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Chapter 1

Introduction

1.1 Principles for Confinement of Plasma by a Magnetic Field

The dominant purpose for confining plasma on earth is the achievement of nuclear

fusion. The main path to achieve this is by using magnetic fields. Thus a scientific

problem of major potential usefulness is the confinement of plasma by magnetic

fields [1–26]. The necessity of plasma for fusion on earth is that the thermonuclear

way of making nuclei collide by their thermal velocity is the only feasible way and

this requires temperatures of above 100 million centigrades. At such temperatures

matter is in its fourth state, the plasma state. A plasma can simply be described as an

ionized gas where the charge of the particles makes magnetic confinement poten-

tially possible. However, a magnetic field confines particles only in the perpendic-

ular direction. Even in this direction the confinement is perfect only if the magnetic

field is homogeneous and there are no other particles! Here, by confinement we

mean that this single particle is not moving across the magnetic field on the average.

When we have many particles, confinement means that we can maintain gradients

in density and temperature. This, on the other hand, means that the system is not in

thermodynamic equilibrium. For a plasma to be in thermodynamic equilibrium it

must be homogeneous and have a Maxwellian velocity distribution. Thus a con-

fined plasma will always be in a non-equilibrium state with different kinds of

energy available to drive instabilities. An important aspect here is also that the

magnetic field does not confine particles along itself. Attempts to cure this has been

made by various types of mirror fields but the dominant and most successful method

has been to bend the magnetic field into a torus. This introduces particle drifts due

to the centrifugal force and inhomogeneity in the fieldstrength and these can drive

instabilities. When the plasma density becomes sufficiently large, currents set up by

perturbations in the plasma can significantly modify the external magnetic field.
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Since thermodynamics always tries to take the plasma towards thermodynamical

equilibrium, the currents set up by the plasma generally tends to change the

magnetic field in such a way as to reduce confinement. When the current is mainly

associated with particle motion we have current driven modes (Kink modes) and

when the diamagnetic current is themain sourcewe have pressure drivenmodes. The

large scale versions of these are called Magneto Hydro Dynamic (MHD) modes.

The instabilities of these mode, when fully developed, are so strong that a discharge

is terminated on a short time scale (disruption) and thus, the system has to be

designed in order to avoid these. Under operation MHD modes put the limit to

pressure and current thus defining Operational limits. When the most dangerous

MHDmodes are stable we usually still have fairly large transport due to turbulence.

This is something we can live with and that has been taken into account in the present

ITER design. The turbulence is caused by small scale instabilities (microinst-

abilities) associated with drift motions in the plasma. The drift motions, in turn,

are caused by the inhomogeneities in density and temperature thus closing our

picture of relaxation in nonequilibrium systems. The corresponding eigenmodes

are called Drift waves. While geometry is very important for the large scale MHD

modes, drift modes can usually be described by the WKB approximation. Thus

although geometry is sometimes important also for drift waves, the physics descrip-

tion (fluid, kinetic) is usually more important. Another important aspect is that

transport is an irreversible type of motion and it requires irreversible properties of

the generating equations. Since instability is the very source of the turbulence, the

growth rate, as a part of the eigen frequency, also plays a very important role for

transport. It thus causes the phase shift between potential and density or temperature

(for E � B driven transport) which is needed for transport. The real eigenfrequency,

on the other hand, describes periodic, reversible, behavior that reduces transport.

This is why the dominant instabilities for transport are low frequency modes.

The most important drift waves typically have real frequencies about 2 orders of

magnitude below the ion cyclotron frequency.

In the present work we shall consider both macroscopic MHD modes and small

scale drift type modes. Since we need the more detailed two fluid and kinetic

descriptions for the drift-type modes we shall also use these for MHD-type

modes. This allows us to see the connections and to make the transition between

MHD and drift-type modes. We will, however, briefly discuss also the one fluid

equations. Concerning the two fluid and kinetic approaches, we shall discuss them

in rather much detail, discussing conditions for using two fluid equations.

In particular we will give three different derivations for the lowest order Finite

Larmor Radius (FLR) effect. Concerning wave particle resonances linear and

nonlinear theory may give very different results since the nonlinear resonances

have a tendency to counteract the linear ones. Here we expect the sources in

velocity space to play a crucial role. We may compare this with the situation

in real space where a background gradient is necessary for transport and we need

a source to maintain a background gradient on a long timescale. A special section

has been devoted to advanced fluid closures in toroidal systems.
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Since the magnetic field confines a plasma in only two dimensions, the method

of treating the problem with the third dimension is obviously very important.

In a tokamak the toroidal curvature represents the third dimension. This means

that the toroidal curvature is fundamental for the confinement. Its main obvious

consequences are the presence of curvature driven modes and trapped particles.

Since curvature is driving instabilities only on the outside of the torus, curvature

also leads to eigenmodes that are trapped on the outside. These are generally called

Ballooning modes. We note, however, that the term “ballooning mode” was origi-

nally introduced for the MHD ballooning mode and this meaning is sometimes still

assumed to be understood.

Although the effects of toroidicity mentioned above have been known and

studied for a long time, it is only since the end of the 1980s that strong

efforts have been made to include them fully in calculations of tokamak transport.

The main assumption to be removed from previous calculations of transport is that

the diamagnetic drift, due to the pressure gradient, dominates over the magnetic

drift which is due to toroidal (around the torus the long way) curvature and the

closely related radial variation of the magnitude of the magnetic field. When this

assumption is removed, a completely new regime of transport is introduced. This

regime usually persists in the inner 80% of the small radius in a tokamak. For shots

with highly peaked pressure profiles, such as supershots on TFTR, this regime is

somewhat smaller while it is larger for shots with broad density profiles such as

usual H-modes. In the new regime, transport coefficients tend to grow with radius

which is in agreement with experiment and which was previously a main problem

for drift wave models. In this regime the mode frequency is comparable to the

magnetic drift frequency and this causes a problem with the conventional fluid

closure, i.e. it requires advanced fluid models or interpretations. This will be

discussed in the section on fluid closure. Since kinetically nonlinear effects are

required close to resonances, the only alternative is to use a fully nonlinear

gyrokinetic code. Although much progress has been made in that field, nonlinear

gyrokinetic codes are still too time consuming to be run as transport codes only by

themselves. Thus some combined system of transport code with continuous

advancement of nonlinear kinetic transport coefficients in time is needed.

Concerning advanced fluid models, these generally make use of several moments

in the fluid hierarchy, making the closure at a level where remaining kinetic effects

can be treated by some simplification. The energy equation is generally kept with its

time dependence thus making a continuous transition between adiabatic and

isothermal states possible. While Landau-fluid models here introduce linear dissi-

pative kinetic resonances, the fluid model in Chap. 6 just keeps the diamagnetic

energy flow, arguing that we do not have sources for higher order moments unless

we have a heating source that is close to resonance with the drift waves. This is not

the case for drift waves if we consider usual Neutral Beam (NB) or cyclotron

resonance heating. Such a fluid model is here called reactive since the closure does

not involve dissipation. The situation is, of course, completely different for fast

particle modes (Chap. 8). A more advanced approach is to introduce a nonlinear
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frequency shift in the plasma dispersion function. This turned out to be quite

successful for the case of only three modes but is algebraically chumbersam and

has not been extended to a larger number of modes.

The significance of the ratio of magnetic to diamagnetic drift as the main toroidal

effect for transport is shown by the fact that it is the largest one (this ratio goes to

infinity at the axis), and that it enters dynamically through the pressure gradient.

Such dynamics is important in transitions between different confinement states. It is

also important to note that in the new regime mentioned above the density length

scale drops out of the stability condition giving a condition that depends only on

temperature and magnetic field length scales.

1.2 Energy Balance in a Fusion Reactor

Of course the theory developed for anomalous transport, as outlined in the previous

section, aims at determining the confinement time in a reactor by first principles

methods. In reality, the confinement times of new tokamaks have so far always been

predicted by empirical methods on the design phase. The performance of both the

previous (large) and the present ITER designs have, however, also been predicted

by first principles methods. We will here start by deriving the condition on

the confinement time required for energy balance or ignition in a fusion reactor.

The time derivative of the energy density in a plasma depends on incoming and

outgoing energy flows as:

@W

@t
¼ Pa þ Pin � Ps � Pn (1.1)

Where

Pa ¼ 1

4
n2Ea<sv>

Pn ¼ 3nT

tE

Ps ¼ 3:4 � 10�15ne
2Zeff

2
ffiffiffiffiffi
Te

p

ne ¼
X

njZj

Zeff ¼ 1

ne

X
i

nizi
2
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The outgoing and ingoing energy fluxes are (Fig. 1.1):

Put ¼ Pn þ Ps þ 3nT

tE

Pin ¼ 3nT

tE
þ Ps � Pa

Now, the electric power obtained from the energy outflux is ZtPut and the electric

power required for heating is Pin/Zh. Thus the condition for a driven reactor to

produce net energy is:

�t�hPut � Pin (1.2)

This leads to the condition:

ntE>
3n2Tð1� �t�hÞ

Pa þ �t�hPn � ð1� �t�hÞPs
(1.3)

Using the fusion cross section for the DT reaction in Fig. 1.2 we get the

condition:

ntET > 1021 m�3 s KeV (1.4)

where the product ntET is generally called the fusion product. Equation 1.4 is the

condition for power breakeven Lawson criterion. If we require that we do not have

to heat from outside we get the condition

ntET >51021m�3s KeV (1.5)

which is the condition for Ignition (Fig. 1.3).

Pin
 =Pv+Ps-Pα

has to
 be injecte

d to

maintain stea
dy sta

te

Pout =
Pn+

PS+
P v

Fig. 1.1 Outgoing

and ingoing powers

in a fusion reactor
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Since experiments show that (1.3) cannot be fulfilled when MHD ballooning

modes are unstable, i.e. when (3.30) is not fulfilled we also obtain the condition

tE>
Rq2

a

1021

B2=2m0
s (1.6)
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which now is a condition on tE alone. Here a is the minor radius, R is the major

radius, q is the safety factor (given by the ratio of toroidal angle to poloidal angle

variations as we move along a field line, Chap. 6) and B is the toroidal magnetic

field. As an example this limit takes the value 4 s for JET with B ¼ 3.5 T and

I ¼ 4.8 MA. The b limit (3.30) is due to MHD ballooning modes. When we also

include the stability limit due to kink modes (Chaps. 3 and 6) the maximum average

beta is given by the Troyon limit (1.8), [4].

1.3 Magnetohydrodynamic Stability

As mentioned above, MHD stability depends on both pressure and current driven

modes. A combination of such modes enter in the Troyon limit for the maximum

ratio of plasma and magnetic field pressures denoted b.

b ¼ nT
1
2m0

B2
(1.7)

The Troyon limit is:

<b> � g
I

aBf
(1.8)

Where < > indicates volume average, I is the toroidal current, B is the toroidal

magnetic field and g is a numerical factor between 2.8 and 4.4 which depends on

elongation and ellipticity. The Troyon limit, which concerns only ideal modes,

gives maximum average beta around 5%. However, long term confinement is

limited to average beta around 2.5% due to resistive modes. If we look at ballooning

and kink stability separately a usual condition for Ballooning modes is

b � a

Rq2

where a is the small radius, R is the large radius and q is a measure of the pinch

angle of the magnetic field as will be given in detail later. It decreases with current.

Kink stability is on the other hand given by

q � m

n

Where m is the poloidal (around the cross section) modenumber and n is the toroidal

modenumber. Thus we see that current destabilizes kink modes but stabilizes balloon-

ing modes. Thus the Troyon limit is a compromise between these conditions.
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Another constraint of MHD type is the Greenwald limit.

nG ¼ IMA=ðpa2Þ (1.9)

This is a limitation of the density where Ima is the plasma current in MA. This

limit applies only at the edge and seems to be related to resistivity and radiation.

1.4 Transport

When the plasma b is in the MHD stable regime, the confinement is on good grounds

believed to be limited by turbulent transport. This transport has in a ratherwide regime

for ohmically heated plasmas been observed to follow the so calledAlcator scaling [5].

tE � 3:8� 1021na2 (1.10)

This scaling has recently been recovered theoretically as due to the dissipative

trapped electron drift mode [6] or the microtearing mode [7]. These modes are both

driven by temperature gradients and the density dependence comes from a depen-

dence on resistivity. A further discussion of the modes is contained in Chap. 6.When

the density reaches high enough values the Alcator scaling is saturated and a region

where tE is almost independent of n enters. The energy transport in this region is

believed to be due to a drift wave driven by ion compressibility effects in combina-

tion with ion temperature gradients. This is theZi mode [8] ð� ¼ d ln T=d ln nÞAs it
turns out both the trapped electron mode and the Zi mode are in the experiments

typically not far from marginal stability [9] in the so called confinement region, of

the plasma. This is an indication that these modes actually govern the temperature

profiles giving rise to the so called profile resilience [10]. This is a typical feature
observed in tokamak plasmas where the temperature profiles are virtually indepen-

dent of the power deposition profile by neutral beam or radio frequency heating.

A close relation between modes driven by temperature gradients and energy trans-

port is also expected from thermodynamic points of view since a temperature

gradient means a deviation from thermodynamic equilibrium and since an energy

transport would tend to equilibrate the system. In connection with auxiliary

(non Ohmic) heating a degradation in confinement (L mode) has been observed.

In 1982, a new type of confinement mode, the H mode, was discovered on the

ASDEX tokamak in Garching [11]. In this regime the confinement time is a factor

2–3 larger than in Lmode. The confinement time does, however, degrade with power

also in H-mode. The transport research has, over the years, been conducted both by

empirical and first principles methods. Empirically one has derived scalings of

confinement time with various characteristic parameters of the experiments.

A very fruitful theoretical approach is to derive constraints on these scalings for

consistency with the basic physics description [12, 13] (see the next section).
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1.5 Scaling Laws for Confinement of Plasma

in Toroidal Systems

So far scaling laws have been used to predict the confinement in all new tokamaks.

The foundation for these is that it can be shown that the thermal conductivity in a

toroidal system has the general form:

w ¼ DB
r
a

� �a
f en; b; q; �;

Ln
a
;
a

R
; ::::

� �

Where r is the gyroradius, en ¼ 2Ln=LB; Ln and LB are length scales of density

and magnetic field according to the general definition Lj ¼ �j=ðdj=drÞ and DB ¼
T=ðeBÞ is the Bohm diffusivity. The coefficient a is a coefficient that characterizes

the transport. Thus while all parameters that are arguments of f are dimensionless,

independent of system size, the factor in front will determine the scaling with

system size and magnetic field. There are, in particular two types of transport that

have been observed and discussed in the literature. They are Bohm diffusion

corresponding to a ¼ 0 and Gyro-Bohm corresponding to a ¼ 1. In Bohm

diffusion, mainly observed near the edge, transport is due to rather global modes

that depend on the system size while Gyro – Bohm diffusion, observed in the core,

is due to local modes that depend more on the gyroradius. Gyro Bohm transport

gives a more optimistic extrapolation to larger systems with stronger magnetic

fields.

A widely used scaling of the confinement time in H mode is IPB98(y,1) [15]:

tE ¼ 0:0562 � Ip0:98n0:41BT
0:15R1:97e0:58k0:78P�0:69M0:19 (1.11)

1.6 The Standpoint of Fusion Research Today

As most of our readers know, ITER (The way in Latin) is now being built in

Cadarache, France. The design is essentially that of ITER Feat from 2001 but after

ITER was approved in 2006, a design review was conducted. ITER will be a tokamak

with 6m large radius and 2mhorizontalminor radiuswith elongation 1.6. Itsmagnetic

field will be 5.3 T and the fusion Q 10 or more depending on plasma current. With

Q ¼ 10 the fusion power will be around 500 MW. It has been constructed from

empirical scaling laws (like the IPB98(y,1)). However, dimensionless scalings from

the performance of today’s large tokamaks, like JET, JT60-U, DIII-D and Asdex

UpGrade have also been used. The ITER design is conservative, i.e. new

improvements that do not have sufficient reproducibility have not been included in
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the design. Examples are internal transport barriers, particle and momentum pinches

and the Hybrid mode.
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Chapter 2

Different Ways of Describing Plasma Dynamics

2.1 General Particle Description, Liouville

and Klimontovich Equations

In order to realize which approximations that are made in the descriptions of

plasmas that we generally use [1–25], it is instructive to start from the most general

description which includes all individual particles and their correlations in the six

dimensional phase space (r,v). I the absence of particle sources or sinks we must

have a continuity equation for the delta function density N:

NðX; tÞ ¼
XN
i¼1

ðX � XiðtÞÞ X ¼ ðr; vÞ (2.1)

@

@t
N þ

X
i

@

@ri
N
@ri
@t

� �
þ
X
i

@

@vi
N
@vi
@t

� �
¼ 0; (2.2)

Since we have included all particles this system conserves energy if we ignore

radiation.

Thus there must be a Hamiltonian for the system and we use the Hamilton

equations:

@ri
@t

¼ @H

@vi
;

@vi
@t

¼ � @H

@ri
(2.3a)

Leading to the form

@

@t
N þ

X
i

@ri
@t

@N

@ri
þ
X
i

@vi
@t

@N

@vi
¼ 0; (2.3b)
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Using acceleration due to the Lorenz force we then get

@

@t
þ~v � @

@~r
þ e

m
~E � @

@~v
þ Oð~v� e

_

jj Þ � @
@~v

� �
NðX; tÞ ¼ 0 (2.4)

Where we wrote eBi

m ¼ Oce
_

jj . This can easily be generalized to the electromagnetic

case. Equation 2.4 is written as a conservation along orbits in phase space. i.e.

DN

Dt
¼ 0

Where

D

Dt
¼ @

@t
þ~v � @

@~r
þ e

m
~E � @

@~v
þ Oð~v� e

_

jj Þ � @
@~v

Is the total operator in (2.4). Equation 2.4 is the Liouville or Klimontovich

equation. Since N(X,t), as given by (2.1), contains the simultaneous location of all

particles in phase space, it can be considered as a probability density in phase space.

It gives the probability of finding a particle in the location (r,v) given the simulta-

neous locations (ri,vi) of all the other particles. This is an enormous amount of

information which is usually not needed. This information can be reduced by

integrating over the positions of several other particles giving an hierarchy of

distribution functions (the BBGKY hierarchy) where the evolution of each distri-

bution function, giving the probability of the simultaneous distribution of n

particles, depends on that of n + 1 particles. Thus we need to close this hierarchy

in some way. This is usually done by expanding in the plasma parameter

g ¼ 1

nld
3

; ld ¼
ffiffiffiffiffiffiffiffiffiffi
T

4pen

r

Which is the inverse number of particles in a Debyesphere. When the plasma-

parameter tends to zero only collective interactions remain between the particles.

The effect is as if the particles were smeared out in phase space. When we study the

equation of the one particle distribution function and include effects of the two

particle distribution function (describing pair collisions) as expanded in g we get the

equation:

@

@t
þ~v � @

@~r
þ e

m
~E � @

@~v
þ Oð~v� e

_

jj Þ � @
@~v

� �
f ðr; v,t) ¼ @f

@t

� �
coll

(2.5)

12 2 Different Ways of Describing Plasma Dynamics



where f is the one particle distribution function and the right hand side approximates

close collisions (first order in g). Here various approximations like Boltzmanns or

the Fokker-Planck collision terms are used. If we can ignore close collisions

completely we have the Vlasov equation:

@

@t
þ~v � @

@~r
þ e

m
~E � @

@~v
þ Oð~v� e

_

jj Þ �
@

@~v

� �
f ðr; v,t) ¼ 0 (2.6)

2.2 Kinetic Theory as Generally Used by Plasma Physicists

The kinetic equations 2.5 and 2.6 are the equations usually used by plasma

physicists. Equation 2.6 is reversible like (2.4). This means that processes can go

back and forth. Equation 2.6 describes only collective motions. An example of this

is wave propagation. It is also able to describe temporary damping (in the linearized

case) of waves, so called Landau damping, due to resonances between particles

and waves. Since the plasma parameter g in typical laboratory plasmas is of the

order 10�8 collective phenomena usually dominate over phenomena related to

close collisions. We mentioned above the Fokker-Planck collision term for close

collisions. However, in a random phase situation also turbulent collisions can be

described by a Fokker-Planck equation. It can be written:

@

@t
þ v

@

@x

� �
f ðx; v; tÞ ¼ @

@v
bvþ Dv @

@v

� �
f ðx; v; tÞ (2.7)

The Fokker-Planck equation is fundamental and of interest in many contexts.

One aspect is that it, in its original form is Markovian (particles have forgotten

previous events) but recently has been generalized to the non-Markovian case [23].

For constant coefficients it has an exact analytical solution [1]. It is interesting to

note that already two waves leads to stochasticity of particles, giving quasilinear

transport [17]. However, the solution of the Fokker-Planck equation, including

friction, leads to a saturation of the mean square deviation of velocity after a time

of order 1/b. A solution is shown in Fig. 2.1. For the turbulent case (b and Dv

depending on intensities of the turbulent waves), the initial linear growth of

<(Dv)2> is according to quasilinear theory and would be predicted by the Chirikov

results. The saturation follows from Dupree-Weinstock theory [12, 13] which is a

strongly nonlinear renormalized theory. Thus in the flat region nonlinearities have

introduced correlations. This is analogous to correlations between three wave

packets introduced by nonlinearities in the Random Phase approximation [11].
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2.3 Gyrokinetic Theory

For low frequency ðo<<OcÞ we can average the kinetic equation over the

gyromotion. This leads to the gyrokinetic equation:

ðo�oD v jj 2; v?2
	 
� k jj v jj Þ f ð1Þk;o þ qfk;o

T
f 0

� �
e�iLk

¼ ðo� o�Þ q
T
ðfk;o � v jj A jj ÞJ0ðxkÞ � i

v?
k?

ðe_ jj � kÞ � AkJ0
0

� �
f 0 (2.8a)

We will return to the derivation of this equation, and its nonlinear extension in

Chap. 5.

However, we will mention that the magnetic drift is the sum of gradient B and

curvature drifts as:

vD ¼ vrB þ vk (2.8b)

where

vrB ¼ v?2

2Oc
ðe_ jj � r ln B) (2.8c)

vk ¼ v jj 2

Oc
ðe_ jj � kÞ (2.8d)

Mean square velocity deviation

<dv2>
x1.E12

4
3

2
1

1 2 3 t

Fig. 2.1 Mean square velocitydeviation <(Dv)2> as a function os time showing intitial

quasilinear linear growth and later saturation at t ~1/b
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and

k ¼ ðe_ jj � rÞe_ jj (2.8e)

The drifts defined by (2.8c) and (2.8d) are the gradB and curvature drifts respec-

tively and (2.8e) defines the curvature vector. We here use êk ¼ B=B as a space

dependent unity vector along the magnetic field. In a slab geometry with fixed

magnetic field we instead use the unity vector z
_
.

Since e
_

jj it is generally used in inhomogeneous systems we will need to solve

eigenvalue equations. Then kk and sometimes even the magnetic drift frequency

will become operators. Since then the eigenvalue problem depends on the particular

velocity we are considering, the total eigenvalue solution will have to be averaged

over velocity space. Thus we have an integral eigenvalue problem. The fact

that magnetic curvature is destabilizing on the outside and stabilizing on the inside

of a torus will show in a dependence of oD on the poloidal angle. The density

perturbation from (2.8a) will be obtained by dividing by the first factor and

integrating over velocity.

dni
ni

¼ � ef
Ti

1� 1

n0

ð1

0

o� o�i 1þ �iðmiv
2=2Ti � 3=2½ �

o� k jj v jj � oDi
v jj 2 þ v?2=2
	 


=vth2
J0ðxÞ2f 0d3v

2
4

3
5 (2.9)

We here took the electrostatic approximation just for the purpose of illustration.

The integral in (2.9) will have resonances corresponding to wave particle

resonances. However, as will be discussed later, in the nonlinear regime, nonlinear

frequency shifts may detune these resonances.

2.4 Fluid Theory as Obtained by Taking Moments

of the Vlasov Equation

An alternative to making the full kinetic calculation is to first derive fluid equations

by taking moments of (2.5) or (2.8a) (of course collisions can be added also to

[2.8]). Clearly, in general (2.9) contains less information than (2.5). However, if we

expand the fluid equations obtained from (2.5) in the low frequency limit the results

obtained from (2.5) and (2.8a) the results will be identical. The equations obtained

by taking moments of (2.5) are called fluid equations and the equations obtained

by taking moments of (2.8a) are called gyrofluid equations.
Fluid equations really describe a continuum where the local velocities have been

averaged over the particle distribution at every point. This leads to the presence of

fluid drifts that are not guiding centre drifts in an inhomogeneous plasma.

However, the macroscopic properties like the time derivative of the density are,

of course, the same whether we use fluid or gyrofluid equations. Another aspect
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which is not either a really dividing property is the fact that several authors have

added the linear kinetic resonances to gyrofluid equations. These are then called

Gyro-Landau Fluid resonances. However, this is just a question of habits of

different authors and, of course, there is nothing that prevents us from adding linear

kinetic resonances to fluid equations.

2.4.1 The Maxwell Equations

Since the ordinary fluid equations are what we will mainly use in this book we will

here start by including the Maxwells equations.

r� E ¼ � @B

@t
(2.10a)

r� B ¼ m0Jþ
@D

@t
m0 (2.10b)

r � B ¼ 0 (2.10c)

r � E ¼ r
e0

(2.10d)

Here (2.10a) is the induction law and (2.10b) is the ampere law. Here the last term is

the displacement current which will generally be neglected here since we consider

low frequencies where quasineutrality holds. Equation 2.10c is general and tells us

that there are no magnetic charges while (2.10d) will mostly be replaced by the

quasineutrality condition.

2.4.2 The Low Frequency Expansion

@v

@t
þ ðv � rÞv ¼ q

m
ðEþ v� BÞ � 1

mn
ðrPþr � pÞ þ~g ¼ 0 (2.11a)

o<<Oc )

v? ¼ vE þ vp þ v� þ~va þ~vg (211b)

vE ¼ 1

B
ðE� z

_Þ (2.11c)
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v� ¼ 1

qnB
ðz_ �rPÞ (2.11d)

vp ¼ 1

Oc

@

@t
þ v � r

� �
ðz_ � vÞ (2.11e)

A usual approximation is to substitute the E � B drift into (2.11e)

This gives:

vp ¼ 1

BOc

@

@t
þ vE � r

� �
E (2.11f)

~vg ¼ ~g�z
_

Oc
(2.11g)

However, this needs to be generalized when we include Finite Larmor Radius

(FLR) effects.

Due to the bending of field lines we also have an electromagnetic drift

vdB ¼ vjj
dB?
Bjj

(2.11h)

Here the diamagnetic drift is a pure fluid drift, i.e. it does not move particles

(Fig. 2.2).

Since the diamagnetic drift does not move particles it does not cause a density

perturbation i.e. (Fig. 2.2)

r � ðnv�Þ ¼ 0 (2.12)

Equation 2.12 is the lowest order consequence of the fact that the diamagnetic

drift does not move particles. In the momentum equation the stress tensor cancels

V*
Fig. 2.2 Diamagnetic drift
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convective diamagnetic effects. Such effects are cancelled also in the energy

equation as we will soon see.

The magnetic drift is not a fluid drift because the guiding centre drift is

compensated by the fluid effect of having more particles from one side (Fig 2.3)

2.4.3 The Energy Equation

The highest order moment equation that we are going to make use of is the energy

equation. It is most commonly written as an equation for the pressure variation as:

3

2

@

@t
þ vj � r

� �
Pj þ 5

2
Pjr � vj ¼ �r � qj þ

X
j¼i

Qji (2.13)

where qj is the heat flux and Qij is the heat transferred from species i to species j by

means of collisions. This energy exchange typically contains effects like Ohmic

heating and temperature equilibrium terms. It will be neglected in the following.

The heat flux q is for the collision dominated case (l>>lf) according to Braginskii:

qj ¼ 0:71njTjU jj � k jj r jj T � k?r?T þ q�i þ
3

2
nj
njTj

Ocj
ðe_ jj � UÞ (2.14)

where U is the relative velocity between species j and i. The thermal conductivities

for electrons are given by

k ejj ¼ 3:16
neTe

mene
k?e ¼ 4:66

neTene
meOce

2

and for ions by

k ijj ¼ 3:9
niTi

mini
k?i ¼ 2

niTini
miOci

2

and

q�j ¼
5

2

Pj

mjOcj

ðe jj xrTjÞ (2.15)

B x
V∇B

∇B

Fig. 2.3 Magnetic drift.

The particle drift is

compensated by the fact that

more particles contribute

from the side with weaker

magnetic field in such a way

that there is no fluid drift
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If we neglect the full right hand side of (2.14) we obtain the adiabatic equation of

state for three dimensional motion, i.e.

d

dt
Pn5=3

� �
¼ 0 (2.16)

which holds for processes that are so rapid that the heat flux does not have time to

develop. When div v ¼ 0 which is a rather common situation, the pressure pertur-

bation can be taken as due to convection in a background gradient. This will be

further discussed later.

Another usual form of the energy equation is that obtained after subtracting the

continuity equation. It may be written as:

3

2
nj

@

@t
þ vj � r

� �
Tj þ Pjr � vj ¼ �r � qj (2.17)

Equations 2.13 and 2.17 are fluid equations and the velocities thus contain the

diamagnetic drifts. As it turns out these drifts cancel in a way similar to that in the

momentum equation but now due to the heat flow terms, i.e.

3

2
nv� � rT � Tv� � rn ¼ 5

2
nv� � rT (2.18a)

3

2
nv� � rT � Tv� � rn ¼ �r � q� (2.18b)

Where o� ¼ k � v�. We can then write the energy equation in the form:

3

2
nj

@

@t
þ vgc

j
� r

� �
Tj�Tj

@nj
@t

þ vgc
j
� rnj

� �
¼ �r � qgcj (2.19)

Where vgc here is defined as the guiding centre part of the fluid velocity, i.e. without

the magnetic drift and qgcj is qj as defined in (2.14) but without the diamagnetic

heatflow, i.e. (2.15). As we will see later, in a curved magnetic field also (2.15) will

contain a guiding centre part. Equation 2.19 shows that the relevant convective

velocity in the energy equation is the guiding centre part of the fluid velocity.

The term coming from div v is

@nj
@t

þ vgcj � rnj ¼ �nr � vgcj �r � ðnv�jÞ

Where the last term is a pure magnetic drift effect. From this follows also that the

convective velocity in (2.16) does not contain the diamagnetic drift.
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Another useful equation of state may be obtained at low frequencies and

small collision rates for electrons. In this case the energy equation is dominated

by the div q term so that the lowest order equation of state is q ¼ 0 or k jj r jj T ¼ 0.

Now r jj ¼ ð1=BÞðB0 þ dBÞ � r so that, after linearization

B0 � rdT þ dB � rT0 ¼ 0 (2.20)

If the perpendicular perturbation in B is represented by a parallel vector potential

we obtain the equation of state:

dTj ¼ ��j
o�j
k jj

qjA jj (2.21)

where Zj ¼ d lnTj/d ln nj
Although the above expression for q has been derived by assuming domination

of collisions along Bðl>>lfÞ the equation of state (2.21) can also be used to

reproduce the electron density response in the limit o<<kjjvjj obtained from the

Vlasov equation. The reason for this is that it arises as a limiting case that does not

depend on the explicit form of kk.
With regard to the cancellation of the diamagnetic drifts this effect is very

important for vortex modes since typically the perturbed part of v* is of the same

order as vE. The application of (2.16) for such modes thus depends strongly on this

cancellation and the relevant convective velocity in d/dt is the guiding centre part of

the fluid velocity.

2.5 Gyrofluid Theory as Obtained by Taking Moments

of the Gyrokinetic Equation

We will now consider equations obtained by taking moments of (2.8a). These are in

principle equivalent to fluid equations. Finite Larmor Radius (FLR) effects are

included to all orders in gyrofluid equations already at taking the moments while

FLR effects in fluid equations have to be obtained by extensive work with convec-

tive diamagnetic and stress tensor effects. We refer the reader to Ref [25] in order to

see how FLR effects are included in gyrofluid theory. An important difference

between gyrofluid and fluid equations is that gyrofluid equations do not contain the

pressure term perpendicular to the magnetic field. This simplifies a lot although as

mentioned above, taking the moments of the gyrokinetic equation, involving

magnetic drifts and Bessel functions is more complicated in itself.

Averaging the magnetic drift (2.8b) over a Maxwellian velocity distribution

we get:

vD ¼ vrB þ vk (2.22a)
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where

vrB ¼ T

mOc
ðe_ jj � r ln B) (2.22b)

vk ¼ T

mOc
ðe_ jj � kÞ (2.22c)

The main particle drifts in gyrofluid theory are the ExB drift, vE, the polarization

drift, vp and the magnetic drift vD. Gyrofluid theory is a theory for the motion of

guiding centres so diamagnetic or stress tensor drifts are not present. While the

perpendicular motion is pretty much given by the drifts just mentioned (the Coriolis

drift is added in combination with a toroidal flow) the parallel motion (without

flow) is given by (2.23) [25]. This equation is interesting since the parallel motion

should be the same for guiding centres and ordinary fluid while fluid equations do

not have a convective magnetic drift.

@du jj
@t

þ 2vD � rdu jj ¼ �e
_

jj � rðdpþ enfÞ (2.23)

2.6 One Fluid Equations

A characteristic property of the low frequency expansion of the two fluid equations

(2.11a–h) is that the dominant guiding centre drift, the E � B drift, is the same for

electrons and ions. Thus in some sense we expect the plasma to move as one fluid.

Now we know that this can only be an approximation since the drift velocities due

to pressure gradients are different for electrons and ions. However, for the strong,

global, Magnetohydrodynamic instabilities, the instability is much faster than the

drift frequencies introduced by the density and temperature gradients. In this limit it

can be useful to introduce one fluid equations. These are derived by adding or

subtracting the equations for electrons and ions after multiplication by the respec-

tive masses. If course, this is a formal procedure that can be used to introduce also

the individual drift motions of ions and electrons. Then, however, the equations are

no longer one fluid equations. The basic one fluid equations are:

r
dv

dt
¼ J� B�rP (2.24a)

Eþ v� B ¼ � J (2.24b)

d

dt
ðPngÞ ¼ 0 (2.24c)
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Here we used the convective derivative d=dt ¼ @=@tþ v � grad, r is the mass

density, Z is the conductivity and g is the adiabaticity index usually taken as 5/3.

Equation 2.24a is the equation of motion, (2.24b) is usually called Ohms law and

(2.24c) is the equation of state.

Here (2.24a) retains both ion and electron inertia although electron inertia can

almost always be ignored. Ion inertia corresponds to including the ion polarization

drift in the two fluid equations. The one fluid equations have been used extensively

in order to determine MHD stability of various magnetic configurations. In particular

an energy principle methodwas introducedwhichwas used for pioneeringwork in the

beginning of plasma fusion research.

In the present book we will consider both the global MHD instabilities and

microinstabilities important for transport. Since two fluid, or kinetic descriptions,

will be needed for microinstabilities, it will thus be more convenient to use a two

fluid approach in order to obtain a unified description.

2.7 Finite Larmor Radius Effects in a Fluid Description

Up to now we have neglected diamagnetic contributions to the polarization drift

and the stress tensor drift. As it turns out these are related to finite Larmor radius

(FLR) effects. We shall show here how the lowest order FLR effects can be

obtained by a systematic inclusion of these terms.

We will initially for simplicity neglect temperature gradients and temperature

perturbations. This leads to the relation

r � v� ¼ T

qB
r � ðz_ �rn/n) ¼ 0 (2.25)

Since also r � v0 ¼ 0 we can to leading order use the incompressibility condition

r � v0 ¼ 0 when substituting drifts into vp and vp. We will also assume large mode

numbers, i.e. k>>k ¼ d ln n0=dx and dk/dx = 0.

From the stress tensor as given by Braginslii we can obtain effects of viscosity

related to friction between particles and collisionless gyroviscosity, which is a pure

FLR effect.

The relevant gyroviscous components are:

pxy ¼ pyx ¼ nT

2Oc

@vx
@x

� @vy
@y

� �
þ 1

4Oc

@qx
@x

� @qy
@y

� �
(2.26a)

pyy ¼ �pxx ¼ nT

2Oc

@vy
@x

þ @vx
@y

� �
þ 1

4Oc

@qx
@y

þ @qy
@x

� �
(2.26b)
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Here q is determined by the fluid truncation and will include higher order FLR

effects. We note, however, that the part of q* corresponding to a flux of perpendic-

ular energy is (compare Eq. (6.30))

q�
? ¼ 2

Pj

mjOcj

ðe jj xrT?Þ

We will start by including only density background gradient

r � ðpÞx ¼
@pxx
@x

þ @pxy
@y

¼ � nT

2Oc
Dvy � T

2Oc

@vy
@x

þ @vx
@y

� �
dn

dx

r � ðpÞy ¼
@pyx
@x

þ @pyy
@y

¼ nT

2Oc
Dvx þ T

2Oc

@vx
@x

� @vy
@y

� �
dn

dx

These equations can be written in a more compact form as:

r � ðpÞ ¼ nT

2Oc
z
_ � D?vþ kðrvy � z

_ � vxÞ
h i

We now obtain:

vp ¼ 1

enB

nT

2Oc
z
_ �r � p ¼ � 1

4
r2D?vþ 1

4
r2kðz_ � vy þrvxÞ

Here r is the gyroradius of a general species. Since we are usually interested in

substituting our drifts into the equation div j ¼ 0 we need to calculate expressions

of the form div(nv). We then find, including only linear terms in k.

r�ðnvpÞ ¼ vp � rn0 þ n0r � vp
¼ � 1

4
r2rn0 � D?v� 1

4
r2n0D?r � vþ 1

4
r2kn0D?vx

Now assuming div v ¼ 0 We obtain:

r � ðnvpÞ ¼ � 1

2
r2rn0 � Dv (2.27)

The polarization drift can be written in the form:

vp ¼ 1

Oc

@

@t
þ v � r

� �
ðz_ � vÞ

We start by observing that due to our large mode number approximation only

perturbed drifts will enter in the last v. Then in the linear approximation the v term

in the convective derivative can only be a background v. The only background v
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that we are interested in here is the diamagnetic drift. We will then start by

considering the contribution from this term to div(nvp). It is:

n

Oc
ðv� � rÞr � ðz_ � vÞ ¼ n

Oc
ðv� � rÞ @vx

@y
� @vy

@x

� �

¼ � 1

2
knr2

@

@y

@vx
@y

� @vy
@x

� �
(2.28a)

Now adding (2.27) and (2.28a) we find (with rn0 ¼ �kn0x
_
):

r � ðnvpÞ þ r � n

Oc
ðv� � rÞr � ðz_ � vÞ

� �

¼ 1

2
r2knDvx � 1

2
knr2

@

@y

@vx
@y

� @vy
@x

� �
¼ 1

2
r2kn

@

@x
r � v ¼ 0 (2.28b)

We thus find that convective diamagnetic contributions to div(nvp) are exactly
cancelled by the stress tensor contribution div(nvp).

This result can easily be understood from a physical point of view since the

diamagnetic drift is not a particle drift and cannot transfer information by convec-

tion. We now have the general result:

r � nðvp þ vpÞ

 � ¼ r � n

Oc

@

@t
ðz_ � vÞ

� �
(2.29)

It is also interesting to compare (2.29) with (2.12). In order to obtain a result

corresponding to (2.12) for the gyroviscous part of the stress tensor drift vp it is

necessary to add the convective diamagnetic parts of the polarization drift which

are of the same order in k2r2. We may thus consider (2.29) to express the same kind

of physics as (2.12) but for drifts that are first order in the FLR parameter k2r2 .
Since (2.12) is no longer true in the presence of curvature (compare 6.23) the same

is expected for (2.29).

The leading order linear contributions to (2.29) are now:

n

Oci

@

@t
r � ðz_ � vEÞ ¼ � 1

2
nri

2 @

@t
D
ef
Ti

n

Oci

@

@t
r � ðz_ � v�iÞ ¼ � 1

2
nri

2 @

@t
Ddn

Here only the perturbation in density contributes to the last term. We now have

to specialize further to a particular density response. For flute modes, which are of

particular interest in this context, the simplest leading order density perturbation is

the E � B convective, i.e.
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dn
n

¼ o�e
o

ef
Te

(2.30)

We then obtain in (o,k) space:

r � nðvp þ vpÞ

 � � � i

2
nk2ri

2ðtoþ o�eÞ ef
Te

¼ �ink2r2ðo� o�iÞ ef
Te

(2.31)

The result (2.31) is in agreement with kinetic theory (compare Chap. 4). The FLR

effect enters as a convective contribution to the polarization drift but is in fact due to

the time variation of the perturbed diamagnetic drift.

2.7.1 Effects of Temperature Gradients

The main source of modification in the presence of temperature gradients is a

compressibility of v*. Thus (2.24) is changed into:

r � v� ¼ en

qB
r � 1

n
ðz_ �rT)

� �
(2.32)

Since (2.25) contains n only in the combination P ¼ nT, (2.26) remains unchanged

if we change the definition of k into kp ¼ �ð1=P0ÞdP0=dx. We then have:

r�ðnvpÞ ¼ � 1

4
r2rn0 � D?v� 1

4
r2n0D?r � vþ 1

4
r2kn0D?vx

� 1

4
r2n0

rT

T
� D?v� 1

4mOc
2
D?r � q�? (2.33)

where the last term is due to the q parts of (2.25a,b). As it turns out it cancels the div

v• term. Thus (2.27) is changed into:

r � ðnvpÞ ¼ � 1

2
r2

1

T
rP0 � Dv (2.34)

Since, in the presence of temperature gradients, v• in the convective derivative of

the polarization drift contains the full pressure gradient we now find that (2.28b) is

unchanged (with our new definition of k) and so is the conclusion in italics

following it and (2.29). Since background pressure gradients in a natural way

lead to convective pressure perturbations we now must write:

n

Oci

@

@t
r � ðz_ � v�Þ ¼ � 1

2

ri
2

T

@

@t
DdP (2.35)
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For the convective pressure perturbation we have:

dPi

n
¼ �o�iT

o
ef
Ti

(2.36)

where o�iT is the diamagnetic drift frequency of ions due to the full background

pressure gradient. Accordingly, (2.31) becomes:

r � nðvp þ vpÞ

 � ¼ �ink2r2ðo� o�iTÞ ef

Te
(2.37)
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Chapter 3

Fluid Description for Low Frequency

Perturbations in an Inhomogeneous Plasma

3.1 Introduction

We will now start to apply our fluid equations discussed in Chap. 2 to some

fundamental modes in inhomogeneous plasmas. The literature in this field is

extensive [1–49]. We will here start by studying the effects of the inhomogeneities

themselves, without complicated geometry. We will also usually simplify our

description so as to disregard temperature perturbations and background gradients.

Such effects are very important but lead to considerably more complicated

descriptions and will be considered in Chap. 6.

The main reason for our interest in these modes is their potential importance for

anomalous transport and also for more macroscopic convective instabilities as, e.g.

the kink instability. Since we are here going to avoid too strong effects of geometry

and boundaries we will restrict consideration to the WKB case, i.e.

k?>>gradðln nÞ corresponding to large mode numbers in a torus. These modes

also have kk<<k? and if toroidal effects are included they require the solution of an

eigenvalue problem along the magnetic field. The effects of this eigenvalue prob-

lem will here only be hinted.

Our basic geometry will be that of a plasma slab with the density gradient in the

negative x direction and the magnetic field in the positive z direction (Fig. 3.1). In a

toroidal machine x corresponds to the radial coordinate, y to the poloidal coordinate

and z to the toroidal coordinate. A local mode will have an extent in the radial

direction which is much smaller than the typical scale of background variation.

The most rapid variation, however, often takes place in the poloidal, y direction and

when ky>>kx the equations can be conveniently simplified by neglecting kx as will

sometimes be done in the following. This also has the advantage that we avoid the

radial eigenvalue problem. Details of eigenvalue problems will be postponed to

Chap. 6 (Fig. 3.2).
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As mentioned in Chap. 2, electron motion along the magnetic field lines has a

stabilizing influence on the modes we consider. For small k║ the electron motion

along the field lines is less efficient for cancelling space charge. This is the reason

for our interest in modes with, small k║, i.e. we assume:

k jj <<k?

In this case the main variation of the mode is in the perpendicular plane.

The parallel electron motion is quite different for different modes that we will

consider in the following. We may here separate two classes. The first class is that

of drift waves for which Ek 6¼ 0. The second class is the Magnetohydrodynamic

(MHD) type modes for which Ek � 0. In the first case the electrons are essentially

free to cancel space charge by moving along the magnetic field while in the second

case the parallel electron motion is strongly impeded either by a very small kk or by
electromagnetic induction. As will be shown in Exercise 8 also the effects

of magnetic induction on Ek increase for small k║ but the direction of propagation

(sign of o) also strongly influences E║ which has a maximum close to the electron

diamagnetic drift frequency.

