (86), or Rrad = 10π2(d/λ)2. The current magnitude is now

I0 =
[

2Pav
Rrad

]1/2

=
[

2(1)

10π2(d/λ)2

]1/2

=
√

2√
10π(.02)

= 7.1 A
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14.27. The radiation field of a certain short vertical current element is Eθs = (20/r) sin θ e−j10πr V/m if it is
located at the origin in free space.

a) FindEθs at P(r = 100, θ = 90◦, φ = 30◦): Substituting these values into the given formula, find

Eθs = 20

100
sin(90◦)e−j10π(100) = 0.2e−j1000π V/m

b) Find Eθs at P if the vertical element is located at A(0.1, 90◦, 90◦): This places the element on
the y axis at y = 0.1. As a result of moving the antenna from the origin to y = 0.1, the change in
distance to point P is negligible when considering the change in field amplitude, but is not when
considering the change in phase. Consider lines drawn from the origin to P and from y = 0.1
to P . These lines can be considered essentially parallel, and so the difference in their lengths is
l
.= 0.1 sin(30◦), with the line from y = 0.1 being shorter by this amount. The construction and

arguments are similar to those used in the discussion of the electric dipole in Sec. 4.7. The electric
field is now the result of part a, modified by including a shorter distance, r , in the phase term only.
We show this as an additional phase factor:

Eθs = 0.2e−j1000πej10π(0.1 sin 30 = 0.2e−j1000πej0.5π V/m

c) Find Eθs at P if identical elements are located at A(0.1, 90◦, 90◦) and B(0.1, 90◦, 270◦): The
original element of part b is still in place, but a new one has been added at y = −0.1. Again,
constructing a line between B and P , we find, using the same arguments as in part b, that the
length of this line is approximately 0.1 sin(30◦) longer than the distance from the origin to P . The
part b result is thus modified to include the contribution from the second element, whose field will
add to that of the first:

Eθs = 0.2e−j1000π
(
ej0.5π + e−j0.5π

)
= 0.2e−j1000π2 cos(0.5π) = 0

The two fields are out of phase at P under the approximations we have used.
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