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Supervisors’ Foreword

This thesis deals with the problem of ion confinement in thermonuclear fusion
magnetic confinement devices. It is of general interest to understand via numerical
simulations the ion confinement properties in complex geometries, in order to
predict their behavior and maximize the performance of future fusion reactors. So
this research is inscribed in the effort to develop commercial fusion.

The main work carried out in this thesis is the improvement and exploitation of
an existing simulation code called Integrator of Stochastic Differential Equations
for Plasmas (ISDEP). This is a Monte Carlo code that solves the so-called ion
collisional transport in arbitrary plasma geometry, without any assumption on
kinetic energy conservation or on the typical radial excursion of particles, thus
allowing the user the introduction of strong electric fields, which can be present in
real plasmas, as well as the consideration of nonlocal effects on transport. In this
sense, this work improves other existing codes. ISDEP has been used on the two
main families of magnetic confinement devices, tokamaks and stellarators.
Additionally, it presents outstanding portability and scalability in distributed
computing architectures, as Grid or Volunteer Computing.

The main physical results can be divided into two blocks. First, the study of 3D
ion transport in ITER is presented. ITER is the largest fusion reactor (under
construction) and most of the simulations so far assume axisymmetry of the device.
Unfortunately, this symmetry is only an approximation because of the discrete
number of magnetic coils. ISDEP has shown, using a simple model of the 3D
magnetic field, how the ion confinement is affected by this symmetry breaking.
Moreover, ions will have so low collisionality that will be in the banana regime in
ITER, i.e., a single ion will visit distant plasma regions with different collisional-
ities and electrostatic potential, which is not taken into account by conventional
codes.

Second, ISDEP has been applied successfully to the study of fast ion dynamics
in fusion plasmas. The fast ions, with energies much larger than the thermal
energy, are result of the heating systems of the device. Thus, a numerical pre-
dictive tool is useful to improve the heating efficiency. ISDEP has been combined
with the Monte Carlo code FAFNER2 to study such ions in stellarator (TJ-II in
Spain and LHD in Japan) and tokamak (ITER) geometries. It has been also
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validated with experimental results. In particular, comparisons with the Compact
Neutral Particle Analyser (CNPA) diagnostic in the TJ-II stellarator are
remarkable.

Madrid, Spain, June 2013 Dr. Francisco Castejón Magaña
Dr. Víctor Martín Mayor
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Chapter 1
Introduction

1.1 Preamble

Nowadays the planet is experimenting a fast growth in energy consumption and,
simultaneously, a reduction in the amount of natural resources, especially in fossil
fuels. CO2 and other greenhouse effect gasses coming from energy activities have
deep impact on the environment, leading to the rising climate change that produces
global warming among other effects. The development of alternative energy sources
becomes necessary for the modern society. Fusion energy is a good candidate to
supply a large fraction of the world energy consumption, with the added advantage of
being respectful with the environment because radioactive fusion waste has lifetimes
much shorter than fission long term radioactive waste. The future fusion reactors are
intrinsically safe, and nuclear catastrophes like Chernobyl or Fukushima cannot
happen. Thus, research and investments in fusion energy can play a crucial role in
the sustainable development.

There are many different fusion processes, but in all of them several light nuclei
merge together into heavier and more stable nuclei, releasing energy. The first fusion
reaction discovered takes place in the Sun, where Hydrogen fuses into Helium and
produces the energy needed to sustain life on Earth. A simplified description of this
process is:

4H → He + 2e+ + 2νe + 26.7 MeV. (1.1)

The presence of the electron neutrinos indicates that this reaction is ruled by the
nuclear weak interaction. Even thought the cross section for this reaction is very
small, the gravity forces in the Sun provides the high temperatures and densities that
make the reaction possible. Unfortunately, it is very unlikely that this reaction will
be reproduced in a laboratory because of the high pressure needed.

On Earth, laboratory fusion research has two different branches: inertial and mag-
netically confined fusion. The former one consists in compressing a small amount of
fuel with lasers resulting in an implosion of the target [1]. The latter constitutes the
global frame of this thesis. It is based in heating the fuel at high temperatures and
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confine it a sufficient time to produce fusion reactions. At such high temperatures,
the fuel (usually Hydrogen isotopes) is in plasma state so the confinement can be
done with strong magnetic fields. Many fusion reactions can occur in a magnetically
confined plasma. The one with the highest cross section is the Deuterium (D)-Tritium
(T) reaction:

D + T → He + n + 17.6 MeV. (1.2)

The magnetic field makes the plasma levitate and keeps it away from the inner walls
of the machine. In this context we can say that the plasma is confined. Due to the
well known hairy ball theorem by H. Poincaré, the confining magnetic field should
lie in surfaces homeomorphic to thorii. It will be seen that the charged particles tend
to follow the magnetic field lines if the magnetic field is strong enough. Then, the
plasma tends to remain confined in this torus.

There is a whole area of Physics, called Plasma Physics, that studies the properties
of this state of matter. Plasma Physics is a very complicated subject because of its
non linear nature and the complexity of the equations involved. Even simple models
can be often impossible to be studied analytically and has to be solved numerically.
We now briefly recall the main levels of approximation. An accesible introduction to
Plasma Physics can be found in Ref. [2] and a recent review in [3]. More advanced
texts are Refs. [4, 5].

The first approach to a mathematical model of the plasma is the fluid model. In
this model the plasma is considered as a fluid with several charged species. Effects
like anisotropy, viscosity, sources and many others can be taken into account. The
equations of fluids and electromagnetism have to be solved simultaneously. They
form a coupled system of partial differential equations called the Magneto-Hydro-
Dynamic (MHD) equations. In particular, most of the computer codes that calculate
equilibrium for fusion devices use this approach.

A more detailed and fundamental description is given by the kinetic approach.
Here the plasma is described by a distribution function that contains all the infor-
mation in phase space. Recall that the phase space is the space of all possible states
of the system. Usually it is the set of all possible values of position and velocity (or
momentum). The main equation in this area is the Drift Kinetic Equation (DKE), a
non linear equation in partial derivatives for the plasma distribution function. Once
this function is calculated, we can find all the statistical properties of the system.
A simplified version of the DKE is solved numerically in this thesis.

We solve the equations with an important purpose in mind because the device
performance depends strongly on the dynamics of the plasma. The radial transport,
i.e., outward particle and energy fluxes are responsible for particle and heat losses,
so fusion devices must be optimized to reduce it as much as possible. Thus, the
understanding of kinetic transport in fusion plasmas is a key issue to achieve fusion
conditions in a future reliable reactor.

This thesis is focused on the development and exploitation of an ion transport
code called ISDEP (Integrator of Stochastic Differential Equations for Plasmas).
This code computes the distribution function of a minority population of ions (called
test particles) in a fusion device. The exact meaning of test particles will be clarified
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in Sect. 1.3.2. ISDEP takes into account the interaction of the test particles with
the magnetic field, the plasma macroscopic electric field and Coulomb collisions
with plasma electrons and ions. The main advantage of ISDEP is that it avoids
many customary approximations in the so called Neoclassical transport, allowing
the detailed study of different physical features.

On the other hand, ISDEP does not deal with any kind of turbulent or non-linear
transport. Other simulation codes, like GENE [6], solve the turbulent transport, but
are much more complex and expensive in term of computation time.

We will see along this report that ISDEP can contribute to the comprehension
and development of Plasma Physics applied to fusion devices. The layout of this
thesis is organized as follows: This chapter is an introduction to ion transport in
fusion devices, with special emphasis in single particle motion. The ion equations
of motion turn to be a set of stochastic differential equations that must be solved
numerically. In Chap. 2 the characteristics of the ISDEP code are described, together
with a benchmark with the MOHR code. Chapters. 3 and 4 explain the numerical
results obtained with ISDEP: simulations of 3D transport in ITER,1 of fast ions in
stellarators2 and also in ITER geometry. Finally, Chap. 6 is devoted to the conclusions
and future work.

We have included two appendixes in the report: a table with abbreviations (A)
and the derivation of the equations of motion (B).

1.2 Ion Transport in Fusion Devices

The scope of this chapter is to recall the physical models that are behind the original
results presented in this thesis. We will introduce the notation and coordinates systems
used, followed by the steps needed to reach the ion equations of motion using the
Guiding Center approximation. It will be seen that this approximation reduces the
dimensionality and computing requirements of the problem. We finish with a small
introduction to stochastic differential equations and their numerical solution.

Note that this chapter does not intend to be a complete and self-contained review
on the topic because Plasma Physics is a very wide and multidisciplinary science. In
many cases we will summarize the main results and refer to articles or textbooks for
further reading.

1.2.1 Fundamental Concepts

In this section we remind the basic concepts of magnetically confined plasmas. In
a magnetized plasma one or several ion species coexist with electrons and a small

1 ITER is an experimental fusion device in construction, see Chap. 3.
2 Stellarators are a family of fusion devices, see Chap. 4.

http://dx.doi.org/10.1007/978-3-319-00422-8_2
http://dx.doi.org/10.1007/978-3-319-00422-8_3
http://dx.doi.org/10.1007/978-3-319-00422-8_4
http://dx.doi.org/10.1007/978-3-319-00422-8_6
http://dx.doi.org/10.1007/978-3-319-00422-8_3
http://dx.doi.org/10.1007/978-3-319-00422-8_4
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amount of impurities and neutral atoms. Usually the ion species are light nuclei,
like Hydrogen, Deuterium, Tritium or Helium. Globally the plasma has zero electric
charge, but locally it may be charged and create an electric field. The dynamic of the
plasma is strongly correlated with this electric field, and usually it induces a poloidal
rotation (see Sect. 1.3) and enhances the confinement.

We always assume that the magnetic force dominates the dynamics and that the
magnetic field time independent, or at least that time variations are slow compared
with the test particle lifetime. The last assumption is valid when the electric currents
in the plasma do not change in time very much. By strong magnetic field we mean
that it dominates the movement of charged particles in the fusion device. We will
deal with magnetic fields, B, of order 1–6 T.

It is important to remark that in fusion science there are mainly two families
of experimental devices: tokamaks and stellarators. Tokamaks are approximately
axysimmetric devices where the magnetic field is created by external coils and the
plasma itself. A very intense plasma current is induced with a central solenoid,
creating around 10–20 % of the total magnetic field. On the other hand, stellarators
are 3D complex devices where the magnetic field is completely external. Tokamaks
are generally more advanced than stellarators, both from the Physics and Engineering
points of view, but stellarators are much more stable and suitable for a future steady
state operation. In Fig. 1.1 we sketch these two devices, and in Sects. 3.1 and 4.1 we
explain their characteristics in more detail.

Most of the fusion devices, especially stellarators, allow for a variation of the
current in the coils. Therefore, the same machine can have quite different plasmas
depending on the magnetic field created by the coils. We will name this set of coil
parameters as magnetic configuration. All plasma transport properties rely strongly
on the magnetic configuration of the machine.

Fig. 1.1 Examples of tokamak (left) and stellarator (right). The tokamak usually presents rotation
symmetry, while the stellarators are always 3D. Since the Physics and Engineering of tokamaks are
simpler, tokamaks are more advanced than stellarators

http://dx.doi.org/10.1007/978-3-319-00422-8_3
http://dx.doi.org/10.1007/978-3-319-00422-8_4
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Most of the ion population in the plasma compose the bulk. The bulk is the core
of the plasma and in many situations it can be described by the MHD equations.
Impurities, neutral atoms and supra-thermal ions and electrons are also present in
the plasma, but in smaller quantities. Despite these low concentrations, they can
affect the confinement properties and the global plasma parameters. The impurities
are caused by the interaction of the plasma with the walls and other objects inside
the vacuum vessel of the device. Plasma ions have energies that range from hundreds
of eV in middle size devices to keV in large machines, so when an ion hits the
wall it sputters several wall atoms which may become part of the plasma. Since the
impurities are usually very heavy, they cause the plasma to cool down by radiation,
affect the transport parameters and then set aside from fusion conditions. Some
devices are equipped with a divertor to diminish the plasma wall interaction and
hence the impurity presence and to prevent wall damage. A divertor is a system that
concentrates the particle losses in a region of the vacuum vessel and minimizes the
impurity disengaging [7]. It is clear then that a study of the ion loss distribution can
play an important role in the design of a fusion device.

Suprathermal ions (also called fast ions in this thesis) have much more energy
than bulk ions and are produced by the heating systems of the device and, in the
future, by fusion reactions. Physically, they usually behave in a different way than
thermal ions. The basic understanding of fast particle transport in the plasma is
necessary to improve the efficiency of the heating systems and their effects on the
plasma confinement. Moreover, a future self-sustained fusion reaction will rely on
the production and confinement of α particles, which behave similarly to the fast
ions. In this thesis we will deal with a heating system called Neutral Beam Injection
(NBI). NBI ions are high energy ions that deliver their energy to the plasma by
collisions with other ions and electrons, heating and fueling the plasma bulk.

1.2.2 Geometrical Considerations

We shall work with several coordinate systems depending on the geometry of the
confining device. Cartesian and cylindrical coordinates are widely used, as well as
toroidal coordinates. Figure 1.2 (left) shows the convention for the two angles of the
toroidal coordinates.

Additionally to these coordinates there are several specific coordinate systems
for magnetically confined plasmas, called magnetic coordinates [8]. As examples,
Boozer and Hamada coordinates are magnetic coordinates commonly used in the
plasma literature. Many plasma equations have a simple form in magnetic coordi-
nates, but they have a serious limitation: they are only well defined when the mag-
netic field forms a set of nested toroidal surfaces and there are no magnetic islands
or ergodic volumes. This topological restriction limits the application of magnetic
coordinates.

In particular, a very important magnetic coordinate is the effective radius. The
effective radius, usually denoted by ρ, is a reparametrization of the toroidal magnetic
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Fig. 1.2 (Left) Toroidal coordinate system: poloidal (red) and toroidal (blue) directions. Source
www.wikipedia.org. (Right) Different regions of a fusion device: magnetic axis, magnetic surfaces,
Last Closed Flux Surface (LCFS) and Scrape-Off-Layer (SOL) for TJ-II. The surface integral in
Eq. 1.3 is limited by the magnetic surfaces (in pink color-scale)

flux and plays an important role in the symmetry of the plasma equilibrium. Defining
the toroidal flux as:

� =
∫

dSϕ · B, (1.3)

where ϕ is the toroidal angle, B the magnetic field and the integration takes place in
a toroidal cross section of the plasma. The integration limits are determined by the
magnetic surfaces in a toroidal cut (see Fig. 1.2, right). Then, the effective radius is
defined as:

ρ =
√

�

�LCFS
, (1.4)

where �LCFS is the magnetic flux at the Last Closed Flux Surface (LCFS). It can be
shown that the effective radius labels correctly the magnetic surfaces of the device.
The effective radius varies from 0 to 1, although it is necessary to extrapolate it to
describe the region in between the plasma and the vacuum vessel, called Scrape-
Off-Layer (SOL). The boundary between the plasma and the SOL is the LCFS and
corresponds to ρ = 1. Places with ρ > 1 have open magnetic field lines and the
magnetic surfaces intersect the vacuum vessel of the device in some points. Figure 1.2
(right) shows these regions in a toroidal cut of a TJ-II3 plasma.

Particle transport presents two well separate timescales according to the movement
in a magnetic surface: fast dynamics on the surface, and slow perpendicular transport
between two magnetic surfaces. In a first approximation, we shall treat the transport
tangent to a magnetic surface as infinitely fast. Thus, in this approximation, the

3 TJ-II is an experimental device built at CIEMAT, see Sect. 4.1.2.

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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plasma is uniform at each surface and quantities like temperature, density, pressure
and electric potential will depend only on the effective radius ρ and are called flux
quantities. More detailed studies may require poloidal and toroidal asymmetries on
the plasma equilibrium profiles, but they are out of the scope of this work.

The last quantity that we introduce in this section is the safety factor q or its
inverse, called rotational transform:  ι = q−1. They give a measure of the twist of the
magnetic field lines [1, 6] and play a crucial role in plasma equilibrium criteria. The
safety factor q is defined as the average quotient between the poloidal and toroidal
angles turned by the field line:

q =
〈

dϕ

dθ

〉
,  ι =

〈
dθ

dϕ

〉
. (1.5)

The average is taken on a magnetic surface, so q and  ι are flux quantities. The factor
q is generally used in tokamak like devices while  ι is reserved for stellarators. The
principal significance of q is that if q ≤ 2 at the plasma edge, the plasma is MHD
unstable [6]. Rational values of q imply that the field lines would closed in a particular
magnetic surface and instabilities and resonances may arise [6]. Resonances modify
the magnetic topology and can facilitate the appearance of islands or ergodic volumes
in their neighborhood.

1.2.3 The Distribution Function

In this subsection we remind the concept of distribution function [9] and we intro-
duce the notation used along this thesis report. The distribution function is the most
important concept in statistical mechanics because it contains all the physical infor-
mation of the system. We will denote it by f (x, t), where t is the time and x are
the coordinates in the p-dimensional phase space. For instance, the phase space of a
single particle is, in general, x = (x, y, z, vx , vy, vz). In Sect. 1.3 we will reduce the
dimensions of this space to 5. Additionally, we may deal with 1D phase spaces, like
the energy distribution function, denoted by f (t, E).

The distribution function represents the number of particles per unit volume in
phase space that are located in the surroundings of the point x at time t . It is usually
normalized as follows:

N (t) =
∫

f (x, t) · J (x) · dx, (1.6)

where J (x) is the Jacobian of the coordinate system and N the total number of
particles of the system. One can find the average of any magnitude A(t, x) of the
system using f :

〈A(t)〉 = 1

N (t)

∫
dx f (x, t)J (x)A(t, x). (1.7)
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We can find the velocity and the average kinetic energy using the first and the second
moments of the distribution:

〈v(t)〉 = 1

N (t)

∫
dx f (x, t)J (x)v. (1.8)

〈E(t)〉 = 1

N (t)

∫
dx f (x, t)J (x)

mv2

2
. (1.9)

One of the main results of this thesis is the explicit calculation of the distribution
function of a minority population of particles in a fusion plasma (see Chap. 4). We
will not calculate the whole distribution function because it is very expensive in terms
of CPU time: we will compute a marginal distribution function. This means that we
integrate in one or more coordinates in phase space, losing information but reducing
the number of calculations needed.4

A very important instance is the Maxwell-Boltzmann distribution, denoted by
fM . In terms of the particle energy E and density n it is expressed as:

fM (E) = n

T

√
E

πT
e

(
− E

T

)
. (1.11)

Note that T is the system temperature measured in energy units. This distribution
is very important in Physics and in particular in Plasma Kinetic Theory. We often
assume that the confined plasma is locally Maxwellian, in the sense that the v2

dependence is ruled by fM , according to the temperature at each point in the space.
There is a useful quantity, called the Binder cumulant, which measures deviations

of any distribution function from fM . It is defined as:

κ = 〈v4〉
〈v2〉2 . (1.12)

It is straightforward to show that for a Maxwellian distribution we have κM = 5/3.
The Binder cumulant is useful to obtain a criterium for the amount of suprathermal
particles in a system. If we find that our system has κ < κM , it indicates that we
have a lack of suprathermal particles, referred to the temperature of Eq. 1.11; while
if κ > κM we have a surplus.

4 For example, in a 3D phase space:

f (t, x1) =
∫

dx2dx3 J (x2, x3) f (t, x1, x2, x3). (1.10)

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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1.2.4 Neoclassical Transport

Neoclassical (NC) transport [2, 10, 17] is a linear theory which models the transport
of particles, momentum and energy in a magnetized plasma under several assump-
tions. NC theory is a basic transport theory used in fusion science and many fusion
devices are optimized according to its predictions. Unfortunately it presents several
major limitations: it does not consider any turbulent effects, has restrictions in the
particle orbit shape and assumes the conservation of the kinetic energy for a single
particle. In many situations turbulence dominates the transport and the NC theory is
not appropriate anymore (i.e., the NC ordering is violated). In these cases NC theory
only provides a lower bound of the total plasma transport.5

The goal of Neoclassical transport is to write and solve a closed set of equa-
tions for the time evolution of the firsts moments of the distribution function of each
plasma specie: particle density; particle and energy fluxes; pressure and stress ten-
sors. Neoclassical transport takes into account the real 3D geometry of the plasma,
particle drifts due to the complex magnetic and electrostatic fields and it is valid for
all collisionality regimes (although some minimum level of collisionality must be
satisfied).

Neoclassical theory assumes a small deviation from the Maxwellianity in the
plasma distribution, a geometry composed of fixed nested magnetic geometry, static
plasma (or quasi-static), locality in the transport coefficients and Markovianity in
the particle motion. Only binary collisions between particles are considered, and all
complex collective aspects of the plasma are disregarded. As a result, all processes
considered are radially local, i.e., the plasma quantities depend only on the effective
radius and NC theory is diffusive.

This model is the basis of plasma transport and it is accurate in several plasma
regimes, leading to predictions that have been confirmed experimentally, like the
Bootstrap current [13] or the ambipolar radial electric field. On the other hand, in
certain circumstances experimental values of the plasma transport parameters can
exceed neoclassical estimates by an order of magnitude or more.

In many situations, like turbulent regimes, devices with large radial particle excur-
sions, time dependent magnetic field or strong radial electric field, the Neoclassical
theory is not appropriate to describe the system. However, even if they are not dom-
inant, the mechanisms of Neoclassical transport are always present and should be
studied and understood.

In particular, we will apply the ISDEP code (see Chap. 2 ) in two situations where
the NC theory can be inappropriate: thermal transport in ITER and fast ion dynamics.
In both cases the test particle may present wide orbits and violate the NC ordering,
so a more complete model becomes necessary.

5 The most promising theory to explain turbulence in plasmas is the Gyrokinetic Theory [12].

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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1.3 Guiding Center Dynamics

In this section we review the reduction of the equations of movement of a charged
particle in a strong magnetic field. This common procedure in Plasma Physics is
called the Guiding Center (GC) approximation and is very useful in the conditions
of most fusion devices. There are several textbooks where this theory is developed
and applied to Plasma Physics: [2, 3, 10].

In the GC paradigm the movement of a charged particle in a magnetic field may
be divided into the fast gyration around a magnetic field line and the movement of
the gyration center. This situation is sketched in Fig. 1.3. If the gyroradius, i.e., the
Larmor radius, is much smaller than any other characteristic length of the system, an
average in the gyromotion can simplify substantially the dynamics of the particle. The
phase space is reduced from 6 to 5 dimensions and the gyromotion, a small scale and
high frequency motion, disappears. Usually the ion Larmor radius in fusion devices
is rL ∼ 1 mm for bulk particles, much smaller than any other characteristic length.
On the whole, the GC approximation can be trusted in most situations concerning
fusion plasmas.

This approximation reduces the 6D phase space of a single particle to a 5D space
and eliminates a high frequency and short scale movement, making the numerical
integration of the particle trajectories much easier and less expensive in terms of
computational resources. The disadvantage of this approximation is that the equa-
tions of movement become more complex than the standard Lorentz force, involving
spatial derivatives of the magnetic field.

The basic idea is to divide the particle movement in parallel movement along
the B line and the perpendicular drift. Ignoring the rotation of the particle, also
called gyromotion, its velocity has two components: v = v|| + vD , parallel and

Fig. 1.3 The GC approximation substitutes the helical movement of a charged particle around a
magnetic field line for the movement of the center of this helix, the guiding center. The GC velocity
is mostly parallel to the magnetic field but there is a non zero perpendicular velocity responsible
for particle drifts, due to inhomogeneities of the magnetic field or the presence of a small electric
field. The vector vD is over-sized in the drawing, usually vD/vGC � 1
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perpendicular to the magnetic field. The drift velocity vD is usually smaller than v||
by two orders of magnitude or more and it depends on the macroscopic electric field
and inhomogeneities in the magnetic field. Figure 1.3 shows schematically the GC
approximation.

There are several GC coordinates but all of them refer to a 3D point in position
space, the GC position, and reduce the velocity space from 3D to 2D. The most
common coordinate systems are (x, y, z, v2, λ) and (x, y, z, v||, v⊥). The vector
(x, y, z) is the position of the GC; v2 is the normalized kinetic energy; λ is the pitch,
defined as λ = v·B/vB; and v|| and v⊥ are the parallel and perpendicular components
of the velocity referred to the magnetic field. In the GC frame the perpendicular
component v⊥ is a positive number because we are ignoring the gyromotion.

In the subsequent sections we will describe the GC equations of motion for a
single particle. When collisions are included, the final expression is a set of five
coupled stochastic differential equations [14] for the GC coordinates. In Sect. 1.4
the main characteristics of this family of equations are shown. As a first approach, a
stochastic differential equation (SDE) is denoted as:

dxi = Fi (x, t) dt + Gi
j (x, t) dW j , i, j = (x, y, z, v2, λ). (1.13)

Note that we use the Einstein summation convention all along this report.6 The
motion due to the magnetic configuration, electric fields and the geometry of the
plasma are included in the tensor Fi. The effect of the collisions is naturally divided
into a deterministic part in Fv2

, Fλ and a stochastic part in Gi j (i, j = v2, λ).
The stochastic differentials dW j are random numbers responsible for diffusion
in velocity space. In the collision operator used in ISDEP, Gi j is diagonal in
(v2, λ)-space: Gv2λ = Gλv2 = 0.

The GC equations can be divided into two groups according to their physical sense.
A first group concerning the movement of a charged particle in an electromagnetic
field is discussed in Sect. 1.3.1 and Appendix B. The second group is related to the
interaction of the test particle with the plasma background (Sect. 1.3.2).

1.3.1 Movement of the Guiding Center

In this section we merely indicate the procedure to apply the GC approximation to
the movement of a charged particle and show the final equations. The deduction of
those equations can be found in the Appendix B.