Y

X

Z

∇n0

B0

Fig. 3.1 Slab picture of

a magnetized plasma

with a density gradient

y

x

z

Fig. 3.2 A perturbation

following a field line in

a torus
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As shown in Chap. 2 a vorticity O ¼ r�~vE ¼ ð1=B0ÞD? is associated with the

perpendicular motion of all these modes. This means that the fluid motion forms

rotating whirls. For periodic variation in x and y the velocity typically has a structure

as shown in Fig. 3.3 where we have shown one wavelength in the y direction.

The figure shows the characteristic “smoke ring” structure caused by the opposite

senses of rotation of theE � B drift around potential minima andmaxima. The actual

fluid velocity is that shown in the figure while the structure as such moves with the

phase velocity of the wave. It is rather obvious from this picture that vortex modes are

strong potential candidates for causing anomalous transport, i.e. the fluid motion

(convection) tends to mix regions of higher and lower density. As is intuitively

clear, however, if the perturbation is purely harmonic in time and space also the

fluidmotionwill be completely harmonic and no net transport takes place.When there

is a net damping or growth, however, this coherent picture is modified and a transport

takes place. This will be shown in the end of this chapter as quasilinear diffusion.

Of particular interest in connection with convection is the convective cell mode. It has

zero real part of the eigenfrequency and thus corresponds to a stationary convection in

Fig. 3.3. In this situation a very small irreversible effect in terms of linear damping or

growth or spatial “phase mixing” is enough to cause a substantial transport.

3.2 Elementary Picture of Drift Waves

Drift waves are basically electrostatic modes introduced by inhomogeneities in

density and as we will show in Chap. 6 in temperature. However, electromagnetic

effects on drift waves are often needed and introducing electromagnetic effects will

make it possible to make the transition between drift type and MHD type modes.

A characteristic feature of drift waves is that their parallel phase velocity is between

the ion and electron thermal velocities:

vthi � o
k jj

<<vthe (3.1)

Bx

φ min

y

x

φ max

Fig. 3.3 Convective cells
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We now specify the background density gradient to be in the negative x direction

while the background magnetic field is in the positive z direction.

The zero order diamagnetic drift v•e of the electrons due to the background

density gradient will then be in the positive y direction and takes the value:

v� ¼ kTe

eB0

where k ¼ �ð1=n0Þdn0=dx.
In the analysis of low frequency waves, the magnitude of kk is very significant.

We may write the parallel equation of motion of electrons as

me

@v ejj
@t

þ ðve � rÞv ejj

� �
¼ e

@f
@z

� 1

ne

@pe
@z

(3.2)

The left hand side of (3.2) is due to electron inertia. It enters only under extreme

conditions such as e.g. for the collisionless skindepth or collisionless tearing modes.

For drift waves it is neglected due to the electron part of (3.1). For a slow process

we can also use an isothermal equation of state. Then (3.2) leads to:

e
@f
@z

¼ Te

ne

@ne
@z

Which can be integrated to:

ne

n0
¼ eef=Te (3.3a)

Equation 3.3a is the Boltzmann distribution which is usually a good approxima-

tion if kk is not too small. Writing ne ¼ n0 þ dne and expanding the exponential for
e’=Te we find (Figs. 3.4, 3.5):

dne
n0

¼ ef
Te

(3.3b)

x

∇n0

B0

v*e

y

z

Fig. 3.4 Elementary drift

wave geometry
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This result is in agreement with our previous estimate for the validity of

quasineutrality. This field will cause an E � B drift vEx in the x direction as

shown in Fig. 3.6. This drift will, due to the background density gradient cause a

change of density in such a way that the perturbation moves in the positive y

direction. Now ignoring magnetic curvature, r � ðnv�Þ ¼ 0, and r � ðvEÞ ¼ 0, we

obtain from the linearized continuity equation for ions by including only vE,

@ni
@t

þ vEx
dn0

dx
¼ 0 (3.4)

y

E

E

X

VE

VE

dn

∇n0

Fig. 3.5 Mechanism of

drift wave propagation

Fig. 3.6 Convective density

perturbation
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In (3.4) we dropped the parallel motion of the ions. This is permitted for small

enough kk since then the first inequality in (3.1) becomes strong. Equation 3.4

describes the density variation due to convection mentioned above. It corresponds

to an incompressible motion Introducing

vEx ¼ � 1

B0

@f
@y

We now obtain from (3.4)

1

n0

@ni
@t

þ 1

B0

@f
@y

1

n0

dn0
dx

¼ 0

We now use quasineutrality

dni
ni

¼ dne
ne

(3.5)

Then using also (3.3b) we arrive at

@f
@t

þ v�e
@f
@y

¼ 0 (3.6a)

We now assume a perturbations varying sinusoidally in time and along y.

We then obtain the simpliest possible dispersion relation for drift waves:

o ¼ o�e (3.6b)

where we introduced the electron diamagnetic drift frequency o�e ¼ kyv�e.

3.2.1 Effects of Finite Ion Inertia

We are now interested in extending the result of the previous section. As it turns

out, effects of ion inertia, which cause the drift motion of electrons and ions to be

different, are also associated with compressibility. First we note that the Boltzmann

distribution for the electron density (3.3b) is also obtained for ion acoustic waves

propagating along B0 and corresponds to an expansion of the kinetic integral for the

density perturbation in the upper limit of (3.1).

If we assume the ion temperature to be very small, so that the region (3.1) usually

considered for drift waves is wide, we may drop the ion pressure term and obtain:

v ijj ¼ k jj
o

ef
mi

(3.7)
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Including now also the ion polarisation drift for the perpendicular motion and

still assuming kx ¼ 0 we have

v?i ¼ iky
f
B0

x
_ � ky

i

B0

@

@t

f
Oci

y
_ þ v�i (3.8)

Introducing now (3.8) into the ion continuity equation assuming ky>>k using

(2.12) and vE ¼ 0 we find

dni
n0

¼ o�e
o

� ky
2Te

miOci
2
þ Ti

mi

k jj 2

o2

 !
ef
Te

(3.9)

Combining now (3.9) with (3.3), using the continuity equation we obtain the

dispersion relation:

o2 1þ ky
2rs

2
� �� oo�e � k jj 2cs2 ¼ 0 (3.10)

where we introduced

rs ¼
cs
Oci

(3.11)

and cs ¼ Te=mi. The term kyrs originates from the ion polarisation drift and

represents the influence of ion inertia. rs is the ion Larmor radius at the electron

temperature. The dispersion relation (3.10) is represented in Fig. 3.7.

Thus we have seen that the polarization drift enters in the same way as an FLR

effect. Because of this it is convenient to rewrite the expression (2.11f) for the

polarization drift in the electrostatic case as:

vp ¼ �rs
2 @

@t
þ v � r

� �
r ef

Te
(3.12)

From Fig. 3.7 we realize that for large kk the drift wave turns into the ion acoustic

wave. Clarly ion parallel motion may be neglected when kk cs<<o�e if

ðkyrsÞ2<<1.

For comparison we note that for typical JET parameters we have cs � 106 m=s
and v�e � 103 m=s, i.e. we have to require kk<<ky 10

�3 in order to drop the

parallel ion motion. For the Boltzmann distribution of electrons to be valid

we require kkvthe>>ky v�e which means kk>>0:25 ky 10�4 for JET. The interest

in such small k║ is mainly due to the fact that instability is likely to occur in this

region.

3.2 Elementary Picture of Drift Waves 33

http://dx.doi.org/10.1007/978-1-4614-3743-7-2
http://dx.doi.org/10.1007/978-1-4614-3743-7-2


3.2.2 Drift Instability

As long as the electrons are free to move along B0 to cancel space charge, the

Boltzmann relation (3.3) is fulfilled and the drift wave is stable. There are, however,

several effects that may limit the mobility of the electrons so as to modify (3.3).

These effects are generally more important for small kk and may be, e.g. electron

ion collisions, Landau damping, electron inertia or inductance.

If the electrons are not able to move completely freely there will appear a phase

shift, corresponding to a time lag between density and potential in (3.3). We then

modify (3.3b) as

dne
n0

¼ ef
Te

ð1� idÞ (3.13)

By replacing (3.3b) with (3.13) in the derivation of (3.6) we obtain the result:

o ¼ o�e
ð1� idÞ � o�eð1þ idÞ (3.14)

if we assume d << 1. We note that due to the time variation e�iot, d > 0 means

that the potential lags behind the density. This situation corresponds to an

instability.

K11c5

–K11c5

Ky

ωFig. 3.7 Two dimensional

dispersion diagram for drift

waves
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3.2.3 Excitation by Electron-Ion Collisions

As an example we will now consider the collisional drift instability. We assume the

ordering

o<<nei<<Oci (3.15)

where nei is the electron-ion collision frequency. In the regime (3.15) we may for

small kk include the effect of electron ion collisions on the electron parallel motion

but continue to drop electron inertia. Dropping the parallel ion motion we then find:

v ejj � i
k jj Te

neime

ef
Te

� dne
n0

� �
(3.16)

Taking the limit kx ¼ 0 we have:

v?e ¼ �iky
f
B
x
_ þ v�e

We then get from the electron continuity equation:

� io
dne
n0

þ iky
kTe

eB0

e’

Te
� k jj 2Te

neime

e’

Te
� dne

n0

� �
¼ 0

Which reduces to:

dne
n0

¼ ef
Te

o�e þ ik jj 2D jj
oþ ik jj 2D jj

(3.17)

where

D jj ¼
Te

menei
(3.18)

is the parallel diffusion coefficient.

For the orderings already introduced it is reasonable to assume that k║
2D║ >> o

Thus expanding (3.17) we obtain:

dne
n0

¼ ef
Te

1� i
menei
k jj 2Te

ðo�e � oÞ
" #

(3.19)
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By identifying d in (3.14) with the corresponding expression in (3.19) we find

from (3.14) that we have an instability if o < o•e. We find:

Imo ¼ menei
k jj 2Te

o�eðo�e � oÞ (3.20)

Since, however, we have Re o<o�e, from (3.6b) we realize that we need some

additional effect in order to have an instability. Since the ions are not so strongly

influenced by collisions with electrons we use (3.10) with kk ¼ 0 for the ion density

perturbation. Combining this equation with (3.19) we find the dispersion relation:

o 1þ ky
2rs

2
� � ¼ o�e þ nei

me

k jj 2Te

o�eðo�e � oÞ ¼ 0 (3.21)

Writing the solution as o ¼ or + ig where g<<or we find

or � o�e 1� ky
2rs

2
� �

(3.22a)

g ¼ nei
me

k jj 2Te

o�e2ky2rs
2 (3.22b)

We see from (3.22b) that the ion inertia, kyrs, is essential for an instability to

develop. We may explain the instability in the way that the ion inertia causes the

particle drifts of electrons and ions in the perpendicular plane to become different.

This leads to charge separation effects if we have a density perturbation and due to

the electron-ion collision the electrons are not able to instantly neutralize the charge

separation by moving along the magnetic field.

3.3 MHD Type Modes

As mentioned in the beginning of this chapter there are two classes of low frequency

modes, drift modes and MHD type modes. While the drift modes are characterized

by essentially free electron motion along the field lines leading to the Boltzmann

distribution (3.3b) or minor modifications thereof, the MHD type modes are modes

where the parallel electric field to lowest order vanishes. This can in the electrostatic

case be accomplished by a very small kk ðo>>kk vtheÞ and in the electromagnetic

case by a cancellation between electrostatic and induction parts of E. In both cases

the parallel electron motion is strongly impeded and as a consequence new types of

instabilities may arise. These unstable modes may be divided into two classes:

pressure driven modes, here represented by interchange and ballooning modes,

and current driven modes, here represented by kink modes. The transition between

MHD and drift type modes in a simple case is shown by Exercise 3.8.
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3.3.1 Alfvén Waves

As an example of a simple two fluid derivation of an MHDmode we will now show

the derivation of Alfve’n waves. This is the most fundamental MHD type eigen-

mode and Alfve’n waves were originally called Electromagnetic hydrodynamic

waves. We start from the quasineutrality condition

r � j ¼ 0 (3.23a)

Since r � ðnv�Þ ¼ 0 and the E � B drifts are equal, only the polarisation drift

contributes to the perpendicular current. Thus (3.23a) becomes:

r � ðnvpÞ ¼ �r � j jj ¼
1

m0
DA jj (3.23b)

Where we used

dB ¼ rxðA jj z
_Þ

Now the MHD constraint

E jj ¼ 0 (3.24a)

or

A jj ¼
1

o
f (3.24b)

can be used to express (3.23b) in only the potential. We then get the dispersion

relation for Alfve’n waves:

o2 ¼ k jj 2vA2 (3.25)

where vA ¼ B0ffiffiffiffiffiffiffiffiffiffiffi
m0nmi

p is the Alfve’n velocity.

This derivation is probably simpler than with the one fluid equations.

3.3.2 Interchange Modes

One of the most dangerous modes in fusion machines is the Interchange mode,

sometimes also called flute mode, which tends to interchange “flux tubes” of

different pressure, thus causing a convective transport. (Compare also the section

“Interchange modes analyzed by the energy principle method”). Interchange modes

are unstable when the magnetic curvature generates a centrifugal force, due to

thermal motion along the field lines, which is directed in the opposite direction of
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the pressure gradient. As a simple example we consider a z-pinch with only poloidal

magnetic field. The figure shows fluid elements that would tend to change places.

A simple fluid analogue of this instability is the Rayleigh-Taylor instability when a

heavy fluid is resting on a light fluid. The density gradient here corresponds to the

pressure gradient for the interchange mode while the gravity represents the centrif-

ugal force (Figs. 3.8, 3.9).

The gravity may thus be used to simulate a curvature and this is the main reason

why we included it in Eq. (2.11a). We will here neglect finite Larmor radius effects

that would correspond to diamagnetic drift contributions to the polarization drift

and stress tensor drifts. We will also make the approximation kk ¼ 0 (flute mode).

This is the most unstable mode since a mode with kk 6¼ 0 would tend to bend the

frozen in magnetic field lines, thus increasing the magnetic energy. We may obtain

a dispersion relation by substituting the drifts into the low frequency condition:

r � j ¼ 0

In the present case this gives

r � enðvpi þ vgi � vgeÞ
	 
 ¼ 0

centrifugal force

equivalent to gravity

cross section

B

Vth Fc

Fig. 3.8 Interchange of fluid elements in a cylinder

n1

g

n1>n2

n2

Fig. 3.9 Rayleigh-Taylor instability
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A linearization, using again k?<<k, leads to:

n0r � � 1

B0Oc

@

@t
þ vgi � r

� �
r?f

� �
þ ðvgi � vgeÞ � rdn ¼ 0 (3.26)

The density perturbation can here be obtained from the electron continuity

equation. Note that this is a special case! We consider vge to be small. We may

then ignore it in the continuity equation:

@dne
@t

þ vE � rn0 ¼ 0

Or

dne
n0

¼ o�e
o

ef
Te

(3.27a)

Substituting (3.25) into (3.24) we obtain the dispersion relation:

oðo� kyvgiÞ ¼ �k gi þ
me

mi
ge

� �
ky

2

k?2
(3.27b)

where k ¼ �d lnðnÞ=dx. We note here that if the gravity is replaced by a real

curvature ~k ¼ �dln(P)=dx. We here easily recognize the part o2 ¼ �k g

corresponding to the Rayleigh-Taylor instability. When gj is due to curvature we

have gi ¼ 2 Ti=mi Rc where Rc is the radius of curvature. Then the dispersion

relation may be rewritten as

oðo� kyvgiÞ ¼ � 2kðTe þ TiÞ
miRc

ky
2

k?2
(3.28)

The drift kyvgi here is stabilizing. This means that modes with small ky are the

most unstable modes. As it turns out the lowest order FLR correction has the same

influence but is typically larger than the drift term kept here. In the fluid description

this instability is due to the density gradient in a very simple way, i.e. the fluid

motion happens in the direction of the gradient. In a plasma the convection is also in

the direction of the pressure gradient but the actual physical process is more

complicated since in a plasma forces in the perpendicular plane primarily give

rise to motion perpendicular to the force. The source of the instability is the

difference in gravity (curvature) drifts of electrons and ions which in combination

with a density perturbation leads to a charge separation. When k║ ¼0 the electrons

cannot short circuit this charge separation which leads to an electric field that is

perpendicular to the pressure gradient and the magnetic field. When the pressure

gradient and the gravity have opposite directions this electric field causes an E � B

drift which enhances the original perturbation (Fig. 3.10).

The real frequency caused by kyvgi is stabilizing since it changes the polarity of

the field. A gravity due to field curvature is shown in Fig. 3.11.
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3.3.3 The Convective Cell Mode

If we let k ! 0 in (3.27) the two branches become uncoupled and we have one

mode with o ¼ 0 and one with o ¼ kyvgi {The mode o ¼ 0 corresponds to a

stationary convection (compare Fig. 3.3) and is called the convective cell mode}.

When finite ion Larmor radius effects are included, the ion diamagnetic drift

frequency is added to vgi. This means that we have two different modes also if

we let Rc ! 1. In a real system with curvature and density gradient the convective

cell thus turns into the interchange mode. Since it has no variation along the field

lines it will experience the average curvature along the field line. This curvature is

usually favourable in a tokamak leading to a real eigenfrequency. This will tend to

reduce the transport (compare Chap. 9).

3.3.4 Electromagnetic Interchange Modes

In a physical system with magnetic shear (see Sect. 6.2) the approximation k║ ¼ 0

cannot be exactly fulfilled since the mode has a finite extension in space and since

the magnetic field direction is space dependent. Another situation may be when the

average curvature is stabilizing but there are local regions along a field line where

the curvature is destabilizing. In order to see qualitatively what the consequences of

a finite k║ will be, we shall here simply include a finite kk into our simple slab

geometry. In this case our previous description for the perpendicular motion

∇n0 gX

E

E y

Vg

Fig. 3.10 The mechanism

of interchange instability

g
Vth

B0

Fig. 3.11 Gravity

representing a centrifugal

force
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continues to hold. For the parallel direction we may neglect ion motion assuming

o>>kk cs compare (3.11). The parallel electron motion can in the simplest case be

described in the same way as for shear Alfve’n waves, i.e. we combine the Ampe’re

law along the field lines (2.18) with the perfect conductivity condition (2.19). Then

using (2.17) in the form

r � j? ¼ �r � j jj
we arrive at the dispersion relation

oðo� kyvgiÞ � k jj 2vA2 ¼ � 2kðTe þ TiÞ
miRc

ky
2

k?2
(3.29)

The new effect here is the bending of the field lines, represented by the Alfv’en

frequency. This effect is stabilizing since the line bending increases the magnetic

energy as (Fig 3.12). For small ky the dispersion relation (3.28) leads to a pressure

balance condition for stability. In a torus with periodic curvature and unfavourable

curvature regions of length Lc � 2pqRc. where q is the safety factor (compare the

chapter on toroidal mode structure) we may to order of magnitude take k║ � 1/qR

where R is the large radius and k � 1/a where a is the small radius. The pressure

balance condition for stability then takes the simple form

b � bc ¼
a

q2R
(3.30)

where b ¼ 2m0n ðTi þ TeÞ=B2 is the ratio of plasma and magnetic field pressure

(or energy density). This b limit is typical of ballooning modes in toroidal

machines. These modes are interchange modes localized in regions of unfavourable

curvature and are one of the main limiting instabilities for the achievable b in

tokamaks (Fig. 3.13).

B0

B

V

Fig. 3.12 The magnetic

energy increases when a

field line bends. This effect

is stabilizing
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Another source of finite kjj is the radial extent of a mode in a system with shear.

We may here think of the previous slab quantities as averaged over the mode

profile. The averaged curvature may be written:

k
Rc

� �
�c � d

R

1

P

dP

dr

where d is a factor due to averaging and we introduced the radial coordinate

r instead of x.

The averaging of kjj leads to (compare Chap. 6).

<k jj > � D0s=qR

where s ¼ dlnq/dlnr and r is the radial coordinate. We then obtain the stability

condition:

ðD0sÞ2>� dbq2R
d ln p

dr
(3.31a)

As it turns out (a discussion of this result will be given later) (Fig. 3.13).

D0 � 1

2

For a z-pinch where the magnetic field is purely poloidal the problem becomes

singular since q ¼ 0. If we, however, treat q as small but finitewe obtain d ¼ �r=Rq2

and the q dependence disappears. We then obtain the Suydam criterion [2]

1

4
s2 þ r

db
dr

>0 (3.31b)

g

g

Fig. 3.13 Field line curvature

42 3 Fluid Description for Low Frequency Perturbations in an Inhomogeneous Plasma

http://dx.doi.org/10.1007/978-1-4614-3743-7_6


For a torus with both poloidal and toroidal magnetic field it can be shown that

d ¼ (r/R)(1 � 1/q2) and the stability condition turns into the Mercier criterion [2]

(Fig. 3.14).

1

4
s2 þ r

db
dr

ð1� q2Þ>0 (3.32)

This means that the average curvature is stabilizing for q > 1 and instability is

only possible for q < 1. The Mercier criterion holds only for modes that are highly

elongated along the field lines and experience only the average curvature. When

localized ballooning modes are taken into account the possibility for instability

increases strongly and a rather typical b limit is bc/2.

3.3.5 Kink Modes

One of the most dangerous instabilities in current carrying cylindrical and toroidal

plasmas is the kink instability. It corresponds to a bending of the whole system

(global mode) so that the change in magnetic pressure tends to increase the

perturbation (see Fig. 3.15).

Although this mode is most easily visualized for global perturbations in combi-

nation with sharp current boundaries, the only necessary ingredient is a background

current gradient perpendicular to the magnetic field.

We will here include the kink mode in our previous analysis by including a

background current with a gradient in the x (radial direction). If we neglect the

associated frequency shift ðo>>kjjvjjÞ the only new terms we need to include are the

vdB drifts in (2.11h) for electrons and ions. This leads to a new contribution to div J┴ as

n0r � eðniv j0ij � nev 0ejj Þ dB?
B0

� �
¼ dB?

B0

� rJ 0jj (3.33)

where J║0 is the background current. Keeping also our previous driving pressure

term we may write the equation div j ¼ 0 as

Fig. 3.14 Ballooning mode

perturbations on a torus
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� 1

m0
z
_ � rD?A jj ¼ �r? � envpi þ enðvgi � vgeÞ þ J 0jj

dB?
B0

� �
(3.34)

where A║ ¼ �(i/o)ź•gradj according to the condition that Ejj ¼ 0. Proceeding as

before but now neglecting for simplicity also the frequency shift due to the ion

gravity drift we obtain the dispersion relation for k?>> grad ln nj j:

o2 ¼ k jj 2vA2 � 2kðTe þ TiÞ
miRc

ky
2

k?2
þ B0

n0mi

k jj ky
k?

dJ 0jj
dx

(3.35)

Since div dB┴ ¼ 0 the div• has to operate on the background quantity J║0 in the

last term of (3.35).

This has the consequence that the kink term usually is small for local modes

since also k║ is small. As it turns out, however, the only new term that arises if we

relax the condition k?>> grad ln nj j; grad ln Jjj0


 

 is the density gradient contri-

bution from the polarization drift. This effect is usually neglected for global modes

so that (3.35) can in fact be written as an eigenvalue equation for such modes.

The kink term may also become important locally if the background current

gradient is locally large. With grad(ln n0Þ � �1=a where a is the small radius,

the b limit (3.29) is modified to:

b � a

q2R
þ m0a
B0qk?

dJ 0jj
dx

(3.36)

where we used kjj � 1=qR. The condition (3.36) shows that the kink term decreases

the b limit (destabilizing) if d Jjj0=dx <0 which is the typical case. If we write

d Jjj0=dx ¼ � kben vjj0 we obtain the b limit in the form:

b � a

q2R
� Ociv 0jj

k?vA2
kba (3.37)

For the kink term to change the b limit appreciably we need kba ¼ 5 for typical

tokamak parameters if k┴vA � Oci.

J

Fig. 3.15 Kink perturbation
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3.3.6 Stabilization of Electrostatic Interchange Modes
by Parallel Electron Motion

In the preceding section we have found that interchange modes may be unstable for

zero kjj or when kg >kjj2 vA
2. In the opposite case when kjjvA becomes large the

mode becomes electrostatic. (This will come out of the kinetic treatment in Chap. 4

but can also easily be seen from the fluid equations as shown by exercise 8).

In the electrostatic limit when o<<kjjvthe the electrons are Boltzmann

distributed, i.e.

dne
n0

¼ ef
Te

(3.38)

This relation comes out of the parallel equation of motion and is not influenced

by gravitation. For the ions we may use (3.29) where the gravitation introduces

a doppler shift, i.e. o ! o� kyvgi and where we neglect kjj2cs2.

dni
n0

¼ o�e
o� kyvgi

� ky
2rs

2

� �
ef
Te

(3.39)

Then using quasineutrality we obtain the dispersion relation

o ¼ o�e
oþ ky

2rs2
� kyvgi (3.40)

This is just the dispersion relation for an ordinary drift wavewhere a frequency shift

kyvgi has been added. Thus there is no instability. The reason for this is that the

electrons are free to move along the field lines to cancel space charge. In the

electromagnetic case the electron motion along the field lines is impeded bymagnetic

induction, thus providing the necessary conditions for instability.

3.3.7 FLR Stabilization of Interchange Modes

As it turns out the lowest order FLR effect is often significant and introduces

qualitatively new effects while the higher order effects usually only modify previ-

ously known results. We shall here demonstrate the stabilizing influence of FLR

effects on interchange modes. This is now very easily done by just replacing div

(nvpi) with (see Chap. 2)

r � nðvp þ vpÞ
	 
 ¼ �ink2r2ðo� o�iTÞ ef

Te
(2.37)
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This result can be verified by using the stress tensor vpi. This means that the

lowest order FLR term can be obtained by just shifting o by o•i in the ion

polarization drift. This effect is, according to conventional estimates, larger than

the shift due to the gravity drift in (3.26) due to the following estimate. When vgi is

due to curvature and gradB drifts it may be written:

vgi


 

 ¼ 2Ti

mRcOci
¼ ri

Rc
vthi (3.41)

The diamagnetic drift may be written:

v�ij j ¼ Tik
mRcOci

� 1

2
krivthi (3.42)

Now Rc is typically approximated by the large radius R in a torus and k is on the

average over the profile 1/a where a is the small radius.We thus arrive at the estimate

vgi

v�i










 � 2

a

R
(3.43)

When a << R we may thus consider the gravity drift to be small (this is no longer

fulfilled for the newest generation of large tokamaks). As will be pointed out later,

k is typically much smaller than 1/a in the interior of tokamaks so the magnetic drift

should usually not be considered to be small. However, this leads to major

complications for using fluid models and particular advanced closures have to be

used. Thus for the time being we will consider the magnetic drift to be small.

The dispersion relation then takes the form (Fig. 3.16):

oðo� o�iTÞ � k jj 2vA2 ¼ � 2kðTe þ TiÞ
miRc

ky
2

k?2
(3.44)

VEx

VEx

Vxi

vno

g

Fig. 3.16 The ion diamagnetic drift causes a propagation which changes the polarity of the charge

separation
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With the solution

o ¼ 1

2
o�iT 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
o�iT þ k jj 2vA2 � 2kðTe þ TiÞ

miR

ky
2

k?2

s
(3.45)

The stabilizing FLR term changes the b limit as given by (3.29) to

b � a

q2R
þ 1

4
o�iT2aR=vA2 (3.46)

This is an important effect for modes with large ky. In a tokamak there are,

however, unstable modes with so small ky that FLR effects can be neglected within

the present description. When curvature effects that are higher order in a/R and

geometrical effects in D-shaped tokamaks are included, however, it appears that

finite Larmor radius effects have to be included as well. In addition to the stabilizing

effect we also notice from (3.45) that the mode now has a finite real part of the

eigenfrequency also at marginal stability and in the unstable case. This real part of

o corresponds to propagation in the y direction and is in fact the reason also for the

stabilizing effect.

The interchange of fluid elements by convection, which is the fundamental

instability we are considering, is a fluid motion and the fluid only moves in the x

direction (if we neglect kx). The perturbation, however, propagates in the y direc-

tion, causing a change in the direction of convection after a time t ¼ 2 p/o•iT. We

then realize that if this time is short as compared to the time needed for the

instability to develop it will become stabilized. The physical interpretation of

the FLR effect is a modification of the E � B drift due to the inhomogeneity of E

along the gyro orbit. This effect is usually only important for ions and leads to a

charge separation in the presence of a density gradient. This charge separation will

have different sign in region where vE is directed in the positive or negative x

direction and leads to a propagation of the perturbation in the y direction.

3.3.8 Kinetic Alfve’n Waves

Inorder to exemplify themodificationofMHDtypemodes in the presenceof afiniteE║

we will now study a mode which is of a particular interest for the heating of fusion

plasmas, the kinetic Alfve’n wave. For simplicity we will here take the limit of a

homogeneous plasma and assume that Ti<<Te. We will start by generalizing the

Boltzmann distribution (3.3) to the electromagnetic case. This is straightforward by

just adding (e=m)dAjj=dt to the right-hand side of (3.2). This leads to

dne
n0

¼ ef
Te

� o
k jj

eA jj
Te

(3.47)
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In the case of a homogeneous plasma we may completely neglect perpendicular

electron motion. The electron continuity equation may then be written

@ne
@t

� 1

e
r � j ejj ¼ 0 (3.48a)

Now, neglecting parallel ion motion ðo>>kjjcsÞ we may write jjje � jjj and
make use of (3.23b). This leads to

dne
n

¼ � k jj k?2

o
1

m0en
A jj

Since

1

m0en
¼ B2

m0nmi

mi

eB2
¼ vA

2

OciB
¼ rs

2vA
2 e

Te

We then obtain

dne
n

¼ �k?2rs
2 k jj
o
vA

2 eA jj
Te

(3.48b)

Combining (3.47) and (3.48b) we obtain:

A jj ¼
k jj =o

1� k?2rs2k jj 2vA2=o2
f

Using this result instead of (3.24) in the derivation of (3.25) we obtain the

dispersion relation of the kinetic Alfve’n wave

o2 ¼ k jj 2vA2 1þ k?2rs
2

� �
(3.49)

This is the most simple form of the kinetic Alfve’n wave. The heating properties

of this mode are related to singularities in the mode structure in plasmas with

magnetic shear. The origin of such singularities is discussed in the section of kink

modes in Chap. 6. As is easily verified the k2r2 part of (3.49) is due to a parallel

electric field which may be expressed as

E jj ¼ i
k2r2k jj 2vA2

o2 � k?2rs2k jj 2vA2
k jj f

These results can easily be generalized to inhomogeneous plasmas as we will

soon see (Exercise 8).
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3.4 Quasilinear Diffusion

We shall now consider the particle transport due to low frequency modes in

magnetized plasmas. We start by observing the correspondence between the conti-

nuity equation and the diffusion equation, i.e.

@n

@t
þr � ðnvÞ ¼ 0

may be written

@n

@t
¼ �r � ðGÞ (3.50)

where Г is the flux which, according to Fick’s law fulfills

G ¼ � Drn (3.51)

where D is the diffusion coefficient and (3.50) reduces to the diffusion equation

@n

@t
¼ r � ðDrnÞ (3.52)

Equation 3.52 is only of interest in so far as it describes a secular steady state

diffusion. We thus want to average (3.52) over the harmonic time and space

variation of the fluctuations. In an inhomogeneous plasma a harmonic wave will

always obtain a superimposed slow space variation of the amplitude due to the

inhomogeneity, i.e.

f ¼ f
_ðxÞe�iðo�k�rÞ þ c:c (3.53)

Where the inhomogeneity is in the x direction. The flux in the x direction

averaged over the harmonic variation is now:

< Gx> ¼
X

dnkvkx� þ c:c: (3.54)

Where

vkx ¼ vEx ¼ �i
ky
B
fk

The electrons are assumed to be close to Boltzmann distributed but with a small

imaginary correction due to dissipative effects, i.e.

dne
n0

¼ (1� idÞ ef
Te

(3.55)
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We may then rewrite (3.54) as:

< Gx> ¼ 2n0
Te

eB

X efk

Te











2

kydk (3.56)

or, as a result of (3.51)

De ¼ 2Te

keB

X efk

Te











2

kydk (3.57)

k ¼ � 1

n0

dn0
dx

We notice that the diffusion is due to the imaginary part of the deviation from the

Boltzmann distribution. This dependence is such that unstable waves cause diffu-

sion in positive x, i.e. towards the plasma boundary. As it turns out dk will be

proportional to k in most cases of practical interest so that D remains finite when

k ! 0. It is also interesting to consider the ion diffusion. In the simpliest case with

only E � B convection the ion density perturbation is:

dnik
n0

¼ o�e
ok

efk

Te
(3.58)

in the region ok>>kjjcs; k?2rs
2<<1. Equation 3.54 then becomes

< Gx> ¼ n0
Te

eB

X efk

Te











2

iky
o�e
ok

þ c:c:

Now writing ok ¼ or þ igk we obtain

< Gx> ¼ 2n0
Te

eB

X efk

Te











2 kygk
or

2 þ gk2
o�e

and

Di ¼ 2
Te

eB

X
kyrs

gkkycs
or

2 þ gk2
efk

Te











2

(3.59)

The instability saturates when k has decreased to zero due to the diffusion.

Another possible mechanism for saturation is when the nonlinear contribution to

the radial derivative of the convective density perturbation becomes comparable to

that of the linear i.e. when kxdn ¼ kn0 or

dnik
n0

¼ 1

kxLn
(3.60)
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where Ln ¼ 1/k is the density inhomogeneity scale length. This is reasonable since

the radial (x) inhomogeneity is driving the instability. This estimate is called the

mixing length estimate. It typically leads to a turbulence level of a few percent.

Since the linear perturbation is

dn ¼ �x � rn0 ¼ �xx
dn0
dx

¼ xx
n0
Ln

(3.61)

And

vkx ¼ �ioxx

We obtain from (3.54)

< Gx> ¼ n0
Ln

X
�iok xxj j2 þ c:c: (3.62)

Now combining (3.60) and (3.61) we obtain

kx xxj j � 1 (3.63)

This means that the displacement is a sizeable fraction of a wavelength.

Now, using (3.63) in (3.62) we obtain the estimate

Di ¼ G
Ln
n0

� 2
X

gk=kx
2

If we interpret kx as a correlation length of the full space variation we omit the

summation. The estimate is then actually written in the form

Di � gk=kx
2 (3.64)

This result can also be obtained by renormalization (Dupree 1987), When the

dominant nonlinearity is of the E � B convective type as in the continuity or

energy equation

@n

@t
¼ vEx

@

@x
n

we can estimate the saturation level by balancing the linear growth, i.e. ∂/∂t ! g
with the nonlinearity. Then, representing “grad” by the inverse space scale of the

full perturbation, the density (or temperature) perturbation cancels and we obtain

the saturation level [44, 49].

ef
Te

� 1

kxrs

g
kycs

(3.65)
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Equation 3.63 is then replaced by

xxj j � g
oj j

1

kx
(3.66)

Equation 3.66 shows that a real eigenfrequency reduces the step length because

the convection oscillates in time. Using (3.66) in (3.62) we now obtain [44]:

D � g3=kx2

or
2 þ g2

(3.67)

which turns into the mixing length estimate [3, 10] when g 
 or While (3.64) has

the character of upper limit, (3.67) is a more direct estimate of the transport level.

Recently a more general derivation has been made of (3.67) from a non-Markovian

Fokker Planck equation [3.48, 3.49]. It shows that (3.67) is a quite general expres-

sion, which only lacks off diagonal elements. In the general expression, or also

contains the non-linear frequency shift.

3.5 Confinement Time

It is important to relate the diffusion coefficient to the confinement time, t.
The confinement time is defined as the characteristic time for the decrease in total

number of particles N or total energy due to diffusion. For particle diffusion from a

cylinder of radius r and length L we have

t ¼ N

dN=dt
¼ npr2L

2prLG
¼ nr

2G
(3.68)

Where n is the particle density and Г is the particle flux given by (3.51). We then

obtain

t ¼ rLn
D

(3.69)

where Ln ¼ 1/k is the characteristic length scale of density variation. If we take

Ln ¼ r we find that for classical diffusion t ~ r2B2 which would mean that by

increasing the magnetic field we can build a smaller machine obtaining the same

confinement time. For quasilinear diffusion two cases are usually discussed. These

are Gyro Bohm diffusion where D will scale as B�2 and Bohm diffusion where

D ~ B�1. For Bohm diffusion a stronger increase in the magnetic field is necessary

for a reduction in size. Fortunately Gyro Bohm diffusion has been found to dominate

in the core. An increase in B also allows higher confined pressure and density.
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Clearly we can make the same derivation of the energy confinement time tE in

terms of the thermal conductivity w. As is evident from (1.8) the dependencies of

tE on a and R are much more complicated in a real toroidal system. The scaling with

R seems to be, at least partly, due to the curvature radius of curvature driven modes.

It is, in fact, possible to obtain the scaling R1.5 from (3.67) when the real

eigenfrequency dominates and the growthrate is given by the root of kg .

3.6 Discussion

We have in the present chapter studied new eigenmodes associated with the

inhomogeneity of a plasma. These modes are very fundamental since they are

the plasmas response to an inhomogeneity. They will, accordingly, have the effect

to cause anomalous transport that tends to reduce the driving inhomogeneity as also

demonstrated. The modes studied were either of an MHD type with no parallel

electric field or of a drift type with electrostatic, Boltzmann electrons. As seen from

Exercise 8, where a transition between these two types is made, the MHD type

modes are more global. They also generally have larger growth-rates. In this

chapter we have used a simple slab geometry to show the most fundamental

properties of the modes. In Chap. 6 more realistic geometries will be introduced.

We will first in Chap. 4 use a kinetic theory to rederive dispersion relations for

modes studied here.

Exercises

1. Explain why v• does not contribute to (3.9).

2. (a) Generalize the derivation of (3.6) to the case of finite kx.

(b) Do the same with (3.10).

3. Discuss which of the effects included in (3.10) that corresponds to

compressibility.

4. An effect of finite Larmor radius (FLR) is that the ion particle E � B drift is

reduced to

vEi ¼ 1

B
ðz_ �rfkÞ 1� 1

2
k2ri

� �

As explained in the section “Interpretation of drifts” in Chap. 2 we are

allowed to replace fluid drifts by particle drifts throughout in the equation div

j ¼ 0. Use the FLR corrected ion E � B drift to derive modified versions of the

dispersion relations (3.28) and (3.29).

5. Show that we by adding electron-ion collisions in the same way as in (3.17) can

obtain an instability driven by gravity in (3.40), i.e. for o<<k?vthe. This is a
resistive interchange mode. The derivation may be simplified by assuming that

kyvg


 

<o�e holds for both electrons and ions.
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6. Assume a simple cylindrical geometry where the magnetic field is in the y
direction and where the pressure decreases in the radial direction. Derive the b
limit as a function of mode number m, j ~ eimywhen we make the replacement

k ! (1/P)dP/dr.

7. In a torus with both toroidal and poloidal magnetic field the magnetic field lines

will move between outside and inside of the torus. This effect is described by

q ¼ Dj/Dy, where Dj and Dy are the changes in toroidal and poloidal angle

along a field line. We realize also that the relative direction between g and grad

n will change so that some regions have favourable and some have

unfavourable curvature. In this case we may write

1

Rc
¼ 1

R
cos

2pz
L

� d
� �

Since the space dependence along z is now no longer harmonic we also have to

make the replacement kjj ! �i@=@z. The resulting Mathieu equation

@2f
@z2

þ a
1

R
cos

2pz
L

� d
� �

f ¼ 0

has the eigenvalue d ¼ aL2=8p for aL2<<2p2. Determine the b limit in the

case bL2<<2p2aR when ky
2>>kx

2; k � 1=a; d ¼ a=2R and L ¼ 2pRq.
8. The approximation Ejj ¼ 0 is one of the most frequently used approximations

for flute modes ðkjj � 0Þ. It is, however, not a good approximation for drift

waves which have a slightly larger kjj. In order to see this it is necessary to

consider the details of the electron dynamics. As is evident from the derivations

of (2.21) and (3.29) we need only A║ in order to describe dB?.

(a) Show that the Boltzmann relation (3.3b) is generalized to

dnk
n0

¼ efk

Te
þ o�e � o

k jj

eA jj
Te

(3.70)

when we include dB┴ ¼ r�(A║ź)

nev ejj ¼ � 1

e
j ejj � � 1

e
j jj

(b) Derive another expression for ∂ne/∂t from the electron continuity equation

using i.e. neglecting the parallel ion current and express jjj in Ajj by using

Ampe’res law. Put this expression equal to (3.70) and show that

E jj ¼ i
k2r2k jj 2vA2

oðo� o�eÞ � k?2rs2k jj 2vA2
k jj f (3.71)
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(c) Eliminate Ajj and show that

dnk
n0

¼ efk

Te
1þ ðo�e � oÞ2

oðo�e � oÞ � k?2rs2k jj 2vA2

" #
(3.72)

which turns into (3.27a) for small kjj and into (3.3b) for large kjj.

9. Generalize (3.71) to include parallel ion motion when vjj
i
is given by

@vjji=@t ¼ (e=miÞEjj.
10. Use the tokamak parameters in Appendix I to estimate for which mode number

ðky � m=aÞ the FLR correction to the b limit in (3.46) exceeds 20% of the b
limit for low mode numbers.

11. Include the effects of finite ion Larmor radius in the dispersion relation (3.10).

12. Show that we recover the linear dispersion relation if we impose ambipolar

electron and ion fluxes from (3.57) and (3.59).
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Chapter 4

Kinetic Description of Low Frequency

Modes in Inhomogeneous Plasma

4.1 Integration Along Unperturbed Orbits

In the previous chapter we derived simple dispersion relations for some of the most

dangerous low frequency instabilities using a fluid description. We will now show

how this can be done by kinetic theory, [1–19], from the Vlasov equation in a

simple slab geometry. We will start by using the method of integration along

unperturbed orbits [1–5], which gives the most general result, i.e. including also

modes with o � Oc, full finite Larmor radius effects and wave particle resonances.

We will, however, restrict attention to modes with o<<Oc. We will show how

wave-particle resonances may impede the free electron motion along the field lines,

thus causing drift instability and how the lowest order finite Larmor radius (FLR)

effect agrees with that obtained from the stress tensor in Chap. 2. After the more

general treatment we will show how the wave-particle resonances can be described

by a simpler drift-kinetic equation that does not contain FLR effects and how the

lowest order FLR effect can be obtained by a simple orbit averaging.

As pointed out previously the parallel motion of electrons may be affected by

wave-particle resonances and also by inductance. We are now going to give a

kinetic description of these phenomena. The first problem that arises is to determine

the unperturbed distribution function f0(v,x), where we choose the inhomogeneity

to be the x direction. For generality we include in our description also a gravita-

tional force acting in the x direction. Inhomogeneities in the externally produced

magnetic field may be included in this gravitational force, as well as a centrifugal

force due to the toroidicity. The unperturbed distribution function f0(v,x) may be

written as a function of the constants of motion

W ¼ 1

2
mv2 � mgx;Py ¼ mðvy þ OcxÞ and P jj ¼ mv jj (4.1)
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The constant Py can easily be derived from the equation of motion in the form

dv

dt
¼ Ocðv� z

_Þ

dvy
dt

¼ �Ocvx ¼ �Oc
dx

dt

Here we assumed Oc ¼ qB/m to be homogeneous. A Maxwellian distribution
function corresponding to an exponential density gradient may be written:

f 0ðv,x) ¼ n0
m

2pT

� �3=2
exp �a0 xþ vy

Oc

� �� �
exp �mv2=2� mgx

T

� �
(4.2)

It is important to note that Oc here contains the sign of the charge. For a plasma

with perpendicular and parallel temperature gradients we may replace a0 by

a0 þ d?v?2 þ djjvjj2. We will, however, for simplicity neglect temperature

gradients. For a weak inhomogeneity, i.e. small a0 we may expand the first exponen-

tial in (4.2). To first order in a0 and g we then obtain the zero order drift velocity.

vd ¼ 1

n0

ð
vf 0ðv,x)dv ¼ � a0T

mOc
y
_ ¼ � kT

mOc
þ g

Oc

� �
y
_

(4.3)

where k ¼ �(1/n0)dn0/dx. We note that in this expression we have to take Oc

negative for electrons. For simplicity we will in the following continue to use the

previous assumption that kx ¼ 0. We may then write

Eðr,t) ¼ Eke
i kyyþk jj z�otð Þ þ c:c:

f ðr;v,t) ¼ f kðvÞei kyyþk jj z�otð Þ þ c:c:

The linearized Vlasovequation may then be written:

@

@t
þ v � @

@r
þ Ocðv� z

_Þ þ gx
_

h i
� @
@v

� �
f kðvÞei kyyþk jj z�otð Þ

¼ q

m
ðEk þ v� BkÞ � @f 0

@v
ei kyyþk jj z�otð Þ (4.4)

The left hand side of (4.4) is here the total derivative along a particle orbit. In a

linear approximation we use the unperturbed orbit

v0 ¼ vðt0Þ ¼ ~Lðt0 � t)½vðt)� vg� þ vg

r0 ¼ rðt0Þ ¼ ~Gðt0 � t)½vðt)� vg� þ vgðt0 � tÞ
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Where vg ¼ �(g/Oc) ŷ and

~
Gðt) ¼

sinOct 1� cosOct 0

cosOct� 1 sinOct 0

0 0 Oct

������
������

Where

~L ¼ 1

Oc

d
~G
dt

(4.5)

Integration along this orbit yields

f kðvÞ ¼
q

m

ð1
0

dtðEk þ v� BkÞ � @f 0
@v

e�iaðtÞ (4.6)

Where

aðtÞ ¼
ðt

0

½k � v� o�dt ¼ ky
vx

Oc

ð1� cosOctÞ þ vy � vg

Oc

sinðOctÞ þ vgt
� �

� ot

And t ¼ t� t’

We will here consider the region b<<1ðb ¼ 2m0nT=B
2Þ. In this region

k?vA>>k?vDi and we may disregard the compressional (magnetosonic) wave.