The reduction of the dimensionality of the system is done in two steps:

6 When an index variable appears twice (as a subscript and a superscript) in the same expression it
implies that we are summing over all of its possible values. For instance: ai bi = ∑

i ai bi . Partial
derivatives are denoted by a comma: f (x),i = ∂ f (x)/∂xi . See [1] for the covariant and contravariant
character of the tensors.
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1. First, we separate, the particle movement in the GC movement and the fast
gyration around a B field line: x = XGC + 	ρ. The vector 	ρ is perpendicular to
B and has length equal to the particle Larmor radius. We must expand in Taylor
series any field or quantity, using the Larmor radius as parameter.

2. Then we average all expanded quantities in the gyroangle:

〈A〉 = 1

2π

∫
A(θ, . . .)dθ. (1.14)

The final differential equations for the GC position X are much more complicated
than the classical Lorentz force, but the spatial and time scales of the solution are
much larger, reducing computational costs; and the phase space dimension is reduced
by one. The GC evolution is divided into parallel and perpendicular to the magnetic
field. The perpendicular velocity is generally called drift velocity vD .

We write below the general form of the GC equations, used for tokamaks, in
(r, v2, λ) coordinates. Since in stellarators the magnetic field satisfies ∇ × B = 	0,
the GC equations admit some further simplification. Table 1.1 shows the notation
used in this thesis for the different physical quantities.

dr
dt

= vλ
B
B

+ mv2(1 − λ2)

eB3

(
B · (∇ × b̂)

)
· B + vD = v. (1.15)

vD = E × B
B2 + mv2

2eB3 (1 − λ2) (B × ∇B) + mv2λ2

eB2

(
B × Rc

R2
c

)
. (1.16)

dv2

dt
= −2e

m

d


dt
= −2e

m

(
∇


dr
dt

)
= 2e

m
E · v. (1.17)

dλ

dt
= 1 − λ2

2

(
2e

mv
E|| − λ

B3 E · (B × ∇B) + 2λ

B2 E ·
(

B × Rc

R2
c

)

− v

B
(∇B)|| − mλv2

eB3 ∇B

(
B × Rc

R2
c

))
. (1.18)

Table 1.1 Notation of the physical quantities in the equations of motion

r Guiding center position ρ Effective radius
v GC velocity, normalized to c m Proton mass
λ Particle pitch = v · B/vB c Speed of light
v2 Particle velocity square e Elementary charge
vD GC drift velocity V, E Plasma potential and electric field
v|| GC parallel velocity n Plasma density
B Confining magnetic field Ti , Te Ion and electron temperatures
Rc Curvature radius of B vth Ion Thermal velocity
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1.3.2 Collision Operator

A collision operator is the RHS of the continuity equation in phase space for the dis-
tribution function. Assuming binary collisions and neglecting two-body correlations
this equation is named Boltzmann equation [9]. The Boltzmann equation is valid to
describe plasmas because the density is very low (n ∼ 10−19 m−3) and there is a
strong Debye screening. Mathematically:

∂ f

∂t
+ v

∂ f

∂x
+ v̇

∂ f

∂v
= ∂ f

∂t
|coll = C( f ). (1.19)

Generally the collision operator C( f ) is an integro-differential operator, highly non
linear in f , and very difficult to deal with. The collision operator used in ISDEP is a
linearization of the Landau collision operator for pitch angle and energy scattering.
Linearization means that the whole system function is divided into a known fixed
background distribution and an unknown test particle population, which is the subjet
of study:

f = fBG + ftest . (1.20)

In is assumed that the number of particles in the background is much larger than the
test particle number and that the background is stationary and not modified at all by
ftest . In this way C( f ) becomes simpler because it only depends of the test particle
speed and the background temperature and density.

Under the test particle approximation, the Boltzmann equation becomes a Fokker-
Planck equation that can be transformed into a Langevin or SDEs set. Thus the oper-
ator C( f ) is used in the stochastic differential Eq. 1.13 describing the interaction of a
test particle with the background plasma. First, Boozer and Kuo-Petravic found this
collision operator for the GC [15] for one plasma species. Later, Chen [16] extended
this operator for several plasma species allowing a more realistic implementation of
the collisional processes.

In this report we only show the final equations of the collision operator, referring
to the bibliography for the derivation. The main features of C( f ) are:

• It assumes a locally Maxwellian distribution for all background species.
• There are only collisions of test particles with background plasma, without colli-

sions between test particles. This is a very important characteristic for the perfor-
mance of ISDEP in distributed computing platforms.

• The test particle suffers pitch angle and velocity diffusion, so thermalization and
deflection are allowed.

• We assume that the effect of the collisions is small, i.e., there are many particles
inside the Debye sphere and the electromagnetic interaction is strongly shielded.

• C( f ) is a linear operator. Thus there is no global conservation of energy and
momentum because the plasma background is not modified by the test particles.
In other words, the background plasma is a thermal bath with infinite specific heat.
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Now we present the explicit form of C( f ). Let b = e, i , referring to the plasma
background ions and electrons. It is necessary to introduce the notation:


(x) =
∫ x

0
dy

2√
π

e−y2
, �(x) = 
(x) − x
′(x)

2x2 , (1.21)

xb = v/vth(b). (1.22)

Usually 
(x) is called the error function. The factor xb is the ratio of the test particle
speed and the thermal speed of the plasma particle b. Usually b stands for background
electrons and protons, but it can be any other ion or heavy impurity. We shall need
as well of the Braginskii deflection and energy slowing down frequencies for ions
and electrons. In the following expressions the plasma background profiles n, Te and
Ti are measured in units of m−3 and eV, the particle mass m is in kg and all the
frequencies in s−1, respectively.

νB(e) = 4

3

√
2π

me

e4n ln �

T
3
2

e

, νB(i) = 4

3

√
π

mi

e4n ln �

T
3
2

i

, (1.23)

νd(i) = 3

2

√
π

2
νB(i)


(xi ) − �(xi )

x3
i

, νE (i) = 3

√
π

2
νB(i)

�(xi )

xi
, (1.24)

νd(e) = 3

4

√
πνB(e)

m2
e

m2
i


(xe) − �(xe)

x3
e

, νE (e) = 3

2

√
πνB(e)

mi

me

�(xe)

xe
,

(1.25)

where ln � is the Coulomb logarithm for ions:

ln � = ln
3

2

1√
πne3

T 3/2
i . (1.26)

The Coulomb logarithm is a slow varying quantity, with typical values of 15–25 in
fusion plasmas. Then the collision part in the Fokker-Planck equation is:

C( f ) =
∑

b

νd(b)

2

∂

∂λ

(
(1 − λ2)

∂ f

∂λ

)

+
∑

b

2
∂

∂v2

(
v2νE (b)

(
f + vv2

th
∂

∂v2

(
f

v

)))
, (1.27)

where the index b labels all plasma background species. Considering the equivalence
between FP and Langevin equations (using Itô’s algebra, see Sect. 2.2.1):

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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∂ f

∂t
= −(Fμ f ),μ + 1

2
(Gμ

η Gην f ),μν , (1.28)

dxμ = Fμdt + Gμ
ν dW ν, (1.29)

and identifying terms, F and G become:

Fv2 = −
∑

b

νE (b)

(
x2

i − xb√
π

e−x2
b

�(xb)

Tb

Ti

)
, Fλ = −

∑
b

λνd(b), (1.30)

Gv2v2 = 2xi

√∑
b

νE (b)
Tb

Ti
, Gλλ =

√∑
b

(1 − λ2)νd(b). (1.31)

Most of these formulas have been taken from [16]. Information about the momentum
conservation can be found in [18]. The collision frequencies are functions of the
plasma background temperature and density and, as a result, they only depend on
the effective radius (see Eq. 1.4) and are uniform in a magnetic surface.

1.3.3 Stochastic Equations for the Guiding Center

Writing together the results from Sects. 1.3.1 and 1.3.2, the general Langevin equa-
tions for a test particle moving in a static background plasma are:

dr = (
v|| + vD

)
dt, (1.32)

v|| = vλ
B
B

+ mv2c2(1 − λ2)

eB3 B ·
(

∇ × B
B

)
B, (1.33)

vD = mv2c2(1 − λ2)

2eB3 B × ∇B + E × B
B2

+ mv2c2λ2

eB3

(
B × Rc

R2
c

)
, (1.34)

dv2 =
(

2e

m
(E · vD) −

∑
b

νE (b)

(
x2

i − xb√
π

e−x2
b

�(xb)

Tb

Ti

))
dt

+ 2xi

√∑
b

νE (b)
Tb

Ti
dW v2

, (1.35)

dλ =
(

1 − λ2

2

(
2ev||
mv3 E · v|| − λ

B3 E · (B × ∇B)

+ 2

B3 E ·
(

B × Rc

R2
c

))
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− v||
vB

∇B · v|| − mλv2

eB3 ∇B ·
(

B × Rc

R2
c

))
dt

−
∑

b

λνd(b)dt +
√∑

b

(1 − λ2)νd(b) dW λ, (1.36)

where the frequencies νd and νE depend only on the background plasma compo-
sition and the test particle energy (see Table 1.1 for the notation used). They form
a set of 5 coupled stochastic differential equations with two Wiener processes. For
a stellarator geometry, these equations are simplified setting ∇ × B = 	0. A short
overview on stochastic differential equations and numerical methods to solve them
can be found in Sect. 1.4.

1.4 Stochastic Differential Equations

In this section we introduce briefly the stochastic analysis applied to fusion plasmas.
This in necessary to obtain numerical solutions of the stochastic equations from
previous sections. We will deal with equations with random variables that represent
the diffusion processes that take place in the plasma. A simple numerical scheme in
1D that represents diffusion is the following.

Consider the time parameter t ∈ [0, 1] and the time discretization as tn = n/

N = nε, ε = 1/N , with n = 0, . . . , N . The model for the evolution of the position
xn includes a deterministic force, represented by F(x, t) and a diffusion term, denoted
by G(x, t):

xn+1 = xn + F(xn, tn)ε + G(xn, tn)
√

ε η, (1.37)

where η is a random number with normal distribution (see Sect. 1.4.1). We will
sketch in this section what happens when ε → 0 and Eq. (1.37) becomes a Stochastic
Differential Equation:

dx = F(x, t)dt + B(x, t)dW. (1.38)

We will formalize the stochastic factor dW , called the Wiener process, and remind
mathematical and numerical tools to manage this kind of equations. A general and
rigorous review on this topic can be found in [14] and in [19].

We start with the basic definitions of probability theory, followed by the Stochastic
Differential Equations (SDE) basic notions and ending with numerical techniques to
solve them.

1.4.1 A Short Review on Probability Theory

Let us very briefly recall some basic concepts of probability theory. The triplet
(�,U ,P) is called a probability space, where � is an arbitrary set, U is a σ−algebra
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of � and P : U → [0, 1] is a probability measure. The sets A ∈ U are called events
and are the subsets of � with a defined probability. The probability measure is a
measure with the following normalization constrain: P(�) = 1.

A random variable is a map of the set � in the real space: X : � → R
n . When a

collection of random variables depend on a real parameter t ≥ 0, then X(t) is called
a stochastic process in which t plays the role of time. As an example, in plasma
kinetic theory, the σ -algebra U can be the set of all possible open sets of the 5D
coordinate space of the test particle. Imagine a particle moving in this phase space.
Let us formulate it in plain words: if the question what is the probability of the
particle to be inside certain hypercube in phase space? has an answer for all times,
the trajectory of the particle is a stochastic process.

The distribution and density functions are two fundamental concepts in probability
theory and statistical mechanics. The distribution function of the random variable
X is a function F : R

n → [0, 1] such that F(x) = P(X ≤ x), ∀x ∈ R
n . If there exists

a non negative and integrable function f : R
n → R satisfying F(x) = ∫ x

0 dy f (y)

then f is the density distribution function of X. In probability theory the density
distribution function is normalized in the sense

∫
dx f (x) = 1.7 Usually f (X) is

called the distribution function of X. We will use this notation in the following
chapters of this thesis.

The mean, average value or expected value of any function A(X) is an integral
with measure f (x) dx :

〈A〉 =
∫

dx f (x)A(x). (1.39)

In addition, we call Mk = 〈xk〉 = ∫
xk f (x)dx the kth-moments of the distribution.

The most important are the first and the second moments, which define the mean and
the variance:

m = 〈X〉 =
∫

dx f (x) x, (1.40)

σ 2 = 〈(x − m)2〉 =
∫

dx f (x) x2 − m2. (1.41)

In this work the 1D Gaussian distribution function of mean m and standard deviation
σ is widely used. It is denoted by N (m, σ ) and its density function is:

fN (x) = 1√
2πσ 2

exp − (x − m)2

2σ 2 . (1.42)

The Wiener process increment that appears in Eq. 1.13 has this distribution with
m = 0 and “σ = √

dt”.
The basic theorem in Monte Carlo methods is the central limit theorem. It requires

the introduction of independent events. Two events A and B are independent if the

7 In Physics it is usual to normalize f to the total number of particles of the system:
∫

dx f (x) = N .
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probability of A given B is equal to the probability of A:

P(A|B) = P(A) ⇔ A, B independent. (1.43)

The central limit theorem requires a sequence Xi , i = 1, . . . , n of independent and
identically distributed variables with average m and variance σ 2. We define the new
random variable Zn as

Zn = Sn − nm

σ
√

n
= 〈X̂〉 − m

σ/
√

n
, (1.44)

where Sn = ∑n
i=1 Xi and 〈X̂〉 = 1

n Sn is the sample mean. This theorem states that
the variable Zi will converge to the standard normal distribution N (0, 1) as n tends
to infinity (2 of probability convergence, see [19]):

fZn → fN (0,1) as n → ∞. (1.45)

A Monte Carlo method consists in obtaining N independent realizations or measure-
ments of a physical quantity X and apply statistical techniques to extract information.
The average value of the sample is the most usual estimator, and it can be shown that
its error is given by:

�〈X〉 = σX√
N

. (1.46)

This shows that the accuracy of 〈X〉 scales with N−1/2. A more advanced technique
[20] used to calculate the statistical error of any function of X is shown in Sect. 2.2.3.
Reference [14] includes extensive information related to MC procedures.

In our case, we can say that the statistical accuracy of the simulation scales with
N−1/2 being N the number of trajectories integrated.

1.4.2 The Wiener Process

When dealing with stochastic equations there is a particular stochastic process with
special interest: the Wiener process. We can find two Wiener processes in the equa-
tions solved in ISDEP (Eqs. (1.34)–(1.36)). They represent the random evolution of
a particle in phase space due to collisions with the plasma background.

A real valued stochastic process W (t) is called a Wiener process (also called
Brownian motion) when:

1. W (0) = 0.

2. W (t) − W (s) is N (0, t − s) ∀t ≥ s ≥ 0.
3. For all times 0 < t1 < t2, . . . , < tk the random variables W (t1), W (t2) −

W (t1), . . ., W (tk) − W (tk−1) are independent (independent increments).

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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Fig. 1.4 Examples of
the Wiener process W (t).
Although the average value
of several Wiener processes is
always zero, the width of the
distribution scales with time
as W 2(t) ∼ t . The time dis-
cretization in this examples is
dt = 10−5 s, so the increment
dW is N (0,
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It can be shown mathematically that W (t) is not differentiable, but the notation dW (t)
is widely used in SDE theory. Figure 1.4 shows examples of Wiener processes.

From a physicist point of view, we can say that “dW 2 = dt”, but it is not exactly
true from a mathematician perspective. Let us explain and clarify this concept.

First note that it is clear form the definition that 〈W (tb)−W (ta)〉 = 0, ta < t < tb.
We can show that “dW 2 = dt” integrating both sides of the expression between ta
and tb. The RHS integral is trivial:

∫ tb

ta
dt = tb − ta . (1.47)

In order to calculate the LHS integral we need a partition of the interval:

∫ tb

ta
dW 2 = lim

N→∞

N∑
i

(W (ti+1) − W (ti ))
2 = lim

N→∞ IN , (1.48)

ti = ta + i/N (tb − ta). (1.49)

Since IN are random variables, we must consider a statistical definition of the equality
“dW 2 = dt”. We will show that in the limit N → ∞, IN is no longer a stochastic
variable and converges to tb − ta in quadratic average. First, it is easy to show that
the average 〈IN 〉 is equal to tb − ta .
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〈IN 〉 = 〈�W 2〉
= 〈(W (tb) − W (ta))2〉

=
〈 N∑

i

(W (ti+1) − W (ti ))
2
〉

=
N∑
i

〈(W (ti+1) − W (ti ))
2〉

=
N∑
i

(ti+1 − ti )

= tb − ta . (1.50)

With this result and using the independence properties of the Wiener process, we can
see that:

lim
N→∞〈(IN − (tb − ta))2〉 = 0. (1.51)

Let us sketch the demonstration of this property. We will use the notation Wk = W (tk)
for simplicity. After some straightforward algebra and using the basic properties of
the Wiener process, we can see that:

lim
N→∞〈(IN −(tb−ta))2〉 = lim

N→∞

〈 N∑
k

N∑
j

(Wk+1−Wk)
2(W j+1−W j )

2−(tb−ta)2
〉
.

(1.52)
The independence of the Wiener processes allows us to simplify the double sum:

lim
N→∞〈(IN − (tb − ta))2〉 = lim

N→∞

〈 N∑
k

(Wk+1 − Wk)
4 − (tb − ta)2

〉
. (1.53)

Defining Yk = Wk+1−Wk√
tk+1−tk

and noting that Yk = N(0, 1) and 〈(Y 2
k − 1)2〉 = 〈Y 4

k 〉 − 1
we have:

lim
N→∞〈(IN − (tb − ta))2〉 = lim

N→∞

〈 N∑
k

(Y 2
k − 1)2(tk+1 − tk)

2
〉
. (1.54)

Since all the moments of the normal distribution are finite, the previous sum has an
upper boundary:

lim
N→∞〈(IN − (tb − ta))2〉 ≤ C lim

N→∞(tk+1 − tk)
2, C = constant. (1.55)
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If we consider that the partition of the interval (tb, ta) is uniform and tk = k(tb −
ta)/N we find:

lim
N→∞〈(IN − (tb − ta))2〉 ≤ C

N∑
k

(
tb − ta

N

)2

(tb − ta)2 (1.56)

= C(tb − ta)4 lim
N→∞

N∑
k

(
1

N

)2

→ 0. (1.57)

Thus, we can say that dW 2 = dt in quadratic average since IN does not fluctuate
when N → ∞. For practical purposes, we will generate the random numbers �W
as N (0,�t) in the numerical algorithms.

Once we have the Wiener process defined, we may ask ourselves how stochastic
integrals like

∫
dW g(t, x(W, t)) are defined. The basic definition is the Itô integral:

∫ tb

ta
dW g(t, x(W, t)) = lim

N→∞

N∑
i

(W (ti+1) − W (ti )) g(ti ), (1.58)

where we have introduced the notation g(ti ) = g(ti , x(ti , W (ti ))). This definition
has many mathematical advantages (as Markovianity) and it is used in the theory of
SDEs, despite not being very appropriated for practical purposes. Itô’s formalism in
SDE is based in evaluating the function g(t) in the beginning in the Riemann sum of∫

g(t)dW , but there are many other possibilities.
The same Riemann sum, but evaluating g(t) in the interval midpoint leads to the

Stratonovich integral, denoted by the symbol ◦:

∫ tb

ta
dW ◦ g(t, x(W, t)) = lim

N→∞

N∑
i

(W (ti+1) − W (ti ))
g(ti+1) + g(ti )

2
, (1.59)

Let us illustrate these two definitions with an example solving the stochastic integral
with g(t) = W (t): ∫ t

0
W dW. (1.60)

According to the Itô definition:

∫ t

0
W dW = lim

N→∞
∑

k

W (tk) (W (tk+1) − W (tk)) . (1.61)

Using that W (tk+1) = 1/2 (W (tk+1) − W (tk) − (W (tk+1) − W (tk)))
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∫ t

0
W dW = lim

N→∞
∑

k

(
W 2(tk+1) − W 2(tk)

)
2

− lim
N→∞

∑
k

(W (tk+1) − W (tk))2

2

= W 2(t)

2
− t

2
. (1.62)

On the other hand, the Stratonovich algebra considers that the integrand in Eq. (1.60)
is evaluated in the midpoint of the partition interval.

∫ t

0
W ◦ dW = lim

N→∞
∑

k

W (tk+1) + W (tk)

2
(W (tk+1) − W (tk)) .

= 1

2

∑
k

W 2(tk+1) − W 2(tk)

= W 2(t)

2
. (1.63)

These two examples have shown that the solution to a stochastic integral depends on
the algebra chosen and that the Stratonovich convention is simpler for practical cases.
Fortunately, it is possible to obtain the Itô solution from the Stratonovich solution
and vice-versa [14, 19].

In this thesis we will find cases with several Wiener processes involved. They
will be labeled with a superscript and are taken to be statistically independent: dW j

(0)=0, 〈dW j (t)〉=0, 〈dW j (t) dW k(t)〉 = δ jkdt .
A set of trajectories in a fusion device that are obtained integrating Eqs. (1.34)–

(1.36) is a set of independent random variables. The reason is that test particles do
not interact with each other and all the Wiener processes that appear are independent.
Therefore the Central Limit Th. can be applied to the set of trajectories, using Monte
Carlo techniques to procure physical results. Chapter 2 contains more information
about how these methods are implemented in the simulation code ISDEP.

1.4.3 Stochastic Differential Equations

SDEs are differential equations that include random terms with certain probabil-
ity distribution. They are commonly used in Physics to model diffusive transport
processes [21]. A 1D Stochastic Differential Equation is an equation with the form:

dX = F(X, t)dt + G(X, t)dW, (1.64)

being dW an infinitesimal increment, differential, of the Wiener process: 〈dW 〉 =
0, 〈dW 2〉 = dt .

Since dW ≈ √
dt in stochastic analysis, most theorems and techniques used

in regular calculus are modified. The chain rule in ordinary calculus, i.e., finding

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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dY (X, t) given dX , is named Itô’s rule in stochastic calculus. It is obtained expanding
Y (X, t) in Taylor series up to first order, taking into account that “dW 2 = dt”:

Y (X (t + �t), t + �t) = Y (X (t) + F(t)�t + G(t)�W, t + �t)

= Y (X (t), t) + ∂Y

∂t
�t

+ ∂Y

∂ X
(F(t)�t + G(t)�W )

+ 1

2

∂2Y

∂ X2 G(t)2�W 2 + O(�t3/2). (1.65)

Grouping terms:

d(Y (X, t)) = ∂Y

∂t
dt + ∂Y

∂ X
dX + 1

2

∂2Y

∂ X2 G2dt + O(dt3/2). (1.66)

For example, X = W, dX = dW ⇒ d(X2) = d(W 2) = 2W dW + dt .
A more general case is the SDE in n dimensions (using the Einstein summation

convention):

dXi = Fi (X, t)dt + Gi
j (X, t)dW j , (1.67)

d(Y (X)) = ∂Y

∂t
dt + ∂Y

∂ Xi
dXi + 1

2

∂2Y

∂ Xi∂ X j
Gi

l G jldt. (1.68)

Moreover, in stochastic analysis the product rule is modified:

dX1 = F1dt + G1
kdW k

dX2 = F2dt + G2
kdW k

⇒ d(X1 X2) = X1dX2 + X2dX1 + G1k G2
kdt. (1.69)

Concerning the integration of differential equations, a stochastic process X(t) is
a solution of the SDE:

dX = F(X, t)dt + G(X, t)dW, (1.70)

X(0) = X0, (1.71)

when

X(t) = X0 +
∫ t

0
F(X(s), s)ds +

∫ t

0
G(X(s), s)dW. (1.72)

The solution of the SDE is formulated using the integral because, as we said, the
Wiener process is not differentiable. The existence and uniqueness of the solution
is guaranteed provided some general conditions to F and G. As an example, let us
check that the solution to the differential equation:
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dX = g(t)XdW, (1.73)

X (0) = 1, (1.74)

is

X (t) = exp

(
−1

2

∫ t

0
g2(s)ds +

∫ t

0
g(s)dW

)
. (1.75)

Call dZ = − 1
2g2dt + gdW , so X (t) = exp (Z(t)). Using the chain rule: dX =

X
(− 1

2g2dt + gdW
) + X 1

2g2dW = gXdW .
Many analytical and numerical methods for solving SDE use the Stratonovich

convention. Under general differentiability requirements for F and G it is equivalent
to Itô’s convention. The transformation from a Stratonovich SDE to an Itô SDE is:

dXi = F̂ i (X, t)dt + Gi
j (X, t) ◦ dW j , (1.76)

F̂ i (X, t) = Fi (X, t) − 1

2

∂Gi
k(X, t)

∂ X j
G jk(X, t). (1.77)

The diffusion tensor Gi j is not changed. The main advantage of the Stratonovich
convention is that the ordinary chain rule holds formally:

d(Y (X, t)) = ∂Y

∂t
dt + ∂Y

∂ Xi
F̂ i dt + ∂Y

∂ X j
G j

k ◦ dW k, (1.78)

and this is the reason why it is generally used in numerical methods for SDE.
We can solve again the integral

∫
dW W (t) using both chain rules, as we did in

Eqs. (1.62) and (1.63) using the Riemann sums. Differentiating W 2 in Itô’s sense:

d(W 2) = 2W dW + dt ⇒ W dW = d(W 2) − dt. (1.79)

Integrating in both sides of the last equation we get:

∫ t

0
W dW = W 2(t) − t

2
. (1.80)

On the other hand, we can solve this integral directly in the Stratonovich formulation:

∫ t

0
W ◦ dW = W 2(t)

2
. (1.81)
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1.4.4 Numerical Methods

ISDEP has several numerical methods to solve the SDE system, with different prop-
erties and convergence orders. When dealing with numerical solution of SDEs one
has to distinguish two types of convergence, strong and weak convergence [14].
Strong convergence is a concept similar to the usual convergence in ordinary differ-
ential equations, related to a particular realization of the Wiener process and a single
trajectory. Weak convergence is related to averages and statistical quantities of a set
of solutions.

Since most of the ISDEP results are statistical functions of the particle orbits, weak
convergence is the leading criteria for the numerical methods used. As an example,
an order one weak algorithm is the Euler-Maruyama scheme:

xi
n+1 = xi

n + Fi (xn)�t + Gi
j (xn)�W j . (1.82)

The superscript i refers to the components of the vector x while n is the time index.
Note that this algorithm is very similar to the numerical model of the diffusion process
in Eq. (1.37). An order two weak algorithm is the Klauder-Petersen method (note that
�W = √

�t η, η = N (0, 1)):

xi
n+1 = xi

n + 1

2

(
Fi (xn) + Fi (x1)

)
�t

+ 1

2

(
Gi

j (x
2) + Gi

j (x
3)

) √
�t η

j
0 , (1.83)

x1i = xi
n + Fi (xn)�t + Gi

j (xn)
√

�t η
j
0 , (1.84)

x2i = xi
n + Gi

j (xn)
√

�t/2 η
j
1 , (1.85)

x3i = xi
n + Fi (xn)�t + Gi

j (xn)
√

�t/2 η
j
1 , (1.86)

η
j
0 = N (0, 1), (1.87)

η
j
1 = N (0, 1). (1.88)

In this method the vectors x1, x2 and x3 have components x1i , x2i and x3i . Addi-
tionally, the Kloeden-Pearson algorithm is valid for a Stratonovich SDE:

xi
n+1 = xi

n + 1

2

(
F̂ i (xn) + F̂ i (xp)

)
�t

+ 1

2

(
Gi

j (xn) + Gi
j (xp)

) √
�t η j , (1.89)

x p = xi
n + F̂ i (xn)�t + Gi

j (xn)
√

�t η j , (1.90)

η j = N (0, 1). (1.91)
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This also presents order two weak convergence. The numerical method may be chosen
according to the parameters of a particular simulation. In a high collisionality regime
a high order method in the stochastic part should be used. In low collisionality cases
a first order method in the stochastic part combined with a fourth order Runge-Kutta
for the deterministic part can produce excellent results.

Evidently, we must make sure that our time discretization interval �t is small
enough to assure convergence of the solution (within the statistical error-bars). All
other numerical parameters must also be small enough to not affect the results. For
example, the functions Fi and Gi j depend on a tabulated the magnetic field whose
discretization length must be much smaller than any other typical length of the
system.

In general, the numerical methods for SDE must satisfy two general consistency
conditions:

lim
�t→0

〈
xi

n+1 − xi
n

�t

〉
= Fi , (1.92)

lim
�t→0

〈
(xi

n+1 − xi
n)(x j

n+1 − x j
n )

�t

〉
= Gi

k Gkj , (1.93)

where, again, we make use of the Einstein summation convention.
All the numerical methods we use in SDE are numerically stable, in the sense that

small deviations from the initial condition do not cause the solution to diverge rapidly
from the original solution. These properties can be found in [14], with examples and
formal theorems.

The next chapter is devoted to a description of the ISDEP code. Then we will
show the original scientific results obtained with the code, using the techniques and
tools previously described.
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Chapter 2
ISDEP

2.1 Introduction

As we said in previous chapters, Integrator of Stochastic Differential Equations for
Plasmas (ISDEP) is a code devoted to solve the dynamics of a minority population of
particles in a complex 3D fusion device. ISDEP is becoming a rather complex code,
with more than 104 lines. It is adapted to four different fusion device geometries
(two stellarators and two tokamaks). In this Chapter we discuss the basic structure of
the code and the tools used to analyze the data in Sect. 2.2 and benchmark the code
in Sect. 2.3. With benchmark we mean the comparison of the ISDEP results with
another similar code, in order to assure that ISDEP is free of programming errors.
We end this Chapter with an overview of the previously published results in Sect. 2.4.

The main improvements of the code performed during the elaboration of this
thesis are related with the measurements and analysis of the particle distribution
function (Sects. 2.2.5 and 2.2.6) and its adaptation to three new fusion devices (in
Sect. 2.3 for the benchmark and in Chaps. 3 and 4).

We start with a description of the code.

2.2 Description of the Code

ISDEP was created under the CIEMAT1-BIFI2-UCM3 collaboration in 2007 and is
in continuous development and improvement. From a physical point of view, ISDEP
solves the Neoclassical (NC) transport avoiding several common approximations of
the standard NC theory implemented in existing transport codes.
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2 Instituto de Biocomputación y Física de los Sistemas Complejos, Zaragoza, Spain.
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As an example, it makes use of the Cartesian coordinates instead of the Boozer
coordinates [1], generally used in this code class. Boozer coordinates are specific
coordinates for magnetically confined plasmas, but they do not allow the represen-
tation of magnetic islands, ergodic zones in the magnetic field or points in space
outside the plasma boundary, where the field lines are open. Boozer and magnetic
coordinates are only well defined for nested magnetic surfaces but not for those
topologies. Therefore, Cartesian coordinates are better suited for our goal. Other
common approximations that we can avoid with ISDEP are related to the typical
radial width of the particle orbits in the device and the diffusive nature of the trans-
port processes. The particle orbit width is usually assumed to be small compared
with the typical distances of the problem, but in many real situations this is not actu-
ally the case. Finally, the kinetic energy of the studied particles does not need to be
conserved in ISDEP, oppositely to the neoclassical approximation. This allows us the
inclusion of strong electric fields and study their effects on ion dynamics. In addition,
this code was designed to run on grid architectures, propelling the development of
this computing platforms.

As we previously said, ISDEP considers a minority population of test particles,
for which we may choose among several options. This minority population can
be thermal particles, obtaining then specific information for the plasma bulk that
is not given by the plasma equilibrium. The test particle can also be fast particles
coming from heating systems, studying then their interaction with thermal particles.
Furthermore, although we have not considered the case yet, ISDEP has the potential
to handle impurity dynamics.

There exist many computer codes devoted to solve the Neoclassical transport. For
example, the codes DKES, NEO-MC and MOCA study similar physics, but with
some peculiarities and different approximations. Some of these neoclassical codes
have been benchmarked and compared in Ref. [2].

• Drift Kinetic Equation Solver (DKES) [3] is a well established code that solves the
linearized Drift Kinetic Equation using a functional minimization method. It takes
the effective radius and the particle energy as input parameters and then solves the
transport equations in the remaining three dimensions.
DKES solves a FP type equation and computes the whole transport matrix [2]
using Boozer coordinates, calculating also the Bootstrap current and the paral-
lel conductivity. Unfortunately it presents some drawbacks that ISDEP avoids. It
assumes diffusive nature in the transport, infinite fast parallel transport, conserva-
tion of kinetic energy and narrow radial excursions of the particle. Moreover, it
neglects the poloidal component of the ∇B drift and approximates

E × B
B2 ∼ E × B

〈B2〉 . (2.1)

The use of Boozer coordinates means that the code can be used only when one
has nested magnetic surfaces and cannot be used in the scrape-off-layer.
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Computationally, it scales unfavorably with the number of magnetic field Fourier
modes, but it is very fast in high collisionality regimes. This code gives large error-
bars for the transport coefficients in the long mean free path regime for complex
magnetic configurations. Indeed it is not adequate to study complex 3D devices in
a low collisionality regime.

• NEO-MC [4] solves the same equations as DKES but using a Monte Carlo method
instead. NEO-MC has been designed to specifically calculate the Bootstrap current
in 3D fusion devices. The main advantage of NEO-MC is that it reduces strongly
the errorbars of the transport coefficients for any collisional regime.
In order to improve the accuracy of the code to estimate the Bootstrap current,
the effect of trapped and barely trapped particles is considered specifically. The
velocities of two particles that are moving in opposite directions are subtracted,
thus creating a quasi-particle and the number of test particles is increased in the
barely trapping regions. Most of the computing time is devoted to follow particles.
This improves the scalability, although this code is more expensive in computing
resources than DKES. Like DKES, NEO-MC is subjected to the neoclassical
ordering. Thus, NEO-MC cannot avoid such approximations that are not present
in ISDEP. On the other hand, NEO-MC calculates also for the electrons and, hence,
allows one to estimate the self-consistent radial electric field from the ambipolar
condition. NEO-MC, like DKES, also assumes nested magnetic surfaces.

• MOCA [5] is another Monte Carlo code developed at CIEMAT ten years ago.
MOCA is an evolution of the MCT code [6] and it calculates the radial diffusion
coefficients (diagonal part of the transport matrix), using Boozer coordinates for
the spatial position and Coulomb collisions for the interaction between particles.
It usually scales better than DKES, but it does not allow for the bootstrap current
calculation in its first version. Opposite to ISDEP, MOCA works in Boozer coor-
dinates and is subjected to the neoclassical ordering, but calculates for both ions
and electrons.

• MOHR [7] is another guiding center orbit code that solves the Fokker-Planck
equation for ions. MOHR is a very similar code to ISDEP indeed. The main
differences rely on the statistical error calculation.

Once we have the mathematical model of the particle dynamics from Chap. 1, we
describe the Monte Carlo method used in ISDEP, the architecture of the code and
the statistical techniques needed to obtain global results from a set of independent
trajectories. Then we present an overview of previous ISDEP results and, finally, the
ISDEP code is benchmarked with MORH in Sect. 2.3.

2.2.1 The Monte Carlo Method

The basis of the Monte Carlo method used in ISDEP relies on the equivalence between
the Fokker-Planck and Langevin equations [8]. The Fokker-Planck equation is a lin-
ear partial differential equation for a distribution function of a minority population of

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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particles (called test particles) that interact with a static background. The Langevin
approach is equivalent to this description, but providing Stochastic Differential Equa-
tions (SDE) [8] for a single test particle motion (see Sect. 1.4). Integrating many test
particle trajectories and analyzing the results is mathematically equivalent to obtain
the solution to the original Fokker-Planck equation.

ISDEP integrates the trajectories taking into account collisions with ions and
electrons from the background, the electrostatic potential and the confining mag-
netic field. The statistical analysis of many test particles allows the measurements
of different plasma parameters, like average energy, confinement time or even the
marginal distribution function of the test particle population.

In order to reduce computational requirements, the Guiding Center (GC) approx-
imation, described in Sect. 1.3, is used in the code. The GC coordinates chosen are
(x, y, z, v2, λ), where (x, y, z) are the guiding center space coordinates, v2 is the
normalized particle kinetic energy and

λ = v · B/(B v) (2.2)

is the pitch. In the Fokker-Planck description, the time evolution of the distribution
function f (x, t) is given by the convective (Fi (x, t)) and the diffusive transport
(Gi

j (x, t)) in the 5D phase space:

∂ f (x, t)

∂t
= ∂

∂xi

(
−Fi (x, t) + 1

2

∂

∂x j
Gi

k(x, t)Gkj (x, t)

)
f (x, t) . (2.3)

The equivalent set of Stochastic Differential Equations (SDE) in Itô’s sense [8]
(i.e. Langevin equations) is:

dxi = Fi (x, t) dt + Gi
j (x, t) dW j . (2.4)

The explicit form of Fi and Gi j has been discussed in Eqs. (1.34), (1.35) and
(1.36). Now the coordinates in phase space xi refer to the movement of a single
particle, whose trajectory is determined by the background via Fi and Gi

j . The

Wiener process, dW j (t) (see Sect. 1.4) represents the random part of the interaction
with the plasma.

In the case of interest, the problem consists of a SDE system of five equations with
two Wiener processes. The SDEs can be transformed to the Stratonovich convention
because it is more suitable for several numerical methods. In Sect. 1.4 the reader can
find a short review of probability theory and stochastic calculus, which provide the
necessary tools for the calculations of this thesis.

Once N trajectories are integrated and stored, we can reconstruct the distribution
function accumulating the particle path in phase space:

f (x, t) ∝ 1

N

N∑
i

δ(x − x(t)). (2.5)

http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
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Since ISDEP calculates f according to the time that the particles spend in a given
point of the phase space, the Jacobian of the coordinates x is included in f (x, t).
In addition, due to the linear nature of ISDEP, f (x, t) is not exactly a distribution
function because all its results have implicit a normalization constant. This means
that ISDEP can calculate the intensive properties of the test particles (average energy,
average lifetime, etc), but needs some extra information to compute the extensive
properties (total energy contained, total electric current, etc).

With the proper normalization, f (x, t) can be taken as a probability density of
the test particle ensemble in phase space.

2.2.2 ISDEP Architecture

ISDEP is programmed in C to maximize its performance and portability and was
designed to scale perfectly in distributed computing platforms such as grid or volun-
teer computing architectures. It does not require external libraries other than the stan-
dard C libraries. Consequently, the scaling in massive parallel computers is almost
linear. The operation of the code is briefly summarized in the following steps:

Initialization

After compiling, a copy of the executable and the input files are sent to each comput-
ing node, or copied into a file-system common to all nodes. The input files contain
the plasma background data, the confining magnetic field and trajectory details (time
step, numerical algorithm chosen, etc). The first stages of the execution of the code
are invested in initializing the random number generator, the magnetic field array
and the trajectory itself. The magnetic field array contains all the information related
to the magnetic configuration of the device. Part of this array is read from a file (e.g.,
B) and the remaining is calculated (e.g., ∇B) in order to save CPU time in the next
steps. The interpolations in this array are linear, provided that the spatial grid is dense
enough. The typical distance between two nodes in the magnetic grid is <1 % of the
size of the device so the magnetic field is smooth enough. The size of the magnetic
array may be ∼400 MB, representing most of the memory that ISDEP uses.

The trajectories are initialized according to a given distribution. If one deals with
bulk ions, the spatial distribution is given by the plasma density. In velocity space the
distribution is locally Gaussian in v2 and uniform in λ. Alternatively, when dealing
with suprathermal ions, ISDEP can read the output of a neutral beam injection code,
like FAFNER2 [9], to calculate the initial test particle distribution (see Chap. 4).

Orbit Iintegration

After the initialization routines, every node starts to integrate trajectories indepen-
dently of each other. The statistical independence is guaranteed reading the random

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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seed locally in the node. Then the orbits are integrated and the data written in a file.
A description of the numerical methods used in ISDEP can be found in Sect. 1.4.4.
This is the most CPU time consuming stage.

There are two main output files in ISDEP: trajectory files (OUT.DAT) and his-
togram files (OUT.HIS). In the former the 5D position in phase space is stored for
each trajectory at selected times. Since we are interested in the plasma evolution time
scales, the measurement times are chosen to be approximately equidistant in loga-
rithmic scale. The latter contains histograms of different particle quantities (energy,
distribution function, rotation velocity, radial flux, ...). In order to increase statistics
the following technique is applied in the histograms: assuming that the evolution of
the system is slow, one may take all the measurements at times t ∈ (0.9 t0, 1.1 t0)
belonging to t0. In this way the statistical errors are significantly reduced.

Analysis

The output of each node is stored in a particular node and is analyzed with the
ISDEP analysis tools. Many physical quantities are calculated in this stage, like
average energy, velocity profiles, steady state distribution function and escape points.
ISDEP uses the jack-knife method for all statistical error estimation [10], described
in Sect. 2.2.3. Some output analysis, related to Sects. 2.2.5 and 2.2.6 is done using
the Python programming language.

Table 2.1 summarizes the profiles measured with ISDEP, as functions of the effec-
tive radius and time. In addition, ISDEP calculates the global average of all these
magnitudes as a function of time. Finally, the distribution function of the test particles
is obtained, but averaging in the magnetic surfaces: f (t, ρ, v||, v⊥).

The particle escape distribution is presented as a list of points in phase space:
(ti , xi , yi , zi , v

2
i , λi ), being ti the escape time of the i th particle. A lot of information

can be extracted from this list with little effort. For example, accumulation of losses
in a region of the device can produce severe damage to the device, and ISDEP can
help to prevent this effect.

It is essential to mention that ISDEP requires some feedback to determine the
time discretization parameter �t . The usual procedure to determine �t requires at
least two simulations with ISDEP. First one must decide what statistical accuracy in
the output is needed, usually around 5 %. This errorbars can be diminished knowing
that they scale with N−1/2, being N the total number of trajectories integrated. Then,
starting with some reasonable value of �t , ISDEP is run for �t/2, �t/5, �t/10 . . .

until the results are the same within the statistical errorbars. This procedure must be
done for each simulation to ensure that the statistical errors are always larger than
the discretization errors.

Figure 2.1 shows the workflow of ISDEP in a distributed computing architecture
like the grid.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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Table 2.1 ρ-dependent
profiles calculated with
ISDEP. Each one is presented
as a function of time

1D profile observable meaning

ρ Average effective radius
(ρ − ρ0)

2 Deviation from the initial position
θ Poloidal angle
E Total energy [units of mc2/2]
v2 Normalized kinetic energy
κv Binder cumulant of v: κv = 〈v4〉/〈v2〉2

λ Pitch angle
vb Parallel velocity, in units of c
v2

b Parallel kinetic energy
κvb Binder cumulant of vb

vϕ Toroidal velocity
v2
ϕ Normalized toroidal kinetic energy

κvϕ Binder cumulant of vϕ

vθ Poloidal velocity
v2
θ Normalized poloidal kinetic energy

κvθ Binder cumulant of vb

vr Radial velocity
v2

r Normalized radial kinetic energy
κvr Binder cumulant of vr


 Radial particle flux
Q Radial energy flux
z Average z coordinate

2.2.3 Output Analysis: Jack-Knife Method

ISDEP incorporates the Jack-Knife method [10] for output analysis. This method is
a robust and simple algorithm for the statistical error calculation.

Let us consider a set of N independent, identically distributed vector random vari-
ables, Xi , i = 1, . . . , N , and a nonlinear function f of the expectation values 〈X〉. By
a vector random variable, we intend a set of M physical quantities that are measured
on the same experiment (or numerical simulation) Xi = (X (1)

i , X (2)
i , . . . , X (M)

i ). Of
course, the components of Xi can be statistically correlated, but they are independent
in the subscript i .

The problem that the Jack-Knife method solves is that of computing the statistical
error for our estimator of f (〈X〉). The procedure takes care at once of two problems:
(i) it treats correctly the statistical correlations among the components of Xi and
(ii) it avoids the instabilities caused by the non-linear nature of the function f .

As an example, we may think of X (m)
i as the energy of the i th particle at time tm .

Even thought there will be no correlation between particles, obviously the energy
of a given particle is correlated in time with itself. Thus, the calculation of the time
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Fig. 2.1 ISDEP workflow on the grid. First, the magnetic field file is copied to a Storage Element
(SE) and the jobs submitted to the Worker Nodes (WN). The WN retrieve copies of the magnetic
field file from the SE, integrate a certain number of trajectories specified by the user and compress
the result. When finished, all output files are copied back to the User Interface (UI) and then locally
analyzed

differences in the kinetic energy requires a method that includes correlations between
measurements.

The Jack-Knife procedure is as follows:
We first compute the average of the random variables as
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X = 1

N

N∑
i=1

Xi , (2.6)

and construct the estimator for f (〈X〉)

f = f
(
X

)
. (2.7)

A direct computation of the statistical error using the random variables fi = f (Xi )

would be impractical (unless f is nearly a linear function). On the other hand, an
error propagation computation requires to take into account the statistical correlations
of the different components of Xi . A simple alternative procedure consist in the
following. First define the (non independent) random variables

XJK
i = 1

N − 1

N∑
j=1; j 	=i

X j , (2.8)

and
f JK
i = f (XJK

i ), (2.9)

then compute the Jack-Knife estimate for the statistical error of f

� f =

√√√√√(N − 1)

⎡
⎣ N∑

i=1

( f JK
i )2

N
−

(
N∑

i=1

f JK
i

N

)2⎤
⎦ . (2.10)

Note that the error is proportional to the square root of the number of blocks,
rather than to 1√

N
. The number of blocks should be large enough, say 50, so this

technique works properly. It is straightforward to show that the Jack-Knife method
gives the same results as Eq. (2.11) for linear functions.

f = 1

N

N∑
1

fi , �
f

Linear−only =
√

f 2 − f
2

N − 1
. (2.11)

2.2.4 Computing Platforms

Since the communication between nodes is zero, ISDEP is able to run in several
computing platforms: high performance computing (HPC) and distributed platforms.
The scaling with the number of nodes is, in all cases, almost linear as we mentioned
above.

In distributed platforms there is no fast communication between the nodes. On the
contrary, a huge number of nodes are available. These nodes are very inhomogeneous
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in performance and characteristics, so ISDEP should be as stable as possible to
minimize the problems caused by this fact. Grid and volunteer computing are the
main resources used. Grid is provided by the Fusion Virtual Organization (EGEE4

[11] and EGI-InSPIRE5 projects). The volunteer computing projects Ibercivis [12]
and its precursor Zivis [13] have provided hundreds of thousands of CPU hours.
Moreover, they had an important role in the divulgation of fusion science in Spain
and Portugal. ISDEP was designed from the early steps to run on Grid architectures,
but it had to be adapted to volunteer computing.

High Performance Computing (HPC) consists of a set of nodes (cluster) located in
the same facility, characterized by fast communication between nodes. In this work,
HPC time is provided by the EULER cluster at CIEMAT. EULER is formed by 1,152
Xeon cores (13.8 Tflops), connected with Infiniband.

2.2.5 Steady State Calculations

The steady state of a system is a time-invariant state in which the particle and heat
sources and sinks are in equilibrium with each other. The sinks in ISDEP are caused
by the lost particles that escape from the plasma and hit the vacuum vessel. In
ISDEP we calculate the steady state of the test particle distribution, using the Green
function’s formalism, following Ref. [14]. Let f (x, t) be the distribution function
of our system, t the time, x the coordinates in phase space, L a differential operator
over f and S(x, t) the source term. With this notation, the problem is expressed as:

L ( f (x, t)) = S(x, t). (2.12)

In the case of interest f (x, t) is the minority particle distribution function, L is
the Fokker Planck operator for the guiding center and Boozer-Kuo-Petravic collision
operator and the source is the continuous injection of particles into the plasma,
computed with other MC codes. The Green function G(x, t; x0) is defined such that

L (G(x, t; x0)) = δ(x − x0) δ(t), (2.13)

with x0 playing the role of initial position. Then:

f (x, t) =
∫

dt0 dx0 G(x, t − t0; x0) S(x0, t0), (2.14)

because

L ( f (x, t)) =
∫

dt0 dx0 L (G(x, t − t0; x0)) S(x0, t0) = S(x, t). (2.15)

4 Project number EGEE-III INFSO-RI-222667, http://public.eu-egee.org/.
5 Project number EGI-InSPIRE RI-261323, www.egi.eu.

http://public.eu-egee.org/
www.egi.eu
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Note that the only contribution to this integral comes when t = t0. In the systems
studied here the source is assumed to be constant in time. This is in agreement with
the linear description of the problem because the background plasma is kept constant.
Thus, this technique should not be used in combination with the inclusion of nonlinear
terms (see Sect. 2.2.7) neither for time varying plasmas. Then S(x, t) = S(x) and:

f (x, t) =
∫

dt0 dx0 G(x, t − t0; x0) S(x0) (2.16)

=
∫

dt0

∫
dx0 G(x, t − t0; x0) S(x0). (2.17)

Defining
H(x, t − t0) =

∫
dx0 G(x, t − t0; x0) S(x0), (2.18)

the distribution function becomes a time integral:

f (x, t) =
∫ t

0
dt0 H(x, t − t0) =

∫ t

0
dt0 H(x, t0). (2.19)

Except for a multiplicative constant, the function H(x, t) is calculated by ISDEP after
integrating 105 −106 test particle trajectories and analyzing the results. Furthermore,
H(x, t) is the solution to Eq. 2.15 using S(x, t) = S(x) δ(t) as a source term. Finally,
with a 1D numerical integration, f (x, t) can be easily found. In fact, for sufficient
large times, it is expected that f (x, t) is constant in time, becoming f (x), because
of the balance between continuous injection and particle losses (the number of the
test particles always goes to zero if the source is a delta in time). Using the Jack-
Knife method [10], one can estimate the average and statistical error of any plasma
magnitude.

Due to its linear nature, ISDEP cannot provide absolute values of f , so the results
are usually presented normalized. Nevertheless, real values can be calculated multi-
plying f times the incoming flux of particles.

2.2.6 NBI-Blip Calculations

NBI-Blip experiments are plasma discharges in which the NBI heating system is
switched on for a small period of time in the discharge duration [15]. This injector
pulse, with length tB > 0, is represented mathematically with the Heaviside function
in the source term:

S(x, t) = S(x) (�(t) − �(t − tB)). (2.20)

Then, using the formalism introduced in the previous section:

f (x, t) =
∫

dt0

∫
dx0 G(x, t−t0, x0)S(x) (�(t) − �(t−tB)) = f1(x, t) + f2(x, t).

(2.21)
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The first term in Eq. 2.21 is:

f1(x, t) =
∫ t

−∞
dt0

∫
dx0 G(x, t − t0, x0) S(x)�(t) (2.22)

=
∫ t

0
dt0

∫
dx0 G(x, t − t0, x0) S(x) (2.23)

=
∫ t

0
dt0 H(x, t − t0). (2.24)

This is the usual procedure to calculate the steady state of f1(x, t). When t is
large, f1 becomes independent of t . The second term is then:

f2(x, t) = −
∫ t

−∞
dt0

∫
dx0 G(x, t − t0, x0) S(x)�(t0 − tB) (2.25)

= −
∫ t

tB

dt0

∫
dx0 S(x, t − t0, x0) S(x) (2.26)

= −
∫ t

tB

dt0 H(x, t − t0). (2.27)

Adding both expressions together:

f (x, t) = f1(x, t) + f2(x, t) (2.28)

=
∫ t

0
dt0 H(x, t − t0) −

∫ t

tB

dt0 H(x, t − t0) (2.29)

=
∫ tB

0
dt0 H(x, t − t0). (2.30)

Notice that it is implicit in the equations that t0 < t . Keeping this in mind, two
extreme cases are:

• tB = 0 ⇒ f (x, t) = 0.
• tB = t ⇒ f (x, t) → f1(x, t), the very same one from previous section. When

tB is very large, then f (x, t) = f (x).