The only electromagnetic effect is then due to the bending of the magnetic field

lines and we have

dB jj ¼ ðr � AÞ jj ¼
@Ax

@y
� @Ay

@x
¼ 0

for the perturbed field. This means that we can derive the perpendicular part of A

from a potential. Such a potential has sometimes been introduced. Here, we will

instead continue to use Ajj which is a good low b approximation. Thus we write:

E ¼ �rf� @A

@t
¼ �rf� z

_ @A jj
@t

(4.7)

and thus

@B

@t
¼ �ðz_ �r?Þ

@A jj
@t

Now

@f 0
@v

¼ � a0

Oc
y
_ þm

T
v

� �
f 0ðx; vÞ (4.8)
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Since kx ¼ 0 we may rewrite (4.6) as

f kðvÞ ¼ � q

m

ð1
0

i
m

T
kyvy

0 þ k jj v jj 0
	 


fþ ov jj 0A jj
	 
þ a0

Oc
kyf

� �
� f0e�iaðtÞ

� i
q

m

ð1
0

a0

Oc
kyðv� x

_Þ � y_A jj

� �
� f 0e�iaðtÞ (4.9)

Since

d

dt
e�iaðtÞ ¼ �i kyvy

0 þ k jj v jj 0 � o
� �

e�iaðtÞ (4.10)

It is convenient to rewrite (4.9) as

f kðvÞ ¼ � qf
T

ð1
0

i kyvy
0 þ k jj v jj 0 � o�� � � f 0e�iaðtÞdt

� qf
T

ð1
0

i ðo� oDs�Þ½ � � f 0�iaðtÞdt

� qA jj
T

ð1
0

iðo� oDsÞv jj 0 � f 0�iaðtÞdt (4.11)

where

oDs ¼ �ky
a0T
mOc

¼ o� � kyvg vg ¼ g

Oc

With the help of (4.10) we can immediately integrate the first integral of (4.11).

We note that the limit t!1 corresponds to a contribution from the perturbation at

t0!�1. We take this to be zero. Observing that the unperturbed distribution

function is invariant along an unperturbed orbit we then find

f kðvÞ ¼ � q

T
f 0ðx; vÞ

� fþ i ðo� oDsÞfþ o � v jj A jj 1� oDs

o

� �h i ð1
0

e�iaðtÞ � dt

 �

(4.12)

In order to evaluate the integral we now make use of the expansion

e�iaðtÞ ¼
X1
n¼�1

X1
n0¼�1

JnðxÞJn0 ðxÞ

� exp i n Octþ yþ p
2

� �
� n0yþ k jj v jj t� ~ot

h in o
(4.13)
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Where

~o ¼ oþ kyvg x ¼ kyv?=Oc

We then obtain

f kðvÞ ¼ � q

T
f 0ðx; vÞ fþ i ðo� oDsÞfþ o � v jj A jj 1� oDs

o

� �h in

�
X
n;n0

JnðxÞJn0 ðxÞe�iðn�n0Þy

nOc þ k jj v jj � ~o

o
(4.14)

We can now obtain the dispersion relation from the Maxwells equations

r � E ¼ r
e0

(4.15)

ðr � BÞ jj ¼ m0j jj (4.16)

By using the formula

ð1

0

e�a2x2xJnðpxÞJnðqxÞdx ¼ 1

2a2
exp � p2 þ q2

4a2

� �
In

pq

2a2

� �

where In is a modified Bessel function, it is possible to show that

X1
n¼�1

X1
n0¼�1

ð
f 0JnðxÞJn0 ðxÞe�iðn�n0Þydv

nOc þ k jj v jj � ~o
¼
X
n

LnðBÞ
~o� nOc

W
~o� nOc

jk jj jðT=mÞ1=2
 !

�1

" #

where LnðBÞ ¼ InðBÞe�B: W(z) is the plasma dispersion function

WðzÞ ¼ ð2pÞ1=2
ð1
�1

x

x� z
e�x2=2dx

and B ¼ k?2T=mOc
2

We thus obtain

nk ¼
ð
f kðvÞdv ¼� qn0

T
fþ ðo� oDsÞf�

X
n

LnðBÞ
~o� nOc

W
~o� nOc

jk jj jðT=mÞ1=2
 !

� 1

" #( )

� qn0
T

ov jj A jj 1� oDs

o

� �X
n;n0

LnðBÞW ~o� nOc

jk jj jðT=mÞ1=2
 !

(4.17)
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Similarly we obtain

j jj k ¼ q

ð
vzf kðvÞdv ¼ � q2n0

Tk jj
ðo� oDsÞf�

X
n;n0

LnðBÞW ~o� nOc

jk jj jðT=mÞ1=2
 !

� q2n0
T

o
k jj 2

� A jj 1� oDs

o

� �X
n;n0

LnðzÞð~o� nOcÞW ~o� nOc

jk jj jðT=mÞ1=2
 !

(4.18)

By using the density and current perturbations (4.17) and (4.18) we obtain the

dispersion relation (4.16). In the following we will mainly consider the frequency

range o<<nOc. In this region we need to include only the term n ¼ 0 in the

summations of (4.17) and (4.18). For the last term in (4.18) this is due to the

adiabatic expansion (4.21). We further note that B ¼ k?T=mOc
2 ¼ k?2r2=2

expresses the ratio between the Larmor radius r and the perpendicular wavelength.

When B is small we may use the expansion

L0ðBÞ � 1� B ðB<<1Þ (4.19)

The deviation of L0(B) from 1 will in the following be referred to as a finite

Larmor radius effect. It is due to the fact that a particle that gyrates in a Larmor orbit

on the average experiences an electric field that is different from the field at the

center of the orbit. We will always assume that L0(B) ¼ 1 for electrons, while we

will make different approximations for the ions.

We shall assume that (3.6) is valid also when we replace o by the shifted

frequency o � kyvg. The plasma dispersion function is usually expanded in the

adiabatic o>>kjjvth and isothermal o<<kjjvth limits. These expansions are:

WðzÞ ¼ i
p
2

� �1=2
ze�z2=2 þ 1� z2 þ z4=4:::::: zj j<<1 ðisothermalÞ (4.20)

and

WðzÞ ¼ i
p
2

� �1=2
ze�z2=2 � 1

z2
� 3

z4
::::: zj j>>1 ðadiabaticÞ (4.21)

Now ignoring kyvge (electron gravity) and using the isothermal expansion for

electrons and the adiabatic expansion for ions (compare Eq. 3.1) we can write the

particle densities

nke
n0

¼ e

Te

fþ i
p
2

� �1=2 o� o�e
jk jj jðTe=meÞ1=2

e�o2= k jj 2vthe2ð Þf

þ o
k jj

A jj 1� o�e
o

� �
1þ i

p
2

� �1=2 o

jk jj jðTe=meÞ1=2
e�o2= k jj 2vthe2ð Þ

" #

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
(4.22)
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nki
n0

¼� e

Te

�
f� ðo�oDsiÞL0ðBiÞ

~o
1þ k jj 2Ti

mi ~o2
� i

p
2

� �1=2 ~o

jk jj jðTi=miÞ1=2
e�o2= k jj 2vthe2ð Þ

" #

þ o
k jj

A jj 1�oDsi

o

� �
L0ðBiÞ i

p
2

� �1=2 ~o

jk jj jðTi=miÞ1=2
e�o2= k jj 2vthi2ð Þ � k jj 2Ti

mi ~o2

" #

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(4.23)

And the parallel electron current

j jj k ¼ � e2n0
Tek jj

fþ o
k jj

A jj

� �
ðo� o�eÞ

� 1þ i
p
2

� �1=2 o

jk jj jðTe=meÞ1=2
e�o2= k jj 2vthe2ð Þ

" #
(4.24)

In (4.22) we recognise the Bolzmann distribution in the first term of the right

hand side. The second term represents the phase shift due to wave-particle reso-

nance and the third term a correction due to induction.

4.2 Universal Instability

The electrostatic limit is easily obtained from the above equations by putting

Ajj ¼ 0. The dispersion relation obtained from (4.15) can be written in the form

eðky; k jj ;oÞ ¼ 0 (4.25)

where

e ¼ find

fext

Here jind is the induced potential caused by an external potential jext. In the region

(3.1) we obtain

eðky; k jj ;oÞ ¼ 1þ kde
2

ky
2

1þ i
p
2

� �1=2 o� o�e
jk jj jðTe=meÞ1=2

e�o2= k jj 2vthe2ð Þ
" #

þ kdi
2

ky
2

1� o� oDsi

~o
1þ k jj 2Ti

mi ~o2
� i

p
2

� �1=2 ~o

jk jj jðTi=miÞ1=2
e�o2= k jj 2vthi2ð Þ

" #
L0ðBiÞ

( )

(4.26)
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In the limit kld<<1 the 1 is negligible in (4.26) and the corresponding disper-

sion relation (4.25) can be obtained by using quasineutrality. Assuming the wave

particle interaction to be weak we can treat imaginary parts of e as perturbations.

Thus writing e ¼ eR + ieI we can solve (4.26) in the usual way as o ¼or + ig
where

eRðky; k jj ;orÞ ¼ 0 (4.27)

and

g ¼ � eIðky; k jj ;orÞ
@eR=@o

(4.28)

From (4.27) we obtain the relation

1þ Te

Ti
� o� o�i

~o
Te

Ti
þ k jj 2cs2

~o2

" #
L0ðBiÞ ¼ 0 (4.29)

For small k║ and dropping the gravity we obtain the solution

o ¼ o�eL0ðBiÞ
1þ ðTe=TiÞ 1� L0ðBiÞ½ � (4.30)

where we used the relation

o�i ¼ � Ti

Te
o�e

By expanding L0(B) according to (4.19) and introducing Bi ¼ ky
2ri

2=2, we
obtain the solution

o ¼ o�e 1� 1

2
ky

2ri
2 1þ Te

Ti

� �� �
(4.31)

Since r2 ¼ ðTe=2TiÞri2, we recognise the last term to be due to inertia

(polarisation drift) by comparison with (3.10). The result (4.31) shows that ion

FLR effects can be added in a simple way for drift waves. The similarity between

ion polarization drift and ion FLR effects can be seen from that the polarization drift

comes from the variation in time of the electric field along a gyroorbit while the

FLR effect comes from the variation in space of the electric field along the

gyroorbit. The rotating particle just sees a varying electric field along the orbit in

both cases. Clearly the ion inertia dominates the Larmor radius effect (FLR) when

Te>>Ti. From (4.28) we find
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g ¼ � p
2

� �1=2 or
2

o�eL0ðBiÞ

� or � o�e
jk jj jðTe=meÞ1=2

e�o2= k jj 2vthe2ð Þ þ Te

Ti

p
2

� �1=2 or � o�i
jk jj jðTi=miÞ1=2

e�o2= k jj 2vthi2ð Þ
" #

(4.32a)

We notice that the situation concerning stability is similar to that for the

influence of ion-electron collisions. Due to FLR effects we note from (4.31) that

o<o�e. According to (4.32) this means that the interaction between the wave and

the electrons is destabilising. Sinceo�i, <0 for k>0 we find that the ions will cause

damping. Due to the exponential factor, however, this term will usually be small in

the region (3.1). The collisionless instability described by (4.30) and (4.32) is

usually referred to as the universal instability since it was for a long time considered

to be unavoidable in a finite size plasma. We note, however, that the Landau-

damping term will become important in a short device where k║ has to take rather

large values. Moreover, in a device with magnetic shear, k║ can take small values

only locally and damping is obtained by convection into regions with larger k║.

Another situation when growth and damping can alternate is when we have a

nonlinear frequency shift. We can understand that from the previous discussion

but this becomes even more easy to see if we simplify (4.32) as:

g ¼ p
2

� �1=2
o�e

o� o�e
k jj vte

e�o2= k jj vteð Þ (4.32b)

where we ignored FLR effects and ion Landau damping. This will be discussed

further in connection with the fluid closure. Finally we note that since

o� oDsi ¼ oþ kyvgi � o�i,the only effect of gravity on the dispersion relation

(4.29) is a shift of the real part of o equivalent to a change of frame. Thus in a frame

moving with a velocity vg ¼ �(g/Oci)ŷ, the dispersion relation will take the same

form as in the laboratory frame when the gravity is absent. This is, however, only

true as long as we may drop the frequency dependent terms in the electron part of

the dispersion relation, i.e. as long as the electrons are able to maintain a Boltzmann

distribution. For very small kjj this is no longer possible and we obtain a reactive

instability called Rayleigh-Taylor or Interchange instability.

4.3 Interchange Instability

In the limit kjj ¼ 0 we have W(ze) ¼ W(zi) ¼ 0. The electrostatic dispersion

relation then takes the form

1

Te

o�e
o

¼ � 1

Ti
1� ~o� o�i

~o
L0ðBiÞ

� �
(4.33)
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Introducing

~o ¼ oþ ky
g

Oci
¼ o� kyvgi

where vgi ¼ �g/Oci is the gravitational drift and o�i ¼ � ðTi=TeÞo�e, we may

rewrite (4.33) as

oo�eð1� L0Þ � o�ekyvgi þ Te

Ti
ð1� L0Þoðo� kyvgiÞ ¼ 0 (4.34)

Introducing

o�e ¼ ky
kTe

eB0

in the constant term we finally arrive at the dispersion relation

o o� kyðvgi þ v�iÞ
� � ¼ �kg

k2r2i
1� L0

(4.35)

This dispersion relation predicts instability when

kg
k2ri

1� L0

>
1

4
ky

2ðvgi þ v�iÞ2 (4.36)

This instability is due to the charge separation created by a density perturbation

when the electron and ion guiding centre drifts are different. Since kjj ¼ 0 the

electrons cannot shield the charge separation by moving along B0. This is the

Rayleigh-Taylor or Interchange Instability. Clearly a condition for a possibility to

fulfill (4.36) is that k g>0, i.e. the gravity and density gradient have opposite

direction as shown in Fig. 3.9.

In the unstable case the more dense parts tend to change place (interchange) with

the less dense parts thus causing a convective diffusion. When grad n and g have the

same direction a perturbation is counteracted and this results in oscillations. The

instability is analogous to that of a heavy fluid resting on top of a light fluid. In a

toroidal machine the centrifugal force due to the field line curvature may give rise to

interchange instability in regions of unfavourable curvature (kg>0). We note that

also when the different drift velocities of electrons and ions are caused by a

gravitational force, the finite Larmor radius effect is stabilizing, contrary to the

situation for drift waves.
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4.4 Drift Alfvén Waves and b Limitation

We will now consider the electromagnetic case in the region (3.1). We write the

equations in a frame where the background guiding centre drift of the electrons is

zero. In this frame the ion background drift will be equal to the difference between

the ion and electron drifts in the laboratory frame. We will assume that we can

neglect the imaginary part of W(z) both for ions and electrons. We then have from

(4.20) and (4.21)

ne
n0

¼ e

Te
fþ o� o�e

k jj
A jj

� �
(4.37)

ni
n0

¼ � e

Ti
1� ðo� oDsiÞL0

~o

� �
f (4.38)

j jj ¼
e2n0
Tek jj

ðo�e � oÞ fþ o
k jj

A jj

� �
(4.39)

From the induction law, (4.16) we obtain

j jj ¼ � k?2

m0
A jj (4.40)

Neglecting parallel ion motion we now obtain from (4.39) and (4.40)

A jj ¼
k jj ðo�e � oÞ

oðo�e � oÞ þ k?2rs2k jj 2vA2
f (4.41)

Equation 4.41 gives the relation between the parallel and the perpendicular

electric fields. It involves the electron dynamics and can easily be obtained from

the fluid equations. Inserting now (4.41) into (4.37) we obtain the electron response

in terms of j.

ne
n0

¼ ef
Te

o�e
o

þ 1� o�e
o

� � k?2rs
2k jj 2vA2

oðo�e � oÞ þ k?2rs2k jj 2vA2

" #
(4.42)

Equation 4.42 which is equivalent to (3.72) shows that for large kjjvA the

electron response approaches a Boltzmann distribution while it in the opposite

case is of the flute mode type, i.e. proportional to o*e/o. Introducing o� oDsi ¼
o� kyvgi � o�i and o�i ¼ �ðTi=TeÞo�e we find from (4.38)
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ni
n0

¼ ef
Te

o�e
~o

L0 � Te

Ti
ð1� L0Þ

� �
(4.43)

We may now obtain a dispersion relation for drift Alfve’n waves from (4.42) and

(4.43) assuming quasineutrality.

o�e þ Te

Ti
~o

� �
ðL0 � 1Þ þ o�e

kyvg
o

¼ ðo� o�eÞ
k?2rs

2k jj 2vA2

oðo�e � oÞ þ k?2rs2k jj 2vA2

We now multiply by the denominator in the right side, divide by (1 � L0) and

multiply by Ti/Te. Observing now that vg ¼ vgi � vge and vgj ¼ gj/Ocj we may

write

o�ekyvg ¼ �k?2rs
2kgi 1þ mege

migi

� �
(4.44)

and obtain the equation

o½o�kyðvgi þ v�iÞ� � k jj 2vA2 1

2

k?2ri
2

1�L0

1� kyvg
o� o�e

� �
þ kgi 1þmege

migi

� �
1

2

k?2ri
2

1�L0

¼

¼ k?2rs
2k jj 2vA2o� kyðvg þ v�iÞ

ðo�o�eÞ
(4.45)

Equation 4.45 is the dispersion relation for drift Alfve’n waves including a

gravitational force and full finite Larmor radius effects. We notice that (4.45) is

identical to (4.35) in the limit kjj ¼ 0. We are, however, not allowed to take this

limit of (4.45) since it would correspond to an expansion for o=kjj>>vthe. The

reason why it gives the correct result is that the electron density distributions

become the same for the two cases as seen from (4.42) and from (4.17). We also

notice that the flute mode response is obtained in the limit Ejj 	 kjj’� oAjj ¼ 0. In

this case the induction force prevents the electrons from cancelling space charge by

moving along B0 and this makes the interchange mode solution possible.

Clearly the Alfvén frequency kjjvA has a stabilizing influence on the interchange

instability. This can be seen as a result of the bending of the frozen in magnetic field

lines which counteracts the interchange of fluid elements. The balance between

these forces leads to a b limit for stability discussed in Chap. 2. The drift terms are

also stabilizing. The kyv*i term is due to reduction of the convective E � B drift

velocity of ions when averaged over a Larmor orbit and leads to a stabilizing charge

separation effect, compare Sect. 3.3.7. The most unstable situation will obviously

occur for small ky. We also note the term due to vg in the Alfvén term. This term is

often considered to be small and, in fact, should be small in the present treatment
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since we represented curvature by a gravity force. However, this term is also

present if we use real curvature and gradient B effects. It may then be important.

If we expand (4.45) for small ion temperature keeping only the lowest order

Larmor radius effects and also neglect terms of order kyvg/o we obtain the disper-

sion relation

oðo� o�iÞ � k jj 2vA2 þ kgi 1þ mege
migi

� �
¼ k?2rs

2k jj 2vA2 o� o�i
o� o�e

(4.46)

Equation 4.46 agrees with (3.44) for small electron temperature if the gravity is

expressed as a centrifugal acceleration and thus verifies the lowest order finite

Larmor radius effect as obtained from the stress tensor. The right hand side of (4.46)

is due to the parallel electric field and provides a coupling to the electrostatic drift

wave branch. In studying this coupling we will for simplicity neglect the gravity.

Assuming ky
2ri

2<<1 we then realise that (4.46) splits into two branches the

electric drift wave branch with o ¼ o�e and the electromagnetic drift wave branch

or drift Alfve’n branch.

If we include the term proportional to kjj2Ti=mio2 in (4.23), (4.46) generalizes to

oðo� o�eÞ � k jj 2cs2
� �

oðo� o�iÞ � k jj 2vA
� � ¼ k?2rs

2k jj 2vA2oðo� o�iÞ
(4.47)

This dispersion relation shows the coupling between the drift acoustic and drift

Alfvén branches. It has four branches as shown by Fig. 4.1.

KIIVA

KIIVA

KIIc5

KIIc5

KiI

ω

ω.e

ω.i

Fig. 4.1 Dispersion diagram

for electromagnetic drift

waves
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We notice from this figure where vA>cs that instead of an intersection of the

branches corresponding to ky
2rs

2 ¼ 0 the branches change their identity and we

obtain a region of strong coupling. The condition for the existence of this region is

clearly vA>cs. On the other hand, in order to remain in the region (3.1) of drift

waves we must have vA<vthe. This condition is equivalent to b > me/mi, which is

the limit of b where the electromagnetic effects have to be included.

4.5 Landau Damping

If we now return to (4.46), neglect the right hand side but include the electron and

ion Landau damping effects from (4.22) and (4.23) to leading order, we obtain the

dispersion

oðo� o�iÞ � k jj 2vA2 þ D ¼ ioG (4.48)

where

D ¼ kgi 1þ mege
migi

� �

and

G ¼ p
2

� �1=2
k jj vA

vA

cs

Te

Ti

� �3=2 o� o�i
o� o�e

e�~o2= k jj 2vti2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p" #

Assuming now that o ¼ or + ig and g << or we obtain by separation

or ¼ 1

2
o�i 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
o�i2 þ k jj 2vA2 � D

r
(4.49)

g ¼ orG
2or � o�i

(4.50)

Here the sign of the denominator in (4.50) is given by the sign chosen for the root in

(4.49). If

1

4
o�i2 þ k jj 2vA2>D>k jj 2vA2

Then the sign of or does not change with the sign of the root. Then we can always

find an unstable solution. This is exactly the region in which the MHD instability is

stabilised by the FLR effect so the the dissipative effect restores the stability
boundary to that of MHD. We see, however, that the ion and electron contributions

to Г tend to cancel for or � o�i=2 so the growthrate may be small in this region.
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The kinetic instability in the FLR stabilized region has been verified by linear

kinetic calculations Ref. [19]. However, there it was also found that the stability

boundary may be lower than the MHD boundary in the presence of magnetic

curvature and an ion temperature gradient.

4.6 The Magnetic Drift Mode

For the drift Alfvén wave we noticed that the electromagnetic effects disappeared

for kjj ¼ 0. There is, however, another mode which is electromagnetic and has

kjj ¼ 0. This is the magnetostatic mode which involves only electron motion. The

electron motion along B0 perturbes the magnetic field and the induction force acts

back on the electrons. In a homogeneous plasma this mode is purely damped and

has zero eigenfrequency. The perturbation of the magnetic field lines form islands

in the perpendicular plane and the motion of the electrons along the perturbed field

lines causes anomalous heat transfer. In a inhomogeneous plasma, however, this

mode has a frequency close to o*e and is no longer static. the mode is linearly

described by a parallel induced electric field and a parallel vector potential Ajj ¼ A

corresponding to a perpendicular magnetic field perturbation. We thus have

E ¼ E jj z
_ ¼ � @A

@t
z
_

(4.51)

Again assuming kx¼0 we have

dB ¼ dBxx
_ ¼ ikyAx

_
(4.52)

Introducing these fields into (4.6) we obtain

f kðvÞ ¼
q

m

ð1
0

i
m

T
v jj 0oAf 0 � e�iaðtÞdt� q

m

ð1
0

i
k
Oc

kyAðv� x
_Þ � y_f 0 � e�iaðtÞdt

(4.53)

Which, observing that f0 is invariant along the orbit, reduces to

f kðvÞ ¼
q

m
f 0v jj ðo� o�ÞA

ð1
0

e�iaðtÞdt (4.54)

Making use of (4.13) we then obtain

f kðvÞ ¼ �i
q

m
f 0v jj ðo� o�ÞA

X
n;n0

JnðxÞJn0 ðxÞe�iðn�n0Þy

nOc � o
(4.55)
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Assuming the average vjj to be zero, we now find the density perturbation to

vanish. The parallel current is

j kjj ¼ q

ð
f kv jj dv ¼ q2n0

Te

vth
2

2
Aðo�e � oÞ

X
n

LnðBÞ
nO� o

(4.56)

Finally we consider only electron current, take only the term n ¼ 0 and ignore

FLR effects. Then using Te ¼ mevthe
2=2 we find

j kjj ¼ � e2n0
me

1� o�e
o

� �
A (4.57)

Equation 4.16 for the present case takes the form

j kjj ¼ � 1

m0

@2A

@y2
(4.58)

Combining (4.57) and (4.58) we have the dispersion relation

o ¼ o�e
1þ ky

2c2=ope
2

(4.59)

This is the dispersion relation of the magnetic drift mode in an inhomogeneous

plasma. It includes the diamagnetic drift frequency but also the skin depth in the

denominator. This is a feature characteristic of including electron inertia.

4.7 The Drift Kinetic Equation

In the limit ky
2rs

2<<1 and o<<Oc the previous procedure of integrating along the

Larmor orbits can be avoided. The simplest possible approach in this limit is to

write an equation of continuity for guiding centres. Such an equation can be written

down immediately once the velocity and acceleration of the guiding centre is

known. As it turns out, however, this method requires a more accurate knowledge

of the guiding centre dynamics than more systematic procedures starting from the

Vlasov equation and it does not give an estimate of the magnitude of the neglected

terms. In particular it is difficult to obtain an accurate description of curvature

effects. We will thus here restrict ourselves to a slab geometry and leave the more

complete description to a later systematic derivation.

The velocity of a guiding centre may be written

vgc ¼ 1

B
ðE� e

_

jj Þ þ v jj
dB?
B

þ vg (4.60)
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The acceleration is assumed to be directed only parallel to the magnetic field.

The continuity equation may as previously be written in the form df/dt ¼ 0 which

now becomes

@f

@t
þ ðv jj e

_

jj þ vgcÞ � rf þ q

m
E jj þ ðvgc � dB?Þ � e_ jj
h i @f

@v jj
¼ 0 (4.61)

Since (4.61) no longer explicitly depends on v? we may integrate over the

perpendicular velocity components. We thus have

f ¼ f ðr,t,v jj Þ (4.62)

Equation 4.61 is the simplest form of the drift kinetic equation and does not

contain finite Larmor radius effects. It does, however, keep the full parallel kinetic

description and can be used to study wave particle resonances. It is a simple

exercise to rederive the dispersion relation (4.49) for the magnetic drift mode by

using (4.61). A further feature is that (4.61) has not been linearized. Thus it can be

used to study nonlinear wave interactions and transport.

4.8 Dielectric Properties of Low Frequency Vortex Modes

We will start by considering flute like modes subject to the condition

kjj2Te=mio2<1. Dropping the Landau resonance terms but keeping also electron

FLR effects we can write the dielectric function observing that

op
2=Oc

2 ¼ r=L0
2 sj ¼ k2Tj=mjOcj

2
	 


eðk?; k jj ;oÞ ¼1þ ope
2

k?2re2Oce
2

1� o� o�e
o

1þ k jj 2Te

meo2

 !
L0ðseÞ

" #

þ opi
2

k?2ri2Oci
2

1� o� o�i
o

1þ k jj 2Ti

mio2

 !
L0ðsiÞ

" #

This expression has several interesting properties which we will investigate.

First we expand for small Larmor radius and treat o*/o, k║
2T/mo2, and s as small.

Then

eðk?; k jj ;oÞ ¼1þ 2
ope

2

Oce
2

1

2
þ k
k?

Oce

o
� k jj 2

k?2

Oce
2

o2

" #

þ 2
opi

2

Oci
2

1

2
þ k
k?

Oci

o
� k jj 2

k?2

Oci
2

o2

" #
(4.63)
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Where k ¼ �dln n0/dx.

For a tokamak plasma typically ope ~ Oce while opi ~ 50Oci (we observe also

that opi/Oci ¼ c/vA). We notice that the commonly used expression

e ¼ eF ¼ 1þ ope
2

Oce
2
þ ope

2

Oce
2

(4.64)

Is usually hard to fulfil in a realistic situation. In cases when the electron

contribution can be dropped it may, however, sometimes be fulfilled. Assuming

kjj ¼ k ¼ 0 but keeping the full FLR contribution we obtain

eðk?Þ ¼ 1þ ope
2

Oce
2

1� L0ðseÞ
se

þ ope
2

Oce
2

1� L0ðsiÞ
si

(4.65)

Which shows that e decreases for large Larmor radius.

The question of quasineutrality is also related to the dielectric constant eF.
Assuming e.g. that we are in the drift wave region (3.1) and dropping Landau

resonances, parallel ion motion and FLR, we obtain from (4.26)

eðk?;oÞ ¼ 1þ 1

k?2lde
2

1þ ky
2rs

2 � o�e
o

� �
(4.66)

The dispersion relation for electrostatic drift waves eðk?; oÞ ¼ 0 can now be

written

o ¼ o�e
1þ ky

2rs2 1þ lde
2=rs2

� � ¼ o�e
1þ ky

2rs2 1þ Oci
2=opi

2
� � (4.67)

since lde/rs ¼ Oci/opi. The condition for applicability of quasineutrality is

k2 lde
2<<1, which leads us to dropping 1 in (4.66). This corresponds to dropping

Oci
2= opi

2 in (4.67) which is equivalent to assuming that eF>>1. The reason why

the condition for quasineutrality can be expressed as eF>>1 without involving the

wavelength is that we have compared the deviation from quasineutrality with the

ion inertia term k2r2 which also contains the wavenumber.

The wave energy as expressed by the formula

W ¼ 1

4
o

@

@o
eðk;oÞ<E2>

is closely related to the dielectric properties. We shall here consider the wave

energy in two cases.

For electrostatic drift waves, dropping gravity effects but keeping ion FLR

effects, we have
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eðk?;oÞ ¼ 1þ kde
2

k?2
1þ Te

Ti
1� o� o�i

o
L0ðsiÞ

� �� �
(4.68)

Assuming k?2l<<1ðand eF:>>1Þ we can write the dispersion relation

o ¼ o�eL0ðsiÞ 1þ Te

Ti
1� L0ðsi½ �


 ��1

(4.69)

From (4.68) we also obtain

@

@o
eðk;oÞ ¼ kde

2

ky
2

o�e
o2

L0ðsiÞ (4.70)

Inserting (4.69) we then have

Wk ¼ 1

4
kde

2 1þ Te

Ti
1� L0ðsi½ �


 �
fkj j2 (4.71)

Here the second term includes the ion polarization drift and tends to k2 rs
2 in the

limit Te/Ti ! 1. For interchange modes ðkjj ¼ 0Þ we obtain

eðk?;oÞ ¼ 1þ kde
2

k?2

o�e
o

þ Te

Ti
1� ~o� o�i

~o
L0ðsiÞ

� �� �
(4.72)

Assuming quasineutrality we may write the dispersion relation

o�e
o

¼ � Te

Ti
1� ~o� o�i

~o
L0ðsiÞ

� �
(4.73)

Multiplying by o � kyvg we find

kyvgo�e
o

¼ Te

Ti
~oþ o�e

� �
½1� L0ðsiÞ� (4.74)

Alternatively we may write (4.73) as

o�e
~o

L0ðsiÞ ¼ o�e
o

þ Te

Ti
½1� L0ðsiÞ� (4.75)

Differentiating e we find

@e
@o

¼ kde
2

k?2
L0ðsiÞo�e

~o2
� o�e

o2

� �
(4.76)
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Which, after substitution of (4.75) can be written

@e
@o

¼ kde
2

k?2

1

~o
o�ekyvg

o2
þ Te

Ti
½1� L0ðsiÞ�

� �
(4.77)

Then using (4.74) we find

@e
@o

¼ kde
2

k?2

1

~o
Te

Ti

~o
o
þ o�e

o
þ Te

Ti

� �
½1� L0ðsiÞ� (4.78)

From which

W ¼ 1

4
kdi

2 2o� o�i � kyvg
o�kyvg

½1� L0ðsiÞ�jfj2 (4.79)

Here we can see that the energy of flute modes is an FLR effect.

4.9 Finite Larmor Radius Effects Obtained by Orbit Averaging

In a fluid description the lowest order finite Larmor radius effects (FLR) can be

obtained by including the diamagnetic and stress tensor drifts. Such a calculation,

however, becomes rather involved due to cancellation between diamagnetic and

stress tensor drifts that are not real particle drifts. Finite Larmor effects are due to

the inhomogeneity of the electric field and the correction to the E � B drift caused

by it. For a harmonic space dependence of the electric field and o << Oci the FLR

effect averages the electric field over a range of phases in space and this phase

mixing always leads to reduction of the effective field (Fig. 4.2). The efficiency of

this phase mixing clearly must depend on the ratio r/l. The particle equation of

motion can be written

m
dv

dt
¼ q½Eþ v� B� (4.80)

For simplicity we use a slab geometry according to Fig. 4.3, where B ¼ B0ź and

E ¼ E0 cosðky� otÞx̂ (4.81)

Vφ

Fig. 4.2 Finite gyroradius

averaging
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In component form we have

dvx
dt

¼ Ocvy þ q

m
E0 cosðkyðtÞ � otÞ (4.82)

dvy
dt

¼ �Ocvx (4.83)

where we observe that the electric field is evaluated at y(t), i.e. along the orbit. The

coupling between the equations on the time scale Oc
�1 can be eliminated by

differentiating with respect to t and substitution. This leads to

d2vx
dt2

¼ �Oc
2vx þ q

m
o� k

dy

dt

� �
E0 sin½kyðtÞ � ot� (4.84)

d2vy
dt2

¼ �Oc
2vy � Oc

2 E0

B0

cos½kyðtÞ � ot� (4.85)

We shall now assume that Oc >> o so that the time scales are well separated.

We then average over the short timescale obtaining

<vx> ¼ E0

B0Oc
o� k

dy

dt

� �
sin½kyðtÞ � ot�

� �
� 1

Oc
2

d2vx
dt2

� �
(4.86)

<vy> ¼ � E0

B0

cos½kyðtÞ � ot�h i � 1

Oc
2

d2vy
dt2

� �
(4.87)

We shall now perform the averaging of (4.86) and (4.87) over the unperturbed

orbit, obtained by solving (4.68) with E0 ¼ 0. This orbit may be written

y

K

E

X

Z

B

Fig. 4.3 Slab geometry

with electric field
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y(t) ¼ y0 þ rLðtÞ (4.88)

Where

rL(t) ¼ � v?
O

cosðOctþ fÞ � cosf½ � (4.89)

Is the projection of the Larmor radius along y. The orbit in (4.89) corresponds to

vy ¼ v? sinðOctþ fÞ

vx ¼ v? cosðOctþ fÞ

For the orbit (4.89) we have <d2vx,y/dt
2> ¼ 0. we are also interested in the

lowest order FLR effects and take only linear terms in the parameter k2rL
2<<1. We

then have

sinðky(t)� otÞ ¼ sinðky0 � otÞ 1� 1

2

k2v?2

Oc
2

cosðOctþ fÞ � cosf½ �2

 �

� cosðky0 � otÞ kv?
Oc

cosðOctþ fÞ � cosf½ �

cosðky(t)� otÞ ¼ cosðky0 � otÞ 1� 1

2

k2v?2

Oc
2

cosðOctþ fÞ � cosf½ �2

 �

þ sinðky0 � otÞ kv?
Oc

cosðOctþ fÞ � cosf½ �

We now perform the averaging over time, keeping ot constant since Oc >> o.
We then obtain

< sinðky(t)� otÞ> ¼ sinðky0 � otÞ 1� 1

2

k2v?2

Oc
2

1

2
þ cos2f

� �
 �

þ cosðky0 � otÞ kv?
Oc

cosf (4.90)

< cosðky(t)� otÞ> ¼ cosðky0 � otÞ 1� 1

2

k2v?2

Oc
2

1

2
þ cos2f

� �
 �

� sinðky0 � otÞ kv?
Oc

cosf (4.91)

We also need

d

dy
sinðky0 � otÞ

� �
¼ 0
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We now continue to average (4.91) over a Maxwellian distribution. Then v?2 ¼
2(T=m) cos’ ¼ 0; cos2’ ¼ 1=2 and

<< sinðky(t)� otÞ>> ¼ sinðky0 � otÞ 1� k2
T

mO2
c

 !

<< cosðky(t)� otÞ>> ¼ cosðky0 � otÞ 1� k2
T

mO2
c

 !

Introducing r2 ¼ 2T= mOc
2

	 

we now have

<<vx>> ¼ oE0

B0Oc
sinðky0 � otÞ 1� 1

2
k2r2

� �
(4.92)

<<vy>> ¼ E0

B0

cosðky0 � otÞ 1� 1

2
k2r2

� �
(4.93)

Here the gyroradius r is for a general species. However, the application will

almost exclusively be to the main ions. These are the averaged drifts we have been

seeking. With the present choice of E and k we have the E � B drift in the y

direction and the polarisation drift in the x direction. As it turns out, the present

averaging is not accurate enough to give correct FLR correction to the polarisation

drift. Thus if the perturbed orbit is introduced into <d2vx,y/dt
2>, we obtain new

terms of the same order as the FLR correction to (4.92). Neglecting FLR corrections

to the polarization drift we obtain in vector form

<v?> ¼ 1� 1

2
k2r2

� �
vE þ vp (4.94)

Where we used only one averaging sign referring to both time and velocity

averagings.

We observe here that the constant of integration, cosj, in (4.89) is important in

order to include all particles with orbits through y0. Since y ¼ y0 þ ðv?=Oc)cos’
the representation (4.89) means that we include particles with gyrocentres between

y0 � v?=Oc and y0 þ v?=Oc.

In order to compare our results with those from a fluid theory we now calculate a

density response to an electric field by using the continuity equation. This is a

natural procedure since the density response is uniquely defined while fluid and

particle drifts may differ. Thus using (4.94) for ions in the continuity equation,

neglecting parallel ion motion, we obtain for k?>> d ln n0=dxj j

dn
n0

¼ o�e
o

1� k?2Ti

miOci
2

� �
� k?2Te

miOci
2

� �
ef
Te

(4.95)
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Where we included the ion FLR correction to the E � B drift according to (4.94)

and the polarization drift. Equation 4.95 can also be rewritten in the form

dn
n0

¼ o�e
o

� k?2Te

miOci
2

1� o�i
o

� �� �
ef
Te

(4.96)

Where the FLR term now appears as the �o*i/o correction to the polarisation

drift. Equation 4.96 can be obtained by using fluid equations and including the

diamagnetic drift in the convective derivative in the polarisation drift, i.e.

@

@t
! @

@t
þ v�j � r

This is also what remains in the fluid description after cancellations between

diamagnetic and stress tensor drifts (compare Chap. 2). It can also be readily shown

by the orbit averaging method that this procedure also can be used for the perturbed

diamagnetic drift, thus giving the lowest order nonlinear FLR effects when used in

the convective derivative in the polarisation drift.

It is also interesting to note the similarity between the FLR effects and the

polarisation drift in their contribution to the density response. Such a similarity may

be expected since the FLR effect is due to the space dependence of the electric field

along the orbit while the polarisation drift is due to the time dependence. A particle

gyrating in the orbit cannot distinguish between these origins of field variation.

4.10 Discussion

We have in this chapter rederived the most important dispersion relations of Chap. 3

using a kinetic description. This has been simplified by using a slab geometry. A

more general Gyro-kinetic description will be given in Chap. 5. We have also

particularly considered the effects of finite Larmor radius and verified the first order

effects that were obtained from fluid theory in Chap. 2 and the consequences of it

for stability found in Chap. 3. Finally the dielectric properties of inhomogeneous

plasmas are fundamental. We will later, in Chap. 7, show how the wave energy of

interchange modes can be recovered to first order in the FLR parameter from a

nonlinear conservation relation. In Chap. 6 we will use more realistic geometries

and also study modes driven by temperature gradients.

4.11 Exercises

1. Perform the integration in (4.3).

2. Derive a relation between j and Ajj in (4.7) using fluid equations and neglecting
parallel ion motion. Compare with the expression for Ejj in (3.71)
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3. Derive (4.47) by using fluid equations.

4. Derive a dispersion relation for the ‘Universal drift instability for small Larmor

radius by using (4.22) for electrons and fluid equations for ions, i.e. neglecting

ion Landau damping.

5. Use the tokamak data in Appendix I to compare the different contributions to eF
in (4.64).
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Chapter 5

Kinetic Descriptions of Low Frequency

Modes Obtained by Gyroaveraging

We have, in Chap. 4 studied kinetic descriptions in simple geometries. Characteristic

of these has been that inhomogeneities have been assumed to be constant along

particle orbits. This can be achieved by representing magnetic curvature by a simple

gravity force. Then, it is possible to integrate the Vlasov equation in a magnetized

plasma, along the characteristics (linear orbit) for all times. This can be made for

arbitrary frequencies and gyroradii, thus including cyclotron resonances and the full

Finite Larmor Radius (FLR) effects. This can also be done keeping nonlinear terms

although we only did that for the drift kinetic equation which does not involve FLR

effects. In the present chapter we will drop the assumption of inhomogeneities that are

constant in space and include the full kinetic magnetic drifts [1–20]. In this case we do

not know even the unperturbed orbits for all times. This case can still be treated in a

reasonably simple form if we restrict our study to low frequency modes which have

o << Oc.We can then average over the fast timescale.Wewill start with the simplest

case when FLR effects are small and derive a more general drift kinetic equation than

we did in Chap. 4. We also include a brief survey of this area [1–20].

5.1 The Drift Kinetic Equation

The complexity of a full Vlasov description in a magnetised plasma has led to the

development of a number of simplified approximate descriptions in various limits.

One obvious limit is the case of strongly magnetized particles [16, 20]. In this limit

the particles are well localized in the plane perpendicular to the magnetic field so

that the kinetic description is needed only along the field. This approximation is

usually valid for electrons in laboratory plasmas and sometimes also for ions.

The condition for localization in the perpendicular plane may be written r << l
where r is the Larmor radius and l is the inhomogeneity scale length of the

phenomenon we want to study.
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Another simplification that still leaves a large class of important phenomena

within the description is to assume that the time scale of the phenomenon we are

interested in is much longer than the gyroperiod, i.e o << Oci. When these

conditions are fulfilled it is easy to average the Vlasov equation over a Larmor

orbit since both the distribution function and the electromagnetic fields are almost

constants over the Larmor orbit in this case. We will, however, include magnetic

curvature, thus keeping background drifts proportional to r/LB where LB is the

inhomogeneity scale length of the background magnetic field. This effect may

sometimes be more important than finite Larmor radius (FLR) effects of order

r/l since it enters multiplied by the large scale thermal velocity.

We shall here use a Lagrangian method of averaging, i.e. we follow the particle

around the gyro orbit instead of averaging over the short time-scale at a point.

The averaging procedure is then considerably simplified since we already know the

average of the particle velocity, i.e. the guiding center drift. We thus have:

<v?> ¼ vE þ v jj
dB?
B

þ vD (5.1)

Where

vE ¼ 1

B0

ðE� e
_

jj Þ

vD ¼ vk þ vrB

vk ¼
v jj 2

Oc

ðe_ jj � kÞ

vrB ¼ v?2

2Oc

ðe_ jj � r lnBÞ

k ¼ ðe_ jj � rÞe_ jj

E is the electric field, B0 is the background magnetic field and dB? is the perpen-

dicular magnetic field perturbation.

We start from the Vlasov equation in the form

@f

@t
þ v � rf þ q

m
ðEþ v� BÞ � @f

@v
¼ 0 (5.2)

We now separate our description into the directions parallel and perpendicular to

B0, using the notations ║ and ┴ respectively. The velocity is then written

v ¼ v? þ v jj e
_

jj
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Where e jj ¼ B0 B= and the angle is given by ’ ¼ e
_

k � v?.
The velocity gradient may then be written

@

@v
¼ v

_

?
@

@v?
þ f

_ 1

v?

@

@f
þ e

_

jj
@

@v jj

and then

ðv� BÞ � @
@v

¼ ðv_? � B jj Þ � f
_ 1

v?

@

@f
þ ðv� dB?Þ � @

@v

Equation 5.2 then reduces to

@f

@t
þ v � rf þ q

m
ðEþ v� dB?Þ � @f

@v
� B jj

B
Oc

@f

@f
¼ 0 (5.3)

where the factor B jj B= accounts for perturbations in B parallel to the background

field. This factor is always of order 1.

We shall now use the assumption thatOc is much larger than any other frequency

in (5.3). To lowest order in Oc
�1 (5.3) then leads to the condition

@f

@f
¼ 0

This means that we as a first approximation can treat f as independent of j in all

terms except the last term in (5.3). We now, however, also want to keep curvature

terms proportional to r/Oc. These terms are first order in Oc
�1 so some care is

needed in treating them. We shall assume that f ¼ f t,r;vk2;v?2,’
� �

. The most

important curvature dependence of f enters in the separation between v║ and v┴.

If we separate out this additional space dependence we may write

rf ¼ @f

@r
þ @f

@v?2
rv?2 þ @f

@v jj 2
rv jj 2

Or

rf ¼ @f

@r
þ v jj rðe_ jj � vÞ 1

v jj

@f

@v jj
� 1

v?

@f

@v?

� �
(5.4)

where the space dependence of e║ has been separated out. It can now be shown that

v � rðe_ jj � vÞ ¼ v jj ðv � kÞ (5.5)

and we notice that this curvature depends on the phase angle j.
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We now perform the gyroaveraging of (5.2). Then @f=@t is unchanged. In the

second term vkek � @f @r=ð Þ is unchanged while v is replaced by vgc in the perpen-

dicular part. In the third term we can neglect @f=@’. The part containing ∂f/∂v┴
reduces to

q

m
Eþ v jj ðe_ jj � dB?Þ
h i

� v?
v?

@f

@v?

Here the averaging leads to a replacement of v? by vgc. As it turns out, however, the

first two parts of vgc do not contribute due to orthogonality so that we are left with

only vD. In the part containing @f @vk
�

we may just replace v┴ by vgc . The last term

in (5.2) finally is a total derivative in j and vanishes since orbit averaging means

integrating one period in j.
Thus writing down our averaged equation directly as we obtain it after orbit

averaging we have

@f

@t
þ ðv jj e

_

jj þ vgcÞ � @f
@r

þ v jj 2k � vgc 1

v jj

@f

@v jj
� 1

v?

@f

@v?

� �

þ q

m
E jj þ ðvgc � dB?Þ � e_ jj
h i @f

@v jj

þ q

m
Eþ v jj ðe_ jj � dB?Þ�
h i vD

v?

@f

@v?
¼ 0 (5.6)

Since now

k � vgc ¼ 1

B
ðe_ jj � kÞ � Eþ v jj

B
ðe_ jj � kÞ � ðe_ jj � dBÞ

the third term may be written as

q

m
vk � Eþ v jj ðe_ jj � dBÞ

h i 1

v jj

@f

@v jj
� 1

v?

@f

@v?

� �

We then obtain the drift kinetic equation

@f

@t
þ ðv jj e

_

jj þ vgcÞ � @f
@r

þ q

m
E jj þ ðvgc � dB?Þ � e_ jj
h i @f

@v jj

þ q

m
Eþ v jj ðe_ jj � dBÞ
h i

� vrB

v?

@f

@v?
þ vk

v jj

@f

@v jj

� �
¼ 0 (5.7)

We notice that the first three terms can easily be obtained from a continuity

equation for guiding centers (cf Eq. 4.51). Equation 5.7 agrees to first order in the

inverse aspect ratio with the drift kinetic equation derived by D’Ippolito and

Davidson [6.20] except for the presence of the vD•∂f/∂r term in (5.7). This term

is comparable to the other curvature terms if f 1 � q’=T and is usually kept.
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If we replace the dependence on vk2 and v?2 of f by E ¼ v2=2 and m� @m=@rð Þr
where m ¼ v?2=2B, and r is the perpendicular direction of gradB0, we can obtain also

the mirror force terms kept by D’Ippolito and Davidson. The correction � @m=@rð Þr
of m is necessary in order to have conservation to lowest order on theOc

�1 time scale.

We then obtain a correction to (5.4) of the form @f=@mð Þgrad║m
i.e

1

2
v?2 � 1

v jj

@f

@v jj
� 1

v?

@f

@v?

� �
e
_

jj � r lnB (5.8)

The drift kinetic equation (5.7) has here been obtained in a comparatively simple

way. It does not take into account finite Larmor radius effects of the type k2r2 but
includes the full parallel dynamics, is fully nonlinear and makes no WKB assump-

tion for the space scale of perturbations.

5.1.1 Moment Equations

In order to see what fluid motion it corresponds to we shall now take moments

of (5.7). This procedure is rather complicated in the presence of vD which in general

depends on both v┴ and v║. For this reason we will in the following for simplicity

neglect curvature effects.

The zeroth moment is then

@n

@t
þ e

_

jj � rðnu jj Þ þ
ð
vgc � rfdv ¼ 0

where u is the fluid velocity. Now inserting (5.1) where vD ¼ 0; , we obtain the

continuity equation

@n

@t
þ 1

q

@

@z
j jj þ

dB?
B0

� rj jj

� �
þ 1

B0

ðE� e
_

jj Þ � rn ¼ 0 (5.9)

where j║ is the parallel current. The first parallel moment of (5.7) may be written:

@

@t
ðnu jj Þ þ e

_

jj � r
ð
v jj 2fdv jj þ

ð
vgc � rfv jj dv jj �

q

m
E jj þ ðvE � dB?Þ:e_ jj
h i

n ¼ 0

where

vE ¼ 1

B0

ðE� e
_

jj Þ

Now vk ¼ uk þ wk where w║ is the thermal random velocity. Thus

ð
v jj 2fdv jj ¼

ð
u jj 2fdv jj þ

ð
w jj 2fdw jj ¼ nu jj 2 þ

1

n
P
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where P is the pressure. Substituting now (5.9) for @n=@t we obtain

n
@

@t
u jj þ nu jj e

_

jj � ru jj þ n
1

B0

ðE� e
_

jj Þ � ru jj þ nu jj
dB?
B

� ru jj

þ 1

m
e
_

jj � rPþ 1

m

dB?
B

� rP� q

m
E jj þ ðvE � dB?Þ:e_ jj
h i

n ¼ 0 (5.10)

Equation 5.10 is the parallel equation of motion in the absence of FLR effects. It

is important to note here the absence of diamagnetic drifts in the convective part of

the time derivative. It is instructive to rewrite (5.7) slightly. We may define the

perpendicular guiding center fluid velocity

ugc ¼ 1

B0

ðE� e
_

jj Þ þ u jj
dB?
B0

Introducing now the diamagnetic drift velocity

v� ¼ 1

qnB0

ðe_ jj � rPÞ

we have

q

m
ðv� � dBÞ � e_ jj ¼

q

m
ðe_ jj � v�Þ � dB? ¼ � 1

mn

dB?
B

� rP

We may thus rewrite (5.10) in form

@

@t
u jj þ u jj e

_

jj � ru jj þ ugc � ru jj ¼ q

m
E jj þ ðvE þ v�Þ � dB?½ � � :e_ jj

n o
� 1

mn
e
_

jj � rP

(5.11)

Equation 5.11is the usual parallel equation of motion where the diamagnetic

drift is included in the v � B term but not in the convective derivatives.

5.1.2 The Magnetic Drift Mode

We now restrict our consideration to the case e jj � grad¼ 0 and linearize. Equa-

tion 5.11 is then

@

@t
u jj ¼ � e

m
E jj � e

m
ðv� � dB?Þ � :e_ jj
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Using the representation A ¼ Ae
_

jj and

dB? ¼ r� Ae
_

jj ¼ r?A� e
_

jj E ¼ �rf� @A

@t
e
_

jj

We obtain

� iou jj ¼ �io
e

m
A� i

e

m
v� � ðk� e

_

jj Þ � e
_

jj
h i

A

Or

u jj ¼
e

m
A 1� o�e

o

	 


The parallel current is

j jj ¼
1

m
ðr � BÞ � e_ jj ¼

1

m
r� ðr?A� e

_

jj Þ
h i

� e_ jj ¼ � 1

m
D?A

Thus

neu jj ¼ � ne2

m
A 1� o�e

o

	 

¼ 1

m
k?2A

or

o ¼ o�e 1� k?2c2

ope
2

� ��1

This is the dispersion relation of the magnetic drift mode (compare Eq. 4.59).

We see here that the inclusion of the diamagnetic drift in the convective derivative

would not cause a negligible modification. We must then conclude that this term is

cancelled by stress tensor effects.

Transport due to an enhanced thermal equilibrium spectrum of magnetic drift

modes is discussed in Sect. 9.2.

5.1.3 The Tearing Mode

In a more realistic geometry with magnetic shear, the condition k║ ¼ 0, which

was assumed for the magnetic drift mode, can not be fulfilled everywhere for

modes with finite radial extent. We thus have to solve a radial eigenvalue problem.

The characteristic property j ¼ 0 of the magnetic drift mode will then enter as a

boundary condition at the rational surface. This type of mode can be driven unstable

by collisions and is called the tearing mode [6.4]. In a shortwave version it is called

the microtearing mode [6.57, 6.58].

5.1 The Drift Kinetic Equation 89

http://dx.doi.org/10.1007/978-1-4614-3743-7_4
http://dx.doi.org/10.1007/978-1-4614-3743-7_9


5.2 The Linear Gyrokinetic Equation

We have in Chap. 4 seen how we can obtain general kinetic equations in a slab

geometry by integrating along unperturbed orbits. For more general geometries we

have in the previous section derived a drift kinetic equation valid in the limit

k┴r << 1. We will here finally consider the case k?r � 1 in complex geometry.

Gyroaveraged equations of this type are called Gyrokinetic equations. A pioneering

work along these lines is that by Rutherford and Frieman [1]. A generally used

assumption in this type of equations is: r/L <<1 where L is an equilibrium scale-

length. We will here derive gyrokinetic equations by a method that is considerably

shorter than conventional methods. We may write the Vlasov equation in the form:

Df

Dt
¼ 0 (5.12)

where

D

Dt
¼ @

@t
þ v � @

@r
þ q

m
ðEþ v� BÞ � @

@v
(5.13)

We shall assume a solution of the form:

f ðr; v; t) ¼ f 0ðr; vÞ þ f 1ðr; v; t)

Where f0 is the background distribution and f1 is a perturbation fulfilling

f 1ðr; v; t)<<f 0ðr; vÞ

For simplicity we shall here omit background electric fields. The equation for f0
becomes

v � @f 0
@r

þ q

m
ðv� B0Þ � @f 0

@v
¼ 0 (5.14)

Writing the velocity in cylindrical coordinates we have

@

@v
¼ v

_

?
@

@v?
þ f

_ 1

v?

@

@f
þ e

_

jj
@

@v jj

Where ┴ and ║ refer to the direction of B0. Since

’
_ ¼ e

_ � v
_

?
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We can rewrite (5.14) in the form

v � rf 0 ¼ Oc
@f 0
@’

(5.15)

showing that a gyrophase dependence of f0 is associated with inhomogeneity

(compare the dependence on the generalized moment in Chap. 4). We may also

write (5.14) in the form

v � rf 0 þ Oc e
_

jj �
@f 0
@v

� �� �
¼ 0

Assuming ek:@f 0=@r ¼ 0, we obtain the solution

@f 0
@v

¼ 1

Oc
ðe_ jj � rf 0Þ þ v

_

?
@f 0
@v?

þ e
_

jj
@f 0
@v jj

(5.16)

To first order we have

D0f 1
Dt

¼ � q

m
Eþ v� dB½ � � @f 0

@v
(5.17)

where

D0

Dt
¼ @

@t
þ v � r þ q

m
v� B0 � @

@v

is the operator along the unperturbed orbit. The unperturbed orbit is given by

vðtÞ ¼ ~vðtÞ þ vDðtÞ þ v jj e
_

jj (5.18)

where ~vðtÞ is the pure gyromotion as given by (4.4), vD(t) is the magnetic drift

which may be time dependent along the orbit and v║ is the velocity along B0.

We now invert (5.17) as

f 1 ¼ � q

m

ðt
�1

Eðrðt0Þ þ vðt0Þ � dBðrðt0ÞÞ½ � � @f 0
@v

dt0 (5.19)

Where r(t0) is the unperturbed orbit. Now, considering Fourier harmonics in time

and space we obtain

f k ¼ � q

m

ð1
0

Ek þ v� Bk½ � � @f 0
@v

e�iaðtÞdt (5.20)

5.2 The Linear Gyrokinetic Equation 91

http://dx.doi.org/10.1007/978-1-4614-3743-7_4
http://dx.doi.org/10.1007/978-1-4614-3743-7_4


where

aðtÞ ¼ k � rðt) � r(t0Þ½ � � ot

¼ k?v?
Oc

sinðOctþ ’� yÞ � sinð’� yÞ½ � �
ðt
t�t

~oðt0Þdt0

and

~o ¼ o� k jj v jj � k � vDðtÞ; t ¼ t� t0 ~
v(0) ¼ v?ðcos’; sin’Þ

k? ¼ k?ðcos y; sin yÞ
We now introduce potentials i.e.

E ¼ �r’� @
@tA B ¼ r� A

For a Maxwellian distribution (5.16) now leads to

k � @f 0
@v

¼ i
m

T
ðk? � v_? þ k jj v jj � o�f Þf 0 (5.21)

Where o�f ¼ k � v�f; v�f; ¼ T=ðmOcÞð Þ ek x gradðlnf 0Þ:
� �

As we have seen in

Chaps. 3 and 4, A║ is the most important part of A. In order to include also

compressional parts of the magnetic field perturbation i.e. dB║ (Eq. 6.18) we now

include also an Ar component. This makes our choice of A general since we have

the freedom of the gauge condition. We then find:

Ek þ v� Bk½ � � @f 0
@v

¼ �i
m

T
f 0k? � v?’k þ i

m

T
ðo� o�f Þf 0Ak � v?

� i
m

T
ðk jj ’k � oAk jj Þf 0v jj þ i

m

T
ð’k � v jj Ak jj Þo�f f 0 (5.22)

Since now

d

dt
e�iaðtÞ ¼ iðk? � v?ðtÞ þ k jj v jj � oÞe�iaðtÞ (5.23)

We may rewrite (5.20) in the form

f k ¼
q

T
f 0

ð1
0

’k

d

dt
e�iaðtÞ þ iðo�f �oÞðfk�v jj Ak jj �Ak �v?Þe�iaðtÞ

� �
�dt (5.24)

or

f k ¼
q

T
’k f0 þ if 0

q

T
ðo�f � oÞðfk � v jj Ak jj Þ

ð1
0

e�iaðtÞdt

� i
q

T
f 0ðo�f � oÞ

ð1
0

Ak � v?e�iaðtÞdt (5.25)
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In an inhomogeneous system the orbit integrals in (5.25) require knowledge of

an, in general, very complicate orbit. We will here avoid this complication by

assuming the gyroperiod to be much shorter than any other time scale and

performing an average over it. Thus a general orbit integral is written

ð1
0

GðtÞdt ¼
X1
0

Dt
1

Dt

ðtþDt

t
GðtÞdt (5.26)

where Dt is a gyroperiod and the integrals, normalized by Dt are the local

gyroaverages of an arbitrary function G(t), subject only to the above assumption

of time scales. In the gyroaveraging, we can ignore all variation on time scales

longer than Dt. Since the time steps Dt are small as compared to the longer time

scales in the system we can convert the summation back to an integral over the long

time scale. Thus

ð1
0

GðtÞdt ¼
ð1
0

<GðtÞ>dt

Now since

exp �i
k?v?
Oc

sinðOctþ ’� yÞ
� �

¼
X
n

Jn
k?v?
Oc

� �
exp �inðOctþ ’� yÞ½ �

We obtain

<e�iaðtÞ> ¼ J0ðxÞ exp ix sinð’� yÞ½ � exp i

ðt
t�t

~oðt0Þdt0
� �

(5.27)

Where x ¼ k?v?=Oc:. Moreover, writing Ak � v? ¼ A?v?cosðOctþ ’� y0Þ we

have

<Ak � vke�iaðtÞ> ¼ A?v?< cosðOctþ ’� y0Þe�iaðtÞ>

¼ 1

2
eiLk :

X
n

einy

*
Jnþ1 exp �inðOctþ fÞ þ iðy� y0Þ½ �f

þ Jn�1 exp inðOctþ ’Þ � iðy� y0Þ½ �geþi
Ð t

t�t
~oðt0Þdt0

+

¼ i
v?
k?

ðe_ jj � kÞ � A dJ0
dx

eiLk e
i
Ð t

t�t
~oðt0Þdt0

h i
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where

Lk ¼ k?v?
Oc

sinð’� yÞ ¼ ð~v� e
_

jjÞ � ~k=Oc

As mentioned above, the integration on the long timescale requires detailed

knowledge of particle orbits. If we instead differentiate with respect to the long

timescale we obtain the gyrokinetic equation

ðo� k fj v jj � oDÞgk ¼
q

T
ðo� o�f Þ ðfk � v jj A jj ÞJ0ðxÞ � i

v?
k?

ðe_ jj � kÞ � AkJ0
0

� �
f 0

(5.28)

Where

gk ¼ f k þ
qf
T

f 0

� �
e�iLk

J0
0 ¼ dJ0

dx

x ¼ k?v?
Oc

Lk ¼ ðv� e
_

jj Þ �
k

Oc

Here oD ¼ k � vDðv2k; v2?Þ as given in the derivation of the drift kinetic equation.

The diamagnetic drift frequency contains grad f0 and is also velocity dependent. For
a Maxwellian distribution where both n and T are space dependent we find

o�f ¼ o� 1þ �
mv2

2T
� 3

2

� �� �
(5.29)

Where � ¼ Ln=LT and o• is the usual fluid diamagnetic drift with only a density

gradient. Equation 5.28 agrees with the gyrokinetic equation obtained by Antonsen

and Lane [6.53].

5.2.1 Applications

It is straightforward to rederive the results on both electrostatic and electromagnetic

modes in Chap. 4 from (5.28). The advantage of (5.28) is that it allows for
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space dependent coefficients (i.e. o•, oD etc.). We also note that k║ in general has to

be treated as an operator. Another major difference is that (5.28) is valid

for arbitrary oD/o while the treatment in Chap. 4 only works to first order in

oD/o. We will here explore this property a little in the electrostatic limit.

We will also take the limit o>>kkvth in which case kk can be omitted. In this

case the density response may be written:

dn
n

¼ � qf
T

1� 1

n0

ð
o� o� 1þ �ðmv2=2T � 3=2Þ½ �J02ðxkÞf M

o� oD v jj 2 þ v?2=2
� �

=v2th
d3v

" #
(5.30)

where oD is the fluid magnetic drift frequency and all velocity dependence has been

written explicitly. For comparison with fluid theory it is useful to expand (5.30) for

oD/o <<1 and x ¼ kr << 1. Including terms up to second order in both small

parameters we have

dn
n

¼ o�e
o

� 1� o�i
o

ð1þ �iÞ
	 


1þ G
oDi

o

	 
h oDe

o
þ k?2r2

	 


þ G�i
o�ioDioDe

o3
� ef
Te

(5.31)

Where o�iT ¼ o�ð1þ �iÞ and G ¼ 7=4. The expansion in oD has a very limited

regime if applicability in tokamaks. However this is really the only way of compar-

ing with advanced fluid theory analytically. As we will see in Chap. 6 the same

expansion, except that Г ¼ 5/3 (5% difference) is obtained for a reactive fluid

closure including the diamagnetic heatflow.

We note that (5.31) is also useful for MHD modes since for these ions can

usually be treated in the electrostatic limit. For these modes the natural linear

eigenfrequency is o•iT at which the second part of (5.31) vanishes. The last term

here acts as an additional driving pressure force which is responsible for an

instability below the MHD beta limit (Eq. 6.70). As can be seen from the advanced

fluid model presented later the last term in (5.31) is due to the divergence of the

diamagnetic heat flow which is the term in the energy equation that corresponds to

the lowest order driving term in the continuity equation, i.e. the divergence of the

diamagnetic particle flux.

Another property of (5.31) is that to first order in o•/o and oD/o it reduces to

o•(1�en)/o where en¼ oD=o•. Since o•/o leads to the main driving term for

interchange and ballooning modes in MHD, the en part is the main reason for the

reduction of the growthrate of MHD ballooning modes for large en seen in kinetic

theory (6.70).

However, the most interesting aspect of (5.31) is probably that the last term is the

first in such an expansion to separate between temperature and pressure gradients.

This is so since the first term on the right hand side is due to E � B convection and

thus will cancel with the corresponding electron term when we derive a dispersion
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relation from the condition div j ¼ 0 and in the other terms density and temperature

gradients enter together to form a pressure gradient. Then the last term, as pointed

out above, comes from the heat flow. Thus an adiabatic model would not separate

out temperature gradients (degenerate case).

5.3 The Nonlinear Gyrokinetic Equation

We will now continue the above derivation of a gyrokinetic equation to the

nonlinear regime.

It is straight forward to continue the linear derivation iteratively, thus inserting

the linear relations in the nonlinear terms. This corresponds to an expansion in the

perturbations but this is, in fact, allowed since in the main part of a tokamak,

e’=T � 10�2. Moreover, the Hasegawa-Mima equation, which is regarded as fully

nonlinear, emerges in the appropriate limit. We will here, for simplicity, omit A┴.

A convenient way of writing (5.28) is then:

f k
ð1Þ ¼ � q

T
f 0Hk (5.32a)

Hk ¼ fk þ Gke
iLkðvÞ (5.32b)

Gk ¼ o� � o
~o

fk þ v jj A jj
� �

J0ðxkÞ (5.32c)

Lk ¼ ðv� e jj Þ � k=Oc (5.32d)

For the background variation we will use the formulation

@f 0
@v

¼ � k
Oc

u
_ þ m

T
v

� �
f 0ðr; vÞ (5.33)

An interesting point is that linearly the phase dependence of eiLk disappears into

a Bessel function while it plays an important role in the integration of the nonlinear

terms. The nonlinearity we are interested in can be written

f k�k0
ð2Þðt0Þ ¼ � q

m

ð/

0

Ek00 þ ðv� Bk00 Þ½ � � @f
ð1Þ

k�k0�k00 ðt0Þ
@v

e�iak�k0 ðt0Þdt0:::;

ðt0 ¼ t0 � t00Þ
(5.34)
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Here we need to calculate

@f k
ð1Þ

@v
¼ q

T

k
Oc

y
_ þ m

T
v

� �
f 0Hk � q

T
f 0

@Hk

@v?
v
_

? þ 1

v?

@Hk

@’
’
_ þ @Hk

@v jj
e
_

jj

� �
(5.35)

Which we substitute into (5.34) as

f k;o
ð2Þ ¼ q

m

	 
2

f 0ðr; vÞ

�
X
k0

ð1
0

ik0 � v

fk0Hk�k0 � T

mv?
fk0 � v jj A k0jj
� �@Hk�k0

@v?
:

þ T

m
A k0jj

@Hk�k0

@v jj

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
e�iak�k0 ðtÞdt

� q

m

	 
2

f 0ðr; vÞ
X
k0

ð1
0

ik0 � ðe_ jj � v
_

?Þ T

mv?
fk0 � v jj A k0jj
� � 1

v?

@Hk�k0

@’


 �
e�iak�k0 ðtÞdt

� q

m

	 
2

f 0ðr; vÞ
X
k0

ð1
0

v jj k jj 0fk0 �o0A k0jj
� ��o�0 fk0 � v jj A jj

� �� �

� Hk�k0 þ i
T

m
k jj 0fk0 þo0A k0jj
� �@Hk�k0

@v jj

8>>><
>>>:

9>>>=
>>>;
e�iak�k0 ðtÞdt

(5.36)

Here we assume o0 to be associated with k0 and o00 with k00 ¼ k�k0.
Rewriting (5.36) in a similar way as (5.25) the following integrals appear:

GðxÞ ¼ i

ð1
0

k0 � ve�iakðtÞdt (5.37a)

Rðx0Þ ¼ i

ð1
0

k0 � v @Lk�k0

@v?
e�iYðtÞdt (5.37b)

Qðx0Þ ¼ i

ð1
0

k0 � ðe_ jj � v
_

?Þ @Lk�k0

@’
e�iYðtÞdt (5.37c)

Where

YðtÞ ¼ akðtÞ � Lk�k0 ðtÞ
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Using (5.37a–c) we can rewrite (5.36) in the much simpler form

f ð2Þk;o ¼ q

T

	 
2

f 0
X
k0

fk0fk�k0GðxÞ �
T

mv?
fk0 � v jj A jj
� �

iGk�k0 ðRðx0Þ þ Qðx0ÞÞ

 �

(5.38)

The integration of the expressions (5.37) proceed in a way very similar to the

evaluation of the A┴ part in the linear gyrokinetic equation (Eqs. 5.27–5.28) with

the result:

GðxÞ ¼ �i
v?
k? ~o

ðk� k0Þ � e_ jj J00ðxÞeiLk (5.39a)

Rðx0Þ þ Qðx0Þ ¼ v?
~oOc

ðk0 � k00Þ � e_ jj J0ðx0ÞeiLk (5.39b)

Where we introduced k
00 ¼ k� k0 and J0

0 ¼ dJ0=dx:
The new feature of the nonlinear terms is that the vector products appear. They

are initially obtained as terms of the type proportional to e.g. sin(y�y0) etc. Thus it
is essential to have k0 different from k in (5.37). We now observe that G(x) vanishes
upon summation over k0. This corresponds to terms prop to vE•grad j. We then

arrive at

f ð2Þk;o ¼ q2

T
f 0

i

m~oOc

X
k0k00

ðk0 � k00Þ � e_ jj eiLk fk0 � v jj A k0jj
� �

fk00 � v jj A k00jj
� �

� o�00 � o00

~o00 J0ðx0ÞJ0ðx00Þ (5.40)

We now obtain a nonlinear dispersion relation of the form:

Dðo; kÞfk;o ¼ Ti

e

o2

L0 � 1

dnð2Þe;k;o
n0

� dnð2Þi;k;o
n0

� �
(5.41)

As an example we will now consider the electrostatic approximation. We will

furthermore ignore magnetic drifts. We then obtain the equation:

o 1þ Te

Ti
ð1� L0ðsÞ

� �
� o�eL0ðsÞ


 �
fk;o

¼ � 1

B0n0

Te

Ti

ð
f 0
X
k0

ðk0 � k00Þ � e_ jj J0
2ðx0Þ � 1

� �
1� o�00

o00

� �
J0

2ðx00Þ

� fk0fk00dv (5.42)
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We now take the limit k2r2 << 1 keeping only first order terms and limit

consideration to three waves. We can then perform integration over velocity

space obtaining:

o 1þ 1

2
k2r2s

� �
� o�e 1� 1

2
k2ri

2

� �
 �
fk;o

¼ � rs
2

B0

Te

Ti
ðk0 � k00Þ � e_ jj k?02 1� o00�i

o00

� �
� k?002 1� o�i0

o0

� �� �
fk0fk00 (5.43)

This is the Hasegawa Mima equation in (o,k) space generalized to include first

order FLR effects. We note that since this is a nonlinear equation, o here includes

nonlinear frequency shifts. We note that the role of k┴
2 in the cascade rules is now

replaced by:

k?02 � k?002 ! k?02 1� o00�i
o00

� �
� k?002 1� o�i0

o0

� �� �
(5.44)

We note, however that here (o,k) have been kept together. In a strongly

nonlinear situation we should perform the summations over o and k independently.

5.4 Gyro-Fluid Equations

Since we have here derived kinetic equation fluid that have been averaged over the

gyromotion it may be useful to discuss briefly fluid-type equations obtained by

taking moments of these averaged kinetic equations. We have, actually already

derived such an equation in (5.11). However, this equation does not contain higher

order FLR effects. A special feature of gyro-fluid equations is that they contain only

guiding centre drifts, i.e. there are no diamagnetic or stress tensor drifts. Still they

contain full FLR effects if derived from the gyrokinetic equation. Of course

gyrofluid equations contain less information than the full fluid equations since

they have been averaged over the gyromotion. They are, however equivalent to

the fluid equations obtained by the low frequency expansion in Chap. 2. In order to

obtain higher order FLR effects from the fluid equations we, however, have to make

use of the stress tensor as shown in Chap. 2. This is often tedious. Since the

perpendicular dynamics is due to the guiding centre drifts which we already know,

the main remaining questions now concern the parallel motion. It appears that the

first gyro-fluid equation for parallel motion, including magnetic drifts was obtained

byWaltz et al. [18] (5.45).We note that this equation has a convective magnetic drift

included. This may be surprising since the parallel motion should be the same in

gyrofluid and fluid equations and magnetic drifts are not present in fluid equations.

This was resolved in [19] when (5.45) was rederived from fluid theory using the
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stress tensor with magnetic curvature effects. Thus the perpendicular and parallel

dynamics are coupled by magnetic curvature.

@du jj
@t

þ 2vD � rdu jj ¼ �e
_

jj � rðdpþ enfÞ (5.45)

A general formalism including magnetic drifts in the stress tensor was presented

in [20].
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Chapter 6

Low Frequency Modes in Inhomogeneous

Magnetic Fields

We have now seen how some typical low frequency modes can be driven unstable

by density, pressure or current gradients in simple geometries. A more accurate

description of collective modes in magnetic confinement systems, in general,

requires more detailed geometry effects as well as separate effects of density and

temperature gradients [1–197]. In the present chapter we will aim at making the

geometrical description more accurate, thus in most cases leading to eigenvalue

problems for the modes concerned. We will also derive a more complete drift

kinetic description, introduce the gyrokinetic equation and present an advanced

fluid model. We will furthermore review briefly the fields of transport due to

magnetic fluctuations and advanced fluid models.

6.1 Anomalous Transport in Systems with Inhomogeneous

Magnetic Fields

Although work on understanding transport in magnetic confinement systems has

been going on for about 60 years, this problem is still an ultimate scientific issue

[167]. Its importance for the size and cost of a reactor is obvious and critical but the

scientific difficulties associated with it are enormous.

Initially, for Ohmically heated plasmas, the interest was mainly focused on

electron transport since it dominated. While the particle transport has to be

ambipolar, the energy transport does not. Thus electron thermal transport, through

magnetic perturbations is an obvious option. The most well known scaling law in

this regime is the Alcator scaling [31]:

tE / na2 (6.1)
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Springer Series on Atomic, Optical, and Plasma Physics 71,

DOI 10.1007/978-1-4614-3743-7_6, # Springer Science+Business Media New York 2012

101



Several theories have been able to recover the density dependence through a

dependence on collisionality. A candidate for magnetic transport is the

microtearing mode [57, 58] while the dissipative trapped electron mode [10] can

give such a scaling through electrostatic dynamics [85]. We shall return later to

trapped electron modes and will here discuss magnetic perturbations briefly. Sev-

eral papers consider the transport for given magnetic fluctuations (or islands).

Critical for transport is the island width which determines whether islands from

neighbouring rational surfaces overlap. When this is the case we can use the

Rechester-Rosenbluth diffusion coefficient [41].

D ¼ vtheLc
dB
B

� �
(6.2)

where Lc is the correlation length which in general, through the mode width

depends on the resistivity. An obvious candidate for creating magnetic

perturbations is the magnetic drift mode (4.59). This mode has kk ¼ 0 and j ¼ 0.

In a realistic plasma with magnetic shear, this mode is localized near rational

surfaces (see the following section), where kk � 0. In such a geometry we have a

radial eigenvalue problem with the boundary conditions j ¼ 0 (odd j) and even

Ak at the rational surface. Such a mode is a tearing mode [4] which is destabilized

by resistivity.

While most confinement systems are designed so as to eliminate the dangerous

global tearing modes with kyLn � 1, a localized “micro tearing” mode with

kyLn>>1 can still be unstable if nei>o�e. The saturation level, due to diffusion,

is [57]:

dB
B

¼ re
LTe

(6.3)

This level is of the order 10�5 to 10�4 in typical tokamaks. This mode is thus a

candidate for explaining the Alcator scaling in the Ohmic regime which usually is

collision dominated. It is, however, almost stable in collisionless plasmas, giving a

very small transport.

In the collisionless regime, electromagnetic drift wave turbulence has been

considered as a candidate for generating magnetic transport [34, 88, 97]. The

magnetic fluctuation level is, however, usually too low or the correlation length

too short due to very highmode numbers. A remaining possibility is nonlinearly self-

sustained magnetic perturbations. As an example collisionless tearing modes can be

driven unstable by the turbulent radial diffusion of electrons [119]. The experimental

situation remains unclear. On the one hand evaluations of the magnetic flutter

transport on TEXT [125] conclude that it is considerably smaller than the total

transport while experiments on Tore Supra [126] indicate the presence of magnetic

islands. A recent development in this field is the current diffusive ballooning mode

[124]. It is a MHD type mode which is described by resistive MHD equations.
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A transport model has been based on this mode. It tends to give good agreement with

experiments for electron thermal diffusion but not so good agreement for ion

diffusion [182]. This may be due to the fact that only one fluid equations are used

and a full kinetic derivation is still lacking.

When the density is increased sufficiently, the confinement time saturates and

another instability takes over. Transport code simulations [86, 87] indicate that this

is the ion temperature gradient driven mode [1, 28, 61].

6.2 Toroidal Mode Structure

A general plasma perturbation in a torus must in order to fulfil the boundary

conditions be a superposition of elementary perturbations of the form

f ðr; y;fÞ ¼ f
_ðrÞeiðmy�nfÞ (6.4)

where y is the poloidal and j is the toroidal angle according to Fig. 6.1. The phase

angle can be represented as

my� nf ¼ kr ryþ kfRf

Where

kr ¼ m

r
and kf ¼ � n

R

magnetic field line

R

RDj

Dj

DQ

rDQ

d

r

r

Fig. 6.1 Toroidal mode structure
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We here allow both positive and negative mode number corresponding to

propagation in different directions. Thus the choice of minus sign for kj is arbitrary

and was chosen in order to have the possibility of cancellation between the poloidal

and toroidal phases for positive modenumbers. Such a cancellation is of special

interest since there the parallel k vanishes, corresponding to the most unstable

situation as discussed earlier.

The magnetic field can be written:

B ¼ Bye
_

y þ Bfe
_

f

Thus

k � B ¼ m

r
By � n

R
Bf

where, in a tokamak B’>>By; R >> r. Thus the two contributions to k•B are

usually comparable. It is therefore convenient to introduce

qðrÞ ¼ Df
Dy

¼ Bf

By

r

R
(6.5)

where Dj and Dy are the changes in j and ywhen we follow a field line as shown in

Fig. 6.1. Here q is called the rotational transform which is one of the key parameters

for tokamak stability. It is thus also called safety factor. In terms of q we can then

write

k � B ¼ n

r
By

m

n
� qðrÞ

h i
(6.6)

showing that k•B ¼ 0when q(r) ¼ m/n. This means that the pitch angle of an equi-

phase line a ¼ (r/R)m/n coincides with the pitch angle of the magnetic field lines

d ¼ rDy=ðRD’Þ. In this situation kk ¼ 0 and the electrons cannot cancel space

charge caused by the mode (m,n) on the magnetic surface (surface containing

magnetic field lines) corresponding to q(r) ¼ m/n. This surface is called the rational

surface. Since q(r) usually is growing monotonously with r, each mode will not

have more than one rational surface. Modes that are well localised around the

rational surface are usually more unstable since the effective kk is small. One

common way of expressing kk is by rewriting (6.6) as

k jj ¼ k � B
B

¼ n

r

By

Bf

m

n
� qðrÞ

h i
¼ m� nqðrÞ½ �=Rq (6.7)

Where we assumed that By<<Bj so that B � Bj. The wave number 1/Rq

represents the inhomogeneity of the magnetic field and is related to the connection

length Lc defined by

Lc ¼ 2pRq
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Lc is a measure of the length of a magnetic field line between two points with the

same y. We then introduce

kc ¼ 2p
Lc

¼ 1

qR

So that

k jj ¼ m� nqðrÞ½ �kc (6.8)

Now Taylor expanding q(r) around the rational surface, r0 defined by q(r0) ¼ m/n

we obtain

k jj ¼ �nkc
dq

dr
ðr � r0Þ ¼ � r � r0

Ls
ky (6.9)

Where we introduced the shear length

Ls ¼ q

kc

1

rdq=dr
(6.10)

A frequently used measure of the shear strength is also

s ¼ d ln q

d ln r
¼ r

q

dq

dr
(6.11)

These two parameters are related through

Ls ¼ Rq

s
¼ ðskcÞ�1

For a tokamak, typically, s is small near the axis and is otherwise of order 1.

Another quantity which is often of interest is the distance between neighbouring

rational surfaces. If qðr0Þ ¼ m=n and qðr0 þ D rÞ ¼ ðmþ 1Þ=n we obtain for

slowly varying q(r)

Dr ¼ n
dq

dr

� ��1

If we instead vary n, an additional factor q will appear. Since a mode usually is

localised around its rational surface, the question of overlapping between two

modes and accordingly nonlinear interaction and transport properties, depends

strongly on the distance between rational surfaces.
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Another inhomogeneity which is important for the modestructure is the decrease

of Bj along the main radius. This variation can be expressed as

Bf ¼ BT

1þ ðr=RÞ cos y (6.12)

Modes which are driven by the curvature of the magnetic field lines are usually

strongly influenced by the different sign of the curvature on the outside and inside

of the torus, introducing a periodicity with period Lc along the magnetic field lines.

Although it is still possible to Fourier decompose the modes into components of the

type (6.4) these components will be linearly coupled and an eigenmode will now

have the form

f ðr; y;fÞ ¼ f
_ðr; yÞeiðmy�nfÞ (6.13)

This leads to a two dimensional problem for the mode structure which in general

is difficult to treat exactly and approximate analytical solutions are usually only

available if the r or y dependence dominates.

The poloidal variation of f is often, by projection, transferred to a variation along

the magnetic field. A Fourier-decomposition along the magnetic field then leads to a

coupling between components with different kk. Since a convection in the radial

direction changes kk we realize that we will obtain a coupling between the mode

structure along the magnetic field and the position in the radial direction. This

coupling usually tends to inhibit the radial convection, thus reducing the shear

damping. Since f(r,y) will vary at least as fast as the fundamental mode m ¼ 1 it is

not necessary to distinguish between the modes m and m + 1. It is instead common

to express an eigenmode by its independent mode number, n. Close to the rational

surface the poloidal variation is described by m ¼ q(r)n and an additional variation

of f. Due to the poloidal variation we must, however, also introduce a y dependent

safety factor n(r,y) so that

qðrÞ ¼ 1

2p

þ
nðr; yÞdy

The representation (6.13) then turns into

f ðr; y;fÞ ¼ f
_ðr; yÞein

Ð yðnðr;yÞdy�fÞ
� �

(6.14)

This is a very useful eikonal description which for large n describes a mode with

a rapid variation across the magnetic field and a slow variation along the magnetic

field. The r dependent helicity that results from putting m ¼ nq(r) corresponds to a

mode that tends to follow the field lines when it moves in the radial direction,

thereby minimising kk and the restoring line bending force. There is, however,

one disadvantage which has been discussed extensively in connection with
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electromagnetic ballooning modes. It is the lack of periodicity of the phase function

at a distance from the rational surface. This cannot be compensated by the amplitude

fwithin the eikonal description. The problem was solved by transforming the problem

to an infinite domain in y where no periodicity is required and then constructing a

periodic solution by adding the integer Fourier components [26, 39, 42].

6.3 Curvature Relations

We will now discuss some fundamental relations obtained in a curved magnetic

field from a fluid point of view. We start by noting that a curved magnetic field

always also has a gradient perpendicular to the field due to the fact that the magnetic

field is divergence free. In order to simplify we will often just use curvature

although we understand that a curvature drift also means the presence of a gradient

B drift and these are combined to the magnetic drift. We start with the condition for

pressure balance. By adding the equations of motion for ions and electrons and

dropping the inertial terms (error of order o/Oc) we obtain

rp ¼ j� B (6.15)

Combining (6.15) with

r� B ¼ m0j (6.16)

We obtain the pressure balance equation

r pþ B2

2m0

� �
¼ 1

m0
ðB � rÞB (6.17)

where (1/2m0)B
2 is the magnetic field pressure and (B•grad)B is the field curvature.

When written for the background quantities (6.17) shows how the magnetic field

pressure varies in space due to particle pressure (diamagnetic effect) and field curva-

ture. In a low b plasma the pressure gradient term is often neglected and (6.17) then

just gives the geometrical relation of the vacuum field. If we, on the other hand, write

(6.17) for perturbed quantities and linearise we observe that

ðB � rÞB � B0k jj dBþ ðdB � rÞB0 � 1

R
dBB0

for kk � 1=R where R is the radius of curvature of the background field. This

estimate is typical for quasi-flute modes in toroidal machines and since gradðBÞ2 �
k?B0dB we realize that the curvature term is normally negligible for perturbations.

We then have
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r dpþ dB2

2m0

� �
¼ 0

Since dB2 ¼ ðB0 þ dBÞ2 � 2B0 	 dB we find the relation

dB jj ¼ � m0 dp
B0

(6.18)

Which relates the parallel perturbation in B to the pressure perturbation. This can

be seen as a consequence of the magnetic confinement and the pressure balance. We

now return to the derivation of the drift velocities in Chap. 2. Introducing êk ¼
B0=B we have

e
_

jj � ðv� BÞ ¼ vB jj � Bv jj ¼ v?B0 1þ dB jj
B0

� �

Then linearising the expression for v? we find, dropping vp and vg that the only

drift which is modified is v•. The quantity usually needed in the derivation of

dispersion relations is divj. We here note that it is the total parallel magnetic field

(including perturbation) that should appear in the denominator of the fluid drifts.

Thus we are interested in evaluating the expression

r � ðniv�i � nev�eÞ 1� dB
B0

� �� �
� r � 1

eB0

ðe_ jj � rpÞ 1� dB jj
B0

� �� �
�

� � 1

eB0

rB0

B0

� ðe_ jj � rdpÞ þ 1

eB0

r � ðe_ jj � rdpÞ � 1

eB0

ðe_ jj � rdpÞ � rdB jj
B0

¼ 1

eB0

e
_

jj �
dB jj
B0

� �
� rdpþ 1

eB0

ðr � e
_

jj Þ � rdpþ 2m0
eB0

3
ðe_ jj � rP0Þ � rdp

(6.19)

where we started by assuming dBk<<B0, then used quasimeutrality, linearized and

finally used (6.17) assuming that

rdB jj
dB jj

>>
rB

B0

We shall now rewrite r�e
_

k using standard vector relations

r � ðe_ jj � e_ jj Þ ¼ 2e
_

jj � ðr � e
_

jj Þ þ 2ðe_ jj � rÞe_ jj ¼ 0
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Taking the vector product with e
_

jj we find

ðr � e
_

jj Þ? ¼ e
_

jj � ðe_ jj � rÞe_ jj (6.20)

Since

e
_

jj � ðr � e
_

jj Þ ¼
1

B
e
_

jj � ðr � BÞ

is associated with a background current and since kk generally is assumed to be

small we will neglect the parallel component of rot e
_

jj . We can now use (6.17) for

background fields to express the first term in (6.19) in the two others. It then turns

out that the finite beta terms cancel. Then introducing the curvature vector

k ¼ ðe_ jj � re
_

jj Þ ¼ � Rc

Rc
2

We can write

r � ðniv�i � nev�eÞ 1� dB
B0

� �� �
� 2

eB0

ðe_ jj � kÞ � rdp (6.21)

This result has several interesting implications. First as we already noticed, the

finite b terms cancel, making a low b treatment adequate. Second, we see that the

divergence of the diamagnetic drift flux is a curvature effect (compare Eq. 2.12).

The term given by (6.21) is in fact the leading order curvature effect in an expansion

in a/R (inverse aspect ratio) and is the main driving pressure term for ballooning

modes. It can be represented by an equivalent gravity drift and this gives the same

result as obtained for the kinetic derivation of interchange modes. The drift terms

kyvg in the derivation are, however, higher order in a/R and do not correctly

describe the effect of a curved field. The result (6.21) suggests that we introduce

an effective curvature drift

vkj � 2Tj

qjB0

ðe_ jj � kÞ (6.22)

Which is the totalmagnetic drift in aMaxwellian plasma, including the lowest order

finite b effects. When effects of dBk are not included we have the curvature relations

r � ðnv�Þ ¼ 1

T
vD � rdp (6.23)

and

r � vE ¼ q

T
vD � rf (6.24)
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Where

vD ¼ vk þ vrB (6.25)

vk ¼ T

mOc

ðe_ jj � kÞ (6.26)

and

vrB ¼ T

mOc

e
_

jj �
rB

B

� �
(6.27)

is the sum of the grad B drift and the curvature drift. These drifts are the same as the

kinetic grad B and the curvature drifts when those are averaged over a Maxwellian

distribution, i.e., <vk2> ¼ Tk=m; <v?2> ¼ 2T?=m, assuming isotropy. From

the comparison we see that if the fluid equations were generalized to a situation

with different Tk and T? we should use T? for the grad B drift and Tk for the

curvature drift.