2.2.7 Introduction of Non Linear Terms

The physical description of the plasma implemented in ISDEP is a linear theory
so, in principle, the background plasma is not modified. But here we propose a
method to modify the background profiles, i.e. including some non-linearities. As
of yet, only modifications in the background temperature are considered through
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an iterative process. The developed procedure can be applied to the density or any
quantity estimated as a moment of the distribution function.

For the test particles ensemble, the temperature profile is taken to be the average
kinetic energy in an interval of �ρ = 0.1 centered in ρ at a time t : v2(ρ, t). Let qi

be the quotient of the average kinetic energy in the i th iteration (v2
i ) and the original

energy profile (v2
0):

qi (ρ, t) = v2
i (ρ, t)

v2
0(ρ)

. (2.31)

Then, in the iteration i +1 we take as temperature the initial profile, multiplied by qi :

Ti+1(ρ, t) = T0(ρ, t) qi (ρ, t). (2.32)

Since the coordinates (ρ, t) are discretized, a linear interpolation is done to obtain
T (ρ, t) at arbitrary position and time. We stop iterating when Ti+1(ρ, t) = Ti (ρ, t)
within error bars, which is the final self-consistent profile. This method has been
used in [16] and will be shown in Sect. 2.4. An example of this procedure can be
found in Fig. 2.2, where the test particle energy profile is plotted for a simple tokamak
with ICRH heating assuming a Gaussian power deposition profile. In the figure, the
energy profile increases due to the external energy input and converges to a stable
value after 6 iterations.
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Fig. 2.2 Example of the iterative procedure. We modify the background temperature of a test
tokamak with ICRH. The profile converges after 6 iterations
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2.3 Benchmark of the Code

The benchmark of ISDEP is performed in different tests to check the validity of the
results presented in this thesis and related works. First, the guiding center motion
without collisions is compared with another orbit code [17] with a nice coincidence
of the results. Then the collision operator is tested by estimating the energy slowing
down time and comparing it with the standard theory. Finally, the particle diffusion
in a circular tokamak geometry is compared with the one estimated by the code
MORH (Monte-Carlo code based on Orbit following in the Real coordinates for
Helical devices) [7].

In the first step a proton trajectory in the Stellarator TJ-II (see Chap. 4 for more
details on the device) is compared with the calculated by means of the code used
in [17]. Both trajectories start at the same initial point and for the first times the
agreement is good, as can be seen in Fig. 2.3. After some toroidal turns around TJ-II
the numerical errors in the interpolation of B accumulate and the trajectories start to
differ. These results show that this module of ISDEP is validated.

The collision operator is validated in a small circular tokamak with characteristics
R0 = 1 m, a = 0.2 m, B ∼ 1 T. We consider flat profiles to avoid the influence
of the transport, and only one background species (Ti = 100 eV, ni = 1020 cm−3).
A population of test particles with T (t = 0) 	= Ti is evolved with ISDEP in velocity
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Fig. 2.3 Same trajectory in TJ-II calculated with ISDEP (green line) and the code in [17] (red line).
The initial point is (x, y, z, v2, λ) = (1.7, 0.1, 0.1, 10−6c2, 0.44). The energy is conserved in all
the trajectory

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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Fig. 2.4 Comparison of
the energy slowing down
frequency νS calculated with
ISDEP and the NC prediction.
The vertical line corresponds
to the ion thermal velocity

103

104

105

 0 • 100  1 • 10-6  2 • 10-6  3 • 10-6
S 

(s
-1

) 

2/c 2

vth
2 / c 2 = 2.2 • 10-7

NC estimation: S
ISDEP: ν

ν
S

space but not in position. In this way the effect of the collision operator is isolated.
These test particles tend to thermalize with certain frequency depending on the initial
temperature. Fitting the test particle temperature with T (t) = Ti + Ae−t/νS we
can calculate the slowing down frequency and compare with the theory [18]. The
theoretical expression of νS is:

νS = 8πe4n ln ��(x)

m2v3 , (2.33)

with the notation of Sect. 1.3.2. A good agreement between our calculations and the
theory is found, as can be seen in Fig. 2.4, so we also consider the collision operator
validated.

As a final test, both ISDEP and the Monte Carlo code MORH [7] are adapted to
the small tokamak used here, but with more realistic profiles and including a radial
electric field (see Fig. 2.5). In order to include 3D features a small ripple (1 %) is
considered, following [19] (this will also be used in Chap. 3). In addition, test particles
collide with ions and electrons of the background plasma, taking Ti = Te, ni = ne.

Fig. 2.5 Plasma profiles
of the tokamak used in the
benchmark
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Fig. 2.6 Diffusion of particles in a circular tokamak geometry calculated with ISDEP (green) and
MORH (red). The initial state in both cases is f (ρ, t = 0 s) = δ(ρ − 0.5)

In both simulations a population of test particles is launched from ρ = 0.5 in position
and with a Maxwellian distribution in velocity space. The 1D test particle distribution
function f (ρ, t) is plotted in Fig. 2.6 for several times, comparing the results of both
codes. Also the average radial velocity 〈vρ〉 and the persistence P(t) are plotted
in Fig. 2.7. The persistence is defined as the fraction of surviving particles. The two
codes present a general good agreement. In Fig. 2.6 ISDEP and MORH reproduce the
same dynamics of f (ρ, t), both in the width and in the asymmetry. The differences
in vρ are due to the different integrators used in the two codes, but they are not
statistically significant. The accumulation of numerical errors cause a discrepancy
in the persistence for t > 0.01 s (see Fig. 2.7). The particle loss conditions are much
more sensitive to numerical errors than other quantities of the plasma. The average
radial velocity calculated with ISDEP is compatible with MOHR, although it is a
very noisy quantity (Fig. 2.7).

As a conclusion, we consider that the ISDEP code is benchmarked.

2.4 Overview of Previous Physical Results

Previously to the elaboration of this thesis, ISDEP has been already used in fusion
science for the following purposes.
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Fig. 2.7 Average radial velocity and test particle persistence calculated with ISDEP (green) and
MORH (red)

2.4.1 Thermal Ion Transport in TJ-II

ISDEP has been mainly applied to the TJ-II stellarator [20]. A first work calculating
the transport of thermal ions in ECRH plasmas was published in [21]. The thermal ion
transport in absence of ion-electron collisions was calculated in that paper, where
the violation of the Neoclassical local ansatz was explicitly shown. Additionally,
this work estimated the poloidal accumulation of particles and deviation of the test-
particle distribution function from de Maxwellian. From these data, a first estimate
of the ion contribution to the bootstrap current was provided.

2.4.2 CERC and Ion Confinement

A particular effect, known as the Core Electron Root Confinement (CERC) was
simulated in [16], exploring its influence on ion confinement. CERC means the
enhancement of the electron heat confinement with the onset of a strong positive
radial electric field. Collisions with electrons and the self consistent scheme for
plasma temperature modification was implemented here with a complex workflow
on the Fusion Virtual Organization of the EGEE Grid. The conditions of the plasma
before and after the transition to CERC were simulated. The variation of the radial
electric field and the rising of the electron temperature were the ingredients required
to reproduce the experimentally observed rise of the ion temperature.

2.4.3 Violation of Neoclassical Ordering in TJ-II

Non-diffusive features of the radial transport in TJ-II can be found in [22], showing
that even this linear collisional model is enough to find non-diffusive transport in plas-
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mas. The radial transport was estimated for ions at different radial locations and differ-
ent plasma regimes. A rough estimate of the Hurst exponent (which quantifies the dif-
fusivity of transport) was extracted from the simulations. The local ansatz was shown
to be approximately fulfilled for plasmas heated by Neutral Beam Injection (NBI).

2.4.4 Flux Expansion Divertor Studies

The last previous paper on TJ-II included a detailed study of escape particles and
divertor effects [23]. The 3D fluxes on the plasma wall were calculated in several
configurations in order to exploit their potential as flux expansion divertor. The
toroidal and poloidal resolution available in ISDEP was a key factor in the proposal
of a new divertor at TJ-II.
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Chapter 3
3D Transport in ITER

3.1 Introduction

The International Tokamak Experimental Reactor (ITER) [1] is an international
project devoted to prove the feasibility of the thermonuclear fusion as a new energy
source. It will be the largest fusion device in the world and the first one to control
D-T fusion reactions. Although it is not designed to produce electricity it is expected
to produce 5–10 times the energy needed to heat the plasma. Typical values for the
injected power are ∼75 and ∼ 500 MW for the fusion power produced.

ITER implies a great development in engineering and industry: remote handling,
material resistance, control systems, tritium breeding, neutron shielding, etc. The
complexity of this device can be inferred from Fig. 3.1. It is being built at Cadarache
(France) and will produce its first plasmas in 2020, although the exact date depends
on the invested money and, hence, on the economical situation. This device will be
the largest tokamak ever built, overcoming the performance of all existing tokamaks.

ITER is a tokamak fusion reactor. The magnetic field in these machines has two
main sources. The most important source is the set of toroidal field coils, responsible
of ∼90 % of the total magnetic field. In ITER there are 18 Li-Nb superconducting
toroidal coils, refrigerated by liquid He, that create a Bϕ ∼ 6 T magnetic field. The
central superconductor solenoid induces an intense current in the plasma: IP =
15 MA. As a consecuence, the plasma itself creates a poloidal magnetic field: Bθ ∼
1 T. Figure 3.2 shows the direction of these components and the resulting helical
magnetic field. In addition to this two sources, a small vertical field is created by a
set of circular coils for MHD stabilization purposes. The result is a 2D configuration
with a characteristic D shaped plasma (see Fig. 3.3).

The plasma parameters in ITER will be outstanding. In a standard scenario the
density can be n ∼ 1020 m−3, the temperatures around 104 eV and the plasma volume
of V ∼ 800 m3. The pulses will be very long, ∼1 h, and it is foreseen to have steady
state discharges half an hour long.

Several heating methods will be available in ITER: Electron Cyclotron Resonance
Heating (ECRH), Ion Cyclotorn Resonant Heating (ICRH) and Low Hybrid Current

A. de Bustos Molina, Kinetic Simulations of Ion Transport in Fusion Devices, 47
Springer Theses, DOI: 10.1007/978-3-319-00422-8_3,
© Springer International Publishing Switzerland 2013
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Fig. 3.1 ITER representation. The torus is inside a cryostat, where 18 superconducting toroidal
field coils and 6 vertical field coils produce the confining magnetic field. The main parameters of
the device are: R0 ∼ 6.5 m, a0 ∼ 2 m, T ∼ 20 KeV, n ∼ 1020 m−3. There is a person in the
lower left part of the machine, giving an idea of the size of this huge device. Source www.iter.org

Drive (LHCD) [2]. It is not clear whether ITER would have Neutral Beam Injection
(NBI) in its first stage, due to budget reductions.

In this chapter we will study a particular effect in a standard MHD equilibrium.
Most of the literature, models and codes concerning ITER transport consider toroidal
symmetry in the device, but in the real machine this symmetry will be broken. The
toroidal asymmetry in the system is called toroidal magnetic ripple. This perturbation
is caused by the finite number of toroidal field coils and the magnetic response of the
Test Blanket Modules (the bricks that form the inner part of the vacuum vessel).1

The study of the influence of the ripple on the plasma is important because it
may modify the transport parameters. Since ISDEP is a 3D code, one can solve the
collisional transport and compare the results within and without magnetic ripple.

1 In fact, ripple is a term that refers to the variation of the magnetic field modulus. There are two
other ripples in fusion devices: the poloidal ripple, responsible of the banana orbits, and the helical
ripple in stellarators.

www.iter.org
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Fig. 3.2 Tokamak scheme. In a tokamak the external coils and the plasma current create the toroidal
and poloidal magnetic fields respectively, resulting in a helical field on a magnetic surface. Source
www.jet.efda.org

In this case the test particle distribution represents the whole plasma population in
these simulations. Several simulations of the collisional ion transport in ITER are
performed comparing the results obtained for different ripple intensities. It will be
shown that the ripple, even for small values, has a non negligible effect on transport
and confinement properties.

The remaining part of this chapter is organized as follows: firstly, we discuss the
3D ITER model in Sects. 3.2 and 3.3 we show the main numerical results and in Sect.
3.4 we present the conclusions. Most of the CPU time was provided by the Ibercivis
[3] Volunteer Computing Platform.2

3.2 The ITER Model

ISDEP needs a background magnetic equilibrium and plasma profiles to integrate
the ion trajectories. The terms that appear in the drift velocities and on the collision
operator depend on this quantities.

The 2D ITER magnetic configuration was calculated using the HELENA MHD
equilibrium code [4] which is integrated in the CRONOS suite of codes [5]. Then the

2 www.ibercivis.es.

www.jet.efda.org
www.ibercivis.es
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Fig. 3.3 ITER 2D magnetic field (no ripple considered) in cylindrical coordinates: B = Bϕ +
BR + BZ . Eighteen superconducting coils create this strong toroidal field (4 T < Bϕ < 8 T for
4 m < R < 8 m). This magnetic field is procured by the equilibrium code HELENA

ripple is introduced as a small perturbation. In this model the unique cause for the
ripple is the finite number of toroidal field coils. Let B0(R, Z)be the 2D magnetic field
in cylindrical coordinates (R, Z , ϕ), provided by HELENA (see Fig. 3.3). Following
Ref. [6], the magnetic field and the scalar magnetic potential in a plasma confined
by a set of Nc circular coils are:

�(R, ϕ) = μ0 I

2π

(
ϕ +

(
R

Rr

)Nc cos Nc ϕ

Nc

)
, B = ∇�. (3.1)

Then the magnetic field is:

Bϕ = μ0 I

2π R

(
1 −

(
R

Rr

)Nc

sin Nc ϕ

)

= B0
ϕ

(
1 −

(
R

Rr

)Nc

sin Nc ϕ

)
, (3.2)

BR = μ0 I

2π R

(
R

Rr

)Nc

cos Nc ϕ

= B0
ϕ

(
R

Rr

)Nc

cos Nc ϕ. (3.3)

Note that in the expressions above B is created by the toroidal field coils, so
it has no poloidal component and if the ripple is zero B = Bϕ̂. We have separated
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conveniently the axisymmetric part of B and the ripple-dependent part. The parameter
Rr gives the strength of the ripple and I provides the intensity of the total magnetic
field. In this model, the smaller Rr , the larger the perturbation. Usually we take values
of Rr close to 10 m to have ripples of a few percents of intensity and when Rr → ∞
the ripple tends to zero.

The 2D ITER magnetic field is extended to a 3D magnetic field with ripple using
this sinusoidal perturbation. As has been said before, the number of coils in ITER is
Nc = 18 and, finally, the perturbed magnetic field is:

BR(R, Z , ϕ) = B0
R(R, Z) + B0

ϕ(R, Z)

(
R

Rr

)Nc

cos Nc ϕ, (3.4)

BZ (R, Z , ϕ) = B0
Z (R, Z), (3.5)

Bϕ(R, Z , ϕ) = B0
ϕ(R, Z)

(
1 −

(
R

Rr

)Nc

sin Nc ϕ

)
. (3.6)

The toroidal flux and, hence, the effective radius are also modified in this model in
a similar way as the magnetic field:

�(R, Z , ϕ) =
∫

B · dSϕ

≈ �o(R, Z)

(
1 −

(
R

Rr

)Nc

sin Nc ϕ

)
, (3.7)

ρ(R, Z , ϕ) = ρo(R, Z)

√
1 −

(
R

Rr

)Nc

sin Nc ϕ. (3.8)

We will perform several simulations with ISDEP for different configurations, scan-
ning Rr , the ripple parameter. The criteria we use to denote the ripple intensity is the
strength of the ripple in the border of the plasma in the low field side.

The axisymmetrical case and five different ripple intensities have been chosen:
(0, 1, 2, 3, 5 and 10 %), corresponding to

Rr [m] = (∞, 10.85, 10.43, 10.21, 9.92, 9.55). (3.9)

Its toroidal maximum is plotted in Fig. 3.4 (right, downwards) versus the major radius,
showing that the ripple is more significant for the outer positions of the torus, where
the toroidal field coils are well separated.

The radial profiles of the plasma (n, Ti , Te, V ) are plotted in Fig. 3.4 (right,
upwards) as functions of the effective radius ρ. Only electrons and one ion species
(protons) compose the plasma. The ion and electron temperatures are equal in this
equilibrium. HELENA cannot calculate the electrostatic potential, so we estimate it
using the simplest MHD approximation and the perfect gas equation: V [V] ≈ T [eV]
[7]. In principle, in this 3D tokamak the transport should not be ambipolar anymore,
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Fig. 3.4 Unperturbed effective radius ρ0 (left), 1D plasma profiles (right, up) and ripple strength
(right, down). The magnetic axis is located at R = 6.42 m. The density profile is almost constant
and the ion and electron temperatures are equal. The electric field is E = V ′(ρ)∇ρ. The labels
(R1, R2, R3, R4, R5)denote the ripple intensity, corresponding to (0, 1, 2, 3, 5, 10 %) respectively

since the axisymmetry is broken by the presence of the ripple. One has to consider the
difference between ion and electron fluxes. As the last one is unknown, a sensitivity
study with respect to the electric potential is performed in Sect. 3.3.4.

3.3 Numerical Results

The use of a code like ISDEP instead of the standard neoclassical transport codes is
mandatory since the plasma under study is in the banana or low collisionality regime
[8], as will be shown below. This fact casts doubts on the validity of the standard NC
theory in ITER. The violation of the NC assumptions has been studied numerically
[9] in TJ-II.

The system of 5 SDEs formed by Eqs. (1.34), (1.35) and (1.36) in Chap. 1 describes
the motion of ions embedded in a thermal bath in a 3D tokamak geometry using the
guiding-center approximation. Recall that we do not consider turbulent effects.

In our simulation, the initial state of the particles follows n(ρ) in real position, is
locally Maxwellian in velocity according to Ti (ρ) and uniformly distributed in the
pitch angle. When a particle reaches the last closed magnetic surface (ρ = 1) we
consider that it escapes the plasma and stop the simulation for that particle.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
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With these plasma conditions the thermal ions have a mean free path ∼104 m �
q R ∼ 25 m, being q the safety factor of the magnetic configuration. Since the bounce
frequency (ωb ∼ 105 s−1) is also much larger than the parallel collision frequency
(ν|| ∼ 102 s−1) the ions are in the banana regime [8]. ISDEP works properly in this
regime, since no approximation is made in the poloidal or radial excursions of the
particles. Several Neoclassical codes may fail in this regime because the Neoclassical
ordering can be violated.

ISDEP integrates a sample of proton trajectories and extracts statistical infor-
mation of the ensemble. As has been stated above, most of the CPU time (≈2/3)
was taken from the Ibercivis computing desktop grid, which is a recently developed
volunteer computing platform based on Berkeley Open Infrastructure for Network
Computing (BOINC). The ISDEP code had to be modified in order to fulfill the
requirements of the Ibercivis Cluster. As an example, the RAM memory is limited
to ∼400 MB and all the simulations are split in small jobs less than 30 minutes long.
Additional computer resources have been provided by the Fusion Virtual Organiza-
tion in the EGEE Project and the EULER cluster at CIEMAT.

The numerical method chosen is a 2nd order method for SDEs (see Eq. (1.88) and
Ref. [10]). With 
t = 5·10−8 s one trajectory takes an average of 17 minutes in a sin-
gle CPU, and we use around 125,000 trajectories for each simulation to reach our pre-
cision requirements. Making use of the fact that ITER has 18 periods, we can increase
the number of samples, having the equivalent of 18×125, 000 trajectories. The com-
puting time employed in this work is equivalent to 30 years in a single CPU. With the
number of trajectories chosen, the statistical errors in the measurements are larger
than the errors induced by the numerical integration. The time discretization 
t cho-
sen ensures that the CPU per trajectory does not surpass the Ibercivis ∼30 min limit.

We divide the numerical results in three groups: results on ion confinement time,
escape points distribution and results on radial fluxes and velocity distribution.

3.3.1 Confinement Time

The ion confinement time is the average lifetime of an ion in the plasma. It is measured
using the persistence of the test particle population, i.e. the fraction of surviving
particles as a function of time, denoted by P(t). The persistence of the test particles
is plotted in Fig. 3.5 (left) for the different values of the ripple (see Fig. 3.5 (right)
for the color scale).

It is possible to estimate the particle confinement time, τ , from the persistence
of test particles, assuming that the decay of the persistence with time is exponential
(P(t) = e−t/τ ). Nevertheless, the fit to the exponential fails the χ2 test [11] because
P(t) shows strong deviations from the purely exponential.3 We need to change the
exponential definition of this characteristic time to a new definition that shows the
different time scales that appear in the system.

3 In these fits the χ2 per degree of freedom (dof ) is around 103, when it should χ2/dof ∼ 1 with
deviations of order

√
2/dof to be a correct fit.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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Fig. 3.5 Persistence of the test particles and estimation of the average confinement time (left). The
statistical error in the fit to purely exponential decay is indicated in parenthesis. On the right plot,
the evolution in time of the confinement time (Eq. 3.10) is plotted for different ripple intensities

Let us start defining a time dependent confinement time such that P(t) = e−t/τ(t).
We can estimate τ(t) as:

τ | ti +ti+1
2

≈
(

ln Pi − ln Pi+1

ti+1 − ti

)−1

. (3.10)

In Fig. 3.5 (right) it is seen that, in fact, the particle confinement time depends on
time, showing the different time scales that appear in our problem. The general
behavior is that the ripple tends to reduce the time dependency of τ(t). This fact
can be understood considering that the characteristic loss time is decreased and the
transport mechanisms have stronger influence along the whole life of the particle.
In the low ripple cases, τ(t) changes drastically with time and it is reduced to the
50 %, while in the large ripple case τ(t) is almost constant, which shows that the
persistence fits better the exponential decay.

It has been numerically studied in Ref. [9] that the collisional transport may
present several time scales in stellarators. In this ITER model, Fig. 3.5 (right) shows
that for times of the order of the collision time t ∼ τc = 1/ν|| ∼ 0.03 s the transport
parameters differ from those obtained when t ∼ τ . The parallel collision frequency
ν|| is the typical collision frequency considering the parallel movement of the ion
[12]. This makes necessary a new definition of the confinement time including all
timescales rather than the exponential one. Let us consider the following integrals:

Ik =
∫ ∞

0
P(t)tk dt, k ∈ N, (3.11)

and define a family of confinement times:

τk = Ik

k Ik−1
. (3.12)
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Fig. 3.6 Comparison of τ and
τ1. The former is calculated
with a fit to P(t) = e−t/τ and
the latter with Eq. (3.12)
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Table 3.1 Comparison of τ

and τ1
Ripple (%) τ [s] τ1 [s]

0 1.20 (9) 0.930 (5)
1 1.18 (9) 0.921 (6)
2 1.12 (9) 0.893 (4)
3 1.07 (7) 0.881 (3)
5 1.00 (6) 0.856 (2)
10 0.84 (2) 0.804 (4)

It can be easily shown that if P(t) = e−t/τ then τk = τ, ∀k. The quantity τ1 can
be interpreted as the average value of t , taking P(t) as the probability measure:
τ1 = 〈t〉. As k increases, τk is more influenced by the tails of P(t). The simulations
performed in this work do not reach the whole tail of P(t) so only τ1 is considered. The
comparison between this new definition of the confinement time and the exponential
one is plotted in Fig. 3.6. The error in τ1 is much smaller than in τ(t) because it is
calculated with an integral, usually less noisy than derivatives. Table 3.1 shows the
values of τ and τ1 for each ripple intensity.

Since the ripple is appreciable for ρ > 0.5 (see Fig. 3.4), the external particles
are more easily lost, causing the ion average effective radius 〈ρ〉(t) to decrease when
the ripple increases (see Fig. 3.7).

3.3.2 Map of Escaping Particles

The use of this 5D Monte Carlo code allows one the study of the map of particle
losses both in the 3D space and in the 2D velocity space. In particular, it is possible to
estimate the hit points on the vacuum vessel together with the velocity components
of the lost ions. This can be helpful to predict accumulation of ion losses and avoid
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Fig. 3.8 Toroidal distribution of particle losses and fraction of heat load that escapes thought the
LCFS. The toroidal field coil is located at 15◦, as can be deduced from Eq. (3.1)

vessel deterioration [13] and minimize sputtering [14]. Recall that in this model the
vacuum vessel is set at the last closed flux surface (LCFS) but, with the appropriate
numerical description, it could be set at any position. Figure 3.7 shows the direction
of the escaping particles, viewed from the top of the torus, pointing out the toroidal
asymmetry. Not surprisingly, the larger fraction of escaping particles corresponds to
the toroidal areas between the toroidal field coils, since at those points the radial drift
of trapped particles is larger. This result can be used to estimate the 3D map of heat
loads on the vacuum vessel.