For unisotropic temperature we, in fact, get a contribution from the curvature

drift to the fluid drift. It is [137]

vDfluid ¼
T jj �T?
T jj

vk (6.28)

Where vk¼ Tk=mOc

� 	
êkxk. Moreover the diamagnetic heat flow is split into two

parts[137]:

q�
jj ¼ 1

2

P?
mOc

e
_

jj � rT jj þ ðP jj � P?Þvk (6.29)

q�
? ¼ 2

P?
mOc

e
_

jj � rT? (6.30)

For isotropic pressure these add up to the Braghinski q•

6.4 The Influence of Magnetic Shear on Drift Waves

As pointed out in the previous section, in a tokamak the magnetic field has both a

toroidal and a poloidal component. Moreover, since the poloidal field is generated

by the toroidal plasma current it varies with r. Assuming for instance a homoge-

neous current density and applying Ampéres law to a circular contour with radius r

around the center of the plasma in the perpendicular plane we find Bp ¼ ð1=2Þm0jr
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where j is the current density. It is thus natural to assume that Bp increases with r.

In our previous Cartesian coordinate system the x coordinate corresponds to r and

the y coordinate to the poloidal direction. The simplest possible approximation of

the magnetic field is now:

B(x) ¼ B0 z
_ þ x

Ls
y
_

� �
(6.31)

where Ls is the characteristic scale length of the magnetic field variation. It usually

fulfils Ls=a>>1 where a is the small radius. This kind of transverse variation of the

magnetic field is referred to as magnetic shear. In order to describe drift waves in a

system with magnetic shear we have to solve a differential equation for the field

variation in x, and the solution for the mode frequency becomes an eigenvalue

problem. We now consider perturbations of the form:

f ðx; y; z; tÞ ¼ f
_ðxÞeiðkyyþk jj z�otÞ (6.32)

Where f may represent any perturbed quantity. We may then write the perpendicu-

lar velocity, including vE and vpi, from (2.11c) and (2.11e) as:

v?i ¼ 1

B0

@f
@x

y
_ � i

ky

B0

f � x_ þ o
B0Oci

i
@f
@x

x
_ � kyf � y_

� �
(6.33)

The ion continuity equation now yields

dn
n0

¼ o�e
o

þ Te

miOci
2

@2

@x2
� ky

2Te

miOci
2
þ Te

mi

k jj 2

o2

" #
ef
Te

(6.34)

We shall, for simplicity, disregard destabilizing effects and use the

approximation:

dne
n0

¼ ef
Te

(6.35)

for the electron density. We now want to introduce the leading order effect of the

magnetic shear into the system (6.33) and (6.34). The effect of the magnetic shear

will be to twist the magnetic field. A toroidal eigenmode will also be twisted

according to its poloidal and toroidal mode numbers. At a certain value of r it has

the same degree of twisting as the magnetic field and kk ¼ 0. At larger r the poloidal

field will have a projection on z. The simplest model for its variation in a Cartesian

system is (compare Eq. 6.6).

k jj ¼
x

Ls

ky (6.36)
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Now combining (6.34) and (6.35), using the quasineutrality condition we obtain

the eigenvalue equation

rs
2 @

2f
@x2

þ cs
2

v�e2
x2

Ls
2
fþ o�e

o
� 1� ky

2rs
2

h i
f ¼ 0 (6.37)

where we approximated o by o•e in the term proportional to x2, since this term is

assumed to be small. Equation 6.37 has a solution of the form

f ¼ HnðixÞe
ix2=2 (6.38)

Where Hn is a Hermite polynomial of order n and

x ¼ Oci

v�eLs

� �1=2

x

If (6.38) is substituted into (6.37) we obtain the condition

v�eOciLs
cs2

o�e
o

� 1� ky
2rs

2
h i

¼ 
ð2nþ 1Þ (6.39)

which determines the eigenvalue o. Clearly the 
 in (6.38) and (6.39) is related to

the direction of propagation of the wave. Assuming absorbing boundaries the group

velocity must be outward. Since this corresponds to an inward phase velocity we

have to choose the minus sign in (6.38). This leads to a convective damping for

waves with outgoing group velocity. The mode which is easiest to destabilize is

n ¼ 0. For this mode the solution is [12]:

o ¼ o�e 1� ky
2rs

2
� 	

1� i
Ln
Ls

� �
(6.40)

This case corresponds to

f ¼ Ge�ix2=2 (6.41)

where Г is a constant. As we found previously drift waves have the strongest

tendency for instability for small kk where the electron shielding is inefficient.

We thus expect drift waves to be generated near kk ¼ 0 and then propagate towards

larger x. When kk has grown so that kkvti ¼ o the ion-Landau damping sets in and

absorbs the wave, thus preventing reflection at the plasma boundary and justifying

the outgoing boundary condition. The extent of the wave in the x direction, due to

the limiting effect of ion-Landau damping can be estimated to be

lx ¼ v�e
vti

Ls
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In order to have an absolute instability the growthrate of a drift instability must

exceed the damping due to convection. It has recently been shown both analytically

and numerically that if fully kinetic models are used both the collisional and the

universal drift instabilities are only convective. In toroidal systems with poloidal

variation of B0, however, toroidal couplings may introduce absolute instability [26].

6.5 Interchange Perturbations Analysed by the Energy

Principle Method

As mentioned in the first section one common method of determining the stability

of a system is by calculating the change in energy caused by a small perturbation.

We will here apply this method to an exchange of flux tubes (a tube where no

magnetic field lines are crossing the mantle surfaces). Since the most unstable

perturbations are electrostatic (no bending of field lines, kk ¼ 0) we will consider

only electrostatic perturbations.

For a Maxwellian velocity distribution the average particle energy is

E ¼ 1

2
NT

Where N is the number of degrees of freedom. The equation of state is written

p ¼ CðnmÞg

Where

g ¼ 2þ N

N
or N ¼ 2

g� 1

Accordingly

E ¼ T

g� 1

and the internal energy in a volume v is

Wp ¼ nv
T

g� 1
¼ pv

g� 1
(6.42)

where n is the particle density and p ¼ nT is the pressure.

We will now consider the exchange of plasma and magnetic flux from volume 1

into volume 2 and vice versa according to Fig. 6.2. Assuming an adiabatic process
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d

dt
ðpvgÞ ¼ 0 (6.43)

The change in energy can be written

DWp ¼ 1

g� 1
p1

v1

v2

� �g

v2 þ p2
v2

v1

� �g

v1 � p1v1 � p2v2

� �
(6.44)

Where we used the relation (6.43) in the form

p1v1
g ¼ p2v2

g

For small perturbations we may write p1 ¼ p; v1 ¼ v p2 ¼ pþ dp and v2 ¼ vþ
d v where dp<<p and dv<<v. Introducing these expressions into (6.44) we obtain

Wp ¼ dpdvþ gp
dv2

v
(6.45)

Since the second term is always positive a sufficient condition for stability is

dpdv>0 (6.46)

We may write j ¼ BS where S is the surface of the cross-section of the flux

tube. Since j is constant along the flux tube we may write

dv ¼ d
ð
Sdl ¼ fd

ð
dl

B

When flux tube 2 is closer to the plasma boundary than tube 1, dp < 0. Then

condition (6.46) becomes dv < 0 or

d
ð
dl

B
<0 (6.47)

1

2

Fig. 6.2 Interchange of

flux tubes
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The condition (6.47) shows that configurations where the magnetic field on the

average increases towards the plasma boundary are stable to flute perturbations

kk ¼ 0. Such configurations are denoted ‘average minimum B systems’. For the

simple case when B can be approximated by a vacuum field (low b) generated by an
external current we have

B ¼ 2m0I
Rc

And the condition (6.47) takes the form

d
ð
Rc dl<0 (6.48)

showing that the plasma is stable when dRc on the average is negative

corresponding to a generating current situated in the direction of decreasing density.

In this situation the magnetic field lines are concave into the plasma.

In the opposite case the contribution dpdv to dWp is destabilising. In practice it

turns out that such a system is normally unstable at least close to the boundary

where p is small and accordingly also the second term in (6.45).

This interchange instability is equivalent to the instability described in Sect.

3.3.2 since the curvature of the magnetic field lines causes a centrifugal force that

can be represented as an equivalent gravity

g ¼ vth
2

Rc

We then realise that when the curvature is destabilizing the gravity will be

directed opposite to the density gradient corresponding to the necessary condition

for instability k g > 0 in (3.27b). (Fig. 6.3) Finally we emphasize once more that

the condition (6.47) only says something about the average of the curvature along

the field line. A real perturbation in a magnetic confinement device will experience

a weighted average of the curvature which is determined by the mode structure and

only if kk ¼ 0 (flute mode) will the effective curvature be equal to the unweighted

curvature giving the condition (6.47). Finite kk modes will tend to become trapped

in the destabilizing regions leading to a more unstable situation.

Plasma

destabilizing

stabilizing

Fig. 6.3 Stabilizing and

destabilizing curvature region
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6.6 Eigenvalue Equations for MHD Type Modes

Since MHD type modes are more global than drift modes, a WKB approximation is

often not valid and a careful inclusion of geometry is required. Thus we generally

have to solve eigenvalue equations in the detailed geometry. We shall give

examples here for simplified geometries, which nevertheless show the main

features of the problem at the same time as an analytical description of the geometry

is possible.

6.6.1 Stabilization of Interchange Modes by Magnetic Shear

As mentioned in Chap. 3, the electrostatic approximation for interchange modes has

to be abandoned in a system with magnetic shear. We thus start from the description

of electromagnetic interchange modes in Sect. 3.3.4 but now replacing the gravity

drifts by the diamagnetic drifts. The condition div j ¼ 0 now takes the form

er � ½n0vpi þ nðv�i � v�eÞ� ¼ �r � ðj jj e_ jj Þ ¼ 1

m0
r � ðD?A jj e

_

jj Þ (6.49)

Here we make use of the approximation Ek ¼ 0 leading to

A jj ¼ � i

o
e
_

jj � rf (6.50)

We shall, in the following, use a cylindrical coordinate system as in Sect. 6.2.

The magnetic field will be written as

B ¼ Bye
_

y þ Bfe
_

f (6.51)

where eu and ej are unit vectors. Using the representation (6.14) for perturbations

we find

e
_

jj � rf ¼ in
n
r
By � 1

R
Bf

� �
þ By

rf
_

@ f
_

@y

" #
f (6.52)

Here n is essentially the rotational transform q on a rational surface

n � Bf

By

r

R
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and we obtain

e
_

jj � rf � 1

nR
1

f
_

@ f
_

@y

 !

Assuming R >> r we furthermore have

D? f
_ � �n2

ðy
0

@n
@r

dy
� �2

� 1

r2
n2n2

" #
f
_

(6.53)

Where the r dependence of f was neglected, assuming large mode number n. If we

neglect the y dependence of n (n ¼ q), (6.53) reduces to

D? f
_ ¼ �n2

dq

dr

� �
y2 þ q2

r2

� �
f
_ ¼ �n2

q2

r2
ð1þ s2y2Þf_ (6.54)

where

s ¼ r

R

dq

dr

The operator expression on the right hand side of (6.49) then takes the form

r � ðD?A jj e
_

jj Þ ¼ � i

o
n2

q2

r2
1

q2R2

@

@y
ð1þ s2y2Þ @f

@y
(6.55)

For the divergence of the diamagnetic flux we use (6.18). This means that we

take into account the lowest order finite b effect from dBk which enters only in this
term. We then also have to know dp which to the lowest order can be taken as a

convective perturbation, i.e.

dp ¼ i

oB0

ðe_ jj � rfÞ � rP0 ¼ � i

oB0

ðe_ jj � rP0Þ � rf (6.56)

Expanding in r/R we now find

ðe_ jj � kÞ ¼ 1

B0
2

e
_

jj � ðB � rÞB
h i

� 1

R
ðcos ye_y þ sin yr_ � de_yÞ

where d is an average part that is higher order in r/R. This expression gives the local
curvature of the magnetic field lines entering (6.49). The part d is the only

remaining part when the integral is taken over the whole period in y. We may

express grad f as i kf where
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k ¼ n
dq

dr
yr þ q

r
e
_

y � 1

R
e
_

f

� �

with the result

ðe_ jj � kÞ � k ¼ nq

rR
ðcos yþ sy sin y� dÞ (6.57)

Now introducing (6.54), (6.55), (6.56) and (6.57) into (6.49) and replacing y!Z
where Z is a generalized angle type variable we obtain the eigenvalue equation

o2ð1þ s2�2Þfþ kc
2vA

2 @

@�
ð1þ s2�2Þ @f

@�
þ Dgð�Þf ¼ 0 (6.58)

Where

kc ¼ 1

qR
D ¼ 2

Te:þ Ti

miR

1

P0

dP0

dr
(6.59)

and

g(�Þ ¼ cos � þ s� sin � þ d (6.60)

The reason for introducing Z is the ballooning mode formalism where it was

found that Z can take into account also the radial variation for large modenumbers.

Equation (6.58) represents the eigenvalue equation for electromagnetic inter-

change modes in a toroidal system with circular flux surfaces (B is assumed not to

have an r component). The average curvature, d is of order r/R and is not given with

sufficient accuracy by the above treatment. We will here just regard it as a constant

of order r/R, using expressions derived in the literature for various systems. As

explained in the section on toroidal mode structure the relevant boundary condition

for (6.58) in toroidal geometry is j!0 as Z!1 thus including also part of the

radial eigenvalue problem for large modenumbers. The interchange mode, which

we will consider first as a highly elongated mode, will experience only the average

curvature d in (6.60). A common transformation for simplifying (6.58) is

C ¼ ð1þ s2�2Þ
1
2f (6.61)

Leading to the eigenvalue equation

@2C
@�2

þ O2 � s2

ð1þ s2�2Þ2 �
ad

1þ s2�2

" #
C ¼ 0 (6.62)

Where O ¼ o=ðkcvAÞ and a ¼ D=ðkcvAÞ2.
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Approximate solutions of (6.62) can be obtained by substituting trial functions

into the quadratic form

ð1
0

C
@2C
@�2

þ O2 � s2

ð1þ s2�2Þ2 �
ad

1þ s2�2

" #
C2

( )
¼ 0 (6.63)

The asymptotic solution to (6.62) for O2 ¼ 0 is

C ¼ ð1þ s2�2Þ1=2ðA�g1 þ B�g2Þ

Where

g1;2 ¼ � 1

2
1
 ð1þ 4ad=s2Þ1=2
h i

It can be shown that the probability of smoothly connecting this solution to the

region Z � 0, and at the same time making O2 < 0 in (6.56) depends on the sign of

1 + 4ad/s2 giving stability when this expression is positive. The stability condition

is thus

1

2
s2 þ ad>0 (6.64)

Since a ¼ � q2Rdb=dr we now obtain the Mercier condition (3.32) for

d ¼ ðr=RÞð1� 1=q2Þ and the Suydam criterion (3.31) for d ¼ �ðr=RÞq2
corresponding to toroidal and cylindrical geometry respectively.

6.6.2 Ballooning Modes

Another type of solution to (6.58) is a mode that varies strongly on the cosZ space

scale. Such a mode may localize in regions where the normal curvature cosZ > 0,

thus experiencing unfavourable curvature on the average. For s ~ 1 it turns out that

the sZ sinZ part of the curvature (named geodesic curvature) substantially extends

the unfavourable curvature region. This is a ballooning mode. Since d ~ a/R we

will here neglect the average curvature. As it turns out, ballooning modes are also

very sensitive to an Z dependence of n which is the lowest order effect in b of a

deviation from circular flux surfaces. If we assume a harmonic variation of n with

Z, i.e.

nðr; �Þ ¼ qðrÞ þ n_ cos �
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we have to modify (6.54) to

D? f
_¼ �n2

q2

r2
1þ s� � n_

q
sin �

 !2
2
4

3
5f_

and (6.55) accordingly

We also find that (6.57) is replaced by

ðe_ jj � kÞ � k ¼ nq

rR
cos � þ s� sin y� n_

q
sin �

 !
sin �

" #
(6.65)

As can be shown by analytical solutions for the equilibrium at small b we have

the relation n_=q ¼ a. The eigenvalue equation for ballooning modes then takes the

form

O2½1þ ðs� � a sin �Þ2�fþ @

@�
½1þ ðs� � a sin �Þ2� @f

@�
þ agð�Þf ¼ 0 (6.66)

Where

g(�Þ ¼ gð1Þð�Þ þ gð2Þð�Þ (6.67)

gð1Þð�Þ ¼ cos � þ s� sin � (6.68)

gð2Þð�Þ ¼ �asin2� (6.69)

The eigenvalue equation (6.66) can be solved analytically for small s by deriving

a quadratic form and using a trial function derived for small s and a by symmetric

expansion. We again introduce the transformation (6.61). The lowest order

eigenfunction can then be obtained by ignoring the slow sZ dependence as:

Cð1Þ ¼ agð1Þ

1þ s2�2
<C> (6.70)

where <C> has a slow background variation and O2 is assumed to be small. The

next order C enters in the second harmonic equation

Cð2Þ ¼ a2

4ð1þ s2�2Þ2 ½ð1� 2s2�2Þ cos 2� þ 3s� sin 2��<C> (6.71)

The averageC,<C>, asymptotically has to take the form<C> � e
iO�, which

is the same as would be obtained from (6.62). In the inner region we may for
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ballooning modes at small s make a constant approximation. The transition is

estimated to occur at Z ~ 1/s. we thus take the ansatz for <C> as:

<C> ¼ 1 �� k=s
eiOð��k=sÞ �� k=s



(6.72)

where k can, in principle, be determined by maximizing the growthrate variationally.

The result obtained from integrating a variational form in C corresponding to

(6.63) and using

C ¼ <C>þCð1Þ þCð2Þ

can be written in the form

ið1þ aÞOþ k
s
þ b

� �
O2 ¼ dW (6.73)

where dW is the energy change in dimensionless form given by

dW ¼ p
4s

s2 � 3

2
a2sþ 9

32
a4 � 5

2
ae�1=s

� �
(6.74)

Here the last term in (6.74) is due to a mixing of space scales sZ and cosZ in the

integration while the constants a and b are due to the overlapping of the space scales

sZ and iOZ. Since a and b depend on k in a rather complicated way a variational

determination of k is not practical. The solution for < C > can in principle be

obtained from the ‘averaged’ equation

@2<C>

@�2
þ O2 � s2

ð1þ s2�2Þ2 þ
2as2 � ð3=8Þa4
ð1þ s2�2Þ3

" #
<C> ¼ 0 (6.75)

As can be verified numerically, the asymptotic solution <C> � e
iOð��k=sÞ

holds essentially from the point of inflection for <C>. This is in the centre of the

unstable region given by a2 � 8/3 andO2 � � p2=16s2, Zinfl � 0.5/s where Zinfl is

the inflection point. Now, continuing the asymptotic solution to smaller Z we

realize that it will reach 1 somewhere in the interval 0�Z�Zinfl. The simplest

possible choice is then to take the matching point in the middle of this interval, i.e.

k
s
¼ 1

2
�inf l ¼

1

4s
(6.76)

Or k ¼ 0.25. This value gives good agreement between numerical and analytical

results for small s. For k ¼ 0.25 we obtain:

a ¼ p
4
½�0:69þ 0:57a2=s� 0:11a4=s2� (6.77)
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b ¼ p
4s

½0:3� 0:18a2=sþ 0:03a4=s2� (6.78)

As it turns out the solution of (6.73) is rather insensitive to the constants a and b,

as it seems due to cancellation effects. The iO term in (6.73) is due to convective

damping and represents the most important part of the frequency dependence in

(6.73). When all terms are included extremely good agreement is obtained between

the growthrate obtained from (6.73) and numerical results for small s. The agree-

ment is, however, still within 20% in the centre of the unstable region for s ~ 0.25.

The stability boundary as given by dW ¼ 0 is shown in Fig. 6.4. We note

the presence of the two stability regions, one for small a and one for large a.
The stability for large a is due to the Z dependence of n. It is due to a reduction

of the geodesic curvature due to finite pressure modification of the equilibrium.

When the length of the destabilizing region decreases, the electromagnetic restoring

force, through k║, has to increase.

If we include the lowest order FLR effect in a way corresponding to (3.44) we

can simply make the substitution O2 ! OðO� O	iÞ. In this case the convective

damping also influences the stability condition which takes the form:

1

2
O�ij jð1þ aÞ þ 1

4

k
s
þ b

� �
O�i2 þ dW>0 (6.79)

This condition should be compared to the condition (3.46) in the shearless case.

6.6.2.1 Kink Modes

While the interchange mode can be unstable inside the plasma (internal mode) the

kink mode is more or less associated with the plasma boundary. It is due to a plasma

current with a transverse gradient and can in the slab description easily be included

as shown is Sect. 3.3.5 where it for a current profile extending over the whole cross

0.4
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0.1

0.5 1.0 1.5

SS

S

U
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a

Fig. 6.4 Stability boundaries

of the MHD ballooning mode.

A numerical, B analytical

(From [84], with the

permission of the American

Institute of Physics)
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section leads to a driving term Ocikkv0=n where v0 is due to the background current
and n is the toroidal modenumber. As a starting point we will consider the simple

pinch in Fig. 6.5.

When the crossection of the current is decreased the magnetic field pressure

increases and enhances the perturbation. For a toroidal configuration the pinch

instability corresponds to m ¼ 0 (no poloidal variation). In a system with toroidal

magnetic field (along I in Fig. 6.5) the simple pinch instability is counteracted by

the bending of the toroidal magnetic field lines. In a new configuration the total

magnetic field will wind around the plasma in a way shown in Fig. 6.6. This system

is now instead unstable to the perturbation shown in Fig. 6.6. Here we can see that

again the instability occurs in such a way that a bending of the magnetic field lines

is avoided. The new perturbation, however, has a finite poloidal variation deter-

mined by the relative magnitude of the poloidal, Bp and the toroidal, Bt, magnetic

fields. This variation can be expressed by

kp ¼ kt
Bt

Bp
(6.80)

Modes with a slower poloidal variation are stabilized by the toroidal magnetic

field while modes with a more rapid poloidal variation corresponding to a bending of

the plasma current in the case shown in Fig. 6.6 can still occur. For a toroidal machine

with kp ¼ m/r and kt ¼ n/R where r is the small radius and R is the large radius, the

condition (6.80) becomes (compare the section on toroidal mode structure)

m

r
¼ n

R

Bt

Bp

While the stability criterion kp<ktBt/Bp becomes

q>
m

n
(6.81)

I

Fig. 6.5 The sausage

instability corresponding to

an m ¼ 0 mode in a torus

Bt

Fig. 6.6 A kink perturbation

with m/n ¼ Bt/Bp in a torus
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Since q � Bp
�1 � I�1 we realize that (6.81) implies a limitation of the current I.

Since n � 1 for kink modes, a sufficient condition for stability against mode m can

be written q > m. For m ¼ 1 this condition reduces to the Kruskal-Shafranov limit.

The mode m ¼ 1 is the least localized mode and extends over most of the

crossection. It has also the largest growth rate, which for parabolic current profile

can become a considerable fraction of the Alfv’en frequency for ballooning modes

vA/qR For larger m the kink modes become more and more localized to the plasma

boundary.

We shall now make a more quantitative analysis of the kink mode, using a

cylindrical geometry. This means that we use the representation (6.4)

f ðr; y;fÞ ¼ f
_ðrÞeiðmy�nfÞ

neglecting the background inhomogeneity of the system in the y direction. In this

case the operators take the form

r ¼ r
_ @

@r
þ i

m

r
e
_

y � i
n

R
e
_

f (6.82)

e
_

jj � r ¼ ik jj ðrÞ ¼ ikcðm� nqÞ

We shall in the following for brevity use the symbol k║ for kc(m�nq), keeping its

dependence on r in mind. As mentioned in Chap. 3 we may neglect the density

perturbation from the polarization drift in (3.34). This equation is written in a

general operator form and all we have to do is to replace z by a space dependent

e║ and use the operator expression (6.76). we shall, however, also replace the

gravity drifts by a real curvature, i.e. diamagnetic drifts with space dependent B0

and e║. This leads to

r � ½nðv�i � v�eÞ� ¼ 2

eB0

ðe_ jj � kÞ � rdp

Where

k ¼ ðe_ jj � rÞe_ jj ¼ � Rc

Rc
2

Then using a convective pressure perturbation

dp ¼ �x? � rP0

Where

x? ¼ � i

oB0

ðe_ jj � rfÞ
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Leads to the result

r � ½nðv�i � v�eÞ� ¼ 2i
m2

r2
1

oeB0
2Rc

dP0

dr
f (6.83)

We then arrive at the eigenvalue equation

o2 1

r

@

@r
r
@f
@r

� m2

r2
þ n2

R2

� �
o2 � k jj 2vA2
� 	

f ¼ k jj vA
1

r

@

@r
r
@

@r
k jj vAf� B0

n0mi

dJ jj
dr

k jj
m

r
f

� 2
m

r

� �2 1

minRc

dP0

dr
f

(6.84)

The question of stability is most easily studied in the energy integral formula-

tion. Thus multiplying (6.84) by rj and integrating from r ¼ 0 to a, performing

partial integrations of the terms containing (∂/∂r) r(∂/r) we obtain the energy

formulation

o2

ða
0

r
@f
@r

� �2

þ
ða
0

ðo2 � k jj 2vA2Þm
2

r2
f2rdr � vA

2

ða
0

d

dr
k jj f

� �2

rdr

� B0

n0mi

ð1
0

m
dJ jj
dr

k jj f
2dr ¼ fa

df
dr

� k jf vAfr
d

dr
k jf vAf

� �
r¼a

(6.85)

Where we neglected terms of order r/R. Since now

ða
0

d

dr
k jj f

� �2

rdr2 ¼
ða
0

k jj 2
df
dr

� �2

þ dk jj
dr

� �2

f2 � 1

2
f2 1

r

d

dr
r
dk jj 2

dr

 !" #
rdr

� 1

2
a
dk jj 2

dr
f2

 !
r¼a

We may write (6.85) for j(a) ¼ 0 (internal mode) as

ða
0

f ðrÞ @f
@r

� �2

þ gðrÞf2

" #
dr ¼ 0 (6.86)

Where

f ðrÞ ¼ k jj 2vA2 � o2
� 	

r (6.87)
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and

gðrÞ ¼ k jj 2vA2 � o2
� 	m2

r2
þ vA

2 dkj
dr

� �2

r � 1

2
vA

2 d

dr
r
dk jj 2

dr

 !
þ B0

n0mi

dJ jj
dr

mk jj

(6.88)

If the terms proportional to o2 are separated out, the remaining terms are

proportional to the energy change dW (o2<0 corresponds to the unstable case

where dW<0). The expression (6.88) for g(r) can be simplified if we make use of

the relation between magnetic shear dkk=dr and current. To lowest order in inverse

aspect ratio the j component of Ampéres law may be written

1

2r

d

dr
ðrByÞ ¼ m0Jf � m0J jj (6.89)

while

dk jj
dr

¼ m
dkc
dr

¼ �mkc
1

r
� 1

By

dBy

dr

� �
(6.90)

Combining (6.89) and (6.90) we obtain

J jj ¼ 1

m0
By qR

dk jj
dr

þ 2

r

� �

And accordingly

mB0

n0mi

d

dr
J jj ¼ vA

2 r
d2k jj
dr2

þ 3
dk jj
dr

 !
(6.91)

We then obtain

gðrÞ ¼ o2 � k jj 2vA2
� 	m2

r
� vA

2 dk jj 2

dr

 !
(6.92)

Another simplification is obtained if we change the dynamic variable to x ¼ f=r
(the radial component of the plasma displacement is x ¼ 1=ðoBÞðm=rÞf). We then

obtain the energy formulation:

ða
0

f ðrÞ @x
@r

� �2

þ hðrÞx2
" #

dr ¼ 0 (6.93)
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Where

f ðrÞ ¼ r3 k jj 2vA2 � o2
� 	

r

and

hðrÞ ¼ ðm2 � 1Þ k jj 2vA2 � o2
� 	

r

for stability we require o2>0, and obtain the condition

ða
0

ðm� nqÞ2 r
@x
@r

� �2

þ ðm2 � 1Þx2
" #

rdr>0 (6.94)

This condition is fulfilled for modes with m > 1. If m ¼ 1 a marginally stable

mode with dx/dr ¼ 0 can be constructed if q(0)<1 In this case higher order terms in

r/R have to be included in order to determine stability.

For external modes, f(a) 6¼ 0, and appropriate boundary conditions have to be

imposed at the plasma boundary. These are the conditions of pressure balance

across the surface

B0 � ðdBþ x � rB0Þ ¼ cons tan t

And the condition that the displaced plasma surface remains a flux surface

dBr ¼ ½r � ðxr � B0�r
Where jr is the radial displacement,

If there is no stabilization due to a conducting wall this leads to the stability

condition

ða
0

1

q
� m

n

� �2

r
@x
@r

� �2

þ ðm2 � 1Þx2
" #

rdr

þ 2

qa

n

m
� 1

qa

� �
þ ð1þ mÞ n

m
� 1

qa

� �2
" #

a2xa>0 (6.95)

Where index a indicates the value at r ¼ a. The condition (6.95) can be violated

only if nq_n < m, i.e. a condition equivalent to (6.81) evaluated at the plasma

boundary.

Another way of writing the stability condition is by using the relation (6.89) in

the other direction, i.e. expressing all effects of magnetic shear in J║. This leads to

the condition
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ða
0

1

m0
dB2 þ By 1� nq

m

� � dJ jj
dr

xr
2

� �
rdr>0 (6.96)

which shows that for dJk=dr<0 which is the usual case, only the regions where

nq<m are destabilizing.

We finally also note that we can use (6.91) in order to rewrite (6.84) in the form

@

@r
k jj 2vA2 � o2
� 	

r
@f
@r

� �
þ m2

r2
o2 � k jj 2vA2
� 	

f� vA
2
d2k jj 2

dr2
f

þ m2

r

B0

2n0miR

dP0

dr
f ¼ 0

(6.97)

Equation 6.97 agrees with (19a) in Ref. [38] if the displacement x ~ f/r is

introduced. An important property of (6.97) is the presence of singularities when

kk2vA2 ¼ o2. Assuming that near such a singularity @f=@r>>f=r we may neglect

all terms except the first in (6.97). This term can then be integrated to

@f
@r

¼ C

r k jj 2vA2 � o2
� 	f (6.98)

where C is a constant of integration, thus justifying our WKB approximation close to

kk2vA2 ¼ o2 and showing the presence of a singularity. Since kkvA is usually a

monotonous function of r we may have solutions in a continuous range of o with the

location of the singularity varyingwitho. This continuous range of solutions is usually
referred to as the Alfvén continuum. In the presence of toroidicity there will, however,
exist a minimum in kk2vA2. Then in the region whereo2 is smaller than this minimum

there is no singularity and the eigenvalues ofo form a discrete spectrum. Thesemodes

are referred to as global modes since they are not restricted in space by a singularity.

6.7 Trapped Particle Instabilities

In a tokamak, the magnetic field consists of a toroidal (along the torus) and a

poloidal (around the cross-section) component. Thus the magnetic field lines are

wound in the way shown in Fig. 6.7

Guiding centre orbit

B B

Banana orbit

Fig. 6.7 Trapped particle

orbits
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When the small radius a is much smaller than the large radius R (a<<R) the

magnetic surface, defined as the surface described by the field line during many

turns around the torus, has an almost circular cross-section. The toroidal magnetic

field, however, is decreasing in the direction from the centre (along R). This means

that a magnetic mirror is formed. A particle with small enough velocity along B will

then be trapped in such a way that it never reaches the point y ¼ p. In fact, it turns

out that particles with vk<ðp2Þev? where e ¼ r/R become trapped. Assuming an

isotropic velocity distribution function we then conclude that a fraction (√2)e of the
particles will be trapped. Clearly such trapping effects may decrease the

possibilities for electrons to cancel space charge by moving along the magnetic

field. Another important effect of the trapping is, however, to increase the effective

collision frequency. Normally the collision frequency n corresponds to 90
 scatter-
ing. For trapped particles, however, clearly a scattering angle of √e is very signifi-

cant since it may lead to detrapping. This may be accounted for by introducing a

collision frequency neff ¼ n/e.
When studying systems with trapped particles we have to treat trapped and

untrapped particles separately. For the study of trapped electrons we use the drift

kinetic equation (5.7) in the electrostatic approximation. We will, however, include

a magnetic mirror force as can be obtained by including (5.8) in (5.4). Assuming an

unisotropic Maxwellian distribution with T?>>Tk (relevant for trapped particles)

we can see that the ∂f/∂v┴ part can be neglected. We then obtain, including a

Krook collision term

@f

@t
þ ik jj v jj f� i

1

B0

kyf
@f

@r
þ e

m
ik jj f� m

m

@B0

@z

� �
@f 0
@v jj

¼ �neff f� ef
Te

f 0

� �
¼ 0

(6.99)

The collision term relaxes the distribution function to a Maxwellian at potential

j in a time neff�1. In the force along B0 we have included the effect of the

inhomogeneity of B. This force is proportional to the magnetic moment m. In
order to have a strong influence of the trapping we realize that we must assume

oB >> o where oB is the bounce frequency of particles due to trapping. If this

condition is fulfilled the trapping may prevent the thermalization of the particles in

the wave field. The particles then see a stationary field during a bounce period.

Since then for a closed orbit a contribution vkf Tedt to the orbit integral will be

cancelled by an equal contribution where vk ! � vk, we realize that the orbit

average

ð2p=oB

0

v jj f Te dt ¼ 0
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Introducing

@f 0Te
@v jj

¼ �me

Te
v jj f 0Te

we find that the orbit average of the fourth term is also zero. This follows from the

fact that the energy exchange
R
Fv║dt is zero where F is the force in (6.99). We then

arrive at the averaged equation

@f Te
@t

� i

B0

kyf
@f Te
@r

¼ �neff f Te �
ef
Te

f 0Te

� �
¼ 0 (6.100)

Since we have now removed all explicit vk dependence we can integrate (6.100)
over vk, thus replacing fTe by d ne and f0Te by n0Te . Now introducing and

@f 0Te
@r

¼ kf 0Te

We obtain

� iðoþ ineff Þf Te þ iðo�e þ ineff Þ ef
Te

f 0Te ¼ 0

Then, considering the relation integrated over vk, we have the trapped electron

perturbation

dnTe
n0Te

¼ o�e þ ineff
oþ ineff

ef
Te

(6.101)

Assuming that free electrons thermalize (reach a Boltzmann distribution), we

arrive at the electron density

dne
n0

¼ ffiffi
e

p o�e þ ineff
oþ ineff

ef
Te

þ 1� ffiffi
e

p� �
ef
Te

(6.102)

Where √e is the fraction of trapped electrons. If the bounce frequency of the ions,

oBi fulfills oBi << o we may disregard the effect of trapping on ions. The ion

density response is then:

dni
n0

¼ o�e
o

� ky
2r2s þ

k jj 2cs2

o2

 !
ef
Te

(6.103)

Now, using quasineutrality and treating ky
2rs

2, kk2cs2 (but not √e) as small we

arrive at the dispersion relation
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o � o�e 1� ky
2r2s � k jj 2cs2=o�e2

1� ffiffi
e

p
 !

þ i
neff

ffiffi
e

p
o�e 1� ffiffi

e
pð Þ ðo� o�eÞ (6.104)

Assuming a solution o ¼ or + ig, where g << or we now find the growthrate

g ¼ neff
ffiffi
e

p

1� ffiffi
e

pð Þ2
ky

2r2s � k jj 2cs2=o�e2Þ
�

(6.105)

We thus find that the growthrate is modified by the factor (√e)(1�√e)�2 in

addition to the effect of trapping on the effective collision frequency, neff ¼ n/e.
This instability is the trapped electron instability. When oBi>o we may also have a

trapped ion instability. Because the trapped particle distribution behaves as if

kk ¼ 0, i.e. as for a flute mode, the trapped particle modes may also be driven

unstable by a magnetic curvature.

In the presence of an electron temperature gradient a new branch of this mode is

introduced by trapping. This mode is believed to be responsible for the Alcator

scaling of the energy confinement time in a tokamak.

6.8 Reactive Drift Modes

The eigenmodes that we have considered till now have basically either been of drift

type, characterized by nearly Boltzmann distributed electrons, or of the MHD type

characterised by small or zero parallel electric field. As shown in Chap. 3, the MHD

modes are, in general, of a more global character and often show reactive instability

i.e. instability without dissipative effects. The drift modes, on the other hand, in

general require dissipation to become unstable. The reason for this is that

Boltzmann distributed electrons are free to move along field lines to cancel space

charge. Accordingly the charge separation caused by gravity or magnetic drifts is

cancelled and the interchange instability does not occur.

There exists, however, also a third class of modes between the MHD modes and

the usual drift waves. This class may be called reactive drift modes and typically

has the maximum growthrate for k2r2 ~ 0.1. Since the ideal MHD modes generally

have to be stable in fusion machines the reactive drift modes which are the second

most dangerous class of modes are the potentially most likely candidates for

explaining the observed transport in tokamaks. The first derivation of this new

class of modes, was made by Rudakov and Sagdeev 1961 [1] when they discovered

the slab Zi mode (6.120). This was, in fact, also the first work on drift waves as a

whole. Later the trapped particle modes which also belong to this class were

discovered by Kadomtsev and Pogutse [10].
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6.8.1 Ion Temperature Gradient Modes

There are basically two ways through which a reactive instability can be recovered

for drift waves. The first has already been indicated in the previous section. If a part

of the electrons are trapped they will not be able to cancel space charge and an

interchange instability is recovered. As a second possibility we notice that when a

real curvature is used, an interchange mode is driven by the full pressure gradient

[see (6.68)]. Here the temperature gradient part does not correspond to a charge

separation but rather a compressibility. In the fluid sense a compressibility comes

about as a divergence of a velocity. A velocity with a divergence has to vary in its

own direction, thereby causing local rarefractions and bunchings. Since the con-

vective part of div(nv•) is cancelled by a part of div vp, the full driving pressure term

appears as a compressibility. If we, however, replace v• by a gravity drift where the

temperature is perturbed, it becomes clear that it is the temperature perturbation

part which is associated with compressibility

r � ðnvgÞ ¼ vg � rnþ nr � vg
where now

r � vg ¼ 1

T
vg � rdT

When dT is due to E � B convection in a background gradient, i.e.

dT ¼ ��
o�e
o

qf (6.106)

Where

� ¼ d ln T

d ln n
¼ Ln

LT
; Ln ¼ � 1

n

dn

dr

� ��1

; LT ¼ � 1

T

dT

dr

� ��1

we obtain the dynamics shown in Fig. 6.8. Here, as usual, the x and y directions

correspond to the r and y directions in a torus. The variation of vg along its direction
gives rise to a density perturbation. We now assume Boltzmann electrons (3.3)

dne
ne

¼ ef
Te

(6.107)

while the ions are subject to the compressibility. Using quasi-neutrality we then

obtain a feedback mechanism as shown in Fig. 6.9.

Whether there is a positive or negative feedback depends on the relative

directions of g and grad T. Not surprisingly it turns out that the feedback is positive

(destabilizing) when g and grad T have opposite directions i.e. in unfavourable

curvature regions.
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Now combining (6.23) and (6.106) for the ions we obtain

r � ðnv�Þ ¼ 1

T
vDi � r Tidn� �i

o�i
o

enf
� �

(6.108)

Also using (6.24) we now obtain from the ion continuity equation

dni
n0

¼ o�e þ toDi � t�iðoDio�i=oÞ
o� oDi

ef
Te

(6.109)

When combined with (6.107) this gives the dispersion relation

o o� o�e � oDi 1þ 1

t

� �� �
¼ �io�eoDi (6.110)

In the unstable case, (6.110) may be written o ¼ or + ig, where

or ¼ 1

2
o�e � oDe 1þ 1

t

� �� �
(6.111)

g ∇T

δT
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Fig. 6.8 Compression due to a magnetic drift

thermalization

compressionconvection

δT

δnφ

Fig. 6.9 Feedback loop of a thermal instability
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g ¼ o�een1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i � �ith

p
(6.112)

Where en ¼ oD/o• and

�th ¼
1

4
1� en 1þ 1

t

� �� �
(6.113)

The present exercise merely serves to show that there is a reactive instability for

large Zi. The magnetic drift terms have here not been treated consistently and

several others should enter into (6.106) as will be shown later. The threshold

(6.113) is thus incorrect. In early treatments the denominator in (6.109) was

expanded for oD/o << 1 and the oD/o term combined with o•e in the numerator.

This leads to

dni
n0

¼ 1

o
o�e � tð1þ �iÞðoDio�i=oÞ½ � ef

Te
(6.114)

where also the toDi term is neglected as compared to o•e. This corresponds to using

the convective density response directly in (6.108), i.e. the total pressure perturba-

tion is convective. If now the stabilizing linear term in o is ignored (6.114) leads to

the stability threshold Zi ¼ �1 which is often quoted in the literature. In this case

part of the o2 term necessary for an instability has been obtained artificially by an

expansion in oD/o . This introduces a spurious instability for Zi ¼ 0. The correct

threshold is usually around Zi ¼ 1 as will be shown later. The instability obtained

here is a reactive drift instability driven by the temperature gradient and magnetic

curvature. The mode is usually referred to as the toroidal Zi mode [28, 61, 74].

We have now shown how an instability is obtained when the compressibility

originates from the divergence of vgi. The original Zi mode instability was, how-

ever, obtained due to the compressibility associated with the parallel ion motion.

The feedback scheme in Fig. 6.9. applies also in this case.

For the parallel ion motion we take

@v ijj
@t

¼ � e

mi

@f
@z

� 1

min

@Pi

@z
(6.115)

Leading to

v ijj ¼ k jj
omi

efþ dTi þ Ti
dn
n

� �
(6.116)

Now using (6.106) for dTi we obtain

v ijj ¼ k jj
omi

1� �i
o�i
o

� �
efþ dTi þ Ti

dn
n

� �
(6.117)
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Including parallel ion motion in our derivation of the toroidal Zi mode we then

obtain

dni
n0

¼ o�e þ toDi � t
oDio�i

o
�i þ

k jj 2cs2

o
1� �i

o�i
o

� �" #
o�oDi �

k jj 2cs2

to

 !�1
ef
Te

(6.118)

In order to consider the excitation due to parallel ion motion separately, we now

put oD ¼ 0. The dispersion relation may then be written

o3 � o2 o�e � ok jj 2cs2 1þ 1

t

� �
þ �io�ik jj 2cs2 ¼ 0 (6.119)

The driving term here is the last term and the simplest possible dispersion

relation giving the instability is

o3 ¼ ��io�ik jj 2cs2 (6.120)

Since o•i<0, o3 is positive for positive Zi. Taking the phase angle as 2p we obtain

an unstable root with phase angle 2p/3. This instability, which does not require

curvature, is usually referred to as the slab instability (slab mode) since its eigen-

value can be treated in slab geometry [1].

The Zi mode, is among the most serious candidates for explaining the anomalous

ion heat transport in present day tokamaks. This may be anticipated already by its

very fundamental nature as a thermal instability. When we heat a glass of water

from below, we generate convection through a thermal instability. When we heat a

tokamak with a centrifugal force due to field curvature we have a corresponding

situation as when heating water and a similar thermal instability may develop. The

toroidal version has the largest growth-rate in the bulk of the plasma while the slab

version may have larger growth-rate close to the edge where oD << o•. The slab

version usually has a slightly lower threshold while the parallel ion motion is

stabilizing when the toroidal drive dominates [74, 92, 166]. Fully kinetic treatments

show that both modes have their maximum growth-rate around k?2ri
2 ¼ 0:1.

6.8.2 Electron Temperature Gradient Mode

A mode that is sometimes used to try to explain the anomalous electron and heat

transport in the collisionless regime is the electron temperature gradient mode

(Ze mode). Also this mode exists in both slab (6.21) and toroidal [97, 115] versions.

It is a very short wave-length mode fulfilling

re<<l<<ri
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In this limit the ions are unmagnetized and furthermore in the hot regime. We

may thus take

dni
n

¼ � ef
Ti

(6.121)

The ions reach thermal equilibrium by moving perpendicular to the magnetic

field. This also requireso<k?vthi which can now also be fulfilled with o > Oci The

large mode number makes the frequency comparatively large. All that we will here

require is that

o<<Oce (6.122)

In this regime we may still use the drift expansion for the electrons but it may be

possible to ignore parallel electron motion. This means that as compared to the Zi

mode the roles of ions and electrons are switched. We may thus follow the previous

procedure. The electron density response (corresponding to (6.109)) is then

dne
n0

¼ o�e � oDe þ �eðoDeo�e=oÞ
o� oDe

ef
Te

(6.123)

In combination with (6.121) we now obtain the dispersion relation

oðoþ o�e � 2oDeÞ ¼ �t�e o�e oDe (6.124)

This dispersion relation is very similar to (6.110). An important difference is that

the Zi mode propagates in the electron drift direction and the Ze mode propagates in

the ion drift direction for small oDj j. A correct treatment of the oD terms shows that

for realistic values of en the Zi mode propagates in the ion drift direction and the

Ze mode in the electron drift direction. Such a trend can also be seen in our present

treatment which is, however, not accurate enough to justify such a conclusion.

Due to the very short wave-length, the Ze mode only gives a small direct

transport. It can, however, excite modes with longer wave-length through mode

coupling. Such modes, with a wave-length of the order of the skin depth c/ope. can

give a neo Alcator scaling [cf Sect. 6.1]. The slab version of this mode is analogous

to that of the Zi mode. We will not discuss it here.

6.8.3 Trapped Electron Modes

The most obvious candidates for explaining the large anomalous electron thermal

conductivity in tokamaks are the trapped electron modes [10, 14]. As was men-

tioned previously, trapped electron modes can give a neo-Alcator scaling in the
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collision dominated regime. In the collisionless regime an interchange type of

mode driven by the density gradient is often referred to as the Ubiquitous mode.

We will here consider a collisionless trapped electron mode which is similar to the

Ze mode but occurs for k?2ri
2 � 0:1. Taking the fraction of the trapped electrons

to be ft we may use the response (6.123) for the trapped electrons since their

motion along the magnetic field has been averaged out. We then have to consider

the magnetic drift to be bounce averaged. The free electrons are assumed to be

Boltzmann distributed. Then

dne
n0

¼ f t
o�e � oDe þ �eðoDeo�e=oÞ

o� oDe

ef
Te

þ ð1� f tÞ
ef
Te

(6.125)

Now using (6.109), adding FLR effects for the ion response we obtain

o�e þ toDi � t�iðoDio�e=oÞ � k?2rs
2ðo� o�iTÞ

o� oDi
¼

¼ f t
o�e � oDe þ �eðoDeo�e=oÞ

o� oDe
þ 1� f t

(6.126)

This relation shows a symmetry between ions and trapped electrons. We note

that (6.126) is now a cubic equation in o. This means that it has at least one real root

and accordingly maximum two complex conjugate roots i.e. it can have no more

than one unstable mode. The more complex fluid description in the next section

gives a quartic equation and accordingly the possibility of having two unstable

modes at the same time.

For that system it is possible to consider resonant modes where o ~ oD and in

that way one may decouple the ion density perturbation. Here we will denote the

left hand side of (6.126) by D. The dispersion relation for the trapped electron mode

may then formally be written:

o oþ f t
x
o�e � 1� D

x
oDe

� �
¼ � f t

x
�eo�eoDe (6.127)

Where x ¼ 1� f t � D
Equation 6.127 is very similar to the dispersion relation (6.124) for the Ze mode.

The dispersion relation shows only the electron dynamics and is a relevant descrip-

tion when the ion dynamics is subdominant. The o2 term is here entirely due to

electron dynamics and wemay have an instability driven only by electron compress-

ibility and temperature gradient. This dispersion relation is accordingly analogous to

(6.110) for the Zi mode which is destabilized by only ion dynamics. In fact, if we

take the limit D!0 in (6.127), the two modes are symmetric for t ¼ 1 except for the

factor ft appearing in (6.127).
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In order to investigate the other modes given by (6.126) we rewrite it in its cubic

form

oðo�oDeÞðo�o�e þoDe �oDiÞ �o
oDio�e

�i þ tf t�e
1� f t

� k?2rs
2

1� f t
ðo�oDeÞ

ðo�o�iTÞ

2
64

3
75�

� f t
1� f t

oðoDi �oDeÞðo�e �oDeÞ ¼ �ef t � �i
1� f t

o�eoDeoDi

(6.128)

Here the single o factor in the left hand side is associated with the temperature

gradients and indeed if the temperature gradients vanish so does the right hand side,

o factors out and we obtain a quadratic dispersion relation. On the other hand we

also note that the right hand side is quadratic in the magnetic drifts. We might thus

neglect it for this reason thus obtaining a quadratic dispersion relation. Then

neglecting also other terms that are quadratic in the magnetic drift we obtain the

dispersion relation

ðo� oDeÞ o 1þ k?2rs
2

1� f t

� �
� o�e � o�iT

k?2rs
2

1� f t
þ oDe � oDi

� �

¼ f t
1� f t

o�eðoDi � oDeÞ þ �i þ tf t�e
1� f t

o�eoDi (6.129)

We note that in the limit ft!0 (6.129) is similar to (6.110) although the o2 term

has a different origin. The differences are the inclusion of the FLR effect and the

Doppler shift o�oDe in the first o factor. The latter difference is due to the

nonadiabatic electron response which was absent in the derivation of (6.110). It is

important to note that in the absence of both trapping and temperature gradients

there is no instability i.e. the product of frequency independent parts in the left hand

side of (6.162) cannot drive an instability. (Compare the discussion after (6.114)).

Thus (6.129) is most conveniently solved by introducing o� ¼ o�oDe and first

obtaining the solution for o�. In the absence of temperature gradients or compress-

ibility (6.129) gives a pure trapped electron mode. This mode which may propagate

either in the electron or ion drift direction depending on the values of k?2ri
2 and en

is usually called the ubiquitous mode [19, 28]. The o2 term there requires the

nonadiabatic responses from both ions and electrons. The ubiquitous mode is, in

fact, stabilized by temperature gradients as we will see in Sect. 6.11. If we multiply

(6.129) by (1�ft) and take the limit ft!1 we obtain a pure MHD equation in the

limit kk ¼ 0.
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6.9 Competition Between Inhomogeneities in Density

and Temperature

As we have seen in (6.110) and (6.119) also very simple models for the temperature

gradient mode indicate that the parameter Z ¼ Ln/LT is critical for stability. This is

mainly because the diamagnetic drift ~1/Ln introduces a real eigenfrequency that is

stabilizing. A more fundamental reason for the importance of the parameter Z is,

however, the simultaneous convection in temperature and density gradients. This

leads to a competition between convection and expansion (negative compression)

in the energy equation. When the convection is outward higher density parts move

out into more dilute areas where the expansion takes place. The expansion cools the

plasma and competes with the increase in temperature due to temperature convection

dT ¼ �x � rTþ ax � rn

Here a is a coefficient that gives the expansion cooling. From this relation we

immediately see that Z has to exceed a certain limit for dT to be positive. A

corresponding equation for n is obtained because a temperature perturbation,

through vD or v║ leads to compression. Thus

dn ¼ �x � rnþ bx � rT

where we considered the convective temperature perturbation Fig 6.10. The com-

petition between temperature and density gradients, in the nonlinear regime, leads

to inward contributions to fluxes. When several sources of free energy are present

(coupled relaxations) we may even have net inward fluxes (pinches) of some

thermodynamic variables. The total energy flux is, however, always directed

outward. A realistic threshold including the here discussed effects will be derived

in the next section.

An important feature of feedback is that a negative feedback corresponds to a cooling

in the direction of higher temperature. This would give a temperature pinch if themode

was not stable in this case. However, since the ExB convection is the same for ions and

electrons the loops are coupled (Fig. 6.11) so a negative feedback in the ion loop may

still give a pinch if the electron loop has positive feedback. This usually requires

Ze > Zi. Of course the opposite may happen (electron temperature pinch if Zi > Ze).
We can also replace the ion temperature loop with a density loop, shown in Fig. 6.12.

r r

T
n

δ T δ n} }

ξξ

Fig. 6.10 Convective perturbations of temperature and density
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A density loop here corresponds to the feedback loop of the Ubiquitous mode

which is a type of trapped electron mode. Thus the ubiquitous mode couples directly

to the electron temperature dynamics and we can get a particle pinch if Ze < 1.

6.10 Advanced Fluid Models

One of the main problems with creating a first principles transport model, which can

be used in transport codes, is the fact that because of the resonance

o ¼ k jj v jj þ oD v jj 2; v?2
� 	

(6.130)

kinetic theory is, in principle, needed. On the other hand, not even the most efficient

computers are able to run a fully nonlinear kinetic code as a part of a transport code.

In fact, nonlinear kinetic simulations are usually made on time scales of the order

linear growth time g�1 and nonlinear saturation which is typically a few growth

times while transport codes operate on time scales of the order of the confinement
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Fig. 6.12 Feedback loop of the ubiquitous mode
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Fig. 6.11 Coupled loops of electron and ion temperature relaxation
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time tE. While the growth time typically is of the order 10�5 s, tE is of the order of
seconds. Thus, what we are left with for transport simulations is either kinetic

models that ignore velocity space nonlinearities or some kind of advanced fluid

models that attempt to incorporate the resonance (6.130) in some approximate way.

The latter possibility has not been much explored until the end of the 1980s.

6.10.1 The Development of Research

The beginning of the development of advanced fluid theories, of course, depends on

how we define the concept. With our definition, as will be given shortly, it dates

back to 1986, with the first published papers appearing in 1987. Before this time all

fluid models expanded the dynamic equations such that oD/o < < 1 (adiabatic

state) for the perpendicular dynamics and introduced an equation of state with a free

parameter g that can describe adiabatic or isothermal states for the parallel motion.

As it turns out, however, when kinetic or advanced fluid theories are used, o and oD

are usually comparable except at the edge. Because of this all previous drift-wave

theories had a basic flaw in that transport coefficients decreased with radius in the

models while they increased with radius in the experiments. As an example we may

mention the work by Scott et.al. [110] where the radial profiles of ion thermal

conductivity from 2 one-pole fluid models were compared with the experimental

ion thermal conductivity for a TFTR shot (Fig. 6.13).

Although, in general, the parallel part of the resonance (6.130) may be important

we will here first focus on the perpendicular part which is associated with the very
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Fig. 6.13 Experimentally determined particle diffusivity, effective momentum and diffusivities

for a TFTR discharge. The solid symbols on the curves for wi
eff and we

eff show the corresponding

values of wi and we (w’
eff ¼ w’ within ~10%). Also shown are the theoretical wj (¼wi) from

Mattor and Diamond (Phys. Fluids 31, 1180 (1988)) (labeled wMD) and the wi from the toroidal Zi
analysis of [103] (labeled wB) (Reprinted figure from [110], Fig. 2, with the permission of the

American Physical Society (copyright 2008) and S.D. Scott). http://prola.aps.org/abstract/PRL/

v64/i5/p531_1
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fundamental toroidal effects. As a result of toroidicity, the eigenmodes tend to

localize on the outside of the torus where the curvature is unfavourable. The

ultimate limit, which when it can be reached gives the largest growthrate, is the

local limit where the mode is strongly localized and effects of the parallel dynamics

vanishes. In this limit the eigenvalue equation turns into an algebraic dispersion

relation. Comparisons between local kinetic theory and a two-pole fluid model

[108] showed that the diamagnetic heat flow q• as given by (2.15), through the

magnetic inhomogeneity part of its divergence, reproduces the main kinetic effects

of oD in (6.130). By including this term in the fluid equations we obtain a two-pole

fluid density response in the local limit and a three pole response in the 3 D case. It

recovers both adiabatic and isothermal limits for both perpendicular and parallel

dynamics. This was done in the advanced fluid model developed at Chalmers

University of Technology in 1986 as described in Sect. 6.11.

It was first developed from the local limit of an electromagnetic model [90, 91]

but later also the electrostatic eigenvalue problem was solved [92] using the

Ballooning mode formalism, i.e. including also parallel ion dynamics id 3D. The

ion thermal conductivity, based on quasilinear theory and mode-coupling

simulations was published in 1988 [93, 94]. The increased order of the fluid

response due to div q• is significant since it changes the regions of positive and

negative energy modes. This can be seen from the expression:

eðo; kÞ ¼ 1

k2lde
2

dni
n

� dne
n

� �
ef
Te

� ��1

(6.131)

For the dielectric function in combinationwith the expression for thewave energy

W ¼ @

@o
ðoeðo; kÞÞ rfj j2 (6.132)

As an example we note that the electromagnetic version of this fluid model

reproduces the instability of the MHD ballooning mode branch below the ideal

MHD beta limit in the presence of an ion temperature gradient [70, 90]. This

instability is due to divq• and is caused by a shift of regions of negative and positive

energy. From the drift wave point of view, divq• introduces a new stability regime,

with positive wave energy for large en. This has the effect of giving a strong trend

for wi to grow towards the edge as shown by Fig. 6.14. The new regime where en is
stabilizing is generally termed “the flat density regime”. Since en decreases towards
the edge, the system departs more from marginal stability as we move towards the

edge if the density and temperature profiles have similar shapes (Fig. 6.15).

The flat density regime typically prevails in the inner 80% of tokamak discharges
which means that the new regime is dominant and radically changes the predictions
of drift wave theory. The TFTR shot studied in [110] was also studied by the

advanced fluid model described in [102], giving a wi which followed the experi-

mental trend over the whole cross-section (Fig. 6.14). An upper stability regime in

en can also be obtained due to div vE in an adiabatic model [98]. This stabilization

is, however, of an FLR type, similar to that discussed in Sect. 4.5 since the wave
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energy is still negative. As will be shown in Sect. 6.11.7. parallel ion motion

destabilizes this regime by introducing a dissipative damping due to magnetic

shear. We will thus introduce the following definition of an advanced fluid model:

An advanced fluid model is a fluid model which recovers the stable regime of Zi modes for

large en due to positive wave energy.

In H-modes the density profile is flat over a large part of the discharge. This

regime was investigated in [89] and it was pointed out that the critical parameter for

stability here is R/Lti rather than Zi. As it turns out most of the cross section of

L-modes is also usually in the regime where this type of stability criterion applies.

Such a regime was present in the general stability criterion of [91] but was not

pointed out until in [93] and evaluated as LT/R ¼ 0.367. In [98] the FLR type
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Fig. 6.15 Stability diagram in en and Zi showing destabilization towards the edge
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Fig. 6.14 Radial profile of wi using the advanced fluid model in [102] (From [193] with the
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stabilization in the adiabatic limit was obtained with the threshold LT/R ¼ 0.28 and

in [108] the full local kinetic result LT/R ¼ 0.35 was obtained. It is interesting to

note that a local kinetic model using a gradient B approximation of the magnetic

drift [100] gives the threshold LT/R ¼ 0.375 which has a larger deviation from the

exact kinetic result than the advanced fluid model in [91].

The threshold LT/R ¼ 0.350 was also obtained independently in [103] (Note

that [108] originates from 1988). We moreover note that the quasilinear correspon-

dence to the upper stability regime in en is a pinch flux proportional to en as seen in

(6.152), (6.153). Here only the div q• part contributes, i.e. the part that changes the

sign of the wave energy. The stabilizing effects of q• are stronger in the hot ion

regime. This is true both linearly and for the pinch flux. This is, in fact the main

reason for the good confinement in the hot ion regime in this type of theory. We

finally note that as a consequence of the upper stability regime in en, the toroidal Zi

mode is stable near the axis in tokamaks. This was first pointed out in [96].

6.10.2 Closure

The reason for the truncation of the above advanced fluid model by taking q ¼ q• is

that q• is the highest moment that depends only on the moments that are normally

fed by sources (fuelling, heating) in a magnetic confinement device. In general we

have:

<vivjvkvl> ¼ <vivj><vkvl>þ :::::þ Gðr; tÞ (6.133)

where G ¼ <vivjvkvl>irr is the irreducible part.

The transport equation for G can be written in the form:

@G

@t
¼ 1

r

@

@r
rwG

@G

@r

� �
þ SG (6.134)

The formal procedure in deriving the fluid model is to approximate the four

velocity correlation in the heat-flow equation with products of two velocity

correlations which means taking G ¼ 0. Higher order moments (i.e. G above)

will not have sources in their transport equations (SG ¼ 0) and should decay on a

timescale of the order of the confinement time while the moments that are fed by

sources remain in quasi-stationary states for many confinement times. Thus taking

G ¼ 0 leads to one diamagnetic heat flow for parallel temperature and one for

perpendicular temperature (6.29), (6.30) [137]. For isotropic temperature the

Braghinskii q• is recovered as the sum of these. As it turns out, the energy equations

for parallel and perpendicular temperatures, contain nonlinearities that tend to

isotropize the temperature perturbations. Already in the linear regime we conclude

that the effect of temperature unisotropy is small in the 2D case since this is the only

plausible explanation for the small difference (5%) in the coefficients of the

expansion (5.31).
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A phenomenon which will be discussed in the following is that of inward

“pinch” fluxes. Since these have a tendency to equilibrate length scales (such as

LT ¼ �T/(∂ T/∂ r)) we note that a higher moment at a low level becomes very

sensitive (as both T and ∂ T/∂ r are small) and can easily adjust itself to an

equilibration of length scales without affecting the lower moments. An eventual

pinch in the transport equation for the higher moment would thus not replace a

source. A pinch in the interior actually has to be fed by a source in the outer parts.

A relation that holds for temperatures is that the perturbation of a quantity

becomes small if the background of the same quantity is small. Thus extrapolating

this relation to the irreducible part of the perturbed four velocity correlation (d G)

we expect it to decay to zero in a confinement time. With this closure, which on

timescales longer than the confinement time according to the above arguments will

be valid, we can treat the whole range of states from adiabatic to isothermal i.e. with

arbitrary relations between frequency and magnetic drift frequency.

In the local limit, the ion density response is now a two-pole response and when

parallel ion motion is included it becomes a three-pole response. When we include

higher fluid moments, the order of the density response increases by one for each new

moment. The fluid resonances become more and more densely packed as we increase

the order until they form a continuum in the infinite limit. The product of infinitely

many fluid resonances in the denominator leads to a kinetic, dissipative resonance.

dn
n

¼ o� o�e þ :::::::::::

ðo� a1oDÞðo� a2oDÞ::::::::ðo� k jj v jj Þ:::
ef
Te

(6.135)

The fluid closure used here thus includes the fluid resonances that correspond to

moments that have sources in the experiment. These resonances form a part of the

kinetic resonance. We thus include the part of the kinetic resonance that

corresponds to the moments that are maintained by external sources. This part is

then treated self-consistently in the transport calculations.

Another related aspect of the fluid hierarchy is that higher order moments are much

more sensitive to lowermoments than vice versa.One example of this is thewell known

feature that heat flows are much more sensitive to the temperature profiles than the

temperature profiles are to the heat flow. An experience from dealing with higher order

linear moments in the local limit (e.g. from [137]) is that the introduction of a new,

higher order moment, leads to a large shift in the dispersion function when the former

eigenvalue is used but a small shift in the eigenvalue is sufficient to restore the

dispersion function to its previous value (or smaller). Thus the higher order moment

is very sensitive to the eigenvalue. This may be due to the fact that new poles are

introducedby thehigher ordermoment.Comparisonswithkinetic nonlocal theory [121,

166] show that higher order moments here have a larger impact on the eigenvalue.

We also note that the complication of an integral eigenvalue problem in kinetic

theory [140, 148] is absent in the fluid theory. The only possible approximation in

the fluid theory is associated with the closure. In the nonlocal theory with parallel

ion motion, it turns out that the difference in linear threshold between kinetic theory

and the reactive fluid model can be rather large [121, 166] when s/q is of order 1.
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This means that the properties of the fluid model depend on how this discrepancy,

mainly due to linear Landau damping, is treated. Our advanced fluid model just

ignores this difference in linear theory and only retains moments that can be treated

self-consistently. The closure made thus relies on the decay of the moment G on the

transport time scale. With this nonlinear closure, the fluid moments kept do not

have to converge towards a smaller influence for higher moments. On the contrary,

the highest moment kept, q•, is one of the most important parts. Some aspects of the

velocity space dynamics, with potential importance to the closure are discussed in

the subsection “Nonlinear kinetic fluid equations”.

Since the closure described here does not make use of dissipation we will call

this type of fluid model a “Reactive fluid model”.

6.10.3 Gyro-Landau Fluid Models

Gyro-Landau fluid models is a class of fluid models that takes a radically different

point of view on the closure problem from that presented above. This class of

models is actually somewhat beside the main scope of the present review and we

will here only make a brief survey without claims of completeness.

Development of Gyro-Landau fluid models was initiated by the work by

Hammett and Perkins on Landau damping in the fluid equations for the slab Zi

mode [116] This work introduces Landau damping through an imaginary parallel

heat flow (q) in the energy equation and is able to recover linear kinetic results for

the slab Zi mode. A follow up paper discussed the details of the closure and how the

result depends on at which level in the fluid hierarchy the dissipation is introduced

[117]. Toroidal effects and with them magnetic drift resonances were introduced by

Waltz, Dominguez and Hammet [142]. This work also included FLR effects to all

orders. The gyro fluid equations were derived by taking moments of the gyrokinetic

equation (5.28) and agreement was obtained with the reactive fluid model described

in the previous subsection [108] in the appropriate limit. The closure in this Gyro-

Landau model can be written:

q ¼ q� þ iqgl (6.136)

where qgl represents the contribution to the resonance from infinitely many higher

order moments as obtained by a fit to a Maxwellian velocity distribution. Also this

model gives very good agreement with linear kinetic theory. Turbulence

simulations in three dimensions have been performed with this model [155].

The fundamental assumption in Gyro-Landau models is that the Gyro-Landau

resonance, obtained by a fit to linear kinetic theory, can be used in transport models

operating in a nonlinearly saturated state. More recent Gyro-Landau fluid models

[157, 163] make the closure at a higher level in the fluid hierarchy but the

basic principle of the closure is the same. As we will see in the next section, the

Hammett Perkins model for Landau damping, which is included in most more general
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Gyro-Landau fluid models, has severe problems in a coherent three-wave system.

This, seems to be generally agreed on. However, in an experimental situation we have

a broadband, incoherent, turbulence and for such a system the opinions differ.

6.10.4 Nonlinear Kinetic Fluid Equations

A more complete approach, which can be seen as intermediate to the usual Gyro-

Landau models and kinetic theory, is the analytical solution to the Vlasov equation

obtained by Mattor and Parker [164] in slab geometry. Here the closure is nonlinear

although the background velocity distribution function still is Maxwellian. Reso-

nant particles are assumed to follow the phase velocity of the waves so that an

integration over particle velocities can be replaced by an integration over wave

phases. This model preserves time reversibility and can support a type of trapping

oscillations where the velocity distribution is fixed but the wave phase velocity

oscillates due to a periodic nonlinear frequency shift. In the Mattor Parker work

closure was obtained by including a nonlinear frequency shift in the unexpanded

Plasma dispersion function. However, Landaudamping can be maintained in an

expanded version as seen in (4.32). The simplest form, (4.32b) is displayed below.

It is clear here that a nonlinear frequency shift, as added to o can easily change the

sign of the Landau resonance.

g ¼ p
2

� �1=2
o�e

o� o�e
k jj vte

e�o2=ðk jj vteÞ (4.32b)

It leads to a considerably lower time averaged saturation level than the Hammet-

Perkins theory and to time reversible oscillations after the nonlinear saturation. The

maxima of these oscillations are close to the Hammet-Perkins saturation level so the

reason for the difference is, in fact, that the Hammet-Perkins model phase locks at

the maxima of the three wave oscillations while the average level in theMattor Parker

model corresponds to an averaging over the trapping oscillations or rather of the

growthrate in (4.32b). Such oscillations can also be expected to occur when higher

order moments relax to a nonlinear equilibrium state. If we include inertia of the

resonant particles, so that they do not follow thewave phases exactly,wewould expect

additional phase mixing and a relaxation to a stationary state. This state would be the

attractor where the average force between resonant particles and waves changes sign.

In systems with many waves, we would expect much stronger phase mixing of

resonant particle orbits and amore quasilinear behaviour. The question of the coherent

state was actually addressed in a follow up paper by Holod et al. [190] where a

diffusion damping was introduced in order to represent the effect of the background

turbulence. We also note that the Mattor Parker system includes both quadratic mode

coupling terms and cubic nonlinear frequency shifts. This is the same situation as for

the turbulent state and, due to self interactions, the turbulent state will also include

nonlinear frequency shifts. The effect of diffusion damping was to make the system
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approach a stationary nonlinear state which appears to be close to the average of the

oscillations in the Mattor Parker system. While the Mattor Parker work got good

agreement with a fully kinetic system, the work by Holod et al. compared with a

reactive closure. A combined qualitative picture is given in Fig. 6.16.

It is important to notice that the kinetic resonance is stabilizing at maxima and

destabilizing at minima, thus the effect of the kinetic resonance tends to be

averaged out. The work by Holod et al. entered the kinetic integral for the fifth

moment while Mattor and Parker used the third moment. However, the reactive

(“no closure”) result of Holod et al. did not include the fifth moment. It is clear from

the small effect of the closure term that the large scale oscillations, in both systems

is due to three wave interaction. We also note, that just as in the fully turbulent case

there are both quadratic and cubic nonlinearities present. The quadratic

nonlinearities phase mix but the cubic do not. The approach to a stationary state

is shown by the result from [190] as Fig. 6.17.

We note that the damping due to diffusion leads to an approach to a nonlinear

steady state with no energy exchange between particles and waves just as the result

of the Fokker-Planck equation in Chap. 9.

6.10.5 Comparisons with Nonlinear Gyrokinetics

Comparisons between Gyro-Landau models and nonlinear gyrokinetics have been

going on for several years [154]. Recently the Cyclone group in the US has

compared both the magnitude of wi and the stiffness (how rapidly wi increases

Hammett
Perkins

Reactive
fluid

Nonl Clos.
Hammett - Perkins

Wave
ampl.

0 Norm. time

Fig. 6.16 Development in time of three-wave interaction between two slab ITG modes and a

zonal flow with different fluid descriptions including reactive fluid, fluid with nonlinear closure

and the Hammett Perkins gyro-Landau fluid model (From [197] with permission of the American

Institute of Physics)
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with the temperature gradient above threshold) of several models [183, 189].

A trend for Gyro-Landau models to give too large transport (up to a factor 3

above the gyrokinetic level) is similar to the results found in [164] where the

analytic solution by Mattor and Parker was very close to the full kinetic saturation

level while the Hammet-Perkins saturation level was far above. The global and

flux-tube gyrokinetic simulations gave somewhat different results in that the flux

tube simulations gave more transport and larger stiffness. One of the main questions

that have been discussed regarding the saturation level is the damping due to

nonlinearly generated background flows [181]. Since these flows have a stronger

effect on longer wavelengths, the presence of longer wavelengths in the global

simulations may create a more absorbing boundary condition for these as compared

to the situation in the flux tube simulations. We note that in this respect the reactive

fluid transport model, as described in Sect. 6.11.3, should rather be compared to the

global gyrokinetic simulations since an absorbing boundary condition for long

wavelengths was used. It is also likely that the mixing length leading to the type

(3.67) diffusion coefficient is essential for the stiffness. The scaling wi ~ Zi�Zith,

just above threshold, has been seen in mode coupling simulations [93, 100, 105],

and was also derived analytically in [130] in the flat density regime. An important

point is also that in the comparison by Mattor and Parker, the same three-wave

system was used for all models so also the boundary conditions in k-space were the

same. This leaves only the different closure schemes as a reason for the differences.

On the other hand, since this system contained only three modes, it corresponded to

a much more coherent situation than that in the gyrokinetic simulations where a

broad spectrum of modes was included. This point was discussed in more detail in

the previous section. In the Cyclone simulations also some comparisons with the

reactive fluid model discussed above have been made. Preliminary results were

reported in [183] and the full results appeared in [189]. An important result was

the very large transport obtained by the IFS-PPPL model while our reactive model

was in fairly good agreement with the gyrokinetic results (Fig. 6.18).
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Fig. 6.17 Time evolution of normalized density in a system of three interacting waves with

nonlinear closure. Figure (a) Compares the case with and without diffusive damping with closure

while (b) compares the cases with and without closure both with diffusive damping. (From [190]

with the permission of AIP)
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6.11 Reactive Fluid Model for Strong Curvature

As mentioned several times above a more complete fluid model is needed in order

to obtain a correct threshold for Zi, Ze and trapped electron modes. In typical

fusion plasmas the magnetic drifts are also comparable to the diamagnetic drifts,

except close to the edge. As pointed out above this is the reason for the develop-

ment of advanced fluid models. A circumstance that improves the possibility for

fluid models is that the magnetic drift causes a stream in the plasma. Because of

this a fluid resonance, similar to the fluid-beam plasma resonance, is present.

Another favourable aspect is that magnetic drifts do not appear explicitly in fluid

equations unless the temperature is unisotropic in which case the curvature drift

appears. Without magnetic drifts it is clear that the magnetic field localises the

particles in the perpendicular direction and that the parameter k2r2 can be chosen

as a small parameter to truncate the fluid hierarchy. The usual truncation of the

fluid hierarchy is that by Braghinskii. It assumes collision dominance so that the

perturbation of the velocity distribution function is Maxwell distributed. In

combination with the expansion in k2r2 this leads to the so-called Righi-Leduc

or diamagnetic heat flow

q ¼ q� ¼
5

2

P

mOc
ðe_ jj � rTÞ (6.137)

to lowest order in k2r2. In this fluid model the temperature is isotropic. In the

beginning of the 1990s a collisionless fluid model was derived by truncating the
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Fig. 6.18 Predicted transport as a function of temperature gradient for different models (From

[189] with the permission of the American Institute of Physics)
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irreducible part of the fourth moment in the heat-flow equation [137]. In this model

no assumptions of Maxwellian distribution was made and temperatures were just

defined through quadratic velocity moments. This model gave different q• for

transport of parallel and perpendicular energy (6.29), (6.30) but when the parallel

and perpendicular temperatures were assumed equal the Braghinskii energy

equation with the heat flow q• given by (6.137) was recovered. Although the

temperatures are unisotropic in collisionless linear theory, the isotropic fluid

model gives good agreement with Vlasov theory for the toroidal Zi mode

concerning threshold and rather good agreement concerning growthrate in the

local limit [108]. The main reason for this seems to be that in the low beta case

the average of the parallel and perpendicular temperatures enter in the driving

pressure term. When parallel ion motion is important, however, unisotropy is

essential. We here rely on the nonlinear closure discussed above.

6.11.1 The Toroidal hi Mode

As discussed above the fluid closure is very important. The energy equation is

written

3

2
ni

@

@t
þ vi � r

� �
Ti þ Pir � vi ¼ �r � q�i (6.138)

Where

r � q�i ¼ � 5

2
nv�i � rTi þ 5

2
nvDi � rT (6.139)

Here the first convective diamagnetic part cancels with other convective diamag-

netic terms after substitution of the continuity equation for divvi as shown in Chap. 2.

We will here retain the curvature part of divq•i which will turn out to be very

important. The linearized temperature perturbation is now:

dTi
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o� 5oDi=3
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Using (6.140) instead of (6.106), (6.109) is replaced by:
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(6.141)
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where

o�iT ¼ o�ið1:þ �iÞ

and we also included the polarisation drift and the lowest order FLR effect, as

derived in Chap. 2. The density response (6.141) is of higher order in oD than

(6.109) both in denominator and numerator. The most important improvement in

(6.141) is that it has the right asymptotic limit for large oD, i.e. the isothermal limit

dni
n

! � ef
Ti

(6.142)

for oD � o, o•. This can be obtained from (6.109) only in the absence of a tempera-

ture gradient. Since dT influences (6.109) only through the temperature gradient

one can conclude that a careful treatment of the energy equation is required to

make the fluid theory consistent with kinetic theory in the presence of temperature

perturbations. The key property of (6.140), absent in (6.106), is that we obtain the

correct isothermal limit dTi ! 0 when oD� o,o•. This is entirely due to the curva-

ture part of div q•. This part enters as an additional higher order, contribution to the

pressure force thatmay be either destabilizing or stabilizing. The response (6.141)was

first applied to MHD ballooning modes [90] where div q• reproduced an instability

below the MHD beta limit previously only seen in kinetic treatments [70]. For ion

temperature gradient modes it is usually stabilizing [91]. It is instructive to compare

the expansion of (6.141) inoD/owith the corresponding expansion of the gyrokinetic

equation, (5.31). These expansions are identical except for the replacement of 7/4 by

5/3. It is fortunate that the terms of order k2r2oD/o agree since no attemptwasmade to

systematically include these in (6.141). The last term prop. to Zi is unsymmetric with

respect too�o•iT. It represents a correction of the basicMHDpressure balance and is,

accordingly, responsible for the instability below the MHD beta limit seen in kinetic

theory. The fluidmodel obtained here has sometimes been called fully toroidal since it

does not expand in en. Effects of en are, in fact, the most important toroidal effects on

drift waves. We emphasize here that the closure (6.137) is treated as exact in the

present fluid model. This means that we assume (6.140) and (6.141) to be valid for

arbitrary oD/o and these equations should, in general, not be expanded. Clearly the

fact thatwe keep the frequency dependence in (6.140)means thatwe can describe both

slow and fast processes. This increases the number of nonzero poles in the density

response (6.141) by one.

By using(6.141) in combination with Boltzmann electrons we obtain the disper-

sion relation
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The solution may be written o ¼ or + ig where

or ¼ 1

2
o�e 1� 1þ 10

3t
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and
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ffiffiffiffiffiffiffiffiffi
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4en
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Here (6.146) was expanded in k2rs
2 For very small en terms of the type k4rs

4=en
and with higher powers in en have not been calculated consistently since q• has been
obtained only to lowest order in k2rs

2. They do, however, give the correct trend

when compared with kinetic theory. The marginal stability curve in a Zi,en diagram
is shown in Fig. 6.15. An important feature as compared to the previous fluid

threshold is the presence of an upper stability regime in en. For large en, t ¼ 1

and k2rs
2 ! 0 this threshold is

�ith ¼ 1:36en ¼ 2:72Ln=LB

Here Ln scales out and the stability condition becomes

LTi>0:367LB (6.147)

The correct kinetic threshold here is 0.35LB [108]. The large en regime is often

the relevant regime in the bulk of tokamak discharges. This is in particular so for H

mode discharges which usually have flat density profiles. The upper stability regime

in en also determines how close to the axis the Zi, mode can be unstable, Another

interesting aspect of (6.144) is the presence of an k4rs
4�i

2 term in or
2 which enters

the stability criterion to the next order in k2rs
2. Since this term does not contain en it

is in fact consistent and gives an upper stability regime in Zi. This has lead to

enhanced confinement states in transport code simulations [114]. In conclusion we

thus find that toroidal effects introduce a completely new regime for large en which
is dominant in the bulk of tokamaks. The neglect of this regime for a long time

caused discrepancies between Zi mode theory and experiments. The new philoso-

phy in the present fluid model, as compared to simple fluid models, is that the

closure is made by (6.137) and is assumed to be valid for both slow and fast

processes.

6.11 Reactive Fluid Model for Strong Curvature 153



6.11.2 Electron Trapping

Since the kinetic integrals for trapped electrons and ions without parallel motion are

symmetric [9] (Liu 1969) we may use the same fluid model for the trapped electrons

as for the ions. Introducing the fraction of trapped electrons ft we obtain the

dispersion relation [103, 109]:

o�e
Ni

oð1� enÞ þ �i �
7

3
þ 5

3
en

� �
oDi � k2rs

2ðo� o�iTÞ o
o�e

þ 5

3t
en

� �� �

¼ f t
o�e
Ne

oð1� enÞ þ �e �
7

3
þ 5

3
en

� �
oDe

� �
þ 1� f t

(6.148)

Nj ¼ o2 � 10

3
ooDj þ 5

3
oDj

2; j ¼ i; e (6.149)

Here the denominators Nj act as the resonant denominators in the dispersion

relation of a two-stream instability. When Ni < Ne the mode propagates in the

ion direction (Zi mode) and when Ne < Ni the mode propagates in the electron

direction (trapped electron mode). Equation 6.148 is the generalization of (6.126) to

arbitrary en and is a quartic equation. Accordingly, it can have two modes unstable

at the same time. For en of order 1 the modes are rather independent, propagating

in opposite directions, and the dispersion relations can usually be rather well

approximated by neglecting the part with the larger Nj in (6.148). For small en,
however, the modes are strongly coupled and the directions of propagation may

change. For large en and Zi ~ Ze the Zi mode is the most unstables of the modes.

Then ignoring the trapped electron part with denominator Ne we obtain the stability

threshold

LTi>
LB

20
9t ð1� f tÞ þ t

2ð1�f tÞ
(6.150)

which is the generalization of (6.147) for finite electron trapping. If we instead

take Ni large we obtain a generalization of (6.126) where D ¼ 0. This is actually

the only way of isolating a trapped electron mode which is driven only by com-

pressibility and electron temperature gradient. This was first done in [102].

Since this mode is obtained for Ne � Ni it is due to a fluid resonance.

A corresponding mode due to the kinetic resonance was included in [9] and also

discussed by Adam et al. [23]. In the same sense also the toroidal Zi mode may

be regarded as resonant. It is clear from this discussion that these modes require

a description valid for o ~ oD. The stability boundaries for Zi ¼ Ze ¼ Z are

shown in Fig. 6.19

The modes present in this system are most clearly shown if we display the

growthrates as a function of Z for an en where the modes are separated in Fig. 6.20.

154 6 Low Frequency Modes in Inhomogeneous Magnetic Fields



We can see the “Ubiquitous” (trapped electron) mode [19, 28], for small Z.
The toroidal Zi mode becomes unstable at Z just above 1 and then we have the

compressional trapped electron mode that becomes unstable at Z just above

2 (Fig. 6.20).

stable

stable

1

2

3

unstable

D>0

D<0

0.5

χ
i
<0,χ

e
<0

1.0 1.5 2.0 εn

Fig. 6.19 Stability diagram in en and Z (Zi ¼ Ze ¼ Z) (From [102] with the courtesy of the

IAEA)
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mode

ITG mode
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mode

ωr>0
ωr>0 ωr<0

h

Fig. 6.20 Growth rates as a function of Z for en ¼ 0.8. Other parameters are the same as in

Fig 6.19 (From [156] courtesy of the IAEA)
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The compressional trapped electron mode tends to dominate the transport when

Ze > Zi which is typical when most heating goes to electrons. This is the case for

alpha particle heating in burning plasmas. As is shown by Fig. 6.20, the Ubiquitous

mode, which is driven by the density gradient (charge separation) is stabilized by

the temperature gradient (compressibility). The opposite is true for the ITG mode

and the trapped electron mode which is driven by compressibility. This shows also,

already at the linear stage, the competition between relaxation of density and

temperature inhomogeneities.

6.11.3 Transport

We may calculate the quasilinear ion thermal conductivity in the same way as we

calculated the particle diffusion in Chap. 2. The thermal conductivity is calculated

using Ficks law from

GT ¼ �w
dT

dr
(6.151)

and the saturation level (3.65) can also be derived from the energy equation. The

result for the toroidal Zi mode without electron trapping is [93, 100].

wi ¼
1

�i
�i �

2

3
� 10

9t
en

� �
g3=kr2

or � 5
3
oDi

� 	2 þ g2
(6.152)

Equation 6.152 has proven to give good agreement with mode-coupling

simulations using many modes if the fastest growing mode (k2r2 ¼ 0.1 in a slab

system) is used [93, 101]. The pinch terms (with negative sign) in (6.152) are

important. In particular the en pinch term (due to div q•) significantly improves the

agreement between experimental and theoretical radial profiles of wi by suppressing
wi in the inner region where en is large. The temperature diffusion obtained from

(6.152) is always outward since g is zero if the pinch effects would dominate. If we

use the complete fluid model also for the trapped electrons we obtain, as mentioned

above, a quartic dispersion relation where both the Zi mode and the trapped electron

mode are included and may be unstable simultaneously. In this system there is a

coupling between the diffusion of Ti, Te and n with a trend to equilibrate the

equilibrium length-scales LTi, LTe and Ln. This system contains a possibility of

inward fluxes (pinch effects) but the total pressure flux is always outward [102, 109].

It is also interesting to note that in the edge of tokamaks typically en � 1, Zi > 1

and g > or. In this limit (6.152) gives the well known mixing length expression

w ¼ g=kr2. For the full system with electron trapping the agreement with experimen-

tal tokamak transport is remarkably good. In particular the radial profiles of both

we andwi are usually in rough agreementwith experiments at least for r/a < 0.8where

a is the small radius, and the magnitude is also usually of the right order.
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Furthermore, the ratio wi/we is typically about 1/2 at half radius with a radial

growth that is somewhat faster than that of ft. This is also a very typical experimen-

tal situation. For the TFTR supershots with peaked density profile and t about 0.3,
we/wi is usually small, often less than 1/4 and for the D-III-D hot ion mode with

t ~ 0.2 and flat density profile, large values of we/wi are obtained (typically about 4).
Both these cases are well reproduced by the fluid model with electron trapping. In

self consistent transport code simulations this model also gives the L mode scaling

of the energy confinement time with heating power in rough agreement with (1.11)

and moreover a spontaneous transition to an H-mode (enhanced confinement

regime) with an improvement of tE by a factor between 2.5 and 3 for sufficiently

strong heating [114]. Here, however, the edge pedestal was not resolved and this

result is more an indication that the model supports both L and H mode equilibria in

the interior.

The transport coefficients for Ti, Te and ne with electron trapping included can be

written:

wi ¼
1

�i
�i �

2

3
� ð1� f tÞ

10

9t
en � 2

3
f tDi

� �
g3=kr2

or � 5
3
oDi

� 	2 þ g2
(6.153)

we ¼ f t
1

�e
�e �

2

3
� 2

3
f tDe

� �
g3=kr2

or � 5
3
oDe

� 	2 þ g2
(6.154)

D ¼ f tDn
g3=kr2

o�e2
(6.155)

Where, introducing
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N ¼ o_ r
2 � g_

2 � 10

3
o_ ren þ 5

3
en2

� �2

þ 4g_
2

o_ r � 5

3
en

� �2

(6.159)

The signs of these in various parameter regimes are indicated in Fig. 6.19.

The most remarkable result obtained with the transport coefficients

(6.153)–(6.155) is that from the simulation [129] of the heat pinch on D-III-D

[128]. In this simulation, the ECH electron heat source was at half radius and ions

were only heated by collisions with electrons. The ECH and Ohmic heating of

electrons were taken from the experiment while the particle source at the edge was

taken as a free parameter. Both the electron energy pinch and the density and

temperature profiles were well reproduced in this simulation. The electron energy

pinch was driven by the Zi mode. Also other mechanisms, associated with the

toroidal curvature and trapped electrons have been suggested [161].

6.11.4 Normalization of Transport Coefficients

In deriving the transport coefficients (6.153)–(6.155) we used the saturation level

(3.65). This saturation level was obtained by balancing linear growth with nonlinear

effects at the correlation length scale [93]. Thus the nonlinear effects are here

entirely stabilizing. This corresponds to a situation where nonlinear mode coupling

carries energy and momentum away from the linearly unstable region in k-space

and nothing comes back, i.e. we have absorbing boundaries both at short and long

space scales. This saturation level has recently been recovered by a non-Markovian

Fokker Planck theory [186]. Both the ion thermal conductivity without trapping,

(6.152) and the transport coefficients (6.153)–(6.155) have been normalized and

tested against nonlinear mode coupling simulations with absorbing boundaries both

at short and long scales [93, 101, 109]. Good agreement was obtained when the FLR

parameter k2r2 was about 0.1. This corresponds to the linearly fastest growing

mode. Here k should be interpreted as the inverse correlation length. This can be

understood by observing that the correlation length typically is determined by the

shortest space scales that are strongly excited and this is often given by the source

region. It was also verified in mode coupling simulations that the saturation level

(3.67) gave better agreement than the mixing length estimate. The damping for long

space scales was, in the mode coupling code, obtained from viscosity while that for

long wavelengths was artificial. We note, however, that damping due to sheared

background flows increases with the space scale and thus has the properties we need

for absorbing boundaries at large space scales.
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6.11.5 Finite Larmor Radius Stabilization

As seen from (6.143) FLR effects are usually rather marginal for the pure Zi mode.

When electron trapping is included it does, however become stronger. A particular

limit, in which we can see this explicitely is for en � 1, Zi, Ze � 1 so that Z ~ 1/en.
In this limit the dispersion relation splits into two second degree equations, one for

o ~ o• and one for o ~ oD. The first case leads to the dispersion relation [114].

o_
2 � o_ 1� 10

3t
en 1� 1

t

� �
� k2rs

2

t
�i
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L
�i
t
þ f t�e

� �
(6.160)

where L ¼ 1� f t þ k2rs
2. The growthrate is

g_ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
en
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t2
�i

2

L2

s
(6.161)

We note that the FLR stabilization is fourth order in krs and corresponds to an

upper stability regime in Zi. It is actually a stability regime for steep temperature

gradients since Ln can be taken out of (6.161). For the pure mode this regime

typically starts at Zi ~ 50 for k2rs
2 � 0:1. We note, however, that if ft ! 1, L !

k2rs
2 and the FLR stabilization is only second order in krs (due to the denominator

of the first term). For ft � 0.6 a stabilization was obtained in predictive transport

simulations for Zi, ¼ 15. This leads to an enhanced confinement regime with an

improvement of a factor 2.5 in the confinement time [114].