Figure 3.8 shows the toroidal distribution of the particle and average energy depo-
sition at the LCFS for all the ripples considered. The latter is estimated assuming that
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Fig. 3.9 Radial particle fluxes at t = 0.01 s (left) and t = 1.0 s (right) for different values of the
ripple. We can see that, for long enough times, the ripple raises particle fluxes and consequently the
confinement becomes worse

all the ion kinetic energy is transferred in the hit point. It is seen that a local maxi-
mum of the particles appears and it is toroidally shifted from the position of the coils.
This shows that, due to the total plasma current, ions are toroidally drifting. These
fluxes give a lower boundary of the thermal ion fluxes that will be suffered routinely
by the device walls, since some extra diffusion can be expected from anomalous
transport that is not taken into account in ISDEP. Of course neither the flux coming
from alpha particles nor the one caused by Edge Localized Modes (ELMs, see [15])
or disruptions are considered here. The distribution of particle losses (Fig. 3.8, left)
is more peaked than the energy one (Fig. 3.8, right). Although the ripple degrades
the suprathermal ion confinement, it does not affect so strongly the distribution of
escape points.

3.3.3 Outward Fluxes and Velocity Distribution

The average outward particle (
(ρ)) and energy (Q(ρ)) flux profiles (Figs. 3.9 and
3.10) are also calculated. Both are normalized to the number of particles and all the
measurements take place in two times: before the ripple influences the ion motion
and around one ion confinement time (around one second, according to Fig. 3.5). In
order to increase the statistics and save memory, ISDEP averages the flux profile in
the magnetic surface, neglecting any toroidal and poloidal asymmetry. Since in the
innermost part of ITER there is no ripple, the fluxes tend to smooth and reduce the
local effect of the ripple. The global result is that both fluxes become appreciably
larger with the ripple at t = 1.0 s, causing the enhancement of particle losses. The
particle flux grows monotonically with ρ for long times due to the fact that no particle
sources or sinks are considered inside the plasma. A flattening of the flux is observed
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Fig. 3.10 Radial energy fluxes at t = 0.01 s (left) and t = 1.0 s (right). This quantity shows the
scaling of the energy losses with the toroidal ripple

at ρ ∼ 0.5 due to the combination of the gradients at this plasma zone, where the
potential and temperature driven fluxes produce a constant flux. The heat flux is
not monotonic showing that the kinetic energy of the particles is modified by the
presence of the electric field.

In addition, the features of the velocity distribution of the surviving particles
are characterized with the cumulants of the distribution function. The cumulants
are normalized moments of the distribution which can be used to explore the non-
Maxwellian features. In particular, the Binder cumulant is defined as

κ = 〈v4〉/〈v2〉2. (3.13)

It measures deviations from the Maxwellian distribution (κMax = 5/3): an excess
of supra-thermal particles is indicated by κ > 5/3, while a lack of them by κ < 5/3.
A deviation of the Maxwellian is observed in all the cases, as can be seen in Fig. 3.11.
We identify two causes: the effect of the electric field that tends to accelerate faster
particles, since their collisionality is smaller; and particle losses, which depend on
the velocity. It can be seen in Fig. 3.11 that κ is reduced close to the plasma edge
when the ripple becomes larger. This effect is not surprising, since it means that the
low ripple configurations confine better the fast particles than the ones with enhanced
ripple. Although alpha particle confinement has not been studied here, indeed the
effect of the ripple on these fast particles will be non-negligible.
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Fig. 3.11 Binder cumulant at t = 0.01 s and t = 1.0 s, showing the deviation from the Maxwellian
distribution

3.3.4 Influence of the Electric Potential.

It is well known that the ambipolar condition is satisfied automatically in axysim-
metric systems. This means that the electron and ion fluxes are equal, and implies
that the electric field is given by diamagnetic effects [16].

In this last section we check the approximation V [V ] ≈ T [eV ] used in Sect. 3.2
and the independence of V with respect to the ripple. Several simulations are per-
formed scanning the V (ρ) profile for the 5 % ripple case.

Firstly, a non flat density profile is considered with the expression ∇V = ∇ P/n,
being P the plasma pressure [7]. This estimate is valid in the axisymmetric case, in
which the collisional transport is ambipolar [17]. Then, the influence of the ripple in
the electric potential is studied assuming that V is expressed by:

V (R, ρ) = V0(ρ)

(
1 + α

(
R

Rr

)NC
)

. (3.14)

The profile V0(ρ) is the original potential and α is a parameter which gives the
perturbation intensity. Assuming that the parallel transport is very fast is equivalent
to consider that the electrostatic potential is constant on the magnetic surface. So
we must take the average in the surface: V (ρ) = 1

2π

∫
dθ V (θ, ρ). Moreover, the

circular plasma approximation is supposed to be valid. Then:

V (ρ) = V0(ρ)
(

1 + α · 0.00039 + α · 0.00292 · ρ2
)

. (3.15)

Equation (3.15) is valid up to second order in aρ/Rc << 1, with a ∼ 2 m the
minor radius. The parameter α is varied in the range α ∈ [−100, 100], considered
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for different potential profiles. The original one is taken from Sect. 3.2. Those labeled with α

correspond to Eq. (3.15). In particular, α = 0 is the original potential profile, but taking into
account density variations. As can be seen in the pictures, no significant differences are observed
at this level of accuracy

reasonable, but no difference have been found in the transport parameters of the
device (see Fig. 3.12). On the whole, we conclude that at this level of accuracy the
approximation V [V ] = T [eV ] is valid, provided that ∂n/∂ρ ≈ 0.

3.4 Conclusions

The influence of the toroidal magnetic ripple on the ITER collisional transport has
been studied using the kinetic Monte Carlo code ISDEP. We have taken into account
the 3D ion collisional transport, starting with a 2D magnetic configuration and intro-
ducing the ripple as a sinusoidal perturbation. These studies have shown the enhance-
ment of the radial fluxes and the non-negligible deterioration of the confinement time.
At times of the order of the confinement time, the surviving test particles no longer
represent the plasma, but they still give a general idea of the evolution of the whole
system. The conclusion is that the 3D geometry affects the transport in ITER in an
appreciable way.

Even though the modification is not very large, for long pulses it may have a
strong influence on the behavior of the plasma. The confinement time is reduced
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about 20 % when the ripple reaches 10 %. Large ripples have been studied because,
from Eq. (3.1), suppresing half of the coils in the device with 1 % ripple will produce
a ripple intensity of ∼10 %. The effect of the ripple is especially relevant for high
energy ions, therefore we expect that the alpha particle confinement will be affected.
In this configuration, the fusion alpha particles will have Larmor radius ∼10 cm, still
smaller than the typical scale lengths of the plasma profiles. So the scheme presented
in this paper would be valid for these test particles, provided that no steeper gradients
appears or narrow island chains or turbulent structures are significant.

Beyond the global confinement features, ISDEP is used to calculate other transport
properties. Remarkably, the study of particle losses in a 3D geometry is within reach
and the computation of flux asymmetries on the wall will be then a simple matter.
Besides, this work is a demonstration of the computing opportunities that volunteer
computing platforms, such as Ibercivis, offer to Fusion Science.

The use of a code with the ISDEP characteristics is mandatory because the consid-
ered ITER plasmas are in the banana regime and, moreover, we are able to estimate the
importance of asymmetries and deviations from the Maxwellian distribution caused
just by collisional transport.
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Chapter 4
Simulations of Fast Ions in Stellarators

4.1 Stellarators

In Chap. 1 we introduced stellarators as the second major family of fusion devices.
Their main features are their current-less plasmas and good stability. They were
invented by L. Spitzer in the 50s and the first stellarator was built at the Princeton
Plasma Physics Laboratory in the USA.

In stellarators, the whole magnetic field is created by external coils, so there is no
need of any external inductor to create the poloidal magnetic field. In this sense they
overcome a limitation of the tokamaks, but they do not present toroidal symmetry
at all, they always have 3D configurations. Nevertheless, they present a reduced
symmetry called the stellarator symmetry. In a stellarator, if (R, ϕ, Z) is a point on
a given magnetic surface and ϕ ∈ (0, T/2), being T the period of the machine,
then the point (R, T − ϕ,−Z) is equivalent to the former. Using this property, the
computing requirements of ISDEP are reduced substantially. Additionally, there have
been proposed some stellarators that present extra symmetries, like helical or poloidal
symmetry, but we will not consider them in this thesis.

Figure 4.1 shows several instances of stellarators, illustrating their symmetry as
well as their complexity. Figure 4.2 depicts the stellarator symmetry in a stellarator
particularly relevant for us: TJ-II. Along the present Chapter we will use various 2D
figures to plot 3D quantities. We represent physical quantities in the usual X and Y
axis, and the Z values according to the color-scale located at the right edge of the plot.

Usually stellarators are more stable than tokamaks. The twist of the plasma column
along the toroidal circle and the lack of confining plasma current makes ELMS and
other instabilities much weaker than in tokamaks. In addition there are no disruptions
in stellarators. Density and pulse length are potentially much larger in a stellarator
than in a tokamak and the steady state operation is much easier. On the other hand,
their 3D nature makes the physics, design, construction and simulation much more
difficult than for 2D devices. Because of this, development in stellarators has been
slower than in tokamaks.

A. de Bustos Molina, Kinetic Simulations of Ion Transport in Fusion Devices, 63
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Fig. 4.1 Examples of stellarators: Wendelstein 7-X, currently under construction at the Max Planck
Institute, Garching, Germany a; coils and plasma scheme of Wendelstein 7-X b; NCSX, Princeton
Plasma Physics Laboratory, canceled before finished its construction in 2008 c; and Heliotron J,
Kyoto University d. Source www.ipp.mpg.de, www.s-ee.t.kyoto-u.ac.jp, http://ncsx.pppl.gov

There exist several kinds of stellarators, depending on the coil configuration. Tor-
satrons have continuous helical coils, which produce the magnetic field. Heliotrons
have, in addition, circular coils to create the vertical magnetic field. Heliacs have
circular coils, but their magnetic centers forms a helix around a planar circular coil.
Flexible heliacs have a helical coil around the central circular coil, increasing the
twist of the plasma column. Finally, helias are the most advanced and optimized
stellarators, built with modular (non-planar) coils.

In this chapter we present the improvement and adaptation of ISDEP to calculate
the distribution function of high energy ions injected by NBI heating in two different
stellarators: LHD and TJ-II. NBI (Neutral Beam Injection) is a plasma heating system
that injects a high energy neutral beam (E ∼ 104 eV) into the plasma. The fast
neutrals are ionized very quickly and become part of the plasma, but with energies
one or two orders of magnitude larger than the thermal energy. Fast ions suffer
friction with the thermal particles (electrons and ions), losing energy and increasing
the temperature of the plasma bulk. In addition, NBI is also a reliable method for

www.ipp.mpg.de
www.s-ee.t.kyoto-u.ac.jp
http://ncsx.pppl.gov
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Fig. 4.2 Illustration of the stellarator symmetry in the magnetic surfaces for TJ-II in cylindri-
cal coordinates. In terms of the effective radius ρ, this symmetry is expressed as: ρ (R, ϕ, Z) =
ρ (R, T − ϕ, −Z), ∀ϕ ∈ (0, T/2), T = 90◦. In the figure, R = 1.60 m is kept constant. The two
big ellipses in the plot appear to be cut, but they are continuous due to the toroidal periodicity of
the device. As an example, the magnetic axis (ρ = 0) is located at Z ≈ −0.2 m for ϕ ≈ 15◦ and
in Z ≈ +0.2 m for ϕ ≈ 75◦

plasma fueling, but this can be a disadvantage because the rising of the density could
produce plasma collapses [1] if one does not control the plasma recycling. Figure 4.3
shows the basic components of an NBI line.

The remaining part of this Chapter is organized as follows. First we end this
Section introducing the two stellarators used for this study. Then, in Sect. 4.2.1, the
LHD and TJ-II plasmas and the NBI initial conditions are described. In Sect. 4.2.2
the steady state distribution function is calculated for the fast ion population in the
two devices. Sections 4.2.3 and 4.2.4 are devoted to the study of rotation, slowing
down and escape points of the test particles. In Sect. 4.3 we present comparisons
between the simulations of fast ions and experimental results from fusion devices.
Finally we present our conclusions in Sect. 4.4.

4.1.1 LHD

The Large Helical Device (LHD) [2] is a heliotron built in 1998 at the National
Institute for Fusion Science in Toki, Gifu, Japan. Nowadays is the largest stellarator
in the world, with superconducting coils that confine high density plasmas for long
pulses, reaching several minutes. The 10 period magnetic field (∼3 T) is created by



66 4 Simulations of Fast Ions in Stellarators

Fig. 4.3 NBI line scheme for positive ions. Ions are generated in the ion source at the beginning
of the line and, with an acceleration grid, they increase their energy to tens of keV. Then the ions
are partially neutralized and the charged particles deflected to the ion pumps. The high energy
neutrals penetrate the vacuum vessel through the duct and then are ionized via collisions with the
existent plasma. Other kind of injectors may use H− in the ion source, with the advantage that the
neutralization process is much more effective

two helical coils and six circular vertical field coils. The magnetic axis is almost a
circle located at R0 ∼ 3.6 m, depending on the configuration, and the plasma minor
radius is a0 ∼ 0.6 m. Other plasma magnitudes are the temperature T ∼ 103 eV, and
density n ∼ 1019 −1020 m−3. Figure 4.4 shows the coil configuration and the plasma
shape of LHD. In Fig. 4.5 the three components of B are plotted for toroidal angle
ϕ = 0o for the R = 3.60 m configuration. Also in Fig. 4.6 we plot the effective radius
ρ and the plasma profiles for a Hydrogen equilibrium. The equilibrium is provided
by the VMEC code [3], using the vacuum magnetic field. The toroidal variation of
the plasma column and the vacuum vessel is sketched in Fig. 4.7.

4.1.2 TJ-II

TJ-II (Tokamak de la Junta-II) [4, 5] is a stellarator built at CIEMAT under the
collaboration EURATOM-CIEMAT that started operation in 1998. Its main features
can be summarized as follows:

• This flexible heliac has 32 toroidal field coils, four vertical field coils and two
central coils that bend the magnetic surfaces. This complex set of coils allows
TJ-II to explore distinct magnetic configurations (see Fig. 4.8), usually with a
strong magnetic ripple (∼20 %).
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(a) (b)

Fig. 4.4 LHD schematic representation. The device (a) is surrounded by a cryostat where the
helical and circular coils create the magnetic field. The ten period plasma can be appreciated in the
picture on the right (b)
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Fig. 4.5 LHD magnetic field B = (BR, Bϕ, BZ ) for ϕ = 0 ◦. The magnetic field is counter-
clockwise directed and its module can reach B ∼ 3 T in the plasma column. The regions with
B > 3 T are located outside the vacuum vessel, very close to the superconducting coils (see Fig. 4.7
for the shape of the vacuum vessel)

• It is a 4-period medium size device (R0 = 1.5 m, a0 ∼ 0.2 m) with B ∼ 1 T
and almost flat rotational transform profile. Figure 4.9 shows the magnetic field
in this device and Fig. 4.10 the effective radius and the plasma profiles. In TJ-II
the magnetic axis presents strong helical excursions of ∼25 cm. The plasma bean
shape and the vacuum vessel shape can be seen in Fig. 4.11.

• The heating power in TJ-II is 2 × 300 kW with ECRH and 2 × 500 kW in the two
NBI lines.
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Fig. 4.6 Effective radius in LHD for ϕ = 0 ◦ (left) and 1D plasma density and temperature profiles
(right). The scrape-off-layer profiles are estimated with an extrapolation of the equilibrium profiles.
An exponential decay outside the plasma is assumed for density and temperature profiles

Fig. 4.7 VMEC equilibrium and vacuum vessel for LHD, at different toroidal angles. The corre-
sponding toroidal angle for each chart is indicated on the upper right corner. The period in LHD is
T = 36◦

• In a typical ECRH discharge the temperatures are Ti ∼ 80 − 100 eV, Te ∼ 1 keV
and densities n ∼ 5 · 1018 m−3, whereas in an NBI discharge the ion temperature
may reach 140 eV and the density ∼71̇019 m−3.

TJ-II discharges are characterized by a high recycling rate because the plasma is
very close to the vacuum vessel in the groove (see Fig. 4.11). The recycling and the
presence of impurities have been significantly reduced covering the vacuum vessel
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Fig. 4.8 TJ-II schematic. a TJ-II Coils and plasma. Red central circular. Yellow central helical.
Blue toroidal. Green and Brown vertical. Violet plasma. b Upper view of the coils (blue), plasma
(yellow) and one period of the vacuum vessel (grey)
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Fig. 4.9 TJ-II magnetic field in cylindrical coordinates for the standard configuration (100_44_64)
at ϕ = 0 ◦. The yellow half circle near R = 1.5 is outside the vacuum vessel

with a lithium layer [6]. The Li wall allowed TJ-II to enter in H-mode regime in 2009
(see below).

Table 4.1 summarizes the main parameters of the two devices.

4.2 Fast Ions in Stellarators

NBI heating plays a very important role in the physics of most fusion devices. The
NBI system creates a small population of suprathermal particles in the plasma that
have strong influence in the global behavior of the device. If they are confined for
sufficient time then they transfer their energy to slower particles and the plasma
temperature and density rise. It is indeed a useful method for plasma heating and
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Fig. 4.10 Effective radius in TJ-II for ϕ = 0 ◦ (left) and 1D plasma density, temperature and poten-
tial profiles (right). These profiles are usual in an ECRH discharge in TJ-II. Note the characteristic
bean shape of the TJ-II magnetic surfaces

fueling and can be used for current and momentum drive. The heating and the current
drive efficiency depend strongly on the fast ion transport characteristics, determined
by the plasma profiles and the magnetic configuration. Most of the plasma transitions
from Low confinement regime to High confinement regime (L-mode to H-mode) are
driven by the NBI heating system [7]. This transition is not completely understood
yet, and it is characterized by a sudden increase of the confinement properties of the
device accompanied by a reduction of the turbulence in the plasma edge.

Hence a numerical study of the fast ion distribution function can help to optimize
the performance of the NBI heating in a fusion reactor. In the present section, the NBI
fast ion distribution function is calculated numerically for LHD and TJ-II stellarators
using ISDEP.

The fast ion population is considered as a small perturbation to a static plasma
background and its dynamics given by the guiding center motion and collisions with
thermal ions and electrons. Chapter 1 summarizes these equations of motion.

Even though fast ions are in the low collisionality regime, the complexity of the
magnetic field in 3D devices implies that a numerical solution of the fast ion transport
is mandatory. The steady state distribution function is calculated assuming a station-
ary source with the method described in Sect. 2.2.5. This is a good approximation for
the NBI heating in which the injectors launch an almost constant input of neutrals
with constant energy spectrum. Two different experimental settings are considered:
perpendicular beam injection for LHD and tangential injection for TJ-II.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_2
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Fig. 4.11 TJ-II magnetic surfaces (green and blue lines) and vacuum vessel (red line). The magnetic
axis is a circular helix with R0 ≈ 1.5 m. The vertical excursion of the plasma column is quite large
in TJ-II, �Z ∼ 50 cm ≈ 2a

Table 4.1 Main parameters of LHD and TJ-II: major radius of the magnetic axis, magnetic field
at the axis, average minor radius, rotational transform at the plasma boundary and Larmor radius
of the fast ions

LHD TJ-II

R0 ∼3.6 m ∼1.5 m
B(R0) ∼3 T ∼1 T

a 0.60 m 0.22 m
ι(ρ = 1) 1.56 1.46

rL 0.7 cm 1.7 cm

The Larmor radius corresponds to a proton with energy equal to 30 keV. For LHD the GC approxi-
mation is valid since rL << a, but for TJ-II it is uncertain because rL is only one order of magnitude
smaller than a. In discharges with steep plasma profiles finite Larmor radius effects must be included
in ISDEP, but if the profile gradients gradients are small it will not be necessary
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4.2.1 Ion Initial Conditions

NBI lines inject a neutral beam into the vacuum vessel of the machine. Then the
neutrals travel a certain distance in the plasma before being ionized, spreading in
space due to collisions with other particles. Since the neutrals energy is very high
and the ionization time is very short, their energy is not modified in the ionization
process. All these processes are not taken into account in ISDEP, therefore another
code must do this task and calculate the initial condition for the fast ion population.

ISDEP was modified to initialize the trajectories according to the output of two fast
neutral transport codes, namely HFREYA [8] and FAFNER2 [9]. They are two Monte
Carlo codes that estimate the dynamics of fast neutrals inside the plasma, including
propagation, ionization and charge exchange. They provide a list of fast ion birth
points in the 5D phase space (we use around 105 initial points). ISDEP chooses
randomly the initial condition (x0, y0, z0, E0, λ0) from that list. This procedure is
known as the bootstrap method in Monte Carlo studies.

The bootstrap method is very useful in orbit codes, like ISDEP, although it only
provides a limited number of initial conditions. it is useful because the stochastic
evolution of the orbit and the high non-linearities of the equations of motion tend
to decorrelate orbits with the same initial point. This decorrelation implies that we
can obtain many statistically significant trajectories that start from the same point in
phase space.

Although in LHD most of the NBI heating power comes from tangential injec-
tion, in this work we simulate fast ions injected perpendicularly by NBI line number
4 (6 MW power). Line 4 is especially valuable for future comparisons with experi-
mental data. The ions are initialized following the distribution function provided by
the code HFREYA. The distribution function provided by HFREYA presents three
peaks in energy at ∼36, 18 and 12 keV, as can be seen in Fig. 4.12. The pitch angle
distribution function is roughly Gaussian centered close to 0.

In the LHD simulations the electric field is neglected since it is too small to have
consequences on the orbits of such fast ions. Figure 4.12 also shows the plasma
equilibrium profiles. The main parameters of the device can be found in Table 4.1
for a Hydrogen plasma.

TJ-II is equipped with two tangential injectors that launch neutrals in co and
counter directions. We simulate here the neutrals injected tangentially with line num-
ber 1 (co-directed to the magnetic field). The birth point locations in phase space are
estimated with FAFNER2. TJ-II simulations with ISDEP do take into account the
electric field because it is not negligible. Figure 4.13 shows the distribution of the fast
ions created from the fast neutrals. In this case the pitch angle distribution is peaked
at λ = 1, since we are dealing with co tangential injection. The plasma background
(Fig. 4.10) corresponds to the standard magnetic configuration and typical ECRH
discharge profiles: Ti ∼ 100 eV, Te ∼ 1 keV, n ∼ 0.6 · 1019 m−3. These conditions
are representative of the initial phase of an NBI discharge.
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Fig. 4.12 The fast ion initial distribution in LHD for pitch angle, energy, effective radius and
toroidal angle, given by HFREYA. The pitch distribution is centered near 0 and the energy presents
three peaks. In position space, the distribution grows with ρ and is located toroidally in a small
layer ∼0.1 radians wide

Fig. 4.13 Same as Fig. 4.12, for the case of the TJ-II plasma considered in this work. In this
situation, the code FAFNER2 provides the initial fast ion distribution
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4.2.2 Steady State Distribution Function

The most general result presented here is the calculation of the fast ion distribution
function with ISDEP. Computing the whole distribution function f (x, y, z, v2, λ, t)
is very expensive in terms of memory and CPU time, so we average in the poloidal
and toroidal angles obtaining f (ρ, v2, λ, t). Then, using the techniques shown in
Sect. 2.2.5, the steady state distribution function, f (ρ, v2, λ), is calculated.

The steady state distribution function of the LHD fast ions is plotted in Fig. 4.14
for four radial positions: ρ = 0.15, ρ = 0.45, ρ = 0.65 and ρ = 0.95. A sample
of the magnitude of the errors can be seen in Fig. 4.15. Around 5 · 104 CPU-hours
have been needed to achieve errors of ∼ 1 % in the distribution function. From
Fig. 4.14 it is seen that the ions tend to thermalize and spread in velocity space
almost symmetrically in v||, although some asymmetry is still present due to the
initial condition in which 〈λ〉 < 0. Traces of the continuous injection of high energy
ions are visible at all positions.

In TJ-II the situation is different, as can be seen in Fig. 4.16. The birth points of
test particles are located close to the magnetic axis due to the fact that the background
plasma density is too low in the edge. Hence there are not many trajectories of fast
ions in the outermost part of the plasma. The injection is tangential to the direction
of B, therefore there are not high negative parallel velocities in the distribution and
almost all the fast particles appear for positive pitch. A strong dispersion in the pitch

Fig. 4.14 J (ρ, v⊥) · f (ρ, v||, v⊥) for four different radial positions in the steady state for LHD.
The statistical errors are small (< 5 %) in the maximum and become higher at the tails of the
distribution (see Fig. 4.15). J (ρ, v⊥) is the Jacobian of the transformation from real coordinates to
magnetic coordinates

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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Fig. 4.15 Fast ion distribution function and its statistical error in LHD for 0 < v|| < 200 m/s:
J (ρ, v⊥) · f (ρ, 0 < v|| < 200 m/s, v⊥) for four different radial positions for LHD. Statistical
errors are plotted, but they turned out to be smaller than the symbol size, being typically ∼5 %

Fig. 4.16 J (ρ, v⊥) · f (ρ, v||, v⊥) for four different radial positions in the steady state for TJ-II
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angle appears due to deflections with background particles. The thermalization of
particles is much less effective in TJ-II than in LHD. Thus, the distribution function
significantly departs from the Maxwellian in TJ-II. It is also necessary to consider
the effects of radial transport that are taken into account in the code in a natural way.
As an example, most of the fast ions that appear at outer positions of TJ-II come from
the center of the plasma. Finally, the strong decrease of fast ion density observed at
the outermost magnetic surfaces can be understood just considering the direct losses.

4.2.3 Fast Ion Dynamics: Rotation and Slowing Down Time

The study of the toroidal rotation is important because it has strong influence on
the confinement. This is specially relevant in tokamaks where the toroidal rotation
can play a crucial role for MHD stabilization (see [10] for a review on this topic)
and where spontaneous rotation, without any external input of angular momentum,
is observed [11]. The current caused by fast ions may contribute significantly to the
total plasma current, modifying then the confining magnetic field. Despite of the fact
that the toroidal rotation is especially relevant in tokamaks, it is very useful to perform
this study in a stellarator where the toroidal rotation is limited and the fast ions are
in principle the only momentum source, so it is possible to validate the presented
models with experimental data. Moreover, the toroidal rotation in stellarators can
also play a relevant role in the plasma stabilization, as has been discussed in Ref.
[12], and can also appear spontaneously [13]. The poloidal rotation profile is relevant
for the transport, since it has been demonstrated that poloidal sheared flows can be
beneficial for the confinement, both in tokamaks and stellarators. This mechanism
was predicted theoretically in 1990 [14] and was confirmed experimentally in the
DIII-D tokamak [15].

The radial transport, and hence the fast particle confinement, is closely related to
the particle average radial velocity. The toroidal, poloidal and radial velocity profiles
in the steady state are plotted in Fig. 4.17 for both LHD and TJ-II.

Even though the injection is almost perpendicular for LHD, the toroidal rotation
(vϕ) is nonzero and presents a strong shear, changing sign twice while moving along
the radial direction. The mechanisms that determine this velocity are the initial condi-
tions, the structure of the background magnetic field and the collisionality profiles, in
a similar way as the bootstrap current is generated. The poloidal velocity vθ is almost
zero in most of the plasma column and becomes negative for ρ > 0.8. The radial
velocity vρ , proportional to the outward particle fluxes, clearly presents three regions
of interest. In the inner region of the plasma it is zero or negative, meaning a very
good confinement of fast ions. In the region defined by 0.4 < ρ < 0.8, vρ ∼ 1 m/s
so the confinement gets worse. Near the border of the plasma where ρ > 0.8 the
radial transport is higher, showing the effects of ion loses at these positions and a
worse confinement of fast ions in the plasma edge.

In the case of TJ-II the results are quite different due to the different characteristics
of the device and to the tangential injection. As expected, the average toroidal velocity
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Fig. 4.17 Fast ion toroidal and poloidal rotation and radial velocity profiles for LHD and TJ-II.
The toroidal rotation is defined as the velocity component in the azimuthal angle in cylindrical
coordinates, whereas the radial and poloidal rotation refer to Boozer coordinates. The two fast ion
populations rotate in a different way due to the distinct initial conditions

of the fast ions, vϕ , is much higher in TJ-II than in LHD, as can be seen in Fig. 4.17. In
this case the high initial parallel velocity is so large that the influences of the structure
of the magnetic field and the collisonality are not enough to reduce it substantially.
The poloidal rotation vθ is almost constant and the relative change of vρ along the
radius is much smaller than in the LHD case, except in the plasma edge.

The energy decay or slowing down time of the NBI ions is a very important
quantity because it is related to the efficiency of the heating system. The shorter the
slowing down time, the more efficient the power absorption by the plasma background
and the more reduced the fast ion losses. It is defined as the exponential decay time
of the initial fast ion energy. After 2–3 slowing down times the beam is thermalized
and can be considered as a part of the bulk plasma. The energy slowing down time
profile is calculated with the data of f (t, ρ, v||, v⊥) from Sect. 4.2.2. An integration
gives the average energy profile:

E(t, ρ) =
∫

dv|| dv⊥ J (ρ, v⊥) f (t, ρ, v||, v⊥)
m(v2|| + v2⊥)

2
. (4.1)

Assuming that the energy follows an exponential law in time, the slowing down time
profile can be found with a fit to the expression:

E(t, ρ) = E∞(ρ) + B(ρ)e−t/τ(ρ). (4.2)

In these calculations a standard χ2 test of fit-goodness shows that the decay is only
approximately exponential. Hence we have turned to a model-independent integral
estimator of the decay time as we did for the particle lifetime in ITER (Chap. 3).
Firstly, the asymptotic energy E∞(ρ) = limt→∞ E(t, ρ) is found with a fit to
Eq. (4.2). Then, the slowing down time profile is given by:

http://dx.doi.org/10.1007/978-3-319-00422-8_3
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τ(ρ) =
∫

dt (E(t, ρ) − E∞(ρ)) · t∫
dt (E(t, ρ) − E∞(ρ))

. (4.3)

It can be easily shown that if the energy follows an exponential decay law,
Eqs. (4.2) and (4.3) provide the same slowing down time. Figure 4.18 also shows
the slowing down time profile for the two devices. In order to compare our results
with the estimations of the neoclassical theory, we follow [16, 17] to calculate the
Spitzer slowing down time:

τS = tS

3
ln

(
W 3/2

b + W 3/2
c

W 3/2
f + W 3/2

c

)
, (4.4)

where Wb and W f are the beam initial and final energy, and tS and Wc are:

Wc = 16.0 Te, tS = 6.27 · 1014 T 3/2
e

ne ln 

, (4.5)

with Te in eV, ne in m−3 and the times in seconds. Wc is known as the critical
energy, defined as the energy for which the same energy is transferred from the beam
to the background ions and electrons. For beam energies above Wc, more power is
transferred to the electrons than to the ions and vice-versa. The time tS is proportional
to the inverse of the collision frequency and ln 
 is the Coulomb logarithm [18]. In
LHD the beam energy is close to Wc, but in TJ-II is ∼2 Wc, so electron friction is
quite important in TJ-II. The beam final energy is taken to be W f = e−1Wb. In
Fig. 4.18 the slowing down time calculated with ISDEP and Eq. (4.4) are plotted.
The time τs gives the slowing down time for an homogeneous plasma, just taking
into account collisions.

Fig. 4.18 Slowing down time, calculated with Eq. (4.3) and with the Spitzer formula (4.4). The
sudden increase of τS in TJ-II near ρ = 0.6 is due to the shape of the density and temperature
profiles (Fig. 4.13), which present a strong gradient in that region. The discrepancies are larger in
TJ-II, due to the fact that the quotient of the banana width and the minor radius is higher than
in LHD
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Discrepancies between the two pairs of time profiles can be observed in Fig. 4.18,
being stronger for TJ-II than for LHD. These discrepancies can be understood by
considering the effect of ion transport in the complex 3D geometry of the devices,
especially of TJ-II, which is not taken into account in Spitzer formula. In the ISDEP
calculation, the energy slowing down time is computed including all the fast ion
dynamics: transport between magnetic surfaces, particle losses and geometrical fea-
tures, apart from the collisional processes with thermal particles. Specifically, radial
transport implied that a fast ion feels different plasma temperatures and densities,
so the Spitzer local approximation is not valid anymore. This is due to the fact that
in TJ-II the relation between the typical banana width and the minor radius is much
higher than in LHD, making non-local effects relevant [19].

We may anticipate from Fig. 4.19 (left) that the slowing down process occurs in
a similar time scale as fast ion confinement time, meaning that the above referred
processes are relevant.

4.2.4 Escape Distribution and Confinement

The main properties of the confinement of fast ions are estimated and shown in this
section. The confinement is described by the persistence of the particles, which is a
global magnitude, and by the loss cone in velocity space. The persistence of particles
is defined as the probability of finding a particle in the plasma after a given time
(see [20]), so it provides a measurement of the confinement time of particles. The
loss cone is defined as the region of the velocity space where the ions are lost for
a given time interval. The reader should notice that the steady state calculations are
not needed to obtain these two important characteristics of the confinement of fast
ions. The persistence and the loss cones are plotted in Figs. 4.19 and 4.20 for both
LHD and TJ-II.

Figure 4.19 shows the time evolution of the persistence and average energy of
fast ions in LHD and TJ-II. It is checked again that the curve cannot be fitted by an
exponential function according to standard χ2 test. This means that the confinement
presents a strong time dependence (as happened in ITER, Sect. 3.3.1, and in the
energy slowing down Sect. 4.2.3), showing at least two different time scales. The big
slope in the persistence P(t) at t ∼ 10−4 s for LHD that is observed in Fig. 4.19 is
caused by prompt losses and corresponds to the first part of ion dynamics. Prompt
losses are fast ion losses that occur very early because their initial points are in a
badly confining region in phase space. Then a second stage appears, when ions suffer
the slowing down process, which increases the bulk of the distribution function (see
Fig. 4.14). It can also be seen that the prompt losses have not a strong effect in the
average kinetic energy. For times t > 10−2 s the confinement is severely degraded
for the majority of fast ions. The loss cone (Fig. 4.20) evolves in time and becomes
wider as the dispersion of fast ions increases. Despite the perpendicular injection, the
loss cone presents a strong asymmetry at every time scale. This must be attributed
to the particular magnetic structure of the device. The asymmetry is, nevertheless,

http://dx.doi.org/10.1007/978-3-319-00422-8_3
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Fig. 4.19 Average energy and persistence of the fast ion population. The persistence is defined as
the fraction of surviving ions at a given time. The particle confinement and energy slowing down
occur in a similar time scale. The big change in the persistence at t ∼ 10−4 s is due to prompt
losses, larger in LHD due to the perpendicular injection of the neutral beam

Fig. 4.20 Particle escape analysis for LHD (left column) and TJ-II (right column). The rows
correspond to different time intervals. For each device, histograms of hit points with the vacuum
vessel in velocity space are plotted, showing the spreading of the loss cone with time. The relative
error in the histograms is N−1/2, being N the number of events in the bin. The minimum error in
the maximum of the histogram is around 0.5 %
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Fig. 4.21 Energy distribution of losses for LHD and TJ-II. The energy spectra is plotted with
and without considering prompt losses of the devices. The three peaks above 10 keV make prompt
losses important in LHD. In TJ-II the peak near 30 keV is the only non negligible contribution to
this effect. Note that all distributions are normalized

softened by diffusion processes in phase space. Due to the different initial conditions
(remember the tangential injection in TJ-II), prompt losses are much higher in LHD
than in TJ-II. In fact, the former ones represent about 20 % compared with 5 % found
in TJ-II. This makes that, differently to what is found in LHD, the persistence in
TJ-II presents roughly a single time scale.

The loss cone in TJ-II shows clearly the different character of the injection.
Figure 4.20 shows that the effect of pitch angle scattering starts being significant
for times of the order of 10−3 − 10−2 s. For longer times the dispersion caused by
pitch-angle scattering is much stronger. It is also shown in Fig. 4.20 that the loss cone
is extended also to the region of negative parallel velocity due to this effect, showing
the appearance of a non negligible amount of ions with negative parallel velocity that
finally escape from the plasma.

The energy distribution of losses is plotted in Fig. 4.21. Two probability densi-
ties are calculated for each device: taking into account all escaping particles (with
subscript P. L.) and removing the prompt losses (w/o P. L). In agreement with the
former results, it is seen that the energy prompt losses are much more important for
LHD. Moreover, the average energy of the lost particles is almost three times larger
in LHD than in TJ-II.

Prompt losses are a wasted fraction of the input power and may damage the
device walls if they are concentrated in space. Indeed ISDEP can help to predict and
minimize this effect, with the subsequent optimization of the heating system.

4.3 Comparison with Experimental Results

In this section we present a comparison of the numerical results obtained in this
Chapter with experimental results from actual fusion devices. A detailed reconstruc-
tion of the Compact Neutral Particle Analyzer (CNPA) energy spectra is done in TJ-II
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for different plasma profiles of those in Sect. 4.1.2. Then we will compare briefly the
slowing down time calculated with ISDEP in Sect. 4.2.3 and the one given by the
Fast Neutral Analyzers (FNA) in LHD [21, 22] and the CNPA [23, 24] in TJ-II. Let
us start describing the fast particle diagnostics in TJ-II.

4.3.1 Neutral Particle Diagnostics in TJ-II

In all fusion plasmas there is a small amount of neutral atoms or molecules due
to atomic reactions between the different plasma species. Plasma-wall interaction
(recycling and diffusion in the SOL) and charcge exchange reactions are common
causes of the presence of the neutrals. Usually the neutral density is several orders
of magnitude below the plasma ions or electron density. Even though the neutral
population is neglected in most situations, neutral particle diagnostics are based on
charge exchange (CX) reactions of plasma ions with these neutrals. In particular, a
fast proton in the plasma can be neutralized with a Hydrogen atom:

H+
fast + H0 → H0

fast + H+. (4.6)

This is an elastic process, so we can consider that the fast ion velocity is not modified
during the neutralization. Thus, the fast ion becomes a fast neutral carrying important
information about the original fast ion. Since the fast neutral is not affected by the
confining magnetic field, it quickly leaves the plasma and can be detected in the SOL
region. This event occurs continuously, leading to a flux of fast neutrals leaving the
plasma with the same velocity distribution function as the fast ion population inside
the plasma. The outgoing flux of neutral can be attenuated by atomic reactions with
the plasma and should be considered in the calculations.

CNPAs are neutral particle diagnostics which measure the incoming neutral flux
espectrum as a function of the energy. CNPAs detect the fast neutral flux in the solid
angle defined by its line of sight (LOS), so all the physical information that they
provide is integrated along this line. We focus on the tangential CNPA system of TJ-
II [23]. It is formed by an array of 16 detectors or channels, each one corresponding
to a particle energy between ∼1 keV and 40 keV. Each channel has a particular
width and efficiency associated, which must be considered to reconstruct the fast
ion spectra. Figure 4.22 shows the energy channels together with their width and
efficiency.

The LOS of the CNPA can be seen in Fig. 4.23 (right). Several quantities of interest
are plotted as a function of the distance to the CNPA: effective radius of the plasma,
neutral density and inclination of the field lines. The inclination of the field lines,
defined as cos ξ = −B · D/(B D), is important to determine the ratio of v|| and
v⊥ of the particles that reach the detector. The vector D determines the direction
and distance along the LOS, starting in the CNPA array. The CNPA array is located
approximately tangential to the magnetic field and the LOS passes near the magnetic
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Fig. 4.22 CNPA channels and energy width (errorbars in the red plot, usually smaller than the
symbols) and efficiency (green points). Measurements in the low energy channels should not be
trusted because these channels overlap in energy

Fig. 4.23 Geometrical scheme of the line of sight of the CNPA in TJ-II and plasma parameters
(effective radius, inclination of the field lines and neutral density) as a function of the distance from
the CNPA along the LOS (D). The LOS is the red line that passes through the plasma in the right
plot, pointing to NBI#1. In TJ-II the plasma column has a vertical excursion of �Z ∼ 50 cm every
period (90◦), so the CNPA LOS does not look straight to NBI#1. For TJ-II, the neutral density
profile is obtained from the EIRENE code [25]

axes. Due to its location, it can only measure when NBI line number one (NBI#1) is
working.

From Ref. [24], the particle flux to the detector per unit of time in the energy
interval �E is, for energetic particles with source S(x, v):

F(E)�E = A�s

∫ Dmax

0
exp

(
−

∫ x

0
α(l) dl

)
S(x, v) dx . (4.7)
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The CNPA array is supposed to be at x = 0 and the LOS crosses the plasma in the
interval x ∈ (0, Dmax). The factors A and �s are the area and solid angle viewed.
The integrand in the exponential is called the attenuation factor and will be explained
below. Let us start discussing the source term S(x, v). It depends on the fast ion
distribution, the Jacobian of the transformation and the fast neutrals birth rate:

S(x, v) = f (x, v) J (x, v) nn(x) σC X (v) v. (4.8)

The product f (x, v) J (x, v) is the fast ion distribution, nn is the neutral particle
density, σC X is the charge-exchange cross section and v is the fast ion velocity.

The neutral density profile is obtained using EIRENE code [25] for a discharge
similar to the ones considered in the experiment. The 1D neutral density profile is
obtained by averaging the local three dimensional neutral density in the flux surfaces.
The EIRENE code calculates this neutral density, in combination with the transport
code Proctr [26]. It takes into account all the relevant atomic physics phenomena
together with neutral transport. This estimation implies some uncertainty in the neu-
tral density profile since the local neutral density can vary mainly poloidally due to
the presence of the groove of the vacuum chamber. EIRENE is run varying the input
parameters in the range defined by their errorbars until the averaged neutral density
profile is consistent with the Hα emission [27]. Especially, the particle confinement
time introduced by EIRENE must be similar to the experimental time.

The exponential factor in Eq. (4.7) is the attenuation coefficient, which takes into
account possible reionizations of the fast neutrals before they leave the plasma. It
depends on the plasma density and reionization cross sections with protons and
electrons in the following way:

α(l) = n(l) (σp + σe). (4.9)

The cross sections σC X , σp and σe are functions of the energy and are plotted in
Fig. 4.24.

In addition to the standard ion loss mechanisms implemented in ISDEP, Charge
Exchange (CX) losses have been introduced for these simulations. We assume that
CX processes are represented locally by a Poisson distribution with typical time τC X

and kill the ions according to this distribution. The average lifetime τC X of an ion
moving with speed v in a plasma with neutral density nn is:

τC X = 1

nn σC X v
, (4.10)

The charge exchange cross section σC X is a function of the ion energy (see [28] and
Fig. 4.24). The τC X profile can be seen in Fig. 4.25 as a function of the fast ion energy
and the effective radius. We will see in Sect. 4.3.2 that the typical lifetime of a fast
ion is of the order of a milisecond. This implies that CX processes are not negligible
only for low energies and in the external part of the plasma. During their lifetimes
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Fig. 4.24 Left plot Cross sections for the relevant atomic processes in the fast ion detection: charge
exchange (σC X ), ionization by protons (σp) and ionization by electrons (σe) as functions of the NBI
ion energy. Note that σe is included in the calculation even though it is much smaller than σp . Source
www-amdis.iaea.org/ALADDIN. Right plot plasma profiles used in ISDEP for the comparison with
the CNPA, similar to the experimental profiles

Fig. 4.25 Left plot charge exchange time in TJ-II, according to Eq. (4.10), in the conditions con-
sidered in this discharge. It turns out that CX processes are not negligible only in the external part
of the plasma and for low energies, where τCX is short enough. Since ISDEP deals with orbits in
the Scrape-Off-Layer (SOL) too, where ρ > 1, τCX is also calculated in the SOL, assuming that
the profiles of plasma parameters are constant and equal to the value that take at ρ = 1. Right
plot Spitzer slowing down time [16], showing that the typical timescale of this system is a few
milliseconds, much smaller than the typical CX time in the plasma bulk

the fast ions explore the whole magnetic surface and thus the surface averaging of
nn(ρ) is valid.

4.3.2 Reconstruction of the CNPA Flux Spectra

We perform a set of simulations with ISDEP aiming to calculate the fast ion flux
spectrum and compare it with the flux measured by the CNPA diagnostic in TJ-II.
We must estimate numerically the steady state distribution function in the conditions

www-amdis.iaea.org/ALADDIN
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Fig. 4.26 Left plot line density, X-rays and NBI traces for shot #18982. Right plot CNPA raw data
for selected channels (see Fig. 4.22 for the energy associated to each channel and its width). For
this shot, a 30 ms plateau is found in the signals. We can obtain a low error flux spectrum averaging
each channel in time and taking the mean with similar shots

of the experiment and then calculate the neutral flux that reaches the CNPA using
Eq. (4.7).

Usually the signal of each CNPA channel is very noisy, so we have to apply
statistical techniques to diminish the dispersion of the measurements. We choose
a set of five reproducible discharges with a plateau in the CNPA signals that lasts
several tens of milliseconds. These plasmas correspond to shots #18982-86 and were
performed in the standard magnetic configuration (100_44_64). The experimental
traces of the discharge #18982 are shown in Fig. 4.26 (left), where line density, X-
rays and NBI traces are plotted. The CNPA signals for shot #18982 can be seen in
Fig. 4.26 (right). In this shot, the plateau in the signals lasts for 30 ms. A time average
is performed for each channel in the plateau time interval, and the final spectrum is
the mean of the five shots chosen. This flux spectrum is representative as long as the
plasma is stationary.

The plasma density and temperature profiles are needed to run ISDEP, FAFNER2
and EIRENE, while the electric potential is required by ISDEP. The density and
electron temperature profiles are the average of the Thomson Scattering signals for
these discharges. Ion temperature is taken to have the same shape as Te, but scaled
to have a maximum value of 150 eV, as is suggested in [29]. The plasma potential is
obtained from the Heavy Ion Beam Probe (HIBP) for a typical NBI discharge [30].
Figure 4.24 shows these profiles and the neutral density.

The numerical simulations have been carried out with the same procedure as
in Sect. 4.1.2. The combination of temperature and density profiles leads to a high
collisionality regime (high n and low Te), so the energy slowing down time (or
thermalization time) is small and the steady state is reached in few milliseconds.

Figures 4.27 and 4.28 show the ISDEP results for the fast ion steady state dis-
tribution function and its statistical error in %. It is seen that only the values of
f smaller than 10−13 in Fig. 4.27 are affected by a 10 % error. With these plasma
profiles, thermalization occurs much faster than in the case previously studied in
Sect. 4.1.2 because of the higher collisionality of the present discharges. The popu-
lation of particles in the high energy region of the phase space is much smaller here
and the thermalization timescale is also smaller. In this high collisionality range the
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Fig. 4.27 Steady state distribution function for TJ-II with the profiles shown in Fig. 4.24 for ρ =
0.15 (top, left); ρ = 0.45 (top, right); ρ = 0.75 (bottom, left) and ρ = 0.95 (bottom, right). Traces
of the injected ions at 10, 15 and 30 keV can be seen. The results are presented normalized in the
sense

∫
dρ dv|| dv⊥ f (ρ, v||, v⊥) J (ρ, v||, v⊥) = 1. The statistical error in f depends on the value

of f , see Fig. 4.28

Fig. 4.28 Relative statistical errors in f (see Fig. 4.27), in %

simulated slowing down time is τS ∼ 3 ms versus τS ∼ 20 ms in Ref. [31]. This fact
ensures the validity of the time average in the CNPA signals because τS is one order
of magnitude smaller than the time integration interval.



88 4 Simulations of Fast Ions in Stellarators

Fig. 4.29 Comparison of the flux spectrum measured by the CNPA and the one calculated with
ISDEP. Both flux spectra are normalized to one. In the CNPA spectrum the error bars are the
standard deviation of the measurements while in the ISDEP curve they are the statistical errors. The
error bars are smaller than the symbol size for many points in the spectrum. The persistence of fast
ions P(t) is shown in the small chart indicating the existence of two timescales: NBI direct losses
around t = 10−5s and CX or hits to the vacuum vessel at larger times. Notice that the errorbars
in the experimental data are the statistical dispersion in the set of reproducible discharges and no
noise or instrumental error are considered. The gray shaded area indicates the region in the spectra
that is affected by thermal ions from the plasma, so it must not be trusted

Once the calculations are done and f (ρ, v||, v⊥) is found, we must simulate the
particle flux that reaches the CNPA array. Then we apply the jack-knife technique
to solve the integral in Eq. (4.7), using the data for the LOS (Fig. 4.23) and the cross
sections (Fig. 4.24). From the whole f (ρ, v||, v⊥) calculated with ISDEP, only the
parts that satisfy ρ = ρLOS and v||/v = cos ξ are used for the integral. The neutral
fluxes, measured and simulated, are plotted in Fig. 4.29 as functions of the energy.
Figure 4.29 also shows the persistence of test particles (defined as the fraction of
surviving particles) as a function of time.

Figure 4.29 presents a general good agreement between theory and experiment.
Note that the energy resolution in CNPA is not enough to distinguish the peaks at
10, 15, 30 keV of the injection energy. It is also seen in this plot that in the high
energy range ISDEP overestimates the real flux of neutrals. This could be attributed
to a particular kind of losses that are not taken into account in ISDEP: Alfvén
resonances [32].

Alfvén waves are MHD perturbations that propagate along the magnetic field with
a wide range of poloidal and toroidal modes, called the Alfvén zoo. They may interact
with plasma particles when a resonance condition is satisfied, usually increasing the
perpendicular energy and moving then to a bad confinement region in phase space.

In TJ-II, Alfvén resonances are important only for suprathermal ions, perturbing
their orbits and worsening their confinement. Ions may destabilize an Alfvén mode
when its velocity is similar to the Alfvén velocity. In terms of the energy:
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Fig. 4.30 Line density and Mirnov coil power spectra as a function of time for shots #18982 (left)
and #18997 (right). The Alfvénic activity can be identified for frequencies f ∼ 100–200 kHz
showing that fAlfvén ∼ 1/

√
n

E A = mv2
A

2
, vA = B√

n m μ0
. (4.11)

In the case of interest, the Alfvén energy has a minimum of E A ≈ 50 keV for the
highest density and B = 1 T, well above the NBI injection energy, so resonances
with the first harmonic are, in principle, impossible. In spite of this fact, it has
been experimentally shown in [33] that in TJ-II Alfvén destabilization may occur
for velocities v � vA/3, corresponding to different toroidal and poloidal modes.
Figure 4.30 (left) shows the line density and the Mirnov coil #5 power spectra as a
function of time. Clear traces of Alfvén activity can be seen for frequencies f ∼ 100–
200 kHz due to the scaling of the Alfvén frequency with the density: fAlfven ∼ 1/

√
n.

This overestimation of the distribution function in the high energy region might
also be due to the presence of impurities in TJ-II [34]. We have made extra simulations
in order to assess the impact, by means of larger pitch-angle-scattering frequency
and stronger isotropization, of Zef f . Our calculations show no strong dependence on
Zef f for the values estimated at TJ-II, around 1.3 for these discharges [35], within the
error bars (see Fig. 4.31). Thus, since the effects of the impurities may be neglected,
the discrepancy in the high energy tail of Fig. 4.29 could be attributed to Alfvén
losses.