In the enhanced confinement state only the mode with o ~ oD remains. Its

dispersion relation can be written:

o_
2 � o_

10

3
en x ¼ � 5

3
en2d (6.162)

where

x ¼ �i � f t�e
�i þ tf t�e

(6.163)

d ¼ �i þ f t�e=t
�i þ tf t�e

(6.164)

We note that Ln cancels out of both x and d so this mode is a pure magnetic drift

mode in a regime where Ln �LB. The direction of propagation depends on the sign

of x and the mode requires div q• for instability. This mode always produces a

particle pinch as is easily seen from (6.155) . However this is even more obvious

from the fact that this is a condensation mode where dp ¼ 0. Thus a temperature
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drive corresponds to a positive temperature perturbation and this has to be

compensated by a negative density perturbation. (Condensation in the usual sense

would mean a positive density perturbation).

6.11.6 The Eigenvalue Problem for Toroidal Drift Waves

We will now also briefly consider the eigenvalue problem of toroidal drift modes.

We will limit our study to the ion temperature gradient driven mode (Zi mode) with

Boltzmann electrons. The description of this mode is obtained by combining the

response (6.141) with the influence of parallel ion motion as described by (6.116).

This leads for a parallel wavenumber k║ to the response:

dni
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EIH ¼ �i �
7

3
þ 5

3
en (6.166)

FL ¼ k2r2ðo� o�ipÞ o� 5

3
oDi

� �
(6.167)

The parallel wavenumber k║ now becomes an operator i.e.

ik jj ¼ e
_

jj � r ¼ 1

qR

@

@y
(6.168)

but with a simple transformation we can avoid operating on oD(y) with k║. Within

the ballooning mode formulation [26, 39], we can interpret y as an extended

poloidal angle y where the operator (1/qR)∂/∂y includes both poloidal and radial

projections on the parallel direction. The eigenvalue equation can be written in the

form

@2f

@y2
þ h ô� 1þ k?2rs

2 o_ þ 1þ �i
t
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AðyÞ þ engðyÞ


 �
f ¼ 0 (6.169)

where

h ¼ 4ky
2rs

2 q
2o_

en2
(6.170)
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o_ ¼ o
o�e

(6.171)

gðyÞ ¼ cos yþ sðy� y0Þ sin y (6.172)

k?2 ¼ ky
2ð1þ s2y2Þ (6.173)

and

AðyÞ ¼ o_ þ 5engðyÞ=3t
Fþ GengðyÞ (6.174)
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The boundary conditions of (6.169) are ∂j/∂y ¼ 0 at y ¼ 0 and j ! 0 when

y ! 1
Here y0 is a free parameter which can be choosen to maximize the growthrate.

Usually its value is zero but we should keep in mind the possibility of other values.

This eigenvalue problem, in general, has to be solved numerically. There exist,

however, methods of obtaining approximate solutions in most cases of interest. The

most important case where we can obtain an exact analytical solution is the strong

ballooning limit where we can take g(y) � g(0) ¼ 1. The applicability of this

approximation is wider than we might expect since the geodesic curvature (second

part of g) increases when the normal curvature decreases. As it turns out, for s ¼ 1,

g(y) increases slowly with y up to about y � 2.8. The first zero of g(y) for s ¼ 1 is

just before y ¼ 3. This picture is changed radically for small and negative shear

where the Zi mode is considerably more stable. In the strong ballooning limit

(6.169) is of the form

@2f

@y2
þ ðxþ ds2y2Þf ¼ 0 (6.175)

Equation 6.175 has solutions of the form

f / e�ay2

where the y2 part gives

4a2 þ ds2 ¼ 0
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or

a ¼ 
 1

2

ffiffiffiffiffiffiffiffiffiffi
�ds2

p
(6.176)

The constant part gives

a ¼ x=2 (6.177)

The formal solution is then

x ¼ �jsji
ffiffiffi
d

p
(6.178)

Here we have used the fact that d contains o2 and that a positive imaginary part

of o must give a localized mode. The right hand side of (6.178) corresponds to a

convective shear damping, similar to that obtained for usual drift waves in (6.40).

The right hand side of (6.178) also contains the only effect of the parallel ion

dynamics so the condition x ¼ 0 gives the local dispersion relation with the

solution (6.144)–(6.145).

Our nonlocal dispersion relation takes the form:
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Y ¼ enjsj
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We note that enjsj=2q ¼ Ln=Ls.

Although (6.169) is rather complicated, the stability threshold takes a very

simple form where FLR does not enter [166]. It is (note the difference in the

definition of en in [166]):

�ith ¼
2

3
þ 10

9t
en (6.182)
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The part of the threshold which is linear in en is here entirely due to div q•. The

part t/(4en) in (6.146) is due to the divergence of the E � B drift and is removed by

the parallel ion motion (there are also other contributions from the divergence of the

E � B drift and div q• which cancel in (6.146)). A trend for a higher threshold for

the pure toroidal mode was also seen in [74]. We also note that for k?2rs
2 ¼ 0,

(6.146) agrees with (6.182) at en ¼ 1.

At this point the boundary curve (6.182) is tangent to the stability boundary in

the local limit. The influence of parallel ion motion is thus small for the reactive

model in the regime where the strong ballooning approximation applies. Equa-

tion 6.182 also exactly defines the threshold in Zi for the first factor in (6.152) to be

positive. We note that (6.152) is still valid since we eliminated the ion density

response so that k║ does not enter explicitely. This is also true for the system

(6.153)–(6.155), including electron trapping. Due to the o dependence of y,
(6.181) is now a rather complicated function of o. However, an analytical solution

that works in most cases of interest has been found [191]. This solution still requires

iterations since the growthrate depends on the modewidth and the modewidth

depends on the eigenvalue.

The success of this solution in combination with flowshear is discussed at the

end of Chap. 7. The order of magnitude of � is, usually, well described by the first

factor 0.5en|s|/q. In a recent work [166] it was found that if the total pressure

perturbation is used in (2.47) for the FLR term, (6.182) in fact reduces to only the

first factor. That model for FLR does, however, not agree with the kinetic expansion

(5.31) for terms of the type enk?2rs
2. We note also that the slab Zi mode is

contained in the present formulation. Because of this the imaginary part is

destabilizing for small en, effectively removing the stability regime for small en.
Parallel ion motion also has the effect of reducing the threshold slightly in the

flat density regime. This is, however, usually a very small effect and the growthrate

is somewhat reduced in the region of instability of the local mode. Another

interesting result is that the threshold in Zi reduces to 2/3, independent of en, in
the adiabatic limit i.e. when we ignore q•.

The adiabatic model, accordingly does not produce the upper stability regime in

en when parallel ion motion is included. Since, as was pointed out above, the linear

kinetic threshold (and, in fact, also the threshold of Gyro-Landau fluid models)

changes considerably when parallel ion motion is included, unless s/q is small, we

find that our reactive model is less sensitive to parallel ion motion than both the

simpler adiabatic model and the kinetic model in linear theory.

6.11.7 Early Tests of the Reactive Fluid Model

The reactive fluid transport model described here has been tested against

experiments in more complete versions, i.e. including impurities, collisions on

trapped electrons, electromagnetic effects, elongation and Shafranov shifts. The

most successful overall results have been obtained by the Multi Mode Model
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(MMM) in the US [160, 174, 175, 182], which includes our reactive fluid model in

the good confinement region. The MMM uses an artificial (empirical) dependence

on elongation which is required for a good overall agreement with the database. The

pure reactive fluid model has been found to give very good agreement with JET

results [171, 176]. In particular very good agreement has been obtained with high

performance shots when finite beta and elongation effects were included. The

properties of the reactive model can be characterised as: Thermodynamic properties

(power scalings, stiffness): Very good, Geometry properties (magnetic q and shear,

elongation scalings): Fairly good magnetic shear scaling while the elongation poses

problems. One particular aspect of the thermodynamic properties is that the power

scaling has generally been found to be in good agreement with experiment. In

particular the scaling tE ~ P�2/3 which is often quoted in the literature is the worst

case obtained with the reactive fluid model. It is obtained for equal ion and electron

heating. The exponent �0.5 has been obtained for mainly ion heating which is in

agreement with some experiments using only neutral beam heating as discussed in

[114]. The good thermodynamic properties are also emphasized by the good

agreement with scans in temperature gradient in the Cyclone tests against nonlinear

gyrokinetic simulations [183, 189]. This was made with the basic electrostatic

version for the pure Zi mode. The result can be recovered from (6.152) multiplied

by 3/2 (energy diffusion), using the local eigenvalue i.e. from the theory in [93]. We

note that the background density and temperature profiles were kept fixed in the

Cyclone simulations. This is equivalent to applying ideal sources in density and

temperature that exactly balance the transport.

The electron trapping effects have also recently been compared with linear

kinetic theory [187] and tested against perturbative experiments [188]. More recent

tests mainly involve momentum transport and will be discussed in that section. The

main reference to the MMM95 is [174]. It used only the strong ballooning approxi-

mation and did not include momentum transport. Nevertheless this model was very

successful. A more recent model is MMM08 [192] which includes momentum

transport and the eigenvalue solution described in [191]. Finally MMMv7.1 has just

been presented with improved momentum transport and edge physics (Chapter 7,

Ref. 58).

6.12 Electromagnetic Modes in Advanced Fluid Description

We will now generalize the MHD type modes discussed previously to an advanced

fluid description. Such a description naturally bridges over to the drift waves in the

previous section. In the ideal MHD limit we hardly need the advanced fluid aspects

since there the growthrate is much larger than the drift frequencies. However,

electromagnetic effects may be important for drift waves. Then, in the edge region

with H-mode pedestal there is a mixture of drift waves and MHD type modes where

we need an advanced fluid description for a unified description.
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A key feature of electromagnetic modes is the parallel electric field. We will

here make a fairly general derivation in order to be able to describe also the edge

region in a tokamak.

6.12.1 Equations for Free Electrons Including Kink Term

Parallel electron motion gives:

@

@t
þ i ne þ v � r

� �
v ejj ¼ e r jj fþ @A jj

@t
� ðv�eT � dBÞ jj

� �
� 1

n
r jj P (6.183)

Where k indicates the component parallel to the background magnetic field.

Now with

dB ¼ r� ðA jj e
_

jj Þ ¼ �e
_

jj � rA jj

We obtain

ðv�eT � dBÞ jj ¼ �v�eT � rA jj

Then ignoring electron inertia we obtain

dne
ne

¼ e

Te
f� o� o�eT

k jj
A jj

� �
� dTe

Te
þ i

v ejj
k jj De

(6.184)

where

De ¼ Te

mene

Now using isothermal electrons along a perturbed field line we have

ðB0 þ dBÞ � rðT0e þ dTeÞ ¼ 0

Linearizing we get

dTe ¼ �e
o�e
k jj

eA jj
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The electron temperature perturbations now cancel. Thus:

dne
ne

¼ e

Te
f� o� o�e

k jj
A jj

� �
þ i

v ejj
k jj De

(6.185)

The continuity equation of e electrons can be written:

@ne
@t

þr � ne vE þ v�e þ v 0jj
dB?
B

þ v jj e
_

jj

� �� �
¼ 0 (6.186)

Where we introduced a background parallel electron velocity due to the plasma

current.

Then

@nef
@t

þ n0ðv�e�vDeÞ � r ef
Te

þ vDe � rdnef þ nef
Te

vDe � rdTe � 1

e

dB?
B

� rJ 0jj þ n0e jj � rv jj ¼ 0 (6.187)

Now

dB?
B

� rJ 0jj ¼ dJ 0jj
dr

1

Br

@A jj
@y

Then using also the Ampére law

j jj ¼ � 1

m0
DA jj

We obtain

@ne
n0

¼o�e � oDe

o� oDe

ef
Te

� m

eBrn0ðo� oDeÞ
@J 0jj
@r

A jj

þ �e
oDeo�e

k jj ðo� oDeÞ
eA jj
Te

þ k jj v ejj
o� oDe

(6.188)

Then combining (6.185) and (6.188) we obtain

e

Te
f� o� o�e

k jj
A jj

� �
¼o�e � oDe

o� oDe

ef
Te

þ �e
o�eoDe

k jj ðo� oDeÞ
eA jj
Te

� m

eBrn0ðo� oDeÞ
@J 0jj
@r

A jj þ v ejj
k jj

o� oDe
� i

k jj De

� �

(6.189)
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Now using the Ampére lag again and ignoring parallel ion motion we find

v ejj ¼ � 1

en
j ejj � � 1

en
j jj ¼

1

m0en
DA jj ¼ �k?2rs

2vA
2
eA jj
nTe

Then (6.189) reduces to

eA jj
Te

¼ k jj ðo� o�eÞ
oðo� o�eÞ þ oDeðo�eT � oÞ � mk jj Te

e2Brn0

@J 0jj
@r � k?2rs2k jj 2vA2 1� iðo�oDeÞ

k jj 2De

� � ef
Te

(6.190)

Equation (6.190) is our principal result for electromagnetic modes in an

advanced fluid description.

We can see that electromagnetic effects vanish when kkvA>>o. We also find

that Ek ! 0when joj>>jo	j; joDj. The relation (6.190), without electron

collisions and current has been a standard feature of transport simulations using

the reactive drift modes described by (6.153)–(6.155). Recently the full (6.190) has

been used in transport code simulations of the H-mode pedestal recovering the

peeling mode effects.

6.12.2 Kinetic Ballooning Modes

As mentioned previously, the closure (6.137) leads to the inclusion of the kinetic

ballooning mode in the electromagnetic case. Again using the ballooning mode

formalism but ignoring parallel ion motion we obtain the growth rate of the

ballooning mode branch in Fig. 6.21.

0.2

0.5

MHO

Ω

1 α
0

Fig. 6.21 Growthrates of electromagnetic ballooning modes as a function of normalized b. The
inner curve corresponds to ideal MHD while the outer includes Kinetic ballooning modes with a

larger unstable region. Here en ¼ 0.35, Zi ¼ 2 and k2r2 ¼ 0.01 (From [90] with the permission

of the American Institute of Physics)
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Aswas also pointed out above the kinetic ballooningmode is obtained from the last

term in the kinetic expansion (5.31). This is the first term in such an expansion that

singles out the temperature gradient from the pressure gradient. Since the same term is

due to div q• in the fluid equation, it is also a nonadiabatic effect. Although the kinetic

ballooning mode is important for limiting the gradient of the H-mode barrier, it is a

modest effect as compared to the effect of using only the pressure gradient for toroidal

ITG modes. There it gives the Zi threshold �1 as mentioned previously.

6.13 Resistive Edge Modes

The modes considered so far in Chap. 6 have been of a collisionless type which is

the most relevant approximation for the core of tokamak plasmas. At the edge,

however, the turbulence changes character and collisionless modes are generally

not able to explain the continued growth of the transport coefficients outside 80% of

the small radius. In the strongly collisional edge (neff � o) we note that (6.101)

predicts Boltzmann distributed trapped electrons. This means that trapping is not

important. When neff becomes larger than the bounce frequency, the trapped

electrons behave as free electrons and the most relevant description is to treat all

electrons as free and include collisions on them. In a very simple isothermal

description (dTe ¼ 0) we then arrive at the density response (3.16). Contrary to

(6.101) it leads to an MHD type response for large collisionality. This means that

collisions prevent the electrons from moving along the field lines. When the

electron temperature perturbations are included, the Braghinskii equations lead to

an electrostatic parallel electron current of the form:

j ejj ¼ enDee
_

jj � 1

n
r jj n� e

Te
r jj fþ 1:71

r jj Te

Te

� �
(6.191)

where De ¼ Te=ð0:5meneiÞ. In the electron energy equation we now have to include

the contribution from k║ in addition to q•e in (2.26). The perpendicular collisional

heat flow is always smaller than q•e as long as nei � Oce. We then obtain:

dTe

Te
¼ o

o� 5
3
oDe

þ inT

2

3

dne
n

þ o�e
o

�e �
2

3

� �
ef
Te

� �
(6.192)

where nT ¼ 1:06kk2De.

In the absence of nT, (6.192) is of the same form as (6.140) for ions and exactly

the electron temperature perturbation used for collisionless trapped electrons in the

derivation of (6.148). In (6.192), however, the two dimensional expression is

recovered for very strong collisions since electrons are prevented from moving

along the field lines by collisions. We may also point out that fluid closures that

make use of kinetic wave-particle resonances can be obtained by a suitable choice
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of nT. In the collisionless regime, we recover the isothermal limit. By using (6.192),

(6.191) and the electron continuity equation we can now derive the electron density

perturbation in the form

dne
n

¼ oðo	e � oDeÞ þ EEHo�eoDe þ ik jj 2DeTðoÞ
o2 � 10

3
ooDe þ 5

3
oDe

2 þ ik jj 2DeN
_ðoÞ

ef
Te

EEH ¼ �e �
7

3
þ 5

3
en (6.193)

TðoÞ ¼ o� 5

3
oDe � 1:71o�e �e �

2

3

� �
þ 1:06ðo�e � oDeÞ

N
_ðoÞ ¼ o� 5

3
oDe � 1:14oþ 1:06ðo�e � oDeÞ

For ions we use our previous reactive drift wave description i.e. (6.141). In order

to obtain an eigenvalue equation we now make the replacement

k jj 2 ! � 1

q2R2

@2

@y2

Since we will here only consider the strong ballooning case, kk will not operate
on g(y) and k┴(y) as given by (6.172) and (6.173). we can then obtain our

eigenvalue equation directly from (6.193) and (6.141) by letting kk operate only

on j and we have no problem with non commuting operations. This eigenvalue

equation will, however, be of fourth order in general.

Since in the following we will be considering only the strong ballooning

approximation we will neglect the fourth order operator, thus arriving at a second

order equation of the form:

G
De

q2R2

@2f

@y2
¼ �iðA4o4 þ A3o3 þ A2o2 þ A1oþ A0 (6.194)

Where

G ¼ o� 5

3
oDe

� �
D� ½o�eð1:71�e � 1:73Þ � 1:06oDe�Ni

� ð2:20o� 1:06oDeÞ½oo�eð1� enÞ þ EIHo�eoDi�

where Ni is given by (6.149) and

D ¼ o2 � o o�e � oDe 1þ 10

3t

� �� �
� EIHo�eoDi þ k?2rs

2oðo� o�iTÞ
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is the local dispersion function for the toroidal Zi mode and EIH ¼ Zi �
7

3
þ 5

3
en.

Furthermore

A4 ¼k?2rs
2

A3 ¼� k?2rs
2 o�iT þ 5

3
oDið1� 2tÞ

� �

A2 ¼o�eoDe EEH þ 1

t



EIH þ 10

3
ð1� enÞ 1þ 1

t

� �

þ 5

3t
k?2rs

2 1þ �i
t

� 2 1þ �i þ
5

3
en

� �
þ ent

� ��

A1 ¼ 5

3
o�eo2

De

2

t



ðEEH � EIHÞ � ð1� enÞ 1� 1

t2

� �

� k?2rs
2 ð1þ �iÞ

t
10

3t
� 1

� �
� 5

3t
en

� ��

A0 ¼ 5

3
o�eoDeoDi oDi EEH þ 1

t
EIH

� �
� 5

3t
k?2rs

2oDeð1þ �iÞ
� �

(6.195)

We note that collisions only enter through De in the operator. The local limit of

(6.194), corresponding to neglecting the operator is thus identical to the dispersion

relation (6.148) in the limit ft ¼ 1. We also note that in the edge region we actually

have en < <1 and in connection with strong heating we expect Zi,Ze � 1. It is thus

interesting to consider the two orderings o ~ o•e and o ~ oDe discussed in the

section ‘Finite Larmor radius stabilization’. For large o we have the resistive

ballooning mode.

6.13.1 Resistive Ballooning Modes

Resistive ballooning modes have been studied for a long time both in electromag-

netic and electrostatic models. These modes have generally been weakly ballooning

with small growth rates. It was recently found [159] that such modes are stable

when the shear parameter approaches 1. This effectively rules out this mode as a

candidate for edge transport. In the same work, also the presence of a strongly

ballooning mode was pointed out. This mode has a growth rate of the ideal MHD

order and is thus a very strong candidate for explaining edge transport. The work by

Novakovskii et al. [159], however, ignored temperature perturbations which we

expect to be very important at the edge in connection with strong heating.
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We will here, for simplicity, use the approach of [172] and ignore electron

temperature perturbations. This greatly simplifies the algebra at the same time as

it retains the important effect of ion temperature gradient on the FLR stabilization

(compare (6.161)). Then, including the same geometry as for ion temperature

gradient driven modes, (6.172), (6.173) we obtain an eigenvalue equation of the

form (6.175). The resulting dispersion relation is

oðo� o�iT þ igDÞ ¼
o�eoDi

ky
2rs2

ð1þ tþ �iÞ (6.196)

Where

gD ¼ jsj
kyrs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iðo� o�iTÞ 1� o�e

o

� � De

q2R2

s
(6.197)

Here gD acts as a shear damping. The right hand side of (6.196) gives an ideal MHD

growthrate. When it is fully developed (6.197) can be further simplified. In this

limit the exponent a of the eigenfunction as defined in (6.177) can be written

a ¼ jsj
2
qðkyrsÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðenGÞ1=2 o�enei

vthe2=R
2

r
(6.198)

where G ¼ 1þ ð1þ �iÞ=2
We may here realistically estimate the root to be of order 1. For s � 1 we

remember that g(y) is close to 1 for y < 3. The condition for the strong ballooning

regime is then ay2 � 1 i.e. a � 1/9. This condition is easily fulfilled by (6.198) . In

deriving (6.196) we neglected en2 terms since en is small at the edge and we have

been considering frequencies of order o• or larger. This means that we could have

used a simpler fluid model, ignoring div q•. Numerical investigations have shown

that the strongly ballooning resistive ballooning mode has its maximum growthrate

around

kyrs � 0:15

Below this value the convective damping is the dominant stabilizing mechanism

and above this value the FLR stabilization gets more important. In the local limit

the condition for FLR stabilization is

1

4
o�i2ð1þ �iÞ2 �

o�ioDi

ky
2rs2

tG (6.199)

With en ~ (kyrs)
2 this condition leads to the stability condition

�i � 3 (6.200)
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We note that if electron temperature gradients are included Г generalizes to G ¼
1þ �e þ ð1þ �iÞ=t which is the combination appearing in the MHD stability

parameter a in (6.64). This would lead to a slight increase in the threshold (6.200).

It is interesting to compare the threshold (6.200) to that for stabilization due to a

poloidal sheared rotation. The neoclassical poloidal rotation vy is of the order

vyi � �iv�i (6.201)

A simple version of the Waltz rule gives the threshold

dvy
dr

����
����� g (6.202)

where g is the linear growthrate in the absence of rotation. A natural estimate of dvy/dr

for steep temperature gradients is

dvy
dr

� vy

LT

(6.203)

Then (6.202) leads to the condition

�i � kyLTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
entG

ðkyriÞ2
s

(6.204)

Since the root is here typically of order 1, (6.204) expresses the fact that

stabilization by rotation at reasonably moderate Z requires an LT of the order of

the wave-length of the perturbation. Now, since LTi ¼ 0.5en R/Zi, we obtain for

en ~ (kyri)
2

�i �ð0:5enkyRÞ2=3 (6.205)

In (6.205) we kept only the Zi part of Г. For typical edge parameters (6.207)

gives a threshold Zi � 7. Also this threshold would increase somewhat if we

include the electron temperature gradient.

Thus, in conclusion we note that there is a strong ballooning resistive mode for

edge parameters with a maximum growthrate of the ideal MHD magnitude. This

mode is further stabilized by temperature gradients for Zi � 2–3 and stabilized for

Zi ~ 3–5. This mode is the most likely cause of strong edge transport observed in

experiments. We also note that the FLR stabilization of this mode in the local limit

is also described by (6.161) for ft ¼ 1. We can thus extend the applicability of

(6.161) if we reinterprete ft as the fraction of electrons that does not move along the

magnetic field due to the combined influence of trapping and resistivity. We can, in

fact, extend the picture to include also the effect of magnetic induction which also
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reduces electron motion along the field lines. We may broadly say that (6.160) and

(6.161) describe the transition from drift type modes for ft ¼ 0 to MHD type modes

for ft ! 1.

We also note that the FLR stabilization for large Zi typically appears to occur for

smaller Zi than the stabilization due to a sheared poloidal rotation. In a scenario

when a transition to an enhanced confinement regime is caused by increasing

temperature gradients in connection with increasing heating power, we would

thus expect the FLR stabilization to set in before the stabilization due to a sheared

rotation for neoclassical poloidal rotation. However, as has been found recently, a

turbulent spinup of poloidal rotation may change the picture both for the edge

barriers and for the internal barriers.

6.13.2 Transport in the Enhanced Confinement State

When the resistive ballooning mode described by (6.196) is stable, transport in the

system described by (6.193) is strongly reduced, corresponding to an enhanced

confinement state. In this regime the relevant ordering of o is o ~ oD. With this

ordering and en <<1, enZ ~ 1, en ~ (kyri)
2 and ðk?rsÞ2 � en1=2 we obtain an

eigenvalue equation which is cubic in o but which becomes quadratic in the local

limit. Again using the geometry defined by (6.172) and (6.173) with solution

(6.178) we obtain the dispersion equation:

o2 � 10

3
xooDe þ 5

3
doDe

2 ¼ igD
2 (6.206)

where

x ¼ �i � �e þ ðt=2Þ � ð1=2tÞ
�i þ t�e þ 1þ t

d ¼ �i þ ð1=tÞ�e � 7ð1þ ð1=tÞÞ=3
�i þ t�e þ 1þ t

and

gD
2 ¼ kyrs

jsj
q

�i
�i þ t�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
iFH

De

R2oDe

s
(6.207)

H ¼ 2� 1

t

� �
o2 þ 10

3t
� 1

� �
oDe o� 5

3
oDe

2

F ¼ oDeð3:2o� 2:7oDeÞ � 1:7t
�e
�i

o2 � 10

3
oDioþ 5

3
oDi

2
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We have here kept terms of order 1 in the local part since these are actually going

to determine the threshold in many cases. In the nonlocal parts we have, however,

strictly ignored terms of order 1 as compared to Z. The relative complexity of

(6.207) is due to the fact that we kept also the electron temperature perturbations

and gradients. Here gD represents the effects of electron motion along the field lines

and the left hand, local part, of (6.206) reduces to (6.162) for ft ¼ 1. We note that

for De/R
2 � oDe, gD

2 is typically considerably smaller than o so that the local

approximation is valid. The mode profile is determined by

a ¼ 1

2
kyrsjsjq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3
i
H

F

R2oDe

De

s
(6.208)

Again we note that for s � 1 we need a > 1/9 for the strong ballooning

approximation to br valid. This is easy to fulfil for typical edge parameters. The

local part of (6.206) has the solution

o ¼ 5

3
xoDe 
 5

3
oDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 3

5
d

r
(6.209)

A necessary condition for instability is clearly

�i þ
1

t
�e>

7

3
1þ 1

t

� �
(6.210)

dTe

Te
¼ �o�e

o� 5
3
oDe

ef
Te

dnj
n

¼ �jo�eoDj

o2 � 10
3
oDjoþ 5

3
oDj

2

e’

Te

This mode is of an MHD character corresponding to kk ¼ 0. It can be obtained

from the condition div j ¼ 0 which, when we neglect FLR effects becomes of the

form

dP ¼ 0 (6.211)

Here dP is the total perturbed electron plus ion pressure. It means that the density is

larger where the temperature is lower and (6.209) is thus a kind of condensation
instability. This mode is symmetric in ion and electron quantities and has its largest

growthrate whenZi ¼ Ze. It cannot be stabilized for large temperature gradients since

x hasZ to the same power in numerator and denominator. The reason for this is that the

main contributions to the density perturbations come from the convective temperature

perturbations through compressibility. This means that a given density perturbation

gives rise to a potential perturbation which is inversely proportional toZ. This relation
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replaces the Boltzmann relation in the feedback loop of thermal instabilities

(Fig. 6.21). Another consequence of this is that o would cancel out after taking the

final convective temperature perturbation in the feedback loop unless we include the

effect of the heat flow. This would remove the phase shift neccessary for instability.

Thus the diamagnetic heat flux is required for instability (Fig. 6.22).
Finally we repeat what was pointed out in the discussion following (6.151) that

this mode always produces a particle pinch. The transport coefficients

(6.153)–(6.155) are clearly valid in the local limits for both the resistive ballooning

mode and the condensation mode if we take ft ¼ 1. A tendency for a particle pinch

at the edge has been seen in several H-mode plasmas [105]. We finally note that an

H-mode transition was obtained dynamically in predictive simulations using the

transport coefficients(6.153)–(6.155) [114]. This was obtained for ft � 0.65 in

which case an Zi of 15 was needed for the transition. In our present resistive system

we expect the transition to instead occur at Zi � 5.

6.14 Discussion

We have in the present chapter extended the theories of Chaps. 3 and 4 to more

realistic geometries. This gave rise to eigenvalue equations that were solved both

for some drift type modes and for some MHD type modes. We have also included

temperature gradient driven modes. Drift kinetic and gyro-kinetic equations which

apply to realistic geometries have been derived and a transport model based on an

advanced fluid model for Zi and trapped electron modes has been presented.

The general closure problem for fluid models has also been discussed in some

detail. Finally we have included a section on resistive edge modes where also a

mechanism for the L to H mode transition has been suggested. A condensation

mode, able to give a particle pinch in H mode, was also presented. The present

chapter essentially shows the present state of research on transport while the MHD

parts mainly are included for educational and reference purposes.

Convection

Exp

Compression

Density response
f dn

dTFig. 6.22 Feedback loop of

the condensation instability
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Exercises

1. Use the simple trial function j ¼ 1 in the quadratic form (6.63) for o� ¼ 0.

Compare the result with (6.64).

2. Use (6.101) where neff is neglected for electrons and include a gravity force for

the ions to show that interchange modes can be due to electron trapping.

3. Generalize exercise 4 in Chap. 2 by including curvature effects to a fluid

description.

4. Generalize exercise 4 in Chap. 2 by using the drift kinetic equation (5.7),

assuming a Maxwell distribution.

5. Derive (6.96).

6. Show that (3.70) is unchanged in the presence of an electron temperature

gradient when the equation of state (2.21) is used.
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Chapter 7

Transport, Overview and Recent Developments

7.1 Stability and Transport

The research areas of stability and transport have developed very strongly during

recent years [1–67]. The development in stability and transport up to 2007 has been

reviewed in a very comprehensive way by the ITER Expert groups and the ITPA

groups [1, 2]. The first paper was accompanied by some pure modeling papers

[3, 4]. However several papers on ITER physics basis were published also between

these papers [5–7]. Recents areas of strong interest have been momentum transport

[21–34, 54–58, 60, 61, 66–67], Impurity transport [20, 43, 44], Finite beta effects

[16, 46, 51, 54, 63]. Critical gradient effects and stiffness [45, 55, 56, 66] and

particle and heat pinches [8, 10, 16, 36, 44, 52, 53, 57].

We will here focus on momentum transport and the associated barrier formation

since this has been the major subject of interest the last years.

7.2 Momentum Transport

Of course there is a major interest in understanding the formation of both Internal

Transport Barriers (ITB) and Edge Transport Barriers (ETB). Edge transport barrier

just means the barrier associated with the H-mode and this interest thus stems from

1982 (Chap. 6, Ref. 67) while internal barriers were discovered during the 1990s. In

Chap. 6 we found some evidence that FLR stabilization may dominate at the edge.

This was, however, for neoclassical rotation and now there is experimental evi-

dence that there is a turbulent spinup of rotation for ITB’s. Our simulations indicate

that this is also a major effect at the edge. A common feature of ETB’s and ITB’s is

that they are formed when the heating is increased. As it turns out, the nonlinear

spinup of the poloidal rotation is triggered by the ion temperature length scale,
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LTi ¼ �Ti/dTi/dr. Thus we need to increase –dTi/dr without increasing Ti. At the

edge this happens naturally just inside the separatrix since the temperature there is

kepy low by the large transport in the scrape off layer. This is easily accomplished

in a transport code since the outer boundary is kept fixed. However, it is more

difficult for the generation of an ITB. In the interior T. and dTi/dr are usually both

increased when we increase the heating and it is not clear what happens to LT. Thus,

in practice we need something more to increase .dTi/dr locally. This can be obtained

by e.g. small magnetic shear. The reason why small magnetic shear reduces

transport is that the mode profile gets wider for small shear, thus allowing a

tendency for the driving curvature term to average out within the mode profile.

That this mechanism works in our reactive fluid model is strengthened by the most

recent results on stiffness with rotation [66]. We will here reproduce the main

features of a recent paper on this.

The poloidal flux of velocity can be written:

Tp¼ <vErvy> ¼� DB
2krky

1

2
f
_� f

_þ 1

t
P
_

i

� �
þc:c (7.1)

Here we consider radial flux of poloidal rotation. This is average flux where all

velocities are perturbations. However, this flux enters in the transport equation for

the background flux. Since the diamagnetic drift does not convect plasma, it is here

only the E � B drift that convects. However, the convected poloidal rotation

includes both E � B and diamagnetic components. Thus the pressure perturbation

and with it the temperature gradient lengthscale enters here. For the toroidal

momentum we use
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� r

" #

� dpi þ eNif� oþ o�eð1þ �eÞ=t
k jj c

A jj

� �
(7.2)

Where N is the background density and U denotes unperturbed drifts. This equation

was derived from fluid equations, using the stress tensor [33]. It includes also the

Coriolis pinch as found in gyrofluid derivations [28–30]. The parallel momentum

perturbation is now

du jj ¼ � kyDB

o� 2oDi

dU 0jj
dr

þ<k jj >þ oDiU 0jj = t � cs2ð Þ
o� 2oDi

� dpþ nef� oþ o�eð1þ �eÞ=t
k jj c

A jj

� �
=ðminiÞ (7.3)
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The parallel momentum perturbation was used in order to calculate the toroidal

momentum flux in a way analogous to (7.1). The simulated poloidal and toroidal

fluxes were then used to calculate the radial electric field as

Er ¼ ByVf � BfVy þ 1

eZin

@Pi

@r
(7.4)

7.2.1 Simulation of an Internal Barrier

A simulation of JET69454 [58] where the initial conditions had no barrier is shown

in Figs. 7.1–7.3. This was a self consistent simultaneous simulation of Ti, Te Vtor

and Vpol
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Fig. 7.1 Simulated Ti (dotted
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with the permission of the

American Institute of

Physics)
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[58] with permission of the
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7.2.1.1 Poloidal Spinup

The transition requires nonlocal and electromagnetic effects. The pinch of poloidal

momentum is driven by the ITG mode and “piles up” at the barrier location where

the ITG mode is stable. An electron mode is marginally stable at the barrier.

7.2.2 Simulation of an Edge Barrier

Also the formation of an edge barrier was simulated in [58] Again basic data were

taken from JET69454. Here the initial temperatures, including the edge boundary,

were reduced by a factor 7 from the experimental condition. As usual in predictive

simulations, the edge boundary was then kept fixed. An edge barrier then developed

with height approximately equal to the experimental (Figs. 7.4, 7.5, 7.6).
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Fig. 7.3 Simulated poloidal

spinup (dotted), neoclassical
rotation (dashed), initial
condition (full) (From [58]

with the permission of the

American Institute of

Physics)
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(dotted) where the full line
indicates the initial condition

(From [58] with the

permission of the American

Institute of Physics)
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7.2.2.1 Peeling

We then restored the experimental density keeping only the 50% increase in Bp.

This activated the kink term and we got peeling (Fig. 7.7).

Both the simulations of the ETB and ITB were made with a code that included

the same physics everywhere and used the same grid size everywhere. Thus no

information of where the barriers should develop was entered.

We can see here how a fluid model containing both poloidal and toroidal

momentum transport can describe the formation of a transport barrier in a

selfconsistent simulation of four channels, ion and electron temperature and

poloidal and toroidal momenta. The poloidal spinup has previously been recovered

also for JET51976 and JET58094 although experimental measurements of the

poloidal rotation are missing for 51976. The barrier location is here a result of

small magnetic shear (optimized shear) and the power deposition. Rotation is

driven by the temperature scale length and this requires both large thermal flux

and an additional mechanism which limits transport so that the scale length is
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Fig. 7.5 Poloidal rotation in

the simulation in 2a (From

[58] with the permission of

the American Institute of

Physics)
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[58] with the permission of

the American Institute of

Physics)
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reduced. The Trapped Electron mode dominates transport in the whole region of

small and negative magnetic shear. However, the ITG mode would also be unstable

in the absence of flowshear. Since this model does not include transport due to

perturbed magnetic flux surfaces, it is not sensitive to exact values of magnetic q

(like rationals). The convergence of the results with respect to resolution has been

tested with almost the same results between 50 and 99 radial gridpoints. The results

were also tested in the electrostatic limit and in the absence of electron trapping. No

internal barrier is formed in these cases. In particular electromagnetic effects have

recently been found to be important for the toroidal momentum pinch [54]. This

opens up a possible explanation for the stronger barrier in the simulation. The

model for elongation is rather crude and usually underestimates the effect. Elonga-

tion acts as to reduce electromagnetic effects which, in turn, tend to increase the

toroidal momentum pinch. Thus a stronger effect of elongation is expected to

reduce the momentum pinch. We have here used a separate correlation length for

electron modes using the same method as in [13]. This method has recently been

successful in calculating the correlation length in the presence of flowshear [66].

We have made scaling of the edge barrier with edge density and Bp. The height of

the barrier is increased when the density is reduced (a factor 0.5 in density increases

the edge barrier height by about 15%) and also increased when Bp is increased but

this effect is even less sensitive. Peeling is also more effective for large Bp. This is

natural since Bp is directly linked to the background current. The transport of

toroidal momentum supports, and is actually required for the ITB while the ETB

is counteracted. This is because the toroidal momentum flux usually is inward, thus

building up rotation in the core and reducing it at the edge, As was found in [54]

electromagnetic effects enhance the toroidal momentum pinch and are actually

necessary for the formation of the ITB described in this chapter. The dynamics of

the ITB formation is that the toroidal momentum pinch builds up rotation in the

core and this reduces transport thus increasing the ion temperature gradient. As

shown by (7.1) this increases the poloidal rotation and finally the poloidal spinup of

poloidal rotation gives the ITB.
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Fig. 7.7 This graph

corresponds to Fig 7.4 but

with 50% increase in Bp. We

observe that the outer part of

the barrier has been peeled off

(From [58] with the

permission of the American

Institute of Physics)
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7.3 Discussion

We have, in the present chapter given a brief overview of present trends in transport

research with emphasis on plasma flows and transport barriers. The two areas of

main emphasis in present day research are transport barriers and impurity transport.

Impurity diffusion will be of a major importance for ITER. It is essential here that

there is a turbulent pinch for the main ions while impurities may go inward or

outward. The main ion pinch is likely to improve ITER performance strongly [43,

44]. It is also of a general interest to understand particle and heat pinches [52, 53,

57]. Very basic aspects of a particle pinch in the Levitated Dipole at MIT

were studied experimentally in [52] and interpreted theoretically in relation to the

particle pinch in the reactive fluid model described in Chap. 6 in [53]. Also the off

axis ECH experiment in D-III-D [6.128] was repeated in H-mode [57]. While the

experiment in L-mode gave an electron heat pinch as simulated in [6.129], the

experiment in H-mode did not. Although we have not simulated the H-mode case it

is clear from the start that this would not give a heat pinch since the heat pinch

requires a peaked density profile.

Finally the area of stiffness has been studied widely. We will here just discuss

the most recent results on stiffness in the presence of rotation. Experiments on

stiffness in rotating plasmas has been made for several years [55, 56]. Initially

theory models [35] with a spectrum of modes were performing better in relation to

the experimental results than the reactive model (Sect. 6.11) with only one correla-

tion length. In this model the spectrum is simulated by using a parameter dependent

correlation length [13]. However this correlation length did not depend on

flowshear. This has recently been generalized [66]. The result was that the results

with this model are now comparable with those of models using a multi mode

spectrum [66].
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Chapter 8

Instabilities Associated with Fast Particles

in Toroidal Confinement Systems

8.1 General Considerations

As mentioned in Sect. 6.11.3, toroidal drift wave transport gives an unfavourable

scaling of the energy confinement time with heating power, roughly in agreement

with the empirical scaling law (1.11). It is worth observing that this scaling is

obtained with a reactive fluid model where only magnetic drift resonances of a fluid

type were included. The unfavourable scaling with heating power is due partly to

the scaling of transport coefficients with temperature as T�3/2 and partly to the

threshold behaviour, i.e. (Zi�Zith)
1/2. These are effects of a pure (ideal) heating

on the bulk plasma transport and are thus independent of the heating method. We

note the close analogy with Rayleigh Benard convection in usual fluids where the

heating itself leads to convective transport.

A different but somewhat similar picture emerges when we consider how the

energy is transformed into heat for a particular heating method. This process in

general requires the formation of a non-Maxwellian plasma with an energetic

particle population before the external energy is transformed into heat. This is

regardless of whether the heating is made by neutral beams, radiofrequency waves

or alpha particles in a burning plasma. The fast particle population is here either due

to injected or created particles or due to wave-particle resonances with an injected

wave. In both cases we need kinetic theory to understand the details of the relaxa-

tion. The reason for the interest in the energetic particle population is that it may

lead to new instabilities which, in turn, may cause a large transport of the energetic

particles. This could lead to a situation where these particles may leave the system

before depositing their energy to the bulk plasma, thus reducing the efficiency of the

heating method and enhancing the unfavourable scaling of confinement time with

heating power given by (1.11). Although instabilities caused by fast particles have

been observed experimentally [1–5], the most striking example being the “Fishbone

instability” in PDX [1], the scaling (1.11) does not seem to depend strongly on the

heating method as such. It may, however, depend on in which channel the energy is

deposited. (For the driftwave transport coefficients given by (6.152)–(6.154) the
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worst case , P to the power �2/3, is obtained for equal electron and ion heating)

This indicates that so far, instabilities caused by the energetic particles have not had

a strong effect on the overall energy balance. The reason for this seems to be that the

anomalous increase in the transport due to fast particles has been fairly modest. As

it turns out, the fast particles also have a beneficial effect [6–8], on the bulk

transport which may partly compensate an increased transport in the fast particle

channel from an overall energy balance point of view. However, since instabilities

caused by energetic particles [9–36], are potentially harmful and since the situation

may change in large burning plasmas, such as in a reactor, an understanding of the

energetic particle physics may be essential.

8.2 The Development of Research

The first theoretical studies of energetic particle effects indicated a possibility for

resonance at the Alfvén frequency [9] and the above mentioned stabilizing effect on

eigenmodes associated with the bulk plasma [6–8]. This effect is a dilution effect

caused by the fact that the fast particles do not take part in the bulk instabilities.

This is true for MHD type modes as well as for drift type modes. Later, however,

fast particles were found to introduce new modes at the precession frequency of

trapped fast particles [12–14]. These modes were basically of an MHD type since

one fluid equations could be used to describe the bulk plasma. The fast particles,

however, destabilized a new branch at the precession frequency of the fast

particles. These types of modes were, in fact, discovered experimentally as the

“Fishbone instability” in the PDX experiment in Princeton [1]. While the main

fishbone mode was identified as a new branch of the internal kink mode [12], a

precursor, with a higher modenumber seemed to be due to an analogous branch of

the high n MHD ballooning mode [14]. Since these modes are driven by resonant

fast particles we here have sources in velocity space and thus expect to have sources

in the transport equations of the type (6.132) for all fluid moments. Experimentally

the fishbone oscillations were obtained for nearly perpendicular neutral beam

injection. This led to a large trapped population of the fast particles and the

instability was entirely due to the magnetic curvature drift resonance of the trapped

particles. (The bounce averaged trapped particles rotate “precess” in the toroidal

direction due to magnetic curvature. The bounce averaged magnetic drift is called

the precession frequency). The threshold in energetic particle beta of the fishbone

instability is due to the continuum damping of the MHD type mode. The MHD

continuum for cylindrical plasmas was discussed at the end of section on kink

modes in Chap. 6. For the MHD ballooning mode the continuum damping

corresponds to the io� term in (6.72). Good agreement between theory and experi-

ment was obtained for both threshold and mode signatures for the fishbone modes.

An obvious way to reduce the effect of fishbones was to inject the neutrals more

parallel to the magnetic field. This would reduce the fraction of trapped particles to

below the threshold set by the continuum damping. This method, however, turned
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out to be only partly successful and new types of modes were excited also below the

continuum threshold of the fishbone instability. For these modes the Landau

resonance of the circulating fast particles becomes important. As it turns out, the

plasma current may cause a minimum of the Alfvén frequency as a function of

radius, thus opening the possibility for modes with a discrete spectrum when the

frequency is below the minimum of the Alfvén frequency. These modes were called

Global Alfvén Eigenmodes [15, 16], (GAE) since they could extend over the whole

cross-section (compare the discussion at the end of the section on kink modes in

Chap. 6). Another possible cause of discrete, undamped modes is toroidicity.