The peak near 7–9 keV and the hollow in 5 keV are well reproduced by ISDEP
and are due to the geometrical properties of the detector because they do not appear if
the integration is not done along the LOS. At low energies (shaded area in Fig. 4.29)
the discrepancies are very important, but this is not surprising since the CNPA signal
contains information of bulk ions, not only of those that were injected with the
NBI system. The statistical distribution of 150 eV ions contains a few number of
suprathermal ions [36] of energies of some keV that cannot be distinguised from
the NBI fast ions by the CNPA. These bulk ions are not considered in the ISDEP
simulations. Usually each CNPA channel recieves ∼102 counts per milisecond, so a
very small aditional flux can perturb the measurements.
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Fig. 4.31 Left plot Average fast particle energy and pitch as functions of time for Zef f =
(1.0, 1.1, 1.2, 1.3). Right plot CNPA flux spectra calculated with ISDEP for several values of
Zef f . The higher Zef f the lower the slowing down and deflection times, but the flux spectrum is
not altered notably. We reduced the energy resolution in the ISDEP simulations in order to save
computing time for this test

In order to show that the structure of f (ρ, v||, v⊥) calculated by ISDEP as well
as the LOS description are crucial to reproduce the experimental flux spectrum, we
solve again Eq. (4.7) modifying f (ρ, v||, v⊥) and the line of sight. First we calculate
the flux changing the value of cos ξ along the CNPA LOS, i.e., we fix v⊥ to a certain
value and reconstruct the flux spectrum. Also we calculate F(E) keeping f constant
in ρ and making it Gaussian in velocity space, with the same 〈v〉 and 〈v2〉 as the
original distribution function. Figures 4.32 and 4.33 show that none of these curves
fits the experimental data, hence the final result is very sensitive to f (ρ, v||, v⊥) as
well as to the geometry of the LOS.

In order to explore the properties of the fast ions in a different set of plasma
parameters we perform another simulation of the CNPA signal for low density NBI
shots (#18997–98) in the configuration 101_42_64. This configuration is very close
to the standar configuration (100_44_64) and the main differences can be seen in
Table 4.2. The profiles used are plotted in Fig. 4.34 (left). Figure 4.34 (right) shows
the comparison between the CNPA data and the numerical simulations for these
shots. Since the neutral density increases when the plasma density decreases, CX
effects are stronger and the average lifetime of the fast ions is smaller. The difference
in the neutral flux F(E) is important in the high energy region, pointing again to the
possible influence of Alfvén modes on the fast ion confinement (see Fig. 4.30 right
for the spectrogram). A discrepancy between the measurement and the simulation
can be seen at E = 10 keV, but it is not clear how important it is due to the limited
energy resolution of the CNPA.
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Fig. 4.32 Neutral flux spectra calculated modifying artificially the geometry of the system and the
fast ion distribution function. The red curve is the experimental flux, same as in Fig. 4.29, while in
the other curves a fixed v⊥ is considered. In the chart, vmax = 3 · 106m/s

Fig. 4.33 Experimental and recalculated flux spectrum, assuming that f is constant in ρ and
Gaussian in velocity space. It is clear then that the detailed calculation of f with ISDEP is essential
to reproduce the experimental results (see Fig. 4.29)

Table 4.2 Plasma volume, average minor radius and iota range for the two magnetic configurations
considered

Configuration V [m3] a[cm] Iota range

100_44_64 1.098 19.254 1.551−1.650
101_42_64 1.079 19.085 1.534−1.630
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Fig. 4.34 Plasma profiles for a low density NBI shot (left). CNPA spectra and ISDEP simulation
(right)

4.3.3 Neutral Flux and Slowing Down Time

In this Section we show the comparison of two experimental decay times with the
ISDEP predictions: the neutral flux decay time in NBI-Blip experiments in LHD and
the energy slowing down time in TJ-II.

For LHD we base our comparison on the experimental results presented in [22],
which shows the decay time of the FNA count number during an NBI-blip experiment.
An NBI-blip experiment consists of short NBI pulses applied to a base plasma. These
disgnostics were sensitive to energies between 29 and 36 keV and the decay time is
evaluated at several radial positions for ρ > 0.55. The count decay time is what
we have calculated using ISDEP and shown in Fig. 4.18 (left), because it includes
thermalization, particle transport and loss effects. The distribution function for the
NBI-Blip scenario is calculated following the procedure shown in Sect. 2.2.6. In this
simulation the NBI-Blip time is TB = 10 ms and ions are considered lost when
they reach the lower energy limit (29 keV). The agreement between simulations and
experiments (see Fig. 4.35) is good, but only a limited range in ρ is provided by the
FNA detector in LHD plasmas.

In TJ-II we choose shot #15470 because it presents almost static plasma pro-
files and is suitable to be simulated with ISDEP. In this discharge the NBI heating
ends before the end of the discharge and the plasma is maintained with the elec-
tron cyclotron resonance heating. The plasma profiles of this discharge are shown
in Fig. 4.36. When the neutral beam injection stops we measure the time that takes
each channel to go down to zero. The delay time between channels would be the
time needed for the ions to slow from the high to the low energy. We neglect the
channels with energies bellow half NBI maximum energy because the neutral beam
source would mask the data. With the delay times between some energy channels we
calculate the Spitzer time tS Eq. (4.4). With this Spitzer time now we can calculate the
experimental slowing down time. Figure 4.36 shows the profile of slowing down time

http://dx.doi.org/10.1007/978-3-319-00422-8_2
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Fig. 4.35 Comparison of the neutral flux decay time (Sect. 4.2.3) and NBI-Blip experiments in
LHD

Fig. 4.36 Left plot: profiles of density, ion and electron temperatures and plasma potential for shot
#15470 in TJ-II. The density and temperatures are obtained from the Thomson Scattering system
and the potential from the Heavy Ion Beam Probe. The magnetic configuration is the TJ-II standard
configuration, same as in Sect. 4.9. Right plot: slowing down time for discharge #15470 in TJ-II
calculated with ISDEP (red) and with the Spitzer formula (green). The experimental measurement
gives τCNPA ∼ 8 ms for ρ ∼ 0.3 (blue cross in the picture), in good agreement with ISDEP
simulations

estimated with ISDEP for shot #15470 and with the Spitzer formula Eq. (4.4). CNPA
can measure the slowing down time integrated in its whole line of sight, roughly in
ρ ∼ 0.25, giving τCNPA ∼ 8 ms. This time simulated with ISDEP is τ = 9.45 (2) ms
for ρ ∈ (0.2, 0.3) (see Fig. 4.36). The two times are in good agreement, but still
τCNPA < τ . This can be attributed to the fact that τCNPA has contributions all along
the line of sight of the CNPA array, which covers a wide range in ρ. As τ decreases
with ρ, the contributions to the CNPA signal from ρ > 0.5 tend to diminish the final
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value of τCNPA. In addition, since the error in the experimental values is very difficult
to obtain, the 1.5 ms difference could be due to the experimental error.

Dedicated experiments to measure the slowing down time in TJ-II with higher
precision will be performed as a continuation of this work.

4.4 Conclusions

The confinement properties of the NBI fast ions are studied for stellarators using
the global Monte Carlo guiding center orbit code ISDEP. The main result of this
chapter is the calculation of the fast ion distribution function f (ρ, v||, v⊥), both
time dependent and in the steady state, for two different NBI lines and plasmas:
perpendicular injection for LHD and tangential for TJ-II. All the relevant quantities
can be estimated as moments of such distribution. The steady state profiles of toroidal
and poloidal rotation and radial velocity are calculated in this way. Since momentum
conservation is not satisfied in ISDEP, these rotation profiles of the beam ions are
not a measure of the whole plasma rotation, only to the maximum capability of NBI
rotation driving. The interest of the calculation of poloidal rotation relies particularly
on its capability for creating shear flows, which could help to reduce the turbulence
and to create transport barriers.

The slowing down time is also computed and compared with Spitzer’s formula,
showing the effect of ion transport in a particular magnetic configuration and injection
properties on such quantity. This effect is specially important in low density plasmas
in TJ-II. The loss cones in the two devices are also estimated with ISDEP as functions
of time, showing the different time scales of the loss processes. The slowing down
time appears to be of the same order of the fast ion confinement time in the two
studied cases.

Comparison with experimental data [21, 23] measured with NPAs (Neutral Par-
ticle Analyzers) has been be done for both devices. In TJ-II we have succesfully
reconstructed the CNPA spectra for two discharges with very different plasma den-
sity. We have concluded that the discrepancies between simulation and experiment at
high energies are probably due to the Alfvén activity in TJ-II.1 An estimation of the
fast ion slowing down time has also been done in this machine in a time dependent
scenario.

The decay time (in the E > 29 keV energy range) during NBI-Blip experiments
in LHD have also been well reproduced by the code. Unfortunately, experimental
data are available only in a limited region of the plasma.

On the whole, we may conclude that ISDEP is a useful simulation tool to study
fast ion dynamics in 3D magnetic fusion devices.

1 After the realization of this report, further investigations clarified this issue. They were published
in A. Bustos et al, Physics of Plasmas 20 (2) p. 022507.



References 95

References

1. Ochando M, Castejon F, Navarro A (1997) Nucl Fusion 37:225
2. Komori A et al (2010) Fusion Sci Technol 58(1):11
3. Hirshman S, Whitson J (1983) Phys Fluids 26:3553
4. Alejaldre C et al (1990) Fusion Technol 17:131
5. Sánchez J et al (2011) Nucl Fusion 51:094022
6. Sánchez J et al (2009) Nucl Fusion 49:104018
7. Wagner F (2007) Plasma Phys Controlled Fusion 49:B1
8. Murakami S, Nakajima N, Okamoto M (1995) Trans. Fusion Technol 27:256
9. Teubel J (1994) Monte Carlo simulations of NBI into the TJ-II helical axis stellarator (Max

Planck Institute fur Plasmaphisik), 4/268, Germany
10. Terry PW (2000) Rev Mod Phys 72:109
11. Rice J et al (2007) Nucl Fusion 47:1618
12. Helander P, Simakov AN (2008) Phys Rev Lett 101:145003
13. Yoshinuma M et al (2009) Nucl Fusion 49:075036
14. Biglari H, Diamond PH, Terry PW (1990) Phys Fluids B 2:1
15. Groebner RJ, Burrell KH, Seraydarian RP (1990) Phys Rev Lett 64:3015
16. Stix TH (1972) Plasma Phys 14:367
17. Wesson J (2004) Tokamaks (The international series of monographs on physics). Oxford Uni-

versity Press, Oxford
18. Huba J (2009) NRL plasma formulary. Taylor and Francis, USA
19. Velasco J, Castejón F, Tarancón A (2009) Phys Plasmas 16:052303
20. Castejón F et al (2007) Plasma Phys Controlled Fusion 49:753
21. Osakabe M et al (2008) Rev Sci Instrum 79:10E519
22. Osakabe M et al (2010) Plasma Fusion Res 5:S2029
23. Balbin R et al (2005) EPS 2005 meeting, Tarragona, D5.001
24. Hutchinson IH (2002) Principles of plasma diagnostics. Cambridge University Press,

Cambridge
25. www.eirene.de/html/relevant_reports.html
26. Castejón F et al (2002) Nucl Fusion 42:271
27. de la Cal E et al (2008) Nucl Fusion 48:095005
28. http://www-amdis.iaea.org/ALADDIN
29. Fontdecaba J et al (2010) Plasma Fusion Res 5:2085
30. Melnikov A et al (2006) Fusion Sci Technol 51(1):31
31. Bustos A et al (2011) Nucl Fusion 51:083040
32. Heidbrink W (2008) Phys Plasmas 15:055501
33. Jiménez-Gómez R et al (2011) Nucl Fusion 51:033001
34. McCarthy K, Tribaldos V, Arévalo J, Liniers M (2010) J Phys B Atomic Mol Opt Phys

43:144020
35. Baiao D et al (2011) Submitted to PPCF
36. Jimenez-Rey D et al (2008) Rev Sci Instrum 79:093511

www.eirene.de/html/relevant_reports.html
http://www-amdis.iaea.org/ALADDIN


Chapter 5
Simulations of NBI Ion Transport in ITER

In this Chapter we will deal with NBI ion transport properties in the ITER geometry
introduced in Chap. 3. If the injectors are installed in ITER as planned, ITER should
have a total of 50 MW of NBI input power [1], that will contribute to reach steady
state fusion reactions. The importance of the NBI transport calculations to foresee
the influence of the heating system in the plasma is then clear. We will compute
the distribution function in the steady state and the rotation and thermalization time
profiles, as we did for stellarators in Chap. 4.

We start discussing the fast ion initial distribution, followed by the numerical
results and the conclusions.

5.1 Fast Ion Initial Distribution

The initial distribution of the fast ions is calculated in the same way as we did in
Chap. 4 for the TJ-II stellarator. We use the FAFNER2 code, adapted to the ITER
magnetic field and plasma profiles, given by the equilibrium calculations, described
in Figs. 3.3 and 3.4. The inclusion of new equilibriums in FAFNER2 is out of the
scope of this thesis. In fact, we benefit from the work carried out by M. Tereschenko
at BIFI in the spring of 2011.

The energy spectrum of the neutral beam is different from those considered previ-
ously because it has only one component at E0 = 1 MeV instead of three components
at E0, E0/2 and E0/3. Actually ITER injectors are based on negative ions, instead
of the positive ion technology like in TJ-II.

We plot the FAFNER2 output in Figs. 5.1 and 5.2. Figure 5.1 is a scatter plot in
(ρ, λ) space, showing the ionization points. From this picture it is possible to deduce
the path followed by the neutrals. Since the neutral beam crosses the magnetic axis,
the pitch angle distribution is rather complex. In Fig. 5.2 we plot f (t = 0, ρ, λ) to
clarify this point, observing a broader distribution in pitch than the distributions in
the stellarators previously shown (compare with Figs. 4.12 and 4.13). It is also seen
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Fig. 5.1 Scatter plot of the fast ion initial distribution in (ρ, λ) space. The neutral beam enters the
plasma in ρ = 1, crosses the magnetic axis and is completely ionized before leaving the plasma

Fig. 5.2 Probability distribution functions of the pitch for several radial positions. The plots with
two maxima point out that the beam crosses some magnetic surfaces twice, with different inclination
with respect to the field lines
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that two maxima of the pitch appear on given magnetic surfaces, showing that the
beam crosses twice such surface, with different angles with respect to the magnetic
field.

5.2 NBI Ion Dynamics in ITER

Once the input data are determined, we run ISDEP and calculate the steady state of
the distribution function, the rotation profiles and the average energy profile using the
same mathematical methods as in Chap. 4. Since we are interested in the high energy
ion transport, we will consider that any fast ion that reaches 20 keV (approximately
the plasma temperature) is killed in our simulation. This allows us to save CPU
time because thermal particles are usually better confined than fast ions. Globally,
the numerical results presented in this Chapter requires around 15,000 CPU hours,
provided by the EULER cluster at CIEMAT.

Figures 5.3 and 5.4 show global averages and radial profiles of the fast ion popula-
tion. We can see the typical timescales of the system, around 0.1–1 s in confinement
time and a bit shorter in thermalization time. The confinement time, obtained from

Fig. 5.3 Global averages (persistence, average energy, average pitch), normalized density and
rotation profiles for the fast ions in ITER. We can see that the typical timescale of transport and
thermalization of the NBI ions is 0.1–1 s and that they tend to accumulate in ρ ∈ (0.55, 0.75),
according to vρ(ρ). The steady state profiles are denoted by SS

http://dx.doi.org/10.1007/978-3-319-00422-8_4
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Fig. 5.4 Pitch, energy, Binder cumulant and particle flux profiles, both in the initial time and in the
steady state

the persistence is 144.1(2) ms and the global slowing down time, taken form the evo-
lution of the average energy is 90.0(1.1) ms, smaller than the confinement time. The
slowing down time is calculated from the curve E(t) in Fig. 5.3 in the energy range
indicated in the picture: E ∈ (1 MeV, ∼140 keV). This means that, in average, the
ions deposit most of their energy in the plasma bulk before escaping.

The right top panel of Fig. 5.3 shows the normalized density profile. It can be
seen that the density profile at the initial time is almost flat, but in the steady state
particles tend to accumulate in ρ ∈ (0.5, 0.7). The NBI velocity components in
toroidal coordinates, (vρ, vϕ, vθ ), are also depicted in the bottom panels of Fig. 5.3,
both at t = 0 and in the steady state. Except for vϕ and vθ at t = 0, the velocity profiles
present strong gradients, in particular vρ(ρ) in the steady state, which changes sign
four times. This makes possible the accumulation of ions in ρ ∈ (0.5, 0.7) because
vρ(ρ = 0.55) > 0 and vρ(ρ = 0.65) < 0, creating a kind of trapped region. Of
course, the random effect of collisions eventually expels the ions, but it is clear that
fast ions spend most of their lifetime in that part of the plasma.

It should be noted that the steady state profiles of vϕ and vθ are similar to the
initial profiles for ρ < 0.6, showing that characteristics of the rotation of the beam
are qualitatively conserved. This means that the NBI will be efficient to drive a
uniform toroidal rotation for ρ < 0.6.

In Fig. 5.4 we can see the radial profiles of the pitch, energy, Binder cumulant
and radial particle flux at the initial time and in the steady state. Although the initial
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pitch profile is close to λ = 1, in the steady state we can observe an inversion of the
NBI-induced current because λ(ρ = 0.65) < 0. This is a very interesting result and
we will discuss it deeply in the following sections.

The initial energy profile is flat because the ionization process is elastic. In the
steady state the energy decreases with ρ, following roughly the collisionality profile
(∼nT −3/2).

The binder cumulant can be seen in the bottom right panel of Fig. 5.4. It takes
values of κ ≈ 1 in the steady state, much lower than the Binder cumulant for the
Maxwellian distribution κ = 5/3. Thus, according to this ITER model, the test
particle distribution remains far from the Maxwellian. This feature can be also seen
in the steady state distribution function f (ρ, v||, v⊥).

The fast ion radial flux is also shown in the bottom right panel of Fig. 5.4. The
flux changes sign several times, showing zones of very good fast ion confinement
that alternate with worse confinement regions.

Figures 5.5 and 5.6 show the distribution function in the steady state with its
statistical error in % at eight radial positions:

ρ = (0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85). (5.1)

The accumulation of particles in ρ ∈ (0.5, 0.7) can be seen in Fig. 5.6 (note that f
has different scales). This function presents clear deviations from the Maxwellian
because it does not decrease monotonically when the energy increases. These figures
reveal two interesting features of f : the inversion of the NBI current and oscillations
in the energy distribution, that will be studied at the end of this section.

We calculate the slowing down time in the same way as we did for stellarators
in Sect. 4.2.3. Figure 5.7 displays the Spitzer time profile [2] and the slowing down
time determined with ISDEP. In this system the radial transport homogenizes the
thermalization profile like in TJ-II (recall Fig. 4.18). This strong difference observed
between the two time profiles is an indication that the slowing down time must be
estimated carefully in ITER when the plasma is in the banana regime. Radial transport
and particle losses must be considered in this calculation.

Finally we have estimated the fraction of prompt losses in this NBI system. It
turns out that only ∼1.3 % of the total incoming flux of fast ions is lost with energy
larger than 20 keV. All other ions are lost artificially when they reach E = 20 keV.
As expected, the NBI heating system in ITER will be very efficient.

Nevertheless, even with a high efficiency the prompt losses may cause dam-
age because the lost particles have energies around 1 MeV. Figure 5.8 is a scat-
ter plot of the spatial distribution of the direct losses in the LCFS. We observe
a clear tendency to accumulate in the upper part of the device, being the top of
the plasma the main escaping region. The average kinetic energy of these prompt
losses is 〈E〉 = 0.859(3) MeV. A rough estimation considering an input power of
P = 50 MW and a loss area of S ∼ 50 m2 gives a heat flux of P/S ∼ 10−15 kW/m2.
This is lower than the typical power flux of 1 MW, which is the target of the ITER
walls. Consequently, the inner wall of ITER must be able to resist this heat load.

http://dx.doi.org/10.1007/978-3-319-00422-8_4
http://dx.doi.org/10.1007/978-3-319-00422-8_4
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Fig. 5.5 Steady state distribution function f (ρ, v||, v⊥) and relative error for the NBI ions in ITER
in the inner part of the plasma. The appearance of two spots in some charts is due to the initial
condition (see Fig. 5.2)

In spite of what preceded, these fast ions losses can cause sputtering and impurity
release and should be taken into account.
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Fig. 5.6 Steady state distribution function f (ρ, v||, v⊥) and relative error the outer part of the
plasma. Specifically, f (ρ = 0.75, v||, v⊥) presents two interesting features studied in this report:
the inversion of the NBI current and the appearance of several maxima and minima in the energy
distribution

Note that this result is an approximated estimation because neither the SOL or
the divertor have been considered.
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Fig. 5.7 Slowing down or thermalization time, calculated with ISDEP and with the Spitzer formula.
Both curves agree in order of magnitude, but the Spitzer time is larger than our calculation in most
of the plasma. In our case transport across magnetic surfaces tends to homogenize the profile

Fig. 5.8 Scatter plot of the direct losses for the NBI ions in ITER. he losses accumulate in the
upper part of the device in an area of ∼50 m2. he magnetic axis is a horizontal circle in a plane
z ≈ 0.4 m. It must be pointed that an inclusion of a divertor in the ITER model may change this
distribution drastically

5.2.1 Inversion of the Current

As it can be seen in Fig. 5.4 and in the distribution function (Figs. 5.5 and 5.6), the
λ profile changes sign with ρ. This is a surprising result because the fast neutrals are
injected in a well defined direction with a net toroidal moment. Figure 5.6 also shows
an accumulation of particles in the region v|| < 0 for ρ = 0.75. We demonstrate that
this is due to the deterministic evolution of the pitch. Let us perform a rough analysis
of the pitch evolution. The SDE for λ, taken from Sect. 1.3.3 is:

http://dx.doi.org/10.1007/978-3-319-00422-8_1
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We study in detail the behavior of the dominant terms in λ̇(λ). Therefore we just take
the terms proportional to the particle velocity, assumed to be dominant. This just
leaves the 4th and 5th term in 5.1. From the λ̇(λ) plots (Fig. 5.9) we can identify the
stable and unstable points. The results is that for ρ > 0.6 there is an accumulation
point in λ = −1, because λ̇ < 0 for λ < −0.5. It means that the fast ion current
inverts in the outer regions of ITER. This also explains the appearance of an important
population of particles with v|| < 0 in ρ ∼ 0.4 in Fig. 5.5.

Fig. 5.9 We plot λ̇(λ, ρ) for several radial position, finding that for ρ > 0.6 the fast particles tend
to move to the region of λ < 0. The derivative λ̇(λ, ρ) is calculated using the routines implemented
in ISDEP and averaging over the magnetic surfaces. The green line indicates the λ̇ = 0 line
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5.2.2 Oscillations in E

The distribution function of Figs. 5.5 and 5.6 present an oscillating behavior in E for
several effective radius. Now we calculate f (ρ, E) transforming f (ρ, v||, v⊥) into
f (ρ, E, λ) and integrating in λ. The coordinate transformation is:

v|| = √
Eλ,

v⊥ = √
E

√
1 − λ2. (5.3)

Thus, the matrix of partial derivatives is:

(
∂v||
∂ E

∂v||
∂λ

∂v⊥
∂ E

∂v⊥
∂λ

)
=

( λ

2
√

E

√
E

1
2
√

E
√
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Eλ√
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)
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and the Jacobian:

J = λ2 + 1

2
√

1 − λ2
. (5.5)

We perform the integration obtaining f (ρ, E). Figure 5.10 shows these results. The
oscillations in the energy can be seen for ρ ≥ 0.75. These are very surprising and
unwelcome results. They are not good for the confinement because they may give
rise to kinetic instabilities [3]. A resonant wave can grow out of control when the
energy distribution function has positive slope, so it is not desirable. In order to check
that these oscillations are not a purely numerical effect, we perform the following
tests with ISDEP:

• First of all, we have suppressed the collision operator, finding that the oscillations
disappear. This demonstrates that those oscillations are a collisional effect.

• If we remove the electric field in the dynamics the oscillations hardly change. So,
the electric field E has not a strong influence on them.

• If we do not evolve the particles in position space but in velocity space (ṙ = �0 and
Ė, λ̇ �= 0) the oscillation appear, but in different positions and with much smaller
amplitude, almost negligible. Thus, transport is a crucial factor.

• Using different numerical methods and times step do not change the results. We
have used an order 2 + 2 method and a Runge-Kutta 4 + 1 with 	t from 2 · 10−8

to 2 · 10−9 finding no difference.
• Idem with the magnetic grid discretization. We usually take NR ×NZ = 400×600

points in the 2D equilibrium. Changing to NR ×NZ = 600×1000 does not change
the results.

Thus, we conclude that the maxima and minima of f (E, ρ) are due to the combined
effect of particle drifts and collisions with the background.
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Fig. 5.10 Fast ion distribution function in terms of the energy and the effective radius

5.3 Heating Efficiency

One of the advantages of the combination of FAFNER2 and ISDEP is that we can
change the input parameters at will. In this last section we perform a scan in the
injected neutral energy and study the energy and power deposition profiles. The
neutral energy values chosen are:

E0 = (0.8, 0.9, 1.0, 1.1, 1.2) MeV. (5.6)

As usual, we use FAFNER2 to estimate the initial fast ion distribution in ITER at those
energies. The first interesting parameter in this power scan is shine trough losses,
defined as the fraction of incoming neutrals that are not ionized in the plasma and
are consequently lost. Each simulation has different shine through losses depending
on the initial energy. This losses take place because some neutrals from the NBI line
may not be ionized and leave the plasma. Shine though losses should be minimized
because they are a waste of energy and may cause damage to the reactor wall. Table 5.1
shows the fraction of neutrals that leave the plasma for each initial energy, which
increases monotonically with the energy. They are, in all cases, smaller or equal than
3 % of the beam, so in this case they are not very relevant. In other device geometries,
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Table 5.1 Shine through
losses for each initial energy,
estimated with FAFNER2

Energy Shine through loss (%)

0.8 MeV 0.84
0.9 MeV 1.32
1.0 MeV 1.76
1.1 MeV 2.51
1.2 MeV 3.00

like perpendicular injection in LHD, shine though losses can be an important fraction
of the NBI input power.

The energy (power) absorption profile is the fraction of energy (power) released
by the NBI system at each magnetic surfaces. We use ISDEP to calculate the energy
absorption or deposition profile. It is also possible to calculate the power deposition
profile dividing by the time. Figure 5.11 shows these two profiles and the average
energy and persistence of the test particle ensemble for each beam energy.

The slowing down time and the confinement time decrease monotonically with
the energy of the beam, as can be deduced from the top panels of Fig. 5.11. The
power deposition profile becomes more centered as the beam energy increases. So
it is necessary to have a compromise between this two characteristics of the NBI
absorption: decrease as much as possible the slowing down time and, on the other
hand, have a centered power deposition profile.

Fig. 5.11 Average energy (up, left), persistence (up, right), energy absorbed (down, left) and power
absorber (down, right) for the NBI fast ions in ITER
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5.4 Conclusions

We have calculated the NBI ion transport in ITER for a mono-energetic beam of
E0 = 1 MeV in the banana regime. The main physical result is, as in Chap. 4, the
steady state distribution function.

A important feature of the function is the appearance of oscillations of the function
f (E, ρ) with energy is the existence of maxima and minima in the region ρ > 0.75.
Zones with positive slopes in f (E) could create or increase kinetic instabilities which
worsen the ion confinement. We have discarded that it is due to a numerical effect,
but to the combined effect of collisions and electric field. Further investigation is
needed to clarify and identify the trigger of this point.

The ion velocity profiles show that the radial velocity causes an accumulation
of particles in the zone of the plasma around ρ ∈ (0.5, 0.7). The toroidal velocity
profile shows areas of inverted velocities at ρ ∼ 0.75. The cause is the deterministic
evolution of λ, due to the confining magnetic field.

The slowing down time is also calculated showing a separation of the Spitzer
one caused by the banana orbits. This shows that this important quantity must be
estimated carefully in the banana regime.
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Chapter 6
Overview and Conclusions

This PhD thesis report contains the research work done by the author with the ISDEP
code in the context of kinetic theory of plasmas. Starting from a well-established
version of ISDEP, we have improved the code and applied it to several realistic
cases, like the 3D transport in ITER, the largest tokamak in the world, or the study
of fast ions in the LHD and TJ-II stellarators. Finally, the code has been applied to
NBI ion transport in ITER.

ISDEP can be classified in the Monte Carlo Orbit codes category. Although there
are a number of codes which solve the same problem, ISDEP tries to avoid approx-
imations and limitations that these codes usually present. The use of a full 3D spa-
tial description of the system employing Cartesian coordinates, the lack of a priori
conserved quantities and the detailed representation of the particle dynamics make
ISDEP more realistic and flexible than many existing simulation codes. The most
important features of ISDEP, from a physical point of view are:

• It calculates the test particle distribution function in a fusion device, considering
the actual 3D geometry, collisions with several species and the static radial electric
field.

• Test particles (usually ions) interact with a static plasma background via the Boozer
and Kuo-Petravic collision operator.

• It makes use of the guiding center approximation, reducing the dimensionality of
the system and getting rid of a small scale and fast gyromotion.

• Indeed, it takes into account the parallel movement and the drift velocities: E ×B,
∇B × B and Rc × B.

• It uses Cartesian coordinates, allowing the description of the SOL region and any
magnetic field topology.

• The particle movement is represented by a 5D stochastic differential equation
system.

• ISDEP uses the Jack-Knife technique to analyze the Monte Carlo results and
calculate the statistical errors.

• Due to its architecture, it has a very good performance in distributed computing
platforms like grids and desktop grids.
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The main improvements included in ISDEP during the elaboration of this thesis
are, in chronological order:

• Inclusion of a test tokamak geometry, to benchmark the code with the MORH
code.

• Inclusion of an H-mode ITER equilibrium and plasma profiles.
• A BOINC version of the code, used in the Ibercivis calculations.
• Inclusion of any LHD vacuum magnetic configuration, although only the one

labeled with Raxis = 3.60 m is used in this thesis.
• The coupling between ISDEP and FAFNER2/HFREYA to obtain the fast ion initial

distribution.
• The measurement of the distribution function f (t, ρ, v||, v⊥).
• Calculations of the steady state and NBI-Blip distribution functions, using Green’s

function formalism.
• Introduction of charge exchange and thermalization losses.
• Reconstruction of the CNPA neutral flux spectrum in TJ-II considering the geom-

etry of the detector.

The numerical results obtained in this work can be divided in three groups: studies
of the 3D transport in ITER geometry, calculation of the distribution function of fast
ions in stellarators and comparison of the latter with experimental results.

The influence of the magnetic ripple on the ITER collisional transport has been
studied as a first work in Chap. 3. These studies have shown the increase of the radial
particle and energy fluxes and the deterioration of the confinement with the toroidal
magnetic ripple. The conclusion is that the 3D geometry affects the transport in
ITER and should be considered for detailed simulations of the device. Even though
the modification is not extremely high, for long pulses or steady state operation it
may have a strong influence on the behavior of the plasma.

Beyond the global confinement features, ISDEP is used to calculate other transport
properties like the distribution of particle losses in this 3D geometry. With additional
input data, ISDEP can provide the total fluxes that reach the device walls and can be
used to optimize the divertor system and minimize sputtering and recycling.

The effect of the ripple is especially relevant for high energy ions because the
∇B × B and Rc × B drift velocities are proportional to the ion energy. Therefore
we expect that the alpha particle confinement is affected in fusion D-T plasmas.
Since alpha particles carry an important fraction of the fusion reactions energy and
are supposed to heat the plasma, the studies presented here are relevant for future
simulations in fusion devices. All these results were published in [1].

Later, the confinement properties of the NBI fast ions are studied for stellarators
in Chap. 4 and published in [2]. The main result of this chapter is the calculation of
the fast ion distribution function f (ρ, v||, v⊥), both time dependent and in the steady
state. We have considered two different NBI cases: perpendicular injection for LHD
and tangential for TJ-II. This is a more general result than those presented in Chap. 3
because the relevant quantities of the test particles can be estimated as moments of
the distribution.

http://dx.doi.org/10.1007/978-3-319-00422-8_3
http://dx.doi.org/10.1007/978-3-319-00422-8_4
http://dx.doi.org/10.1007/978-3-319-00422-8_3
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The steady state profiles of toroidal and poloidal rotation and radial velocity
are calculated in this way. Since momentum conservation is not satisfied in ISDEP
because the plasma background is static, the rotation profiles of the beam ions are
not a precise measure of the whole plasma rotation, only an estimation of the NBI
rotation and current drive. The calculation of poloidal rotation profiles is impor-
tant because they may be able to create shear flows. Shear flows may help to
reduce the turbulence and create transport barriers, improving the plasma global
confinement [3].

Fast ion thermalization is a basic measurement of the NBI efficiency in the device.
The slowing down time is computed and compared with the standard Neoclassical
formula, showing the effect of the particular magnetic configuration and injection
properties on such quantity. The ion transport and the device geometry happen to be
a key factor in the slowing down process. The loss cones in the two devices are also
estimated with ISDEP as functions of time, showing the different time scales of the
loss processes. The slowing down time appears to be of the same order of the fast
ion confinement time in the two cases.

With this numerical tool working we proceeded to compare the computational
results with actual experimental data, mainly in TJ-II. The experimental data are
provided, in both cases, by the Neutral Particle Analyzers (NPAs) installed in the
machines. In TJ-II we have successfully reconstructed the CNPA energy spectra
for two characteristic discharges with different plasma density. The agreement is
satisfactory although some discrepancies are observed, mainly in the high energy
region of the spectra. We have concluded that the discrepancies between simulation
and experiment can be attributed to the Alfvén activity in TJ-II.

The NBI-Blip experiments in LHD have also been well reproduced by the code
calculating the decay time in the E > 29 keV energy range, but only in a limited
region of the plasma and for one magnetic configuration.

Finally, we have presented our results concerning NBI ion transport in the ITER
geometry. We have calculated the characteristic confinement and thermalization
times and have found a radial accumulation region located around ρ = 0.6. The
calculations also predicted an inversion of the NBI toroidal current in the outer
regions of ITER and the appearance of several maxima and minima in the spectrum
f (E). The former is due to the deterministic evolution of the pitch angle while the
latter is cause by the combined action of collisions and radial transport. The onset of
this non-monotonic distribution function could be a concern, since it might produce
the appearance of kinetic instabilities.

Finally, the slowing down time is calculated and compared with the Spitzer esti-
mation. The differences are due to the banana regime, which causes ion transport to
be non-local.

On the whole, the ISDEP code has become a valuable simulation instrument for
the study of collisional transport in fusion devices. But still there is a lot of work to
do in the near future. Here we list a few research lines:
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• Simulation of Ion Cyclotron Resonance Heating (ICRH) in ITER, scanning the
antenna power and studying the heating efficiency. This task requires the inclusion
of the quasi-linear wave-particle interaction equations [4] in ISDEP.

• Improving the comparison with the NBI-Blip discharges in LHD, using different
magnetic configurations and plasma profiles.

• Include 3D effect of the fast ion transport in ITER in the same way as in Chap. 3.
• Study of the impurity effect in the NBI ions in TJ-II using a non flat Zef f

profile [5].
• Introduction of Alfvén wave effects on fast ion orbits.
• Calculations for the ASDEX-U tokamak and comparison with experiments [6, 7].
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Appendix A
Index of Abbreviations

BIFI Instituto de Biocomputación y Física de los Sistemas Complejos
BOINC Berkeley Open Infastructure of Network Computing
CIEMAT Centro de Investigaciones Energéticas, Medio-Ambientales y Tecnologicas
CNPA Compact neutral particle analyzer
CX Charge exchange
DKE Drift kinetic equation
ECRH Electron cyclortron resonance heating
FP Fokker planck
HPC High performance computer
ICRH Ion cyclortron resonance heating
ITER International tokamak experimental reactor
ISDEP Integrator of stochastic differential equations for plasmas
GC Guiding center
LHD Large helical device
LHS Left hand side
LOS Line of sight
NBI Neutal beam injection
NC Neoclassical
(C)NPA (Compact) neutral particle analyzer
MHD Magneto hydro dynamics
ODE Ordinary differential equation
RHS Right hand side
SDE Stochastic differential equation
SOL Scrape-off-layer
TJ-II Tokamak JEN II
UCM Universidad Complutense de Madrid
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Appendix B
Guiding Center Equations

In this appendix we work in detail the deduction of the Guiding Center equations of
motion for a charged particle in a strong magnetic field.

B.1 Guiding Center Lagrangian

In this section we deduce the expression of the Guiding Center Lagrangian, which
reduces the dimensionality of our system and deals with the gyromotion. The equa-
tions obtained here represent the movement of a charged particle in an external
electromagnetic field where the dominant force is given by the magnetic component.
The interaction of the particle with other plasma particles is shown in Sect. 1.3.2 we
use the Einstein summation convention and we may denote partial derivatives with
a comma subscript. As usual, the index rising and lowering is done with the metric
tensor [1]. Let us start with the classical Lagrangian for a charged particle [2]:

L(r, ṙ, t) = mṙ2

2
+ ZeA(r, t) · ṙ − Ze�(r, t), (B.1)

where m and Ze are the particle mass and charge; r and ṙ the particle position and
velocity; and A and � the magnetic and electric potentials, with B = ∇ × A, E =
−∇� − ∂A

∂t . The particle equations of movement are given by the Euler-Lagrange
equations:

d

dt

(
∂L
∂ ṙ i

)
= ∂L

∂r i
. (B.2)

Then:
d

dt
(mṙi + ZeAi ) = ZeA j,i ṙ

j − Ze�,i ⇒ (B.3)

mr̈i = Ze
(

A,i
j ṙ j − �,i − Ȧi

)
. (B.4)
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In components, the magnetic field is Bi = εi jk Ak, j , so:

(B × ṙ)i = εi
jk B j ṙ k

= εi
jkε

j
pq Aq,pṙ k

= −εi
jkε

j
p q Aq,pṙ k

= −(δi
pδkq − δi

qδpk)Aq,pṙ k

= Ai
,kṙ k − A,i

k ṙ k, (B.5)

⇒ A,i
j ṙ j = − (B × ṙ)i + Ai

,kṙ k . (B.6)

With this:

mr̈i = Ze
(
− (B × ṙ)i + Ai

,kṙ k − �,i − Ȧi
)

, (B.7)

mr̈ = Ze (ṙ × B + E) . (B.8)

This is the classical Lorentz force for a charged particle. In particular, the solution
of this second order ODE in a uniform magnetic field is:

r = R + 1

�
b × ṙ. (B.9)

With: � = ZeB/m, b = B/B and R the position of the center of rotation or GC
position. The frequency � is known as the Larmor frequency and it is the rotation
frequency of a charged particle of mass m and charge Ze moving in a uniform
magnetic field. Moving to a coordinate system where B = Bz, we define the Larmor
radius �ρ:

R = r − �ρ, �ρ = ρ (x̂ cos θ + ŷ sin θ), ρ = ṙ⊥
�

, (B.10)

with ṙ⊥ being the velocity component perpendicular to B, θ the rotation angle around
R, and x̂ and ŷ unitary vectors. Note than in this section, and only in this section,
the Greek character ρ does not refer to the plasma effective radius but to the Larmor
radius.

In order to get rid of the fast and small scale movement of gyration around R, the
Guiding Center approach is introduced. It is assumed that the Larmor radius is much
smaller than any other characteristic length of the system so the plasma parameters
and fields do not vary much in one gyro-orbit. In such a case the 6D phase space can be
reduced to a 5D phase space whose coordinates are R, the Guiding Center position,
and two coordinates for velocity space, disregarding the gyroangle coordinate. In
this approximation the zeroth order movement is given by the magnetic field lines.
Electric field and inhomogeneities of the magnetic field give rise to the first order
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correction: the drift velocities. With this procedure we can get rid of the fast gyration
time scale (∼108 H z) and the small spatial scale (∼10−3 m).

The procedure to reduce the dimensionality of the system is the following. First
the Lagrangian is expanded in Taylor series around the Guiding Center position in
the Larmor radius. Then we must average in the rotation angle or gyroangle θ around
the field line. The gyroangle average is defined as:

〈g(θ)〉 = 1

2π

∫ 2π

0
g(θ)dθ. (B.11)

We proceed in this way for each term in the Lagrangian from Eq. (B.1):

〈mṙ2

2
〉 ≈ m

2
〈(Ṙ + �̇ρ)2〉

= m

2
〈Ṙ2 + ρ̇2 + 2Ṙ · �̇ρ〉

= m

2

(
〈Ṙ2〉 + (ρθ̇)2

)

= m

2

(
(Ṙ · b)2 + (ρθ̇)2

)
. (B.12)

〈�(r, t)〉 ≈ �(R, t). (B.13)〈
A(r, t) · ṙ〉 ≈ 〈(A(R) + A,xρ cos θ + A,yρ sin θ

)
· (R + ρθ̇ (−x sin θ + y cos θ)

) 〉

= A(R) · R + ρ2θ̇

2

(
Ay,x − Ax,y

)

= A(R) · R + Bρ2θ̇

2
, (B.14)

where we have made use of: �ρ · b = �̇ρ · b = 0, 〈cos θ〉 = 〈sin θ〉 = 0 and 〈Ṙ2〉 =
(Ṙ · b)2.
With all the simplified terms, the GC Lagrangian is:

L(R, ρ, θ, Ṙ, ρ̇, θ̇ , t) = m Ṙ2

2
+ mρ2θ̇2

2
+ ZeA(R) · Ṙ

+ Zeρ2θ̇2

2
B(R) − Ze�(R). (B.15)

Now let us calculate the Euler-Lagrange equations for ρ and θ . The equation for ρ

is:

d

dt

(
∂L
∂ρ̇

)
= ∂L

∂ρ
. (B.16)
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∂L
∂ρ̇

= 0 ⇒ mρθ̇2 + Zeρθ̇ B = 0, (B.17)

θ̇ = − ZeB

m
= −�. (B.18)

This result is obvious, the particle rotates uniformly around the field line with fre-
quency ±�, depending on the sign of the charge. The equation for the gyroangle
implies that θ is a cyclic variable in L, so a conserved quantity is obtained:

∂L
∂θ

= 0 ⇒ d

dt

(
∂L
∂θ̇

)
= d pθ

dt
= 0. (B.19)

Then ρ2� = C , constant, → v2⊥/� = C . We call this constant of motion the
magnetic moment and, using the definition of �:

μ = mv2⊥
2B

. (B.20)

We will see later that this conserved quantity is necessary to find the evolution
equations in velocity space. Finally, the equations for the G.C. coordinates are:

d

dt

(
∂L
∂ Ṙi

)
= ∂L

∂ Ri
. (B.21)

Ignoring the terms in the Lagrangian that do not depend on R or Ṙ (irrelevant for the
present purposes), we get

L(R, Ṙ, t) = m

2

(
b(R) · Ṙ

)2 + ZeA(R) · Ṙ + μB(R) − Ze�(R). (B.22)

Naming v|| = Ṙ · b, the LHS of Eq. (B.21) is:

d

dt

(
∂L
∂Ṙ

)
=

(
∂

∂t
+ Ṙ · ∇

) (
m(b · Ṙ)b + ZeA

)

= mv̇||b + mv||
(

∂

∂t
+ Ṙ · ∇

)
b

+ Ze
∂A
∂t

+ Ze(Ṙ · ∇)A. (B.23)

Using the vector identity ∇(C · X) = (C · ∇)X + C × (∇ × X), valid for a constant
vector C, we find:

(Ṙ · ∇)A = ∇(Ṙ · A) − Ṙ × (∇ × A) = ∇(Ṙ · A) − Ṙ × B, (B.24)
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the RHS of Eq. (B.21) leads to:

∂L
∂R

= mv||∇(b · Ṙ) + Ze∇(A · Ṙ) + ∇(μB) − Ze∇�

= mv||
(
(Ṙ · ∇)b + Ṙ × (∇ × b)

)
+ Ze

(
(Ṙ · ∇)A + Ṙ × Ḃ

) − μ∇B − Ze∇�. (B.25)

Adding up both equations, the terms with ∇(Ṙ · A) and (Ṙ · ∇)b cancel out. Then,
the equation for the GC position becomes:

mv̇||b = −mv||
∂b
∂t

+ Ze(E + Ṙ × B) + mv||(Ṙ × (∇ × b)) − μ∇B. (B.26)

It is assumed that ∂b
∂t = 0 or that is very small compared with � and is neglected. The

triple cross product term may be simplified introducing the curvature of the magnetic
field lines: �κ = (b · ∇)b.

Ṙ × (∇ × b) = v||b × (∇ × b). (B.27)

∇(b · b) = 0 ⇒ b × (∇ × b) + (b · ∇)b = 0. (B.28)

b × (∇ × b) = −(b · ∇)b = −�κ. (B.29)

Finally:
mv̇||b = Ze(E + Ṙ × B) − μ∇B − mv2|| �κ. (B.30)

If we do the scalar product with b, we can obtain the parallel dynamics of the GC:

mv̇|| = ZeE|| − μ∇|| B. (B.31)

The two terms in this equation represent the influence of the electric field and the
magnetic mirrors on the dynamics along a field line. We may perform the cross prod-
uct with b to obtain perpendicular dynamics. Usually the perpendicular component
of the GC velocity is called drift velocity, vD:

0 = −ZeBvD + ZeE × b − μ∇B × b − mv2|| �κ × b. (B.32)

vD = E × B
B2 + v2⊥

2�
b × ∇ ln B + v2||

�
b × �κ. (B.33)

Usually the drift velocity is expressed in terms of the curvature radius of the magnetic
field lines Rc instead of the curvature itself:

Rc

R2
c

= �κ. (B.34)

Table 1.1 in Sect. 1 shows the notation used in this thesis for the physical quantities.

http://dx.doi.org/10.1007/978-3-319-00422-8_1
http://dx.doi.org/10.1007/978-3-319-00422-8_1
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B.2 Higher Order Corrections in the Electric Field

It is possible to obtain more accurate GC equations of motion retaining more therms
in the Taylor expansion in �ρ around the GC position Eqs. (B.14) and (B.13). This is
necessary when the Larmor radius is not sufficiently small compared with the other
lengths of the system. Although ISDEP is limited to the first order, we illustrate this
method obtaining higher order corrections in the electrostatic field.

The order zero expansion is 〈�(r, t)〉0 = �(R). The order one correction is zero
because it is proportional to cos θ or sin θ , whose average in θ is zero: 〈�(r, t)〉1 = 0.
In the second order Taylor expansion we can find terms proportional to cos2 θ or
sin2 θ . The only surviving terms after gyroangle average are:

〈�(r, t)〉2 = ρ2

4

(
∂2�

∂x2 + ∂2�

∂y2

)

= ρ2

4
∇2�(R). (B.35)

The the electric potential is, up to the second order:

�(r) ≈ �(R) + ρ2

4
∇2�(R). (B.36)

This substitution should be done when the electric field is intense or when the Larmor
radius is not small compared with �/|∇�|. Usually this correction is not required,
but the procedure can be applied to any term in the Lagrangian if needed.

B.3 Explicit Equations for Tokamaks and Stellarators

In this section we present the GC equations for the two most advanced kinds of
fusion devices: tokamaks and stellarators. A description of the geometry and coil
distribution of these devices can be found in Sects. 3 and 4. The important feature
on account to the equations of movement is the terms with ∇ × B, which can be
neglected in a stellarator in contrast to the tokamak case, where the electric current
can be important.

The most general case in GC dynamics for fusion plasmas is the tokamak (see
Sect. 3.1). None of the terms in the parallel and drift velocities are negligible due to
the coil configuration, the plasma characteristics and the geometry. Equations B.31
and B.33 read:

dr
dt

= vλ
B
B

+ mv2(1 − λ2)

eB3

(
B · (∇ × b̂)

)
· B + vD = v. (B.37)

http://dx.doi.org/10.1007/978-3-319-00422-8_3
http://dx.doi.org/10.1007/978-3-319-00422-8_4
http://dx.doi.org/10.1007/978-3-319-00422-8_3


Appendix B: Guiding Center Equations 123

vD = E × B
B2 + mv2

2eB3 (1 − λ2) (B × ∇B) + mv2λ2

eB2

(
B × Rc

R2
c

)
. (B.38)

Let us derive the equations for v2 and λ from the energy and magnetic moment
conservation in the absence of collisions with the background plasma. The energy
conservation is expressed as:

dE

dt
= 0, E = mv2

2
+ e�. (B.39)

Then the equation for dv2/dt is obtained:

dv2

dt
= −2e

m

d�

dt
= −2e

m

(
∇�

dr
dt

)
= 2e

m
E · v. (B.40)

The pitch angle evolution dλ/dt can be deduced in the same way using the conser-
vation of μ = m(1 − λ2)v2/2B:

dμ

dt
= 0 ⇒ m(1 − λ2)

2B

dv2

dt
− 2λmv2

2B

dλ

dt
− μ

B
(∇B · v) = 0. (B.41)

Hence

dλ

dt
= 2B

2λmv2

(
m(1 − λ2)

2B

dv2

dt
− μ(∇B · v)

B

)
(B.42)

= (1 − λ2)

2λv2

dv2

dt
− mv2(1 − λ2)

2Bλmv2 (∇ B · v)

= (1 − λ2)

2λv2

dv2

dt
− (1 − λ2)

2Bλ
(∇B · v) .

This expression is mathematically correct, but λ’s in the denominator cause numerical
instabilities when λ ≈ 0. A more stable formula can be obtained recalling Eq. (B.40)
and using the decomposition v = v|| + vD .

dλ

dt
= 1 − λ2

2λv2

2e

m

(
E · (v|| + vD)

) − 1 − λ2

2Bλ

(∇B · (v|| + vD)
) =

= 1 − λ2

2λ

(
2

eE · v||
mv2 + 2

1 − λ2

2B3 E · (B × ∇B) + 2
λ2

B2 E ·
(

B × Rc

R2
c

)

−∇B · v||
B

− ∇B · (E × B)

B3 − mv2λ2

eB3 ∇B ·
(

B × Rc

R2
c

))
. (B.43)

We can get rid of λ in the denominator using that
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E · v||
λ

= E||v,
∇B · v||

λ
= ∇B||v, (B.44)

and with some more simplification we get:

dλ

dt
= 1 − λ2

2

(
2e

mv
E|| − λ

B3 E · (B × ∇B) + 2λ

B2 E ·
(

B × Rc

R2
c

)

− v

B
(∇ B)|| − mλv2

eB3 ∇B

(
B × Rc

R2
c

))
. (B.45)

Stellarators (see Sect. 4.1) are fusion devices in which almost all the magnetic field
is created by external coils. Usually the plasma current is neglected so ∇ × B = 0.
The previous orbit equations can be simplified to:

dr
dt

= vλ
B
B

+ vD, (B.46)

dv2

dt
= 2e

m
(E · vD) , (B.47)

dλ

dt
= − μ

mv
(∇ B)|| − eλ

mv2 (E · vD) + λ
(B × ∇B) · E

B3 , (B.48)

where

vD = E × B
B2 + mv2

2eB3 (1 + λ2) (B × ∇B) . (B.49)

It can be easily checked that energy and magnetic moment conservation are satisfied:

dE

dt
= d

dt

(
mv2

2
+ e�

)
= e(E · vD) − Ee(v|| + vD) = 0, (B.50)

dμ

dt
= 0. (B.51)

The energy conservation is valid as long as the electric field is perpendicular to the
magnetic field. Usually the electric potential is constant on a flux surface (neglecting
toroidal and poloidal asymmetries). So its gradient is perpendicular to the magnetic
surface and, thus, to the magnetic field.
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