(In fact, in a toroidal system also GAE modes can be seen as toroidal since the

current enters in combination with the parallel operator kk prop. to 1/R). The main

effect of toroidicity is to couple modes with different poloidal modenumbers. This

introduces a gap in the Alfvén continuum due to coupling of modes with poloidal

modenumbers m and m + 1. This is the Toroidicity induced Alfvén Eigenmode or

TAE mode [17, 18]. For a while it was believed that GAE modes and TAE modes

had a very small instability threshold set only by electron Landau damping. Later it

was, however, found that these modes can couple to the continuum modes by other

toroidal coupling possibilities. This usually gives the main stabilizing effect. There

are more types of modes of a similar type. We may mention EAE modes caused by

the coupling between m and m + 2 modes due to ellipticity, NAE modes which

couple m and m + 3 modes due to triangularity and BAE modes which are due to

finite beta modifications of the magnetic curvature.

8.3 Dilution Due to Fast Particles

Before going into the new types of instabilities caused by fast particles we shall make

some general considerations of multi ion systems where, in particular, the effect of

dilution becomes clear. We consider a system of electrons, e, main ions, i and fast

ions, f. The main ions have charge 1 and the fast ions charge Z. Quasineutrality

requires:

ne ¼ ni þ Znf (8.1)

Let us now introduce the fast fraction ef such that

nf ¼ ef ne (8.2)

ni ¼ ð1� Zef Þne (8.3)

We require (8.1) to hold also for perturbations. Thus

dne ¼ dni þ Zdnf (8.4)
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we obtain after dividing by ne and using (8.2) and (8.3)

dne
ne

¼ ð1� ef ZÞ dni
ni

þ ef Z
dnf
nf

(8.5)

Equation 8.5 is the basic charge balance equation which needs to be fulfilled

regardless of which physics desceiption we use for electrons, ions and hot ions. If

we now study the influence of fast ions on a mode associated with the bulk plasma

we have oDf �o. Then, using (5.30) or (6.140) for the fast ions we obtain:

dnf
nf

¼ �Z
ef
Tz

(8.6)

The Boltzmann response for fast ions means that they do not take part in the

destabilizing process but just responds in an isothermal way to the potential

perturbations. The instability growth rateb is reduced due to the factor 1 � efZ in

front of the main ion response. This is the dilution effect. The same principle, of

course, applies if we use a fast particle response which includes the parallel

resonance. If we now consider modes with o ~ oDf, the fast particles can be

destabilizing. We will consider such cases in the following.

8.4 Fishbone Type Modes

Fishbone type modes are basically new branches of MHD type modes, introduced

by fast trapped particles. The pure MHDmodes are fairly close to marginal stability

in the sense that the destabilizing effects balance the Alfvén line bending effect to

give a mode with eigenfrequency close to zero. For the fishbone type modes we are

only interested in the trapped population of fast particles. For these we start from

the gyrokinetic equation (5.28) and average it over the bounce motion as described

in the section of trapped particle modes in Chap. 6. This means that the vk parts

vanish from (5.28) and the magnetic drift is replaced by the bounce averaged

precession frequency. The fast particle response is then given by (5.30) where the

magnetic drift in the denominator is replaced by its bounce average. Now treating

the fast particles as an additional particle species in the quasineutrality condition we

may derive a dispersion relation by the trial function method described in

(6.69)–(6.70). Ignoring the O2 part, the dispersion relation (6.72) is generalized to

the form

iO ¼ dWMHD þ dWf (8.7)

Here dWMHD is given by (6.73) for the MHD ballooning mode and by the left hand

side of (6.95) for the internal kink mode. It was evaluated for the first time with
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toroidal effects in [37]. The kinetic part dWf is due to the fast particle response as

obtained from (5.28). For a slowing down distribution dWf takes the form:

dWf ¼
ffiffiffi
2

p
bf

a
enf

1� 3

2
enh

� �
ln

a� 1

a

� �
(8.8)

where bf is the beta of the fast particles, a ¼ o/oDf, oDf is the precession frequency

and enf ¼ oDf/o•f where o•f is the diamagnetic drift frequency of the fast particles.

For a Maxwellian distribution we have [13]:

dWf ¼ 1

2
bf

a
enf

2nf 1�W
ffiffiffiffiffi
2a

p� �h i
� aenf þ aenf � 1� nf 2a� 1ð Þ� �

1�W
ffiffiffiffiffi
2a

p� �h i2
8><
>:

9>=
>; (8.9)

The difference between the distributions (8.8) and (8.9) are usually not very

large. Both the real part of the eigenfrequency and the growthrate are of the order of

the precession frequency. This is also true when we use the advanced reactive fluid

model in Chap. 6 for the fast particles [27]. The threshold for the reactive fluid

model does, however, differ significantly. For the distributions (8.8) and (8.9) we

obtain the threshold by balancing the imaginary part of dWf with iO. For the

slowing down distribution the threshold is:

bcrit ¼
<oDf>

oA

2s

p2q2I0
(8.10)

Where I0 proportional to R/r includes the bounce averaging of the driving pressure

term and <> denotes bounce averaging of the magnetic drift frequency. The

growth rate is

g ¼ <oDf>
p2

4

b� bcrit
bcrit

(8.11)

When the plasma is heated bf increases until it exceeds bcrit. Then the fishbone

mode goes unstable and rapidly reduces bf to below the threshold. The heating then

again increases bf and the process repeats itself. This leads to a fishbone like

oscillation.

8.5 Toroidal Alfvén Eigenmodes

We will now consider the potentially most dangerous type of eigenmode which is

the discrete one. This type of mode is, in the simpliest description, not subject

to continuum damping. As mentioned above the Toroidal Alfvén Eigenmodes
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(TAE modes) occur in a gap in the Alfvén continuum, caused by a coupling of

modes with poloidal mode number m and m + 1. In the cylindrical approximation

kk is given by (6.7) i.e.

k jj ¼ ðm� nqÞ=qR (8.12)

k
mjj ¼ �k

mþ1jj (8.13)

Which happens when

qðrÞ ¼ ð2mþ 1Þ=2n (8.14)

In particular for m ¼ �2 and n ¼ �1 we obtain a resonance at q ¼ 1,5. For this

case we show the radial continuous spectra in Fig. 8.1. In the gap between the full

lines there is a solution with only one (discrete) o, which is the TAE mode. It has a

real eigenfrequency close to the common cylindrical eigenfrequency o0 of the

coupled Alfvén modes. Since this frequency is large, a kinetic resonance requires

fast particles. The mathematical formulation usually makes use of the condition

divj ¼ 0. A convenient and rather general formulation was given in [23] as:

B�r 1

B2
B � rDfþ oðo� o�iTÞ

vA2
Df� 8p

B2

dP

dr
kyðk� e

_

jj Þ � rf

þ 4p
B2

oðk� BÞ � rðdP fjj þ dP?fÞ ¼ 0 (8.15)

Here dP fjj and d P?f are the parallel and perpendicular components of the hot

particle pressure tensor and the fact that only the curvature part of the magnetic drift

appears is consistent with (6.21).

In (8.15) the first term is the shear Alfvén line bending term, the second term

comes from the divergence of the polarisation and stress tensor drifts, the third term

is the interchange term due to the driving bulk pressure and the fourth term is the

driving term due to the pressure of the fast particles. An analytical expression for

the growthrate of TAE modes, driven by only the parallel alpha particle pressure

was obtained in [24].

ω
ωA

ω0
ωA

r/a

Fig. 8.1 Gap due to toroidal

coupling of Alfvén waves

with poloidal modenumbers

m and m + 1
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g ¼ o0

9

4
ba

oa

o0

� 0:5

� �
F� be

vA

ve

	 

(8.16)

Here ba and be are the b values of alpha particles and electrons, respectively, and

o�o is the alpha particle diamagnetic drift frequency. FðxÞ ¼ xð1þ 2x2 þ 2x4Þ
expð�x2Þ, where x ¼ vA=varepresents the kinetic distribution. As pointed out

above, we need particles with velocity close to the Alfvén velocity for a significant

growthrate.

8.6 Discussion

We have here studied some of the most important collective effects associated with

fast particles. These can be divided into on the one hand continuum modes and

global modes and on the other hand modes driven by the perpendicular fast particle

pressure through the resonance with the precession frequency of the trapped

particles or by the parallel pressure through the Landau resonance with the

circulating fast ions. As it turns out, the TAE mode, which normally is excited by

the transit resonance, can also be destabilized by the precessing trapped ions [26].

Equation 8.15 can be used to describe both fishbone type ballooning modes and

TAE modes (the only missing part is the kink term). The presence of the ion

diamagnetic drift in the second term means that we can describe also the kinetic

ballooning mode [23]. For perpendicular neutral beam heating, dP?f will dominate

and a majority of the fast ions will be trapped. For parallel neutral beam injection

dP fjj will dominate and the majority of the fast particles will be circulating. In the

latter case we only have the TAE mode in the system. In the first case we can have

both fishbone type modes and TAE modes. A major difference between these is that

the fishbone mode is triggered close to marginal stability, i.e. only close to the

MHD beta limit for the balloning type. On the other hand it can be excited for

general fast ion precession frequency while the TAE mode requires particles with

velocity close to the Alfvén velocity.

An investigation of thresholds for fishbone type and global modes in kinetic and

reactive systems i.e. alternatively using (5.29) and (6.140) for the fast particles was

made in [27].

Recent more detailed kinetic calculations of the stability of TAE’s for reactors

[28, 33, 35, 36] indicate that the modes may be somewhat more unstable than in

TFTR although the situation should be possible to control.

Finally the nonlinear saturation of the instabilities is, of course, fundamental for

the transport they cause. A usual estimate of the saturation level is obtained by

balancing the linear growthrate and the E � B trapping frequency or nonlinear

frequency shift. This leads to an estimate similar to (3.65). Berk and Breizman have

investigated the details of the kinetic saturation process, including relaxation

oscillations and flattening of the distribution function Refs. [29–31, 33, 34]
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Chapter 9

Nonlinear Theory

9.1 The Ion Vortex Equation

We have up to now mainly studied linear and quasilinear phenomena (with the

exception for Sect. 6.10.4 in Chap. 6). Although quasilinear equations, in combina-

tion with an estimate of the saturation level, can be used to derive transport

coefficients, it is important to go beyond this description in order to understand

its region of applicability [1–83]. In particular nonlinear cascade rules [18, 20, 25,

26, 29, 30, 55] are important for the interplay between sources and sinks in k-space

and the resulting saturation level and correlation length. We will thus here consider

some simple nonlinear systems for turbulence in magnetized plasmas. We will also

make a kinetic derivation of the diffusion coefficient which involves the turbulent

transport itself as a decorrelation mechanism [3–5, 7, 8]. As we have pointed out in

Chap. 3, the parallel ion motion may often be ignored in drift and flute modes. This

is possible ifo � kk cs. For this case it is possible to derive a simple but still rather

general nonlinear equation for the ion vorticity O ¼ rot vi. We start from the fluid

equation of motion for ions

@vi
@t

þ ðvi � rÞvi ¼ e

mi
ðEþ vi � BÞ � 1

min
rPi þ g (9.1)

Taking the curl of this equation, introducing

Oci ¼ e

mi
B

using the Maxwell equation

r� E ¼ � @B

@t
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and the vector relation

ðv � rÞv ¼ 1

2
rv2 � v�r� v

we obtain

@Oi

@t
�r� ðvi � OiÞ ¼ � @Oci

@t
þr� ðvi � OciÞ þ 1

min2
rn�rP (9.2)

When grad n � grad P ¼ 0 we may write (9.2) as

@

@t
ðOi þ OciÞ ¼ r � vi � ðOi þ OciÞ½ � (9.3)

If (9.3) is integrated around a closed line and we make use of Stokes theorem, we

now obtain a generalized form of the familiar theorem of attachment of magnetic

field lines to the plasma which reduces to the usual form when Oi � Oci. In its

usual form this theorem is primarily concerned with the perpendicular component

of (9.3) while we will here be interested only in the parallel component of (9.3).

Now since divOi ¼ divOci ¼ 0 we find

r� ðv� OÞ ¼ �Or � v� ðv � rÞO

where V represents Vi or Vci. Now we realise that the operator V•r represents a

variation in the direction of the vorticity or the magnetic field. Since the vorticity

will be due mainly to the E � B drift caused by the background magnetic field and

we assume the magnetic perturbation to be small, we find that this operator

represents a variation along the background magnetic field. Since the ion motion

along the magnetic field is going to be neglected, we then drop this term. (The

neglection of ion motion along B amounts to dropping kk cs, i.e. kk ¼ 0). Then

collecting terms and introducing

d

dt
¼ @

@t
þ ðv � rÞ

we have

d

dt
ðOi þ OciÞ þ ðOi þ OciÞr � vi ¼ 1

min2
rn�rP (9.4)

In order to express div vi we now use the ion continuity equation which may be

written
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dni
dt

þ nir � vi ¼ 0

or

r � vi ¼ � d

dt
ln ni

then

d

dt
ðOi þ OciÞ � ðOi þ OciÞ d

dt
ln ni ¼ 1

min2
rn�rP (9.5)

Since divE ¼ 0 it is often a good approximation to drop (d/dt) ln ni completely.

This corresponds to incompressible flow. The equation then describes the genera-

tion of vorticity Vi and the magnetic field Vi by the vector grad n � grad P. This

vector is called the baroclinic vector and is present whenever there is an angle

between the temperature and density gradient. It is one of the mechanism responsi-

ble for the generation of magnetic fields in laser pellet experiments. For the study of

the ion vortex motion it is convenient to rewrite (9.5) in scalar form. We then note

that the nonlinear E � B drift is given by (1.5), i.e. for vk ¼ 0 the nonlinear

contribution disappears and rot v ¼ Ok. We thus take the parallel component of

(9.5). This means that we disregard perpendicular perturbations of Vc in the ion

equation. The approximation kk ¼ 0 was also made in obtaining (4.31) from (4.20).

We may rewrite (9.5) as:

d

dt
ln

Oi þ Oci

ni

� �
¼ 1

min2
ðrn�rPÞ � z_

Oi þ Oci
(9.6)

In order to treat consistently the ion temperature effects we have to include the

velocity vp due to the stress tensor. A correct evaluation of (9.6) in the presence of

ion temperature gradient is then rather complicated. We will thus for simplicity

assume the ion temperature to be small and drop the baroclinic vector. we then have

the usually used form of the ion vortex equation

d

dt
ln

Oi þ Oci

ni

� �
¼ 0 (9.7)

We now write dni ¼ n0 + dni where dni � n0 and introduce the weak nonline-

arity assumption Oi � Oci. Then (9.7) takes the form

d

dt
lnOci þ Oi

Oci

� ln n0 � dni
n0

� �
¼ 0
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Since we are now going to consider the ion temperature to be small we now use

vi ¼ vE + vg in (9.7). This is correct to first order in o/Oci since the ion inertia

(polarisation drift) is already included in (9.7). We then find

Oi ¼ ðr � vEÞ � z_ ¼ 1

B0

Df (9.8)

We can write (9.7) in the form

@

@t
þ vg

@

@y

� �
1

B0Oci

Df� dni
n0

� �
� 1

B0

ðz_ �rfÞ � x_ d

dx
ln n0

¼ � 1

B0

ðz_ �rfÞ � r 1

B0Oci

Df� dni
n0

� �
(9.9)

where we dropped both time and space derivatives of Oci The grad B drift due to a

variation of B0 along x may, however, be included in vg. We have now obtained a

nonlinear equation for the ion dynamics. The density perturbation dni can be expressed
in terms of j by involving the electron dynamics and assumption of quasineutrality.

We have in (9.9) dropped parallel ion motion, i.e. assumed kk cs � o which means

that (9.9) is equivalent to the assumption kk ¼ 0 for the ions. For the electrons,

however, we are still free to choose the region of interest. Remaining in the drift

wave interval (3.5) we can use the Boltzmann distribution (3.2a) for the electrons. In

combination with the quasineutrality condition this gives

ln ni ¼ ln n0 þ ef
Te

which may be substituted directly into (9.7) without expansion. This means that for

a Boltzmann distribution of electrons the electrons will not contribute to the

nonlinearity. Then using the expanded form of lnðOi þ OciÞ we obtain

@

@t
þ vg

@

@y

� �
1

B0Oci

Df� dni
n0

� �
� k
B0

@f
@y

¼ � 1

B0

ðz_ �rfÞ � r 1

B0Oci

Df� dni
n0

� �
(9.10)

We notice that the gravitational drift in (9.9) only gives a Doppler shifted

frequency. Thus moving to the frame with velocity vg we obtain the equation

d

dt

1

B0Oci

Df� dni
n0

� �
� k
B0

@f
@y

¼ � 1

B0
2Oci

ðz_ �rfÞ � rDfþ 1

B0T

dTe

dx

ef
Te

@f
@y
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where we included the possibility of an electron temperature gradient in the x

direction. We may compare the two nonlinear terms in the following way. Introducing

T=eB0 ¼ cs
2=Oci, we can rewrite thefirst termas 1=B0r2 gradðej=TeÞxz_

� �
�gradDj.

We then arrive at the ratio (d=dxÞlnTe=kyk
2r2 between the nonlinear terms. It is natural

to assume ðd=dxÞlnT � ky. Since, however, k
2r2 may be small, the second nonlinear

termwill not alwaysbe negligible.Wewill, nevertheless, in the followingassume this to

be the case. We then arrive at the Hasegawa-Mima equation (the quasi-geostrophic

vortex equation)

d

dt
ðr2Df� fÞ � v	e

@f
@y

¼ rs
2

B0

ðrf� z
_Þ � rDf (9.11)

Where we multiplied by Te/e. Equation 9.11 is the small gyroradius limit of

(5.43) which was derived from the nonlinear gyrokinetic equation. We again

observe that the interchange frequency is absent when the electrons obey a

Boltzmann distribution. Equation 9.11 has the conserved quantities

W ¼
ð

rs
2Df2 þ f2

� �
d3r (9.12)

V ¼
ð

rs
2Df2 þ ðr2Df2Þ2

h i
d3r (9.13)

Where W is the energy and V is the enstrophy (squared vorticity). We notice that in

the linear approximation, (9.11) reduces to

o ¼ o	e
1þ ky

2rs2

Which is the usual dispersion relation for electron driftwaves without parallel

ion motion.

We now turn to the case o � kkvthe. This is the limit of electrostatic interchange

modes. In this limit the electrons are not Boltzmann distributed. Instead, we may

use the approximation kk ¼ 0 also for electrons. The electrons can then be

described by the continuity equation

@ne
@t

þ k
B0

@f
@y

¼ 1

B0

ðrf� z
_Þ � rne (9.14)

where we used ve ¼ vE since temperature effects do not enter into the continuity

equation. In the limit k � k we can write grad ne=n0 ¼ grad dne=n0.
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Thus dividing (9.14) by n0 and subtracting it from (9.9) we arrive at the coupled

system of equations

1

B0Oci

@

@t
þ vg

@

@y

� �
Df� vg

@

@y

dni
n0

¼ 1

B0
2Oci

ðrf� z
_Þ � rDf (9.15)

d

dt

dn
n0

� �
þ k
B0

@f
@y

¼ 1

B0

ðrf� z
_Þ � r dn

n0
(9.16)

where we again used the quasineutrality condition and introduced dn 
 dne ¼ dni.
We notice that (9.15) couples to (9.16) only due to the gravitational drift vg. In the

linear approximation we obtain from (9.16)

dn
n0

¼ k
B0o

kyf

which is the same relation as (3.22). Substituting this expression into (9.15) we find

the dispersion relation

oðo� kyvgÞ þ kgky2=k2 ¼ 0 (9.17)

where we introduced vg ¼ �g/Oci and k2 ¼ kx
2 þ ky

2. This dispersion relation is

identical to (3.23) if g ! gi þ ðme=miÞge. It is also of interest to note that when

g ¼ vth
2=Rc, i.e. is due to the curvature, the gravitational drift of the electrons is of

the same order as that of the ion for equal temperatures. For this case we should

replace g by gi þ ðme=miÞge which will, however, only modify the interchange

frequency (kg)1/2 by a factor √2.
The simplest nonlinear process described by (9.11) is the three wave interaction.

We write

f ¼
X

fkðtÞeiðkxxþkyy�otÞ þ c:c (9.18)

Substituting (9.18) into (9.11) we now obtain

�ioþ d

dt

� �
ð1þ k2r2Þfk � ikyv	fk

¼ rs
2

B0

ðk1 � z
_Þ � k2k22 þ ðk2 � z

_Þ � k1k12
h i

fk1fk2e
iðo�o1�o2Þt

(9.19)

where we assumed the matching condition

k ¼ k1 þ k2
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to be fulfilled. Assuming now that o is a solution of the linear dispersion relation,

we obtain the three coupled equations

@fk

@t
¼ rs

2

B0ð1þ k2r2Þ ðk1 � k2Þ � z_ k2
2 � k1

2
� 	

fk1fk2e
iDot (9.20)

@fk1

@t
¼ � rs

2

B0 1þ k1
2r2

� 	 ðk� k2Þ � z_ k2
2 � k2

� 	
fkfk2

	e�iDot (9.21)

@fk2

@t
¼ � rs

2

B0 1þ k2
2r2

� 	 ðk� k1Þ � z_ k1
2 � k2

� 	
fkfk1

	e�iDot (9.22)

Where we introduced the frequency mismatch Do ¼ o � o1 � o2.

We can now substitute the matching condition for the wave vectors into (9.22) in

order to eliminate k. The vector products may then all be expressed in terms of

(k1 � k2)•ż. This leads, however, to a change of sign in all three equations. This

means that the coupling factor of (9.21) will have opposite sign to the coupling

factors of the other two equations. In this situation mode 1, i.e. the mode with the

immediate magnitude of k will act as a pump wave and we have cascading of wave

quanta towards smaller and larger k according to Fig. 9.1.

The threshold for parametric interaction is

fk1



 

2> Do2

4V0V2

(9.23)

Where V0 and V2 are the coupling factors. By using the dispersion relation in the

form k2r2 ¼ kyv�e= ok � 1, it is possible to write

k1
2 � k2

2 ¼ �oM

k2 � k1
2 ¼ o2M

k2
2 � k2 ¼ o1M

(9.24)

where

M ¼ v	e
3r2oo1o2

oðky2 � ky1Þ þ o1ðky þ ky2Þ � o2ðky þ ky1Þ
� �

We then find that when k2r2 � 1, i.e. Do ! 0, the pump wave will be the mode

with the largest frequency.

k⊥

Fig. 9.1 Dual cascade
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Assuming the presence of a large amplitude long wavelength mode Hasegawa

and Mima derived, for a random phase situation, a stationary spectrum of the form

efk

Te











2

¼ G
ðkrÞa

ð1þ k2r2Þb
(9.25)

where a ¼ 1.8 and b ¼ 2.2. This spectrum is in reasonable agreement with

spectra observed in tokamak experiments where 106 < Г < 10�5. Computer

investigations by Fyfe and Montgomery [14] show a spectrum with the dependence

k�14/3 below and k�6 above a source while recent experiments give the variation

k�3.5. The experiments, however, include several effects not included in (9.25) such

as ion temperature effects and linear damping or growth. Another important

phenomenon observed in nonlinear simulations of (9.11) is the generation of

zonal flows [19]. Such flows may cause a stabilization of drift wave turbulence,

leading to internal transport barriers.

For the system (9.15) and (9.16) the derivation of the coupling factors is

considerably more complicated. The result may be written in the form

@fk

@t
¼ V12fk1fk2e

iDot (9.26)

where

V12 ¼ rs
2 ðk1 � k2Þ � z_

k2

� �z_ k2
2 � k1

2 � r4k2k12k22
oo1o2

o0o1
0o2

0
vg

v	e

� �2 o2

o2
0 �

o1

o1
0

� �" #
o� o0

2o� o0

(9.27)

Where o0 ¼ kyvg. The last factor gives the sign of the energy. The system

described by (9.27) has the same cascade rules determined by k numbers as

(9.20)–(9.22). This is, however, no transition to the usual weak turbulence rule

for perfect matching. The wave energy is given by

Wk ¼ k2rs
2 efk

Te

� �2

þ vg

v	e

nk
n0

� �2

¼ 2o� o0

o� o0 k
2rs

2 efk

Te

� �2

This wave energy is contrary to the usual weak turbulence case conserved also in

the presence of mismatch. We also note that this expression for the wave energy,

obtained from a nonlinear conservation relation in a fluid model, agrees with the

expression in (4.79) obtained from a linear kinetic theory, to first order in the FLR

parameter.
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From the ion vortex equationwemay derive a simple condition for the applicability

of quasi-neutrality. Using the Poisson equation in (9.7) we have

d

dt
ln

Oi þ Oci

ne � e0Df=e

� �
¼ 0 (9.28)

Since here ne is the total electron density we can expand the denominator for

ne � e0Dj/e. Using (9.28) for Oi and assuming Oci � Oi we obtain, dropping

Oie0Dj/e

d

dt
ln

1

B0

Df 1þ Oci
2

opi
2

� �
þ Oci

� �
=ne

� �
¼ 0 (9.29)

We thus find the condition opi
2 � Oci

2 for quasineutrality. For a tokamak plasma

we have typically opi ~ 40Oci so the condition for quasineutrality is well fulfilled.

9.2 The Nonlinear Dielectric

An alternative to the previous formulation of the nonlinear dynamics in terms of the

ion vortex equation is the formulation in terms of a dielectric function. For

electrostatic modes this is

oeðo; kÞEo;k ¼ � i

e0
jo;k

ð2Þ (9.30)

where e(o,k) is the linear dielectric function given by (4.66). For k2l2De � 1 and

Ti � Te we obtain

eðo; kÞ ¼ 1

k2 lde
2

1þ k2r2 � o	e
o

� �
(9.31)

The current j(2) is the nonlinear current. For electrostatic drift waves

jo;k
ð2Þ ¼ envpi

ð2Þ ¼ � en

BOci
ðz_ �rfÞ � rrf (9.32)

i.e. the nonlinear part of the polarisation drift neglecting v•i when Ti �Te. Substi-

tution into (~9.30) leads t

oð1� r2DÞ � iv	e � r
� �rf ¼ �iD

Te

eBOci
ðz_ �rfÞ � rrf (9.33)
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Taking the divergence of (9.33) we obtain

oð1� r2DÞ � iv	e � r
� �

Df ¼ �ir2Dðz_ �rfÞ � rDf

Then inverting the Laplacian and transforming o ! id/dt we obtain the

Hasegawa-Mima equation

d

dt
ðr2Df� fÞ � v	e � rf ¼ rs

2

B0

ðrf� z
_Þ � rDf (9.34)

Which is identical to (9.11).

We note that the particularly simple frequency dependence of (9.31) made it

possible to transform to the time domain without expanding e(o,k) around a linear

eigenfrequency. Because of this (9.34) is valid in the strongly nonlinear regime.

9.3 Diffusion

The main reason for the interest in collective perturbations in magnetized plasmas

is the anomalous transport caused by a turbulence of such perturbations. The low

frequency vortex modes treated here are of special interest for several reasons. First

we observe that a convection across the magnetic field is associated with the

vorticity. Second as we will see in this section low frequency modes cause efficient

transport. Third, these modes are frequently driven unstable by inhomogeneities in

pressure and magnetic field, making them hard to avoid in a confined plasma.

Although the anomalous transport is of convective type it is usually treated as a

diffusive process, This can be justified in a turbulent state where the particle motion

in the wave fields is stochastic and the requirement on particle stochasticity is in

fact more easily fulfilled than the random phase approximation for the waves. For a

stochastic motion of particles the diffusion coefficient is usually defined as

D ¼ lim
1

2t
<Dr2ðtÞ>; ::t ! 1 (9.35)

where Dr is the distance from the point where the particle was at t ¼ 0 and <>
denotes an average over all possible initial velocities or more generally an ensemble

average. We now introduce the velocity v(t) so that

DrðtÞ ¼
ðt
0

vðt0Þdt0
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and

D ¼ lim
1

2t

ðt
0

dt0
ðt
0

vðt0Þvðt00Þdt00

 �

; ::t ! 1

¼ lim
1

2t

ðt
0

dt0
ðt
0

<vðt0Þvðt00Þ>dt00; ::t ! 1

We shall now assume that we have a stationary stochastic process such that

<vðt0Þvðt00Þ> ¼ <vðt0 � t00Þvð0Þ>. This means that the correlation between the

velocities only depends on the difference in time t ¼ t0–t00 and

D ¼ lim
1

2t

ðt
0

dt0
ðt
0

<v(tÞvð0Þ>dt00; ::t ! 1

which simplifies to

D ¼
ð1
0

<v(t)v(0)>dt (9.36)

Another usual way of defining D is as the coefficient in the diffusion equation

@2n

@t2
¼ D

@2n

@r2
(9.37)

Where n ¼ n(r,t) is the particle density. A solution to (9.37) corresponding to the

initial state where all particles are collected at r ¼ 0 is

~nðr; tÞ ¼ N

ð4pDtÞ1=2
e�r2=4Dt (9.38)

Where N is the total number of particles. Clearly the possibility of finding a

particle between r and r + Dr at time t is ñ(r,t)Dr/N if Dr is small enough. This

means that the ensemble average of a quantity Q(r,t) can be written

<Q> ¼ 1

N

ð1
�1

~nðr; tÞQðr; tÞdr (9.39)

As is easily seen we now have

<r2> ¼ 1

N

ð1
�1

~nðr; tÞr2dr ¼ 2Dt

Since r here is the total deviation in position since t ¼ 0 we realise that the two

definitions of D are equivalent. In order to derive a useful expression for D for a
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time and space dependent process it is convenient to start from (9.36) where v(t) is
represented in Fourier form

v(tÞ ¼ v(r(tÞ;tÞ ¼ 1

ð2pÞ3
ð
vk;oe

i ot�k�rðtÞ½ �dodk

where the two space dimensions were assumed.

We then obtain from (9.36)

D ¼
ð1
0

dt
1

ð2pÞ3
ð
<jvk;oj

2

>eiot<e�ik�rðtÞ>dodk (9.40)

where we assumed that vk,o is uncorrelated with the phase function. In order to

obtain D we now need to know the velocity spectrum and the ensemble average of

the space phase function. The latter can be obtained by using the representation

(7.39) of the ensemble average. This leads to the result

<e�ik�r> ¼ e�k2Dt (9.41)

This result was verified numerically for thermal equilibrium by Joyce,

Montgomery and Emery [10]. The characteristic time (k2D)�1 is usually called

the orbit decorrelation time and is the time after which an average particle has

moved so far due to diffusion that the field is uncorrelated with the field at the initial

point. Specializing now to resonant modes where vko ¼ vkd(o�o(k)) where o(k)
is the solution of a dispersion relation we find

D ¼
ð1
0

dt
1

ð2pÞ3
ð
<vk;o

2>eioðkÞt�k2Dtdodk ¼ 1

ð2pÞ2
ð

<vk
2>

�ioðkÞ þ k2D
dk (9.42)

where we assumed convergence at t ¼ 1, i.e. Im o < k2D. We note that (9.40)

and (9.42) contain integration over a nonlinear particle orbit in the diffusive limit if

the diffusion is due to turbulence. Introducing now

oðkÞ ¼ okr þ igk

and the reality condition okr ¼ �o�kr we obtain

D ¼ 1

ð2pÞ2
ð
<vk

2>
k2Dþ gk

okr
2 þ ðk2Dþ gkÞ2

dk (9.43)

Equation 9.43 shows that the orbit decorrelation and the wave growth both

contribute to the transport while the real part of the eigenfrequency decreases the
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transport. for low frequency modes the dominant convective velocity is the E � B

drift velocity. We then have

vk ¼ i

B0

ðz_ �~kÞfk

The most efficient mode in a plasma in a homogeneous magnetic field is the

convective cell mode. For this mode okr and the orbit decorrelation usually

dominates the damping. In this case we can solve (9.43) for D with the result

D ¼ 1

B0

ð
1

2p
fkj j

2

dk

� �1=2

(9.44)

Which is the diffusion coefficient for convective cells. It was first derived by

Taylor and Mc Namara [7]. For a thermal equilibrium spectrum in the two dimen-

sional case

k2 fkj j2
8p

¼ T

2e
(9.45)

Where e is the dielectric function. We thus obtain

D ¼ 1

B0

2T

e
ln
Lkmax

2p

� �1=2

(9.46)

where L is the maximum allowed wavelength (system dimension). The influence of

e was introduced by Okuda and Dawson (9.8). The dielectric constant used was

(compare Eq.4.64).

e ¼ 1þ ope
2

Oce
2
þ ope

2

Oce
2

which leads to a Bohm like diffusion D ~ 1/B for opi
2=oci

2 � 1 and to a diffusion

independent of B for opi
2=oci

2 � 1. This diffusion is, in the plateau regime,

comparable to the classical diffusion but much larger in the Bohm regime. Most

fusion machines are supposed to work in the plateau regime but also here the

anomalous transport will dominate in a turbulent state where the excitation level

will be much larger than that given by (9.45).

Another mode of considerable interest is the magnetostatic mode (see Sect.

5.1.2). This mode is electromagnetic and causes mainly electron diffusion by

perturbing the magnetic flux surfaces. The velocity in (9.43) is here given by

vk ¼ v jj
dB?
B0
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where dB┴ is the perturbation of the magnetic field perpendicular to the back-

ground magnetic field and v jj is the thermal velocity. This process was studied by

Chu, Chu and Ohkawa ([19]) where the diffusion coefficient

D ¼ T

B0

2

mL jj
ln

Lkmax

2p

� �� �1=2
(9.47)

was obtained for a thermal equilibrium. Here Lk is the system length parallel to the

magnetic field and L is the dimension in the perpendicular direction. This diffusion

coefficient has a Bohm like T/B scaling. Since this is mainly an electron diffusion,

charge separation effects will efficiently prevent it from leading to actual particle

transport. It will, however, instead cause a thermal conductivity and it has been

suggested that processes of this kind could explain the anomalous thermal conduc-

tivity of tokamaks which is about two orders of magnitude larger than the classical.

In the derivations of the diffusion coefficients (9.46) and (9.47) it was assumed that

the real part of the eigenfrequency could be neglected. This is not always a realistic

assumption. For the convective cell mode curvature of the magnetic field lines can

violate this assumption while for the magnetostatic mode a density inhomogeneity

is enough. For both modes magnetic shear can limit the maximum perpendicular

extension of the mode. In such situations nonlinear modes driven by the

ponderomotive force may sometimes be more dangerous.

9.4 Fokker-Planck Transition Probability

The use of the solution of the diffusion equation for calculating ensemble averages

can be generalised to solutions of the Fokker-Planck equation for diffusion in phase

[81]. We consider solutions of the equation:

@

@t
þ v � @

@r

� �
WðX;X0; t; t0Þ ¼ @

@v
bvþ Dv @

@v

� �
WðX;X0; t; t0Þ (9.48)

Where X ¼ (r,v) is the phase space coordinate, the diffusion coefficient in velocity

space Dv is, in general, a tensor and b is the friction coefficient. We can see (9.48) as

the generalisation of (9.37) to include also velocity space, i.e. we now consider the

six dimensional phase space. W is here called the transition probability and is used

to calculate ensemble averages in a way analogous to (9.39). We also note that

(9.48) was derived for turbulent collisions [81]. This means that the friction and

diffusion coefficients have the general forms:

b ¼
X
k

bk fkj j2
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Dv ¼
X
k

dk fkj j2

Equation 9.48 has solutions of the form (2.1)

WðX;X0; t; t0Þ ¼ e3bt

8p3D3=2
exp � 1

2D
ðaijdridrj þ 2hijdridPj þ bij dPi dPjÞ

� �
(9.49)

Where

D ¼ 1

3
ðaijbij � hijhjiÞ

aij 
 aijðt; t0Þ ¼ 2

b2

ðt
t0
Di;j

vðsÞds

bij 
 bijðt; t0Þ ¼ 2

ðt
t0
Dij

vðsÞe2bðs�t0Þds

hij 
 hijðt; t0Þ ¼ � 2

b2

ðt
t0
Dij

vðsÞebðs�t0Þds

dr ¼ vebt � v0 t ¼ t� t0

dP ¼ r� r0 þ v� v0

b

For the one dimensional case with time independent diffusion coefficient we

obtain

a ¼ 2

b2
Dvt b ¼ 1

b
Dvðe2bt � 1Þ

And

h ¼ � 2

b2
Dvðebt � 1Þ D ¼ ab� h2

WðX;X0; t; t0Þ ¼ ebt

2pD1=2
e�

1
2Dðadr2þ2hdrdPþbdP2Þ (9.50)
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We may see (9.50) as a weight function to derive ensemble averages. Some

examples are

<Dr> ¼ v

b
ð1� e�btÞ

<e�ik�Dr> ¼ exp i
kv

b
ð1� e�btÞ � k2

b2

ðt
0

dxDvðt� xÞð1� e�bðt�xÞÞ2
� �

In the stationary case we have

<e�ikD�r> ¼ exp ikvt� k2Dv

3
t3

� �
ðbt � 1Þ (9.51)

<e�ikD�r> ¼ exp
ikv

b
� k2Dt

� �
ðbt � 1Þ (9.52)

Where D ¼ Dv/b is the diffusion coefficient in configuration space.

We here recognize the t3 dependence found by Dupree and Weinstock [4, 5] by

renormalization in (9.51) and the diffusivity in ordinary space, i.e. (9.41) in (9.52).

However we furthermore get

<Dv2> ¼ Dv

b
ð1� e�2btÞ þ v0

2ð1� e�btÞ2 (9.53)

Where v0 is a fixed initial condition which we will choose to be zero. We then

notice that (9.53) gives the usual diffusion in velocity space for small times while

<Dv2> saturates for t > 1/b. The time dependence is given by Fig. 9.2

Mean square velocity deviation
<dv2>

x1. E12

1 2 3 t

4
3

2
1

Fig. 9.2 Time variation of <Dv2> as given by the Fokker Planck equation
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As pointed out in Chap. 6 the saturation occurs at t � b�1. This is clear from

(9.53). We also note that the friction enters as a complex nonlinear frequency shift

which is expected to wipe out wave particle resonances, as discussed in Sect.

6.10.4. We may now obtain the corresponding solution in the non-Markovian

case as a convolution in time of (9.50). It can be rewritten in terms of Fourier

components in time of Dv (t,t) and b(t,t). From this formulation the diffusion

coefficient (3.67) for diffusion in real space emerges in a natural way [81].

The result obtained in [81] is, however, more general since it includes the nonlinear

frequency shift.

9.5 Discussion

In this chapter we have derived the general form of the ion vortex equation which

can be used to describe most types of vortex modes in plasmas as well as in fluids.

Here we used it to derive nonlinear equations for drift waves and interchange

modes. For these types of modes we discussed the dual cascade towards shorter

and longer space scales, typical of two dimensional systems.

The cascade towards longer space scales is particularly important for transport

and we generally need some damping mechanism for long wavelengths to obtain a

realistic level of the transport. This mechanism will most likely be sheared plasma

flows generated nonlinearly or by neutral beams or neoclassical effects.

These flows may create an absorbing boundary condition for long wavelengths if

sufficiently long wavelengths are included in the system, as discussed in Sect.

6.10.5. We also note the discussion of conservation relations and the comparison

between the expressions for the wave energy of interchange modes obtained here

and from the dielectric properties in Chap. 4.

The calculation of diffusion from particle orbit integrations is a complement to

the quasilinear calculations in Chap. 3. We note the convenient use of the solution

of the diffusion equation as a weight function (transition probability) for calculating

ensemble averages. This method was later extended to the general Fokker-Planck

equation for diffusion in velocity space. From this calculation the renormalization

by Dupree andWeinstock was recovered. This result also connects to the discussion

in Sect. 6.10.4 on the long time behaviour of a three wave system with diffusion due

to turbulence.
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Nonlinear Effects and Turbulence

7. B.B. Kadomtsev, Plasma Turbulence, Academic Press , New York 1965.

8. R.C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press,

New York 1972.

9. J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in

Plasmas, Pergamon Press, Oxford 1977.

Theory and Experiments on Transport

10. P.C. Liewer, Nuclear Fusion 25, 543 (1985).

11. F. Wagner and U. Stroth, Plasma Phys. Control. Fusion 35, 1321 (1993).
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Here the citations with titles are books and those without are review papers.\\

Refs. 1 and 2 are comprehensive and include general plasma physics with

applications to magnetic fusion. They treat difficult and fundamental problems

rigourously and provide excellent basic knowledge for a fusion physicist.

Refs. 3 and 4 are similar to the present book in that they treat both MHD and

transport. Ref 4 discusses several instabilities also in the context of space physics

and also includes nonlinear effects.

Refs. 5 and 6 are review papers that discuss many instabilities of interest for

transport. Ref 6 also presents transport coefficients corresponding to many

instabilities.

Ref. 7 is the first and also the most frequently cited book on plasma turbulence.

It is mainly focused towards problems relevant to magnetic fusion and also

contains one of the first renormalizations of plasma turbulence.

Ref. 8 is particularly strong on kinetic nonlinear theory. It includes several

mathematical tools such as e.g. the method of multiple time scales.

Ref. 9 is more directed towards general plasma physics and Laser Fusion.

It does, however, cover problems of nonlinear dynamics and partially coherent

wave interactions relevant to the nonlinear saturation of drift wave turbulence.

Refs. 10 and 11 discuss experimental transport research including diagnostics in

detail. Ref. 12 is more focused on the relevance of different theories for explaining

experimental results.
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Answers to Exercises

2.1
dn
n
=
e’

Te
2.2 vg equals twice the curvature drift after averaging over a Maxwellian

distribution.

2.4 The diamagnetic drift is divergence free when grad P is parallel to grad n.

3.1 This is due to the fact that nv• is divergence free, see Eq. 1.4a.

3.2 (a) No difference

3.2 (b) The only difference is that ky
2r2 is replaced by k┴

2r2.
3.3 These are the effects giving the finite div A (compare the discussion follow-

ing Eq. 1.7). This means that both kinds of ion inertia appearing as ky
2r2 and

k║
2cs

2 are associated with compressibility.\

3.4 In both cases the inertia term o(o � kyvg i) is replaced by o(o-o•i � kyvg i).

3.5 The solution of the dispersion relation can be written o ¼ or+ig where

or ¼ o�eð1� ky
2r2Þ þ kyvgi

g ¼ menei
k jj 2Te

o�e ky
2r2o�e þ kyðvge � vgiÞ

� �

3.6 b<m2=
d lnP

dr

3.7 bc ¼
a

qR

� �2

3.8 The intermediate result is

dne
n

¼ o�e
o

ef
Te

� k2r2
k jj 2vA2

o2

o
k jj

eA jj
Te

3.9 E jj ¼ �ik jj f
k2r2k jj 2vA2

oðo�e � oÞ þ k2r2k jj 2vA2 þ k jj 2cs2
3.10 m � 280 for q ¼ 2

3.11 o2ð1þ ky
2r2Þ � oo�eð1� ky

2r2Þ � k jj 2cs2 ¼ 0
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Typical Parameter Values for a Tokamak Plasma

We will here give numerical values of some of the most important quantities

associated with low frequency modes in tokamak plasma. The basic machine

performance is taken from JET.

With magnetic field of

B ¼ 27.7 10^3 Gauss ¼ 2.77 T

we find the cyclotron frequencies

Oci ¼ 2.65 108 s�1

Oce ¼ 4.87 1011 s�1

A density of

n ¼ 10 20 m�3

corresponds to the plasma frequencies

ope ¼ 5.6 1011 s�1

opi ¼ 1.3 1010 s�1

and the Alfvén velocity

vA ¼ B/(m0nmi)
1/2 ¼ 0.6 107 m/s

This gives the dielectric constant for flute modes (k║ ¼ 0)

e ¼ 1þ m0rmc
2=B2 ¼ 1þ c2=vA

2 ¼ 1þ opi
2=Oci

2

� 1þ r=ldeð Þ2 � 2406 r=lde ¼ 49ð Þ

where rm is the mass density and r ¼ cs/Oci.

We also notice that

ope ¼ 1.15 Oce

At fusion temperatures

Te ¼ Ti ¼ 108 K ¼ 8.6 keV ¼ 1.38 10�15 J

We find

lde ¼ (e0Te/ne
2)1/2 ¼ 0.69 10�2 cm

g ¼ (n lde
3)�1 ¼ 3 10�8

vthe ¼ (2Te/me)
1/2 ¼ 0.55 108 m/s

vthi ¼ (2Ti/mi)
1/2 ¼ 1.29 106 m/s

re ¼ vthe/Oce ¼ 1.13 10�2 cm

ri ¼ vthi/Oci ¼ 0.49 cm

nei ¼ 0.5 104 s�1

De ¼ nei re
2 ¼ 0.6 10�4 m2/s

With a major radius

R ¼ 3 m

and a minor radius

a ¼ 1 m

we find

k ¼ 1/a ¼ 1 m�1
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v•e ¼ kTe/(eB) ¼ 3.2 103 m/s

vg ¼ g/Oci ¼ (Ti/mi)/(r Oci) ¼ 1.1 103 m/s

oint ¼ (kg)1/2 ¼ 5 105 s�1

For q ¼ 2 and k║ ¼ 1/qR we have

k║vA ¼ 105 s�1

with a plasma current

I ¼ 2.6 106 A

we have the average electron current velocity

vbe ¼ 0.5 105 m/s
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